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Abstract. We investigate the role of the Pauli Exclusion Principle (PEP) for light

nuclei, at the examples of 12C and 16O. We show that ignoring the PEP does lead

not only to a too dense spectrum at low energy but also to a wrong grouping into

bands. Using a geometrical mapping, a triangular structure for 12C and a tetrahedral

structure in 16O in the ground state is obtained by using the indistinguishably of the

α-particles.

1. Introduction

The nuclei 12C and 16O play an important role in the investigation of α-

cluster systems THSR,freer2017,funaki2010,schuck2013,schuck2017,funaki2018,review-

clusters,schuck2018. No core shell model calculations have been performed [9, 10, 11]

in order to understand, under several aspects, the structure of the Hoyle state. Also

calculations within the Antisymmetrized Molecular Dynamics model (AMD)l [12, 13, 6]

and within the Orthogonality Condition Model (OCM) [35] have been performed, using

a microscopic Hamiltonian. These microscopic models lead to an understanding of the

Hoyle state [15], important in the 12C production in stars.

In [16, 17, 18] the Algebraic Cluster model (ACM) [19] has been applied to 12C and
16O, assuming in the first one a triangular structure and in the second one a tetrahedral

structure. The ACM is purely algebraic and does not take into account the Pauli

Exclusion Principle (PEP). The bands are obtained by rotating the classical geometrical

structure and bands are differentiated according to their vibrational structure.

In [20] the 12C nucleus was investigated within the Semimicroscopic Algebraic

Cluster Model (SACM) [21, 22], which is also an algebraic model, but whose model

space takes into account the PEP. The similarity to the ACM makes this model ideal

to compare to the ACM. The main conclusions in [20] are: i) The association of bands
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in the ACM is not consistent, the projection to Pauli allowed states leads to a grouping

of bands according to the SU(3) shell model irreducible representations (irrep). ii) Not

including the PEP leads to too many states at low energy. Doublets predicted in the

ACM are not there any more. iii) The additional (second) 5− state at low energy is

not supported by the shell model. iv) the observation of the 5− state in [16] does not

prove a triangular structure, it is just part of a band which is obtained in all models.

v) Applying a geometrical mapping, for the ground state band it is trivial that 12C has

a triangular and 16O a tetrahedral structure. The reason is that the α-particles are

indistinguishable and, thus, the distance between any two α particles must be the same.

For higher bands different geometrical configurations may mix and the situation is not

very clear.

In this contribution we will report in more detail on these findings and include some

new results on 16O. The complete results will be published elsewhere.

In Section 2 the SACM is briefly resumed and the Hamiltonian used for 12C is

presented. Results and the discussion will also be provided. Finally, in Section 3

conclusions will be drawn.

2. The model, Hamiltonian and Quadrupole operator

Within the SACM [21, 22] the clusters are treated within the shell model and are in

their ground state. The whole nucleus is also treated within the shell model and is a

sum of the two clusters with the addition of the relative motions between the clusters.

Each relative motion is quantized by the relative oscillation creation and annihilation

operators π†λk,m
and πλk,m, respectively, where λk refers to the k’th Jacobi coordinate.

The generators of the relative motion in the k’th Jacobi coordinate are given by Cm′

m (k)

= π†m(k)π
m′

(k) and the ones related to the sum over all relative vibrations are Cm′

m =
∑

k π
†
m(k)π

m′

(k) = π†mπ
m′

. Auxiliary scalar bosons σ† and σ are introduced in order

to implement a cutoff value N , with N = nπ + nσ, where nπ and nσ are the number

operators of the total number of π oscillations and of the number of σ-bosons. The

σ-bosons have no physical meaning, save for the cut-off. The number of relative motion

quanta in each Jacobi coordinate is limited from below by the Wildermuth condition

[23], which is a minimal condition for satisfying the PEP. Multiplying the SU(3) irreps

of the clusters with the relative motion leads to a sum of total SU(3) irreps which still

in part do not satisfy the PEP. These are excluded by constructing the overlap of the

list of irreps obtained by the list of the shell model SU(3) irreps. This is a quite brief

summary and for more details, please consult the original publications on the SACM

[21, 22].

The model Hamiltonian proposed for 12C is
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H = ~ωnπ − χC2(λ, µ) + t2(C2(λ, µ))
2 + tC3(λ, µ)

+
(

a+ aL(−1)L + aLnp∆nπ

)

L2 + bK2

+ b1

[

(

σ†
)2 −

(

π† · π†
)

]

· [h.c.] . (1)

The first term is just the harmonic oscillator field and the ~ω is fixed via 45×A−1/3−25×
A−2/3 [24], where its value is 14.89 for 12C. The second term is related to the algebraic

quadrupole-quadrupole interaction [25], with C2(λ, µ) being the second order Casimir

operator. The third and fourth terms allow for corrections in the relative ordering of

SU(3) irreps, where C3 is the third order Casimir operator, which distinguishes between

(λ, µ) and (µ, λ). The fifth term allows to describe changes in the moment of inertia for

states with higher shell excitations and when the spin parity changes. The last term in

the second line lifts the degeneracy in angular momentum for states within the same

SU(3) irrep. Up to here, the Hamiltonian is within the SU(3) limit and permits analytic

results, substituting the operators by their corresponding eigenvalues. In the last line,

the term mixes SU(3) irreps, it is a generator of a O(4) group. The pure SU(3) part has

7 free parameters, the same as in [16] (including N). For allowing the mixing a further

parameter (b1) is added, i.e., in the final calculations there are 8 parameters.

As the quadrupole transition operator we use the one given in [26], which is a

symplectic generator, including connections to multiple 2~ω shell excitations. In an

algebraic model it is customary to use the algebraic part of this operator, which does

not connect shells, valid when inter-shell excitations are not considered. The physical

quadrupole operator [26, 27] is given by

Q
phys
2m = Qa

2m +

√
6

2

(

B
†
2m +B2m

)

B
†
2m =

(

π† · π†
)

, B2m = (π · π) . (2)

The B
†
2m operator transforms as a (2,0) SU(3) irrep, while B2m as its conjugate.

The states for the 3-α cluster nucleus 12C and the 4-α cluster nucleus 16O were

constructed, using the work done in [29, 30]. The overlap of the symmetrized cluster

states with the shell model is determined using spin-isospin zero supermultiplets [31] to

which the total state is coupled. The microscopic model space for 12C is given in [20]

and for 16O it will be published elsewhere.

In Fig. 1 several fits, each referring to the adjustment to the B(E2; 0+2 → 2+1 )-value,

are depicted. The general agreement is quite good and comparable to the one given in

[16]. However, the ordering into bands is completely different. The SU(3) fit indicates

that the bands are ordered according to definite SU(3) irreps. In each irrep, the states

have a definite deformation, as deduced in [32, 33]. Thus, intrinsic states with different

deformation are associated into different bands!
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Figure 1. Spectrum of 12C. In the upper row, the left figure is the experimental

spectrum and the right figure depicts the result for pure SU(3). In the second row, the

left figure depicts the result when the B(E2; 0+2 → 2+1 ) transition value is adjusted to

1 WU and the right figure when this value is adjusted to the experimental one, namely

8 WU, which is the value from experiment [28]. The first excited 0+ state corresponds

to the hoyle state [15]. The experimental values are taken from [28]. In the SU(3)

plot, at the lower part the numbers ∆nπ(λ, µ) are listed, where ∆nπ refers to the shell

exciations and (λ, µ) to the corresponding SU(3) irrep.

In Fig. 2 we compare the case where the B(E2; 2+1 → 0+1 ) is adjusted to 1 WU (left

panel) to the results of the ACM [16]. As seen, the spin-doublets are dissolved and the

density of states is lower.

In Table 1 the SU(3)-content of the first two 0+ bands are listed, where the values

were rounded off. The association of states into the same band requires that the content

is the same, however, in reality mixing effect reproduce only approximate agreements.

As can be seen, the 2+1 state has a very similar content as the 0+1 state, thus, they belong

to the same band. It is similar for the second 0+ band. This cannot be concluded from
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Figure 2. Comparison Spectrum of 12C, as calculated within the SACm (left panel)

to the AMC (right panel).

Lπ
i 0+1 2+1 4+2 0+2 2+2 4+1

nπ = 4 :(0,4) 82 82 48 8 3 31

nπ = 6 :(2,4) 16 16 4 22 41 16

nπ = 6 :(4,3) 0 0 0 0 0 0

nπ = 8 :(4,4) 1 2 0 22 28 29

nπ = 8 :(6,2) 0 0 0 5 6 0

nπ = 8 :(6,3) 0 0 0 0 0 0

nπ = 8 :(8,2) 0 0 0 2 6 0

nπ = 8 :(12,0) 0 0 0 33 6 0

nπ = 10 :(6,4) 0 0 39 7 9 19

nπ = 10 :(10,2) 0 0 0 0 0 0

Table 1. SU(3) content of some low lying states with positive parity, given as in

percent, for the case of B(E2; 0+2 → 2+1 ) = 8 WU . The numbers are only approximate

and not all irreps are shown.

B(EL; Jπ
i → Jπ

f ) [WU] EXP. SU(3) case-1 case-8

B(E2; 2+1 → 0+1 ) 4.65 4.65 5.18 3.41

B(E2; 0+2 → 2+1 ) 8. 0.0 0.97 8.33

B(E3; 3−1 → 0+1 ) 12. 6.32 5.27 24.28

Table 2. List of B(EL)-transition values, measured and obtained in three different

model calculations: In the first column information is listed on the type of the electro-

magnetic transition, the second column lists the corresponding experimental value,

the third column assumes exact SU(3) symmetry and in the last two columns the

experimental value of B(E2; 2+2 → 0+1 ) is adjusted to different values (case-1: 1WU,

case-8: 8WU).
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B(EL; Jπ
i → Jπ

f ) [WU] EXP. case-1 Ref. [16]

B(E2; 2+1 → 0+1 ) 4.65 ± 0.25 5.18 5.15

B(E2; 0+2 → 2+1 ) 8.03 ±1.10 0.97 0.80

B(E3; 3−1 → 0+1 ) 12.65 ± 1.99 12.23 5.15

Table 3. List of B(EL)-transition values, measured (first column), the one obtained

within the SACM (second column) and within the ACM (third column). The numbers

are given in WU.

the 4+1 and 4+2 states, which are already well mixed states, due to the large deformation of

the 12C nucleus. Here, the association into the bands is done in the eye of the beholder.

In Table 2 some experimental measured B(E2) values and the B(E3; 3−1 → 0+1 )

value are listed and compared to the SU(3) calculation and two cases of theoretical fits,

one where the side-band B(E2; 0+2 → 2+1 ) transition value is adjusted to 1 WU (as in

[19]), called case-1, and another fit where this side-band transition value is adjusted

to 8 WU, called case-8. The B(E2)-values were multiplied by a common scale factor

a ≈ 1

2
, which is proportional to the scale factor β4 in [19]. The scale factor for the B(E3)

value is a
3

2 , using the proportionality to β6 [19]. The values for the B(3) transition,

listed in Table 2, were not multiplies by this factor. In the last column of Table 3 the

corresponding B(EL)-values of the AMC, taken from [19], are listed and compared to

the SACM and experimental values. In general, both theories are of the same quality. In

the SACM the B(E3; 3−1 → 0+1 ) is even better reproduced, it shows that the argument

of a large B(E3)-value does not confirm the ACM. The main difference obviously shows

up in the spectrum, suggesting that an effort has to be taken to measure if possible all

states at low energy.

Why this difference to the ACM? In the ACM the α-particles are treated as

independent classical objects and no antisymmetrization is performed. In 12C they

are located on the edges of a triangle and in 16O on the edges of a tetrahedron. Upon

this classical picture it is direct to create rotational bands, leading to the irreps of

the corresponding discrete group. The problem with this is that the states are not

antisymmetrized. By implementing the PEP these states are projected to Pauli allowed

states, which destroys completely the ordering into irreps of the discrete groups. The

final ordering is according to SU(3) irreps in a pure SU(3) model, and approximately

when mixing is taken into account. The projection has nothing to do with a dynamical

symmetry breaking within an algebraic model, because the states obtained in such a

manner have still contributions which are not Pauli allowed.

An important feature, proven in [34, 35], is that the antisymmetrization between

two clusters (PEP) produces an effective repulsive potential, i.e., that the fermions

(nucleons) try to avoid to be at the same place This was later shown for two clusters

in a different context [36], where after a geometrical mapping, the two clusters have

a finite distance, a consequence that the Wildermuth condition [23], which requires a

minimal number of oscillation quanta. Within the ACM, one can in principle simulate
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the repulsive potential, however, adding high order terms in the generators. Because

this is not done, the Pauli exclusion effect is not taken into account.

This can also be illustrated within a geometrical mapping, where a trial state | α〉
is defined, with the the recommendation to use a coherent state. The expectation

value of the Hamiltonian with respect to this trial state defines a classical potential.

The description works fine for the ground state band. Using a coherent state, which

describes α-clusters [36, 20] in the ground state, the 12C has to be a triangle and 16O

has to be a tetrahedron. This is due to the indistinguishably of the α-particles: The

distance between any two of those has to be the same. While for the ground state band

in 12C a triangular structure and in 16O a tetrahedral structure is obtained, for the

excited bands this is not necessarily the case due to the mixing of several geometrical

configurations. Also, in the case of 12C the AMC model shows a triangular structure in

the density profile in one calculation [2], while the density profile is much more compact

in another AMC calculation [37] and the nucleus looks like an oblate deformed nucleus.

As mentioned above, the projection to Pauli allowed states destroys this classical

picture, the nuclei in consideration not only have an overlap to an α-cluster state but

consist principally of nucleons which are in an antisymmetric state.

The conclusions drawn for 12C are the same for 16O. The difference is that while 12C

has a strong deformation, 16O is spherical and is a showcase for the SU(3) shell model.

All states can be described within the SACM as nearly pure SU(3) states. The ACM

still predicts too many states at low energy (many doublets) which are not supported

by the shell model. Details will be published elsewhere.

3. Conclusions

The SACM, which satisfies the PEP, was compared to the ACM, which does not consider

the PEP. It was shown that in both systems, 12C and 16O, the PEP is still important

due to the large overlap of the α-particles. Projecting the ACM states to Pauli allowed

states destroys the association into bands as done in the ACM. The ACM obtains too

many states/doublets at low energy and some which are not there. The concepts of

atomic molecular molecules cannot be applied to nuclear molecules directly, however,

one has to supplement it by the PEP.

In conclusion, the PEP cannot be neglected!

The ACM can be improved when the Pauli exclusion principle is taken into account

via a repulsive potential between the α-particles, as discussed in the text. However, this

requires high order interaction terms, which the ACM in its present form does not

consider.

Acknowledgment

The authors acknowledge financial help from DGAPA-PAPIIT (IN100418) and

CONACyT (Project no. 251817).



XLII Symposium on Nuclear Physics 2019

IOP Conf. Series: Journal of Physics: Conf. Series 1308 (2019) 012011

IOP Publishing

doi:10.1088/1742-6596/1308/1/012011

8

Role of the Pauli principle

[1] A. Tohsaki, H. Horiuchi, P. Schuck and G. Röpke, Phys. Rev. Lett. 87 (2001), 192501.
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