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Abstract. We investigate the role of the Pauli Exclusion Principle (PEP) for light
nuclei, at the examples of '2C and 0. We show that ignoring the PEP does lead
not only to a too dense spectrum at low energy but also to a wrong grouping into
bands. Using a geometrical mapping, a triangular structure for '2C and a tetrahedral
structure in 160 in the ground state is obtained by using the indistinguishably of the
a-particles.

1. Introduction

The nuclei 2C and O play an important role in the investigation of a-
cluster systems THSR,freer2017,funaki2010,schuck2013,schuck2017,funaki2018,review-
clusters,schuck2018. No core shell model calculations have been performed [9, 10, 11]
in order to understand, under several aspects, the structure of the Hoyle state. Also
calculations within the Antisymmetrized Molecular Dynamics model (AMD)]1 [12, 13, 6]
and within the Orthogonality Condition Model (OCM) [35] have been performed, using
a microscopic Hamiltonian. These microscopic models lead to an understanding of the
Hoyle state [15], important in the *C production in stars.

In [16, 17, 18] the Algebraic Cluster model (ACM) [19] has been applied to *C and
160, assuming in the first one a triangular structure and in the second one a tetrahedral
structure. The ACM is purely algebraic and does not take into account the Pauli
Ezclusion Principle (PEP). The bands are obtained by rotating the classical geometrical
structure and bands are differentiated according to their vibrational structure.

In [20] the 'C nucleus was investigated within the Semimicroscopic Algebraic
Cluster Model (SACM) [21, 22|, which is also an algebraic model, but whose model
space takes into account the PEP. The similarity to the ACM makes this model ideal
to compare to the ACM. The main conclusions in [20] are: i) The association of bands
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in the ACM is not consistent, the projection to Pauli allowed states leads to a grouping
of bands according to the SU(3) shell model irreducible representations (irrep). ii) Not
including the PEP leads to too many states at low energy. Doublets predicted in the
ACM are not there any more. iii) The additional (second) 5~ state at low energy is
not supported by the shell model. iv) the observation of the 5~ state in [16] does not
prove a triangular structure, it is just part of a band which is obtained in all models.
v) Applying a geometrical mapping, for the ground state band it is trivial that *C has
a triangular and %0 a tetrahedral structure. The reason is that the a-particles are
indistinguishable and, thus, the distance between any two « particles must be the same.
For higher bands different geometrical configurations may mix and the situation is not
very clear.

In this contribution we will report in more detail on these findings and include some
new results on 0. The complete results will be published elsewhere.

In Section 2 the SACM is briefly resumed and the Hamiltonian used for '2C is
presented. Results and the discussion will also be provided. Finally, in Section 3
conclusions will be drawn.

2. The model, Hamiltonian and Quadrupole operator

Within the SACM [21, 22] the clusters are treated within the shell model and are in
their ground state. The whole nucleus is also treated within the shell model and is a
sum of the two clusters with the addition of the relative motions between the clusters.

Each relative motion is quantized by the relative oscillation creation and annihilation
T

operators m,

and 7y, , respectively, where )\ refers to the £’th Jacobi coordinate.
The generators of the relative motion in the £’th Jacobi coordinate are given by Cm/(k)
= 7l (k)7™ (k) and the ones related to the sum over all relative vibrations are C™ =
Sl (k)™ (k) = wf #™. Auxiliary scalar bosons o and o are introduced in order
to implement a cutoff value N, with N = n, + n,, where n, and n, are the number
operators of the total number of 7 oscillations and of the number of o-bosons. The
o-bosons have no physical meaning, save for the cut-off. The number of relative motion
quanta in each Jacobi coordinate is limited from below by the Wildermuth condition
[23], which is a minimal condition for satisfying the PEP. Multiplying the SU(3) irreps
of the clusters with the relative motion leads to a sum of total SU(3) irreps which still
in part do not satisfy the PEP. These are excluded by constructing the overlap of the
list of irreps obtained by the list of the shell model SU(3) irreps. This is a quite brief
summary and for more details, please consult the original publications on the SACM
[21, 22].
The model Hamiltonian proposed for *2C is
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H = hwn, — xCao(X, 1) + t2(Ca(X, 1))* 4 tC5(A, 1)
+ (a+ar(-1)" + apmpAn,) L* + bK?

+o [ (@) = (a7 el (1)

The first term is just the harmonic oscillator field and the Aw is fixed via 45x A~Y/3—25x
A72/3 [24], where its value is 14.89 for >C. The second term is related to the algebraic
quadrupole-quadrupole interaction [25], with Cy(A, 1) being the second order Casimir
operator. The third and fourth terms allow for corrections in the relative ordering of
SU(3) irreps, where Cj is the third order Casimir operator, which distinguishes between
(A, p) and (g, A). The fifth term allows to describe changes in the moment of inertia for
states with higher shell excitations and when the spin parity changes. The last term in
the second line lifts the degeneracy in angular momentum for states within the same
SU(3) irrep. Up to here, the Hamiltonian is within the SU(3) limit and permits analytic
results, substituting the operators by their corresponding eigenvalues. In the last line,
the term mixes SU(3) irreps, it is a generator of a O(4) group. The pure SU(3) part has
7 free parameters, the same as in [16] (including N). For allowing the mixing a further
parameter (by) is added, i.e., in the final calculations there are 8 parameters.

As the quadrupole transition operator we use the one given in [26], which is a
symplectic generator, including connections to multiple 2Aw shell excitations. In an
algebraic model it is customary to use the algebraic part of this operator, which does
not connect shells, valid when inter-shell excitations are not considered. The physical
quadrupole operator [26, 27] is given by

s 6
= Q5+ 20 (B, + Ba)

Bl = (w7t 7") | By = (mw-m) . (2)

The B;m operator transforms as a (2,0) SU(3) irrep, while By, as its conjugate.

The states for the 3-a cluster nucleus 2C and the 4-a cluster nucleus '°O were
constructed, using the work done in [29, 30]. The overlap of the symmetrized cluster
states with the shell model is determined using spin-isospin zero supermultiplets [31] to
which the total state is coupled. The microscopic model space for ?>C is given in [20]
and for 190 it will be published elsewhere.

In Fig. 1 several fits, each referring to the adjustment to the B(E2;05 — 27)-value,
are depicted. The general agreement is quite good and comparable to the one given in
[16]. However, the ordering into bands is completely different. The SU(3) fit indicates
that the bands are ordered according to definite SU(3) irreps. In each irrep, the states
have a definite deformation, as deduced in [32, 33]. Thus, intrinsic states with different
deformation are associated into different bands!
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Figure 1. Spectrum of '2C. In the upper row, the left figure is the experimental
spectrum and the right figure depicts the result for pure SU(3). In the second row, the
left figure depicts the result when the B(F2; 0;“ — 21+) transition value is adjusted to
1 WU and the right figure when this value is adjusted to the experimental one, namely
8 WU, which is the value from experiment [28]. The first excited 0T state corresponds
to the hoyle state [15]. The experimental values are taken from [28]. In the SU(3)
plot, at the lower part the numbers An,(\, p) are listed, where An, refers to the shell
exciations and (A, ) to the corresponding SU(3) irrep.

In Fig. 2 we compare the case where the B(E2;2{ — 07) is adjusted to 1 WU (left
panel) to the results of the ACM [16]. As seen, the spin-doublets are dissolved and the

density of states is lower.

In Table 1 the SU(3)-content of the first two 0% bands are listed, where the values
were rounded off. The association of states into the same band requires that the content

is the same, however, in reality mixing effect reproduce only approximate agreements.

As can be seen, the 2] state has a very similar content as the 0] state, thus, they belong

to the same band. It is similar for the second 07 band. This cannot be concluded from
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Figure 2. Comparison Spectrum of '2C, as calculated within the SACm (left panel)

to the AMC (right panel).

L7 OF [ 2F [4F [of [ 27 47
n.=4:04) | 828 [48] 8 | 3 |31
ne=6:24) |16 16| 4 | 22|41 | 16
ne=6:43) [0[0]0|0][0]0
ne=8:44) | 12| 0|22]|28]29
n,=8:62) [ 0[0]0|5][6]0
n.=8:63) [ 0[0]0|0][0]0
n,=8:82) | 0] 0|0]|2]6]0
n.=28:120) | 0 [ 0] 0 [33]6 |0
n,=10:64) | 0| 0|39 7|9 |19

n,=10:(102)| 0 [0 | 0|0 [0 |0

Table 1. SU(3) content of some low lying states with positive parity, given as in
percent, for the case of B(E?2; O;r — 2f) =8 WU. The numbers are only approximate

and not all irreps are shown.

B(EL; J§ — J7) [WU] | EXP. | SU(3) | case-1 | case-8
B(E2;2] — 0]) 465 | 465 | 518 | 3.41
B(E2;05 — 27) 8. | 00 | 097 | 8.33
B(E3;37 — 07) 12. | 6.32 | 527 | 24.28

Table 2. List of B(EL)-transition values, measured and obtained in three different

model calculations: In the first column information is listed on the type of the electro-

magnetic transition, the second column lists the corresponding experimental value,

the third column assumes exact SU(3) symmetry and in the last two columns the
experimental value of B(F2;25 — 07) is adjusted to different values (case-1: 1WU,

case-8: 8WU).
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B(EL; JF — J7) [WU] EXP. case-1 | Ref. [16]
B(E2;2f = 07) 465+ 025 | 518 | 5.15
B(E2;05 — 2) 8.03 +£1.10 | 097 | 0.80
B(E3;37 = 07) | 12.65 £ 1.99 | 12.23 |  5.15

Table 3. List of B(EL)-transition values, measured (first column), the one obtained
within the SACM (second column) and within the ACM (third column). The numbers
are given in WU.

the 4 and 47 states, which are already well mixed states, due to the large deformation of
the 2C nucleus. Here, the association into the bands is done in the eye of the beholder.

In Table 2 some experimental measured B(E2) values and the B(E3;3] — 0f)
value are listed and compared to the SU(3) calculation and two cases of theoretical fits,
one where the side-band B(FE2;05 — 2) transition value is adjusted to 1 WU (as in
[19]), called case-1, and another fit where this side-band transition value is adjusted
to 8 WU, called case-8. The B(E2)-values were multiplied by a common scale factor
a ~ 3, which is proportional to the scale factor 4% in [19]. The scale factor for the B(E3)
value is a2, using the proportionality to 3% [19]. The values for the B(3) transition,
listed in Table 2, were not multiplies by this factor. In the last column of Table 3 the
corresponding B(FL)-values of the AMC, taken from [19], are listed and compared to
the SACM and experimental values. In general, both theories are of the same quality. In
the SACM the B(E3;3] — 07) is even better reproduced, it shows that the argument
of a large B(E3)-value does not confirm the ACM. The main difference obviously shows
up in the spectrum, suggesting that an effort has to be taken to measure if possible all
states at low energy.

Why this difference to the ACM? In the ACM the a-particles are treated as
independent classical objects and no antisymmetrization is performed. In 2C they
are located on the edges of a triangle and in 1°0O on the edges of a tetrahedron. Upon
this classical picture it is direct to create rotational bands, leading to the irreps of
the corresponding discrete group. The problem with this is that the states are not
antisymmetrized. By implementing the PEP these states are projected to Pauli allowed
states, which destroys completely the ordering into irreps of the discrete groups. The
final ordering is according to SU(3) irreps in a pure SU(3) model, and approximately
when mixing is taken into account. The projection has nothing to do with a dynamical
symmetry breaking within an algebraic model, because the states obtained in such a
manner have still contributions which are not Pauli allowed.

An important feature, proven in [34, 35|, is that the antisymmetrization between
two clusters (PEP) produces an effective repulsive potential, i.e., that the fermions
(nucleons) try to avoid to be at the same place This was later shown for two clusters
in a different context [36], where after a geometrical mapping, the two clusters have
a finite distance, a consequence that the Wildermuth condition [23], which requires a
minimal number of oscillation quanta. Within the ACM, one can in principle simulate

6



XLII Symposium on Nuclear Physics 2019 IOP Publishing
IOP Conlf. Series: Journal of Physics: Conf. Series 1308 (2019) 012011  doi:10.1088/1742-6596/1308/1/012011

Role of the Pauli principle

the repulsive potential, however, adding high order terms in the generators. Because
this is not done, the Pauli exclusion effect is not taken into account.

This can also be illustrated within a geometrical mapping, where a trial state | «)
is defined, with the the recommendation to use a coherent state. The expectation
value of the Hamiltonian with respect to this trial state defines a classical potential.
The description works fine for the ground state band. Using a coherent state, which
describes a-clusters [36, 20] in the ground state, the '*C has to be a triangle and '°O
has to be a tetrahedron. This is due to the indistinguishably of the a-particles: The
distance between any two of those has to be the same. While for the ground state band
in 12C a triangular structure and in O a tetrahedral structure is obtained, for the
excited bands this is not necessarily the case due to the mixing of several geometrical
configurations. Also, in the case of 12C the AMC model shows a triangular structure in
the density profile in one calculation [2], while the density profile is much more compact
in another AMC calculation [37] and the nucleus looks like an oblate deformed nucleus.

As mentioned above, the projection to Pauli allowed states destroys this classical
picture, the nuclei in consideration not only have an overlap to an a-cluster state but
consist principally of nucleons which are in an antisymmetric state.

The conclusions drawn for 2C are the same for °O. The difference is that while 2C
has a strong deformation, 60 is spherical and is a showcase for the SU(3) shell model.
All states can be described within the SACM as nearly pure SU(3) states. The ACM
still predicts too many states at low energy (many doublets) which are not supported
by the shell model. Details will be published elsewhere.

3. Conclusions

The SACM, which satisfies the PEP, was compared to the ACM, which does not consider
the PEP. It was shown that in both systems, '2C and 6O, the PEP is still important
due to the large overlap of the a-particles. Projecting the ACM states to Pauli allowed
states destroys the association into bands as done in the ACM. The ACM obtains too
many states/doublets at low energy and some which are not there. The concepts of
atomic molecular molecules cannot be applied to nuclear molecules directly, however,
one has to supplement it by the PEP.

In conclusion, the PEP cannot be neglected!

The ACM can be improved when the Pauli exclusion principle is taken into account
via a repulsive potential between the a-particles, as discussed in the text. However, this
requires high order interaction terms, which the ACM in its present form does not
consider.
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