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ABSTRACT: The theory of open quantum systems has many 101
applications ranging from simulating quantum dynamics in
condensed phases to better understanding quantum-enabled
technologies. At the center of theoretical chemistry are the
developments of methodologies and computational tools for
simulating charge and excitation energy transfer in solutions,
biomolecules, and molecular aggregates. As a variety of these
processes display non-Markovian behavior, classical computer
simulation can be challenging due to exponential scaling with
existing methods. With quantum computers holding the promise of
efficient quantum simulations, in this paper, we present a new
quantum algorithm based on Kraus operators that capture the exact non-Markovian effect at a finite temperature. The
implementation of the Kraus operators on the quantum machine uses a combination of singular value decomposition (SVD) and
optimal Walsh operators that result in shallow circuits. We demonstrate the feasibility of the algorithm by simulating the spin-boson
dynamics and the exciton transfer in the Fenna—Matthews—Olson (FMO) complex. The NISQ results show very good agreement
with the exact ones.
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. INTRODUCTION non-Markovian evolution are much less explored and are still
in the nascent stage of advancement. Notable studies include

Open quantum system dynamics has gained increasin
P v " 8 8 Sweke et al.>> who considered locally indivisible maps that are

research interest due to its direct a;pplications to quantum
1

dynamics in the condensed phase,' ™ transport properties,” capable of d5e3scribing non-Markovian systems and Head-
quantum biology,*™® and quantum error correction.” Recent Marden et al.”” who used ensembles of Lindblad trajectories
advances have uncovered many intriguing Phenomena, such as originating from different times to capture the non-Markovian
environment-assisted exciton transfer,'*”"* topological state behavior. Wang et al.>* constructed non-Markovian super-
preparation by reservoir engjneering,ls’16 information back- operators from the integrated generalized quantum master
flow,"”'® etc. Particularly for the non-Markovian bath, unique equation (GQME) and implemented them on NISQ devices
features exist, includin§ coherence trapping,'” enhanced through Sz.-Nagy dilation. Recently, a path integral based
quantum entanglement,2 and the emergence of noncanonical algorithm is proposed that encodes the Feynman—Vernon’s
1ol e 21-23 : . . . 5SS

equilibrium states. Accurate and efficient modeling of influence functional on a quantum computer.

non-Markovian quantum dynamics has important ramifica- The focus of this paper is to present a new quantum
tions in chemistry for studyin; charge transfer reactions in algorithm that captures the exact non-Markovian dynamics
solutions®* and heterojunctions 3727 as well as exciton transfer based on the construction of Kraus operators. We explicitly
in macromolecules and molecular aggregat68-28’29 Due to the resort to Feynman’s path integral formulation for generating
quantum mechanical nature of these processes, classical the non-Markovian evolution. Adding to the existing pool of
computer simulations can be prohibitively expensive due to methods, our approach highlights two advantages. First, by

the exponential scaling with the number of degrees of freedom
and non-Markovianity.

Since the insightful suggestion by Feynman® and the
pioneering demonstration by Lloyd,”" numerous studies have
emerged in seeking efficient quantum algorithms for quantum
simulations.””™® As for open quantum systems, although a
wealth of literature exists for Markovian dynamics, includin%
the construction of a universal set of semigroup generators®”"*
and the development of various techniques for efficient
Lindblad dynamics simulation,* ™' quantum algorithms for

implementing Kraus operators instead of superoperators on
quantum machines, the propagation scheme is equivalent to
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time-evolving the wave function instead of the density matrix.
As a consequence, it cuts the number of qubits needed by half.
Second, by employing singular value decomposition (SVD),
the nonunitary part is solely carried over to the diagonal
matrix, which has eflicient circuit implementation on quantum
computers. These two merits lead to a shallow circuit
structure that is amenable to simulating non-Markovian
quantum dynamics using multiple qubits on NISQ_devices.
The organization of the paper is as follows. In Section II, we
briefly review the operator-sum approach to open quantum
system dynamics. In Section III, we describe the path integral
techniques we use to construct exact non-Markovian super-
propagators. In Section IV, we outline the procedures to
construct Kraus operators from the superoperators. In Section
V, we describe the unitarization of the Kraus operators using
SVD and Walsh operators. In Section VI, we present
simulation results on the NISQ device with two application
cases, one based on the spin-boson model and the other based
on the exciton transfer dynamics in the FMO complex. In
Section VII, we offer concluding remarks.

Il. OPERATOR-SUM APPROACH FOR OPEN
QUANTUM SYSTEMS

The time evolution of the density matrix is described by

p(t) = U(t)p(0)U' (1) (1)

where p refers to the total density matrix of the system and
bath and U(%) is the time evolution operator. In many cases,
we are only interested in the dynamics of a subsystem, and the
reduced dynamics is achieved by tracing out the environ-
ment’s degrees of freedom. Without loss of generality, it is
often assumed that the initial density matrix takes the tensor
product form

p(0) = p(0) ® p,,(0) @)
Then, the reduced density matrix at time t is
pt) = tr, [U(t)p(0) ® penv(O)UT(t)] (3)
Peny(0) is expressed by its eigenstates
P (0) = D Al (]
i (4)
Equation 3 becomes
A0 = X 2 AUy (0) (U ()lyy)
i ©)
Define

called the Kraus operator,”® the reduced density matrix can be
written as an operator-sum representation

A1) = 2 MR (OML(®): = &, (2(0))

k ()
which defines a linear map &, , that is complete positive and
trace-preserving (CPTP). It can be proven that for a
subsystem spanning the Hilbert space of dimension d, at

most d* numbers of Kraus operators are needed to completely
mock up the CPTP map &, ,.”
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The advantage of the Kraus operator representation is that
the propagation scheme is analogous to the wave function
propagation instead of the vectorized density matrix, therefore
automatically reducing the number of qubits required by half
and in turn shortening the circuit depth. Specifically, suppose
p,(0) has the eigen decomposition p,(0) = Y..cl@;){@/, then,
the propagation can be achieved by each M(t)lg,).
Notwithstanding the advantage, one major concern of its
quantum computing implementation is that M(t) is not
unitary, and therefore, additional steps are required to convert
it to a unitary operation. Schemes for converting nonunitary
operators to unitary ones exjst,45’47’49’57_59 and in Section V,
we will describe in detail the specific implementation used in

this paper.

lIl. GENERATION OF THE LINEAR MAP E, ; FOR
EXACT NON-MARKOVIAN DYNAMICS

We resort to the framework of a multistate system linearly
coupled to its harmonic bath in the following discussion, for it
has been shown to be widely applicable for simulating
quantum dynamics in many condensed-phase sys-
3,24,25,28,60,61 ) . )
tems. In Feynman’s path integral formulation,
the time evolution of the reduced density matrix has the form

pts) = [t [Dssin o))

exp { %(S[SJ’] - S[s7D) }IF[S+, s ®)

where

B 1 t , t' . , _,,
IF[sT, s7] = exp{ - g/(; dt /(; dt"[s*(t) — s~(t)]
[(Z(t/ _ t//)5+(t//) _ a*(t/ _ t//)s—(t//)]}
(9)

is Feynman—Vernon’s influence functiona with the s*
and s~ being the forward and backward paths, respectively,
S[s*] and S[s7] are the action integrals of the free system
propagation, and (s§lp,(0)lsy) is the initial state. The nonlocal
memory kernel a(t' — t") is the root of non-Markovianity and
can be obtained from the bath response function

63,64
1,

a(t) = 1 foo da)](a))[coth( hawp )cos(wt) — isin(wt)
r Jo 2
(10)
where the spectral density J(w) is defined as
2
c:
J@) =2y ——5(w - o)
2 ; e, l (11)

Here, w; is the collective mode of the bath and ¢ is the
coupling strength between the system and bath.

Equation 8 defines an exact linear map &, for non-

Markovian quantum dynamics of the subsystem. Several
numerically efficient im7plementations are available, such as
QuAPI % QCPL®" % SMatPL,’°~7® HEOM,’*7¢
TEMPO,””~”” TNPL***' etc. In this work, we use TNPI*’
to generate the linear map (i.e., the superoperator).

https://doi.org/10.1021/acsomega.3c09720
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IV. FROM THE SUPEROPERATORS TO THE KRAUS
OPERATORS

In this section, we outline the procedures for converting the
superoperator to Kraus operators. By definition, a super-
operator operates on a matrix, whereas an operator (or
matrix) acts on a vector. It would be convenient to work in
the matrix-vector scheme, and therefore, the initial step is to
vectorize the density matrix, so that the superoperator can be
expressed as a matrix. In this scheme, the superoperator acting
on the density matrix can be written as

vec(p(t)) = L(t)vec(p(0)) (12)

where L(t) is the matrix representation of the linear map &, .

The conversion of the superoperator £ to an operator-sum
representation relies on the construction of the Choi
matrix®>** through the involution operation on £, which is

defined as

N
C:= Y (E,®NLU®E,)

ij=1

(13)

in which E;isa basis of an N X N matrix, with a “1” in the i,
jth positions and zeros elsewhere. This Choi matrix is
guaranteed to be positive and Hermitian for a CPTP map
and therefore has an eigen decomposition with positive
eigenvalues

NZ
C=UU =) ouu
k=1 (14)

The vectorized Kraus operator M; is related to this
decomposition by

vec(M,) = o, u, (15)

Therefore, the matrix M; can be reconstructed by taking the
first N elements in u; to be the first column, the N + 1 to 2N
elements in u, to be the second column, etc.

V. UNITARIZATION OF THE KRAUS OPERATORS

Useful schemes have been proposed to convert nonunitary
operations into unitary ones that can be implemented on
quantum computers. One is based on the block encoding in
which the nonunitary part is embedded in a larger unitary
matrix. The implementation involves ancilla qubits, and the
measurement related to the nonunitary operator is usually
nondeterministic. Common block—encodin% schemes include
Stinespring dilation,”® Sz.-Nagy dilation,””** quantum signal
processing (QSP),””*> etc. Another popular scheme, called
quantum imaginary time evolution (QITE),*”*’ is based on a
mapping between a nonunitary operator and a parametrized
unitary operator, in which the parameter is solved by an

Table 1. Complexity Comparison of the Walsh Operator
Approach vs Direct Compilation of the Diagonal Matrix for
the 2 qubit and 3 qubit Problems in Section VI

2 qubits 3 qubits
Walsh direct Walsh direct
operator  compilation  operator  compilation
circuit depth 4 6 13 100
number of CNOT 2 2 9 35

9668

Table 2. Complexity Comparison of SVD vs Sz.-Nagy
Dilation for the 2 qubit and 3 qubit Problems in Section VI

2 qubits 3 qubits
SVD  Sz.-Nagy dilation SVD  Sz.-Nagy dilation
circuit depth 11 14 46 123
number of CNOT 2 2 15 36

Figure 1. Circuit for SVD.

algebraic linear equation. In this paper, we unitarize the Kraus
operator M, through singular value decomposition (SVD).
Specifically,

M, =UzV' (16)

where U and V are unitary matrices that can be directly
implemented on a quantum computer. The Y matrix is a
nonunitary diagonal and can be dilated to a unitary one in the
following way."” First, a unitary operator associated with the
elements of Y is defined by

2. 0
0 X (17)
where
_ _ 2
X, =g xijl — g (18)

with 6; being the elements of . It is worth mentioning that
lojl is always smaller than 1, guaranteed by the fact that the

CPTP map &, is always contractive.”” As the dilation is

needed only for the diagonal instead of a general matrix, the
circuit depth is expected to be short. Its advantage is further
illustrated in Tables 1 and 2.
The circuit construction for the SVD*” is shown in Figure
1, where the ancilla qubit implements the Hadamard gates.
The resulting states are

UG+ 2OV | (Mly)

2 U(Z+ - Z_)V‘ll[/) |§0> (19)
in which the ancilla in the 10) state implements Mly), whereas
the I1) state measurement (labeled lp)) is discarded. The
measurement results show the statistics of Myly)(yIM] in the
computational basis, which is exactly the element in the
operator-sum representation in eq 7.

The diagonal unitary, eq 18, can be implemented efficiently
on a quantum computer using the Walsh series representa-
tion.” Below, we summarize briefly the key construction.
First, the integer j, k € [0, 2"7'7 is expressed in its binary and
dyadic expansion, respectively

>
i=1

N~
I

(20)

i kizn—i
i=1

21)
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Figure 2. (a, b) Measurement results for the non-zero Kraus operators M, and (c) population dynamics with parameters Q =1, € = 0, £ = 0.1, w,
=7.5,and = 5. (The time is in atomic unit.) The crosses are the results from ibm_lima, and the curves are the exact results. Each time point is

obtained by 20,000 shots.

where 7 is the number of qubits required to implement eq 17.
A matrix W and a vector f; are defined as

ik
Wi = (-D=" (22)

f = (In Uy), (23)

The Walsh coefficient a; is obtained from the Walsh—
Fourier transform of f;

,
1

6= = 2 Wi,
2 k=1

(24)
Then, the unitary diagonal Uy can be expressed as
2" .
Uy =[]
j=1 (29)

with the Walsh operator Q given as the tensor product of
Pauli Z gates

Q=(c) ®(c): ®® () (26)

The circuit for the exponentiation of the tensor product of
Pauli gates can be constructed” and further optimized®**’

9669

with the Gray code ordering to minimize the number of
CNOT gates.

To validate the effectiveness of the Walsh series approach,
we compare the gate complexity (circuit depth and the gate
counts) using the optimal Walsh operators with that of the
direct compilation of the unitary diagonal on Qiskit,” all

decomposed to the native gate sets of X, VX, Ry, and CNOT
and complied to the topology of ibm_perth (shown in Figure
S1). Table 1 gives the summary, and the circuits are shown in
the Supporting Information (SI), Figures S2—SS.

We also compare the gate complexity of using SVD for
unitarization of the Kraus operator to that of Sz.-Nagy
dilation, compiled to the ibm_perth topology, and the results
are shown in Table 2. The circuits are given in the SI, Figures
S$6-S9.

From a more quantitative perspective, for an n qubit
problem, the number of single and CNOT gates scales as
0(n*4"),” which is the cost of Sz.-Nagy dilation. In the SVD
approach, only the diagonal needs to be dilated, and the
compilation of the two unitary matrices involves one qubit
less and therefore only scales as O((n — 1)240=Y). The
dilated diagonal with the Walsh operator implementation
scales at most O(2").*® Therefore, it is no surprise that the
SVD plus Walsh operator approach outperforms the Sz.-Nagy
dilation.

https://doi.org/10.1021/acsomega.3c09720
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VI. RESULTS AND DISCUSSION

VII. Two-Level System. In this subsection, we present
the simulation results for the spin-boson model,”* with the
system-bath Hamiltonian given by

2 2
P 1 co,
H:—hax+heoz+z—}+—,w,2Q_—
) gl 2
= | 2m; 2 mw;
27)

We choose the spectral density to have the Ohmic form

_ z -0/,
J(w) = . héwe (28)

which gives a continuous version of eq 11. It is worth
mentioning that for a real molecular environment with
discrete modes that resemble the ohmic form, the
discretization of eq 28 gives a direct relationship between &,
o, and ¢, and @; in eq 27.°%”* In our simulation, the system
bath parameters are with the following: tunneling frequency Q
= 1, asymmetry € = 0, coupling strength & = 0.1, cutoff
frequency w. = 7.5, and inverse temperature # = 5. In this
parameter regime, we observe that out of the four Kraus
operators, only two are significantly contributing. Figure 2a,b
shows the measurement results for each of the two Kraus
operators on the IBM NISQ device, and Figure 2¢ shows the
population dynamics when adding them together. The NISQ
results match well with the exact calculation from TNPL®’

VLII. Exciton Dynamics for FMO. The FMO complex
and its functional subsystems have received intense research
investigation””~”® regarding its light harvesting efficiency and
the quantum mechanical nature of the exciton transport. In
this subsection, we study the exciton transfer dynamics in a
major pathway 1 = 2 = 3 — 4 of the FMO, shown in Figure
3.

For this 4-site model, the Hamiltonian has the following
Frenkel—Holstein” """ form

Figure 3. FMO complex and major pathway 1 — 2 — 3 — 4.
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4
H= D elk)(k + X h i)k
k=1 j#k
2 2
4 Ny v, 1 , cifk) (Kl
k=1 j=1 | =M M@y

(29)

The system Hamiltonian is taken from the work done by
Read et al.'”” (see more details in SI eq (S.1))

12375 —-877 55  —59
| -87.7 12495 308 82
7| 55 308 12175 —534
59 82 —53.5 12285 (30)

The values are in units of cm™". Each exciton is coupled to
its local harmonic bath that assumes the same Drude spectral

density
24

J@) = ==

w +y (31)

with the reorganization energy A = 35 cm™' and phonon
relaxation rate y = 106.18 cm™..'% The temperature of the
simulation is 300 K.

Among all 16 Kraus operators, only a handful are
significantly contributing. Figure 4a—f shows some represen-
tative Kraus operator measurement results on the IBM NISQ
device. With two qubits (plus one ancilla) representing the
four sites, each Kraus operator has four measurement
probabilities, labeled 00, 01, 10, and 00 in the Qiskit
convention. It is not entirely clear to us why the Kraus
operators have jumps at specific times. However, these
discontinuous jumps cancel each other and produce smooth
dynamics when adding them together. Figure Sa,b shows the
population dynamics of the four sites by adding all the
individual Kraus operators, with (a) being the simulator
results and (b) being the real device. The NISQ results show
quantitative agreement with the exact solution.

VIl. CONCLUSIONS

We have demonstrated a feasible quantum algorithm for
simulating exact non-Markovian dynamics on the NISQ
device. The shallow circuit is achieved by three strategies.
First, instead of implementing the superoperator directly, we
choose to implement its associated Kraus operators. This is
equivalent to propagating the wave function instead of the
vectorized density matrix. Reducing the dimensionality from
n? to n, where n is the size of the wavevector, it automatically
saves half of the qubits and as a consequence shrinks the
circuit depth. Second, we employ SVD to encode the
nonunitary Kraus operators. With two unitary matrices
naturally coming out of this procedure, the dilation is only
applied to the diagonal part. Third, we employ the optimal
Walsh operators to implement the unitary diagonal. The
combination of the SVD and the Walsh operator approach
results in significant improvement in compilation complexity
compared to the Sz.-Nagy dilation. As a general figure of merit
for the above numerically exact algorithm, the number of non-
zero Kraus operators often does not grow exponentially with
the system size, therefore circumventing the costly measure-
ment overhead. With respect to the spectral density, this
theoretical framework allows an arbitrary form. In conclusion,

https://doi.org/10.1021/acsomega.3c09720
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Figure 4. (a—f) Measurement results for the representative Kraus operators M, for the FMO. The system Hamiltonian is taken from ref 84 and

the bath parameters are A = 35 cm™ and y = 106.18 cm™" for the Drude spectral density
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and the temperature is 300 K. (The time is in atomic

unit.) The dots are the results from ibm_perth, and the curves are the exact results. Each time point is obtained by 50,000 shots.

the successful implementation on the NISQ device with the 4-

site model suggests that the algorithm can potentially handle
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