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1 Introduction

In high-energy physics, particle accelerators are the central experimental facilities to study
fundamental principles of nature. There, high-energetic particles are brought to collision in
order to explore their reactions under well defined laboratory conditions. Recent examples
for such machines are the Large Electron Positron collider (LEP) at CERN, which, until
November 2000 performed collisions at a centre-of-mass energy of up to 207 GeV, or the

Tevatron at Fermilab, which currently operates proton—anti-proton collisions at an energy
of 1.96 TeV.

Both experiments very successfully confirmed the predictions given by the Standard Model
(SM) of particle physics to an astonishing precision. Despite its success, the SM is seen
to be incomplete for a number of reasons. To name a few, it provides no explanation for
the 19 free parameters defining masses and couplings, it does not explain the deep origin
of electroweak symmetry breaking nor it gives answers to questions such as for the number
of particle families or for incorporated gauge structures. Furthermore, the extrapolation of
the SM to energy scales, much higher than the scale where electroweak symmetry breaking
occurs (/100 GeV), is problematic from a theoretical point of view, which is referred to
as the hierarchy problem. And lastly to be mentioned is the existence of some compelling
observations, inexplicable by the SM, namely the neutrino mixing, dark matter and the

baryon asymmetry seen in the Universe.

The upcoming start-up of the Large Hadron Collider (LHC) at CERN is expected to open a
new era in high-energy physics. It is designed to provide proton-proton collisions at a centre-
of-mass energy of 14 TeV, the highest ever been available in a ground-based laboratory. The
exploration of the new energy scale will allow for ultimate precision tests of the SM, likely
to reveal new physics and to give insights into the questions/problems left by the SM.

To interprete the new data, even after the machine and the detectors are fully understood
(being a formidable task on its own), will be an enormous challenge requiring a close col-
laboration of experimentalists and theorists. Not only that most new physics scenarios will
reveal itself in complicated multi-particle final states, the huge phase space available at LHC,

together with a very high luminosity, leads to tremendous production rates of SM particles
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which have to be understood to a yet unknown precision in order to extract possible new
effects. Especially, due to the hadronic initial state at the LHC basically any high-energetic

reaction will be accompanied by a number of rather hard jets.

Perturbative calculations form one of the best understood methods to provide predictions for
the behaviour of a Quantum Field Theory and to compare them with experimental results.
Many of the methods applied in such calculations have found their way into textbooks
already decades ago, e.g. [1l, 2, B, @, B]. Typically, the perturbation parameter is related
to the coupling constant of the theory in question, which in most cases indeed is a small
quantity. This also implies that the corresponding fields may asymptotically appear as
free fields and thus are the relevant objects of perturbation theory. This is obviously not
true for the strong interactions, i.e. Quantum Chromo Dynamics (QCD), where the fields,
quarks and gluons, asymptotically are confined in bound states only. This is due to the
scaling behavior of the coupling constant of QCD, ag, which becomes small only for large
momentum transfers. It is the confinement property that to some extent restricts the
validity of perturbative calculations in QCD to the realm of processes characterized by

large momentum transfers or by other large scales dominating the process.

Thus, a complete, quantum-mechanically correct treatment of a collision is currently far out
of reach. Besides the already mentioned non-perturbative confinement phenomenon (and
likewise the deconfinement, i.e. the partonic substructure of colliding hadrons), even for
perturbatively accessible energy scales a full calculation to a fixed order of the perturbation
parameter is restricted to a relatively small number of particles involved. This has mainly
a technical reason: even at the lowest, the tree level the number of Feynman amplitudes
to be calculated grows factorially with the number of particles. A realistic description of
QCD bremsstrahlung is beyond this limit, and can be performed only by imposing further
approximations. These normally take into account only leading kinematic logarithms, which
dominate the soft and collinear region, and that can be exponentiated to all perturbative

orders.

The assumptions, that the properties of a scattering process, related to different energy
scales, factorize and that the non-perturbative phenomena can be described by a universal
(experimentally measured) parameterization, are the basis for the development of dedicated
computer codes, called Monte Carlo event generators. The past and current success of event
generators, like PYTHIA [6, [7] or HERWIG [, 9, [T0], in describing a full wealth of various
data justifies the underlying hypothesis. Typically, a scattering process is composed out of
2 — 2 tree level matrix element, which is supplemented with a parton shower algorithm to
describe the QCD bremsstrahlung of initial and final state partons. The non-perturbative
confinement is treated via phenomenological hadronization models. In view of the new
collider era, however, this treatment is insufficient to precisely describe additional hard

QCD radiation, not included in the 2 — 2 core process.



A way to systematically improve the precision has been proposed in [IT], [12], known as the
CKKW merging scheme. This approach allows to include higher order tree level matrix
elements in the consideration, such that additional (possibly multiple) hard QCD radia-
tion will be treated using the corresponding matrix element and, the approximative parton
shower description only accounts for radiation below a certain scale, defined by a separation
parameter. The catch of this method is to avoid a double counting of the QCD radiation,
given by the matrix elements and the parton shower. Similar approaches are the LCKKW
scheme [I3] and the MLM matching [T4), [T5].

An alternative ansatz is to combine (QCD-) next-to-leading order matrix elements consis-
tently with a parton shower, such that the overall cross section corresponds to the NLO
result and the hardest additional QCD emission is accounted for by the real correction part
of the matrix element. A first implementation of this idea has been realized for a number of
specific processes in MC@QNLO [16]. The main difficulty is again to avoid a double counting.
Further advances in this direction have been presented by the POWHEG method [I7]. A
future milestone is clearly given by the development of a merging method, that, similar as
the CKKW procedure for leading order matrix elements, combines next-to-leading order

matrix elements of different parton multiplicity.

Certainly, a key for the improvement of the precision of event generators is the incorporation
of higher fixed-order matrix elements. For a large number of physical questions it is also
possible to define observables such, that the impact of soft QCD radiation and confinement
effects are small. These observables, usually exclusive in a given final state configuration,
can than be related directly to parton level matrix elements, without the need for a full event
generator. Examples are, e.g., exclusive jet cross sections, imposing a suitable (infrared safe)
jet algorithm such as kr [I8] or production cross sections for other than strongly interacting

particles.

The extremely large phase space at LHC and the anticipated precision sets new demands on
the complexity of required matrix elements. For tree level, this task has been fully automated
in the past years. Computer codes, usually referred to as parton level generators, have been
developed to manage this for the Standard Model and a number of popular extensions
without significant user interface. Examples for such programs are the multipurpose codes
ALPGEN [T9], AMEGIC++ [20]], HELAC/PHEGAS [2T], 22|, MadGraph [23], and 0’Mega/Whizard
[24]. Typically processes with eight to ten external particles are within the reach of such
implementations. Here, the main bottlenecks are the already mentioned factorial growth in

the number of amplitudes and the increasing complexity of the multi-particle phase space.

For next-to-leading order matrix elements there is a number of codes available, that have
coded manually calculated NLO matrix elements, e.g. MCFM [25] and NLOJET [26]. So
far, no automated tool for the generation of the matrix element itself is available. This

is because a true NLO calculation is certainly much more complex than a leading order
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one. First of all, some of the essential ingredients, namely the loop or virtual contributions
are not under full control yet. On the other hand, virtual and real corrections individually
exhibit infrared divergencies which only cancel in the sum and thus require an additional
regularization treatment to be evaluated. Despite of the remarkable progress that is made
in this field [27, 28, 29, B0, the number of processes known at NLO is still rather concise.
Fully differential calculations exists basically for all 2 — 2, most 2 — 3 and a very few
2 — 4 scattering processes. The complexity of the last-mentioned processes is at the very
edge of what is manageable in a manual calculation. Thus, in prospect of the LHC and the
large number of processes in quest (also involving possible scenarios beyond the SM), an

automatic tool is highly demanded.

1.1 The event generator SHERPA

SHERPA, acronym for Simulation of High Energy Reactions of PArticles [31] is a new full
multi-purpose event generator, intended to simulate all stages of a high-energy scattering
event at lepton and hadron colliders, starting from the hard interaction down to hadrons,
observable in a detector. It has been written entirely in the modern object-oriented program-
ming language C++. The paradigm of the object-oriented style is reflected in the modularity
of SHERPA, naturally imposed by the factorization of a scattering event, which has been
discussed above. The emphasis for the whole framework has been placed on an improved
simulation of jet-physics. This is realized by SHERPA’s key feature, the implementation of
the already mentioned CKKW merging scheme.

The basic idea of CKKW is to divide the phase space for parton emission into a regime
of jet production, reflected by appropriate (multi-jet) matrix elements, and a regime of jet
evolution, addressed by a parton shower. The borderline between the two regimes is defined
by a jet resolution cut, using a kr algorithm [32, B3] [18]. To avoid a double counting, each
configuration of matrix elements and the parton shower must be made exclusive before added
together, done by a reweighting the matrix element through Sudakov form factors. Parton
emissions from the shower are, if outside the allowed regime, prevented by a jet veto. As a
result one obtains again inclusive event samples, correct up to (next-to) leading logarithmic

accuracy, with only a residual dependence on the artificial jet-resolution cut [34, B5, B6, B71].

The main stages in the event generation with SHERPA and corresponding modules are (cf.

Fig [CT):

e Signal process / hard matrix element (central red blob in Fig [Tl), provided by
AMEGIC++ [20].

e Initial- and final state parton showers, realized in APACIC++ [38].
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Figure 1.1: Pictorial representation of an event in a hadron—hadron collisions, according

to the factorization approach as realized in SHERPA.

e Underlying event / multiple parton interactions (violet blob in Fig [Tl), provided by
AMISICH+.

e Hadronization (light green blobs in Fig [[Tl), provided by AHADIC++ [39] or PYTHIA’S
Lund string fragmentation [6].

e Decays of unstable primary hadrons and QED bremsstrahlung, provided by the mod-
ules HADRONS++ and PHOTONS++, respectively.

The overall coordination is performed by the SHERPA framework.

1.2 Qutline of this thesis

This thesis concerns with the automation of fixed order perturbative calculations.

In Part Mlmethods and implementations dealing with leading order calculations are discussed.
Therein, in chapter ] a number of extensions for the matrix element generator AMEGIC++
are presented. This includes the implementation of several effective interaction models, as
well as some technical extensions up an alternative method to compute matrix elements,
based on the Cachazo-Svréek-Witten recursion relation [40)]. Further, the implementation
of the new matrix element generator COMIX is presented, which, based on Berends-Giele

recursion relations [41], has been optimized to deal with exact tree level matrix elements up
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to a very high particle multiplicity. chapter Bl is dedicated to phase space integration meth-
ods available in the SHERPA package, which have been revised and significantly improved.
Strategies are presented to cope with the newly accessible final states. In chapter B the
efficiency of the previously introduced matrix element and phase space generation methods

is analysed and some results will be presented.

Part [ is dedicated to strategies and implementations towards a full automation of next-
to-leading order matrix element calculations. In chapter Bl the construction of an automatic
algorithm to subtract infrared divergences in real QCD corrections through the Catani-
Seymour dipole subtraction method [42] is reported. The resulting computer code has
been implemented in the matrix element generator AMEGIC++. This will allow for the
automatic generation of dipole subtraction terms and their integrals over the one-parton
emission phase space for any given process. If the virtual matrix element is provided as
well, this then directly leads to an NLO QCD parton level event generator. The abilities
of the implementation are demonstrated on a few examples. Chapter Bl reports on a new
approach to provide a general automatable method for the calculation of multi-leg one-loop
integrals, the main bottleneck for NLO calculations. For scalar integrals systematic ways
for the analytic extraction of infrared divergencies are discussed and a numeric strategy to

evaluate remaining finite integrals is presented.

A summary of the thesis will be given in chapter [1



Part 1

Automatic calculation of tree level

cross-sections






2 Matrix element generation at
tree-level

The leading term of many observables in high energy particle phenomenology can be related
to the calculation of tree level matrix elements. Such matrix elements can be used to directly
compute parton level cross sections, or they might be used in the more complex environment
of a full Monte Carlo event simulation, where the matrix elements, providing predictions
for the highest energy scales are combined with other perturbative (e.g parton showers) and
nonperturbativ (e.g. hadronization) approaches to compute hadronic cross sections or any

observables related to them.

Although it is in principle straightforward to calculate tree level matrix elements, the com-
putational complexity increases rapidly with the number of involved particles. This calcu-
lational task cannot be handled without dedicated computer codes. To name the major
difficulties:

1. The number of contributing Feynman diagrams grows roughly factorially with the
number of external particles. To give a number, the process ete™ — ete ete ete™
in Standard Model, where only electroweak interactions are involved, requires the
consideration of 13896 Feynman diagrams. The situation is even severe for processes
involving strong integrations. There, the structure of non-abelian interactions leads to
an almost uncontrollable inflation of terms. For instance the process gg — 6¢g already
incorporates 34300 diagrams, which in addition are correlated with a rather compli-
cated SU(3) colour structure. Obviously, the common textbook method of squaring
the diagrams by employing completeness relations for the external particles and eval-
uating the traces would fail to calculate the matrix element, even if implemented in a

computer code.

2. In order to calculate hadronic cross sections a number of different parton level pro-
cesses have to be considered. Especially for processes with hadronic initial state this
number gets quickly very large, since it grows roughly exponentially with the number

of external partons. For instance the process pp — 4jets is assembled out of 486
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parton level processes.

In this chapter recent developments of matrix element generation methods employed in the
full event generator SHERPA [31] are discussed. Several, partly complementary, approaches
are combined to get the best performance for any process and number of external particles,
as well as a good flexibility concerning the underlying quantum field theories, i.e. standard

and beyond standard model physics. This includes the following:

1. The fully automatic and general matrix element generator AMEGIC++ [20], which is
based on the automatic generation and evaluation of Feynman amplitudes. It provides
a high flexibility and has been extensively tested for a large number of processes. In
section Il a number of recent extensions is presented. AMEGIC++ can also be used to
automatically generate phase space maps corresponding to the amplitude structure,

this subject however is saved for chapter Bl

2. One extension of AMEGIC++, separately discussed in section B2 covers an alternative
approach to construct matrix elements recursively from maximal helicity violating
(MHV) amplitudes. Directly employing features of the SU(3) gauge symmetry it

leads to much more compact description for QCD dominated processes.

3. A newly developed separate module, called COMIX, constructs matrix elements based
on the Berends-Giele [41] recursion relation. This approach, presented in section 23]
has been shown to have the slowest growth in complexity with the number of external
particles [43]. Together with a decomposition into colour flows, which is best suited
for sampling over colour assignments instead of computing the full sum, it is the

superior method to compute matrix element with a very large number of external legs

(typically Z8).

2.1 Automatic matrix element generation with
AMEGIC++

AMEGIC++, acronym for (A Matrix Element Generator in C++), is a multi-purpose parton-
level generator written in C++. In the current version 2.0[44ll it provides a convenient tool
for the calculation of cross sections for scattering processes at the tree level in the framework
of the SM and a number of popular extensions, such as the MSSM and the ADD model

of large extra dimensions [45]. The implementation and cross section results have been

LA brief description of AMEGIC++ within the SHERPA framework can be found in [31], whereas a full
documentation of the (partly obsolete) version 1.0 is given in [20] with some extensions and results discussed

in @5, B6]. An update on the helicity formalism as it is used in the current version is documented in [E5].
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extensively tested against alternative codes [47, B6]. Apart from being used to compute
parton level cross section at tree level, the program can also be employed by the SHERPA

event simulation framework [31] to generate single events.

AMEGIC++s tree level matrix elements further form the basis for the implementation of the
next-to-leading order subtraction procedure, subject of chapter

2.1.1 General procedure

Amplitude generation

The matrix element evaluation in the C++-code AMEGIC++ is performed computing Feyn-
man amplitudes using a helicity method based on the developments in [HA8 B9, B0]. The

fundamental idea of this method is to introduce a basis of massless spinors w(kg, A), which

satisfy
w(ko, A) = Myw(ko, —A)  and (2.1)
wlka (o, 3) = S22 g (2.2)
The four-vectors ko and k; are arbitrary choices satisfying k2 = 0, k¥ = —1 and kq - k; = 0.

Any physical spinor state can be projected onto this basis. Using above relations this allows
to calculate arbitrary spinor products u(py, A\1)u(ps, A2) directly, i.e. without the necessity
to evaluate traces of spinor products and y-matrices of squared amplitudes. Details of the

implementation can be found in [20, 51}, 52].

The procedure to generate matrix elements can be summarized as follows:

1. Generation of all Feynman graphs for a given process and a given set of interactions,
imposed by the specified interaction model (SM, MSSM, ADD, ...).

2. Translation of each graph into a complex function of momenta and helicity /spin states

of the external particles.

3. Analytical simplification of generated functions, mainly by identifying and factoring
out common pieces and the reusage of already calculated pieces. An example for
such a manipulation is given in Fig. X1l Finally, the resulting formulas are stored in

C++-library files, to be compiled and linked to the main code.

Possible colour structures within any amplitude are treated separately, i.e. in the first step
all colour factors (the SU(3) structure constants f® and t%;) corresponding to the k-th

amplitude Ay are collected in Cy. Squared matrix elements can thus be written as

M= YA |Gl 45 (2.3)
1,J
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Figure 2.1: Factoring out common pieces of amplitudes with identical colour structure. In
the example above, the parts within the boxes are identical, hence the two

amplitudes can be added and the terms inside the box can be factored out.

and hence a colour matrix of complex numbers

J

is generated using a set of replacement rules for the colour algebra and stored.

All this is done during a initialization run before the actual calculation.

Process management

Since typically many parton level processes contribute to jet cross section calculations,
usually a long list of processes needs to be computed. The corresponding structure in
AMEGIC++ is as follows:

e Any parton level process is represented by the class Single Process,

e Process_Group contains a (possibly recursive) list of such processes or groups of pro-

cesses.

All parton level processes sharing a specific common set of properties are grouped together
in two or three levels of groups. In many cases there are subprocesses contributing to the
same jet cross section which are very similar. Therefore AMEGIC++ applies a procedure to
identify such processes in order to save computer resources and accelerate the calculation.

The following checks are performed:

e Direct comparison of amplitudes: check for processes that have identical graphs, where
all involved particles have the same masses, widths and underly the same interactions
(with coupling constants that differ at most in a constant factor).

Example: QCD processes that differ in quark flavours only.
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e Numerical comparisons: check if the numerical result for a squared matrix element at
a given phase space point is the same.
Example: a quark is replaced by an anti-quark w.r.t. to the other process.

For a set of processes that can be identified by this it is enough to compute one to know
them all. In such a case, the corresponding matrix element squared is calculated only once

and then recycled by the other processes.

2.1.2 New models

The flexible structure of AMEGIC++ allows a relatively simple and completely general im-
plementation of new physics models on the level of vertex Feynman rules. This means that
interaction topologies and coupling constants have to be defined, and in case the model
implies new Lorentz- or Dirac-structures in the interaction of non-scalar particles this struc-
ture has to be coded in a function of quantities provided by the helicity method. While
in the original version of this formalism these quantities were solely spinor products (and
anything else had to be decomposed into them), the implementation has been extended
such, that it allows also to operate directly on vector-, tensor- and Rarita-Schwinger- (spin
3/2) structures. A detailed description how the coding of spin structures works for vertices

involving vector- and tensor-particles is given in [52].

Below a number of Lagrangians are presented which have been implemented in the scope of

this work.

Effective Gluon-Higgs couplings

At tree level the Higgs boson does not couple directly to massless fields such as the gluon.
However, going to one-loop level the Higgs boson and the gluon do interact through a loop
of massive quarks. The Higgs production cross section from gluon fusion is known for a long
time [53],

ag mi
7 25602
where my is the Higgs boson mass, v the vacuum expectation value and
2

o(g9 — H) = [A[*6(s —mi) (2.5)

A2 = (2.6)

Do+ (1=1) (7))

. . 4m?
The sum in Eq. (Z8) runs over all quarks with mass mg,, 7, = m—i and

[sirf1 ( 7'(1—1)}2 if 7, > 1,

f(Tq> = _i |:10g (u) — Z7T:| if T < 1. <27>

1—y/1—74
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Figure 2.2: Effective vertices for gluon-higgs coupling

In the Standard Model the cross section is clearly dominated by the heaviest quark, the
top. The relatively large value of the cross section, together with the high rate of gluons in

a suitable energy range makes gluon fusion to be the dominant Higgs production channel
at LHC.

For a Higgs boson with the mass my < 2m; the top-quarks in the loop are virtual, allowing
to interprete the loop as an effective coupling between the Higgs boson and gluons. The

following effective Lagrangian can be defined [54],

Qg

/:gfng — gggH%GZVGéWH , (2.8)

where G}, = 0,47 — 0,A], — g f“bCAZAf, is the gluon field strength tensor. The effective
coupling factor is defined to reproduce the cross section in Eq. (H), taking into account

only the contribution from the top quark, i.e.

Gogrr =7t (1 + (1 —7) f(1)) - (2.9)

In many cases just the limit m; — oo is considered,

2
Gggr(Mmy — 00) = 3 (2.10)
which underestimates the cross section slightly, so the results obtained are conservative

estimations.

It is worth to note that the Lagrangian in Eq. (Z8) not only leads to a gg — higgs vertex,
but also to ggg — higgs and gggg — higgs couplings, all displayed in Fig. If higher order
corrections to the higgs production via gluon fusion are calculated all have to be taken into

account to obtain a SU(3) gauge invariant result.

All three vertices have been implemented for the standard model Higgs boson, as well as for

the two neutral Higgs bosons h and H, predicted by supersymmetric models with a minimal
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higgs sector. The Lorentz structure for the four- and five-point vertices are identical to the
normal three- and four-gluon vertices, except for the fact that momentum conservation must

now include the Higgs boson. The gg — higgs vertex comes with a new structure given by
E'kS — ky-kog' (2.11)

where ki and ky are the two gluon momenta.

Similar as for the gluon, an effective coupling induced at one-loop level also exists for the

photon [B5]. In this case the effective Lagrangian is given by

yvH

e, = Ioflp g (2.12)
v

where F,, = 0,A} — J,Aj} is the photon field strength tensor. Due to the absence of a
non-abelian coupling for the photon only the vy — higgs vertex is induced. The effective
coupling constant g,z can be determined from the higgs — v branching width. It has a
similar expression as in Eq. Z9, however now with major (and opposite sign) contributions

from top-quark and W-boson loops.

Anomalous Gauge Couplings

Triple gauge couplings

In Ref. [56] the most general coupling between two charged vector bosons and a neutral

vector boson has been presented,

Lywv/gwwy = ig) (W,WHVY = WIV,WH) + ik, W]V, WH
A
+ W WEV — g WIW, (04 + 97V
W

+g¥ 7 (W3, W, )V, + 2V T WIW, Vo

i
T WAV, (2.13)
2mW

where V*# stands for either the photon or the Z ﬁeld W# is the W~ field, W, = 9, W, —
Wy, Vi, = 0,Vey — 0, Vi, Vi = 2€upe V7 and (A@ B) = A(0,B) — (0,A)B. The overall

coupling constants are

gww~ = —e and

gwwz = —ecotfy . (2.14)

The Lagrangian is not specific for an extension of the Standard Model, instead it param-

eterizes seven possible independent coupling structures. The gauge symmetry imposed by
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the Standard Model give strong constraints on the coefficients introduced in Eq. (I?:B])H

91:’%:17
A=gi=gs=h=A=0. (2.15)

The implementation can be used to study signals and background in order to identify pos-
sible deviations from the Standard Model in a model independent way, or to put constrains

on specific models.

Quartic gauge couplings

In order to preserve unitarity in WW scattering the Standard Model requires a Higgs boson
with a mass below 1 TeV. If such a particle is not found the situation can be described by
means of the electroweak effective Lagrangian, as discussed in Refs. [57, 58,59, [60]. Different
models of electroweak symmetry breaking can be parameterized by this Lagrangian. This
Lagrangian gives rise to a number of generic four-point interactions between weak bosons,
not present in the Standard Model. The subset of the SU(2)-custodial symmetry conserving

operators, usually referred to as £, and L5 have been implemented,

1 1 1 1
o 4 v 2 v 2
Ly = e (aijwwyw +§(WJW“) +%WJZ“W,,Z +%(Z“Zﬂ) ) (2.16)
1 1
Ls = as ((WJW“)2+TWJZ“W,,Z”+—4(Z“Z“)2) : (2.17)
Cy dcy,

Here, W#* and Z" are the W~ and Z field, respectively, ¢y = cosfy and ay and aj are

parameters of some electroweak symmetry breaking theory.

2.1.3 Treatment for decay chains

Normally a process is defined by specifying all external particles. From this all Feynman
graphs are evaluated, which allow to produce the given final state from the initial state.
Unfortunately the number of graphs grows roughly factorially with the number of final

state particles.

If one studies processes involving the production and decay of heavy particles the sum of
all decay products would quickly exceed the number of accessible final state particles. This
is mainly due the abundance of continuum graphs, i.e. graphs that do not contain the
resonances one is actually interested in. These graphs in many cases only have a tiny con-

tribution to the cross section, especially, as often done in experimental analyses, if phase

2These are the elementary coefficient at tree level; higher order corrections may induce effective nonzero

contributions proportional to A, g4, g5, K and A
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space cuts are applied that enhance the resonance w.r.t. background. Examples for pro-
cesses where this might be a concern are the production of top-quarks, or the production
of supersymmetric particles, which in most scenarios involve long and complicated decay

chains.

The simplest way to calculate cross sections for such cases would be to completely factorize
the decay from the production of the heavy intermediate particles, i.e. they are produced
on their mass shells and decayed independently. This naive approach, usually called narrow
width approximation, however neglects some potentially important effects: Firstly, if the
intermediate particle has a spin structure the correlation between the production and the
decay is lost. Secondly, since the intermediate particles have been produced at a fixed mass,
the invariant mass of all decay products is sharply peaked at this value and thus neglecting

possibly important off-shell properties.

To directly cope with these effects in AMEGIC++ a production process with decay chains

can be specified, which are handled as follows:

1. Graphs are generated separately for the subprocesses, but are combined again at this

level,

2. Amplitudes are generated implying the full propagator for intermediate particles.

Clearly, this approach keeps the spin correlation between the production and the decay
process. Also the invariant mass of the decay product has the correct distribution according
to the mass and the width of the intermediate particle. Of course the approximation is only
as good as the assumption that the continuum graphs are negligible. In some cases the
matrix element is not fully gauge invariant any more with an invariance violation up to the

order of the neglected graphs.

2.1.4 Accessible processes

All methods to generate matrix elements using AMEGIC++ are implemented in a general
and process- and model-independent way. From this perspective there is no general limit
on the complexity of the calculation. Practically one is of course limited by the available
computer resources. On a modern PC, matrix elements with roughly up to 10* amplitudes
are feasible, which is in most cases enough for scattering processes with 6-7 final state
particles. For pure QCD, especially n-gluon scattering, the limit is already reached with 4-5

final state particles, which is due to the complicated non-abelian interaction structure.

Applying the decay chain treatment, much more complicated final states can be calculated.
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The limit is again given by the number of contributing amplitudes. Processes such as

pp — t[— butv)t[— bu",] + 2jets or
pp — Wi . W= . W [— .. W[ ..]] +2jets

are feasible.

The computation of all parton level processes, contributing to a hadron level cross section,

is typically practicable for a total number of 6 partons (initial and final state).

2.2 Recursion relations based on MHV-amplitudes

Although the methods and algorithms, used in AMEGIC++ to generate matrix elements, pro-
vide a fast and very general implementation, it is not the optimal strategy to face processes
which involve a large number of strong interactions. The reason is, as already stated, the

large number and complicated related to the non-abelian gauge theory.

In this chapter a technique will be discussed that allows to compute QCD-dominated matrix

elements much more efficiently as it would be possible by evaluating Feynman diagrams.

2.2.1 Partial amplitudes and colour decomposition

Any perturbative QCD scattering amplitude A can be written as a sum of terms, which
factorize into two components, one only depending on the gauge structure and one only
depending on the kinematics. Such a factorization is called colour decomposition. For tree-
level n-gluon amplitudes several colour decompositions exist. A very intuitive one is given
by [61]

M(ng) = > Tr(tt™=.-t"™)A(L,2,...,n), (2.18)

P(2,...,n)
where ay,as,...,a, (a; = 1,...,8) label the colours of the gluons, t* are the fundamental-
representation matrices of SU(3). The sum runs over all (n —1)! permutations of (2,...,n).

Each trace (of the given permutation of t*) corresponds to a particular colour structure.
The factor A(1,2,...,n), associated with each colour structure is called a partial (or colour-
ordered) amplitude. It depends only on the four-momenta p; and polarizations of the gluon
(all simply labeled by i in the argument of the amplitude). The point for doing such a
decomposition is, as it will be shown below, that partial amplitudes are usually far eas-
ier to compute than full amplitudes. Furthermore, partial amplitudes are gauge invariant
quantities. The decomposition in Eq. (ZI8) is called the fundamental-representation de-

composition.
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For multi-gluon matrix elements also the following, called the adjoint-representation decom-

position, has been introduced in Refs. [62, 63]:

M(ng) = > (F2F®--F™ )2 A(1,2,...,n), (2.19)
P(2,...,n—1)
where (F%)? = —if®¢ are the adjoint-representation matrices of SU(3). The partial ampli-

tudes are exactly the same as in Eq. (I8), however, the sum now only runs over (n — 2)!
permutations of (2,...,n — 1), thus reducing the number of partial amplitudes to be calcu-
lated. This decomposition directly incorporates the fact that the partial amplitudes, used
in Eq. (ZI8), are not all linear independent. The number of amplitudes to be calculated
there can be reduced imposing the dual Ward identity;,

0 = A(L,2,....n)+A(L,2,...,n,n—1)+ ...+ A(l,n,2,...,n—1). (2.20)

Thus, for the implementation of multi-gluon processes discussed in this chapter the adjoint-

representation decomposition is the method of choice.
Recently a third decomposition for multi-gluon matrix elements has been introduced, the
colour-flow decomposition [64]:

M(ng) = Z SiLoZ .0 A(L,2,.. ., n) (2.21)

529
P(2,...,n)
In this prescription the SU(3) gluon field is treated as a 3 x 3 matrix (A,)" rather than a

one index field AZ.

Except for the adjoint-representation decomposition the relations can be generalized for
processes including quarks. The fundamental-representation decomposition for processes
including one quark-line reads[61]

M(gg+ng) = Y (") A(g,1,2,...,n,q) (2.22)
P(1,...,n)

where the sum runs over all gluon permutations. The indices i, (j,) label the colour of the

quark (anti-quark).

Details of the colour-flow decomposition for processes with one and two quark lines can be
found in Ref. [64].

2.2.2 MHV amplitudes and the CSW technique

In Ref. [65] it was found that a certain class of colour-ordered tree-level QCD amplitudes,
the so-called maximally helicity violating (MHV) amplitudes, is described by impressively

simple formulae. An explanation for this has been given in Ref. [66], proposing that the
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usual momentum space scattering amplitudes can be Fourier transformed to Twistor space,
where they are supported on certain holomorphic curves. Results such as the holomorphy
of the tree-level MHV amplitudes, as well as certain differential equations obeyed by higher
order amplitudes are direct consequences. At tree level one gains very simple formulae for
all amplitudes with at most two negative (positive) helicity partons. Amplitudes with less

than two partons of each helicity vanish.

A, (17,2, ...t = 0,
A,(17,2%,....n) = 0, (2.23)

where in this notation all momenta and corresponding helicities, labeled explicitly in the
superscript, are considered as incoming. The first non-vanishing amplitudes, the MHV
amplitudes, contain exactly two partons with opposite helicity and can be written as simple
holomorphic (anti-holomorphic) functions. In the notation of Ref. [65] the n-gluon MHV-

amplitudes rea

A, (1 i, e, nt) = i) (2.24)
e e oy (12)(23)...{n—1n)(n1)’
and similar for reversed helicities, dubbed MHV-Amplitudes,
.re 14
Ay (17, it gt o) = Az (2.25)

[12][23]...[n—1n][n1] "’
The notations (ij) and [ij] represent spinor products. They can be translated to the
notation used earlier in this chapter:

(ij) = alpi, +)u(p;, —) and
respectively, and thus be calculated employing exactly the same spinor basis that is already
used in AMEGIC++.

MHV-amplitudes with one external quark pair of indices 1 and n for the quark and anti-

quark, respectively, are

A (qh25,. i, n—1tq) = <12).%?§z><—i?>n><nl>’
A (q25, i, on—1t ) = —ilig*ia (2.27)

(12)...(n—1n)(n1)

For two quark lines the corresponding MHV amplitudes read

h W N\ 1A (M) (qd){d, Q)
An<q,...,q 4t ) - (12)...{n—1n){nl)’
) -

3Coupling constants have been dropped.
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Figure 2.3: CSW recursion relation.

where Ag(h, ') depends on the helicity configuration of the quarks

Ao(++) =(@7)?, A(+-) =—(3.4d),
AO (_7+) = _<Qa q/>2 7A0 (_7_) = _<Q7q/>2 . (229)

The corresponding MHV-amplitudes with reversed helicities are obtained by the replacement
() =1l

In Ref. 0] Cachazo, Svréek and Witten (CSW) proposed an algorithm, how partial ampli-
tudes with more than two helicities of each kind can be derived from a recurrence relation,
where the full amplitude is split into colour-ordered n-point vertices which are connected

by scalar propagators. The vertices are off-shell continuations of MHV-amplitudes. The

procedure is as follows:

1. A non-MHV amplitude can be decomposed into amplitudes, containing either MHV-
vertices or MHV-vertices.

2. Connecting propagators have opposite helicities entering into the vertices; they come

with a factor of 1/¢?, where q is the propagator momentum.
3. All possible decompositions contribute.

4. The ordering of the full amplitude is preserved in the decomposition.

The decomposition into MHV-vertices is illustrated in Fig. for an example six-gluon

amplitude. The corresponding partial amplitude reads
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Process Limitations
n gluons n<9
2 quarks + (n-2) gluons n<9
4 quarks + (n-4) gluons n<9
2 quarks + 2 leptons + (n-4) gluons n<9

Table 2.1: List of processes, available in AMEGIC++ using MHV-amplitude based recur-

sion relations.

1
Agl17,27,37,47,57,67) = 417,27 ply) - As(piey 37,47,57.67)
12

1
+A3(277 377]?;3)7145(]?2737 4+7 5+7 6+7 17)

Pas
1
+A4<6+7 177 277]9?26)2—‘44(]717267 377 4+7 5+)
P126
1
+A4(2_7 3_7 4+7 p;34)pz—A4(p2_347 5+7 6+7 1_) ) (230)
234

where Dij = Pi +Dj and Dijk = Di + Dj + Dk-

It is worth to notice the following:

e The expression Az(17,27,p™) exists only as an MHV-vertex for a off-shell momentum
p, as an on-shell amplitude it is identical to zero, cf. Eq. E223

e To decompose a partial amplitude with m times the helicity “—"(“4"), it is split into
(m —1) MHV- (MHV-)vertices, where (m — 2) propagators must be introduced. The
most efficient decomposition is thus given by decomposing for the least number of

identical helicities.

Using this technique, amplitudes with an arbitrary number of negative (positive) helicity
gluons can be computed. The above formalism was initially proposed for the computation
of pure gluonic amplitudes, but it has been extended to many other processes. From the
general expression for an MHV supervertex in the N' = 4 supersymmetric Yang-Mills theory,

one can read off, for example, appropriate terms with massless fermions [67, 68].

2.2.3 Accessible processes

The CSW formalism has been implemented into the matrix element generator AMEGIC++
for the QCD-processes stated above and for a generalization [69], which includes processes
with a weak boson. The processes that are currently available and technically feasible are

quoted in Tab. Il In the second column the current limit on the number of external
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particles is shown. For all processes numerical results have been checked to be identical to
the standard techniques employed in AMEGIC+4. The CSW implementation can be used
as a supplement, wherever the resulting matrix elements are more efficient. A detailed

comparison of the efficiencies can be found in chapter Bl

2.3 Colour dressed Berends-Giele recursion relations

It has been pointed out, for example in Refs. [43], [70), [71], that the calculation of multi-
particle amplitudes is substantially simplified when employing Berends-Giele type recursive
relations. One main reason for the simplification is that these relations allow the reuse of
basic building blocks of an amplitude, which are the m-particle internal off-shell currents.
Another reason is that they can be easily rewritten to include three-particle vertices only.

In the following it will be briefly illuminated why this is a major advantage.

A theory with only one particle type and a recursion relation for internal n-particle currents

is assumed, which is of the functional form

n

Jo () = Pa(m) ) Vi (1, ... wn) Ji, (1) . Jiy () (2.31)

N=1Py(n)

Here J,, denote unordered m-particle currents, while Vi are N + 1-point vertices and P, is
a propagator term. The two sums run over all possible vertex types Vy and all (unordered)
partitions Py (m) of the set of particles 7 into N (unordered) subsets, respectively. The
full n + 1-particle scattering amplitude can be constructed by putting an n-particle internal
off-shell current on-shell and contracting the remaining quantity with the corresponding

external one-particle current,
——— Ju (7 \ 1) . (2.32)

Now the contribution of vertices of N + 1 external legs to the computation of an n-particle
off-shell current is considered. The number of vertices to evaluate per m-particle sub-current
is the Stirling number of the second kind S (m, N), corresponding to the number of partitions
of a set m of m integers into N subsets. The total number of N + 1-particle vertices to be

calculated thus becomes

i (Z) S (m,N) . (2.33)

m=N

Since the Stirling numbers S(m, N) are zero for m < N, the sum can be extend down to



30 2 Matrix element generation at tree-level

zero, leading to

7.2(_1)1' (Nfrl) (N+1-0)"" = S(n+1,N+1) .
(2.34)

The question is now, whether a milder growth in computational complexity can be obtained
if all N + 1-particle vertices occurring in Eq. (231]) are decomposed in terms of two or more
vertices with fewer number of external legs. When doing so, additional pseudo-particles
reflecting the structure of the decomposed vertex must be introduced. Hence the contribu-
tion arising from the presence of these pseudo-particles have to be considered as well. The
problem can be simplified by assuming that there is only one additional pseudo-particle,
which obeys a completely independent recursion relation, such that the full contribution of
an N + 1-particle vertex, which is decomposed into an M + 1- and an N — M + 1-particle

vertex becomes
Sn+1,N+1) - S(n+1,M+1)+Sn+1,N—-—M+1), (2.35)

which can be either bigger or smaller than S (n+ 1, N + 1), depending on n, N and M.
With increasing n, however the right hand side is always smaller such that the vertex
decomposition becomes clearly advantageous. Similar arguments hold when introducing

more than one pseudo-particle.

From this simple consideration it can be deduced that the aim of any recursive formulation
of interaction models must be to reduce the number of external lines at interaction vertices
to the lowest possible. Below it will be demonstrated, that within the Standard Model
it is possible to reduce Np.. to two, which is the lowest possible number at all. For QCD
interactions the results of Ref. [A3] are employed, where this task has already been performed
and the original Berends-Giele recursive relations have been reformulated to incorporate

colour.

2.3.1 General form of the recursion

In the following 7, () denotes an unordered SM current of type «, which receives con-
tributions from all Feynman graphs having as external particles the on-shell SM particles
in the set m and one internal particle, described by this current. The index « in this re-

spect is a multi-index, carrying information on all quantum numbers and eventually on the
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pseudo-particle character of the particle. Special currents are given by the external par-
ticles” currents. They correspond to external scalars, spinors and polarization vectors, see
Appendix [Al For them there is also only one multi-index o = «; associated with the exter-
nal particle, whereas in the general case multiple multi-indices may lead to non-vanishing
internal currents. Assuming only three-point vertices, any internal SM particle and pseudo-

particle off-shell current can be written as

Ja (1) = Pa(m) > Y S(m,m) VI (11,72) Tay (M1) Tay (72) (2.36)

Vo 142 Pa(m)

where P, (7) is a propagator term depending on the particle type « and the set 7, V82 (71, 7o)
is a vertex depending on «, the decomposition of the set 7 into disjoint subsets 7 and 7y
and the indices o; and ay and S (m,m) is the symmetry factor discussed in Sec. 22341
Superscripts in this context refer to incoming particles, the subscript refers to the parti-
cle emerging from the vertex. Correspondingly upper multi-indices denote incoming, lower
multi-indices denote outgoing quantities. The sums run over all vertices in the reformulated
Standard Model and all unordered partitions P; of the set 7 into two subsets, respectively.

A full unordered n-particle scattering amplitude is then given by

1

A =T ) 7Ty

Ja, (m\n) , (2.37)

where @ denotes a set of reversed particle properties. It has been proved in Ref. [43] that
the above form is correct for pure gluonic scattering amplitudes once the four gluon vertex
is suitably decomposed into two vertices involving an internal antisymmetric tensor pseudo-

particle. This procedure is briefly recalled below.

2.3.2 Decomposition of four-point vertices

In Ref. [41] Berends and Giele proposed a method to compute partial amplitudes in a
recursive fashion. The basic idea is that, according to the Feynman rules of QCD, an
internal n-gluon current is defined by all contributing Feynman graphs with n external

on-shell gluons and one off-shell gluon.

. n—1
—1Guv vpo
J.(1,2,...n) = P—?‘{Ejvgf’ (Poes Porin) 1y (1, ) Ty (K +1,....n)
Ln k=1

n—2 n—1
+3 Y IQ””"AJP(l,...,j)JU(jJr1,...,k’)JA(k+1,...,n)} .
=1 k=j+1

(2.38)
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Here p; denote the momenta of the gluons, P;; = p; + ...+ p; and Vi (P, Pri1,,) and

| % X are the colour ordered three and four-gluon vertices defined according to Ref. 2],

Vi (pq) = ( Pp—q) +97" 2p+q)" 9" (2¢+p)°),

vV po g vo 1% (o2 14 g
Vi = i (207797 997 = 99" ) (2.39)

The full colour-ordered n-gluon amplitude A (1, ..., n) is then obtained by putting the n—1-
particle off-shell current J,—; (1,...,n — 1) on-shell and contracting it with the external

polarization ¢,. Employing the tensor-gluon vertex

V#Vpa _ i s ( MngU _gMUgVP) , (240)

NG

and the tensor “propagator”
—iDfy = ~i(ghgy — 9790) - (2.41)

the recursion can be reformulated to give

. n—1
JN(,2,...n) = IEWZ{\@”po(Pl,k,Pk+1,n)Jp(1,...,k)J(,(m1,...,n)
Ln p=1
+ VPP T (k) Jag (B 1, )
+ VI s, k), (k:+1,...,n)} (2.42)
and
J?(1,2,...,n) = 6—iDy ZVWGJ LR, (k+1,..n),  (243)

for the gluon and tensor pseudo-particle currents, respectively. Since no external tensor

currents exist, all tensor currents with one particle index only are defined as zero.

A decomposition of all remaining four-point vertices in the Standard Model, coming from

electroweak interactions is described in Appendix [AZTl

2.3.3 Colour dressed amplitudes

The next step towards full amplitudes is to include colour. Therefore the colour-flow de-
composition, for n-gluon amplitudes already stated in Eq. (2ZI) is used. Although this
decomposition is not minimal, it is suited especially for Monte Carlo event generation, sam-

pling over the degrees of freedom in colour instead of summing.
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The reason is the following: To obtain a squared matrix element out of any decomposi-
tion into partial amplitudes, such as Eqs. (2I8)-(222), naively all partial amplitudes must
be calculated before squaring in order to catch all quantum interferences. This, however,
quickly gets extremely tedious for complex final states, since their number grows factorially
with the number of external partons. The situation can be improved by fixing the quan-
tum numbers of the external partons instead of implicitly sum over them when calculating
colour factors. For such a colour assignment only a fraction off all partial amplitudes would
contribute. In Ref. [64] it has been demonstrated that for the colour-flow decomposition the
average number of non-vanishing partial amplitudes per colour assignment has the slowest

growth with the number of partons.

Colour dressing means to include the colour factors in Eq. (221]) into the recursion relation,
such that the full (unordered) amplitude is calculated at once. Therefore the recursion
relation must produce all partial amplitudes, contributing to a colour assignment. Following
Ref. [A3] colour dressed gluon and tensor pseudo-particle currents 7, ;7 and 7,4 7 are defined
by

Turi(Loon) = > 615,607 07 (01, 00)

O'ESn
Topri(Looon) = 015,050 650 7 Jap (01, 00) (2.44)
oESy
Denoting the set (1,...,n) of n particles by 7, the following recursive relations for these

currents are obtained:

j,uj (m) = D:f]G () Z Vypé(é o MN (1, m2) ijL (1) Ty miw (72)
Pa(m)

- Z VuplfG’L aﬁMijKE (ﬂ-l)jaﬁMN (7'('2) ,
T€OP(n)

jaﬁlj(ﬂ-) = D;gf]G Z va(;IIZLGUMN pKL (Wl)jaMN (772) . (2-45)
Pa(m)

Here, the colour dressed gluon and tensor pseudo-particle vertices have been defined as

Vypé((? 7 MN (m,m) = 5?;5”5% V3 f7 (my,ma) + 5§5EM5(—;N Vy P (mo,m) ,  (2.46)
and
VIR N = GEEN SN V0T 4 10T S VT (2.47)

A complete proof of these relations can be found in Ref. [A3]. The above procedure of colour
dressing can easily be generalized to QCD processes including quarks. Since no further
elementary QCD four-point interactions exists, no further vertex decomposition has to be

performed and therefore no new current types are introduced.
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2.3.4 Prefactors of amplitudes with external fermions

When calculating currents with an arbitrary number of possibly indistinguishable external

fermions, it has to be taken into account, that each Feynman diagram contains a prefactor
S = (=1)frtonmen), (2.48)

according to the number of fermion permutations Py in the external particle assignment
= (01,...,0,). This prefactor must now be defined on a local basis in order to avoid the
proliferation of information on different &. To do so, it is sufficient to note that Eq. (248)
holds on the level of interaction vertices as well. More precisely the local prefactor S (71, m2)
of Eq. (Z30) is defined as

S (my,m) = (—1)Frlmm) (2.49)

Here Py (m,m) counts the number of fermion permutations that is needed to restore a
predefined, for example ascending index ordering, when combining the sets m; and 7, into
the set m = m; @ my. It is easy to see that upon iterating this procedure, correct relative

prefactors S are obtained for each amplitude.

2.3.5 Accessible processes

The Standard Model has been fully implemented so far. All methods for the matrix element
generation have been implemented in a general way, such that the limit is only given by the
available computer resources. Since the recursion relations have been optimized for processes
with a large multiplicity of particles it can be expected manage processes beyond the limits
of AMEGIC++. The most significant gain is given for purely strong interacting scattering
processes, which is a result of both, the optimized scaling behaviour of the complexity and
the used colour treatment. For instance, gluon scattering processes up to 2 — 11 can be

calculated.



3 Monte-Carlo phase space
integration

Apart from being able to calculate matrix elements at a given phase space point, it is also
highly important to be able to integrate efficiently over the phase space. To derive any

physical observables typically integrals over final state particles have to be calculated,

/d(bm(pla~~~>pm)|Mm(p1>---apm)|2F(p1>---apm) ) (31)

where |M,,(p1, ..., pm)|? is a matrix element with m final state particles as discussed in the

previous chapter, and,

d4pi

AP, (p1, - - - Pm) = PUZWQWV5@§—WH%CXP%]54(#“—-}:1%> (3.2)

being the corresponding m-particle phase space elementﬁl. The function F(py,...,pm) de-
fines the observable. For a total cross section it would simply contain ©-functions, defining
phase space cuts; more generally it could be any function of final state momenta to define

a physical observable.

In general phase space integrals are much too complicated to be solved analytically. For the
given example in Eq. (BI) the phase space has a dimension of 3m — 4. The large dimension
clearly favours the Monte-Carlo integration method to be the method of choice. There, an

estimate for an integral is generated,

/ﬂW - V<f>, (3.3)

where V' is the phase space volume [dV and < f >= (3 fi) /N is the average of the

integrand, calculated at N different (random) points. The statistical error for the estimate

E:V%%, (3.4)

! The integral in Eq. ([B]) is given for fixed initial state with momenta p,+pp = pin. For particle reactions

is given by

with non-elementary beam particles, such as hadrons, an additional integral over incoming momentum

fractions, convoluting the integral ([B) with parton density functions, is necessary.
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with the variance

S=<f’>—-<f>%. (3.5)

A general and simple implementation of the Monte-Carlo method for phase space integrals
is RAMBO [73], which maps 4m random variables within the interval [0,1] on m final
state momenta, which are uniformly distributed and fulfill all constrains necessary for the
four-momentum conservation, cf. Eq. (B2). Unfortunately matrix elements typically have
a very significant and non-uniform structure in phase space - values may vary over many
orders of magnitude - causing a uniform momentum distribution to be very inefficient for

the integration.

In the following optimization methods will be discussed and implementations presented to

provide an improved integration performance.

3.1 Basic concepts for optimization

The goal of any optimization procedure is the reduction of the variance, which directly
enters in the error estimate of the Monte-Carlo integration method. General methods that

can be used to achieve this are Stratified Sampling and Importance Sampling:

e The method called Stratified Sampling simply subdivides the integration volume into
smaller pieces, which are sampled independently. The sizes of the subdivisions and/or
the number of points calculated in each subdivision can be chosen such that new error
estimate is reduced compared to the undivided estimate. A minimum is obtained if

the variances in all subdivisions are identical.

e The general idea behind Importance Sampling is to improve the numerical behaviour

of an integrand by a change of integration variables,

_ [fel) e L de)
[ s@aa= | EI) A I T (3:6)

The new variable y should be chosen in a way such that § is a sufficiently smooth

function, leading to a variance for the integration,

()-8

Typically, the weight g is chosen as a simplification/approximation of f, such that the
integral y = [ gdx can be analytically solved. This step is necessary to determine the

map from a desired weight distribution.
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For phase space integrals, a map X, relating vectors of uniformly distributed random
numbers {a;} inside the interval [0, 1] to the four-momenta of the external particles of

a physical process {p;},

{pi} = X({ai}), (3-8)

is in the center of the sampling process. The weight function g, equal to the inverse

of the Jacobian, is then determined by

1 do,(X({ai}))
R T e (3.9)

Both strategies discussed above require a good knowledge of the integrand. To construct
a general integrator for squared matrix elements, which should - similar to the matrix
element generation itself - require no additional user input, there are basically two ways to

incorporate this knowledge:

1. Use information about the integrand that can be obtained automatically during the

matrix element generation.

2. Determine properties of the integrand numerically: use methods that adapt to the

integrand during the integration procedure.

3.2 Integrator techniques

3.2.1 The self-adaptive integrator VEGAS

A simple method that automatically adapts to the integrand, not requiring any a priory
knowledge of the integrand is the VEGAS integrator [74]. It relies mainly on stratified
sampling and provides a map ¢ relating uniformly distributed random variables {a;} to

variables distributed according to weights v;.

In one dimension the algorithm is given as follows (mapping a random variable a inside [0, 1]

to a new variable £(a) in the same interval):
1. The phase space is divided into N intervals, z¢g = 0, 21, 22, .., oy = 1; Az = 211 — ;.
2. The interval j is selected by the integer value of x * N, the new variable is given by
£(a) = zj+(a—j/N)Ax; . (3.10)

1
NA:BJ'.

3. The corresponding weight is



38 3 Monte-Carlo phase space integration

The integration starts with equally spaced intervals. The adaptation follows the strategy
for stratified sampling. It is performed changing sizes of intervals, but keeping their total

number fixed. The procedure is as follows:

1. The integrand is evaluated M > N times, variances are stored for each interval

separately.
2. Interval borders are changed to concentrate to regions of large variances.

3. Step 1. and 2. are repeated until variances in each interval are of the same size.

The n-dimensional version of the algorithm simply applies the 1-dimensional version to each
dimension independently. On the one hand this guarantees a fast adaptation with almost
any number of dimensions. On the other hand only factorizable weight functions can be
produced, i.e. v = vy(ay) - vo(az)---vp(ay,). For this reason VEGAS cannot be applied

directly to phase space integrals.

There are developments of self-adaptive multi-purpose integrators that tried to overcome the
restriction to factorizable functions such as FOAM [75] and Parni [76], however in practice it

turns out that they adapt reasonable well and fast only for up to 3-4 dimensional integrands.

3.2.2 The Multi-Channel method

The structure of squared matrix elements is, apart from some trivial examples, too compli-
cated to directly find a single phase space map and weight in the sense of Eqs. (BF) and
(B3). It may contain a large number of peaks, which are in general non-factorizable in any

single set of variables spanning the phase space.

A generic feature of our integrand is, however, that it can be composed out of amplitudes
AZ‘I

2 n
IM]> = =D A+ A4 (3.11)
=1

i#]

>
i=1

The amplitudes usually represent a much simple structure. For the construction of phase

space integrators typically only the direct squares of amplitudes are considered, for each of

which a phase space map is constructed.

The multi-channel method [77] is a very efficient way to combine several such maps as

follows:

X({a;},a) = Xp({a;}), for ial<&<2al. (3.12)
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An additional random number @& is required. The coefficients ay, are arbitrary within oy > 0
and ), a = 1. The corresponding phase space weight for the full multi-channel is given
by

G = ) o, (3.13)
k

i.e. the new map represents a distribution given by the sum of single channel weights.

The coefficients a4 can be adjusted to minimize the variance of the phase space integral,

now given by

S = W(a)—<£>, (3.14)

where

Wia) <f(X({gz2},&))2>:;ak <J“<X§JJ> (3.15)

The best coefficients oy, are adapted during the integration by increasing the relative weight
for channels with a large sub-variance estimate Wy, (ay) = a%iW@‘)’ until all Wy (ay) are of

the same size.

3.2.3 Improved Multi-Channeling

Single channels that are constructed to produce weight distributions similar to squared
amplitudes will, in practice, only provide a rough approximation to it. The reasons are
not only that the weight function must be kept simple enough to be able to analytically
integrate it, but also kinematic restrictions due to momentum conservation and possible

phase space cuts cannot always be fully considered a priori.

These defects can be reduced largely if the VEGAS integrator is applied on top of each chan-
nel. Although the full matrix element is not factorizable in its phase space variables, this is
typically the case for the structures represented by single channels. In other words, VEGAS
is used to adapt selected channels to structures that go beyond their approximations. The

idea for this method has been presented in [7§].

For each channel VEGAS is used to generate a map £ from uniformly distributed random
numbers to a non-uniform distribution, still inside the interval [0, 1], and a corresponding
weight vg. To combine this with the multi-channel method, the map X ({a;}) for single

channels must meet the requirement to be invertible. The full map reads

X({a;},a) = Xn(&({a;})), for ial<d<2al. (3.16)
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Figure 3.1: One amplitude for the process e"e™ — ¢gGG.

For a momentum configuration {p;} the weight is therefore given by

G({p}) = D aral{p}) (X ({p}) - (3.17)
k

The remaining task is to provide the channels which enter into the procedure described

above. This will be the subject of the following two sections.

3.3 Automatic generation of phase space maps

During the matrix element generation with AMEGIC++ also complete information of Feyn-
man amplitudes is generated. This information can be used for the phase space integration:
for each amplitude an appropriate map is generated, which decomposes the phase space

according to the propagator structure.

To illustrate the principle, the example amplitude in Fig. (B]) for the process e~ (p;)e™ (p2) —
q(p3)G(ps)G(ps)q(ps) is considered. For this configuration the phase space can be factorized

as follows:

dd d¢34756 d cos 034,56
X d834 d¢374 d cos €3’4

X d856 d¢576 d cos 05,6 , (318)

where s;; = (p; + p;)?. For each decay p;; — p; + p; the variable 6,; is the angle of the decay
products ¢ and j in the CM frame of p;; w.r.t. to some reference axis; ¢ is the corresponding
azimuthal angle. Each of the new variables s34, Ss6, 3456, COSO3456, P34, COSO34, P56
and cosf5¢ can now be generated from random numbers a, according to a given weight

distribution.
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If the propagators in the example are massless, the Lorentz invariant s would be generated
by
1

s = laspa+ (1 —a)siy ], (3.19)

min

with the corresponding weight

B 1—v 1 (3.20)
R ‘

The constants spax and sy, are upper and lower boundaries of the invariant mass, given
by the available energy, particle masses and potential phase space cuts. Thus, the weight
function is given by a constant factor to account for the phase space volume and a factor
S%, to compensate for the peak structure of the propagator; v is an effective exponent for

the propagator, subject to choice.

The angular variables for the decay p;; — p; + p; are generated by

(b = 27TCL1,
cosf = 2ay—1, (3.21)
with the weight
2 1
wo= Z— (3.22)

where

Na,y,2) = Vie—y -2 —dyz (3.23)

T

The final state four momenta can be easily determined from the phase space variables. The

full weight for the phase space map is given by product of the weights for all variables.

Two more building blocks are used for the generation of phase space maps in general, (but
did not appeared in the example): For a massive propagator with mass M and a width T,

the invariant mass is generated according to
s = M?+ MT x tan (a(y(Smax) — ¥(Smin)) + ¥(Smin)) ; (3.24)

which leads to a weight

w = (3.25)

where

(3.26)
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The fourth building block accounts for a t-channel configuration. In particular, for the
process p; + p2 — ps + p4 momenta p3 and py are constructed with a weight compensating
the t-channel propagator with the invariant mass ¢t = (p; — p3)®>. The kinematic variables
used in this case are the angles # and ¢, similar as for decays, where 6 is the angle of ps3

w.r.t. p; in the CM frame of p; + ps and ¢ is again the azimuthal angle,

(Z5 = 27Ta1 y
1
cosf = z—[as(z—1)"" = (1—ax(z+1)"]"", (3.27)
where
2 S3 S4 S1 So 1
- [ (2o ) (02 -2) ,
* s( s1=s)+ {1 s s + s s/] As,s1,82)A(s, s3, S4)

(3.28)

with the corresponding weight

4 1 1 1

w o= — (3.29)

TA(S,83,84) (x + 1)) — (z — 1)) (a — cosO)”

The phase space maps created using this building blocks lead to weight functions roughly
approximating the corresponding amplitudes. Many properties are neglected, such as spin
correlations in decays and numerators of propagators (the exponents v will be fixed and
not adjusted process wise). However, since the channels are put into the multichannel
environment described in section B.2.3] it is only important to provide suitable phase space
factorizations. The VEGAS refinement can then easily compensate for defects in the exact

weight distribution.

3.4 A general-purpose integrator for QCD-processes

As it has been shown in the previous chapter, for purely strong interacting processes naive
evaluation of Feynman diagrams is not the most efficient method to calculate matrix ele-
ments. Similarly also the phase space integration would suffer from the extreme proliferation

of Feynman amplitudes, if used for the construction of phase space maps.

It is well known [79] that the singular behaviour of such processes is roughly described
by the so-called antenna pole structure. For a m-particle process this is the sum over all

permutations of the antenna function

AP, (p1, D2, <o Pn) = [(P1 - P2) (P2 3)ev- (Pt - D) P - 91)] (3.30)
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Moreover, a single antenna function AP, coincides with divergency structure given by the

partial amplitude of the same permutationﬁ.

Two algorithms have been presented in the literature to construct phase space maps, leading
to momentum distributions following a given antenna function. They are called SARGE
[80] and HAAG [&T]. The latter turns out to be more efficient, hence this one is used as the

basis for a new implementation.

The general idea for the channels proposed in [81] is based on the decomposition of a n-body

phase space

APy (P;py, .o pn) = (H d'pid (p} — m?)) gt (Zpi — P)
i=1 =1

= dSn,1 dq)Q(Qn = P; mi, Sn—1; Pn,s anl)
X dSn—Q dq)Z(Qn—l; mi—la Sn—2; Pn-1, Qn—Q)

X dsy dPy(Qz;m3, s2;p3, Q2)
X déz(Qz;mg,mf;pz,m), (3-32>

where d®s(Q); s9, $1;p2,p1) is the phase space for the splitting of the virtual momentum @

into momenta p; and p, with p? = s; and p3 = s,.

In Ref. [8T] two algorithms are distinguished, which are referred to as closed and open
antenna and that differ in the further decomposition of d®,. Only the closed antenna
contains all factors in Eqs. (B30), while in the open antenna one factor (p; - p;11) is missing.
Although the closed antenna seems to be more symmetric, in practice it turns out that the
open antenna version is more efficient. This is mainly due to the simpler structure and that
less additional weight factors appear within the algorithm (which are nonsingular in any of
the products (p;-p;)). In the following only open antennas are discussed. The algorithm will
be presented for the case of massless external particles, however, it can be easily generalized

to the massive case.
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Figure 3.2: Antenna configuration.

3.4.1 Antenna generation

In the following, a classification of antenna types by the position of the incoming momenta
(po and p;) within the antenna is used, see figB2 The type is given by Min(m—2,n—m—2).

The basic building block for the antenna generation is the split of a massive momentum
according to the phase space element ds d®,(Q;m? = 0, s;p, P; q), where the last argument

q defines an axis for the momentum generation. It is further decomposed by

d®,(Q;m* = 0,s;p, P;q) = dadg , (3.33)
where
q-p
= —— .34
a . P (3.34)

and ¢ is an azimuthal angle around q.

The phase space for a single split, now defined through the variables s, a, ¢, is constructed

as follows:

1. Dice s according to the distribution 1/s in [Smin, Smax)-
2. Dice a according to the distribution 1/a in [amin, Gmax]-

3. Dice ¢ according to a flat distribution in [0, 27].

2This is obvious when, e.g., inspecting MHV-amplitudes for the n-gluon process, Eq. (2224):

4
- - Pi D))
A, (1T, i, i, nT S ( J , (3.31)
‘ " ( )’ (p1 - p2)(P2 - P3)---(Pn—1 - Pn)(Pn - P1)
where the property of the spinor products (i j){(i j)* = p; - p; was used. The recursion relation for non-
MHYV configurations leads to slightly different structures in which, however, still most of the factors in the

denominator agree with the antenna function.
3frame dependent quantities are defined in the CM frame of QQ with the z-Axis along ¢
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4. Momenta are given by

Q*—s _
p=(e,p", 0", p*) = | =——,7],

S
2/ "

2
p(g. P PPy = (LS ﬁ), (3.35)

P = hcosgb,hsingb,QZ(l_Qa)_S), h=+/Q2a(l — a) — as.

5. The weight is given by

g(smina Smax) g(a'mina a'max) 1 Lmax
- minjy LYmax) — 1 . 3.36
- ” 50 9(@min, Tmax) = log - (3.36)

Type 0

The phase space for this configuration can be obtained by a direct multiple application of
the basic building block:
d®,,(p1, p2; P3s - Pn) = dsz dPo(Q2 = p1 + p2; 0, 53, p3, Q35 pa)
X dsy d®s(Q3;0, 545 ps, Qu; p3)

X dsn—Q dCbQ(Qn—Z’); 07 Sn—2; Pn—2, Qn—Q; pn—3)
X dq)Q(an% 07 0;pn7pn71;pn72) . (337>
The corresponding total weight is given by
n—2 n
Hj:Q Dj (Zi:j-i-l pi) 1

w~ H;l:_j (Z?:j pi>2 <p2~p3)(p3~p4) c. <pn71.pn> ) (3-38)

where the contributions from boundary dependent functions g have been omitted.

Type 1

For this configuration the following phase space decomposition is considered:
d®n(pr,p2; P3s s Pn) = dsz dPa(Q2 = p1 + P23 0, 8333, Q33 p1)

X d84 d@Q(Q3;0754;p47Q4;p2)
X dss dPo(Qy; 0, s5; D5, Qs; pa)

X dsn—Q dCbQ(Qn—Z’); 07 Sn—2; Pn—2, Qn—Q; pn—3)
X dPy(Qn-2:0,0; pn, Pr—1; Pu—2) - (3.39)
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In the first momentum split (d®y(Q2 = p1 + p2; 0, s3; p3, Q3; p1)) the variable a is diced now

according the distribution . All following splits are generated according to the basic

1
a(l—a)
building block. The corresponding total weight is given by

=i v () 1
H?;f (Z?:j pi)2 (p1-p3)(P2-pa) -+ (Pn—1-Pn)

w ~ pr1(p1 + p2 — p3) p2(p1 + P2 — ps3)

(3.40)
Type & (> 2)
In this case the following decomposition is considered:
d®,(p1,p2;p3, -, Pn) = dsz dsp dPo(Q2 = p1 + P2; 83, Skt1; @3, Qrt1; D1)
X dsy dPy(Qs:0, 545 pa, Qui 1)
X dss APy (Q4; 0, 8555, Q53 pa)
X dPy(Qr-1;0,0; pr, Pet1; Pi—1)
X dSpy2 dPo(Qr+13 0, Spy2; Pry2, Qrr2; P2)
X dspy3 dPo(Qr+2; 0, Sky3; Pht3, Qr+3; Pit2)
X dPy(Qn—2;0,0;pp, Pn—1; Pn—2) - (3.41)

All splittings are generated according to the basic building block. The corresponding total
weight is given by

k—1 k1 n—2 n
Hj:g pj (Zi:j+1 pi) Hj:k+2 by (Zi:j+1 pi)

2 2
k—1 k+1 n—2 n
Hj:g (Zi:j pz‘) Hj:k+2 (Zi:j pi)

1
) (P1p3)(P3-pa) - - (P Prr1) (P2 Prt2) - (Pr1Pn) (342)

w o~ pa(Pry2+ ...+ pn)

3.4.2 Integrator setup

For a m-particle process. (n — 1)! different channels can be constructed. They are suit-
able to be directly combined in the improved multichannel method, presented in section
However the optimization procedure can be simplified significantly using a symmetry

between the channels:
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Two channels of the same type are identical up to a permutation of the final state momentaH.
Thus the optimization parameters, which include individual VEGAS-maps and the relative
weights «, can be reused by all channels of a given type and optimized collectively. Of
course, for the case of VEGAS-maps, the random numbers have to be permuted the same

way as the final state momenta.

3.5 Integration with colour sampling

In this section, a special integrator is presented to be used for the integration of multi-gluon
scattering processes together with a sampling over physical colour states for the external

gluons.

As it has already been pointed out in section 23], the full summation over all colour con-
figurations becomes unfeasible beyond a certain number of external partons. Instead, the
better strategy is to use Monte-Carlo techniques for the summation over external colour as-
signments in a given SU(3) decomposition. Such non-interfering subsets of a QCD process
typically have a strongly reduced number of contributing partial amplitudes compared to
the full process. This issue has been studied in [64] for a number of different decompositions,
i.e. for fundamental-representation decomposition, for adjoint-representation decomposition
and for the colour-flow decomposition, which has been presented therein. The conclusion
is, that the colour-flow decomposition, although not minimal concerning the number of re-
quired partial amplitudes, is the best suited method for a sampling over colour assignments

if the number of external partons is large for the following reasons:

1. It provides the slowest growth in the average number of partial amplitudes per non-

vanishing colour assignment.

2. It is relatively simple to determine all contributing partial amplitudes for a given

colour assignment.

3. All colour factors are trivial to calculate, since they are given by a product of Kronecker-

deltas, cf. Eq. (ZZ1).

Generally, the peaking behaviour of the colour-assigned cross section is rather complex
within the phase space and strongly different for different colour assignments. The idea is

now to construct integrators specific for a given colour assignment, based on the knowledge

40f course, implying such a symmetry on the integrator is only meaningful if the integrand itself yields
this symmetry. This is clearly given for m-gluon processes, but also when summing over all parton level
processes contributing to hadronic cross sections such as pp — n jets. The performance might suffer if just

integrating single unsymmetric subprocesses alone.
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about contributing partial amplitudes. The algorithm described below is constructed for
gluon scattering processes. A generalization to any parton scattering processes is possible

and will be discussed elsewhere [82].

3.56.1 Colour sampling

In the colour flow decomposition each external gluon is labeled by a colour index i and a
anti-colour index j. The colour state for a n-gluon scattering is thus given by specifying all

indices 1, .. .1, and ji, ... j, out of three values (R, G, B) for each index.
A colour flow (and thus an ordering) is specified by a permutation o € S,,_; of external
particles,

(1,09,03,...,0,) . (3.43)

The colour flow is contributing to an assignment, if

St gzl = 1 (3.44)

Jog " Jog ) J1

It is relatively easy to construct an algorithm which determines all valid flows from a given

assignment:

1. Starting with gluon 1, for the second gluon in the order the index j,, must be equal

to il.

2. One of the possible second gluons is selected, a third gluon is determined the same

way.

3. If it is possible to build up a chain which includes all gluons and meets i,, = j;, a

valid flow is found.

4. Selecting systematically the first, second, third, ... possible gluon in each branch all

valid flows are determined.

The simplest way of choosing a colour assignment is accomplished by randomly selecting the
2n colours for the i- and j-indices. Each colour is chosen with an equal probability, leading
to a weight of 1/3?". However, only a small fraction of those assignments will have at least
one colour flow. A trivial (but not sufficient) condition for non-vanishing assignments is,
that the number of i-indices carrying the colour R (G,B) must be equal to the number of

j-indices carrying this colour.

A more efficient way to determine assignments is as follows:

1. Only the n i-indices are selected randomly.
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2. One permutation o of n particles is selected randomly (and uniformly distributed).

The colours for the j-indices are given by

Jk =10, , for k=1,...,n (3.45)

3. The weight for selecting a assignment is given by

rlg!b!
w o= — 3.46
3!’ (3.46)
where 7, g, b are the number ¢-indices carrying the colours R, GG, B, respectively, with

r4+g+b=n.

Clearly, assignments generated by this algorithm will always fulfil the trivial condition,
mentioned above. Moreover, the weight is roughly proportional to the number of colour
flows to the diced assignment and thus already corresponds to some extend to the expected

cross section for the colour configuration.

3.5.2 Integrator setup

As basic building blocks the HAAG-channels that have been discussed in section BT
will be reused. They provide efficient integrators for squared partial amplitudes. Unlike
partial amplitudes, however, the channels are not invariant under inversion of the order
of arguments (which is due to the fact that the open antenna algorithm has been used).
To ease the further discussion, the channels are symmetrized by combining each channel
with its reversed argument version, i.e one of the two configurations is chosen with equal

probability and the weight is given by the average of the two.

The integrator for a given colour assignment is constructed as follows: for each colour
flow the HAAG-channel to the corresponding partial amplitude is added to a multi-channel
integrator, cf. section However, with a growing number of external particles one has

to face the following problem:

Although the average number of contributing colour flows per colour assignment is relatively
low in this decomposition, the maximal number grows factorially. Thus it is quickly getting
impossible to store all data associated with the multi-channel, i.e. the contributing HAAG-
channels and the internal a-parameters. The situation is even worse if it is intended to
sample over all colour assignments, which number is growing exponentially with the number

of particles. The way out is not to store anything, but generate the integrator on the flight.

The fast algorithm to provide all colour flows from a colour assignment is essential for this
step: for a single phase space point one has to loop three times though the list of all colour

flows (which can’t be stored as well):
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1. To determine the normalization of the coefficients «y, for each phase space channel
within the multi-channel integrator, cf. Eqs. (B12) and BI3).

2. To select one channel with a probability given by the relative weight oy, to generate a

phase space point, and

3. to compute the multi-channel weight corresponding to the phase space point.

Strategies how to define suitable oy, (beyond equal weights for all channels) are discussed
below. For the HAAG-channels itself, only on per type (as defined in section BZZT]) has to
be stored. Together with a corresponding permutation of final state particles they can be

reused anywhere in the on the flight algorithm.

3.5.3 The optimization procedure

The proposed integrator contains a number of parameters which can be adjusted or adapted

to improve the variance during the calculation:

e VEGAS maps within the HAAG channels,
e the relative weights aj in the multi-channel generator,

e probabilities to select colour assignments beyond the algorithms given above.

The usage self adaptive methods is somewhat limited due to the fact that the number of
those parameters extremely increase with the number of particles involved in the process.
Not only that it becomes impossible to calculate the matrix element for enough phase space
points to adapt each parameter individually, at some point all those parameters cannot even
be stored.

Thus the following strategy is applied:

1. Optimization of the VEGAS maps refining the HAAG-channels:

The number of structurally different HAAG-channels is very limited, only one chan-
nel per type. Their optimization is done before the actual integration starts. For
this purpose only single squared partial amplitudes are calculated to optimize the
corresponding channeld. This not only speeds up the calculation, it also provides a

much cleaner environment for the adaptation of the VEGAS-maps. In this step it is

®During this step the full result can not be determined since potential interferences between partial
amplitudes are ignored. However, it is sufficient for computing the leading 1/N¢ limit for n gluon processes,
using the fact that in the colour flow decomposition (as well as in fundamental-representation decomposition)

interferences are always subleading.
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summed over all helicities. Cross sections oy, given by the integration of a squared

partial amplitude of type ¢ over the allowed phase space, are stored.

2. The actual integration run:

No further optimization is done. The channels are used as they came out of the
optimization step, including the VEGAS-map and a «;, parameter proportional to the

cross section of the corresponding squared partial amplitude, oy.

Best performance is achieved if the colour assignment is also selected with a probability
proportional to the sum of cross sections of contributing squared partial amplitudes
(determined in step 1), instead of the weight given in Eq. ([B4d). To do so, the
total normalization for the new weight must be determined summing over all colour

assignments. For n-gluon processes this is given by a following simple formula:
n—2
N = (TL — 2)' x 3" % Z Jmin(i,n—i—?) s (347)
=0

where the opin(i,n—i—2) is the cross section of a squared partial amplitude of the type

“min(i,n — 7 — 2)”. The reweighting can be done by a simple hit-or-miss method.

For the integration run it is a subject of choice whether to sum or to sample over
helicities. All practical tests for up to the 11-gluon process favoured the summa-
tion. Beyond that, however, it seems to become to costly to compute summed matrix

elements, thus a sampling should be considered.






4  Efficiency comparisson and results

In the previous chapters several methods and implementations for matrix element and phase
space generation have been presented. In the following they will be compared to justify the
optimal method. The focus hereby is on the calculation of cross sections for pure QCD

processes.

4.1 Matrix elements

Firstly, the time necessary to calculate a matrix element at a given phase space point is
compared. For the matrix elements generated with AMEGIC++ using the two available
algorithms, i.e. direct evaluation of Feynman diagrams and the MHV-amplitude based re-
cursion relations (CSW-rules), this can be done directly, since in both cases exactly the same
thing is calculated: matrix elements summed over all colour- and helicity-configurations. Of
course, numerical results obtained with either method are identical (up to numeric pre-
cision). Tab. BTl lists evaluation times for a single ME in both methods for processes,
available using the MHV technique. Clearly, the more symmetric a process is (w.r.t. QCD
interactions), the greater the gain employing the new method. The largest difference is
found for pure gluon scattering, where with the new technique already for the gg — 4g
process a factor of 166 is gained. For a scattering of more than six gluons the evaluation of
Feynman diagrams becomes unjustifiable complicated an is thus not listed. The reason for
this pattern is that the non-abelian interactions lead to an extreme inflation of diagrams
to be evaluated, while MHV amplitudes inherently incorporate SU(3)-symmetries allowing
leading to a significant and nontrivial simplification. On the other hand, for processes in-
volving electroweakly interacting particles there is no gain with the new method. Thus, the

application area for the CSW technique is pure QCD.

Tab. compares the evaluation time of partial amplitudes for gluon scattering, generated
employing the Berends-Giele (BG) recursion and the CSW recursion relation, both summed

over helicity Conﬁgurationsﬂ. In particular for two and three gluon production processes, all

I Since the implementation of the BG recursion relation in COMIX is based on a colour-flow decomposition
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Process Time per ME | Time per ME | Conventional /
Conventional | CSW rules CSW rules
99 — 2g 231 us 2.62 us 8.8
g9 — 39 1.16 ms 0.0368 ms 31
gg — 4g 314 ms 1.89 ms 166
99 — 59 - 0.058 s
99 — 6g - 7.80 s
99 — 79 - 532 s
qq — 29 8.29 us 2.01 us 4.1
qq — 39 155 us 24.7 us 6.3
qq — 4g 18.4 ms 1.25 ms 15
qq — dg 4.64 s 0.0364 s 127
qq — bg - 3.79 s
qq — qq 4.52 us 4.00 ps 1.1
9 — qq g 51.3 us 19.8 us 2.6
qq — qq 29 3.17 ms 0.81 ms 3.9
qq — qq 39 654 ms 17.2 ms 38
99 — qq 4g - 1.51 s
99— q'¢ 2.55 s 1.87 pis 1.4
99— d'q g 18.8 us 9.38 us 2.0
qqd — ¢'q' 2g 615 us 407 ps 1.5
q7 — ¢'q’ 3g 118 ms 8.83 ms 13
94 — q'q 4g - 757 ms
qq¢ - W (—e 1) 2.53 us 3.78 ps 0.67
¢ =W (—=eh)yg 6.32 s 7.75 ps 0.81
¢ — W (—e 1) 2¢ 18.8 us A1.7 ps 0.45
"> W (—e 1) 3g 243 us 471 ps 0.51
"> W (—e 1) 4dg 22.1 ms 34.1 ms 0.65

Table 4.1: Computation time for full matrix elements summed over colour and helicity.
Displayed times are averages for a single evaluation, employing the conventional
formalism in AMEGIC++ and the Cachazo-Svrcek-Witten (CSW) recursion re-
lation. The numbers were generated on a 3200+ AMD Athlon™ 64 CPU.
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Process Time per ME | Time per ME

BG CSW BG/CSW
gg — 2g 60.0 us 491 us 12
g9 — 39 185 us 9.85 us 18
gg — 4g 4T us 132 ps 4.1
gg — 5g 1.62 ms 0.655 ms 2.5
gg — b6g 4.85 ms 11.3 ms 0.43
gg — 7g 14.9 ms 39.4 ms 0.38
gg — 8¢g 48.4 ms -
gg — 9¢g 166 ms -
gg — 10g 619 ms -

Table 4.2: Average computation time of partial amplitudes in multi-gluon scattering,
summed over all helicity configurations. Displayed times are averages for a
single evaluation, employing the Berends-Giele (BG) recursion and the CSW

recursion. The numbers were generated on a 2.80 GHz Pentium@® 4 CPU.

non-vanishing helicity configurations are given solely by MHV- (MHV-)amplitudes. Thus
the method based on them will be superior; for the BG recursion relation Feynman ampli-
tudes have to be evaluated, leading to more complicated expressions. However, the CSW
recursion relation is rather complicated and leads to relative high proliferation of contribut-
ing subamplitudes, such that the growth in complexity is much faster. The computation
time given in Tab. increases approximately as 7", while the BG-method leads to a scaling

approximately as 3.3". Starting from gg — 6¢ scattering the latter will be more efficient.

In Tab. computation times for the BG recursion are listed for full colour-dressed ampli-
tudes, when summing and when sampling over helicity configurations. Of course it is much
faster to compute a matrix element for a single helicity state than for all states. What is
more efficient for the calculation of cross sections, however, can only be decided together
with the phase space integration method. For matrix elements summed over helicity a

scaling as 6™ is observed, while for the case of sampling the evaluation time scales as 3.2".

4.2 Integration performance and results

The overall integration performance depends on a number of factors:

e the quality and complexity of phase space maps,

it would be unfair to compare complete colour summed matrix elements. This decomposition is well suited

for a sampling over colour assignments, but would be rather inefficient to sum over them.
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Process Time per ME Time per ME
summed helicities | sampled helicities | ratio
gg — 2g 73.1 us 25.2 us 2.9
g9 — 39 339 us 59.5 us 2.7
g9 — 4g 1.67 ms 0.149 ms 11
gg — 5g 8.98 ms 0.427 ms 21
gg — 6g 49.6 ms 1.39 ms 36
gg — 7g 298 ms 4.32 ms 69
g9 — 8¢g 1.99 s 13.6 ms 146
g9 — 9¢g 13.1s 43.7 ms 300
gg — 10g 96 s 138 ms 695

Table 4.3: Computation time for multi-gluon scattering matrix elements sampled over
colour configurations. Displayed times are averages for a single evaluation of
the colour-dressed BG recursion relation, when summing and when sampling
over helicity configurations, respectively. The numbers were generated on a
2.80 GHz Pentium® 4 CPU.

e the adaptation procedure: required number matrix element evaluations for adaptation

and the quality of the final map, and

e the question whether it is summed or sampled over some degrees of freedom (colour

and helicity).

Below the strategies for phase space integration, discussed in chapter B, are compared.

Unless stated otherwise, all partonic cross sections are obtained for LHC with a proton
centre-of-mass of 14 TeV. The parton distribution function CTEQ6M [83] has been em-
ployed, factorization and renormalization scales have been fixed to §. As a phase space cut,
simply each parton is required to satisfy the kp-jet criterion [I8] with Q.. = 20 GeV and

the jet resolution parameter D = 1.

To start with, in Tab. the performance for integrators, using the phase space chan-
nels, presented in sections and B-L2 are compared for multi-gluon scattering and for
hadronic cross sections. The matrix elements were generated using the CSW recursion and
are summed over helicity and colour, which is the standard AMEGIC++ setup. The sta-
tistical errors are given after the evaluation of 310000 phase space points, which includes
the full adaptation procedure. The efficiency is the ratio of the mean and the maximum
weight for single event, i.e. it corresponds to the unweighting efficiency using a hit-or-miss
method. Except for the rather simple phase space of 2 — 2 scattering the HAAG-channels

are clearly superior w.r.t. both criteria, the statistical error and the unweighting efficiency.
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HAAG Amegic MC
Process stat. error efficiency | stat. error efficiency
99 — 99 0.11 % 18 % 0.09 % 14 %
Ji—3jji || 011% 9.4 % 0.10 % 9.3 %
g9 — 39 0.18 % 7.0 % 0.28 % 0.50 %
pp — 3j 0.20 % 2.2 % 0.29 % 0.43 %
g9 — 4g 0.23 % 1.5 % 0.56 % 0.12 %
pp — 47 0.25 % 0.49 % 0.56 % 0.06 %
g9 — 5g 0.29 % 0.78 % - .
pp — 5J 0.28 % 0.29 % - .
gg — 6g 0.38 % 0.28 % - }

Table 4.4: Integration performance for matrix elements summed over colour and helicity
configurations. The integrator HAAG has been described in section and
Amegic MC denotes the implementation described in section B-Z2 Statistical
errors are given after the evaluation of 310000 phase space points. The efficiency
states the fraction of events, passing an unweighting procedure. Results have
been obtained for LHC energies and requiring all gluons/jets to satisfy the kp-jet
criterion with Q. = 20 GeV and D = 1.

As a reference in Tab. the results are listed for HAAG with the VECAS improved multi-
channel method (cf. section BZ2Z3) switched of, and for the flat phase space generator
RAMBO [73]. Clearly, VEGAS improves the efficiency significantly, the statistical error is
reduced by roughly a factor of 2 and the unweighting efficiency even by an order of magni-
tude. RAMBO, on the other hand, cannot compete with the optimized integrators. 2 — 6
scattering in pure QCD is about the upper limit, feasible for an approach that sums over
colour. Beyond that not only the matrix element becomes too costly to calculate, also the
number of phase space channels for the optimized sampling methods gets extremely large,
such that the calculation of the multi-channel weight becomes very time consuming and the

optimization procedure suffers.

Figs. EETl and compare the overall integration performance between different integration
methods for multi-gluon scattering. Three integrators are compared, the flat phase space
generator RAMBO, the general-purpose QCD-integrator HAAG (cf. section BZZ2) and the
special colour sampling integrator presented in section (CSI). Each integrator employs

matrix element samples, for which it performs best:

e RAMBO: ME sampled over colour and helicity,

e HAAG: ME summed over colour and helicity,
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multi-gluon scattering. The upper

panels display the Monte Carlo estimate of the cross section with the corre-

sponding 1o statistical error band as a function of the total integration time.

The lower panels show the relative statistical error. HAAG denotes the phase

space integrator described in section B-Z2l applied on colour- and helicity-

summed ME, generated using the CSW recursion. CSI denotes the integrator

discussed in section B3, applied on colour-sampled and helicity-summed ME,

generated using the BG recursion. Results for RAMBO were generated using

colour- and helicity-sampled ME form the BG recursion. Calculations have
been performed on a 2.66 GHz Xeon™ CPU
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HAAG w/o VEGAS RAMBO
Process stat. error efficiency | stat. error efficiency
99 — g9 0.25 % 9.0 % 0.33 % 0.43 %
17— 37 0.25 % 6.6 % 0.38 % 0.41 %
g9 — 39 0.36 % 1.1 % 0.92 % 0.09 %
pp — 3J 0.37 % 0.55 % 1.8 % 2.8¢-2 %
g9 — 4g 0.50 % 0.14 % 2.0 % 1.0e-2 %
pp — 47 0.52 % 0.09 % 2.3 % 7.1e-3 %
gg — 59 0.68 % 0.02 % 3.6 % 2.4e-3 %
pp — ) 0.72 % 0.01 % 4.0 % 1.6e-3 %

Table 4.5: Integration performance for matrix elements summed over colour and helicity
configurations for the same setup as in Tab. The left columns list the results
obtained employing the HA AG-integrator without an additional VEGAS refine-
ment. The results in the right column are generated using a flat momentum
distribution, generated by RAMBO.

600 T T T \\\\\‘ \\\\\‘ 80 “““ “““
| |— Rambo |
CSI(HS)
__400f[— CsI =
= &
© o L i
200 20l — Rambo |
CSI(HS)
i ] - |— CSI ‘ 7
0 p——t—+——++H] — ] 0 =+ i —
glo\\/\/\/\‘ &EIO’\/\/ |
o F 1 © F ]
< C 7] 3] C 7
2 - - < | \/\ N
| gg—8g | - gg—>9% .
lf \\\Hﬁ L L1 = 1 \\\Hx \\\Hx
10° 10° 10° 10° 10°

integration time [s] integration time [s]

Figure 4.2: The overall integration performance for multi-gluon scattering, continued from
Fig. Bl Additionally, for the CSI a sampling over helicity is considered,
denoted by CSI(HS).
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Process cross section [pb]

g9 — 2g || 3.3521(31)x 108
jj — 27 | 5.3122(54)x 108

g9 — 3g || 1.3118(24)x107
op— 37 || 2.5041(50)x 107
g9 — 4g || 1.3699(14)x 10°
p— 4 || 3.0885(78)x 10

gg — 5g 1.5250(15
p— 55 || 4.0287(67
gg — 6g || 1.9282(38
g9 — Tg || 2703(14)
g9 — 8g || 407.0(36)
g9 — 9g || 66.5(13)
gg — 10g || 15.2(26)

x10°
x 104

(
(
(
(
(
(
(
(

e N N T N N N

Table 4.6: Multi-gluon and hadronic cross sections at LHC. In parenthesis the statistical

error is stated in units of the last digit of the cross section.

e CSI: ME sampled over colour and summed over helicity.
For the processes gg — 8¢ and gg — 9¢g additionally a sampling over helicity has been
considered (labeled by CSI(HS)).

Where applicable, the phase space optimization procedure is included in the integration
time, i.e. at the start all multichannel weights and VEGAS maps are uniform. For all
displayed gluon multiplicities the optimized integrators lead to a statistical error smaller by
roughly a factor of 10 compared to RAMBO. For small multiplicities it seems to be most
efficient to sum over colour configurations. From gg — 6g on, however, this approach cannot

compete anymore.

With increasing multiplicity the CSI requires significantly more time until a first estimate
can be given. This is due to the fact that the optimization takes place before the actual
integration starts. Although with RAMBO very quickly estimates can be obtained, they
might to be unreliable for short integration times: cross sections and errors tend to be
underestimated, since small but strongly enhanced phase space regions can be easily missed
by a flat momentum distribution. Beyond gg — 9¢g processes the CSI method suffers from
the increasing complexity of helicity summed ME, cf. Tab. In this case the usage
of helicity sampled ME can be considered. Although the overall performance is inferior

compared to summed ME; it is still more efficient (and reliable w.r.t. error estimates) than
RAMBO.
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Process | /s [GeV] cross section [pb]
CoMix  Ref. [64] Ref. [&4]

99 — 8¢ 1500 0.755(3)  0.70(4) 0.719(19)
99 — 9g 2000 0.305(2)  0.30(2)

gg — 10g | 2500 0.101(7)  0.097(6)

gg— 11g | 3000 | 0.0188(20)

Table 4.7: Cross sections multi-gluon scattering at a CM energy of /s, using the phase
space cuts specified in Eq. (), compared to literature results. In parenthesis

the statistical error is stated in units of the last digit of the cross section.

Employing the best matrix element generation and integration method for each process, tree
level cross section with a very high statistical precision can be obtained up to extremely

high multiplicities. Results for the setup specified above are listed in Tab. 0.

To compare the new matrix element and phase space generation methods to know results,
the setup used in Refs. [64], R4] is considered. There, gluons at a fixed CM energy are

scattered employing the phase space cuts
pr; > 60 GeV , ’77@| <2, ARZ] > 0.7, (41)

on each final state gluon i (pair of gluons 4, 7). The cuts have been chosen to widely
avoid the divergent regions of the matrix element, such that even from a flat phase space
generator reliable results can be obtained. The cross sections and statistical errors are listed
in Tab. 7 The reference results are reproduced within statistical uncertainties. The new
phase space generator allows to strongly reduce statistical errors for gg — 8¢ and gg — 9g.

A full tree level cross section for gg — 11g has not yet appeared in the literature.

4.3 Conclusions

In the past three chapters a number of extensions and new concepts for the calculation
of tree level cross sections in SHERPA have been presented. This included the automated
generation of matrix elements and the integration over the multi-particle phase space. In
particular, the treatment of QQCD-amplitudes has been improved to overcome the technical
limitations given by conventional methods. Within this work the Monte-Carlo integration
methods have been completely revised and significantly improved. For the case multi-gluon
scattering this has been carried to extremes: the new methods allow the calculation of cross

sections, with a precision and parton multiplicity that have not been accessible before.

The overall performance for the calculation of QCD cross sections using various techniques
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has been compared, the conclusion is the following: for final states with up to 4-5 partons
the usage the CSW-technique together with the integrator presented in section perform
best, beyond that the Berends-Giele recursion and the integration techniques which involve
colour sampling (section B.H) are superior. Other processes have not been analysed in full
detail yet, but first test indicate that, again, for smaller final states (typically up to 5-6
particles for full tree level ME) the matrix element generation methods implemented in
AMEGIC++ are favoured, whereas more complex final states are the domain of the Berends-

Giele recursion, implemented in COMIX.
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5 Automating the Dipole-Subtraction
method

For most of the relevant observables in particle phenomenology, the leading term of the
perturbative expansion can be related to tree-level diagrams. However, for many practical
purposes, tree-level calculations are not sufficient. This is due to a number of reasons: first
of all, many measurements aim at the extraction of fundamental parameters. However, in
Quantum Field Theories, parameters are subject to corrections, which usually exhibit ultra-
violet divergences. These divergences are dealt with through the renormalization procedure,
which can be done in a scheme- and scale-dependent way only, see e.g. [4, 85]. Therefore,
in order to extract parameters from the comparison of a (perturbative) calculation with
experimental data, the calculation itself must contain the same kind of quantum corrections
necessitating their renormalization. Second, it should be stressed that in tree-level calcula-
tions, there are some choices to be made, concerning the scale at which inputs such as the
coupling constant, quark masses or parton distribution functions are taken. In principle,
different scale choices are equivalent, and renormalization group theory guarantees that,
when taking into account all orders, the effect of scale choices vanishes. At leading order
(LO), however, their impact may still be significant, such that tree-level calculations merely
give the order of magnitude for corresponding cross sections etc.; a prime example for this
is the production of a Higgs boson in gluon fusion processes, where only the next-to-next-to
leading order correction significantly reduces the scale dependence and produces a stable
result [86l, 87]. Thus, aiming at any more precise prediction, higher-order calculations are a

crucial ingredient of phenomenological analyses.

But although indispensable, so far there is no fully automated tool available for QCD cal-
culations at next-to leading order (NLO), i.e. at the one-loop level. This is because a true
NLO calculation is certainly much more complex than a leading order (LO) one. First of all,
some of the essential ingredients, namely the loop or virtual contributions are not under full
control yet. In general, up to now calculations of these corrections to physical processes are
limited to contributions containing five- and in some cases six-point functions, see for ex-

ample [25], 26], 28, 29, B0]. But even to reach the level of known scalar master integrals is far
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from being trivial; the tensor reduction necessary for this step [88] results in a proliferation
of terms with non-trivial cancellations among them, which render the implementation in a
computer code a major effort. A new approach to face some of those problems is reported
in chapter @ On the other hand, some of the loop corrections exhibit not only ultraviolet
divergences to be renormalized, but also infrared divergences. They also need to be regu-
larized, but then they must be canceled against similar infrared divergences stemming from
the real contributions. This basically translates into canceling divergences in phase space
volumes of different dimensionality. The cancellation in fact is one of the most important
consequences of the Kinoshita-Lee-Nauenberg or mass factorization theorems [89, 90]. How-
ever, in order to practically achieve the cancellation, the real infrared divergences also need

to be regularized. Essentially, there are two ways of doing this.

One method, also known as phase-space slicing [91], 92, 93, 94, O5, 06|, bases on dividing
the phase space of the additional real emission into an infrared-safe (hard) and a infrared-
divergent (soft) region. The division is usually performed by subjecting pairs of particles to
an invariant mass criterion. Then, the soft region is integrated analytically in d dimensions.
Typically, in this step, the helicity-summed matrix element squared is approximated by its
double-pole (or eikonal) limit. The result of the analytical integration will contain single or
double poles of the form 1/(d—4) or 1/(d—4)?, respectively. They typically are accompanied
with logarithms of the invariant mass criterion. Such logarithms, but with opposite sign, also
appear in the numerical evaluation of the full matrix element squared for real emission in the
hard region of phase space, performed in 4 dimensions. In principle, these two potentially
large contributions (logarithms of a potentially small quantity) originate from the unphysical
division of the phase space and should thus cancel. Therefore, the key issue thus in phase
space slicing is to adjust the parameters of the procedure such that the dependence on the
slicing parameter is minimized. So far, this adjustment has been done manually only and
this is one of the reasons why other methods have become more popular with practitioners
of NLO calculations.

Such alternative methods of dealing with the real infrared divergences base on directly
subtracting them [{2, 07, 98, 99, 100, 10T, M02, T03]. At NLO level the subtraction in
all methods is performed such that the additional particle is added to the leading order
matrix element in a well-defined way through terms which, on one hand, exhibit the correct
divergent behavior in the soft and collinear limit, and, on the other hand, can easily be
integrated over the full d-dimensional phase space of the extra particle. The idea is then
that the so subtracted matrix element squared is finite and thus can safely be integrated
numerically in 4 dimensions. On the other hand, the subtraction term is added to the virtual
bit and integrated analytically in d dimensions. Again, it exhibits single or double poles of
the form 1/(d — 4) or 1/(d — 4)?, respectively. These poles again cancel the infrared poles

of the virtual contributions. The fact that there are universal subtraction terms, i.e. terms
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which will cancel the infrared divergences in a process-independent manner, is one of the
main reasons why subtraction methods have become increasingly popular in past years and
why they have been used for many of the state-of-the-art calculation of NLO corrections to

physical processes, like for instance [25, 26, 27, 28, 29].

The universality of the subtraction terms also allow for an automated treatment of real
infrared divergences. It is the subject of this chapter to report on a fully automated,
process-independent implementation of one of the popular subtraction procedures, ready
for use in realistic NLO calculations. Therefore, in section Bl the anatomy of QCD NLO
calculations will be formalized in a more mathematical language and the chosen subtraction
method, the Catani-Seymour dipole subtraction [42] will briefly be reviewed in its original
form for massless particles. Although its extension to massive particles [T0T] is straightfor-
ward from an algorithmic point of view, this work concentrates on the massless case only.
In section B2 the fully automated implementation of the corresponding massless dipole
subtraction of arbitrary matrix elements into the matrix element generator AMEGIC++ [20]
will be presented in some detail. Some simple tests of the implementation will be discussed
in section B3, before some physical applications and the comparison with results from the

literature will round of the presentation in section B4l

5.1 Brief review of the Catani-Seymour formalism

5.1.1 NLO cross sections and the subtraction procedure

Cross sections at NLO precision are given by
o=oc"0 4+ N0 (5.1)

where the LO part o© is obtained by integrating the exclusive cross section in Born ap-
proximation over the available phase space of the m final state particles and, eventually,
over the Bjorken-z of incident partons. Ignoring this additional complication for the sake

of a compact notation, The LO cross section is thus given by

o0 :/ dWeB (5.2)
where
AW = AW |M,, |2 FI™ . (5.3)

Here, d®®(™ denotes the phase space element of m particles, taken in four dimensions,
M., is the matrix element for the process under consideration, and F’ }m) is a function of cuts

defining the jets etc.. As already indicated, here and in the following, the superscripts in the
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integral denote the dimensionality of the integration. In order to obtain a meaningful result
to be compared with experimental data, typically isolation cuts are applied on the outgoing
particles, which may also serve the purpose of keeping the integral finite. A typical criterion
for example is to identify outgoing partons with jets and thus apply jet definition cuts on
the partons such that they are all well separated in phase space. Anyway, the cuts will not
be stated explicitly in the integral, but they are understood implicitly with the integration,
including suitable generalizations in d dimensions, where necessary. Thus, the integration
of the Born level cross section can directly be carried out in four space-time dimensions, as

indicated in the equation.

In view of the dipole subtraction formulae, it is useful to introduce at this point bras and
kets ,(1,...,m'| and |1,...,m'),,. They denote states of m final state partons partons
labeled by 1 to m’ and are vectors in colour and helicity space. Introducing, in a similar

fashion, vectors for the spins and colours, matrix elements thus can be written as
M= (Ller,y ooy Cm| @ Sty oy Sml) |1,y m) (5.4)

Therefore, in this notation, the matrix element squared, summed over final state colours

and spins reads

M2 = Lol L ) (5.5)

The NLO part of the cross section consists of two contributions, each of which increases the
order of ag. First, there are emissions of an additional parton, i.e. real corrections, denoted

by d9a®. Second, there are virtual (one-loop) corrections to the born matrix element, here
denoted by d¢V. Thus,

oo — /d(d)JNLO :/ d(d)aR+/ A9V (5.6)
m+1 m

The two integrals on the right-hand side of Eq. (20l are separately infrared divergent
in four dimensions, and are therefore taken in d dimensions. For the real correction, the
divergences arise when the additional parton becomes soft or collinear w.r.t. some other
parton, leading to on-shell propagators in the matrix element. For the virtual correction,
the divergence comes with the integration over the unrestricted loop momentum, such that
again a propagator goes on-shell. As already stated in the introduction, now the celebrated
theorem of Kinoshita, Lee and Nauenberg [89, 90] comes to help and guarantees an exact
cancellation of two divergent contributions, thus keeping their sum finitel. Setting d = 4+ 2¢

in the following, the divergences will manifest themselves in double and single poles, i.e. as

) defines jets

I In fact, this is only guaranteed for infrared-safe quantities. More specifically, if F§"
in terms of the momenta of an m-parton final state (taken at Born level), infrared safety demands that

F§m+1) — F}m) in cases where the m + 1- and m-parton configurations become kinematically degenerate.
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1/€% and 1/e, respectively. In principle, cancellation of the poles then solves the problem; in
practice, however, the direct applicability of the equations above to real physical processes
is limited since analytical integration over a multi-particle phase space in d dimensions with

cuts in many cases is beyond current abilities.

Therefore, a detour has to be taken. The idea is to construct a subtraction term for the real
emission contribution, which encodes all of its infrared divergences, but can analytically be
integrated over in d dimensions. In this way the infrared pole structure of the real part
with its 1/e and 1/€* poles is exhibited and cancels the corresponding virtual contributions.
Subtracting this term from the real emission contribution and adding it to the virtual
corrections then eliminates the infrared divergences in both parts. The subtracted real
matrix element squared then is finite and thus its full (m + 1)-particle phase space can
safely be integrated over in four dimensions. In this way, the subtraction term aims at an

infrared regularization of the two contributions at integrand level.

O_NLO — / d(d)O_R_/ d(d)0A+/ d(d)0A+/ d(d)O_V
m—+1 m—+1 m—+1 m
s {d(‘*)ap‘ - d(4)0A} + / dDgA 4 / d9eV | (5.7)
m—+1 m+1 m

The catch of the subtraction method now is that the subtraction terms can be obtained
from the Born terms in a straightforward way and that only the phase space integral of the
extra particle has to be taken in d dimensions, while the phase space for the remaining m
particles can be taken in four dimensions. This is similar to the way, the loop terms are
evaluated. There, only the loop integration is performed in d dimensions, whereas the phase

space of the outgoing particles is done in four dimensions. Therefore, the final structure

_NTO _ / {d@)JR_d%A} N / [ / dDgV 4 / d<d>o—A] . (5.8)
m—+1 m loop 1 e=0

Both integrands now are finite, allowing all integrations to be performed numerically. In

reads

contrast to some other regularization methods (like, e.g., phase space slicing) the subtraction
method does not rely on any approximation and does not introduces any ambiguous and/or
unphysical cut-off scales etc., as long as the integration of d¥¢* can exactly and analytically

be performed.

In [42] a general expression for d@o? has been presented, called the dipole factorization

formula, allowing to write

d(d)O'A = Z d(4)0B ® d(d)vdipole (59>

dipoles

such that, symbolically,

/ Aot = 3~ / dWoP ® / Ad“DMVaipore = / [dWeP 1] | (5.10)
m+1 m 1 m

dipoles
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where

I=>Y /1d<d>vdipole. (5.11)

dipoles

Here the sum of the dipole terms Viipole contains all soft and collinear divergences of the
real emission pattern. This factorization formula is suited for any process with massless
partons, and fulfills all the requirements mentioned above. An extension to massive partons

has been presented in [T0T].

However, as already mentioned in the introduction, in this publication only the massless case
will be considered. In order to provide a self-contained description, all necessary analytic

expressions will be listed in this publication.

5.1.2 Generalization to hadronic initial states

The cross sections discussed so far were given for point-like initial states. For cross sections
in hadron collisions, however, the differential cross sections above must be convoluted with

parton distribution functions (PDFs):
1 1
op.p) = / dnfa(n, 1) / dif fo(n's 1) (o5 (np, '0) + o0y (np,0'v' 1)) - (5.12)
a.b 0 0

Here the subscripts on the cross section denote the flavours of the incoming partons; for
the total cross section a sum over them has to be performed. For the NLO part, now
the higher-order corrections residing in the PDFs must be taken care of. This is done by

supplementing the NLO part with a collinear subtraction term do$, such that

TN (s poy 12) = / AVl (p,, py) + / AdDaY, (pa, pp) + / AdD6S (pas o, %) - (5.13)

m—+1 m m

This new term contains collinear singularities, incorporated in 1/e-terms and reads

1 1
(@ ,C 2y _ s 1 JawB, s
d O-ab(pmpbu:uF) o7 F(]_ . 6) ;/0 dZ/O dZ {d Ucd(’zpmzpb)
1 [dmu®\°©
. [5bd5(1 — 2) <—; < Z;ﬁ ) Pac(z) +K§c.s.(z))
F
1 [Amu?\°©
F0ac0(1 — 2) (_E < Zﬁ ) Po(3) +Kde'S'(z))]} (5.14)
F

The collinear subtraction term is factorization-scale and scheme dependent. This scheme
dependence resides in the terms K5 which, for the common M S-scheme vanish, i.e. in this
scheme all terms K5 = 0. However, this scheme dependence cancels similar terms in the

PDF's such that, taken together, the full hadronic cross section again is scheme-independent.
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NLO (paa Dv, :u%') as

described before, with the only difference that in this case the singularities of do), only

/ {/ dDgY, + /d(d)crf;b + d(d)agb} . (5.15)
m loop 1 e=0

In the case of incoming hadrons, the subtraction method is applied to o

cancel in the sum

5.1.3 Observable-independent formulation of the subtraction method

Up to now, the do denoted cross sections in a broad sense. To be a bit more specific
consider the following expression for a cross section at Born-level and the corresponding

next-to leading order expression:

m m 2 m
O'LO - /dq)( )<p177pTYL) ‘M( )<p177pm)‘ F( )<p1,7pm)

m m 2 m
O'NLO - /dq)( +1)<pl7"'7pm+1) }M( +1)<p17---7pm+1)’ F( +1)(p17---7pm+1)
}2

+/d‘1>(m)(p1,---,pm) VI (pr, s o) | FO (1, ey p) (5.16)

where d®™ represents an n-particle phase space element, and M M™+D and V)
are the LO matrix element, the NLO real matrix element and the NLO virtual correction
matrix element, respectively. F(™ is a function that defines a cross section or an observable
in terms of the n-parton momentum configuration. In general, the function ' may contain
f-functions (to define cuts and corresponding total cross sections), d-functions (defining

differential cross sections), kinematic factors or any combination of these.

However arbitrary this sounds, there is a formal requirement on this function F', namely
that in the soft and collinear limits, i.e. for cases where one parton becomes collinear w.r.t.

another one or where one parton becomes soft, the function F ™+ reduces to F(™:

F(m+1)(p17 ey Pi = )‘(L "'7pm+1) - F(m)(ph "'7pn’L+1) for A — 0

F Y (pr, o pi oy Do oo D) — Fp1, ooy, ooy Dinst) for p; — 2p, p; — (2 — 1)p
F™(py,....pm) — 0 forp;-p; — 0. (5.17)

The first two conditions define infrared-safe observables - to phrase it intuitively this means
that such infrared-safe quantities must not be altered by additional soft or collinear activity.

The last condition above is required to properly define the Born cross section.



72 5 Automating the Dipole-Subtraction method

Applying the subtraction method to the NLO-part of Eq.(B.I0) results in

2
SNLO /dq)(m-ﬂ) [}M(m“)(pla ...,pm+1)} F(m+1)(p1> ey Py 1)

= > Dijklprs s Pmr1) F(m)(pla--aﬁijaﬁka--apm-i-l)]
ki)

F(m) (pla 7pm) )

+ / dem

where d[p] is the phase space element for the 1-parton phase space.

2 -
VO (e po)| + ( / d[pmj,k<p1,...,pm+l>)
1

(5.18)

In order to have an identity between the subtracted terms and the added term, both the
(m + 1)-parton contribution and the m-parton contribution have to be subjected to the
same function F'. To be able to perform the integration over the one-parton phase space
independent of the observable this function therefore must be F™. In the case of the
(m + 1)-parton contribution F (m) is applied to the m-parton configuration, generated by

corresponding mapping given in the prescription of the dipole function.

5.1.4 The dipole subtraction functions

The universality of the soft and collinear limits of QCD matrix elements are the basis for
the construction of the dipole subtraction terms. In both limits any matrix element squared

for m + 1-partons factorizes into an m-parton matrix element times a (singular) factor.

To be specific, consider first the soft limit of the matrix element, given by the momentum

p; of parton j becoming soft, i.e. py = A\¢g"* with A — 0. Then, employing

(pia) (k) (@) [(0i +pr)d)  [(pi + e)a)(Peq)

the soft limit reads

DiPk . DPiDPk DiPk ( 51 9)

m+1<1,...,j,...,m+1]1,...,j,...,m+1>m+1

1
. _ﬁngeasi%;im@,...,z’,...,m+1'

T, T,
PrPiZk ™ 2 '1, ..,k,...,,m+1> .
(pi)[(pi + Pr)d] .

(5.20)

In a similar way the limit where two partons ¢ and j become collinear is defined through
p; — (1 — 2)/z p;. In this limit the (m + 1) parton matrix element can be rewritten as
m+1<]_, M + 1||17 M + 1>m+1

1 i
s <1,...,m—|—1’P(ij)7i(z,kl)’1,...,m—|—1> . (5.21)
bipP; m m

—
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Dij,k' - D’lj'
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Figure 5.1: Classification of dipole functions.

where, again, the f’(ij),i(z, k) are the well-known Altarelli-Parisi splitting functions.

Then, the actual dipole function generating the limit, where one of the partons i,j of a
m + l-parton configuration becomes soft or both partons become collinear to each other,

symbolically has the following structure:
Dijk = mlly sy eoor by oy |1, ooy 0y s by ooy MYy @ Vi, (5.22)

with the non-singular m-parton matrix element ,.(...||...),, and the operator V;;, describing
the splitting of the parton (ij). Here, and in the following, the splitting kernels V;;; are
matrices in the helicity space of the emitter. The dipole function also involves a third parton
as ’spectator’. This parton in fact is identical with the colour partner k£ in the soft limit,
Eq. (B20). The form of the subtraction means that kinematically, 3 — 2 mappings are

considered

such that all involved partons are allowed to remain on their mass shells.

In general the splitting parton (called ’emitter’) and the spectator can be both, initial and

final state particles. This discriminates four different types of dipole functions, displayed in

Fig. B11
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The full subtraction term for any matrix element with (m + 1) partons in the final state
is given by the sum of all possible dipole functions. For the most general case with two

partons in the initial state, therefore

do? = [ Z Dij + {Z Dy + ZDkai + Zpai’b + (a < b)}] Aot - (5.24)

ki i ki i

In the following the explicit expressions for the dipole functions will be listed. The corre-

sponding one-parton phase space integrated subtraction terms are discussed in Sec. B.T.H

Final state emitters with final state spectators

The dipole contribution D;;; for the singular limit p;-p; — 0, where all three involved

partons are in the final state, is given by

Dijr(p1,- - Pm+1)
1 5 N
_ @Wujﬁnwh“wm+1‘

T, T,
2pi-p; .

IV,
2 ij,k
T3

1V“J1”wkuwm+1> :

It is obtained from an (m+ 1)-parton matrix element by replacing the partons i and j with a
single parton ij, the emitter, and the parton k is replaced by /~€, the spectator. The flavours
of emitter and spectator are assigned as follows: The spectator & remains unchanged, and
the emitter ¢J is defined by the splitting process ij — i+ j. The product of colour charges in
the numerator of Eq. (22H) introduces an extra colour correlation in the m-parton matrix

element.
The kinematics of the splitting are described by the following variables

Dpibj s DiPk
PiDj + DjPr + DkDi ' PPk + PiPk

and to obtain the momenta j and & in the m-parton configuration the following map is

being used:

- 1 - Yijk
L e TR T R S | LT 5.27
Pi= g P Py Pi + 1 —— (5.27)

Obviously, four-momentum conservation is exactly fulfilled, i.e.
pi 15 + Pl = P + D (5.28)

and all partons remain on their mass shell,

pi=p=pi=0p; =0 =0. (5.29)
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The splitting matrices, which are related to the d-dimensional Altarelli-Parisi splitting func-
tions, depend on the spin indices of the emitter parton. For the case of a quark splitting
(using helicity indices s and s’) the kernel is a matrix in helicity space, whereas for gluon
splittings (to a quark-anti-quark pair or to gluons), the splitting matrices are given by

Lorentz tensors. This yields

2
1= Z(1 = yij)

(8\Vaigy b (Ziswig)s'y = 8mp*asCr [ —(1+2)—e(1- Zl‘)} Osst

(1Vaay kG yige)lv) = 8mp*asTr [—g“ = (Zipi — 2Zjp;)" (Zipi — %Pj)"} :

bip;
1 1
Vaigike(Zis Yij)|lv) = 16w ZeqgC {—g‘“’( — + — —2)
<M| g 917k( J,k)| > lj’ S A 1 _ Zl(l _ yz]Jg) 1 . Z]<1 _ yka)
L= =2 = G G = | L (530
pip;

respectively. The dipole terms given in this section are sufficient for the subtraction proce-

dure in the case of non-hadronic initial states such as e~ eT-annihilation.

Final state emitters with initial state spectators
For the case of an emitting final state parton, the presence of an initial state spectator

results in additional contributions to the singular limit p;-p; — 0 of the full m + 1-parton

matrix element. The corresponding dipole terms in this case are given by

D?j(plu <o vy Pm+41; Pas )

1 1 ~ T, T, ~
= — . L...,ij,....m+ 14, . | —=—"2Ve1,...,ij,...,m+ 1;a,.. )
2pipj Tija a< / ' T3 Y / >m u
(5.31)
The kinematic variables now read
Tija=1— DiD; 5= DiPa 1z (5.32)
(pi + pj)pa PjPa + PiPa

and the momenta of the m-parton configuration are obtained by the map

Dy = Tija Dl ]5% =i +p§»‘ — (1 —zyq)0h - (5.33)

Again, four-momentum conservation is trivially fulfilled and the partons remain massless.
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The corresponding splitting functions used in Eq. (B31]) read

2
1-— 52 + (1 — xij,a)

(s|Viy, (Zija)ls) = Smu*asCr [ —(1+2) —€l- 5@')] Oss

(Ve (Gizija)lv) = 8y osTr {—QW - (Zipi — Zjpj)" (Zipi — %Pj)y} ;

iDj
(Ve (Zima)|v) = 167p*asCy |—g" ! + ! -2
iV gig;\ %> Liia B proasta) =g 1 -2+ 1 =254 1=2+ (1 —a4,)

2 = g o g v

iPj

Initial state emitters with final state spectators

The next type of dipole function now covers initial state singularities p,-p; — 0 with final

state spectators, given by

DE(p1y- - Pns1i Pas --)
1 1 - 5 Ts  Toiv. .
- — . <1,...,k:,...,m+1;ai,..’*k2 \%s
2P0 Di Tika ,, T

1,...,1%,...,m+1;d¢,..>

ai m,a

(5.35)

The parton ai, which enters into the m-parton matrix element on the r.h.s. of Eq. (533) is
given by the splitting of the initial state parton a — ai+1i. The relevant kinematic variables

in this case are
DPiPk PiPa
Tikg=1— ———, U= ———=1—uy, (5.36)
(Pk + Pi)Pa PiPa + PrPa

and the momenta for the m-parton configuration are obtained by
pgi = xik,apg ) ﬁ: = pg +p¢L - (1 - xik,a)pg . (537>

The splitting matrices V& in Eq. (B.39) are

2
————— — (I + %) — (1 = Tipa) | Oss
1 —xik7a+ui ( +xk’ ) 6( xk, ):|

<8|nga% (U“ xik,a)|5/> - 87TMZEQSCF []- —€— QIik,a(]- - xik,a)] 555’ )

; 2uup 1 — Ty o ( pi " i Y
IV (i )lV) = SmiasT | ~g o + 2l ke (B (0 P) ]
PiPk  Tik,a U;  Ug U;  Ug

(5[VE (s ) ) = m%ascF[

<M|ngiga(ui; $ik,a)|’/> — 167r,u250450A {_guv (m -1+ xik,a(l — :E,ka))

Ui 1 — Tigq i " [ pi Y
Hl—o)+ kik,(p__p_k> (p__p_k) } '

PiPk  Tik,a U; Uk U; Uy
(5.38)

The three dipole types discussed up to now (FF, IF, FI) are sufficient to construct the sub-

traction term do” for processes with exactly one initial state parton, i.e. DIS configurations.
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Initial state emitters with initial state spectators

The remaining dipole function, only required by processes with two initial state partons,

covers the case where both, the emitter and the spectator, are initial state particles,

DY (py1, ... Dt 1; Pas Pb)

1 1 ~ ~ o~ Ty Taie, ~ -
= — . <1,...,m+1;ai,b‘b72V‘“’b 1,...,m+1;az,b>
2pa *Di Tiab m,ab Tai m,ab
(5.39)
To describe the splitting, the following kinematic variables are used

PPy Dabb

The construction of the m-parton kinematics for this dipoles differs from the other three
cases. The reason is that in this case the emitter and the spectator are fixed to remain along
the beam axis. Therefore all final state momenta (not only momenta of QCD partons) are

transformed according to the map

N . 2p;-(K + K) - 2p;- K -~
b= gl Pr=pt— D Ty Ry P e 5.41
Doy = Tiab Py, D =1} (K+K)2( ) 7e2 (5.41)
where
K =pli+py —p) and K" =pl+p} . (5.42)

The momentum of the spectator p, remains unchanged. The transformation above can also
be interpreted as applying a rotation and a boost turning initial state momenta back to
the beam axis after a mapping similar to the first three cases of dipole functions. Indeed it
can be shown that the transformation of final state momenta in Eq. (EZT]) is just a Lorentz

transformation.

However, in this case, the splitting matrices read

2
<S|angi’b<l’i7ab)|sl> = 87TM26()(SCF 1_7‘“ — (1 + xi,ab) — 6(1 — xi,ab):| 535/ ,

<8|Vg“q“b(:pi7ab)|5'> = 87T,uz€0stR 1 —€—2; (1 — Ti0)] Oss
i 2 1-— xi,ab

<M‘VQaQi7b<6i;xik,a)|y> = 87r,u26aSCp —g" w0 + =
Vi Pi*Pb Tiab

(pi — Vipr)" (pi — @zpk)y} ;

) - € v Tia
(Voo (G aia)lv) = 16mp*asCy {—g“ (1_7;b + i an(1 — x@-,ab))

1 1-— Tiab

+(1—€)=

~ y2i ~ 1%
DPi — Uip Di — Uip .
Vi Pi*Pb Tiab ( k) ( k) }

(5.43)



78 5 Automating the Dipole-Subtraction method

5.1.5 Integrated dipole terms
Phase space factorization

In order to combine the poles of the subtraction function and the virtual matrix element
the subtraction function has to be integrated analytically over the one-parton phase space
of the respective splitting. The rules for the momentum mapping from 3 to 2 parton phase
spaces have been constructed in Secs. BETAH5. T4 such that the corresponding phase space

exactly factorizes.

As an example, and in order to fix the notation, the case of a final-final dipole, D;; , will
be discussed in the following. There, the three-particle phase space for the partons 7, 7 and

k (all other partons are not affected by the splitting and will be omitted) in d dimensions

is given by
d’p; oy d'p; N 2 ds(d
do(pi, pj, pr; Q) = W(Lr(pi)(zﬂ_)dj_l 5+<pj)W5+<pk)(2ﬂ-> ) )(Q —Pi —DPj — D) -
(5.44)
This can be factorized in terms of the mapped momenta, such that

where [dp;(pi;, Dr)], written in terms of the kinematic variables defined in section T4 reads

(2Di;p) '€ AQU= B 3
1367T2 (2712 dz; dyijr 0(Zi(1 = 2))0(yij (1 — Yijx))

(Z(1 = 2))7 (1 = i) Y5 - (5.46)

[dp; (pij, Pr)] =

Within the dipole function only the splitting function itself depends on the variables z; and
Yijk- Thus, the integration in d dimensions can be performed once and for all, independent
of the specific scattering process under consideration. The result of the integration for each
splitting type can be expanded as a Laurent series including double poles (~ 1/¢?), single
poles (~ 1/¢), and finite terms (~ €°). Further terms of O(e) are unimportant here and will
be left out.

All results for the final-final and for all other dipole types can be found in [42].

Full result

Having at hand the integrals for each dipole function, all individual dipoles present in a spe-
cific process can be collected to yield the overall infrared divergence of the subtraction term.

Then, the starting point for the calculation of jet cross sections in the dipole subtraction
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formalism reads

o0 = Z / . [dame} le=0 daf{qmﬂ} |e=0] +/ Zda‘{/m} T Z /da?m“} :
m+ L my

{m+1} {m+1} 71 —0
(5.47)

where " (m+1} denotes the sum over all parton-level processes. However, the important
point here is to exactly cancel the poles of the corresponding individual one-loop parton-
level processes, which is done exclusively for each momentum and flavour constellation.
Therefore, for each specific m-parton process at NLO only a selection of dipole functions
related to (m+1)-parton processes contributes to the cancellation of the virtual divergences.
In [42] it has been shown that this amounts to an effective reordering of phase space integrals

and sums over parton configurations, such that

AN =" / 1 [0 {hs1y o = A0ty o] + Z/ [da}/m} T dafm}] . (5.48)
m+

{11} my /™ =0

where dafm} is the integrated dipole term that collects the integrals of all dipole functions

and thus cancels the singularities of dcr}/m}. It is explicitly given by
dcr?m} = [dafm} x I(e)] , (5.49)

where dafm} x I(e) is a shorthand for the following procedure: Write down the expression

for dafm}, and replace the corresponding squared Born-level matrix element
Moy )? =1, om|1, . m), (5.50)
with
wl Ly, mlI(e)|1, . M), (5.51)

using the insertion operator I(€) as defined below.

Finally, the full result for the integrated dipole term and the collinear counterterm as defined

in Eq. (BI4) for the most general case with hadronic initial states reads
do‘(fl)(]jaupb) + dag;)(paapba/i%) = [d0£)<pa7pb> X 1(6)]

1
+ Z/{; dx |:<Ka,a’<x> + Pa,a’<xpa7x; M%)) X daflb(xpa,pb)}

1
#30 [ [( ) + B ) a0 )]
o Jo
(5.52)

where a and b again specify the initial state partons. The summation over a’ and b’ runs

over all parton flavours, i.e. it includes gluons, quarks and anti-quarks occurring in the PDF.
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The insertion operator I reads

I({phie) = —5 ﬁ ; Ti%we) ST, T, < i ) , (5.53)

where the indices I and J run over initial and final state partons. The universal singular

functions V;(€) depend merely on the flavour of I and are given by

1 3 2
Vq(e) = CF |:€—2+Z+5— 7+O(6):|

C4 11 2 1 50 w2 16
VQ(E) = 6—2 + (ECA — g RNf) E +CA (5 — 7) TRNfE + O( ) , (5.54)

with Ny being the number of contributing quark flavours.

The complete singular structure in Eq. (E52) is contained in [do5 (p,, ps) x I(€)] and the
sum [doZ (pa, py) % I(€)] + doY, (pa, pp) must be finite for e — 0.

The finite insertion operators K and P are given by
a,a’ as aa’ aa’
K) = 55 {0 - K

50 ZT T, Kli )++5(1—x)} —T%E“’Ka“( )}(555)

a

and

as

25 pa. T, Tyl

o ng r bn2
I#b

P ({p)ioi if) = (5:56)
Note that here the index i runs over final state partons only. The flavour-dependent func-
tions K (z), K (), and P*¥(z) are defined in Appendix As already mentioned,
the factorization-scheme dependent function K% () vanishes in the commonly used MS-

scheme.

To obtain the final result for processes with no initial state partons only the I-term needs
to be considered in Eq. (B52). For processes with one initial state parton only, the result is
obtained by using the I-term and one of the two integrals over K and P only, while omitting
the contribution of K% (x).

5.1.6 Freedom in the definition of dipole terms

As stressed before, the singular limits of the dipole functions are fixed by the requirement
to cancel the singularities of the real correction matrix element. However, away from this

limit there is some freedom for modifications.
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One possible modification has been presented in [26], where a parameter o has been intro-
duced which cuts off a dipole function for phase space regions far enough away from the
corresponding singularity. Its main advantage lies in a significant reduction of the average
number of dipoles terms to be calculated for each phase space point of the (m + 1)-parton
phase space of the real correction term. This constitutes an important alleviation of the
calculational burden, since the total number of dipole terms grows approximately as m3.
The a-modified subtraction terms also allow nontrivial checks of the implementation, since

the total result must be independent of a.

The a-modified dipole functions have been defined as follows:

,D;],k = Dlj,k 9(0[ - Z/z],k) )
DZ’? = 'ng 0(a -1+ mz‘j,a) )
D = D O(a—u),

Db = DU (o — 1) . (5.57)

They will be employed later, in the implementation presented in this paper. Of course, such
a redefinition of the splitting kernels also requires a recalculation of their integrals. The new

a-dependent insertion operators I and K have been presented in [26].

Another simple modification is the addition of finite terms to the splitting functions, such

as

Z/]k = Vi +vijr*xC,
Vi = Vi+ (1 —wia) x C,
Vit = Vi C,
V/aLb — Vai,b + f}z O . (558)

The constant C' directly ends up as a finite term in the integral of the splitting function
and thus it can be easily included in the insertion operators of I and K, too. This again
allows checks of the implementation, but it can also be employed to improve the numerical

behaviour of the phase space integrals and to reduce the number of negative events.

5.2 Implementation in AMEGIC++

The Catani-Seymour dipole subtraction terms have been implemented in full generality into
the automatic matrix element generator AMEGIC++, based on it’s version 2.0. In particular
this translates into AMEGIC++ being able to automatically generate all relevant parts of the
NLO matrix element within the subtraction method except for the virtual matrix element. It

can be applied to any process with massless partons for which the real correction ME can be
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generated, an extension to allow also for massive particles is foreseen. This includes standard
model processes as well as implemented extensions, as long as there are no new strongly
interacting particles involved. For standard model processes the boundary is currently at

about six-eight partons (initial and final state).

The new implementation aimed at a maximal reuse of already developed automated methods
of amplitude generation and process management. A brief overview over the relevant parts

of the code on which this implementation is based can be found in section EZT.TI

5.2.1 Generation of CS dipole terms
Colour and spin correlations

The starting point of the Catani-Seymour algorithm is detailed in Egs. (B48) and (5:49),
supplemented with expressions like the one in Eq. (222) for the individual dipole subtraction
terms. The latter states that for any given process the Catani-Seymour dipole subtraction
term for the real (m + 1)-parton correction term consists of the corresponding m-parton
matrix element at Born level plus an additional operator that acts on colour and spin space.

For the latter, only the limit ¢ — 0 needs to be considered.

e Colour operator:

In all four dipoles, Eq. (E2H), (B31), (E34), and (E39) colour-correlated tree-

amplitudes of the form
IMEF2 = (1, m|Ty - Tell, ... m), (5.59)

occur, where 7 labels the emitter and k the spectator. Denoting the colour indices of

the external legs of the tree process explicitly by a; and b;, this can be cast into

| M|
— (1R m gy T T

bi b, b b
by - Oamby [ 170 @7 R mT)

(5.60)

where T¢, =i fo, if the associated particle is a gluon, and T} = tf;, if the associated
particle is a quark. In other words, the colour structure for dipole terms can be
generated by adding a gluon connecting the emitter with the spectator as illustrated
in Fig. The colour matrix for a dipole term is recomputed after this insertion

using the available evaluation tool in AMEGIC++.

e Spin space:
For a quark splitting all spin-matrices are just proportional to d.s, translating the

quark spin to be exactly the same as for the Born-level m-parton matrix element.
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m+1

Figure 5.2: Construction of the colour matrix for dipole terms: a gluon connects emitter

and the spectator.

For the case of a gluon splitting, however, there are non-trivial correlation matrices.
All of them can be cast into the generic form

Py’

VY = <M|V|V> X _g;u/+ BﬁQ )

(5.61)

where B and p are functions of the kinematic variables and momenta of the corre-

sponding splitting. Their values are listed in Table Bl

The structure of the splitting tensor as given in Eq. (E261]) is very similar to the polarization
sum for massive vector bosons in unitary gauge, except for the factor B and the fact that p
can be timelike or spacelike. This analogy can be used to replace the tensor by a polarization

sum, i.e.
v ﬁﬂﬁ” o A M~ vV~ *
~9"+ 55 = ;ﬁ e\(p, B) (X(5, B))" . (5.62)

Here the summation index \ runs over four values, +, —, [ and s. £ is a sign that cannot

be absorbed into the polarization vectors €. For a gauge boson with momentum

o= (]50, |p] sin 6 cos ¢, |p] sin @sin ¢, | p] cos 0) : (5.63)
the polarization vectors are defined as
1
¢y = ﬁ (0, cosf cos ¢ F isin ¢, cos @ sin ¢ + i cos ¢, —sinf) |
Lz D
v .
G = = |ﬂ yPoT= )
P ( |ﬂ)
1-B
o = # (5.64)
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dipole type splitting: p* B
7 1/(42,%,
- 9790 /(4zi%))
1 1 ~ ~
9499 (2  1-Z(—yiyk) 1*%(1*yij,k)> /(QZiZj)
—qq 1/(45,7;
- 97T /(4zi%))
1 1 ~ ~
999 (2 ~ TET(rge) 1fza+<1—x¢j,a>> /(255)
F 9—aqq Py Pk ~ 1%l (1 = Tika)
g9—99 Ui Uk : (1 - m — Tiga(1 — xzka)> Tika/ (1 — Tika)
- 1,2
9—4qq N — 1%/ (1 = Tiab)
II i — viply ‘11 ,ab 1 ,
9= gg b (e + (= ) 7o/ (1= i)

Table 5.1: Values for the functions defined in Eq. (Z61l). The variables are defined in the
corresponding sections B.LZH5. T4l The dipole type FF refers to the case where
emitter and spectator are final state partons, IF refers to the case where the

emitter is an initial state parton and the spectator a final state parton, etc..

and the sign factors are given by

+1if 2 <0
—1if p?2 <0
&=1, é":{H ?f132>0, =9 -1if >?>0; B>1 . (5.65)
1
P +1if p?>0; B<1

In order to calculate the dipole matrix element, the polarization vectors of the splitting

gluon are then replaced by the ones defined above.

Organization and process management

To construct all dipole functions necessary to cancel the infrared divergencies of a given par-
ton level real-correction process firstly all pairs of partons have to be determined that might
emerge from the splitting of an emitter parton (initial state partons are charge conjugated
for this procedure). This might be any quark (or anti-quark) and a gluon, two gluons or
a quark and an anti-quark of the same flavour. Secondly, each of those pairs is combined

with any possible third parton (acting as spectator) to define all possible dipole functions.
Any individual dipole function is thus specified by:

1. type (the specific combination of initial and final state for emitter and spectator),

2. the specific flavours involved in the splitting, and

3. the corresponding m-parton matrix element and its emitter and spectator particles.
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In order to construct the individual dipole functions, given by
D = A ng AT (). (5.66)

the following ingredients are necessary:

1. A rule to map the (m + 1)-parton phase space onto an m-parton phase space.

2. The corresponding splitting function for the dipole. This consists of two parts, a scalar
function F'(...) of the kinematic variables of the splitting and a spin correlation matrix.
As discussed above, for quark splittings the matrix is simply d,¢, for gluon splitting
the matrix is represented by an outer product of pseudo-polarization vectors, which

are also functions of the kinematic variables of the splitting.

3. The colour matrix C =

respecting the extra colour correlation.
4. Amplitudes A; of the corresponding m-parton matrix elements. For gluon splitting
cases these amplitudes have to be calculated replacing polarization vectors of the

splitting gluon by the pseudo-polarization vectors introduced above.

The calculation of any dipole function is organized in the class Single DipoleTerm, each
instance of this class representing one dipole. This class controls the ingredients for the cal-
culation: Firstly there is a Born-level m-parton matrix element of the original AMEGIC++
implementation, just extended such that it includes the additional colour correlation. Sec-
ondly there is a class Dipole_Splitting Base that completely organizes the splitting func-
tion itself. Specified by the type of the dipole (initial and final states for emitter and
spectator) and the type of the splitting (determined by the contributing flavours) it takes
care of the mapping between the m + 1-parton and the m-parton phase spaces and of the
calculation of the splitting function (including the polarization vectors to encode the spin

correlation).

Above that the class Single Real Correction handles all contributions to an infrared reg-
ularized parton level process. This consists firstly of an (m + 1)-parton tree level matrix
element in the original AMEGIC++ implementation. Secondly it contains a list of single
dipole functions, simply determined by looping over all partons and selecting valid dipole
configurations. The classes Single Real _Correction and Single Process are derived from
a common base class in a way such that the class Process_Group can be reused to also or-
ganize the infrared regularized parton level process in groups of common features up to all

subprocesses contributing to a jet cross section.

Similarly to the case of tree level processes in AMEGIC++, also here a mapping of parton
level processes that lead to identical or proportional results can be used to speed up the
calculation and save computer resources. To this end, the following automatic identification

strategies are implemented:
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e If two real correction processes can be mapped (using strategies described in section

ETT) then also the whole Single Real Correction is mapped.

e For single dipole terms a unique identification algorithm proceeds as follows: Two
terms can be mapped if the included m-parton process can be mapped and if the three
particle labels (numbering the the external particles of the real correction process) to

identify a dipole are identical.

e Many of the born matrix elements within the dipole terms will be identical. How-
ever, since different dipoles require different momentum mappings they have to be

recalculated. Only the calculation routine can be shared.

5.2.2 Generation of the finite part of integrated dipole terms
Analytical structure of the full result

The starting point of the discussion of the finite pieces of the integrated dipole terms is Eq.
(B52)), where now the phase space integration as well as the summation and integration
over the incoming parton flavours and momenta is made explicit. Then, terms inside the
m-parton integral come from subtraction terms integrated over the phase space of the extra
parton emission and from the collinear counterterm for the general case of a NLO cross
section with initial state partons. The terms inside the (m+1)-parton phase space integral in
contrast corresponds to the dipole subtraction bit. Altogether, and including the convolution

with parton distribution, the relevant term to be evaluated can thus be cast into

Z/dmdmfa(m,u%)fb(m,u%) {/m
Z / dmdn fa(m, 1) fo (12, 117 { / [dog, (mp, nap) x 1(e)]

Aoy (mp, n2p) + / do§, (mp,nzp,up)}

+1

+Z / dx / [ K““ ) + P (fcmp,x;u%)) x dog(zmp, 77215)]

+Z/O d;c/m [(Kbb( )+Pb,b’<xn2p,x;,u%)> x dob, (mp, 56772]5)} }
b (5.67)

The only correlation of the insertion operators I, P, and K with the Born level matrix
element is within colour space. To be more specific, this implies that only the following

structures emerge

doB (pa, o) = wm(l,...,m;a,b||1,...,m;a,b), and
dcrab j)(pa,pb) = o(,....m;a,b|T; - Ty[1,...,m;a,b), (5.68)
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for all © # j, where ¢ and 7 may label both final and initial state partons. Since any of
the appearing matrix elements with insertion operators can be written as a sum of such
structures, the colour factors will be skipped in the following and the operators will be

treated simply as scalar functions.

The terms P and K induce dependences on x, which combined yield result in the structure
(9(x)), +6(1 —2)h(x) + k() . (5.69)

Here, h(x) and k(x) are regular functions in = and the '+’-distribution is defined by its

action on a generic test function a(x)

| drat@ o), = [ dsfat@) ~aulgte). (5.70)

Then the r.h.s. of Eq. (B264) can be cast into the form

Z/dnldUQfa(nhM%)fb(n%lu%)
a,b

/ {I(e)dafi,(mp, 12p)
1 , !
+ Z [/0 dx (ga’a (z) [daffb(xﬁlp, m2p) — do i, (mp, map)| + K (z)dagiy(zmp, 772@)
+h® (1)do 2, (mp, 12p) }

1
+> { / dx (gb”’ () [dol, (mp, znap) — do g, (mp, m2p)] + K> ()do, (mp, xnzﬁ))
b 0

+h"Y (1) do g, (1p, 12P) } } : (5.71)

The functions g% (), k%% (x), and h%® (1) can be read off the corresponding functions in
App.

Computationally the most demanding part is the actual Born-level cross section do} | due to
its potentially expensive multi-particle matrix element, which typically suffers from factorial
growth with the number of external particles. Thus, the calculation can be significantly
accelerated if the expression is rearranged such that do has to be computed only once
for a single configuration at a given phase space point. This can be achieved by changing

the integration variables n to ' = xn. After renaming 7’ back to n and reordering the
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summation over a and @’ (b and b') the expression above reads

> [ dmtmsitn i i) |

Ao’ (mp, n2p) x {1(6)

+3 [ e [EEEE (oo i) - S
X et (- )
o3 o[y 0o ) - )

Z o (2, Mp (hbf,b _ Gb’,b(n2)> } ’ (5.72)

fb ?727:U/F

where the G**(n)) = ["dx g**(x) are analytically computed.

The insertion operator I(e), Eq. (B253) is given as a Laurent series in e. For the implemen-

tation the interesting part is oc €,

beforeH

since the poles must have been analytically extracted

Implementation and Organization

The numerical calculation of the finite contributions from integrated counterterms is orga-
nized as Eq. (B72) suggests, i.e. the basic unit (class Single Virtual Correction) covers

everything that is associated with a specific m-parton cross section.

For the actual calculation, basically all colour correlated matrix elements in Eq. ( are
necessary. The contributing amplitudes are, of course, the same for all of them, only the
colour matrix is different. Therefore, a generalized version of Single Process is employed
that is able to deal with a multitude of colour matrices to calculate all required matrix
elements at once. Anything else needed for the calculation of the finite contribution is
a long list of rather simple scalar functions and constants. The integration over x is done

numerically, i.e. for each set of external momenta z is diced within the corresponding interval.

5.2.3 Phase space integration

Together with the automatic generation of matrix elements AMEGIC++ also generates spe-
cific, process-dependent phase-space mappings for efficient integration. The underlying prin-

ciples and the general procedure have been described in chapter This implementation

2 For testing purposes, however, it is trivial to also determine the coefficients of the ¢ ~2- and e~ !-poles

and to compare with known results of virtual correction terms.
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can be widely reused for the phase space integrals coming from the subtraction procedure,
which necessitates the evaluation of two independent integrals, namely integrals over the
m-parton and the (m + 1)-parton phase space. In both cases mappings generated for the

tree level process of the same dimensionality are used.

For the integration of the (m + 1)-parton phase space soft and collinear regions must be
included. In this case the lower limit for the invariant masses of many propagators (e.g. Eq.
(BI9)) must be zero. To keep the integral over the weight finite the adjustable exponents
v in Egs. (B19) and (B21) must be properly set. The actual shape of those propagators is
hard to specify a priori. It depends on the jet definition and on the balance between the
real correction process and the subtraction term (the integrand can be positive or negative).
Taken together, however, it seems not unreasonable to assume a small exponent. Using
the improved multi-channel method, described in section BZ2Z-3, the incorporated VEGAS
refinement adapts very good to the actual shape of the concerned propagators and the final
integration efficiency after optimization has only a weak dependence on the initial values of
v. Since the VEGAS algorithm optimizes on the variance of the integrand it can, to some
extend, also deal with the numerical problems related to “missed binning”, which will be

discussed in the following section.

The m-parton phase space is much simpler. Since most parts of the integrand are propor-
tional to the born matrix element it tends to work very well with the original tree process

phase space setup.

5.2.4 Cuts and analysis framework for NLO calculations

Triggers and observables for NLO calculations have to be chosen with care. The general
strict requirement not to spoil the cancelation of infrared divergencies has already been
discussed in section B.T.3

Before going into any details concerning cuts, it is important to notice that a rule is manda-
tory of how cuts act on the different contributions to the NLO cross section. This rule
must exist in a m-parton and a (m + 1)-parton version, where the latter needs to satisfy
the conditions of infrared safety in degenerate phase space regions. In practical terms, this
implies that the (m + 1)-parton version of the cut must allow for exactly one parton to

become soft or collinear, while the m-parton version has to omit all singular regions.

Second, Eq. (B2I8) requires for the cut of the m + 1 phase space integral to be applied
separately to the real correction process (using the m + l-parton version) and to each
dipole term (using the m-parton version, applied on the momenta of the mapped m-parton
configuration). In general there might be kinematic configurations, where the real correction

process ends up outside the accepted phase space region but some dipole terms do not and
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vice versa. This leads to the problem of “missed binning”: if such a configuration occurs close
to a singular region, large contributions result, which do not cancel completely. Ultimately,
this leads to large numerical fluctuations, which need to be addressed. This is a common

issue for all subtraction methods.

So far, the following cuts have been made available in AMEGIC++:

e A simple cut for jets is implemented as follows: a suitable jet algorithm (e.g. k7) [32,
33, [18, [T04] is used to construct jets from the final state partons and their momenta.
Then the number of jets above a given pp-cut is counted. A phase space point is valid

if this number is greater or equal m.

e Of course also cuts that only act on particles not taking part in strong interactions can
be applied. If initial-initial dipoles are present this also has to be done separately for
the real correction and for the dipole terms, since the momentum mapping in this case
modifies all final state particle momenta. Implemented are cuts on invariant masses,

on total or transverse energies, on rapidities or on particle angles w.r.t. the beam.

Sherpa’s ANALYSIS-package has been extended to be able to deal with weighted events from
the NLO subtraction procedure. For example, and to be more specific, consider the case
of a cross section which is differential to some infrared safe quantity F, i.e. a distribution
to be binned in a histogram dF'. For the m-parton integral no special treatment is manda-
tory: for a given momentum configuration, dF' can directly be evaluated and filled into
the corresponding bin. For the real correction and the dipole subtraction functions in the
(m + 1)-parton integral, F' has to be evaluated for each contribution separately, similar to
the phase-space cut. Again, the problem of “missed binnings” appears, if contributions to

a single event end up in more than one bin.

5.3 Checks of the implementation

In this section a number of tests of the correct implementation of the subtraction algorithm
and of the integration routines are described. These tests are mainly technical in nature,

results relating to truly physical observables are discussed in section B4l

5.3.1 Explicit comparisons

Before moving on to technical checks, it is worth stating that a number of direct comparisons
of individual terms from the program presented here with those obtained from M. Seymour’s

Fortran code DISENT have been performed. The latter is a dedicated program to compute
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NLO cross sections for the deep inelastic scattering processes e™p — e~ + jet, e p — e~ +
2jets and for electron-positron annihilation to two and three jets. This direct comparison
is possible, since DISENT uses exactly the same subtraction formalism, allowing to compare
individual terms at given phase space points. All terms listed in the following showed full

agreement of the two codes, up to the numerical precision.

The comparison included:

e Dipole subtraction terms for the real correction:
all flavour configurations for dipoles with final state emitters and spectators as well as
for dipoles with initial state emitters / final state spectators and final state emitters

/ initial state spectators have been checked.

e Terms from the finite part of the insertion operator I,

cf. Egs. (B49) and (E53).

e Terms from the insertion operators K and P for the case of one initial state parton,

cf. Eq. (B52) and the implemented version Eq. (E72)).

Furthermore integrated results of the virtual and real parts of the NLO corrections in this
subtraction scheme where compared and agreed within statistical errors for all accessible

processes.

5.3.2 Test of convergence for the real ME

An obvious first technical check of the overall package consists of testing the convergence
behaviour of the dipole subtraction terms close to the singular region. To this end, the
m + 1-parton phase space of the regularized real correction part is numerically integrated
over. The crucial issue is to ensure that the integrand remains finite over the full phase space,

in addition the performance of the integration algorithms deserve some consideration.

Clearly, for the numerical calculation a small phase space region around each singular con-
figuration has to be cut out. Although the dipole terms are expected to become equal to
the matrix elements there, technically speaking infinite or very large numbers must be sub-
tracted in this region, leading to large fluctuations and hence to errors due to the limited
numerical precision at which the calculation is performed. Therefore a variable o, is in-
troduced, which on the basis of kinematic variables of corresponding dipole functions, reads

as follows:

Omin = mlIl (adipole) 5 (573)
dipoles
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Figure 5.3: Dependence of the subtracted real emission cross section on o« for

(a): e"et — 2jets; (b): e”et — 3jets, both at a CM energy of 100 GeV;
(c): e p — e~ + jet with a 50 GeV electron beam and protons at 500 GeV;
(d): pp — 2jets at a CM energy of 14 TeV. To obtain a well-defined LO cross
section for (b) at least two jets with a kD™ > 10 GeV, for (c) a transverse
energy of the scattered e~ > 10 GeV and for (d) at least two jets with p; > 40
GeV are required.
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Figure 5.4: Normalized absolute values of cross sections in bins of a,;,. Setups and phase

space cuts are the same as in Fig. B3
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where
Yijk for D,;, —dipoles (final state emitter, final state spectator)
1 — Zija for Dy, —dipoles (final state emitter, initial state spectator 574
Qgi = A T
dipole u; for Dy —dipoles (initial state emitter, final state spectator
; for D¥* —dipoles (initial state emitter, initial state spectator)

This parameter « serves as a cut-off in such a way that for an externally given parameter

Qeut Kinematic configurations with i, < ey are omitted.

In Fig. the dependence of the subtracted cross section on .. for four sets of real
correction processes, namely e~ e™ — 3jets, e et — 4jets, e p — e~ + 2jets and pp —
3jets. All types of dipoles and splitting functions contribute to the dipole terms which are
necessary to regularize those processes. It is apparent that for e, ~ 107° the cross section

stabilizes close to its final value.

To study the numerical behaviour near the singularity in more detail, in Fig. B4l the ab-
solute value of the subtracted cross section, binned in intervals of ay,;, is depicted. For all
studied processes the contribution to the cross section drops down by at least four orders
of magnitude with decreasing ay,;, and confirms the observations for full subtracted cross

sections made before.

The strong increase accompanied with statistical errors of 100% or larger for oy, values
below 107 — 107! signals defects due to the limited numerical precision (double precision
~ 107'%). One reason is the already mentioned numerical problem when subtracting extreme
large and almost equal numbers. Another reason is the precision of the momentum four-
vectors itself, because the precision of the external particles residing on their m = 0 mass
shell is also limited by the numerical precision. This of course may consequently lead to
errors of that order in the matrix element calculation. Thus, Fig. B4 allows to determine

best choices for agy,, somewhere between 10~ and 107!,

5.3.3 Consistency checks with free parameters

In section B0 ways of modifying the subtraction terms without changing the singular
behaviour have been discussed. Such modifications can be employed for non-trivial tests of
the implementation, since the modifications will affect both, the real part and the virtual

part of the NLO cross sections, with their sum remaining constant.

In Fig. the total NLO correction for the cross sections of e“et — 2jets, e"et — 3jets,
e p— e +jetand pp — W~ — e 1, and their real and virtual contributions are displayed
as functions of the parameter «, as introduced in section B8, The fact that the sum
remains constant within statistical errors provides a non-trivial confirmation of the correct

implementation of the algorithm. It should be noted here that the calculation of the cross
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section of the processes under consideration invokes all types of dipole functions as well as

the most general case of the insertion operators from the integrated dipole terms.

By using the same number of phase space points for each integral and comparing statistical
errors, it can be seen that this parameter can also be used to optimize the numerical be-
haviour. Clearly, best results are obtained if the values of the virtual and real contributions
are both as small as possible, thus reducing the size of the fluctuations. It should be noted
that the error bars in Fig. are given not including the leading order part of the cross
section. Since relative errors for the latter can be expected to be much smaller if evaluated
for the same number of phase space points, the (relative) statistical error for the full NLO

cross section will be significantly reduced.

5.4 First physical applications

In this section, some simple applications will demonstrate the performance of the dipole
subtraction procedure, as implemented, for the calculation of physically relevant observables.
The born matrix elements, dipole subtraction terms to regularize the real correction and
corresponding finite terms to be added to the virtual correction were generated automatically
by AMEGIC++. The one-loop amplitudes have been explicitly implemented for the considered

processes.

5.4.1 Three-jet observables at LEP

To compute three jet cross section at next-to-leading order the one-loop matrix element given
in [97] has been implemented. The expression given there is averaged over the direction of
incoming momenta, which is sufficient for observables that are not correlated to the beam

direction.

In Fig. LO and NLO predictions are displayed for observables sensitive to O(ag). In
particular, the event shape observables 1-Thrust, Major, C-parameter and the Durham
3 — 2 jet rate are compared with measurements performed at LEP on the Z%peak by
DELPHI [105]. All data are normalized to unity. The normalization for the calculated
cross section, however, is somewhat complicated. This is because in the calculation three-
jet events are required in each case, translating into the necessity to apply a phase space
cut. On the other hand, the data are more inclusive and also include comparably soft
regions, where fixed-order perturbation theory is known to fail and must be supported by
resummation techniques. The normalization for the calculations has thus be chosen such
that it agrees with data in the “safe” regions. This exposes the differences between LO

and NLO calculations best. As a consequence, the corresponding normalization factor of
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both calculations is not identical. From the results of Fig. it can be deduced that for all
observables the range described sufficiently well by the calculation is extended for the NLO
calculations. For both, the region described by soft physics (left side in all plots) as well
as phase space regions populated by additional hard QCD radiation (right side in all event
shape plots) the prediction has been improved.

5.4.2 DIS: e p— e + jet

The one loop matrix element for this process is given by the well known expression

Cras 1 42\ 2 3

2 _ 2

‘M‘(lfloop) - |M|(born) o P(l — 6) ( Q2 _6_2 - E -8+ O(E) s (575)
where Q? = —¢? > 0 with ¢ the momentum transfer between the electron and the proton.

Fig. B shows differential cross sections w.r.t. the transverse momentum and rapidity of
the scattered electron and the hardest jet at leading and at next-to-leading order. The
CM-energy has been taken as v/105 GeV, corresponding to a 50 GeV electron beam and a
500 GeV proton beam. The parton distribution function CTEQ6M [83] has been employed,
factorization and renormalization scales have been fixed to Q2. A phase space cut on the
electron of pr > 10GeV has been imposed. The NLO correction for this setup is comparably
small, for the total cross section it is of the order of 5% and negative. The ratios of NLO
and LO calculation, however, are not constant for all observables. At NLO the cross section
rises for increasing momentum transfer, up to a correction of 40% for transverse momenta
of electron and jet of the order of 150 GeV.

5.4.3 W~ production at Tevatron

The one-loop virtual contribution to this process can be obtain by crossing relations from

Eq. (BZ3) and is given by

Cras 1 A\ € 2 3
2 _ 2 2
|M|(17loop) - |M|(born) o F(]_ — E) < Q2 _6_2 - ; -8+ + O(E) ,(576)

where now Q? = 5, the CM energy squared of the incoming partons.

Fig. shows cross sections for Tevatron Run II, differential in the rapidity of the W -
boson and the transverse momentum of the electron, respectively. The parton distribution
function CTEQ6M [83] has been employed, factorization and renormalization scales have

been fixed to m?,.

The total and differential cross sections are in full agreement with predictions obtained using

the next-to-leading order parton level generator MCFM [25].
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Figure 5.7:

Distribution of transverse momentum (left plots) and rapidity, defined in the
beam CM frame (right plots), of the scattered electron and of the hardest jet
in deep inelastic scattering, calculated at leading order and next-to-leading
order. The CM-energy has been taken as v/105 GeV. A phase space cut on the
electron (pr > 10GeV') has been applied. For the rapidity distribution of the
first jet a pr > 15GeV has been required. Dashed and dotted lines denote the
real and the virtual corrections to the Born cross section, respectively. The
lower panels of each plot show the ratio between the leading order and the

next-to-leading order results.



100 5 Automating the Dipole-Subtraction method

(;‘ - ‘5‘0‘ - ‘_1(‘)0‘ - ‘15‘0‘ - ‘2700
nw) p(e) [GeV]

Figure 5.8: Rapidity distribution of the W~ -boson (left plot) and transverse momentum of
the electron for the process pp — W~ — e~ 7, at Tevatron Run II, calculated
at leading order and next-to-leading order. Dashed and dotted lines denote the
real and the virtual corrections to the Born cross section, respectively. The
lower panels of each plot show the ratio between the leading order and the

next-to-leading order results.
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5.5 Conclusions and outlook

In this chapter a fully automated implementation of the Catani-Seymour dipole formalism
in the framework of the matrix element generator AMEGIC++ has been presented. It al-
lows to automatically generate the process-dependent real correction terms for given Born
cross sections with massless external particles and the corresponding real subtraction terms.
The integration of the subtracted real correction terms is performed automatically with a
multi-channel method, giving rise to an appreciable convergence. The implementation has
carefully been checked for correctness, invoking consistency checks with free finite terms
which may be added to the subtraction terms. Through the explicit inclusion of virtual

terms a next-to-leading order parton-level calculator is so available.

In the future, the code will be further updated to include massive external particles and to

provide a full parton-level generator at NLO.






6 A novel method to evaluate scalar
1-loop integrals

In the previous chapter the automation of the Catani-Seymour dipole subtraction method
has been reported, which generates any part of a next-to-leading order calculation except

for the virtual correction, which remains a major bottleneck.

For the treatment of virtual corrections, the integral over the loop momentum has to be
performed in d = 4 — 2¢ dimensions. Towards analytic approaches to solve such integrals,
pioneering work has been performed long time ago by t’Hooft and Veltman [I06], providing
explicit solutions of basic scalar 1-point, 2-point, 3-point and 4-point one-loop integrals.
Together with the Passarino-Veltman tensor reduction scheme [8§] this allows to determine
analytic solutions for 2 — 2 scattering processes at non-exceptional phase space configura-

tions.

For n-point integrals with n > 4 a number of tensor reductions schemes have been elaborated
[T, MO8, 109, 10, [TT, 012], that allow to reduce those integrals to sets of 2- to 4-point
master integrals. However, the main drawback of all those methods is the appearance Gram-
or other kinematical determinants in the denominator, which become singular for certain
configurations of external momenta and thus spoil the numerical stability of the solutions.
Another, more technical difficulty when using such schemes is in the inflation in the number
of remaining finite integrals to be solved for processes with n > 5. This motivates why so
far most of the state-of-the art calculations are constrained to processes involving at worst

pentagon (5-point) diagrams.

Because of the complications to generalize solutions towards increasing n, being inherent
to all known analytic methods, various numerical or semi-numerical methods have been
developed recently for the calculation of n-point one-loop functions. In the approach of [113],
which has been elaborated for one-loop integrals with up to six external legs, the Feynman-
parameter integrals are rewritten in such a way, that they can be numerically integrated
in a stable way. A semi-numerical approach that relies on the subtraction diagram by

diagram of UV and infrared divergences has been advocated in [I14]. A different semi-
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numerical method express one-loop integrals in terms of one- and two-dimensional parameter
integrals which are suitable for numerical integration [IT5]. A fully numerical approach to
calculate loop integrals by contour integration has been proposed in [I16]. In another
numerical method integrals in Feynman-parameter representation have been numerically
performed with a small but finite "i¢” from the propagator denominators and a subsequent
extrapolation ¢ — 0 [T17]. A formalism to directly extract the UV and infrared divergences
from the one loop graph and express them in the basis set of divergent d dimensional
triangle graphs, and use of recursion relations has been constructed in [TT1]. A numerical
method to evaluate loop integrals from their Mellin-Barnes integral representation has been
presented in [I18]. Further approaches can be found in [T19, 120, T2T), 122]. In most cases
the n-point functions are evaluated by using different tricks to deal with the corresponding
Feynman-parameter representation of the loop integral, in such a way, that after subtracting
its divergences it becomes numerically stable and can be integrated numerically in d = 4
space-time dimensions. The dimension of the Feynman parameter space, however, grows
linearly with the multiplicity of the loop integral. Very recently there has also been some
development on numerical methods for loop integrals, based on the the relation of scattering
amplitudes to the Twistor space, found by Witten [66]. Examples for such approaches are
given in [123, [124].

In this chapter a new semi-numerical method for the evaluation of scalar one-loop amplitudes
is explored, that relates the loop integral to a number phase-space like integrals. The
main advantages of this method are the obvious singularity structure of those integrals
and that, after the extraction of divergencies, the remaining finite integrals can be directly
evaluated using well-established Monte-Carlo methods. Concerning the number of external
legs all steps taken are completely general. In section Gl the general idea for the underlying
decomposition is presented and the generated integrals are classified. Potential analytic
solutions for those integrals are investigated in section and section is dedicated to

(semi-)numerical solution strategies.

6.1 Integral duality: mapping one-loop integrals onto
phase-space integrals

A general one-loop scalar n-point function with massless internal lines in dimensional reg-

ularization is considered:

L™ - _; M4—d/ d’q ﬁ 1 (6.1)
(2m)d =3 (¢ + k)2 +40

with ¢* being the loop momentum and k; = Z;;ll p; is a sum over four-momenta of the
2

i

external legs, denoted by p!' (i =1,...,n). They carry external masses p? = m?, however a
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subset of those momenta can be massless. By definition, all external momenta are considered

to be outgoing, so that pf' + ...+ p =0.

In Eq. (6&J)) d = 4 — 2¢ denotes the number of space-time dimensions, regularizing simul-
taneously ultraviolet and infrared divergences. For the following procedure, however, only
ultraviolet finite one-loop integrals are considered. This constrains the method to loop in-
tegrals with n > 4 legs (boxes), i.e. it is not appropriate for two- and three-point functions.
Those however are simple enough to be evaluated in the standard way and will not be

considered in this work.

The first step in the evaluation is to close the integration contour on the lower half plane,

and to apply the residue theorem. This corresponds to the replacement

n 1 n | 2 . ,
:Zl;[l m — ; [—271’2 0y ((q + k@) )} j:];][#m . (62)

Furthermore a shift in the four-momentum is performed: ¢* — (¢ — k;)*, for each term of

the sum independently,

n i+n—2
L™ (py,.ospn) = —Zf(nfl)(—pi,pi + Dit1; o Z pj) (6.3)
i=1 j=i

where

n

d’q 1
I (ky, o k) = 4—d/ 54 (q —s
( 1y eees ) K (27_‘_0{,1) +(q ) J];[l 2q k] _'_k?

and momenta p; with i > n are understood as p,.; = p;. The resulting integrals 1™ are

, (6.4)

dubbed dual integrals.

Following this procedure, which is illustrated in Fig. 6], amounts to setting subsequently
each internal line on-shell, and finally substituting the loop integral by a sum of integrals that
resemble bremsstrahlung or phase space integrals, with momentum integration however not
being constrained by momentum conservation. The resulting integrals may still exhibit in-
frared divergences. One encounters two different classes of infrared singular bremsstrahlung
integrals. In analogy with the integration over the phase space of a real emission they will
be called collinear and soft, respectively. Dual integrals are either soft or collinear divergent
or infrared finite, depending on whether the external legs connected by the internal line that

is set on-shell are massive or massless.

Integrals are defined as soft when the momenta of the two external legs adjacent to the

internal on-shell line are both light-like. Soft integrals have the form

d _ n
10 (s =0 [ S ) ST H[% e

=1
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Figure 6.1: Decomposition of a loop integral into a sum of dual integrals. The dashed
lines in the right hand side correspond to the §, (¢?) function in Eq. (64) and
thus amount to setting the corresponding propagator on shell. The sum is

taken over all propagators in the loop.

with p and p the light-like momenta (p? = p? = 0), s; # 0. Ultraviolet finiteness restricts
the integrals I, ™) %o n > 1. Infrared singularities of soft integrals arise as double and single
poles in the € — 0 expansion. Collinear integrals appear when only one of the two adjacent
external legs is light-like and the other is either time-like or space-like. Collinear integrals

are given through

d%q 1 1
) (ke 51) = =0 2
I (p; (i, s0}) = o /(27T)d1 o+(0") S 11 {Qki-qusz} , (6.6)

where p? = 0, with the restriction of n > 2 because of UV finiteness. They exhibit single
infrared poles at most. Finally, cuts over internal lines surrounded by two massive external

legs are infrared finite. Finite integrals are given by

n

d
Pk =t [ it o) T 5res ] ©.7)

=1

Following this approach any one-loop n-point function with n > 4, can be decomposed into
a linear combination of soft, collinear and finite phase-space-like integrals with (n — 1)-
propagators:

L = — Z I(n_l)({_pia mZQ}7 {pi-i-lv m?—f—l}v {kjv Sj = kJQ}) ) (68)

=1

where k; = pip1 + ...+ piy14+; with j = 1,...,n — 2 and again p; with ¢ > n are understood
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as ppwi = p;- In particular,

e = ! [§n73)<pi7pi+1; {kj.s5}) if mi =mip1 =0,
2 Sii+1
=0 = —% c(n_Q)(pﬁ {pz‘+1,m?+1}a {kj,851) if m; =0,
I = %[c("Q)(pz‘H; {—pi, m}, {kj.s51) if mir1 =0,
1Y = 1" Y({k;,5}),  otherwise . (6.9)

The advantages of this approach are evident when the number of external legs is large.
Methods based on Feynman parameterizations might become soon quite cumbersome. This
approach singles out directly the infrared divergences of the loop integral, and therefore
is quite appropriate for a systematic calculation of multi-leg scattering amplitudes. Fur-
thermore, since it establishes a correspondence with phase-space integration, Monte Carlo

methods can be used for numerical evaluations of the finite contributions.

6.2 Analytic approach to dual integrals

The integrals, defined in Eqs. (63)- (), are well-defined if the denominators in the product
over propagators, not adjacent to the internal on-shell line, are positive definite in the whole
phase space of the momentum ¢. This is satisfied if all kinematic parameters k; yield kq > 0
(i.e. the energy component k;o > 0) and s; = k? > 0. The following results will be obtained,
restricting to this safe region only. It should be noticed, however, that the decomposition
of any physical one-loop integral always leads to dual integrals in the safe region as well
as to integrals beyond this region. In the latter case additional singularities may appear in
the integrand, when one of denominators 2k; - ¢ + s; becomes zero for a certain momentum
configuration. Unlike the soft and collinear singularities this, however, does not leads to a
divergence in the four dimensional limit. Solutions for such cases must be obtained by a
proper analytic continuation from the safe region. This is beyond the scope of this work

and will be addressed elsewhere [125].

6.2.1 Soft integrals

It is convenient to work in the light-cone coordinate system where all four-momenta, e.g. k*,
are written in terms of their plus and minus components, ky = (k°4%?%)/v/2, and transverse
momentum, k', in d — 2 space dimensions. The scalar product of two four-momenta p* and

k* is given in that system by

p-k=pik_+p-ky—pi-ki. (6.10)
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The soft integral in Eq. (6.3) is considered in the frame where the light-like external momenta
p and p are directed along the plus and minus light-cone directions: p = (py, 0, 6), and p =
(0,p_, 6), respectively. To simplify the discussion it is assumed that the energy components
of p and p (and thus p, and p_) are positive. This is no loss of generality, since the soft
integral is invariant under the replacement p — —p or p — —p. Integrating Eq. (63) over

q+ = ¢% /(2¢_) with the delta function, the soft integral takes the form

dz di-2 1 n %
[ (ppu{klus} 4d/ / aL 2 :|7

27Td L ql =1 {(ql—zi kli)Q—l—ziQ /{ZiQ—FZZ' S
(6.11)

where 2 = pyg. = p-q, and z; = z/(p - k;) were introduced. NextEl, a Feynman parame-
terization is introduced and a shift in the transversal momentum ¢, — g, +y ., ¢;zk1; is

performed. The integration over the angular variables is now trivial and casts the integral

to
=40 (n 4 1)
Is(n) p, s 1ki, si = Nn—/ /dx/ dey...de, 6(1 —z — c
.7tk = e | 5 Z )
Q o0 d—4
(d—2) 2
a1 dq’ ’ 12
x 2(27)d-1 /o a1 (q1) (6.12)
n —(n+1)
(qL+chcj 22 ki-k; +chZ k:2+kll) Zci Zi si> ,
t,j=1 i=1
where
d—2
Qw2
i (6.13)

Qu-2) = =775

(3

is the transverse solid angle. The remaining integrations over the transverse and the lon-
gitudinal loop-momentum, ¢? and z, respectively, are now straightforward, and the soft

integral becomes
n

n _ 20T (1 ['(n + 2e¢)
I§ )(p,p;{ki,si}) = — 5(4%()2 - P /dx/ dey...dec, 0 1—x—ch)
z 1

fn2e
¢ ¢ k- kj ci(k? + k%)) ¢i Si
GG R N G T L) (6.14
(phe e i) (Zi) o

X

where

kapk

o~ (6.15)

k24 kT, =

'Relations, necessary to perform the following steps explicitly are listed in Appendix
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Then, a further change of variables ¢; = (1 — x)J; is performed, leading to

_ 20%T(1 — )L'(n + 2¢) /1 &
I, pi {ki, s}) = — _ d\p .. dh, (1= )\
s (p p { }) E (47_‘_)2,6 Hi:1p_ k@ 0 1 ( ; ])
1
X / de (1 —2)"7¢ (a+b ) "2, (6.16)
0

where

a_Z)\)\ kk]

2,7=1

__i)\.p'ki_

p i=1 p'kz

= s
= \i 1
DN (6.17)
=1
Integrating over x, one finally gets
_ 2u%T(1 — e)l(n +2¢) (! u
I (p, pi {ki, si}) = g / .. .d), 61— S N)
62 (471-)276 Hz’:lp . kz ; J
b
X a ¢ LR (1, —61—¢ ——) ) (6.18)
a

For soft dual integrals obtained by the decomposition of a box diagram (i.e. for n = 1), the
solution can be read directly from Eq. (GI8) without further integration. It is given by
_ 2I'(1—e) (142 2 k2\° k2
"=V (p, pik,s) = e (u ) 217 (17 —61—¢ —_l> ,(6.19)

€2 (4m)*—cs s? k?

where the Hypergeometric function has the following expansion

211, —6,1—6,2)=1+eln(l—2)—eLiy(2) + O(e) . (6.20)

6.2.2 Collinear integrals

The external light-like momentum p* in Eq. (68) is set along the plus direction, p =
(p+, 0, 6) Again it is assumed that the energy component of p and thus p, are positive.

This is no loss of generality because of the identity

I™(p:{ki,s}) = —IM(—p; {ki, si}) . (6.21)

The integration over ¢, = ¢%/(2¢_) is performed with the delta function. The collinear

integral then takes the form

10 (p; ks i d/ / Z 6.22
(p; {hi, s:}) = 222 27rd1 H (qr — 2 k) + 22 k2 + 2 5] (622

i=1
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using the definitions z = p,g- = p-q, and z; = z/(p - k;). Similar to the case of soft
integrals, a Feynman parameterization is introduced in the transverse space to integrate
over the transverse components of the loop-momentum. After shifting the transverse loop-
momentum ¢, — ¢ + » ., ¢;zik1;, the integration over the angular variables becomes

trivial, and the collinear integral thus reads

n

4_dF(n) o] 1
I (py {kiysi}) = Mni/ dz 272 / dey ... de, 6(1 =Y ¢;
(#i 2 2[Tmip- ki Jo 0 ' ( ; 2

Qa2 > 4= -
X 72(2;)021 / dg* (ql z <ql+Zcz c; % 2 ki kj +ch Z; s,) .
0

1,j=1

(6.23)

After integrating over the transverse and the longitudinal loop-momentum, g2 and z respec-

tively, the collinear integral is given by

_,uQE I(1—¢Il'(n—142e¢)
e (4m)*= [Ty p - ki

€ 1—-n—2¢
dey .. .dec, 6(1 — c AL S 6.24
[t 3o (L b (o) e

j=1 ij=1

I (p; { ki, si})

X

For integrals with n = 2 non-singular propagators that further satisfy (k; — ko)? = 0, the

specific solution is given by

Cr
ep- (k251 - k152)

- s1p- (k2 — k1)
—51) %2 (L —61—¢
x[( 81) 2 1< 1 6 e’p«(kgsl—kISQ)

—e : s p- (k=)
—(=s2) 21 <1, —6 1 —¢ b s km)) ](6.25)

IC(Q)(Z?; ky,s1 = k%v ka, 59 = k%) =

6.2.3 Finite integrals

For finite bremsstrahlung integrals, the light cone coordinate system can be defined by an
auxiliary light-like vector (p?> = 0, p; > 0) which is used to fix the transverse plane. Of
course, any choice should lead to the same result. Performing the integration over the delta

function yields

1Y (i, s:}) = pt™ d/ /dd i n { & . (6.26)
! ’ - Llg — 2 lﬁz‘)z + 22 kP 4z si
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Now running the same steps as for the soft and collinear integrals, introducing a Feynman

parameterization and integrating over ¢2 and z, leads to

(1 —e)T'(n — 2 + 2¢)
(4m)*= [T p - ki

—1+e 2—n—2¢
X dey .. .de, 6(1 — C; -7 * J Lt 6.27
[ i3 (S 84E) (Lo o

j=1 ij=1 i=1

17 ({kq, s:})

To obtain an explicit solution, even the simplest case n = 3 would imply at least two
nontrivial integrations. This will not be further considered since finite integrals are directly

accessible with numeric methods.

6.3 Numeric approaches

From the expressions obtained in the previous section it is clear that it will be relatively
hard to obtain fully analytic solutions for dual integrals, for all but the simplest cases. This
section is dedicated to study numeric approaches instead. Finite dual integrals are directly
suitable for a numeric integration in four space-time dimensions. For soft and collinear
integrals, however, the corresponding divergences have to be extracted first. Below two

ways are proposed that allow to perform this task for an arbitrary number of external legs.

6.3.1 Construction of subtraction terms

The idea is to construct counterterms, similar as it is done with dipole terms for the real
correction part. They must cancel exactly the infrared divergences of dual integrals on
integrand level, such that the difference of the dual integral and the counterterm can be
obtained by numerical integration in four dimensions. Furthermore counterterms must be
simple enough to obtain an analytic result in d dimensions. The following notation will be

used:
™ = / dz d2q, f™(z,q.) = AT™ 4 [ (6.28)
where
AT = / dz g1 [f"(z00) = f(z00)] (6.29)
is the finite difference term to be evaluated numerically, and
1 = [z a2, £z ) (6.30)

the integral over the counterterm.
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Soft integrals

A suitable counterterm for soft integrals can be constructed by neglecting the angular cor-
relation in the transverse momentum. Introducing the same coordinates as for the full dual
integral in Eq. (6I1), the counterterm is given b

dz dd 2q 1 n Z:
I(n)ct ki, s;)) = 4 d/ / L - ! .(6.31
(pp7{ 75 27Td1qJ_H qJ_+Z (k?2+k' )+Zzsz (63)

=1

Introducing Feynman parameterization and integrating over the longitudinal and transverse

momentum one gets

_ 20%T (1 — e)T'(n 4 2¢) (1 _
I8 (p, p; {ki, s:}) = 7 / dAi...dX, (1 Aj)a+b) e
e b = Zao e ok ) Z

(6.32)

where the abbreviations a, b and ¢ have been defined in Eq. (6I7). The advantage of
this expression with respect to Eq. (6I6) is, that all the dependencies on the Feynman

parameters have become linear.

Although the soft integral with one non-singular propagator is fully integrable (see Eq. (E19)),

for completeness the result for its divergent component is given by:

2cr T(1—26)0(1 + 2¢) ( 2 ) .
a, bl )

1)ct
IO (p, py {k1, 51}) = s, TU+ol(l—e¢) \p-p

(6.33)

where a; = s;/(p- k;) and b; = s;/(p - k;). It is easy to verify that both expressions have

2 !, Since in Feynman parameterization the

identical expansions to the orders ¢ = and e~
number of integration variables increases with the number of non-singular propagators it
turns out be easier to derive results for n > 1 directly from the integral representation
given in Eq. (G31]). After a trivial angular integration, the integration over the modulus
squared of the transverse loop momentum ¢2 can be evaluated by partial fractioning of the
non-singular propagators. The remaining integral over the longitudinal loop momentum,

after further partial fractioning, has always the form

o 'l +2¢)0'(1 —2
/ dzz 71+t 2) 7 (1 4ty 2)t = ( o)L 2 (t; — tg) 1ot te

0 2e

o0 (1 — e)ts b
Ti—20r(1 102" (1’ &= tl) ] '
(6.34)

2 Although the construction rule for the counterterm is general, it is reminded that the solutions presented
here are only strictly valid in a limited kinematic region, given by k;-¢ > 0 and s; = k2 > 0. The fully
general result has to be obtained by a proper analytic continuation, which will be presented elsewhere [125].
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The Hypergeometric functions has the expansion

1 2
oF1 (1, —€;,—2¢,2) = 501-2) 2—z—ezln1—z+%z(ln2(1—z)+4LiQ(z)) +O(€) .
-z

(6.35)

This allows to analytically integrate the counterterm of the soft integral independently of
the number of propagators, although the expressions might become quite cumbersome due
to the higher number of partial fractionings needed to evaluate this integral for higher
multiplicities. In particular, the following expression for the divergent component can be

obtained for the two-propagator soft integral

2CF F(l—QE)F(l—l—QE) ( 2 )6 a1 a9

[s(Z)Ct@?p; {ki,si}) =

€515 D(1+el(l—¢) \p-p) a1—a
by — asby)
—176b76 F 1 _ _2 0112721
X [a2 o 241 | L, —€ —2€ bi(ar — as)
by — asby)
. 71761)76 F 1. —e: —2 CL12721 . 636
r Oy 2f | b 76 76 ba(ay — ag) (639

Although it is not obvious at a first sight, this expression is symmetric under the exchange

a; < b;. The solution to the three-propagators soft approximation is

s 20 (1 —26)I'(1+ 2¢) 2 \° aj as as
IO, p;{ki,si}) = = ) —
2515083 I'(1+€)'(1—¢) -0/ > ci(@iy1 — airo)

3
X E ol a;lfﬁ b, 2 Fy (1, —€; —2€; 7Z( ’ Z+1))
=1 % (it i — Ajt1
—ej—e¢ bi+1(ci - Ci—f—l)
—i g b 5 (1, —€6 26, ——— , (6.37)
A; — Qi1
with ¢; = a;/b;. These expressions are sufficient to evaluate loops with up to six legs

(hexagons). Iterating this procedure, the result can be extended to an arbitrary number of

external legs. For n-propagators, the result is given by

2cr ['(1—2¢)(1 + 2¢) ( 2 )6
ellip-ki TA+e(1—¢) \p-p

" (¢j — )" 1
{Z aj — [l (a; — ax)(c; — a) = (a; — ar)(¢; — cx)

ok YT Gk j j j

I#5.k
bulcs —
X [aklﬁ b, o F (1, —e; —2¢€; 719(0] Ck))
a; — Qg

b:(c. —
_ajflfe b;EQF:[ (17 —€; —26, M) ] } . (638)

A; — G

I(p, p; {kis:}) =
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Expanding the full result up to O(e™!) yields

) 2cr  T(1—20T(1+26) [/ 2 \°
[(n)ct . kl i = I
S Pk sih) = 5 M, s TA+T(1—¢) \p-p

[Z (H akcﬁf%) a; <+ (bi < a;) —1

i=1 \k#j

X

+0O(% , (6.39)

where the coefficients for the e 2- and e~ !-poles must be identical to the ones derived from
the full soft dual integral.

Collinear integrals

Completely analogously to the soft integral a counterterm for the collinear integral can be

constructed,

Ik, 8}) = pt ¢ / / ", n & . (6.40)
¢ ’ 222 )it qi + 27 (K24 k) + 2 s

The full solution in that case is given by

[c(n)Ct (p; {k’z', 32})

o (1 — 26)0(1 + 2¢) ( 2 )
2@ [[yp ki TATOT(1—0 \pp

(cj —cn)"™ !
X {Z 0 — H(A —a) — (a; —a)(c; — cx)

j<k J Qg 145,k a] - a’k)(cj

bi(cj — Ck))

X [a,f b, o F1 <1, —e; 1 — 2¢;

a; — Qg
bl —
—a; b o <1, —e;1 — 2¢; H) ] } ; (6.41)
j

where an auxiliary light-like vector p has been introduced.

6.3.2 Recursion relations to single out divergent parts

A different strategy to extract the divergences from the dual integrals can be formulated
recursively. There, a dual integral with n propagators is related to dual integrals of smaller

complexity and a finite integral.
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Soft integrals

For the soft dual integral the recursion relation is given by

1
Is(n)(pvﬁ7 kla--wkn) - k’QI(n b (p p, ]CQ,...,]{} )
2p - k -
|: k,2 II (p7k177kn)+(p<:>p):|
2 ) (-
g login(P PRty s k) (6.42)

with the IR finite term, which is suitable for a numeric integration in four space-time

dimensions,
2 d%q papki+pkipag—ppak |1 1
Is( )m p,piky, . K :/ (]2 — = ———1(6.43

Introducing again light cone coordinates and integrating over ¢, = ¢ /(2¢_) with the delta

function, one gets

/ dz/dql 2k31lQLﬁ|: z; ]
Sfm i=1 (QL_ZZ‘ kiz)2‘|‘23 k3+ZZ S; .

7

(6.44)

Although the integral I (T})m = [dzd?*q.f S(”})m(z, q.) is finite in four dimensions, the integrand

S,

diverges as z — (0. This numerical defect can be easily fixed by symmetrizing the integrand

w.r.t. to the angle in ¢, , replacing
) = 5 (a0 + 1z a0)) (6.45)

Note that the recursion relation in Eq. (£42)) is only one out of n possible versions, obtained

by replacing k; with any k;.

Collinear integrals

For the collinear dual integral the recursion relation is given by

1
Ic(n)(p7 kla-.-,kn) - |:ﬂln 1)( k27"'7k: ) _%Ic(n_l)(p’ k:17k37""k:n)

apr — a2z [ S1 52

By SO k:l,...,kn)] (6.46)

5189 cfzn

with the IR finite term

2 d?q p-ko q-ki+p-ki q-ko - 1
I (piky, .k _—/ 54 (q* —
c.gin(P3 K1 2 (2m)3 +d) P-q 31_[1 2q-k; + k7

(6.47)
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In light cone coordinates and after integrating out the delta function this term reads

Icfln(p7k17~--7 / /Vd2ql (k}mp kle;@IL)

X { “i
i1 (gL — 2 lﬁz)2 + 222 kf + 2z 85

)

} (6.43)

with the auxiliary light-like vector p and the shorthand ko = p-ko k1 — p-k1 ko. Equivalent

recursion relations are given if k; and ks are replaced by any other pair of momenta k; and k;.

Both relations can be applied repeatedly to soft or collinear integrals with any number of
propagators, until only the simplest (UV ﬁnite) integrals, 1Y and 10(2), and a number of
finite integrals are left. Thus only IV and 12 have to be obtained analytically.

Unfortunately this methods leads to a high proliferation in the number of terms, which
grows roughly exponentially with the number of nonsingular propagators. Nevertheless it
still can be a useful method: since all finite integrals are evaluated in the same phase space,
they can be combined on integrand level and/or Monte Carlo techniques can be applied,

such as sampling over different contributions instead of summing.

6.3.3 Numeric evaluation of finite integrals

From the approaches presented above the following infrared finite integrals have emerged:

e finite dual integrals, Eq. (G.20),
e integrals from the counterterm approach, Eq. (£29), and

e finite integrals from the recursion relation, Eqs. (44)) and (62F]).

After performing the trivial integration over the delta function in all cases the three dimen-

sional phase space dz d?q, if left for the numerical integration.

When discussing analytic solutions, so far the conditions

ki-q > 0 and

always have been imposed. To study general numeric strategies these constraints will be
omitted from now. Clearly, outside the region defined in (G49) the nonsingular propagators

may cause further poles. These poles, however, are in principle integrable and do not lead
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to physical divergences. To determine solutions in such a case the integration contour must

be made unique. The product of nonsingular propagators in the integrand is thus given by

] 0
(gL — 2 k:h) + 22 k2 + z; s + &40

i=1

where the sign & = =1 in front of the “/0” is determined by the analytic continuation
rule for dual integrals (respecting the “i0” from the Feynman propagators in the full loop
integral, Eq. (E])). To be as general as possible, the actual sign will be kept as a free input

parameter for the following considerations.

The structure of all integrands is similar, dominated by the product P of nonsingular propa-
gators or, in case of A, the difference of P and its simplified counterterm version, obtained
by neglecting the angular correlation in the perpendicular momentum. The general strat-
egy for the numerical integration is discussed for the example of a finite dual integral. It is

straightforward to apply it to any other of the mentioned finite integrals.

The phase space map

Firstly, the transverse momentum ¢, is replaced by the new variable u; = ¢, /z. The finite

dual integral then reads

dz [ du, +— 1
1 Lk, s :/ : / (651
7 H 1;[ ((pki uy — ki)® + k) 4 s; £1i0 (6.51)

The main advantage of the new parameterization is that each nonsingular propagator now

only has a linear dependence on z.

The integration will be carried out directly in the three dimensions of the loop momentum,
z and u,, where u; = (ucos¢,using). In order to apply Monte Carlo methods, the
integration phase space must be mapped on a finite interval, such that the integrand remains

finite. The following map is suitable for this task:

= 27Ta1,

—  tan (7r(a271/2))7

2 = tan(nlas=1/2) (6.52)

where ay, as, ag are random variables in the interval [0, 1]. The corresponding Jacobian reads

= cos? (mlan — 1/2)) cos? (n(as — 1/2)) (6:53)
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\ Im(z)  poles

numerical integration path

Figure 6.2: Rotation of the integration contour for z to a pole-free path.

Pole treatment

In the case that poles from nonsingular propagators are present, a naive numerical inte-
gration would fail in their neighbourhood. The problem can be overcome by shifting the
integration contour for z from the positive real axis to a pole-free path in the complex

z-plane applying the residue theorem. The location of the poles is easily determined:

pki(s; + &i10)
(phi uy — k1) + k2

Thus all poles are located along the real z-axis. As indicated in Fig. the integration
contour for z can be shifted to the pole-free imaginary axis. All finite integrals emerged by
decomposing at least box-integrals vanish quickly enough for z — oo, such that the path
closing the contour at infinity does not contribute. Formally the integral is transformed as

follows:
/dzduLf(z,ul) — /dzduLei“f (e”)‘z,uL)
+2i7r>\/dul Z Res., f (z0,u1) , (6.55)
ZO(UL)GC

where A = 41 determines whether the new integration path is along the positive or negative
imaginary axis. The second term in Eq. (E5H) sums the residues of all poles inside the

contour C. The residues are calculated as follows

1
R 20 ) - - |
es., f (Zo UJ_) diz (f (207 UJ_) )‘z=ZO

Thus, if present, residue terms yield an additional integral, now over the two dimensional

(6.56)

phase space of du, to be performed also numerically.

The sign parameters &; determine whether a residue is inside or outside the considered con-

tour. Clearly, different choices lead to different results. The choice of the actual integration
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B E

B B

Figure 6.3: Setup for a box diagram.

path can be optimized, such, that the number of residues to be calculated is minimal. The

following cases can be distinguished:

1. No poles along the positive real z-axis: no contour shift, no residues to be calculated;

2. All poles along the positive real z-axis have a infinitesimal positive (negative) imagi-
nary part: the contour shift to the negative (positive) imaginary axis, no residues to

be calculated;

3. Poles are located on both sides of the positive real z-axis: the contour shift such that

the least number of poles is crossed, corresponding residues must be calculated.

6.3.4 Example: finite box integral

The procedure for a numerical evaluation of finite integrals has been implemented in a C++4-
code. To improve the convergence a self-adaptive integrator, based on the FOAM|[[75] algo-
rithm has been used to generate the random numbers a, as, az in Eq. ([£52) non-uniformly.
This allows an appropriate adaptation to the integrands, which are in general not factor-
izable in their single variables. All types of finite integrals, I7, A[§7c) and 13(72 fin COTVETgE

well for a number of tested configurations stemming from calculations up to hexagon loops.

As an explicit example to verify the numeric integration procedure and the decomposition of
a loop diagram into dual integrals, a box diagram, massive in all external legs is considered,
cf. Fig (E3). This example involves only finite dual integrals, some of which enclose poles

at the positive real z-axis to be treated with the procedure described above.

The computation has been done for the set of four-momenta, listed in Tab. [B1], all defined
as outgoing momenta. Tab. summarizes the numeric results, with statistical errors on
the last digit given in parenthesis. In [I26] an analytic expression for the four-mass box is

given. For the momenta from Tab. this expression yields the result

I = —5.701407 x 1078 —i%3.308353 x 1078,
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i | " (E,pspysp:) m = /p?
1| (=50.0099990, 0., 0., —50.0000000) 1

2 | (=50.1597448, 0., 0., 50.0000000) 4

3 | (49.6056853, —32.3801259, —13.4122873, —35.0479958) | 2

4| (50.5640585, 32.3801259, 13.4122873, 35.0479958) 10

Table 6.1: Example setup for the finite box.

3

I (—p1,pa,pas) | —2.7827(4) x 107 —i % 3.8598(9) x 10~
I (—pa, p3,p3a) | —1.1440(1) x 107 +i%0
I (~ps, pa,pra) | —9.166(3) x 107°  —i % 2.9224(3) x 1078
1}3)(—]74@1,2912) —8.583(1) % 1072  44i%0
sum —5.7019(5) x 1078  —i % 3.3083(4) x 10~%

Table 6.2: Numeric results for the four-mass box using momenta from Tab. &I The

contributions from the four finite dual integrals and their sum are listed.

which is in full agreement with the numerically obtained result.

6.4 Conclusions and outlook

In this section a new promising method to evaluate n-point loop integrals has been presented.
The heart of this approach is the decomposition of loop integrals to dual, phase-space
like integrals. In particular semi-numerical strategies to solve dual integrals have been
considered. The structure of those integrals allow the application of Monte-Carlo methods,
developed for phase space integrals. The numerical performance is very promising and the

increase of complexity with a rising number of external legs is manageable.

In order to make this method suitable for physical applications two issues are still under
consideration: firstly, a procedure for a correct analytic continuation of dual integrals has
to be formulated, and secondly, the method must be generalized to tensor integrals. There,
a straightforward decomposition leads to a number of dual integrals containing additional

numerator terms, for which similar techniques as for the basic dual integrals can be applied.



7  Summary

The subject of this thesis was the development of tools for the automated calculation of
exact matrix elements, which are a key for the systematic improvement of precision and
confidence for theoretical predictions. In particular, the LHC sets new benchmarks on the
complexity of multi-particle final states, for which, to cope with, new strategies for the

calculation of ME were designed and implemented.

Part [l of this thesis concentrates on the calculations of cross sections at tree level. A number
of extensions have been implemented in the matrix element generator AMECGIC++, namely
new interaction models such as effective loop-induced couplings of the Higgs boson with
massless gauge bosons, required for a number of channels for the Higgs boson search at
LHC and anomalous gauge couplings, parameterizing a number of models beyond th SM.
Further a special treatment to deal with complicated decay chains of heavy particles has
been constructed. A significant effort went into the implementation of methods to push the
limits on particle multiplicities. This was most crucial for pure QCD final states, which
are produced with extremely high rates at LHC, but, applying traditional methods, display
the most severe growth in the calculational complexity with number of involved particles.
Two recursive methods have been implemented, the Cachazo-Svréek-Witten recursion and
the colour dressed Berends-Giele recursion. For the latter the new module COMIX has been
added to the SHERPA framework. The Monte-Carlo phase space integration techniques
have been completely revised, which led to significantly reduced statistical error estimates
when calculating cross sections and a greatly improved unweighting efficiency for the event
generation. Special integration methods have been developed to cope with the newly acces-
sible final states. The event generation framework SHERPA directly benefits from those new

developments, improving the precision and the efficiency.

Part [ was addressed to the automation of QCD calculations at next-to-leading order.
Although highly demanded, so far no fully automated tool is available for this task. In
this thesis (Chapter B) a code has been developed, that, for the first time fully automates
the real correction part of a NLO calculation. To calculate the correction for a m-parton
process obeying the Catani-Seymour dipole subtraction method the following components

are provided:
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1. the corresponding m + 1-parton tree level matrix elements,
2. a number dipole subtraction terms to remove the soft and collinear divergencies

3. the finite part of the integrated subtraction terms, added back to make the full real

correction term independent of the regularization method.

Furthermore, integrators for all necessary phase space integrals are provided. The new
implementation is based on the matrix element generator AMEGIC++. The resulting code
can easily be extended to a full parton-level generator at NLO by supplementing it with a
library of one-loop matrix elements. The limitations on the number of external particles are
the same as for tree level matrix elements and thus beyond the currently available one-loop
matrix elements. For the community of physicist performing one-loop calculations this tool
can provide a significant facilitation: although this part of the calculation is completely

described in Ref. [A2], the practical realization is quite tedious in most cases.

The virtual matrix elements are currently far from being automated. The main difficulties
arise for the evaluation of n-point one-loop integrals for n > 4. Most promising candidates
to resolve this obstacle are semi-numerical approaches to integrate over the loop momentum.
Such a technique has been explored in Chapter B A new decomposition of loop integrals
into phase-space integrals is proposed and semi-numerical strategies to evaluate the new
integrals were developed. Although some details still have to be finalized, this approach
indicates a number of promising features: Firstly, the extraction of infrared divergencies is
straightforward after the decomposition, leaving numerically well-behaved finite integrals,
accessible to Monte-Carlo phase space integration techniques. Furthermore the procedure
is completely general for an arbitrary numbers of legs and has only a decent growth in

complexity:.

Altogether it can be concluded that the matrix element generators AMEGIC++ and COMIX
together with the phase space integration form state-of-the-art tools, making the event
generator SHERPA being well prepared for the challenges of the LHC.

Towards a full automation of next-to-leading order calculations a significant progress could

be made.



Appendix A CoMiIX implementation
details

A.1 Decomposition of electroweak four-particle vertices

A decomposition of four particle vertices with WW-bosons only is given by
- + - - 7z + - -\ Z + -
VW p, WTo, W= _ VW P, Zayd . P af Wto, W=\ + VWV/V—V)\’ 176 ) af Wte, W—p )

(A1)

W-v W-v Zy o Zyaf Za~6 Zyaf3

Here Z4 denotes a new antisymmetric tensor pseudo-particle introduced for the vertex de-

composition. Its interaction vertex reads

-p, s Z
V-0 = 5 9w (929" — 909™)
W, W- [ o "
Vg " = 59w (9295 — 9695) - (A.2)

To obtain correct signs of four-particle vertices, the tensor pseudo-particle “propagators”

are defined as

—q if O[:Z4

7 else

: (A.3)

P, =kaD/y where Ko = {
and where D/7 is given by Eq. (2Z1]). Note that the Z, pseudo-particle is not its own
antiparticle. This definition prevents double counting of four-particle vertices involving the
W boson and constructing fake WW W W vertices with all W's having the same charge. The
four-particle vertices involving W bosons, photons and Z-bosons are decomposed as follows
Ap, W~ o, AX Ap, Wivs aB W0, AX ANW S aB W0, Ap
V=, — V=, PWZ e VW* 5 T V-, PWZ w5 Vwrap
Ap, W =0, Z\ Ap, W, ~6 . af HyW=o,ZX Z\ W ~d . af yW~o,Ap
V=, — V-, PW; 6 VW; 5 TV, PW4_ v YWrap
Zp,W™=0,Z\ Zp, Wy vs aBf  \yW7o,ZA ZANWS aBf W0, Zp
V2, — V-, PW; e VWZ 5t V-, PW; g VW[&B .
(A.4)
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A new tensor pseudo-particle W, is introduced, whose interaction vertices are defined as

V;’j:‘/ﬁ(s _ %gw cos O (g1g"” 9",

vafi—_géAp = %gw sin O (9295 gagﬁ) ,

VMZ,p_’:VZV‘S _ %gw cos Oy (g g g9 .

VI/IVZ:OZ;ZP — %gw cos Oy (gagﬁ gagﬁ) ) (A.5)

Corresponding vertices exist for W+ / W~ bosons. The decomposition of four particle
vertices involving the Higgs boson introduces a new scalar pseudo-particle, which is denoted
by hys. In order not to generate fake four particle vertices it is by definition not its own

antiparticle. The corresponding vertices read

h,h,h h, ha
V, — VB, Vh4 ,

YATIVA Zu, Z

Vhfh W, Zv Vhfh ha P, V W, Zv

h + - h,h +
Vh,W N Vh7 1. p VW %W v (A6)

where the interactions of the hy pseudo-particle are defined by

R T,
2 Z—UQ ,
2
1}Z,u7 Zv - G N
2 cos? Oy ’
h7h4 _ N
V, = 1,
WHu, W—v g120 N
Via = —i7g (A.7)
2 b

and where the scalar “propagator” of the hy pseudo-particle
P, =1 (A.8)

has been introduced. Since all remaining vertices in the Standard Model are three point
vertices, the vertex decomposition is hereby complete. Finally all vertices employed in the

recursive relations are listed in [AZ4]

A.2 Matrix element generation with COMIX

The spinor basis introduced in Ref. [I27] is used. The ~-matrices are taken in the Weyl

%:<;’ "O“>, 75:(‘012) (A9)

representation, i.e.
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where o, = (I, —5’|ﬁ and 7, = (1,5). and o' are the Pauli matrices. Defining p* = p° £ p?
and p, = p'+ip? Il as well as p = sgn (py) || and p = (p, 7 ), a possible set of Eigenspinors
to the Dirac equations is then given by
u (p m)_ 1 Vpo_px+<ﬁ> v (p m)_ 1 _\/po_p +ﬁ
+p,m) = —=— _ . o V=PI =
V2D \ vPo+D x+(p) 2

1 VPo+D x-(p 1
u*(p7m>:—— ’ — <A> ) UJr(p?m): y———
V20 \ v/po— D x-(p) V2p

Here the Weyl spinors have been defined by
Lo Vi S (-0
X+<p) = T ~ = = ids ) X*(p) = T At =
VD pL vp er? 2 p

and are orthogonal and normalized to 2 |py|. The Eigenspinors uy and vy are thus or-

e
—viF )

(A.12)

thogonal and normalized to 2m and —2m, respectively. These spinor states are, of course,
equivalent to those used in AMEGIC++, cf. section 2Tl corresponding to a certain choice of
the auxiliary vectors kg and k;. The main difference is, that in COMIX spinors are computed

explicitly and products being evaluated by a matrix multiplication.

Polarization vectors for external vector bosons are constructed according to Refs. [T28]. For
massless gauge bosons they can be defined via

(EF"[pT)
V2 (kFlp)

where k is an arbitrary light-like gauge vector, which must not be parallel to the momentum

el (p, k) = (A.13)

p. For massive bosons

() = £ D)y = 2 () — B ) L (ALY
ﬁ(kﬂbi} m
is used, where
P’ A5
b =p— /ﬁ?k' s R = ﬂ ( . )

and again k is an arbitrary light-like vector. The gauge vectors k have no physical meaning
and thus any scattering amplitude must be independent of the explicit values of k. This
fact is employed in numerical implementations of the above equations to perform a check of

gauge invariance.

As pointed out in Sec. B3l within the Standard Model tensor particles never occur as real

states, such that there is no need to explicitly construct polarization tensors.

!Note that the 2-, y- and z-directions are not fixed but can be defined through any orthogonal set of
vectors. In the following it will referred to the definition of these directions as the spinor gauge. The
arbitrariness of the spinor gauge is employed in the numerical implementation to perform a check for gauge

invariance of the amplitude.
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Vertex 1D Lorentz structures

FFS Y — uv Y = SU Y = us
FFV~ Y = ﬂfyﬂ #U \\"}// :j,u,yu 172752} \f.r’" :ﬂj“’Yu 17275
FEVE | YT = wr e YT e YT s

£
VVS V = ete), {’Hﬁ = st

VVV(p,q) \”{f =T (p,q) €5,

6 .
wro | YT = ey YT = e

Table A.1: Lorentz structures of Standard Model interactions.

A.3 Lorentz functions

In this appendix explicit expressions for all possible Lorentz vertex structures occurring in
the Berends-Giele recursion defined by the Standard Model are listed. They are sorted by

ascending spin of the connecting particles and employ the following notation.

S

F
v
T

Scalar,
Fermion,
Vector Boson,

Antisymmetric tensor of rank two.

It is stressed again that all interaction terms occurring in the standard model Lagrangian

yield no more than three-particle vertices of the above defined particle types with the possible

couplings listed in Appendix [A4l The Quantities listed in Tab. [AJ] in explicit form are
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given by
0
1—~° 1—7° 0
uj" =(0,0,U0j” — Uyjr, —toj +uwj") , " v =
7 (0,0,0j™ = w1, —tojl +wj") . jrn—y oot o
Jivo+Jj v
(A.16)
UgU2 + U U3
1 - s + T
uyt T = , U_ng + U_WQ , (A.17)
2 i (Wyve — Ugu3)
UV — U1 V3
J U2 —Jius
., 1498 . e N —jius + jTus
iy = (o) + tsjo, Uagt + usj—,0,0) , j 7y, 5 U= 0 ,
0
(A.18)
UgVp + UzVy
1477 — U0y —
= | ST (A.19)
2 i (ugvy — u3vp)
— UV + U3V
"7 (p,q) epe, = €' (p— q)" + €' (2¢ +p)e” —e(2p + q) ", (A.20)
v / ]' oV vo /
T (g,€") = 5 (9"79"" — 9" g"") esc,, - (A.21)
Note that due to the antisymmetry of 7#¥, the following replacement can be made
1 v 1% Q, 17
5 (9hgs — gpee) 77 =, (A.22)

which leads to an asymmetric form of the VVT vertex, and a slight decrease in evaluation

time.

A.4 \Vertices and Propagators

In this appendix explicitly all vertices occurring in the recursive relations for the Stan-
dard Model as formulated in Sec. are listed. Their Lorentz structures are defined in
Appendix [A3
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QCD interactions
¢, K q,L
. L1 ; B
Y = —i% [5555 — N—aHééKL (FFV™ +FFV™)
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9(p), KL g9(q), MN
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QED interactions

—ig.Q; (FFV- +FFVT)

.ﬁerf
t 2_m2
p f
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7 p2

Electroweak interactions

3m?
i h

v
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Here the definition
Vf = T}O’ — 2Qf SiIl2 ew,

was used.

—i DY JT7 720,

Ap=T7} (A.23)



Appendix B Insertion operators for
the dipole subtraction
method

In this appendix, the ingredients of the master equation Eq. (f2h2),

Ao (pas ) + A0S (Par Py 1) = [A0E (Day py) X 1(€)]

1
+ Z/ dx [(K“’“/ (x) + P (XPa, T; u%)) X daf,b(xpa,pb)}

1
+ / do | (K" (@) + P (apy, 23 143) ) x dofy (bas 2ms)|

(B.1)

will be repeated. a and b specify initial state partons, and the sum runs over all accessible

a’ and b occurring in the PDF. The insertion operator I is given by

I({phie) = - ZTQVI 9y T, L(;‘“‘) , (B2)

T2 PIpJ

cf. Eq. (E53), and again the indices I and J run over all initial and final state partons,
while the universal functions V;(€), encoding the singularity structure, merely depend on

the flavour of I and read

1 2

Vi(e) = Tj (?2 - 3) + 1 (% + 1) + K7+ O(e), (B.3)

cf. Eq. (BE24). The individual v; and K; will be listed in Eqgs. (B) and (B.g)).

The factorization scale dependent terms are proportional to insertion operators P“% ({p}, xpq,, x; u2),

which read

_Me
2~Tpa 194

aq

2T Ti !

95 pad’ () T, In

P ({p}, ¥pa, 25 u%) = (B.4)
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The regularized Altarelli-Parisi kernels P%(z) are listed in Eq. (B3).

The factorization-scheme dependent terms are proportional to the initial-state insertion

operators K. For one initial-state hadron only, this operator reads

1—=x

K (z) = ;‘—; {Kw’(x) — K3 () + 6% Z VTTQ T K ! )+ +6(1— x)] } , (B.5)

with the functions K% () and K (z) given below, cf. Eqs. (BI0) and (BI3), and with
the v; listed in Eq. (B). Note that the subscript “F.S.” denotes the factorization scheme.

For two initial state partons, the initial-state insertion operator is given by Eq. (B5H),

a,a’ as aa’ aa’
K*'(r) = 3> {K™ (@) - Ki% (@)
T, Tu

with the functions K (x) given in Eq. (BIT).

The v; and K7 occurring in Eqs. (B3]) are related to integrals of the Altarelli-Parisi kernels
listed below, Eq. (B3), and read

3 11 2
’Yq:’Yqzéc'F, ng:FCA_g RNy (B.7)
and
Kook = (P ep k= (- oy - Dy (B.8)

respectively. The Altarelli-Parisi kernels emerging in the factorization-scale dependent terms

of Eq. (B4) are

Po(a) = Pi(r) = ¢t L

PP(a) = P(z) = T [o* 4 (1~ a)]

PU(z) = PY%z) = Cp (1 . x2)+

1—=x

Pos(y) — 20,4{(11 )++1_‘C—1+x(1—x>]+5(1—x) {%CA—E RNf}.

— T 3

(B.9)
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The functions K%(z) are explicitly given as

K% (z)=K%x) = 0,

K9(z) = K(z) = P(z)In—" 4+ Cpa,

K9%(z) = K%(z) = P%(z)ln ;x +2Tga(1 — ),

K () = R7(z) CFKlfxml;I -41+@m1;$+u—xﬂ

—5(1 — I)(E) — 7T2)CF s

K99 (:1:)

2a4Klixmlgx)++m1;x(1;x—1+xu—x0]
—6(1 — ) KZ—O - WQ) Cy— %TRNf] : (B.10)

whereas the functions K®(z) read

_%25(1_x)—(1+x)1n(1—x) ;

2

—%wa—x)

Al

H(L%E—1+ﬂ1—@)mQ—mﬂ. (B.11)

Finally, the factorization-scheme dependent terms are given through

Kﬁs(x)

99 __ 1794
KDIS - KDIS

99 __ 1799
KDIS - KDIS
9 __ 1799
KDIS - KDIS
99

KDIS

9 _ 1799
KDIS - KDIS

0,

1 2
CF[+x

1—=x

l1—2 3 9+ bz
In — =+ ,
T 4 4 N

1 —
x+8x(1—x)—1] ,

Tr [(xZ +(1—2)*)In
—Kps »
_2NfKIg)C{S )

= 0. (B.12)






Appendix C Relations for the
evaluation of dual
integrals

C.1 Feynman parameterization

Feynman parameterization usually refers to the following replacement

1 1
- = n—l!/ dz / dr, 6 (1= ﬁ. C.1
A - A, ( ) 0 1 0 ( Z ) ST T A;) (C.1)

This can be used to solve integrals of the structure

o) n 1 o) 1 1
dz = n—l!/ dz/ da:/ dx, 0 T
/O 1.1:]1:24‘@@' ( ) 0 0 ! ( Z ) +ZZ 11’6%)

- (n—2)!/01dx1.../0 dw, (1—sz> leaz)”‘l' (C2)

C.2 Integrals

The following definite integrals have been used to evaluate dual integrals:

! 1 b
/ dr (1 —2)Ha+br)" = —=a%F (1, —61—¢ ——) : (C.3)
0 € a

R S 1) CRel D)
/0 ooy b f (C.4)
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C.3 Hypergeometric functions

The hypergeometric function e.g. in Eq. (EI8) has the following integral representations:

1 1 — )1 1
oF1(1, -1 —€62) = —e/ dt%:—e/ dt
0 (1 —zt)= 0

1 —€
= 1— ¢ 2/ dt L
1
= l+e 1n(1—z)+62/ dt
0
The expansion in powers of € is given by:
+o0
211, -1 —€2)=1+¢€ln(l—2z)—é [Lig(z) + Zek Ligt2
k=1
where the dilogarithm function Lis is
1
dt
Lis(z) = —/ n In(1—at) ,
0

and the polylogarithms Liy1(x) (with £ = 2,3,...) are defined by

Lips1(z) = (/(g__l)m /0 % (Int)" ' In(1—xt) .

(t)flfe

1— 2zt

J.

(C.5)

(C.6)

(C.8)

(C.9)

Other hypergeometric functions required for dual and associated integrals can be obtained

from the following relations:

o1 (a, Bi7;2) = (1—2)"%F (a,v—ﬁ;% i) ,

z—1

z
= (1-2)"%A <ﬁ,7—a;%z_ )

1

= (1—2)" "R (v —a,y—Biv:2) .

In particular, the following functions are used:

2

(C.10)

(C.11)
(C.12)

JFi(1,—61—262) = l+eln(l—z)+ % (0% (1 — 2) + 4Liy(2)) + O(¢*) , (C.13)

1
oy (1, —€;—2€;2) = 1_2(1—§2F1(1,—6;1—26;Z)> )

(C.14)
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