J. reine angew. Math. 747 (2019), 299-353 Journal fiir die reine und angewandte Mathematik
DOI 10.1515/crelle-2016-0012 © De Gruyter 2019

Universal K-matrix for quantum symmetric pairs

By Martina Balagovi¢ at Newcastle upon Tyne and Stefan Kolb at Newcastle upon Tyne

Abstract. Let g be a symmetrizable Kac-Moody algebra and let U, (g) denote the cor-
responding quantized enveloping algebra. In the present paper we show that quantum symmet-
ric pair coideal subalgebras B, s of U, (g) have a universal K-matrix if g is of finite type. By
a universal K-matrix for B s we mean an element in a completion of U, (g) which commutes
with B and provides solutions of the reflection equation in all integrable U, (g)-modules in
category @. The construction of the universal K-matrix for B s bears significant resemblance
to the construction of the universal R-matrix for U, (g). Most steps in the construction of the
universal K-matrix are performed in the general Kac—Moody setting.

In the late nineties T. tom Dieck and R. Hiring-Oldenburg developed a program of rep-
resentations of categories of ribbons in a cylinder. Our results show that quantum symmetric
pairs provide a large class of examples for this program.

1. Introduction

1.1. Background. Let g be a symmetrizable Kac—Moody algebra and 6 : ¢ — g an
involutive Lie algebra automorphism. Let ¥ = {x € g | 8(x) = x} denote the fixed Lie sub-
algebra. We call the pair of Lie algebras (g, £) a symmetric pair. Assume that 6 is of the second
kind, which means that the standard Borel subalgebra b™ of g satisfies dim(#(b+)Nb™+) < co.
In this case the universal enveloping algebra U(¥) has a quantum group analog B¢ s = B (6)
which is a right coideal subalgebra of the Drinfeld—Jimbo quantized enveloping algebra Uy (g),
see [18,22,23]. We call (Uy(g), Be,s) a quantum symmetric pair.

The theory of quantum symmetric pairs was first developed by M. Noumi, T. Sugitani,
and M. Dijkhuizen for all classical Lie algebras in [8,27-29]. The aim of this program was
to perform harmonic analysis on quantum group analogs of compact symmetric spaces. This
allowed an interpretation of Macdonald polynomials as quantum zonal spherical functions.
Independently, G. Letzter developed a comprehensive theory of quantum symmetric pairs for
all semisimple g in [22,23]. Her approach uses the Drinfeld—Jimbo presentation of quantized
enveloping algebras and hence avoids casework. Letzter’s theory also aimed at applications
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in harmonic analysis for quantum group analogs of symmetric spaces [24,25]. The algebraic
theory of quantum symmetric pairs was extended to the setting of Kac—Moody algebras in [18].

Over the past two years it has emerged that quantum symmetric pairs play an impor-
tant role in a much wider representation theoretic context. In a pioneering paper H. Bao and
W. Wang proposed a program of canonical bases for quantum symmetric pairs [3]. They per-
formed their program for the symmetric pairs

(slon.s(gly xgly)) and (sloy+1.5(aly x alyy1))

and applied it to establish Kazhdan—Lusztig theory for the category (@ of the ortho-symplectic
Lie superalgebra osp(2n—+1 | 2m). Bao and Wang developed the theory for these two examples
in astonishing similarity to Lusztig’s exposition of quantized enveloping algebras in [26]. In
a closely related program M. Ehrig and C. Stroppel showed that quantum symmetric pairs for

(alony.aly xgly) and (aloyi1.9ly X gly4q)

appear via categorification using parabolic category O of type D (see [11]). The recent devel-
opments as well as the previously known results suggest that quantum symmetric pairs allow
as deep a theory as quantized enveloping algebras themselves. It is reasonable to expect that
most results about quantized enveloping algebras have analogs for quantum symmetric pairs.

One of the fundamental properties of the quantized enveloping algebra U, (g) is the exis-
tence of a universal R-matrix which gives rise to solutions of the quantum Yang-Baxter equa-
tion for suitable representations of Uy, (g). The universal R-matrix is at the heart of the origins
of quantum groups in the theory of quantum integrable systems [10, 14] and of the applications
of quantum groups to invariants of knots, braids, and ribbons [31]. Let

A Uy(g) = Uy(g) ® Uy(g)

denote the coproduct of Uy (g) and let A°° denote the opposite coproduct obtained by flipping
tensor factors. The universal R-matrix RY of Uy(g) is an element in a completion %0(2) of
Uy(g) ® Uy(g), see Section 3.2. It has the following two defining properties:

(1) In 02/0(2) the element RY satisfies the relation A(u)RY = RY AP () forall u € Uy (q).
(2) The relations

(A®id)(RY) = RELRY,,  (id® A)(RY) = RULRY,

hold. Here we use the usual leg notation for threefold tensor products.

The universal R-matrix gives rise to a family R = (Rps,x) of commutativity isomorphisms
IQM’ N:M®N — N ®M for all category O representations M, N of U,(g). In our con-
ventions one has R u.N = RY oflip m,n Where flipy, n denotes the flip of tensor factors. The
family R can be considered as an element in an extension % ? of the completion U of
Uy(g) ® Uy(g), see Section 3.3 for details. In % @) property (1) of RU can be rewritten as
follows:

(1') In Z @ the element R commutes with A(u) for all u € Uy (g).

By definition the family of commutativity isomorphisms R = (R M,N) is natural in M and N.
The above relations mean that R turns category @ for Uy (g) into a braided tensor category.
The analog of the quantum Yang-Baxter equation for quantum symmetric pairs is
known as the boundary quantum Yang—Baxter equation or (quantum) reflection equation. It
first appeared in I. Cherednik’s investigation of factorized scattering on the half line [6] and in
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E. Sklyanin’s investigation of quantum integrable models with non-periodic boundary condi-
tions [21,33]. In [21, Section 6.1] an element providing solutions of the reflection equation in
all representations was called a ‘universal K-matrix’. Explicit examples of universal K-matrices
for Uy (sl2) appeared in [7, (3.31)] and [20, (2.20)].

A categorical framework for solutions of the reflection equation was proposed by T. tom
Dieck and R. Héring-Oldenburg under the name braided tensor categories with a cylinder twist
[12,34,35]. Their program provides an extension of the graphical calculus for braids and rib-
bons in C x [0, 1] as in [31] to the setting of braids and ribbons in the cylinder C* x [0, 1],
see [12]. It hence corresponds to an extension of the theory from the classical braid group of
type Ay —1 to the braid group of type By . Tom Dieck and Hiring-Oldenburg called the analog
of the universal R-matrix in this setting a universal cylinder twist. They determined a family
of universal cylinder twists for U, (sl2) by direct calculation [35, Theorem 8.4]. This family
essentially coincides with the universal K-matrix in [20, (2.20)] where it was called a universal
solution of the reflection equation.

1.2. Universal K-matrix for coideal subalgebras. Special solutions of the reflection
equation were essential ingredients in the initial construction of quantum symmetric pairs by
Noumi, Sugitani, and Dijkhuizen [8,27-29]. For this reason it is natural to expect that quantum
symmetric pairs give rise to universal K-matrices. The fact that quantum symmetric pairs B g
are coideal subalgebras of U, (g) moreover suggests to base the concept of a universal K-matrix
on a coideal subalgebra of a braided (or quasitriangular) Hopf algebra.

Recall that a subalgebra B of Uy (g) is called a right coideal subalgebra if

A(B) C B ® Uy(g).

In the present paper we introduce the notion of a universal K-matrix for a right coideal sub-
algebra B of Uy (g). A universal K-matrix for B is an element X in a suitable completion %
of U, (g) with the following properties:

(1) In % the universal K-matrix X commutes with all b € B.
(2) The relation

(1.1) AK)=(K®1)-R-(K®1)-R
holds in the completion % ? of Uy (g) ® Uy ().

See Definition 4.12 for details. By the definition of the completion %/, a universal K-matrix
is a family K = (Kps) of linear maps Kps : M — M for all integrable U, (g)-modules in
category (9. Moreover, this family is natural in M. The defining properties (1) and (2) of K
are direct analogs of the defining properties (1°) and (2) of the universal R-matrix RY . The fact
that R commutes with A(K) immediately implies that JK satisfies the reflection equation

R (KD -R-(KQ)=(KQ1)-R-(K®1)-R

in %@ . By (1.1) and the naturality of J a universal K-matrix for B gives rise to the structure
of a universal cylinder twist on the braided tensor category of integrable Uy, (g)-modules in
category (. Universal K-matrices, if they can be found, hence provide examples for the theory
proposed by tom Dieck and Héaring-Oldenburg. The new ingredient in our definition is the
coideal subalgebra B. We will see in this paper that B plays a focal role in finding a universal
K-matrix.
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The notion of a universal K-matrix can be defined for any coideal subalgebra of a braided
bialgebra H with universal R-matrix R € H ® H. This works in complete analogy to the
above definition for B and U,(g), and it avoids completions, see Section 4.3 for details. Fol-
lowing the terminology of [34,35] we call a coideal subalgebra B of H cylinder-braided if it
has a universal K-matrix.

A different notion of a universal K-matrix for a braided Hopf algebra H was previously
introduced by J. Donin, P. Kulish, and A. Mudrov in [9]. Let Rgl € H ® H denote the element
obtained from R¥ by flipping the tensor factors. Under some technical assumptions the uni-
versal K-matrix in [9] is just the element R Rfl € H ® H. Coideal subalgebras only feature
indirectly in this setting. We explain this in Section 4.4.

In a dual setting of coquasitriangular Hopf algebras the relations between the construc-
tions in [9], the notion of a universal cylinder twist [34,35], and the theory of quantum sym-
metric pairs was already discussed by J. Stokman and the second named author in [19]. In
that paper universal K-matrices were found for quantum symmetric pairs corresponding to the
symmetric pairs (slon,s(gly x gly)) and (sloy+1.5(gly x gl q)). However, a general
construction was still outstanding.

1.3. Main results. The main result of the present paper is the construction of a uni-
versal K-matrix for every quantum symmetric pair coideal subalgebra B, s of U, (g) for g of
finite type. This provides an analog of the universal R-matrix for quantum symmetric pairs.
Moreover, it shows that important parts of Lusztig’s book [26, Chapters 4 and 32] translate to
the setting of quantum symmetric pairs.

The construction in the present paper is significantly inspired by the example classes
(slon.s(gly x gly)) and (sloy41.5(aly X gl 4 1)) considered by Bao and Wang in [3].
The papers [3] and [11] both observed the existence of a bar involution for quantum symmetric
pair coideal subalgebras B s in this special case. Bao and Wang then constructed an intertwiner
Y € % between the new bar involution and Lusztig’s bar involution. The element Y is hence an
analog of the quasi R-matrix in Lusztig’s approach to quantum groups, see [26, Theorem 4.1.2].
Similar to the construction of the commutativity isomorphisms in [26, Chapter 32] Bao and
Wang construct a B s-module homomorphism 737 : M — M for any finite-dimensional rep-
resentation M of Uy (sly). If M is the vector representation, they show that 77 satisfies the
reflection equation and they establish Schur-Jimbo duality between the coideal subalgebra and
a Hecke algebra of type By acting on VOV

In the present paper we consider quantum symmetric pairs in full generality and formu-
late results in the Kac—Moody setting whenever possible. The existence of the bar involution

BBy — Bes, x> xP

for the quantum symmetric pair coideal subalgebra B, was already established in [2]. Fol-
lowing [3, Section 2] closely we now prove the existence of an intertwiner between the two
bar involutions. More precisely, we show in Theorem 6.10 that there exists a nonzero element
X € % which satisfies the relation

(1.2) B x=%% forallx € Beg.

We call the element X the quasi K-matrix for Beg. It corresponds to the intertwiner Y in the
setting of [3].
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Recall from [18, Theorem 2.7] that the involutive automorphism 6 : g — g is determined
by a pair (X, 7) up to conjugation. Here X is a subset of the set of nodes of the Dynkin diagram
of g and t is a diagram automorphism. The Lie subalgebra gqx C g corresponding to X is
required to be of finite type. Hence there exists a longest element wy in the parabolic subgroup
Wx of the Weyl group W. The Lusztig automorphism 77,,, may be considered as an element
in the completion % of U, (g), see Section 3. We define

(1.3) K =XET, ! €U

where £ € % denotes a suitably chosen element which acts on weight spaces by a scalar. The
element K’ defines a linear isomorphism

(1.4) Kiy: M —> M

for every integrable U, (g)-module M in category @. In Theorem 7.5 we show that X}, is
a B, s-module homomorphism if one twists the B¢ s-module structure on both sides of (1.4)
appropriately. The element K’ exists in the general Kac-Moody case.

For g of finite type there exists a longest element wg € W and a corresponding family of
Lusztig automorphisms Ty, = (Ty,,m) € % . In this case we define

(1.5) K=%XeT T 1ew.

Wx ~ Wo

For the symmetric pairs (slon, s(gly x gly)) and (slony41,5(gly X gl 1)) the construc-
tion of K coincides with the construction of the B s-module homomorphisms 737 in [3] up to
conventions. The longest element wg induces a diagram automorphism 7 of g and of Uy (g).
Any U, (g)-module M can be twisted by an algebra automorphism ¢ : U, (g) — Uy (g) if we
define u >m = @(u)m for all u € Uy(g), m € M. We denote the resulting twisted module
by M¢. We show in Corollary 7.7 that the element X defines a B s-module isomorphism

(1.6) Ky : M — MT™
for all finite-dimensional Uy (g)-modules M . Alternatively, this can be written as
Kb =19(t(b))K forallb € Beg.

The construction of the bar involution for B, the intertwiner X, and the B s-module
homomorphism K are three expected key steps in the wider program of canonical bases for
quantum symmetric pairs proposed in [3]. The existence of the bar involution was explicitly
stated without proof and reference to the parameters in [3, Section 0.5] and worked out in detail
in [2]. Weiqgiang Wang has informed us that he and Huanchen Bao have constructed X and K},
independently in the case X = @, see [4].

In the final Section 9 we address the crucial problem to determine the coproduct A(K)
in % ® . The main step to this end is to determine the coproduct of the quasi K-matrix X in The-
orem 9.4. Even for the symmetric pairs (slon, s(gly xgly)) and (sloy 1. 5(aly xaly 1)),
this calculation goes beyond what is contained in [3]. It turns out that if Tt = id, then the
coproduct A(K) is given by formula (1.1). Hence, in this case X is a universal K-matrix as
defined above for the coideal subalgebra B.s. If t79 # id, then we obtain a slight general-
ization of properties (1) and (2) of a universal K-matrix. Motivated by this observation we
introduce the notion of a ¢-universal K-matrix for B if ¢ is an automorphism of a braided
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bialgebra H and B is a right coideal subalgebra, see Section 4.3. With this terminology it
hence turns out in Theorem 9.5 that in general X is a t7p-universal K-matrix for B.s. The
fact that Tt9 may or may not be the identity provides another conceptual explanation for the
occurrence of two distinct reflection equations in the Noumi—Sugitani—Dijkhuizen approach to
quantum symmetric pairs.

1.4. Organization. Sections 2-5 are of preparatory nature. In Section 2 we fix notation
for Kac—Moody algebras and quantized enveloping algebras, mostly following [13,15,26]. In
Section 3 we discuss the completion % of U, (g) and the completion 02/0(2) of Uy(g) ® Uy(g).
In particular, we consider Lusztig’s braid group action and the commutativity isomorphisms R
in this setting.

Section 4.1 is a review of the notion of a braided tensor category with a cylinder twist as
introduced by tom Dieck and Hiring-Oldenburg. We extend their original definition by a twist
in Section 4.2 to include all the examples obtained from quantum symmetric pairs later in the
paper. The categorical definitions lead us in Section 4.3 to introduce the notion of a cylinder-
braided coideal subalgebra of a braided bialgebra. By definition this is a coideal subalgebra
which has a universal K-matrix. We carefully formulate the analog definition for coideal sub-
algebras of Uy (g) to take into account the need for completions. Finally, in Section 4.4 we
recall the different definition of a universal K-matrix from [9] and indicate how it relates to
cylinder braided coideal subalgebras as defined here.

Section 5 is a brief summary of the construction and properties of the quantum sym-
metric pair coideal subalgebras B¢ in the conventions of [18]. In Section 5.3 we recall the
existence of the bar involution for B, s following [2]. The quantum symmetric pair coideal sub-
algebra B, s depends on a choice of parameters, and the existence of the bar involution imposes
additional restrictions. In Section 5.4 we summarize our setting, including all restrictions on
the parameters c, s.

The main new results of the paper are contained in Sections 6-9. In Section 6 we prove
the existence of the quasi K-matrix X. The defining condition (1.2) gives rise to an overdeter-
mined recursive formula for the weight components of X. The main difficulty is to prove the
existence of elements satisfying the recursion. To this end, we translate the inductive step into
a more easily verifiable condition in Section 6.2. This condition is expressed solely in terms
of the constituents of the generators of B, and it is verified in Section 6.4. This allows us
to prove the existence of X in Section 6.5. A similar argument is contained in [3, Section 2.4]
for the special examples (slon, s(gly x gly)) and (slony 11, 5(gly X gly41)). However, the
explicit formulation of the conditions in Proposition 6.3 seems to be new.

In Section 7 we consider the element K’ € % defined by (1.3). In Section 7.1 we define
a twist of U, (g) which reduces to the Lusztig action Ty, if g is of finite type. We also record
an additional Assumption (7o) on the parameters. In Section 7.2 this assumption is used in the
proof that X 1,\4 :M — M is a B¢ s-module isomorphism of twisted B, s-modules. In the finite
case this immediately implies that the element K defined by (1.5) gives rise to an B, s-module
isomorphism (1.6). Up to a twist this verifies the first condition in the definition of a universal
K-matrix for Be.

The map £ involved in the definition of K’ is discussed in more detail in Section 8.
So far, the element £ was only required to satisfy a recursion which guarantees that K, is
a B s-module homomorphism. In Section 8.1 we choose £ explicitly and show that our choice
satisfies the required recursion. In Section 8.2 we then determine the coproduct of this specific
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& considered as an element in the completion %/ . Moreover, in Section 8.3 we discuss the action
of &£ on U, (g) by conjugation. This simplifies later calculations.

In Section 9 we restrict to the finite case. We first perform some preliminary calculations
with the quasi R-matrices of U;(g) and Uy (gx). This allows us in Section 9.2 to determine
the coproduct of the quasi K-matrix X, see Theorem 9.4. Combining the results from Sections
8 and 9 we calculate the coproduct A(K') and prove a tto-twisted version of formula (1.1) in
Section 9.3. This shows that K is a ttg-universal K-matrix in the sense of Definition 4.12.

Acknowledgement. The authors are grateful to Weigiang Wang for comments and
advice on referencing.

2. Preliminaries on quantum groups

In this section we fix notation and recall some standard results about quantum groups.
We mostly follow the conventions in [26] and [13].

2.1. The root datum. Let / be a finite set and let A = (a;;); je; be a symmetrizable
generalized Cartan matrix. By definition there exists a diagonal matrix D = diag(e; |i € 1)
with coprime entries €; € N such that the matrix DA is symmetric. Let (§, IT, ITY) be a min-
imal realization of A as in [15, Section 1.1]. Here I1 = {o; |i € I} and 1Y = {h; |i € I}
denote the set of simple roots and the set of simple coroots, respectively. We write g = g(A4) to
denote the Kac-Moody Lie algebra corresponding to the realization (h, IT, ITV) of A as defined
in [15, Section 1.3].

Let Q = ZII be the root lattice and define O+ = NoI1. For A, u € h* we write A >
ifA—pe QT \{0}.Forpu=7Y,mja; € QF letht(n) = Y_; m; denote the height of 1. For
any i € I the simple reflection o; € GL(§H*) is defined by

oi(a) =a —alh;);.

The Weyl group W is the subgroup of GL(H*) generated by the simple reflections o; for all
i € I.For simplicity set r4 = |I| — rank(A). Extend ITV to a basis

MY, =MNYU{ds|s=1,....ra}

ext
of b and set QY = ZI1Y,,. Assume additionally that «; (ds) € Z foralli € I,s =1,...,r4.
By [15, Section 2.1] there exists a nondegenerate, symmetric, bilinear form (-,-) on §j such
that
a;(h)

i

(hi. h) =

forallh e b,i €I, (dm,dy) =0 foralln,me{l,...,rq}.

Hence, under the resulting identification of §) and §* we have h; = «; /¢;. The induced bilinear
form on h* is also denoted by the bracket (-,-). It satisfies («;, ;) = €;a;; forall i, j € I.
Define the weight lattice by

P={eh"|AQc) CZ}.

Remark 2.1. The abelian groups Y = Q) and X = P together with the embeddings
I - Y,i— hjand I — X,i — «; form an X -regular and Y -regular root datum in the sense
of [26, Section 2.2].
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Define ; € h* by Bi(h) = (d;, h), set
Mexe =TMU{B; | i =1,...,r4},
and let Qex = ZTley. Then
PY ={heb| Qe(h) S Z}

is the coweight lattice. Let w,” fori € I denote the basis vector of PV dual to ;. Let B denote
the r4 x |I|-matrix with entries o (d;). Define an (r4 + |]) x (r4 + |I|) matrix by

(A D~'B!
ext — B 0 .

By construction, one has det(Aex) # 0. The pairing (-, - ) induces Q-valued pairings on P x P
and P x PV. The above conventions lead to the following result.

Lemma 2.2. The pairing (-, -) takes values in mZ on P x Pandon P x PV.

2.2. Quantized enveloping algebras. With the above notations we are ready to intro-
duce the quantized enveloping algebra U, (g). Let d € N be the smallest positive integer such
that m € Z.Lletq 1/d pe an indeterminate and let K a field of characteristic zero. We will
work with the field K(¢'/?) of rational functions in ¢'/¢ with coefficients in K.

Remark 2.3. The choice of ground field is dictated by two reasons. Firstly, by Lem-
ma 2.2 it makes sense to consider q(k’“) as an element of K(ql/ 4y for any weights A, u € P.
This will allow us to define the commutativity isomorphism R, see Example 3.4 and for-
mula (3.8). Secondly, in the construction of the function £ in Section 8 we will require factors
of the form q“wiv )forA € Pandi € I, see formula (8.1). Again, Lemma 2.2 shows that such
factors lie in K(g 1/dy,

Following [26, Section 3.1.1] the quantized enveloping algebra U, (g) is the associative

K (g'/9)-algebra generated by elements E;, F;, Kj, foralli € I and h € 0., satisfying the
following defining relations:

(i) Ko =1and K, Ky = K4y forallh,h’ € QY.
(i) KpE; = q*MWE; Ky, foralli € I,he QY.
(iii) KpF; =q % WF; Ky, foralli € I,h e QY.
K-
(V) EiFj — Fj E; = 8%/ = I forall i € I where ¢; = ¢ and K; = K.,
(v) the quantum Serre relations given in [26, Section 3.1.1 (e)].

We will use the notation ¢; = ¢ and K; = K¢, 5, all through this text. Moreover, for

MZZniai €0

iel

K, =[]k

iel

we will use the notation
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We make the quantum-Serre relations (v) more explicit. Let | 1_n“l'-i l4; denote the g;-binomial
coefficient defined in [26, Section 1.3.3]. For any i, j € I define a non-commutative polyno-
mial S;; in two variables by

1—a;;
Sii(x.y) = Zj(—l)” {1 —aij} X1y
n=0 " qi
By [26, Section 33.1.5] the quantum Serre relations can be written in the form
Sij(Ei, Ej) = S8;j(F;,Fj) =0 foralli,j el.
The algebra U, (g) is a Hopf algebra with coproduct A, counit ¢, and antipode S given by
2.1 AE)=E®1+K ®E;, E)=0, S(E)=-KE,
A(F)=F®K '+1®F. &F)=0, S(F)=-FK;.
A(Kp) = K ® Kp, e(Kp) =1, S(Kp) = K_p

foralli € I, h € QF,. We denote by Uy (g’) the Hopf subalgebra of Uy (g) generated by the
elements E;, F;, and Kl-il foralli € I.Moreover, foranyi € I let Uy, (sl2); be the subalgebra
of Uy(g) generated by E;, F;, K; and K, 1. The Hopf algebra Uy, (sl); is isomorphic to
Uy, (s12) up to the choice of the ground field.

As usual we write U1, U™, and U° to denote the K (g'/¢ )-subalgebras of U, (g) gener-
atedby {E; |i € I},{F; |i € I},and {K}, | h € QY,}, respectively. We also use the notation
UZ =U U%and US = U~U" for the positive and negative Borel part of U, (g). For any
U°-module M and any A € P let

My ={me M|Kp>m=qg*Pmforallh e QY,}

denote the corresponding weight space. We can apply this notation in particular to U™, U™,
and U, (g) which are U 9_modules with respect to the left adjoint action. We obtain algebra
gradings

2.2) vt= @ ur. vT= @ U U =P U,

neQ+ neQ+ neQ

2.3. The bilinear pairing (-,-). Let k be any field, let A and B be k-algebras, and
let (-,-) : A x B — k be a bilinear pairing. Then (-,-) can be extended to A®" x B®" by
setting

(®iai. ®;bi) = [ [{ai.bi).

i=1

In the following we will use this convention for k = K(¢'/4),A=U=,B=UZ,andn =2
and 3 without further remark.
There exists a unique K (¢'/4)-bilinear pairing

(2.3) (-,-): USxUZ > K(¢"?)
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such that forall x,x" € U=, y,y' e U=, g,h € QY. and i, j € I the following relations hold

(2.4) (v, xx") = (A(),x' ®x), (yy'.x)=(y @), Alx)),
—1

(2.5) (Kg. Kp) =q~ &M, (Fi, Ej) = 5ijq. e

(2.6) (Kp. Ei) =0, (Fi, Kp) = 0.

Here we follow the conventions of [13, Section 6.12] in the finite case. In the Kac—Moody
case the existence of the pairing (-,-) follows from the results in [26, Chapter 1]. Relations
(2.4)—(2.6) imply that for all x € UT,yeU ,andg,h e Q.. one has

2.7) (yKg.xKp) = ¢~ ©M(y,x).

The pairing (-,-) respects weights in the following sense. For w,v € QT with p # v the
restriction of the pairing to UZ, x U lj‘ vanishes identically. On the other hand, the restric-
tion of the paring to UZ, x U, lj' is nondegenerate for all ;+ € Q. The nondegeneracy of this
restriction implies the following lemma, which we will need in the proof of Theorem 9.4.

Lemma24. Let X,X' € HMGQ‘*‘ UTK, ® U/j'. If

YRz, X)={(y®z,X') forally,ze U,
then X = X'.

Proof.  'We may assume that X’ = 0. Write X =} .o+ Xy, with

(M) 6)
Xy=Y XK, ®X) eUTK,®U}.
i

Consider X,, = Y, X;(le) ®XI(L2} eUT QU Forany ye U™, pe Q% and z € U, we
then have

2.
0=(y®zX)=(y®zX) 2 (y®zX)).

By the nondegeneracy of the pairing on U /ir x U, it follows that X /fb = 0. Consequently,
X,, =0forall x € O, and hence X = 0 as claimed. m)

2.4. Lusztig’s skew derivations r; and ;r. Let’fbe the free associative K (q1/¢)-alge-
bra generated by elements f; for all i € I. The algebra 'f is a U °-module algebra with

Ky »>f = qai(h)fi.
As in (2.2) one obtains a Q T -grading
t= P 1.
ne@+t

The natural projection 'f — U™, f; — E; respects the QT -grading. There exist uniquely de-
termined K (¢'/¢)-linear maps ;r, r; : 'f — 'f such that

(2.8) ri(f) =8, ri(xy) = q @ r(x)y + xri (y),
(2.9) ir(t) =87, ir(xy) = ir(x)y + ¢ M x;r(y)
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for any x € 'f,, and y € 'f,.. The above equations imply in particular that ;7(1) = 0 = r;(1).
By [26, Section 1.2.13] the maps ;r and r; factor over U T, that is there exist linear maps
ir,r; : UT — U™, denoted by the same symbols, which satisfy relations (2.8) and (2.9) for all
xeU lj' ,y € U and with f; replaced by E;;. The maps r; and ;r on U * satisfy the following
three properties, each of which is equivalent to the definition given above.

(1) Forallx e UT and all i € I one has

(2.10) [x, F;] = (ri(x)K; — K tir(x)),

1

1
(gi —q7 ")
see [26, Proposition 3.1.6].

(2) Forall x € U,f one has

(2.11) AX)=x®1+ Y ri(x)K; ® E; + (rest);.
i
Alx) = K, ® x + Z EiK;—a; ®ir(x)+ (rest),

1

where (rest)1 € Y-y ¢nugoy Upt—a Ka ® Uy and (rest)z € Y-y anugoy U Ku—e ® U,
see [13, Section 6.14].

(3) Forallx e U™,y e U, andi € I one has
(2.12) (Fiy,x) = (Fi, Ei)(y,ir(x)), (yFi,x) = (Fi, Ei){y,ri(x))

see [26, Section 1.2.13]

Property (3) and the original definition of r; and ;r as skew derivations are useful in
inductive arguments. Properties (1) and (2), on the other hand, carry information about the
algebra and the coalgebra structure of Uy (g), respectively.

Property (3) above and the nondegeneracy of the pairing ( -, - ) imply that for any x € U J
with © € QT \ {0} one has

(2.13) x=0 < ri(x) =0foralli € I < ;r(x)=0foralli €1,

see also [26, Lemma 1.2.15]. Moreover, property (2) and the coassociativity of the coproduct
imply that for any i, j € I one has

(214) Ij O;r = ;rorj,

see [13, Lemma 10.1]. Note that this includes the case i = j.

Similarly to the situation for the algebra U™, the maps r;,;r : 'f — 'f also factor over
the canonical projection 'f — U™, f; — F; which maps 'f,, to UZ, forall p € Q. The maps
ri,ir : U™ — U™ satisfy (2.8) and (2.9) for all x € U__M, y € UZ, with f; replaced by Fj;.
Moreover, the maps r;, ;¥ : U~ — U™ can be equivalently described by analogs of properties
(1)—(3) above. For example, in analogy to (3) one has

(2.15) (v, Eix) = (Fi, Ei){(ir(y),x), (y,xEi) = (Fi, E;){ri(y), x)

forallx e U™,y e U ,andi € I.
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As in [26, Section 3.1.3] let 0 : Uy(g) — Uy(g) denote the K(g'/4)-algebra antiauto-
morphism determined by

(2.16) o(E;)=E;, o(F)=F;,, o(Ky,)=K_, foralli el,heQ)

ext®

The map o intertwines the skew derivations r; and ;r as follows:
2.17) oor; =;roo foralli €.
Recall that the bar involution on Uy (g) is the K-algebra automorphism
I Ug(g) = Uy(g), x+—>X
defined by
(2.18) ¢4 =q7" Ei=E. F=F. K=K

foralli € I, h € QY. The bar involution on Uy (g) also intertwines the skew derivations r;
and ; r in the sense that

(2.19) ir(x) = q("‘i’”_“f)r,- (x) forall x € UJ, weQt,

see [26, Lemma 1.2.14].

3. The completion % of U, (g)

It is natural to consider completions of the infinite-dimensional algebra U, (g) and related
algebras. The quasi R-matrix for Uy (g), for example, lies in a completion of U~ ® U™, and
the universal R-matrix lies in a completion of U= ® U=, see Section 3.3. Similarly, the uni-
versal K-matrix we construct in this paper lies in a completion % of Uy (g). This completion is
commonly used in the literature, see for example [32, Section 1.3]. Here, for the convenience of
the reader, we recall the construction and properties of the completion % in quite some detail.
This allows us to introduce further concepts, such as the Lusztig automorphisms, as elements
of % . 1t also provides a more conceptual view on the quasi R-matrix and the commutativity
isomorphisms.

3.1. The algebra 7. Let Oi, denote the category of integrable U, (g)-modules in
category (. Recall that category @ consists of U, (g)-modules M which decompose into finite-
dimensional weight spaces M = @D, . p M, and on which the action of U™ is locally finite.
Moreover, the weights of M are contained in a finite union | J; (A; — NoIT) for some A; € P.
Objects in Ojy are additionally locally finite with respect to the action of Uy, (sl2); for all
i € I. Simple objects in Ojy are irreducible highest weight modules with dominant integral
highest weight [26, Corollary 6.2.3]. If g is of finite type, then Oj, is the category of finite-
dimensional type 1 representations.

Let Vect be the category of vector spaces over K(g!/4). Both Vect and Ojy are tensor
categories, and the forgetful functor

For : Oy — Vect

is a tensor functor. Let % = End(For) be the set of natural transformations from For to itself.
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The category Uiy is equivalent to a small category and hence 7% is indeed a set. More explicitly,
elements of %/ are families (¢ar)areob(0,,) Of vector space endomorphisms

oM For(M) — For(M)
such that the diagram
For(M) 22 For(M)
%r(W)l l%r(w
For(N) -2 For(N)
commutes for any U, (g)-module homomorphism  : M — N. Natural transformations of
For can be added and multiplied by a scalar, both operations coming from the linear struc-

ture on vector spaces. Composition of natural transformations gives a multiplication on %
which turns % into a K(¢'/¢)-algebra.

Example 3.1. The action of U, (g) on objects of Ojy; gives an algebra homomorphism
Uy(g) — % which is injective, see [26, Proposition 3.5.4] and [13, Section 5.11]. We always
consider Uy (g) a subalgebra of % .

Example 3.2. Let UT = HMEQ"‘ UJ and let (X,),eo+ € UT. Let M € Ob(Oin)
and m € M. As the action of U™ on M is locally finite there exist only finitely many . € Q™
such that X, m # 0. Hence the expression

3.1) S Xm

is well defined. In this way the element (X,),co+ € 61 defines an endomorphism of For,
and we may thus consider U™ as a subalgebra of %/. We sometimes write elements of U™

additively as
X= > X.
ne@+t

In view of (3.1) this is compatible with the inclusions UT C Ut € %.

Example 3.3. Leté: P — K(ql/d) be any map. For M € Ob(Oj,) define a linear
map &y : M — M by &y (m) = E(A)m for all m € M. Then the family (§a7)preob(0,,) 19
an element in % . By slight abuse of notation we denote this element by & as well.

Lusztig showed that % contains a homomorphic image of the braid group correspond-
ing to W. For any M € Ob(Uiy) and any i € [ the Lusztig automorphism Tjpy : M — M is
defined on m € M, with A € P by

G2 Tum= 3 0 EOFEVEOm.

a,b,c>0
a—b+c=A(h;)

The family 7; = (7; ) defines an element in %/. By [26, Proposition 5.2.3] the elements T;
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of %/ are invertible with inverse Ti_1 = (T,-;ll) given by

Tl';; (m) — Z (—l)bqlqc_bF}(a)El-(b)Fl-(C)m-
a,b,c>0
a—b+c=A(h;)

By [26, Section 39.43] the elements 7; fori € I satisfy the braid relations

TTT;...=TiT;T; ...

m;; factors m;; factors

where m;; denotes the order of 0;0; € W. Hence, for any w € W there is a well-defined ele-
ment Ty, € % given by

Tw :’TilTiz---’Tik

if w = 04,04, ...0j, is areduced expression.

We also use the symbol 7; for i € I to denote the corresponding algebra automorphism
of Uy(g) denoted by Tl./”l in [26, Section 37.1]. This is consistent with the above notation,
in the sense that for any u € Uy (g), any M € Ob(Oiy), and any m € M we have

Tipe(um) = T; (u) Tipg (m).

Hence T;, as an automorphism of Uy (g), is nothing but conjugation by the invertible element
T; € 7% . In this way we obtain automorphisms T, of U, (g) forallw € W.
Furthermore, the bar involution for Uy(g) intertwines 7; and Tl._l. More explicitly,
foru € U,f one has
: — hi) ,(w.0ti) p—1 (37
Ti(u) = (=) 0qUed T ),

see [26, Section 37.2.4]

3.2. The coproduct on %Z. To define a coproduct on % consider the functor
For® : Opy x Oy — Vect, (M,N) — For(M @ N) = For(M) ® For(N),
(f.8) = For(f ®g).

Let 02/0(2) = End(For®) denote the set of natural transformations from For® to itself. Again,
@/0(2) is an algebra for which the multiplication - is given by composition of natural transfor-
mations. The map

iDwoU - UP, (om) ® (Wn) — (oM ® YN)

is an injective algebra homomorphism. However, it is not surjective, as the following example
shows.

Example 3.4. For M, N € Ob(Oj,) define a linear map
kMmN :MON —MQN, m®n|—>q(M’”)m®n ifme My, andn € N,.

The collection k = (kp1,N )M, N eob(0,,) lies in %0(2). However, one can show that « is not of
the form )y _, f; ® g; for any n € N and any collection fj, g; € % . Hence k does not lie in
the image of the map i@ described above.
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The element « is an important building block of the universal R-matrix for Uy (g), see
Section 3.3. For k to be well defined the ground field needs to contain ¢ ***) for all j1,v € P.
This gives one of the reasons why we work over the field K(g/9).

Any natural transformation ¢ € % can be restricted to all For(M QN ), M, N € Ob(Oiny).
Moreover, restriction is compatible with composition and linear combinations of natural trans-
formations. Hence we obtain an algebra homomorphism

Ay U — U2, (¥M) M eob(O) > (OMRN) M, N cOb(O4) -

We call Ay the coproduct of 7. The restriction of Ay to Uy (g) coincides with the coproduct
of Uy (g) from Section 2.2. For this reason we will drop the subscript %/ and just denote the
coproduct on % by A.

We would also like to consider families of linear maps flipping the two tensor factors by
a similar formalism. To that end consider the functor

For®P : i x Ot — Vect, (M, N) > For(N ® M) = For(N) @ For(M),

(f.8) = For(g ® f).
Define 02/1(2) = Hom(For®, For®°P). For M, N € Ob(Oin) let

ﬂipM,N:M®N—>N®M, mnt—nQm

denote the flip of tensor factors. Then flip = (flipps 5 ) am, ¥ cob(0,,,) 1S an element of ?/1(2). The
direct sum

1@ =u® o u®

is a Z,-graded algebra where multiplication - is given by composition of natural transforma-
tions. This is the natural algebra for the definition of the commutativity isomorphisms in the
next subsection.

3.3. Quasi R-matrix and commutativity isomorphisms. Let 1 € Q" and let {b,,;}
be a basis of UZ),. Let {b,'} be the dual basis of U lj' with respect to the pairing (2.3). Define

i
The element R/, is independent of the chosen basis {b,,; }. The quasi R-matrix
R= > Ry,
neQ+

gives a well-defined element %0(2). Indeed, for M, N € Ob(Oiy) only finitely many summands
R,, act nontrivially on any element of M ® N.

Remark 3.5. The element R € %0(2) coincides with the quasi-R-matrix defined in
[26, Section 4.1.4] and in [13, Section 7.2] in the finite case. Those references use the sym-
bol ® for the quasi-R-matrix, but we change notation to avoid confusion with the involutive
automorphism ® : §h* — §* defined in Section 5.1.
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The quasi R-matrix has a seicond characterization in terms of the bar involution (2.18)
of Uy (g). Define a bar involution on Uy (g) ® Uy(g) by

URV=URQD.

By [26, Theorem 4.1.2] the quasi-R-matrix is the uniquely determined element
R= Y R,e [[ vU,®Uf
ne@+t ueQt
with R, € UZ, ® U,;f and Ry = 1 ® 1 for which
(3.3) A@)R = RA(u) forallu € Uy(g).
Moreover, R is invertible, with

(3.4) R7!' =R

Remark 3.6. If g is of finite type, then the quasi-R-matrix R can be factorized into
a product of R-matrices for sl,. Choose a reduced expression wg = 0;, .. .0o;, for the longest
element wo of W.For j = 1,...,f sety; = 0j,0i, ...0i;_, («;;) and define

(35) Eyj = Til Tiz cee Tij_l(Eij)v ij = Ti1 Tiz cee Tij_l (Flj)

Then {y1,...,v:} is the set of positive roots of g, and (3.5) are the root vectors used in the
construction of the PBW basis corresponding to the chosen reduced expression for wg. For
j =1,...,t define

(Qij - qi;l)r
[rlg; !

Lj

(3.6) RUT — Z(_l)rq;r(r—l)/l

r>0

K@k,

andfori € I set R; = RUTif y; = «;. By [13, Remark 8.29] one has

3.7) R = RU. Rgl=11_. ... R2. RO

The quasi-R-matrix R and the transformation « defined in Example 3.4 give rise to
a family of commutativity isomorphisms. Define

(3.8) R=R-« ! flip
in % @ By [26, Theorem 32.1.5] the maps
(3.9) Ryn:M®N - N®M

are isomorphisms of Uy (g)-modules for all M, N € Ob(O;y). Moreover, the isomorphisms
R, N satisfy the hexagon property

Ry neon' = (idy ® Ry n)(Ry.n ®idyr),

f(’M@M/,N = (ﬁM,N ® idpr)(idyr ® I%M/,N’)
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for all M, M’, N, N" € Ob(Oiy), see [26, Section 32.2]. This implies that @, is a braided
tensor category as defined for example in [17, Section XIII.1.1].

Remark 3.7. In the construction ([26, Chapter 32]) of the commutativity isomorphisms
IQM, N it is assumed that g is of finite type. Moreover, Lusztig defines the commutativity iso-
morphisms on tensor products of integrable weight modules. Lusztig’s arguments extend to the
Kac—Moody case if one restricts to category (9. We retain the assumption of integrability so
that the Lusztig automorphisms 7; 34 given by (3.2) are well defined. The restrictions imposed
by R M, N and T; s force us to work with the category Oiy.

It follows from the definitions of the completion %/ and the coproduct A : % — U @)
that in % ®) one has

(3.10) R-A(w) = Aw)-R forallu e %.

In the proof of the next lemma we will use this property for u = 7;. Moreover, by [26, Propo-
sition 5.3.4] the Lusztig automorphisms 7; € % satisfy

(3.11) AT) =T, @T; - R

where R; was defined just below (3.6). To generalize the above formula we recall the following
well-known lemma, see for example [5, Proposition 8.3.11]. We include a proof to assure that
we have the correct formula in our conventions. Recall that for g of finite type wo € W denotes
the longest element. Define, moreover, Ry; = flip- R - flip € %0(2).

Lemma 3.8. Assume that g is of finite type. Then the relations

(3.12) A(Tywy) = Twg ® Twy - R,
(3.13) A(Type) = Ty ® Ty -1 - Ry -1
hold in Uy .

Proof. First observe that equations (3.12) and (3.13) are equivalent. Indeed, equation
(3.10) for u = Ty,, implies that equation (3.12) is equivalent to

R A(Tyy) = k™1 -flip - Ty @ Ty

The inverse of the above equation is (3.13). It remains to verify that (3.13) holds. Applying the
equivalence between (3.12) and (3.13) to (3.11) one obtains

AT =TT k- Ring k™!
where R;,; = flip - R; - flip. Hence for T3y, = T;, T, . .. T;, one has
-1 -1 -1 -1
A(Tyy) = AT ) - AT ) - A7)
=T, @ T, ke Rigy o T @ T ok Ry 0
-1 -1 t t—1 2 1 -1
= Ty @ Ty, ”“R[zg'Rgl ]"'Rgl]'Rgl] K

where RY! = flip - RUT . flip. By (3.7) one obtains relation (3.13). O
21 p p. by
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4. Braided tensor categories with a cylinder twist

As explained in Section 3.3 the commutativity isomorphisms (3.9) turn Oj, into
a braided tensor category. For any V' € Ob(Ujy) there exists a graphical calculus for the action
of R on V®" in terms of braids in C x [0, 1], see [17, Corollary XIII.3.8]. If g is finite dimen-
sional, then Oy has a duality in the sense of [17, Section XIV.2] and there exists a ribbon ele-
ment which turns Qi into a ribbon category as defined in [17, Section XIV.3.2]. The graphical
calculus extends to ribbon categories, see [17, Theorem XIV 5.1] also for original references.

In [34] T. tom Dieck outlined a program to extend the graphical calculus to braids or rib-
bons in the cylinder C* x [0, 1]. The underlying braid group corresponds to a Coxeter group of
type B. In the papers [12,34,35] tom Dieck and R. Haring-Oldenburg elaborated a categorical
setting for such a graphical calculus, leading to the notion of tensor categories with a cylinder
braiding. In the present section we recall this notion. In Section 4.2 we will also give a slight
generalization which captures all the examples which we obtain from quantum symmetric pairs
in Section 9.3. These examples are determined by a coideal subalgebra of the braided Hopf
algebra U, (g). Cylinder braiding in this setting naturally leads to the notion of a cylinder-
braided coideal subalgebra of a braided bialgebra H which we introduce in Section 4.3. The
key point is that a cylinder-braided coideal subalgebra of H has a universal K-matrix which
provides solutions of the reflection equation in all representations of H .

4.1. Cylinder twists and the reflection equation. To define cylinder twists, let
(A,®,1,a,l,r) be a tensor category as defined in [17, Definition XI.2.1]. Let 8 be another
category and assume that there exists a functor * : 8 x A — B which we write as

(M,N)— M xN, (fig)— f=x*xg

on objects M € Ob(B), N € Ob(+) and morphisms f, g in B and 4, respectively. The func-
tor * is called a right action of # on B if there exist natural isomorphisms « and p with

apm NN (M xN)«* N — M« (NQ®N') for M € Ob(B), N, N' € Ob(A),
oM - MxI - M for M € Ob(B)

which satisty the pentagon and the triangle axiom given in [34, (2.1), (2.2)]. A category B
together with a right action of 4 on B is called a right A-module category.

Example 4.1. As seen in Section 3.3, the category 4 = iy is a braided tensor cate-
gory. Let B C U, (g) be a right coideal subalgebra, that is a subalgebra satisfying

A(B) € B ® Uy(g).
Let B be the category with Ob(B) = Ob(Uiy) and Homg (M, N) = Homp(M, N) for all
M, N € Ob(B). Then B is a right A-module category with x givenby M * N = M ® N.

From now on, following [34], we will consider the following data:

(1) (A, ®,1,a,l,r, c)isabraided tensor category with braidingcyyy : M @ N - N QM
for all M, N € Ob(A).

(2) (B, *,a, p) is aright A-module category.
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(3) s isasubcategory of 8 with Ob(+4) = Ob(B). In other words, Hom 4 (M, N) is a subset
of Homg (M, N) for all M, N € Ob(A) = Ob(B).

(4) =, o, prestrict to ®, a, r on A X A.

We call (8, 4) a tensor pair if the above conditions (1)—(4) are satisfied. By condition (3) there
exists a forgetful functor

?01’2:%—)58.

Definition 4.2. Let (8, #) be a tensor pair. A natural transformation
t = (IM)Meob(A) ff‘forg — ?or‘g;
is called a B-endomorphism of A. If 137 : 3701"1%; (M) — 370;"1%; (M) is an automorphism for all
M € Ob(A), then ¢ is called a B-automorphisms of .
In other words, a B-endomorphism of 4 is a family ¢ = (fp7) preob(s4) Of morphisms

tm € Homg (M, M) such that

4.1) inof = foty
forall f € Homy (M, N).

Example 4.3. The pair (8, 4) from Example 4.1 is a tensor pair. In this setting
a B-endomorphism of Oy, is an element t € %/ which commutes with all elements of the

coideal subalgebra B C % . In other words, the maps ¢y : M — M are B-module homomor-
phisms for all M € Ob(Oiny).

The following definition provides the main structure investigated by tom Dieck and
Hiring-Oldenburg in [12, 34, 35].

Definition 4.4 ([34]). Let (B, 4) be a tensor pair. A cylinder twist for (8B, #) consists
of a B-automorphism 7 = (far) peon(4) Of A such that

(4.2) tMmeN = (tm * IN)enm (N * Im)em, N
for all M, N € Ob(4A) = Ob(B).

The definition of a cylinder twist in [34] involves a second equation. This equation, how-
ever, is a consequence of (4.2). This was already observed in [34, Proposition 2.10].

Proposition 4.5. Let (B, A) be a tensor pair with a cylinder twist (tpr) pmeob(A)- Then
the relation

(4.3) (tm * IN)enm (N * Inp)em, N = N m (N * Ia)em vt * 1)
holds for all M, N € Ob(A).
Proof. As cy,p is a morphism in +, relation (4.1) implies that

IM®N ©CN,M = CN.M CIN®M -

If one inserts relation (4.2) into both sides of the above equation, one obtains equation (4.3). O
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In [35] equation (4.3) is called the four-braid relation. Here we follow the mathematical
physics literature [21] and call (4.3) the reflection equation. Equation (4.2) is know as the
fusion procedure, see [21, Section 6.1], as it allows us to fuse the two solutions #ps and ¢y
of the reflection equation for M and N, respectively, to a new solution #j;gn for the tensor
product M ® N.

4.2. Twisted cylinder twists. Let (8B, 4) be a tensor pair. To cover the examples con-
sidered in the present paper in full generality, we introduce a slight generalization of tom
Dieck’s notion of a cylinder twist for (8, #4). This generalization involves a second twist which
suggests the slightly repetitive terminology.

Lettw : A — 4 be braided tensor equivalence given by

M MY, f '™ e Hom(M™ N'™) forall M, N € Ob(4A), f € Hom(M, N).

This means that tw is a braided tensor functor as defined in [17, Definition XIII.3.6] and an
equivalence of categories. A family ¢ = (far)preob(4) of morphisms 737 € Homg (M, M'™)
is called a 8-t w-endomorphism of A if

4.4) tyof=f"otm
for all f € Homy (M, N). In other words, a B-fw-endomorphism of 4 is a natural transfor-

. .7, B 7. B
mation ¢ : fforA —>J+0r=Aotw.

Definition 4.6. Let (B, 4A) be a tensor pair and tw : A — A a braided tensor equiv-
alence. A tw-cylinder twist for (B, #) consists of a B-fw-automorphism # = (fa7) preob(A)
of # such that

4.5) IMQN = (ZM * thw)CNtw,M(tN * IM)CM,N
for all M, N € Ob(A) = Ob(B).

Let (8B, #4) be a tensor pair with a fw-cylinder twist. The relation 6‘5\}0 M = CNtw pMrw
and (4.4) imply that

IMQN OCN,M = CNtw ptw OINQM -

As in the proof of Proposition 4.5 one now obtains
(4.6) (l‘M * thw)CNtw,M(l‘N * IM)CM,N = CNtw’Mtw(tN * lMtw)CMzw,N(tM * IN).

Example 4.7. Consider the setting of Example 4.1. Let ¢ : U;(g) — Uy(g) be a Hopf
algebra automorphism. For any M € Ob(Ojy) let M ¢ be the integrable representation with left
action e, given by u e, m = @(u)m forallu € Uy(g), m € M. By [36, Theorem 2.1] one has
e(UT) =U" and (U®) = U and hence M¥ € Ob(O;n). Moreover, as ¢(U°) = U° the
map ¢ induces a group isomorphism ¢gp : P — P. We assume additionally that ¢p is an isom-
etry, that is (pp (1), pp (1)) = (A, w) for all A, . € P. Then one obtains an auto-equivalence
of braided tensor categories

tw : Oint = Oine
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given by tw(M) = M? and tw(f) = f. In this case relations (4.5) and (4.6) become

4.7) tmeN = (tn ® DRyo p(tn ® DRy N,

(4.8) (tm ® DRyo p(tn ® DRy, N = Ryope(tn ® DRyo n(ty @ 1),
respectively, for any M, N € Ob(Oiy).

4.3. Cylinder-braided coideal subalgebras and the universal K-matrix. We can for-

malize Examples 4.1, 4.3, and 4.7 in the setting of bialgebras and their coideal subalgebras. For
the convenience of the reader we recall the relevant notions in the setting of the present paper.

Definition 4.8 ([17, Definition VIII.2.2]). A bialgebra H with coproduct
Ay H—-> HQ®H

is called braided (or quasitriangular) if there exists an invertible element R € H ® H such
that the following two properties hold:

(1) For all x € H one has
(4.9) AP (x) = (RT)'Ap(x)RY

where AOHP =flipo Ay : H - H ® H denotes the opposite coproduct.

(2) The element R satisfies the relations
(4.10) (An ®@idy)(RY) = REARE,  (idy ® An)(RY) = R RYE
where we use the usual leg-notation.

In this case the element R¥ is called a universal R-matrix for H.

Let H be a braided bialgebra with universal R-matrix RH = Zl- it € H® H. In
this situation the category 4 = H-mod of H-modules is a braided tensor category with braid-
ing

4.11) Ny MAN>N@M, m@n> Y sin®tim

1

for all M, N € Ob(+), see [17, Section VIIL.3].

Remark 4.9. The conventions in Definition 4.8 slightly differ from the conventions
in [17]. The reason for this is that following [26] we use the braiding R - kL. flip for Oy and
hence the braiding R o flip for H-mod. To match conventions observe that R in Defini-
tion 4.8 coincides with Ry in [17, Definition VIII.2.2].

Let B be a right coideal subalgebra of H. As in Example 4.3 define 8 to be the cate-
gory with Ob(8B) = Ob(4A) and Homg (M, N) = Hompg (M, N) for all M, N € Ob(+). Then
(8B, #A) is a tensor pair. For any bialgebra automorphism ¢ : H — H define

R = (id ® p)(RT).

In analogy to the notion of a universal R-matrix the following definition is natural.
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Definition 4.10. Let H be a braided bialgebra with universal R-matrix R ¢ H @ H
and let ¢ : H — H be an automorphism of braided bialgebras. We say that a right coideal
subalgebra B of H is ¢-cylinder-braided if there exists an invertible element X € H such that

(4.12) Kb =¢@pb)K foralldbe B,
(4.13) A(K) = (K @ DRTY(1 @ X)RE.

In this case we call KX a g-universal K-matrix for the coideal subalgebra B. If ¢ = idgy, then
we simply say that B is cylinder-braided and that X is a universal K-matrix for B.

The bialgebra automorphism ¢ defines a braided tensor equivalence tw : A — A given
by M — M ¥ where as before M'¢ denotes the H-module which coincides with M as a vector
space and has the left action 7 ® m +— @(h)m. In the above setting a ¢-universal K-matrix for
the coideal subalgebra B defines a family of maps

4.14) tM M — M, m— Km, forall M € Ob(A).

By construction the natural transformation 7 = (fa7)apreon(4) 1S a tw-cylinder twist for the
tensor pair (B, A).

Remark 4.11. Observe the parallel between Definition 4.8 and Definition 4.10 in
the case ¢ = idy. Indeed, condition (4.9) means that the maps cﬁ, y defined by (4.11) are
H -module homomorphisms while condition (4.12) means that the maps 737 defined by (4.14)
are B-module homomorphisms if ¢ = idg. Similarly, conditions (4.10) and (4.13) both
express compatibility with the tensor product.

Definition 4.10 can be extended to include the quantized universal enveloping alge-
bra U;(g) which is braided only in the completion. In this case we also need to allow for
K to lie in the completion 7. We repeat Definition 4.10 in this setting for later reference.
Recall the notation from Section 3 and from Example 4.7. For any Hopf algebra automor-
phisms ¢ : U;(g) — Uy(g) define an element R? e @ by

(Iéw)M,N — éM@,N for all M, N € Ob(Oiy).

In the following definition we reformulate condition (4.13) in terms of R and R?.

Definition 4.12. Let ¢ : Uy(g) — U, (g) be a Hopf algebra automorphism. A right
coideal subalgebra B C Uj,(g) is called ¢-cylinder-braided if there exists an invertible element
JK € 7 such that the relation

(4.15) Kb = @)K forallbe B
holds in % and the relation
(4.16) AK)=(K®1)-R°- (KX®1)-R

holds in % @ In this case we call K a @-universal K-matrix for the coideal subalgebra B.
If ¢ = idy,, (g) then we simply say that B is cylinder-braided and that X is a universal K-matrix
for B.
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Similarly to the discussion for the bialgebra H above, a cylinder-braided coideal sub-
algebra of Uy (g) naturally gives rise to a cylinder twist. For later reference we summarize the
situation in the following remark.

Remark 4.13. Let B C U,(g) be aright coideal subalgebra and let (B, O;y) be the ten-
sor pair from Example 4.1. Moreover, let ¢ : U (g) — Uy (g) be a Hopf-algebra automorphism
and let tw : O = Oy be the corresponding braided tensor equivalence as in Example 4.7.
An element K € % is a g-universal K-matrix for B if and only if KX is a tw-cylinder twist
of (B, Oiy). In this case, in particular, the element ¢t = K € % satisfies the fusion procedure
(4.7) and the reflection equation (4.8) for all M, N € Ojy.

4.4. Cylinder braided coideal subalgebras via characters. In[9] J. Donin, P. Kulish,
and A. Mudrov introduced the notion of a universal solution of the reflection equation which
they also called a universal K-matrix. In contrast to Definition 4.10, this notion does not refer
to a coideal subalgebra of a Hopf algebra. Nevertheless, there is a close relationship between
Definition 4.10 and the notion of a universal K-matrix in [9], and it is the purpose of the present
section to explain this. This material will not be used in later parts of the present paper.

As in Section 4.3 let (H, R) be a braided Hopf algebra over a field k. We retain the
conventions from Definition 4.8 and hence the symbol &R in [9] corresponds to Rfl in our
conventions. Let H* = Homy (H, k) denote the linear dual space of H. Recall from [30] that
the braided Hopf H algebra is called factorizable if the linear map

H* > H, fw (f®id(RELRY)

is an isomorphism of vector spaces. This is only possible if H is finite dimensional. If H is
factorizable, then Donin, Kulish, and Mudrov call the element

K& — RERH c Ho H
the universal K-matrix of H . It follows from (4.10) that
(4.17) (id ® A) (K% ™) = RE RE RID R RE,(RE)™!
= Ry RYG RS Rih R3GRI (RIGRI) ™!
= Koy Riy Ko3" Ry1 (R R31) ™

where we label the tensor legs of H®3 by 0, 1, 2. The above formula is closely related to
formula (4.13) for A(K). There are two differences, however, namely the occurrence of the
additional factor (R, RZ1)~1 and the fact that (4.17) holds in H ®3 while formula (4.13) holds
in H®2. Moreover, the element K %™ makes no reference to a coideal subalgebra of Uy (g).
To address the first difference, recall from [17, Definition XIV.6.1] that the braided Hopf
algebra (H, R™) is called a ribbon algebra if there exists a central element 8 € H such that

A(Om) = (RS RE) ™ (0 ® 0n).  e(Om) =1, S(0u) = On.
If such a ribbon element 0y exists, then the element

J{dkm,e — (1 ® 9}—11)J<‘dkm c H ® H
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satisfies the relation

4.18) (id ® A)(KEm0) = K™ RE Kos™° RE
in H®3.
To eliminate the additional tensor factor in (4.17) and (4.18) let
f:H—k

be a character, that is a one-dimensional representation. Define
4.19) By ={(f ®id)A(h) | h € H}

and observe that By is a right coideal subalgebra of H. The element
(4.20) Km0 — (f @ 7Y KM e H

commutes with all elements of By because A(h) commutes with Jdkm — RfIZRfI for all
h € H by (4.9). By (4.18) one has

A(dem,e,f) _ (J{dkmﬁ,f ® 1)RH (1® J{dkm,e,f)Ré‘Il

which coincides with relation (4.13) in Definition 4.10. We summarize the above discussion.

Proposition4.14. Let (H, RY , 0) be a factorizable ribbon Hopf algebra over a field k
and let f : H — k be a character. Then the right coideal subalgebra By defined by (4.19) is
cylinder braided with universal K-matrix

Jedkm.0.f _ (f ® 91;1)(R5R511) €H.

By the above proposition the element X dkm.0.f catisfies the reflection equation in
every tensor product M ® N of representations of H. As the ribbon element 0y is central,
the element (f ® 1)(RgR§II) also satisfies the reflection equation.

Remark 4.15. Assume that g is of finite type. If one naively translates the construction
of Proposition 4.14 to the setting of U, (g), then the resulting universal K-matrix is the identity
element because U, (g) does not have any interesting characters. However, in [9] a universal
K-matrix is also defined for non-factorizable H . In this case one chooses K ™ to be the canon-
ical element in H* ® H where H* denotes a twisted version of the dual Hopf algebra H*.
One obtains a universal K-matrix by application of a character f of H*. This framework trans-
lates to the setting of Uy (g) if one replaces H* by the braided restricted dual of Uy(g)- The
braided restricted dual of Uy (g) is isomorphic as an algebra to the (right) locally finite part

Fr(Uyg(9)) = {x € Uy(g) | dim(ad,(Uy(g))(x)) < oo}

where ady (u)(x) = S(u(1))xu ) foru, x € Uy(g) denotes the right adjoint action. The locally
finite part has many nontrivial characters, and a cylinder braiding for O, can be associated to
each of them, see [19, Propositions 2.8, 3.14].

The constructions in [9] and in this subsection, however, do not answer the question how
to find characters of H*. For H = Uy (g) this amounts to finding numerical solutions of the
reflection equation which satisfy additional compatibility conditions. For g = sl (C) this is
a manageable problem, see [19, Remark 5.11]. It would be interesting to find a conceptual
classification of characters of F;(Uy(g)) for all g of finite type.
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5. Quantum symmetric pairs

In the remainder of this paper we will show that quantum symmetric pair coideal sub-
algebras of U,(g) are ¢-cylinder-braided as in Definition 4.12 for a suitable automorphism ¢
of Uy (g). To set the scene we now recall the construction and properties of quantum symmetric
pairs. We will in particular recall the existence of the intrinsic bar involution from [2] in Sec-
tion 5.3. Quantum symmetric pairs depend on a choice of parameters and the existence of the
bar involution imposes further restrictions. In Section 5.4, for later reference, we summarize
our setting and assumptions including the restrictions on parameters.

5.1. Involutive automorphisms of the second kind. Let b™ denote the positive Borel
subalgebra of g. An automorphism 6 : g — g is said to be of the second kind if

dim(A(6T)NbHT) < oco.

Involutive automorphisms of the second kind of g were essentially classified in [16], see also
[18, Theorem 2.7]. In this subsection we recall the combinatorial data underlying this classifi-
cation.

For any subset X of I let gy denote the corresponding Lie subalgebra of g. The sublattice
Ox of Q generated by {o; | i € X} is the root lattice of gy. If gx is of finite type, then
let px and py denote the half sum of positive roots and positive coroots of gy, respectively.
The Weyl group Wy of gx is the parabolic subgroup of W generated by all o; withi € X.
If gy is of finite type, then let wy € Wx denote the longest element. Let Aut(A) denote the
group of permutations 7 : I — I such that the entries of the Cartan matrix A = (q;;) satisfy
ajj = a¢(iy(j) forall i, j € I. Let Aut(A, X) denote the subgroup of all = € Aut(A4) which
additionally satisfy t(X) = X.

Involutive automorphisms of g of the second kind are parametrized by combinatorial data
attached to the Dynkin diagram of g. This combinatorial data is a generalization of Satake dia-
grams from the finite-dimensional setting to the Kac—Moody case, see [1], [18, Definition 2.3].

Definition 5.1. A pair (X, t) consisting of a subset X C [ of finite type and an element
T € Aut(4, X) is called admissible if the following conditions are satisfied:
() 2 =id;.
(2) The action of T on X coincides with the action of —wy.

(3) Ifj eI\ Xandt(j) = j then;(py) € Z

We briefly recall the construction of the involutive automorphisms 6 = 6(X, t) corre-
sponding to the admissible pair (X, t), see [18, Section 2] for details. Let  : g — g denote
the Chevalley involution as in [15, (1.3.4)]. Any 7 € Aut(4, X) can be lifted to a Lie algebra
automorphism t : ¢ — g. Moreover, for X C I of finite type let Ad(wyx) : ¢ — g denote the
corresponding braid group action of the longest element in Wy. Finally, let s : I — K* be
a function such that

(5.1) si)y=1 ifi e Xort(i) =1,
s(i)
s(z(i))

(5.2) = (=% ifi ¢ X and (i) # i.
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Such a function always exists. The map s gives rise to a group homomorphism sg : Q0 — K*
such that

so(ai) = s(0).
This in turn allows us to define a Lie algebra automorphism Ad(s) : g — g such that the restric-
tion of Ad(s) to any root space g is given by multiplication by s¢ (o).

Remark 5.2. In [18, (2.7)] and in [2, (3.2)] we chose the values s(i) for i € I to be
certain fourth roots of unity. This had the advantage that Ad(s) commutes with the involutive
automorphism corresponding to the admissible pair (X, 7). However, the only properties of s
used in [2, 18], and in the present paper are the relations (5.1) and (5.2). It is hence possible
to choose s(i) € {—1, 1}. This is more suitable for the categorification program in [11] and for
the program of canonical bases for coideal subalgebras in [3].

With the above notations at hand we can now recall the classification of involutive auto-
morphisms of the second kind in terms of admissible pairs.

Theorem 5.3 ([16], [18, Theorem 2.7]). The map
X, 1) > 0(X,7) = Ad(s) o Ad(wy)oT 0o

gives a bijection between the set of Aut(A)-orbits of admissible pairs for g and the set of
Aut(g)-conjugacy classes of involutive automorphisms of the second kind.

Let £t ={x €g|0(X,7)(x) = x} denote the fixed Lie subalgebra of g. We refer to
(g, ) as a symmetric pair. The involution 8 = 6(X, t) leaves } invariant. The induced map
® : h* — bh* is given by

®=-wyort

where 7(a;) = o) foralli € I, see [18, Section 2.2, (2.10)]. Hence © restricts to an invo-
lution of the root lattice. Let Q® be the sublattice of Q consisting of all elements fixed by ©.
For later use we note that

(5.3) O(ar)) — o) = O(aj) —a; foralli €1,

see [2, Lemma 3.2].

5.2. The construction of quantum symmetric pairs. We now recall the definition
of quantum symmetric pair coideal subalgebras following [18]. For the remainder of this
paper let (X, 7) be an admissible pair and s : I — K* a function satisfying (5.1) and (5.2).
Let My = U, (gx) denote the subalgebra of U, (g) generated by the elements E;, F;, Kl.jEl for
all i € X. Correspondingly, let M;(' and My denote the subalgebras of My generated by the
elements in the sets {E£; | i € X} and {F; | i € X}, respectively.

Note that the derived Lie subalgebra g’ is invariant under the involutive automorphism
0 = 6(X, ). One can define a quantum group analog

0q : Ug(g") — Ug(g))

of 6, see [18, Definition 4.3] for details. The quantum involution 6, is a K(ql/ d)—algebra
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automorphism but it is not a coalgebra automorphism and 95 # idy, (g)- However, the map 6y
has the following desirable properties:

0q(Kp) = Kou) forall u € Q,
Og (Ki ' Ei) = —s(2(D)) ™' Twy (Fr)) € Uggy,y foralli € I'\ X,
0g(FiKi) = —s(t(i)) Twy (E1()) € Ug(_ai) foralli e I \ X.

To shorten notation define

(5.4) X; = 04(FiK;) = —s(t(i))Twy (E¢Gy) foralli € I\ X.
Quantum symmetric pair coideal subalgebras depend on a choice of parameters

¢ = (c)ienx € K@) )™ and s = (s;)ienx € Kg"/4)M.

Define

(5.5) Iy ={i €I\ X|t(i) =iandag;; =0forall j € X}.
In [18, (5.9), (5.11)]) the following parameter sets appeared:

(5.6) € ={ce Kg"))V\ | ¢; = crqyif T(@) # i and (a7, O(e)) = 0},

(5.7) 8§ ={seK(@/H\X |5; #0= (j € Insanda;; € —2Ng Vi € In;\ {j}}.

see also [2, Remark 3.3].
Let U@(;’ be the subalgebra of U° generated by all K w With € 0°.

Definition 5.4. Let (X, 7) be an admissible pair. Further, let ¢ = (¢;);er\x € € and let
s = (si)ier\x € 8. The quantum symmetric pair coideal subalgebra Bes = B¢ s(X, 1) is the
subalgebra of U, (g’) generated by My, U(g’ , and the elements

(5.8) Bi=F +caXi K+ 5 K7!
foralli e I \ X.

Remark 5.5. The conditions ¢ € € and s € § can be found in [18, (5.9) and (5.11)].
They are necessary to ensure that the intersection of the coideal subalgebra with U? is pre-
cisely U(g/ . This in turn implies that the coideal subalgebra B, s specializes to U(¥’) at g = 1
with ¥ = {x € g’ | 6(x) = x}, see [18, Remark 5.12, Theorem 10.8].

Fori € X we set ¢; = s; = 0 and B; = F;. This convention will occasionally allow us
to treat the cases i € X and i ¢ X simultaneously.
The algebra B, s is a right coideal subalgebra of U, (g’), that is

A(Bes) € Bes ® Uy(g),

see [18, Proposition 5.2]. One can calculate the coproduct of the generators B; fori € I \ X
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more explicitly and obtains
(5.9  AB) =B ®K;' +1® F + ¢i reiy(X)K; 'Ky ® E;) K ' + Y

for some T € My U(g/ ® Zy>a,(,-> U),*‘Kl._l, see [18, Lemma 7.2]. By (2.11) this implies that
(5.10) ri(X;) =0 whenever j # t(i).

In view of (5.9) it makes sense to define
(5.11) Zi = rooy (XD K7 Koy

The elements Z; play a crucial role in the description of B in terms of generators and rela-
tions, see [18, Section 7], [2, Section 3.2].

5.3. The bar involution for quantum symmetric pairs. The bar involution for Uy (g)
defined in (2.18) does not map B s to itself. Inspired by the papers [3,11], it was shown in [2]
under mild additional assumptions that B¢ s allows an intrinsic bar involution —B. Bes — Beg.
We now recall these assumptions and the construction of the intrinsic bar involution for B .

In [2, Section 3.2] the algebras B, s are given explicitly in terms of generators and rela-
tions for all Cartan matrices A = (a;;) and admissible pairs (X, t) which satisfy the following
properties:

(i) Ifi € I \ X with (i) =i and j € X, thena;; € {0,—1,—2}.
(i) Ifi € I \ X withr(i) =i andi # j € I \ X, thena;; € {0,—1,—2,—3}.

The existence of the bar involution —2

on the defining relations.

on B¢ was then proved by direct computation based

Theorem 5.6 ([2, Theorem 3.11]). Assume that conditions (i) and (ii) hold. The follow-
ing statements are equivalent.

(1) There exists a K-algebra automorphism —B . Bes — Beg, x = 8B such that
(5.12) B =X forall x e MxUQ', B;® = B; foralli e I \ X.
~1ja’ d
In particular, gV/4 "~ = ¢g=/4.
(2) The relation
ciZi = gD ey Z)
holds foralli € I \ X for which t(i) # i or for which there exists j € I \ {i} such that
ajj # 0.
It is conjectured that Theorem 5.6 holds without assumptions (i) and (ii). In [2, Proposi-
tion 3.5] it was proved that for alli € I \ X one has
(5.13) z_l — viq(ai sai_wX(“i)_ZPX)zt(i)

for some v; € {—1, 1}. For g of finite type it was moreover proved thatv; = 1 foralli € I \ X,
and this was conjectured to hold also in the Kac—Moody case [2, Proposition 2.3, Conjec-
ture 2.7].
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5.4. Assumptions. For later reference we summarize our setting. As before g denotes
the Kac-Moody algebra corresponding to the symmetrizable Cartan matrix A = (a;;) and
(X. 7) is an admissible pair. We fix parameters ¢ € € and s € § and let B¢ denote the cor-
responding quantum symmetric pair coideal subalgebra of U, (g’) as given in Definition 5.4.
Additionally, the following assumptions are made for the remainder of this paper.

(1) The Cartan matrix A = (a;;) satisfies conditions (i) and (ii) in Section 5.3.

(2) The parameters ¢ € € satisfy the condition

(5.14) ciZ; = q@e e Zoiy foralli e I\ X,
(3) The parameters s € § satisfy the condition

(5.15) s; =s; foralli eI\ X.

(4) Onehasv; = 1 foralli € I \ X, thatis [2, Conjecture 2.7] holds true.
If (4) holds, then using (5.13) and (5.3) one sees that equation (5.14) is equivalent to
(5.16) Co(i) = q((xh@(ai)—ZPX)C_l._

Remark 5.7. Assumption (1) is only used in the proof of Theorem 5.6. Assumption (4)
is only used to obtain equation (5.16). Once Theorem 5.6 is established without assuming
conditions (i) and (ii), and once it is proved that v; = 1 for all i € I \ X, all results of this
paper hold for B with ¢ € € and s € § satisfying relations (5.14) and (5.15).

Remark 5.8. Observe that assumption (2) is a stronger statement then what is needed
for the existence of the bar-involution —% in Theorem 5.6. This stronger statement will be used
in the construction of the quasi-K-matrix in Section 6.4, see the end of the proof of Lemma 6.7.
It is moreover used in the calculation of the coproduct of the universal K-matrix in Section 9,
see proof of Lemma 9.3. Assumption (3) is new and will be used in the proofs of Lemma 6.8
and Theorem 6.10.

Remark 5.9. For every admissible pair there exist parameters ¢; € K(g) satisfying
equation (5.16), see [2, Remark 3.14].

6. The quasi K-matrix X

The bar involution x +— X on U, (g) defined by (2.18) and the internal bar involution
x — x8 on B s defined by (5.12) satisfy B; # EB ifi € I \ X. Hence the two bar involu-
tions do not coincide when restricted to Bes. The aim of this section is to construct an ele-
ment ¥ € U™ which intertwines between the two bar involutions. More precisely, we will find
(X) peg+ With X, € U;F and ¥ = 1 such that X = > Xy satisfies

(6.1) ¥Bx =%x forallx € Bes.

In view of (3.3), the element X € Ut C 7 is an analog of the quasi-R-matrix R for quantum
symmetric pairs. For this reason we will call X the quasi K-matrix for B s. Examples of quasi
K-matrices X were first constructed in [3, Theorems 2.10, 6.4] for the coideal subalgebras
corresponding to the symmetric pairs (sl2,, s(gl,, x gl,,)) and (sl2n+1,5(al,, 11 X al,)).
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6.1. A recursive formula for X. As a first step towards the construction of X we trans-
late relation (6.1) into a recursive formula for the components X ;.

Proposition 6.1. Let

E= Y X,eUT, with¥, cU}.
ueQ+
The following are equivalent:
(1) Forall x € B¢ one has Bx=xx
(2) Foralli € I one has EB&I = X B;.
(3) Foralljw e Q" and alli € I one has

(6.2) ri(Xu) = —(qi — ;) (X pro(a)—o; Ci Xi + 51X —a;),
6.3)  ir(Ep) = —(q — g7 (g ©CC e, X %L 0r)—a; + 5iEp—a;)-

If these equivalent conditions hold then additionally
(4) Forall u € QF such that X,, # 0, one has ©(i) = —L.

Proof. (1) = (2) Property (2) is the special case x = B; of property (1).
(2) < (3) Fix i € I. Using the definition (5.8) of B;, the definition (2.18) of B; and the
definition (5.12) of B; B, we see that (2) is equivalent to

(6.4) (Fi + i XiK; ' + 5K )& = X(Fi + ¢ Xi Ki +5K;).

Now compare the (i — o )-homogeneous components for all £ € Q. One obtains that equa-
tion (6.4) holds if and only if for all & € QF one has

[%M’ Fi] = —(3€M_ai+@(al.)c,-X,- +S_i:£u—txi)Ki
+ Ki—l(q—(ai,®(ai))ci Xi%)—a;+0) + 5i ¥ u—a; )-

By (2.10), this is equivalent to relations (6.2) and (6.3) for all u € Q"'.

(3) = (4) We prove this implication by induction on ht(u). For ;& = 0 there is nothing to
show. Assume that > 0. If X, # 0, then by (2.13), there exists i € / such that r; (¥X,) # 0.
By (6.2) we have either X, { @(«;)—a; 7# 0 0r 5; X —a; # 0. In the case X1 @(q;)-a; 7 0. by
induction hypothesis ©(u + O(;) — ;) = —(u + O(o;) — o), which implies () = —pu.
In the case s5; X,,—o; # 0, the condition s € § implies that ®(«;) = —«;, while the induction
hypothesis implies that ®(u — «;) = —(u — «;). Together, this gives O(n) = —pu.

(3) = (1) We have already seen that (3) = (2) and hence xBx = Xxforx = B;.

Let B € 0© and assume that X, # 0. The implication (3) = (4) gives O(n) = —u. On
the other hand ®(f) = B and therefore (8, ) = 0. This implies that

Kﬁ%uKﬁl _ q(ﬂ’”“).%u =%,

and consequently xB% =Xxforallx e U(g.

Finally, leti € X and again assume that X, # 0. As K; € U(g and F; = B;, we already
know that ad(K;)(¥,) = X, and ad(F;)(¥,) = 0. Hence X, is the lowest weight vector for
the left adjoint action of Uy, (sl2); on Uy (g). As U™ is locally finite for the left adjoint action
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of U™, we conclude that X, is also a highest weight vector, and hence
0=ad(E;)(¥,) = E;¥, — Ki¥,K;"E; = E;¥,, — ¥, E;.

Thus E; X, = X, E; and consequently xBx% = X¥xforallx € My .
This proves that the relation 8% = % X holds for the generators of the algebra B, s and
hence it holds for all x € Be. i

The proof of the implication (3) = (4) only refers to X, with &/ < u. Hence we get the
following corollary.

Corollary 6.2. Let ;u € Q7 and let (X)) w<peo+> with X, € UI:C, be a collection of
elements satisfying (6.2) and (6.3) forall /' < pandalli € 1. If X, # 0, then O() = — L.

6.2. Systems of equations given by skew derivations. By Proposition 6.1 the quasi
K-matrix X can be constructed inductively if in each step it is possible to solve the system of
equations given by (6.2) and (6.3) for all ;. In this subsection we derive necessary and sufficient
conditions for such a system to have a solution.

Proposition 6.3. Let € Q7 with ht(u) > 2 and fix elements A;,; A € U, for all
i € I. The following are equivalent:

(1) There exists an element X € U Ij' such that
(6.5) ri(X)=A4; and ir(X)=;A foralliel.

(2) The elements A;,; A have the following two properties:

(a) Foralli,j € I one has
(66) r,-(,-A) :jl"(Al').

(b) Foralli # j € I one has

1

1—a;;
-1 YN —a;; —a;i—
©6.7) 5 W () (E TR E A
7@ =49 5 s qi

1 1—a;;
q4j —4;

Moreover, if the system of equations (6.5) has a solution X, then this solution is uniquely
determined.

Proof. (1)= (2) Assume that there exists and element X € U ;j‘ which satisfies the
equations (6.5). Then

rGA) = rGrx)) 2 (X)) = jr(4)

and hence (6.6) holds for all7, j € I.
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Moreover, using the quantum Serre relation S;; (F;, F;) = 0 and the properties (2.12) of
the bilinear form (-, -}, we get

1 -ay sy pl=aii=s g ps
=2 | 7| DR FiFf.X)
.

s=0

l

1—a;;
-1 V1 —aij —ai— 1 Ca
=— > |: a”:| (=1)* (F stFis_l,Ai)——_l(Fil L A)),

1

which proves relation (6.7). Hence property (2) holds.

(2) = (1) Assume that the elements A;, ; A satisfy relations (6.6) and (6.7). We first solve
the system dual to (6.5) with respect to the bilinear form (-,-). By slight abuse of notation
we consider (-,-) as a pairing on 'f x U™ via the canonical projection 'f — U™ on the first
factor. Fix u € O with ht(t) > 2. As u > 0, there exist uniquely determined linear function-
als X7, X% :'f, — K(g'/?) such that

-1

(6.8) X7(fiz) = ——— - (z.i4),
qi — 4,
-1
(6.9) X(zf) = p—— (z. Ai)

forall z € 'f;,_o;. Forany i, j € I and any x € 'f;—4,—o; We have

68  —l o1y -1 -1
X7(ixt) = ——— - (xfi,;4) "= — — (%, ri(jA))
q4; —4; qi — 4, qj —4;
6o  —1 —1 @12 —1
O T (e r(4n) ) ——— (x4
qi — 4; 4j —4; qi — 4;
D xx(t:x1,).

As ht(pt) > 2, any element in 'f,, can be written as a linear combination of elements of the
form f; xf; with x € "4, o, for i, j € I. Consequently, the above relation implies that the
functionals X} and X% coincide on 'f,,. To simplify notation we write X* = X7 = X%.

We claim that relation (6.7) implies that X* descends from 'f,, to a linear functional
on UZ,,. Recall that the kernel of the projection 't — U~ is the ideal generated by the ele-
ments S;;(f;,f;) for all 7, j € I. Hence it is enough to show that all elements of the form
x =fq, ... fq, - Sij(fi.f;) - fp, ... fp, lie in the kernel of the linear functional X *. If / > 0, then
the fact that S;; (f;, f;) lies in the radical of the bilinear form (-, -) implies that

X*(x) = X]i(fal ---fa1 : Sij(fi,fj) -fb1 ...fbk)
—1
= Ga; —q: ! Afay - fay - Sij (i 1) Ty, oAby A)
aj ai
=0.

Similarly, if £ > 1, then we get

X*(x) = Xj(x) = 0.
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Assume now that / = k = 0. Then

1—a;;
l—a-- 1—a;;—
X*(Si 1)) = Y [ S ”} (=D - X R (78
s=0 qi
I
- — Ujj 1—a;;— _
= i { s U} (=D (VR Ay)
=49 = qi
1 1—a;;
pryepe AUNRRSEC
J J
Dy,

Hence X* does indeed descend to a linear functional X™* : U~ W= K(ql/ dy,
LetX eU J be the element dual to X™* with respect to the nondegenerate pairing (-, )
onU, x Ulj'. In other words, for all z € U~ we have X*(z) = (z, X). Then
_ _ (6.9)
(z.ri (X)) = —(qi —q; VFi, X) = —(qi —q;7 DX (F) = (2, 4i)
foranyz € U,_,, and hence r;(X) = A; foralli € I. Similarly, (6.8) implies that ;7 (X) = ; A
for all i € I. This completes the proof of relation (6.5) and hence (1) holds.

To see uniqueness, assume that X and X’ both satisfy the system of equations (6.5). Then
ri(X —X')=0foralli € I, so by (2.13), we have that X = X’. O

6.3. Three technical lemmas. We will use Proposition 6.3 in Section 6.4 to inductively
construct X,, by solving the system of equations given by (6.2), (6.3) for all i € /. To simplify
the proof that the right hand sides of equations (6.2), (6.3) satisfy the conditions from Proposi-
tion 6.3 (2), we provide several technical lemmas. These results are auxiliary and will only be
used in the proof of Lemma 6.8.

Lemma6.4. Leti # j € I andp = (1—ajj)o; +oj. If O(n) = —pu, theni, j € I\ X
and one of the following two cases holds:
(1) O(aj) = —aj and a;j = 0.
(2) O(aj) = —a; and O(aj) = —a;.

Proof. Assume thati € X. Then ®(«;) = «; which together with ® () = —u implies
that
wy (or(j)) = —O(aj) = =O(u — (1 —ajj)a;) = o; +2(1 — ajj)e;.
Hence 7(j) = j and 0;(«j) = wy(«;) and —a;; = 2(1 — a;;). This would mean that a;; = 2
which is impossible.
Assume that j € X. Then

-1 2
wX(ar(z)) (cti) (1—ay) (M —aj) =a; + a —aij)aj
Hence 7(i) =7 and 0 (o;) = wx(;) and aj; = —(1_27_). This is only possible if
L]

aji = ajj = —1.
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But then
v 1 —1
(o) = geith) = 5 ¢ 7

which contradicts condition (3) in Definition 5.1 of an admissible pair.
Hencei,j € I \ X. As (wy —id)(«ag) € Qx for any k € I, it follows that

(I —aij)(oi — o)) + (@ —og) = —0(n) — (p) = (wx —id)(r(1))

lies in Qx. Using i, j € I \ X, it follows that (1 —a;;)(a; — a¢()) + (o — az(;y) = 0. So,
there are two possibilities: either (1) 7(i) = j anda;; = 0,or 2) (i) =iand t(j) = j. ©

Lemma 6.5. Let p€ Q% and let j € I \ X with s; = 0. Assume that a collection
(X)) w<pu withX,y € Ulf, satisfies condition (6.2) for all /' < pand foralli € 1. IfX,, # 0,
then | € spany {aj — O(a;)} @ spany,{ak | kK # j}.

Proof. 'We prove this by induction on ht(u). If © > 0 and X, # 0, then by (2.13)
there exists some 7 such that r;(¥X,,) # 0. Relation (6.2) implies that X, @(qy;)—o; 7 0 Or
$iX—a; 7 0.1fi # j, then the induction hypothesis on u + ©(«;) — «; and p — o; implies
the claim. If i = j, then the induction hypothesis on u + ®(¢;) — «; implies the claim. O

Recall that o denotes the involutive antiautomorphism of Uy (g) defined by (2.16).
Lemma 6.6. Let v e QF, and let (X) y<vep+ be a collection with X, € UJ and

Xo = 1. For all i < v assume that X, satisfies (6.2) and (6.3) foralli € I. Let j.k € I \ X
be such that ©(a;) = —a; and O(ay) = —ak. Assume that n > 0, and that x € U_Z

—nag—o;
satisfies 0(x) = —x. Then

(6.10) (x. %) =0
Sforall p < v.

Proof. The space UZ,,, , is spanned by elements of the form F,fFjFlf with

a + b = n. As the antiautomorphism ¢ is involutive it is enough to verify equation (6.10) for
elements of the form x = F Fj F]f' —o(F{F; F,f) = F{Fj F,f —F]fFj Fy!. We will prove that

(6.11) (FAFjFP — FPFFE %) =0

forall u < vanda,b > 0by inductiononn = a + b.Itholds forn = 0.Leta +b =n > 0,
and assume that (6.11) holds for all a’, b” with @’ + b’ < n. Without loss of generality assume
that b > 0. Using the assumption that X, satisfies (6.2) and (6.3), we get that

~1 _
(FEFjFQ—FPFF8 %) = ——— ((FAF FE 7 e (B )
dk — 4y,
—(FY7VFi R ()
= (FEF Y™ % a0 i Xk + X o)

_ (F]f—le Ff,q(“k’“k)Ckafu—zak + Sk:{M—ak).
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The assumption O(xy) = —oy implies that X = —Ej and by (5.16) and (5.15) one has
ek = ¢@*)¢; and 5 = sy. Hence the above equation turns into
FE B — BB R ) = se(FE B — FP . )
— & ((FEFj P 2 uma0y Ex)

—(FPVF FE Ex® u—2a))-

By the induction hypothesis one has (F}’ F)j F,f_l - F,f_le F, X —a;) = 0. Hence,
% _ _
(F{Fj FO=FL FjFE ) = — e (FEF F D =er (T FE), Rz ).

k
As

— — (2.17) — —
o (re(FEF FE™Y) = er (FETV G FD) = kr (0 (FEF FETY) = (o (BT F YD)

= R (FEF Y = er (BT E F),

equation (6.11) follows from the induction hypothesis. ]

6.4. Constructing X,. We are now ready to construct X, inductively. Fix u € ot
and assume that a collection (X,/),/<,ep+ With X,y € U ;:r’ and Xo = 1 has already been
constructed and that this collection satisfies conditions (6.2) and (6.3) for all u’ < u and for
alli € I. Define

(6.12) Ai = —(qi — 4; ) (Epro@)—a; i Xi +5iX o).

(6.13) iA=—(i —q; g~ CV e XXy o@r)-a; + 5 Ep—a;)
for all i € I. We will keep the above assumptions and the definition of A; and ; A all through
this subsection. We will prove that the elements A; and ; A, which are the right hand sides of

equations (6.2) and (6.3), satisfy conditions (6.6) and (6.7). By Proposition 6.3 this will prove
the existence of an element X, with the desired properties.

Lemma 6.7. The relation r;(j A) = jr(A;) holds foralli, j € I.

Proof. This is a direct calculation. Note that all computations include the case i = j.
We expand both sides of the desired equation, using (2.8) and (2.9) and the assumption that the
elements X,/ satisfy (6.2) and (6.3) for 4’ < p1. We obtain

ri(GA) = —(q; — ;g @ e X (X1 0(0,)-ay)
—(qj — qj—l)q—(@(otj),otj)q(ai,M+®(Otj)—05j)rl. (¢ X)E 40—
—(qj —q; sjri(Xp—q;)
= (q; —q; g~ ¢; X (qi — 47X v 0 (0))—ay +O(@r)—a; T Xi
+ (g — q; g @ e X (qi — 47 TR o) —a)—a;
—(qj — qj—l)q—(@(aj),aj)q(ai,M+®(aj)—<¥j

i X)E 40—,

+ (0 — a7 )9 @i — 47 D E j—a; +O(a;)—a; Ci Xi
+ (g — qj_l)sj (qi — qi_l)gfp,—ai—ajs
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and

jr(AD) = =(qi — 47 )7 (E o) -a)Ci Xi
—(qi —q; "q@ O E L 6 @iy—ap T (€I X7)
—(qi — qi_l)gjr(xu—(x[)
= (@i — 47 g — 47 g O X ¥t 0 0) -0+ 00y )—a; i Xi
+ (g — 47 )G — 475 Xt o ey)—ai—a; Ci Xi
—(qi — qi_l)q(ajs//«'i‘@(ai)_ai)%

1+0(;)—a; i T (Ci Xi)
+ (g — a7 Dsi(q — g7 g™ CD e X% o))
+ (i — a7 5i(q7 — 47 )8 Ep—ari—a -

We see that the first and fifth summands in the above expansions of 7; (; A) and ;r(A;) coincide,
the second summand of r;(; A) is the same as the fourth summand of ;r(A4;), and the fourth
summand of 7; (; A) coincides with the second summand of ;r(A;). Therefore, the claim of the
lemma, r; (; A) = jr(A;), is equivalent to the third summands being equal,

(6.14) —(q; — qj_l)q_(@(aj)a“j)q(ai7M+®(Ulj)_°‘j)rl. (€ X)X 1060,

= —(qi —q; g HTOCODE | 60T (€0 Xi).

By (5.10) and (2.19) we may assume thati = t(j) € I \ X because otherwise both sides of the
above equation vanish. By (2.19) we have ;r(c; X;) = q("‘/ —O(ei)—a; )rj (ci Xi). Substituting
this and using ¢; = ¢;, we see that (6.14) is equivalent to

(6.15) q(aj ,0(;)—0(a;))+(a; ,M—Otj)rl. (cj Xj)ffu+®(aj)—aj

=g IR L 0a)—a; 7 (€ XD).
By equation (5.3) one has ©(«;) —o; = O(a;) —cj and hence X,y o(;)-a; = Xp+0(ai)—a; -
Moreover, r; (Twy (E;)) lies in My and hence it commutes with X, 1 @(q,)—«; - Using this, we

can rewrite (6.15) as
(6 16) q(aj O(a;—a;))+(a; ’M)x,u-i-@(ai)—ai ri (C‘j Xj)
— q("‘-"’”_“-")fu+®(a,»)—a,- ri(ci Xi).

If X,,+0(;)—; =0, then both sides of the above equation vanish. Hence we assume that
X . +©(a;)—a; 1s nonzero. Corollary 6.2 states that then ®(u) = —pu. Along with

Oy —oj) = o —
this implies that (o; — «¢j, ) = 0. Hence (6.16) is equivalent to the relation
g *ri(c; X)) = rj(ci Xp).

Using the definition (5.11) of Z; the above formula follows from assumption (5.14) about the
parameters c. o

This proves that the elements A;,; A satisfy the first condition from Proposition 6.3 (2).
Next we prove that they also satisfy the second condition.
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Lemma 6.8. Foralli # j € I the elements A;, A; given by (6.12) satisfy the relation

1—a;;
—1 V1 —a;; —aii—
(6.17) — ) [ Ski (=D (F, TR FTL A
qi _ql s=1 qi
1 1—a;;
_;Z:m“%w=o
J J

Proof. 'We may assume that 4 = (1 —a;;)a; + o; and that ®(p) = —pu, as otherwise
all terms in the above sum vanish. By Lemma 6.4 it suffices to consider the following two
cases.

Case 1: O(a;) = —aj and a;; =0 In this case u = o; +a; and 5; = s; = 0 by
definition (5.7) of the parameter set §. Hence
Ai = —=s(j)(gi —q;7 e E; and  Aj = —s(i)(q; —q; DTG E;.
Therefore the left hand side of (6.17) is equal to
1 1 — N
(6.18) ———(Fj, Ai) — ———=(Fi, A;) = —s(j)ci(F}, E;) + s(i)¢cj (Fi, Ei).
qi — 4; q; —4;

Using g; = ¢, the fact that s(i) = s(j) by (5.2), and the relation ¢; = ¢; which holds by
definition of the parameter set €, one sees that the right hand side of (6.18) vanishes.

Case 2: O(a;) = —a; and O(ej) = —o; In this case by (5.5) one has i, j € Iy.
Hence, by the definition (5.7) of the parameter set &, one has either s; = 0 or a;; € —2Np.
If s; = 0, then Lemma 6.5 implies that (1 —a;;)o; + o; = u € Noo; @ 2Noa;, which is not
the case. If —a;; is even, then the left hand side of (6.17) can be written as

1

1 —a;; 1—a;;
619 -y
9i —4; q;j —4;
_al“/z
-1 J 1—aii
t— ) o IO
qi —4; =1 N ”

<F aij stF'iS 1_FistFl' aij S,Al').

1

By (6.12) and (6.13) one has A; = —(q; — q;l)_1Sj£M_aj = ;A and hence
1 —aj; 1
ﬁ(FjFi T Ai) - . =l
qi — q; q;j —4;
1 1 —aj;
=— — —(F; 7 jr(A) —ri( A)).
9i —4; 4 —4;
In view of Lemma 6.7 the above relation shows that the sum of the first two terms of (6.19)
vanishes. Each of the remaining summands in (6.19) contains a factor of the form

1—a;;
<Fz '/,Aj)

(6.20) (F, 7 F;Ff' — FfF;F. 77 A;)
—1 —ai— —aii—
B qi —q;! (F; a,, SFJ'Fis_l_Fis_leFi “w s,i”(Ai))-
L4
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Setx = F, “W T F;F5~! — FS7UF; F, “/™° and observe that o(x) = —x. Inserting the defi-

nition of A; into (6.20) one obtains in view of X; = — E; the relation
(F T R EST B F 7 A = (i (R a0 G Er + ST ).

Using the skew derivation property (2.9) and the assumption that X,/ satisfies (6.3) for all
i’ < |4 one obtains

(F R ET - R EYT )
= —(qi —q; )(x.Gq D e; ;% )_sq, E;)
(g — g7 (. 81 sy Ei) — (x,67q@ P29 %, o)
+ (g — g7 D, sig @D e B say) — (g0 — g7 )%, 5P R u—2a,)-

Using relations (2.15) and the property &; = ¢(®*)¢; which holds by (5.16), the above equa-
tion becomes

621) (F " FFS~ — FSFF, 75 A;)

ot o 1 o =20
= —Ciq @) c; ——— (i i1 (%)), Bpa;) — Ciq @2 (x, By e )

! i

— i (ri (X) + i1 (X), Ep—se;) — (@i — ¢7 )57, Epmaay)-
Using the fact that o (x) = —x we obtain from (2.17) and (2.14) that
o(ri(ir(x))) = =ri(ir(x)), o(ri(x) +ir(x)) = —(ri(x) + ;r(x)).

By Lemma 6.6 the above relations imply that all terms in (6.21) vanish. Therefore all summands
in (6.19) vanish, which completes the proof of the Lemma in the second case. O

Remark 6.9. If one restricts to quantum symmetric pair coideal subalgebras B with
s = (0,0,...,0), then Case 2 in the proof of Lemma 6.8 simplifies significantly and Lemma 6.6
is not needed.

6.5. Constructing X. We are now ready to prove the main result of this section, namely
the existence of the quasi K-matrix X. Recall the assumptions from Section 5.4.

Theorem 6.10. There exists a uniquely determined element X = ) co+ X1 € 51
with Xo = l and X, € U/j_’ such that the equality
(6.22) ¥Bx=xx

holds in % for all x € Beg.

Proof. 'We construct X,, by induction on the height of wu, starting from Xo = 1. If
1 = o, then equations (6.2) and (6.3) are equivalent to

0 ifi # ],

@) = i (®) = {_(q. oy e
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ass; =5; by (5.15). Inthis case Xy, = —(q; — qj_l)sj- E; satisfies (6.2) and (6.3). This defines
X, in the case ht() = 1. Assume now that ht(x) > 2 and that the elements X,,» have been
defined for all u’ with ht(u) < ht(w) such that they satisfy (6.2) and (6.3) for all i € I. The
elements A; and ; A given by (6.12) and (6.13), respectively, are then well defined, and by
Lemmas 6.7 and 6.8 they satisfy the conditions of Proposition 6.3 (2). By Proposition 6.3 the
system of equations given by (6.5) for all i € I has a unique solution X = X, € U J . By the
definition of A; and ; A the element X satisfies equations (6.2) and (6.3).

Set .
X= ) X,€Ut.
neQ+t
By Proposition 6.1 the element X satisfies the relation (6.22) for all x € Bc . The uniqueness
of X follows by Propositions 6.1 and 6.3 from the uniqueness of the solution of the system of
equations given by (6.5) foralli € I. o

7. Construction of the universal K-matrix

Using the quasi K-matrix X from the previous section we now construct a candidate
K € 7 for a universal K-matrix as in Definition 4.12. Our approach is again inspired by the
special case considered in [3]. However, we are aiming for a comprehensive construction for
all quantum symmetric Kac—-Moody pairs. In this setting the Weyl group does not contain
a longest element. We hence replace the Lusztig action in [3, Theorem 2.18] by a twist of the
underlying module, see Section 7.1. In Section 7.2 we construct a B, s-module homomorphism
between twisted versions of modules in Oj,.. This provides the main step of the construc-
tion in the general Kac—Moody case. In Section 7.3 we restrict to the finite case and obtain
a B-tw-automorphism K for Oy as in Section 4.2 with B as in Example 4.1. The coproduct
of K will be determined in Section 9.

7.1. A pseudo longest element of W. If g is of finite type, then there exists 7o € Aut(A4)
such that the longest element wg € W satisfies

(7.1 wo(@;j) = —qg,;) foralli € 1.

Moreover, in this case the Lusztig automorphism 75,, of U, (g) corresponding to wo can be
explicitly calculated. Indeed, by [13, Proposition 8.20] or [18, Lemma 3.4] one has

-1 -1

(7.2) Two(Ei) = =Fry(i) Keoi)>  Two(Fi1) = =K ) Exoiy: Two(Ki) = Ko ;).

T (Ei) = =K1y Frotiys Ty (F1) = —=Exg) Keoi)s T (Ki) = Ko (-

In the Kac—-Moody case we mimic the inverse of the Lusztig automorphism corresponding to
the longest element of the Weyl group as follows. Let tw : U, (g) — U, (g) denote the algebra
automorphism defined by

tw(E;) = —K;'Fj. tw(F) =—EK;. tw(Ky)=K_

foralli € I,h € QY.

Lemma 7.1. Foralli € I one hastw o T; = T; otw on Uy(g).
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Proof. Forh € Qg onehas T; otw(Kp) = K_g, ) = twoT;(K}). It remains to check
that

(7.3) Tiotw(Ej) =twoT;(E;) and T;otw(F;) =twoT;(F})

forall j € I. For j = i relation (7.3) holds because Tl._1|qu (slr); = tw|qu (slo);- For j # i
relation (7.3) is verified by a direct calculation using the formulas
—ai;

—k p(—ay—k k
Ti(E) = Y (=D *ES Vg E®,
k=0

—a;;

k —a;ij—k
Tl(Fj) — Z(_l)kqlk};‘l( )F]Fl( ajj—k)
k=0
which hold by [26, Section 37.1.3]. O

To mimic the Lusztig action of the longest element in the Kac—Moody case we addi-
tionally need an automorphism tp € Aut(4, X). Recall our setting and assumptions from
Section 5.4. For the construction of the universal K-matrix we need to make minor additional
assumptions on the parameters ¢ € € and s € §.

Assumption (tg). We are given an additional involutive element 7y € Aut(4, X) with
the following properties:

(1) totg=T190T.

(2) The parameters ¢ € € and s € § satisfy the relations
(7.4) Cror(i) = Cis  Sgoi) = 8i foralli e I'\ X.

(3) The function s : I — K described by (5.1) and (5.2) satisfies the relation
(7.5) s(t(i)) = s(to(i)) foralli € 1.

Remark 7.2. Assume that g is of finite type. In this case we always choose g to be
the diagram automorphism determined by equation (7.1). Then property (1) is automatically
satisfied as follows by inspection from the list of Satake diagrams in [1]. Moreover, by the
definition of the parameter set -§ one can have s; # 0 only if t/(i) =i for all T/ € Aut(A).
Hence property (2) reduces to ¢g,¢(;) = ¢; in the finite case. By (5.1) and (5.2) one can have
s(i) # 1onlyif 7(i) = to(7). Hence property (3) is always satisfied in the finite case.

If tp = 7, then property (2) is an empty statement. It is possible that t = id and 7¢ # id,
see the list in [1]. In this case condition (5.16) implies that ¢; equals ¢ ;) up to multiplica-
tion by a bar invariant scalar. The new condition ¢q,.(;) = ¢; forces this scalar to be equal to 1.
Finally, only in type D5, is it possible that 7y = id and T # id. In this case, however, the condi-
tion ¢ € € implies that c,;(;) = ¢;. These arguments show that the new condition c¢,(;) = ¢;
is consistent with the conditions imposed in Section 5.4 and that it is always possible to choose
parameters ¢ and s which satisfy all of the assumptions.

The composition
two 1o : Uy(a') — Uy(a))

defines an algebra automorphism. By (7.2) the automorphism tw o 7 is a Kac—-Moody analog
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of the inverse of the Lusztig action on Uy (g) corresponding to the longest element in the Weyl
group in the finite case. As 79 € Aut(A4, X), one has tg o Ty, = Ty, © 7o. By Lemma 7.1 this
implies that

(7.6) 9 0 tw o Ty, = Ty © Tg O tW.

To obtain an analog of this Lusztig action on modules in Q;, we will twist the module structure.
In the following subsection we construct a B¢ s-module homomorphism between twisted ver-
sions of modules in Oin;. As B is a subalgebra of Uy (g'), it suffices to consider objects in Qjy
as Uy (g’)-modules. With this convention, for any algebra automorphism ¢ : Uy (g") — Uy(g)
and any M € Ob(Ojy) let M ¥ denote the vector space M with the Uy (g")-module structure
u ® m > u e, m given by

ue,m=¢@u)m forallu e Uy(g'),me M.

We will apply this notation in particular in the case where ¢ is one of 79 o T and tw o 19, see
Theorem 7.5.

Remark 7.3. If the algebra automorphism ¢ : Uy (g’) — Uy(g’) extends to a Hopf
algebra automorphism of U, (g), then the notation M % for M € Ob(Ojy) coincides with the
notation in Example 4.7.

7.2. The twisted universal K-matrix in the Kac—-Moody case. We keep our assump-
tions from Section 5.4 and Assumption (tp) from the previous subsection. To construct the
desired B s-module homomorphism we require one additional ingredient. Consider the func-
tiony : I — K(g'/¢) defined by

. oo ifieX,
' = sy ifie 1\ X,

and note that by (7.4) and (7.5) one has y(t7o(i)) = y(i) for all i € I. Now assume that
E: P — K(ql/ 4y is a function satisfying the following recursion:

(7.8)  E(u+ o) = y(i)g @ O@N=(ei+®@De() forallpe P,iel.
Such a function exists. Indeed, we may take an arbitrary map on any set of representatives

of P/Q and uniquely extend it to P using (7.8).

Lemma7.4. Let&: P — K(g'/?)* be any function which satisfies the recursion (7.8).
Then one has

(7.9) E(u+2)=q BI2UNEQ) forallp e P2 € Ox.
Proof. We prove this by induction on the height of A. Assume that (7.9) holds for
a given A € Qyx. Then one obtains for any i € X the relation

E(i A ap) = g~ e T2UTRADg (4 4 1)
— q_(al:al)_2(M+Aﬂal)_(A'!A')_z(u*yk)g(u)

— q—()H-Oéi ,l+ai)—2(u,l+ai)€(u)

which completes the induction step. |
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As in Example 3.3 we may consider £ as an element of %7. The next theorem shows
that the element X & Tuj; € % defines a B¢ -module isomorphism between twisted modules
in (9in[.

Theorem 7.5. Let £ : P — K(q'/%)* be a function satisfying the recursion (7.8). Then
the element X' = X £ Ty, ; € U defines an isomorphism of B s-modules
Kpg - MY — M™T > Xpp o o (T )m (m)
for any M € Ob(Oiny). In other words, the relation
K tw(to(x)) = to(r(x)) K’
holds in % for all x € Beg.

Proof. Tt suffices to check that
(7.10) JC]/M (X ®tworg M) = X @14, JC]/M (m) forallme M

where x is one of the elements K, E;, F;, or B; for A € 0®,ieX,and j € I\ X. More-
over, it suffices to prove the above relation for a weight vector m € M. In the following we
will suppress the subscript M for elements in %/ acting on M .

Case 1: x = K for some A € Q® In this case we have wy (1) = —t(1). Moreover,
as 79 € Aut(A4, X), one has 79(wy (1)) = wx (to(1)). Hence one obtains

K'(K), owory m) = X 0 £ 0 Tl (tw(to(K))m)
=X o0& o T,y (Kgaym)
= E(K—wyro) € © Tyt (m)))
= K_wymmEofo Tuj; (m)
= Koyr (o) K'(m)
= K o7y K'(m).

Case2: x = E; forsomei € X By relation (7.2) applied to My we have
Ton (Fi) = —E¢()) K-
Using this and the recursion (7.8) one obtains
K'(Ei owworgm) = X o0& o0 Tyl (=K, () Fro()m)
= Xok(¢“ ’ai)Erro(i)Krzro(i)Tt;; (m))
= E(&(wx (W) +aro(i))§ (wx (1) 7!
. q(Oti,Oti)+2(wX(//«),Olror(i))E”O(l_)ég- o TuT; (m))

" By ® 0§ 0 Tyl (m)

= Ej ogyr K'(m).

This confirms relation (7.10) for x = E; where i € X. The case x = F; fori € X is treated
analogously.
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Case 3: x = B; = Fj — y(j)TwX(E,(j))KJ._l +5; KJ.—I for some j € I \ X We
calculate

K'(Bj ®wory m) = X oo Ty!(two to(B))m)

%o §(tw o to(Tyyy (Bj) Ty ()

%, E((Toy (—Ero(n Kuo(j)) + y(j)K;rt(j)Fffo(f)KwX(arO(j))
+ 5 KwX(fo(j)))Tuj): (m))

- ¥o E((Ftro(j)y(j)q(ajaaj)_(wX(//«)aarro(j)+®(‘xrr0(j)))
_ Tuj; (Ero(j))Kror(j)q_(wX ()07 () +O @y ()
+5j Kror(j)q_(w)((M)yaror(j)+®(at0t(j))))Tu7; (m)).

To simplify the last term, recall from (5.7) that s, ;(;) = s; = Ounless O(a;) = —a;, in which
case Uy, (j) + O(gyz(j)) = 0. Additionally moving £ to the right one obtains

(7.11) K'(B; ®wyor, M)

. ) — . & (wx (1) — o, r(j))
=% F. A y(] )q(a] ,Ol_,) (wx (M)aarro(_l)+®(arro(_1))) 0
(( rou) £ (wx (1)

—(wx (,u’)safot(j)—i_@(afof(j))) E(wX (M)+wXO{r0(J))

§(wx ()

—1
— Ty (Ery(j) Keor(4

+ Sror(j)Kror(j))s ° Tuj)} (m))-

To simplify the above expression observe that

E(wy (W) + wyo) 79 q—(WXDti—ai,ani _ai)_z(wX(//«)+aianai_D‘i)é(wX (W) + o)
— q_z(wX(“)’ani_ai)g(wx(u) + )
(78) y(mt(i))q—(ai,®(Oti))+(wx (M),ar(i)-i-@(ar(i))g(wx (W)

fori € I \ X. Inserting this formula for i = 7¢(j) into equation (7.11) and applying the recur-
sion (7.8) also to the first summand one obtains

(7.12)  K'(Bj owory m) = E((Frry(j) — v(x(1)g~ @ OO (Ery (1)) Koo ()
+ 5190()) Kege()§ © Ty ().
Now set
Bi = (—=1)2 (e Crxe)  fori e [\ X.
In view of [26, Section 37.2.4] one has
(7.13) Tuwy (Ei) = B ' Ty (Ei) foralli e I\ X,

see also the proof of [2, Lemma 2.9]. Hence (7.12) gives

K'(Bj oworo m) = X((Feag(i) = v(@(1)g™ O By Ty (Ery(1)) K )
+5j Keye(73))§ © Ty ().
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In view of the relation

y(z(j)g~ @O Gy = s(x(j)e;
one now obtains

e7</(Bj ®twor m) = ‘%(B‘Cot(j)g © Tuj;i (m))
= Bryor(j)K'(m)
= Bj .‘E‘L'o Jcl(m)

which completes the proof of the theorem. O

For later reference we note that relation (7.13) implies that the element X; defined by (5.4)
satisfies the relation

(7.14) X; = —s(i)q~ @D T N(Eyy) foralli e I\ X,

see also (5.1), (5.2) and property (3) in Definition 5.1 of an admissible pair.

Remark 7.6. The function £ is an important ingredient in the construction of the twisted
K-matrix K’ and should be compared to the recursively defined function f involved in the con-
struction of the commutativity isomorphisms [26, Section 32.1.3]. The recursion (7.8) is a nec-
essary and sufficient condition on & for X o £ o Tuj; : M™°T0 — M7 (o be a B, s-module
homomorphism.

7.3. The universal K-matrix in the finite case. We now assume that g is of finite
type. In this case, following Remark 7.2, we always choose 79 € Aut(/, X) such that the
longest element wo € W satisfies wo(@;) = —ay, ;) forall i € I. By equation (7.2) this gives
Tl = 79 o tw on Uy(g).

If M is a finite-dimensional Uy (g)-module, then the Lusztig action Ty, : M — M satis-
fies Ty, (um) = Ty () Ty (m) for allm € M, u € Uy(g). In other words, the Lusztig action
on M defines an U, (g)-module isomorphism

Twe : MY — M.

Composing the inverse of this isomorphism with the isomorphism KX’ from Theorem 7.5, we
get the following corollary.
Corollary 7.7. Assume that g is of finite type and let § : P — ]K(ql/ d)x be a function

satisfying the recursion (7.8). Then the element K = X & Tuj); Tu701 € U defines an isomor-

phism of B¢ s-modules
Km M — M, m> Ep oy o (T m o (T )m(m)
for any finite-dimensional Uy (g)-module M. In other words, the relation
Kb =1(t(b) K

holds in % forallb € Beg.
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Remark 7.8. As before let 8 denote the category with objects in Qi and morphisms
Homg (V, W) = Homp_ (V, W). In the terminology of Section 4.2 the above corollary states
that X = X §& Tuj; Tujol is a B-(t o 7g)-automorphism of Oj,.. Equivalently, the element K
satisfies relation (4.15) in Definition 4.12 of a ttg-universal K-matrix.

8. A special choice of &

In the following we want to determine the coproduct of the element KX € % from Corol-
lary 7.7. We aim to show that KX is a ttp-universal K-matrix for B, that is that the coproduct
A(K) is given by (4.16). This, however, will only hold true for a suitable choice of .

8.1. Choosing &. Recall that £ has to satisfy the recursion (7.8) which involves the
function y : [ — K(ql/ d) given by (7.7). Extend the function y to a group homomorphism
y: P — K(q"/?)*. Depending on the choice of coefficients ¢ € €, it may be necessary to
replace K(ql/ d ) by a finite extension to do this. We will illustrate the situation and comment
on the field extension in Section 8.4.

For any A € P write

A+ 00 i_k—@(k)
o2 T2
Observe that both (A1, A1) and (i,i) are contained in ﬁZ for all A € P. Recall from

Section 2.1 that w,” for i € I denote the fundamental coweights. Now define a function
£: P —K(g"9)* by

A,+

(8.1) EV) = y()g~ P A DD ker @ @A (@),

Remark 8.1. A priori one only has —(A T, A7) + > ¢ (@k. &) A(w})) € 557Z. How-
ever, for all g of finite type one can show by direct calculation that

1
(8.2) —AT AT + D (@ @M@y € ~Z forallA € P.
kel
To this end it is useful to reformulate the above condition as
- - 1
AN+ ) @k @) (@y) € SZ forall A € P
kel

and to work with the weight lattice P(X) of the restricted root system X of the symmetric
pair (g, ¥). The relation between P(X) and P is discussed in detail in [25, Section 2]. We
expect (8.2) also to hold for infinite-dimensional g. If it does not hold, then the definition of &
requires an extension of K(g 1/ d) also for the g-power to lie in the field.

We claim that £ satisfies the recursion (7.8).

Lemma 8.2. The function & : P — K(ql/ 4Y% defined by (8.1) satisfies the relation

(8.3) E(i + v) = E(WE)g~ 10D

forall u,v € P. In particular, £ satisfies the recursion (7.8).



344 Balagovié¢ and Kolb, Universal K-matrix for quantum symmetric pairs

Proof.  For any u,v € P one calculates
E(L+v) = y(p + U)q—((u+v)+,(u+v)+)+2kel(&kﬁk)(lt-i-v)(wkv

- y(M)y(U)q—(/fr,M+)—(v+,v+)—(M,V)—(®(M),V)+Zke1 (@ ar) (n+v) (@)

= E(W)E(v)g~WTOW.Y)

which proves (8.3). Choosing v = «; one now obtains

(8.3) _ .
E(n+ i) = E(E(ay)g— HHOU)
BD ¢ (w)y(i)g— @ e @ aD—(wai+6@)

As (ozl.Jr ,ocl.+ ) — (@i, ai) = (aj, O(w;)), the above formula implies that & satisfies the recur-
sion (7.8). D

8.2. The coproduct of £. Recall the invertible element k € % ® defined in Example
3.4.Let f : P — P be any map. For every M, N € Ob(Ojy) define a linear map

84) 1l y MON>MON, men)—q¢"OVmen ifmeM,, neN,.
As in Example 3.4 the collection k/ = (KAf,I N)M.N €0ob(0;,) defines an element in %/ @,

Remark 8.3. In the following we will apply this notion in the case f = —©® = wy o t,
see Section 5.1. To this end we need to assume that the minimal realization (Y, IT, ITV) is
compatible with the involution t € Aut(/, X) as in [18, Section 2.6]. This means that the map
T : 1TV — I1Y extends to a permutation 7 : I3, — T1%, such that a;(;)(d<(s)) = a;(dy). In
this case t may be considered as a map 7 : P — P. We will make this assumption without

further comment. In the finite case, which is our only interest in Section 9, it is always satisfied.

Recall from Example 3.3 that the function £ defined by (8.1) may be considered as an ele-
ment in % and hence we can take its coproduct, see Section 3.2. The coproduct A(§) € %@
can be explicitly determined.

Lemma 8.4. The element £ € % defined by (8.1) satisfies the relation
(8.5) AE) =E®8 «HwC.

Proof. LetM,N € Ob(Oiy) andm € M;,,n € N, forsome ,v € P.Thenm ® n lies
in the weight space (M ® N),+,. Hence one gets

AE)(m@n) = §(u+v)m@n
= E(EW)g Mg OWIm @ n
= E®8 -« Pmen)
which proves formula (8.5). D

For the rest of this paper the symbol & will always denote the function given by (8.1) and
the corresponding element of %/ .
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8.3. The action of § on U;(g). Conjugation by the invertible element § € % gives an
automorphism

(8.6) AdE): U — U, ur~> Ad(E)(u) = Eut™ L.
For any M € Ob(Oiy) one has
E(um) = Ad(€)(u)é(m) forallu € 7 andm € M.

Recall that we consider Uy (g) as a subalgebra of % .

Lemma 8.5. The automorphism (8.6) restricts to an automorphism of Uy(g). More
explicitly, one has

(8.7) Ad(§)(Ey) = E(V)EUKV__ll_@(V),
(8.8) AdE)(Fy) = E0) " Kyrow) Fo.
(8.9) AdE)(K;) = K;

forall E, € U and F, e UZ, and alli € I.

Proof. By definition the elements & and K; commute in %/. This proves (8.9). To verify
the remaining two formulas let M € Ob(O;y) and m € M, for some ; € P. Then one has

-1 _é(/i+‘))
SEETm =T

which proves formula (8.7). Formula (8.8) is obtained analogously using the relation

EW)! = £(—)gteM))

(8.3) — —
Eym = §(v)q (M+®(M)’V)Evm :E(V)Eva_il_@(,,)m

which also follows from (8.3). O

For g of finite type the above lemma allows us to identify the restriction of Ad(§) to the
subalgebra My U(g/ of Uy (g). Recall the conventions for the diagram automorphisms tq in the
finite case from Remark 7.2.

Lemma 8.6. Assume that g is of finite type. Then one has

Ad(é)}MXU(% = (TonwaTO)}MXUg-

Proof. Consider u € Q; and elements £, € U ;[ and F, € UZ,. By Lemma 8.5 and
relations (7.2) one has
Ad(E)(Ey) = g~V Ey K = Tug Ty tro(Ep).
Ad(€)(Fy) = q“M K2 F = Tuy Twy t70(Fu).
Moreover, if v € 0@, then Lemma 8.5 implies that
Ad(§)(Kv) = Ky = Tw,t0Twy T(Ky)

which completes the proof of the lemma. |
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8.4. Extending y from Q to P. In this final subsection, we illustrate how different
choices of ¢ and s influence the extension of the group homomorphism y : Q — K(¢'/?4)* to
the weight lattice P. As an example consider the root datum of type A3 with I = {1, 2, 3}, that
is g = sl4(C), and the admissible pair (X, t) given by X = {2} and t(i) = 4 —i. In this case
the constraints (5.16) and (5.2) reduce to the relations

c3=¢q%c1. s(3)=—s(1).
The group homomorphism y : QO — K(g/4)* is defined by

ylar) =sB)cr, ylaz) =1, ylaz) =s(l)cs.
The weight lattice P is spanned by the fundamental weights
_ 31 + 2000 + a3 o1 + 20 + a3 o1 + 20 + 3a3

w1 = , Wy =—"\F7—"", WwW3=
1 4 2 2 3 4

and we want to extend y from Q to P.

Choice 1. Letcy =c¢3 =¢,s(1) =1,s53) = —1. Then y(x1) = —¢, y(3) = ¢, and
y can be extended to P by

37ri/4q

y(w)) =e . y(my) =2, y(w3) = .

Choice2. Letc; =1—¢2% c3=¢>—1,s(1) =1,5(3) = —1. Then

y(ar) = y(as) =¢> -1,
and y can be extended to P by

y(w1) = y(w2) = y(w3) = ¢* — L.

The advantage of Choice 1 is that the parameters ¢; specialize to 1 as ¢ — 1. This prop-
erty is necessary to show that B¢ specializes to U(f) for ¢ — 1, see [18, Section 10]. The
drawback of Choice 1 is that, for y to extend to P, the field K must contain some 4-th root
of —1. Choice 2, one the other hand, has the advantage that y can be defined on P with val-
ues in Q(g)*. The drawback of Choice 2 is that ¢; — 0 as ¢ — 1 and hence B, s does not
specialize to U(¥f).

For any quantum symmetric pair of finite type it is possible to find analogs of Choice 1
and Choice 2 above. We can choose ¢; = g% for some a; € Z, see [2, Remark 3.14]. If X = ¢
or T = id, then y extends to a group homomorphism P — K(ql/ 4y and no field extension
is necessary. Now assume that X # @ and t # id. If we keep the choice ¢; = g%, then the
extension of y to P requires the field to contain certain roots of unity. Alternatively, as in
Choice 2, one can choose ¢; € {g% , (1 — ¢P)q%} for some a; € Z,b; € Z and s(i) = +1 in
such a way that y can be extended from Q to P with values in Q(g 1/dyx

9. The coproduct of the universal K-matrix JC

For the remainder of this paper we assume that g is of finite type. We keep the setting from
Section 5.4 and Assumption (7g) from Section 7.1. Recall that in the finite case assumptions (1)
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and (4) in Section 5.4 are always satisfied. Moreover, by Remark 7.2 Assumption (7p) reduces
to equation (7.4) where tp is determined by (7.1). In this section we calculate the coproduct of
the element

K=XET, Tyl ew

given in Corollary 7.7. This will show that X is indeed a 7 tp-universal K-matrix. As an essen-
tial step we determine the coproduct of the quasi-K-matrix X in Section 9.2. First, however, we
perform some calculations which simplify later arguments.

9.1. Preliminary calculations with the quasi R-matrix. Let Ry denote the quasi-R-
matrix corresponding to the semisimple Lie subalgebra gx of g. Recall that wg and wy denote
the longest elements of W and Wy, respectively. Choose a reduced expression wo = sj; ... S},
such that wy = s;, ...s;, for some s < 7. As in Remark 3.6 the quasi-R-matrices R and Ry
can then be written as

R = Rl gle—1] ---R[l], Ry = RIs1. gpls=11 .., g1l

In view of relation (3.4) one obtains that

9.1) RRy = RR);I — R, Q=11 pls+11.
Define
(9.2) REX) = (Ad(§) Ty Ty tto ® 1)(RRy) € %2.

We will see in Theorem 9.4 that the element R®X) is a major building block of the coprod-
uct A(X).

Lemma 9.1. The following relation holds:

(7,.X) + +
R € I1 UtoonKu® UL
pewy Q+tNo+
Proof. For any j =1,...,1 let y; denote the corresponding root as in Remark 3.6.

If s +1 < j <t,then the factor RUT defined by (3.6) satisfies
RUT e [T(Tuy ()N UZyy,) ® Uy, .

n>0
Using (9.1) we get that
RRy € I1 (Tuxy W) NUZ) U,
uewy Q+tno+
This implies that
(Tyat ® 1)(RRx) € I Ui ey @ Unt -
newy Q+tNO+
Using (7.2) we get

(Tl t® DRR) € [ Ul (o K ey @ Uit
newxy Q+tNo+
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As 79 and Ty,,, commute, relation (8.7) gives

(AdE) Tl Toiror ® D(RRy) e [ U

+
wy (c(u)) Kn ® Uy
wewy Q+tNo+

which completes the proof of the lemma. O

Lemma 9.2. Foranyi € I the following relation holds:
(1@ )R = pi(qi—q; ") - RY) - Ry - (T} (Ee)) ® 1) - Ry - (Ki ® 1)
in ?/0(2) where p; = cr(i)s(i)q_(“i’(a(o‘i)), in particular p; = 0 ifi € X.

Proof. It follows from the intertwining property (3.3) of the quasi R-matrix for u = F;
and from relation (2.10) that

9.3) (1®rj)R=—(gj—¢;")-R-(F; ®1) forall j €l

and that (1 ® r;)(RRx) = 0 for i € X. This proves the lemma for i € X. Now assume that
i € I\ X.In view of property (2.8) for U™ and the fact that (1 ® r;)Rxy =0 fori € I \ X,
relation (9.3) implies that

(1®ri)(RRx) = —(qi —q; YR - (FiK; ' ® 1)- Ry - (K; ® 1).
Hence one gets

94) (1@ r)(AdE) Ty, Ty t70 ® 1)(RRx)
= —(qi —q; HYAAE T Ty trro ® (R (FiK; ' ® 1) Ry - (K;i ® 1))
= —(qi — 47 NAE) T,y Tyt 770 ® 1)(RRx)
(AA(E) Ty Ty 70 ® D(Rx - (FiK;7' ® 1)« Ry - (K; ® 1)).

Applying Lemma 8.6 to the second factor in the above expression we get

©5)  (AdE) Tyl Toptto ® D(Rx - (FiK;' ®1)- Ry - (K; ® 1))
= Ry - (AdE) Ty Ty lrro(F) ®1) - (K7 ' ® 1) - Ry - (K; ® 1)
= —Ry - (AdE) (T (Ez (1) Ky (@ y)—ar ® 1) - Rx - (Ki ® 1).

As Ty H(Eq ) € Uj®(ai), relation (8.7) gives
AdE) (T (Eey)) = y (2(0))g~ @ CCN T ME 1) Koy +0e)-
Inserting this expression into (9.5) gives

(Ad(E) Ty Tyttt ® 1)(Rx - (F; K7 @ 1) - Ry - (K; ® 1))
= —y(@(()g~ O Ry - (Tyd (Bey) @ 1) - Ry - (Ki @ 1).

Finally, inserting the above formula into (9.4) produces the desired result. O
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9.2. The coproduct of the quasi K-matrix X. Asin Section 6 write the quasi K-matrix
as¥ =) co+ X, €U with X, € U] Define

(9.6) Xk2= Y Ku®ZXu €.
neQ+t

This element will appear as a factor in the coproduct of X.

Lemma 9.3. Foranyi € I one has
(1®ri)(Xk2) = (qi —q; ) Xk2 - (pi Kay—0(0;) ® Ty (Eziy) — siKi ® 1)
in %@ where p; = ct(,-)s(i)q_("‘i’@(“")), in particular p; = s; = 0ifi € X.
Proof. By equation (6.2) one has
0.7 (1Qri)(Xk2)

= > Ku®ri(¥,)
ueQ+
= _(Qi_qi_l) Z Ky ® (c_i%uﬁ@(ai)—aiyi + si‘%l/«—ai)
ueQ+

= —(qi—q; "ei Z (Kpt+0@)—o; ® Xpt0@)—a;) (Ke—0) @ Xi)

neQt

—(@i—¢;")si Y (Kj—a; ® X40,) (Ki ® 1)
ueQ+

= —(qi—q; ) Ek2(Ci Ko;—0(0) ® Xi + i Ki ® 1).

By the explicit expression (7.14) for X; and by relation (5.16) for ¢; one has

9.8) i Xi = —=pi Ty (Ev(p))-
Inserting (9.8) into (9.7) one obtains the desired formula. O

By Proposition 6.1 (4) the element Xg> commutes with F; ® E; for all i, j € X and
hence

9.9 Rx - Xg2 = Xg2 - Rx.
Now we are ready to compute the coproduct A(X) € % of the quasi K-matrix X € % in
terms of the elements R("X) defined in (9.2) and Xk, defined in (9.6).

Theorem 9.4. The intertwiner X satisfies the relation

(9.10) AX)=E1)-REY . %,
in %>,

Proof. By the definition (2.1) of the coproduct of Uy(g) the left hand side of equa-

tion (9.10) belongs to [],co+ U™ Ky ® U, The right hand side of (9.10) also belongs to
HMGQ"' UTK, ® Ulf, as follows from the definition (9.6) of Xk, and from Lemma 9.1. By
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Lemma 2.4 it hence suffices to show that
(9.11) (y®z,AF) = (y®z,(X®1)- R®Y . %))

for all y,z € U™. By linearity it suffices to show this in the case where z = F; Fj, ... Fj, is
a monomial in the generators F; of U ™. We perform induction on r.

For r = 0, we have z = 1 and both sides of (9.11) equal (y, X). Now assume that (9.11)
holds for all y € U™ and all monomials z € U™ of length shorter or equal than r. Then we get
for any i € [ the relation

24 212 -1
(y®zFi, AX) = (yzF;. X) =" ———(yz,ri(X))
qi — 4;
(6.2) = 9.8) _
= (yz. X@Xi + 1) = —(yz. X(0i Ty (Ez(i)) — 50)).
where as before p; = ct(i)s(i)q_(ai :©(@)) By induction hypothesis we obtain

9.12)  (y®zF.A%) =~ (y @z, pE® 1) RN Xgy - ATy (Eviy)
@z si(E® 1) R Xgs),
On the other hand, using Lemma 9.2 and Lemma 9.3 one gets
1
— 7(1 & r,)((% ® 1) . R(I’X) . -%K,Z)
L4
= —pi(E® 1) R - Ry - (T, (Exy) ® 1) - Ry - (Ki ® K)¥g2(1® K1)
—pi(E® 1) R gy - (Ko;—0(0;) ® Ty (Ex(i)))
+5i(E@ 1) ROF Xgr - (K ® 1),
Using the above formula, equation (9.9), and again Proposition 6.1 (4) one obtains

9.13)  (y ® zF;, (X @ HREX) xk,)

L enaem@e - RED 2 ,)

qi — q;

=—pi(y®z.(X® 1) R™Y) . Xg> Ry - (T (Er(iy) ® 1) - Ry)
—pi{y @z, (X® 1) RTX) . Xg 5 - (K_g) ® Tt (Eri))
+5i(y®z, (®1)- RO . xp ).

Now we want to compare equation (9.12) with equation (9.13). If i € X, then both expres-
sions vanish and hence coincide. Assume now that i € I \ X. Applying Tuj; to the relation
Er(i)Fr(j)Kr(j) = q_(ai’a-i)Fr(j)Kt(j)Er(l-) for j € X one sees that

Ty (Ev))Ej = ¢ X @ oD g, T Y (E ;) forall j € X
and hence K_g(y,) ® Tuj; (E(i)) commutes with Ry . Using (3.12) one now gets
ATyt (Er() = Rx - (T (Ez() ® 1+ K_g@) ® Ty (Ex(i)) - Rx
= Rx - (Tyy (Ec()) ® 1) Rx + K-0(@a) ® Ty (Ex(i).
Inserting the above relation into (9.12) and comparing the outcome with (9.13) one obtains
(y®zF. (@ 1) RN - Xg) = (y @ 2F1, AR))

also fori € I \ X. This completes the induction step. m)
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9.3. The coproduct of JC. We apply construction (8.4) to the map ttp : P — P and

obtain elements k%0, k7T € %0(2). To simplify notation define
R™ = 3" (to® N(Ry) = Y (1®770)(Ry) € %"
ne@+t neQt
and
RT™ = R™ .~ . flip e %@,
Recall from Corollary 7.7 that X = X£T,, 1T !

wx ~wo *

Theorem 9.5. The coproduct of X in % ? is given by
AK)=(K®1)- R (KX ®1)-R.

Proof. Using Proposition 6.1 (4) one verifies that in %0(2) one has

(9.14) (Twy Twy ® 1) - Xx2 - (Twy Ty ® D =770 (1@ %) - k7™,
Moreover, the following relation holds:

(9.15) KT (T Ty @ 1) = (Tpg Twy @ 1) - 1.
Combining the above two formulas with all our previous preparations we calculate

AK) = A®)-AE) - A(Tyy) - ATy,)

wo
9.10 _ _
L@@ 1) REX . Ey - AE)- AT - AT,

0
©2)
©9)
(3.12)

P2V (K@ 1) R0 (1@ %) k70 - (Tyy Tuwpf ™' ® 1) - A(E)

Tk ® Tt - ATy

wo

O (3 1) R kT (18 Z) - (Tuy g™ © 1)+ A

T e Ty ATy
L (K@) R T (1 ® XE) - (Tuy Tug ® 1) -
) Tz;; ® Tuj)i ' A(Tl;ol)

3.13 _ _ _
P2 K@ 1) R k7T (1@ EE) - (Tuy Tw ® 1) - Tyt @ Ty}

Tog ® Tl - Ray -k}
= (K®1)-R™ 0. (1Q XET, ) Ty l) - Ray k!
= (K®1)-R*™ . (K®1)-R

which gives the desired formula.

= (K ®1)- R (Tyy Twet ' ® 1) Ry - Xxa - A(E) - A(Ty)) - A(Tyy)

= (K ®1)- R - (Tyy Tuok ™' @ 1) Xxz - A(€) - Rx - A(Ty,) - AT,

wo

= (K @1) - R™ - (Tuy Two ' @ 1) Xa - AE) - Ty ® Tyl - AT
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Recall Definition 4.12 of a ¢-universal K-matrix. Combining Corollary 7.7 with Theo-
rem 9.5 we obtain the first statement of the following corollary.

Corollary 9.6. The element K = %ETJ; Tujol € % is a trg-universal K-matrix for the

quantum symmetric pair coideal subalgebra B of Uy(g). In particular, X satisfies the reflec-
tion equation

(9.16) (KQ1 R (K®1)-R=R-(K®1)-R*™ . (K ®1)

inw®,

Proof. The second statement follows from Remark 4.13 and equation (4.8). Here one
needs to observe that Ryrro prrv0 = Ry p considered asamap N @ M — M ® N for all
M, N € (9im. O

Remark 9.7. The approach to quantum symmetric pairs in the papers [8, 27-29] is
based on explicit solutions of the reflection equation. In [27] Noumi first found a reflection
equation for the symmetric pairs of type

Al: (sly,son), All: (slay+1,5P2n)-

For the symmetric pairs of type

AIIL: (slpr4n.s5(glps X gly))

a different reflection equation appeared in [28]. The differing reflection equations are unified
by equation (9.16). Indeed, the diagram automorphism t 7y is nontrivial in types Al and All,
while 779 is the identity in type AIIL
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