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Universal K-matrix for quantum symmetric pairs
By Martina Balagović at Newcastle upon Tyne and Stefan Kolb at Newcastle upon Tyne

Abstract. Let g be a symmetrizable Kac–Moody algebra and let Uq.g/ denote the cor-
responding quantized enveloping algebra. In the present paper we show that quantum symmet-
ric pair coideal subalgebras Bc;s of Uq.g/ have a universal K-matrix if g is of finite type. By
a universal K-matrix for Bc;s we mean an element in a completion of Uq.g/ which commutes
with Bc;s and provides solutions of the reflection equation in all integrable Uq.g/-modules in
category O. The construction of the universal K-matrix for Bc;s bears significant resemblance
to the construction of the universal R-matrix for Uq.g/. Most steps in the construction of the
universal K-matrix are performed in the general Kac–Moody setting.

In the late nineties T. tom Dieck and R. Häring-Oldenburg developed a program of rep-
resentations of categories of ribbons in a cylinder. Our results show that quantum symmetric
pairs provide a large class of examples for this program.

1. Introduction

1.1. Background. Let g be a symmetrizable Kac–Moody algebra and � W g! g an
involutive Lie algebra automorphism. Let k D ¹x 2 g j �.x/ D xº denote the fixed Lie sub-
algebra. We call the pair of Lie algebras .g; k/ a symmetric pair. Assume that � is of the second
kind, which means that the standard Borel subalgebra bC of g satisfies dim.�.bC/\bC/ <1.
In this case the universal enveloping algebra U.k/ has a quantum group analog Bc;s D Bc;s.�/

which is a right coideal subalgebra of the Drinfeld–Jimbo quantized enveloping algebra Uq.g/,
see [18, 22, 23]. We call .Uq.g/; Bc;s/ a quantum symmetric pair.

The theory of quantum symmetric pairs was first developed by M. Noumi, T. Sugitani,
and M. Dijkhuizen for all classical Lie algebras in [8, 27–29]. The aim of this program was
to perform harmonic analysis on quantum group analogs of compact symmetric spaces. This
allowed an interpretation of Macdonald polynomials as quantum zonal spherical functions.
Independently, G. Letzter developed a comprehensive theory of quantum symmetric pairs for
all semisimple g in [22, 23]. Her approach uses the Drinfeld–Jimbo presentation of quantized
enveloping algebras and hence avoids casework. Letzter’s theory also aimed at applications
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in harmonic analysis for quantum group analogs of symmetric spaces [24, 25]. The algebraic
theory of quantum symmetric pairs was extended to the setting of Kac–Moody algebras in [18].

Over the past two years it has emerged that quantum symmetric pairs play an impor-
tant role in a much wider representation theoretic context. In a pioneering paper H. Bao and
W. Wang proposed a program of canonical bases for quantum symmetric pairs [3]. They per-
formed their program for the symmetric pairs

.sl2N ; s.glN � glN // and .sl2NC1; s.glN � glNC1//

and applied it to establish Kazhdan–Lusztig theory for the category O of the ortho-symplectic
Lie superalgebra osp.2nC1 j 2m/. Bao and Wang developed the theory for these two examples
in astonishing similarity to Lusztig’s exposition of quantized enveloping algebras in [26]. In
a closely related program M. Ehrig and C. Stroppel showed that quantum symmetric pairs for

.gl2N ;glN � glN / and .gl2NC1;glN � glNC1/

appear via categorification using parabolic category O of type D (see [11]). The recent devel-
opments as well as the previously known results suggest that quantum symmetric pairs allow
as deep a theory as quantized enveloping algebras themselves. It is reasonable to expect that
most results about quantized enveloping algebras have analogs for quantum symmetric pairs.

One of the fundamental properties of the quantized enveloping algebra Uq.g/ is the exis-
tence of a universal R-matrix which gives rise to solutions of the quantum Yang–Baxter equa-
tion for suitable representations of Uq.g/. The universal R-matrix is at the heart of the origins
of quantum groups in the theory of quantum integrable systems [10,14] and of the applications
of quantum groups to invariants of knots, braids, and ribbons [31]. Let

� W Uq.g/! Uq.g/˝ Uq.g/

denote the coproduct of Uq.g/ and let �op denote the opposite coproduct obtained by flipping
tensor factors. The universal R-matrix RU of Uq.g/ is an element in a completion U .2/

0 of
Uq.g/˝ Uq.g/, see Section 3.2. It has the following two defining properties:

(1) In U .2/
0 the element RU satisfies the relation �.u/RU D RU�op.u/ for all u 2 Uq.g/.

(2) The relations

.�˝ id/.RU / D RU23R
U
13; .id˝�/.RU / D RU12R

U
13

hold. Here we use the usual leg notation for threefold tensor products.

The universal R-matrix gives rise to a family OR D .RM;N / of commutativity isomorphisms
ORM;N WM ˝N ! N ˝M for all category O representations M;N of Uq.g/. In our con-

ventions one has ORM;N D RU ı flipM;N where flipM;N denotes the flip of tensor factors. The
family OR can be considered as an element in an extension U .2/ of the completion U .2/

0 of
Uq.g/˝ Uq.g/, see Section 3.3 for details. In U .2/ property (1) of RU can be rewritten as
follows:

(1’) In U .2/ the element OR commutes with �.u/ for all u 2 Uq.g/.

By definition the family of commutativity isomorphisms OR D . ORM;N / is natural in M and N .
The above relations mean that OR turns category O for Uq.g/ into a braided tensor category.

The analog of the quantum Yang–Baxter equation for quantum symmetric pairs is
known as the boundary quantum Yang–Baxter equation or (quantum) reflection equation. It
first appeared in I. Cherednik’s investigation of factorized scattering on the half line [6] and in
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E. Sklyanin’s investigation of quantum integrable models with non-periodic boundary condi-
tions [21, 33]. In [21, Section 6.1] an element providing solutions of the reflection equation in
all representations was called a ‘universal K-matrix’. Explicit examples of universal K-matrices
for Uq.sl2/ appeared in [7, (3.31)] and [20, (2.20)].

A categorical framework for solutions of the reflection equation was proposed by T. tom
Dieck and R. Häring-Oldenburg under the name braided tensor categories with a cylinder twist
[12, 34, 35]. Their program provides an extension of the graphical calculus for braids and rib-
bons in C � Œ0; 1� as in [31] to the setting of braids and ribbons in the cylinder C� � Œ0; 1�,
see [12]. It hence corresponds to an extension of the theory from the classical braid group of
type AN�1 to the braid group of type BN . Tom Dieck and Häring-Oldenburg called the analog
of the universal R-matrix in this setting a universal cylinder twist. They determined a family
of universal cylinder twists for Uq.sl2/ by direct calculation [35, Theorem 8.4]. This family
essentially coincides with the universal K-matrix in [20, (2.20)] where it was called a universal
solution of the reflection equation.

1.2. Universal K-matrix for coideal subalgebras. Special solutions of the reflection
equation were essential ingredients in the initial construction of quantum symmetric pairs by
Noumi, Sugitani, and Dijkhuizen [8,27–29]. For this reason it is natural to expect that quantum
symmetric pairs give rise to universal K-matrices. The fact that quantum symmetric pairs Bc;s
are coideal subalgebras ofUq.g/moreover suggests to base the concept of a universal K-matrix
on a coideal subalgebra of a braided (or quasitriangular) Hopf algebra.

Recall that a subalgebra B of Uq.g/ is called a right coideal subalgebra if

�.B/ � B ˝ Uq.g/:

In the present paper we introduce the notion of a universal K-matrix for a right coideal sub-
algebra B of Uq.g/. A universal K-matrix for B is an element K in a suitable completion U
of Uq.g/ with the following properties:

(1) In U the universal K-matrix K commutes with all b 2 B .

(2) The relation

�.K/ D .K ˝ 1/ � OR � .K ˝ 1/ � OR(1.1)

holds in the completion U .2/ of Uq.g/˝ Uq.g/.

See Definition 4.12 for details. By the definition of the completion U , a universal K-matrix
is a family K D .KM / of linear maps KM WM !M for all integrable Uq.g/-modules in
category O. Moreover, this family is natural in M . The defining properties (1) and (2) of K

are direct analogs of the defining properties (1’) and (2) of the universal R-matrix RU . The fact
that OR commutes with �.K/ immediately implies that K satisfies the reflection equation

OR � .K ˝ 1/ � OR � .K ˝ 1/ D .K ˝ 1/ � OR � .K ˝ 1/ � OR

in U .2/. By (1.1) and the naturality of K a universal K-matrix for B gives rise to the structure
of a universal cylinder twist on the braided tensor category of integrable Uq.g/-modules in
category O. Universal K-matrices, if they can be found, hence provide examples for the theory
proposed by tom Dieck and Häring-Oldenburg. The new ingredient in our definition is the
coideal subalgebra B . We will see in this paper that B plays a focal role in finding a universal
K-matrix.
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The notion of a universal K-matrix can be defined for any coideal subalgebra of a braided
bialgebra H with universal R-matrix RH 2 H ˝H . This works in complete analogy to the
above definition for B and Uq.g/, and it avoids completions, see Section 4.3 for details. Fol-
lowing the terminology of [34, 35] we call a coideal subalgebra B of H cylinder-braided if it
has a universal K-matrix.

A different notion of a universal K-matrix for a braided Hopf algebra H was previously
introduced by J. Donin, P. Kulish, and A. Mudrov in [9]. LetRH21 2 H ˝H denote the element
obtained from RH by flipping the tensor factors. Under some technical assumptions the uni-
versal K-matrix in [9] is just the element RHRH21 2 H ˝H . Coideal subalgebras only feature
indirectly in this setting. We explain this in Section 4.4.

In a dual setting of coquasitriangular Hopf algebras the relations between the construc-
tions in [9], the notion of a universal cylinder twist [34, 35], and the theory of quantum sym-
metric pairs was already discussed by J. Stokman and the second named author in [19]. In
that paper universal K-matrices were found for quantum symmetric pairs corresponding to the
symmetric pairs .sl2N ; s.glN � glN // and .sl2NC1; s.glN � glNC1//. However, a general
construction was still outstanding.

1.3. Main results. The main result of the present paper is the construction of a uni-
versal K-matrix for every quantum symmetric pair coideal subalgebra Bc;s of Uq.g/ for g of
finite type. This provides an analog of the universal R-matrix for quantum symmetric pairs.
Moreover, it shows that important parts of Lusztig’s book [26, Chapters 4 and 32] translate to
the setting of quantum symmetric pairs.

The construction in the present paper is significantly inspired by the example classes
.sl2N ; s.glN � glN // and .sl2NC1; s.glN � glNC1// considered by Bao and Wang in [3].
The papers [3] and [11] both observed the existence of a bar involution for quantum symmetric
pair coideal subalgebrasBc;s in this special case. Bao and Wang then constructed an intertwiner
‡ 2 U between the new bar involution and Lusztig’s bar involution. The element‡ is hence an
analog of the quasi R-matrix in Lusztig’s approach to quantum groups, see [26, Theorem 4.1.2].
Similar to the construction of the commutativity isomorphisms in [26, Chapter 32] Bao and
Wang construct a Bc;s-module homomorphism TM WM !M for any finite-dimensional rep-
resentation M of Uq.slN /. If M is the vector representation, they show that TM satisfies the
reflection equation and they establish Schur–Jimbo duality between the coideal subalgebra and
a Hecke algebra of type BN acting on V ˝N .

In the present paper we consider quantum symmetric pairs in full generality and formu-
late results in the Kac–Moody setting whenever possible. The existence of the bar involution

B
W Bc;s ! Bc;s; x 7! xB

for the quantum symmetric pair coideal subalgebra Bc;s was already established in [2]. Fol-
lowing [3, Section 2] closely we now prove the existence of an intertwiner between the two
bar involutions. More precisely, we show in Theorem 6.10 that there exists a nonzero element
X 2 U which satisfies the relation

xB X D X x for all x 2 Bc;s.(1.2)

We call the element X the quasi K-matrix for Bc;s. It corresponds to the intertwiner ‡ in the
setting of [3].
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Recall from [18, Theorem 2.7] that the involutive automorphism � W g! g is determined
by a pair .X; �/ up to conjugation. HereX is a subset of the set of nodes of the Dynkin diagram
of g and � is a diagram automorphism. The Lie subalgebra gX � g corresponding to X is
required to be of finite type. Hence there exists a longest element wX in the parabolic subgroup
WX of the Weyl group W . The Lusztig automorphism TwX may be considered as an element
in the completion U of Uq.g/, see Section 3. We define

K 0 D X � T �1wX 2 U(1.3)

where � 2 U denotes a suitably chosen element which acts on weight spaces by a scalar. The
element K 0 defines a linear isomorphism

K 0M WM !M(1.4)

for every integrable Uq.g/-module M in category O. In Theorem 7.5 we show that K 0M is
a Bc;s-module homomorphism if one twists the Bc;s-module structure on both sides of (1.4)
appropriately. The element K 0 exists in the general Kac–Moody case.

For g of finite type there exists a longest element w0 2 W and a corresponding family of
Lusztig automorphisms Tw0 D .Tw0;M / 2 U . In this case we define

K D X � T �1wX T
�1
w0
2 U :(1.5)

For the symmetric pairs .sl2N ; s.glN � glN // and .sl2NC1; s.glN � glNC1// the construc-
tion of K coincides with the construction of the Bc;s-module homomorphisms TM in [3] up to
conventions. The longest element w0 induces a diagram automorphism �0 of g and of Uq.g/.
Any Uq.g/-module M can be twisted by an algebra automorphism ' W Uq.g/! Uq.g/ if we
define u Fm D '.u/m for all u 2 Uq.g/, m 2M . We denote the resulting twisted module
by M ' . We show in Corollary 7.7 that the element K defines a Bc;s-module isomorphism

KM WM !M ��0(1.6)

for all finite-dimensional Uq.g/-modules M . Alternatively, this can be written as

Kb D �0.�.b//K for all b 2 Bc;s.

The construction of the bar involution for Bc;s, the intertwiner X, and the Bc;s-module
homomorphism K are three expected key steps in the wider program of canonical bases for
quantum symmetric pairs proposed in [3]. The existence of the bar involution was explicitly
stated without proof and reference to the parameters in [3, Section 0.5] and worked out in detail
in [2]. Weiqiang Wang has informed us that he and Huanchen Bao have constructed X and K 0M
independently in the case X D ;, see [4].

In the final Section 9 we address the crucial problem to determine the coproduct �.K/

in U .2/. The main step to this end is to determine the coproduct of the quasi K-matrix X in The-
orem 9.4. Even for the symmetric pairs .sl2N ; s.glN �glN // and .sl2NC1; s.glN �glNC1//,
this calculation goes beyond what is contained in [3]. It turns out that if ��0 D id, then the
coproduct �.K/ is given by formula (1.1). Hence, in this case K is a universal K-matrix as
defined above for the coideal subalgebra Bc;s. If ��0 ¤ id, then we obtain a slight general-
ization of properties (1) and (2) of a universal K-matrix. Motivated by this observation we
introduce the notion of a '-universal K-matrix for B if ' is an automorphism of a braided
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bialgebra H and B is a right coideal subalgebra, see Section 4.3. With this terminology it
hence turns out in Theorem 9.5 that in general K is a ��0-universal K-matrix for Bc;s. The
fact that ��0 may or may not be the identity provides another conceptual explanation for the
occurrence of two distinct reflection equations in the Noumi–Sugitani–Dijkhuizen approach to
quantum symmetric pairs.

1.4. Organization. Sections 2–5 are of preparatory nature. In Section 2 we fix notation
for Kac–Moody algebras and quantized enveloping algebras, mostly following [13, 15, 26]. In
Section 3 we discuss the completion U of Uq.g/ and the completion U .2/

0 of Uq.g/˝ Uq.g/.
In particular, we consider Lusztig’s braid group action and the commutativity isomorphisms OR
in this setting.

Section 4.1 is a review of the notion of a braided tensor category with a cylinder twist as
introduced by tom Dieck and Häring-Oldenburg. We extend their original definition by a twist
in Section 4.2 to include all the examples obtained from quantum symmetric pairs later in the
paper. The categorical definitions lead us in Section 4.3 to introduce the notion of a cylinder-
braided coideal subalgebra of a braided bialgebra. By definition this is a coideal subalgebra
which has a universal K-matrix. We carefully formulate the analog definition for coideal sub-
algebras of Uq.g/ to take into account the need for completions. Finally, in Section 4.4 we
recall the different definition of a universal K-matrix from [9] and indicate how it relates to
cylinder braided coideal subalgebras as defined here.

Section 5 is a brief summary of the construction and properties of the quantum sym-
metric pair coideal subalgebras Bc;s in the conventions of [18]. In Section 5.3 we recall the
existence of the bar involution for Bc;s following [2]. The quantum symmetric pair coideal sub-
algebra Bc;s depends on a choice of parameters, and the existence of the bar involution imposes
additional restrictions. In Section 5.4 we summarize our setting, including all restrictions on
the parameters c; s.

The main new results of the paper are contained in Sections 6–9. In Section 6 we prove
the existence of the quasi K-matrix X. The defining condition (1.2) gives rise to an overdeter-
mined recursive formula for the weight components of X. The main difficulty is to prove the
existence of elements satisfying the recursion. To this end, we translate the inductive step into
a more easily verifiable condition in Section 6.2. This condition is expressed solely in terms
of the constituents of the generators of Bc;s, and it is verified in Section 6.4. This allows us
to prove the existence of X in Section 6.5. A similar argument is contained in [3, Section 2.4]
for the special examples .sl2N ; s.glN � glN // and .sl2NC1; s.glN � glNC1//. However, the
explicit formulation of the conditions in Proposition 6.3 seems to be new.

In Section 7 we consider the element K 0 2 U defined by (1.3). In Section 7.1 we define
a twist of Uq.g/ which reduces to the Lusztig action Tw0 if g is of finite type. We also record
an additional Assumption (�0) on the parameters. In Section 7.2 this assumption is used in the
proof that K 0M WM !M is a Bc;s-module isomorphism of twisted Bc;s-modules. In the finite
case this immediately implies that the element K defined by (1.5) gives rise to an Bc;s-module
isomorphism (1.6). Up to a twist this verifies the first condition in the definition of a universal
K-matrix for Bc;s.

The map � involved in the definition of K 0 is discussed in more detail in Section 8.
So far, the element � was only required to satisfy a recursion which guarantees that K 0M is
a Bc;s-module homomorphism. In Section 8.1 we choose � explicitly and show that our choice
satisfies the required recursion. In Section 8.2 we then determine the coproduct of this specific
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� considered as an element in the completion U . Moreover, in Section 8.3 we discuss the action
of � on Uq.g/ by conjugation. This simplifies later calculations.

In Section 9 we restrict to the finite case. We first perform some preliminary calculations
with the quasi R-matrices of Uq.g/ and Uq.gX /. This allows us in Section 9.2 to determine
the coproduct of the quasi K-matrix X, see Theorem 9.4. Combining the results from Sections
8 and 9 we calculate the coproduct �.K/ and prove a ��0-twisted version of formula (1.1) in
Section 9.3. This shows that K is a ��0-universal K-matrix in the sense of Definition 4.12.

Acknowledgement. The authors are grateful to Weiqiang Wang for comments and
advice on referencing.

2. Preliminaries on quantum groups

In this section we fix notation and recall some standard results about quantum groups.
We mostly follow the conventions in [26] and [13].

2.1. The root datum. Let I be a finite set and let A D .aij /i;j2I be a symmetrizable
generalized Cartan matrix. By definition there exists a diagonal matrix D D diag.�i j i 2 I /
with coprime entries �i 2 N such that the matrix DA is symmetric. Let .h;…;…_/ be a min-
imal realization of A as in [15, Section 1.1]. Here … D ¹˛i j i 2 I º and …_ D ¹hi j i 2 I º
denote the set of simple roots and the set of simple coroots, respectively. We write g D g.A/ to
denote the Kac–Moody Lie algebra corresponding to the realization .h;…;…_/ ofA as defined
in [15, Section 1.3].

Let Q D Z… be the root lattice and define QC D N0…. For �;� 2 h� we write � > �
if � � � 2 QC n ¹0º. For � D

P
i mi˛i 2 Q

C let ht.�/ D
P
i mi denote the height of �. For

any i 2 I the simple reflection �i 2 GL.h�/ is defined by

�i .˛/ D ˛ � ˛.hi /˛i :

The Weyl group W is the subgroup of GL.h�/ generated by the simple reflections �i for all
i 2 I . For simplicity set rA D jI j � rank.A/. Extend …_ to a basis

…_ext D …
_
[ ¹ds j s D 1; : : : ; rAº

of h and set Q_ext D Z…_ext. Assume additionally that ˛i .ds/ 2 Z for all i 2 I , s D 1; : : : ; rA.
By [15, Section 2.1] there exists a nondegenerate, symmetric, bilinear form . � ; � / on h such
that

.hi ; h/ D
˛i .h/

�i
for all h 2 h; i 2 I; .dm; dn/ D 0 for all n;m 2 ¹1; : : : ; rAº:

Hence, under the resulting identification of h and h� we have hi D ˛i=�i . The induced bilinear
form on h� is also denoted by the bracket . � ; � /. It satisfies .˛i ; j̨ / D �iaij for all i; j 2 I .
Define the weight lattice by

P D ¹� 2 h� j �.Q_ext/ � Zº:

Remark 2.1. The abelian groups Y D Q_ext and X D P together with the embeddings
I ! Y , i 7! hi and I ! X , i 7! ˛i form an X -regular and Y -regular root datum in the sense
of [26, Section 2.2].
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Define ˇi 2 h� by ˇi .h/ D .di ; h/, set

…ext D … [ ¹ˇi j i D 1; : : : ; rAº;

and let Qext D Z…ext. Then

P_ D ¹h 2 h j Qext.h/ � Zº

is the coweight lattice. Let$_i for i 2 I denote the basis vector of P_ dual to ˛i . LetB denote
the rA � jI j-matrix with entries j̨ .di /. Define an .rA C jI j/ � .rA C jI j/ matrix by

Aext D

 
A D�1B t

B 0

!
:

By construction, one has det.Aext/ ¤ 0. The pairing . � ; � / induces Q-valued pairings onP � P
and P � P_. The above conventions lead to the following result.

Lemma 2.2. The pairing . � ; � / takes values in 1
det.Aext/

Z on P � P and on P � P_.

2.2. Quantized enveloping algebras. With the above notations we are ready to intro-
duce the quantized enveloping algebra Uq.g/. Let d 2 N be the smallest positive integer such
that d

det.Aext/
2 Z. Let q1=d be an indeterminate and let K a field of characteristic zero. We will

work with the field K.q1=d / of rational functions in q1=d with coefficients in K.

Remark 2.3. The choice of ground field is dictated by two reasons. Firstly, by Lem-
ma 2.2 it makes sense to consider q.�;�/ as an element of K.q1=d / for any weights �;� 2 P .
This will allow us to define the commutativity isomorphism OR, see Example 3.4 and for-
mula (3.8). Secondly, in the construction of the function � in Section 8 we will require factors
of the form q�.$

_
i
/ for � 2 P and i 2 I , see formula (8.1). Again, Lemma 2.2 shows that such

factors lie in K.q1=d /.

Following [26, Section 3.1.1] the quantized enveloping algebra Uq.g/ is the associative
K.q1=d /-algebra generated by elements Ei , Fi , Kh for all i 2 I and h 2 Q_ext satisfying the
following defining relations:

(i) K0 D 1 and KhKh0 D KhCh0 for all h; h0 2 Q_ext.

(ii) KhEi D q˛i .h/EiKh for all i 2 I , h 2 Q_ext.

(iii) KhFi D q�˛i .h/FiKh for all i 2 I , h 2 Q_ext.

(iv) EiFj � FjEi D ıij
Ki�K

�1
i

qi�q
�1
i

for all i 2 I where qi D q�i and Ki D K�ihi .

(v) the quantum Serre relations given in [26, Section 3.1.1 (e)].

We will use the notation qi D q�i and Ki D K�ihi all through this text. Moreover, for

� D
X
i2I

ni˛i 2 Q

we will use the notation
K� D

Y
i2I

K
ni
i :
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We make the quantum-Serre relations (v) more explicit. Let Œ 1�aij
n

�qi denote the qi -binomial
coefficient defined in [26, Section 1.3.3]. For any i; j 2 I define a non-commutative polyno-
mial Sij in two variables by

Sij .x; y/ D

1�aijX
nD0

.�1/n

"
1 � aij

n

#
qi

x1�aij�nyxn:

By [26, Section 33.1.5] the quantum Serre relations can be written in the form

Sij .Ei ; Ej / D Sij .Fi ; Fj / D 0 for all i; j 2 I :

The algebra Uq.g/ is a Hopf algebra with coproduct �, counit ", and antipode S given by

�.Ei / D Ei ˝ 1CKi ˝Ei ; ".Ei / D 0; S.Ei / D �K
�1
i Ei ;(2.1)

�.Fi / D Fi ˝K
�1
i C 1˝ Fi ; ".Fi / D 0; S.Fi / D �FiKi ;

�.Kh/ D Kh ˝Kh; ".Kh/ D 1; S.Kh/ D K�h

for all i 2 I , h 2 Q_ext. We denote by Uq.g0/ the Hopf subalgebra of Uq.g/ generated by the
elementsEi ; Fi , andK˙1i for all i 2 I . Moreover, for any i 2 I letUqi .sl2/i be the subalgebra
of Uq.g/ generated by Ei ; Fi ; Ki and K�1i . The Hopf algebra Uqi .sl2/i is isomorphic to
Uqi .sl2/ up to the choice of the ground field.

As usual we write UC, U�, and U 0 to denote the K.q1=d /-subalgebras of Uq.g/ gener-
ated by ¹Ei j i 2 I º, ¹Fi j i 2 I º, and ¹Kh j h 2 Q_extº, respectively. We also use the notation
U� D UCU 0 and U� D U�U 0 for the positive and negative Borel part of Uq.g/. For any
U 0-module M and any � 2 P let

M� D ¹m 2M jKh Fm D q
�.h/m for all h 2 Q_extº

denote the corresponding weight space. We can apply this notation in particular to UC, U�,
and Uq.g/ which are U 0-modules with respect to the left adjoint action. We obtain algebra
gradings

UC D
M
�2QC

UC� ; U� D
M
�2QC

U���; Uq.g/ D
M
�2Q

Uq.g/�:(2.2)

2.3. The bilinear pairing h � ; � i. Let k be any field, let A and B be k-algebras, and
let h � ; � i W A � B ! k be a bilinear pairing. Then h �; � i can be extended to A˝n � B˝n by
setting

h˝iai ;˝ibi i D

nY
iD1

hai ; bi i:

In the following we will use this convention for k D K.q1=d /, A D U�, B D U�, and n D 2
and 3 without further remark.

There exists a unique K.q1=d /-bilinear pairing

h � ; � i W U� � U� ! K.q1=d /(2.3)
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such that for all x; x0 2 U�, y; y0 2 U�, g; h 2 Q_ext, and i; j 2 I the following relations hold

hy; xx0i D h�.y/; x0 ˝ xi; hyy0; xi D hy ˝ y0; �.x/i;(2.4)

hKg ; Khi D q
�.g;h/; hFi ; Ej i D ıij

�1

qi � q
�1
i

;(2.5)

hKh; Ei i D 0; hFi ; Khi D 0:(2.6)

Here we follow the conventions of [13, Section 6.12] in the finite case. In the Kac–Moody
case the existence of the pairing h � ; � i follows from the results in [26, Chapter 1]. Relations
(2.4)–(2.6) imply that for all x 2 UC; y 2 U�, and g; h 2 Q_ext one has

hyKg ; xKhi D q
�.g;h/

hy; xi:(2.7)

The pairing h � ; � i respects weights in the following sense. For �; � 2 QC with � ¤ � the
restriction of the pairing to U��� � U

C
� vanishes identically. On the other hand, the restric-

tion of the paring to U��� � U
C
� is nondegenerate for all � 2 QC. The nondegeneracy of this

restriction implies the following lemma, which we will need in the proof of Theorem 9.4.

Lemma 2.4. Let X;X 0 2
Q
�2QC U

CK� ˝ U
C
� . If

hy ˝ z;Xi D hy ˝ z;X 0i for all y; z 2 U�;

then X D X 0.

Proof. We may assume that X 0 D 0. Write X D
P
�2QC X�, with

X� D
X
i

X
.1/
�;iK� ˝X

.2/
�;i 2 U

CK� ˝ U
C
� :

Consider QX� D
P
i X

.1/
�;i ˝X

.2/
�;i 2 U

C ˝ UC� . For any y 2 U�, � 2 QC, and z 2 U�� we
then have

0 D hy ˝ z;Xi D hy ˝ z;X�i
(2.7)
D hy ˝ z;X 0�i:

By the nondegeneracy of the pairing on UC� � U
�
� it follows that X 0� D 0. Consequently,

X� D 0 for all � 2 QC, and hence X D 0 as claimed.

2.4. Lusztig’s skew derivations ri and i r . Let 0f be the free associative K.q1=d /-alge-
bra generated by elements fi for all i 2 I . The algebra 0f is a U 0-module algebra with

Kh F fi D q˛i .h/fi :

As in (2.2) one obtains a QC-grading

0f D
M
�2QC

0f�:

The natural projection 0f! UC, fi 7! Ei respects the QC-grading. There exist uniquely de-
termined K.q1=d /-linear maps ir; ri W 0f! 0f such that

ri .fj / D ıij ; ri .xy/ D q
.˛i ;�/ri .x/y C xri .y/;(2.8)

ir.fj / D ıij ; ir.xy/ D ir.x/y C q
.˛i ;�/xir.y/(2.9)
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for any x 2 0f� and y 2 0f� . The above equations imply in particular that ir.1/ D 0 D ri .1/.
By [26, Section 1.2.13] the maps ir and ri factor over UC, that is there exist linear maps
ir; ri W U

C ! UC, denoted by the same symbols, which satisfy relations (2.8) and (2.9) for all
x 2 UC� , y 2 UC� and with fj replaced by Ej . The maps ri and ir on UC satisfy the following
three properties, each of which is equivalent to the definition given above.

(1) For all x 2 UC and all i 2 I one has

(2.10) Œx; Fi � D
1

.qi � q
�1
i /

�
ri .x/Ki �K

�1
i ir.x/

�
;

see [26, Proposition 3.1.6].

(2) For all x 2 UC� one has

�.x/ D x ˝ 1C
X
i

ri .x/Ki ˝Ei C .rest/1;(2.11)

�.x/ D K� ˝ x C
X
i

EiK��˛i ˝ ir.x/C .rest/2

where .rest/1 2
P
˛……[¹0º U

C
��˛K˛˝U

C
˛ and .rest/2 2

P
˛……[¹0º U

C
˛ K��˛˝U

C
��˛,

see [13, Section 6.14].

(3) For all x 2 UC, y 2 U�, and i 2 I one has

(2.12) hFiy; xi D hFi ; Ei ihy; ir.x/i; hyFi ; xi D hFi ; Ei ihy; ri .x/i

see [26, Section 1.2.13]

Property (3) and the original definition of ri and ir as skew derivations are useful in
inductive arguments. Properties (1) and (2), on the other hand, carry information about the
algebra and the coalgebra structure of Uq.g/, respectively.

Property (3) above and the nondegeneracy of the pairing h � ; � i imply that for any x 2 UC�
with � 2 QC n ¹0º one has

(2.13) x D 0 ” ri .x/ D 0 for all i 2 I ” ir.x/ D 0 for all i 2 I;

see also [26, Lemma 1.2.15]. Moreover, property (2) and the coassociativity of the coproduct
imply that for any i; j 2 I one has

(2.14) ri ı j r D j r ı ri ;

see [13, Lemma 10.1]. Note that this includes the case i D j .
Similarly to the situation for the algebra UC, the maps ri ; ir W 0f! 0f also factor over

the canonical projection 0f! U�, fi ! Fi which maps 0f� to U��� for all � 2 QC. The maps
ri ; ir W U

� ! U� satisfy (2.8) and (2.9) for all x 2 U���, y 2 U��� with fj replaced by Fj .
Moreover, the maps ri ; ir W U� ! U� can be equivalently described by analogs of properties
(1)–(3) above. For example, in analogy to (3) one has

(2.15) hy;Eixi D hFi ; Ei ihir.y/; xi; hy; xEi i D hFi ; Ei ihri .y/; xi

for all x 2 U�, y 2 U�, and i 2 I .
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As in [26, Section 3.1.3] let � W Uq.g/! Uq.g/ denote the K.q1=d /-algebra antiauto-
morphism determined by

�.Ei / D Ei ; �.Fi / D Fi ; �.Kh/ D K�h for all i 2 I , h 2 Q_ext:(2.16)

The map � intertwines the skew derivations ri and ir as follows:

� ı ri D ir ı � for all i 2 I :(2.17)

Recall that the bar involution on Uq.g/ is the K-algebra automorphism

W Uq.g/! Uq.g/; x 7! x

defined by

q1=d D q�1=d ; Ei D Ei ; Fi D Fi ; Kh D K�h(2.18)

for all i 2 I , h 2 Q_ext. The bar involution on Uq.g/ also intertwines the skew derivations ri
and ir in the sense that

(2.19) ir.x/ D q
.˛i ;��˛i /ri .x/ for all x 2 UC� , � 2 QC,

see [26, Lemma 1.2.14].

3. The completion U of Uq.g/

It is natural to consider completions of the infinite-dimensional algebra Uq.g/ and related
algebras. The quasi R-matrix for Uq.g/, for example, lies in a completion of U� ˝ UC, and
the universal R-matrix lies in a completion of U� ˝ U�, see Section 3.3. Similarly, the uni-
versal K-matrix we construct in this paper lies in a completion U of Uq.g/. This completion is
commonly used in the literature, see for example [32, Section 1.3]. Here, for the convenience of
the reader, we recall the construction and properties of the completion U in quite some detail.
This allows us to introduce further concepts, such as the Lusztig automorphisms, as elements
of U . It also provides a more conceptual view on the quasi R-matrix and the commutativity
isomorphisms.

3.1. The algebra U . Let Oint denote the category of integrable Uq.g/-modules in
category O. Recall that category O consists of Uq.g/-modulesM which decompose into finite-
dimensional weight spaces M D

L
�2P M� and on which the action of UC is locally finite.

Moreover, the weights of M are contained in a finite union
S
i .�i �N0…/ for some �i 2 P .

Objects in Oint are additionally locally finite with respect to the action of Uqi .sl2/i for all
i 2 I . Simple objects in Oint are irreducible highest weight modules with dominant integral
highest weight [26, Corollary 6.2.3]. If g is of finite type, then Oint is the category of finite-
dimensional type 1 representations.

Let Vect be the category of vector spaces over K.q1=d /. Both Vect and Oint are tensor
categories, and the forgetful functor

For W Oint ! Vect

is a tensor functor. Let U D End.For/ be the set of natural transformations from For to itself.
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The category Oint is equivalent to a small category and hence U is indeed a set. More explicitly,
elements of U are families .'M /M2Ob.Oint/ of vector space endomorphisms

'M W For.M/! For.M/

such that the diagram

For.M/
'M //

For. /
��

For.M/

For. /
��

For.N /
'N // For.N /

commutes for any Uq.g/-module homomorphism  WM ! N . Natural transformations of
For can be added and multiplied by a scalar, both operations coming from the linear struc-
ture on vector spaces. Composition of natural transformations gives a multiplication on U
which turns U into a K.q1=d /-algebra.

Example 3.1. The action of Uq.g/ on objects of Oint gives an algebra homomorphism
Uq.g/! U which is injective, see [26, Proposition 3.5.4] and [13, Section 5.11]. We always
consider Uq.g/ a subalgebra of U .

Example 3.2. Let bUC DQ�2QC U
C
� and let .X�/�2QC 2

bUC. Let M 2 Ob.Oint/

andm 2M . As the action of UC onM is locally finite there exist only finitely many � 2 QC

such that X�m ¤ 0. Hence the expressionX
�2QC

X�m(3.1)

is well defined. In this way the element .X�/�2QC 2
bUC defines an endomorphism of For,

and we may thus consider bUC as a subalgebra of U . We sometimes write elements of bUC
additively as

X D
X
�2QC

X�:

In view of (3.1) this is compatible with the inclusions UC �bUC � U .

Example 3.3. Let � W P ! K.q1=d / be any map. For M 2 Ob.Oint/ define a linear
map �M WM !M by �M .m/ D �.�/m for all m 2M�. Then the family .�M /M2Ob.Oint/ is
an element in U . By slight abuse of notation we denote this element by � as well.

Lusztig showed that U contains a homomorphic image of the braid group correspond-
ing to W . For any M 2 Ob.Oint/ and any i 2 I the Lusztig automorphism TiM WM !M is
defined on m 2M� with � 2 P by

TiM .m/ D
X

a;b;c�0
a�bCcD�.hi /

.�1/bqb�aci E
.a/
i F

.b/
i E

.c/
i m:(3.2)

The family Ti D .TiM / defines an element in U . By [26, Proposition 5.2.3] the elements Ti
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of U are invertible with inverse T �1i D .Ti
�1
M / given by

Ti
�1
M .m/ D

X
a;b;c�0

a�bCcD�.hi /

.�1/bqac�bi F
.a/
i E

.b/
i F

.c/
i m:

By [26, Section 39.43] the elements Ti for i 2 I satisfy the braid relations

TiTjTi : : :„ ƒ‚ …
mij factors

D TjTiTj : : :„ ƒ‚ …
mij factors

where mij denotes the order of �i�j 2 W . Hence, for any w 2 W there is a well-defined ele-
ment Tw 2 U given by

Tw D Ti1Ti2 : : : Tik

if w D �i1�i2 : : : �ik is a reduced expression.
We also use the symbol Ti for i 2 I to denote the corresponding algebra automorphism

of Uq.g/ denoted by T 00i;1 in [26, Section 37.1]. This is consistent with the above notation,
in the sense that for any u 2 Uq.g/, any M 2 Ob.Oint/, and any m 2M we have

TiM .um/ D Ti .u/TiM .m/:

Hence Ti , as an automorphism of Uq.g/, is nothing but conjugation by the invertible element
Ti 2 U . In this way we obtain automorphisms Tw of Uq.g/ for all w 2 W .

Furthermore, the bar involution for Uq.g/ intertwines Ti and T �1i . More explicitly,
for u 2 UC� one has

Ti .u/ D .�1/
�.hi /q.�;˛i /T �1i .u/;

see [26, Section 37.2.4]

3.2. The coproduct on U . To define a coproduct on U consider the functor

For.2/ W Oint �Oint ! Vect; .M;N / 7! For.M ˝N/ D For.M/˝ For.N /;

.f; g/ 7! For.f ˝ g/:

Let U .2/
0 D End.For.2// denote the set of natural transformations from For.2/ to itself. Again,

U .2/
0 is an algebra for which the multiplication � is given by composition of natural transfor-

mations. The map

i .2/ W U ˝U ! U .2/
0 ; .'M /˝ . N / 7! .'M ˝  N /

is an injective algebra homomorphism. However, it is not surjective, as the following example
shows.

Example 3.4. For M;N 2 Ob.Oint/ define a linear map

�M;N WM ˝N !M ˝N; m˝ n 7! q.�;�/m˝ n if m 2M� and n 2 N� .

The collection � D .�M;N /M;N2Ob.Oint/ lies in U .2/
0 . However, one can show that � is not of

the form
Pn
kD1 fi ˝ gi for any n 2 N and any collection fi ; gi 2 U . Hence � does not lie in

the image of the map i .2/ described above.
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The element � is an important building block of the universal R-matrix for Uq.g/, see
Section 3.3. For � to be well defined the ground field needs to contain q.�;�/ for all �; � 2 P .
This gives one of the reasons why we work over the field K.q1=d /.

Any natural transformation ' 2U can be restricted to all For.M˝N/,M;N 2Ob.Oint/.
Moreover, restriction is compatible with composition and linear combinations of natural trans-
formations. Hence we obtain an algebra homomorphism

�U W U ! U .2/
0 ; .'M /M2Ob.Oint/ 7! .'M˝N /M;N2Ob.Oint/:

We call �U the coproduct of U . The restriction of �U to Uq.g/ coincides with the coproduct
of Uq.g/ from Section 2.2. For this reason we will drop the subscript U and just denote the
coproduct on U by �.

We would also like to consider families of linear maps flipping the two tensor factors by
a similar formalism. To that end consider the functor

For.2/op
W Oint �Oint ! Vect; .M;N / 7! For.N ˝M/ D For.N /˝ For.M/;

.f; g/ 7! For.g ˝ f /:

Define U .2/
1 D Hom.For.2/;For.2/op/. For M;N 2 Ob.Oint/ let

flipM;N WM ˝N ! N ˝M; m˝ n 7! n˝m

denote the flip of tensor factors. Then flip D .flipM;N /M;N2Ob.Oint/ is an element of U .2/
1 . The

direct sum

U .2/
D U .2/

0 ˚U .2/
1

is a Z2-graded algebra where multiplication � is given by composition of natural transforma-
tions. This is the natural algebra for the definition of the commutativity isomorphisms in the
next subsection.

3.3. Quasi R-matrix and commutativity isomorphisms. Let � 2 QC and let ¹b�;iº
be a basis of U���. Let ¹b�iº be the dual basis of UC� with respect to the pairing (2.3). Define

R� D
X
i

b�;i ˝ b�
i
2 U� ˝ UC:

The element R� is independent of the chosen basis ¹b�;iº. The quasi R-matrix

R D
X
�2QC

R�

gives a well-defined element U .2/
0 . Indeed, forM;N 2 Ob.Oint/ only finitely many summands

R� act nontrivially on any element of M ˝N .

Remark 3.5. The element R 2 U .2/
0 coincides with the quasi-R-matrix defined in

[26, Section 4.1.4] and in [13, Section 7.2] in the finite case. Those references use the sym-
bol ‚ for the quasi-R-matrix, but we change notation to avoid confusion with the involutive
automorphism ‚ W h� ! h� defined in Section 5.1.
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The quasi R-matrix has a second characterization in terms of the bar involution (2.18)
of Uq.g/. Define a bar involution on Uq.g/˝ Uq.g/ by

u˝ v D u˝ v:

By [26, Theorem 4.1.2] the quasi-R-matrix is the uniquely determined element

R D
X
�2QC

R� 2
Y
�2QC

U��� ˝ U
C
�

with R� 2 U��� ˝ U
C
� and R0 D 1˝ 1 for which

�.u/R D R�.u/ for all u 2 Uq.g/:(3.3)

Moreover, R is invertible, with

R�1 D R:(3.4)

Remark 3.6. If g is of finite type, then the quasi-R-matrix R can be factorized into
a product of R-matrices for sl2. Choose a reduced expression w0 D �i1 : : : �it for the longest
element w0 of W . For j D 1; : : : ; t set 
j D �i1�i2 : : : �ij�1.˛ij / and define

(3.5) E
j D Ti1Ti2 : : : Tij�1.Eij /; F
j D Ti1Ti2 : : : Tij�1.Fij /:

Then ¹
1; : : : ; 
tº is the set of positive roots of g, and (3.5) are the root vectors used in the
construction of the PBW basis corresponding to the chosen reduced expression for w0. For
j D 1; : : : ; t define

RŒj � D
X
r�0

.�1/rq
�r.r�1/=2
ij

.qij � q
�1
ij
/r

Œr�qij
Š

F r
j ˝E
r

j

(3.6)

and for i 2 I set Ri D RŒj � if 
j D ˛i . By [13, Remark 8.29] one has

R D RŒt� �RŒt�1� � � � � �RŒ2� �RŒ1�:(3.7)

The quasi-R-matrix R and the transformation � defined in Example 3.4 give rise to
a family of commutativity isomorphisms. Define

OR D R � ��1 � flip(3.8)

in U .2/. By [26, Theorem 32.1.5] the maps

ORM;N WM ˝N ! N ˝M(3.9)

are isomorphisms of Uq.g/-modules for all M;N 2 Ob.Oint/. Moreover, the isomorphisms
ORM;N satisfy the hexagon property

ORM;N˝N 0 D .idN ˝ ORM;N 0/. ORM;N ˝ idN 0/;
ORM˝M 0;N D . ORM;N ˝ idM 0/.idM ˝ ORM 0;N 0/
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for all M;M 0; N;N 0 2 Ob.Oint/, see [26, Section 32.2]. This implies that Oint is a braided
tensor category as defined for example in [17, Section XIII.1.1].

Remark 3.7. In the construction ([26, Chapter 32]) of the commutativity isomorphisms
ORM;N it is assumed that g is of finite type. Moreover, Lusztig defines the commutativity iso-

morphisms on tensor products of integrable weight modules. Lusztig’s arguments extend to the
Kac–Moody case if one restricts to category O. We retain the assumption of integrability so
that the Lusztig automorphisms TiM given by (3.2) are well defined. The restrictions imposed
by ORM;N and TiM force us to work with the category Oint.

It follows from the definitions of the completion U and the coproduct � W U ! U .2/

that in U .2/ one has

OR ��.u/ D �.u/ � OR for all u 2 U :(3.10)

In the proof of the next lemma we will use this property for u D Ti . Moreover, by [26, Propo-
sition 5.3.4] the Lusztig automorphisms Ti 2 U satisfy

�.Ti / D Ti ˝ Ti �R
�1
i(3.11)

whereRi was defined just below (3.6). To generalize the above formula we recall the following
well-known lemma, see for example [5, Proposition 8.3.11]. We include a proof to assure that
we have the correct formula in our conventions. Recall that for g of finite typew0 2 W denotes
the longest element. Define, moreover, R21 D flip �R � flip 2 U .2/

0 .

Lemma 3.8. Assume that g is of finite type. Then the relations

�.Tw0/ D Tw0 ˝ Tw0 �R
�1;(3.12)

�.T �1w0 / D T
�1
w0
˝ T �1w0 � � �R21 � �

�1(3.13)

hold in U .2/
0 .

Proof. First observe that equations (3.12) and (3.13) are equivalent. Indeed, equation
(3.10) for u D Tw0 implies that equation (3.12) is equivalent to

OR ��.Tw0/ D �
�1
� flip � Tw0 ˝ Tw0 :

The inverse of the above equation is (3.13). It remains to verify that (3.13) holds. Applying the
equivalence between (3.12) and (3.13) to (3.11) one obtains

�.T �1i / D T �1i ˝ T �1i � � �Ri 21 � �
�1

where Ri 21 D flip �Ri � flip. Hence for Tw0 D Ti1Ti2 : : : Tit one has

�.T �1w0 / D �.T
�1
it
/ � � ��.T �1i2 / ��.T

�1
i1
/

D T �1it ˝ T
�1
it
� � �Rit 21 � �

�1
� � �T �1i1 ˝ T

�1
i1
� � �Ri121 � �

�1

D T �1w0 ˝ T
�1
w0
� � �R

Œt�
21 �R

Œt�1�
21 � � �R

Œ2�
21 �R

Œ1�
21 � �

�1

where RŒj �21 D flip �RŒj � � flip. By (3.7) one obtains relation (3.13).
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4. Braided tensor categories with a cylinder twist

As explained in Section 3.3 the commutativity isomorphisms (3.9) turn Oint into
a braided tensor category. For any V 2 Ob.Oint/ there exists a graphical calculus for the action
of OR on V ˝n in terms of braids in C � Œ0; 1�, see [17, Corollary XIII.3.8]. If g is finite dimen-
sional, then Oint has a duality in the sense of [17, Section XIV.2] and there exists a ribbon ele-
ment which turns Oint into a ribbon category as defined in [17, Section XIV.3.2]. The graphical
calculus extends to ribbon categories, see [17, Theorem XIV 5.1] also for original references.

In [34] T. tom Dieck outlined a program to extend the graphical calculus to braids or rib-
bons in the cylinder C� � Œ0; 1�. The underlying braid group corresponds to a Coxeter group of
type B . In the papers [12,34,35] tom Dieck and R. Häring-Oldenburg elaborated a categorical
setting for such a graphical calculus, leading to the notion of tensor categories with a cylinder
braiding. In the present section we recall this notion. In Section 4.2 we will also give a slight
generalization which captures all the examples which we obtain from quantum symmetric pairs
in Section 9.3. These examples are determined by a coideal subalgebra of the braided Hopf
algebra Uq.g/. Cylinder braiding in this setting naturally leads to the notion of a cylinder-
braided coideal subalgebra of a braided bialgebra H which we introduce in Section 4.3. The
key point is that a cylinder-braided coideal subalgebra of H has a universal K-matrix which
provides solutions of the reflection equation in all representations of H .

4.1. Cylinder twists and the reflection equation. To define cylinder twists, let
.A;˝; I; a; l; r/ be a tensor category as defined in [17, Definition XI.2.1]. Let B be another
category and assume that there exists a functor � W B �A! B which we write as

.M;N / 7!M �N; .f; g/ 7! f � g

on objects M 2 Ob.B/; N 2 Ob.A/ and morphisms f; g in B and A, respectively. The func-
tor � is called a right action of A on B if there exist natural isomorphisms ˛ and � with

˛M;N;N 0 W .M �N/ �N
0
!M � .N ˝N 0/ for M 2 Ob.B/, N;N 0 2 Ob.A/;

�M WM � I !M for M 2 Ob.B/

which satisfy the pentagon and the triangle axiom given in [34, (2.1), (2.2)]. A category B

together with a right action of A on B is called a right A-module category.

Example 4.1. As seen in Section 3.3, the category A D Oint is a braided tensor cate-
gory. Let B � Uq.g/ be a right coideal subalgebra, that is a subalgebra satisfying

�.B/ � B ˝ Uq.g/:

Let B be the category with Ob.B/ D Ob.Oint/ and HomB.M;N / D HomB.M;N / for all
M;N 2 Ob.B/. Then B is a right A-module category with � given by M �N DM ˝N .

From now on, following [34], we will consider the following data:

(1) .A;˝; I; a; l; r; c/ is a braided tensor category with braiding cM;N WM ˝N ! N ˝M

for all M;N 2 Ob.A/.

(2) .B;�; ˛; �/ is a right A-module category.
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(3) A is a subcategory of B with Ob.A/ D Ob.B/. In other words, HomA.M;N / is a subset
of HomB.M;N / for all M;N 2 Ob.A/ D Ob.B/.

(4) �, ˛, � restrict to˝, a, r on A �A.

We call .B;A/ a tensor pair if the above conditions (1)–(4) are satisfied. By condition (3) there
exists a forgetful functor

ForA
B W A! B:

Definition 4.2. Let .B;A/ be a tensor pair. A natural transformation

t D .tM /M2Ob.A/ W ForA
B ! ForA

B

is called a B-endomorphism of A. If tM W ForA
B
.M/! ForA

B
.M/ is an automorphism for all

M 2 Ob.A/, then t is called a B-automorphisms of A.

In other words, a B-endomorphism of A is a family t D .tM /M2Ob.A/ of morphisms
tM 2 HomB.M;M/ such that

tN ı f D f ı tM(4.1)

for all f 2 HomA.M;N /.

Example 4.3. The pair .B;A/ from Example 4.1 is a tensor pair. In this setting
a B-endomorphism of Oint is an element t 2 U which commutes with all elements of the
coideal subalgebra B � U . In other words, the maps tM WM !M are B-module homomor-
phisms for all M 2 Ob.Oint/.

The following definition provides the main structure investigated by tom Dieck and
Häring-Oldenburg in [12, 34, 35].

Definition 4.4 ([34]). Let .B;A/ be a tensor pair. A cylinder twist for .B;A/ consists
of a B-automorphism t D .tM /M2Ob.A/ of A such that

tM˝N D .tM � 1N /cN;M .tN � 1M /cM;N(4.2)

for all M;N 2 Ob.A/ D Ob.B/.

The definition of a cylinder twist in [34] involves a second equation. This equation, how-
ever, is a consequence of (4.2). This was already observed in [34, Proposition 2.10].

Proposition 4.5. Let .B;A/ be a tensor pair with a cylinder twist .tM /M2Ob.A/. Then
the relation

.tM � 1N /cN;M .tN � 1M /cM;N D cN;M .tN � 1M /cM;N .tM � 1N /(4.3)

holds for all M;N 2 Ob.A/.

Proof. As cN;M is a morphism in A, relation (4.1) implies that

tM˝N ı cN;M D cN;M ı tN˝M :

If one inserts relation (4.2) into both sides of the above equation, one obtains equation (4.3).
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In [35] equation (4.3) is called the four-braid relation. Here we follow the mathematical
physics literature [21] and call (4.3) the reflection equation. Equation (4.2) is know as the
fusion procedure, see [21, Section 6.1], as it allows us to fuse the two solutions tM and tN
of the reflection equation for M and N , respectively, to a new solution tM˝N for the tensor
product M ˝N .

4.2. Twisted cylinder twists. Let .B;A/ be a tensor pair. To cover the examples con-
sidered in the present paper in full generality, we introduce a slight generalization of tom
Dieck’s notion of a cylinder twist for .B;A/. This generalization involves a second twist which
suggests the slightly repetitive terminology.

Let tw W A! A be braided tensor equivalence given by

M 7!M tw ; f 7! f tw 2 Hom.M tw ; N tw/ for all M;N 2 Ob.A/, f 2 Hom.M;N /.

This means that tw is a braided tensor functor as defined in [17, Definition XIII.3.6] and an
equivalence of categories. A family t D .tM /M2Ob.A/ of morphisms tM 2 HomB.M;M

tw/

is called a B-tw-endomorphism of A if

tN ı f D f
tw
ı tM(4.4)

for all f 2 HomA.M;N /. In other words, a B-tw-endomorphism of A is a natural transfor-
mation t W ForB

A
! ForB

A
ı tw.

Definition 4.6. Let .B;A/ be a tensor pair and tw W A! A a braided tensor equiv-
alence. A tw-cylinder twist for .B;A/ consists of a B-tw-automorphism t D .tM /M2Ob.A/
of A such that

tM˝N D .tM � 1N tw /cN tw;M .tN � 1M /cM;N(4.5)

for all M;N 2 Ob.A/ D Ob.B/.

Let .B;A/ be a tensor pair with a tw-cylinder twist. The relation ctwN;M D cN tw;M tw

and (4.4) imply that

tM˝N ı cN;M D cN tw;M tw ı tN˝M :

As in the proof of Proposition 4.5 one now obtains

(4.6) .tM �1N tw /cN tw;M .tN �1M /cM;N D cN tw;M tw .tN �1M tw /cM tw;N .tM �1N /:

Example 4.7. Consider the setting of Example 4.1. Let ' W Uq.g/! Uq.g/ be a Hopf
algebra automorphism. For anyM 2 Ob.Oint/ letM ' be the integrable representation with left
action �' given by u �' m D '.u/m for all u 2 Uq.g/,m 2M . By [36, Theorem 2.1] one has
'.UC/ D UC and '.U 0/ D U 0 and hence M ' 2 Ob.Oint/. Moreover, as '.U 0/ D U 0 the
map ' induces a group isomorphism 'P W P ! P . We assume additionally that 'P is an isom-
etry, that is .'P .�/; 'P .�// D .�; �/ for all �;� 2 P . Then one obtains an auto-equivalence
of braided tensor categories

tw W Oint ! Oint
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given by tw.M/ DM ' and tw.f / D f . In this case relations (4.5) and (4.6) become

tM˝N D .tM ˝ 1/ ORN' ;M .tN ˝ 1/ ORM;N ;(4.7)

.tM ˝ 1/ ORN' ;M .tN ˝ 1/ ORM;N D ORN' ;M' .tN ˝ 1/ ORM' ;N .tM ˝ 1/;(4.8)

respectively, for any M;N 2 Ob.Oint/.

4.3. Cylinder-braided coideal subalgebras and the universal K-matrix. We can for-
malize Examples 4.1, 4.3, and 4.7 in the setting of bialgebras and their coideal subalgebras. For
the convenience of the reader we recall the relevant notions in the setting of the present paper.

Definition 4.8 ([17, Definition VIII.2.2]). A bialgebra H with coproduct

�H W H ! H ˝H

is called braided (or quasitriangular) if there exists an invertible element RH 2 H ˝H such
that the following two properties hold:

(1) For all x 2 H one has

�
op
H .x/ D .R

H /�1�H .x/R
H(4.9)

where �op
H D flip ı�H W H ! H ˝H denotes the opposite coproduct.

(2) The element R satisfies the relations

.�H ˝ idH /.RH / D RH23R
H
13; .idH ˝�H /.RH / D RH12R

H
13(4.10)

where we use the usual leg-notation.

In this case the element RH is called a universal R-matrix for H .

Let H be a braided bialgebra with universal R-matrix RH D
P
i si ˝ ti 2 H ˝H . In

this situation the category A D H -mod of H -modules is a braided tensor category with braid-
ing

cHM;N WM ˝N ! N ˝M; m˝ n 7!
X
i

sin˝ tim(4.11)

for all M;N 2 Ob.A/, see [17, Section VIII.3].

Remark 4.9. The conventions in Definition 4.8 slightly differ from the conventions
in [17]. The reason for this is that following [26] we use the braiding R � ��1 � flip for Oint and
hence the braiding RH ı flip for H -mod. To match conventions observe that RH in Defini-
tion 4.8 coincides with R21 in [17, Definition VIII.2.2].

Let B be a right coideal subalgebra of H . As in Example 4.3 define B to be the cate-
gory with Ob.B/ D Ob.A/ and HomB.M;N / D HomB.M;N / for allM;N 2 Ob.A/. Then
.B;A/ is a tensor pair. For any bialgebra automorphism ' W H ! H define

RH;' D .id˝ '/.RH /:

In analogy to the notion of a universal R-matrix the following definition is natural.
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Definition 4.10. Let H be a braided bialgebra with universal R-matrix RH 2 H ˝H
and let ' W H ! H be an automorphism of braided bialgebras. We say that a right coideal
subalgebra B ofH is '-cylinder-braided if there exists an invertible element K 2 H such that

Kb D '.b/K for all b 2 B ,(4.12)

�.K/ D .K ˝ 1/RH;'.1˝K/RH21:(4.13)

In this case we call K a '-universal K-matrix for the coideal subalgebra B . If ' D idH , then
we simply say that B is cylinder-braided and that K is a universal K-matrix for B .

The bialgebra automorphism ' defines a braided tensor equivalence tw W A! A given
byM 7!M ' where as beforeM ' denotes theH -module which coincides withM as a vector
space and has the left action h˝m 7! '.h/m. In the above setting a '-universal K-matrix for
the coideal subalgebra B defines a family of maps

tM WM !M; m 7!Km; for all M 2 Ob.A/:(4.14)

By construction the natural transformation t D .tM /M2Ob.A/ is a tw-cylinder twist for the
tensor pair .B;A/.

Remark 4.11. Observe the parallel between Definition 4.8 and Definition 4.10 in
the case ' D idH . Indeed, condition (4.9) means that the maps cHM;N defined by (4.11) are
H -module homomorphisms while condition (4.12) means that the maps tM defined by (4.14)
are B-module homomorphisms if ' D idH . Similarly, conditions (4.10) and (4.13) both
express compatibility with the tensor product.

Definition 4.10 can be extended to include the quantized universal enveloping alge-
bra Uq.g/ which is braided only in the completion. In this case we also need to allow for
K to lie in the completion U . We repeat Definition 4.10 in this setting for later reference.
Recall the notation from Section 3 and from Example 4.7. For any Hopf algebra automor-
phisms ' W Uq.g/! Uq.g/ define an element OR' 2 U .2/ by

. OR'/M;N D ORM' ;N for all M;N 2 Ob.Oint/.

In the following definition we reformulate condition (4.13) in terms of OR and OR' .

Definition 4.12. Let ' W Uq.g/! Uq.g/ be a Hopf algebra automorphism. A right
coideal subalgebra B � Uq.g/ is called '-cylinder-braided if there exists an invertible element
K 2 U such that the relation

Kb D '.b/K for all b 2 B(4.15)

holds in U and the relation

�.K/ D .K ˝ 1/ � OR' � .K ˝ 1/ � OR(4.16)

holds in U .2/. In this case we call K a '-universal K-matrix for the coideal subalgebra B .
If ' D idUq.g/, then we simply say thatB is cylinder-braided and that K is a universal K-matrix
for B .
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Similarly to the discussion for the bialgebra H above, a cylinder-braided coideal sub-
algebra of Uq.g/ naturally gives rise to a cylinder twist. For later reference we summarize the
situation in the following remark.

Remark 4.13. LetB � Uq.g/ be a right coideal subalgebra and let .B;Oint/ be the ten-
sor pair from Example 4.1. Moreover, let ' W Uq.g/! Uq.g/ be a Hopf-algebra automorphism
and let tw W Oint ! Oint be the corresponding braided tensor equivalence as in Example 4.7.
An element K 2 U is a '-universal K-matrix for B if and only if K is a tw-cylinder twist
of .B;Oint/. In this case, in particular, the element t DK 2 U satisfies the fusion procedure
(4.7) and the reflection equation (4.8) for all M;N 2 Oint.

4.4. Cylinder braided coideal subalgebras via characters. In [9] J. Donin, P. Kulish,
and A. Mudrov introduced the notion of a universal solution of the reflection equation which
they also called a universal K-matrix. In contrast to Definition 4.10, this notion does not refer
to a coideal subalgebra of a Hopf algebra. Nevertheless, there is a close relationship between
Definition 4.10 and the notion of a universal K-matrix in [9], and it is the purpose of the present
section to explain this. This material will not be used in later parts of the present paper.

As in Section 4.3 let .H;RH / be a braided Hopf algebra over a field k. We retain the
conventions from Definition 4.8 and hence the symbol R in [9] corresponds to RH21 in our
conventions. Let H� D Homk.H; k/ denote the linear dual space of H . Recall from [30] that
the braided Hopf H algebra is called factorizable if the linear map

H� ! H; f 7! .f ˝ id/.RH12R
H
21/

is an isomorphism of vector spaces. This is only possible if H is finite dimensional. If H is
factorizable, then Donin, Kulish, and Mudrov call the element

Kdkm
D RH12R

H
21 2 H ˝H

the universal K-matrix of H . It follows from (4.10) that

.id˝�/.Kdkm/ D RH01R
H
02R

H
20R

H
10R

H
12.R

H
12/
�1(4.17)

D RH01R
H
10R

H
12R

H
02R

H
20R

H
21.R

H
12R

H
21/
�1

DKdkm
01 R

H
12Kdkm

02 R
H
21.R

H
12R

H
21/
�1

where we label the tensor legs of H˝3 by 0, 1, 2. The above formula is closely related to
formula (4.13) for �.K/. There are two differences, however, namely the occurrence of the
additional factor .RH12R

H
21/
�1 and the fact that (4.17) holds inH˝3 while formula (4.13) holds

in H˝2. Moreover, the element Kdkm makes no reference to a coideal subalgebra of Uq.g/.
To address the first difference, recall from [17, Definition XIV.6.1] that the braided Hopf

algebra .H;RH / is called a ribbon algebra if there exists a central element �H 2 H such that

�.�H / D .R
H
12R

H
21/
�1.�H ˝ �H /; ".�H / D 1; S.�H / D �H :

If such a ribbon element �H exists, then the element

Kdkm;�
D .1˝ ��1H /Kdkm

2 H ˝H
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satisfies the relation

.id˝�/.Kdkm;� / DK
dkm;�
01 RH12K

dkm;�
02 RH21(4.18)

in H˝3.
To eliminate the additional tensor factor in (4.17) and (4.18) let

f W H ! k

be a character, that is a one-dimensional representation. Define

Bf D ¹.f ˝ id/�.h/ j h 2 H º(4.19)

and observe that Bf is a right coideal subalgebra of H . The element

Kdkm;�;f
D .f ˝ ��1H /Kdkm

2 H(4.20)

commutes with all elements of Bf because �.h/ commutes with Kdkm D RH12R
H
21 for all

h 2 H by (4.9). By (4.18) one has

�.Kdkm;�;f / D .Kdkm;�;f
˝ 1/RH .1˝Kdkm;�;f /RH21

which coincides with relation (4.13) in Definition 4.10. We summarize the above discussion.

Proposition 4.14. Let .H;RH ; �H / be a factorizable ribbon Hopf algebra over a field k
and let f W H ! k be a character. Then the right coideal subalgebra Bf defined by (4.19) is
cylinder braided with universal K-matrix

Kdkm;�;f
D .f ˝ ��1H /.RH12R

H
21/ 2 H:

By the above proposition the element Kdkm;�;f satisfies the reflection equation in
every tensor product M ˝N of representations of H . As the ribbon element �H is central,
the element .f ˝ 1/.RH12R

H
21/ also satisfies the reflection equation.

Remark 4.15. Assume that g is of finite type. If one naively translates the construction
of Proposition 4.14 to the setting of Uq.g/, then the resulting universal K-matrix is the identity
element because Uq.g/ does not have any interesting characters. However, in [9] a universal
K-matrix is also defined for non-factorizableH . In this case one chooses Kdkm to be the canon-
ical element in QH� ˝H where QH� denotes a twisted version of the dual Hopf algebra H�.
One obtains a universal K-matrix by application of a character f of QH�. This framework trans-
lates to the setting of Uq.g/ if one replaces QH� by the braided restricted dual of Uq.g/. The
braided restricted dual of Uq.g/ is isomorphic as an algebra to the (right) locally finite part

Fr.Uq.g// D ¹x 2 Uq.g/ j dim.adr.Uq.g//.x// <1º

where adr.u/.x/ D S.u.1//xu.2/ for u; x 2 Uq.g/ denotes the right adjoint action. The locally
finite part has many nontrivial characters, and a cylinder braiding for Oint can be associated to
each of them, see [19, Propositions 2.8, 3.14].

The constructions in [9] and in this subsection, however, do not answer the question how
to find characters of QH�. For H D Uq.g/ this amounts to finding numerical solutions of the
reflection equation which satisfy additional compatibility conditions. For g D sln.C/ this is
a manageable problem, see [19, Remark 5.11]. It would be interesting to find a conceptual
classification of characters of Fr.Uq.g// for all g of finite type.
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5. Quantum symmetric pairs

In the remainder of this paper we will show that quantum symmetric pair coideal sub-
algebras of Uq.g/ are '-cylinder-braided as in Definition 4.12 for a suitable automorphism '

of Uq.g/. To set the scene we now recall the construction and properties of quantum symmetric
pairs. We will in particular recall the existence of the intrinsic bar involution from [2] in Sec-
tion 5.3. Quantum symmetric pairs depend on a choice of parameters and the existence of the
bar involution imposes further restrictions. In Section 5.4, for later reference, we summarize
our setting and assumptions including the restrictions on parameters.

5.1. Involutive automorphisms of the second kind. Let bC denote the positive Borel
subalgebra of g. An automorphism � W g! g is said to be of the second kind if

dim.�.bC/ \ bC/ <1:

Involutive automorphisms of the second kind of g were essentially classified in [16], see also
[18, Theorem 2.7]. In this subsection we recall the combinatorial data underlying this classifi-
cation.

For any subsetX of I let gX denote the corresponding Lie subalgebra of g. The sublattice
QX of Q generated by ¹˛i j i 2 Xº is the root lattice of gX . If gX is of finite type, then
let �X and �_X denote the half sum of positive roots and positive coroots of gX , respectively.
The Weyl group WX of gX is the parabolic subgroup of W generated by all �i with i 2 X .
If gX is of finite type, then let wX 2 WX denote the longest element. Let Aut.A/ denote the
group of permutations � W I ! I such that the entries of the Cartan matrix A D .aij / satisfy
aij D a�.i/�.j / for all i; j 2 I . Let Aut.A;X/ denote the subgroup of all � 2 Aut.A/ which
additionally satisfy �.X/ D X .

Involutive automorphisms of g of the second kind are parametrized by combinatorial data
attached to the Dynkin diagram of g. This combinatorial data is a generalization of Satake dia-
grams from the finite-dimensional setting to the Kac–Moody case, see [1], [18, Definition 2.3].

Definition 5.1. A pair .X; �/ consisting of a subsetX � I of finite type and an element
� 2 Aut.A;X/ is called admissible if the following conditions are satisfied:

(1) �2 D idI .

(2) The action of � on X coincides with the action of �wX .

(3) If j 2 I nX and �.j / D j then j̨ .�
_
X / 2 Z.

We briefly recall the construction of the involutive automorphisms � D �.X; �/ corre-
sponding to the admissible pair .X; �/, see [18, Section 2] for details. Let ! W g! g denote
the Chevalley involution as in [15, (1.3.4)]. Any � 2 Aut.A;X/ can be lifted to a Lie algebra
automorphism � W g! g. Moreover, for X � I of finite type let Ad.wX / W g! g denote the
corresponding braid group action of the longest element in WX . Finally, let s W I ! K� be
a function such that

s.i/ D 1 if i 2 X or �.i/ D i;(5.1)
s.i/

s.�.i//
D .�1/˛i .2�

_
X / if i … X and �.i/ ¤ i:(5.2)
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Such a function always exists. The map s gives rise to a group homomorphism sQ W Q! K�

such that
sQ.˛i / D s.i/:

This in turn allows us to define a Lie algebra automorphism Ad.s/ W g! g such that the restric-
tion of Ad.s/ to any root space g˛ is given by multiplication by sQ.˛/.

Remark 5.2. In [18, (2.7)] and in [2, (3.2)] we chose the values s.i/ for i 2 I to be
certain fourth roots of unity. This had the advantage that Ad.s/ commutes with the involutive
automorphism corresponding to the admissible pair .X; �/. However, the only properties of s
used in [2, 18], and in the present paper are the relations (5.1) and (5.2). It is hence possible
to choose s.i/ 2 ¹�1; 1º. This is more suitable for the categorification program in [11] and for
the program of canonical bases for coideal subalgebras in [3].

With the above notations at hand we can now recall the classification of involutive auto-
morphisms of the second kind in terms of admissible pairs.

Theorem 5.3 ([16], [18, Theorem 2.7]). The map

.X; �/ 7! �.X; �/ D Ad.s/ ı Ad.wX / ı � ı !

gives a bijection between the set of Aut.A/-orbits of admissible pairs for g and the set of
Aut.g/-conjugacy classes of involutive automorphisms of the second kind.

Let k D ¹x 2 g j �.X; �/.x/ D xº denote the fixed Lie subalgebra of g. We refer to
.g; k/ as a symmetric pair. The involution � D �.X; �/ leaves h invariant. The induced map
‚ W h� ! h� is given by

‚ D �wX ı �

where �.˛i / D ˛�.i/ for all i 2 I , see [18, Section 2.2, (2.10)]. Hence ‚ restricts to an invo-
lution of the root lattice. Let Q‚ be the sublattice of Q consisting of all elements fixed by ‚.
For later use we note that

(5.3) ‚.˛�.i// � ˛�.i/ D ‚.˛i / � ˛i for all i 2 I ,

see [2, Lemma 3.2].

5.2. The construction of quantum symmetric pairs. We now recall the definition
of quantum symmetric pair coideal subalgebras following [18]. For the remainder of this
paper let .X; �/ be an admissible pair and s W I ! K� a function satisfying (5.1) and (5.2).
Let MX D Uq.gX / denote the subalgebra of Uq.g/ generated by the elementsEi , Fi ,K˙1i for
all i 2 X . Correspondingly, let MCX and M�X denote the subalgebras of MX generated by the
elements in the sets ¹Ei j i 2 Xº and ¹Fi j i 2 Xº, respectively.

Note that the derived Lie subalgebra g0 is invariant under the involutive automorphism
� D �.X; �/. One can define a quantum group analog

�q W Uq.g
0/! Uq.g

0/

of � , see [18, Definition 4.3] for details. The quantum involution �q is a K.q1=d /-algebra
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automorphism but it is not a coalgebra automorphism and �2q ¤ idUq.g0/. However, the map �q
has the following desirable properties:

�qjMX
D idMX

;

�q.K�/ D K‚.�/ for all � 2 Q;

�q.K
�1
i Ei / D �s.�.i//

�1TwX .F�.i// 2 U
�
‚.˛i /

for all i 2 I nX ,

�q.FiKi / D �s.�.i//TwX .E�.i// 2 U
C

‚.�˛i /
for all i 2 I nX .

To shorten notation define

Xi D �q.FiKi / D �s.�.i//TwX .E�.i// for all i 2 I nX .(5.4)

Quantum symmetric pair coideal subalgebras depend on a choice of parameters

c D .ci /i2InX 2 .K.q1=d /�/InX and s D .si /i2InX 2 K.q1=d /InX :

Define

Ins D ¹i 2 I nX j�.i/ D i and aij D 0 for all j 2 Xº:(5.5)

In [18, (5.9), (5.11)]) the following parameter sets appeared:

C D ¹c 2 .K.q1=d /�/InX j ci D c�.i/ if �.i/ ¤ i and .˛i ; ‚.˛i // D 0º;(5.6)

S D ¹s 2K.q1=d /InX j sj ¤ 0) .j 2 Ins and aij 2 �2N0 8i 2 Ins n ¹j º/º;(5.7)

see also [2, Remark 3.3].
Let U 0‚

0 be the subalgebra of U 0 generated by all K� with � 2 Q‚.

Definition 5.4. Let .X; �/ be an admissible pair. Further, let c D .ci /i2InX 2 C and let
s D .si /i2InX 2 S . The quantum symmetric pair coideal subalgebra Bc;s D Bc;s.X; �/ is the
subalgebra of Uq.g0/ generated by MX , U 0‚

0, and the elements

Bi D Fi C ciXiK
�1
i C siK

�1
i(5.8)

for all i 2 I nX .

Remark 5.5. The conditions c 2 C and s 2 S can be found in [18, (5.9) and (5.11)].
They are necessary to ensure that the intersection of the coideal subalgebra with U 0 is pre-
cisely U 0‚

0. This in turn implies that the coideal subalgebra Bc;s specializes to U.k0/ at q D 1
with k0 D ¹x 2 g0 j �.x/ D xº, see [18, Remark 5.12, Theorem 10.8].

For i 2 X we set ci D si D 0 and Bi D Fi . This convention will occasionally allow us
to treat the cases i 2 X and i … X simultaneously.

The algebra Bc;s is a right coideal subalgebra of Uq.g0/, that is

�.Bc;s/ � Bc;s ˝ Uq.g
0/;

see [18, Proposition 5.2]. One can calculate the coproduct of the generators Bi for i 2 I nX
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more explicitly and obtains

�.Bi / D Bi ˝K
�1
i C 1˝ Fi C ci r�.i/.Xi /K

�1
i K�.i/ ˝E�.i/K

�1
i C ‡(5.9)

for some ‡ 2MXU
0
‚
0 ˝

P

>˛�.i/

UC
 K
�1
i , see [18, Lemma 7.2]. By (2.11) this implies that

rj .Xi / D 0 whenever j ¤ �.i/.(5.10)

In view of (5.9) it makes sense to define

Zi D r�.i/.Xi /K
�1
i K�.i/:(5.11)

The elements Zi play a crucial role in the description of Bc;s in terms of generators and rela-
tions, see [18, Section 7], [2, Section 3.2].

5.3. The bar involution for quantum symmetric pairs. The bar involution for Uq.g/
defined in (2.18) does not map Bc;s to itself. Inspired by the papers [3, 11], it was shown in [2]
under mild additional assumptions thatBc;s allows an intrinsic bar involution B

W Bc;s! Bc;s.
We now recall these assumptions and the construction of the intrinsic bar involution for Bc;s.

In [2, Section 3.2] the algebras Bc;s are given explicitly in terms of generators and rela-
tions for all Cartan matrices A D .aij / and admissible pairs .X; �/ which satisfy the following
properties:

(i) If i 2 I nX with �.i/ D i and j 2 X , then aij 2 ¹0;�1;�2º.

(ii) If i 2 I nX with �.i/ D i and i ¤ j 2 I nX , then aij 2 ¹0;�1;�2;�3º.

The existence of the bar involution B on Bc;s was then proved by direct computation based
on the defining relations.

Theorem 5.6 ([2, Theorem 3.11]). Assume that conditions (i) and (ii) hold. The follow-
ing statements are equivalent.

(1) There exists a K-algebra automorphism B
W Bc;s ! Bc;s, x 7! xB such that

xB D x for all x 2MXU
0
‚
0; Bi

B
D Bi for all i 2 I nX:(5.12)

In particular, q1=d
B
D q�1=d .

(2) The relation

ciZi D q
.˛i ;˛�.i//c�.i/Z�.i/

holds for all i 2 I nX for which �.i/ ¤ i or for which there exists j 2 I n ¹iº such that
aij ¤ 0.

It is conjectured that Theorem 5.6 holds without assumptions (i) and (ii). In [2, Proposi-
tion 3.5] it was proved that for all i 2 I nX one has

Zi D �iq
.˛i ;˛i�wX .˛i /�2�X /Z�.i/(5.13)

for some �i 2 ¹�1; 1º. For g of finite type it was moreover proved that �i D 1 for all i 2 I nX ,
and this was conjectured to hold also in the Kac–Moody case [2, Proposition 2.3, Conjec-
ture 2.7].
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5.4. Assumptions. For later reference we summarize our setting. As before g denotes
the Kac–Moody algebra corresponding to the symmetrizable Cartan matrix A D .aij / and
.X; �/ is an admissible pair. We fix parameters c 2 C and s 2 S and let Bc;s denote the cor-
responding quantum symmetric pair coideal subalgebra of Uq.g0/ as given in Definition 5.4.
Additionally, the following assumptions are made for the remainder of this paper.

(1) The Cartan matrix A D .aij / satisfies conditions (i) and (ii) in Section 5.3.

(2) The parameters c 2 C satisfy the condition

ciZi D q
.˛i ;˛�.i//c�.i/Z�.i/ for all i 2 I nX .(5.14)

(3) The parameters s 2 S satisfy the condition

si D si for all i 2 I nX .(5.15)

(4) One has �i D 1 for all i 2 I nX , that is [2, Conjecture 2.7] holds true.

If (4) holds, then using (5.13) and (5.3) one sees that equation (5.14) is equivalent to

c�.i/ D q
.˛i ;‚.˛i /�2�X /ci :(5.16)

Remark 5.7. Assumption (1) is only used in the proof of Theorem 5.6. Assumption (4)
is only used to obtain equation (5.16). Once Theorem 5.6 is established without assuming
conditions (i) and (ii), and once it is proved that �i D 1 for all i 2 I nX , all results of this
paper hold for Bc;s with c 2 C and s 2 S satisfying relations (5.14) and (5.15).

Remark 5.8. Observe that assumption (2) is a stronger statement then what is needed
for the existence of the bar-involution B in Theorem 5.6. This stronger statement will be used
in the construction of the quasi-K-matrix in Section 6.4, see the end of the proof of Lemma 6.7.
It is moreover used in the calculation of the coproduct of the universal K-matrix in Section 9,
see proof of Lemma 9.3. Assumption (3) is new and will be used in the proofs of Lemma 6.8
and Theorem 6.10.

Remark 5.9. For every admissible pair there exist parameters ci 2 K.q/ satisfying
equation (5.16), see [2, Remark 3.14].

6. The quasi K-matrix X

The bar involution x 7! x on Uq.g/ defined by (2.18) and the internal bar involution
x 7! xB on Bc;s defined by (5.12) satisfy Bi ¤ Bi

B
if i 2 I nX . Hence the two bar involu-

tions do not coincide when restricted to Bc;s. The aim of this section is to construct an ele-
ment X 2bUC which intertwines between the two bar involutions. More precisely, we will find
.X�/�2QC with X� 2 U

C
� and X0 D 1 such that X D

P
�X� satisfies

(6.1) xBX D X x for all x 2 Bc;s.

In view of (3.3), the element X 2bUC � U is an analog of the quasi-R-matrix R for quantum
symmetric pairs. For this reason we will call X the quasi K-matrix for Bc;s. Examples of quasi
K-matrices X were first constructed in [3, Theorems 2.10, 6.4] for the coideal subalgebras
corresponding to the symmetric pairs .sl2n; s.gln � gln// and .sl2nC1; s.glnC1 � gln//.
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6.1. A recursive formula for X. As a first step towards the construction of X we trans-
late relation (6.1) into a recursive formula for the components X�.

Proposition 6.1. Let

X D
X
�2QC

X� 2
bUC; with X� 2 U

C
� :

The following are equivalent:

(1) For all x 2 Bc;s one has xBX D X x.

(2) For all i 2 I one has Bi
B

X D XBi .

(3) For all � 2 QC and all i 2 I one has

ri .X�/ D �.qi � q
�1
i /

�
X�C‚.˛i /�˛i ciXi C siX��˛i

�
;(6.2)

ir.X�/ D �.qi � q
�1
i /

�
q�.‚.˛i /;˛i /ciXiX�C‚.˛i /�˛i C siX��˛i

�
:(6.3)

If these equivalent conditions hold then additionally

(4) For all � 2 QC such that X� ¤ 0, one has ‚.�/ D ��.

Proof. (1)) (2) Property (2) is the special case x D Bi of property (1).
(2), (3) Fix i 2 I . Using the definition (5.8) of Bi , the definition (2.18) of Bi and the

definition (5.12) of BiB , we see that (2) is equivalent to�
Fi C ciXiK

�1
i C siK

�1
i

�
X D X

�
Fi C ciXiKi C siKi

�
:(6.4)

Now compare the .� � ˛i /-homogeneous components for all � 2 QC. One obtains that equa-
tion (6.4) holds if and only if for all � 2 QC one has

ŒX�; Fi � D �
�
X��˛iC‚.˛i /ciXi C siX��˛i

�
Ki ;

CK�1i
�
q�.˛i ;‚.˛i //ciXiX��˛iC‚.˛i / C siX��˛i

�
:

By (2.10), this is equivalent to relations (6.2) and (6.3) for all � 2 QC.
(3)) (4) We prove this implication by induction on ht.�/. For � D 0 there is nothing to

show. Assume that � > 0. If X� ¤ 0, then by (2.13), there exists i 2 I such that ri .X�/ ¤ 0.
By (6.2) we have either X�C‚.˛i /�˛i ¤ 0 or siX��˛i ¤ 0. In the case X�C‚.˛i /�˛i ¤ 0, by
induction hypothesis‚.�C‚.˛i / � ˛i / D �.�C‚.˛i / � ˛i /, which implies‚.�/ D ��.
In the case siX��˛i ¤ 0, the condition s 2 S implies that ‚.˛i / D �˛i , while the induction
hypothesis implies that ‚.� � ˛i / D �.� � ˛i /. Together, this gives ‚.�/ D ��.

(3)) (1) We have already seen that (3)) (2) and hence xBX D X x for x D Bi .
Let ˇ 2 Q‚ and assume that X� ¤ 0. The implication .3/) .4/ gives‚.�/ D ��. On

the other hand ‚.ˇ/ D ˇ and therefore .ˇ; �/ D 0. This implies that

KˇX�K
�1
ˇ D q

.ˇ;�/X� D X�

and consequently xBX D X x for all x 2 U 0‚.
Finally, let i 2 X and again assume that X� ¤ 0. As Ki 2 U 0‚ and Fi D Bi , we already

know that ad.Ki /.X�/ D X� and ad.Fi /.X�/ D 0. Hence X� is the lowest weight vector for
the left adjoint action of Uqi .sl2/i on Uq.g/. As UC is locally finite for the left adjoint action
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of UC, we conclude that X� is also a highest weight vector, and hence

0 D ad.Ei /.X�/ D EiX� �KiX�K�1i Ei D EiX� � X�Ei :

Thus EiX� D X�Ei and consequently xBX D X x for all x 2MX .
This proves that the relation xBX D X x holds for the generators of the algebra Bc;s and

hence it holds for all x 2 Bc;s.

The proof of the implication (3)) (4) only refers to X�0 with �0 � �. Hence we get the
following corollary.

Corollary 6.2. Let � 2 QC and let .X�0/�0��2QC , with X�0 2 U
C
�0 , be a collection of

elements satisfying (6.2) and (6.3) for all �0 � � and all i 2 I . If X� ¤ 0, then ‚.�/ D ��.

6.2. Systems of equations given by skew derivations. By Proposition 6.1 the quasi
K-matrix X can be constructed inductively if in each step it is possible to solve the system of
equations given by (6.2) and (6.3) for all i . In this subsection we derive necessary and sufficient
conditions for such a system to have a solution.

Proposition 6.3. Let � 2 QC with ht.�/ � 2 and fix elements Ai ; iA 2 UC��˛i for all
i 2 I . The following are equivalent:

(1) There exists an element X 2 UC� such that

ri .X/ D Ai and ir.X/ D iA for all i 2 I .(6.5)

(2) The elements Ai ; iA have the following two properties:

(a) For all i; j 2 I one has

(6.6) ri .jA/ D j r.Ai /:

(b) For all i ¤ j 2 I one has

�1

qi � q
�1
i

1�aijX
sD1

"
1 � aij

s

#
qi

.�1/shF
1�aij�s

i FjF
s�1
i ; Ai i(6.7)

�
1

qj � q
�1
j

hF
1�aij
i ; Aj i D 0:

Moreover, if the system of equations (6.5) has a solution X , then this solution is uniquely
determined.

Proof. (1)) (2) Assume that there exists and element X 2 UC� which satisfies the
equations (6.5). Then

ri .jA/ D ri .j r.X//
(2.14)
D j r.ri .X// D j r.Ai /

and hence (6.6) holds for all i; j 2 I .
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Moreover, using the quantum Serre relation Sij .Fi ; Fj / D 0 and the properties (2.12) of
the bilinear form h � ; � i, we get

0 D hSij .Fi ; Fj /; Xi

D

1�aijX
sD0

"
1 � aij

s

#
qi

.�1/shF
1�aij�s

i FjF
s
i ; Xi

D
�1

qi � q
�1
i

1�aijX
sD1

"
1 � aij

s

#
qi

.�1/shF
1�aij�s

i FjF
s�1
i ; Ai i �

1

qj � q
�1
j

hF
1�aij
i ; Aj i;

which proves relation (6.7). Hence property (2) holds.
(2)) (1) Assume that the elements Ai ; iA satisfy relations (6.6) and (6.7). We first solve

the system dual to (6.5) with respect to the bilinear form h � ; � i. By slight abuse of notation
we consider h � ; � i as a pairing on 0f � UC via the canonical projection 0f! U� on the first
factor. Fix � 2 QC with ht.�/ � 2. As � > 0, there exist uniquely determined linear function-
als X�L; X

�
R W
0f� ! K.q1=d / such that

X�L.fiz/ D
�1

qi � q
�1
i

� hz; iAi;(6.8)

X�R.zfi / D
�1

qi � q
�1
i

� hz; Ai i(6.9)

for all z 2 0f��˛i . For any i; j 2 I and any x 2 0f��˛i� j̨
we have

X�L.fjxfi /
(6.8)
D

�1

qj � q
�1
j

� hxfi ;jAi
(2.12)
D

�1

qi � q
�1
i

�
�1

qj � q
�1
j

hx; ri .jA/i

(6.6)
D

�1

qi � q
�1
i

�
�1

qj � q
�1
j

hx;j r.Ai /i
(2.12)
D

�1

qi � q
�1
i

� hfjx;Ai i

(6.9)
D X�R.fjxfi /:

As ht.�/ � 2, any element in 0f� can be written as a linear combination of elements of the
form fjxfi with x 2 0f��˛i� j̨

for i; j 2 I . Consequently, the above relation implies that the
functionals X�L and X�R coincide on 0f�. To simplify notation we write X� D X�L D X

�
R.

We claim that relation (6.7) implies that X� descends from 0f� to a linear functional
on U���. Recall that the kernel of the projection 0f! U� is the ideal generated by the ele-
ments Sij .fi ; fj / for all i; j 2 I . Hence it is enough to show that all elements of the form
x D fa1 : : : fal � Sij .fi ; fj / � fb1 : : : fbk lie in the kernel of the linear functionalX�. If l > 0, then
the fact that Sij .fi ; fj / lies in the radical of the bilinear form h � ; � i implies that

X�.x/ D X�L.fa1 : : : fal � Sij .fi ; fj / � fb1 : : : fbk /

D
�1

qa1 � q
�1
a1

� hfa2 : : : fal � Sij .fi ; fj / � fb1 : : : fbk ; a1Ai

D 0:

Similarly, if k > 1, then we get

X�.x/ D X�R.x/ D 0:
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Assume now that l D k D 0. Then

X�.Sij .fi ; fj // D
1�aijX
sD0

"
1 � aij

s

#
qi

.�1/s �X�R.f
1�aij�s

i fj fsi /

D
�1

qi � q
�1
i

1�aijX
sD1

"
1 � aij

s

#
qi

.�1/shf
1�aij�s

i fj fs�1i ; Ai i

�
1

qj � q
�1
j

hf
1�aij
i ; Aj i

(6.7)
D 0:

Hence X� does indeed descend to a linear functional X� W U��� ! K.q1=d /.
Let X 2 UC� be the element dual to X� with respect to the nondegenerate pairing h � ; � i

on U�� � U
C
� . In other words, for all z 2 U� we have X�.z/ D hz;Xi. Then

hz; ri .X/i D �.qi � q
�1
i /hzFi ; Xi D �.qi � q

�1
i /X�.zFi /

(6.9)
D hz; Ai i

for any z 2 U���˛i and hence ri .X/D Ai for all i 2 I . Similarly, (6.8) implies that ir.X/ D iA

for all i 2 I . This completes the proof of relation (6.5) and hence (1) holds.
To see uniqueness, assume thatX andX 0 both satisfy the system of equations (6.5). Then

ri .X �X
0/ D 0 for all i 2 I , so by (2.13), we have that X D X 0.

6.3. Three technical lemmas. We will use Proposition 6.3 in Section 6.4 to inductively
construct X� by solving the system of equations given by (6.2), (6.3) for all i 2 I . To simplify
the proof that the right hand sides of equations (6.2), (6.3) satisfy the conditions from Proposi-
tion 6.3 (2), we provide several technical lemmas. These results are auxiliary and will only be
used in the proof of Lemma 6.8.

Lemma 6.4. Let i ¤ j 2 I and � D .1�aij /˛iC j̨ . If‚.�/ D ��, then i; j 2 I nX
and one of the following two cases holds:

(1) ‚.˛i / D � j̨ and aij D 0.

(2) ‚.˛i / D �˛i and ‚. j̨ / D � j̨ .

Proof. Assume that i 2 X . Then ‚.˛i / D ˛i which together with ‚.�/ D �� implies
that

wX .˛�.j // D �‚. j̨ / D �‚.� � .1 � aij /˛i / D j̨ C 2.1 � aij /˛i :

Hence �.j / D j and �i . j̨ / D wX . j̨ / and �aij D 2.1 � aij /. This would mean that aij D 2
which is impossible.

Assume that j 2 X . Then

wX .˛�.i// D �‚.˛i / D
�1

.1 � aij /
‚.� � j̨ / D ˛i C

2

.1 � aij /
j̨ :

Hence �.i/ D i and �j .˛i / D wX .˛i / and aj i D � 2
.1�aij /

. This is only possible if

aj i D aij D �1:
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But then

˛i .�
_
X / D

1

2
˛i .hj / D

�1

2
… Z

which contradicts condition (3) in Definition 5.1 of an admissible pair.
Hence i; j 2 I nX . As .wX � id/.˛k/ 2 QX for any k 2 I , it follows that

.1 � aij /.˛i � ˛�.i//C . j̨ � ˛�.j // D �‚.�/ � �.�/ D .wX � id/.�.�//

lies in QX . Using i; j 2 I nX , it follows that .1 � aij /.˛i � ˛�.i//C . j̨ � ˛�.j // D 0. So,
there are two possibilities: either (1) �.i/ D j and aij D 0, or (2) �.i/ D i and �.j / D j .

Lemma 6.5. Let � 2 QC and let j 2 I nX with sj D 0. Assume that a collection
.X�0/�0�� with X�0 2 U

C
�0 satisfies condition (6.2) for all �0 � � and for all i 2 I . If X� ¤ 0,

then � 2 spanN0¹ j̨ �‚. j̨ /º ˚ spanN0¹˛k j k ¤ j º.

Proof. We prove this by induction on ht.�/. If � > 0 and X� ¤ 0, then by (2.13)
there exists some i such that ri .X�/ ¤ 0. Relation (6.2) implies that X�C‚.˛i /�˛i ¤ 0 or
siX��˛i ¤ 0. If i ¤ j , then the induction hypothesis on �C‚.˛i / � ˛i and � � ˛i implies
the claim. If i D j , then the induction hypothesis on �C‚.˛i / � ˛i implies the claim.

Recall that � denotes the involutive antiautomorphism of Uq.g/ defined by (2.16).

Lemma 6.6. Let � 2 QC, and let .X�/�<�2QC be a collection with X� 2 U
C
� and

X0 D 1. For all � < � assume that X� satisfies (6.2) and (6.3) for all i 2 I . Let j; k 2 I nX
be such that ‚. j̨ / D � j̨ and ‚.˛k/ D �˛k . Assume that n � 0, and that x 2 U��n˛k� j̨

satisfies �.x/ D �x. Then

hx;X�i D 0(6.10)

for all � < �.

Proof. The space U��n˛k� j̨
is spanned by elements of the form F a

k
FjF

b
k

with
aC b D n. As the antiautomorphism � is involutive it is enough to verify equation (6.10) for
elements of the form x D F a

k
FjF

b
k
��.F a

k
FjF

b
k
/ D F a

k
FjF

b
k
�F b

k
FjF

a
k

. We will prove that

hF ak FjF
b
k � F

b
k FjF

a
k ;X�i D 0(6.11)

for all � < � and a; b � 0 by induction on n D aC b. It holds for n D 0. Let aC b D n > 0,
and assume that (6.11) holds for all a0; b0 with a0 C b0 < n. Without loss of generality assume
that b > 0. Using the assumption that X� satisfies (6.2) and (6.3), we get that

hF ak FjF
b
k �F

b
k FjF

a
k ;X�i D

�1

qk � q
�1
k

�
hF ak FjF

b�1
k ; rk.X�/i

� hF b�1k FjF
a
k ; kr.X�/i

�
D hF ak FjF

b�1
k ;X��2˛kckXk C skX��˛k i

� hF b�1k FjF
a
k ; q

.˛k ;˛k/ckXkX��2˛k C skX��˛k i:
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The assumption ‚.˛k/ D �˛k implies that Xk D �Ek and by (5.16) and (5.15) one has
ck D q

.˛k ;˛k/ck and sk D sk . Hence the above equation turns into

hF ak FjF
b
k � F

b
k FjF

a
k ;X�i D skhF

a
k FjF

b�1
k � F b�1k FjF

a
k ;X��˛k i

� ck
�
hF ak FjF

b�1
k ;X��2˛kEki

� hF b�1k FjF
a
k ; EkX��2˛k i

�
:

By the induction hypothesis one has hF a
k
FjF

b�1
k
� F b�1

k
FjF

a
k
;X��˛k i D 0. Hence,

hF ak FjF
b
k �F

b
k FjF

a
k ;X�i D

ck

qk�q
�1
k

hrk.F
a
k FjF

b�1
k /�kr.F

b�1
k FjF

a
k /;X��2˛k i:

As

�.rk.F
a
k FjF

b�1
k / � kr.F

b�1
k FjF

a
k //

(2.17)
D kr.�.F

a
k FjF

b�1
k // � rk.�.F

b�1
k FjF

a
k //

D �.rk.F
a
k FjF

b�1
k / � kr.F

b�1
k FjF

a
k //;

equation (6.11) follows from the induction hypothesis.

6.4. Constructing X�. We are now ready to construct X� inductively. Fix � 2 QC

and assume that a collection .X�0/�0<�2QC with X�0 2 U
C
�0 and X0 D 1 has already been

constructed and that this collection satisfies conditions (6.2) and (6.3) for all �0 < � and for
all i 2 I . Define

Ai D �.qi � q
�1
i /

�
X�C‚.˛i /�˛i ciXi C siX��˛i

�
;(6.12)

iA D �.qi � q
�1
i /

�
q�.‚.˛i /;˛i /ciXiX�C‚.˛i /�˛i C siX��˛i

�
(6.13)

for all i 2 I . We will keep the above assumptions and the definition of Ai and iA all through
this subsection. We will prove that the elements Ai and iA, which are the right hand sides of
equations (6.2) and (6.3), satisfy conditions (6.6) and (6.7). By Proposition 6.3 this will prove
the existence of an element X� with the desired properties.

Lemma 6.7. The relation ri .jA/ D j r.Ai / holds for all i; j 2 I .

Proof. This is a direct calculation. Note that all computations include the case i D j .
We expand both sides of the desired equation, using (2.8) and (2.9) and the assumption that the
elements X�0 satisfy (6.2) and (6.3) for �0 < �. We obtain

ri .jA/ D �.qj � q
�1
j /q�.‚. j̨ /; j̨ /cjXj ri .X�C‚. j̨ /� j̨

/

� .qj � q
�1
j /q�.‚. j̨ /; j̨ /q.˛i ;�C‚. j̨ /� j̨ /ri .cjXj /X�C‚. j̨ /� j̨

� .qj � q
�1
j /sj ri .X�� j̨

/

D .qj � q
�1
j /q�.‚. j̨ /; j̨ /cjXj .qi � q

�1
i /X�C‚. j̨ /� j̨C‚.˛i /�˛i ciXi

C .qj � q
�1
j /q�.‚. j̨ /; j̨ /cjXj .qi � q

�1
i /siX�C‚. j̨ /� j̨�˛i

� .qj � q
�1
j /q�.‚. j̨ /; j̨ /q.˛i ;�C‚. j̨ /� j̨ /ri .cjXj /X�C‚. j̨ /� j̨

C .qj � q
�1
j /sj .qi � q

�1
i /X�� j̨C‚.˛i /�˛i ciXi

C .qj � q
�1
j /sj .qi � q

�1
i /siX��˛i� j̨

;
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and

j r.Ai / D �.qi � q
�1
i /j r.X�C‚.˛i /�˛i /ciXi

� .qi � q
�1
i /q. j̨ ;�C‚.˛i /�˛i /X�C‚.˛i /�˛ij r.ciXi /

� .qi � q
�1
i /si j r.X��˛i /

D .qi � q
�1
i /.qj � q

�1
j /q�.‚. j̨ /; j̨ /cjXjX�C‚.˛i /�˛iC‚. j̨ /� j̨

ciXi

C .qi � q
�1
i /.qj � q

�1
j /sjX�C‚.˛i /�˛i� j̨

ciXi

� .qi � q
�1
i /q. j̨ ;�C‚.˛i /�˛i /X�C‚.˛i /�˛ij r.ciXi /

C .qi � q
�1
i /si .qj � q

�1
j /q�.‚. j̨ /; j̨ /cjXjX��˛iC‚. j̨ /� j̨

C .qi � q
�1
i /si .qj � q

�1
j /sjX��˛i� j̨

:

We see that the first and fifth summands in the above expansions of ri .jA/ and j r.Ai / coincide,
the second summand of ri .jA/ is the same as the fourth summand of j r.Ai /, and the fourth
summand of ri .jA/ coincides with the second summand of j r.Ai /. Therefore, the claim of the
lemma, ri .jA/ D j r.Ai /, is equivalent to the third summands being equal,

� .qj � q
�1
j /q�.‚. j̨ /; j̨ /q.˛i ;�C‚. j̨ /� j̨ /ri .cjXj /X�C‚. j̨ /� j̨

(6.14)

D �.qi � q
�1
i /q. j̨ ;�C‚.˛i /�˛i /X�C‚.˛i /�˛ij r.ciXi /:

By (5.10) and (2.19) we may assume that i D �.j / 2 I nX because otherwise both sides of the
above equation vanish. By (2.19) we have j r.ciXi / D q. j̨ ;�‚.˛i /� j̨ /rj .ciXi /. Substituting
this and using qi D qj , we see that (6.14) is equivalent to

q. j̨ ;‚.˛i /�‚. j̨ //C.˛i ;�� j̨ /ri .cjXj /X�C‚. j̨ /� j̨
(6.15)

D q. j̨ ;��˛i� j̨ /X�C‚.˛i /�˛i rj .ciXi /:

By equation (5.3) one has‚.˛i /�˛i D ‚. j̨ /� j̨ and hence X�C‚. j̨ /� j̨
D X�C‚.˛i /�˛i .

Moreover, ri .TwX .Ei // lies in MX and hence it commutes with X�C‚.˛i /�˛i . Using this, we
can rewrite (6.15) as

q. j̨ ;‚.˛i� j̨ //C.˛i ;�/X�C‚.˛i /�˛i ri .cjXj /(6.16)

D q. j̨ ;�� j̨ /X�C‚.˛i /�˛i rj .ciXi /:

If X�C‚.˛i /�˛i D 0, then both sides of the above equation vanish. Hence we assume that
X�C‚.˛i /�˛i is nonzero. Corollary 6.2 states that then ‚.�/ D ��. Along with

‚.˛i � j̨ / D ˛i � j̨ ;

this implies that .˛i � j̨ ; �/ D 0. Hence (6.16) is equivalent to the relation

q. j̨ ;˛i /ri .cjXj / D rj .ciXi /:

Using the definition (5.11) of Zi the above formula follows from assumption (5.14) about the
parameters c.

This proves that the elements Ai ; iA satisfy the first condition from Proposition 6.3 (2).
Next we prove that they also satisfy the second condition.
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Lemma 6.8. For all i ¤ j 2 I the elements Ai ; Aj given by (6.12) satisfy the relation

�1

qi � q
�1
i

1�aijX
sD1

"
1 � aij

s

#
qi

.�1/shF
1�aij�s

i FjF
s�1
i ; Ai i(6.17)

�
1

qj � q
�1
j

hF
1�aij
i ; Aj i D 0:

Proof. We may assume that � D .1 � aij /˛i C j̨ and that ‚.�/ D ��, as otherwise
all terms in the above sum vanish. By Lemma 6.4 it suffices to consider the following two
cases.

Case 1: ‚.˛i / D � j̨ and aij D 0 In this case � D ˛i C j̨ and si D sj D 0 by
definition (5.7) of the parameter set S . Hence

Ai D �s.j /.qi � q
�1
i /ciEj and Aj D �s.i/.qj � q

�1
j /cjEi :

Therefore the left hand side of (6.17) is equal to

1

qi � q
�1
i

hFj ; Ai i �
1

qj � q
�1
j

hFi ; Aj i D �s.j /ci hFj ; Ej i C s.i/cj hFi ; Ei i:(6.18)

Using qi D qj , the fact that s.i/ D s.j / by (5.2), and the relation ci D cj which holds by
definition of the parameter set C , one sees that the right hand side of (6.18) vanishes.

Case 2: ‚.˛i / D �˛i and ‚. j̨ / D � j̨ In this case by (5.5) one has i; j 2 Ins.
Hence, by the definition (5.7) of the parameter set S , one has either sj D 0 or aij 2 �2N0.
If sj D 0, then Lemma 6.5 implies that .1 � aij /˛i C j̨ D � 2 N0˛i ˚ 2N0 j̨ , which is not
the case. If �aij is even, then the left hand side of (6.17) can be written as

1

qi � q
�1
i

hFjF
�aij
i ; Ai i �

1

qj � q
�1
j

hF
1�aij
i ; Aj i(6.19)

C
�1

qi � q
�1
i

�aij =2X
sD1

"
1 � aij

s

#
qi

.�1/s

� hF
1�aij�s

i FjF
s�1
i � F si FjF

�aij�s

i ; Ai i:

By (6.12) and (6.13) one has Aj D �.qj � q�1j /�1sjX�� j̨
D jA and hence

1

qi � q
�1
i

hFjF
�aij
i ; Ai i �

1

qj � q
�1
j

hF
1�aij
i ; Aj i

D �
1

qi � q
�1
i

1

qj � q
�1
j

hF
�aij
i ;j r.Ai / � ri .jA/i:

In view of Lemma 6.7 the above relation shows that the sum of the first two terms of (6.19)
vanishes. Each of the remaining summands in (6.19) contains a factor of the form

hF
1�aij�s

i FjF
s�1
i � F si FjF

�aij�s

i ; Ai i(6.20)

D
�1

qi � q
�1
i

hF
�aij�s

i FjF
s�1
i � F s�1i FjF

�aij�s

i ; ir.Ai /i:
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Set x D F�aij�si FjF
s�1
i � F s�1i FjF

�aij�s

i and observe that �.x/ D �x. Inserting the defi-
nition of Ai into (6.20) one obtains in view of Xi D �Ei the relation

hF
1�aij�s

i FjF
s�1
i � F si FjF

�aij�s

i ; Ai i D hx; ir.�X��2˛i ciEi C siX��˛i /i:

Using the skew derivation property (2.9) and the assumption that X�0 satisfies (6.3) for all
�0 < � one obtains

hF
1�aij�s

i FjF
s�1
i � F si FjF

�aij�s

i ; Ai i

D �.qi � q
�1
i /hx; ciq

.˛i ;˛i /ciEiX��4˛iEi i

C .qi � q
�1
i /hx; siciX��3˛iEi i � hx; ciq

.˛i ;��2˛i /X��2˛i i

C .qi � q
�1
i /hx; siq

.˛i ;˛i /ciEiX��3˛i i � .qi � q
�1
i /hx; s2i X��2˛i i:

Using relations (2.15) and the property ci D q.˛i ;˛i /ci which holds by (5.16), the above equa-
tion becomes

hF
1�aij�s

i FjF
s�1
i � F si FjF

�aij�s

i ; Ai i(6.21)

D �ciq
.˛i ;˛i /ci

1

qi � q
�1
i

hri .ir.x//;X��4˛i i � ciq
.˛i ;��2˛i /hx;X��2˛i i

� sici hri .x/C ir.x/;X��3˛i i � .qi � q
�1
i /s2i hx;X��2˛i i:

Using the fact that �.x/ D �x we obtain from (2.17) and (2.14) that

�.ri .ir.x/// D �ri .ir.x//; �.ri .x/C ir.x// D �.ri .x/C ir.x//:

By Lemma 6.6 the above relations imply that all terms in (6.21) vanish. Therefore all summands
in (6.19) vanish, which completes the proof of the Lemma in the second case.

Remark 6.9. If one restricts to quantum symmetric pair coideal subalgebras Bc;s with
s D .0; 0; : : : ; 0/, then Case 2 in the proof of Lemma 6.8 simplifies significantly and Lemma 6.6
is not needed.

6.5. Constructing X. We are now ready to prove the main result of this section, namely
the existence of the quasi K-matrix X. Recall the assumptions from Section 5.4.

Theorem 6.10. There exists a uniquely determined element X D
P
�2QC X� 2

bUC,
with X0 D 1 and X� 2 U

C
� , such that the equality

(6.22) xBX D X x

holds in U for all x 2 Bc;s.

Proof. We construct X� by induction on the height of �, starting from X0 D 1. If
� D j̨ , then equations (6.2) and (6.3) are equivalent to

ri .X�/ D ir.X�/ D

´
0 if i ¤ j ,

�.qi � q
�1
i /si if i D j ,
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as sj D sj by (5.15). In this case X
j̨
D �.qj � q

�1
j /sjEj satisfies (6.2) and (6.3). This defines

X� in the case ht.�/ D 1. Assume now that ht.�/ � 2 and that the elements X�0 have been
defined for all �0 with ht.�0/ < ht.�/ such that they satisfy (6.2) and (6.3) for all i 2 I . The
elements Ai and iA given by (6.12) and (6.13), respectively, are then well defined, and by
Lemmas 6.7 and 6.8 they satisfy the conditions of Proposition 6.3 (2). By Proposition 6.3 the
system of equations given by (6.5) for all i 2 I has a unique solution X D X� 2 U

C
� . By the

definition of Ai and iA the element X� satisfies equations (6.2) and (6.3).
Set

X D
X
�2QC

X� 2
bUC:

By Proposition 6.1 the element X satisfies the relation (6.22) for all x 2 Bc;s. The uniqueness
of X follows by Propositions 6.1 and 6.3 from the uniqueness of the solution of the system of
equations given by (6.5) for all i 2 I .

7. Construction of the universal K-matrix

Using the quasi K-matrix X from the previous section we now construct a candidate
K 2 U for a universal K-matrix as in Definition 4.12. Our approach is again inspired by the
special case considered in [3]. However, we are aiming for a comprehensive construction for
all quantum symmetric Kac–Moody pairs. In this setting the Weyl group does not contain
a longest element. We hence replace the Lusztig action in [3, Theorem 2.18] by a twist of the
underlying module, see Section 7.1. In Section 7.2 we construct a Bc;s-module homomorphism
between twisted versions of modules in Oint. This provides the main step of the construc-
tion in the general Kac–Moody case. In Section 7.3 we restrict to the finite case and obtain
a B-tw-automorphism K for Oint as in Section 4.2 with B as in Example 4.1. The coproduct
of K will be determined in Section 9.

7.1. A pseudo longest element ofW . If g is of finite type, then there exists �0 2Aut.A/
such that the longest element w0 2 W satisfies

w0.˛i / D �˛�0.i/ for all i 2 I .(7.1)

Moreover, in this case the Lusztig automorphism Tw0 of Uq.g/ corresponding to w0 can be
explicitly calculated. Indeed, by [13, Proposition 8.20] or [18, Lemma 3.4] one has

Tw0.Ei / D �F�0.i/K�0.i/; Tw0.Fi / D �K
�1
�0.i/

E�0.i/; Tw0.Ki / D K
�1
�0.i/

;(7.2)

T �1w0 .Ei / D �K
�1
�0.i/

F�0.i/; T �1w0 .Fi / D �E�0.i/K�0.i/; T �1w0 .Ki / D K
�1
�0.i/

:

In the Kac–Moody case we mimic the inverse of the Lusztig automorphism corresponding to
the longest element of the Weyl group as follows. Let tw W Uq.g/! Uq.g/ denote the algebra
automorphism defined by

tw.Ei / D �K�1i Fi ; tw.Fi / D �EiKi ; tw.Kh/ D K�h

for all i 2 I , h 2 Q_ext.

Lemma 7.1. For all i 2 I one has tw ı Ti D Ti ı tw on Uq.g/.
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Proof. For h 2 Q_ext one has Ti ı tw.Kh/ D K�si .h/ D twıTi .Kh/. It remains to check
that

Ti ı tw.Ej / D tw ı Ti .Ej / and Ti ı tw.Fj / D tw ı Ti .Fj /(7.3)

for all j 2 I . For j D i relation (7.3) holds because T �1i jUqi .sl2/i D twjUqi .sl2/i . For j ¤ i
relation (7.3) is verified by a direct calculation using the formulas

Ti .Ej / D

�aijX
kD0

.�1/kq�ki E
.�aij�k/

i EjE
.k/
i ;

Ti .Fj / D

�aijX
kD0

.�1/kqki F
.k/
i FjF

.�aij�k/

i

which hold by [26, Section 37.1.3].

To mimic the Lusztig action of the longest element in the Kac–Moody case we addi-
tionally need an automorphism �0 2 Aut.A;X/. Recall our setting and assumptions from
Section 5.4. For the construction of the universal K-matrix we need to make minor additional
assumptions on the parameters c 2 C and s 2 S .

Assumption (�0). We are given an additional involutive element �0 2 Aut.A;X/ with
the following properties:

(1) � ı �0 D �0 ı � .

(2) The parameters c 2 C and s 2 S satisfy the relations

c�0�.i/ D ci ; s�0.i/ D si for all i 2 I nX .(7.4)

(3) The function s W I ! K described by (5.1) and (5.2) satisfies the relation

s.�.i// D s.�0.i// for all i 2 I :(7.5)

Remark 7.2. Assume that g is of finite type. In this case we always choose �0 to be
the diagram automorphism determined by equation (7.1). Then property (1) is automatically
satisfied as follows by inspection from the list of Satake diagrams in [1]. Moreover, by the
definition of the parameter set S one can have si ¤ 0 only if � 0.i/ D i for all � 0 2 Aut.A/.
Hence property (2) reduces to c�0�.i/ D ci in the finite case. By (5.1) and (5.2) one can have
s.i/ ¤ 1 only if �.i/ D �0.i/. Hence property (3) is always satisfied in the finite case.

If �0 D � , then property (2) is an empty statement. It is possible that � D id and �0 ¤ id,
see the list in [1]. In this case condition (5.16) implies that ci equals c�0.i/ up to multiplica-
tion by a bar invariant scalar. The new condition c�0�.i/ D ci forces this scalar to be equal to 1.
Finally, only in typeD2n is it possible that �0 D id and � ¤ id. In this case, however, the condi-
tion c 2 C implies that c�0�.i/ D ci . These arguments show that the new condition c�0�.i/ D ci
is consistent with the conditions imposed in Section 5.4 and that it is always possible to choose
parameters c and s which satisfy all of the assumptions.

The composition

tw ı �0 W Uq.g0/! Uq.g
0/

defines an algebra automorphism. By (7.2) the automorphism tw ı �0 is a Kac–Moody analog
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of the inverse of the Lusztig action on Uq.g/ corresponding to the longest element in the Weyl
group in the finite case. As �0 2 Aut.A;X/, one has �0 ı TwX D TwX ı �0. By Lemma 7.1 this
implies that

�0 ı tw ı TwX D TwX ı �0 ı tw:(7.6)

To obtain an analog of this Lusztig action on modules in Oint we will twist the module structure.
In the following subsection we construct a Bc;s-module homomorphism between twisted ver-
sions of modules in Oint. As Bc;s is a subalgebra of Uq.g0/, it suffices to consider objects in Oint

as Uq.g0/-modules. With this convention, for any algebra automorphism ' W Uq.g
0/! Uq.g

0/

and any M 2 Ob.Oint/ let M ' denote the vector space M with the Uq.g0/-module structure
u˝m 7! u �' m given by

u �' m D '.u/m for all u 2 Uq.g0/, m 2M .

We will apply this notation in particular in the case where ' is one of �0 ı � and tw ı �0, see
Theorem 7.5.

Remark 7.3. If the algebra automorphism ' W Uq.g
0/! Uq.g

0/ extends to a Hopf
algebra automorphism of Uq.g/, then the notation M ' for M 2 Ob.Oint/ coincides with the
notation in Example 4.7.

7.2. The twisted universal K-matrix in the Kac–Moody case. We keep our assump-
tions from Section 5.4 and Assumption .�0/ from the previous subsection. To construct the
desired Bc;s-module homomorphism we require one additional ingredient. Consider the func-
tion 
 W I ! K.q1=d / defined by


.i/ D

´
1 if i 2 X ,

cis.�.i// if i 2 I nX ,
(7.7)

and note that by (7.4) and (7.5) one has 
.��0.i// D 
.i/ for all i 2 I . Now assume that
� W P ! K.q1=d /� is a function satisfying the following recursion:

�.�C ˛i / D 
.i/q
�.˛i ;‚.˛i //�.�;˛iC‚.˛i //�.�/ for all � 2 P , i 2 I .(7.8)

Such a function exists. Indeed, we may take an arbitrary map on any set of representatives
of P=Q and uniquely extend it to P using (7.8).

Lemma 7.4. Let � W P ! K.q1=d /� be any function which satisfies the recursion (7.8).
Then one has

�.�C �/ D q�.�;�/�2.�;�/�.�/ for all � 2 P , � 2 QX .(7.9)

Proof. We prove this by induction on the height of �. Assume that (7.9) holds for
a given � 2 QX . Then one obtains for any i 2 X the relation

�.�C �C ˛i / D q
�.˛i ;˛i /�2.�C�;˛i /�.�C �/

D q�.˛i ;˛i /�2.�C�;˛i /�.�;�/�2.�;�/�.�/

D q�.�C˛i ;�C˛i /�2.�;�C˛i /�.�/

which completes the induction step.
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As in Example 3.3 we may consider � as an element of U . The next theorem shows
that the element X � T �1wX 2 U defines a Bc;s-module isomorphism between twisted modules
in Oint.

Theorem 7.5. Let � W P ! K.q1=d /� be a function satisfying the recursion (7.8). Then
the element K 0 D X � T �1wX 2 U defines an isomorphism of Bc;s-modules

K 0M WM
twı�0 !M �0� ; m 7! XM ı �M ı .T

�1
wX
/M .m/

for any M 2 Ob.Oint/. In other words, the relation

K 0 tw.�0.x// D �0.�.x//K 0

holds in U for all x 2 Bc;s.

Proof. It suffices to check that

K 0M .x �twı�0 m/ D x ���0 K 0M .m/ for all m 2M(7.10)

where x is one of the elements K�, Ei , Fi , or Bj for � 2 Q‚, i 2 X , and j 2 I nX . More-
over, it suffices to prove the above relation for a weight vector m 2M�. In the following we
will suppress the subscript M for elements in U acting on M .

Case 1: x D K� for some � 2 Q‚ In this case we have wX .�/ D ��.�/. Moreover,
as �0 2 Aut.A;X/, one has �0.wX .�// D wX .�0.�//. Hence one obtains

K 0.K� �twı�0 m/ D X ı � ı T �1wX .tw.�0.K�//m/

D X ı � ı T �1wX .K��0.�/m/

D X
�
K�wX�0.�/.� ı T

�1
wX
.m//

�
D K�wX�0.�/X ı � ı T

�1
wX
.m/

D K�0�.�/K
0.m/

D K� ��0� K 0.m/:

Case 2: x D Ei for some i 2 X By relation (7.2) applied to MX we have

T �1wX .Fi / D �E�.i/K�.i/:

Using this and the recursion (7.8) one obtains

K 0.Ei �twı�0 m/ D X ı � ı T �1wX .�K
�1
�0.i/

F�0.i/m/

D X ı �
�
q.˛i ;˛i /E��0.i/K

2
��0.i/

T �1wX .m/
�

D X
�
�.wX .�/C˛��0.i//�.wX .�//

�1

� q.˛i ;˛i /C2.wX .�/;˛�0�.i//E��0.i/� ı T
�1
wX
.m/

�
(7.8)
D E��0.i/X ı � ı T

�1
wX
.m/

D Ei ��0� K 0.m/:

This confirms relation (7.10) for x D Ei where i 2 X . The case x D Fi for i 2 X is treated
analogously.
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Case 3: x D Bj D Fj � 
.j /TwX
.E�.j//K

�1
j
C sjK

�1
j

for some j 2 I nX We
calculate

K 0.Bj �twı�0 m/ D X ı � ı T �1wX .tw ı �0.Bj /m/
(7.6)
D X ı �

�
tw ı �0.T �1wX .Bj //T

�1
wX
.m/

�
(7.6)
D X ı �

��
T �1wX .�E�0.j /K�0.j //C 
.j /K

�1
��0.j /

F��0.j /KwX .˛�0.j//

C sjKwX .�0.j //
�
T �1wX .m/

�
D X ı �

��
F��0.j /
.j /q

. j̨ ; j̨ /�.wX .�/;˛��0.j/C‚.˛��0.j///

� T �1wX .E�0.j //K�0�.j /q
�.wX .�/;˛�0�.j/C‚.˛�0�.j///

C sjK�0�.j /q
�.wX .�/;˛�0�.j/C‚.˛�0�.j///

�
T �1wX .m/

�
:

To simplify the last term, recall from (5.7) that s�0�.j / D sj D 0 unless‚. j̨ / D � j̨ , in which
case ˛�0�.j / C‚.˛�0�.j // D 0. Additionally moving � to the right one obtains

K 0.Bj �twı�0 m/(7.11)

D X

��
F��0.j /
.j /q

. j̨ ; j̨ /�.wX .�/;˛��0.j/C‚.˛��0.j///
�.wX .�/ � ˛�0�.j //

�.wX .�//

� T �1wX .E�0.j //K�0�.j /q
�.wX .�/;˛�0�.j/C‚.˛�0�.j///

�.wX .�/CwX˛�0.j //

�.wX .�//

C s�0�.j /K�0�.j /

�
� ı T �1wX .m/

�
:

To simplify the above expression observe that

�.wX .�/C wX˛i /
(7.9)
D q�.wX˛i�˛i ;wX˛i�˛i /�2.wX .�/C˛i ;wX˛i�˛i /�.wX .�/C ˛i /

D q�2.wX .�/;wX˛i�˛i /�.wX .�/C ˛i /

(7.8)
D 
.�0�.i//q

�.˛i ;‚.˛i //C.wX .�/;˛�.i/C‚.˛�.i//�.wX .�//

for i 2 I nX . Inserting this formula for i D �0.j / into equation (7.11) and applying the recur-
sion (7.8) also to the first summand one obtains

K 0.Bj �twı�0 m/ D X
��
F��0.j / � 
.�.j //q

�. j̨ ;‚. j̨ //T �1wX .E�0.j //K�0�.j /(7.12)

C s�0�.j /K�0�.j /
�
� ı T �1wX .m/

�
:

Now set

ˇi D .�1/
2˛i .�

_
X /q.2�X ;˛i / for i 2 I nX .

In view of [26, Section 37.2.4] one has

TwX .Ei / D ˇ
�1
i T �1wX .Ei / for all i 2 I nX;(7.13)

see also the proof of [2, Lemma 2.9]. Hence (7.12) gives

K 0.Bj �twı�0 m/ D X
��
F��0.j / � 
.�.j //q

�. j̨ ;‚. j̨ //ˇ�0.j /TwX .E�0.j //K
�1
�0�.j /

C sjK�0�.j //
�
� ı T �1wX .m/

�
:
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In view of the relation


.�.j //q�. j̨ ;‚. j̨ //ˇ�0.j / D s.�.j //cj

one now obtains

K 0.Bj �twı�0 m/ D X
�
B�0�.j /� ı T

�1
wX
.m/

�
D B�0ı�.j /K

0.m/

D Bj ���0 K 0.m/

which completes the proof of the theorem.

For later reference we note that relation (7.13) implies that the elementXi defined by (5.4)
satisfies the relation

Xi D �s.i/q
�.2�X ;˛i /T �1wX .E�.i// for all i 2 I nX;(7.14)

see also (5.1), (5.2) and property (3) in Definition 5.1 of an admissible pair.

Remark 7.6. The function � is an important ingredient in the construction of the twisted
K-matrix K 0 and should be compared to the recursively defined function f involved in the con-
struction of the commutativity isomorphisms [26, Section 32.1.3]. The recursion (7.8) is a nec-
essary and sufficient condition on � for X ı � ı T �1wX WM

twı�0 !M �0� to be a Bc;s-module
homomorphism.

7.3. The universal K-matrix in the finite case. We now assume that g is of finite
type. In this case, following Remark 7.2, we always choose �0 2 Aut.I; X/ such that the
longest element w0 2 W satisfies w0.˛i / D �˛�0.i/ for all i 2 I . By equation (7.2) this gives
T �1w0 D �0 ı tw on Uq.g/.

IfM is a finite-dimensional Uq.g/-module, then the Lusztig action Tw0 WM !M satis-
fies Tw0.um/ D Tw0.u/Tw0.m/ for all m 2M , u 2 Uq.g/. In other words, the Lusztig action
on M defines an Uq.g/-module isomorphism

Tw0 WM
twı�0 !M:

Composing the inverse of this isomorphism with the isomorphism K 0 from Theorem 7.5, we
get the following corollary.

Corollary 7.7. Assume that g is of finite type and let � W P ! K.q1=d /� be a function
satisfying the recursion (7.8). Then the element K D X � T �1wX T

�1
w0
2 U defines an isomor-

phism of Bc;s-modules

KM WM !M ��0 ; m 7! XM ı �M ı .T
�1
wX
/M ı .T

�1
w0
/M .m/

for any finite-dimensional Uq.g/-module M . In other words, the relation

K b D �0.�.b//K

holds in U for all b 2 Bc;s.
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Remark 7.8. As before let B denote the category with objects in Oint and morphisms
HomB.V;W / D HomBc;s.V;W /. In the terminology of Section 4.2 the above corollary states
that K D X � T �1wX T

�1
w0

is a B-.� ı �0/-automorphism of Oint. Equivalently, the element K

satisfies relation (4.15) in Definition 4.12 of a ��0-universal K-matrix.

8. A special choice of �

In the following we want to determine the coproduct of the element K 2 U from Corol-
lary 7.7. We aim to show that K is a ��0-universal K-matrix for Bc;s, that is that the coproduct
�.K/ is given by (4.16). This, however, will only hold true for a suitable choice of �.

8.1. Choosing �. Recall that � has to satisfy the recursion (7.8) which involves the
function 
 W I ! K.q1=d / given by (7.7). Extend the function 
 to a group homomorphism

 W P ! K.q1=d /�. Depending on the choice of coefficients c 2 C , it may be necessary to
replace K.q1=d / by a finite extension to do this. We will illustrate the situation and comment
on the field extension in Section 8.4.

For any � 2 P write

�C D
�C‚.�/

2
; Q� D

� �‚.�/

2
:

Observe that both .�C; �C/ and . Q�; Q�/ are contained in 1
2d

Z for all � 2 P . Recall from
Section 2.1 that $_i for i 2 I denote the fundamental coweights. Now define a function
� W P ! K.q1=d /� by

�.�/ D 
.�/q�.�
C;�C/C

P
k2I . Q̨k ; Q̨k/�.$

_
k
/:(8.1)

Remark 8.1. A priori one only has �.�C; �C/C
P
k2I . Q̨k; Q̨k/�.$

_
k
/ 2 1

2d
Z. How-

ever, for all g of finite type one can show by direct calculation that

�.�C; �C/C
X
k2I

. Q̨k; Q̨k/�.$
_
k / 2

1

d
Z for all � 2 P .(8.2)

To this end it is useful to reformulate the above condition as

�. Q�; Q�/C
X
k2I

. Q̨k; Q̨k/�.$
_
k / 2

1

d
Z for all � 2 P

and to work with the weight lattice P.†/ of the restricted root system † of the symmetric
pair .g; k/. The relation between P.†/ and P is discussed in detail in [25, Section 2]. We
expect (8.2) also to hold for infinite-dimensional g. If it does not hold, then the definition of �
requires an extension of K.q1=d / also for the q-power to lie in the field.

We claim that � satisfies the recursion (7.8).

Lemma 8.2. The function � W P ! K.q1=d /� defined by (8.1) satisfies the relation

�.�C �/ D �.�/�.�/q�.�C‚.�/;�/(8.3)

for all �; � 2 P . In particular, � satisfies the recursion (7.8).
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Proof. For any �; � 2 P one calculates

�.�C �/ D 
.�C �/q�..�C�/
C;.�C�/C/C

P
k2I . Q̨k ; Q̨k/.�C�/.$

_
k
/

D 
.�/
.�/q�.�
C;�C/�.�C;�C/�.�;�/�.‚.�/;�/C

P
k2I . Q̨k ; Q̨k/.�C�/.$

_
k
/

D �.�/�.�/q�.�C‚.�/;�/

which proves (8.3). Choosing � D ˛i one now obtains

�.�C ˛i /
(8.3)
D �.�/�.˛i /q

�.�C‚.�/;˛i /

(8.1)
D �.�/
.i/q�.˛

C

i
;˛
C

i
/C. Q̨i ; Q̨i /�.�;˛iC‚.˛i //:

As .˛Ci ; ˛
C
i / � . Q̨ i ; Q̨ i / D .˛i ; ‚.˛i //, the above formula implies that � satisfies the recur-

sion (7.8).

8.2. The coproduct of �. Recall the invertible element � 2 U .2/ defined in Example
3.4. Let f W P ! P be any map. For every M;N 2 Ob.Oint/ define a linear map

�
f
M;N WM ˝N !M ˝N; .m˝ n/ 7! q.f .�/;�/m˝ n if m2M�, n2N� .(8.4)

As in Example 3.4 the collection �f D .�fM;N /M;N2Ob.Oint/ defines an element in U .2/.

Remark 8.3. In the following we will apply this notion in the case f D �‚ D wX ı � ,
see Section 5.1. To this end we need to assume that the minimal realization .h;…;…_/ is
compatible with the involution � 2 Aut.I; X/ as in [18, Section 2.6]. This means that the map
� W …_ ! …_ extends to a permutation � W …_ext ! …_ext such that ˛�.i/.d� .s// D ˛i .ds/. In
this case � may be considered as a map � W P ! P . We will make this assumption without
further comment. In the finite case, which is our only interest in Section 9, it is always satisfied.

Recall from Example 3.3 that the function � defined by (8.1) may be considered as an ele-
ment in U and hence we can take its coproduct, see Section 3.2. The coproduct �.�/ 2 U .2/

can be explicitly determined.

Lemma 8.4. The element � 2 U defined by (8.1) satisfies the relation

(8.5) �.�/ D .� ˝ �/ � ��1 � ��‚:

Proof. LetM;N 2 Ob.Oint/ andm 2M�, n 2 N� for some�; � 2 P . Thenm˝ n lies
in the weight space .M ˝N/�C� . Hence one gets

�.�/.m˝ n/ D �.�C �/m˝ n

(8.3)
D �.�/�.�/q�.�;�/q�.‚.�/;�/m˝ n

D .� ˝ �/ � ��1 � ��‚.m˝ n/

which proves formula (8.5).

For the rest of this paper the symbol � will always denote the function given by (8.1) and
the corresponding element of U .
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8.3. The action of � on Uq.g/. Conjugation by the invertible element � 2 U gives an
automorphism

Ad.�/ W U ! U ; u 7! Ad.�/.u/ D �u��1:(8.6)

For any M 2 Ob.Oint/ one has

�.um/ D Ad.�/.u/�.m/ for all u 2 U and m 2M .

Recall that we consider Uq.g/ as a subalgebra of U .

Lemma 8.5. The automorphism (8.6) restricts to an automorphism of Uq.g/. More
explicitly, one has

Ad.�/.E�/ D �.�/E�K�1�C‚.�/;(8.7)

Ad.�/.F�/ D �.�/�1K�C‚.�/F� ;(8.8)

Ad.�/.Ki / D Ki(8.9)

for all E� 2 UC� and F� 2 U��� and all i 2 I .

Proof. By definition the elements � andKi commute in U . This proves (8.9). To verify
the remaining two formulas let M 2 Ob.Oint/ and m 2M� for some � 2 P . Then one has

�E��
�1m D

�.�C �/

�.�/
E�m

(8.3)
D �.�/q�.�C‚.�/;�/E�m D �.�/E�K

�1
�C‚.�/m

which proves formula (8.7). Formula (8.8) is obtained analogously using the relation

�.�/�1 D �.��/q.�C‚.�/;�/

which also follows from (8.3).

For g of finite type the above lemma allows us to identify the restriction of Ad.�/ to the
subalgebra MXU

0
‚
0 of Uq.g/. Recall the conventions for the diagram automorphisms �0 in the

finite case from Remark 7.2.

Lemma 8.6. Assume that g is of finite type. Then one has

Ad.�/
ˇ̌
MXU

0
‚

D .Tw0TwX ��0/
ˇ̌
MXU

0
‚

:

Proof. Consider � 2 QCX and elements E� 2 UC� and F� 2 U���. By Lemma 8.5 and
relations (7.2) one has

Ad.�/.E�/ D q�.�;�/E�K�2� D Tw0TwX ��0.E�/;

Ad.�/.F�/ D q.�;�/K2�F� D Tw0TwX ��0.F�/:

Moreover, if � 2 Q‚, then Lemma 8.5 implies that

Ad.�/.K�/ D K� D Tw0�0TwX �.K�/

which completes the proof of the lemma.
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8.4. Extending 
 from Q to P . In this final subsection, we illustrate how different
choices of c and s influence the extension of the group homomorphism 
 W Q! K.q1=d /� to
the weight lattice P . As an example consider the root datum of type A3 with I D ¹1; 2; 3º, that
is g D sl4.C/, and the admissible pair .X; �/ given by X D ¹2º and �.i/ D 4 � i . In this case
the constraints (5.16) and (5.2) reduce to the relations

c3 D q
2c1; s.3/ D �s.1/:

The group homomorphism 
 W Q! K.q1=d /� is defined by


.˛1/ D s.3/c1; 
.˛2/ D 1; 
.˛3/ D s.1/c3:

The weight lattice P is spanned by the fundamental weights

$1 D
3˛1 C 2˛2 C ˛3

4
; $2 D

˛1 C 2˛2 C ˛3

2
; $3 D

˛1 C 2˛2 C 3˛3

4

and we want to extend 
 from Q to P .

Choice 1. Let c1 D c3 D q, s.1/ D 1, s.3/ D �1. Then 
.˛1/ D �q, 
.˛3/ D q, and

 can be extended to P by


.$1/ D e
3�i=4q; 
.$2/ D e

�i=2q; 
.$3/ D e
�i=4q:

Choice 2. Let c1 D 1 � q2, c3 D q2 � 1, s.1/ D 1, s.3/ D �1. Then


.˛1/ D 
.˛3/ D q
2
� 1;

and 
 can be extended to P by


.$1/ D 
.$2/ D 
.$3/ D q
2
� 1:

The advantage of Choice 1 is that the parameters ci specialize to 1 as q ! 1. This prop-
erty is necessary to show that Bc;s specializes to U.k/ for q ! 1, see [18, Section 10]. The
drawback of Choice 1 is that, for 
 to extend to P , the field K must contain some 4-th root
of �1. Choice 2, one the other hand, has the advantage that 
 can be defined on P with val-
ues in Q.q/�. The drawback of Choice 2 is that ci ! 0 as q ! 1 and hence Bc;s does not
specialize to U.k/.

For any quantum symmetric pair of finite type it is possible to find analogs of Choice 1
and Choice 2 above. We can choose ci D qai for some ai 2 Z, see [2, Remark 3.14]. IfX D ;
or � D id, then 
 extends to a group homomorphism P ! K.q1=d / and no field extension
is necessary. Now assume that X ¤ ; and � ¤ id. If we keep the choice ci D qai , then the
extension of 
 to P requires the field to contain certain roots of unity. Alternatively, as in
Choice 2, one can choose ci 2 ¹qai ; .1 � qbi /qai º for some ai 2 Z, bi 2 Z and s.i/ D ˙1 in
such a way that 
 can be extended from Q to P with values in Q.q1=d /�.

9. The coproduct of the universal K-matrix K

For the remainder of this paper we assume that g is of finite type. We keep the setting from
Section 5.4 and Assumption (�0) from Section 7.1. Recall that in the finite case assumptions (1)
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and (4) in Section 5.4 are always satisfied. Moreover, by Remark 7.2 Assumption (�0) reduces
to equation (7.4) where �0 is determined by (7.1). In this section we calculate the coproduct of
the element

K D X � T �1w0 T
�1
wX
2 U

given in Corollary 7.7. This will show that K is indeed a ��0-universal K-matrix. As an essen-
tial step we determine the coproduct of the quasi-K-matrix X in Section 9.2. First, however, we
perform some calculations which simplify later arguments.

9.1. Preliminary calculations with the quasi R-matrix. Let RX denote the quasi-R-
matrix corresponding to the semisimple Lie subalgebra gX of g. Recall that w0 and wX denote
the longest elements of W and WX , respectively. Choose a reduced expression w0 D si1 : : : sit
such that wX D si1 : : : sis for some s < t . As in Remark 3.6 the quasi-R-matrices R and RX
can then be written as

R D RŒt� �RŒt�1� � � �RŒ1�; RX D R
Œs�
�RŒs�1� � � �RŒ1�:

In view of relation (3.4) one obtains that

RRX D RR
�1
X D R

Œt�
�RŒt�1� � � �RŒsC1�:(9.1)

Define

R.�;X/ D .Ad.�/T �1w0 T
�1
wX
��0 ˝ 1/.RRX / 2 U .2/

0 :(9.2)

We will see in Theorem 9.4 that the element R.�;X/ is a major building block of the coprod-
uct �.X/.

Lemma 9.1. The following relation holds:

R.�;X/ 2
Y

�2wXQC\QC

UC
�‚.�/

K� ˝ U
C
� :

Proof. For any j D 1; : : : ; t let 
j denote the corresponding root as in Remark 3.6.
If s C 1 � j � t , then the factor RŒj � defined by (3.6) satisfies

RŒj � 2
Y
n�0

.TwX .U
�/ \ U��n
j /˝ U

C
n
j
:

Using (9.1) we get that

RRX 2
Y

�2wXQC\QC

.TwX .U
�/ \ U���/˝ U

C
� :

This implies that

.T �1wX � ˝ 1/.RRX / 2
Y

�2wXQC\QC

U�
�wX .�.�//

˝ UC� :

Using (7.2) we get

.T �1w0 �0T
�1
wX
� ˝ 1/.RRX / 2

Y
�2wXQC\QC

UC
wX .�.�//

KwX .�.�// ˝ U
C
� :
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As �0 and TwX commute, relation (8.7) gives

.Ad.�/T �1w0 T
�1
wX
�0� ˝ 1/.RRX / 2

Y
�2wXQC\QC

UC
wX .�.�//

K� ˝ U
C
�

which completes the proof of the lemma.

Lemma 9.2. For any i 2 I the following relation holds:

.1˝ ri /R
.�;X/

D �i .qi�q
�1
i / �R.�;X/ �RX � .T

�1
wX
.E�.i//˝ 1/ �RX � .Ki ˝ 1/

in U .2/
0 where �i D c�.i/s.i/q�.˛i ;‚.˛i //, in particular �i D 0 if i 2 X .

Proof. It follows from the intertwining property (3.3) of the quasi R-matrix for u D Fj
and from relation (2.10) that

.1˝ rj /R D �.qj � q
�1
j / �R � .Fj ˝ 1/ for all j 2 I(9.3)

and that .1˝ ri /.RRX / D 0 for i 2 X . This proves the lemma for i 2 X . Now assume that
i 2 I nX . In view of property (2.8) for UC and the fact that .1˝ ri /RX D 0 for i 2 I nX ,
relation (9.3) implies that

.1˝ ri /.RRX / D �.qi � q
�1
i /R � .FiK

�1
i ˝ 1/ �RX � .Ki ˝ 1/:

Hence one gets

.1˝ ri /.Ad.�/T �1w0 T
�1
wX
��0 ˝ 1/.RRX /(9.4)

D �.qi � q
�1
i /.Ad.�/T �1w0 T

�1
wX
��0 ˝ 1/

�
R � .FiK

�1
i ˝ 1/ �RX � .Ki ˝ 1/

�
D �.qi � q

�1
i /.Ad.�/T �1w0 T

�1
wX
��0 ˝ 1/.RRX /

� .Ad.�/T �1w0 T
�1
wX
��0 ˝ 1/

�
RX � .FiK

�1
i ˝ 1/ �RX � .Ki ˝ 1/

�
:

Applying Lemma 8.6 to the second factor in the above expression we get

.Ad.�/T �1w0 T
�1
wX
��0 ˝ 1/

�
RX � .FiK

�1
i ˝ 1/ �RX � .Ki ˝ 1/

�
(9.5)

D RX �
�
Ad.�/T �1w0 T

�1
wX
��0.Fi /˝ 1

�
� .K�1i ˝ 1/ �RX � .Ki ˝ 1/

D �RX �
�
Ad.�/.T �1wX .E�.i///KwX .˛�.i//�˛i ˝ 1

�
�RX � .Ki ˝ 1/:

As T �1wX .E�.i// 2 U
C

�‚.˛i /
, relation (8.7) gives

Ad.�/.T �1wX .E�.i/// D 
.�.i//q
�.˛i ;‚.˛i //T �1wX .E�.i//K˛iC‚.˛i /:

Inserting this expression into (9.5) gives

.Ad.�/T �1w0 T
�1
wX
��0 ˝ 1/

�
RX � .FiK

�1
i ˝ 1/ �RX � .Ki ˝ 1/

�
D �
.�.i//q�.˛i ;‚.˛i //RX �

�
T �1wX .E�.i//˝ 1

�
�RX � .Ki ˝ 1/:

Finally, inserting the above formula into (9.4) produces the desired result.
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9.2. The coproduct of the quasi K-matrix X. As in Section 6 write the quasi K-matrix
as X D

P
�2QC X� 2 U with X� 2 U

C
� . Define

XK2 D
X
�2QC

K� ˝ X� 2 U .2/
0 :(9.6)

This element will appear as a factor in the coproduct of X.

Lemma 9.3. For any i 2 I one has

.1˝ ri /.XK2/ D .qi � q
�1
i /XK2 �

�
�iK˛i�‚.˛i / ˝ T

�1
wX
.E�.i// � siKi ˝ 1

�
in U .2/ where �i D c�.i/s.i/q�.˛i ;‚.˛i //, in particular �i D si D 0 if i 2 X .

Proof. By equation (6.2) one has

.1˝ ri /.XK2/(9.7)

D

X
�2QC

K� ˝ ri .X�/

D �.qi�q
�1
i /

X
�2QC

K� ˝
�
ciX�C‚.˛i /�˛iXi C siX��˛i

�
D �.qi�q

�1
i /ci

X
�2QC

.K�C‚.˛i /�˛i ˝ X�C‚.˛i /�˛i / .K˛i�‚.˛i / ˝Xi /

� .qi�q
�1
i /si

X
�2QC

.K��˛i ˝ X��˛i / .Ki ˝ 1/

D �.qi�q
�1
i /XK2

�
ciK˛i�‚.˛i / ˝Xi C siKi ˝ 1

�
:

By the explicit expression (7.14) for Xi and by relation (5.16) for ci one has

ciXi D ��iT
�1
wX
.E�.i//:(9.8)

Inserting (9.8) into (9.7) one obtains the desired formula.

By Proposition 6.1 (4) the element XK2 commutes with Fi ˝Ej for all i; j 2 X and
hence

RX � XK2 D XK2 �RX :(9.9)

Now we are ready to compute the coproduct �.X/ 2 U .2/ of the quasi K-matrix X 2 U in
terms of the elements R.�;X/ defined in (9.2) and XK2 defined in (9.6).

Theorem 9.4. The intertwiner X satisfies the relation

�.X/ D .X˝ 1/ �R.�;X/ � XK2(9.10)

in U .2/
0 .

Proof. By the definition (2.1) of the coproduct of Uq.g/ the left hand side of equa-
tion (9.10) belongs to

Q
�2QC U

CK� ˝ U
C
� . The right hand side of (9.10) also belongs toQ

�2QC U
CK� ˝ U

C
� , as follows from the definition (9.6) of XK2 and from Lemma 9.1. By
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Lemma 2.4 it hence suffices to show that

hy ˝ z;�.X/i D hy ˝ z; .X˝ 1/ �R.�;X/ � XK2i(9.11)

for all y; z 2 U�. By linearity it suffices to show this in the case where z D Fi1Fi2 : : : Fir is
a monomial in the generators Fi of U�. We perform induction on r .

For r D 0, we have z D 1 and both sides of (9.11) equal hy;Xi. Now assume that (9.11)
holds for all y 2 U� and all monomials z 2 U� of length shorter or equal than r . Then we get
for any i 2 I the relation

hy ˝ zFi ; �Xi
(2.4)
D hyzFi ;Xi

(2.12)
D

�1

qi � q
�1
i

hyz; ri .X/i

(6.2)
D hyz;X.ciXi C si /i

(9.8)
D �hyz;X.�iT

�1
wX
.E�.i// � si /i;

where as before �i D c�.i/s.i/q�.˛i ;‚.˛i //. By induction hypothesis we obtain

hy ˝ zFi ; �Xi D � hy ˝ z; �i .X˝ 1/ �R
.�;X/

� XK2 ��.T
�1
wX
.E�.i///i(9.12)

C hy ˝ z; si .X˝ 1/ �R
.�;X/

� XK2i:

On the other hand, using Lemma 9.2 and Lemma 9.3 one gets

�
1

qi � q
�1
i

.1˝ ri /
�
.X˝ 1/ �R.�;X/ � XK;2

�
D ��i .X˝ 1/ �R

.�;X/
�RX � .T

�1
wX
.E�.i//˝ 1/ �RX � .Ki ˝Ki /XK2.1˝K

�1
i /

� �i .X˝ 1/ �R
.�;X/

� XK2 � .K˛i�‚.˛i / ˝ T
�1
wX
.E�.i///

C si .X˝ 1/ �R
.�;X/

� XK2 � .Ki ˝ 1/:

Using the above formula, equation (9.9), and again Proposition 6.1 (4) one obtains

hy ˝ zFi ; .X˝ 1/R
.�;X/XK2i(9.13)

D �
1

qi � q
�1
i

hy ˝ z; .1˝ ri /..X˝ 1/ �R
.�;X/

� XK;2/i

D ��i hy ˝ z; .X˝ 1/ �R
.�;X/

� XK2 �RX � .T
�1
wX
.E�.i//˝ 1/ �RX i

� �i hy ˝ z; .X˝ 1/ �R
.�;X/

� XK;2 � .K�‚.˛i / ˝ T
�1
wX
.E�.i///i

C si hy ˝ z; .X˝ 1/ �R
.�;X/

� XK;2i:

Now we want to compare equation (9.12) with equation (9.13). If i 2 X , then both expres-
sions vanish and hence coincide. Assume now that i 2 I nX . Applying T �1wX to the relation
E�.i/F�.j /K�.j / D q

�.˛i ; j̨ /F�.j /K�.j /E�.i/ for j 2 X one sees that

T �1wX .E�.i//Ej D q
. j̨ ;wX .˛�.i///EjT

�1
wX
.E�.i// for all j 2 X

and hence K�‚.˛i / ˝ T
�1
wX
.E�.i// commutes with RX . Using (3.12) one now gets

�.T �1wX .E�.i/// D RX �
�
T �1wX .E�.i//˝ 1CK�‚.˛i / ˝ T

�1
wX
.E�.i//

�
�RX

D RX �
�
T �1wX .E�.i//˝ 1

�
RX CK�‚.˛i / ˝ T

�1
wX
.E�.i//:

Inserting the above relation into (9.12) and comparing the outcome with (9.13) one obtains

hy ˝ zFi ; .X˝ 1/ �R
.�;X/

� XK2i D hy ˝ zFi ; �.X/i

also for i 2 I nX . This completes the induction step.
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9.3. The coproduct of K . We apply construction (8.4) to the map ��0 W P ! P and
obtain elements ���0 ; ����0 2 U .2/

0 . To simplify notation define

R��0 D
X
�2QC

.��0 ˝ 1/.R�/ D
X
�2QC

.1˝ ��0/.R�/ 2 U .2/
0

and

OR��0 D R��0 � ����0 � flip 2 U .2/:

Recall from Corollary 7.7 that K D X�T �1wXT
�1
w0

.

Theorem 9.5. The coproduct of K in U .2/ is given by

�.K/ D .K ˝ 1/ � OR��0 � .K ˝ 1/ � OR:

Proof. Using Proposition 6.1 (4) one verifies that in U .2/
0 one has

.TwXTw0 ˝ 1/ � XK2 � .TwXTw0 ˝ 1/
�1
D ����0 � .1˝ X/ � ���0 :(9.14)

Moreover, the following relation holds:

���0 � .Tw0TwX ˝ 1/ D .Tw0TwX ˝ 1/ � �
‚:(9.15)

Combining the above two formulas with all our previous preparations we calculate

�.K/ D �.X/ ��.�/ ��.T �1wX / ��.T
�1
w0
/

(9.10)
D .X˝ 1/ �R.�;X/ � XK2 ��.�/ ��.T

�1
wX
/ ��.T �1w0 /

(9.2)
D .K ˝ 1/ �R��0 � .TwXTw0�

�1
˝ 1/ �RX � XK2 ��.�/ ��.T

�1
wX
/ ��.T �1w0 /

(9.9)
D .K ˝ 1/ �R��0 � .TwXTw0�

�1
˝ 1/ � XK2 ��.�/ �RX ��.T

�1
wX
/ ��.T �1w0 /

(3.12)
D .K ˝ 1/ �R��0 � .TwXTw0�

�1
˝ 1/ � XK2 ��.�/ � T

�1
wX
˝ T �1wX ��.T

�1
w0
/

(9.14)
D .K ˝ 1/ �R��0 � ����0 � .1˝ X/ � ���0 � .TwXTw0�

�1
˝ 1/ ��.�/

� T �1wX ˝ T
�1
wX
��.T �1w0 /

(9.15)
D .K ˝ 1/ �R��0 � ����0 � .1˝ X/ � .TwXTw0�

�1
˝ 1/ � �‚ ��.�/

� T �1wX ˝ T
�1
wX
��.T �1w0 /

(8.5)
D .K ˝ 1/ �R��0 � ����0 � .1˝ X�/ � .TwXTw0 ˝ 1/ � �

�1

� T �1wX ˝ T
�1
wX
��.T �1w0 /

(3.13)
D .K ˝ 1/ �R��0 � ����0 � .1˝ X�/ � .TwXTw0 ˝ 1/ � T

�1
wX
˝ T �1wX

� T �1w0 ˝ T
�1
w0
�R21 � �

�1

D .K ˝ 1/ �R��0 � ����0 � .1˝ X�T �1w0 T
�1
wX
/ �R21 � �

�1

D .K ˝ 1/ � OR��0 � .K ˝ 1/ � OR

which gives the desired formula.
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Recall Definition 4.12 of a '-universal K-matrix. Combining Corollary 7.7 with Theo-
rem 9.5 we obtain the first statement of the following corollary.

Corollary 9.6. The element K D X�T �1wXT
�1
w0
2 U is a ��0-universal K-matrix for the

quantum symmetric pair coideal subalgebra Bc;s of Uq.g/. In particular, K satisfies the reflec-
tion equation

.K ˝ 1/ � OR��0 � .K ˝ 1/ � OR D OR � .K ˝ 1/ � OR��0 � .K ˝ 1/(9.16)

in U .2/.

Proof. The second statement follows from Remark 4.13 and equation (4.8). Here one
needs to observe that ORN ��0 ;M��0 D ORN;M considered as a map N ˝M !M ˝N for all
M;N 2 Oint.

Remark 9.7. The approach to quantum symmetric pairs in the papers [8, 27–29] is
based on explicit solutions of the reflection equation. In [27] Noumi first found a reflection
equation for the symmetric pairs of type

AI W .slN ; soN /; AII W .sl2NC1; sp2N /:

For the symmetric pairs of type

AIII W .slMCN ; s.glM � glN //

a different reflection equation appeared in [28]. The differing reflection equations are unified
by equation (9.16). Indeed, the diagram automorphism ��0 is nontrivial in types AI and AII,
while ��0 is the identity in type AIII.
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