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Abstract

The conventional Casimir effect manifests itself as a quantum me-
chanical force between two plates, that arises from the quantization of
the electromagnetic field in the enclosed vacuum. In this thesis the ex-
istence is discussed of an extra, topological term in the Casimir energy
at finite temperatures. This topological Casimir effect emerges due to
the nontrivial topological features of the gauge theory: the extra energy
is the result of tunneling transitions between states that are physically
the same but topologically distinct. It becomes apparent when exam-
ining, for instance, periodic boundary conditions. I explicitly calculate
the new term for the simplest example of such a system, a Euclidean
4-torus. By dimensional reduction, this system is closely related to two
dimensional electromagnetism on a torus, which is well understood. It
turns out that the topological term is extremely small compared to
the conventional Casimir energy, but that the effect is very sensitive
to an external magnetic field. The external field plays the role of a
topological theta parameter, analogous to the θ vacuum in Yang-Mills
theory. The topological Casimir pressure and the induced magnetic
field show a distinctive oscillation as a function of the external field
strength, something that can hopefully be observed experimentally.
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many discussions, and for his pleasant company on the travels to present
our work at several conferences. It was a joy working with him. I am also
very grateful to professor Ariel Zhitnitsky, for proposing and supporting this
research during the two years of my MSc program. It was inspiring to work
on something so new and exciting, and to get rewarded for our effort with
a publication.
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1 Introduction

The idea of a mysterious quantum force, arising purely from the vacuum,
was a controversial issue for several decades. When Hendrik Casimir first
predicted his eponymous effect [2] in 1948, the existence of vacuum fluctua-
tions was not yet well established. Quantum field theory was still in its early
development. Later theoretical advances brought a better understanding of
the quantum vacuum and the Casimir effect became a well-studied part of
physics. Regardless, it took nearly 50 years before the effect was quantita-
tively measured in an experiment [3], although qualitative confirmation of
the Casimir force was achieved in the ‘70s.

The Casimir effect arises from the quantization of fields under boundary
conditions. Within the boundary only certain field modes are allowed, pro-
viding a vacuum energy that is different than in free Minkowski space. This
energy difference is dependent on the size of the system, such that a real
force is generated on the boundary. The famous example, as first studied
by Casimir, is that of two parallel, perfectly conducting plates. Even in a
perfect vacuum, these neutral plates feel an attractive force that is purely
of quantum mechanical origin. The Casimir energy for this system is given
by

EC ≡ (EBC − EMinkowski) = − h̄ c π2 L2

720 a3
, (1)

where a is the separation distance between the plates of length L. Since the
system can lower its energy by decreasing a, this results in the well-known
Casimir pressure

P = − 1

L2
· ∂EC

∂a
= − h̄ c π2

240 a4
. (2)

The pressure rapidly falls off with distance and becomes typically relevant
on micrometer scales or smaller. That is why there has been an increased
interest in the Casimir effect with the recent advent of nanotechnology.

Since its original prediction, the Casimir effect has been studied for many
different configurations and many different fields [4]. In addition to physical
boundaries like metal plates, the effect can also occur on nontrivial topolog-
ical spaces. For example, the periodicity of space can produce a similar field
quantization as the conducting plates and will also produce a vacuum pres-
sure. Typically these calculations are done for simple scalar fields. While
the electromagnetic field is more relevant for experiments, it can often be
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reduced to a scalar field computation by treating the two polarization direc-
tions separately.

There are however situations in which the electromagnetic field can pro-
duce a unique kind of vacuum effect, that cannot be described in terms of
scalar fields. One of these is the topological Casimir effect , in which an addi-
tional vacuum pressure arises due to the gauge invariance of the field, when
defined on a topologically nontrivial manifold. Whereas the conventional
Casimir effect results from the vacuum fluctuations of physical photons, the
topological effect is solely due to a new type of excitations, known as instan-
tons.1

In the topological Casimir effect, mappings between the gauge group
and the spacetime topology create an infinite number of degenerate vacuum
states. These so-called topological sectors correspond to the same physical
state, even though they are topologically distinct. The instanton excitations,
which contribute to the system’s vacuum energy, can be interpreted as tun-
neling events between the vacuum states. Because the topological Casimir
effect has an entirely different source than the conventional photon fluctua-
tions, it shows some fascinating behavior that is worth studying. Examples
include a sensitivity to external magnetic fields and possible applications in
cosmology.

It should be noted that this is not the first time that the vacuum energy
is computed for the electromagnetic field on nontrivial topological spaces.
Earlier this year, Gerard Kelnhofer formulated the theory for a general com-
pact manifold, in a very formal mathematical manner [6]. However, he does
not discuss any of the physical consequences of the topology. Older papers
suggest that it is necessary to sum over topological sectors, but did not
perform the calculations [7]. In this work, I will focus on an intuitive under-
standing of the problem, discussing the physical context and the possibility
of experimental observation. Recreating the topological Casimir effect in
a lab would be a unique opportunity to probe the topological properties
of the quantum vacuum in a controlled environment, but there are many
challenges involved that need to be considered.

This thesis follows largely the structure of our recent paper [1], with

1A remark must be made here on the terminology. In some older literature, the regular
Casimir effect on a topological space is also called the ‘topological Casimir effect’. However,
in this work the term is used in a much stricter sense. Here the topological Casimir effect
arises purely from topological fluctuations, instead of real propagating degrees of freedom
like photons. For the latter, I will use the term conventional Casimir effect, to distinguish
it from the newly discussed topological contributions. This naming convention was first
used in [5].
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the addition of some extra background material. This material serves to
put the topological Casimir effect in a broader light and to show some of
the motivation for this work. As a matter of fact, the topological Casimir
effect is very closely related to other systems in physics, sharing the same
underlying mathematics. In section 2, I will start with a brief explanation
of some of this math and discuss two important examples of topology in
physics: the Aharonov-Bohm effect and the Yang-Mills vacuum. Both are
directly analogous to the systems that are examined later in the text, and I
will regularly refer back to these examples.

In section 3 I review a toy model for the topological Casimir effect,
namely 2d electrodynamics on a circle — a well-studied system with a lot of
literature. In two spacetime dimensions, photons cannot exist. This means
that there is no conventional Casimir effect, which would be caused by the
zero-point energy of the photon modes. Nevertheless, we will see that there
are topological excitations that give the theory its vacuum energy. These
2d instantons can be easily generalized to higher dimensions in order to
describe the 4d topological Casimir effect.

By generalizing the 2d electromagnetic theory, the topological Casimir
effect is formulated on a Euclidean 4-torus in section 4. In this case, it can
be shown that the topological and conventional part of the vacuum energy
are completely separated. Since the conventional Casimir effect can be com-
puted through known methods, I will focus on the topological part. This
part can be related to the 2d theory from section 3 by using the technique
of dimensional reduction, allowing us to directly apply the previous results
to this new system. Unfortunately, the topological pressure turns out to be
very small, compared the conventional Casimir force. Without some kind of
characteristic behavior, it is unlikely that the topological Casimir effect can
be measured.

We are in luck, because the topological Casimir effect interacts with an
external magnetic field in a very specific manner, as discussed in section 5.
While the conventional Casimir effect is unchanged by the application of an
external field, the topological pressure shows an interesting oscillatory be-
havior as a function of the field strength Bext. In fact, the external magnetic
field plays the role of a topological theta parameter, in close analogy with
the examples from section 2. Under the influence of this theta parameter,
the energy of the instanton configurations is shifted and they will create an
induced magnetic field. The induced field and the corresponding magnetic
susceptibility also show an unusual variation as Bext is changed. Hopefully
this can be use to the distinguish the topological Casimir effect from the
conventional one.
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Section 6 concludes this work with a short discussion on experimental
considerations and future directions for the topological Casimir effect. While
this is a theoretical paper, I think it is important to keep in mind our reliance
on observational data to confirm these new concepts. I cannot complete this
thesis without exploring some of these practical aspects of the effect. Finally
in the Appendix, I review the conventional Casimir effect and discuss a few
mathematical tools that are used throughout the text.
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2 Topological Sectors and Winding Numbers

Topology has been a booming subject within physics in the last decade. It
is an abstract field of mathematics, and as such its applications are often
not obvious. But in recent years it has become clear that in a wide range of
physics, from condensed matter to high energy, the consequences of topology
cannot be ignored; it can, in fact, lead to some very interesting phenomena.
The greatest example is the rapid development in the theory of topological
insulators, which started in 2005 and still sees many new publications each
week.

Although topological effects can be found in many areas of physics, they
all have certain features in common. This universality is a result of the
underlying mathematical principles, which I will discuss briefly in this sec-
tion. This will be, when possible, from a physicist’s point of view, choosing
intuitive understanding over mathematical rigor. For a more mathematical
approach, see [8].

2.1 Homotopy 101

Two spaces are topologically equivalent (or homotopic) if you can contin-
uously deform one into the other, without cutting them or gluing parts
together. The canonical example is the donut and the coffee mug, which
have the same topology: the donut’s hole turns into the handle of the mug.
However, the donut is inequivalent to a ball, since one cannot remove the
hole in a continuous deformation.

It is clear that the number of holes in a space is important for the topol-
ogy. This is however not a very well-defined quantity, especially in higher
dimensions. Therefore we introduce homotopy groups. These groups, la-
beled by πn, consist of the mappings between the topological space and the
n-sphere Sn. The first homotopy group, also known as the fundamental
group π1, has a fairly intuitive definition in terms of loops: its elements are
unique loops that cannot be continuous deformed into one another.

For example, a space with one hole through it (like the circle S1) can
contain loops that wrap around this hole an integer number of times, see
figure 1. Loops with different winding numbers are topologically distinct
and correspond to different elements of the fundamental group. As a result,
we can conclude that π1(S

1) ' Z. A torus T2 ≡ S1×S1 has two independent
winding numbers, one for each circle, yielding π1(T2) ' Z2. Contrarily, on
a sphere S2 any loop can be contracted to a point, such that π1(S

2) ' 0. If
all homotopy groups of a space are empty, as is the case with Euclidean or
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Figure 1: Illustration of loops with different winding numbers. The black
dot represents a hole in the space, such that a loop cannot pass it when being
continuously deformed. a: n = 0. The loop can be continuously contracted
to a single point. b: n = 1. The loop wraps once around the hole, it cannot
be contracted to a point. c: n = 2. The loop wraps twice around the hole.

Minkowski space, the space can be considered topologically trivial.
In general it can be very hard to compute the homotopy groups of a

given space, but in the context of physics this is typically not necessary.
We will see that the previous example, where the fundamental group is
equivalent to the integers, is in fact of the most interest to us. The integers
correspond to the so-called topological sectors, which play an important part
in the topological Casimir effect. In the rest of this section I will discuss two
famous instances of topological sectors in physics that will demonstrate two
related concepts: theta states and instantons.

2.2 The Aharonov-Bohm Effect: Theta States

While often covered in basic quantum mechanics classes, it might be a sur-
prise to some that the Aharonov-Bohm effect is topological in nature. An
electron moving around a solenoidal magnet will acquire a complex phase,
even though it does not pass through any electromagnetic field. To show the
role of topology, let us confine the electron to a circle around this magnet,
so that its movement can be described by the angular coordinate φ. The
classical action is given by

S[φ] =

∫
dt

(
me

2
φ̇2 +

θ

2π
φ̇

)
, θ ≡ e

h̄c
Φ (3)

with Φ the flux through the solenoid. It is immediately clear that the second
term is a full derivate and thus depends only the beginning and end position
of the electron. This is characteristic of a topological term in the action:
it does not depend on the path taken. With every full circle clockwise, the
term increases by θ.
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In classical mechanics, the topological term would not contribute to the
equations of motion. However, after canonical quantization we find the
energy eigenvalues to be

En =
1

2me

(
n− θ

2π

)2

, n ∈ Z, (4)

where we work in natural units h̄ = c = 1 from here on. The spectrum
is shifted, depending on θ, but note that there is a 2π periodicity. The
corresponding eigenfunctions are ψn = einφ, showing the familiar phase
change as the electron moves around.

The problem becomes more interesting when we add a finite temperature
and view it as a quantum statistical system. In this case we need to compute
the partition function, defined by the path integral

Z =

∫
Dφ eiS[φ] =

∫
E
Dφ e−SE [φ]. (5)

In the second expression we have switched to Euclidean space by means of
a Wick rotation (see appendix B.1). The rotated time τ ≡ −it is periodic
with period β, which means that all paths must satisfy φ(β)− φ(0) = 2πk,
for some integer k. This integer is known as the winding number, as it
counts the number of loops around the circle during one time period. In the
partition function one must sum over all winding numbers.

With this, the Euclidean action becomes:

SE =

∫ β

0
dτ

(
me

2
φ̇2 − i θ

2π
φ̇

)
= −iθk +

∫ β

0
dτ
me

2
φ̇2 (6)

where we have made use of the topological term as a total derivative. In-
serting this into the path integral, we can write

Z =
∑
k

eiθk
∫
φ(β)−φ(0)=2πk

Dφ e−
1
2

∫ β
0 dτ meφ̇2 . (7)

This final form shows very clearly the physics of the system: the partition
function is a sum over path integrals in different topological sectors, which
are represented by the winding number k. The winding numbers originate
from the mapping of the paths onto the circle, or π1(S

1) ' Z.
The topological θ-term emerges as a complex weight of the topological

sectors. Although θ has a specific physical meaning in this case, i.e. the mag-
netic flux through the system, its role in topological effects is very universal;
we shall see several other examples. An important remark is that even at
θ = 0, the topological sectors still contribute to the partition function.

7



2.3 The Yang-Mills Vacuum: Instantons

Yang-Mills theory is a non-Abelian gauge theory that forms the basis for the
description of the weak and strong forces in the Standard Model. Here we
will work with the SU(2) gauge group, since it is generated by the familiar
Pauli spin matrices. In the vacuum state, the potential must be a pure gauge
configuration as given by:

Aµ =
i

g
U(x) ∂µU

†(x) , U(x) ∈ SU(2) (8)

where g is the coupling constant and we have fixed our gauge such that A0 =
0. This defines the gauge U on R3. However, by assuming that U is constant
at infinity, the boundary is shrunk to a point and the space is compactified
into a 3-sphere S3. That leaves us with the mapping U : S3 → SU(2), which
can conveniently be characterized by the homotopy group π3(SU(2)) ' Z.

Physically, that means that every gauge U can be assigned an integer
winding number, that signifies how many times U(x) wraps around the
spatial 3-sphere. Gauges with different winding numbers cannot be contin-
uously deformed into each other. The consequences of this are very deep:
configurations of pure gauges with different winding numbers must be sep-
arate, local minima of the Hamiltonian. After all, when deforming one into
the other we must pass through configurations that do not correspond to a
pure gauge, and thus have a nonzero energy. See [9] for details.

These local minima provide an infinite number of topologically distinct
vacuum states |n〉, known as the topological sectors of the theory. They
are connected by gauge transformations with a nonzero winding number,
also known as large gauge transformations (LGTs). The result is sometimes
called a degeneracy of the vacuum, but one must take care not to confuse it
with the regular definition of degeneracy in quantum mechanics - these local
minima all correspond to the same physical state, despite being topologically
different. In fact, the generic ground state of the system can be written as

|θ〉 =
∑
n

e−iθn|n〉. (9)

This is known as the theta vacuum, and the similarities to eq. (7) are striking:
again θ serves as the complex weight of the topological sectors. Indeed,
the θ parameter would appear in the Yang-Mills Lagrangian density as the
topological term

Ltop =
ig2θ

16π2
F̃µνFµν (10)
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Figure 2: As a result of mappings between the gauge group and the space-
time topology, there are an infinite number of winding states |n〉 correspond-
ing to local minima of the Hamiltonian. These degenerate vacuum states are
topologically different, even though they resemble the same physical state.
An instanton configuration Aµk of topological charge k represents tunneling
between these topological sectors.

with F̃µν = 1
2ε
µνστFµν being the dual field strength. Just as in the Ahoronov-

Bohm effect, this term is a total derivative, such that the action depends only
on the boundary conditions. It does not contain the metric tensor, another
characteristic property of topological terms. In quantum chromodynamics,
the apparent lack of such a term is known as the strong CP problem.2

If all the winding states |n〉 correspond to the same physical state, then
what are the consequences of this topological vacuum structure? The most
important feature is a new type of excitations, called instantons. Instantons
represent tunneling through the energy barriers between vacuum states -
they are non-perturbative, classical solutions to the Euclidean equations of
motion. When solving a double-well problem in the path integral approach,
instantons will emerge. In the case of the Yang-Mills vacuum, there can
be tunneling between any two vacua |n〉 and |n′〉, giving the corresponding
instanton a so-called topological charge k = n− n′. See figure 2.

Instantons play a crucial role in the rest of this thesis. They are real,
topological excitations that need to be taken into account when computing
partition sums and expectation values. In the next section we will show
that instantons can arise in electrodynamics, we will explicitly construct
them and see how they will lead to the topological Casimir effect.

2A nonzero theta term in the QCD Lagrangian would be a large source of CP-violation
in the strong sector. That makes it possible to measure θ with great precision and the
current experimental upper limit is |θ|< 2 × 10−10. Because there are no symmetry
arguments why the term should vanish, this poses a fine-tuning problem.
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3 Electromagnetism in Two Dimensions

Before arriving at the topological Casimir effect, it is instructive to study a
much simpler system: Maxwell electrodynamics on a two-dimensional, com-
pact spacetime. This is a well-understood problem, but it will prove to be
an exceptionally good toy model for topological effects in higher dimensions.
Even better, we will be able to generalize our computations from this section
to four-dimensional spacetime and use them to describe the TCE.

With two spacetime dimensions, the theory of electromagnetism is quite
different than what we are used to. The most interesting property is that
electromagnetic waves cannot exist in just one spatial dimension. After
all, the Maxwell equations require that the polarization of an EM-wave
be perpendicular to its direction of propagation. As a result, the wave
equation has no solution other than the zero mode. In terms of quantum
field theory, this means that the model has no photons and is completely
devoid of physical propagating degrees of freedom. In that sense the theory
can be considered “empty”. However, we will see that when formulating
the theory on a circle, topological excitations will emerge — much like the
instantons in section 2.3.

In the Yang-Mills vacuum, the existence of topological sectors and in-
stantons is due to the mapping between the compactified Euclidean space
and the gauge group, characterized by π3(SU(2)) ' Z. On the other hand,
in the 2d Maxwell theory we have a mapping between the one dimensional
compactified space S1 and the Abelian gauge group U(1). Here too we find
a nontrivial vacuum structure, given by π1(U(1)) ' Z. The tunneling be-
tween these topological sectors is what provides the theory with its energy
spectrum and its interesting features.

A more intuitive way to view the topological sectors is to consider peri-
odic boundary conditions, up to a gauge.

Aµ(L, t) = Aµ(0, t) + ∂µα (11)

where L is the size of the space and α is some scalar function. However,
an electron field would pick up a phase eieα(x) ∈ U(1) under this gauge
transformation. If we require the matter field to be single valued on the
circle, this puts certain restrictions on the allowed gauges, for example

α =
2πk

eL
x , k ∈ Z. (12)

In other words, the periodicity of the matter field quantizes the allowed
gauges α. For k 6= 0, α represents a large gauge transformation of winding
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number k, as mentioned in section 2.3. We shall see below that the boundary
condition (11) is satisfied by a classical instanton configuration of topological
charge k. Again one has to sum over all allowed k in the partition sum, to
include all excitations in the system. The topological features of the theory
arise very naturally in this way.

Two-dimensional electromagnetism on a circle is also known as the Schwinger
Model without fermions, which has been solved in a number of different
ways [10]. The presence of instanton configurations in this model is well
established and in fact has been shown to be required for a consistent the-
ory [1]. Without the contribution of the topological sectors, the Schwinger
model would violate the Ward Identities, one of the most fundamental state-
ments about symmetries in quantum field theory.

Because the model is so simple, it is possible to do the canonical quan-
tization and compute all quantities using the Hamiltonian approach. It is
however more useful for us to take the path integral approach, which is much
easier to generalize to higher dimensions. We will discuss both methods be-
low.

3.1 Hamiltonian Approach

The Hamiltonian approach is exactly like the analysis in section 2.2 of the
electron on a circle. The single zero mode of the electromagnetic field plays
the role of the particle. To see this, we fix the gauge as follows

A0 = 0, ∂1A1 = 0. (13)

This means the scalar electric field is given by E = Ȧ1. There can be no
magnetic field in one spatial dimension, since the vector cross product has
no meaning. Classically, Gauss’ Law implies that ∂xE = 0, which shows
that we are dealing only with one x-independent zero mode. As mentioned
earlier, no physical propagation degrees of freedom can exist in this system,
as there can be no polarization perpendicular to the momentum.

We can then quantize the theory, taking A1 and E as canonical conju-
gates:

[A1(x), E(x)] = ih̄ δ(x− y). (14)

The periodic boundary conditions are due to the identification of the gauge
equivalent configurations

A1 ≈ A1 +
2πn

eL
, n ∈ Z (15)
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as discussed above. With that, the rescaled variable eA1L takes the place
of the coordinate φ in the Aharonov-Bohm effect of section 2.2. By perfect
analogy, the conjugate momentum is quantized E = en and the Hamiltonian
with its energy eigenvalues becomes

H = − 1

2L
· d

2

dA2
1

, En =
1

2
n2e2L. (16)

In studies of the Schwinger model it is also customary to add a theta
parameter, although the interpretation is not as clear as in the Aharonov-
Bohm effect, where it represents magnetic flux. The parameter enters the
computations in the same way, by shifting the energy levels:

En =
1

2
e2L

(
n+

θ

2π

)2

. (17)

Including the theta term, the thermal partition sum takes the following form

Z(θ) =
∑
n∈Z

e−βEn =
∑
n∈Z

e−
1
2
e2Lβ (n+ θ

2π )
2

, (18)

where β is the inverse temperature. We will now derive this same result using
Euclidean path integral calculations, in which the role of the instantons is
much more obvious.

3.2 Path Integral Approach

By performing a Wick rotation, we can define the same theory on the Eu-
clidean torus of size L×β. See appendix B.1. In this formulation the appear-
ance of topological sectors becomes immediately clear. In order to satisfy the
boundary conditions (11, 12), we can introduce the classical instanton-like
potential

A
(k)
0 = 0 , A

(k)
1 =

2πk

eV
x0, (19)

where V = Lβ is the volume of the Euclidean space. The integers k classify
the instantons, which represent transitions between the topological sectors.
The field strength of the classical configuration is given by

E(k) = ∂0A
(k)
1 =

2πk

eV
. (20)

Please note that this E-field should not be confused with the real electric
field that was derived in Minkowski space with the Hamiltonian approach.
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Instead, (20) is an unphysical, complex configuration in Euclidean space
with no clear interpretation. It is proportional to the so-called topological
charge density Q = e

2πE
(k) such that the integral∫

d2x Q(x) =
e

2π

∫
d2x E(k)(x) = k (21)

is the topological charge of the instanton.
For the path integral, we split the potential into the classical config-

uration plus the quantum fluctuations around it: Aµ = A
(k)
µ + δAµ. The

fluctuating field δAµ must satisfy periodic boundary conditions, such that
the action S = 1

2

∫
d2xE2 can also be split into a classical and a quantum

part - the cross terms vanish when integrating the full derivative. As a
result, the partition function can be written as

Z =
∑
k∈Z

∫
DA e−

1
2

∫
d2xE2

= Zq
∑
k∈Z

e−
2π2k2

e2V , (22)

where the exponentials represent the classical instanton configurations and
the prefactor

Zq =

∫
DδA1 e

−L
2

∫
d2x δȦ2

1 (23)

is the path integral over the fluctuating field. By the same reasoning as in the
Hamiltonian approach, the A0 = 0 gauge implies that δAµ is x-independent.,
which makes the computation of Zq a simple quantum mechanical problem.

Zq =

∫
DδA1 e

−L
2

∫ β
0 dτ(δȦ1)2 =

∫
Dδa1 e−

L
2 ( 2π

eL)
2 ∫ β

0 dτ(δȧ1)2 (24)

where in the second step we have changed integration to the dimensionless
variable δa1 = eL

2π δA1, which fluctuates between 1 and 0 according to (15).
This makes the partition sum equivalent to that of a free particle with mass
m ≡ L

(
2π
eL

)2
and for this Gaussian path integral the result is known to be

Zq =

√
m

2πβ
=

√
2π

e2V
. (25)

Inserted into eq. (22), this gives the full partition sum.
In Euclidean space, the topological θ-term enters the partition function

as the complex weight of the topological sectors, just like we saw in sec-
tion 2.2. The final result is

Z(θ) =

√
2π

e2V

∑
k∈Z

e−
2π2k2

e2V
+ikθ. (26)
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This expression is exactly the same as the result obtained by the Hamiltion
approach in (18), as can be seen by applying the Poisson resummation for-
mula (see appendix B.2). The two forms are said to be dual. See [11] for
a more detailed comparison between the Hamiltonian and the path integral
approach of the Schwinger model.

One thing of note about the partition sum (26) is that it converges.
Unlike the conventional Casimir effect, here there is no need for a regular-
ization scheme. While there is no closed form for the expressions (18, 26),
they correspond to a special function that is well studied: the Jacobi Theta
function Θ. The two dual forms are very usual for studying the asymptotic
behaviour of the system, for example in the low temperature limit.

3.3 Interpretation

From the partition function it is easy to calculate the free vacuum energy
F = − 1

β lnZ and any other thermodynamic quantity. Expressions (18, 26)
show clearly that the free energy depends on the size of the system L, just
like in the conventional Casimir effect. This is crucial for our work, since it
holds the promise of a measurable effect: the vacuum pressure on the system.
The system could lower its energy by moving the boundaries, providing a
real force.

In the conventional Casimir effect, the vacuum pressure arises from the
zero-point energy of the electromagnetic field modes, i.e. the photons. How-
ever, in our two-dimensional system these photonic modes do not exist and
as such cannot contribute to the zero-point energy. What then causes this
pressure that our computations suggest? This energy comes from topologi-
cal excitations at a nonzero temperature, rather than the regular propagat-
ing degrees of freedom. These excitations, or instanton configurations (19),
can be interpreted as the tunneling transitions between degenerate vacuum
states. The vacuum states all correspond to the same physical state, but
are topologically distinct and related to each other by large gauge transfor-
mations like (12).

The energy associated with the tunneling processes is dependent on the
topological charge (21), or the separation between the topological sectors.
It is also the energy of this tunneling that depends on the system’s size,
providing the theory with what we call the topological Casimir effect - a
vacuum pressure purely caused by topological degrees of freedom. The un-
derlying cause of this effect is the interaction between the gauge field and
a nontrivial compact spacetime manifold, characterized by the fundamental
group π1(U(1)) ' Z. This means that it can never be reduced to a problem

14



in terms of scalar fields, a technique that is often used in the conventional
Casimir effect (see appendix 6).

The question is whether this effect would be really measurable, or whether
it is just a mathematical glitch that can be removed by renormalization or
the redefinition of variables. After all, if the degenerate vacua correspond to
the same physical state, then why should tunneling between them result in a
physical effect? This is a question that has plagued physicist ever since the
Yang-Mills vacuum was first studied. However, as mentioned before there
is clear evidence from the Schwinger model that topological sectors are real
and must be taken into account for a consistent theory [1].

Another concern is whether the topological effects in this section are
just an interesting quirk of two-dimensional spacetime. Since we live in
four spacetime dimensions, this would mean that the effect is irrelevant
for any experimental measurement, no matter how interesting the theory
is. Fortunately, the topological Casimir effect is much more general than
that and the next section deals with its description in 4d. Many of the
computations from this section will carry over, yielding a very simple model
that may allow the measurement of topological vacuum effects in the lab.
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4 Topological Casimir Effect in Four Dimensions

In two-dimensional electromagnetism, the nontrivial structure of the vac-
uum arises due to the mapping of the gauge group U(1) onto the manifold
S1. A naive generalization to 4d spacetime would follow the reasoning of
section 2.3, by compactifying the Euclidean space to S3. Unfortunately this
does not work: while S3 is not topologically trivial, its mappings to U(1)
are. In the language of homotopy groups, we can write π3(U(1)) ' 0, mean-
ing that on this manifold all the gauges can be continuously transformed
into one another. There will be no degenerate vacua, no tunneling and no
topological Casimir effect. In order to recover the topological vacuum effects
in higher dimensions, we need to look at different manifolds — like those
with a toroidal topology.

Consider a four-dimensional Euclidean box, of size β × L1 × L2 × L3.
When we apply periodic boundary conditions to the opposing sides of the
box, this creates a space with the topology of a 4-torus S1 × S1 × S1 × S1.
This manifold does provide topologically nontrivial mappings to the gauge
group U(1), and in fact there are several independent winding numbers that
count the wrapping around the different loops on the torus. The calculations
for this system are difficult and have been done in [6]. However, we can
make some assumptions that will greatly simplify the theory, allowing us to
describe the 4d topological effects in terms of the 2d computations.

If we assume that L3 is much smaller than L1 and L2, this suppresses
the contribution of all but one of the winding numbers, for reasons that
will become clear below. Taking a slice of this system in the xy-plane now
precisely recovers the topological features of the 2d Schwinger model, a
technique known as dimensional reduction. It also simplifies the calculation
of the propagating degrees of freedom, analogous to the simple example of
two large parallel plates in the conventional Casimir effect. In fact it is
rather tempting to interpret this 4-torus simply as two large parallel plates
with periodic boundary conditions, at finite temperature.

These two portions of the vacuum energy, resulting from the topological
sectors and the physical photons respectively, are completely decoupled in
this system. This means that the two contributions can be computed sepa-
rately. Convenient, since the conventional Casimir effect for these boundary
conditions has been studied many times. I have nothing new to add there
and the details are discussed in appendix A.2. Most of this section will con-
sequently focus on the topological part, such that in the end we can compare
its effects to the conventional vacuum pressure.
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4.1 Decoupling of the Topological and Conventional Parts

It is not difficult to generalize the 2d instanton potential (19) to higher
dimensions. The boundary conditions (11, 12) are more or less unchanged,
but can be applied in any of the directions. One way we can define the
classical instanton configurations is

Aµtop =

(
0, − πk

eL1L2
y,

πk

eL1L2
x, 0

)
, (27)

where k is is the integer-valued topological charge, and L1, L2 are the di-
mensions of the plates in the x and y-directions respectively, which are
assumed to be much larger than the distance between the plates L3. When
going around a loop in the xy-plane, this potentional picks up a large gauge
transformation that corresponds to tunneling from one topological sector to
another, separated by winding number ∆n = k. The configuration provides
a topological magnetic flux in the z-direction:

Btop = ~∇× ~Atop =

(
0, 0,

2πk

eL1L2

)
, (28)

in close analogy with the 2d case in eq. (20). Technically, the periodic
boundary conditions would also allow different sets of instantons with their
own winding numbers, related to loops in different directions. However,
the magnetic flux for these configurations would be proportional to 2π

eL1L3

or 2π
eL2L3

, which correspond to a much larger energy because L3 � L1, L2.
Since we are only considering low temperatures, the instantons of eq. (27)
would dominate the partition sum such that we can safely neglect all others.

With this, the Euclidean action of the system becomes

1

2

∫
d4x

{
~E2 + (Bq + Btop)

2
}
, (29)

where the integration is over the Euclidean torus L1 × L2 × L3 × β and ~E
and B are the photonic quantum fluctuations of the electromagnetic field.
These terms were not present in the 2d model, but must here be taken into
account due to the presence of real propagating physical photons in four
dimensions. We find that the action can be easily split into the sum of a
topological and a quantum part, because of the vanishing cross term∫

d4x Bq ·Btop =
2πk

eL1L2

∫
d4x Bz = 0 (30)
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Here the fact is used that Bq is periodic over the domain of integration. As
a result, there is no coupling between the conventional quantum fluctuations
and the classical instanton potential (27).

As a result, the partition function of the system can be written as Z =
Z0 × Ztop and both parts can be computed separately. The conventional
part Z0 is nothing but the electromagnetic Casimir on the torus, which
can be reduced to a simple scalar field calculation. After all, it does not
depend on the topological sector k of the theory, so that we can only consider
the trivial sector k = 0. The resulting expression requires zeta-function
regularization, but is not much more difficult to obtain than that for the
canonical example of the parralel conducting plates. The details are worked
out in appendix A.2. As usual, the conventional Casimir effect manifests
itself as a pressure on the plates in the xy-plane due to the zero-point energy
of the photon modes, found to be:

P0 = − 2π2

15L4
3

(31)

at zero temperature. A finite temperature will add a small correction, as
computed in appendix A.3.

With the conventional part accounted for, we can now focus purely on the
contribution from the topological sectors. For this we will invoke arguments
of dimensional reduction to relate our problem to that of section 3. It is
then possible to find the topological pressure and compare it to eq. (31), to
see whether the topological features of the vacuum result in a measurable
effect.

4.2 Computing the Topological Pressure

The instanton potential (27) assumes periodic boundary conditions up to
a large gauge transformation, but only in the x and y directions. In other
words, all the relevant topological features of the theory live in the xy-plane,
which we can consider as a 2-torus. This makes things extraordinarily easy,
because the partition sum of topological excitations on a 2-torus is known
from section 3. Some minor adjustments have to be made due to the extra
dimensions, but most of the work has been done.

Taking 2d slices in the xy-plane recovers the Schwinger model without
fermions. Summing over all these slices is done simply by the integral in the
4d action (29). Comparing the instanton configurations (28) and (20), it is

18



clear that the classical action of the 4d instantons will be slightly different:

Stop =
1

2

∫
d4x

(
2πk

eL1L2

)2

=
2π2k2βL3

e2L1L2
(32)

as apposed to the 2d action S2d = 2π2k2

e2βL
. This difference is partly explained

by the obvious substitution L, β → L1, L2 that follows from the definition of
the 2-torus slices. The rest of the disparity can be interpreted as a rescaling
of the coupling constant, i.e. the electric charge

e22d =
e24d
βL3

,
e2

4π
≡ α. (33)

This is a common trick of dimensional reduction, and such a redefinition
is in fact necessary in order for the units of the actions to be consistent.
In 4d, e2 ∼ α is the dimensionless fine-structure constant, whereas in 1+1
dimensions the QED coupling constant has units of (length)−2. With the
redefinition (33), the two actions are equal. We now apply the same sub-
stitutions to the resulting 2d partition function (18, 26) to acquire the 4d
expressions:

Ztop =

√
2πβL3

e2L1L2

∑
k∈Z

e
− 2π2k2βL3

e2L1L2 =
∑
n∈Z

e
− e

2n2L1L2
2βL3 . (34)

Again, the two expressions are dual, related by the Poisson resummation
formula. We have chosen to take θ = 0, for now, because there is no physical
argument for such a term in the Lagrangian. In section 5 we will further
investigate how a theta term might emerge in the topological Casimir effect,
under the influence of an external magnetic field.

For the purpose of notation is is convenient to introduce the dimension-
less parameter

τ ≡ 2βL3

e2L1L2
(35)

such that the topological partition sum takes the extremely simple form

Ztop(τ) =
√
πτ
∑
k∈Z

e−π
2τk2 =

∑
n∈Z

e−
n2

τ . (36)

While this series again has no closed form, there are still some interesting
remarks we can make.
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Consider the case where the size of the plates becomes infinite, or L1L2 →
∞. Here the parameter τ approaches zero. Using the second expression of
eq. (36), we see that all terms vanish, except for the one with n = 0. Accord-
ingly, Ztop = 1 and all topological features of the theory disappear. Only the
conventional Casimir effect Z0 remains. Also of interest is the asymptotic
limit where τ � 1. In this case we can include the first nonzero n in the
second sum of (36), to find

Ztop ≈ 1 + 2 e−1/τ , τ � 1 (37)

The pressure on the plates is defined as the derivative of the free energy
F = 1

β lnZ towards the separation distance L3, divided by the area L1L2.

Ptop =
1

βL1L2
· ∂

∂L3
lnZtop (38)

In the asymptotic limit, the pressure can be calculated analytically from
eq. (37). We use the approximation ln(1 + 2e−1/τ ) ≈ 2e−1/τ to find:

Ptop ≈
e2

β2L2
3

e−1/τ , τ � 1. (39)

As expected, the topological pressure is exponentially suppressed in this
limit. Comparing this with the conventional Casimir pressure (31), it is
clear that the topological effect cannot be measured in this case. Measuring
the conventional pressure in the lab is no easy feat, and this contribution is
far smaller.

While τ � 1 can be examined analytically, it is more interesting to
study a system where τ ' 1. Is this a reasonable regime, considering the
assumption that L3 � L1, L2? At this point it is useful to look at some
numbers, just to get a sense of the orders of magnitude involved. Let us take
L1 = L2 = 1mm, L3 = 0.01mm and a temperature of 1K. Inserting these
numbers into eq. (35) gives us τ = 0.5. Such values are not implausible for
an experimental measurement and satisfy all our assumptions necessary for
using dimensional reduction as well as the low temperature approximation
for the conventional Casimir effect. The result is a value for τ that is well
outside the asymptotic limit of eq. (39).

Unfortunately there is no analytical expression for Ptop in the regime
where τ ' 1 and we must resort to using numerical calculations in order
to study its behavior. The series is slow to converge and saturates around
k ∼ 1000. Figure 3 shows the numerical result in the range 0 ≤ τ ≤ 3. The
topological pressure on the vertical axis is measured in units of 2

e2L2
1L

2
2
.
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Figure 3: A numerical plot of the topological pressure in the z-direction on
a 4-torus, as a function of τ ≡ 2βL3/e

2L1L2. Pressure is measured in units
of 2

L2
1L

2
2e

2 .

The numerical graph shows several interesting features. First of all, the
exponential behavior of eq. (39) when τ → 0 is clearly reproduced. More
important however is the large peak around τ ∼ 0.4, where the topology
pressure is of order 1 in its given units. It seems that fine-tuning our pa-
rameters to reach this maximum is our best bet at producing a measurable
effect. The largest topological pressure possible in this system is thus ap-
proximately

P max
top ≈ 2

e2L2
1L

2
2

. (40)

To put this in perspective, let us compare this result with the conventional
Casimir effect of eq. (31). It is enlightening to look at the dimensionless
ratio of these two pressures:

Rmax =
|P max
top |
|P0|

≈ 15L4
3

e2π2L2
1L

2
2

=
15

4π3α
· L4

3

L2
1L

2
2

. (41)

Even at this maximum, the ratio is tiny. Using the example values for the
parameters that were mentioned earlier, we find Rmax ∼ 10−7, a negligi-
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ble contribution. It appears that any topological effect will be completely
drowned out by the regular propagating degrees of freedom.

Before concluding this section, there are a number of remarks that can
be made about these computations. The presence of the topological sectors
produces a vacuum pressure with a positive sign, i.e. the plates will be
repelled from each other. This is in contrast with the conventional Casimir
effect, which manifests itself in this system as an attractive force. Also of
note is the appearance of the coupling constant in the final expression. The
inverse coupling constant in the exponent exp(−1/e2) is a characteristic
feature of quantum tunneling processes [12], which is consistent with our
interpretation of the instantons as tunneling events between the degenerate
vacua.

While eq. (41) may suggest that the topological Casimir effect can never
be measured, it is still way too soon to give up hope. We have found that
there is a real, physical force associated with the existence of topological
sectors, even though it is small. On a compact manifold like a 4-torus,
the gauge freedom of the electromagnetic theory causes a degeneracy of
the vacuum state, that allows for a new type of tunneling excitations called
instantons. The instantons are completely decoupled from the photons in the
system and provide an extra contribution to the Casimir pressure, as given
in eqs. (36, 38). This underlying topological vacuum structure is analogous
to that of the non-Abelian Yang-Mills field of section 2.3, but is special in
that it could be directly measured, at least in theory, through the topological
Casimir effect.

Due to its unusual origin, the topological Casimir effect has some unique
features that separate it from its conventional counterpart. It is these qual-
ities that will hopefully make it possible to measure the effect in a lab,
despite it being relatively tiny. Most significant is the sensitivity towards an
external magnetic field, which interacts with the instantons and creates a
type of theta vacuum. The conventional Casimir effect is not affected by an
external field, making it a promising tool to probe the topological features
of the theory. The next section will focus on the response of our system to
such a magnetic field.
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5 The External Magnetic Field as a Theta Param-
eter

Because the Topological Casimir effect is so much smaller than the conven-
tional Casimir pressure, some sort of probe is needed to detect it: something
that is sensitive to the topological sectors but not to the fluctuating pho-
tons. Fortunately such a thing exists, in the form of an external magnetic
field. In this section I will show that the external field interacts with the
instantons by shifting the energy levels of the excitations. Apart from af-
fecting the topological pressure, this also induces a nonzero magnetic field in
the system due to the presence of the topological sectors. Interestingly, the
external magnetic field shows all the behavior of a topological theta term,
as discussed in sections 2 and 3.

Classically, an external magnetic field should have no influence on the
conventional Casimir effect, simply due to the linearity of the Maxwell equa-
tions. Electromagnetic modes do not interact with each other. On the
level of QED it is possible to have photon-photon interactions, but they
are greatly suppressed. The lowest order Feynman diagrams have four ver-
tices. This suggests that any such interaction is proportional to the factor
α2B2

ext/m
4
e, which is incredibly small. Even in an external field as large

as 1 Tesla this amounts to an order of 10−20, much smaller still than the
topological contribution. The exact correction to the Casimir effect due to
photon-photon interaction is calculated in [13], confirming this quick esti-
mation.

Because of its negligible effect on the conventional Casimir pressure, the
external magnetic field is an ideal tool to probe the topological properties of
our system. In the rest of this section we will assume a constant field Bext
in the z-direction. First we will calculate how this modifies the partition
sum, before looking at the various response functions of the system, such
the induced magnetic field and the magnetic susceptibility.

5.1 Instantons in an External Field

Including a constant Bext in our Euclidean action (29) is fairly straight-
forward3. The total magnetic field is now comprised of three parts: B =
Bq+Btop+Bext. The external field will add an uninteresting constant term
B2
ext to the action, but more important are the cross terms. As mentioned

3Note that a magnetic field is invariant under a Wick rotation, unlike an electric field,
so we do not have to worry about the physical interpretation of Bext in the Euclidean
action.
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above the interaction term Bq ·Bext should vanish, which is clearly the case
due to the periodicity of Bq over the domain of integration — just like in
eq. (30). The conventional and topological parts are still decoupled, nothing
has changed there. Explicitly we find

(Bext
z +

2πk

L1L2e
) ·
∫
d4xBq

z = 0. (42)

The conventional Casimir effect is unchanged and Z0 can be computed as
normal. It is the last cross term that will be making the difference:

2 Btop ·Bext =
4πk

L1L2e
Bext. (43)

This new term is nonzero and depends on the topological sector k. It can
be considered as a source term in the action, which will be useful later on.
As a result, the energy levels of the instantons get shifted and the classical
Euclidean action becomes

Stop = βL1L2L3

(
2πk

L1L2e
+Bext

)2

= π2τ

(
k +

θeff
2π

)2

, (44)

where, in close analogy with eq. (17) from 2d electrodynamics, we have
defined the effective theta parameter

θeff = Bext
z L1L2e. (45)

The rest of the partition sum computations is the same as before. The
prefactor

√
πτ , that arises from the fluctuations around the instanton con-

figuration and was derived via dimensional reduction, is unaffected by the
external field. Inserting the shifted energy of eq. (44) into the partition sum
(36) gives us the final expression

Ztop(τ, θeff ) =
√
πτ
∑
k∈Z

exp

[
−π2τ

(
k +

θeff
2π

)2
]

(46)

Before studying the physical response functions of the system, a few re-
marks should be made about the interpretation of the effective theta param-
eter. At first sight it appears that θeff enters the partition sum in exactly
the same way as in eq. (18), but there are some subtle differences. After all,
eq. (18) was derived using the Hamiltonian approach in Minkowski space,
whereas our analysis of the 4d system is all done in the Euclidean metric.
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The description of instantons as tunneling configurations between topolog-
ical sectors is not possible in Minkowski space and conversely, it is unclear
how to solve the 4d system using canonical quantization like in section 3.1.
This is problematic for our interpretation that the external magnetic field
creates a theta vacuum. In the Euclidean path integral approach, a theta
vacuum appears in the action as a complex weight of the topological sector,
as seen in eqs. (7) and (26), rather than the shift of the energy levels that
we find in (46).

To resolve this issue, consider the dual representation of (46) after Pois-
son resummation:

Ztop(τ, θeff ) =
∑
n∈Z

exp

[
−n

2

τ
+ i θeff n

]
. (47)

In this form, the role of the magnetic field as a theta parameter becomes
more clear. The partition function is obviously 2π-periodic in θeff , which
satisfies all the criteria of a topological theta term. As is necessary in Eu-
clidean space, the theta term enters the expression as a complex phase and
couples to the topological integer n. However, it should be emphasized that
n does not label the original instantons that we constructed in section 4.
Instead the terms in this series correspond to some kind of dual configu-
rations, with a classical action proportional to τ−1. This means that the
θ-state created by the magnetic field cannot easily be described in terms of
winding numbers and topological sectors.

From eq. (47) it follows that the asymptotic behavior is largely the same
as in section 4.2. In the limit τ → 0, once again all topological features
vanish as only the n = 0 term remains, leaving Ztop = 1. The asymptotic
limit τ � 1 also includes the terms n = ±1 to yield:

Ztop ≈ 1 + 2 cos(θeff ) e−1/τ , τ � 1, (48)

similar to (37). In the general case, we again need numerical tools to inves-
tigate the pressure and the magnetic behavior of the system.

5.2 Pressure and the Magnetic Response Functions

Now that the partition function is resolved, finding the topological pressure
(38) is easy. To get a first impression of the external field’s influence, let
us look at the small-τ limit, where there is an analytical solution. Eq. (48)
yields

Ptop ≈
e2

β2L2
3

cos(θeff ) e−1/τ , τ � 1. (49)
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Figure 4: A numerical plot of the topological Casimir pressure as a function
of θeff ≡ eL1L2Bext, given in units of 2

L2
1L

2
2e

2 for three different values of τ .

A clear 2π periodicity is seen and local extrema are between odd and even
integer multiples of π.

While the pressure is still exponentially suppressed, what is striking is the
factor cos(θeff ). This suggest that the force on the system will switch be-
tween being attractive and repulsive, depending on the strength of the ex-
ternal magnetic field Bext ∼ θeff . The same thing is seen in Figure 4, a
numerical plot of the topological pressure as a function of θeff , for various
values of τ ' 1.

Figure 4 also shows clearly the oscillatory behavior with respect to θeff .
The extrema of the function are at integer multiples of π, with the odd mul-
tiples corresponding to a negative Casimir pressure. We see that, by playing
around with the extra parameter θeff , it is possible to further amplify the
topological Casimir effect. Unfortunately the increase is not enough to make
a significant difference in comparison with the conventional pressure. A 3d
plot shows a maximum pressure only few times larger than what we found
in eq. (40).

However, the oscillating variation of the topological Casimir pressure
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in an external magnetic field is a unique feature that might be possible
to measure experimentally. It serves mainly to distinguish the topological
contribution from the conventional Casimir effect, which is not sensitive
to an external field. Bext takes the role of a theta parameter by causing
interference between the topological sectors. This shifts the energy spectrum
of the instantons to produce the variation shown in Fig. 4.

In addition to changes in the topological pressure, it is interesting to
study how Bext affects the magnetic properties of the system. After all, the
instanton excitations carry a magnetic field (28). In the case where Bext = 0,
the magnetic field configurations of instantons with opposite topological
charge (but the same energy) will cancel each other, resulting in a vanishing
net magnetic field. This can also be seen from symmetry arguments: without
an external magnetic field the system is P and CP invariant, which means
there can be no induced field. However, a nonzero theta parameter θeff is
known to break these symmetries. The external magnetic field shifts the
spectrum, such that instantons of opposite k have a different action and
their corresponding magnetic fields no longer cancel in the partition sum.
The result is an induced B-field that counteracts the applied magnetic field.

The expectation value of the total magnetic field of the system can be
computed from the partition function as follows:

〈B〉 = − 1

βV
· ∂

∂Bext
lnZtop = − e

βL3
· ∂

∂θeff
lnZtop (50)

The reasoning for this expression is similar to that for the pressure. If the
free energy is lowered by changing the strength of the external magnetic
field, then the system can emulate this by inducing its own magnetic field
proportionally. This is also analogous to the calculation of expectation val-
ues in QFT, as the functional derivative of the partition function towards
a source term4. If this argument does not convince you, we can insert the
partition sum (46) into eq. (50) to explicitly find:

〈B〉 =

√
τπ

Ztop

∑
k∈Z

(
Bext +

2πk

L1L2e

)
exp

[
−τπ2(k +

θeff
2π

)2
]
, (51)

which is intuitively clear as a thermodynamic expectation value. Bext + 2πk
L1L2e

is the total field strength of the configuration labeled by winding number
k, while the exponential is its Boltzmann factor e−βE . Dividing by Ztop

4Except that in this case, the source is physical and is thus not set to zero after taking
the derivative.
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ensures the normalization and cancels the prefactor
√
τπ. As mentioned

above, when Bext = 0 the series is antisymmetric in k and all terms will
cancel in pairs.

In the limit L1L2 →∞, all the topological effects vanish and we recover
〈B〉 = Bext as expected. To see this, it is possible to rewrite eq. (51) as

〈B〉 = Bext −
e

βL3
· ∂

∂θeff
ln
∑
k∈Z

exp
[
−τπ2k2 − τπkθeff

]
. (52)

The second term vanishes when τ → 0. Unfortunately this cannot be di-
rectly seen from the asymptotic expression (48), because of the way θeff
depends on L1L2.

Just as with the pressure, it is more enlightening to study a numerical
plot of the induced field, for values of τ ' 1. Such a plot is shown in figure 5.
Again the oscillatory behavior is immediately obvious, which is consistent
with the interpretation of the external magnetic field as a theta parameter.

Figure 5: A numerical plot of the induced magnetic field in units of 1
L1L2e

as a function of θeff . The oscillatory behaviour becomes more pronounced
for large τ .
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Furthermore, 〈B〉 vanishes when θeff reaches an integer multiple of π. This
is particularly interesting because it means that, for a nonzero multiple of π,
the external magnetic field is completely canceled by the contribution from
the instantons.

The expression (50) for the expectation value of the magnetic field is very
reminiscent of the way magnetization is computed in statistical physics. Up
to a sign, 〈B〉 is equivalent to the magnetization per unit volume:

〈m〉 =
1

βV
· ∂

∂H
lnZ, (53)

where H is the magnetic field strength in the medium. This leads us to
define the magnetic susceptibility of the system:

χmag = − 1

βV
· ∂2

∂B2
ext

lnZtop = − 2

τ
· ∂2

∂θ2eff
lnZtop. (54)

The susceptibility represents the magnetic response of the free energy to-
wards an external source, in this case the external magnetic field Bext ∼ θeff .
It is a dimensionless quantity (in natural units), as the right-hand side of
eq. (54) shows. Because of this, we can easily use the asymptotic expres-
sion (48) to conclude that the susceptibility is again exponentially suppressed
∼ e−1/τ when τ � 1. For the more general regime we must again resort to
a numerical plot, seen in figure 6.

The plot of the magnetic susceptibility shows some very unique features.
Most importantly, χmag flips sign such that the system will switch between
being diamagnetic and paramagnetic, depending on the strength of the ex-
ternal field. This kind of behavior is not often seen in condensed matter
systems. Furthermore, the susceptibility does not vanish when θeff = 0.
This makes sense intuitively, since χmag represents the sensitivity to an ex-
ternal magnetic field.

Not only are the induced magnetic field and the susceptibility of use for
possible experiments, they also hold some theoretical interest. Because of
the universality of topological theta terms, these quantities are very closely
related to the ones of other topological systems. In the 2d electrodynamics
from section 3, as well as 4d QCD mentioned in section 2.3, one can define
a so-called topological density that is completely analogous to our induced
magnetic field (50). Likewise, our magnetic susceptibility corresponds to the
topological susceptibility of other systems with a theta term. The suscepti-
bility plays a role even when θ = 0, like in QCD where it is connected to the
mass of certain mesons through the Witten-Veneziano relation. As such the
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Figure 6: A numerical plot of the magnetic susceptibility χmag as a function
of θeff for different values of τ . It oscillates with θeff as it should and does
not vanish at θeff = 0. The magnetic susceptibility is dimensionless in
natural units.

topological Casimir effect allows us to indirectly investigate theories that
are otherwise difficult to access.

To conclude this section, we have seen that an external magnetic field in-
teracts with the topological Casimir effect. It takes the role of a topological
theta parameter and the system shows all the universal behavior associated
with this. The addition of the theta parameter modifies the topological
pressure and the magnetic field of the system, both of which are periodic
as a function of the external field strength. This very specific variation is
something that could possibly be measured in a lab. The external magnetic
field is an ideal tool to probe the topological features of our setup, since
it leaves the conventional Casimir effect entirely unaffected. As such, the
sensitivity towards an external field is a unique and integral part of the topo-
logical Casimir effect that sets it apart from other features of the quantum
vacuum.
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6 Discussion and Conclusion

The Casimir effect is an exciting new manifestation of topology in the quan-
tum vacuum. It arises from tunneling configurations between the topological
sectors, the degenerate vacuum states that are topologically different even
though they correspond to the same physical state. However, all this theory
means very little until the effect has been experimentally confirmed. In this
work I have discussed several times the possibility of measuring the topo-
logical Casimir effect, but this should not be mistaken for an experiment
proposal. A collaboration with an experimental physicist, somebody who
knows what is and isn’t possible in a lab, would be helpful for suggesting a
realistic setup. Regardless, this thesis would not be complete without some
short discussion on this matter.

Although I am generally optimistic that the topological Casimir effect
can be observed, some major challenges would have to be overcome. The first
question that readers are likely to ask themselves, is how one would create
the Euclidean 4-torus that our theory is formulated on. It is important to
keep in mind here that the system I discuss in the text is not intended to
be the most general description of the topological Casimir effect. Instead,
the 4-torus was chosen as the simplest configuration that demonstrates the
essential features of the theory. For practical applications in the lab a slightly
different setup may be useful. It is however probable that some sort of
periodic boundary conditions are needed to realize the required nontrivial
topology of the spacetime.

A Euclidean 4-torus corresponds to a 3-torus at finite temperature, as
shown in appendix B.1. To create such a system, one must engineer a box
with periodic boundary conditions on opposing sides, in all three directions.
Please note though that the periodicity in the z-direction is not used in the
derivation of section 4, so the same topological effects are possible without it.
Creating periodicity in x and y-direction might be as simple as connecting
these sides with a superconducting wire. Having the plates in the xz-plane
and the yz-plane be metallic would still allow the magnetic field from the
instantons in the z-direction. This setup would need a closer investigation
before making any conclusions, though. Another option would be to create
actual curved boundaries, like a ring or a 2-torus. Formulating the theory
for such a configuration would be much more complicated. All things con-
sidered, I am convinced that with the current state of material science, it
should be possible to create a system that exhibits the topological Casimir
effect.

Of course, creating the system is only half the battle. Since the topo-
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logical effects are so small, the actual detection will also be very difficult.
Aside from the practical challenges of observing such a tiny effect, there
are many corrections that need to be accounted for — even more so when
dealing with real materials instead of idealized boundary conditions. The
addition of an external magnetic field will add a distinctive variation to the
Casimir pressure, but it will still be orders of magnitude smaller than the
conventional Casimir effect. It would be interesting to see if one could gener-
ate physical photons from the induced magnetic field, for example by adding
time-dependence to the external field, similar to the dynamical Casimir effect
[14]. However, this subject needs further research to make any quantitative
predictions. The experimental observation of the topological Casimir effect
is still a long way off, but as of yet there is no reason to believe that it is
impossible.

Assuming that the topological Casimir effect can be recreated in the lab,
what would be the implications? Due to the universality of the topologi-
cal behavior (see section 2), observation of the effect could tell us things
about completely different systems. Topological Casimir experiments would
provide a means to answer very fundamental questions about the quantum
vacuum, not only in QED but also in QCD. An important example is the
possible application in cosmology, where the topological Casimir effect has
been suggested as a dark energy candidate [5, 16]. In this case the QCD
vacuum, as described in section 2.3, yields a nonzero Casimir energy when
defined on an expanding Hubble universe. An order of magnitude estima-
tion of this energy is in very good agreement with the observed dark energy
density. If true, this would be an amazing opportunity to test cosmological
properties in a controlled environment, something that is quite rare.

In conclusion, there is interesting new physics that emerges when con-
sidering the electromagnetic field on nontrivial topological spaces. This
effect is well established in 1 + 1 dimensions: correspondence between the
gauge group and the spacetime topology leads to the existence of topological
sectors, labeled by an integer winding number. Instanton excitations pro-
vide tunneling between these sectors and their thermal fluctuations yield a
nonzero vacuum energy. For a consistent theory it is necessary to sum over
all winding numbers — all possible instantons — in the partition function.

In 2d QED, the topological excitations are the only degrees of freedom in
the theory, since physical photons cannot exist. On the other hand, in four
spacetime dimensions the topological vacuum energy must compete with the
conventional Casimir energy, that originates from the zero-point energy of
the photon modes. On the toroidal system that is discussed in this text,
the topological Casimir effect is several orders of magnitude smaller than
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its conventional counterpart. However, it may still be studied through some
of its unusual properties, like the sensitivity towards an external magnetic
field.

Under the influence of an external magnetic field, the topological Casimir
effect shows a unique oscillating behavior as a function of the field strength.
By varying the external field, one can switch between an attractive and re-
pulsive Casimir force, or between a paramagnetic and diamagnetic system.
The role of the external magnetic field here is directly analogous to the topo-
logical theta parameter in the QCD vacuum, or θ = π in strong topological
insulators.

All in all, I think that this is a meaningful discovery that will have
significant implications for our understanding of the quantum vacuum. The
topological Casimir effect provides a direct means to experiment with the
physics of topological sectors and theta states, opening the way to fascinating
new research.

‘
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Appendix A: The Conventional Casimir Effect

In this appendix I discuss some relevant points of the conventional Casimir
effect, which is frequently compared to the topological contributions in the
main text. None of the physics in this section is new, and in fact there have
been many books written about the subject. The goal of this appendix is
mainly to derive the Casimir pressure on a 4-torus, as given in eq. (31). Fi-
nite temperature corrections will also be discussed. For most other things,
such as the Green’s Function formalism or the subtle interpretation of reg-
ularization, the reader will be referred to several standard works [4].

A.1 2d Scalar Field

The Casimir effect arises from the quantization of a field within certain
boundary conditions, which is different than in free Minkowski space. As
an illustration, let us start with a simple massless scalar field φ(x, t) in 1+1
dimensions. Canonical quantization defines the field in terms of creation
and annihilation operators, such that the operator â†k creates a scalar par-

ticle of wave vector k. The number operator n̂k = â†kâk counts the number
of particles of wave vector k in the system. The Hamiltonian of the sys-
tem is given by H =

∑
h̄ωk(n̂k + 1/2), just as for a collection of quantum

harmonic oscillators. We see that even in the vacuum where nk = 0, each
mode contributes a zero-point energy of h̄ωk/2. In free Minkowski space,
all wavelengths are allowed and k forms a continuous spectrum. The total
vacuum energy on an interval of length L becomes:

EMink(L) =
h̄L

2

∫ ∞
−∞

dk

2π
ωk. (A.55)

Now we impose boundary conditions on the field, confining it to a box
such that

φ(0, t) = φ(a, t) = 0. (A.56)

As a result the allowed wavelengths are quantized, yielding kn = πn/a
where n is a positive integer. The vacuum energy of the system within these
boundaries now becomes:

Ebound =
h̄

2

∞∑
n=1

ωkn =
πh̄c

2a

∞∑
n=1

n (A.57)

This energy is divergent, but a finite quantity can be acquired by subtracting
the Minkowski vacuum energy EMink(a). This difference is known as the
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Casimir energy Ecas ≡ Ebound − EMink. To compute the Casimir energy,
we introduce a regulator e−cδk into the integral and sum, and then take the
limit δ → 0 at the end. This gives us

EMink = lim
δ→0

ch̄a

2π

∫ ∞
0

dk e−cδkk = lim
δ→0

h̄a

2πcδ2
(A.58)

whereas the energy with boundaries yields

Ebound = lim
δ→0

ch̄π

2a

∞∑
n=1

e−cπδn/a n = lim
δ→0

h̄a

2πcδ2
− πh̄c

24a
. (A.59)

Subtracting EMink cancels the divergent term in the expansion and offers
the Casimir energy

Ecas = −πh̄c
24a

. (A.60)

Since the energy depends on the size of the box a, it produces a vacuum
pressure. This is known as the Casimir effect. The method used here is called
the mode summation technique and is intuitively the most clear. However,
for more complicated systems this method might not work and one must
resort to other tools, such as path integrals or the energy momentum tensor.

The result (A.60) can be obtained more easily using zeta function reg-
ularization. Using the analytical continuation of a zeta function, we can
rewrite (A.57) as

E = lim
s→0

πh̄c

2a

∞∑
n=1

ns−1 = lim
s→0

πh̄c

2a
ζR(s− 1) (A.61)

where the Riemann zeta function ζR(z) is defined as

ζ(z) =

∞∑
n=1

1

nz
. (A.62)

Of course, in general the zeta function is only properly defined for z ≥ 2,
otherwise the series diverges. It is however possible to create an analytic
continuation onto the complex plane, a technique that is very well studied.
This continuation assigns a value of ζR(z) for any z ∈ C. It suggests that
ζR(−1) = − 1

12 , which yields the same Casimir energy as in eq. (A.60). To
prove this in a rigorous manner requires a lot of math and for that I will
refer to the literature [4]. With some difficulty it can be shown that these
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zeta function procedures are mathematically equivalent to the subtraction
of the Minkowski vacuum energy and that it is more than just a useful trick.
Other regularization schemes, like point-splitting, are also possible.

Aside from imposing fixed boundary conditions like eq. (A.56), one can
also consider the Casimir effect on compact topological spaces. For example,
when the scalar field φ(x, t) is defined on a ring of circumference a, the
periodic boundary conditions cause quantization of the allowed momenta.
The result is a Casimir energy similar to (A.60), up to a numerical factor. It
is these periodic boundary conditions that cause the conventional Casimir
effect on the 4-torus.

A.2 The EM Casimir Effect on a Torus

In section 4 the electromagnetic Casimir effect on a Euclidean 4-torus is
discussed. The compactified time dimension, corresponding to a finite tem-
perature, will not be considered for now. In the low temperature regime, the
thermal correction is very small as we will derive at the end of this appendix.
That leaves a 3-torus with size L1 × L2 × L3, where L3 � L1, L2.

Switching from a scalar field to the electromagnetic field does not change
much, for the conventional Casimir effect with periodic boundary conditions.
The two polarization directions act as independent massless scalar fields and
only contribute a factor 2. This reduction to a scalar field is often possible,
although for some boundary conditions the process is less trivial. Working
from now on in natural units, the Casimir energy becomes:

ECas =
1

2

∑
k,λ

ω
(λ)
k =

∑
k

ωk, (A.63)

where λ denotes the polarization. Due to the periodic BCs, the momentum
k is quantized. For the z-direction, this implies kz = 2πn/L3. Because L1

and L2 are much larger than L3, we can use the approximation that kx and
ky are continuous. This simplifies the computations a lot.

ωn,k|| =

√
k2|| +

(
2πn

L3

)2

, k|| ≡
√
k2x + k2y (A.64)

To find the Casimir energy, we must integrate over kx and ky and sum over
n. This expression can be transformed into another zeta function by using
the parametric integral

ω−s =

∫ ∞
0

dt

t
· ts/2

Γ(s/2)
e−tω

2
. (A.65)
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When inserted into the formula for the Casimir energy, this form allows us
to integrate out k|| and perform the zeta function regularization:

ECas = lim
s→−1

L1L2

2π

∫ ∞
0

dk|| k||
∑
n

ω−sn,k||

= lim
s→−1

L1L2

2π

∑
n

∫ ∞
0

dt

t
· ts/2

Γ(s/2)

∫ ∞
0

dk|| k||e
−t(k2||+

(
2πn
L3

)2
)

= lim
s→−1

L1L2

2π

∑
n

∫ ∞
0

dt

t
· t

s/2−1

Γ(s/2)
e
−t
(

2πn
L3

)2

= lim
s→−1

L1L2

2π
· Γ(s/2− 1)

Γ(s/2)

∑
n

(
2πn

L3

)2−s

= lim
s→−1

8π2L1L2

L3
3

· 2

2− s
ζR(s− 2) = − 2π2

45
· L1L2

L3
3

. (A.66)

With this bit of unpleasant algebra, we obtain the regularized vacuum energy
of the torus. The final step is to compute the pressure in the z-direction,
given by

PCas = − 1

L1L2
· ∂ECas
dL3

= − 2π2

15L4
3

. (A.67)

This is the expression used in section 4.2 to compare against the topological
Casimir pressure. It is about an order of magnitude larger than the Casimir
effect for parallel conducting plates (2), but the power law behavior is exactly
the same.

In the above derivation we have neglected the periodic boundary con-
ditions in the x and y-direction, by assuming that the momentum in those
directions is continuous. Without that approximation, several corrections
would be added to eq. (A.67) of the form ∼ 1

L2
1L

2
3

and ∼ 1
L2
2L

2
3
. Compared to

the leading order term, these are highly suppressed because L1 and L2 are
much larger than L3. We do not consider them further.

A.3 Thermal Corrections

Up until here, the Casimir effect computations of this appendix have been
at zero temperature. Consider now the system at a finite temperature T .
This causes thermal fluctuations which means that the modes of the elec-
tromagnetic field are no longer all in the ground state nk = 0. In order to
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define the free energy and pressure at finite temperature, it is necessary to
compute the partition sum

Z =
∏
k,λ

(∑
n

exp

[
−βωk(n+

1

2
)

])
=
∏
k,λ

exp[−1
2βωk]

1− exp[−βωk]
, (A.68)

which yields the free energy

F =
∑
k

(
ωk +

2

β
ln [1− exp (−βωk)]

)
. (A.69)

The first term clearly corresponds to the Casimir energy (A.67) that has
already been calculated, while the second term is known as the thermal
correction. Interestingly, the correction term is convergent and does not
need to be regularized. It is however still important to subtract the thermal
vacuum energy of the space without the periodic conditions.

FMink =
2V

β

∫
d3k

(2π)3
ln [1− exp (−βωk)] = − π2V

45β4
(A.70)

This is simply the free energy of black-body radiation as given by basic
statistical mechanics.

Computing the thermal correction for the torus is not trivial, but can be
done in the low-temperature limit.

F therm =
L1L2

πβ

∫ ∞
0

dk|| k||
∑
n

ln

1− exp
(
− β

√
k2|| +

(
2πn

L3

)2 ) .(A.71)

Assuming β � L3, we can use the approximation ln
[
1− e−βω

]
≈ −e−βω as

long as n 6= 0. Keeping only the terms with n = 0,±1 the integral can be
performed to find

F therm ≈ L1L2

πβ

[
ζR(3)

β2
− 4π

βL3
exp

(
−2πβ

L3

)]
(A.72)

Subtracting the background energy FMink and calculating the corresponding
pressure finally yields the small thermal correction for low temperatures:

P therm
Cas ≈ − π2

45β4
+

8π

βL3
3

exp

(
−2πβ

L3

)
(A.73)

40



Appendix B: Mathematical Tools

B.1 Wick Rotation and Thermal Field Theory

The Wick rotation is a crucial part of the path integral approach for de-
scribing quantum field theory at finite temperature. It transforms a problem
in 3+1 dimensional Minkowski space into one formulated in 4d Euclidean
space, by switching to an imaginary time coordinate [17]. The technique is
motivated by the similarities between the partition function as defined in
QFT, and the statistical partition function:

ZQFT =

∫
Dφ ei

∫
dt L[φ] ←→ Zstat =

∫
Dm e−βH[m] (B.74)

where φ is a quantum field and m some kind of local order parameter.
Consider a field in 4d Minkowski space. The metric of the coordinates

is xµx
µ = t2 − |x|2. Now we apply the transformation

t −→ τ ≡ −it (B.75)

which produces the Euclidean 4-vector product: |xE |2= τ2 + |x|2. In other
words, the transformation switches between a Minkowski and a Euclidean
metric. How would such a transformation affect the action of the system?
For example, for a free scalar field we find:∫

d4x

(
1

2
(∂µφ)2 − 1

2
m2φ

)
−→ i

∫
dτ d3x

(
1

2
(∂µφ)2E +

1

2
m2φ

)
(B.76)

The transformed integrand is known as the Euclidean Lagrangian LE . The
factor i cancels with the one in the partition sum. Note that the terms of
LE are typically real, since the Lagrangian only contains even powers of ∂t.
The exception are topological theta terms, as seen in eq. (7). The Wick
rotated partition sum becomes

ZQFT =

∫
Dφ e−

∫
dτ LE [φ]. (B.77)

To introduce the finite temperature into this expression, there is only
step left: we identify the imaginary time with the inverse temperature β.

Z(β) =

∫
Dφ e−

∫ β
0 dτ LE [φ]. (B.78)

Here it is necessary that the fields φ that one integrates over satisfy the
periodic boundary conditions φ(τ = 0) = φ(τ = β). That why we consid-
ered a Euclidean 2-torus and 4-torus in sections 3 and 4 respectively, the
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imaginary time component is also periodic in nature. For a more rigorous
derivation, one can analyze the partition sum Z = Tr[exp(−βH)] to arrive
at eq. (B.78).

B.2 Poisson Resummation

The Poisson Sum formula, in the form that was used many times in this
work, is a result from Fourier analysis that states

∞∑
n=−∞

exp
[
−a (n+ x)2

]
=

√
π

a

∞∑
k=−∞

exp

[
−π

2k2

a
+ 2π i x k

]
. (B.79)

for positive a. Here we will show a quick proof.
Consider the sum

∑
n f(n + x), for some function f(x). This sum is

periodic in x, with period 1. As a result it can be written in terms of
discrete Fourier coefficients:

∞∑
n=−∞

f(n+ x) =
∞∑

k=−∞
ck e

2π i k x (B.80)

where the coefficients ck are defined as

ck ≡
∫ 1

0
dx

∞∑
n=−∞

f(n+ x) e−2π i k x

=
∞∑

n=−∞

∫ n+1

n
dx f(x) e−2π i k x

=

∫ ∞
−∞

dx f(x) e−2π i k x

= f̂(k) (B.81)

with f̂(k) the Fourier transform of f(x). Substituting this into eq. (B.80)
yields

∞∑
n=−∞

f(n+ x) =

∞∑
k=−∞

f̂(k) e2π i k x. (B.82)

Now we can choose for f(x) the Gaussian

f(x) = e−ax
2 −→ f̂(k) =

√
π

a
e−

π2k2

a . (B.83)

Inserting this into eq. (B.82) recovers precisely the formula (B.79) that we
wanted to prove.
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