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I

L travaux rapportés dans ce manuscrit ont été conduits à l’Institut d’Astrophysique de Paris,
au sein du groupe de recherche GR"CO (Gravitation et Cosmologie), sous la direction de

Luc Blanchet. Ils sont le fruit de collaborations avec Luc Blanchet, Steven Detweiler, Bernard
F. Whiting et Clifford M. Will, et portent sur deux sujets bien distincts : la génération d’ondes
gravitationnelles par les systèmes binaires coalescents de trous noirs d’une part, et les possibles
liens entre matière noire et dynamique newtonienne modifiée d’autre part.

Coalescence de trous noirs en relativité générale

La théorie de la relativité générale, parachevée parAlbert Einstein en 1915, est parfois décrite
comme la plus importante création intellectuelle jamais enfantée par un seul homme. Quelque
dix années après les bouleversements conceptuels introduits par la relativité restreinte, Einstein
parvint à décrire la force de gravitation dans un cadre relativiste. Jusqu’à ce jour, la relativité gé-
nérale a passé avec succès tous les tests expérimentaux auquels elle a été soumise ; elle a également
prédit l’existence de nombreux phénomènes « exotiques» absents de la théorie newtonienne de
la gravitation, parmi lesquels les trous noirs, les ondes gravitationnelles, et le caractère dynamique
de l’Univers.

Enquelquesmots, les ondes gravitationnelles sontdes oscillationsdans la courburede l’espace-
temps, générées par les corps en mouvement, et se propageant à la vitesse de la lumière. La pré-
sence d’ondes de gravité est inéluctable dans une théorie relativiste de la gravitation : la vitesse
à laquelle les informations peuvent se propager étant limitée, la force de gravitation elle-même
ne peut se propager instantanément. L’existence des ondes gravitationnelles a été confirmée in-
directement, et ce à plusieurs reprises, par la mesure de leurs effets sur la dynamique de systèmes
binaires d’étoiles à neutrons, dont l’une est observable comme pulsar.

Ces découvertes ont motivé une communauté de physiciens et d’astrophysiciens à bâtir des
détecteurs d’ondes gravitationnelles qui permettront dans un futur proche d’observer ces ondes
directement. Les détecteurs interférométriques terrestres actuels devraient atteindre au cours
de la prochaine décennie la sensibilité suffisante pour mesurer de manière routinière le passage
d’ondes gravitationnelles en provenance de sources astrophysiques. En raison de la très faible in-
teraction des ondes gravitationnelles avec la matière, le défi technologique est toutefois de taille :
pour une source astrophysique typique, il s’agit de parvenir à détecter une variation relative de
longueur du détecteur . 10�21, induite lors du passage de l’onde.

Afin d’extraire un signal aussi faible des nombreuses sources de bruit (sismique, thermique,
de photon, etc.) dans les détecteurs, il est nécessaire de connaître par avance la forme d’onde
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émise par la source.Cette contrainte expérimentale justifie un travail théoriquede longuehaleine,
débuté à la fin des années 80, et visant àmodéliser avec grande précision la dynamique des sources
d’ondes gravitationnelles anticipées, ainsi que le rayonnement gravitationnel qui en résulte. La
première partie de ce travail de thèse s’inscrit dans le cadre de la modélisation de l’une des sources
d’ondes gravitationnelles les plus prometteuses pour les détecteurs actuels et futurs : les systèmes
binaires coalescents de trous noirs, ou, éventuellement, d’étoiles à neutrons.

Si la très faible interaction des ondes gravitationnelles avec la matière est un calvaire pour les
expérimentateurs s’efforçant de les détecter, il s’agit au contraire d’une bénédiction du point de
vue de l’astronomie, de l’astrophysique et de la cosmologie. En effet, contrairement aux ondes
électromagnétiques qui sont absorbées, réfléchies, réfractées et diffusées au cours de leur propa-
gation, les ondes gravitationnelles nous parviennent « intactes», et contiennent donc une mine
de renseignements sur leurs sources. L’astronomie gravitationnelle naissante nous fournira ainsi
une pléthore d’informations nouvelles sur l’Univers, informations complémentaires de celles col-
lectées par l’astronomie conventionnelle basée sur le rayonnement électromagnétique, et aux-
quelles nous n’aurions pas accès autrement. Historiquement, l’observation du ciel dans une nou-
velle bande de fréquence du spectre électromagnétique a toujours donné lieu à des découvertes
inattendues : noyaux actifs de galaxies et pulsars avec les ondes radios, fond diffus cosmologique
avec les micro-ondes, binaires X et sursauts 
 avec les rayons du même nom, etc. Gageons que
grâce aux ondes gravitationnelles, l’ouverture d’une nouvelle fenêtre d’observation sur l’Univers
apportera également son lot de surprises !

La première partie de cette thèse est organisée de la façon suivante : le chapitre 1, intitulé
Ondes gravitationnelles, introduit le concept d’onde gravitationnelle, esquisse le mécanisme de
génération de ces ondes, et liste les diverses sources anticipées, ainsi que les moyens de détec-
tion actuels et futurs. Les chapitres 2 & 3, Développements post-newtoniens et Perturbations de
trous noirs et force propre gravitationnelle, présentent deuxméthodes d’approximationpermettant
d’étudier la dynamique des systèmes binaires coalescents de trous noirs, ainsi que le rayonnement
gravitationnel qui en résulte, lorsque la vitesse orbitale ou le rapport de masse sont adaptés à un
traitement perturbatif.

Les quatre chapitres qui suivent présentent des travaux de recherche à proprement parler.
Les chapitres 4 & 5, Calcul post-newtonien de la force propre gravitationnelle  & , détaillent
une comparaison entre le formalisme post-newtonien et celui de la force propre : une fonction
invariante de jauge définie pour un système binaire de trous noirs en orbite circulaire est calculée
analytiquement à un ordre post-newtonien élevé d’une part, et numériquement dans le cadre de
la théorie des perturbations d’un trou noir de Schwarzschild d’autre part. On y démontre la cohé-
rence des résultats ainsi obtenus lorsqu’ils sont comparés dans leur domaine de validité commun,
et la complémentarité de ces deux méthodes perturbatives.

Le chapitre 6,Métrique post-newtonienne dans l’approximation de limite proche, présente un
travail où la métrique post-newtonienne d’un système binaire de trous noirs est développée dans
l’approximationdite de«limite proche», puis identifiée à lamétriqued’un trounoir de Schwarz-
schild perturbé. Ceci permet de modéliser la phase de vibration du trou noir final résultant de la
coalescence d’un système binaire de trous noirs. L’application de ce formalisme au calcul de l’effet
de recul gravitationnel, et la comparaison avec les résultats exacts issus de la relativité numérique,
sont détaillées dans le chapitre 7, intitulé Recul gravitationnel des systèmes binaires de trous noirs.
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Le problème de la matière noire en astrophysique

La théorie de la relativité générale est testée avec une précision sans cesse croissante, en champ
faible dans le système solaire, et en champ fort avec les pulsars binaires. Presque cent ans après sa
génèse, elle reste compatible avec toutes ces contraintes observationnelles, et demeure lameilleure
théorie de la gravitation dont nous disposons. Toutefois, certaines observations à grande échelle
ont très tôt pointé quelques anomalies : dès les années 30, les astronomes ont constaté que la
masse dynamique des amas de galaxies (telle que déduite du mouvement des galaxies) excède de
plusieurs ordres de grandeur leur masse visible (telle que déduite de la luminosité des galaxies).
Plus récemment, ce problème de masse manquante a également été observé à l’échelle des ga-
laxies elles-mêmes. Une solution possible consiste à postuler l’existence d’une grande quantité
de matière non baryonique, invisible car interagissant très peu avec la matière ordinaire : la ma-
tière noire. La conjonction desmesures cosmologiques les plus récentes concorde vers la nécessité
d’introduire environ six fois plus de matière noire que de matière baryonique.

Par ailleurs, la mesure de la magnitude des supernovæ de type Ia en fonction de leur décalage
spectral amis en évidence l’accélération de l’expansion de l’Univers, ce qui requiert l’introduction
d’une nouvelle forme d’énergie, dont la pression négative s’oppose à l’attraction gravitationnelle
engendrée par la densité d’énergie de la matière. Cette énergie noire, potentiellement sous forme
d’une constante cosmologiqueƒ, compte pour environ73% du budget énergétique de l’Univers.

Le modèle de concordance cosmologique, ou modèleƒ-CDM, est compatible avec un très
grand nombre d’observations indépendantes, de l’échelle des amas de galaxies jusqu’aux échelles
cosmologiques. Les nombres paramétrisant ce modèle sont mesurés avec une précision de l’ordre
du pourcent, ce qui confère désormais à la cosmologie le statut de science quantititive. Néan-
moins, la matière baryonique — dont la majeure partie échappe toujours à l’observation — ne
représente que 4% du contenu énergétique de l’Univers. La cosmologie moderne se trouve donc
dans une situation inédite : nous disposons d’une paramétrisation apparemment très précise d’un
Univers dont le contenu nous est essentiellement inconnu.

Ce constat peut provoquer l’exaltation en vu de l’importance des questions auxquelles il reste
à répondre : sachant qu’aucune des particules élémentaires du modèle standard ne peut jouer le
rôle de la matière noire, quelle est sa nature ? Si l’énergie noire prend la forme d’une constante
cosmologique, alors comment réconcilier sa valeur mesurée avec la valeur prédite par la théorie
quantique des champs ? Alternativement, ce constat peut tout aussi bien susciter la méfiance, et
pousser à reconsidérer les bases du raisonnement conduisant à postuler l’existence de substances
inconnues comptant pour 96% du contenu énergétique de l’Univers ; la présence de la matière
noire et de l’énergie noire n’étant inférée que par leurs seuls effets gravitationnels, peut-être faut-il
remettre en cause la théorie de la gravitation elle-même ?

La seconde partie de cette thèse traite du problème de la matière noire depuis l’échelle ga-
lactique jusqu’aux échelles cosmologiques. Le chapitre 8, Modèle de concordance en cosmologie,
résume les principaux aspects dumodèle de concordance, en insistant sur le contenu énergétique
de l’Univers, et sur les succès rencontrés par l’hypothèse de lamatière noire. Le chapitre 9,Phéno-
ménologie de la dynamique newtoniennemodifiée, discute certaines des difficultés rencontrées par
le paradigme de la matière noire à l’échelle galactique, et présente une alternative possible : la dy-
namique newtoniennemodifiée (MOND), qui postule unemodification de la loi fondamentale
de la gravité en l’absence de matière noire.
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Le chapitre 10,Matière noire et polarisation gravitationnelle, détaille les résultats de travaux
de recherche visant à concilier les succès respectifs du modèle de concordance et de la phéno-
ménologie de MOND aux échelles cosmologique et galactique respectivement. On y développe
un modèle de matière noire et d’énergie noire basé sur le concept de « polarisation gravitation-
nelle ». Ce manuscrit s’achève sur quelques remarques conclusives et perspectives de recherche.

Le travail de thèse présenté dans ce manuscrit a donné lieu aux publications suivantes, listées
par ordre chronologique :

• L. B et A. L T – «Model of dark matter and dark energy based on gravi-
tational polarization», Phys. Rev. D 78 (2008), p. 024031, arXiv:0804.3518 [astro-ph].

• L. B et A. L T – «Phenomenology of the modified Newtonian dynamics
and the concordance cosmological scenario », Comptes-rendus des 43 rencontres de Mo-
riond ( J. Dumarchez, Y. Giraud-Héraud et J. TrânanhVân, éds.),eGioi Publishers,
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• Les indices latins i; j ; k , etc. sont à valeurs dans l’ensemble f1; 2; 3g des trois coordonnées
spatiales x1;x2;x3.

• Les indices grecs �; �; �, etc. sont à valeurs dans l’ensemble f0; 1; 2; 3g des quatre coor-
données spatio-temporelles, avec x0 la coordonnée temporelle.

• Sauf indication contraire, les indices répétés sont sommés.

• Les indices symmétrisés (resp. antisymmétrisés) sont entourés de parenthèses (resp. de
crochets), par exemple u.ivj/ D

1
2
.uivj C ujvi/ et uŒivj � D

1
2
.uivj � ujvi/.

• Les vecteurs spatiaux sont souvent représentés en gras, par exemple x D .x1;x2;x3/.

• La dérivée par rapport au temps est souvent notée avec un point, par exemple Pf D
df

dt
.

• Les conventions pour la signature de la métrique et le tenseur de Riemann sont celles de la
référence [298], i.e. .�;C;C;C/ et R
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• La métrique de Minkowski ��� est couramment écrite dans un système de coordonnées
cartésien, auquel cas elle a pour composantes �00 D �1, �0i D 0 et �ij D ıij .

�

xv





Première partie

Coalescence de trous noirs en relativité générale
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O

Qmois après l’écriture des équations de champ de la théorie de la relativité générale,
Einstein prédit l’existence de « petites » oscillations dans la courbure de l’espace-temps,

générées par les corps en mouvement, et se propageant à la vitesse de la lumière [159, 160] : les
ondes gravitationnelles. La première observation directe de ces ondes par les détecteurs interfé-
rométriques terrestres actuels est désormais imminente : vers 2015, date de mise en service de la
configuration dite avancée de ces détecteurs. L’astronomie gravitationnelle nous fournira de très
nombreuses informations sur l’Univers, informations complémentaires de celles collectées par
l’astronomie conventionnelle basée sur le rayonnement électromagnétique [365].

Ce chapitre se veut un bref aperçu de ce domaine en pleine expansion, afin de présenter le
cadre du travail effectué durant cette thèse. Pour de plus amples détails, nous renvoyons le lecteur
aux revues [401, 402] traitant de la génération et de la propagation des ondes gravitationnelles,
aux revues [128] et [232, 350] pour les aspects liés aux sources et à la détection respectivement,
ainsi qu’à l’ouvrage récent [275] pour un traitement exhaustif.

1.1 Existence des ondes gravitationnelles
La prédiction des ondes gravitationnelles remonte à 1916, mais leur existence a longtemps

été sujet à controverse. En raison du caractère intrinsèquement non linéaire de la théorie de la re-
lativité générale, il fut envisagé que l’apparente propagation d’une perturbation de l’espace-temps
de Minkowski résultait d’un «mauvais » choix de système de coordonnées. D’un point de vue
théorique, la situation fut clarifiée au cours des années 50 par Pirani [330] et Bondi [92] qui
démontrèrent le caractère physique des ondes gravitationnelles, et le fait qu’elles transportent
de l’énergie susceptible d’être déposée sur un détecteur. Le lecteur intéressé trouvera un récit pas-
sionnant de l’histoire des ondes gavitationnelles, ainsi que des controverses ayant longtemps pesé
sur leur existence dans le livre [234].
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F. 1.1: Schéma du pulsar binaire PSR 1913+16. Un pulsar de masse mp orbite une étoile compagnon de masse
mc. Tel un phare cosmique, il émet des flashs d’ondes radio à intervalles réguliers détectés par un observateur distant.
La fréquence de ces flashs est modulée par le mouvement orbital du système binaire.

L’argument décisif venant appuyer l’existence de ces ondes fut la découverte du pulsar binaire
PSR 1913+16 en 1974 par Hulse et Taylor [216], et qui valu à ses auteurs l’attribution du prix
Nobel de physique en 1993. Comme son nom l’indique, ce système binaire est composé d’un
pulsar (une étoile à neutrons en rotation rapide, fortement magnétisée, et dont on détecte le
rayonnement radio) en orbite autour d’une étoile compagnon (voir Fig. 1.1). L’orbite est une
ellipse quasi-keplerienne de période P ' 7h 45min et d’excentricité e ' 0;617. De la mesure
de la fréquence d’arrivée des flashs d’ondes radio, Taylor et Weisberg parvinrent à déduire que la
période orbitale du système décroit au rythme PP ' �2;42 � 10�12 s=s [397, 415].

Cette observation s’explique très bien si l’on suppose que la binaire perd de l’énergie de liaison
par émission d’ondes gravitationnelles. Une analyse détaillée de la dynamique orbitale relativiste
du pulsar binaire [136, 137] (voir également [398, 146]), et en particulier des effets de réaction
au rayonnement, fournit l’expression théorique du taux de variation de la période orbitale :

PP D �
192�

5c5

�
2�G

P

�5=3
mpmc

.mp C mc/1=3

1 C
73
24

e2 C
37
96

e4

.1 � e2/7=2
; (1.1)

oùmp etmc sont lesmasses du pulsar et de l’étoile compagnon respectivement.Cette analyse per-
met également de déduire des formules similaires pour deux autres effets relativistes mesurables
dans le système binaire : le taux d’avance du périastre P!, et une combinaison du décalage vers le
rouge gravitationnel et de la dilatation temporelle (effet Doppler du second ordre), mesurée par
un paramètre 
 . Ces deux dernières observations permettent de déterminer très précisément les
masses des étoiles : mp D 1;4414.2/Mˇ et mc D 1;3867.2/Mˇ.

Ces valeurs peuvent alors être reportées dans la prédiction (1.1), et le résultat comparé à la
décroissance de la période orbitale mesurée1. Ceci fournit un test de la relativité générale, qui se

¹Une fois soustraite la correction induite par l’accélération relative de la binaire par rapport au système solaire
[145]. Cet effet impose d’ailleurs aujourd’hui la limite la plus contraignante sur la précision du test.
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F. 1.2: L’observation de deux paramètres post-kepleriens ( P! et 
 ) permet de mesurer les masses du pulsar et de
l’étoile compagnon. La mesure d’un troisième effet relativiste (la décroissance de la période orbitale PP ) fournit alors
un test de la relativité générale. Figure adaptée de [417], avec la permission de C.Will.

trouve ainsi être confirmée à mieux que 0;2% (voir Fig. 1.2). Cette preuve indirecte acheva de
convaincre la communauté scientifique de l’existence des ondes gravitationnelles2, ouvrant ainsi
la voie à la construction des détecteurs interférométriques terrestres actuels, qui devraient nous
fournir la première preuve directe de l’existence de ces ondes (voir § 1.5 ci-après).

Historiquement, la validité de la formule (1.1) a elle-même été sujet à controverse.Ce résultat
a d’abord été obtenu par un argument heuristique de balance d’énergie à partir de la formule du
quadrupôle d’Einstein (cf. § 1.3 ci-après), appliquée par Peters et Mathews [329] au cas de deux
particules ponctuelles sur une orbite elliptique quasi-keplerienne. La balance d’énergie postule
que la décroissance de l’énergie de liaison gravitationnelle de la binaire— et donc la décroissance
de la période orbitale — est directement reliée au flux d’énergie emportée par les ondes gravita-
tionnelles. Quoique intuitif, cet argument ne découle pas des principes fondamentaux de la re-
lativité générale. La justification rigoureuse de l’applicabilité de la formule (1.1) au cas du pulsar
binaire remonte au travail séminal deDamour etDeruelle [135, 131, 149, 132], qui l’ont obtenue
à partir du calcul des équations du mouvement de la binaire développées dans l’approximation
post-newtonienne, jusqu’à l’ordre d’apparition des effets de réaction au rayonnement gravitation-
nel (voir chapitre 2). Ne faisant appel à aucune notionmal définie en relativité générale, ce travail
a mis fin à la controverse, permettant ainsi d’affirmer que l’observation de la décroissance de la
période orbitale du pulsar binaire PSR 1913+16 est en accord avec la prédiction de la la relativité
générale. Voir [234] pour de plus amples détails sur la controverse de la formule du quadrupôle.

²Depuis lors une dizaine d’autres pulsars binaires ont été découverts ; en particulier le double pulsar PSR J0737-
3039 promet de tester la relativité générale en champ fort avec une précision inégalée [249, 250].
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1.2 Cadre descriptif : champ faible
La théorie de la relativité générale relie la géométrie de l’espace-temps, mesurée par le tenseur

de courbure deRiemannR��˛ˇ , au contenu enmatière-énergie, caractérisé par le tenseur-énergie
impulsion T�� , via les équations d’Einstein3

R�� �
1

2
R g�� D

8�G

c4
T�� ; (1.2)

où R�� D g˛ˇR˛�ˇ� et R D g˛ˇR˛ˇ sont les tenseur et scalaire de Ricci respectivement. Ces
grandeurs géométriques sont fonctions de la seulemétrique d’espace-temps g��.x

�/, qui permet
de mesurer l’intervalle ds2 D g�� dx�

dx� entre deux événements. Les théories alternatives de
la gravitation postulent l’existence de champs supplémentaires propageant la gravité, comme par
exemple un champ scalaire � dans les théories tenseur-scalaire. À ce jour, la relativité générale a
passé avec succès tous les tests auquels elle a été soumise, en champ faible dans le système solaire,
et en champ fort avec les pulsars binaires (voir [417] pour une revue).

Équations d’Einstein linéarisées
En champ faible, il peut être conceptuellement fructueux de penser la métrique g�� comme

celle d’un espace-tempsplat deMinkowski faiblementperturbé ; dansun systèmede coordonnées
cartésien, on écrira donc

g�� D ��� C h�� ; (1.3)

où la métrique de Minkowski a pour composantes ��� D ��� D diag .�1; 1; 1; 1/, et la per-
turbation h�� vérifie jh��j � 1. Celle-ci peut être vue comme un champ se propageant en
espace-temps plat. En introduisant (1.3) dans l’expression explicite du tenseur de Ricci, et en ne
gardant que les termes linéaires dans la perturbation h�� , on obtient

R�� D �
1

2

�
��h�� � 2@.�H�/ C @�@�h

�
; (1.4)

où �� � ���@�@� D �c�2@2
t C � est l’opérateur d’alembertien en espace-temps plat, h �

���h�� désigne la trace de la perturbation, et H� � @�h�� sa divergence. On calcule de même
le scalaire de Ricci R en prenant la trace (minkowskienne à cet ordre) de l’équation (1.4). Le
tenseur d’Einstein résultant G�� � R�� �

1
2
Rg�� dépendant explicitement de la trace h, il est

commode d’introduire le perturbation dite « à trace renversée»

h�� � h�� �
1

2
���h ; (1.5)

car vérifiant h � ���h�� D �h. En termes de la variable h�� , les équations d’Einstein linéari-
sées prennent alors la forme

��h�� � 2@.�H �/ C ���@
�H � D �

16�G

c4
T�� : (1.6)

³Il est possible d’ajouter un terme de la formeƒg�� à l’équation (1.2), oùƒ est la constante cosmologique. Au
vu des observations actuelles, cette constante est non nulle, mais son effet est négligeable à l’échelle des phénomènes
que l’on va étudier dans la première partie de cette thèse. Nous l’introduirons de nouveau à partir du chapitre 8.
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Jauge harmonique
L’invariance par difféomorphisme x� ! x� C ��.x�/ de la relativité générale se traduit

par l’invariance de jauge h�� ! h�� � 2@.���/ C ���@��
� des équations d’Einstein linéarisées

(1.6). Mettant à profit cette invariance de jauge, il est toujours possible d’imposer la contrainte
dite de jauge harmonique (ou jauge de Lorenz4, ou encore jauge de de Donder)

H � � @�h�� D 0 : (1.7)

Celle-ci peut être vue comme la restriction à une classe particulière de systèmes de coordonnées
cartésiens. Dans cette jauge, les équations d’Einstein linéarisées (1.6) prennent donc la forme
simplifiée

��h�� D �
16�G

c4
T�� : (1.8)

Cette équation d’onde décrit la propagation à la vitesse de la lumière c de la perturbation h�� (ou
de manière équivalente h��), éventuellement générée par une source T�� , dans un espace-temps
plat ; il s’agit des ondes gravitationnelles. Dans le chapitre suivant, nous verrons comment traiter
les non linéarités des équations d’Einstein dans le même cadre conceptuel, où la métrique g��

est vue comme une déviation non linéaire de la métrique de Minkowski ��� .

Jauge transverse et sans trace
Considérons par simplicité un espace-temps vide de matière5, et se comportant « bien» à

l’infini spatial i0 [411]. La condition de jauge harmonique (1.7) ne fixe pas complètement le
système de coordonnées ; il reste des degrés de liberté non physiques associés au libre choix du
système de coordonnées. En particulier, on peut passer d’un système de coordonnées harmo-
niques à un autre en effectuant une transformation de jauge avec un vecteur de jauge �� satisfai-
sant ���

� D 0. Il est possible de choisir un tel vecteur de jauge de façon à imposer les quatre
contraintes supplémentaires

h0i D 0 ; (1.9a)

h D 0 : (1.9b)

La jauge est dite TTpour«transverse» et«sans trace». La perturbation à trace renversée (1.5)
coïncide alors avec la perturbation h�� , de sorte que la condition de jauge harmonique (1.7)
permet d’imposer h00 D 0 (on ignore la composante statique de l’onde gravitationnelle). Ainsi,
toute l’information physique sur les ondes gravitationnelles est contenue dans les composantes
spatiales hTT

ij .
Loin de la source, et sur des échelles petites par rapport à la distance à cette source, les ondes

gravitationnelles sont très bien approximées par des ondes planes. On peut toujours orienter les
axes du système de coordonnées cartésien de sorte que les ondes se propagent le long de l’un de

⁴Il s’agit du physicien danois Ludvig Lorenz, et nonduphysicien hollandaisHendrik Lorentz, dont les fameuses
transformations et la non moins fameuse force portent le nom.

⁵Dans le cas d’un espace-temps avec une source à support compact, il est également possible d’isoler les degrés
de liberté radiatifs du champ gravitationnel ; voir par exemple [179].
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ces axes, par exemple l’axe des z. La perturbation hTT
ij est alors fonction du temps retardé t � z=c

uniquement. La condition de jauge harmonique (1.7) impose hTT
iz D 0, de sorte que les deux

composantes indépendantes du champ de gravitation sont données par

hTT
xx D �hTT

yy D hC.t � z=c/ ; (1.10a)

hTT
xy D hTT

yx D h�.t � z=c/ : (1.10b)

Les quantités hC et h� sont les deuxmodes de polarisation de l’onde gravitationnelle.

Effets d’une onde gravitationnelle sur la matière

Considéronsdeuxparticules-test, c’est-à-dire deuxmasses soumises à la seule actionduchamp
gravitationnel, et n’influant pas elles-mêmes sur celui-ci. Dans un système de coordonnées de
Fermi ft;xig centré sur la ligne d’univers de l’une des particules, nous noterons � i la position
spatiale de la seconde. Dans un tel système de coordonnées, la métrique est plate à des correc-
tions quadratiques près, i.e. g�� D ��� C O.jxj2/, de sorte qu’en première approximation
L2 D ıij�

i�j coïncide avec la distance propre entre les deux particules.
L’équation de déviation des géodésiques permet alors de calculer l’évolution de la distance � i

lors du passage d’une onde gravitationnelle ; onmontre que lemouvement de la seconde particule
par rapport à la première obéit à l’équation6

d
2� i

dt2
D

1

2
@2

t hTT
ij �j ; (1.11)

où la perturbation est évaluée à l’origine spatiale du système de coordonnées. L’onde gravitation-
nelle hTT

ij peut donc être vue comme responsable de l’apparition d’une « force newtonienne »
modifiant la distance propre entre les deux particules au cours du temps. L’équation différentielle
(1.11) s’intègre aisément au premier ordre en hTT

ij , avec comme résultat

� i.t/ D � i.0/C
1

2
hTT

ij .t; 0/ �
j .0/ : (1.12)

Lors du passage d’une onde gravitationnelle d’amplitude typique h, la distance propre L entre
deux particules-test subit donc une variation relative de longueur ıL=L �

1
2
h. On parvient à la

même conclusion en considérant l’expression de l’intervalle d’espace-temps dans un système de
coordonnées TT.

Considérons une onde gravitationnelle purement sinusoïdale, de périodeT , et se propageant
le long de l’axe des z. Alors en introduisant l’équation (1.10) dans (1.12), on peut déterminer
successivement les effets des deux modes de polarisation hC et h� de l’onde sur la matière. Le
résultat est représenté schématiquement sur la Fig. 1.3, pour un anneau de matière initialement
au repos autour de la particule centrale.

⁶Ce résultat newtonien néglige les effets de retard dus à la propagation de l’onde, et n’est donc valable que
si la distance L entre les particules est négligeable devant la longueur d’onde � du rayonnement gravitationnel.
Cette condition est bien vérifiée par les détecteurs interférométriques terrestres de taille kilométrique (cf. § 1.5),
qui présentent leur maximum de sensibilité au voisinage de 102 Hz, de sorte que L � 10�3�.
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F. 1.3: Les effets respectifs des modes de polarisation hC (en haut) et h� (en bas) d’une onde gravitationnelle
sinusoïdale de période T , se propageant le long de l’axe de z, sur un anneau de particules-test initialement au repos.

1.3 Génération d’ondes gravitationnelles

Formule du quadrupôle

Considérons une source matérielle S à support compact, de masse M , de taille caractéris-
tiqueR, et décrite par un tenseur énergie-impulsionT�� . Nous supposerons la source faiblement
auto-gravitante, GM=.Rc2/ � 1, sans quoi les équations d’Einstein linéarisées (1.6) ne sont
plus valables, les corrections non linéaires � h2 ou plus ne pouvant plus être négligées. D’après
la troisième loi de Kepler, la vitesse interne caractéristique v de la source vérifie v2 � GM=R ;
une source faiblement auto-gravitante est donc également non relativiste, v � c.

L’équation d’onde (1.8) stipule que la source S génère une perturbation h�� de la métrique
de Minkowski. En jauge harmonique, chaque composante de la perturbation à trace renversée
s’exprime donc à l’aide d’une intégrale retardée :

h��.x; t/ D
4G

c4

Z
S

T��.x
0; t � jx � x0j=c/

jx � x0j
d

3x0 : (1.13)

Nous avons supposé des conditions d’absence d’ondes rentrantes venant de sources « à l’infini».
Utilisons un système de coordonnées transverse et sans trace (TT) centré sur la source S , et
plaçons-nous à grande distance r D jxj de celle-ci, c’est-à-dire r � R. Alors quelques ma-
nipulations algébriques [298] conduisent à la première formule du quadrupôle d’Einstein

hTT
ij .x; t/ D

2G

c4r

�
Pijkl.n/

d
2Qkl

dt2
.�/C O

�
1

c

��
C O

�
1

r2

�
; (1.14)

qui relie la forme d’onde hTT
ij .x; t/ au point x et à l’instant t , au moment quadrupolaire newto-
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nien (et sans trace) de la source

Qij .t/ D

Z
S
�.x0; t/

�
x0

ix
0
j �

1

3
ıij x

02

�
d

3x0 (1.15)

à l’instant retardé � � t � r=c. La densité de masse newtonienne de la source est donnée en
première approximation par � D T 00=c2. L’opérateur de projection transverse et sans trace
Pijkl D PikPjl �

1
2
PijPkl est défini à partir du projecteur Pij D ıij � ninj sur le plan

orthogonal à la direction n D x=r . À des ordres d’approximation post-newtoniens plus élevés,
i.e. en incluant des corrections en puissances de 1=c, la formule (1.14) fait intervenir des mo-
ments multipolaires d’ordre de multipolarité plus élevés que le quadrupôle : l’octupôle de masse,
le quadrupôle de courant, etc. [400, 65].

Flux d’énergie gravitationnelle
Lorsque la longueurd’onde typiquedes ondes gravitationnelles� est très petite devant l’échelle

caractéristiquede variationde la courburede l’espace-tempsR, onpeutdéfinir un tenseur énergie-
impulsion (effectif ) associé aux ondes gravitationnelles : le tenseur d’Isaacson [97, 217, 218]

t�� �
c4

32�G

˝
@�hTT

ij @�hTT
ij

˛
; (1.16)

les crochets h�i indiquant une moyenne sur plusieurs longueurs d’onde (voir par exemple [108]
pour plus de détails). C’est d’ailleurs cette séparation d’échelle qui permet de définir la notion
d’onde gravitationnelle. Une perturbation de l’espace-temps plat de Minkowski correspond au
cas limiteR ! C1. En introduisant la première formule du quadrupôle d’Einstein (1.14) dans
l’expression de la composante 00 du tenseur d’Isaacson, et en intégrant le résultat sur une sphère
entourant la source S , on trouve la seconde formule du quadrupôle d’Einstein, qui relie le flux
d’énergieL émis par la source sous formed’ondes gravitationnelles, ou luminosité gravitationnelle,
au moment quadrupolaire (1.15) selon

L D
G

5c5

�
d

3Qij

dt3

d
3Qij

dt3
C O

�
1

c2

��
: (1.17)

Ordres de grandeur
Afin d’estimer grossièrement la puissance qu’une source quelconque est susceptible d’émettre

sous forme d’ondes gravitationnelles, effectuons un calcul d’ordre de grandeur. D’après les Éqs.
(1.15) et (1.17), une source périodique de fréquence caractéristique! et demasse M est suscep-
tible d’émettre une luminosité gravitationnelle caractéristique

L �
G

5c5
.2!/6M 2R4s2 ; (1.18)

où s est un facteur d’asymétrie mesurant l’écart de la distribution de matière de la source à la sy-
métrie sphérique (typiquement s . 1 avec s D 0 pour une source à symétrie sphérique). On
peut aisément se convaincre à l’aide de cette formule qu’aucune source terrestre ne peut rayonner
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une quantité appréciable d’ondes gravitationnelles, de sorte que pour espérer détecter ces ondes,
il faut se tourner vers des sources d’origine astrophysique. Introduisant l’échelle relativiste de puis-
sance c5=G D 3;6�1052 Wet la vitesse caractérique v � R! de la source, on calcule aisément
au prix de quelques réarrangements la formule alternative7

L �
16

5

c5

G

�v
c

�6
�

2GM

Rc2

�2

: (1.19)

Cette expression indique clairement que dans le cas d’une source compacte (de taille caractéris-
tique R voisine de son rayon de Schwarzschild 2GM=c2) et relativiste (de vitesse caractéristique
v voisine de c), la puissance émise sous forme d’ondes gravitationnelles est de l’ordre de 1053 W,
soit plus de 1026 fois la luminosité du Soleil dans le domaine électromagnétique ! Il s’agit donc
là potentiellement d’un des mécanismes les plus énergétiques connus.

Un calcul d’ordre de grandeur semblable dans le cas de la première formule du quadrupôle
(1.14) permet d’estimer qu’à une distante r de la source, l’amplitude des ondes gravitationnelles
est de l’ordre de

h �
8GM

rc2

�v
c

�2

: (1.20)

L’amplitude des ondes est donc d’autant plus grande que la source est massive et son mouvement
relativiste. Pour une source astrophysique relativiste typique (v . c et M � 10Mˇ) dans
l’Univers proche (r � 200 Mpc), on trouve ainsi h . 10�21. D’après l’équation (1.12), le pas-
sage d’une onde gravitationnelle d’amplitude typique h induit une variation relative de longueur
entre deux particules tests

ıL

L
�

1

2
h ; (1.21)

de sorte que la détection des ondes gravitationnelles est un véritable défi technologique, toutefois
en passe d’être relevé (cf. § 1.5).

Les formules du quadrupôle (1.14) et (1.17) telles que présentées ici dans l’approximation
linéaire ne sont en fait valables que pour des sources non auto-gravitantes, c’est-à-dire dont la dy-
namique n’est pas dominée par leur propre gravité. En effet, la conservation du tenseur énergie-
impulsion à l’ordre linéarisé, @�T �� D 0, impose à la matière de la source de suivre des géodé-
siques de l’espace-temps de Minkowski. En toute rigueur, les calculs précédents ne peuvent donc
pas être appliqués à la génération d’ondes gravitationnelles par les systèmes binaires stellaires.
Mais l’extension au cas faiblement auto-gravitant — où la dynamique orbitale de la binaire est
newtonienne — laisse le résultat inchangé ; elle sera décrite au chapitre suivant, où nous consi-
dérerons l’effet des non linéarités du champ gravitationnel.

Remarquons enfin qu’une description précise de la forme d’onde émise par les systèmes bi-
naires compacts coalescents nécessite l’extension des équations (1.14) et (1.17) à des ordres post-
newtoniens plus élevés8. Ils s’agit là d’une tâche longue et complexe, nécessaire à la détection et
l’analyse des ondes gravitationnelles en provenance de ces sources, et qui a été en grande partie
menée à bien (voir chapitre 2).

⁷On posera s D 1 en se souvenant que la source doit être fortement asymétrique.
⁸Bien que décrivant un effet relativiste, les formules du quadrupôle d’Einstein sont newtoniennes, au sens où

elles ne font intervenir que le moment quadrupolaire newtonien (1.15), et les équations du mouvement newto-
niennes de la source, utilisées dans l’évaluation des dérivées temporelles.
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1.4 Sources astrophysiques et cosmologiques

Dans la perspective de la détection des ondes gravitationnelles, il est crucial de connaître la
fréquence caractéristique du signal attendu en plus de son amplitude. La dynamique de la plupart
des sources d’ondes gravitationnelles est dominée par leur propre gravité. Par conséquent, la fré-
quence typique des ondes émises est donnée par l’inverse du temps d’effondrement gravitationnel
de ces systèmes, à savoir

f �
p

G N� ; (1.22)

où N� D M=R3 est la densité moyenne d’une source demasse M et de taille caractéristique R. À
titre d’exemple, dans le cas de la coalescence d’un binaire compacte conduisant à la formationd’un
trou noir, R & 2GM=c2, de sorte que f . c3=.GM /. La fréquence des ondes émises est donc
d’autant plus basse que leur source est massive. Le spectre des ondes gravitationnelles s’étend de
10�16 Hzpour les ondes gravitationnelles générées pendant la phase d’inflation cosmique jusqu’à
quelques 104 Hz pour les systèmes binaires coalescents d’étoiles à neutrons.

La nature périodique ou non du signal influe considérablement sur la stratégie de détection
des ondes gravitationnelles. Leurs sources sont donc fréquemment classées dans les trois catégo-
ries suivantes :

• Les sources périodiques (ou quasi-périodiques) qui sont bien localisées dans l’espace, et
émettent un rayonnement régulier et durable. On distingue la phase spiralante des sys-
tèmes binaires compacts (trous noirs ou étoiles à neutrons), et les oscillations individuelles
de ces mêmes objets (trou noir perturbé résultant de la fusion de deux objets compacts,
ou étoile à neutrons en rotation rapide).

• Les sursauts (bursts en anglais) sont également des sources bien localisées dans l’espace,
mais qui émettent une bouffée très brève d’ondes gravitationnelles. On distingue la coa-
lescence des systèmes binaires compacts des supernovæ à effondrement de cœurs.

• Les fonds stochastiques, générés par de très nombreuses sources non cohérentes entre
elles. On distingue la contribution des systèmes binaires de naines blanches galactiques de
celles de diverses sources plus spéculatives d’origine cosmologique (inflation, transition de
phase dans l’Univers primordial, cordes cosmiques, etc.).

Nous allons par la suite présenter succintement quelques-unes de ces sources, sans nous tenir
à une classification aussi rigide.

Systèmes binaires compacts coalescents

Les systèmes binaires compacts coalescents sont formés de deux objets compacts de masses
comparables, et résultent de l’évolution de systèmes binaires d’étoiles massives (M & 10Mˇ).
Les objets compacts en question sont des étoiles à neutrons ou des trous noirs demasse stellaire9.
La masse d’une étoile à neutrons est voisine de la masse de Chandrasekhar, soit environ 1;4Mˇ.
Lamasse d’un trou noir résultant de l’effondrement du cœur d’une étoilemassive est typiquement
de l’ordre de 10Mˇ. D’après l’estimation (1.22), la fréquence des ondes gravitationnelles émises
par une binaire d’étoiles à neutrons (resp. de trous noirs) juste avant coalescence est donc voisine

⁹Les naines blanches sont également des objets compacts.Mais les binaires de naines blanches ne coalescent pas,
au sens où elles n’admettent pas de dernière orbite stable en raison de leur grande taille, de l’ordre du rayon terrestre.
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F. 1.4: Schéma décrivant les trois stades de l’évolution d’un système binaire de trous noirs : (i) le lent spirale-
ment adiabatique est suivi de (ii) la phase de fusion, rapide et fortement non linéaire, après quoi (iii) le trou noir
nouvellement formé relaxe vers un trou noir de Kerr en émettant des modes quasi-normaux. Adapté de K.orne.

de 104 Hz (resp. 103 Hz). L’évolution temporelle des systèmes binaires compacts coalescents est
couramment divisée en trois phases (voir la Fig. 1.4) :

• La phase de spiralement, au cours de laquelle les deux corps suivent des orbites elliptiques
sur un temps dynamique, mais voient leurs paramètres orbitaux évoluer de manière adia-
batique en raison de la force de réaction au rayonnement gravitationnel. L’orbite est ra-
pidement circularisée par l’émission d’ondes gravitationnelles, qui emportent du moment
cinétique orbital [328]. Les développements post-newtoniens sont particulièrement bien
adaptés au traitement de cette phase (voir chapitre 2).

• La phase de fusion, très rapide et fortement non linéaire. En principe, seule la relativité
numérique — où l’espace-temps est entièrement simulé sur grille — permet de calculer
avec exactitude (moyennant l’erreur numérique) la forme d’onde durant cette phase ; voir
par exemple [342, 213] pour des revues détaillant les progrès récents dans ce domaine.

• La phase de vibration, au cours de laquelle le trou noir nouvellement formé rayonne des
ondes gravitationnelles sous forme de modes quasi-normaux, de façon à relaxer vers un
trou noir de Kerr. La théorie des perturbations d’un trou noir fournit une description ana-
lytique de cette dernière phase (voir chapitre 3).

Les systèmes binaires d’étoiles à neutrons sont les sources d’ondes gravitationnelles les plus
prometteuses pour le réseau de détecteurs interférométriques terrestres (voir § 1.5). Les modèles
d’évolution stellaire prédisent un taux de coalescence compris entre quelques événements et plu-
sieurs centaines d’événements par an dans une sphère de rayon 200Mpc autour de notre galaxie10

[267]. Cela représente au moins quelques détections par an pour la future génération de détec-
teurs interférométriques terrestres [1]. Les taux de coalescences de binaires mixtes ou de trous
noirs sont bien plus incertains. Voir le tableau 1.1 pour plus de détails.

¹⁰Le premier chiffre représente une borne inférieure, déduite de l’observation de pulsars binaires dans notre
galaxie, comme par exemple PSR 1913+16.
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Systèmes binaires de trous noirs super-massifs

Un nombre croissant d’observations indique que le centre de chaque galaxie massive abrite
très probablement un trounoir dit super-massif dont lamasse, comprise entre106Mˇ et109Mˇ

[346], est fortement corrélée aux propriétés du bulbe galactique [171, 187]. Par ailleurs, de nom-
breux indices suggèrentque les galaxies croissent essentiellementpar fusion au cours de l’évolution
cosmologique. Une telle fusion de galaxies conduit au rapprochement de leurs trous noirs super-
massifs respectifs par friction dynamique avec le milieu galactique jusqu’à une distance � 1 pc.
Si les processus astrophysiques d’interaction avec les étoiles environnantes parviennent à réduire
cette distance d’un facteur � 100, alors la binaire finit par coalescer en une durée de l’ordre d’un
temps de Hubble par émission de rayonnement gravitationnel [293].

L’évolution des systèmes binaires de trous noirs super-massifs est qualitativement identique
à celle des binaires de trous noirs de masses stellaires (cf. Fig. 1.4). Quantitativement, les gran-
deurs physiques pertinentes (amplitude et fréquence des ondes, luminosité gravitationnelle, etc.)
doivent être ajustées en fonction de la masse de la source. Ainsi, d’après l’estimation (1.22), la fré-
quence des ondes gravitationnelles émises par un système binaire de trous noirs super-massifs est
comprise entre 10�5 Hzet 10�2 Hz juste avant la coalescence.Ces sources sont donc de très bons
candidats pour le détecteur interférométrique spatial LISA (voir § 1.5). De plus, en raison de leur
très grandemasse, LISA pourra les détecter jusqu’à des décalages spectraux z cosmologiques avec
un très grand rapport signal sur bruit.

Le nombre de coalescences détectables par LISA jusqu’à z D 10 � 12 est estimé entre
quelques dizaines et quelques centaines au cours des trois ans de la mission [372] ; le nombre
exact de coalescences observées permettra de contraindre les scénarios de croissance des trous
noirs super-massifs. Par ailleurs, la détection de ces ondes gravitationnelles donnera accès à la
distance-luminosité de leur source, tandis que l’observation d’une éventuelle contre-partie op-
tique permettra de mesurer le décalage spectral de l’événement. L’observation de coalescences de
binaires de trous noirs super-massifs par LISA ouvre donc la voie à une cosmologie de précision
basée sur l’astronomie gravitationnelle [368, 130].

De manière générique, les ondes gravitationnelles émises par de telles sources emportent de
la quantité de mouvement, de sorte que par conservation de la quantité de mouvement totale, le
trou noir super-massif résultant de la fusion est susceptible d’être éjecté de sa galaxie hôte ; il s’agit
de l’effet de recul gravitationnel, dont les conséquences astrophysiques sont potentiellement très
importantes ; voir le chapitre 7 pour plus de détails.

Binaires à rapport de masses extrême

Par le jeu des interactions gravitationnelles à trois corps, un trou noir super-massif parvient
occasionnellement à capturer un astre compact orbitant dans le voisinage du cœur galactique.
Cet objet compact demasse stellaire, typiquement comprise entre 1;4Mˇ et 10Mˇ, orbite alors
autour du trou noir super-massif sur une orbite fortement elliptique [8]. Il se forme une binaire
spiralante à rapport de masses extrême, ou EMRI pour ExtremeMass Ratio Inspiral en anglais.

Les EMRIs sont parmi les sources d’ondes gravitationnelles les plus prometteuses pour le
détecteur interférométrique spatial LISA [8]. La fréquence de telles captures est estimée à une
par an dans une sphère de rayon 1 Gpc autour de la Terre [376]. L’intégration du signal au cours
de la dernière année avant coalescence devrait suffir pour détecter ces sources avec un rapport
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signal sur bruit supérieur à 10 ; le nombre exact dépend beaucoup de la masse et du spin du trou
noir super-massif, ainsi que de la masse de l’astre compact [175].

La forme d’onde générique résultant du mouvement du petit corps compact dans le champ
gravitationnel du trou noir super-massif est particulièrement complexe ; voir la Fig 3.1 pour une
illustration. Ces ondes gravitationnelles encodent donc une mine d’informations sur l’espace-
temps fortement relativiste au voisinage du trou noir super-massif. Leur détection permettra
de tester la relativité générale en champ fort, et en particulier le théorème de calvitie des trous
noirs11, avec une précision inégalée [352, 353]. Les chapitres 4 et 5 apportent une contribution
à la modélisation de ces sources d’ondes gravitationnelles.

Effondrements gravitationnels et supernovæ

Les supernovæde type II, Ib et Ic résultent de l’effondrement gravitationnel de cœurs d’étoiles
massives très évoluées. Les modèles théoriques et l’observation de la supernova SN 1987A sug-
gèrent que � 99% de l’énergie potentielle gravitationnelle libérée lors de l’effondrement est
convertie en neutrinos, � 1% en énergie cinétique de l’éjecta, et une fraction � 10�4 en rayon-
nement électromagnétique.

La simulation des supernovæ à effondrement de cœurs est un domaine très actif de l’astrophy-
sique numérique. Cependant, la complexité du problème ne permet pas encore d’inclure toute
la physique mise en jeu : relativité générale, magnéto-hydrodynamique relativiste, transports des
neutrinos et radiatif, traitementmicrophysique des interactions nucléaire et faible, etc. Les simu-
lations actuelles ont d’ailleurs beaucoup de difficulté à inverser le flot de matière afin de produire
une explosion en accord avec la puissance et les courbes de lumière des supernovæ observées ; le
mécanisme (ou la combinaison de mécanismes) responsable de l’explosion demeure inconnu.

Historiquement, ces supernovæ figuraient parmi les sources d’ondes gravitationnelles les plus
prometteuses [174]. Les premières estimations de l’amplitude des ondes ainsi générées et de la
luminosité gravitationnelle se sont toutefois avérées trop optimistes. Les simulations numériques
récentes montrent que la dynamique de l’effondrement gravitationnel et du rebond présente un
faible écart à la symétrie sphérique, de sorte que seule une fraction comprise entre 10�7 et 10�5

de l’énergie disponible est convertie en ondes gravitationnelles [303].
Celles-ci interagissant très peu avec la matière, elles nous parviennent essentiellement telles

qu’engendrées au cœur de l’étoile, et contiennent donc de précieuses informations sur la dy-
namique de l’effondrement gravitationnel, informations auquelles ni les photons, ni même les
neutrinos, ne permettraient d’accéder. Au vu de la faible amplitude des signaux attendus, il fau-
dra toutefois attendre la prochaine génération de détecteurs interférométriques terrestres pour
observer des supernovæ dans le groupe local de galaxies, à une distance � 1 Mpc, à raison de
quelques événements par siècle [317].

¹¹En relativité générale, le champ gravitationnel extérieur d’un trou noir stationnaire est entièrement caracté-
risé par les seuls masse, charge éléctrique, et moment cinétique intrinsèque (ou spin) du trou noir. Cette propriété
remarquable est à l’origine de la célèbre formule selon laquelle « les trous noirs n’ont pas de cheveux».
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Étoiles à neutrons en rotation

Les étoiles à neutrons résultant de l’effondrement de cœurs d’étoiles massives en fin de vie
sont, de manière générique, en rotation. Tout comme les étoiles ordinaires, les étoiles à neutrons
possèdent de nombreuses familles de modes propres de pulsation. Une grande diversité de pro-
cessus physiques peut conduire à l’instabilité d’un ou plusieurs de ces modes [11]. L’apparition
d’un moment quadrupolaire variable (ou de multipôles d’ordre de multipolarité plus élevé) ré-
sulte alors dans l’émission périodique ou quasi-périodique d’ondes gravitationnelles. Le signal at-
tendu est typiquement bien inférieur au niveau de bruit des détecteurs d’ondes gravitationnelles.
Mais comme le rapport signal sur bruit croît proportionellement à la racine carrée du nombre de
cycles observés, ces sources peuvent être détectées par la méthode de corrélation croisée, moyen-
nant un temps d’observation suffisamment long.

La surface des pulsars peut également être déformée par l’influence de leur fort champ ma-
gnétique, ou par des contraintes mécaniques s’exerçant sur la croûte [91, 231]. L’écart (relatif ) à
la symétrie axiale résultant est caractérisé par un paramètre d’ellipticité �, analogue au paramètre
s introduit dans l’Éq. (1.18). Les détecteurs interférométriques terrestres on déjà pu poser des
limites sur la taille de telles «montagnes». Ainsi, en supposant que la décroissance observée de
la période de rotation du pulsar du Crabe, PSR J0534+2200, est entièrement due à la perte de
moment cinétique engendrée par l’émission d’ondes gravitationnelles, on a pu poser la contrainte
� < 1;8 � 10�4 pour ce pulsar12 [2].

La détection d’ondes gravitationnelles en provenance d’étoiles à neutrons en rotation nous
renseignera sur la structure interne de ces objets compacts, et en particulier sur l’équation d’état
de la matière à très haute densité (supérieure à 4 fois la densité nucléaire) [205], impossible à
mesurer sur Terre.

Fonds stochastiques d’origines cosmologiques

L’émission de rayonnement gravitationnel par de très nombreuses sources incohérentes entre
elles est responsable de l’apparition d’un fond stochastique d’ondes gravitationnelles. De nom-
breux mécanismes physiques plus ou moins spéculatifs en cosmologie primordiale sont suscep-
tibles de produire de tels fonds stochastiques : inflation cosmique, transition de phase du premier
ordre, cordes cosmiques, etc. Voir par exemple [7, 274, 103] pour quelques revues sur le sujet.

Le contenu spectral et énergétique d’un fond stochastique est fréquemment caractérisé par
la grandeur adimensionnée

�OG.f / D
f

�c

d�OG

df
; (1.23)

où f est la fréquence des ondes, d�OG=df la densité d’énergie par intervalle de fréquence, et
�c D 3H 2

0 =.8�G/ la densité critique de l’Univers (cf. chapitre 8), avec H0 la constante de
Hubble actuelle. La contribution d’un fond stochastique au budget énergétique de l’Univers est
donnée par l’intégrale�OG D

R
�OG.f / d.ln f /. De manière générale, les spectres�OG.f /

de fonds stochastiques produits par des mécanismes physiques distincts présentent des caracté-
ristiques différentes (fréquence et amplitude dumaximum, pentes avant et après lemaximum), ce

¹²Ce résultat présuppose un certainmodèle pour le pulsar ; en particulier la valeur de sonmoment d’inertie, ainsi
que le rapport entre la fréquence de rotation et la fréquence des ondes gravitationnelles émises.
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qui permettra en principe de les distinguer lors de leur éventuelle détection. L’absence de détec-
tion par les antennes gravitationnelles terrestres LIGO/VIRGO a déjà permis de poser la limite
�OG.f / < 6;9 � 10�6 (intervalle de confiance à 95%) au voisinage de 100 Hz [3], ce qui re-
présente une amélioration notable des bornes supérieures inférées de l’observation du fond diffus
cosmologique et de la théorie de la nucléosynthèse primordiale.

Le paradigme inflationnaire prédit l’existence d’un fond stochastique d’ondes gravitation-
nelles primordiales, générées à partir des fluctuations quantiques de la composante tensorielle
du champ gravitationnel, et dont la longueur d’onde a été dilatée jusqu’à des échelles macrosco-
piques lors de la phase d’inflation cosmique [257]. Dans les modèles d’inflation les plus simples,
le spectre des ondes gravitationnelles ainsi générées est presque invariant d’échelle, tout comme
le spectre des perturbations scalaires générées par l’inflaton. La détection directe de ces ondes,
ainsi que la verification d’une relation de cohérence entre les indices spectraux des perturbations
scalaires et tensorielles, sont des tests cruciaux du paradigme inflationnaire.

En raison de la très faible interaction des gravitons avec la matière et le rayonnement, ces
ondes gravitationnelles se sont découplées très tôt du plasma primordial. L’observation du fond
stochastique associé par les détecteurs terrestres LIGO/VIRGO (resp. spatial LISA) ouvrirait
ainsi une fenêtre sur la physique de l’Univers primordial, quelques 10�22 s (resp. 10�14 s) après
le Big-Bang.

1.5 Détection des ondes gravitationnelles
Le fonctionnement de la plupart des détecteurs d’ondes gravitationnelles est basé sur la me-

sure d’une variation de distance propre entre deux masses-test (cf. § 1.2). L’amplitude typique
de l’effet induit lors du passage d’une onde gravitationnelle étant extrêmement faible, il convient
d’atténuer les sources de bruit, et d’amplifier le signal par divers protocoles expérimentaux. Pour
la majorité des sources d’ondes gravitationnelles, ces précautions ne suffisent pas pour extraire le
signal du bruit ; il est nécessaire de connaître la forme du signal par avance, et de corréler les pa-
trons d’ondes ainsi construits avec la sortie du détecteur. Cette dernière remarque justifie l’intérêt
(pratique) des travaux présentés dans les chapitres 4, 5 et 6.

Barres résonantes

La toute première tentative dedétectiondirecte des ondes gravitationnelles remonte audébut
des années 60, lorsque JosephWeber amis au point les premières barres résonantes, dont il établit
au préalable le principe de fonctionnement [412]. Son travail de pionnier, à une époque où l’on en
savait encore très peu sur les possibles sources d’ondes gravitationnelles, a conduit par la suite au
développement de barres plus sophistiquées. Les barres résonantes sont des cylindresmétalliques
(alliages à base d’aluminium) de quelques tonnes, dont les caractéristiques géométriques sont
déterminées de façon à ce que les fréquences de résonance (typiquement deux) soient voisines de
1 kHz, fréquence caractéristique attendue pour de nombreuses sources d’ondes gravitationnelles.

Le passage d’une onde gravitationnelle induit une modification de la longueur propre de la
barre, conformément à l’Éq. (1.21). Celle-ci est mesurée à l’aide de transducteurs qui conver-
tissent la contrainte mécanique en signal électrique, qui est ensuite amplifié. L’effet est d’autant
plus important que la fréquence de l’onde gravitationnelle est voisine de l’une des fréquences de
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résonance de la barre. La bande passante de ces détecteurs est étroite : de l’ordre de 100Hz autour
des fréquences de résonance.Afind’augmenter la sensibilité des barres résonantes, il est nécessaire
de réduire les principales sources de bruit : le bruit de conversion du signal acoustique en signal
électrique, et le bruit thermique dû à l’agitation des atomes de la barre ; ce dernier est diminué en
refroidissant les barres à très basse température, typiquement entre 100 mK et quelques K.

À l’heure actuelle, trois barres sont en fonctionnement, i.e. prennent des données ou sont
«mises à jour » : AURIGA [22] et NAUTILUS [306] en Italie, près de Padoue et de Rome
respectivement, et EXPLORER [165] au CERN, en Suisse. Leur sensibilité permet de détec-
ter des sursauts d’amplitude typique h � 10�19 [167]. Cette sensibilité autorise en principe
l’observation de la supernova du siècle13, ou la coalescence d’une binaire compacte située dans
l’amas local. Les recherches actuelles s’orientent vers des masses résonantes de forme sphérique
(les projetsMiniGRAIL [294] près de Leiden, enHollande, et le détecteur«Mário Schenberg»
[201] à São Paulo, au Brésil) qui présentent l’avantage de pouvoir détecter des ondes gravita-
tionnelles dans toutes les directions, et de mesurer leur position avec précision, ainsi que vers les
résonateurs doubles, dont la bande passante est de l’ordre du kHz [115].

Interféromètres au sol

Les détecteurs interférométriques d’ondes gravitationnelles sont essentiellement des interfé-
romètres de Michelson-Morlay, dont les bras mesurent de quelques centaines de mètres à plu-
sieurs kilomètres de long : un faisceau laser est scindé en deux par un miroir séparateur semi-
réfléchissant ; les faisceauxorthogonaux résultants parcourent chacununbras de l’interféromètre,
puis sont recombinés sur une photodiode, où l’on observe une figure d’interférence (cf. Fig. 1.5).
Le passage d’une onde gravitationnelle affecte différemment la longueur des bras, induisant ainsi
une variation de chemin optique, qui se traduit par un écart à la frange sombre, sur laquelle est ré-
glé l’interféromètre «au repos». L’utilisation de cavités Fabry-Perot dans chaque bras permet de
multiplier par un facteur � 100 la distance parcourue par les photons avant qu’ils n’interfèrent.
On gagne ainsi deux ordres de grandeur sur le sensibilité de la mesure, proportionnelle à la taille
effective des bras.D’après l’estimation (1.21), la détectiond’uneonde gravitationnelle d’amplitude
typique h � 10�21 par un interféromètre de taille physique L D 2 km requiert tout de même
de parvenir à mesurer une variation de longueur ıL � 10�16 m, soit un dixième de la taille d’un
noyau atomique14 !

Les interféromètres sont des détecteurs large bande, de bande bassante typiquement com-
prise entre 10 Hz et quelques kHz. Le maximum de sensibilité se situe entre 100 Hz et 500 Hz.
Cette large bande passante permet d’étudier de nombreuses sources d’ondes gravitationnelles,
parmi lesquelles les systèmes binaires d’objets compacts de masses stellaires, les supernovæ, et les
étoiles à neutrons en rotation (cf. § 1.4). La bande passante des détecteurs interférométriques ter-
restres est contrainte par trois principales sources de bruit : le bruit sismique à basse fréquence, le
bruit de comptage de photons, ou bruit de grenaille (shot noise en anglais) à haute fréquence, et
le bruit thermique à fréquence intermédiaire. La réduction de ces bruits requiert l’utilisation de

¹³C’est ainsi qu’est surnommée la prochaine supernova qui aura lieu dans notre galaxie, la physique stellaire pré-
disant un taux moyen de deux supernovæ par siècle dans les galaxies équivalentes à la Voie Lactée [55].

¹⁴Cette ambition ne se heurte pas à la mécanique quantique, car la mesure de position est effectuée sur un degré
de liberté macroscopique : la position moyenne d’un miroir contenant un très grand nombre d’atomes.
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F. 1.5: Schéma de fonctionnement des détecteurs interférométriques terrestres d’ondes gravitationnelles. Les
caractéristiques techniques sont celles du détecteur franco-italien VIRGO. Adapté d’une figure tirée de la page Web
http://www.ego-gw.it/virgodescription/index.html.

suspensions antisismiques pour les miroirs, d’un laser stable de grande puissance (typiquement
quelques dizaines de Watts), d’un système de recyclage de la lumière, le tout fonctionnant sous
vide ; une véritable prouesse technologique est nécessaire afin de réaliser un exploit scientifique.

Il existe actuellement six interféromètres opérationnels répartis sur le globe :
• LIGO (Laser Interferometer Gravitational-wave Observatory) [265] regroupe trois inter-

féromètres situés sur le territoire américain : l’un à Livingston, en Louisiane, dont les bras
mesurent 4 km de long, et deux à Hanford, dans l’état de Washington, de 4 km et 2 km.

• VIRGO [410] est un interféromètre franco-italien de 3 km, situé à Cascina, près de Pise,
en Italie. Il est similaire aux détecteurs américains, mais bénéficie d’une isolation sismique
plus sophistiquée, ce qui lui confère une plus grande sensibilité à basse fréquence : sa bande
passante s’étend jusqu’à 10 Hz au lieu de 60 Hz pour LIGO.

• GEO [191] est un interféromètre germano-britannique de 600 m situé près de Hanovre,
en Allemagne. Malgré sa taille plus réduite, sa sensibilité est comparable, quoique infé-
rieure, à celle des détecteurs de taille kilométrique.Onydéveloppe les technologies d’avant-
garde ensuite implémentées sur les détecteurs de taille kilométrique.

• TAMA [394] est un interféromètre japonais de 300 m situé près de Tokyo, au Japon,
considéré comme un prototype en vue de la construction de l’interféromètre de taille ki-
lométrique LCGT (Large-scale Cryogenic Gravitational-wave Telescope) [260].

http://www.ego-gw.it/virgodescription/index.html
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Type de binaire LIGO (initial) LIGO (avancé)

EN-EN 2 � 10�4 � 7 � 10�1 1 � 4 � 102

EN-TN 2 � 10�3 � 7 � 10�2 9 � 4 � 102

TN-TN 0 � 2 0 � 8 � 103

T. 1.1: Les nombres de coalescences de systèmes binaires compacts observables par an par les détecteurs LIGO
(initial ou avancé), tels que prédits par les modèles d’évolution stellaire. Les incertitudes sur les processus astro-
physiques conduisant à la formation de systèmes binaires compacts se reflètent dans les incertitudes sur les taux de
coalescences attendus. Légende : EN pour étoile à neutrons, et TN pour trou noir. Tableau tiré de [46].

Le projet AIGO (Australian International Gravitational Observatory) [5] envisage la construc-
tion du premier détecteur interférométrique de taille kilométrique dans l’hémisphère sud, en
Australie. L’existence d’un réseau mondial d’antennes gravitationnelles présente de nombreux
avantages, parmi lesquels unemeilleure couverture du ciel, unemesure plus précise de la position
des sources, et la détection en coïncidence, qui facilite l’exclusion de faux candidats.

Les premières détections directes d’ondes gravitationnelles devraient avoir lieu grâce aux dé-
tecteurs interférométriques, en raison de leur sensibilité à des signaux d’amplitude h � 10�22,
trois ordres de grandeur supérieure à celle des barres résonantes. D’après le tableau 1.1, la détec-
tion d’une coalescence de binaire compacte est peu probable avec la première génération de dé-
tecteurs interférométriques (Initial LIGO et VIRGO), mais elle est pratiquement certaine avec
la seconde (Advanced LIGO et VIRGO+), le nombre d’événements attendus par an permettant
même de faire des statistiques sur les propriétés des sources.

Interféromètre spatial

Afin d’accéder à des fréquences inférieures à 10 Hz, il est nécessaire de s’affranchir du bruit
de gradient de gravité terrestre, et par conséquent d’utiliser un détecteur spatial. Le projet LISA
(Laser Interferometer Space Antenna) [268], développé conjointement par les agences spatiales
européenne (ESA) et américaine (NASA), consiste à envoyer dans l’espace trois satellites conte-
nant chacun deux masses-test en chute libre. Ces vaisseaux forment un triangle équilatéral de
5 � 106 km de côté, incliné de 60° par rapport au plan de l’écliptique, et dont le centre de masse
orbite autour du Soleil sur l’orbite terrestre, 20° derrière la Terre (voir Fig. 1.6). Cette configura-
tion permet (en première approximation) de conserver la forme triangulaire au cours du mouve-
ment orbital, le triangle effectuant une révolution autour du Soleil et une rotation sur lui-même
chaque année. La modulation du signal gravitationnel induite par le mouvement orbital du dé-
tecteur présente l’avantage de faciliter la localisation de la source.

Chaque satellite possède deux bras, chacun disposant d’une masse-test et d’un faisceau laser
pointant vers l’un des deux autres satellites. Le principe de détection des ondes gravitationnelles
est basé sur la mesure de la distance entre les masses-test à l’aide des six faisceaux lasers. Contrai-
rement au fonctionnement des interféromètres terrestres, la lumière laser n’est pas renvoyée d’un
satellite à l’autre à l’aide de miroirs15, mais reçue, asservie en phase, puis amplifiée avant d’être ré-

¹⁵La perte d’énergie causée par la diffraction du faisceau laser serait bien trop importante.
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F. 1.6: Vue schématique de l’orbite de LISA, un projet de détecteur interférométrique d’ondes gravitationnelles
dans l’espace. La taille des bras est magnifiée d’un facteur 10 sur cette illustration. Figure adaptée de [147].

émise. La configuration triangulaire de LISA permet de construire trois interféromètres de Mi-
chelson indépendants, autorisant ainsi la mesure directe des deux états de polarisation des ondes
gravitationnelles.

Les masses-test sont protégées des perturbations d’origine non gravitationnelles induites par
l’environnement (pression de radiation solaire, pression exercée par le vent solaire, etc.) à l’aide
des vaisseaux eux-mêmes grâce à un système de compensation de trainée : les vaisseaux corrigent
leurs positions en permanence à l’aide de micro-propulseurs16 de façon à suivre le mouvement
de chute libre des masses-test. La sensibilité de LISA est limitée par le bruit instrumental sur les
accéléromètres à basse fréquence, par la capacité à transmettre des signaux sur de si grandes dis-
tances à haute fréquence, et par le bruit de grenaille à fréquence intermédiaire ; voir par exemple
[147] pour plus de détails.

La bande de fréquence de LISA, typiquement comprise entre 10�4 Hz et 10�1 Hz, avec
un maximum de sensibilité vers 1 mHz, est complémentaire de celle des détecteurs terrestres.
LISA devrait donc détecter des ondes gravitationnelles en provenance de sources plus massives :
systèmes binaires de trous noirs super-massifs, EMRIs, et fonds stochastiques d’origines cosmo-
logiques. La sensibilité de cette antenne gravitationnelle est comparable à celle des détecteurs ter-
restres, mais les sources étant bien plus massives, elle observera de nombreux événements jusqu’à
des distances cosmologiques avec un rapport signal sur bruit de 1000, voire plus. LISA est pour
grande part une mission de physique fondamentale ; elle permettra de tester la description ein-
steinienne du rayonnement gravitationnel, d’explorer l’espace-temps en champ fort au voisinage
de trous noirs super-massifs grâce aux EMRIs, et de faire de la cosmographie : mesurer le taux
d’expansion de l’Univers, contraindre la variabilité temporelle de l’énergie noire, etc. [369].

¹⁶Un des enjeux technologiques majeurs du projet LISA est le developpement de réacteurs capables de délivrer
une poussée continue dans l’intervalle 0 � 100 µN, avec une résolution de 0;1 µN [284].
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La mission LISA Pathfinder, qui devrait être lancée courant 2014, vise à démontrer la faisa-
bilité technologique du projet. Si elle y parvient, alors LISA devrait voler aux alentours de 2020.

�
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L problème à deux corps, si simple à résoudre en gravitation newtonienne, n’admet pas de so-
lution exacte en relativité générale. Tout travail analytique doit alors tôt ou tard faire appel

à une approximation, où les équations d’Einstein sont typiquement développées en puissances
d’un«petit» paramètre. Dans ce chapitre, nous évoquons quelques généralités sur l’un des sché-
mas d’approximation les plus connus et fructeux en relativité générale : les développements post-
newtoniens, car l’ensemble de ce travail de thèse sur la modélisation des sources d’ondes gravita-
tionnelles est basé (à des degrés divers) sur cette méthode de résolution des équations d’Einstein.
Nous renvoyons le lecteur à la revue [61] pour de bien plus amples détails. On pourra également
se référer aux travaux historiques, parmi lesquels [269, 161, 180, 116, 119, 118].

2.1 Calculs de patrons d’ondes

La détection des ondes gravitationnelles relève de la prouesse technologique en raison de
la petitesse de l’effet à détecter : ıL=L �

1
2
h . 10�21. Les systèmes binaires d’objets com-

pacts (de masses stellaires) sont parmi les sources d’ondes gravitationnelles les plus prometteuses
pour les détecteurs interférométriques terrestres. La méthode d’analyse des données maximisant
les chances de détection d’une binaire compacte est la corrélation croisée : on calcule le produit
de convolution du signal de sortie du détecteur avec un patron d’onde, c’est-à-dire avec la pré-
diction théorique de la relativité générale, censée représenter le signal physique, le tout pondéré
par la fonction de réponse du détecteur (la puissance spectrale du bruit dans le détecteur), qui
rend compte de la plus ou moins grande sensibilité du détecteur selon la fréquence. Il est donc
nécessaire d’avoir en main une représentation théorique (sous forme analytique ou numérique)
aussi fidèle que possible du signal réel à détecter. Durant la phase de spiralement adiabatique
(voir Fig. 1.4), le mouvement orbital de la binaire, et l’émission d’ondes gravitationnelles qui en
résulte, peuvent être calculés avec grande précision grâce à l’une des grandes classes de schémas
d’approximation en relativité générale : les développements post-newtoniens.
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Développements post-newtoniens
Si la vitesse orbitale typique v de la source est faible devant celle de la lumière, v � c, et si

le potentiel gravitationnel U vérifie U � c2, alors on peut résoudre les équations d’Einstein en
cherchant une solution sous la forme d’un développement en puissances du «petit » paramètre
post-newtonien

"PN �
v2

c2
�

Gm

Rc2
; (2.1)

la dernière égalité valant pourun système auto-gravitantdemassem, et de taille caractéristiqueR.
Le domaine de validité de l’approximation post-newtonienne est limité à la zone proche r � �,
où� � cT � cR=v � R est la longueur d’onde typique des ondes gravitationnelles émises par
une source évoluant sur un temps caractéristique T . En effet, l’approximation post-newtonienne
traite systématiquement les effets de retard dus à la propagation des ondes comme de petites cor-
rections à une propagation instantanée, et par conséquent diverge dans la zone d’onde r & �,
comme l’illustre de manière schématique le développement post-newtonien d’une onde sphé-
rique scalaire retardée :

S
�
t �

r
c

�
r

D
S.t/
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�

1

c
PS.t/C

1

2c2
RS.t/ r �

1

6c3
«S.t/ r2

C � � � : (2.2)

Dans ce chapitre, nous garderons en tête l’application d’un formalisme général, valable pour une
source post-newtonienne quelconque, au cas d’un système binaire d’objets compacts.

Afin de produire des patrons d’onde de précision suffisante pour la détection et l’analyse des
ondes gravitationnelles émises durant la phase spiralante des binaires compactes, il est nécessaire
de pousser les calculs jusqu’à un ordre post-newtonien très élevé : au moins 3PN [126], c’est-à-
dire qu’il faut inclure toutes les corrections post-newtoniennes jusqu’à l’ordre 1=c6 inclus au-delà
du résultat newtonien. In fine, on souhaite disposer d’expressions pour l’amplitude et la phase des
deux états de polarisationhC eth� des ondes gravitationnelles en fonction du temps coordonnée
local t , en fonction des paramètres intrinsèques de la source (masses, spins, etc.) et des paramètres
extrinsèques (distance, position dans le ciel, etc.). En particulier, la connaissance de la phase or-
bitale �.t/ du système binaire à l’ordre, disons, 3.5PN est cruciale, le patron d’onde devant rester
en phase avec le signal physique durant toute la durée d’intégration par le détecteur.

L’effet dominant de la réaction au rayonnement gravitationnel sur le mouvement orbital
d’une source post-newtonienne intervient à l’ordre 2.5PN au-delà du résultat newtonien, c’est-
à-dire que la force gravitationnelle newtonienne est corrigée par une force de réaction au rayon-
nement proportionnelle à .v=c/5. Le travail effectué par cette force de freinage est responsable
d’une perte d’énergie orbitale, précisément égale à l’énergie emportée par les ondes gravitation-
nelles générées, telle que calculée à l’aide de la seconde formule du quadrupôle (1.17).

En utilisant la définition (1.16) du tenseur énergie-impulsion effectif associé aux ondes gra-
vitationnelles, on peut montrer que ces dernières emportent également du moment cinétique,
de sorte que la binaire se circularise très rapidement [328]. Lorsque la fréquence du signal com-
mence à entrer dans la bande passante des détecteurs interférométriques terrestres (f � 10 Hz/,
les deux corps sont déjà sur des orbites quasi-circulaires, c’est-à-dire qui seraient circulaires en
l’absence du spiralement adiabatique rentrant dû à la réaction au rayonnement. À titre d’exemple,
pour le pulsar binaire PSR 1913+16, on trouve ainsi une excentricité résiduelle e ' 5;3�10�6,
sachant que la valeur actuelle mesurée est e0 ' 0;617.
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Balance d’énergie
En principe, l’évolution de la phase orbitale �.t/ de la source à l’ordre 3.5PN peut se déduire

de la connaissance de toutes les corrections relatives jusqu’à l’ordre 3.5PN à la force de réaction
au rayonnement dominante à 2.5PN dans le mouvement de la source ; en pratique, le calcul des
corrections au mouvement newtonien jusqu’à l’ordre 6PN est une tâche insurmontable. Nous
sommes donc conduits à postuler la validité de l’équation de balance d’énergie1

dE

dt
D �L ; (2.3)

qui traduit le fait que l’énergie orbitaleE du système binaire décroît par émission d’ondes gravita-
tionnelles, ces dernières emportant avec elles une énergieL par unité de temps. Bien que le bilan
énergétique (2.3) paraisse «naturel» physiquement, il faut garder à l’esprit qu’il n’existe aucune
preuve générale de sa validité qui soit basée sur les principes fondamentaux de la relativité gé-
nérale. Cependant, cette relation a été vérifiée explicitement pour une source post-newtonienne
quelconque à l’ordre 1.5PN au-delà de la formule du quadrupôle d’Einstein [66, 59].

La détermination de la phase orbitale �.t/ à l’ordre 3.5PN requiert alors le calcul de la lu-
minosité gravitationnelle L émise par un système binaire compact à l’ordre 3.5PN au-delà de la
formule du quadrupôle d’Einstein, ainsi que le calcul de l’énergie de liaison gravitationnelle E de
la binaire à l’ordre 3PN (le terme 3.5PN étant nul pour une orbite quasi-circulaire). Le calcul de
la luminosité gravitationnelle L nécessite de généraliser les formules du quadrupôle d’Einstein
(1.14) et (1.17) à des ordres post-newtoniens élevés, et donc l’utilisation d’un formalisme de gé-
nération d’ondes capable de relier la perturbation de l’espace-temps de Minkowski en un point
quelconque aux moments multipolaires caractérisant la source. D’autre part, l’énergie de liaison
gravitationnelle E du système binaire s’obtient à partir des équations du mouvement, elles aussi
calculées à un ordre post-newtonien élevé. Nous allons présenter succinctement ces deux aspects
dans les paragraphes qui suivent. Pour des orbites quasi-circulaires, l’évolutionde la phase orbitale
�.t/ à l’ordre 3.5PN se déduit alors de l’équation de balance énergétique (2.3) selon

d�

dt
D �

L.�/
E0.�/

; (2.4)

où� D d�=dt est la fréquence instantanée de l’onde gravitationnelle telle que mesurée par un
observateur distant, et E0.�/ D dE=d�. Cette équation permet d’exprimer t sous forme d’un
développement en puissances de�. Inversant ce développement et intégrant� par rapport au
temps, on trouve ainsi l’évolution temporelle de la phase orbitale �.t/.

Pour un système binaire circularisé d’objets compacts sans spins, la phase de l’onde est connue
à l’ordre 3.5PN[77, 68], et les amplitudes desmodes de polarisation à l’ordre 3PN[78, 83, 18]. La
généralisation au cas d’orbites excentriques quasi-kepleriennes est connue à l’ordre 3PN [19, 20].
Pour des objets compacts en rotation, l’influence du couplage spin-orbite sur la phase de l’onde a
été calculée à l’ordre 1PN au-delà de l’effet dominant [170, 64] (voir également [21]).

¹Pour une orbite quasi-circulaire, la balance d’énergie est suffisante pour calculer la phase orbitale. Pour une
orbite elliptique quasi-keplerienne, il faut lui adjoindre la balance de moment cinétique.
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2.2 Équations d’Einstein sous forme relaxée
Nous choisissons de définir comme variable perturbative la quantité2

h��
�

p
�g g��

� ��� ; (2.5)

où g�� et g � det .g��/ sont respectivement l’inverse et le déterminant de la métrique cova-
rianteg�� . Tout comme dans le cas linéaire traité au chapitre 1, on choisit d’imposer la condition
de jauge harmonique

@�h��
D 0 : (2.6)

Onmontre alors que, généralisant le résultat (1.8), les équations d’Einstein en jauge harmonique
prennent la forme d’une équation d’onde inhomogène en espace-temps plat, à savoir

��h��
D

16�G

c4
jgj T ��

Cƒ�� : (2.7)

La perturbation h�� n’est toutefois plus générée uniquement par le tenseur énergie-impulsion
T �� de la source S , mais également par le pseudo-tenseur énergie-impulsion ƒ�� associé au
champ gravitationnel, et qui admet pour expression explicite, incluant toutes les non linéarités
(cf. Éq. (4.41) pour la généralisation à d dimensions d’espace)

ƒ��
D � h��@2

��h��
C @�h��@�h��

C
1

2
g��g��@�h��@�h��

� g��g��@�h��@�h��
� g��g��@�h��@�h��

C g��g��@�h��@�h��

C
1

8
.2g��g��

� g��g��/.2g��g�� � g��g��/@�h��@�h�� : (2.8)

Les équations d’Einstein en jauge harmonique écrites sous la forme exacte (2.7)–(2.8) sont dites
relaxées, car on cherche à les résoudre formellement sous forme de fonctionnelles des variables
décrivant la sourcematérielle. Lemouvementde cette dernière est alors donnépar la conservation
du tenseur énergie-impulsion, r�T �� D 0, dont on peut montrer qu’elle est équivalente à la
condition de jauge harmonique (2.6).

Cette formulation des équations d’Einstein est due à Landau et Lifshitz [256], et présente le
grand avantage de faire intervenir l’opérateur de propagation�� en espace-temps plat ; opérateur
que l’on sait (au moins formellement) inverser pour obtenir la perturbation h�� en fonction du
pseudo-tenseur énergie-impulsion ��� � jgj T �� C

c4

16�G
ƒ�� selon

h��.x; t/ D �
4G

c4

Z
R3

���.x0; t � jx � x0j=c/

jx � x0j
d

3x0 : (2.9)

Il faut toutefois prendre garde au fait que, contrairement au cas linéaire où l’intégration se fait
sur la source à support compact S uniquement, elle est ici à effectuer sur tout l’espace tridimen-
sionnel R3, car les non linéarités contenues dansƒ�� ne sont en général pas à support compact.
Un développement post-newtonien « naïf » de la source ��� du type (2.2) se heurte alors à

²On remarquera que dans l’approximation linéaire, la perturbation h�� ainsi définie coïncide avec l’opposé de
la perturbation à trace renversée introduite au chapitre 1 [cf. Éq. (1.5)].
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l’apparition d’intégrales divergentes à l’infini ; il s’agit là du célèbre problème de divergence IR
des intégrales intervenant dans les développements post-newtoniens.Nous rencontrerons ce pro-
blème et une solution possible (l’introduction d’un facteur régulateur afin de régulariser la source
à l’infini) au chapitre 4, lors du calcul de lamétrique d’espace-temps générée par deux objets com-
pacts modélisés par des particules ponctuelles de masses m1 et m2, à l’ordre 3PN.

La formulation (2.7)–(2.8), ou de manière équivalente (2.9), des équations d’Einstein se
prête bien à une résolution itérative, où l’on cherche une solution sous la forme d’un dévelop-
pement en puissances d’un paramètre perturbatif " (intensité de l’interaction gravitationnelle
G, inverse de la vitesse de la lumière 1=c, taille de la source L, etc.) du type

h��
D h

��

0 C " h
��

1 C "2 h
��

2 C � � � ; (2.10)

et où l’on détermine la perturbation au n ordre, h��
n , à partir de la connaissance des n � 1 ordres

d’approximation précédents h
��

0 ; � � � ; h
��

n�1. Une méthode efficace de résolution des équations
d’Einstein fait typiquement appel à un savant cocktail de tels schémas d’approximation (déve-
loppements post-newtonien, post-minkowskien, multipolaire, etc.).

2.3 Formalisme de génération d’ondes
Un formalisme de génération d’ondes est censé permettre le calcul de la perturbation3 h, pour

une source donnée, à partir des équations (2.7)–(2.8), ou de manière équivalente de l’équation
intégro-différentielle (2.9).Nous allons brièvementprésenter le formalismede générationd’ondes
développé par Blanchet et Damour [65, 56, 60] (voir [275] pour une présentation moins som-
maire et [61] pour une revue détaillée). Un autre formalisme de génération d’ondes reposant sur
des travaux antérieurs de Epstein et Wagoner [163] et orne [400] a été développé par Will,
Wiseman et Pati [418, 322]. L’équivalence entre ces deux formalismes a été démontrée en toute
généralité [61]. Schématiquement, les grandes lignes du formalisme de Blanchet etDamour sont
les suivantes (voir la Fig. 2.1 pour une illustration) :

(i) À l’extérieur de la source, c’est-à-dire pour r > R, la perturbation h est solution des
équations d’Einstein (2.7) dans le vide (T �� D 0). Elle y est développée sous la forme
d’une série multipolaire (opération que l’on notera symboliquement par un M) post-
minkowskienne G ! 0 du type

hext D M.h/ D
X
k>1

Gkhext
k : (2.11)

Les fonctions hext
k

sont calculées itérativement à l’aide d’intégrales retardées et régularisées
à l’origine (où le développement multipolaire diverge), en imposant la condition de sta-
tionnarité de la source dans le passé4. Ces fonctions dépendent d’un jeu de moments mul-
tipolaires dits canoniques5 fML;SLg dépendants du temps t , indéterminés à ce stade, et
caractérisant (à l’ordre linéaire en G) l’espace-temps à l’extérieur de la source.

³Dans ce paragraphe nous omettrons les indices spatio-temporels afin d’alléger les notations.
⁴Cette condition d’absence d’ondes gravitationnelles avant une date fixe dans le passé (t 6 T ) facilite beaucoup

l’implémentation du formalisme ; on vérifie à la fin que la limite T ! �1 garde un sens dans les applications.
⁵On utilise la notation standard L pour représenter collectivement un jeu de ` indices spaciaux i1 � � � i` .
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h

h M (h)

M (h) = M (h) 

r < λ

r = R

T μν

F. 2.1: Une source T �� de taille caractéristique R crée une perturbation h de la métrique de Minkowski, qui
admet un développement multipolaire post-minkowskien M.h/ à l’extérieur de la source (pour r > R), et un
développement post-newtonien h dans la zone proche r � �. Une source post-newtonienne émet des ondes gra-
vitationnelles de longueur d’onde typique � � R, de sorte qu’il existe une zone tampon R < r � � où l’on peut
identifier les deux développements, i.e.M.h/ D M.h/. Inspiré de [338].

(ii) Dans la zone proche r � �, la perturbationh est solutiondes équations d’Einstein (2.7)
avec source (T �� ¤ 0). Elle y est développée sous la forme d’une série post-newtonienne
(notée symboliquement avec une barre haute) c ! C1 du type

hzp D h D
X
n>0

c�nhzp
n : (2.12)

Les fonctions h
zp
n sont calculées itérativement à l’aide d’intégrales de Poisson instantanées

et régularisées à l’infini (où le développement post-newtonien diverge), et dépendent d’un
jeu de moments multipolaires dits sources fIL;JLg caractérisant la source6, et incluant
les non linéarités du champ gravitationnel dans la zone proche.

(iii) Dans le cas d’une source post-newtonienne, il existe une zone tampon R < r � � où
les deux développements sont valables, de sorte que l’égalité numériqueM.h/ D h D h

y est vérifiée. En se référant à la théorie du raccordement des séries asymptotiques [254],
on exige de plus que l’égalité fonctionnelle

M.h/ D M.h/ (2.13)

y soit également vérifiée, au sens des séries formelles. Cette équation de raccord impose
des relations fonctionnelles entre les coefficients hext

k
et h

zp
n des développements multipo-

laires post-minkowskien et post-newtonien. Elle permet d’établir le lien entre lesmoments

⁶Les fonctions h
zp
n dépendent également d’un jeu de moments multipolaires dits de jauge fWL;XL;YL;ZLg

associés au libre choix du système de coordonnées.
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multipolaires fIL;JLg caractérisant la source, et les moments multipolaires fML;SLg

décrivant l’espace-temps à l’extérieur de la source.
(iv) Dans un dernier temps, les moments canoniques fML;SLg sont reliés à des moments

multipolaires dits radiatifs fUL;VLg adaptés à la description du champ d’onde tel que
mesuré par un observateur lointain (en particulier dans un voisinage de J C). Le raccord
asymptotique permet donc in fine de relier le mouvement d’une source post-newtonienne
quelconque aux ondes gravitationnelles qu’elle génère, telles que mesurées par un obser-
vateur distant.

Nous utiliserons ce formalisme de génération d’ondes aux chapitres 4 et 5, lors d’une compa-
raison avec le formalisme de la force propre gravitationnelle, basé sur la théorie des perturbations
d’un trou noir (voir chapitre suivant).

2.4 Application au cas d’un système binaire compact

La construction de patrons d’ondes gravitationnelles pour les systèmes binaires d’objets com-
pacts requiert l’application du formalisme de génération d’ondes précédent au cas particulier
d’une telle source.Toutefois, celui-ci n’estapriori valable quepourdes sources post-newtoniennes,
c’est-à-dire dont le champ gravitationnel doit vérifier U � c2 partout, ce qui n’est pas le cas au
voisinage d’une étoile à neutrons ou d’un trou noir.

Il est possible de contourner ce problème en invoquant le fait que la théorie de la relativité
générale obéit au principe d’équivalence fort, qui étend le principe d’équivalence faible au cas des
corps dont l’énergie de cohésion gravitationnelle constitue une part importante de leur énergie
propre (comme par exemple la Terre et la Lune). Ainsi, aussi intense le champ gravitationnel
propre des objets compacts soit-il, le mouvement de chacun d’eux dans le champ gravitationnel
de l’autre ne peut dépendre que de leurs seules masses7 ; en particulier, il ne doit dépendre ni de
leur composition interne, ni de leur compacité, i.e. du paramètre � D Gm=.Rc2/, où m est la
masse de l’objet compact, et R sa taille caractéristique.

Plus quantitativement, cette propriété remarquable de la théorie d’Einstein a été vérifiée de
manière générale à l’ordre 1PN à l’aide du formalisme post-newtonien paramétrisé (voir par
exemple [416] pour une revue), ainsi qu’à l’ordre 2PN dans le cas particulier du mouvement
de deux étoiles modélisées par des boules de fluide à symétrie sphérique dans le référentiel iner-
tiel momentanément comouvant de chaque corps [202, 246]. Dans ce dernier cas, on montre en
effet qu’il est possible de renormaliser la masse de chaque corps de façon à absorber les termes
d’énergie interne et d’énergie potentielle propre, et leurs corrections post-newtoniennes, de sorte
que les équations post-newtoniennes résultantes s’expriment en fonction de ces seules masses re-
normalisées. (Voir également [299] pour une preuve de la renormalisation de lamasse d’un classe
de termes d’énergie propre dans les équations du mouvement à l’ordre 2PN dans le cas de boules
de fluide de forme quelconque.) Expérimentalement, le principe d’équivalence fort a été vérifié
à mieux que 2 � 10�13, grâce aux expériences de Lunar Laser Ranging permettant d’étudier le
mouvement de la Terre et de la Lune dans le champ gravitationnel du Soleil [417].

⁷Cela peut également se comprendre à l’aide du théorème de Birkhoff.
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Problèmes posés par l’utilisation de particules ponctuelles
Afin de simplifier les calculs, il est commode (et courant) de modéliser les deux objets com-

pacts par deux particules ponctuelles caractérisées par leurs seulesmasses m1 et m2. Cettemodé-
lisation pose toutefois deux problèmes conceptuels importants : (i) une description de la source
en termes de masses ponctuelles néglige les multipôles de chaque corps autres que le monopôle
(quadrupôle, octupôle, etc.), lesquels peuvent a priori avoir une influence importante sur lemou-
vement orbital, et donc sur la forme d’onde résultante8 ; de plus, (ii) l’utilisation de particules
ponctuelles en théorie des champs nécessite l’introduction d’une méthode de régularisation vi-
sant à soustraire le champ propre divergeant de chaque particule. Nous discuterons ce dernier
point plus en détails dans le § 2.5 dédié aux équations du mouvement.

Afin de simplifier la discussion du premier problème, considérons (seulement dans ce §) deux
objets compacts demêmemasse m et de taille caractéristique R, séparés par une distance typique
D. L’effet dominant sur le mouvement de la source des multipôles d’ordres plus élevés que le
monopôle est dû au quadrupôle induit : le champ de marée de l’un des corps est responsable
de l’apparition d’une déformation relative � � .R=D/3 sur le second corps, de sorte que le
quadrupôle induit Q � mR5=D3 du second corps est à l’origine d’une force quadrupolaire
induite Fquad � Gm2R5=D7 sur le mouvement du centre de masse du premier corps ; cette
force est comparativement d’ordre Fquad=Fnewt � .R=D/5 par rapport à la force newtonienne
Fnewt � Gm2=D2. Pour des corps compacts, R � Gm=c2, de sorte que cette correction est
formellement d’ordre 5PN.

Cette correction d’ordre post-newtonien très élevé est négligeable durant la majeure partie
du mouvement orbital de la binaire d’objets compacts, et ne commence à se faire sentir que lors
des dernières orbites, juste avant la fusion des deux corps [241]. Le fait que lemouvement orbital
de deux objets compacts ne dépende essentiellement que de leur seules masses est une propriété
remarquable des équations d’Einstein. Damour l’a baptisée le principe d’effacement de la structure
interne sur le mouvement externe. Nous référons le lecteur à [132] (voir également [133]) pour
une généralisation de la discussion newtonienne précédente au cas relativiste.

Luminosité gravitationnelle à l’ordre 3.5PN
Le formalisme de génération d’ondes décrit dans le § 2.3 généralise les formules du quadru-

pôle d’Einstein (1.14) et (1.17), et permet en particulier de calculer la luminosité gravitation-
nelle L d’une source à un ordre post-newtonien élevé. L’application au cas d’un système binaire
d’objets compacts modélisés par deux particules ponctuelles de masses m1 et m2 sur une orbite
quasi-circulaire s’exprime sous la forme d’un développement en puissances d’un paramètre post-
newtonien adimensionné x, dont la valeur numérique est de l’ordre de "PN � v2=c2, mais qui
présente l’avantage d’être directement relié à la fréquence orbitale� de l’orbite quasi-circulaire
de la binaire, et par conséquent d’être invariant de jauge. Ce paramètre est défini par :

x �

�
Gm�

c3

�2=3

; (2.14)

⁸Dans le cas des binaires de trous noirs (super-massifs ou non), l’influence desmoments cinétiques intrinsèques,
ou spins, est potentiellement très importante, et doit également être prise en compte en plus desmasses individuelles
des corps. Voir par exemple [170, 64, 143] pour des calculs post-newtoniens récents incluant les effets des spins.
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où m � m1 C m2 est la masse totale de la binaire. Le résultat, valable à l’ordre 3.5PN, est donné
par la formule9

L D
32c5

5G
�2x5

�
1 C

�
�
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12
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x C 4�x3=2
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C O.c�8/

�
; (2.15)

où C D 0; 577 � � � est la constante d’Euler-Mascheroni, et � � m1m2=m2 le rapport de masse
symétrique, qui varie entre 1

4
dans le cas d’une binaire demasses égales, et � ! 0 pour un système

de rapport de masse extrême. Les termes en facteur d’une puissance demi-entière du paramètre
x dans (2.15) correspondent aux effets de sillage d’onde (tails en anglais), i.e. résultant de la dif-
fusion du rayonnement gravitationnel par la courbure de fond générée par la masse de la source.
Lorsque l’on songe au fait que le premier terme dans l’expression (2.15) correspond à l’application
de la seconde formule du quadrupôle d’Einstein (1.17) au cas d’un système de deuxmasses ponc-
tuelles sur une orbite quasi-circulaire, on prend mieux conscience de la prouesse que constitue
un tel calcul.

2.5 Équations du mouvement post-newtoniennes
Les équations du mouvement post-newtoniennes sont couramment écrites sous une forme

quasi-newtonienne : pour chaque corps, on définit un centre de masse yA (A D 1; 2), et on
exprime son accélération en fonctiondes positionsyA et des vitesses coordonnéesvA D dyA=dt .
Pour le corps 1, le résultat prend la forme schématique10

dv1

dt
D �

Gm2

r2
12

n12 C
A1PN

c2
C

A2PN

c4
C

A2.5PN

c5
C

A3PN

c6
C

A3.5PN

c7
C O.c�8/ ; (2.16)

où r12 D jr12j D jy1 � y2j est la distance euclidienne entre les deux corps, et n12 D r12=r12

le vecteur unitaire pointant de 2 vers 1. L’équation dumouvement du corps 2 se déduit de (2.16)
par l’opération de substitution 1 $ 2.

Le problème dumouvement en relativité générale a une très longue histoire (voir [133] pour
une revue historique du problème du mouvement en gravitation newtonienne et relativiste).
Les corrections 1PN au mouvement newtonien ont été calculées quelques années seulement
après l’écriture des équations de champ de la relativité générale. La découverte du pulsar binaire
PSR 1913+16 au cours de années 70 a renouvelé l’intérêt pour ce problème auparavant un peu

⁹Il est nécessaire d’utiliser les équations dumouvementdu systèmebinaire pour obtenir ce résultat (cf. § suivant).
¹⁰Voir l’équation (168) de la revue [61] pour les expressions explicites des coefficients vectorielsA1PN, � � � ,A3.5PN

dans un système de coordonnées harmoniques.
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académique : la comparaison de la décroissance de la période orbitale observée avec la prédic-
tion de la relativité générale (voir chapitre 1) a nécessité d’établir rigoureusement les corrections
post-newtoniennes aux équations dumouvement jusqu’à l’ordre 2.5PN inclus [45, 135, 131, 149,
132], ordre auquel apparaissent les effets dominants de la réaction au rayonnement gravitation-
nel sur le mouvement orbital. Les corrections 1PN à cette réaction au rayonnement dominante
ont depuis été calculées de nombreuses manières différentes [223, 323, 245, 312, 220].

Équations du mouvement à l’ordre 3PN
La détection et l’analyse des ondes gravitationnelles en provenance des systèmes binaires

compacts requièrent toutefois les équations du mouvement à l’ordre 3PN au moins, et donc en
particulier la connaissance des corrections 3PN au mouvement newtonien. Nous allons donner
quelques détails sur leur calcul, car il s’agit d’un travail récent, de longue haleine, dont nous ferons
en grande partie usage au chapitre 4. Le calcul des corrections 3PN aux équations dumouvement
d’un système de deux objets compacts en relativité générale a été mené à bien de manière indé-
pendante par trois groupes :

• Jaranowski et Schäfer [229] puis Damour, Jaranowski et Schäfer [139, 140] ont utilisé
la formulation hamiltonienne de la relativité générale, afin de calculer l’hamiltonien de
deux particules ponctuelles en jauge ADM. Le champ propre divergent des particules est
soustrait à l’aide de la régularisation d’Hadamard [204].

• Blanchet et Faye ont utilisé une itération post-newtonienne des équations d’Einstein en
jauge harmonique [74, 75], et ont également modélisé les objets compacts par des parti-
cules ponctuelles, dont le champpropre divergent est soustrait à l’aide d’une régularisation
d’Hadamard étendue [73, 76] visant, entre autres, à respecter l’invariance de Lorentz des
équations du mouvement.

• Itoh et Futamase [221, 219] (voir également [185] pour une revue) ont étendu laméthode
d’intégrale de surface introduite par Einstein, Infeld et Hoffmann [161], combinée à une
limite champ fort/particule test [184] adaptée à la description d’objets compacts.

Dans les deux premières méthodes, l’utilisation de particules ponctuelles est un artifice ma-
thématique permettant de simplifier les calculs. Toutefois, cette simplification vient au prix de
l’introduction d’une méthode de régularisation visant à soustraire le champ propre divergent de
ces particules.Historiquement, la régularisation d’Hadamard [204] a été privilégiée, et s’estmon-
trée parfaitement satisfaisante jusqu’à l’ordre 2.5PN [79].

Cependant, une ambiguïté est apparue à l’ordre 3PN dans le second calcul11, i.e. l’apparition
d’une constante, notée � par Blanchet et Faye, indépendante de la structure des corps (d’après le
principe d’effacement de la structure interne), dont la valeur ne pouvait pas être calculée dans le
cadre de leur schémade régularisation. Par la suite, l’utilisation de la régularisation dimensionnelle
a permis de lever cette ambiguïté, fixant sa valeur à [141, 67]

� D �
1987

3080
: (2.17)

Dans le chapitre 4, nous ferons usage de la régularisation dimensionnelle dans le cadre de notre
comparaison du formalisme de la force propre au formalisme post-newtonien à l’ordre 3PN.

¹¹Une ambiguïté équivalente est apparue dans le calcul de Jaranowski et Schäfer [229], notée !static par ces
derniers. Les deux constantes sont reliées par la relation algébrique !static D �

11
3
� �

1987
840

[12, 142].



33

Nous confirmerons au passage l’insuffisance de la régularisation d’Hadamard à des ordres post-
newtoniens aussi élevés.

In fine, les résultats de ces trois calculs sont en parfait accord, confirmant la validité des équa-
tions du mouvement à l’ordre 3PN. En particulier, la méthode de Itoh et Futamase ne fait pas
appel aux notions de particule ponctuelle et de régularisation, de sorte que leur résultat est non
ambigu, confirmant ainsi de manière indépendante la valeur de la constante �.

Énergie orbitale à l’ordre 3PN
Les équations du mouvement post-newtoniennes (2.16) permettent de calculer l’énergie or-

bitale d’un système binaire d’objets compacts, nécessaire à l’obtention des patrons d’onde12. Les
termesA1PN,A2PN etA3PN en facteur d’une puissance paire de 1=c dans (2.16) sont respective-
ment les corrections conservatives 1PN, 2PN et 3PN à la dynamique newtonienne. Ces correc-
tions étant conservatives, il existe une énergie conservée E à l’ordre 3PN, qui est une intégrale
première dumouvement. Dans le cas d’une binaire sur une orbite quasi-circulaire, on trouve ainsi
[74, 75, 139, 140]
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; (2.18)

où � � m1m2=m D m� est la masse réduite, et x le paramètre post-newtonien défini pré-
cédemment par (2.14). Le premier terme dans cette expression correspond tout simplement à
l’énergie de liaison gravitationnelle newtonienne de deux corps sur une orbite circulaire.

Les termesA2.5PN etA3.5PN, en facteur de 1=c5 et 1=c7 respectivement dans (2.16), ne sont
pas symétriques par renversement du temps t ! �t , et sont donc directement associés à la perte
d’énergie orbitale par émission d’ondes gravitationnelles. Cette séparation nette entre termes
conservatifs pairs (en puissances de 1=c) et termes dissipatifs impairs disparait à partir de l’ordre
4PN, à cause de l’apparition de termes dissipatifs dus au sillage d’onde (effet relatif d’ordre 1=c3)
de la force de réaction au rayonnement dominante (effet d’ordre 1=c5) [66].

Nous verrons au chapitre 5, dans le cadre de notre comparaison à la force propre, qu’à partir
de l’ordre 4PN les équations dumouvement, ainsi que l’énergie associée à leur partie conservative,
n’admettent plus un développement sous forme de série entière (en puissances de x), mais qu’à
cet ordre apparaissent des termes logarithmiques du type xn

lnx, avec n > 5, dus à ces effets de
sillage d’ondes.

�

¹²Elles présentent par ailleurs un intérêt intrinsèque, et sont par exemple utilisées pour modéliser la dynamique
des trous noirs super-massifs lors de la fusion de galaxies [48], ou plus proche de nous, pour calculer le mouvement
des planètes dans le système solaire [173].
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L’ objet compact de masse stellaire est en orbite autour d’un trou noir super-massif,
les méthodes perturbatives sont particulièrement bien adaptées à l’étude des ondes gravita-

tionnelles émises, le corps de petite masse induisant une perturbation de la métrique de fond
générée par le corps de grande masse. Cette perturbation conduit elle-même à une modifica-
tion de la trajectoire du corps perturbateur, qui ne suit plus une géodésique de la métrique de
fond. L’état de l’art consiste à calculer cet effet dit de force propre gravitationnelle. Les compa-
raisons avec le formalisme post-newtonien démontrent un très bon accord entre les deux schémas
d’approximation.

3.1 Calculs de patrons d’ondes
La détection et l’analyse des ondes gravitationnelles en provenance de nombreuses sources as-

trophysiques requièrent des patrons d’ondes très précis, qui doivent rester en phase avec le signal
physique pendant toute la durée d’intégration par le détecteur. Nous avons vu que le formalisme
post-newtonien est particulièrement bien adapté à la description de la phase spiralante des sys-
tèmes binaires compacts coalescents. La théorie des perturbations d’un trou noir est l’outil idéal
pour calculer ces patrons d’ondes dans les deux autres situations suivantes :

• Lorsque le trou noir résultant de la fusion de deux objets compacts demasses comparables
se désexcite en émettant des ondes gravitationnelles sous forme de modes quasi-normaux,
dont la fréquence et le temps d’amortissement portent l’empreinte de la masse et du spin
du trou noir de Kerr final.

• Lorsqu’un objet compact de masse stellaire (une étoile à neutrons ou un trou noir) orbite
autour d’un trou noir super-massif au cœur d’une galaxie. Pour ces EMRIs, le rapport de
masse extrême � 10�9 � 10�5 autorise un traitement perturbatif avec grande précision.
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F. 3.1: Une illustration de la complexité de la forme d’onde générique émise par les EMRIs : unmode de l’état de
polarisation hC, normalisé par le rapport D=�, où D est la distance à la source et� la masse du corps perturbateur,
est tracé en fonction du temps coordonnée t , lui-même normalisé par la masse M du trou noir super-massif. Ce
dernier est en rotation, avec un paramètre de Kerr a D 0;5M . L’orbite initiale de la particule est caractérisée par
une excentricité e D 0;5, un semi-latus rectum p D 10M , et un angle � D 0;5 rad par rapport au plan équatorial.
Le rapport de masse du système vaut q � �=M D 0;016. Figure tirée de [387].

La forme d’onde émise dans le premier cas de figure est désormais bien connue grâce à de
très nombreux travaux, depuis l’article fondateur de Regge et Wheeler sur la stabilité d’un trou
noir de Schwarzschild [347], jusqu’aux simulations de coalescence de trous noirs en relativité
numérique, qui reproduisent les modes quasi-normaux du trou noir de Kerr final.

Le calcul des patronsd’ondes pour lesEMRIs est un travail toujours en cours ; voir par exemple
[156] pour une revue des différentes méthodes utilisées. La forme d’onde typique est extrême-
ment complexe (cf. Fig. 3.1 pour une illustration), et ce par opposition à celle émise par les
binaires compactes de masses comparables. Toutes deux doivent cependant être connues avec
grande précision [126]. Le détecteur spatial LISA intégrera le signal en provenance des EMRIs
sur une durée de trois à cinq ans. Cela représente quelques 105 périodes de l’onde dans la bande
passante de ce détecteur interférométrique [107].

L’approximation consistant à traiter le corps perturbateur comme une particule test, et à cal-
culer la forme d’onde résultant de son mouvement géodésique dans la métrique du trou noir
super-massif ne permet pas d’atteindre la précision de 10�5 requise. Il est nécessaire d’aller au-
delà de cette approximation, et de calculer l’effet de la perturbation sur le mouvement du corps
perturbateur lui-même, puis de tenir compte de cette information pour déterminer la correc-
tion induite sur la forme d’onde. Il s’agit du programme de calcul de la force propre, dont nous
décrirons les grandes lignes au § 3.3.
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3.2 éorie des perturbations d’un trou noir

Afin d’exploiter l’idée selon laquelle l’espace-temps est «proche» de celui décrivant un trou
noir, on décompose la métrique sous la forme

g�� D
ı
g�� C h�� ; (3.1)

où ı
g�� est une solution supposée connue des équations d’Einstein décrivant un trou noir, par

exemple la solution de Schwarzschild ou celle de Kerr, et h�� une perturbation de cette solution.
Cette perturbation peut être générée par un objet compact de masse stellaire orbitant un trou
noir super-massif, ou encore représenter l’écart à la solution de Kerr faisant suite à la coalescence
de deux objets compacts de masses comparables.

Demanière similaire au cas d’une perturbation linéaire de l’espace-temps deMinkowski traité
dans le chapitre 1, en introduisant l’expression (3.1) de la métrique dans les équations de champs
(1.2), en ne gardant que les termes linéaires dans la perturbation h�� , en exprimant le résultat
en termes de la perturbation à trace renversée h�� � h�� �

1
2

ı
g��h (avec h D

ı
g˛ˇh˛ˇ), et en

imposant la condition de jauge harmonique1 r�h�� D 0, on trouve que la perturbation obéit à
l’équation d’onde2

�h�� C 2R
˛ ˇ

� �
h˛ˇ D �16�T�� : (3.2)

Cette équation fait intervenir l’opérateur des ondes� �
ı
g��r�r� en espace courbe, où r� est

la dérivée covariante compatible avec lamétriquede fond, i.e.r�
ı
g�� D 0.Onobserve également

un couplage de la perturbation au tenseur de Riemann R˛�ˇ� associé à la métrique de fond.
L’équation d’onde (3.2) se réduit bien évidemment à (1.8) dans le cas où la métrique de fond est
minkowskienne, c’est-à-dire lorsque ı

g�� D ��� .

Perturbations d’un trou noir de Schwarzschild

Afin de résoudre cette équation, il est possible d’exploiter les éventuelles symétries de la mé-
trique de fond.Dans la suite de cette thèse, nous allons nous restreindre à l’étude de perturbations
d’un trou noir de Schwarzschild, de sorte que la métrique de fond est à symétrie sphérique. Ré-
sumons les grandes lignes du formalisme de la théorie des perturbations (du premier ordre) d’un
trou noir de Schwarzschild ; voir les § 6.6.1 et 6.8.1 du chapitre 6, ainsi que les références qui s’y
trouvent, pour plus de détails.

Considérons un trou noir de Schwarzschild de masse M , et travaillons dans un système de
coordonnées ft; r; �; 'g, où r est la coordonnée radiale de Schwarzschild. La symétrie sphérique
de la métrique de fond permet de décomposer la perturbation sur une base d’harmoniques sphé-

¹On notera que la classe de systèmes de coordonnées ainsi définie diffère de celle introduite au chapitre 1, car
cette condition de jauge harmonique fait intervenir la métrique de fond courbe dans la dérivée covariante, ainsi que
dans la définition de la perturbation à trace renversée.

²Dans ce chapitre nous poserons G D c D 1.
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riques tensorielles
�
eA;`;m

��

�
AD1;��� ;10

selon3

h��.t; r; �; '/ D

10X
AD1

C1X
`D2

X̀
mD�`

hA;`;m.t; r/ eA;`;m
�� .�; '/ : (3.3)

Injectant la décomposition (3.3) dans (3.2), on observe que les coordonnées angulaires .�; '/ se
découplent, de sorte que l’équation d’onde (3.2) se réduit à la résolution d’un système d’équations
aux dérivées partielles par rapport aux variables .t; r/ pour les coefficients hA;`;m. Pour chaque
mode .`;m/, il est possible de construire deux champs scalaires‰.e/

`;m
et‰.o/

`;m
condensant toute

l’information contenue dans les dix coefficients hA;`;m. Ces champs scalaires obéissent à une
équation d’onde avec source dans un potentiel V.e/

`
ou V.o/

`
respectivement,�

@2

@t2
�
@2

@r2
�

C V.e,o/

`

�
‰

.e,o/

`;m
D S.e,o/

`;m
; (3.4)

oùS.e,o/

`;m
sont deux sources construites à partir des coefficients de la projectiondu tenseur énergie-

impulsion T�� sur la base d’harmoniques sphériques tensorielles, et r� D r C2M ln
�

r
2M

� 1
�

est la coordonnée radiale dite « tortue». Loin de la source, il est possible de reconstruire les états
de polarisation de l’onde gravitationnelle à partir de ces deux champs scalaires :

hC � i h� D
1

r

C1X
`D2

X̀
mD�`

s
.`C 2/!

.` � 2/!

�
‰

.e/
`;m

C i‰
.o/

`;m

�
�2Y`;m C O.r�2/ ; (3.5)

où les fonctions angulaires �2Y`;m sont les harmoniques sphériques de spin �2.
Dans le chapitre 6, nousutiliserons ce formalisme afind’étudier la dernière phase de l’évolution

d’un système binaire compact coalescent, au cours de laquelle le trou noir résultant de la fu-
sion se désexcite par émission de modes quasi-normaux. Afin de calculer les ondes gravitation-
nelles émises lors de cette phase de vibration, nous évoluerons les équations d’onde (3.4) sans
source, en utilisant des conditions initiales calculées à partir de lamétrique 2PNdéveloppée dans
l’approximation dite de « limite proche», où l’on fait formellement tendre la distance entre les
deux corps vers zéro.

3.3 Formalisme de la force propre gravitationnelle

Le formalisme de la force propre gravitationnelle est discuté en détails sous ses aspects théo-
riques et calculatoires dans les revues [335, 150, 31]. Nous donnons ici un bref aperçu du pro-
blème, ainsi que des méthodes employées afin de la résoudre.

³Afin d’étudier les perturbations d’un trou noir en rotation, le formalisme de Teukolsky [399], qui fait usage
des scalaires de Newman-Penrose [309], autorise une décomposition similaire en exploitant la symétrie cylindrique
résiduelle de la métrique de Kerr.
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L’équation MiSaTaQuWa

Une particule ponctuelle de masse � est caractérisée par son action S D ��
R



d� , où �

est le temps propre paramétrisant la ligne d’univers 
 de la particule. Variant cette action par
rapport à la métrique g�� , on obtient le tenseur énergie-impulsion de la particule, source du
champ gravitationnel. Au premier ordre dans le paramètre perturbatif q � �=M , on trouve
ainsi

T ��.x; t/ D �u�u� ıŒx � z.t/�p
�

ı
g.x/ut

; (3.6)

où ı est la distribution de Dirac usuelle, z.t/ la trajectoire spatiale de la particule dans le système
de coordonnées ft;xig considéré, u� sa quadrivitesse normalisée par rapport à la métrique de
fond, et ı

g le déterminant de cette dernière.
La perturbation générée par le mouvement de la particule autour du trou noir via l’équation

d’onde (3.2) se propage à J C, où l’on mesure les états de polarisation hC et h� de l’onde gravi-
tationnelle. Mais elle agit également localement sur la source elle-même, modifiant son état de
mouvement. Celui-ci n’est plus géodésique par rapport à la métrique de fond ı

g�� , mais accéléré,
dû à la présence d’une force : la force propre (self-force en anglais). L’expression explicite de la force
propre a été établie de nombreuses manières différentes [296, 344, 200], en partant de l’équation
d’onde (3.2) avec le tenseur énergie-impulsion (3.6). L’équation résultante, dite équation MiSa-
TaQuWa en l’honneur de Misao, Sasaki, Tanaka, Quinn, et Wald, stipule que l’accélération de la
particule est donnée par

du�

d�
D �

1

2

�
ı
g��

C u�u�
� �

2r�hR
�� � r�hR

��

�
u�u� : (3.7)

Le membre de droite de cette équation est une force agissant sur la particule, proportionnelle à
la perturbation, et donc à la masse � du corps perturbateur lui-même4. Dans la limite q ! 0,
on retrouve bien évidemment l’équation des géodésiques du�=d� D 0 par rapport à la métrique
de fond.

Régularisation de la perturbation

L’équation (3.7) ne fait pas intervenir la solution retardée hret
�� de l’équation d’onde (3.2), car

celle-ci est singulière sur la ligne d’univers de la particule, tout comme son gradient, rendant ainsi
l’évaluation de la force propre exprimée en termes de hret

�� impossible. Il s’agit là du problème
induit par le champ propre divergent d’une particule ponctuelle, problème déjà rencontré au
chapitre 2 dans le cadre du formalisme post-newtonien. La solution passe une fois encore par
l’utilisation d’uneméthode de régularisation visant à soustraire le champ propre divergenthS

�� de
la particule. La perturbation responsable de lamodificationde l’état demouvement de la particule
est alors la perturbation dite « régulière»

hR
�� D hret

�� � hS
�� : (3.8)

⁴Il s’agit dans nos notations d’une force par unité de masse. Nous garderons toutefois la dénomination force
propre par la suite.
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Onmontre qu’il est possible de construire la perturbation« singulière» hS
�� de sorte qu’elle soit

également une solution de l’équation d’onde (3.2), et présente le même caractère singulier que
la solution retardée hret

�� au voisinage de la ligne d’univers de la particule. Ainsi, la perturbation
hR

�� est régulière sur la particule5, et se trouve être une solution de l’équation d’onde homogène
associée à (3.2) [153].

Le mouvement de la particule peut donc être décrit de manière équivalente, soit comme ac-
céléré par rapport à la métrique de fond ı

g�� à cause de la force propre dans (3.7), soit comme
géodésique dans la métrique régularisée ı

g�� ChR
�� . Dans ce dernier cas, l’espace-temps peut être

vu comme la métrique de fond perturbée par une onde gravitationnelle (solution des équations
d’Einstein linéarisées dans le vide) produite par le mouvement de la particule dans son passé.
C’est cette dernière description que nous adopterons dans les chapitres 4 et 5.

Dans le cadre du calcul de la force propre s’exerçant sur une particule ponctuelle en orbite
autour d’un trou noir de Schwarzschild, la régularisation par somme de modes (mode-sum regu-
larization en anglais) [33, 30, 32] est laméthode de régularisation la plus couramment employée.
L’idée consiste une fois encore à exploiter la symétrie sphérique de la métrique de fond. Confor-
mément à la décomposition (3.3), on écrit la perturbation singulière sous la forme d’une somme
de modes d’harmoniques sphériques, i.e.

hS
�� D

C1X
`D2

hS.`/
�� ; (3.9)

et de même pour la solution retardée hret
�� . Une analyse détaillée de l’équation d’onde (3.2), et

en particulier la connaissance de ses fonctions de Green retardée et avancée, permet de calculer
sous forme analytique l’expression du mode ` de la perturbation singulière dans un voisinage de
la particule. Évaluant le résultat sur la ligne d’univers de la particule elle-même, on trouve ainsi

hS.`/
�� D B�� C

C��

`C
1
2

C
D���

` �
1
2

� �
`C

3
2

� C O.`�4/ ; (3.10)

où les « paramètres de régularisation» B�� , C�� , D�� , etc., sont des fonctions de la trajectoire
de la particule calculables analytiquement [152]. Chaque mode h

S.`/
�� pris individuellement est

fini lorsque évalué à la position de la particule, tandis que la somme
P

` h
S.`/
�� diverge. Il en va de

même pour la perturbation retardée hret
�� .

Pour chaque mode `, on peut calculer (sous forme numérique) la contribution h
reg.`/
�� à la

perturbation retardée hret
�� en résolvant l’équation d’onde (3.2). Par construction, cette solution

présente le même comportement divergent au voisinage de la particule que la solution singulière
hS

�� , de sorte que le mode h
ret.`/
�� admet également le développement (3.10) à la position de la

particule. La perturbation régularisée est alors donnée par la somme de différences

hR
�� D

C1X
`D2

�
hret.`/

�� � hS.`/
��

�
: (3.11)

⁵La perturbation hR
�� est même C1 [150], ce qui permet de calculer son gradient, puis d’évaluer le résultat à la

position de la particule afin de calculer la force propre dans (3.7).
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Afin de calculer la perturbation régularisée numériquement, cette dernière forme est bien plus
commode que l’expression (3.8), car il s’agit d’ajouter un grand nombre de petites contributions
plutôt que de soustraire deux fonctions divergentes dans un certaine limite. Les travaux détaillés
dans les chapitres 4 et 5 font usage de cetteméthode de régularisation. Le calcul de la force propre
dans l’équation MiSaTaQuWa (3.7) nécessite d’appliquer cette régularisation au gradient de la
perturbation plutôt qu’à la perturbation elle-même.

Notons enfin qu’il faut prendre garde au fait que la force propre n’est pas une grandeur inva-
riante de jauge. En effet, on peut toujours se ramener à du�=d� D 0 par un changement adéquat
de système de coordonnées [34]. L’information contenue dans la force propre (3.7) est à com-
biner avec de l’information provenant de la perturbation h�� elle-même, afin de fabriquer une
grandeur invariante de jauge, seule susceptible d’interprétation physique, comme par exemple les
états de polarisations hC et h� de l’onde gravitationnelle.

3.4 Comparaison avec les développements post-newtoniens

Dans le cadre de la théorie des perturbations d’un trou noir, il est possible d’établir l’équation
de balance énergétique [151]

L1 C L� D �
�

2ut
u�u�@th�� ; (3.12)

traduisant le fait que le travail effectué par la partie dissipative de la force propre (responsable
de la réaction au rayonnement) est égal à la somme des flux d’ondes gravitationnelles L1 et L�

rayonnées à l’infini et à travers l’horizon du trou noir respectivement. Dans le cas d’une particule
orbitant un trounoir de Schwarzschild sur une orbite quasi-circulaire, la contributiondominante
dansL� est d’ordre 4PN relativement à la contribution dominante dansL1 [336]. Numérique-
ment, pour une orbite au-delà de la dernière orbite circulaire stable, L� . 10�3L1 [276, 35].
Par conséquent, le flux rayonné à l’infini représente essentiellement le travail effectué par la partie
dissipative de la force propre.

Des calculs basés sur la théorie des perturbations d’un trou noir ont permis de calculer ana-
lytiquement le flux L1 rayonné à l’infini jusqu’à un ordre post-newtonien très élevé. Pour une
orbite quasi-circulaire, le résultat s’exprime en fonction du paramètre post-newtonien adimen-
sionné

y �

�
GM�

c3

�2=3

; (3.13)

mieux adapté que le paramètre x D y.1 C q/2=3 [cf. Éq. (2.14)] dans la limite q ! 0. Dans le
cas d’une particule test orbitant un trou noir de Schwarzschild sur une orbite quasi-circulaire, le
calcul a été poussé jusqu’à l’ordre 5.5PN, avec pour résultat la formule [392, 395]

L1 D
32

5
q2y5

�
1 �

1247

336
y C 4�y3=2

�
44711

9072
y2

�
8191

672
�y5=2

C

�
6643739519

69854400
C

16

3
�2

�
1712

105
C �

856

105
ln .16y/

�
y3

�
16285

504
�y7=2
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C

�
�

323105549467

3178375200
�

1369
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�2

C
232597

4410
C

C
39931

294
ln 2 �

47385

1568
ln 3 C

232597

8820
lny

�
y4

C

�
265978667519

745113600
�

6848
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C �

3424
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ln .16y/

�
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C

�
�
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2831932303200
�
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�2

C
916628467
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C

�
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1122660
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47385
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916628467
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lny

�
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C

�
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C

177293

1176
C

C
8521283

17640
ln 2 �

142155

784
ln 3 C

177293

2352
lny

�
�y11=2

C O.c�12/

�
: (3.14)

En effectuant la substitution � ! m1 et M ! m2, on observe que la restriction 3.5PN du
résultat perturbatif (3.14) (les deux premières lignes) est en parfait accord avec la limite q ! 0

du résultat post-newtonien (2.15)6. Négligeant le flux L� à travers l’horizon du trou noir dans
le bilan (3.12), cette comparaison peut être vue comme un test de consistance entre la partie
dissipative de la force propre et le formalisme post-newtonien. Les deux chapitres qui suivent
ont pour vocation une comparaison similaire, cette fois-ci entre le formalisme post-newtonien et
la partie conservative de la force propre.

Enfin, on remarquera la présence de termes logarithmiques de type zone d’onde à partir de
l’ordre 3PN dans (3.14). Nous verrons au chapitre 5, dans le cadre de notre comparaison entre la
partie conservative de la force propre et le formalisme post-newtonien, que des logarithmes de
type zone proche commencent à apparaitre à partir de l’ordre 4PN.

⁶Des calculs similaires ont également été effectués pour une particule test en orbite circulaire autour d’un trou
noir de Kerr [373, 393], ainsi que pour des orbites légèrement eccentriques [390, 295] (voir [364] pour une revue).
Chaque fois que la comparaison avec le formalisme post-newtonien s’est avérée possible, les calculs sont en accord.
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D un système binaire compact, lorsque l’un des corps est considérablement moins massif
que le second, et orbite à distance suffisante de sorte que sa vitesse reste faible devant celle de

la lumière, il est possible de comparer les prédictions du formalisme post-newtonien à celles de
la théorie des perturbations d’un trou noir (voir la Fig. 4.2). En considérant un effet induit par la
partie conservative de la force propre sur le mouvement du petit corps, nous avons mené à bien
une telle comparaison à l’ordre 3PN.

4.1 Comment comparer les formalismes ?
La dynamique d’un système binaire compact coalescent combine des effets conservatifs et des

effets dissipatifs. Nous avons vu au cours du chapitre précédent que les effets dissipatifs induits
par la force propre se comparent très bien avec les résultats du formalisme post-newtonien. Nous
souhaitons effectuer une comparaison similaire pour la partie conservative de la force propre.

Dans le formalisme de la force propre, il est possible de séparer demanière univoque ces deux
contributions ; voir par exemple [31]. Dans le formalisme post-newtonien, les termes associés à
des effets conservatifs (resp. dissipatifs) dans la dynamique d’un système binaire compact sont en
facteur de puissances paires (resp. impaires) de 1=c, et ce jusqu’à l’ordre 3.5PN inclus1.

Si l’on néglige les effets dissipatifs induits par la réaction au rayonnement gravitationnel sur
le mouvement orbital d’une binaire en orbite quasi-circulaire, alors l’orbite est exactement circu-
laire. Formellement, cela revient à supposer l’existence d’un champ de vecteur de Killing helicoï-
dal k�. La métrique est alors invariante dans la direction de ce vecteur, i.e.

£kg�� D 0 ; (4.1)

¹Voir le chapitre suivant pour l’identification des termes conservatifs à partir de l’ordre 4PN.

43



44

u

k

trou noir



y
x

t

Ω

1

1

μ

μ

particule

F. 4.1: Diagramme d’espace-temps schématisant le mouvement d’une particule autour d’un trou noir, sur une
orbite circulaire de fréquence angulaire�. L’espace-temps admet un champ de vecteur de Killing hélicoidal k�. La
quadrivitesse u

�
1 de la particule est colinéaire à k

�
1 , le vecteur de Killing évalué à la position de la particule.

où £ est la dérivée de Lie. Un vecteur de Killing n’est défini qu’à un coefficient multiplicatif près.
Nous imposerons la normalisation du vecteur de Killing k� en exigeant qu’à l’infini spatial,

k�@� D @t C�@' ; (4.2)

où @˛ est la base naturelle associée à un système de coordonnées sphériques asymptotiquement
plat ft; r; �; 'g, et� D d'=dt est la vitesse angulaire relative de l’orbite circulaire de la binaire,
telle que mesurée par un observateur distant inertiel.

Afin de comparer les résultats du calcul perturbatif à ceux du calcul post-newtonien, nous ne
considérerons que la restriction de ces derniers, valables pour un rapport demasse quelconque, au
cas d’une binaire de rapport de masse extrême. Dans cette perspective, nous conviendrons donc
d’appeler le corps 1 de masse m1 la particule, et le corps 2 de masse m2 le trou noir. La particule
en chute libre autour du trou noir n’observe aucune modification apparente de la métrique, de
sorte que sa quadrivitesse u

�

1 est nécessairement colinéaire au vecteur de Killing évalué à cette
position (voir la Fig. 4.1 pour une illustration) :

u
�

1 D uT
1 k

�

1 ; (4.3)

où l’on dénote par uT
1 le coefficient de proportionalité.
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En relativité générale, la comparaison entre deux calculs indépendants est toujours une opé-
ration délicate, en raison de l’invariance par difféomorphisme de la théorie. Afin de s’affranchir
de cette difficulté, il est commode de comparer des grandeurs scalaires, c’est-à-dire dont la valeur
numérique est indépendante du systèmede coordonnées utilisé pour la calculer2. Pour des orbites
circulaires, le coefficient de proportionalité uT

1 défini par (4.3) est un tel scalaire. La fréquence
orbitale� du système binaire est également un scalaire3. La fonction uT

1 .�/ se prête donc bien à
la comparaison d’un effet conservatif induit par la force propre sur le mouvement de la particule,
avec la prédiction du formalisme post-newtonien.

De plus, la grandeur uT
1 admet une interprétation physique simple : dans un système de co-

ordonnées tel que l’expression (4.2) du vecteur de Killing est valable partout (et pas seulement à
l’infini spatial i0), on doit avoir en particulier k t D 1 à la position de la particule. D’après (4.3),
le facteur multiplicatif uT

1 coïncide alors avec la composante temporelle de la quadrivitesse de la
particule, i.e.

uT
1 � ut

1 D

�
�.g��/1

v
�

1 v
�
1

c2

��1=2

; (4.4)

où .g��/1 est la métrique régularisée sur la particule, et v�

1 D .c; v1/, avec v1 D dy1=dt la vi-
tesse de coordonnée de cette dernière. Le calcul de la fonction ut

1.�/ pour des orbites circulaires
requiert donc au préalable l’évaluation de la métrique régularisée .g��/1.

Steven Detweiler et Bernard Whiting ont procédé au calcul perturbatif, valable au premier
ordre de perturbation dans le rapport de masse q D m1=m2, en régularisant la perturbation à
l’aide de la régularisation par sommedemodes (voir chapitre 3). Luc Blanchet etmoi-mêmenous
sommes attelés au calcul post-newtonien de la métrique régularisée jusqu’à l’ordre 3PN inclus,
valable pour tout rapport de masse.

4.2 Calcul post-newtonien de la métrique régularisée
La détermination des équations dumouvement d’un système binaire compact à l’ordre 3PNa

nécessité le calcul du gradient de la métrique régularisé .@�g��/1 à cet ordre [75]. Afin demener
à bien notre comparaison avec le formalisme de la force propre, nous avons besoin de calculer la
métrique régularisée .g��/1 elle-même, à l’ordre 3PN ; il s’agit du cœur du travail présenté dans
ce chapitre.

Lors du calcul des équations dumouvement à l’ordre 3PN, la régularisation d’Hadamard s’est
avérée insatisfaisante, en raison de l’apparition d’une ambiguïté (voir chapitre 2). Afin d’obtenir
une expression non ambiguë de la métrique régularisée à l’ordre 3PN, nous avons donc adopté
une méthode de régularisation plus puissante : la régularisation dimensionnelle.

Laméthode de régularisation dimensionnelle a été introduite dans les années 70 par ’tHoo
et Veltman [214], afin de régulariser des intégrales divergentes intervenant en théorie quantique
des champs perturbative, tout en respectant l’invariance de jauge. Dans le cadre du problème à

²En théorie des perturbations, on parle également de grandeurs invariantes de jauge. Un changement de système
de coordonnées se ramène à l’ordre linéarisé à une transformation de jauge.

³Aumoins pour la classe des systèmes de coordonnées«raisonnables» pour lesquels (4.2) est vérifiée asympto-
tiquement. Les systèmes de coordonnées couramment utilisés dans le formalisme post-newtonien sont raisonnables
en ce sens.
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deux corps relativiste, son utilisation vise à respecter l’invariance de jauge associée à l’invariance
par difféomorphisme de la relativité générale.

La régularisation dimensionnelle est basée sur le prolongement analytique dans la dimension
d’espace d ; celle-ci est promue au rang de paramètre à valeur dans le plan complexe C. La mé-
thode de prolongement analytique permet de donner un sens à certaines intégrales en-dehors de
leur domaine de définition initial. Par ailleurs, le caractère unique de l’extension est garanti grâce à
l’unicité du prolongement analytique (voir par exemple [132] pour une discussion introductive).

Nous supposons donc que la gravitation est correctement décrite par la théorie de la relativité
générale en dimension d D 3 C ", avec " 2 C. À l’ordre post-newtonien le plus bas, le potentiel
newtonien généré par deux particules ponctuelles de masses m1 et m2 est donné par l’intégrale
de Poisson de la densité de masse �.x/ D

2.d�2/

d�1

�
m1ı

.d/.x� y1/C m2ı
.d/.x� y2/

�
, où ı.d/

est la distribution de Dirac d -dimensionnelle telle que
R
ı.d/.x/ ddx D 1. Ainsi, en dimension

d quelconque, le potentiel newtonien [tel que g
.d/

00 D �1 C 2V .d/=c2 C O.c�4/] prend la
forme

V .d/.x/ D
2.d � 2/

d � 1
k

�
G.d/m1

jx � y1jd�2
C

G.d/m2

jx � y2jd�2

�
; (4.5)

où k � �
�

d�2
2

�
=�

d�2
2 , et G.d/ � G`"

0 est la constante de gravitation en dimension d , avec `0

une longueur caractéristique associée à la régularisation dimensionnelle. Dans la limite " ! 0,
on retrouve bien k ! 1 et G.d/ ! G. Pour d D 3, le potentiel newtonien (4.5) n’est pas défini
dans la limite x ! y1, à cause du champ propre divergent de la particule m1. Au contraire,
grâce au prolongement analytique, il est toujours possible de choisir <.d/ < 2 de sorte que le
potentiel newtonien (4.5) admette une limite bien définie lorsque x ! y1, soit

V .d/.y1/ D
2.d � 2/

d � 1
k

G.d/m2

jy1 � y2jd�2
: (4.6)

On peut ensuite passer à la limite d ! 3 en invoquant l’unicité du prolongement analytique,
avec comme résultat

V .y1/ D
Gm2

jy1 � y2j
: (4.7)

L’exemple précédent est trivial, mais l’idée reste la même lorsque les calculs sont étendus
à des ordres post-newtoniens plus élevés. Il apparaît toutefois une difficulté supplémentaire à
l’ordre 3PN : en coordonnées harmoniques, la métrique régularisée .g��/1 fait alors intervenir
des pôles, i.e. des termes / .d � 3/�1 qui divergent dans la limite " ! 0. Schématiquement, le
résultat prend donc la forme (cf. Éq. (4.69) pour l’expression explicite)

.g��/1 D
1

"
g.�1/

�� .y1/C g.0/
�� .y1/C O."/ ; (4.8)

où g
.�1/
�� .y1/ est la partie polaire, d’ordre 3PN exclusivement, et g

.0/
�� .y1/ la partie finie. Les cal-

culs de lamétrique régularisée à l’aide de la régularisation d’Hadamard sont parfaitement satisfai-
sants jusqu’à l’ordre 2.5PN inclus, le résultat ne faisant intervenir aucune ambiguïté. Jusqu’à cet
ordre, les deux méthodes de régularisation sont équivalentes, et le résultat est donné par la partie
finie g

.0/
�� .y1/. L’apparition de pôles à l’ordre 3PN en régularisation dimensionnelle est associée
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à la présence de divergences logarithmiques UV en dimension 3, à l’origine des ambiguïtés qui
interviennent dans les calculs faisant appel à la régularisation d’Hadamard.

Une fois la métrique régularisée (4.8) calculée à l’ordre 3PN, le résultat, valable pour une or-
bite générique dans un référentiel quelconque, est inséré dans l’expression (4.4) de ut

1. En passant
dans le référentiel du centre de masse et en considérant la restriction au cas d’une orbite circu-
laire, on a la satisfaction d’observer la simplification de tous les pôles/ "�1, de sorte que l’on peut
passer à la limite " ! 0 afin d’obtenir le résultat tridimensionnel. La simplification des pôles est
attendue, car leur présence est spécifique au calcul en jauge harmonique, et le résultat ut

1.�/ est
invariant de jauge pour une orbite circulaire. Dans le cas du calcul des équations du mouvement
à l’ordre 3PN, il a été montré que les pôles peuvent être absorbés par une renormalisation de
la trajectoire des corps [67], et doivent donc disparaitre des quantités physiques invariantes de
coordonnées.

4.3 Comparaison avec le calcul perturbatif
Le calcul post-newtonien de la fonction ut

1.�/ est valable pour un rapport de masse symé-
trique � D m1m2=m2 quelconque. À l’ordre 3PN, le résultat se présente donc sous la forme
d’un développement du type4 (cf. Éq. (4.77) pour l’expression explicite)

ut
1.x/ D 1 C

3X
nD0

an.�/xnC1
C O.x5/ ; (4.9)

où le paramètre post-newtonienx, défini par l’Éq. (2.14), est d’ordre "PN � v2=c2, mais présente
l’avantage d’être invariant de jauge, car relié à la fréquence orbitale� de la binaire.

In fine, nous souhaitons toutefois comparer le résultat du calcul post-newtonien à celui du
calcul perturbatif, qui inclue l’effet de la force propre, et n’est donc valable qu’au premier ordre
dans le rapport de masse q D m1=m2. Dans la limite q � 1 qui convient pour un système
binaire de rapport demasse extrême, il est donc commode de remplacer x au profit du paramètre
post-newtonien

y �

�
Gm2�

c3

�2=3

D x .1 C q/�2=3; (4.10)

et de remplacer le rapport de masse symétrique � en faveur du rapport de masse q, en utilisant la
relation � D q=.1 C q/2. La fonction ut

1.�/ admet de manière générale un développement en
puissances du rapport de masse q de la forme

ut
1 D ut

Schw C q ut
SF C q2ut

PSF C O.q3/ ; (4.11)

où ut
Schw D .1 � 3y/�1=2 est le résultat exact obtenu pour une particule test en orbite circu-

laire autour d’un trou noir de Schwarzschild, le terme q ut
SF est la contribution due à la force

propre (théorie des perturbations du premier ordre), et q2ut
PSF est la correction post-self-force,

calculable en principe à l’aide de la théorie des perturbations du second ordre.

⁴Nous verrons au cours du chapitre suivant qu’à partir de l’ordre 4PN apparaissent des termes logarithmiques,
de sorte qu’en toute généralité la fonction ut

1.x/ n’admet pas un développement en série entière.
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Le formalisme de la force propre permet de calculer exactement (modulo l’erreur numérique)
la contribution ut

SF.y/ induite par la force propre. La comparaison du résultat ainsi obtenu à la
prédiction post-newtonienne a été initiée par Steven Detweiler, à partir de l’expression connue
de la métrique régularisée .g��/1 à l’ordre 2PN [79]. On trouve ainsi [151]

ut
SF.y/ D �y � 2y2

� 5y3
C C3PNy4

C O.y5/ ; (4.12)

où les coefficients newtonien, 1PN et 2PN se déduisent immédiatement des résultats connus à
l’ordre 2PN. Le calcul sous forme analytique du coefficient inconnu C3PN résulte de l’extension
de ces résultats à l’ordre 3PN, et en particulier du calcul de la métrique régularisée (4.8) à l’ordre
3PN, à l’aide de la régularisation dimensionnelle. On trouve ainsi

C3PN D �
121

3
C

41

32
�2

D �27;6879 � � � : (4.13)

Par ailleurs, le calcul perturbatif fournit le résultat exact pour la contribution ut
SF.�/ due à la

force propre. En ajustant cette fonction par une série post-newtonienne du type (4.12), on par-
vient à estimer la valeur du coefficient 3PN :

CSF
3PN D �27;677 ˙ 0;005 : (4.14)

L’accord entre les valeurs (4.13) et (4.14) pour le coefficient 3PN est très bon : les deux calculs
sont compatibles à2� , avec 5 chiffres significatifs.Ce résultat est un test convaincant de la validité
des différentes méthodes de régularisation utilisées afin de soustraire le champ propre divergent
des particules (régularisation par somme demodes pour la force propre, et régularisation dimen-
sionnelle pour le formalisme post-newtonien). La figure 4.3 illustre la convergence des approxi-
mations post-newtoniennes successives vers le résultat exact. Au cours du chapitre suivant, nous
verrons qu’il est possible d’améliorer cet accord en tenant compte du fait qu’à partir de l’ordre
4PN, le développement post-newtonien de la fonction ut

SF.y/ fait intervenir des contributions
logarithmiques liées au sillage d’onde.

La suite de ce chapitre est un article publié dans le journal Physical Review D [72].
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Abstract

e problem of a compact binary system whose components move on circular orbits is
addressed using two different approximation techniques in general relativity. e post-
Newtonian (PN) approximation involves an expansion in powers of v=c � 1, and is
most appropriate for small orbital velocities v. e perturbative self-force (SF) analysis
requires an extreme mass ratio m1=m2 � 1 for the components of the binary. A partic-
ular coordinate-invariant observable is determined as a function of the orbital frequency
of the system using these two different approximations. e post-Newtonian calculation
is pushed up to the third post-Newtonian (3PN) order. It involves the metric generated
by two point particles and evaluated at the location of one of the particles. We regularize
the divergent self-field of the particle by means of dimensional regularization. We show
that the poles / .d � 3/�1 appearing in dimensional regularization at the 3PN order can-
cel out from the final gauge invariant observable. e 3PN analytical result, through first
order in the mass ratio, and the numerical SF calculation are found to agree well. e con-
sistency of this cross cultural comparison confirms the soundness of both approximations
in describing compact binary systems. In particular, it provides an independent test of the
very different regularization procedures invoked in the two approximation schemes.
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4.4 Introduction

4.4.1 Motivation
e detection and analysis of the gravitational radiation from black hole binaries by the ground-
based LIGO–VIRGO and space-based LISA observatories requires very accurate theoretical
predictions, for use as gravitational wave templates [402]. ere are two main approximation
schemes available for performing such calculations in general relativity: (i) e post-Newtonian
expansion, well suited to describe the inspiralling phase of arbitrary mass ratio compact bina-
ries in the slow motion and weak field regime (c�1 � v=c � 1),1 and (ii) the perturbation-
based self-force approach, which gives an accurate description of extrememass ratio binaries (q �

m1=m2 � 1) even in the strong field regime.
For the moment the post-Newtonian (PN) templates for compact binary inspiral have been

developed to 3.5PNorder in the phase [82, 77, 68, 69] and 3PNorder in the amplitude [240, 78]
(see [61] for a review). ese are suitable for the inspiral of two neutron stars in the frequency
bandwidth of LIGO and VIRGO detectors. For detection of black hole binaries (with higher
masses) the PN templates have to be matched with full numerical simulations for the merger
phase and the ringdown of the final black hole. e matching between the PN approximation
and numerical relativity has turned out to be very successful [104, 95].

On the other hand, gravitational self-force (SF) analysis [296, 344, 153, 200, 335] is expected
to provide templates for extreme mass ratio inspirals (EMRIs) anticipated to be present in the
LISA frequency bandwidth. SF analysis is a natural extension of first order perturbation theory,
and the latter has a long history of comparisons with post-Newtonian analysis [332, 127, 333,
391, 334, 395, 393, 336]. SF analysis, itself, is just now mature enough to present some limited
comparisons with PN analysis, but it is not yet ready for template generation.

In this paper we shall compare the PN and SF analyses in their common domain of valid-
ity, that of the slow motion weak field regime of an extreme mass ratio binary (see illustration
of various methods in Fig. 4.2). e problem was tackled by Detweiler [151], who computed
numerically within the SF a certain gauge invariant quantity, defined by (4.17) below for an ex-
treme mass ratio binary, and compared it with the 2PN prediction extracted from existing PN
results [79]. Here we shall go one step further, and extend the comparison up to 3PN order.
is will require an improvement in the numerical resolution of the SF calculation in order to
distinguishmore accurately the 3PN self-force from the self-force at higher PNorders. However,
our primary difficulty is that the PN results for the metric have not previously been available at
3PN order, and will have to be carefully derived. We shall demonstrate an excellent agreement
between the extreme mass ratio case (q � 1) of the analytical 3PN result and the numerical SF
result.

4.4.2 Method
Let us consider a system of two (non-spinning) compact objects with masses m1 and m2, and
moving on slowly inspiralling quasi-circular orbits. In the PN analysis, let m1 and m2 be arbi-

¹By a slight abuse of notation we denote by c�1 the standard PN estimate, where c is the speed of light. As
usual we refer to nPN as the order equivalent to termsO.c�2n/ in the equations of motion beyond the Newtonian
acceleration.
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Figure 4.2: Different analytical approximation schemes and numerical techniques are used to study black hole
binaries, depending on the mass ratio m1=m2 and the orbital velocity v2 � Gm=r12, where m D m1 C m2. e
post-Newtonian theory and black hole perturbation theory can be compared in the slow motion regime (v � c

equivalent to r12 � Gm=c2 for circular orbits) of an extreme mass ratio (m1 � m2) binary.

trary; in the SF analysis, further assume that m1 � m2. We can then call m1 the “particle”, and
m2 the “black hole”.

Self-force analysis shows that the dissipative parts of the self-force for a circular orbit are the t

and ' components. ese result in a loss of energy and angular momentum from the small mass
at the same precise rate as energy and angular momentum are radiated away [151]. In addition,
earlier perturbative calculations of energy and angular momentum fluxes [332, 127, 333, 391,
334, 395, 393, 336] for this situation show them to be equivalent to the results of the PN analysis
in their common domain of validity. Hence, by invoking an argument of energy and angular
momentum balance, we know that the PN results also agree with the dissipative parts of the SF
in their domain of common validity, and further comparison can reveal nothing new.

For our PN-SF comparison, we shall thus neglect the dissipative, radiation-reaction force
responsible for the inspiral, and restrict ourselves to the conservative part of the dynamics. In PN
theory thismeans neglecting the dissipative radiation-reaction force at 2.5PN and 3.5PNorders,
and considering only the conservative dynamics at the even-parity 1PN, 2PN and 3PN orders.
is clean separation between conservative even-parity and dissipative odd-parity PN terms is
correct up to 3.5PN order.2 In SF theory there is also a clean split between the dissipative and
conservative parts of the self-force. is split is particularly transparent for a quasi-circular orbit,

²However, this split merges at 4PN order, since at that approximation arises a contribution of the radiation-
reaction force, which originates from gravitational wave tails propagating to infinity [66].
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where the r component is the only non-vanishing component of the conservative self-force.
Henceforth, the orbits of both masses are assumed to be and to remain circular, because we

are ignoring the dissipative radiation-reaction effects. For our comparison we require two phys-
ical quantities which are precisely defined in the context of each of our approximation schemes.
e orbital frequency� of the circular orbit as measured by a distant observer is one such quan-
tity. e second requires further explanation.

With circular orbits and no dissipation, the geometry has a helical Killing vector field k˛ .
A Killing vector is only defined up to an overall constant factor. In our case k˛ extends out to
a large distance where the geometry is essentially flat. ere k˛@˛ D @t C�@' in any natural
coordinate system which respects the helical symmetry [355]. We let this equality define the
overall constant factor, thereby specifying the Killing vector field uniquely.

An observermoving with the particle m1, while orbiting the black hole m2, would detect no
change in the local geometry. us the four-velocity u˛

1 of the particle is tangent to the Killing
vector k˛ evaluated at the location of the particle, which we denote by k˛

1 . A second physical
quantity is then defined as the constant of proportionality, call it uT

1 , between these two vectors,
namely

u˛
1 D uT

1 k˛
1 : (4.15)

e four-velocity of the particle is normalized so that .g˛ˇ/1u˛
1u

ˇ

1 D �1; .g˛ˇ/1 is the regular-
ized metric at the particle’s location, whereas the metric itself is formally singular at the particle
m1 in both PN and SF approaches. e gauge invariant quantity uT

1 is thus given by:

uT
1 D

�
�.g˛ˇ/1u˛

1k
ˇ

1

��1

D

�
�.g˛ˇ/1k˛

1 k
ˇ

1

��1=2

: (4.16)

It is important to note that this quantity is precisely defined in both PN and SF frameworks,
and it does not depend upon the choice of coordinates or upon the choice of perturbative gauge;
however, it very definitely depends upon using a valid method of regularization. Furthermore,
for any coordinate system uT

1 has a pleasant physical interpretation as being the rate of change
of time at a large distance, with respect to the proper time on the particle m1, and it could in
principle be measured by a redshi experiment as described in [151].

If we happen to choose a convenient coordinate system where k˛@˛ D @t C �@' every-
where, then in particular k t

1 D 1, and thus uT
1 � ut

1, the t component of the four velocity of
m1. e Killing vector on the particle is then k˛

1 D u˛
1=u

t
1, and simply reduces to the particle’s

ordinary post-Newtonian coordinate velocity v˛
1=c. In such a coordinate system, the description

of the invariant quantity we are thus considering is

uT
1 � ut

1 D

�
�.g˛ˇ/1

v˛
1v

ˇ

1

c2

��1=2

: (4.17)

In the PN calculation we shall evaluate uT
1 using a particular harmonic coordinate system. We

shall make no restriction on the mass ratio q D m1=m2, but shall eventually compute the small
mass ratio limit q � 1 for comparison with the SF result.

e regularized metric .g˛ˇ/1 is defined with very different prescriptions in the SF and PN
approaches. Both analyses require subtle treatment of singular fields at the location of themasses.
Subtracting away the infinite part of a field while carefully preserving the part which is desired
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is always a delicate task. Our comparison will rely on the principle of the physical equivalence
of the regularized SF and PN metrics, at least in the vicinity of the particle, i.e. that they are
isometric — they differ by a coordinate transformation. In fact the cross cultural comparison of
the invariant uT

1 is a test of the isometry of the two regularized metrics and is, thus, a test of the
two independent (and very different) regularization procedures in use.

In the SF prescription, the regularized metric reads

gSF
˛ˇ.x/ D Ng˛ˇ.x/C hR˛ˇ.x/ ; (4.18)

where Ng˛ˇ denotes the backgroundSchwarzschildmetric of the black hole, andwhere the “Regu-
lar” perturbationhR

˛ˇ
is smooth in aneighborhoodof theparticle, and follows fromtheDetweiler-

Whiting prescription [153] for removing the infinite part of the field, as described below in
Sec. 4.5.2. In particular the metric (4.18) is regular at the particle’s position y˛

1 , and we simply
have

.gSF
˛ˇ/1 D gSF

˛ˇ.y1/ : (4.19)

In the perturbative SF analysis we are only working through first order in q D m1=m2, and
at that level of approximation hR

˛ˇ
D O.q/. en uT

1 can be computed accurately to the same
perturbative order and compares well with the post-Newtonian result to 2PN order [151]. e
regularized 2PN metric is known [79], and therefore the comparison is straightforward.

In the present paper we shall obtain the 3PN regularized metric which will be the core of
our calculation, and will be partly based on existing computations of the equations of motion at
3PN order using Hadamard [75] and dimensional [67] regularizations. Using an iterative PN
procedure, one first considers the post-Newtonian metric gPN

˛ˇ
.x; t/ at any field point outside

the particle, in a coordinate system x˛ D fct;xig. atmetric is generated by the two particles,
and includes both regular and singular contributions around each particle. en we compute
the PN regularized metric at the location of the particle by taking the limit when x ! y1.t/,
where y1.t/ is the particle’s trajectory. In 3 spatial dimensions, that limit is singular. In order to
treat the infinite part of the field, we extend the computation in d spatial dimensions, following
the prescription of dimensional regularization, which is based on an analytic continuation (AC)
in the dimension d viewed as a complex number. Considering the analytic continuation in a
neighborhood of " � d � 3 ! 0, we define

.gPN
˛ˇ/1 D AC

"!0

h
lim
x!y1

gPN
˛ˇ.x; t/

i
: (4.20)

e limit " ! 0 does not exist in general due to the presence of poles / "�1 occurring at
3PN order; we compute the singular Laurent expansion when " ! 0, and we shall see that the
poles disappear from the final gauge invariant results. Previous work on equations of motion
and radiation field of compact binaries has shown that dimensional regularization is a powerful
regularizationmethod in a PN context. In particular this regularization is free of the ambiguities
plaguing the Hadamard regularization at the third post-Newtonian order [141, 67, 68, 69].

e plan of this paper is as follows: Sec. 4.5 is devoted to an overview of the SF formal-
ism. e circular geodesics of the perturbed Schwarzschild geometry are described in Sec. 4.5.1,
where we also give an explicitly gauge invariant relationship between� and uT

1 for the particle
m1. We use the mode-sum regularization procedure of Barack and Ori [33, 32] to perform the
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delicate subtraction of the singular field hS
˛ˇ

from the retardedmetric perturbation hret
˛ˇ

. We give
a brief description of our application of this process in Sec. 4.5.2. In Sec. 4.5.3 we describe some
of the details of the numerical analysis which yields our value for uT

1 as a function of �, and
provide a brief discussion of the numerical determination of the 3PN effect on uT

1 . Most of the
details concerning the 3PN calculation are presented in Sec. 4.6. We focus mainly on the issues
regarding our implementation of the dimensional self-field regularization which is described in
Secs. 4.6.1 and 4.6.2. e post-Newtonian results are presented in Sec. 4.7. We give the fully-
fledged regularized 3PN metric in Sec. 4.7.1, and present our final result for uT

1 in Sec. 4.7.2.
We finally investigate the small mass ratio limit q � 1 of the post-Newtonian result, and com-
pare with the self-force calculation in Sec. 4.8. Two appendices provide further details on the
PN calculation: An alternative derivation using theHadamard regularization is discussed inAp-
pendix A, and the choice of the center-of-mass frame and the reduction to quasi-circular orbits
at 3PN order within dimensional regularization are investivated in Appendix B.

4.5 Self-force overview
Previously we described the truly coordinate and perturbative-gauge independent properties of
� and uT

1 . In this section we use Schwarzschild coordinates, and we refer to “gauge invariance”
as a property which holds within the restricted class of gauges for which k˛@˛ D @t C�@' is
a helical Killing vector. In all other respects, the gauge choice is arbitrary. With this assumption,
no generality is lost, and a great deal of simplicity is gained.

e regularized metric perturbation hR
˛ˇ

D hret
˛ˇ

� hS
˛ˇ

is the difference between the re-
tarded metric perturbation hret

˛ˇ
and the singular field hS

˛ˇ
. A Hadamard expansion of Green’s

functions in curved spacetime provides an expansion for hS
˛ˇ

[153]. In a neighborhood of the
particle with a special, locally-inertial coordinate system, hS

˛ˇ
appears as the m1=r part3 of the

particle’s Schwarzschildmetric alongwith its tidal distortion causedby thebackgroundgeometry
of the large black hole. Details of the expansion are given in Sec. 6.1 of [150]. e special locally
inertial coordinates for a circular geodesic in the Schwarzschild metric are given as functions of
the Schwarzschild coordinates in Appendix B of [152].

4.5.1 Circular geodesics of the perturbed Schwarzschild geometry

e effect of the gravitational self-force is most easily described as having m1 move along a
geodesic of the regularized metric Ng˛ˇ C hR

˛ˇ
. We are interested in circular orbits and let u˛

be the four-velocity of m1.4 is differs from the four-velocity Nu˛ of a geodesic of the straight
Schwarzschild geometry at the same radial coordinate r by an amount of O.q/. Recall that we
are describing perturbation analysis with q � 1, therefore hR

˛ˇ
D O.q/, and all equations in

this section necessarily hold only through first order in q.
It is straightforward to determine the components of the geodesic equation for the metric

Ng˛ˇ C hR
˛ˇ

[151], and then to find the components of the four-velocity u˛ of m1 when it is in
a circular orbit at Schwarzschild radius r . We reiterate that the four-velocity is to be normalized

³In all of Sec. 4.5 we set G D c D 1.
⁴Since we are clearly interested in the motion of the small particle m1, we remove the index 1 from u˛

1 .
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with respect to Ng˛ˇ C hR
˛ˇ

rather than Ng˛ˇ , and that hR
˛ˇ

is assumed to respect the symmetry of
the helical Killing vector. In this case we have

.ut/2 D
r

r � 3m2

h
1 C Nu˛

NuˇhR
˛ˇ �

r

2
Nu˛

Nuˇ@rhR
˛ˇ

i
; (4.21a)

.u'/2 D
r � 2m2

r.r � 3m2/

�
m2.1 C Nu˛

NuˇhR
˛ˇ
/

r.r � 2m2/
�

1

2
Nu˛

Nuˇ@rhR
˛ˇ

�
: (4.21b)

A consequence of these relations is that the orbital frequency of m1 in a circular orbit about a
perturbed Schwarzschild black hole of mass m2 is, through first order in the perturbation, given
by

�2
D

�
u'

ut

�2

D
m2

r3
�

r � 3m2

2r2
Nu˛

Nuˇ@rhR
˛ˇ : (4.22)

e angular frequency� is a physical observable and is independent of the gauge choice. How-
ever the perturbed Schwarzschild metric does not have spherical symmetry, and the radius of
the orbit r is not an observable and does depend upon the gauge choice. at is to say, an in-
finitesimal coordinate transformation ofO.q/might change Nu˛

Nuˇ@rhR
˛ˇ

. But if it does, then it
will also change the radius r of the orbit in just such a way that�2 as determined from (4.22)
remains unchanged. Both ut � uT and u' � �uT are gauge invariant as well.

Our principle interest is in the relationship between � and uT , which we now establish
directly using (4.21a) and (4.22), writing all equations through first order. First, we can rearrange
(4.22) to get: �

m2

r

�3

D .m2�/
2

C

�
m2

r

�2�
1 �

3m2

r

��
r

2
Nu˛

Nuˇ@rhR
˛ˇ

�
: (4.23)

Next, we take the cube root of both sides and expand on the right-hand-side (RHS) to obtain:

m2

r
D .m2�/

2=3
C

1

3

�
m2

r

1

.m2�/2=3

�2�
1 �

3m2

r

��
r

2
Nu˛

Nuˇ@rhR
˛ˇ

�
: (4.24)

e second term on the RHS of (4.24) is already first order in q. us, in the first two bracketed
expressions in this second term, we can replace m2=r by the leading approximation to m2=r

from just the first term on the RHS of (4.24), giving:

m2

r
D .m2�/

2=3
C

1

3

�
1 � 3.m2�/

2=3

��
r

2
Nu˛

Nuˇ@rhR
˛ˇ

�
: (4.25)

Following [151], we next introduce the gauge invariant measure of the orbital radius

R� �

�m2

�2

�1=3

H) .m2�/
2=3

D
m2

R�

: (4.26)

Now we use this in its second form and substitute back into (4.25):

m2

r
D

m2

R�

C
1

3

�
1 �

3m2

R�

��
r

2
Nu˛

Nuˇ@rhR
˛ˇ

�
: (4.27)
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Multiplying overall by �3 and adding 1 to both sides before dividing through, we find:

1

1 � 3m2=r

�
1 �

r

2
Nu˛

Nuˇ@rhR
˛ˇ

�
D

1

1 � 3m2=R�

: (4.28)

is is exactly what we need in (4.21a) in order to establish a first order, gauge invariant, alge-
braic relationship between uT (to which ut evaluates in our gauge) and R� (or equivalently�),
namely:

.uT /2 D

�
1 �

3m2

R�

��1 �
1 C Nu˛

NuˇhR
˛ˇ

�
: (4.29)

e lowest order term on the RHS is identical to what is obtained for a circular geodesic of the
unperturbed Schwarzschild metric. Indeed, recall that the Schwarzschild part of uT is known
exactly as uT

Schw D .1 � 3m2=R�/
�1=2. us, if we write

uT
� uT

Schw C q uT
SF C O.q2/ ; (4.30)

the first order term in (4.29) gives:

q uT
SF D

1

2

�
1 �

3m2

R�

��1=2

Nu˛
NuˇhR

˛ˇ ; (4.31)

which is O.q/, and contains the effect of the “gravitational self-force” on the relationship be-
tween uT and�, even though it bears little resemblance to a force. We shall henceforth focus
our attention on the calculation of the combination Nu˛

NuˇhR
˛ˇ

.

4.5.2 Mode sum regularization
Both the retarded metric perturbation hret

˛ˇ
and the singular field hS

˛ˇ
are singular at m1. How-

ever, we actually determine hret
˛ˇ

by using the inherent symmetries of the problem to separate
variables and to decompose the components of hret

˛ˇ
in terms of tensor spherical harmonics. Each

`;m component h
ret .`;m/

˛ˇ
is then finite and determined using a standard numerical differential

equation solver. Only the sum over modes diverges.
For our problem, we treat the divergence of the singular field hS

˛ˇ
in a related manner. e

singular behavior is represented in the known expansion of hS
˛ˇ

about the particle, and is also
amenable to a decomposition in terms of spherical harmonics. is procedure is stylistically
quite similar to the expansion of the Coulomb field of a point charge, displaced from the ori-
gin, in terms of spherical harmonics centered on the origin; this results in the coefficients being
proportional to either 1=r `C1 or r `, depending upon whether the field point is inside or out-
side the charge. In SF analysis, the spherical harmonic coefficients determine the regularization
parameters of hS

˛ˇ
.

Following the original prescription of Barack and Ori [33, 30] and extending it as in [152],
we first perform the sum over m for the retarded field at the particle

Nu˛
Nuˇh

ret .`/

˛ˇ
�

X̀
mD�`

Nu˛
Nuˇh

ret .`;m/

˛ˇ
: (4.32)
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en we use the recognition that the decomposition of the singular field is of the form

Nu˛
Nuˇh

S .`/

˛ˇ
D B C

C

`C 1=2
C

D

.2` � 1/.2`C 3/

C
E1

.2` � 3/.2` � 1/.2`C 3/.2`C 5/
C O.`�6/ ; (4.33)

where B, C , D, E1 (and the subsequent E2, E3, etc) are regularization parameters. e partic-
ular ` dependence of the coefficients accompanying the parameters D and En is related to the
expansion of .1 � cos �/nC1=2 in terms of Legendre polynomials P`.cos �/; details are derived
and described in Appendix D of [152].

e regular field at the particle is finally given by

Nu˛
NuˇhR

˛ˇ D
X

`

�
Nu˛

Nuˇh
ret .`/

˛ˇ
� Nu˛

Nuˇh
S .`/

˛ˇ

�
; (4.34)

and the sum is guaranteed to be convergent as long as B and C are known. In practice, the
regularization parameters are difficult to determine. For our problem it is known analytically
that C D 0 and

B D
2m1

r

�
r � 3m2

r � 2m2

�1=2

2F1

�
1

2
;
1

2
; 1;

m2

r � 2m2

�
; (4.35)

where 2F1 is a hypergeometric function, and r is the Schwarzschild radial coordinate of the cir-
cular orbit. is knowledge of B and C , but not D, implies that the sum in (4.34) converges
as 1=`. To increase the rate of convergence, we augment our knowledge of B and C by numer-
ically determining further regularization parameters [152]: We use the fact that the behavior of
Nu˛

Nuˇh
ret.`/

˛ˇ
, evaluated at the particle, must match Nu˛

Nuˇh
S .`/

˛ˇ
as given in (4.33) for large `. is

allows us to fit the numerical data to determine the additional regularization parameters D and
En up to, say, E3. Knowledge of these additional parameters results in a sum which converges
as 1=`9. In our numerical work we typically fit for three or four extra parameters. We calculate
up to ` D 40, fit in the range ` D 13 � 40, and then sum to ` ! C1, with errors at the full
level of our calculational precision.

In earlier work [151, 354, 355] the accuracy of the numerical integration used was adequate
for the purposes then at hand. For the comparisons presented here it became obvious that we
should investigate pushing our integration procedure to enable us to obtain the highest preci-
sion practicable. By adjusting the effective step size as ` changed,5 we found that it was possible
to achieve this without encountering any other numerical difficulties (such as an unreasonable
accumulation of round-off error). Subsequent fitting, to obtain the numerical determination of
the higher order regularization parameters D, � � � , E3 as described above, allowed us to reduce
residuals to the level of the computational precisionwhich had controlled our integration proce-
dure. MonteCarlo calculations based on these residuals gave us systematic estimates of the errors
to associate with our fit parameters. Using these, we find relative errors of order 10�13 in uT

SF

(the loss in precision being due to the regularization). e corresponding results are presented
in Table 4.1.

⁵We used an integration procedure that contained an adjustable parameter, �, which controlled the precision
of the numerical result. We chose � small enough so that further reduction would not cause relative changes in the
result larger than 10�15.



58

R�=m2 Nu˛
NuˇhR

˛ˇ
=q uT

SF

200 �0:0100252390238679 �0:00505064245513028

220 �0:00911174844278219 �0:00458725834137915

240 �0:00835083080996084 �0:00420175898117037

260 �0:00770720725494635 �0:00387603022007156

280 �0:00715569723937482 �0:00359717107497568

300 �0:00667784659538770 �0:00335574417643231

320 �0:00625982212277844 �0:00314468649077390

340 �0:00589105041112645 �0:00295860680303681

360 �0:00556331104384481 �0:00279331869895365

380 �0:00527011654983391 �0:00264552181684313

400 �0:00500627861027562 �0:00251257921031088

420 �0:00476759835869862 �0:00239235862943596

440 �0:00455064124356486 �0:00228311728867935

460 �0:00435257068802445 �0:00218341682793388

480 �0:00417102337921533 �0:00209205962311231

500 �0:00400401451882955 �0:00200804044413982

Table 4.1: Summary of the gravitational self-force effects for a variety of radii R�. Approximately 13 digits are
believed to be accurate.

Aer the regularization procedure is complete we have in hand Nu˛
NuˇhR

˛ˇ
, and hence uT

SF, for
an orbit at a given radius R�. At this point, we have solved our self-force problem — we have
found the effect, uT

SF, of the self-force on uT for a specific�.

4.5.3 Post-Newtonian fit of uT
SF

e improved quality of the data in Table 4.1 fed directly into the next stage, that of fitting uT
SF

as a function of� (or R�) to determine the higher order post-Newtonian coefficients. In order
to proceed to our post-Newtonian fit of uT

SF, we introduce a special notation for the convenient
gauge invariant PN parameter defined in (4.26), which isO.c�2/ and reads

y � .m2�/
2=3

D
m2

R�

: (4.36)

e post-Newtonian expansion of the self-force effect given in (4.31) was determined explicitly
up to 2PN order in [151], and found to be

uT
SF D �y � 2y2

� 5y3
C CSF3PN y4

C O.y5/ ; (4.37)

where CSF3PN represents the 3PN coefficient (unknown at the time of [151]), and higher-order
4PN terms are neglected. e author of Ref. [151] also performed a numerical fit of uT

SF to the
polynomial (4.37) in order to determine the numerical value of CSF3PN. He expected that the post-
Newtonian derivation of this coefficient would be unavailable for some time, and the numerical
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fitwas done in a cursory fashion using a range inR� from20 m2 to50 m2, not generally optimal
for PN comparison. It is now time to improve upon that early analysis.

e process of fitting terms in the `-sum for the regularization parameters is relatively easy.
Convergence in the `-sum increases by two orders with each additional regularization parame-
ter, and is very rapid. By contrast, the low order PN series for uT

SF is effectively a power series
in 1=R� and is relatively slowly convergent. Moreover, if we tried to fit higher terms, we could
rapidly encounter the situation where, for some large R�, contributions would be below our
error estimates, while for smaller R�, the same contributions would still be significant. is sit-
uation complicated both the choice of the range of R� over which we could effectively fit, and
the choice of the number of additional PN coefficients we should use to improve the character-
ization of our available data, consistent with the error estimates we had previously established.
For this paper, we settled on a compromise, namely, we used values of R� generally in the range
200 m2 to 500 m2 and, surprisingly, somewhere between 3 and 6 additional PN coefficients.
Following these procedures, our numerical determination of the 3PN coefficient in the self-force
effect upon uT was found to be

CSF
3PN D �27:677 ˙ 0:005 : (4.38)

If we do not use a sufficient number of additional coefficients, our fitting procedure will com-
pensate by systematically attempting to approximate the missing terms by adjusting the fitting
parameters we do use. is effect, which determines the error term in (4.38), turns out to domi-
nate the random error from our numerically determined data points. We can estimate this effect
by our choice of the range of data and the number of coefficients used in the fitting process. is
proves to be adequate for our comparison while also suggesting that further work is warranted.
In particular, we shall show in separate work [71] that the PN expansion involves in higher or-
ders some logarithmic terms, and that the prior knowledge of the coefficients of the logarithms
appearing at 4PN and 5PN orders (computed in [71] from PN theory) will improve very much
the accuracy of the PN fit to the SF result.6 is study is beyond our current scope, but will be
extensively reported in [71].

4.6 Post-Newtonian calculation

In this section, our aim is to compute the3PNregularizedmetric (4.20) bydirect post-Newtonian
iteration of the Einstein field equations in the case of singular point mass sources. Previous work
on the 3PNequations ofmotion and radiationfield of point particles [141, 67, 68, 69] has shown
that the appropriate regularization to remove the infinite self-field of point particles in this con-
text is dimensional regularization [214, 90].

In the dimensional regularization (DR) scheme, we look for the solution of the Einstein field
equations in D D d C 1 space-time dimensions, with a matter source made of point particles.
We treat the space dimension as an arbitrary complex number, d 2 C, and interpret any inter-
mediate formula in the PN iteration of those equations by analytic continuation in d . en we

⁶Accordingly, the O.y5/ symbol for remainders in Eq. (4.37) and similar equations below should rather be
understood as the Landau o.y4/ symbol.
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analytically continue d down to the value of interest (namely 3), posing

d � 3 C " : (4.39)

Inmost of the calculations we neglect terms of order " or higher, i.e. we retain the finite part and
the eventual poles.

Defining the gravitational field variable h˛ˇ �
p

�g g˛ˇ � �˛ˇ , 7 and adopting the har-
monic coordinate condition @�h˛� D 0, we can write the “relaxed” Einstein field equations in
the form of ordinary d’Alembert equations, namely

�h˛ˇ
D

16�G.d/

c4
jgj T ˛ˇ

Cƒ˛ˇŒh; @h; @2h� ; (4.40)

where � � ���@�@� is the flat-spacetime d’Alembertian operator in D space-time dimensions.
e gravitational source termƒ˛ˇ in (4.40) is a functional of h�� and its first and second space-
time derivatives, and reads as

ƒ˛ˇ
D � h��@�@�h˛ˇ

C @�h˛�@�hˇ�
C

1

2
g˛ˇg��@�h��@�h��

� g˛�g��@�hˇ�@�h��
� gˇ�g��@�h˛�@�h��

C g��g��@�h˛�@�hˇ�

C
1

4

�
2g˛�gˇ�

� g˛ˇg��
��

g��g�� �
1

d � 1
g��g��

�
@�h��@�h�� : (4.41)

Note the explicit dependence on the space dimension d of this expression. e matter stress-
energy tensor T ˛ˇ will be composed of Dirac delta-functions in d dimensions, say ı.d/Œx� ya�,
where x is the field point and ya are the source points labeled by a. Finally the d -dimensional
gravitational constant G.d/ is related to the usual Newton constant G by

G.d/
D G `"

0 ; (4.42)

where `0 denotes the characteristic length associated with dimensional regularization. We shall
check in Sec. 4.7 that this length scale never appears in the final 3-dimensional result.

4.6.1 Post-Newtonian metric in d dimensions
e 3PN metric is given in expanded form for general matter sources in terms of some “elemen-
tary” retarded potentials (sometimes called near-zone potentials) V , Vi , K, OWij , ORi , OX , OZij , OYi

and OT , which were introduced in Ref. [75] for 3 dimensions [see Eqs. (3.24) there] and gener-
alized to d dimensions in Ref. [67]. All these potentials have a finite non-zero post-Newtonian
limit when c ! C1 and parameterize the successive PN approximations. Although this de-
composition in terms of near-zone potentials is convenient, such potentials have no physical
meaning by themselves. Let us first define the combination

V � V �
2

c2

�
d � 3

d � 2

�
K C

4 OX

c4
C

16 OT

c6
: (4.43)

⁷Here g˛ˇ is the contravariant metric, inverse of the covariant metric g˛ˇ of determinant g D det.g˛ˇ/, and
�˛ˇ D diag.�1; 1; 1; 1/ represents an auxiliary Minkowski metric in Cartesian coordinates.
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en the 3PN metric components can be written in the rather compact form [67]8

gPN
00 D �e�2V=c2

 
1 �

8ViVi

c6
�

32 ORiVi

c8

!
C O.c�10/ ; (4.44a)

gPN
0i D �e

�
.d�3/V
.d�2/c2

 
4Vi

c3

"
1 C

1

2

�
d � 1

d � 2

V

c2

�2
#

C
8 ORi

c5
C

16

c7

�
OYi C

1

2
OWijVj

�!
C O.c�9/ ; (4.44b)

gPN
ij D e

2V
.d�2/c2

�
ıij C

4

c4
OWij C

16

c6

�
OZij � ViVj C

1

2.d � 2/
ıijVkVk

��
C O.c�8/ :

(4.44c)

e successive PN truncations of the field equations (4.40)–(4.41) give us the equations satisfied
by all the above potentials up to 3PNorder. We conveniently define from the components of the
matter stress-energy tensor T ˛ˇ the following density, current density, and stress density

� �
2

d � 1

.d � 2/T 00 C T ii

c2
; (4.45a)

�i �
T 0i

c
; (4.45b)

�ij � T ij ; (4.45c)

where T ii � ıijT ij . e leading-order potentials in the metric obey

�V D � 4�G.d/ � ; (4.46a)

�Vi D � 4�G.d/ �i ; (4.46b)

�K D � 4�G.d/ �V ; (4.46c)
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ese potentials evidently include many PN corrections. e potentials V and Vi have a com-
pact support (i.e. their source is localized on the isolated matter system) and will admit a finite
limitwhen" ! 0without anypole. With the exceptionof thepotentialK whichhas also a com-
pact support,9 all other potentials have, in addition to a compact-support part, a non-compact
support contribution, such as that generated by the term / @iV @jV in the source of OWij . is
is the non-compact support piece which is themost delicate to compute because it typically gen-
erates some poles/ 1=" at the 3PNorder. e d’Alembert equations satisfied by all higher-order
PNpotentials, whose sources aremade of non-linear combinations of lower-order potentials, are

⁸is particular exponentiated form is to be consistently reexpanded at 3PN order.
⁹Actually the compact-support potential K does not contribute to the present calculation. Indeed, it will al-

ways be multiplied by a factor " D d � 3, and being compact does not generate any pole; so it does not exist in 3
dimensions.
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reported here for completeness:
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Many of the latter potentials have already been computed for compact binary systems, and
we shall extensively use these results from [75, 67]. Notably, all the compact-support potentials
such as V and Vi , and all the compact-support parts of other potentials, have been computed
for any field point x, and then at the source point y1 following the regularization. However, the
most difficult non-compact support potentials such as OX and OT could not be computed at any
field point x, and were regularized directly on the particle’s world-line. Since for the equations
of motion we needed only the gradients of these potentials, only the gradients were regularized
on the particle, yielding the results for .@i

OX /.y1/ and .@i
OT /.y1/ needed in the equations of

motion. However the 3PN metric requires the values of the potentials themselves regularized
on the particles, i.e. OX.y1/ and OT .y1/. For the present work we have therefore to compute,
using the tools developed in [75, 67], the difficult non-linear potentials OX.y1/ and OT .y1/, and
especially the non-compact support parts therein. Unfortunately, the potential OX is always the
most tricky to compute, because its source involves the cubically-non-linear and non-compact-
support term OWij @ijV , and it has to be evaluated at relative 1PN order.

In this calculation we also meet a new difficulty with respect to the computation of the 3PN
equations of motion. Indeed, we find that the potential OX is divergent because of the bound
of the Poisson-like integral at infinity.10 us the potential OX develops an IR divergence, in
addition to the UV divergence due to the singular nature of the source and which is cured by
dimensional regularization. e IR divergence is a particular case of the well-known divergence
of Poisson integrals in the PN expansion for general (regular) sources, linked to the fact that
the PN expansion is a singular perturbation expansion, with coefficients typically blowing up at
spatial infinity. e IR divergence will be treated in Sec. 4.6.2.

e 3PN metric 4.44 is valid for a general isolated matter system, and we apply it to the
case of a system of N point-particles with “Schwarzschild” masses ma and without spins (here
a D 1; � � � ;N ). In this case we have

�.x; t/ D
X

a

Q�a ı
.d/Œx � ya.t/� ; (4.48a)

�i.x; t/ D
X

a

�a v
i
a ı

.d/Œx � ya.t/� ; (4.48b)

�ij .x; t/ D
X

a

�a v
i
a v

j
a ı

.d/Œx � ya.t/� ; (4.48c)

where ı.d/ denotes the Dirac density in d spatial dimensions such that
R
d

dx ı.d/.x/ D 1. We

¹⁰However the other potential OT , which is merely Newtonian, is convergent at infinity.
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defined the effective time-varying masses of the particles by

�a.t/ D
maq

.gg˛ˇ/.ya; t/ v˛
a v

ˇ
a=c2

; (4.49)

together with Q�a D
2

d�1

�
d � 2 C v2

a=c
2
�
�a.

4.6.2 Dimensional regularization of Poisson integrals
In the PN approximation we break the hyperbolic d’Alembertian operator � in Eqs. (4.46)–
(4.47) into the elliptic Laplacian operator� and the small PN retardation term c�2@2

t , which
is put in the RHS of the equation and iterated. Neglecting the radiation-reaction effects, this
means that we solve the d’Alembert equations by means of the symmetric Green function

��1
sym D ��1

C
1

c2
��2@2

t C O.c�4/ : (4.50)

We consider only the 1PNretardation because the potentials OX and OT which are the only ones to
be computed are to be evaluated at 1PNorder atmost. We are thus led to define the dimensional
regularization of Poisson or twice-iterated Poisson integrals.

Let F.x/ be the generic form of the functions representing the PN potentials in d dimen-
sions. For simplicity we shall treat only the case of the non-compact support terms. Compact
support potentials or compact part of potentials, such as V or the first term in the source of OWij

do not generate poles in d dimensions and were dealt with in Ref. [67]. Also, we consider only
Poisson integrals and refer to [67] for the procedure for iterated Poisson integrals. So we want
to compute a typical Poisson potential

P .x0/ D ��1 ŒF.x/� � �
k

4�

Z
d

dx
F.x/

jx � x0jd�2
: (4.51)

Weemploy theGreen functionu D k jxj2�d of theLaplace operator ind -dimensions, satisfying
�u D �4� ı.d/.x/, where

k �
�
�

d�2
2

�
�

d�2
2

(4.52)

is defined from the standard Eulerian gamma function.11 Furthermore we want to evaluate the
Poisson integral P .x0/ on one of the singular points, say x0 D ya. As we shall see the Poisson
potential we have to deal with will not only be divergent on the singularities but also at infinity,
i.e. when the source point r � jxj ! C1. Todelineate these problemswe introduce a constant
radiusR > 0, and split the Poisson potential into a near-zone integral corresponding to r < R,
and a far-zone one such that r > R:

P .x0/ D P<.x
0/C P>.x

0/ : (4.53)

e near-zone integral P< will contain the local or ultra-violet (UV) singularities, due to the
singular nature of the point-mass source, while the far-zone integral P> will have an infra-red
(IR) divergence at infinity, which is actually a general feature of the PN expansion for any post-
Newtonian source.

¹¹e constant k tends to 1 when d ! 3, and was formerly denoted Qk in Ref. [67].
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UV divergence

e UV divergences will be dealt with using dimensional regularization. Non-compact support
terms are generated by a generic function F.x/ which extends to all space. For all needed cases
we can assume that F is smooth everywhere except at the singular points ya, around which it
admits a singular expansion in powers of ra � jx � yaj when ra ! 0, of the type

F.x/ D

PX
pDp0

q1X
qDq0

rpCq"
a f

a
p;q.na/C o

�
rP

a

�
; (4.54)

for anyP 2 N. e coefficients afp;q.na/ are functions of the unit directionna D .x�ya/=ra,
and depend on the dimension through " D d � 3, and also on the DR length scale `0.12 e
powers of ra are of the type p C q", where p and q are relative integers (p; q 2 Z) with values
limited as indicated. e singular expansion (4.54) will yield some UV-type divergence of the
Poisson potential (4.51). Relying on analytic continuation, we can evaluate F at the location of
particle a simply by taking the limit x ! ya. Indeed, we can check that the dimension d can
always be chosen such that F is non-singular in this limit. us,

F.ya/ D AC

h
lim
x!ya

F.x/
i
; (4.55)

and we may then consider the expansion when " ! 0. From now on the analytic continuation
process will be implicitly assumed without indication.

e near-zone part of the Poisson integral of the generic function F outside the singularities
is defined by

P<.x
0/ D �

k

4�

Z
r<R

d
dx

F.x/

jx � x0jd�2
; (4.56)

in which the upper bound of the integral is set at the intermediate radius R. e singular be-
havior of this integral at the source points, i.e. when x D ya, is automatically taken care of by
dimensional continuation down to d D 3. Next we evaluate the integral at the singular point
x0 D ya itself. e result is easy inDR,13 as we are allowed to simply replace x0 by ya into (4.56).
us,

P<.ya/ D �
k

4�

Z
r<R

d
dx

F.x/

rd�2
a

; (4.57)

which is the main result of DR, as applied to UV divergences.
In practical calculations we are interested in the three-dimensional limit, so we perform the

Laurent expansion of the previous result when " D d �3 ! 0. As we know frompreviouswork
[67], the expression (4.57) is finite for any of the non-compact potentials up to 2.5PN order, but
will develop a simple pole / 1=" at the 3PN order. e poles correspond to the occurrence
of logarithmic divergences in the three-dimensional calculation [75], and are in fact associated
with our particular coordinate choice. Indeed, similar calculations performed at the 3PN level
in ADM-like coordinates within DR are pole-free [141]. e information we shall need is the

¹²More precisely, the coefficients depend on `0 as afp;q / `
�q"
0 , as can be seen from the expansion (4.54).

¹³is is in contrast with the difficult formulation necessary in Hadamard’s regularization; see Refs. [75, 67].
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pole part followed by the associated finite part when " ! 0; we shall usually leave aside the
remainder termO."/.14 We thus consider the expansion

P<.ya/ D
1

"
P .�1/

< .ya/C P .0/
< .ya/C O."/ ; (4.58)

and we look for the pole-part P
.�1/
< .ya/ and finite-part P

.0/
< .ya/ coefficients. Beware that

our terminology is slightly misleading, because we shall conveniently include in the pole part
P

.�1/
< .ya/ some dependence in ", which will of course be thought as being expanded when
" ! 0 up to first order in ", therefore yielding a finite contribution O."0/ to be added to the
finite part P

.0/
< .ya/. Combining previous results in Sec. IV of [67], we find that the pole part is

explicitly given by
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efirst term is the contributionof the singularityawhich is clearly singled out, while the second
term comes from all the other singularities b ¤ a. e bracket notation in (4.59) refers to the
angular average performed in d dimensions, i.e.

hf
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p;qi �

Z
d�d�1.na/

�d�1

f
a

p;q.na/ ; (4.60)

where the volume�d�1 of the .d � 1/-dimensional sphere is given by

�d�1 D
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d
2

� D
4�

k .d � 2/
: (4.61)

We observe that the pole part (4.59) depends on the behavior of the function F only for x in a
neighborhood of the singularities, through the singular expansion coefficients afp;q with p 6
�2. e result for the pole part heavily relies onDR, and depends on theDR scale `0 introduced
in (4.42). However, as it is “localized” on the singularities, the pole part is independent of the
radiusR.

On the contrary, the finite part coefficient P
.0/
< .ya/ depends on all the “bulk” of the integra-

tionoutside theparticle’sworld-lines and inparticular on the radiusR. is finite part essentially
corresponds to what we would naively compute in 3 dimensions, i.e. by simply replacing d D 3

into (4.57); the result, however, would be ill-defined as it stands. InDR the finite part coefficient
in (4.58) has a precise meaning, and we find that it agrees with the so-called Hadamard partie
finie integral [204, 370]

P .0/
< .ya/ D �

1

4�
Pf`0

Z
r<R

d
3x

F .0/.x/

ra

; (4.62)

¹⁴Although those remaindersO."/ present in Newtonian terms will be kept because they might get multiplied
by some poles "�1 at the 3PN order, therefore yielding finite contributions at 3PN order.
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where F .0/ is the function F computed with " D 0. Here “Pf`0
” stands for the partie finie

which depends on the arbitrary scale `0 playing here the role of the Hadamard regularization
scales. us, all the Hadamard regularization scales, one for each particles (they were previously
denoted s1; � � � ; sN in [75]), are to be replaced by the unique scale `0. For instance, in the equiv-
alent representation of Hadamard’s partie finie as an analytic continuation, making explicit the
presence of those arbitrary constant scales, we have

P .0/
< .ya/ D �

1

4�
FP

Z
r<R

d
3x

�
r1

`0

�̨
1
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�
rN

`0

�̨
N F .0/.x/

ra

; (4.63)

where the symbol FP is understood as the finite part of the Laurent expansion of the integral
when all of the ˛a’s tend to zero. e Hadamard partie finie (4.62) or (4.63) is extremely conve-
nient to implement in practical computations.

IR divergence

Next we have also to worry about the IR-type divergence of the Poisson potential P , due to the
behavior of the source F at spatial infinity, when r ! C1. Indeed, we find that the near-zone
potential OX we have to evaluate (and which is to be computed at 1PN relative order) is given by
an iterated Poisson integral which is divergent at infinity. e appearance of a divergent near-
zone potential OX.ya/ is a novel feature of the present calculation; indeed the problem did not
arise in the previous computation of the 3PN equations of motion because we needed instead
the gradient .@i

OX /.ya/, which is convergent.
Fortunately, the problem of IR divergences has been solved in the general case, for any iso-

lated PN source and at any PN order. Here we shall follow the formalism of Ref. [339] which
uses systematically a regularized version of the Poisson integral which is appropriate for solving
the hierarchy of PN equations. e idea is to introduce inside the Poisson integral a regulariza-
tion factor .r=r0/

B , where B is a complex number, and where r0 is an arbitrary IR scale (as `0

is an arbitrary UV scale). e regularized Poisson integral is then defined as the finite part (FP)
coefficient, i.e. the coefficient of the zeroth power of B, in the Laurent expansion of the integral
when B ! 0. It was proved in [339] that the latter regularized Poisson integral is a solution
of the Poisson equation for a general regular (smooth) source, and is amenable to iteration up to
any PN order.

In principle the latter procedure is defined in 3 dimensions. However since we are here solv-
ing thed -dimensional field equations, we shall first define it ind dimensions, so that the far-zone
part of the Poisson potential reads

P>.x
0/ D �

k

4�
FP

Z
r>R

d
dx

�
r

r0

�B
F.x/

jx � x0jd�2
; (4.64)

where FP refers to the finite part when B ! 0. e precise meaning of considering the FP
process on a d -dimensional integral has been discussed in [69].15 Here, since we consider only

¹⁵It could be possible to use dimensional regularization to cure not only theUVdivergences but also the IR ones
(without the FP when B ! 0). However this would imply major modifications of the PN iteration scheme for a
general source; this has not been attempted.
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the far-zone part of the integral free of UV divergences, we can immediately take the limiting
case " D 0 and get

P .0/
> .x0/ D �

1

4�
FP

Z
r>R

d
3x

�
r

r0

�B
F .0/.x/

jx � x0j
: (4.65)

e result will depend both on the IR cut-off scale r0 and intermediate radius R, but we shall
check that these constants disappear in the final results. At the point ya we have
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: (4.66)

Finally, the sum of the near-zone integral (4.63) and far-zone one (4.66) gives our complete
prescription for the finite part of the dimensionally regularized Poisson integral as
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: (4.67)

We do not detail how this integral is computed in practice but refer to previous works [75] and,
for the treatment of the bound at infinity, Sec. IV C of [81]. We checked that the sum of the
resultingUVand IR-regularizedPoisson integral is independent of the arbitrary constant length-
scaleR.

4.7 Post-Newtonian results

4.7.1 e regularized 3PN metric

epost-Newtonianmetric is generated by a system of two point particles, and computed at the
location of the particle 1 following the prescription (4.20). Here we shall somewhat abusively
simply denote thismetric g˛ˇ.y1; t/, or in short g˛ˇ.y1/, and similarly for other quantities eval-
uated at the location of particle 1, so that

g˛ˇ.y1/ � AC
"!0

h
lim
x!y1

gPN
˛ˇ .x; t/

i
: (4.68)

We compute all the required near-zone potentials V , Vi , � � � , OX , OT at point 1 (actually, only OX

and OT are new in the present computationwith respect toRef. [67]) and regularize them accord-
ing to the procedure of the previous section. e regularized metric in harmonic coordinates is
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now obtained in closed analytic form up to 3PN order as16
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We indicate explicitly the post-Newtonian remainders O.c�n/. is metric agrees up to 2PN
order with the already known result obtained in [79], and recently used in [151] for obtaining
the self-force at 2PN order. Because of the helical Killing symmetry we did not include here the
2.5PN radiation-reaction terms; these can be found in Eqs. (7.6) of [79].

In some logarithmic terms at 3PN order `0 denotes the arbitrary constant length scale asso-
ciated with dimensional regularization, which relates the d -dimensional gravitational constant
G.d/ to the usual Newton constant G through (4.42). is scale appears conjointly with the
numerical combination

p �
p

4� eC=2 ; (4.70)

where C D 0:5772 � � � is the Euler–Mascheroni constant.17

Notice the important feature that the metric in harmonic coordinates involves some poles
/ 1=" at the 3PNorder in the 00 and 0i components, where " is related to the spatial dimension
d by d � 3 C " (see Sec. 4.6), and formally tends to zero. e results presented in Eqs. (4.69)
include the pole part � "�1 and the complete finite part � "0, and neglect the terms tending to
zero when " ! 0; for simplicity we do not indicate the remaindersO."/.

However there is an exception to the above rule, in that we have to re-introduce the correc-
tion terms O."/ in the Newtonian part of the metric. Indeed, when we shall reduce the metric
to the center-of-mass frame and then to circular orbits, these corrections will be multiplied by
poles at 3PN order, and will contribute in fine to the finite part at 3PN order. Such corrections
will be necessary only in the 00 component of the metric, where the 3-dimensional Newtonian
potential at the location of the particle 1, namely VN.y1/ D Gm2=r12, is to be replaced by its
d -dimensional version18

V
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���
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e poles / "�1 in the metric (4.69) could be removed by a coordinate transformation and
a suitable shi of the two particle’s world-lines. is is discussed in Appendix A where we com-
pute the regularized 3PN metric using the alternative Hadamard regularization. ere we show
that, modulo some assumptions necessary to overcome the known drawbacks of Hadamard’s
regularization (viz the presence of ambiguities at 3PN order), the regularized metrics in the two
regularization schemes are physically equivalent, in the sense that they differ by a coordinate trans-
formation plus the additional effect of some shis of the world-lines of the particles. In partic-
ular we find complete agreement with the shis necessary to link together the 3PN equations

¹⁷e number p appears in the expansion when " ! 0 of the parameter k defined by Eq. (4.52) as k D

1 � " lnp C O."2/.
¹⁸TermsO."2/ are neglected. See (4.101) and (4.102) for the exact expressions of theNewtonian potential and

acceleration in d dimensions.
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of motion computed in Hadamard [75] and dimensional [67] regularizations. However, for the
present purpose it is better to leave as they are the poles / "�1 in the metric (4.69), because we
are going to compute a gauge invariant quantity, and the poles will ultimately be automatically
cancelled in the final result.

Finally we note that the metric depends also on the extra arbitrary constant r0, present in
some logarithmic terms of the 00 component of the metric at 3PN order. is constant comes
from the IR regularization of the metric at spatial infinity, as discussed in Sec. 4.6.2, and it shall
also disappear in the final gauge invariant result.

As an important check of themetric (4.69)wehave verified that it is invariant under a general
Lorentz boost, considered in a perturbative 3PN sense. eLorentz invariance permits checking
most of the 2PN terms and also the dynamical 3PN ones. e only terms which are not checked
by a 3PN Lorentz boost are the 3PN static ones — those that do not depend on velocities.

4.7.2 e gauge invariant quantity uT

To compute the gauge invariant quantity uT (associated with particle 1 for stationary, circular
orbits), we adopt its coordinate form as given by (4.17), namely

ut
D

�
�g˛ˇ.y1/

v˛
1v

ˇ

1

c2

��1=2

; (4.72)

and plug into it the 3PN regularized metric explicitly obtained in (4.69). To begin with, this
yields the expression of ut at 3PN order for an arbitrary mass ratio q D m1=m2, and for a
generic non-circular orbit in a general reference frame.

We then choose the frame of the center of mass (CM), which is consistently defined at the
3PN order by the nullity of the 3PN center-of-mass integral of the motion deduced from the
3PN equations of motion [12]. We want to express the individual positions ya � yCMa and
velocities va � vCMa (with a D 1; 2 labelling the particles) relatively to the center of mass in
terms of the relative position y12 and relative velocity v12. We know how to do this at 3PN or-
der in Hadamard regularization [80], and we know that the particle’s trajectories in Hadamard
regularization differ by a shi of world-lines from those computed with dimensional regular-
ization [67]. So in order to get yCMa and vCMa in dimensional regularization we apply directly
the shi of world-lines on the known expressions in Hadamard regularization; this is detailed in
Appendix B.

Having replaced the positions and velocities by their CM expressions yCMa Œy12; v12� and
vCMa Œy12; v12�, the quantity ut becomes a functional of y12 and v12 which we now reduce to
the case of circular orbits. is means that .n12v12/ D 0 exactly,19 and that the relative orbital
velocity squared v2

12 takes a specific expression in terms of the relative separation r12 or, rather,
in terms of the particular dimensionless post-Newtonian parameter defined by


 �
G m

r12c2
; (4.73)

¹⁹Consistently with the helical Killing symmetry we neglect radiation-reaction effects.
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where m D m1 C m2 is the total mass of the binary.20 We find in Appendix B that the required
relation, valid in dimensional regularization, is
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where � � m1m2=m2 is the symmetric mass ratio, related to the asymmetric mass ratio q by
� D q=.1 C q/2. From now on we assume that m1 6 m2 to prepare the ground for the small
mass ratio case m1 � m2 in which � D q C O.q2/. Notice the presence of a pole / 1="

at the 3PN order in (4.74), and recall that `0 is the dimensional regularization scale, and that
p is defined by (4.70). Note also that we have included the O."/ correction in the Newtonian
approximation of the expression (4.74); this is crucial because multiplying that Newtonian term
O."/ by a quantity having a pole at 3PN will yield a finite part contribution at 3PN order. e
last step of the calculation consists of replacing 
 by its expansion in powers of the convenient al-
ternative dimensionless gauge invariant PNparameterx, directly related to the orbital frequency
� � v12=r12 by

x �

�
G m�
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�2=3

: (4.75)

To find 
 as a power series in x to 3PN order we invert (4.74) and obtain
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When finally replacing 
 by x we discover most satisfactorily that all the poles / 1=" can-
cel out in the final expression for ut , as well as the associated constant `0 (and the pure number
p). Furthermore, the IR constant r0 also disappears from the result when parameterized by the
frequency-related parameter x. No matter what the mass ratio, our final result for a 3PN, alge-

²⁰Recall that the orbital separation r12 is here defined in harmonic coordinates, and differs from the
Schwarzschild coordinate distance r used in the SF calculation of Sec. 4.5.
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braic relationship between uT (to which ut now evaluates) and x (or equivalently�), is:
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where we denote � � .m2 � m1/=m D
p

1 � 4�, so that the test-mass limit of particle 1
corresponds to � ! 0. e expression (4.77) is a polynomial in x with coefficients depending
only on the symmetric mass ratio �; it is therefore clearly gauge invariant. While it has been
shown in [151] (see also Sec. 4.4.2 above) that uT is gauge invariant at any PN order, in the
extreme mass ratio limit � � 1, here we find that it is also gauge invariant for anymass ratio up
to 3PN order.21

4.8 Comparison of post-Newtonian and self-force results
We now reduce the 3PN expression (4.77) in the small mass ratio regime q D m1=m2 � 1.
We express the result in terms of the non-symmetric PN parameter introduced in (4.36), which
is more suited than x to the small mass ratio limit of particle 1, namely

y �

�
G m2�

c3

�2=3

D
Gm2

R�c2
: (4.78)

Using x D y.1 C q/2=3 and � D q=.1 C q/2 we obtain, up to say the quadratic order in q,
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is is to be compared with the result of SF calculations, which take the general form

uT
D uT

Schw C q uT
SF C q2 uT

PSF C O.q3/ ; (4.80)

with self-force and post-self-force coefficients uT
SF and uT

PSF respectively. From (4.79) we thus
recover the 3PN expansion of the Schwarzschildean result, i.e.

uT
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²¹As a test of the initial expression ofut for a generic orbit in a general frame (i.e. before going to theCMframe),
we checked that dut=dt D 0 aer reduction to circular orbits, as required by the helical symmetry, i.e. neglecting
the radiation-reaction.
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Next, we obtain the self-force contribution uT
SF up to 3PN order as
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e 2PN result is in agreement with (4.37) as it should. For the much more difficult 3PN coef-
ficient, whose value depends on subtle issues regarding the self-field regularization (see Sec. 4.6),
we thus find

C3PN D �
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41

32
�2 : (4.83)

We get also the 3PN expansion of the post-self-force, which could be compared with future SF
analyses with second-order black hole perturbations,22
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as well as all higher post-self-force effects up to 3PN order.
Numerically, the 3PN coefficient in the self-force is C3PN D �27:6879 � � � . is shows a re-

markable agreement between the post-Newtonian prediction and the result of the numerical SF
calculation reported in (4.38), namely CSF

3PN D �27:677˙0:005. e two results are consistent
at the 2� level with five significant digits. is agreement can also be visualized in Fig. 4.3, where
we show the SF contribution uT

SF to uT as a function of y�1, as well as the successive Newto-
nian, 1PN, 2PN and 3PN approximations to uT

SF. Observe notably the nice convergence of the
successive PN approximations toward the exact SF result. e 3PN approximation is roughly
1% accurate up to y�1 D 10, and roughly 5% accurate up to y�1 D 7, not very far from the
highly relativistic Schwarzschild innermost stable circular orbit (ISCO) for which y�1

ISCO D 6.23

is successful comparison between SF and PN calculations confirms the soundness of both
approximations in describing compact binary systems. In the post-Newtonian calculation, this
encompasses the post-Newtonian expansion as applied to the binary equations of motion [229,
75], and includes the treatment of the issues associated with the UV divergencies using dimen-
sional regularization [141, 67]. In addition, the IR divergences, too, in the PN calculation (see
Sec. 4.6.2) are seen to be correctly treated, since their effects vanish in the final result (4.77).
In the perturbative self-force calculation embodied in (4.37)–(4.38), this includes the delicate
handling of gauge and the numerically taxing split of the metric near the particle into singular
and regular pieces following the prescriptions in [153]. In this light, it would be interesting to
address the opposite question, namely that of estimating the accuracy of the black hole pertur-
bation formalism by comparing several truncated self-force series to the “exact” PN result in the
slow motion limit. is would require at least a second-order perturbative SF calculation.

Our post-Newtonian calculation contains additional results which have not been used in
this paper. For example, it already contains some of these higher-order self-force terms, as ev-
idenced by (4.84). Similarly, our numerical self-force calculation actually contains much more
information than is indicated by the numerical coefficient we give in (4.38). is is most simply

²²Notice that uT
SF
< 0 and uT

PSF
> 0 (at least up to 3PN order). e effect of the self-force is to reduce the

value of uT , while the post-self-force tends to increase it.
²³See [36] for a recent calculation of the shi of the Schwarzschild ISCO induced by the conservative part of

the self-force.
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Figure 4.3: e self-force contribution uT
SF

to uT plotted as a function of the gauge invariant variable y�1. Note
that y�1 is equal to R�=m2, an invariant measure of the orbital radius, scaled by the black hole mass m2 [cf.
Eq. (4.36)]. e “exact” numerical points are taken from Ref. [151].

illustrated in Fig. 4.4, where we show, over the large-R� range used for our numerical fitting, the
full 2PN and 3PN residuals, that is, the residuals aer the known 2PN and (now) 3PN terms
have been subtracted from our numerical data. In fact, we have gone to considerable lengths to
ensure that we would have high quality numerical data to work with here. e smooth curve
of 3PN residuals, several orders of magnitude below the 2PN curve, is a testament to this data
quality and represents the starting point for an investigationwhichmore adequately explains the
appropriate higher order PNnature of our numerical data; especially the presence of logarithmic
terms in higher PN approximations. e pressing need for this explanation is strong motivation
for further work [71].
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Figure 4.4: Numerically derived residuals, i.e., aer removal of the 2PN and 3PN self-force contributions to uT
SF,

plotted as a function of the gauge invariant variable y�1. Compare with scales in Fig. 4.3. Note that y�1 is equal
to R�=m2, an invariant measure of the orbital radius, scaled by the black hole mass m2 [cf. (4.36)].

Appendix A: Relation to Hadamard regularization

As an important check of the DR calculation of uT , we have also performed the complete calcu-
lation using the alternative Hadamard regularization (HR), in the variant proposed in [75] and
called the “extended Hadamard regularization”. e HR is essentially based on the Hadamard
partie finie integral (4.62). Unfortunately we know that theHR, even in the extended variant, is
not entirely satisfying and cannot give a completely consistent picture at the 3PNorder [229, 75].
In particular it yields some ambiguities in the form of a small number of arbitrary parameters
which cannot be computed within this regularization. However, the HR gives the correct an-
swer provided that the ambiguity parameters are specified by some external arguments, or fixed
by comparison with some non-ambiguous calculations. en it becomes a non trivial check to
show that it is possible to adjust a fewHRambiguity parameters so that the complete result, which
is generally made of many more terms, agrees with the result of DR.

e ambiguity parameters in HR come from the unknown relations between two sets of
arbitrary length scales denoted sa and r 0

a (where a labels the particles). Here the scales sa are
introduced into the Hadamard partie finie [204, 370] of Poisson integrals with singular sources,
when computed at any field point x0 different from the singularities ya. e sa’s appear when the
Poisson integrals develop logarithmic divergences on the singular points (i.e. when the source
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point x over which one integrates equals ya). e other scales r 0
a come from the singular limit of

the Poisson potential when the field point x0 itself tends toward the singularity ya; hencewe have
in fact r 0

a D jx0 � yaj which shows up in the form of some “constant” ln r 0
a which is formally

infinite. It was shown that the relation between the scales sa and r 0
a must involve the masses ma

(and m �
P

b mb), and is necessarily of the type [75]

ln

�
r 0

a

sa

�
D ˛ C ˇ

m

ma

: (4.85)

Here˛ andˇ denote somepurely numerical constants and are called ambiguity parameters. Aer
imposing the link (4.85) to get rid of the scales sa, it was shown that the remaining scales r 0

a are
gauge constants which can be removed by a change of gauge.24 In the case of the 3PN equations
of motion (EOM), and for the extended variant of HR, it was found that the correct values are
[67]25

˛EOM D
159

308
and ˇEOM D �

1987

3080
: (4.86)

In the case of the 3PN mass quadrupole (MQ) moment needed to compute the 3PN radiation
field, the values using the same extended HR turned out to be [81, 68]26

˛MQ D �
9451

9240
and ˇMQ D 0 : (4.87)

e fact that the MQ values are different from the EOM values already shows that the HR is
not satisfying: Two different computations give inconsistent determinations of the ambiguity
parameters. For the present computation of the quantity uT and comparison with SF calcula-
tions, we have shown that the extended variant of HR reproduces exactly the result of DR [i.e.
(4.77) above] if and only if we have the still different values

˛SF D �
65

154
and ˇSF D

129

440
: (4.88)

Although this result shows again that the Hadamard regularization is not consistent at 3PN or-
der, we argue that it constitutes a powerful check of our calculation, because for the complete
agreement we have to adjust no more than two unknown coefficients. In particular we find that
the HR constants r 0

a, which remain aer imposing the relation (4.85), cancel out properly in the
final result. eHR calculation is also interesting because it corresponds to a different harmonic
coordinate system and a different definition of the particle’s world-lines. Since we have the regu-
larized 3PNmetric in bothHR andDR, we can now study in detail their difference— adopting
the values (4.88) in the HR scheme.

We shall find that the two metrics differ by an infinitesimal 3PN coordinate transformation
in the “bulk”, i.e. outside the particle’s world-lines, and also by an intrinsic shi of these world-
lines. In particular we shall recover the total shi obtained at the level of the equations ofmotion

²⁴Hence the fact that ln r 0
a is actually “infinite” does not really matter.

²⁵More precisely, ˛EOM was determined by requiring that the equations of motion should derive from a La-
grangian formulation, but ˇEOM (which was denoted � in Refs. [75, 67]) had to wait until its value was fixed by
DR.

²⁶e coefficients ˛MQ and ˇMQ were respectively denoted � and � in Refs. [81, 68].
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inRef. [67], but shall prove that this shi ismadeof the latter intrinsic shi, plus the shi induced
by the coordinate transformation. Let the coordinate transformation between the two metrics
be ıx˛ D �˛.x/, where �0 D O.c�7/ and �i D O.c�6/ as appropriate to 3PN order. e
transformation of the bulk metric is (for simplicity we omit the PN remainders)

ı�g00 D �2@0�0 � �i@ig00 � �i.y1/
@g00

@yi
1

� �i.y2/
@g00

@yi
2

; (4.89a)

ı�g0i D �2@.0�i/ ; (4.89b)
ı�gij D �2@.i�j/ : (4.89c)

e terms involving partial derivatives with respect to the source points ya take into account the
shis of the trajectories �.ya/ through a modification of the source dependence of the metric
g˛ˇ.xI ya; va/; we use the notation ya � .ct; ya/ and va � .c; va/. Since �˛ is of order 3PN,
the g00’s in the RHS of (4.89a) are simply Newtonian. At the point 1 we get27

ı�g00.y1/ D �2@0�0.y1/ � �i.y1/
@

@yi
1

�
g00.y1/

�
� �i.y2/

@

@yi
2

�
g00.y1/

�
; (4.90a)

ı�g0i.y1/ D �2@.0�i/.y1/ ; (4.90b)
ı�gij .y1/ D �2@.i�j/.y1/ : (4.90c)

Now we have found that in order to relate the two metrics one must additionally perform a shi
�a of the particle’s trajectories at the 3PN order, i.e. �a D O.c�6/. Such shi will be “intrinsic”
in the sense that it will not be induced by any coordinate transformation of the bulk metric. It
yields the additional change of the metric components evaluated at point y1:

ı�g00.y1/ D ��i
1

@g00

@yi
1

.y1/ � �i
2

@g00

@yi
2

.y1/ ; (4.91)

while there is no change in the other components at that order, i.e. ı�g0i.y1/ D ı�gij .y1/ D 0.
Our final result is that the two regularized metrics at point 1 are related through

gDR
˛ˇ .y1/ D gHR

˛ˇ .y1/C ı�g˛ˇ.y1/C ı�g˛ˇ.y1/ : (4.92)

is relation is a functional equality relating the two metric functionals at point 1, whose coor-
dinates y˛

1 can be seen as dummy variables.
An important check of our finding (4.92) is that it contains the previous result derived at the

level of the 3PN equations ofmotion (not considering the bulkmetric), namely that theDR and
HR equations of motion merely differ by some shis �a of the particle’s world-lines. is result
established the physical equivalence of HR and DR at the level of the equations of motion [67].
Indeed, we discover that the total shi found here, which is made up of the shi �.ya/ induced
by the coordinate transformation plus the intrinsic shi �a, is precisely equal to the shi of the
world-lines of the particles found in [67]. us,

�a D �.ya/C �a : (4.93)

²⁷Note that our too compact notationg00.y1/ stands in fact forg00.y1I ya; va/; thuswe have used the obvious
relations @Œg00.y1/�=@y

i
1 D .@ig00/.y1/C .@g00=@y

i
1/.y1/ and @Œg00.y1/�=@y

i
2 D .@g00=@y

i
2/.y1/.
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So we have proved that �a is partly intrinsic and partly induced by a coordinate transformation
of the bulk metric. Since there is no physics involved in a coordinate transformation, it can be
argued that only the intrinsic part of the shi �a corresponds to the physical process of renor-
malization which was performed in [67].

We give now the explicit expressions. e coordinate transformation at any field point x D

.ct; x/ reads

�0.x/ D
7

5

G3m1m2
2

c7
@t

 
k

r1C"
1

!
C

12

5

G3m1m2
2

c7

� vi
12@i

 
k

r1C"
1

�
1

"
� 2 ln

�
r 0

2 p

`0

�
�

301

180

�!
C 1 $ 2 C f1.t/ ; (4.94a)

�i.x/ D
7

5

G3m1m2
2

c6
@i

 
k

r1C"
1

!
C 1 $ 2 : (4.94b)

Remind that the DR-related quantites p, `0 and k are defined by Eqs. (4.70), (4.42) and (4.52)
respectively, while r 0

2 is an HR constant of particle 2. e symbol 1 $ 2 means adding the pre-
vious expression [i.e. excluding the term f1.t/ in (4.94a)], but with all particle labels exchanged
(thus r 0

2 would be changed to r 0
1). Note that r 0

1 and r 0
2 are considered as true constants in (4.94).

e function f1.t/ is given by

f1.t/ D
91

15

G3m2
1m2

c7

k.1 C "/

r2C"
12

.n12v12/

�
1

"
� 2 ln

�
r 0

1 p

`0

�
C

1642

1365

�
: (4.95)

Notice that because of the presence of f1.t/ in (4.94a), the time component of the gauge vec-
tor �0.x/ is not symmetric by exchange 1 $ 2. is coordinate transformation satisfies the
harmonic gauge condition ��˛ D 0 in d dimensions at the 3PN accuracy. We note also that
the time component �0 of the coordinate transformation has a pole part / "�1, as well as a
pole-independent part, but that the space component �i is pole-free.

Beware that strictly speaking (4.94) is not the coordinate transformation between the HR
metric gHR

˛ˇ
.x/ and the DR metric gDR

˛ˇ
.x/ in the bulk. It is solely the restriction �˛.y1/ of

this gauge transformation at the location of particle 1 that correctly relates the two regularized
metrics gHR

˛ˇ
.y1/ and gDR

˛ˇ
.y1/ at that location. Indeed, if the gauge transformation (4.94) was

to be valid in the bulk, it would induce poles in the 00 and 0i components of gDR
˛ˇ
.x/. But it

was shown in [67], based on diagrammatic arguments, that such poles, at 3PN order, can only
be present in the 00 component gDR

00 .x/ of the DR metric. However, the restriction �˛.y1/ at
the location of particle 1 of the pole-free gauge transformation in the bulk does generate poles
in the 0i component of the DR metric at y1 [see Eq. (4.69b)].

e shi induced by this coordinate transformation is pole-free, and we immediately get
from (4.94b) [up to a correctionO."/]

�.ya/ D
7

5

G2m2
a

c6
aNa ; (4.96)

where aNa is the d -dimensional Newtonian acceleration of body a given by (4.102) below. Be-
cause �.ya/ does not contain any pole, we observe from (4.90c) that the spatial part of the reg-
ularized metric will be free of poles at 3PN order as well [cf. Eq. (4.69c)]. Next we find that the
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additional shi �a does contain a pole, and explicitly reads

�a D
11

3

G2m2
a

c6

�
1

"
� 2 ln

�
r 0

a p

`0

�
�

183
308

�
aNa ; (4.97)

so that the total shi as defined by (4.93) is given by

�a D
11

3

G2m2
a

c6

�
1

"
� 2 ln

�
r 0

a p

`0

�
�

327
1540

�
aNa ; (4.98)

in perfect agreement with the result of [67].
For completeness we now give the result for the difference between the two regularizedmet-

rics, ıg˛ˇ.y1/ � gDR
˛ˇ
.y1/ � gHR

˛ˇ
.y1/. Combining (4.90)–(4.92) with (4.94)–(4.97) we get
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(4.99a)

ıg0i.y1/ D
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1m2
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ıgij .y1/ D
14

5

G3m2
1m2

c6r3
12

�
ıij

� 3ni
12n

j

12

�
: (4.99c)

e end result for the Hadamard regularized 3PN metric, gHR
˛ˇ
.y1/, then follows from combin-

ing the previous difference with the explicit expression (4.69) for the DRmetric. One can check
while performing the sum that all poles / 1=" and the associated `0-dependent logarithmic
terms cancel out, so that the HR result only depends on the UV gauge constants r 0

a and also, of
course, on the IR regularization constant r0.

Note that the DRmetric (4.92) is really the metric experienced by the particle in d D 3 C "

dimensions. It is thus very important to include in that metric all corrections of order " which
could yield finite contributions aer multiplication by quantities involving poles. As already
mentioned, for the problem of computing uT for circular orbits we have to write theNewtonian
part of the 00 component of the metric as gDR

00 D �1 C 2V
.d/
N =c2 C O.c�4/, where the
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Newtonian potential satisfying the d -dimensional Poisson equation �V
.d/
N D �4�G.d/�N

with Newtonian source density �N D
2.d�2/

d�1

P
a maı

.d/
a is given by

V
.d/
N .x/ D

2.d � 2/

d � 1
k
X

a

G.d/ma

rd�2
a

; (4.100)

with DR value at point a [see also (4.71)]

V
.d/
N .ya/ D

2.d � 2/

d � 1
k
X
b¤a

G.d/mb

rd�2
ab

: (4.101)

In the same vein the Newtonian acceleration in (4.97)–(4.98) should read

aNa D rV
.d/
N .ya/ D �

2.d � 2/2

d � 1
k
X
b¤a

G.d/mb

rd�1
ab

nab : (4.102)

Appendix B: Circular orbits in d dimensions
In this Appendix we describe our way to reduce a general d -dimensional expression such as the
regularized metric (4.69) —valid for arbitrary binary orbits and in a general frame (in harmonic
coordinates)— to the center-of-mass (CM) frame and then to circular orbits. e relevant for-
mulas to do so have been worked out at 3PN order within HR (see [61] for more details), and
we need here the corresponding formulas valid in DR. Basically we shall rely on the HR results
and apply to them the known shis of the particle’s world-lines to deduce the correspondingDR
results.

e 3PN equations of motion of compact binaries using HR turned out to depend on one,
and only one, ambiguity parameter called � (denoted ˇEOM in Appendix A) [75], and to be
physically equivalent to the DR equations of motion if and only if � D �

1987
3080

[67].28 is
means that the difference between the DR and HR accelerations of body 1 (say) is exclusively
due to a shi of the world-lines of the particles ya ! ya C �a through

aDR1 D aHR
1 j�D� 1987

3080
C ı�a1 : (4.103)

eexplicit�-dependent expressionof the3PN-accurate accelerationaHR
1 canbe found inEq. (7.16)

of [75]. e effect of the shis �a on the acceleration of body 1 is

ı�a1 D R�1 � � i
12

@aN1
@yi

1

C O.c�8/ ; (4.104)

where � i
12 � � i

1 � � i
2, and the dot stands for a derivative with respect to coordinate time t .

e shi �a has been given in (4.98) above; recall the presence therein of a pole / "�1. To be
consistent one needs to include in theNewtonian acceleration aN1 the corrections of order ", and
the correct expression to do so is given by (4.102).

²⁸is result is equivalent to the one of Ref. [141]; see also [221, 219] for an alternative, ambiguity-free deriva-
tion of the 3PN equations of motion.
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Bydefinition, theCMframe is such that the center ofmass positionG vanishes. WithinHR,
we haveGHR D 0 when the individual positions of the particles ya are given as some function-
als of the relative position y12 and velocity v12 according to ya D yHR

a Œy12; v12�. e explicit
expression of the functionals yHR

a Œy12; v12� up to 3PN order can be found in Eqs. (3.6)–(3.7) of
[80]. Similarly, withinDRwe shall haveGDR D 0when the individual positions of the particles
are related to the relative position and velocity according to some new functional relations

ya D yDRa Œy12; v12� ; (4.105)

which we want to determine. Now, by the effect of the shis of the world-lines the expression
of the center of mass position in DR will be different from that in HR, and be given byGDR D

GHR C ı�G where
ı�G D �m1�1 � m2�2 C O.c�8/ : (4.106)

ereforewefind that theDRfunctionalsyDRa Œy12; v12� are related to theHRfunctionalsyHR
a Œy12; v12�

through yDRa D yHR
a C ı�ya,29 with the same shi for both particles given by

ı�ya D
m1

m
�1 C

m2

m
�2 C O.c�8/ : (4.107)

e DR expressions (4.105) are thus easily determined from the HR results.
Next, from the DR equations of motion (4.103)–(4.104) in a general frame, we go to the

CM frame by replacing the individual positions and velocities by the relative ones according to
ya D yDRa Œy12; v12� and also va D PyDRa Œy12; v12�. Turning off the well-known 2.5PN radiation-
reaction terms, and restricting the result to circular orbits [thus .y12v12/ D 0], we get the
relative acceleration of the binary within DR in the form aDR12 D ��2 y12, where the orbital
frequency� can then be computed iteratively as an expansion in powers of the PN parameter

 � Gm=.r12c2/, with r12 D jy12j. To 3PN order we find
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: (4.108)

As in theHadamard case, we invert this relation to express 
 as a PN series in powers of the gauge
invariant parameter x � .Gm�=c3/2=3, with result
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: (4.109)

²⁹Note that we mean by this a functional equality, valid for any dummy variables y12 and v12.
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eequations (4.108)–(4.109) are theDR equivalent of Eqs. (188) and (191) in [61], which are
valid in the coordinate system used in the HR case. Of course the results coincide up to 2PN
order as they should. Notice however that we kept the terms proportional to " in theNewtonian
terms of (4.108)–(4.109), because in the process of computing uT the Newtonian terms will
get multiplied by some poles "�1 occurring at 3PN order, and these corrections will contribute
to the final result. We are done for the results necessary for the computation of uT for circular
orbits as reported in Sec. 4.7.

As a useful check, we compute the total energy of the binary for circular orbits within DR,
making use of Eqs. (4.107)–(4.109). For a generic orbit and in a general frame, the DR energy
functional is related to the HR one through EDR D EHR C ı�E. e effect of the shis �a on
the energy explicitly reads

ı�E D �m1 v
i
1

P� i
1 � m2 v

i
2

P� i
2 C � i

12

@U
.d/
N

@yi
12

C O.c�8/ ; (4.110)

where the Newtonian gravitational potential energy in d dimensions is

U
.d/
N D

2.d � 2/

d � 1
k

G.d/m1m2

rd�2
12

: (4.111)

At this stage, we use the expression of the total energy EHR as computed within HR, and given
e.g. by Eq. (170) of [61], and add to it the term ı�E defined by (4.110)–(4.111). Our first
check is that this 3PN-accurate energy EDR for a generic orbit in a general frame within DR is
conserved, i.e. PEDR D 0 when neglecting the 2.5PN radiation-reaction terms. is requires
consistently order reducing the result, i.e. replacing the accelerations in the time derivative of
EDR using the DR equations of motion (4.103)–(4.104).

Now, we obtain the expression EDR in the center-of-mass frame by replacing the individual
positions and velocities by their expressions yDRa Œy12; v12� and PyDRa Œy12; v12�. Restricting our-
selves to circular orbits, the resultingCM energy depends only on v2

12 D r2
12�

2 and 
 . enwe
replace v2

12 by its PN expansion in powers of 
 using (4.108), and finally replace 
 by its PN ex-
pansion (4.109) in powers of x. We find that all poles / "�1 disappear in the process; therefore
we can take the limit " ! 0, and get the gauge invariant expression
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(4.112)

which coincides with the well-known 3PN expression of the total energy for circular orbits as
given e.g. by Eq. (192) of [61].
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Lcomparaisondes formalismes post-newtonien et de la force propre introduite au chapitre pré-
décent est étendue et affinée. Le calcul préalable des contributions logarithmiques aux ordres

4PN et 5PNdans la fonction ut
SF.�/ permet d’ajuster avec plus grande précision le résultat exact

issu du calcul perturbatif. On parvient ainsi àmesurer des coefficients post-newtoniens inconnus
jusqu’à l’ordre 7PN.

5.1 Contributions logarithmiques
Dans le chapitre 4, nous avons calculé lamétrique régularisée sur l’un des corps à l’ordre 3PN.

Le résultat [cf. Éq. (4.69)] s’exprime sous forme d’un développement en puissances de 1=c. Tou-
tefois, la métrique post-newtonienne dans la zone proche n’admet pas un tel développement en
série de manière générale. La structure du résultat est connue à un ordre post-newtonien quel-
conque, et prend la forme schématique [65]

h �
X
p;q

.ln c/p

cq
; (5.1)

oùp etq sont des entiers naturels. L’apparition de contributions logarithmiques dans lamétrique
zone proche est dû au sillage d’onde : à partir de l’ordre 4PN, la métrique à l’instant t ne dépend
pas seulement de la dynamique de la source à l’instant retardé t � r=c, où r D jxj est la distance
au centre de la source, mais de tout le passé de la source, à cause du rayonnement gravitationnel
diffusé par la courbure de fond de l’espace-temps générée par la masse de la source [66]. Il existe
une partie conservative associée à ces termes de sillage d’onde, et notre objectif est de calculer les
contributions dominantes aux ordres 4PN et 5PN.

85



86

Pour ce faire, nous utilisons le formalisme de génération d’onde décrit succinctement dans le
chapitre 2. Lamétrique à l’extérieur de la source est calculée itérativement à l’aide d’un développe-
ment post-minkowskienmultipolaire du type h D

P
n Gnhn. À chaque ordre n dans l’itération

post-minkowskienne, il faut résoudre une équation de d’Alembert du type

�hn D SnŒh1; � � � ; hn�1� ; (5.2)

où � est l’opérateur des ondes en espace-temps plat, et la source Sn est fonction des n � 1 ordres
d’approximation précédents h1; � � � ; hn�1.

Afin d’isoler la partie conservative de la dynamique, et donc en particulier les contributions
logarithmiques conservatives associées aux termes de sillage d’onde, ces équations de d’Alembert
sont intégrées à l’aide du propagateur dit « des potentiels instantanés»1

I�1
� PF

BD0

C1X
kD0

�
@

c@t

�2k

��k�1
� r

�

�B

: (5.3)

Le formalisme de génération d’onde fait usage de développements multipolaires, de sorte que les
sources Sn des équations de d’Alembert (5.2) divergent à l’orgine (en r D 0). Leur régularisation
requiert l’introduction d’un facteur régulateur .r=�/B , où � D 2�c=� est la longueur d’onde
associée à la fréquence orbitale� de l’orbite circulaire.

Tout comme au chapitre précédent, nous utilisons la méthode de prolongement analytique :
la constante B (nulle avant régularisation) est promue au rang de paramètre à valeur dans le plan
complexe C ; le résultat de l’intégration est donné par la partie finie (PFBD0) du développement
de Laurent en puissances de B au voisinage de 0, i.e. par le terme en facteur de B0. Mathéma-
tiquement, les termes logarithmiques sont associés à l’apparition de pôles / B�1 au cours du
processus itératif, et les puissances de logarithmes à des pôles multiples.

Après avoir identifié les contributions logarithmiques conservatives dominantes dans la zone
d’onde, nous utilisons laméthode du raccord des séries asymptotiques pour calculer les contribu-
tions associées dans la zone proche, et en particulier dans la source. Finalement, on obtient ainsi
les contributions logarithmiques conservatives aux ordres 4PNet 5PNdans lamétrique d’espace-
temps g�� pour une source post-newtonienne quelconque. En considérant l’application au cas
d’un système binaire compact sur une orbite circulaire, on calcule les contributions associées dans
la fonction ut

1.x/ à l’aide de la relation (4.4). Enfin, en développant le résultat en puissances du
rapport de masse q D m1=m2, on obtient la contribution ut

SF.y/ due à la force propre.
Combinant ces nouveaux résultats avec ceux présentés dans le chapitre 4, on trouve ainsi

ut
SF.y/ D �y � 2y2

� 5y3
C

�
�

121

3
C

41

32
�2

�
y4

C

�
˛4 �

64

5
lny

�
y5

C

�
˛5 C

956

105
lny

�
y6

C o.y6/ : (5.4)

Les contributions logarithmiques 4PN et 5PN sont les termes en facteur de y5
lny et y6

lny

respectivement. Notons que les coefficients polynomiaux 4PN ˛4 et 5PN ˛5 seraient très diffi-
ciles à calculer par les méthodes post-newtoniennes standards.

¹Afin de résoudre le problème physique, i.e. en conservant les effets dissipatifs associés au rayonnement gravi-
tationnel, il convient d’utiliser le propagateur retardé ��1

R , qui est donné par l’intégrale retardée habituelle.
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5.2 Ajustement du résultat perturbatif
Le formalisme de la force propre permet de calculer la fonction ut

SF.y/ de manière exacte
(modulo l’erreur numérique).Nous souhaitons ajuster ce résultat par une série post-newtonienne
de la forme2

ut
SF.y/ D

X
k>0

˛nykC1
C lny

X
k>4

ˇnykC1 ; (5.5)

afinde déterminer les valeurs de nombreux coefficients post-newtoniens inconnus (en particulier
les coefficients ˛4 et ˛5). D’après le résultat (5.4) issu de calculs post-newtoniens détaillés dans
[151, 72, 71], les coefficients polynomiaux ˛k sont connus jusqu’à l’ordre 3PN, et les coefficients
logarithmiques ˇk aux ordres 4PN et 5PN. Nous allons voir que l’ajustement du résultat exact
issu du calcul perturbatif permet de calculer les coefficients polynomiaux jusqu’à l’ordre 7PN,
ainsi que le coefficient logarithmique 6PN.

Mais dansunpremier temps, nous souhaitons vérifier que la connaissancepréalable des contri-
butions logarithmiques aux ordres 4PN et 5PN permet d’améliorer considérablement (par rap-
port au résultat présenté au chapitre 4) l’accord sur la valeur du coefficient 3PN. Le résultat exact,
issu du calcul de la métrique régularisée à l’ordre 3PN, est

˛3 D �
121

3
C

41

32
�2

D �27;6879026 � � � : (5.6)

En utilisant les valeurs exactes des coefficients polynomiaux newtonien ˛0, 1PN ˛1 et 2PN ˛2,
ainsi que les contributions logarithmiques dominantes 4PN ˇ4 et 5PN ˇ5, l’ajustement de la
fonction ut

SF.y/ par une série post-newtonienne du type (5.5) permet d’estimer la valeur du co-
efficient polynomial 3PN, avec pour résultat

˛SF
3 D �27;6879034 ˙ 0;0000004 : (5.7)

L’accord entre les deux calculs est particulièrement impressionnant : les deux résultats sont com-
patibles à 2� avec 9 chiffres significatifs.

La valeur du coefficient 3PNdésormais confirmée avec grandeprécision, nous l’incluonsdans
la formule (5.5) afind’obtenir lemeilleur ajustement possible du résultat numérique issu du calcul
perturbatif de ut

SF.y/. Les valeurs des coefficients post-newtoniens inconnus ˛4, ˛5, etc. ainsi
calculés sont résumées dans le tableau 5.1 ci-après. On notera la très grande précision obtenue
dans la détermination de certains coefficients, commepar exemple le coefficient polynomial 4PN
˛4, obtenu avec 8 chiffres significatifs. La convergence des approximations post-newtoniennes
successives vers le résultat exact est apparente sur la figure 5.2.

Ce travail illustre clairement la complémentarité des approches post-newtonienne et pertur-
bative, la comparaison des deux formalismes dans leur domaine de validité commun permettant
d’obtenir des informations sur l’un des schémas d’approximation qu’il serait très difficile, voire
impossible, d’obtenir autrement.

²L’analyse détaillée de la structure de la métrique zone proche permet d’établir que les contributions logarith-
miques du type .lny/2 n’apparaissent pas avant l’ordre 5.5PN. De telles contributions aux ordres 5.5PN et 6.5PN
seraient toutefois associées à la partie dissipative de la dynamique. La première contribution conservative du type
.lny/2 n’apparait probablement pas avant l’ordre 7PN. Nous n’incluons pas de puissances de logarithmes dans la
formule (5.5), car la séparation des contributions polynomiale˛7 et logarithmiqueˇ7 à l’ordre 7PN est déjà difficile.
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Coefficient Valeur

˛4 �114;34747.5/

˛5 �245;53.1/

˛6 �695.2/

ˇ6 C339;3.5/

˛7 �5837.16/

T. 5.1: Les valeurs des coefficients ˛k et ˇk du développement post-newtonien (5.5) de la fonction ut
SF.y/,

obtenues jusqu’à l’ordre 7PN en ajustant le résultat exact issu du calcul perturbatif. Les chiffres entre parenthèses
indiquent l’incertitude sur la ou les dernière(s) décimale(s). Le coefficient ˛7 inclut très probablement une contri-
bution due au terme logarithmique 7PN.

La suite de ce chapitre est un article publié dans le journal Physical Review D [71]. Un résumé
des travaux présentés dans ce chapitre, ainsi que dans le chapitre précédent, a été publié dans le
livreMass andMotion in General Relativity [70].
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Abstract

We continue a previous work on the comparison between the post-Newtonian (PN)
approximation and the gravitational self-force (SF) analysis of circular orbits in a Schwarz-
schild background. We show that the numerical SF data contain physical information cor-
responding to extremely high PNapproximations. Wefind that knowing analytically deter-
mined appropriate PN parameters helps tremendously in allowing the numerical data to be
used to obtain higher order PN coefficients. Using standard PN theorywe compute analyt-
ically the leading 4PN and the next-to-leading 5PN logarithmic terms in the conservative
part of the dynamics of a compact binary system. enumerical perturbative SF results sup-
port well the analytic PN calculations through first order in the mass ratio, and are used to
accurately measure the 4PN and 5PNnon-logarithmic coefficients in a particular gauge in-
variant observable. Furthermore we are able to give estimates of higher order contributions
up to the 7PN level. We also confirm with high precision the value of the 3PN coefficient.
is interplay between PN and SF efforts is important for the synthesis of template wave-
forms of extreme mass ratio inspirals to be analysed by the space-based gravitational wave
instrument LISA. Our work will also have an impact on efforts that combine numerical re-
sults in a quantitative analytical framework so as to generate complete inspiral waveforms
for the ground-based detection of gravitational waves by instruments such as LIGO and
Virgo.
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5.3 Motivation and summary
is paper is the follow up of previous work [72] (hereaer Paper I) where we demonstrated a
very good agreement between the analytical post-Newtonian (PN) approximation and the nu-
merical gravitational self-force (SF) for circular orbits in the perturbed Schwarzschild geometry.
e first step had been taken by Detweiler [151] who showed agreement at 2PN order using the
existing PN metric [79].1 Motivated by this result we pushed the PN calculation in Paper I up
to the 3PN level. is is particularly interesting because the 3PN approximation necessitates an
extensive use of dimensional regularization to treat the divergent self-field of point particles. e
successful comparison reported in Paper I confirmed the soundness of both the traditional PN
expansion (see e.g. [61]) and the perturbative SF analysis [296, 344, 153, 200, 335] in describing
the dynamics of compact binary systems—notably, regarding subtleties associated with the self-
field regularizations in use in both approaches. is comparison dealt with the conservative part
of the dynamics, but previous comparisons between the PN and the SF had checked dissipative
effects [332, 127, 333, 391, 334, 393, 395, 336].

In Paper I we also showed that the quality of the numerical SF data is such that substantial
physical information remains far beyond 3PN order, i.e. is contained within the numerically de-
rived residuals obtained aer subtracting the known3PN terms from the data (see Fig. 3 of Paper
I). In the present paper we explore further the higher-order PNnature of the numerical data. We
point out that knowing analytically determined appropriate PN parameters helps tremendously
in allowing ournumerical data to be used to obtainhigher order PNterms. In particular, we show
that prior analytic information from PN theory regarding the presence of logarithmic terms in
the PN expansion is crucial for efficiently extracting from the SF data the numerical values of
higher order PN coefficients.

eoccurence of logarithmic terms in thePNexpansionhas been investigated inmanyprevi-
ous works [9, 236, 237, 10, 186, 183, 65, 66]. Notably Anderson et al. [10] found that the domi-
nant logarithm arises at the 4PNorder, andBlanchet&Damour [66] (see also [57]) showed that
this logarithm is associated with gravitational wave tails modifying the usual 2.5PN radiation-
reaction damping at the 1.5PN relative order. Furthermore the general structure of the PN ex-
pansion is known [65]: it is of the type

P
.v=c/k Œln.v=c/�q , where k and q are positive integers,

involving only powers of logarithms; more exotic terms such as Œln.ln.v=c//�q cannot arise. In
the present paper we shall determine the leading 4PN logarithm and the next-to-leading 5PN
logarithm in the conservative part of the dynamics of a compact binary system.

Consider two compact objects with masses m1 and m2 (without spins) moving on exactly
circular orbits. e dissipative effects associated with gravitational wave emission are neglected,
which is formalized by assuming the existence of a helical Killing vector field K˛.x/, being null
on the light cylinder associated with the circular motion, time-like inside the light cylinder (for
instance at the particle’s location) and space-like outside (including a neighborhood of spatial
infinity). en we consider a particular gauge invariant observable quantity [151] defined as
the constant of proportionality between the four-velocity of one of the masses, say m1, and the
helical Killing vector evaluated at the location of that particle, i.e. K˛

1 � K˛.y1/,

u˛
1 D uT

1 K˛
1 : (5.8)

¹As usual the nPN order refers to terms equivalent to .v=c/2n beyond Newtonian theory, where v is a typical
internal velocity of the material system and c is the speed of light.
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e quantity uT
1 represents the redshi of light rays emitted from the particle and received on

the helical symmetry axis perpendicular to the orbital plane [151]; we shall sometimes refer to
it as the redshi observable. Adopting a coordinate system in which the helical Killing vector
field reads K˛@˛ D @t C�@' , where� denotes the orbital frequency of the circular motion,
we find that the redshi observable reduces to the t component ut

1 � dt=d�1 of the particle’s
four-velocity, namely

uT
1 D ut

1 D

�
�g˛ˇ.y1/

v˛
1v

ˇ

1

c2

��1=2

: (5.9)

Here v˛
1 � dy˛

1 =dt D .c; vi
1/ is the ordinary coordinate velocity used in PN calculations, and

g˛ˇ.y1/ denotes the metric being evaluated at the particle’s location by means of an appropri-
ate self-field regularization, i.e. mode-sum regularization in the SF approach, and dimensional
regularization in the PN context.

epoint is thatuT
1 can be computed as a function of the orbital frequency� in both thePN

approach for any mass ratio, and in the perturbative SF framework when the mass m1 is much
smaller than m2. Summarizing the analytical 3PN result of Paper I and present computation
of the 4PN and 5PN logarithmic terms in Secs. 5.4–5.7, we obtain the SF contribution to the
redshi observable (5.9) as2

uT
SF D � y � 2y2

� 5y3
C

�
�

121

3
C

41

32
�2

�
y4

C

�
˛4 �

64

5
lny

�
y5

C

�
˛5 C

956

105
lny

�
y6

C o.y6/ ; (5.10)

where y D .Gm2�=c
3/2=3 is a PN parameter associated with the lighter mass m1, and ˛4 and

˛5 denote some purely numerical coefficients le out in the PN calculation. However, having
obtained theoretical predictions for the 4PN and 5PN logarithmic terms, we are able to perform
an efficient fit to the numerical SF data and to accurately measure the other non-logarithmic
4PN and 5PN coefficients. We find ˛4 D �114:34747.5/ and ˛5 D �245:53.1/ where
the uncertainty in the last digit is in parenthesis. Furthermore we can also measure the 6PN
coefficients˛6 andˇ6 (such that˛6Cˇ6 lny is the factor ofy7), and give an estimate of the total
contributionof the 7PNcoefficient (including both logarithmic andnon-logarithmic terms); see
Table 5.6 and Fig. 5.1 in Sec. 5.8.4. e 3PN coefficient ˛3 D �

121
3

C
41
32
�2 is also found to be

in agreement with the SF data with high precision.
enon-logarithmic coefficients˛4,˛5, � � � would be extremely difficult to obtainwith stan-

dard PN methods. eir computation would require in particular having a consistent self-field
regularization scheme; for instance it is not guaranteed that dimensional regularization which
has been so successful at 3PN order could be applied with equal success at much higher orders.
Nevertheless these coefficients are obtained here for the first time with reasonable precision up
to the impressive 7PN order. is emphasizes the powerfulness of the perturbative SF approach
and its ability to describe the strong field regime of compact binary systems, which is inaccessible
to the PN method. Of course, the limitation of the SF approach is the small mass-ratio limit; in
this respect it is taken over by the PN method.

²Inspired by our earlier work [72], the easy calculation of the 4PN logarithm has already been given in [134].
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e analytical and numerical results obtained in this paper up to 7PN order could be used
for the synthesis and calibration of template waveforms of extreme mass ratio inspirals (EMRIs)
to be observed by the space-based gravitational wave detector LISA. ey are also relevant to
analyses that combine numerical computations in a quantitative analytical framework for the
generation of inspiral waveforms for the ground-based LIGO and Virgo detectors.

e remainder of this paper is organized as follows: In Sec. 5.4 we perform a detailed analy-
sis of the occurence of logarithmic terms in the near-zone expansion of an isolated source. is
general discussion is followed in Sec. 5.5 by the explicit computation of the leading order 4PN
and next-to-leading order 5PN logarithmic terms in the near-zone metric of an arbitrary post-
Newtonian source, and thenof a compact binary system. Weproceed in Sec. 5.6with the compu-
tation of these terms in the acceleration of the compact binary, as well as in the binary’s conserved
energy, and consider the restriction to circular orbits. is allows us to derive intermediate results
necessary for the computation of the 4PN and 5PN logarithmic terms in the redshi observable
(5.9) for circular orbits; this is detailed in Sec. 5.7. Finally, Sec. 5.8 is devoted to a high-order
PN fit of our numerical data for the SF effect on the redshi variable. e Appendix provides
general formulas for the computation of logarithmic terms in PN theory.

5.4 General structure of logarithmic terms

5.4.1 Near-zone expansion of the exterior metric
In this Section we study in a general way the PN orders at which logarithmic terms occur in the
near-zone expansion of the metric of an isolated source. Our main tool will be the multipolar-
post-Minkowskian (MPM) analysis of the vacuum field outside the compact support of the
source [65, 66, 57, 60, 339]. e starting point is the general solution of the linearized vacuum
Einstein field equations in harmonic coordinates, which takes the formof amultipolar expansion
parametrized by mass-type ML and current-type SL multipole moments [400]3
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(5.11c)

³Our notation is as follows: L D i1 � � � i` denotes a multi-index composed of ` multipolar spatial indices
i1; � � � ; i` (ranging from 1 to 3); @L D @i1

� � � @i`
is the product of ` partial derivatives @i � @=@xi ; xL D

xi1
� � � xi`

is the product of ` spatial positions xi ; similarly nL D ni1
� � � ni`

is the product of ` unit vectors ni D

xi=r ; the symmetric-trace-free (STF)projection is indicatedwith ahat, i.e. OxL � STFŒxL�, OnL � STFŒnL�, O@L �

STFŒ@L�, or sometimes using brackets surrounding the indices, i.e. xhLi � OxL. In the case of summed-up (dummy)
multi-indices L, we do not write the ` summations from 1 to 3 over their indices. e totally antisymmetric Levi-
Civita symbol is denoted "ijk ; symmetrization over indices is denoted .ij / D

1
2
.ij C j i/; time-derivatives of the

moments are indicated by superscripts .n/.
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emultipolemoments ML and SL are symmetric and trace-free (STF)with respect to all their
indices and depend on the retarded time u � t � r=c in harmonic coordinates. ey describe
a general isolated source and are unconstrained except that the mass monopole M and current
dipole Si are constant, and the mass dipole Mi is varying linearly with time.

Starting from h1 we define a full non-linear MPM series for the “gothic” metric deviation
h˛ˇ �

p
�g g˛ˇ � �˛ˇ (where g˛ˇ and g denote the inverse and determinant of the usual

covariant metric respectively, and where �˛ˇ is the Minkowski metric) as

h˛ˇ
D

C1X
nD1

Gnh˛ˇ
n ; (5.12)

where the Newton constant G serves at labelling the successive post-Minkowskian orders. Plug-
ging this series into the (vacuum) Einstein field equations in harmonic coordinates we find at
each order @�h

˛�
n D 0, together with

�h˛ˇ
n D N ˛ˇ

n ; (5.13)

where � D ���@�@� is the flat d’Alembertian operator, and where Nn denotes the n-th non-
linear gravitational source term depending on previous iterations h1, � � � , hn�1. An explicit “al-
gorithm”has beenproposed in [65] for solving (5.13) and the conditionof harmonic coordinates
at any post-Minkowskian order n.

We are interested in the expansion of the solution of (5.13) in the near-zone (NZ), i.e. for-
mally when r ! 0 (but still outside the compact supported source). e general structure of
that expansion is known [57]. For the source term we have (the NZ expansion being indicated
with an overbar)

N
˛ˇ

n D
X
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1

c3nC
Pn

iD1 `i C2

X
`;p;q

q6n�2

F
˛ˇ

Lpq.t/ OnL

�r

c

�p h
ln

� r

�

�iq

: (5.14)

We see that besides the normal powers of r we have also powers of logarithms of r ; p is an in-
teger (p 2 Z) bounded from below by some p0 depending on En, and q is a positive inte-
ger (q 2 N). We pose � D 2�c=�, with � a typical frequency scale in the source to be
identified later with the orbital frequency of the binary’s circular orbit. We denote by En D

fML1
;ML2

; � � � ; "ai`nC1i`n
SaLn�1g a set of n multipole moments, with the current moments

endowed with their natural Levi-Civita symbol. We pose `i D `i for mass moments and `i D

`i C 1 for current moments, so that
Pn

iD1 `i is the total number of indices carried by the mo-
ments of the set En. On the other hand ` is the number of indices carried by the STFmultipolar
factor OnL. e multipole functions in (5.14) admit the general structure [57]

F
˛ˇ

Lpq.t/ D

Z
du1 � � �

Z
dun K˛ˇ

LL1���Ln
.t;u1; � � � ;un/M

.a1/

L1
.u1/ � � � "ai`nC1i`n

S
.an/

aLn�1.un/ ;

(5.15)
where the kernelK has an index structuremade only ofKronecker symbols and is only a function
of time variables: the current time t , the n integration arguments ui (satisfying ui 6 t) and the
period P D �=c of the source. en with this convention we see that the powers of 1=c in



94

(5.14) are set by dimensionality. A useful lemma [57] is the fact that the multipolar order ` is
necessarily constrained by the following two inequalities:

�

nX
iD1

`i C 4 � s 6 ` 6
nX

iD1

`i C s : (5.16)

Here s is the number of spatial indices among ˛ and ˇ, i.e. the “spin” given by s D 0; 1; 2

according to ˛ˇ D 00; 0i; ij .
e lemma (5.16) will serve at controlling the PN order of “branches” of logarithmic terms

arising in the MPM iteration of the external field. Already we know [65] that the powers of the
logarithms are limited to q 6 n � 2 in the source term N n. Aer integration of the source term
N n we shall find the corresponding solutionhn whichwill admit the same type ofNZ expansion
as its source. However the maximal power of the logarithms in the solution will be increased by
one unit with respect to the source and is thus limited by n�1, i.e. q 6 n�1 in hn. For instance
this means that logarithms squared cannot arise before the cubic non-linear order n D 3.

To control the occurence of logarithms in the near-zone it will be sufficient to integrate the
source (5.14) by means of the integral of the “instantaneous” potentials defined by formal PN
iteration of the inverse Laplace operator ��1, say ��1 D ��1 C c�2@2

t�
�2 C � � � . is is

because any homogeneous solution to be added to that particular solutionwill have the structure
of a free multipolar wave (retarded or advanced) whose near-zone expansion cannot contain
any logarithms. However, when acting on a multipolar expanded source term, valid only in the
exterior of thematter source and becoming singular in the formal limit r ! 0, wemustmultiply
the source term by a regulator .r=�/B , where B is a complex number and � D cP is the length
scale associated with the orbital motion. Aer applying the instantaneous propagator we take
the finite part (FP) of the Laurent expansion when B ! 0. us the solution reads as

h
˛ˇ

n D FP
BD0

C1X
kD0

�
@

c@t

�2k

��k�1

�� r

�

�B

N
˛ˇ

n

�
C H

˛ˇ

n : (5.17)

Later, in (5.26) below, we shall denote by I�1 the particular “instantaneous” regularized propa-
gator appearing in (5.17). e term H n denotes the NZ expansion of an homogeneous solution
of the d’Alembert equation. In the general case this solution will be a mixture of purely retarded
and advanced multipolar waves, say of the type

P
O@LfRL.t � r=c/=rg and

P
O@LfAL.t C

r=c/=rg, but the point is that the NZ expansion of H n when r ! 0 clearly does not contain
any logarithms. So in order to control the logarithms we can ignore the homogeneous piece H n.

As argued in [57] the use of the latter “instantaneous” propagator, say I�1, corresponds to
keeping only the conservative part of the dynamics, i.e. neglecting the dissipative part associated
with gravitational radiation-reaction. Below we shall implement the restriction to the conserva-
tive case by looking at circular orbits with helical Killing symmetry. We expect that a solution
admitting this symmetry should be given by (5.17) where the homogeneous part H n is of the
symmetric type

P
O@LfŒSL.t � r=c/C SL.t C r=c/�=rg. In this “symmetric” situation, where

the radiation-reaction is neglected, the solution should depend on the length scale � appearing
in the first term of (5.17). Indeed this length scale is introduced in the problem by our assump-
tion of having the helical Killing symmetry with Killing vector K˛@˛ D @t C �@' where
� D 2�c=�.



95

5.4.2 Near-zone versus far-zone logarithms

Inserting the general form of the source term (5.14) into (5.17), and ignoring from now on the
homogeneous term H n which does not contain logarithms, we obtain (dropping the space-time
indices ˛ˇ for clarity)

hn D
X
En

1

c3nC
Pn

iD1 `i C2

X
`;p;q

q6n�2

C1X
kD0

F
.2k/

Lpq .t/

cpC2k
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��k�1

�� r
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�B

OnL rp
h
ln

� r
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�iq
�
:

(5.18)
We can explicitly integrate the iterated Poisson integral and find
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OnL rpC2C2k
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; (5.19)

with B-dependent coefficients

˛`;p;k.B/ D

kY
iD0

1

.B C p C 2 C 2i � `/.B C p C 3 C 2i C `/
: (5.20)

We shall now control the occurence of a pole / 1=B in the latter expression which, aer
taking the finite part in (5.18), will generate a logarithm ln r . Actually, since we have to differ-
entiate q times with respect to B, the pole in ˛`;p;k.B/ (which is necessarily a simple pole) will
yield multiple poles / 1=Bm, and we shall finally end up with powers of logarithms .ln r/m,
where here m 6 q C1 —hence the increase by one of the powers of logarithms from the source
to the solution, as discussed previously.

Inspection of Eq. (5.20) readily shows that there are two types of poles. First we have the
poles for which p C 2 D ` � 2i . ese will be qualified as “near-zone poles”, and the structure
of the solution for these poles reads�

hn

�
NZ pole

D
X

`;j>0
m6n�1

1

c3nC
Pn

iD1 `i C`
GLjm.t/ OxL

�r
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�2j h
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� r
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�im

; (5.21)

where j D k � i > 0 and the functions GLjm.t/ have a structure similar to (5.15). Note
that (5.21) is perfectly regular when r ! 0 [at least when ` C j > 1] and will therefore be
valid (aermatching) inside thematter source. On the other hand the “far-zone poles” forwhich
p C 2 D �` � 1 � 2i have the structure�

hn

�
FZ pole

D
X

`;j>0
m6n�1

1

c3nC
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iD1 `i �`�1
KLjm.t/ O@L

�
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��r
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�2j h
ln

� r

�

�im

: (5.22)

ese poles become singular when r ! 0. We shall argue later that the associated logarithms
do not contribute to the PN expansion of quantities we compute in this paper (like the redshi
observable or the conserved energy of a compact binary system).
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We can now easily control the PN order of these poles. Taking into account all the powers
of 1=c and the fact that j > 0, we obtain�

hn

�
NZ pole

D
X

`

O
�

1

c3nC
Pn

iD1 `i C`

�
: (5.23)

Next, the inequality in the le of the lemma (5.16) provides a uniform bound of the PN order
of each of the terms in (5.23), leading to�

hn

�
NZ pole

D O
�

1

c3nC4�s

�
: (5.24)

is means that the NZ poles in the n-th non-linear metric are produced at least at the 3nC2
2

PN
level; note that the power of 1=c in the ij components of the perturbation hn, such that s D 2,
gives immediately the PN order. Similarly we find, using now the inequality on the right of
(5.16), that the FZ poles are produced at the level�

hn

�
FZ pole

D O
�

1

c3n�1�s

�
; (5.25)

corresponding to (at least) the 3n�3
2

PN order. Notice that the far-zone poles come earlier than
the near-zone ones in the PN iteration.

We use these general results to control the occurence of (powers of ) logarithms in the PN
expansion. First be careful that our findings do not mean that all the logarithms at some n-th
non-linear orderwill have thePNorders (5.24) and (5.25); it states thatwhenevernew logarithms
appear they are necessarily produced at least at these PN levels. However, once a “new” logarithm
has been produced in hn, it will contribute in the source term N nC1 of the next iteration, and
therefore will also appear in the corresponding solution hnC1 where it needs not to be associated
with a pole occuring at that order. In fact we expect that the vast majority of logarithms only
come from the iteration of original logarithms seeded by poles. Such “iterated” logarithms will
escape the rules (5.24) and (5.25).

Given a logarithmat ordern coming fromaNZpole andbeing thus at least of order 3nC2
2

PN,
we can check that it will generate iterated logarithms at any subsequent non-linear order n C p,
withp > 1, and that thosewill be at least of order 3nC2p

2
PN.We can therefore always bound the

PN order of the complete family of iterated NZ logarithms by the order 3nC2
2

PN of the “seed”
logarithm.4 e same reasoning applies for the PN orders of the iterated FZ logarithms which
are bounded from below by the 3n�3

2
PN order of the seed.

When n D 2 we find from (5.24) that there is a family of NZ logarithms starting at the 4PN
order. We know that the 4PN logarithmic term is associated with gravitational wave tails; it has
been computed for general matter sources in [66]. Conjointly with this 4PN logarithm there

⁴Whenp D 1we get the samePNorder as the seed logarithmbecause according to (5.24) the ij component of
the metric perturbation h

˛ˇ
n is of order 1=c3nC2, and hence generates at the next iteration a term of order 1=c3nC4

in the 00 component of the metric perturbation h
˛ˇ
nC1 (via the non-linear source term h

ij
n @i@j h00

1 ), which is still of
3nC2

2
PN order. We shall use later the trick that by gauging away the ij component of the metric perturbation we

can greatly simplify the computation of the subsequent iteration.
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will be also logarithms at 5PN and higher orders, all of them at quadratic order n D 2, and all
these quadratic logarithms will have to be iterated at the next cubic order n D 3, and so on. As
we discussed this defines a complete family of NZ logarithms, and this family will be sufficient
to control all the NZ logarithms at 4PN and 5PN orders. Indeed, we expect that at cubic order
n D 3 a new family of NZ logarithms will appear, but according to the result (5.24) this new
family will be of order 5.5PN at least. In particular this reasonning shows that the dominantNZ
logarithm squared Œln.r=�/�2 is at least 5.5PN order. Such 5.5PN logarithm would be time odd
in a time reversal and belongs to the dissipative radiation-reaction part of the dynamics so we
shall ignore it. Similarly the next family coming at the quartic approximation n D 4 will be at
least 7PN — thus the dominant Œln.r=�/�3 is expected to appear at least at 7PN order.

We shall now argue that only the family of NZ logarithms starting at the 4PN order needs
to be considered for the present computation, because quite generally the FZ logarithms cannot
contribute to the conserved part of the dynamics of a compact binary system.

5.4.3 Argument that far-zone logarithms give zero contribution
e FZ logarithms are generated by seeds whose PN order is controlled by the estimate (5.25).
First one can check that due to the particular structure of the quadratic metric n D 2 there is no
FZ pole at the quadratic order [66]. e FZ logarithms come only at the cubic order n D 3 and
from the estimate (5.25) we see that they arise dominantly at 3PN order, i.e. earlier than the NZ
logarithms at 4PN order. e 3PN far-zone logarithms have been investigated in [66] and also
in previous work [10]. However we do not need to consider these and other FZ logarithms in
the present calculation as the following argument shows.

e NZ and FZ logarithms were investigated using the operator of the “instantaneous” po-
tentials defined by [see Eq. (5.17)]

I�1
h
N n

i
D FP

BD0

C1X
kD0

�
@

c@t

�2k

��k�1

�� r

�

�B

N n

�
: (5.26)

is propagator depends on the length scale�. Nowour basic assumption is that in order to treat
the conservative part of the dynamics, admitting the helicalKilling vectorK˛@˛ D @t C�@' in
the two-body case, one should integrate the field equations with the propagator (5.26) in which
we set � D 2�c=�. In this way the conservative dynamics will fundamentally depend on the
scale � coming from the Killing symmetry and explicitly introduced through the propagator
(5.26).

By contrast, in a physical problem where we look for the complete dynamics including both
conservative and dissipative (radiation-reaction) effects, there is no preferred scale such as �—
indeed, nothing suggests that the dynamics should depend on some pre-defined scale �. In this
case we integrate the field equations using the standard retarded integral, i.e.

��1
R ŒNn� D FP

BD0

�1

4�

Z
d

3x0

jx � x0j

�
jx0j

�

�B

Nn

�
x0; t � jx � x0

j=c
�
: (5.27)

e non-linear source term Nn is in unexpanded form since we integrate in all the exterior of
the source and not only in the NZ as in (5.26). But, as in (5.26), we have introduced a regulator
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.jx0j=�/B and a finite part to cure the divergencies of the multipole expansion at the origin of
the coordinates. Because of this regulator, the retarded integral (5.27) depends on the scale �
which must therefore be cancelled by other terms in the physical metric. What happens is that
the dependence on � coming from integrating the non-linearities using (5.27) is cancelled by
a related dependence on � of the multipole moments of the source which parametrize the lin-
ear (retarded) approximation. e source multipole moments can be written as integrals over
the pseudo stress-energy tensor of the matter and gravitational fields [60]. Because of the non-
compactness of the gravitational field the integral extends up to infinity and involves a similar
regulator .jx0j=�/B dealingwith the boundary of the integral at infinity. e final independence
of the physical metric on � can be checked by formally differentiating the general expression of
the metric found in [60]. e cancellation of � has been explicitly verified up to the 3PN order
in the case of compact binaries [82].

What is the difference between the physical situation and the “unphysical” one in which
we would use the propagator (5.26) ? To compare the two situations we expand the retarded
integral (5.27) in the near-zone. Recalling that the overbar refers to theNZ expansion, we obtain
[57, 339]

��1
R ŒNn� D I�1

h
N n

i
C

X
`>0

.�/`

`!
O@L

�
TL.t � r=c/ � TL.t C r=c/

2r

�
; (5.28)

showing that the two solutions differ by an homogeneous solution of the wave equation which is
of the anti-symmetric type (i.e. retarded minus advanced) and is therefore regular in the source.
We know that the multipolar functions TL.u/ parametrizing this solution are associated with
non-linear tails and their expressions can be found in [57, 339]. In the physical case, the homoge-
neous solution in (5.28) will remove the �-dependence located in the NZ logarithms appearing
from the first term, and which have the symbolic NZ structure � OxL ln.r=�/. On the other
hand the �-dependence in the FZ logarithms � O@L.1=r/ ln.r=�/, is removed by the retarded
homogeneous solution we start with at the linear approximation.

Now in the unphysical situation we shall want to subtract the anti-symmetric solution in
(5.28) in order to use the instantaneous propagator I�1. erefore the scale � will no longer
be cancelled from the near-zone logarithms � OxL ln.r=�/ which will thus remain as they are.
Suppose that they are evaluated at the location of a body in a two-body system, then theNZ loga-
rithmsbecome� OyL

1 ln.jy1j=�/wherey1 is thepositionof thebody, andhence� OyL
1 ln.r12=�/

in the frame of the center of mass, where r12 is the two-body’s separation. Using Kepler’s law the
logarithm becomes ln.r12=�/ D

1
2
ln 
 where 
 D Gm=.r12c2/ is a standard PN parameter,

showing that the NZ logarithms do contribute to the final result.
On the contrary the FZ logarithms � O@L.1=r/ ln.r=�/will not. Indeed the scale � therein

will still be cancelled out by the linear retarded solution.5 is means that in the application
to binary systems the final FZ logarithms are scaled not by � but rather by the size r12 of the
orbit, and become some � O@L.1=r/ ln.r=r12/. When considered at the location of one of the
bodies we get � O@L.1=jy1j/ ln.jy1j=r12/ which clearly does not contribute in the center-of-
mass frame. e latter reasoning is rather formal because the multipole expansion is valid only

⁵e argument could be extended to an unphysical solutionwhichwould be truly symmetric in time, i.e. which
would start with a symmetric (retarded plus advanced) linear approximation and integrate the non-linearities by
means of the propagator I�1.
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outside the source and it does not a priorimake sense to apply it “at the location of one particle.”
However the reasoning may be better justified from a matching argument suggesting that the
multipole expansion is valid “everywhere”, in a restricted sense of formal asymptotic series.

Our conclusion is that we do not need to consider the FZ logarithms. From the previous
investigationwe see that it is sufficient to consider the family of iteratedNZ logarithms generated
at the quadratic order n D 2, and to compute the 4PN and 5PN logarithms within this family.
We devote the next Section to this task.

5.5 e 4PN and 5PN near-zone logarithms

5.5.1 External near-zone post-Newtonian metric
Following [66, 57] we know that the dominant logarithms in the near-zone metric are com-
ing from “tails” generated by quadratic coupling between the constant total mass M of the sys-
tem (i.e. the ADM mass) and the time varying multipole moments ML or SL. Let us define
z

˛ˇ

1 .n;u/ as being the coefficient of the leading 1=r piece in the non-stationary or “dynami-
cal” part .h˛ˇ

1 /dyn of the linearized metric given by (5.11), i.e. such that .h˛ˇ

1 /dyn D r�1z
˛ˇ

1 C

O.r�2/. is quantity is a functional of the time varyingmoments (i.e. having ` > 2) evaluated
at retarded time u D t � r=c, and explicitly reads
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All the logarithms in the quadratic metric h
˛ˇ

2 will be generated from the leading 1=r2 piece in
the quadratic source, defined by N

˛ˇ

2 D r�2Q
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2 .n;u/CO.r�3/. e coefficient is computed
from the quantity (5.29) as Q
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c2 � , where the first term will generate
the tails, and the second term is associated with the stress-energy of gravitational waves, with
k˛ D .1;n/ theMinkowskian outgoing null vector, and� D

1
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Now, as shown in the Appendix, the logarithms produced by the second term / k˛kˇ are pure
gauge, so only the first term dealing with tails is responsible for the near-zone logarithms. Hence
the part of the NZ expansion of the quadratic metric h2 containing those logarithms is given by
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: (5.30)

We substitute the explicit expression (5.29) into (5.30), expand the retardation u D t � r=c

in the source term when r ! 0, and integrate using Eqs. (5.19)–(5.20). en we look for the
poles / 1=B and aer applying the finite part get the logarithms. Some general formulas for



100

obtaining the logarithms directly from the unexpanded source are relegated to the Appendix.
We readily recover that the dominant logarithms arise at 4PN order. We limit our computation
to the leading order 4PN and next-to-leading order 5PN logarithms, and find
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(5.31a)
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e mass-type quadrupole moment Mij , mass octupole moment Mijk and current quadrupole
Sij in Eqs. (5.31) are functions of coordinate time t . e indicated PN remaindersO.c�p/ refer
only to the logarithmic terms.

We now want to iterate the expressions (5.31) at higher non-linear order in order to get
the complete family of logarithms generated by that “seed”. To do that it is very convenient to
perform first a change of gauge. Starting from (5.31), which is defined in some harmonic gauge,
we pose k
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is gauge transformation will have the effect of moving many 4PN logarithmic terms into the
00 component of the (ordinary covariant) metric. As a result the implementation of the non-
linear iteration in that new gauge will be especially simple. Since our aim is to compute the gauge
invariant quantity (5.9) we can work in any convenient gauge. Our chosen gauge is very similar
to the generalization of the Burke-orne gauge introduced in [59] to deal with higher-order
(2.5PN and 3.5PN) radiation-reaction effects. We obtain
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In this gauge the iteration at cubic non-linear order is very simple. To control all the 5PN loga-
rithmic terms at cubic ordern D 3weneedonly to solve thePoisson equation�Œık

00

3 Cık
ii

3 � D

�2@jh
00

1 @jık
00
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1 denotes the NZ expansion of the linearized metric
(5.11a), and we can use for ık
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2 the leading 4PN approximation given by the first term in
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with the explicit expression
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We readily check that the quartic and higher non-linear iterations (n > 4) are not needed for
controlling the 4PN and 5PN logarithmic terms (cf. the discussion at the end of Sec. 5.4.2).

5.5.2 Internal near-zone post-Newtonian metric

emetric we computed so far is in the form of amultipolar expansion valid in the exterior of an
isolated source. We now want to deduce from it the metric inside the matter source. First of all,
since the expressions (5.33) are regular at the origin r ! 0, we find using a matching argument
that they are necessarily also valid inside the matter source. On the other hand it is clear that
the expression (5.34) will also be valid inside the source provided that we match the multipole
expansionU given by (5.35)with the actualNewtonian potential of the source. From the known
Newtonian limit of the multipole moments ML D

R
d

3x OxL�.x; t/CO.c�2/, where � is the
Newtonian source density in the source, we get GU D U C O.c�2/ where

U D G

Z
d

3x0

jx � x0j
�.x0; t/ : (5.36)

From the latter argumentswe therefore obtain the piece of the innermetric of any isolated source
(coming back to the usual covariant metric g˛ˇ) that depends logarithmically on the distance r

⁶Actually the integration yields in addition to the near-zone 5PN logarithm (5.34) the extra far-zone 5PN
logarithmic contribution
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We argued on general grounds in Sec. 5.4.3 that FZ logarithms do not have to be considered for the present com-
putation, so we drop this term out in the following.
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to the source’s center at 4PN and 5PN orders as
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where U is the Newtonian potential (5.36) valid all over the source.
However we now discuss other pieces of the inner metric whose near-zone expansion does

not explicitly depend on the logarithms of r but which involve new inner potentials integrating
over a logarithmically modified source density. e first of these pieces comes from the fact that
the 4PNmodificationof themetric givenby thefirst term in (5.37a) implies amodificationof the
stress-energy tensor of the matter fluid at the 5PN order; in particular the fluid’s source density,
say � D T 00=c2, gets modified by the amount
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On the other hand the 4PN term of the metric will induce a 4PN change in the acceleration of
the fluid motion given by
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When computing the innermetric at the 1PNorder we have to take into account the retardation
due to the propagation of gravity, using say ��1 D ��1 C c�2@2

t�
�2 C O.c�4/. e time

derivatives at 1PNorderwill yield an acceleration and themodification of the acceleration (5.39)
will give a contribution at 5PN order. We find that the sum of the two effects gives the following
extra contribution to the inner metric at 5PN order
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is 5PN contribution is present only in the 00 component of the metric.7 e complete loga-
rithmic contributions we shall consider in this paper are thus given by

ıg˛ˇ D ı0g˛ˇ C ı00g˛ˇ : (5.41)

ese contributions exhaust the possibilities of having 4PN and 5PN near-zone logarithmic
terms in the gauge invariant observable quantity (5.9).

⁷Interestingly, it was found in Ref. [223] (following [222]) that a similar looking contribution must also be
taken into account when computing the higher-order (3.5PN) radiation-reaction force for compact binary systems
from a near-zone radiation-reaction formalism defined in [59]. Actually the 2.5PN+3.5PN near-zone radiation-
reaction formalism [59] (see in particular Eqs. (2.16) there) is quite similar to the present 4PN+5PN near-zone
conservative logarithm formalism.
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5.5.3 Application to compact binary systems

Let us now apply the previous results to the specific problem of a system of two point particles.
e Newtonian mass density in that case is � D

P
a maı.x � ya/ where ı is the Dirac delta

function. e trajectory of the a-th particle (a=1,2) is denoted ya.t/; the ordinary coordinate
velocity will be va D dya=dt . e two masses ma have sum m D m1 C m2, reduced mass
� D m1m2=m and symmetric mass ratio � D �=m. e Newtonian potential of the system
reduces to

U D
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C
Gm2

r2

; (5.42)

where ra D jx � yaj is the distance from particle a. e regularized value of that potential at
the location of particle 1 is simply
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; (5.43)

where r12 D jy1 � y2j. Similarly we evaluate the logarithmic contributions at the location of
particle 1. Concerning the first piece (5.37) we find (no longer mentioning the PN remainder)
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which involves the logarithm ln.r=�/ evaluated on the particle 1, i.e. ln.jy1j=�/. As for the
second piece (5.40) we compute the Poisson integral using � D

P
a maı.x � ya/ and perform

a regularization on the particle 1 to obtain
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which is proportional to the logarithm ln.jy2j=�/ associated with the other particle. ese
results are valid in a general frame. However we shall later specify the origin of the coordi-
nate system to be the center of mass of the binary system. In that case we have ln.jyaj=�/ D

ln.r12=�/C ln.�=ma/C O.c�2/, where the PN remainder does not involve any logarithmic
term, and the logarithm of the mass ratio is a constant, and is therefore clearly irrelevant to our
search of logarithmic terms; so ln.r12=�/ is in fact the only relevant logarithm and we shall now
systematically replace all ln.jyaj=�/’s by ln.r12=�/. Finally we end up with the following con-
tributions of the 4PN and 5PN logarithms to the near-zone metric evaluated at the location of
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particle 1 in our chosen gauge,
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Note that this result is complete but not fully explicit because we have still to replace all the
multipole moments ML and SL by their expressions valid for point mass binary systems. In
particular the quadrupole mass moment Mij should be given with 1PN relative precision as
(1 $ 2 means adding the same terms for particle 2)
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and its time derivatives should consistently use the 1PN equations of motion. Besides Mij we
also need the constant mass monopole or total mass M at 1PN order, namely
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All the other moments are only required at the Newtonian accuracy, and read

ML D m1 OyL
1 C 1 $ 2 ; (5.49a)

SL D m1 "
abhi` y

L�1ia

1 vb
1 C 1 $ 2 : (5.49b)

However in applications it is oen better to postpone the (messy) replacements of themultipole
moments by their explicit values (5.47)–(5.49) and to use more compact expressions such as
(5.46).

5.6 Logarithms in the equations of motion and energy

5.6.1 General orbits
With the 4PN and 5PN logarithmic contributions in the near-zonemetric (5.46) we now derive
the corresponding terms in the acceleration of point particle binary systems. e computation
is straightforward from the geodesic equation. A subtle point is that we must take into account
the coupling between the 1PN terms in the metric and the 4PN logarithm to produce new 5PN
logarithms. On the other hand one must be careful about the replacement of accelerations in
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1PN terms by the 4PN acceleration to also produce 5PN logarithms. e final result, valid for
generic (non-circular) orbits in an arbitrary frame, is
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where the multipole moments are given by (5.47)–(5.49).
An important check of this result is that the acceleration should be purely conservative, by

which we mean that there should exist some corresponding contributions at the 4PN and 5PN
orders in the conserved energy, angular momentum, linear momentum and center-of-mass po-
sition of the binary system. Let us see how this works in the case of the energy. emodification
at 4PN and 5PNof the energy, say ıE, should be such that dıE=dt exactly balances the replace-
ment of accelerations by (5.50) in the time derivative of the known expression of the energy up
to 1PN order (say E1PN). is requirement yields
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Plugging (5.50) into (5.51) and using the expressions of the multipole moments (5.47)–(5.49),
we indeed find that the right-hand-side of (5.51) takes the form of a total time derivative, and
we are thus able to infer the contribution to the energy,
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(5.52)

In addition to the standard multipole moments (5.47)–(5.49), we have also introduced the sup-
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plementary moments (needed only at Newtonian accuracy)
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By the same method we have also computed the modification of another integral of the motion,
namely the center-of-mass position Gi . e result is
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and will be useful when restricting our general result for the redshi observable — valid for a
generic orbit in an arbitrary frame — to circular orbits described in the center-of-mass frame.

5.6.2 Circular orbits

Let us now focus our attention on the case of circular orbits. We look for the 4PN and 5PN
logarithms ıai

12 in the relative acceleration ai
12 D ai

1 � ai
2 of the particles for circular orbits.

e first contribution to ıai
12 will evidently come from the difference ıai

1 � ıai
2. We insert

the center-of-mass relations yi
a D Y i

a Œy12; v12�, expressing the individual positions in terms of
the relative position yi

12 D yi
1 � yi

2 and relative velocity vi
12 D vi

1 � vi
2 D dyi

12=dt . At
1PN order and for circular orbits these expressions simply reduce to the Newtonian relations
yi

1 D X2 yi
12 and yi

2 D �X1 yi
12, where Xa D ma=m. All the multipole moments and their

time derivatives are replaced by their expressions for circular orbits given in terms of yi
12 and vi

12

(and masses). However there is also another contribution which comes from the known relative
acceleration at 1PN order (say ai

1PN) when reduced to circular orbits. As usual we perform an
iterative computation: knowing first ıai

12 at 4PN order we use the result to find the next order
5PN correction. In this computation we use the fact that the center-of-mass relations yi

a D

Y i
a Œy12; v12� are not modified by logarithmic terms before the 5PN order. is is checked using

the modification of the integral of the center-of-mass ıGi given in (5.54) (see also the result
(5.62) for circular orbits below, which is clearly a 5PN effect). Finally the modification of the
acceleration is found to be of the form

ıai
12 D �ı�2 yi

12 ; (5.55)
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where the total change in the orbital frequency (squared) for circular orbits due to 4PNand 5PN
logarithms reads
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e orbital separation is r12 D jy12j, and we have introduced the convenient post-Newtonian
parameter (where m D m1 C m2)
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From (5.56) we have the relation between the orbital frequency and the parameter 
 . Inverting
this relation we obtain 
 as a function of the orbital frequency or, rather, of the parameter x

defined by
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We find that the 4PN and 5PN logarithms in 
 as a function of x are
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We have taken into account in (5.56) and (5.59) the important fact that the length scale
� D cP is related to the period P D 2�=�, and hence contributes to the logarithm. As
already mentioned, using Kepler’s third law we have r12

�
D

p
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, so that ln. r12

�
/ D
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2
ln 
 plus

an irrelevant constant. Post-Newtonian corrections to Kepler’s law do not change the argument,
which applies with x as well as with 
 . Recall that � D 2�c=�was introduced in the problem
when we assumed the existence of the helical Killing vector K˛@˛ D @t C �@' to describe
exactly circular orbits. en this scale entered explicitly into the propagator we used to integrate
the field [see (5.17) or (5.30)], and it is thus no surprise that it contributes to the final result.
Of course we could have chosen any other scale proportional to � without changing the result
which concerns only the logarithmic dependence.

To be clearer about formulas such as (5.56) and (5.59) we would need to give the more com-
plete formulas including also the known contributions up to 3PN order. However we must be
careful since these formulas depend on the gauge. us ı�2 and ı
 are to be added to the 3PN
expressions given by Eqs. (188) and (191) in [61] when working in Hadamard regularization
gauge, or by Eqs. (B6) and (B7) in Paper I when working in dimensional regularization gauge.
Also the 4PN and 5PN terms computed in (5.56) and (5.59) themselves depend on the choice
of gauge at the 4PN and 5PN orders (see Sec. 5.5).

It ismuch better to turn to gauge invariant quantities. emost obvious one is the conserved
energy E for circular orbits as a function of the orbital frequency�. As for the previous compu-
tation of the acceleration we have two contributions, one coming directly from the general-orbit
modification of the energy given by (5.52), and one coming from the circular-orbit reduction
of the 1PN energy E1PN. We first express the results entirely in terms of the parameter 
 using
(5.56) and then replace all the 
 ’s by functions of the x’s using (5.59). e result for the 4PN
and 5PN logarithms is (where� D m1m2=m)
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Beware that ıE here has not the samemeaning as in (5.52) because of the additional terms com-
ing from the circular-orbit reduction of the 1PN energy E1PN.

Since the energy as a function of x is a gauge invariant relation, let us also provide the com-
plete result including all the known terms up to 3PN order, and also the 4PN and 5PN terms
in the test-mass limit for one of the particles known from the exact result lim�!0 E=.�c2/ D

.1 � 2x/.1 � 3x/�1=2 � 1. We have
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Here e4.�/ and e5.�/ denote someunknown4PNand5PNcoefficientswhich are somepolyno-
mials in the symmetric mass ratio �— this can be proved from the fact that the energy function
for general orbits (i.e. before restriction to circular orbits) must be a polynomial in the two sep-
arate masses m1 and m2. is 5PN accurate formula could be used to compute the location of
the innermost circular orbit (ICO) in the comparable mass regime, which also coincides with
the innermost stable circular orbit (ISCO) in the extreme mass ratio regime. e shi of the
Schwarzschild ISCO due to the conservative part of the self-force has been recently computed
[36]. A high-order PN comparisonwith this result would be interesting, but requires at least the
evaluation of the coefficients e4.�/ and e5.�/ in the extreme mass ratio regime, i.e. the knowl-
edge of e4.0/ and e5.0/.

5.7 e gauge invariant redshi observable
Wearenow ready to implement our computationof the gauge invariant redshiobservable (5.9).
We replace the 4PN and 5PN logarithmic terms in the metric coefficients evaluated on the par-
ticle (5.46) into (5.9). We are careful at including also themetric up to 1PN order because of the
coupling between 1PN and 4PN orders which produce 5PN terms. e result is valid for any
orbit in a general frame. Nextwe go to the frame of the center-of-mass defined byGi D 0, where
Gi is the conserved integral of the center of mass. We have found the 4PN and 5PN logarithms
in Gi in Eq. (5.54), and from this we compute the displacement of the center of mass for circular
orbits. As already used in Sec. 5.6 we find that the first logarithmic terms in the center-of-mass
integral for circular orbits arise only at 5PN order. We obtain
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where � D .m2 � m1/=m D
p

1 � 4� is the relative mass difference. e correction to
the individual center-of-mass positions will thus be given by ıyi

a D �ıGi=m for a=1,2 (see
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e.g. the Appendix B in Paper I), and similarly ıvi
a D �ı PGi=m for the individual center-of-

mass velocities. We already notice that because of the factor �2 in (5.62) this correction will not
influence the SF limit. Nextwe reduce the latter expression to circular orbits, replacing all orbital
frequencies by their expressions in terms of 
 , and then replacing all 
 ’s by their expressions in
terms of x. e formulas (5.56) and (5.59) for the 4PN and 5PN logarithms play of course the
crucial role. Finally we end up with the full correction due to the 4PN and 5PN logarithmic
terms for circular orbits in our redshi observable uT as (removing now the index 1 indicating
the smaller mass)

ıuT
D

�
�

32

5
�

32

5
�C

64

15
� C

�
478

105
C

478

105
�C

1684

21
� C

4388

105
�� �

3664

105
�2

�
x

�
� � x5

lnx : (5.63)

is correction is valid for anymass ratio q D m1=m2 and is to be added to the 3PN expression
for uT obtained in Eq. (4.10) of Paper I. Being proportional to the symmetric mass ratio �, the
correction (5.63) vanishes in the test-mass limit, which is to be expected since the Schwarzschild
result for uT .�/ does not involve any logarithm.

We now investigate the small mass ratio regime q � 1. As in Paper I we introduce a conve-
nient PN parameter appropriate to the small mass limit of particle 1:

y �

�
G m2�

c3

�2=3

: (5.64)

We immediately obtain, up to say the quadratic order in q, and keeping only the relevant loga-
rithmic terms,

ıuT
D q

�
�

64

5
C

�
956

105
C

4588

35
q

�
y

�
y5

lny C O.q3/ : (5.65)

Our complete redshi observable, expanded through post-self-force order, is of the type

uT
D uT

Schw C q uT
SF C q2 uT

PSF C O.q3/ ; (5.66)

where the Schwarzschild result is known in closed form as uT
Schw D .1 � 3y/�1=2. Adding back

the 3PN results of Paper I (see Eq. (5.5) there), we thus find that the self-force contribution is
given by8

uT
SF D �y � 2y2

� 5y3
C

�
�

121

3
C

41

32
�2

�
y4

C

�
˛4 �

64

5
lny

�
y5

C

�
˛5 C

956

105
lny

�
y6

C o.y6/ : (5.67)

e expansion (5.67) was determined up to 2PN order / y3 in [151] based on the Hadamard-
regularized 2PN metric given in [79]. e result at 3PN order / y4 was obtained in Paper I
using the powerful dimensional regularization (as opposed to Hadamard’s regularization which

⁸For clarity we add the Landau o symbol for remainders which takes the standard meaning.
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found its limits at that order). By contrast our analytic determination of the logarithmic terms
at 4PN and 5PN orders depends only marginally on the regularization scheme.

ecoefficients˛4 and˛5 denote someunknownpurely numerical numberswhichwould be
very difficult to compute with PN methods, and should depend crucially on having a consistent
regularization scheme. By comparing the expansion (5.67) with our accurate numerical SF data
for uT

SF, we shall be able tomeasure these coefficients with at least 8 significant digits for the 4PN
coefficient ˛4, and 5 significant digits for the 5PN coefficient ˛5. ese results, as well as the
estimation of even higher-order PN coefficients, will be detailed in Sec. 5.8.

Similarly, adding up the results of Paper I for the post-self-force term, we get

uT
PSF D y C 3y2

C
97

8
y3

C

�
725

12
�

41

64
�2

�
y4

C �4 y5
C

�
�5 C

4588

35
lny

�
y6

C o.y6/ : (5.68)

Note that there is no logarithm at 4PN order in the post-self-force term, as is also seen from
Eq. (5.65); the next 4PN logarithm would arise at cubic order q3, i.e. at the post-post-SF level.
e coefficients �4 and �5 in (5.68) are unknown, and unfortunately they are expected to be ex-
tremely difficult to obtain, not only analytically in the standard PN theory, but also numerically
as they require a second-order perturbation SF scheme.

5.8 Numerical evaluation of post-Newtonian coefficients

In the self-force limit, the SF effect uT
SF on the redshi observable uT is related to the regularized

metric perturbation hR
˛ˇ

at the location of the particle through

uT
SF D

1

2
.1 � 3y/�1=2

Nu˛
NuˇhR

˛ˇ ; (5.69)

where Nu˛ is the background four-velocity of the particle. Beware that here hR
˛ˇ

stands in fact
for the perturbation per unit mass ratio, denoted hR

˛ˇ
=q in Paper I (cf. Eq. (2.11) there). In SF

analysis, the combination Nu˛ NuˇhR
˛ˇ

arises more naturally than uT
SF; this is the quantity we shall

be interested in fitting in this Section. However our final results in Table 5.6 will include the
corresponding values of the coefficients for the redshi variableuT

SF. We refer to Sec. II of Paper I
for a discussion of the computation of the regularizedmetric perturbation hR

˛ˇ
, and the invariant

properties of the combination Nu˛ NuˇhR
˛ˇ

with respect to the choice of perturbative gauge. In this
Sectionwe oen use r D 1=y, a gauge invariantmeasure of the orbital radius scaled by the black
hole mass m2 [see Eq. (5.64)].

Our earlier numerical work, partially reported in [151] and in Paper I, provided values of the
function Nu˛ NuˇhR

˛ˇ
.r/which cover a range in r from 4 to 750. Following a procedure described

in [152], we have usedMonte Carlo analysis to estimate the accuracy of our values for Nu˛ NuˇhR
˛ˇ

.
As was reported in Paper I, this gives us confidence in these base numbers to better than one part
in 1013. We denote a standard error � representing the numerical error in Nu˛ NuˇhR

˛ˇ
by

� ' j Nu˛
NuˇhR

˛ˇj � E � 10�13; (5.70)



111

where E ' 1 is being used as a placeholder to identify our estimate of the errors in our numerical
results.

5.8.1 Overview
Acommon task in physics is creating a functionalmodel for a set of data. In our problemwe have
a set of N data points fi and associated uncertainties �i , with each pair evaluated at an abscissa
ri . We wish to represent this data as some model function f .r/ which consists of a linear sum
of M basis functions Fj .r/ such that

f .r/ D

MX
jD1

cjFj .r/ : (5.71)

enumerical goal is to determine theM coefficients cj which yield the best fit in a least squares
sense over the range of data. at is, the cj are to be chosen such that

�2
�

NX
iD1

"
fi �

PM
jD1 cjFj .ri/

�i

#2

(5.72)

is a minimum under small changes in the cj . For our application we choose the basis functions
Fj .r/ to be a set of termswhich are typical in PN expansions, such as r�1, r�2, …, and also terms
such as r�5

ln.r/.
Our analysis depends heavily upon Ref. [340]; we use both the methods and the computer

code for solving systems of linear algebraic equations as described therein. While we do employ
standard, least squares methods for solving a system of linear equations to determine the cj , we
also recognize that a solution to this extremum problem is not guaranteed to provide an accu-
rate representation of the data .ri; fi; �i/. e quality of the numerical fit is measured by �2 as
defined in Eq. (5.72). If the model of the data is a good one, then the �2 statistic itself has an
expectation value of the number of degrees of freedom in the problem, N � M , with an uncer-
tainty (standard deviation) of

p
2.N � M /. In particular, a large residual�2 would correspond

to under-fitting the datawhereas a�2 that is too small corresponds to over-fitting the data, which
amounts to fitting randomness in the residuals.

e numerical evaluation of the fitting coefficient cj includes a determination of its uncer-
tainty†j which depends upon i) the actual values of ri in use, ii) all of the �i , and iii) the set of
basis functions Fj .r/. In fact, the estimate of the†j depends solely upon the design matrix

Aij �
Fj .ri/

�i

; (5.73)

and not at all on the data (or residuals) being fitted. However, the estimates of the†j are only
valid if the data are well represented by the set of basis functions. For emphasis: the†j depend
upon Fj .ri/ and upon �i but are completely independent of the fi . Only if the fit is considered
to be good, could the†j give any kind of realistic estimate for the uncertainty in the coefficients
cj . If the fit is not of high quality (unacceptable �2), then the †j bear no useful information
[340]. We will come back to this point in the discussion below.
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A further remark concerning the meaning of the †j is appropriate. Fitting the data as de-
scribed to determine the coefficients is a standard, well defined statistical procedure. If we were
to change the integration routine used to generate the Nu˛ NuˇhR

˛ˇ
.ri/, which are the set of input

data values fi , with the restriction that we maintained the same numerical accuracy then the fi

would each change in a random way governed by �i . If the coefficients cj were then determined
for this second data set, the statistical analysis ensures that the †j associated with this second
data set would be identical to those of the first set and the newly determined estimates of the cj

would differ from the initial ones in a statistical fashion governed by the†j . Recall that the†j

depend upon the choice of the ri , upon the �i for the individual data points and upon the set of
basis functions Fj .r/. e†j are completely independent of the data values fi .

Now we consider two other possible changes. If we add an extra data point, or if we add
another basis function not orthogonal to the others (this would be typical over a finite set of
data points, unless we carefully engineered otherwise) the design matrix changes accordingly, all
estimated coefficients cj change accordingly, and the estimated†j change inways which are not
easily related to the previous results. In particular, if we add an additional basis function FM C1

to the previous set, so there is now one more coefficient cM C1 to be fit, and we compare the first
M values of the new cj to their earlier values, their differences need not be closely related to
either the first or second set of†j . us, a change in the design matrix of the problem leads to
an inability tomake any intuitive prediction about what to expect for the new cj , and there is no
reason to expect that the differences of the cj respect the values of the†j for these two different
statistical problems.

We also should remark that the task of determining coefficients in the 1=r characterization
of our numerical data is almost incompatible with the task of determining an asymptotic expan-
sion of Nu˛ NuˇhR

˛ˇ
from an analytic analysis. Analytically, the strict r ! C1 limit is always

technically possible, whereas numerically, not only is that limit never attainable, but we must
always contend with function evaluations at just a finite number of discrete points, obtained
within a finite range of the independent variable, and computed with finite numerical precision.
Nevertheless, this is what we intend to do.

In practice, the numerical problem is evenmore constrained. At large r , even though the data
may still be computable there, the higher order terms for which we are interested in evaluating
PNcoefficients rapidly descendbelow the error level of our numerical data. is is clearly evident
in Fig. 5.1 below. For small r , the introduction of so many PN coefficients is necessary that it
becomes extremely difficult to characterize our numerical data accurately. us, in practice, we
find ourselves actually working with less than the full range of our available data. At large r we
could effectively drop points because they contribute so little to any fit we consider. At the other
extreme, the advantage of adding more points in going to smaller r is rapidly outweighed by
the increased uncertainty in every fitted coefficient. is results from the need to addmore basis
functions in an attempt to fit the data at small r . Further details will become evident in Sec. 5.8.4
below.
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5.8.2 Framework for evaluating PN coefficients numerically

In a generic fashion we describe an expansion of Nu˛
NuˇhR

˛ˇ
in terms of PN coefficients aj and bj

with
Nu˛

NuˇhR
˛ˇ D

X
j>0

aj

r jC1
� ln r

X
j>4

bj

r jC1
; (5.74)

where a0 is the Newtonian term, a1 is the 1PN term and so on. Similarly, for use in applications
involvinguT wealso introduce the coefficients˛j andˇj in the expansionof the SF contribution

uT
SF D

X
j>0

˛j

r jC1
� ln r

X
j>4

ˇj

r jC1
: (5.75)

ese series allow for the possibility of logarithmic terms, which are known not to start before
the 4PN order. We also concluded in Sec. 5.4 that .ln r/2 terms cannot arise before the 5.5PN
order. Since we are computing a conservative effect, possible time-odd logarithmic squared con-
tributions at the 5.5PN or 6.5PN orders do not contribute. But there is still the possibility for a
conservative 7PN .ln r/2 effect, probably originating from a tail modification of the dissipative
5.5PN .ln r/2 term. However, we shall not permit for such a small effect in our fits. As discussed
below in Sec. 5.8.4, we already have problems distinguishing the 7PN linear ln r term from the
7PN non-logarithmic contribution.

e analytically determined values of the coefficients a0, a1, a2, a3 and ˛0, ˛1, ˛2, ˛3

computed in Ref. [151] and Paper I are reported in Table 5.2, together with the new results
b4 D �

128
5

, b5 D
5944
105

and ˇ4 D �
64
5
, ˇ5 D

956
105

of the present work.

coeff. value coeff. value

a0 �2 ˛0 �1

a1 �1 ˛1 �2

a2 �
7
4

˛2 �5

a3 �
1387

24
C

41
16
�2 ˛3 �

121
3

C
41
32
�2

b4 �
128

5
ˇ4 �

64
5

b5 C
5944
105

ˇ5 C
956
105

Table 5.2: e analytically determined PN coefficients for Nu˛ NuˇhR
˛ˇ

(le) and uT
SF (right).

5.8.3 Verifying analytically determined PN coefficients
In this Section we investigate the use of our data for Nu˛ NuˇhR

˛ˇ
and the fitting procedures we have

described above (and expanded upon in the beginning of Sec. 5.8.4). We will begin by fitting for
enough of the other PN coefficients to be able to verify numerically the various coefficients a3,
b4 and b5 now known from PN analysis. We choose a starting point for the inner boundary of
the range, and each range continues out to r D 700. e results of a series of fits are displayed
in Tables 5.3 and 5.4. First we remark that bringing the outer boundary inward as far as to 300
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has very little effect on the outcome of any of these fits, except that the �2 statistic decreases as
expected with the number of degrees of freedom.

As a first step in this Section, we will complete the task we began in Paper I, namely, the
numerical determination of the coefficient a3 (and ˛3), this time taking fully into account the
known logarithmic terms at 4PN and 5PN order. For illustrative purposes only, these results are
given in Table 5.3. We were able to obtain a fit with six undetermined parameters, and could
include data from r D 700 down to r D 35. Note that, with the inclusion of the b4 and b5

coefficients, the precision of our tabulated value for a3 has increased bymore than four orders of
magnitude from Paper I, although our accuracy is still no better than about 2†. Such a discrep-
ancy is not uncommon. e uncertainty, †, reflects only how well the data in the given, finite
range can be represented by a combination of the basis functions. It is not a measure of the qual-
ity of a coefficient when considered as a PN expansion parameter, which necessarily involves an
r ! C1 limiting process.

coeff. value

a3 �32:5008069.7/

a4 �121:30254.30/

a5 �42:99.5/

a6 �228.6/

b6 C677.2/

a7 �8226.27/

Table 5.3: e results of a numerical fit for a set of coefficients which includes the analytically known a3. us
this is not the best-fit of our data possible, but it allows for a comparison with Table 5.6. e uncertainty in the last
digit or two is in parentheses. e range runs from r D 35 to r D 700, with 266 data points and a respectable �2

of 264.

Our next step is to include the known value for a3 and to use our numerical data to estimate
values for the b4 and b5 coefficients. Our best quality numerical result was obtained with five
fitted parameters, over a range from r D 700 down to only r D 65, and is given in the first
row of Table 5.4. Notice that while our b4 is determined relatively precisely, it has only about
6† accuracy. e higher order coefficient b5 is more difficult to obtain and, at this point, it is
very poorly determined. It corresponds to a term which falls off rapidly with increasing r and is
significant over a relatively small inner part of the fitted range.

We can of course use the known value of b4 in order to improve the accuracy for b5. If we do
this without adding another parameter to fit, we immediately get a fit of very poor quality, since
we have moved b4 far from its best-fit value; as shown in the second row of Table 5.4, we must
move the inner boundary out to r D 85 to re-establish a good fit.
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e inclusion of basis functions for the higher order coefficients, b6 and a7, as shown in the
third and fourth rows, respectively, allows the inner boundary for the fit to move to smaller r

where the higher PN terms are more important. e third row of the table shows that adding
another parameter allows us to move the inner boundary to r D 65, while the final row shows
that we can now add one further fitted parameter, and obtain a good quality fit by pushing the
inner boundary to r D 40. Only in this row is the b5 parameter close to its known value, but it
is still off by around 4:5† (see Table 5.5 below). Moreover, we have reached a limit for treating
our data in this way, adding further parameters and inner points does not result in any higher
quality fit.

By now we have presented enough to show that we have data which allows high precision,
with an accuracy that we now have some experience in relating to the computed error estimates.
is experience will be valuable when we come to discuss further results in the next Section. For
convenience, we summarize the relevant information further, in Table 5.5, referring just to our
estimates of known PN parameters, and relating our error estimates to the observed accuracy.

source coeff. estimate accuracy exact result

Paper I ˛3 �27:677.5/ ! .11/ �27:6879 � � �

Table 5.3 a3 �32:5008069.7/ ! .15/ �32:5008054 � � �

Table 5.4 b4 �25:6116.20/ ! .116/ �25:6

Table 5.4 b5 C55:7.2/ ! .9/ C56:6095 � � �

Table 5.5: Comparing the analytically known PN coefficients (column 5) with their numerically determined
counterparts (column 3), and comparing the numerically determined error estimates (column 3) with the apparent
accuracy (column 4). e source of the data is given in column 1.

5.8.4 Determining higher order PN terms numerically

In this Section we turn our attention to using our numerical SF data and fitting procedures to
obtain asmany as possible unknownPN coefficients, bymakingmaximumuse of the coefficients
which are already known. We find that in our best fit analysis we can use a set of five basis func-
tions corresponding to the unknown coefficients a4, a5, a6, b6 and a7.

In Table 5.6, we describe the numerical fit of our data over a range in r from 40 to 700. e
�2 statistic is 259 and slightly larger than the degrees of freedom, 256, which denotes a good
fit. Further, we expect that a good fit would be insensitive to changes in the boundaries of the
range of data being fit, and we find, indeed, that if the outer boundary of the range decreases
to 300 then essentially none of the data in the Table changes, except for �2 and the degrees of
freedom which decrease in a consistent fashion. Figure 5.1 shows that in the outer part of the
range Nu˛ NuˇhR

˛ˇ
is heavily dominated by only a few lower order terms in the PN expansion —

those above the lower black double-dashed line in the figure.
e inner edge of the range ismore troublesome. e importance of a given higher order PN

termdecreases rapidlywith increasing r . Moving the inner boundary of the range outwardmight
move a currently well determined term into insignificance. is could actually lead to a smaller
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Figure 5.1: e absolute value of the contributions of the numerically determined post-Newtonian terms to
r5 Nu˛ NuˇhR

˛ˇ
. Here PNL refers to just the logarithm term at the specified order. e contribution of a4 is not shown

but would be a horizontal line (since the 4PN terms behaves like r�5) at approximately 121.3 . e remainder aer
a4 and all the known coefficients are removed from r5 Nu˛ NuˇhR

˛ˇ
is the top (red) continuous line. e lower (black)

dotted line labelled “err” shows the uncertainty in r5 Nu˛ NuˇhR
˛ˇ

, namely 2E r4 � 10�13. e jagged (green) line
labelled “jresj” is the absolute remainder aer all of the fitted terms have been removed. e figure reveals that, with
regard to the uncertainty of the calculated Nu˛ NuˇhR

˛ˇ
, the choice E ' 1 was slightly too large.

�2, but it would also lead to an increase in the†j of every coefficient. Moving the inner edge of
the range inwardmight require that an additional higher order termbe added to thefit. is extra
term loses significance quickly with increasing r so the new coefficient will be poorly determined
and also result in an overall looser fit with an increase of†j for all of the coefficients. If the inner
boundary and the set of basis functions are chosen properly, then a robust fit is revealed when
the parameters being fit are insensitive to modest changes in the boundaries of the range. e fit
described in Table 5.6 appears to be robust. e parameters in this Table are consistent with all
fits with the inner boundary of the range varying from 35 to 45 and the outer boundary varying
from 300 to 700.

If an additional term, with coefficient b7, is added to the basis functions then, for identical
ranges, each of the†j increases by a factor of about ten, and the changes in a4 and a5 are within
this uncertainty. e coefficienta6 changes sign andb6 anda7 change by an amount significantly
larger than the corresponding †j . And the new coefficient b7 is quite large. In the context of
fitting data to a set of basis functions these are recognized symptoms of over-fitting and imply
that the extra coefficient degrades the fit.

How should we (and others) interpret the data in Table 5.6? To guide our discussion of this



118

coeff. value coeff. value

a4 �121:30310.10/ ˛4 �114:34747.5/

a5 �42:89.2/ ˛5 �245:53.1/

a6 �215.4/ ˛6 �695.2/

b6 C680.1/ ˇ6 C339:3.5/

a7 �8279.25/ ˛7 �5837.16/

Table 5.6: e numerically determined values of higher-order PN coefficients for Nu˛ NuˇhR
˛ˇ

(le) and for uT
SF

(right). e uncertainty in the last digit or two is in parentheses. e range runs from r D 40 to r D 700, with
261 data points being fit. e �2 statistic is 259. We believe that a contribution from a b7 term piggybacks on the
a7 coefficient. Both terms fall off rapidly and have influence over the fit only at small r . And the radial dependence
of these two terms only differ by a factor of ln r [or possibly .ln r/2] which changes slowly over their limited range
of significance.

very important question, we assemble together into Table 5.7 all the relevant results from the
earlier fits of Sec. 5.8.3 which relate to the best prior estimates we have there for a4, a5, a6, b6

and a7 which we have finally calculated here. As was shown in Table 5.5 and is now evident in
Table 5.7, our numerical accuracy tends to be in the range of 2 � 6†, both when comparing the
best results for a4, a5, a6, b6 and a7 from Sec. 5.8.3 with those obtained here and, we would
suggest, for the purposes of comparing the results of this Section with future PN coefficients.

coeff. Table 5.6 (best) Table 5.3 Table 5.4

a4 �121:30310.10/ �121:30254.30/ ! .56/ �121:3052.6/ ! .21/

a5 �42:89.2/ �42:99.5/ ! .10/ �47.1/ ! .4/

a6 �215.4/ �228.6/ ! .13/ �359.41/ ! .144/

b6 C680.1/ C677.2/ ! .3/ C625.15/ ! .55/

a7 �8279.25/ �8226.27/ ! .53/ �7722.162/ ! .557/

Table 5.7: Comparing the “best fit” numerical values and statistical uncertainties of the estimated PN coefficients
in Table 5.6 to other numerical evaluations of these same quantities in Sec. 5.8.3.

5.8.5 Summary

Our best fit can be visualized in Fig. 5.2, where we plot the self-force effect uT
SF on the redshi

variable uT as a function of r D y�1, as well as several truncated PN series up to 7PN order,
based on the analytically determined coefficients summarized in Table 5.2, as well as our best fit
of the higher-order PN coefficients reported inTable 5.6. Observe in particular the smooth con-
vergence of the successive PN approximations towards the exact SF results. Note, though, that
there is still a small separation between the 7PN curve and the exact data in the very relativistic
regime shown at the extreme le of Fig. 5.2.
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Figure 5.2: e self-force contribution uT
SF

to uT plotted as a function of the gauge invariant variable y�1. Note
that y�1 is an invariant measure of the orbital radius scaled by the black hole mass m2 [see Eq. (5.64)]. e “exact”
numerical points are taken from Ref. [151]. Here, PN refers to all terms, including logarithms, up to the specified
order (however recall that we did not include in our fit a log-term at 7PN order).

We have found that our data in the limited range of 35 6 r 6 700 can be extremely well
characterized by a fit with five appropriately chosen (basis) functions. at is, the coefficients in
Table 5.6 are well determined, with small uncertainties, and small changes in the actual details of
the fit result in coefficients lying within their error estimates. Fewer coefficients would result in a
very poor characterization of the same datawhilemore coefficients result in large uncertainties in
the estimated coefficients, which themselves become overly sensitive to small changes in specific
details (such as the actual choice of points to be fitted). In practice, over the data range we finally
choose, and with the five coefficients we fit for, we end up with exceedingly good results for the
estimated coefficients, and with residuals which sink to the level of our noise. We have a very
high quality fit which is quite insensitive to minor details. Nevertheless, as Tables 5.5 and 5.7
hint, error estimates for these highest order coefficients should be regarded with an appropriate
degree of caution.
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Appendix: Formulas to compute the PN logarithms
In Sec. 5.5 we looked for poles generating near-zone logarithms when integrating the field equa-
tions at quadratic non-linear order. We used the propagator of the “instantaneous” potentials
defined by

I�1
� FP

BD0

C1X
kD0

�
@

c@t

�2k

��k�1
� r

�

�B

; (5.76)

and acting on a source term of the type r�2F.n;u/ where u D t � r=c; see Eq. (5.30). We
consider here a single multipolar piece in the source term, say r�2 OnLF.u/. e function F is
typically a product of the mass with some time derivatives of multipole moments. We recall that
the propagator (5.76) depends on the length scale � D cP , where P is the period of the source;
we thus consider

ˆL D I�1

�
OnL

r2
F.u/

�
: (5.77)

In this Appendix we shall provide a general and compact formula giving all the logarithms in the
near-zone expansionof the solution (5.77). e logarithms come fromexpanding the retardation
u D t � r=c in the source when r=c ! 0, integrating each of the terms using the formulas
(5.19)–(5.20), and finally taking the finite part (FP) associated with the poles / B�1. Our
compact formula gives the result of all these operations as

ıˆL D
.�c/`C1

2
ln

� r

�

�
O@L

�
F .�`�1/.t � r=c/ � F .�`�1/.t C r=c/

r

�
; (5.78)

where F .�`�1/ denotes the .`C 1/-th time anti-derivative of the function F . By ıˆL we mean
the contribution of logarithms inˆL; thus all the other terms inˆL besides ıˆL admit an ex-
pansion when r ! 0 in simple powers of r without logarithms. Note that the factor of the log-
arithm in Eq. (5.78) is a multipolar antisymmetric homogeneous solution of the wave equation
which is regular at the origin, when r ! 0. e logarithms in (5.78) are thus of theNZ type; no
FZ logarithms are generated from a source term r�2 OnLF.u/. We recall also from Sec. 5.4 that
the FZ logarithms start to arise at the cubic n D 3 non linear iteration, and that they do not
contribute to the conservative part of the dynamics of compact binaries.

e formal near-zone expansion of ıˆL reads

ıˆL D .�/` ln
� r

�

� C1X
iD0

OnL r2iC`

2ii !.2i C 2`C 1/!!

F .2iC`/.t/

c2iC`
: (5.79)

At the 1PN relative order required for our computation in (5.30)–(5.31), we have

ıˆL D
.�/` OxL

.2`C 1/!!c`

�
F .`/.t/C

r2

2c2.2`C 3/
F .`C2/.t/C O

�
1

c4

��
ln

� r

�

�
: (5.80)

e result (5.78) can be generalized in the following sense that the same type of result will
hold also for non-STF sources. Namely, if we define ıˆL to be non-STF in L, i.e. having nL D

ni1
� � � ni`

in place of the STF product OnL in (5.77), then we can easily prove that the log-terms
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are given by (5.78) with @L D @i1
� � � @i`

in place of the STF product O@L. Of course all the
other terms will be different, but the structure of the log-terms will be the same. en it is trivial
to show that the formula applies as well to a product of Minkowskian outgoing null vectors
k˛ D .1;n/ representing the direction of propagation of gravitational waves, and satisfying
�˛ˇk˛kˇ D 0. Considering

ˆ˛1���˛`
D I�1

�
k˛1

� � � k˛`

r2
F.u/

�
; (5.81)

where k˛ D .�1;n/, we find indeed that the contribution of logarithms in the near-zone ex-
pansion of this object is given by

ıˆ˛1���˛`
D
.�c/`C1

2
ln

� r

�

�
@˛1���˛`

�
F .�`�1/.t � r=c/ � F .�`�1/.t C r=c/

r

�
: (5.82)

We use this result to show that a family of logarithms not considered in Sec. 5.5 is actually
pure gauge. We showed there that all the 4PN and 5PN near-zone logarithms come from iterat-
ing the leading-order 1=r2 part of the quadratic source, namely Q

˛ˇ

2 D
4M
c4

.2/z
˛ˇ

1 C
k˛kˇ

c2 � .
However we computed only the first term / .2/z

˛ˇ

1 , which is associated with tails, but we le
out the second term / k˛kˇ . Now thanks to the structure / k˛kˇ the logarithms appear in
the form of a gauge transformation and will never contribute to a gauge invariant result. is
was already shown at the level of the dominant 4PN log-term in [66]. By expanding � on the
basis of STF tensors OnL (or rather OnL�2) we need only to prove this for each of the individual
multipolar pieces in the source which have the structure

ˆ
˛ˇ

L�2 D I�1

�
k˛kˇ OnL�2

r2
F.u/

�
: (5.83)

Applying (5.82) the logarithms are given by

ıˆ
˛ˇ

L�2 D
.�c/`C1

2
ln

� r

�

�
@˛@ˇ O@L�2

�
F .�`�1/.t � r=c/ � F .�`�1/.t C r=c/

r

�
; (5.84)

and can readily be put in the form of a gauge transformation with gauge vector

�˛
L�2 D

.�c/`C1

4
ln

� r

�

�
@˛ O@L�2

�
F .�`�1/.t � r=c/ � F .�`�1/.t C r=c/

r

�
: (5.85)

Indeed we have ıˆ˛ˇ

L�2 D 2@.˛�
ˇ/

L�2 � �˛ˇ@��
�

L�2 modulo some terms which are free of loga-
rithms. erefore the “seed” logarithms generated in this way at quadratic order can be removed
by a gauge transformation, and we conclude that the whole family of logarithms coming from
the iteration at cubic and higher orders can be removed by a non-linear deformation of the gauge
transformation, namely by a coordinate transformation. us we do not have to consider these
logarithms in our computation of a gauge invariant quantity; only those coming from the first
term / .2/z

˛ˇ

1 in Q
˛ˇ

2 will contribute as computed in Sec. 5.5.
�
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L métrique post-newtonienne générée par deux corps compacts, à l’ordre 2PN, est développée
dans l’approximation de limite proche. Le résultat est identifié à la métrique d’un trou noir de

Schwarzschild perturbé. La perturbation résultante est utilisée pour construire des conditions
initiales, dont l’évolution génère les ondes gravitationnelles rayonnées par le trou noir pendant la
phase de vibration. Les formes d’ondes sont calculées dans le cas d’une collision frontale, et pour
des orbites circulaires.

6.1 Approximation de limite proche
L’approximation dite de limite proche consiste à traiter deux trous noirs « très proches », et

recouverts d’un horizon des événements communs, comme une perturbation d’un seul trou noir.
Cette idée a été introduite aumilieu des années 90 par Price & Pullin [343], afin d’étudier la col-
lision frontale de deux trous noirs par des méthodes semi-analytiques, à des fins de comparaison
avec les seules simulations numériques alors existantes.

Les deux trous noirs initiaux sont décrits à l’aide des géométries de Misner [297] ou de Brill-
Lindquist [98], deux solutions exactes des équations de containtes de la relativité générale, qui
diffèrent par leur topologie. En développant formellement cesmétriques en puissances d’uneme-
sure de la distance entre les deux trous noirs,L, on parvient ainsi à identifier lamétrique d’un seul
trou noir de Schwarzschild perturbé. La perturbation résultante est alors utilisée pour construire
des conditions initiales, qui sont ensuite évoluées à l’aide du formalisme standard de la théorie
des perturbations d’un trou noir de Schwarzschild (voir chapitre 3).

Par comparaison avec les résultats exacts issus de la relativité numérique [379, 17], le do-
maine de validité de l’approximation de limite proche s’est avéré bien plus étendu qu’escompté :
le résultat du calcul perturbatif de l’énergie rayonnée ne commence à différer significativement
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du résultat exact que pour une distance initiale L=M & 3 � 4, où M est la masse ADM de
l’espace-temps de Misner ou de Brill-Lindquist [4]. Toutefois, les conditions initiales de Misner
ou de Brill-Lindquist décrivent deux trous noirs initialement au repos avant la collision frontale,
et ne peuvent donc pas être utilisées dans le cas astrophysique de la coalescence d’une binaire de
trous noirs faisant suite à la phase spiralante.

La communauté de la relativité numérique n’est parvenue que tout récemment à simuler la
coalescence de deux trous noirs — des quelques orbites précédant la fusion jusqu’à la fin de la
phase de vibration du trou noir de Kerr final — suite à la percée de Pretorius [341] en 2005.
Quelques années plus tôt, le projetLazarus [24] a fait usage de l’approximation de limite proche,
en raccordant un calcul de relativité numérique de la forme d’onde générée au cours de la coales-
cence à un calcul perturbatif avec des conditions initiales générées numériquement.

Plus récemment, Sopuerta et al. [381, 382] ont utilisé l’approximation de limite proche avec
des conditions initiales de type Bowen-York, puis appliqué le résultat au calcul de l’effet de recul
gravitationnel. La perturbation ainsi obtenue dérive d’une métrique conformément plate, ce qui
entre en contradiction avec les résultats post-newtoniens, d’après lesquels la métrique spatiale
n’est plus conformément plate à partir de l’ordre 2PN. Les calculs de Sopuerta et al. ne sont donc
pas cohérents, au sens où la perturbation calculée dans l’approximation de limite proche n’est pas
solution des équations d’Einstein linéarisées (en un sens post-newtonien).

6.2 Application au cas de la métrique post-newtonienne

Ceci nous a conduit à reconsidérer le problème, mais en utilisant des conditions initiales is-
sues de la métrique post-newtonienne. Éliminant la phase de fusion en raccordant directement
les phases post-newtonienne et de vibration, cette méthode peut sembler non physique ; mais les
résultats récents de la relativité numérique [341, 25, 111] montrent en fait que la phase de fu-
sion est très brève, et les ondes gravitationnelles émises parfaitement « régulières», de sorte que
la phase post-newtonienne semble se raccorder presque directement avec la phase de vibration
(cf. [311] pour une argumentation similaire). Les résultats que nous obtenons dans le cadre de
l’application à l’effet de recul gravitationnel (voir chapitre 7) sont en bon accord avec les résultats
exacts issus de la relativité numérique, justifiant a posteriori le fait que notre méthode contient
l’essentiel de la physique du problème.

Le point de départ de notre calcul est la métrique 2PN1 générée par deux objets compacts de
masses m1 et m2. De plus, on ne conserve que les termes linéaires dans la constante de couplage
G, par souci de cohérence avec la théorie des perturbations du premier ordre d’un trou noir de
Schwarzschild, les termes d’ordre G2 ou plus dans la métrique post-newtonienne correspondant
à une perturbation d’ordre plus élevé.

Nous développons ensuite cettemétrique post-newtonienne enpuissances duparamètre per-
turbatif de l’approximation limite proche, i.e. la distance (de coordonnée) r12 entre les deux trous
noirs. La métrique résultante est identifiée à celle d’un trou noir de Schwarzschild perturbé, la
perturbation étant paramétrisée par les masses m1 et m2 des trous noirs initiaux, et par la dis-
tance r12 (cf. Fig. 6.1). Mathématiquement, cela revient à postuler l’existence d’une bijection

¹La métrique post-newtonienne n’est pas connue dans tout l’espace à l’ordre 3PN ; le calcul de la métrique ré-
gularisée sur les particules à l’ordre 3PN est précisement l’objet du travail détaillé dans le chapitre 4.
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12
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21

F. 6.1: La métrique post-newtonienne décrivant deux trous noirs de masses m1 et m2, et distants de r12, est
développée dans l’approximation de limite proche (r12 ! 0). La métrique résultante peut être identifiée à celle
décrivant un trou noir perturbé de masse m D m1 C m2.

entre l’espace-temps post-newtonien décrivant les deux objets compacts, et l’espace-temps d’un
trou noir de Schwarzschild perturbé :

gPN
�� D gSchw

�� C h�� ; (6.1)

où gPN
�� est la métrique post-newtonienne, gSchw

�� la métrique d’un trou noir de Schwarzschild de
masse m D m1 C m2, et h�� une perturbation de cette dernière. On peut alors vérifier que
la perturbation h�� vérifie bien les équations d’Einstein linéarisées à l’ordre 2PN ; en particulier
avec un terme non conformément plat dans la partie spatiale de la métrique. Utilisant le forma-
lisme de la théorie des perturbations d’un trou noir de Schwarzschild, nous construisons ainsi des
conditions initiales pour les deux champs scalaires‰.e,o/

`;m
, qui condensent toute l’information sur

la perturbation (voir chapitre 3).

6.3 Évolution numérique des équations d’onde
Ces champs scalaires obéissent aux équations d’onde homogènes associées à (3.4). Une fois

les conditions initiales ‰.e,o/

`;m
.0; r�/ et @t‰

.e,o/

`;m
.0; r�/ calculées à l’aide de la métrique 2PN dé-

veloppée dans l’approximation de limite proche, nous évoluons les champs scalaires en résolvant
numériquement les équations aux dérivées partielles�

@2

@t2
�
@2

@r2
�

C V.e,o/

`

�
‰

.e,o/

`;m
D 0 : (6.2)

Pour ce faire, nous utilisons un schéma explicite, aux différences finies, du second ordre, codé en
Fortran 90 spécialement pour l’occasion. La convergence au second ordre du code a été vérifiée
(voir Fig. 6.3). Ce code a également été testé par comparaison avec des travaux antérieurs2. Les
résultats sont présentés sur les Figs. 6.4–6.7 pour les modes polaires‰.e/

`;m
et axiaux‰.o/

`;m
, dans le

cas d’une collision frontale, et pour des orbites circulaires. L’application de ces résultats au calcul
de l’effet de recul gravitationnel est détaillée dans le chapitre suivant.

²La comparaison avec les travaux de Sopuerta et al. [381] a d’ailleurs permis d’identifier une erreur dans leurs
calculs, ce qui a conduit les auteurs à publier un erratum.
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La suite de ce chapitre est un article publié dans le journalClassical andQuantumGravity [261].
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Abstract

eringdownphase of a black hole formed from themerger of two orbiting black holes
is described by means of the close-limit (CL) approximation starting from second-post-
Newtonian (2PN) initial conditions. e 2PN metric of point-particle binaries is formally
expanded inCL form and identifiedwith that of a perturbed Schwarzschild black hole. e
multipolar coefficients describing the even-parity (or polar) and odd-parity (axial) com-
ponents of the linear perturbation consistently satisfy the 2PN-accurate perturbative field
equations. We use these coefficients to build initial conditions for the Regge-Wheeler and
Zerilli wave equations, which we then evolve numerically. e ringdown waveform is ob-
tained in two cases: head-on collision with zero-angular momentum, composed only of
even modes, and circular orbits, for which both even and odd modes contribute. In a sepa-
rate work, this formalism is applied to the study of the gravitational recoil produced during
the ringdown phase of coalescing binary black holes.
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6.4 Introduction
Post-Newtonian (PN) methods have proved to be extremely efficient in describing the inspiral
phase of compact binary systems, up to about the location of the innermost circular orbit (ICO).
e PN inspiral signal has been developed up to 3.5PN order1 for the orbital phase evolution
[77, 68] and up to 3PNorder [83, 18, 78] in the amplitude waveform (see [61] for a review). On
the other hand, recent advances in numerical calculations of binary black holes [341, 111, 25]
have provided a very accurate description of the subsequent merger and ringdown phases, say,
from the ICOon. e comparison of the numerical-relativity andPN results is a crucial task that
has been successfully achieved [104, 29, 51, 318, 207]. eirmatching is currently under way [6]
and should yield a complete and very accurate solution of the problem of binary coalescence.

Nevertheless, analytic and/or semi-analytic methods are still very useful for gaining more
physical understanding of the relaxation of binary black holes toward their final equilibrium state
(see e.g. [235] for a recent example). Of particular importance is the close-limit (CL) approxi-
mationmethod, pioneered by Price & Pullin [343] and Abrahams& Price [4]. eCL approxi-
mation permits the description of the last stage of evolution of a black hole binary, when the two
black holes are close enough that they are surrounded by a common horizon, as a perturbation
of a single (Schwarzschild or Kerr) black hole. Recent revisits of the CL approach made use of
numerically generated initial data [24], and Bowen-York-type initial conditions [381, 382]. Al-
ternative analytic or semi-analytic schemes for dealing with the same problem are based on the
effective-one-body approach [105] (see [144] for a recent review).

In thepresentpaperwe shall implement theCLapproximation starting frompost-Newtonian
initial conditions, appropriate for the initial inspiral phase of binary black holes. A physical mo-
tivation is that the results of numerical relativity [341, 111, 25] show that the pulse of radiation
coming from the merger phase is very short and seems to connect smoothly to the previous in-
spiral and subsequent ringdown phases. It is thus reasonable to expect that PN initial conditions
starting the CL evolution should essentially yield the right physics for the ringdown phase. e
application of this formalism to the computation of the gravitational recoil effect or “kick” oc-
curing during the ringdown phase will be presented in a separate work [263].

Let us outline the method. We conveniently distinguish several dimensionless ratios to de-
scribe a compact binary system. First, we introduce the “post-Minkowskian” (PM) ratio, mea-
suring the internal gravity responsible for the dynamics of the system, and defined by

"PM �
GM

c2r12

; (6.3)

where r12 is the typical distance between the two compact bodies, and M D m1 C m2 is the
sum of their masses. Second, a post-Newtonian expansion will essentially be an expansion in
powers of the a priori distinct slowness parameter

"PN �
v2

12

c2
; (6.4)

where v12 is the typical value of the orbital relative velocity. Recall that the PN expansion is only
valid in the near zone defined by r � �, where � � r12=

p
"PM is the typical wavelength of the

¹As usual the nPN order refers either to the terms � 1=c2n in the equations of motion, with respect to the
usual Newtonian acceleration, or in the radiation field, relatively to the standard quadrupolar waveform.
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emitted gravitational waves, and r the distance from the field point to, say, the center of mass of
the binary.

For a binary system moving on a circular orbit the two parameters "PN and "PM are compa-
rable, "PN � "PM. In this case, if we limit the PN expansion to a few terms, we need "PN � 1

hence r12 � GM=c2. However, it is oen better to view "PN and "PM as independent param-
eters because if the binary system is moving on a highly eccentric bound orbit with eccentricity
e . 1, the PN parameter can bemuch smaller that the PMone, since at the apoapsis of the orbit
we have "PN � .1 � e/ "PM � "PM. And, for an unbound orbit with eccentricity e � 1, we
would have "PN � .1 C e/ "PM � "PM at the periapsis.

On the other hand, the close-limit approximation consists of an expansion in powers of the
dimensionless ratio considered small2

"CL �
r12

r
: (6.5)

is expansion can formally be viewed as an expansion when the size of the source tends to zero,
or multipolar expansion. eqrefore, if we limit the expansion to a few terms, we need "CL � 1

and the CL approximation is expected to be valid in the domain r � r12 (like a multipole
expansion).

Clearly the PN and CL approximations that we intend to employ simultaneously have dis-
connected domains of validity. Indeed, the CL describes a slightly distorted black hole such that
r12 & GM=c2, so that for circular orbits "PN . 1, which makes the near zone very small; in
otherwords, thePNmetricwill only be valid very close to the sourcewhile theCLapproximation
requires r � r12. Despite such apparent clash, we shall be inspired by the method of matched
asymptotic expansions [254], which in principle allows one to get an analytic expression valid in
the entire domain 0 6 r < C1. Of course, this method is based on the existence of an over-
lapping zone, where the two asymptotic expansions are simultaneously valid and can bematched
together. But in the present context there is no such thing as a overlapping zone. Hence our use
of the theory ofmatched asymptotic expansions to relate PN andCL approximations can at best
be only formal.

Starting from the PN metric, already in the form of an expansion in powers of "PN, we shall
restrict ourselves to the terms linear in "PM (i.e., essentially, linear in G). is is to be consistent
later with the use of a linear black hole perturbation. en, each of the coefficients of the PN
metric will be expanded in powers of "CL, which will enable us to identify the Schwarzschild
background metric (up to terms of order "2

PM) and the perturbation h�� of that background.
us the perturbation will appear as a double expansion series of the type [cf. the explicit results
(6.18a)–(6.18c)]

h�� D "PM
X
n>0

X
k>0

h.n;k/
�� "n

PN "
kC1
CL C O."2

PM/ ; (6.6)

where n refers to the post-Newtonian order and k can be viewed as the multipolar order of the
expansion.3 In principle, one could perform the expansions in the opposite way, i.e. expanding

²In the works [343, 4], the CL parameter is defined as c2r12=.GM /. More recently, Sopuerta et al. [381]
adopted the definition (6.5). In the formal limit r12 ! 0, these two definitions are equivalent.

³Our convention is that k represents the power of the separation r12 in the CL expansion, taking into account
the inverse power of r12 hidden in the PM indicator "PM in front of (6.6).
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first in powers of "CL, and then in powers of "PN. In the method of matched asymptotic expan-
sions the result should be the same, i.e. term by term identical in the double expansion series.
is would however require first the knowledge of the black hole perturbation metric in the CL
approximation; such metric can only be computed numerically.

In the present paper, we shall implement the expansion (6.6), limiting ourselves to second
post-Newtonianorder. e reason is that themetric is needed in closed analytic form for anyfield
point in the near zone, and that the 3PN metric is currently not known for any field point; only
the 3PN metric when regularized at the very location of the particles is known [72]. One of our
aims is the study reported in the separate work [263] of the gravitational recoil effect. e recoil
is the reaction of the binary system to the linear momentum carried away by the gravitational
waves, and results at leading order from the interaction between the ` D 2 and the ` D 3

modes, where ` is the azimuthal number of the decomposition of the black hole perturbation
onto tensorial spherical harmonics; we shall thus push the CL expansion up to at least octupolar
order, i.e. k > 3, to ensure that the modes ` D 2 and 3 are both taken into account.

e present approach will be limited to the case of a slowly spinning black hole. e initial
orbital angularmomentumof the binary system, which is constant and supposed to give the spin
of the final black hole, is considered as part of the perturbation of a Schwarzschild black hole,
and is necessarily small. However we have learned from numerical calculations that the final
black hole produced by coalescence is a rapidly spinning Kerr black hole [341, 111, 25]. e
ringdownwaveform thatwe shall compute in this paperwill be that of a perturbed Schwarzschild
black hole, and hence the quasi-normal mode frequencies will not include the effect of the black
hole spin. To remedy this problem and get better agreement with numerical relativity would
necessitate similar calculations using a Kerr black hole background.

e remainder of this paper is organized as follows: In Sec. 6.5we consider the 2PNmetric of
two compact bodies at first post-Minkowskian order (to be consistent with first-order black hole
perturbations) and formally re-expand it in the CL form. In Sec. 6.6 we first give a short recap of
the theory of linear perturbations of a Schwarzschild black hole, and then use this formalism to
identify the perturbation associated with the previously CL-expanded 2PN metric. In Sec. 6.7
we verify that thefield equations for thismetric are satisfied. Using theCL-expanded2PNmetric
as initial data, we numerically evolve the Regge-Wheeler and Zerilli functions in Sec. 6.8, and
present the resulting waveforms generated during the ringdown phase of coalescing black holes,
for both even and odd-parity perturbations. Finally we conclude in Sec. 6.9. Some necessary
details on black hole perturbation theory are relagated to the Appendix.

6.5 e 2PN metric in close-limit form

6.5.1 e 2PN metric for two point masses

In the present paper we shall solve numerically the Regge-Wheeler and Zerilli wave equations
[see Eqs. (6.38) below] starting from post-Newtonian initial conditions. us we assume that
the initial metric at the end of the inspiral phase is given by the standard PN metric generated
by two point masses m1 and m2 modelling two non-spinning black holes. We adopt the 2PN
precision because the 3PN metric in the near zone is not known in the “bulk”, i.e. for any field
point outside the position of the particles.
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Our calculation starts with the post-NewtonianmetricGPN
�� written in aCartesian harmonic

coordinate system, and given as [79]4
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⁴Greek indices take space-time values 0; 1; 2; 3. e indices �; �; : : : indicate Cartesian coordinates x� D

fct;x;y; zg, while ˛; ˇ; : : : refer to spherical coordinates x˛ D fct; r; �; 'g. Latin indices i; j ; : : : take spatial
values 1; 2; 3. Bold-face notation is oen used to denote ordinary spatial vectors, x D fxig. e two black holes
are oen labeled by A D 1; 2. Parentheses around indices are used to indicate symmetrisation, e.g. U .iV j/ D
1
2

�
U iV j C U j V i

�
. e usual (Euclidean) scalar product between two 3-vectorsU andV is denoted .U V /, e.g.

.n1v1/ D n1 � v1. To the terms given below in Eqs. (6.7a)–(6.7c), we have to add those ones corresponding to the
relabeling 1 $ 2 (with the obvious exception of the Minkowski metric which should not be counted twice).
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e trajectory of the A black hole is denoted yA and its ordinary velocity is vA D dyA=dt ,
where t D x0=c is the harmonic-coordinate time. e relative velocity is denoted v12 D v1 �

v2. e Euclidean distance between the black hole A and any field point is rA D jx� yAj. e
unit vector pointing from A to the field point is nA D .x � yA/=rA, and the unit direction
from body 2 to body 1 reads n12 D y12=r12, where y12 D y1 � y2 and the binary’s separation
is denoted r12 D jy1 � y2j. Several terms in (6.7a)–(6.7c) involve the particular combination
S � r1 C r2 C r12. All these conventions can be visualized in Fig. 6.2.

In the followingwe shall restrict ourselves to those terms in the full 2PNmetric (6.7a)–(6.7c)
which are linear in the parameter "PM given by (6.3), or equivalently in the gravitational constant
G.5 Indeed, our work will be based on the theory of first-order perturbations of a Schwarzschild
black hole, and the corresponding terms in the PN framework will necessarily have to involve
only linear powers of G to be consistent. Higher powers of G in the PN metric will correspond
to higher-order perturbation theory. Since the part of the 2PNmetric which is linear in G is ob-
viously a solution of theEinstein field equations at 2PNorder [up to termsO.G2/], themultipo-
lar coefficients describing the perturbation in the CL approximation will satisfy the perturbative
Einstein field equations, as checked in Sec. 6.7. is restriction to the terms linear in G in the
PN metric appears therefore as necessary; the price we pay is that our initial conditions will not
contain the full information encoded into the 2PN metric: for instance, all the terms involving
S in (6.7a)–(6.7c) disappear. To include meaningfully the complete 2PN metric would require
using the theory of second-order perturbations of a Schwarzschild black hole [99].

Neglecting the non-linear terms in G we end up with a comparatively much simpler metric,
reading6
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At this stage we could proceedwith theCL expansion to identify the Schwarzschild background
metric and the perturbation. However the PN metric is in harmonic coordinates so we would

⁵From now on it will be simpler to forget about the dimensionless estimates "PM, "PN and "CL defined in the
Introduction for pedagogical reasons. We shall replace them by the dimensionful but more obvious constants G

and c�2, and parameter r12, respectively.
⁶e remainderO.G2; c�6/ includes all terms which are at least of order G2 or of order c�6 or both. us for

instance the “radiation-reaction” terms present at order c�5 in GPN
00 and GPN

ij are included in this remainder because
they are also of order G2.
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Figure 6.2: Two black holes of Schwarzschild masses m1;2 in a Cartesian coordinate system x� D fct;x;y; zg

centered on the binary’s center of mass, or the associated spherical coordinate system x˛ D fct; r; �; 'g.

obtain the Schwarzschild metric in harmonic coordinates; this is not convenient because the
perturbation formalism is usually defined in standard Schwarzschild-Droste coordinates. We
shall thus perform a suitable coordinate transformation such that aer expanding the metric in
theCLapproximationweobtaindirectly the Schwarzschild backgroundmetric in Schwarzschild
coordinates.

Since we are working at linear order in G it is sufficient to perform a linear gauge transfor-
mation at order G, say ıx� D ��, where the gauge vector is �� D O.G/. Note that this gauge
transformation is defined with respect to the Minkowski background. Later, when using black-
hole perturbations, we shall perform a gauge transformation with respect to the Schwarzschild
background. A suitable gauge transformation which fulfills our purpose is then

�0
D �

Gm1

c3
.n1v1/ �

Gm2

c3
.n2v2/ ; (6.9a)
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2 : (6.9b)

Such gauge transformation does not satisfy the harmonic gauge condition ��� D 0, therefore
our new coordinates will not be harmonic. Under this gauge transformation we have

GPN
�� .x/ D gPN

��.x/C 2@.���/ C O.G2/ ; (6.10)
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where �� � ����
� , and the new metric components read now
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(6.11c)

We shall start our perturbative CL setup from that PN metric.
It is important to comment on the post-Newtonian counting we are adopting for the 2PN

metric in (6.11a)–(6.11c). e accuracy of thismetric is really 2PNonly for the geodesicmotion
of “photons” rather than of massive particles. Indeed, we did not include here the term of order
O.c�6/ in the 00 component of the metric, although it is known from [79]. is term would
be needed for describing the 2PN motion of massive bodies. It will turn out to be essential to
expand both gPN

00 and gPN
ij at the same post-Newtonian order —namely up to � c�4 for both

components in (6.11a) and (6.11c)— because only then can we be consistent with the linear
black hole perturbation. Physically this results from the fact that the CL approximation is as-
suming that the metric is a small deformation of that of a black hole, therefore when expanding
(6.11a)–(6.11c) in the CL form we shall have r12 & GM=c2, so the orbital velocities are going
to be very relativistic, i.e. jvAj . c, and thus the gPN

00 , gPN
ij and gPN

0i components should give
similar contributions to the line element ds2, and are therefore to be expanded up to the same
PN order. is is thus similar to the accuracy needed for the geodesic motion of a photon where
all the metric coefficients gPN

00 , gPN
0i and gPN

ij are to be given with the same PN accuracy. On the
other hand, we shall see later that it is very important to include the gravitomagnetic fieldgPN

0i up
to order c�5, because it will play a crucial role in generating the odd-parity or axial contributions
to the perturbations.

6.5.2 Close-limit expansion of the 2PN metric
In theCLapproximation, we expand the 2PNmetric (6.11a)–(6.11c) in powers of the parameter
(6.5), or equivalently of the relative distance r12 D jy1 � y2j when r12 ! 0. To do so we shall
first express all variables in the frame of the center of mass defined at the required 1PN accuracy.
e individual positions yA of the particles in the center-of-mass frame are given in terms of their
relative position y12 D y1 � y2 and read at 1PN order [80]
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�
v2
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r12

��
y12 C O.c�4/ ; (6.12)

together with 1 $ 2 for the other particle. We introduced the total mass M � m1 C m2, the
relative mass ratios XA � mA=M , and the symmetric mass ratio � � X1X2 D m1m2=M

2,
such that 0 < � 6 1

4
, with � D

1
4

for an equal-mass binary, and � ! 0 in the test-particle
limit. We denote also the mass difference by ıM � m1 � m2, and the relative mass difference
by ıX � X1 �X2 D ıM=M , which can also bewritten in terms of the symmetricmass ratio as
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ıX D ˙
p

1 � 4�. As previously the relative velocity is v12 D dy12=dt D v1 � v2, and v2
12 D

.v12v12/. Note that the 1PN correction in (6.12) vanishes for circular orbits. Similarly, from
the time derivatives of (6.12) we get the 1PN-accurate expression of the individual velocities as
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e expressions (6.12)–(6.13) were derived in harmonic gauge, and we have still to check
that they are also valid in the new gauge specified by (6.9a)–(6.9b). e center-of-mass frame
is defined by the vanishing of the center of mass position G. A generic gauge transformation
�� will displace the position of the center of mass by the amount ı�G D �m1�1 � m2�2,
where �A is the spatial gauge vector evaluated at the location of the particle A. e associated
shi of the particle’s individual positions with respect to the center of mass will then be given
by ı�yA D �ı�G=M (the same for both particles). In the case of the gauge vector (6.9a)–
(6.9b) we readily find �1 D Gm2 n12=c

2 and �2 D �Gm1 n12=c
2, so that ı�G D 0 and thus

ı�yA D 0. (See more details in the Appendix B of Ref. [72].)
We are now ready to write down the expansion of rA D jx � yAj when the CL ratio r12=r

tends to zero, where r12 D jy1 � y2j is the binary separation and r D jxj is the distance of the
field point to the center of mass properly defined at the 1PN order. Introducing the Legendre
polynomials Pk and using (6.12), we thus have
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together with 1 $ 2. Here the argument of the Legendre polynomial is .nn12/, the scalar
product between n D x=r and n12 D y12=r12. Notice that the term proportional to G in
Eq. (6.12) has consistently been neglected here. In addition, we see from Eqs. (6.11a)–(6.11c)
that the scalar products .nAvA/ are only needed with Newtonian accuracy. Making use of
(6.12)–(6.14), we get
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We have a similar expansion for the term ni
1n

j

1=r1 appearing in the spatial metric gPN
ij .

Combining those results, we obtain theCLexpansionof the 2PNmetric (6.11a)–(6.11c). In
the companion paper [263] we shall use this expansion to compute the gravitational recoil gen-
erated during the ringdown phase. e gravitational recoil dominantly results from the coupling
between the ` D 2 and ` D 3 multipole moments [367], where ` is the azimuthal number of
the Schwarzschild perturbation. uswe need to expand the 2PNmetric at least up to octupolar
order, i.e. up to k D 3. In fact it will turn out that it is necessary to push the CL expansion up
to k D 5 if we want to control all the terms which are of order r3

12 in the multipolar coefficients
of the black hole perturbation in the Regge-Wheeler gauge. We shall discuss this point further
in Sec. 6.6.2.

At the zero-th order in the CL expansion we evidently recover the Schwarzschild metric of
a black hole with mass M D m1 C m2. anks to our gauge transformation (6.9a)–(6.9b) we
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find it to be directly given in usual Schwarzschild coordinates, namely
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where n D x=r is the unit vector in the direction of the field point x. As expected, we find
that the Schwarzschild metric is exactly recovered in the limit � ! 0, i.e. if one of the masses
vanishes. us, we are now in a position to identify the 2PNmetric expanded in the CL approx-
imation with a perturbed Schwarzschild black hole with mass M , namely

gPN
�� D gSchw

�� C h�� : (6.17)

We find that themetric perturbation h�� expanded up to octupolar order in the CL approxima-
tion reads explicitly as
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Even though we have performed the CL expansion including all terms up to order r5
12, we only

give in (6.18a)–(6.18c) the result up to octupolar order because of the proliferation of terms at
higher orders. But we further stress that those terms proportional to r4

12 and r5
12 in Eqs. (6.18a)–

(6.18c) are fully under control (in an algebraic computer program), and were needed and used
to get the final results given by Eqs. (6.27a)–(6.27l) and (6.28a)–(6.28f) below.

If we come back for a moment to the three dimensionless scales "PM, "PN and "CL defined
in the Introduction, we can check that indeed the metric perturbation h�� admits the general
structure given by Eq. (6.6), in which the dimensionless coefficients h

.n;k/
�� are only functions of
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angles and mass ratios.
Although the identification (6.17)we aremaking ismathematically cristal clear, we recall that

its physical justification is not completely straightforward. We invoke the theory of thematching
of asymptotic series, but use it in a formal way, since, as commented in the Introduction, the
overlapping region between the domains of validity of the PN andCL expansions does not exist.
Physically, we also rely on the fact that the merger as observed in numerical simulations lasts a
very short time, which makes us feeling that the physics is essentially “conserved” when going
from a PNdescription of the system to a perturbation of the final black hole. In addition, the PN
approximation has proved to be very powerful in several past studies, with a domain of validity
which oen turned out to be larger than the one expected from elementary estimates (see [72]
for a recent example in the extreme mass ratio regime). Here we are assuming a rather extreme
extension of the domain of validity of the PN expansion — one for which r12 & GM=c2,
corresponding to the ultra-relativistic limit "PN . 1. Nevertheless we shall find below and in
the application [263] that the PN approximation performs well.

In the next Sectionwe shall describe our perturbationusing the usual black hole perturbation
formalism; for this we transform the coordinates from Cartesian x� � fct;x;y; zg to spher-
ical x˛ � fct; r; �; 'g. is is appropriate for the spherically symmetric background, and the
spherical coordinates are identified with the Schwarzschild(-Droste) coordinate system. us,

h˛ˇ.x

 / D

@x�

@x˛

@x�

@xˇ
h��.x

�/ : (6.19)

We thenwrite the scalar products .nn12/ and .nv12/ in terms of them. Our conventions regard-
ing orientations and various angles are explained in Fig. 6.2. e unit vector n D x=r pointing
from the center of mass to the field point, and the unit direction n12 D y12=r12 from body 2 to
body 1 read

n D .sin � cos'; sin � sin'; cos �/ ; (6.20a)
n12 D .cosˇ; sinˇ; 0/ : (6.20b)

Note our unconventional notation for the orbital phase angleˇ. For a generic non-circular orbit,
we have (see Fig. 6.2)

.nn12/ D sin � cos .' � ˇ/ ; (6.21a)
.nv12/ D sin �

�
Pr12 cos .' � ˇ/C r12!12 sin .' � ˇ/

�
: (6.21b)

Here the relative angular velocity is!12 � P̌ withˇ being the orbital phase, and Pr12 � .n12v12/

is the inspiral rate, where a dot stands for a derivative with respect to coordinate time t . Finally
we find that all the components of the perturbation h˛ˇ of the Schwarzschildmetric gSchw

˛ˇ
(both

written in spherical coordinates x˛ D fct; r; �; 'g) are given as explicit functions of the spher-
ical coordinates fr; �; 'g, and depend on time t through the orbital parameters ˇ, !12, r12 and
Pr12.
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6.6 e 2PN metric in Regge-Wheeler-Zerilli formalism

6.6.1 Multipole decomposition of a Schwarzschild perturbation
We briefly remind (see e.g. [313, 277, 304, 194] for more details) the usual decomposition into
multipoles of a first-order perturbation of a Schwarzschild black hole of mass M . As usual, we
write the perturbation h˛ˇ as the sum of two kinds of perturbations,

h˛ˇ D h
.e/
˛ˇ

C h
.o/

˛ˇ
; (6.22)

where the even-parity perturbation h
.e/
˛ˇ

essentially describes a perturbation along an (arbitrary)
axis of the spherically symmetric Schwarzschild background, andwhere the odd-parity perturba-
tion h

.o/

˛ˇ
essentially describes a perturbation around that axis.7 Both perturbations are expanded

with respect to a set of 10 tensorial spherical harmonics (cf. the Appendix).
Following Regge and Wheeler’s [347] conventions, the even-parity perturbation multipole

decomposition reads [194]
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h
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Y`;m ; (6.23h)

h
.e/
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X
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Y`;m ; (6.23i)
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X
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h
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2 � C G`;m

�
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' C sin � cos � @�

�i
Y`;m ; (6.23j)

where the summations over the integers ` and m range from 2 to infinity, and from �` to ` re-
spectively. Note that the lowmultipoles ` D 0 and` D 1 correspond to thenon-radiating pieces

⁷e even-parity perturbation is oen called the “polar” perturbation, while the odd-parity one is called the
“axial” perturbation. (From now on we pose G D c D 1.)
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of the perturbation h˛ˇ , and are not relevant to gravitational waves. For example, a monopolar
perturbation (` D 0) would correspond to an infinitesimal shi of the black hole mass. (See e.g.
[421, 277] for more details.) Similarly, the multipole decomposition of the odd-parity pertur-
bation is
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k
`;m
0

@'Y`;m

sin �
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Our convention for the scalar spherical harmonics Y`;m is given in Eq. (6.51) in the Appendix.
In Eqs. (6.23a)–(6.23j) and (6.24a)–(6.24g) all the multipolar coefficients H

`;m
0 , H `;m

1 , H `;m
2 ,

K`;m, G`;m, h
`;m
0 , h

`;m
1 , k

`;m
0 , k

`;m
1 and k

`;m
2 are functions of ft; rg in Schwarzschild coordi-

nates, and are defined in an arbitrary perturbative gauge.

6.6.2 Computation of the multipole contributions

Given themetric perturbationh˛ˇ obtained from theCLapproximation in the previous Section,
we can compute all the coefficients H

`;m
0 ;H

`;m
1 ; � � � ; k

`;m
2 . Aer some calculations consisting

mostly of projections over theZerilli-Mathews tensor spherical harmonics (using their orthonor-
mality properties recalled in the Appendix), we obtain the even and odd multipolar coefficients
in a particular gauge, which follows from the choice of gaugemade inEq. (6.9a)–(6.9b). We shall
however change to theRegge-Wheeler gauge, where themultipolar coefficientsG`;m, h`;m

0 , h`;m
1

and k
`;m
2 vanish; this makes the expressions of the Regge-Wheeler and Zerilli master functions

much simpler [see Eqs. (6.36a)–(6.36b) below]. Note the difference between the choice of gauge
(6.9a)–(6.9b), whichwasmade for the PNmetric before its CL expansion, and a choice of gauge
within black hole perturbation theory, once the PN metric is in CL form. We transform the re-
sults to the Regge-Wheeler gauge by making the substitutions (see e.g. [194, 305] for general
expressions):

H
`;m
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0 D H
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0 � 2@th
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t G`;m
C O.G2/ ; (6.25a)
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We can now understand why it was necessary to expand the 2PN metric so as to include terms
of order r4

12 and r5
12 in the initial perturbation (6.18a)–(6.18c). In the gauge transformation

(6.25a)–(6.25f), the partial time derivatives of the multipolar coefficients in the initial gauge
yield lower order powers of r12 in the expression of the new multipolar coefficients in Regge-
Wheeler’s gauge. For example, from (6.25a) we observe that terms like G3;˙3 � r5

12=c
2 in the

initial gauge produce terms like c�2@2
t G3;˙3 � Pr2

12r3
12=c

4 in the multipolar coefficients eH 3;˙3
0

in the Regge-Wheeler gauge. Such contributions of order r4
12 and r5

12 in the multipolar coeffi-
cients describing the perturbation in the initial gauge need to be consistently included in order
to control all terms of order r3

12 in the multipolar coefficients describing the final perturbation
in the Regge-Wheeler gauge.

As expected, we find that the simplest of the Einstein field equations in vacuum in theRegge-
Wheeler gauge is satisfied [up to termsO.G2; c�6; r4

12/], namelyeH `;m
0 D eH `;m

2 � eH `;m : (6.26)

Finally, we give below all the non-zero multipolar coefficients in the Regge-Wheeler gauge for
all .`;m/ up to ` D 3. All equations below are validmodulo remainder termsO.G2; c�6; r4

12/.
For the even-parity perturbation,
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wherewemade use of the relation v2
12 D Pr2

12 Cr2
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2
12 when convenient. Similarly, the non-zero

multipolar coefficients for the odd-parity perturbation are
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One can check that any givenmultipolar coefficientF `;m in (6.27a)–(6.27l) and (6.28a)–(6.28f)
satisfies the property F `;�m D .�1/m NF `;m, where the overbar denotes the complex conjuga-
tion, consistently with the fact that the initial perturbation is real-valued. Furthermore, all the
multipolar coefficients associated with the odd (or axial) perturbation vanish as expected in the
zero angular momentum limit !12 D 0, which corresponds to purely radial infall. We shall
consider such head-on collisions in Sec. 6.8.

6.7 Verification of the Einstein field equations
As an important check of the previous results, we now verify that all the perturbative Einstein
equations are satisfied. is requires the computation of the partial time derivatives of the mul-
tipolar coefficients (6.27a)–(6.27l) and (6.28a)–(6.28f). Recall that a generic multipolar co-
efficient F `;m is function of the coordinate time t through the orbital phase ˇ.t/, the orbital
frequency!12.t/ D P̌.t/, the distance r12.t/, and the inspiral rate Pr12.t/. eqrefore, we have
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e relative position, velocity, and acceleration of the two bodies can be expressed as

y12 D r12 n12 ; (6.30a)
v12 D Pr12 n12 C r12 !12 �12 ; (6.30b)
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2
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where we have introduced the Frenet frame (n12;�12) defined by �12 D OL�n12, with OL being
the unit vector orthogonal to the orbital plane, and in the same direction as the orbital angular
momentum. Sincewe areworking at linear order inG, the accelerationa12 which is proportional
to G can be neglected here, and we have
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Introducing these expressions of Rr12 and P!12 into (6.29), and neglecting termsO.G2; c�6; r4
12/,

we find for the even perturbation the non-zero partial time derivatives
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and for the odd perturbation
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We then check that the Einstein equations are satisfied for all .`;m/ up to ` D 3 for a
generic non circular orbit, up to termsO.G2; c�6; r4

12/. We give them here in the linear case for
completeness (see e.g. [421, 194, 356] for general expressions). For the even perturbation, these
seven equations read
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together with Eq. (6.26). Note that these equations are not all independent. For example, if
Eqs. (6.34a) and (6.34b) are satisfied, then Eq. (6.34f) is also satisfied. For the odd perturbation,
the three remaining equations are
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Assuming that all terms of a given equation in (6.34a)–(6.34f) and (6.35a)–(6.35c) are of the
same order of magnitude, we can now understand by coming back to the initial metric decom-
position (6.23a)–(6.23j) and (6.24a)–(6.24g) that it is necessary to expand gPN

00 , gPN
0i and gPN

ij at
the samePNorder in Eqs. (6.11a)–(6.11c), i.e. up toO.c�5/ included. eprevious verification
of the field equations provides a good check of the algebra yielding the perturbation coefficients
(6.27a)–(6.27l) and (6.28a)–(6.28f).

6.8 Numerical evolution of the perturbation

6.8.1 Regge-Wheeler and Zerilli master functions

From the multipolar coefficients eH `;m, eH `;m
1 , eK`;m, ek`;m

0 and ek`;m
1 one can construct for any

.`;m/ two gauge-invariant scalar fields, namely the Regge-Wheeler [347] function ‰.o/

`;m
and

the Zerilli [421] function ‰.e/
`;m

, which contain all the information about the perturbation of
the Schwarzschild metric. Gauge-invariant expressions of‰.e,o/

`;m
in terms of the multipolar coef-

ficients in a general gauge are given e.g. in [277, 304, 351]. In the Regge-Wheeler gauge [347],
the coefficients eG`;m, eh`;m

0 , eh`;m
1 and ek`;m

2 vanish, so that these expressions get simplified and
read
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where we introduced the widely used notation �` �
1
2
.` � 1/.` C 2/ [117]. Note that the

multipolar coefficent eH `;m
1 does not enter the expression of ‰.e/

`;m
. Because we are considering

linear perturbations, themaster functions‰.e,o/

`;m
are defined up to a scale factor. We use the same

convention as in [304], emphasizing the link between‰.e,o/

`;m
and the polarization states hC and
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h� of the gravitational waves at future null infinity; with our convention the two independent
C and � polarization states are given by
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where �2Y`;m denotes the spin-weighted spherical harmonics of weight �2. e asymptotic
waveform is also related to the more fundamental Weyl scalar ‰4, which admits a closed-form
expression in terms of the master functions‰.e,o/

`;m
(see the Appendix).

e two master functions satisfy a wave equation with specific potentials V.e,o/
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where the so-called tortoise coordinate r� is related to the Schwarzschild radial coordinate r by

r� D r C 2M ln
� r

2M
� 1

�
: (6.39)

Notice that these wave equations are only valid in vacuum; otherwise one has to include a source
term in the right-hand-side of (6.38), see e.g. [277, 304]. e Zerilli and Regge-Wheeler poten-
tials read respectively
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D
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.�` r C 3M /2
; (6.41a)

U .o/

`
D 1 : (6.41b)

One can easily prove that 5
7
< U .e/

`
< 2 for all ` > 2 and for all r such that 2M < r < C1,

showing that the potentials V.e/
`

and V.o/

`
are very similar [117].

6.8.2 Numerical evolution
e wave equations (6.38) are evolved numerically using the initial conditions at time t D 0

and for any tortoise radius r�, namely‰.e,o/

`;m
.0; r�/ and @t‰

.e,o/

`;m
.0; r�/, derived from the CL ex-

pansion of the 2PN metric for compact (i.e. point-mass) binaries. ese initial conditions are
calculatedbypluggingEqs. (6.27a)–(6.27l) and (6.28a)–(6.28f) and their partial timederivatives
(6.32a)–(6.32l) and (6.33a)–(6.33e) into (6.36a)–(6.36b) and their partial time derivatives.

We use Dirichlet boundary conditions, setting ‰.e,o/

`;m
.t; rmin

� / D ‰
.e,o/

`;m
.t; rmax

� / D 0 at
some radii rmin

� and rmax
� . We choose the radii rmin

� and rmax
� in such a way that these boundary

conditions are causaly disconnected from the computational domain, i.e. the spurious radiation
generated on the boundaries ft; rmin,max

� g does not have time to propagate up to the extraction
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radius r ext
� �

1
2
.rmax

� C rmin
� / for 0 6 t 6 tmax, where tmax �

1
2
.rmax

� � rmin
� /. Extending

the computational domain to Œrmin
� ; rmax

� �� RC would require using the Sommerfeld boundary
conditions [380] .@t C @r�

/‰
.e,o/

`;m
.t; rmax

� / D 0 and .@t � @r�
/‰

.e,o/

`;m
.t; rmin

� / D 0, which are
approximate boundary conditions, or even better some exact boundary conditions [259, 258].
e results below are based on computations where we have chosen rmin

� D �60M and rmax
� D

660M , such that r ext
� D 300M and tmax D 360M .

A simple explicit second-order finite difference scheme has been used to evolve the wave
equations (6.38). We always choose the spatial grid resolution ır� and the time increment ıt
such that the so-called Courant-Friedrichs-Lewy condition ıt < ır� is verified; therefore the
code is stable. e results in Figs 6.4, 6.5, 6.6 and 6.7 below are based on computations where
we used a spatial grid resolution ır� D 0:2M , and a time increment ıt D 0:1M .

In order to check the second-order convergence of the code, we computed (for example)
the real part of the .`;m/ D .2; 2/ mode of the Zerilli master function,  � <Œ‰

.e/
2;2�, for

different spatial grid resolutions ır� D 0:2M=h, where h D 1; 2; 4, with a constant time
increment ıt D 0:025M , in the case of an unequal mass binary on circular orbit with � D

0:185, r12 D 1:6M and ˇ D 0. e good overlapping of the differences jhD1 �  jhD2 and
4. jhD2 �  jhD4/ as shown in Fig. 6.3 demonstrates the second-order accuracy of the code.

e numerical code was tested in several ways, and against previous published work as well
as on some material presented in [263]:

1. Using theMisner initial data [297] as given by Price& Pullin [343], we reproduced in the
case of head-on collision the waveform of their Fig. 2 and the associated radiated energy;
cf. Eq. (16) in [343].

2. Using the initial data provided by Sopuerta et al. [381] (a conformally flat 3-metric with
a Bowen-York extrinsic curvature and a Brill-Lindquist conformal factor), we reproduced
their waveforms in Fig. 7, and the fluxes of energy, angular momentum and linear mo-
mentum of their Figs. 4, 5 and 8 respectively.8

3. Checking that the total energy, angular momentum and linear momentum radiated do
not depend on the physically irrelevant initial phase ˇ; and that the components of the
integrated linearmomentumflux, or gravitational recoil, transform according to the usual
law for vectors under a shi of the initial phase ˇ.

4. Checking that thequasi-normalmode frequencies of thewaveforms are in good agreement
with theoretical values [313, 242, 50].

6.8.3 Ringdown waveforms for head-on collisions

We first consider head-on collisions for which the perturbation is purely polar, i.e. ‰(o)
`;m

D 0.
We thus show in Figs. 6.4 and 6.5 the real part of the Zerilli master function for even-parity (or
polar) perturbations, <Œ‰

.e/
`;m
�. Initial data for this case are obtained by setting !12 D 0 (no

⁸e updated plots of Fig. 7 and Fig. 8 of [381] (taking into account the corrections from their first Erratum)
are available on the e-Print server arXiv.org. Fig. 7 actually shows the Zerilli-Moncrief and Cunningham-Price-
Moncrief master functions, and not their time derivatives as stated.
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Figure 6.3: e good overlaping of the differences  jhD1 �  jhD2 and 4. jhD2 �  jhD4/ demonstrates the
second-order accuracy of the code.

orbital angular momentum) and Pr12 D 0 (time-symmetric initial conditions) in the expressions
(6.27a)–(6.27l) and (6.32a)–(6.32l) of the even-parity multipolar coefficients and their partial
time derivatives.

In Fig. 6.4 we consider an equalmass binary (� D
1
4
), and compare our 2PN-accurate results

to those of Abrahams & Price [4], who studied similar head-on collisions using Brill-Lindquist
(BL) initial data [98]. We shall restrict the comparison to the .`;m/ D .2; 0/ mode ‰.e/

2;0 for
simplicity. is comparison requires a detailed discussion of the relation between the two no-
tions of distance between the two bodies used in both initial data sets. Using our conventions for
the perturbation and various angles, we find that the only non-vanishing multipolar coefficients
in the BL geometry are

eH 2;0
BL D eK2;0

BL D �
1

2

r
�

5

ML2

R3

1

1 C
M
2R

; (6.42)

where R D
1
4

�p
r C

p
r � 2M

�2

is the isotropic radial coordinate, and L is the distance

between the two black holes of the BL solution. Because the multipolar coefficients eG`;m,eh`;m
0

andeh`;m
1 vanish, the gauge in which the perturbation (6.42) is written coincides with the Regge-

Wheeler gauge (hence our use of the symbol � on themultipolar coefficients). Setting!12 D 0
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Figure 6.4: e real part of themode .2; 0/ of the Zerilli master function for even-parity (or polar) perturbations,
in the case of an equal mass (� D

1
4
) head-on collision, using Brill-Lindquist initial data as given in Ref. [4] with

an initial distance L D 2M (red), and our PN initial conditions with r12 D 1:75L (green).

and Pr12 D 0 in (6.27a) and (6.27e), we get for our PN initial conditions

eH 2;0
PN D eK2;0

PN D �
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2
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�
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M r2
12

r3
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�
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12

R3

1�
1 C

M
2R

�6 ; (6.43)

where we used r D R
�
1 C

M
2R

�2
. Observe first that if we set r12 D L, then the two perturba-

tions (6.42) and (6.43) coincide as they should in the weak-field domain R � M . But in the
strong field domain R & M=2, the comparison of the initial distances L and r12 is difficult. It
then becomes interesting to check if these two measures of the distance between the holes can
be related in such a way that the two waveforms compare well.

Most of the perturbation ‰.e/
2;0 that propagates to future null infinity is generated around

the maximum of the ` D 2 potential V (e)
2 for polar perturbations, which is located around r '

3:1M , or in terms of the isotropic coordinateR ' 2M . If wewish to identify the perturbations
(6.42) and (6.43), it is then natural to impose the definition

r12

L
�

�
1 C

M

2R

�5=2
ˇ̌̌̌
ˇ
R'2M

' 1:75 : (6.44)

We show in Fig. 6.4 the .`;m/ D .2; 0/ mode of the Zerilli master function using both BL
initial data with L D 2M , and our PN initial conditions with r12 D 1:75L. We observe that
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Figure 6.5: e real part of the non-vanishing modes .`;m/ of the Zerilli master function for even-parity (or
polar) perturbations, up to ` D 3, in the case of a head-on collision with � D 0:2 and r12 D 4:4M .

the waveforms compare very well, which means that our post-Newtonian initial conditions are
essentially equivalent to the Brill-Lindquist initial data in the case of head-on collisions. We find
that the waveform computed with PN initial conditions is slightly delayed with respect to the
BL one. So in order to achieve this agreement we also had to translate in time the PN curve by
an amount�t ' 4M . We checked that this good agreement does not depend on the value of
the initial distance L.

We now focus on the waveforms obtained from our CL approximation with 2PN-accurate
initial data. In Fig. 6.5 we consider the head-on collision (with time-symmetric initial condi-
tions) of an unequal mass binary with mass ratio � D 0:2, and show the real part of the non-
vanishing modes of the Zerilli master function for even-parity perturbations, <Œ‰

.e/
`;m
�, up to

` D 3. We set the initial distance to a value twice larger than in the orbital case shown later, i.e.
r12 D 4:4M , so that the Newtonian energy of the binary E D �Gm1m2=r12 is identical to
that of the circular orbit configuration with initial distance r12 D 2:2M . is configuration
being axisymmetric, for a given ` all .`;m/modes can be related to the .`; 0/mode. For example

we know from Ref. [203] that‰.e/
2;2 D �

p
6

2
‰

.e/
2;0 and‰.e/

3;3 D �

q
5
3
‰

.e/
3;1. We checked that the

ratios of the amplitudes of the modes shown in Fig. 6.5 are in very good agreement with these
theoretical values.
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6.8.4 Ringdown waveforms for circular orbits
In the case of circular orbits, both even and odd perturbations contribute. In this case we sim-
ply have to set Pr12 D 0 in Eqs. (6.27a)–(6.27l), (6.28a)–(6.28f), (6.32a)–(6.32l) and (6.33a)–
(6.33e). Our initial data will therefore depend only on the (physically irrelevant) initial orbital
phase ˇ, the initial distance r12 and the initial orbital frequency !12. We know from the 1PN-
accurate equations of motion that, for a circular orbit, the orbital frequency is related to the
binary’s separation by the Kepler-like law [61]

!2
12 D

M

r3
12

�
1 C .� � 3/

M

r12

�
C O.c�4/ ; (6.45)

so we have only one free parameter r12. is initial orbital distance r12 will be an important
parameter since it will be used in applications like [263] as a “matching radius” to connect the
computation of the ringdown phase to the previous inspiral and/or plunge phases.

An important point is worth emphasizing at this stage. Recall that in our previous calcula-
tion of the initial data for the Regge-Wheeler and Zerilli equations we have systematically and
consistently neglected the non-linear termsO.G2/. us the perturbation coefficients (6.27a)–
(6.27l) and (6.28a)–(6.28f) we consider, and which are valid for general orbits, are linear. Now,
by introducing the expression (6.45) of the orbital frequency !12 (where M � GM / into the
results (6.27a)–(6.27l), (6.28a)–(6.28f), (6.32a)–(6.32l) and (6.33a)–(6.33e) for themultipoles
and their time derivatives, we do obtain terms which are of orderO.G2/ or more in the case of
circular orbits. ose terms have to be kept as they are, because the result (6.45) comes from an
independent calculation at the level of the equations of motion. at is, once we have proved
(in Sec. 6.7) that the Einstein field equations are satisfied for generic non-circular orbits, we are
allowed to reduce the solution to the particular case of a circular orbit by inserting (6.45); our
point is that this adds new powers of G which constitute an integral part of our solution of the
field equations. is being said, a more involved calculation making use of the theory of second-
order perturbations of a Schwarzschild black holewould introduce other terms of the same order
G2 in the final solution. But we do not have access to these terms in this work, which is based
on first-order perturbations.

We show in Fig. 6.6 the real part of the non-vanishing modes of the Zerilli master function
for even-parity perturbations, <Œ‰.e/

`;m
�, up to ` D 3, in the case of the unequal mass binary with

mass ratio � D 0:2 (same as before), on a circular orbit with initial separation r12 D 2:2M

and initial phase ˇ D 0. Notice the peculiar behaviour of the ` D 2 modes which do not
vanish asymptotically. is is because some terms in the CL-expanded 2PN metric (6.18a)–
(6.18c) behave as 1=r in the far zone, therefore yielding non-vanishing asymptotic values for the
quadrupolar modes of the Zerilli master function [see e.g. the third term in h00 in Eq. (6.18a)].

e Newtonian energy of the binary on a circular orbit in Fig. 6.6 is chosen to be the same
as for the head-on collision shown in Fig. 6.5. Notice the difference in amplitude, which is typ-
ically a factor 2, between the orbital case and the head-on case; the even (polar) perturbation is
stronger in the head-on collision case than in the orbital case for the same total energy. is is
consistent with the fact that in the case of a circular orbit, we have also in addition to the even-
parity perturbations, some odd-parity or axial perturbations.

e odd/axial modes for the circular orbits are described by the Regge-Wheelermaster func-
tion ‰.o/

`;m
. Notice that they can be computed with our PN initial conditions; Brill-Lindquist
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Figure 6.6: e real part of the non-vanishing modes .`;m/ of the Zerilli master function for even-parity (or
polar) perturbations, up to ` D 3, in the case of a circular orbit with � D 0:2, r12 D 2:2M and ˇ D 0.

(BL) andMisner-Lindquist (ML) initial conditions are time-symmetric and can be applied only
to the polar modes of head-on collisions. (See [381, 382] for initial conditions generalizing BL
and ML, and which also permit to compute the axial modes of circular orbits in the CL approx-
imation.) It is therefore particularly interesting to compute the real part of the Regge-Wheeler
function, <Œ‰.o/

`;m
�, as we do in Fig. 6.7 for the same unequal mass binary, and for the same initial

conditions as for the polar modes shown in Fig. 6.6. Comparing Figs. 6.6 and 6.7 we find that
the amplitude of the evenmodes is approximately one order of magnitude larger than the ampli-
tude of the oddmodes. e evenmodes, whichwere the only ones present for head-on collisions
without angular momentum, still dominate when we turn on the orbital angular momentum
and consider the circular orbits.

6.9 Conclusion

We have proposed an implementation of the close-limit (CL) approximation for binary black
holes starting from post-Newtonian (PN) initial conditions developed at 2PN order. e 2PN
metric generated by twopoint particles, when restricted tobe linear inG in order to be consistent
in finewith the linear black hole perturbation, was formally developed inCL form and identified
with the metric of a linearly perturbed Schwarzschild black hole. We proved that the resulting
multipolar coefficients describing the even-parity and odd-parity components of that perturba-
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Figure 6.7: ereal part of the non-vanishingmodes .`;m/ of the Regge-Wheelermaster function for odd-parity
(or axial) perturbations, up to ` D 3, in the case of a circular orbit with � D 0:2, r12 D 2:2M and ˇ D 0.

tion consistently satisfy the perturbative Einstein field equations for general non-circular binary
orbits.

epost-Newtonian initial datawas then specialized to the cases of head-on collisions and of
circular orbits. We evolved numerically the Regge-Wheeler and Zerilli wave equations starting
from those initial data, obtained the waveform generated during the ringdown phase, and com-
pared these two cases. In a separate work [263], we apply this formalism to the computation of
the gravitational recoil produced during the ringdown phase of circular-orbit compact binaries,
andmatch it to a previous PN calculation of the recoil accumulated in the preceding inspiral and
merger phases [87].

ey are severalways inwhich thiswork could be extended. First, onemay expand to a higher
order in the CL approximation, to get higher multipoles of the perturbation, or include in the
initial 2PN metric terms describing the effect of spins of the initial black holes. We could also
include termsO.G2/ or higher in the initial post-Newtonian metric, but it would be necessary
to use the theory of at least second-order perturbations of a Schwarzschild black hole [99].

An important limitation of the present calculation is the impossibility to treat perturbations
of a highly spinning black hole. In this work the initial orbital angular momentum of the binary
had to be included in the perturbation of the final non-rotating black hole. A solution would
be to employ the Teukolsky formalism [399] to perform similar calculations using a Kerr back-
ground instead of a Schwarzschild one. iswould allow for a better description of the ringdown
phase of the final black hole which is known fromnumerical calculations to be a rapidly spinning
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Kerr black hole [341, 111, 25].
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Appendix: Basic material for black hole perturbations

Although thematerial contained in this Appendix is well-known, we give in self-contained form
the usual decomposition of an arbitrary linear perturbation h˛ˇ of a Schwarzschild black hole
onto the Zerilli-Mathews tensor spherical harmonics (correcting misprints frequently found in
the litterature), and recall the relation between the Weyl scalar‰4 and the Regge-Wheeler and
Zerilli master functions, from which we derive the asymptotic waveform in the form of its two
polarization states C and �.

e basis of tensorial spherical harmonics

In order to perform practical calculations, it is particularly convenient, instead of using the de-
composition (6.23a)–(6.23j) and (6.24a)–(6.24g) introduced inSec. 6.6, to introduce theZerilli-
Mathews basis of tensor spherical harmonics .eA;`;m

˛ˇ
/AD1;��� ;10, and to write the perturbation as

h˛ˇ.t; r; �; '/ D

10X
AD1

X
`;m

hA;`;m.t; r/ e
A;`;m

˛ˇ
.�; '/ ; (6.46)

where x˛ D ft; r; �; 'g are the usual Schwarzschild spherical coordinates. is is because the
tensor spherical harmonics .eA;`;m

˛ˇ
/AD1;��� ;10 form an orthonormal basis [279, 421, 422], in the

sense that

heA;`;m
� eA0;`0;m0

i �

Z
�˛ˇ�
ı

NeA;`;m
˛
 e

A0;`0;m0

ˇı
d� D ıAA0 ı``0 ımm0 ; (6.47)

where �˛ˇ is the Euclidean metric written in spherical coordinates, ıij is the usual Kronecker
symbol, theoverbar denotes complex conjugation, and the integration is performedon the sphere
of unit radius. is basis being orthonormal, each componenthA;`;m of a givenperturbationh˛ˇ

can be calculated by the projection

hA;`;m D heA;`;m
� hi ; (6.48)

fromwhichwe thendeduce themultipolar coefficientsH
`;m
0 ;H

`;m
1 ; � � � ; k

`;m
2 definedby (6.52a)–

(6.52j) below. ismethodwas systematically used to get the results (6.27a)–(6.27l) and (6.28a)–
(6.28f) from the information on the metric perturbation contained in Eqs. (6.18a)–(6.18c).
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e Zerilli-Mathews basis of tensorial harmonics explicitly reads

e
1;`;m

˛ˇ
D

0BB@
1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0

1CCAY`;m ; (6.49a)

e
2;`;m

˛ˇ
D

i
p

2

0BB@
0 1 0 0

1 0 0 0

0 0 0 0

0 0 0 0

1CCAY`;m ; (6.49b)

e
3;`;m

˛ˇ
D

0BB@
0 0 0 0

0 1 0 0

0 0 0 0

0 0 0 0

1CCAY`;m ; (6.49c)

e
4;`;m

˛ˇ
D i

s
1

2

.` � 1/!

.`C 1/!

0BB@
0 0 @� @'

0 0 0 0

@� 0 0 0

@' 0 0 0

1CCAY`;m ; (6.49d)

e
5;`;m

˛ˇ
D

s
1

2

.` � 1/!

.`C 1/!

0BB@
0 0 0 0

0 0 @� @'

0 @� 0 0

0 @' 0 0

1CCAY`;m ; (6.49e)

e
6;`;m

˛ˇ
D

1
p

2

0BB@
0 0 0 0

0 0 0 0

0 0 1 0

0 0 0 s2

1CCAY`;m ; (6.49f )

e
7;`;m

˛ˇ
D

s
1

2

.` � 2/!

.`C 2/!

0BB@
0 0 0 0

0 0 0 0

0 0 D2 D1

0 0 D1 �s2 D2

1CCAY`;m ; (6.49g)

e
8;`;m

˛ˇ
D

s
1

2

.` � 1/!

.`C 1/!

0BB@
0 0 s�1 @' �s @�

0 0 0 0

s�1 @' 0 0 0

�s @� 0 0 0

1CCAY`;m ; (6.49h)

e
9;`;m

˛ˇ
D i

s
1

2

.` � 1/!

.`C 1/!

0BB@
0 0 0 0

0 0 s�1 @' �s @�

0 s�1 @' 0 0

0 �s @� 0 0

1CCAY`;m ; (6.49i)

e
10;`;m

˛ˇ
D i

s
1

2

.` � 2/!

.`C 2/!

0BB@
0 0 0 0

0 0 0 0

0 0 s�1D1 �s D2

0 0 �s D2 �s D1

1CCAY`;m ; (6.49j)
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where we introduced the convenient shortcut s � sin � , together with the angular operators

D1 � 2 .@� � cot �/ @' ; (6.50a)

D2 � @2
� � cot � @� � s�2 @2

' ; (6.50b)

and where our convention regarding the spherical harmonics is

Y`;m.�; '/ �

s
2`C 1

4�

.` � m/!

.`C m/!
P`;m.cos �/ eim' ; (6.51)

with P`;m.x/ D .�1/m.1 � x2/m=2
�
d

dx

�m
P`.x/ being the associated Legendre functions.

Finally, the coefficients hA;`;m of the arbitrary perturbation h˛ˇ are related to themultipolar
coefficients H

`;m
0 ;H

`;m
1 ; � � � ; k

`;m
2 of the decomposition (6.23a)–(6.23j) and (6.24a)–(6.24g)

through

h1;`;m D

�
1 �

2M

r

�
H

`;m
0 ; (6.52a)

h2;`;m D �i

p
2 H

`;m
1 ; (6.52b)

h3;`;m D

�
1 �

2M

r

��1

H
`;m
2 ; (6.52c)

h4;`;m D �i

s
2
.`C 1/!

.` � 1/!
h

`;m
0 ; (6.52d)

h5;`;m D

s
2
.`C 1/!

.` � 1/!
h

`;m
1 ; (6.52e)

h6;`;m D r2
p

2

�
K`;m

�
`.`C 1/

2
G`;m

�
; (6.52f )

h7;`;m D r2

s
1

2

.`C 2/!

.` � 2/!
G`;m ; (6.52g)

h8;`;m D �

s
2
.`C 1/!

.` � 1/!
k

`;m
0 ; (6.52h)

h9;`;m D i

s
2
.`C 1/!

.` � 1/!
k

`;m
1 ; (6.52i)

h10;`;m D �i

s
1

2

.`C 2/!

.` � 2/!
k

`;m
2 : (6.52j)

Link between the asymptotic waveform and the master functions
Here we recall the general expression (known as a Chandrasekhar transformation [117]) of the
Weyl scalar‰4 in terms of the Regge-Wheeler and Zerilli master functions‰.e,o/

`;m
, and we com-

pute the combination hC � i h�, where hC;� denote the two asymptotic wave polarizations.
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In the Schwarzschild spherical coordinate system ft; r; �; 'g, we let .e˛
r ; e

˛
�
; e˛

' / be the as-
sociated orthonormal basis of t D const hypersurfaces, and e˛

t be the timelike unit vector or-
thogonal to them. en, we consider the following complex null tetrad: k˛ and l˛ are two real
null vectors, while m˛ and Nm˛ are complex conjugated null vectors defined by

k˛
D

1
p

2

�
e˛

t C e˛
r

�
; (6.53a)

l˛
D

1
p

2

�
e˛

t � e˛
r

�
; (6.53b)

m˛
D

1
p

2

�
e˛

� � i e˛
'

�
; (6.53c)

Nm˛
D

1
p

2

�
e˛

� C i e˛
'

�
: (6.53d)

We therefore have m˛ Nm˛ D 1 D �l˛k˛ , all the other scalar products vanishing. Various
conventions for the definition of the Weyl scalar‰4 can be found in the litterature. We adopt

‰4 � C˛ˇ
ı l˛
Nmˇ l


Nmı ; (6.54)

where C˛ˇ
 ı is the Weyl tensor, which coincides with the Riemann tensor in vacuum. It can be
shown that, for a generic perturbation of a Schwarzschild black hole,

‰4 D
1

r

X
`;m

s
.`C 2/!

.` � 2/!

�
P.e/

`
‰

.e/
`;m

C iP.o/

`
‰

.o/

`;m

�
�2Y`;m ; (6.55)

where r is the usual Schwarzschild radial coordinate, and the master functions ‰.e,o/

`;m
are those

defined in Eqs. (6.36a)–(6.36b). e relation (6.55) is exact for first-order perturbations of the
Schwarzschild geometry [117]. e s D �2 spin-weighted spherical harmonics �2Y`;m are
defined for any integer s by [310, 195]

�sY`;m.�; '/ � .�1/s

r
2`C 1

4�
sd`;m.�/ eim' ; (6.56)

where the Wigner functions sd`;m read

sd`;m.�/ �

kmaxX
kDkmax

.�1/k
p
.`C m/!.` � m/!.`C s/!.` � s/!

k!.`C m � k/!.` � s � k/!.s � m C k/!

�
cos

�

2

�2` �
tan

�

2

�2kCs�m

;

(6.57)
with kmax D max.0;m � s/ and kmax D max.` C m; ` � s/. In the case s D 0 we recover
the scalar spherical harmonics (6.51). e differential operators acting on‰.e,o/

`;m
in the relation

(6.55) read explicitly as

P.e,o/

`
D

1

4

�
W.e,o/

`
C @r�

� @t

��
@r�

� @t

�
; (6.58)



159

where r� is the tortoise coordinate (6.39), and the potentialsW .e,o/

`
are given by

W.e/
`

D
2

r

�
1 �

3M

r

�
�

6M.r � 2M /

r2.�` r C 3M /
; (6.59a)

W.o/

`
D

2

r

�
1 �

3M

r

�
: (6.59b)

Recall that �` D
1
2
.` � 1/.`C 2/.

Now, in the limit r ! C1, the Regge-Wheeler and Zerilli functions‰.e,o/

`;m
are functions

of the retarded time t � r� only. Indeed, they are solutions of the wave equations (6.38) with
decaying potentials V.e,o/

`
/ 1=r2. Because the potentialsW.e,o/

`
also decay as r�1, we have the

asymptotic expressions
P.e,o/

`
‰

.e,o/

`;m
D @2

t‰
.e,o/

`;m
C O.r�1/ : (6.60)

Furthermore, working in the transverse and traceless gauge, and performing some projections
onto the linearized Weyl tensor around flat spacetime in the definition (6.54) leads to the well-
known expression

‰4 D @2
t

�
hC � i h�

�
C O.r�2/ ; (6.61)

where the two polarization states hC and h� are defined by

hC �
1

2

�
ei

�e
j

�
� ei

'ej
'

�
hij D

1

2

�
h�� � h''

�
; (6.62a)

h� �
1

2

�
ei

�ej
' C ei

'e
j

�

�
hij D h�' : (6.62b)

Finally, combining the results (6.55) and (6.61)with the asymptotic expansion (6.60), we recover
the well-known formula

hC � i h� D
1

r

X
`;m

s
.`C 2/!

.` � 2/!

�
‰

.e/
`;m

C i‰
.o/

`;m

�
�2Y`;m C O.r�2/ : (6.63)
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L’ anisotrope de rayonnement gravitationnel par un système binaire coalescent de
trous noirs super-massifs peut conduire à l’éjection du trou noir résultant de sa galaxie hôte, et

avoir des conséquences importantes en astrophysique. En combinant le calcul perturbatif détaillé
dans le chapitre 6 avec un calcul post-newtonien antérieur [87] du flux de quantité de mouve-
ment emporté par les ondes gravitationnelles, nous quantifions cet effet de recul gravitationnel
dans le cas de binaires de trous noirs de Schwarzschild. Nos résultats se comparent très bien avec
ceux issus de simulations en relativité numérique.

7.1 Effet de recul gravitationnel
Partant de la définition (1.16) du tenseur d’Isaacson, le tenseur énergie-impulsion effectif

associé aux ondes gravitationnelles, nous avons vu au cours du chapitre 1 que celles-ci emportent
de l’énergie. On montre de même qu’elles emportent du moment cinétique, et de la quantité de
mouvement, ou impulsion. Le flux de quantité de mouvement intégré sur une sphère à l’infini
spatial i0 est donné par [351]

FOG �
dPOG

dt
D lim

r!C1

�
r2c2

16�G

I
n j PhC � i Ph�j

2
d�

�
; (7.1)

où hC et h� sont les états de polarisation définis par (1.10), n est le vecteur unitaire pointant
dans la direction .�; '/, et d� D sin � d� d' est l’élément d’angle solide. Ce résultat général est
valable pour toute source de rayonnement gravitationnel isolée.

Dans le cas de la coalescence d’un système binaire d’objets compacts, la conservation de la
quantité de mouvement totale implique que le trou noir de masse M résultant de la fusion pos-
sède une quantité de mouvement P D MV non nulle par rapport au référentiel du centre de
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F. 7.1: Vitesses de libération Vesc de divers systèmes stellaires auto-gravitants : amas globulaire (GC), galaxies
naines sphéroïdes (dSph), et différents types de galaxies elliptiques (dE, E\, E\). Figure tirée de [283].

masse, dont la définition tient compte du rayonnement émis ; il s’agit de l’effet de recul gravita-
tionnel. La vitesse de recul de ce trou noir est donc donnée par l’intégrale

V D �
1

M

Z
FOG dt ; (7.2)

où l’intégration porte sur toute la durée d’émission du rayonnement. La norme V D jVj de
cette vitesse de recul dépend considérablement de la configuration initiale de la binaire (rapport
de masses et spins des corps compacts), et peut être très élevée : plusieurs centaines voire plu-
sieurs milliers de kilomètres par seconde. La vitesse de libération d’une galaxie elliptique (resp.
d’un amas globulaire) typique est de l’ordre de quelques centaines (resp. dizaines) de kilomètres
par seconde [283] (cf. Fig. 7.1). Par conséquent, l’effet de recul gravitationnel est susceptible de
conduire à l’éjection d’une portion conséquente des trous noirs super-massifs de leurs galaxies
hôtes, et de virtuellement tous les trous noirs de masses intermédiaires � 104Mˇ éventuelle-
ment présents au sein des amas globulaires [409]. Plusieurs candidats de tels trous noirs super-
massifs éjectés de leur galaxies hôtes ont déjà été proposés [244, 375]. Mais des scénarios alter-
natifs peuvent également rendre compte de ces observations récentes [209, 374].

Par ailleurs, cet effet de recul gravitationnel a des conséquences potentiellement très impor-
tantes en astrophysique et en cosmologie, parmi lesquelles :

• La nécessité de réviser le scénario standard de croissance des trous noirs super-massifs, i.e.
essentiellement par fusion des galaxies au cours de l’évolution cosmologique [366].

• L’existence éventuelle d’une population de trous noirs super-massifs isolés dans le milieu
intergalactique, potentiellement entourés de la partie interne de leurs disques d’accrétion,
demeurée gravitationnellement liée lors de l’éjection [93].
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• De nombreuses signatures observationnelles reliées aux modifications des profils de den-
sité des étoiles, du gaz, et du halo de matière noire au voisinage du trou noir super-massif
éjecté [266, 300, 154].

• L’existence éventuelle de noyaux actifs de galaxies décentrés par rapport aux centres géo-
métriques des galaxies [273].

Pour toutes ces raisons, il est crucial de parvenir à quantifier avec précision l’amplitude de l’effet
de recul gravitationnel pour un système binaire de trous noirs générique.

7.2 Historique des travaux sur le sujet

La première estimation de l’effet de recul gravitationnel pour les binaires d’objets compacts
remonte à un article de Fitchett [176], basé sur des travaux antérieurs de Peres [325], Papape-
trou [320, 321] et Bekenstein [41]. Fitchett calcula la vitesse de recul pour un système de deux
objets compacts sans spins, de rapport de masses quelconque, à l’ordre newtonien. Pour des or-
bites quasi-circulaires, le flux de quantité de mouvement emporté par les ondes gravitationnelles
prend la forme

FOG D
464

105
�2
p

1 � 4�x11=2

�
1 C O

�
1

c2

��
Ov12 ; (7.3)

oùx D .Gm�=c3/2=3 est le paramètre post-newtonien usuel, avec� la fréquence orbitale de la
binaire et m D m1 C m2 la masse totale, � � m1m2=m2 est la rapport demasse symétrique, et
Ov12 le vecteur unitaire pointant dans la direction de la vitesse relative v12 � v1 �v2 de la binaire
(cf. Fig. 7.2). La vitesse de reculV se déduit immédiatement du flux (7.3) par le bilan de quantité
de mouvement (7.2). Comme escompté, ce flux s’annule pour une binaire symétrique (� D

1
4
)

ou de rapport demasse extrême (� ! 0). Par ailleurs, comme l’effet s’accroît lorsquex augmente,
i.e. lorsque les deux corps se rapprochent, il est nécessaire d’inclure autant de corrections post-
newtoniennes que possible afin d’améliorer la précision du calcul dans le régime de champ fort,
où la majorité du recul gravitationnel est engendrée.

Le résultat (7.3) pour l’effet dominant a par la suite été étendu à l’ordre 1PN par Wiseman
[419], puis à l’ordre 2PN par Blanchet, Qusailah & Will [87], toujours pour des systèmes bi-
naires d’objets compacts sans spins et circularisés. L’effet des spins a été initialement considéré par
Kidder [239] via l’inclusion de la contribution spin-orbite dominante à l’ordre 0.5PN. Plus ré-
cemment, Racine, Buonanno&Kidder [345] ont étendu ce résultat en incluant les contributions
spin-orbite sub-dominantes jusqu’à l’ordre 2PN, ainsi que la contribution spin-spin dominante.
D’autres calculs analytiques ou semi-analytiques ont fait usage de la théorie des perturbations
d’un trou noir [177, 169], du formalisme EOB (Effective-One-Body) [138], et de l’approximation
de limite proche [381, 382].

Ces estimations sont pour la plupart antérieures aux calculs effectués en relativité numérique,
seuls capables d’obtenir la valeur exacte (modulo l’erreur numérique) de la vitesse de recul accu-
mulée durant les phases de fusion et de vibration. En raison de l’importance du problème pour
l’astrophysique, l’effet de recul gravitationnel a récemment suscité une activité frénétique au sein
de la communauté de la relativité numérique. La vitesse de recul a ainsi été évaluée dans le cas
d’orbites quasi-circulaires, pour des binaires de trous noirs sans spins [109, 26, 199, 210, 198],
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F. 7.2: Deux trous noirs de masses m1 et m2, avec m1 < m2, et de vitesses de coordonnées v1 et v2, avec
jv1j > jv2j, décrivent des orbites quasi-circulaires dans le référentiel du centre de masse. Le flux de quantité de
mouvement emportée par les ondes gravitationnellesFOG est aligné avec la directionde la vitesse relative de la binaire
v12 � v1 � v2. Par conservation de la quantité de mouvement totale, le centre de masse de la binaire possède une
vitesse de reculV par rapport au référentiel du centre demasse, dont la définition tient également compte des ondes
gravitationnelles rayonnées.

puis avec spins [27, 110, 112, 197, 211, 212, 247, 337, 403, 100, 129, 271, 367, 272], mais éga-
lement pour des collisions frontales [120] et des orbites hyperboliques [208].

Ces travaux ont montré que l’effet des spins des trous noirs est bien plus important que celui
induit par l’asymétrie desmasses. Il existe en particulier une configuration, dite de«superkick»,
lorsque les spins de deux trous noirs de Kerr maximaux de même masse sont anti-alignés dans le
plan orbital, qui permet d’atteindre une vitesse de recul de l’ordre de 4 000 km=s [112, 197],
bien supérieure aux vitesses de libération des galaxies les plus massives. Ces cas extrêmes ne sont
toutefois pas nécessairement en contradiction avec l’observation (indirecte) de trous noirs super-
massifs dans l’Univers local, ou à grand décalage spectral avec les quasars, car plusieurs méca-
nismes sont susceptibles de conduire à l’alignement des spins avec le moment cinétique orbital
(couple de torsion exercé par le gaz d’un disque d’accrétion [89] ou précession relativiste au cours
de la phase spiralante [238]), réduisant ainsi considérablement l’amplitude de l’effet.

7.3 Recul gravitationnel pendant la phase de vibration
Bien que la relativité numérique prédise désormais avec exactitude la vitesse de recul pour une

binaire de trous noirs générique, ces simulations ne permettent pas d’appréhender la physique de
l’effet de recul gravitationnel.Comme l’illustrent les travaux récents [367, 235, 348], lesméthodes
analytiques et/ou semi-analytiques sont toujours utiles afin d’approfondir la compréhension de
cette prédiction de la relativité générale.
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F. 7.3: La norme V de la vitesse de recul en fonction du temps coordonnée t (normalisé par la masse ADM
MADM de l’espace-temps) telle que calculée en relativité numérique pour une binaire de trous noirs sans spins, de
rapport de masse symétrique � D 0;19. On observe une décroissance de � 30% de la vitesse de recul pendant la
phase de vibration faisant suite à la fusion des trous noirs. Figure adaptée de [199].

Par exemple, dans le cas le plus simple d’un système binaire de trous noirs de Schwarzschild de
masses inégales, l’évolution de la normeV de la vitesse de recul en fonction du temps coordonnée
t présente une allure caractéristique particulièrement intéressante (cf. Fig. 7.3) : l’amplitude du
recul croît de manière monotone jusqu’à une valeur1 � 250 km=s lorsque les deux trous noirs
initiaux fusionnent, après quoi le trou noir final semble freiné lors de la phase de vibration, la
vitesse de recul convergeant vers une valeur � 175 km=s. Cette diminution de � 30% semble
donc due à la désexcitation du trou noir final qui rayonne des modes quasi-normaux. Ce phéno-
mène, couramment qualifié d’« antikick», est générique pour des binaires sans spins, et ne peut
se comprendre dans le cadre des seules simulations en relativité numérique.

Avant que ces dernières ne soient disponibles, Blanchet, Qusailah& Will [87] ont fait usage
de l’expression (7.3) du flux de quantité de mouvement, nouvellement étendue à l’ordre 2PN,
afin d’estimer l’amplitude de la vitesse de recul pendant la phase spiralante, jusqu’à la dernière
orbite circulaire2. Afin d’estimer la contribution au recul gravitationnel total accumulée pendant
la phase de fusion, cesmêmes auteurs ont intégré le fluxd’impulsionpost-newtonien le longd’une
géodésique plongeante d’un trou noir de Schwarzschild demasse m, parcourue par une particule
de masse réduite� D m1m2=m, dans l’esprit de la méthode EOB [105, 106, 144]. Ils prédirent
ainsi une vitesse de recul maximale � 250 km=s à la fin de la phase de fusion, en accord avec le
résultat exact obtenu a posteriori en relativité numérique.

Leur calcul ne pouvait toutefois rendre compte de la diminution � 30% de la vitesse de
recul au cours de la phase de vibration. Afin de tester l’hypothèse selon laquelle l’« antikick »
est dû à l’émission de rayonnement gravitationnel sous forme de modes quasi-normaux pendant

¹Dans le cas d’une binaire de trous noirs de rapport de masse symétrique � D 0;19, valeur autour de laquelle la
vitesse de recul est maximale.

²Cette notion est ambiguë dans le cas d’une binaire de masses comparables ; sa définition est donc relativement
arbitraire. Les auteurs du travail [87] définissent la dernière orbite circulaire par la valeur de la fréquence orbitale
� telle que m� D 6�3=2, par analogie avec le cas d’une particule test massive dans la métrique d’un trou noir de
Schwarzschild de masse m.
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cette phase, nous avons fait usage du formalisme détaillé dans le chapitre précédent. Les états
de polarisation de l’onde gravitationnelle sont reliés aux fonctions de Zerilli ‰.e/

`;m
et de Regge-

Wheeler‰.o/

`;m
par la relation (voir chapitre 3)

hC � i h� D
1

r

X
`;m

s
.`C 2/!

.` � 2/!

�
‰

.e/
`;m

C i‰
.o/

`;m

�
�2Y`;m C O

�
1

r2

�
: (7.4)

Dans le chapitre précédent, nous avons évolué ces fonctions à l’aide de conditions initiales basées
sur la métrique post-newtonienne développée dans l’approximation de limite proche. En insé-
rant la combinaison (7.4) dans l’expression (7.3) du flux de moment linéaire, puis en utilisant
le bilan de quantité de mouvement (7.2), on parvient ainsi à calculer la contribution au recul
gravitationnel total accumulée au cours de la phase de vibration. Combinant (vectoriellement)
ce résultat avec les calculs post-newtoniens de [87], nous parvenons ainsi à estimer la vitesse de
recul depuis le début de la phase spiralante jusqu’à la fin de la phase de vibration.

Le résultat final est présenté sur la Fig. 7.4, où l’on trace la norme V de la vitesse de recul
en fonction du rapport de masse symétrique �. Notre méthode produit des résultats en très bon
accord avec ceux issus de calculs en relativité numérique. Cela suggère que l’essentiel de la phy-
sique du recul gravitationnel est descriptible par une « simple» combinaison deméthodes post-
newtoniennes et perturbatives.

Ces résultats montrent également que l’approximation post-newtonienne est plus « perfor-
mante» que ce à quoi l’on pourrait s’attendre naïvement : le recul gravitationnel est essentielle-
ment engendré au cours de la phase de coalescence, en champ fort, où les développements post-
newtoniens ne sont a priori plus valables. Néanmoins, notre travail montre que l’on peut estimer
l’effet de recul avec une précision raisonnable en poussant l’approximation post-newtonienne au-
delà de son domaine de validité formel, et en la combinant avec des méthodes perturbatives.

La suite de ce chapitre est un article publié dans le journalClassical andQuantumGravity [263].
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Abstract

e gravitational recoil or “kick” of a black hole formed from the merger of two or-
biting black holes, and caused by the anisotropic emission of gravitational radiation, is an
astrophysically important phenomenon. We combine (i) an earlier calculation, using post-
Newtonian theory, of the kick velocity accumulated up to the merger of two non-spinning
black holes, (ii) a “close-limit approximation” calculation of the radiation emitted during
the ringdown phase, and based on a solution of the Regge-Wheeler and Zerilli equations
using initial data accurate to second post-Newtonian order. We prove that ringdown radi-
ation produces a significant “anti-kick”. Adding the contributions due to inspiral, merger
and ringdown phases, our results for the net kick velocity agree with those from numerical
relativity to 10–15 percent over a wide range of mass ratios, with a maximum velocity of
180 km/s at a mass ratio of 0:38.
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7.4 Introduction and summary

e gravitational recoil of an isolated system in response to the anisotropic emission of gravita-
tional radiation (sometimes also called the “kick”) is a phenomenon with potentially important
astrophysical consequences [283]. One of the most intriguing is the possibility that a massive
black hole formed from the inspiral and merger of two progenitor black holes could receive
enough of a kick to displace it from the center of the galaxy where the merger occurred, or to
eject it entirely from the galaxy. is could affect the growth history of massive black holes
[366]. Observational evidence for such a kicked black hole has even been reported [244].

ecalculationof suchkickswithin general relativity has been carried out in a variety ofways.
Earlier analytic or semi-analytic estimates of the gravitational recoil include a perturbation cal-
culation (valid for smallmass ratios) during the final plunge [169], a post-Newtonian calculation
valid during the inspiraling phase together with a treatment of the plunge phase [87], an applica-
tion of the effective-one-body formalism [138], and a close-limit calculation with Bowen-York
type initial conditions [381].

Following recent advances in numerical calculations of binary black holes [341, 111, 25],
the problem of gravitational recoil received considerable attention from the numerical relativity
community. ese computations led to increasingly accurate estimates of the kick velocity from
the merger along quasicircular orbits of black holes without spin [109, 26, 210, 199, 198], and
with spin [211, 247, 110]; from head-on collisons [120]; and from hyperbolic orbits [208]. In
particular these numerical simulations showed that very large kick velocities can be obtained in
the case of spinning black holes for particular spin configurations. Nevertheless, as the very de-
tailed multipolar analysis of the binary black hole recoil by Schnittman et al. [367] illustrates,
analytic and/or semi-analyticmethods are still very useful for gainingmore physical understand-
ing of the relaxation of binary black holes to their final equilibrium state.

In the simplest case of unequal mass, non-spinning black hole binaries on quasicircular or-
bits, the kick velocity as a function of time shows a very distinctive pattern [26, 199]: the recoil
increases monotonically during the inspiral and plunge phases up to a maximum around the
onset of merger, and then decreases quickly to a final asymptotic value, as much as 30 percent
smaller than the maximum. is braking occurs during the phase where the newly formed black
hole emits gravitational radiation in a superposition of quasinormal “ringdown” modes, and is
known as the “anti-kick”. For a reducedmass parameter value� � m1m2=.m1 Cm2/

2 ' 0:19,
the value forwhich the kick is amaximum, the peak value is around 250 km/swhile the final kick
is around 175 km/s.

Building on previous work based on amultipolar post-Minkowskian formalism [65, 58, 60],
Blanchet, Qusailah and Will [87] (hereaer BQW) derived the linear momentum flux from
compact binaries at second post-Newtonian (2PN) order beyond the leading effect. BQW aug-
mented their 2PN estimate of the recoil up to the innermost circular orbit (ICO) by integrating
the resulting 2PN-accurate flux from the ICO down to the horizon on a plunge geodesic of the
Schwarzschild geometry. ey found that the recoil monotonically increases as the plunge pro-
gresses. Within their error bars, the resulting recoil was found to agree well with the maximum
value of the kick velocity as calculated by numerical relativity up to the onset of the anti-kick.
And indeed the maximal kick velocity in numerical computations occurs more or less at a sep-
aration of roughly 2M , where M D m1 C m2 is the total mass, as inferred from the times at
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Figure 7.4: Le panel: Comparison with numerical calculations [109, 26, 210, 199, 198] and other analytic or
semi-analytic methods [87, 138, 381]. Right panel: Comparison with fitting formulas derived from this paper
(black) and from numerical relativity results [28, 270].

which the maximum kicks were found to occur in [26, 199] (such an inference cannot be made
rigorously, of course, but does coincide roughly with where other numerical diagnostics indi-
cated the onset of themerger). At this point, the BQWcomputation ended for lack of amethod
to evaluate the contribution from the subsequent ringdown phase. is paper reports the results
of incorporating such a method.

Le Tiec and Blanchet [261] have developed a “close-limit approximation” (CLA) for black
hole binaries that uses 2PN-accurate initial conditions. In this 2PN-CLA framework, the 2PN
metric for two bodies in close proximity is recast as a perturbation of a Schwarzschild black hole.
e resulting perturbation is then used as initial data to evolve numerically the Regge-Wheeler
and Zerilli equations in order to calculate the gravitational radiation emitted subsequently. e
purpose of the present paper is to use the resulting waveforms to compute the recoil generated
during the ringdown phase. By adding vectorially the 2PN-CLA results to the 2PN results of
BQWfor the inspiral plusmerger, we prove that the effect of the ringdownon the recoil is indeed
to produce an anti-kick, andwe find that the total kick generated by the inspiral plusmerger plus
ringdownphases is in good agreementwith numerical computations for non-spinning black hole
binaries.

Our central results are shown in Fig. 7.4. In the le panel, the curve with error bars (green in
the color version) shows our combined kick velocities, with the error bars estimated by varying
the radius at which the 2PN and CLA methods are matched. e top curve (red) is the kick
from the BQWpure 2PN calculation up to themerger. e sequence of dots and accompanying
dashed lines (blue) are from an exhaustive series of numerical simulations by González et al.
[199, 198]. In this figure are also shown individual points and error estimates from some earlier
analytic or semi-analytic estimates such as [138, 381], as well as other numerical computations.

A number of authors have fit the kick velocity to the empirical formula [87, 199]

Vfit D A �2.1 � 4�/1=2 .1 C B �/ � 103 km/s : (7.5)
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e leading �2.1 � 4�/1=2 dependence derives from the lowest-order, or “Newtonian” calcula-
tion [176, 177]. A fit to our 2PN-CLA results yields A D 9:5 and B D 0:3. e right panel of
Fig. 7.4 shows the ratio of our kick velocities to this fitting formula (black), together with similar
ratios to fitting formulas derived from numerical relativity [28, 270]. It can be seen that our kick
velocities are systematically higher than those from numerical relativity in the equal-mass limit,
and systematically lower in the small mass-ratio limit. However, we find it striking that in the
regime where the kick velocity is substantial, say between � D 0:08 and � D 0:24, our 2PN-
CLA calculation agrees with numerical relativity to 10–15 percent, and confirms the intuition
that ringdown radiation generates an anti-kick that partially offsets the kick accumulated during
the plunge.

e remainder of this paper is organized as follows: In Sec. 7.5 we describe briefly the 2PN
andCLAmethods for calculating the gravitational recoil from the inspiral, plunge and ringdown
phases (full details will be presented elsewhere [262]), and we describe the numerical implemen-
tation of the method and some of the checks and diagnostics performed. Concluding remarks
are made in Sec. 7.6. We use geometrical units G D c D 1.

7.5 Gravitational recoil from the inspiral, plunge and
ringdown phases

e flux of linear momentum carried away by gravitational waves from a general isolated system
can be written in terms of the gravitational-wave polarization states hC and h� as [298]

dP i

dt
D lim

r!C1

�
r2

16�

I
ni

j PhC � i Ph�j
2
d�

�
; (7.6)

where the dot stands for a partial time derivative, and d� is the solid angle associated with the
direction of propagation ni .

BQW[87] expanded thewaveforms in terms of radiativemultipolemoments using the post-
Minkowski framework, and expressed them in terms of source multipole moments of mass-type
and current-type, valid to 2PN order, including contributions of “tails”. Restricting to binary
systems on quasicircular inspiral orbits, they obtained dP i=dt , and aer integratingwith respect
to time, dividing by the total mass M and changing sign, obtained the recoil velocity
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where x D .M!/2=3, ! being the orbital angular frequency, and ui is the unit vector directed
from the less massive toward the more massive body. (See [345] for a generalization including
spin effects.) is formula gives the kick velocity V i

inspiral accumulated during inspiral up to the
ICO (defined by xICO D

1
6
).



171

Starting with V i
inspiral, which is always a small contribution to the total kick, BQW then in-

tegrated the 2PN expression for dP i=dt along a plunge orbit of a Schwarzschild black hole of
mass M from the ICO down to a radius of order 2M . A key to that step was to change integra-
tion variable from coordinate time t , which is singular on the event horizon, to a “proper angular
frequency” variable N! D d =d� of the plunge orbit, which is regular on the horizon. e re-
sulting net kick was the data for the curve labeled BQW(red) plotted in Fig. 7.4. Here we repeat
this calculation, except that we terminate the plunge integration at a Schwarzschild coordinate
radius rmatch, whose value is chosen to lie between 2M (the minimum allowed by the method)
and 2:5M . At this radius we match the 2PN kick (namely V i

inspiral C V i
plunge), to the result of

our 2PN-CLA calculation, to which we now turn. Later we will test the sensitivity of the final
result to the value of the matching radius rmatch.

e idea of the 2PN-CLA method [261] is to take the spacetime metric for a binary system
accurate to 2PN order, where the two bodies are on a quasicircular orbit of initial separation r12

(in Schwarzschild-like coordinates), which is assumed to be of order 2M . e metric is then
re-expanded in powers of r12, resulting in a Schwarzschildmetric of a black hole of mass M plus
correction terms that vanish in the limit � ! 0. Carrying out a multipolar expansion, one can
identify the .`;m/ components of the Regge-Wheeler and Zerilli functions used in black-hole
perturbation theory.

It is possible to express the linear momentum flux (7.6) in terms of the Regge-Wheeler and
Zerilli functions‰.e,o/

`;m
as defined in Eqs. (5.1) of [261]. e waveform takes the form

hC � i h� D
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�
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where the superscripts .e/ and .o/ denote even and odd-parity respectively, the summations on
the integers `;m range from 2 to infinity for `, and from �` to ` for m, andwhere �2Y`;m.�; '/

are the spin-weighted spherical harmonics of spin �2 [310, 195]. More details on this standard
result are given in the Appendix of [261], including its less well-known generalization at any
order in r�1. We insert Eq. (7.8) into Eq. (7.6) and find (see [351] for details)
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wherea`;m D 2.`�1/.`C2/
p
.` � m/.`C m C 1/ andb`;m D

.`C3/!

.`C1/.`�2/!

q
.`CmC1/.`CmC2/

.2`C1/.2`C3/
,

and the overbar denotes complex conjugation. Because of the symmetry with respect to the or-
bital plane, we naturally find dPz=dt D 0. is would no longer remain true if we were to
include spin-orbit coupling terms for spinning black holes in the initial PN metric. e master
functions‰.e,o/

`;m
obey the wave equations�

@2
t � @2

r�
C V.e,o/

`

�
‰

.e,o/

`;m
D 0 ; (7.10)
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Figure 7.5: Magnitude of the recoil velocity Vringdown generated during the ringdown phase as a function of the
symmetric mass ratio � for different initial separations r12.

where the tortoise coordinate r� is related to the Schwarzschild radial coordinate r by r� D

r C 2M ln.r=2M � 1/, and where the potentials V.e,o/

`
are given by
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with U .e/
`

D
�`.�`C2/r2C3M.r�M /

.�` rC3M /2 and U .o/

`
D 1, where �` D

1
2
.` � 1/.`C 2/.

We evolve the equations (7.10) with 2PN-accurate initial conditions computed with an ini-
tial separation r12, anddeveloped in theCLAasdescribed above; detailed inputs areEqs. (3.6)–(3.7)
and (4.4)–(4.5) of Ref. [261] (see also [381] for an alternative CLA calculation using differ-
ent initial conditions). en, inserting the numerically generated master functions ‰.e,o/

`;m
into

Eq. (7.9), we calculate the flux of linear momentum up to octupolar order during the ring-
down phase, and, integrating that with respect to time, dividing by M and changing the sign,
we obtain the ringdown contribution V i

ringdown to the total kick. Fig. 7.5 shows the magnitude
Vringdown D jV i

ringdownj as a function of � for various values of r12.
Choosing r12 D rmatch, we then add up vectorially the results for the inspiral, plunge and

ringdown phases to obtain V i D V i
inspiral C V i

plunge C V i
ringdown. In all cases we find that the

direction of the ringdown kick is approximately opposite to that of the accumulated inspiral plus
plunge kick. Not surprisingly, the direction or phase of the inspiral plus plunge kick is sensitive
to the radius rmatch at which the 2PN calculation terminates. But, most satisfactorily, when we
add the ringdown kick, the final direction is relatively insensitive to the value of rmatch, as shown
in the le panel of Fig. 7.6 (see especially the inset panel). Similarly, the right panel shows that
themagnitude of the total kick velocity is also only weakly sensitive to rmatch. In Fig. 7.4, we have
chosen rmatch D 2:2M as being a value where the phase and magnitude of the kick do not vary
too much, and estimated error bars by varying rmatch between 2M and 2:5M . Unlike BQW,
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Figure 7.6: Dependence of the result for the direction (le panel) and magnitude (right panel) of the recoil
velocity upon the matching radius rmatch.

we have not attempted to estimate errors caused by the neglect of higher PN corrections in the
CLA method.

7.6 Conclusions
We have found that the recoil velocity of coalescing, non-spinning black holes can be calculated
using a combination of post-Newtonian theory for the inspiral and plunge, and a close-limit ap-
proximation for the ringdown,with results that agree closelywith those from full-scale numerical
relativity. We have also used this method to determine the total energy and angular momentum
radiated during inspiral, plunge and ringdown; details will be published elsewhere [262]. An ob-
vious, though non-trivial next step would be to incorporate the effects of spins in this approach.
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L dernière décennie a vu l’émergence de la cosmologie en tant que science fondée sur des me-
sures de précision, de sorte qu’un cadre théorique fortement contraint et testé s’est imposé :

le modèle de concordance cosmologique [316], ouƒ-CDM (pourƒ-cold dark matter). Nous
donnons dans ce chapitre un (très) bref aperçu dumodèle cosmologique actuel, en portant notre
attention sur son contenu enmatière-énergie, tel que déterminé par les mesures les plus récentes.

8.1 Un Univers homogène et isotrope
La cosmologie est la science dont l’objet d’étude est l’Univers dans son ensemble. Elle s’efforce

de retracer son histoire, de caractériser son contenu, et de prévoir son évolution. La force de gra-
vitation étant la seule force à longue portée non écrantée, elle domine la physique aux échelles
cosmologiques. La cosmologie standard suppose que la gravitation est régie par la théorie de la
relativité générale. Dans le cadre cosmologique, nous autorisons la présence d’une constante cos-
mologiqueƒ dans les équations d’Einstein (1.2), de sorte que celles-ci s’écrivent1

R�� �
1

2
R g�� Cƒg�� D 8�T�� : (8.1)

Denombreuses observations attestent quenotreUnivers est spatialement isotrope à grande échelle,
comme par exemple le catalogue 2dF QSO [125] relevant la distribution des quasars jusqu’à des
décalages spectraux z ' 3. La preuve la plus flagrante de cette isotropie est fournie par les très
faibles variations relatives de température ıT=T ' 10�5 dans le rayonnement du fond dif-
fus cosmologique2 [314], dont on pense qu’elles gardent l’empreinte des fluctuations de densité
initiales, elles-mêmes à l’origine de la formation des grandes structures sous l’effet d’instabilités

¹Dans ce chapitre nous poserons G D c D 1.
²Une fois retirée l’anisotropie dipolaire due au mouvement de la Terre par rapport au référentiel cosmologique

privilégié défini par les observateurs comouvants.
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gravitationelles. Si de plus nous postulons — conformément à la vision non géocentrique de la
science moderne — que nous n’occupons pas une position privilégiée dans l’Univers3, alors de
ce principe copernicien nous déduisons que l’Univers doit également apparaître spatialement iso-
trope à tout observateur comobile. Par conséquent, en plus d’être spatialement isotrope, l’Univers
est également spatialement homogène. Les sections spatiales de notre Univers sont donc à symé-
trie maximale, et par conséquent de courbure k constante. La métrique d’espace-temps est alors
unique (à un changement de système de coordonnées près) [413] ; il s’agit de la métrique de
Robertson-Walker. Dans un système de coordonnées comobiles ft; r; �; 'g, elle s’écrit

ds2
D �dt2

C a2.t/

�
dr2

1 � kr2
C r2

d�2

�
; (8.2)

où a.t/ est le facteur d’échelle (sans dimensions, avec a0 � a.t0/ D 1 aujourd’hui par conven-
tion), et d�2 D d�2 C sin

2 � d'2 est la métrique sur la 2-sphère de rayon unité S2. La coor-
donnée temporelle t est le temps cosmique mesuré par les horloges des observateurs comobiles
(xi D constante). La courbure k des sections spatiales d’Univers peut prendre les valeurs k D 0

pour unUnivers plat dont la géométrie euclidienne est celle deR3,k > 0 pour unUnivers fermé
dont la géométrie sphérique est celle de la 3-sphère S3, et k < 0 pour un Univers ouvert4 dont
la géométrie hyperbolique est celle de la 3-hyperboloïde H3.

Les symétries des espace-tempsdeRobertson-Walker imposent aux tenseurs énergie-impulsion
décrivant les divers champs de matière .i/ en présence (baryons, photons, neutrinos, etc.) de
prendre la forme qui convient à un fluide parfait, de sorte que le tenseur énergie-impulsion total
s’écrit

T ��
D .�C p/u�u�

C p g�� ; (8.3)

où u� est la quadrivitesse commune à tous les fluides, � D
P

i �i est la somme des densités
d’énergie �i telles que mesurées dans le référentiel où la matière est temporairement au repos, i.e.
u� D .1; 0/, et p D

P
i pi la somme des pressions. En déplaçant le terme dépendant deƒ dans

le membre de droite des équations d’Einstein (8.1), la constante cosmologique peut également
être vue comme un fluide parfait caractérisé par un tenseur énergie-impulsion T

��

ƒ D �
ƒ
8�

g�� ,
de pression négative pƒ D ��ƒ D �

ƒ
8�

, de sorte quew � �ƒ=pƒ D �1.
En remplaçant l’expression (8.2) de la métrique de Robertson-Walker dans les équations

d’Einstein (8.1), on obtient les équations de Friedmann-Lemaître. Lorsque l’équation d’état de
la matière — par exemple une équation d’état barotropique p D p.�/— est connue, les équa-
tions de Friedmann-Lemaître déterminent l’évolution temporelle du facteur d’échelle a.t/ et de
la densité d’énergie �.t/ selon les relations

H 2
D

8�

3
� �

k

a2
C
ƒ

3
; (8.4a)

Ra

a
D �

4�

3
.�C 3p/C

ƒ

3
: (8.4b)

³Cette affirmation est à prendre au sens large : elle doit être appliquée à grande échelle, en un sens statistique. En
effet, nous occupons de fait un emplacement privilégié en tant qu’observateurs sur une planète orbitant une étoile à
une distance ayant permis l’émergence de la vie, dans le pic de densité de matière noire de la Voie Lactée.

⁴Les équations d’Einstein ne posent aucune contrainte sur la topologie de la variété d’espace-temps représentant
notre Univers. Si celle-ci n’est pas simplement connexe, alors on peut avoir un Univers fermé à géométrie hyperbo-
lique. Voir par exemple [253] pour les conséquences en cosmologie.
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Le paramètre de Hubble H � Pa=a mesure le taux d’expansion de l’Univers. On peut déduire
des équations (8.4) la loi de conservation

P�C 3H.�C p/ D 0 (8.5)

pour le contenu matériel de l’Univers. Ceci résulte du fait que l’identité de Bianchi implique la
conservation du tenseur énergie-impulsion total5.

8.2 Contenu énergétique de l’Univers
Il est commode d’introduire les grandeurs adimensionnées�i � �i=�c pour les différentes

espèces .i/ en présence, où�c � 3H 2=.8�/ est la densité dematière dite«critique»nécessaire
pour « fermer» l’Univers : en l’absence de constante cosmologique (ƒ D 0), l’Univers est plat
(k D 0) si et seulement si (ssi) � D �c, fermé (k > 0) ssi � > �c, et ouvert (k < 0) ssi � < �c.
Divisant l’équation (8.4a) par H 2, on obtient le bilan énergétiqueX

i

�i C�ƒ D 1 ��k ; (8.6)

avec

�i D
8��i

3H 2
; (8.7a)

�ƒ D
ƒ

3H 2
; (8.7b)

�k D �
k

a2H 2
: (8.7c)

Un des objectifs de la cosmologie observationelle est de mesurer aussi précisément que possible
les valeurs des différents paramètres H ,�i ,�ƒ et�k aujourd’hui6. L’incertitude sur la mesure
de la « constante » de Hubble H0, i.e. le paramètre de Hubble H évalué aujourd’hui, se pro-
pageant sur la mesure de nombreux autres paramètres cosmologiques, il est courant d’adopter la
paramétrisation H0 D 100 h km � s�1 � Mpc�1, avec h ' 0;7.

Le contenu matériel et énergétique du modèle de concordance cosmologique fait interve-
nir la matière et le rayonnement connus : les baryons, les photons et les neutrinos, de densités
d’énergie réduites �bar, �
 et �� respectivement. Ce modèle fait également intervenir de la
matière et de l’énergie non encore identifiées à ce jour : la matière noire (voir § 8.3), de densité
d’énergie réduite�mn, et l’énergie noire, supposée par la suite sous la forme d’une constante cos-
mologiqueƒ, de sorte que la densité d’énergie noire réduite est simplement�ƒ.

⁵Tant que l’on peut négliger les interactions entre composantes dematière, on a de plus conservation du tenseur
énergie-impulsion individuel de chaque composante de matière, de sorte que P�i C 3H.�i C pi/ D 0 pour chaque
espèce .i/ individuellement.

⁶Le modèle de concordance cosmologique fait intervenir de nombreux autres paramètres physiques et astro-
physiques : l’amplitude �8 des fluctuations de densité à l’échelle 8h�1 Mpc, le rapport r des amplitudes des pertur-
bations de type tensorielles et scalaires issues de l’inflation, la profondeur optique de l’Univers � au moment de la
réionisation, etc. Voir par exemple [384] pour une liste exhaustive.
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F. 8.1: Lesmesures cosmologiques actuelles concordent vers un univers plat (�k D 0), contenant environ 73%

d’énergie noire sous forme d’une constante cosmologiqueƒ (�ƒ ' 0;73). Figure tirée de [243].

Bilan énergétique
La combinaison des mesures actuelles les plus précises — anisotropies du fond diffus cos-

mologique, relation magnitude-décalage vers le rouge des supernovæ de type Ia, et oscillations
acoustiques baryoniques — fournissent la limite supérieure j�k j D 0;006 ˙ 0;006 pour la
courbure de l’Univers [255] (voir Fig. 8.1). En supposant l’Univers plat (�k D 0), on obtient
unmodèle d’Univers ajustant remarquablement bien les données, et dont le contenu énergétique
aujourd’hui se résume à [255] (voir Figs. 8.1 et 8.2) :

h D 0;705 ˙ 0;013 ; (8.8a)

h2�r D 4;15 � 10�5

�
h2�
 D 2;47 � 10�5 ;

h2�� D 1;68 � 10�5 ;
(8.8b)

h2�m D 0;136 ˙ 0;004

�
h2�bar D 0;0227 ˙ 0;0006 ;

h2�mn D 0;113 ˙ 0;003 ;
(8.8c)

�ƒ D 0;726 ˙ 0;015 : (8.8d)

Les mesures cosmologiques actuelles concordent donc vers un Univers plat, dont le contenu en
matière-énergie se répartit en approximativement 4% de matière baryonique, 23% de matière
noire, et 73% d’énergie noire sous forme d’une constante cosmologiqueƒ. Bien que dominante
par le passé, la contribution�r due au rayonnement (photons et neutrinos) est négligeable au-
jourd’hui. Au bilan (8.8) peuvent être ajoutées quelques autres contributions également négli-
geables, dues aux ondes gravitationnelles primordiales, aux cordes cosmiques, et à d’autres sources
plus spéculatives [327].

La précision desmesures cosmologiques actuelles, telle que résumée dans le bilan énergétique
(8.8), est impressionnante. Il faut toutefois prendre garde au fait qu’unmodèle peut à la fois ajus-
ter avec grande précision une série d’observations tout en fournissant une description erronée de
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F. 8.2: Lesmesures cosmologiques actuelles sont compatibles avec une énergie noire sous forme d’une constante
cosmologique (w D �1). Le contenu énergétique de l’Univers est réparti en 73% d’énergie noire (�ƒ ' 0;73) et
27% de matière baryonique et noire (�m ' 0;27). Figures tirées de [243] (à gauche) et [248] (à droite).

la réalité, car étant basé sur une ou plusieurs hypothèses fausses. À titre d’exemple, il est préférable
d’un point de vue épistémologique de ne pas fixer la valeur de�k a priori, puis de constater que
le meilleur ajustement des données correspond à une valeur de�k très faible. Il est alors a poste-
riori justifié de refaire l’analyse en posant dès le départ k D 0. Pour cette raison, il faut garder à
l’esprit que bien que le modèle de concordance cosmologique fournisse une vision remarquable-
ment cohérente de notre Univers, les alternatives peuvent et doivent être explorées, ne serait-ce
que pour renforcer notre confiance dans le fait queƒ-CDMest lameilleure description de notre
Univers dont nous disposions.

Méthodes de mesure

Notre confiance dans les résultats (8.8) est d’autant plus renforcée que ces valeurs résultent
de l’analyse conjointe de mesures indépendantes. Cette analyse conjointe permet à la fois de le-
ver certaines dégénérescences parmi les mesures des paramètres cosmologiques, et de croiser les
valeurs de façon à tester la cohérence interne du modèle. Nous résumons ici les principales mé-
thodes indépendantes ayant permis d’obtenir les résultats (8.8) :

• La « constante » de Hubble H0 est mesurée indépendamment via l’observation par le
téléscope spatialHubble de la périodedepulsationd’étoiles céphéïdes [181], par la relation
magnitude-décalage spectral vers le rouge des supernovæ de type Ia [349, 326], par les
anisotropies du fond diffus cosmologique [215], et bien d’autres méthodes.

• La densité d’énergie des photons h2�
 est largement dominée par la contribution des
photons en provenance du fonddiffus cosmologique. Sa valeur a été déterminée très préci-
sément grâce à lamesure par le satelliteCOBEdu spectre de corps noir de ce rayonnement
fossile de température T D 2;725 ˙ 0;001 K [178, 278].
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• Si les neutrinos sont supposés sans masse7, alors leur contribution h2�� est déterminée
par des considérations thermodynamiques lors de leur découplage au bain de photons-
électrons-positrons, lorsque la température de l’Univers avoisinait 1 MeV [327]. Elle est
de l’ordre de 68% de celle des photons.

• La contribution baryonique h2�bar est déterminée indépendamment par la conjonction
de la théorie de la nucléosynthèse primordiale et de la mesure des abondances des élé-
ments légers (Deutérium, Helium 4, et Lithium 7) [315, 172], ainsi que par la mesure des
anisotropies du fond diffus cosmologique.

• La contribution totale due à la matière h2�m est mesurée grâce aux oscillations acous-
tiques baryoniques dans le regroupement des galaxies à grande échelle [162], via les aniso-
tropies du fond diffus cosmologique, ainsi que par la relationmagnitude-décalage spectral
vers le rouge des supernovæ de type Ia.

• La contributiondue à l’énergie noire�ƒ est déterminéepar la relationmagnitude-décalage
spectral vers le rouge des supernovæ de type Ia, qui a mis en évidence, au cours des années
90, l’accélération de l’expansion de l’Univers. La mesure des anisotropies du fond diffus
cosmologique fournit une mesure indépendante de�ƒ.

L’énergie noire
Par simplicité, nous avons supposé ici que l’énergie noire prend la forme d’une constante cos-

mologiqueƒ. Cette hypothèse conservatrice est bien supportée par les mesures cosmologiques
actuelles, qui n’ont à ce jour mis en évidence aucune évolution temporelle de l’équation d’étatw
de l’énergie noire [255] (voir Figs. 8.2). La prochaine génération de missions spatiales dédiées à
l’étude de l’énergie noire (EUCLID [164] et JDEM [230]) devrait permettre une bienmeilleure
caractérisation de la nature de l’énergie noire, et en particulier de distinguer entre une constante
cosmologique et un champ dynamique (la « quintessence»).

Nous ne commenterons pas les problèmes d’ordre théorique posés par une si « petite » va-
leur de la densité d’énergie associée à la constante cosmologique, �ƒ ' 0;9 GeV=m3 [414]. No-
tons simplement qu’un nombre important d’alternatives au paradigme de l’énergie noire sont par
conséquent étudiées, parmi lesquelles figurent (voir par exemple [158] pour une revue) : (i) les
scénarios branaires inspirés de la théorie des cordes, conduisant à unemodification de la relativité
générale à grande échelle induite par la présence de dimensions supplémentaires, (ii) les théories
f .R/, où le lagrangien d’Einstein-Hilbert est remplacé par une fonction du scalaire de Ricci,
(iii) un renoncement au principe copernicien, auquel cas l’apparente accélération de l’expansion
de l’Univers pourrait s’expliquer par notre présence au centre d’une très grande bulle sous-dense
de taille de l’ordre du Gpc, ou encore (iv) un effet de back-reaction des inhomogénéités sur la
dynamique de la métrique de fond.

⁷Lamesure des oscillations des neutrinos en provenance du Soleil implique toutefois qu’aumoins l’une des trois
espèces de neutrinos a une masse supérieure à 0;05 eV [196].
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8.3 Le paradigme de la matière noire froide

Le concept demassemanquante en astrophysique remonte à 1933, lorsque Zwicky remarqua
que la masse dynamique (la masse telle que déduite des vitesses, ou de la dispersion de vitesse des
constituants d’un système auto-gravitant) de l’amas de galaxies de Coma est quelques centaines
de fois supérieure à sa masse visible (la masse telle que déduite de la luminosité du système auto-
gravitant) [426]. Aujourd’hui, tout un faisceau d’indices concordent vers l’existence d’une grande
quantité dematière invisible (interagissant très peu avec les photons), froide (i.e. non relativiste),
présente de l’échelle galactique jusqu’aux échelles cosmologiques, et représentant plus de 23% du
budget énergétiquede l’Univers : lamatièrenoire. Les paragraphes qui suivent résument les succès
rencontrés par cette hypothèse, ainsi que les principaux candidats et méthodes de recherche de la
matière noire. Nous ne donnons aucune référence, mais renvoyons le lecteur à la revue succinte
[157], à la revue détaillée [53], ainsi qu’au livre récent [52] pour plus de détails.

Denombreux succès L’hypothèse de lamatière noire froide constitue un ingrédientmajeur du
modèle de concordance cosmologique, en raison d’une longue liste de succès à mettre en accord
théorie et observations :

• La matière noire explique les différences observées entre masse dynamique et masse lumi-
neuse, depuis l’échelle galactique jusqu’à celle des amas de galaxies.

• Elle permet de former, à partir des fluctuations primordiales de densité, les puits de po-
tentiel dans lesquels lamatière baryonique«s’effondre»pour former les structures obser-
vées, depuis l’échelle des amas de galaxies jusqu’aux échelles cosmologiques. En l’absence
de matière noire, les structures à grande échelle ne se formeraient pas assez vite par com-
paraison avec l’âge de l’Univers aujourd’hui, de l’ordre de 13;7 � 109 ans.

• Si la gravitation est correctement décrite par la relativité générale aux échelles cosmolo-
giques, alors la matière noire est nécessaire pour expliquer le spectre des anisotropies du
fond diffus cosmologique, ainsi que les oscillations acoustiques baryoniques.

• Sous ces mêmes conditions, la matière noire est requise pour expliquer les observations de
lentilles gravitationnelles.

Candidats L’existence de particules non baryoniques interagissant faiblement avec la matière
ordinaire est attendue dans la plupart des extensions du modèle standard de la physique de par-
ticules. Cette motivation indépendante des observations astronomiques et un argument fort en
faveur de l’existence de la matière noire. Il existe de nombreux candidats, parmi lesquels les plus
étudiés sont :

• La plus légère des particules supersymétriques (neutralino, photino, etc.) dans l’extension
supersymétriqueminimale dumodèle standard, qui serait une particule stable, électrique-
ment neutre, de masse typiquement comprise entre 10 GeV et 10 TeV ; on parle couram-
ment de WIMPs, pourWeakly Interacting Massive Particles.

• L’axion, une particule de très faiblemasse, typiquement entre 1 µeV et 1meV, initialement
introduite pour résoudre le problème de la violation de symétrie CP (charge-parité) en
chromodynamique quantique.

• Les états de Kaluza-Klein dans les théories avec dimensions d’espace supplémentaires.
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Observations La matière baryonique ne représentant que 4% du budget énergétique, face à
23% pour la matière noire (et 73% pour l’énergie noire), de nombreux efforts sont déployés
pour produire ou détecter (directement ou non) des particules de matière noire. Les trois voies
de recherche empruntées sont :

• La détection directe sur Terre via la diffusion d’une particule dematière noire par le noyau
d’un atome lourd, induisant un recul de ce dernier. La section efficace d’interaction étant
très faible, le taux d’événements attendu est bien en-deça du taux d’événements parasites
induits par la radioactivité naturelle (diffusiondeneutrons par les noyaux), ce qui nécessite
une isolation sophistiquée et un rejet efficace des événements parasites.

• La détection indirecte en observant un flux de photons 
 , de neutrinos, de positrons,
d’antiprotons et d’antinoyaux résultant de l’annhilation de particules dematière noire avec
leurs antiparticules. Le fond d’origine astrophysique est mal connu, et doncmal modélisé,
ce qui limite les possibilités de détection.

• La production dans les accélérateurs de particules. Le LHC (Large Hadron Collider), au
CERN, dont la luminosité nominale est de 14 TeV, aura de fortes chances de produire des
WIMPs, si ces particules existent.

Après ce très bref tour d’horizon du paradigme de la matière noire, quelques mots de pré-
caution s’imposent. Les physiciens ont souvent tendance à introduire de la matière invisible là
où nécessaire, afin de « sauver les apparences» dans le contexte scientifique de leur époque. On
pensera par exemple à l’éther, un fluide définissant un référentiel privilégié par rapport auquel les
ondes électromagnétiques se propageraient à la vitesse c, et dontMichelson etMorlay essayèrent
en vain de prouver l’existence lors de leurs expériences interférométriques. La solution à ce pre-
mier problème fut de modifier les lois de la physique en l’absence d’éther : le remplacement de
la mécanique galiléenne au profit de la relativité restreinte. Un siècle et demi plus tôt, Le Verrier
a tenté d’introduire une planète, Vulcain, entre le Soleil et Mercure, afin d’expliquer l’anomalie
de l’avance du périhélie de celle-ci. La solution fut une fois encore donnée par Einstein, qui sup-
planta la gravitationnewtonienne par la théorie de la relativité générale8. Il convient donc de faire
preuve de prudence lorsque les physiciens entendent expliquer des observations inattendues en
introduisant une composante dematière invisible. Cette fois encore, la solution passera peut-être
par une révision des lois de la physique ; la gravité modifiée en tant qu’alternative au paradigme
de la matière noire est le sujet du chapitre suivant.

�

⁸Précisons toutefois que l’introduction dematière invisible est parfois la bonne solution : Le Verrier prédit ainsi
l’existence de la planète Neptune en s’efforçant d’expliquer les anomalies de l’orbite d’Uranus.
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M de nombreux succès aux échelles cosmologiques, le paradigme de la matière noire
froide est mis en difficulté à l’échelle galactique. Une alternative a été proposée parMilgrom,

sous la forme d’unemodification des lois de la gravité en l’absence dematière noire : la dynamique
newtonienne modifiée.

9.1 Observations à l’échelle galactique
Dans le cadre dumodèle de concordanceƒ-CDM, l’observation du caractère asymptotique-

ment plat des courbes de rotation des galaxies spirales (voir la Fig. 9.1 pour quelques exemples)
s’explique par l’existence d’un halo de matière noire [122] de densité �halo.r/ / r�2 (au moins
dans une certaine plage de distances), de sorte que la masse englobée dans un sphère de rayon r

croît comme M.r/ / r , garantissant ainsi une vitesse de rotation V .r/ D
p

GM=r asympto-
tiquement constante.

Ce scénario présente toutefois denombreuses difficultés. En effet, les simulationsnumériques
cosmologiques actuelles permettent de résoudre des structures jusqu’à l’échelle sub-galactique, et
les propriétés des galaxies ainsi obtenues sont en désaccord avec les observations sur de nombreux
points [371, 252, 324]. Parmi ces problèmes, citons en particulier :

• La prédiction d’un profil de densité de matière noire piqué au centre des galaxies [308],
contrairement aux observations qui indiquent plutôt un profil plat [357, 190].

• Une surabondance de sous-structures dans les halos galactiques : les simulations prédisent
environ dix fois trop de galaxies naines satellites orbitant les galaxies spirales telles que la
Voie Lactée par rapport aux observations [301].

• La trop petite taille des disques galactiques formés, à cause du transfert de moment ciné-
tique des baryons vers le halo de matière noire froide [307].

185
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F. 9.1: Un échantillon de courbes de rotation de galaxies spirales : la vitesse de rotation V des étoiles (exprimée
en km=s), déduite de lamesure du décalage spectral de la raie de l’hydrogène neutre à 21 cm, est tracée en fonction de
la distance r au centre galactique (exprimée en kpc). Les points de mesure indiquent clairement le caractère asymp-
totiquement plat des courbes de rotation galactiques. Celles-ci sont remarquablement bien ajustées par MOND
(courbes en trait plein) à l’aide du seul rapport masse sur luminosité M=L [363]. Figure tirée de [361].

• Le fait que les galaxies naines de marée (qui se forment à partir de «débris » issus de col-
lisions de galaxies massives) semblent dominées par lamatière noire [94], une observation
difficilement conciliable avec la nature non collisionnelle de la matière noire froide [38].

Dans le scénario de croissance hiérarchique des structures, les propriétés physiques des ga-
laxies doivent a priori beaucoup dépendre des détails de leurs histoires individuelles au cours de
l’évolution cosmique. Le principal problème rencontré par l’hypothèse de la matière noire froide
est précisément la difficulté à expliquer naturellement toute une série de lois empiriques univer-
selles observées à l’échelle galactique (voir [361, 155] pour des listes plus exhaustives) :

• La loi de Tully-Fisher [408] établissant une corrélation entre la luminosité L des galaxies
spirales et leur vitesse asymptotique de rotation Vrot, L / V 4

rot (cf. Fig. 9.2), corrigée en
loi de Tully-Fisher baryonique [282], dans laquelle la luminosité est remplacée au profit
de la masse baryonique totale (étoiles et gaz).

• La loi de Faber-Jackson [166] établissant une corrélation similaire dans le cas des galaxies
elliptiques, cette fois-ci entre la luminosité et la dispersion de vitesse.

• La loi de Freeman [182] d’après laquelle il existe une valeurmaximale à la densité de surface
moyenne des galaxies spirales, et la récente découverte du caractère universel, i.e valable
pour toutes les galaxies, de la densité surfacique baryonique moyenne dans le cœur du
halo de matière noire [189].

• L’existence d’une échelle d’accélération universelle en deçà de laquelle il devient nécessaire
d’introduire de lamatière noire dans les galaxies.Cette échelle d’accélération est fortement
corrélée au rapport Mdyn=Mvis entre masse dynamique et masse visible (cf. Fig. 9.3).
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F. 9.2: La loi de Tully-Fisher stipule que la luminosité
L des galaxies spirales (ici mesurée en bande K’, dans le
proche infrarouge) est corrélée à la 4 puissance de la vi-
tesse asymptotique de rotation Vrot des étoiles. La droite
est un ajustement des données par moindres carrés ; sa
pente vaut 3;9 ˙ 0;2. Figure tirée de [361].

F. 9.3: Le rapport Mdyn=Mvis entremasses dyna-
mique et visible est fortement corrélé à l’accélération
asymptotiqueades étoiles. L’introduction dematière
noire ne devient nécessaire que lorsque a passe sous
le seuil a0 ' 10�10 m=s2. Figure adaptée de [407],
avec la permission de O. Tiret et F. Combes.

Il est possible qu’une meilleure prise en compte de la physique des baryons dans les simula-
tions numériques (feedback de la formation stellaire, des supernovæ, des vents galactiques, etc.)
permette de résoudre tout ou partie de ces problèmes [388, 383]. Il se peut également que cette
liste d’insuffisances pointe vers une solution toute différente au problème de lamassemanquante.

9.2 La dynamique newtonienne modifiée
Milgrom proposa ainsi de modifier la dynamique newtonienne en l’absence de matière noire

[285, 286, 287]. La dynamique newtonienne modifiée, ou MOND pour MOdified Newtonian
Dynamics en anglais, stipule que le champ gravitationnel g est relié au champ gravitationnel
newtonien gN via l’équation MOND1

�

�
g

a0

�
g D gN ; (9.1)

où� est une fonction du rapport adimensionné entre la norme g D jgj du champ gravitation-
nel, et une échelle d’accélération a0 supposée fondamentale : l’accélérationMOND. Les champs
gravitationnelsg D rU etgN D rUN dérivent des potentiels gravitationnels«mondien»U ,
et newtonien UN respectivement. Afin de retrouver la dynamique newtonienne dans le régime
newtonien, la fonctionMONDdoit satisfaire� ! 1 lorsqueg � a0. Dans le régimemondien

¹Alternativement, la dynamique newtonienne modifiée peut être formulée comme une modification de
l’inertie, en substituant dans (9.1) le champ gravitationnel g par l’accélération a d’une particule test, et le champ
gravitationnel newtonien gN par l’accélération newtonienne aN (telle que déduite de la seconde loi de Newton).
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g � a0, elle doit se comporter asymptotiquement comme�.x/ � x afin de retrouver la bonne
phénoménologie. Dans l’attente d’une physique plus fondamentale censée spécifier le comporte-
ment de la fonction MOND dans le régime intermédiaire, toute fonction d’interpolation com-
patible avec les contraintes expérimentales est a priori admissible.

Afin de comprendre comment cette « recette » permet de retrouver immédiatement cer-
taines des observations décrites dans le paragraphe précédent, considérons le cas (idéalisé) d’une
galaxie de masse M dont la distribution de masse est à symétrie sphérique. Alors pour une étoile
périphérique située à une distance r du centre galactique telle que le champ gravitationnel y vé-
rifie g � a0, l’équation MOND (9.1) stipule que

g2

a0

D
GM

r2
: (9.2)

Dans le cadre de la dynamique newtoniennemodifiée, le principe d’équivalence est toujours véri-
fié, de sorte que l’accélération de l’étoile (assimilée à une particule test) est égale au champ gravita-
tionnel, a D g. Pour une étoile sur une orbite circulaire, l’accélération est centripète, et sa norme
vaut a D V 2

rot=r , où Vrot est la norme de la vitesse (asymptotique) de rotation. Combinant ces
deux résultats avec la relation (9.2), on obtient

V 4
rot D GMa0 : (9.3)

On retrouve ainsi le caractère asymptotiquement plat des courbes de rotation des galaxies, ainsi
que la loi de Tully-Fisher baryonique M / V 4

rot [282]. De plus, pour les galaxies spirales dont
la masse est dominée par les étoiles, la luminosité L est un bon traceur2 de la masse baryonique
M , de sorte que le rapport M=L (relativement au rapport Mˇ=Lˇ dans le système solaire) est
à peu près constant d’une galaxie à l’autre, et de l’ordre de l’unité [361]. On retrouve donc très
simplement la loi empirique de Tully-Fisher L / V 4

rot [408]. Le coefficient de proportionnalité
entre L et V 4

rot dépendant de l’échelle d’accélération a0, celle-ci peut être estimée en mesurant
l’ordonnée à l’origine d’un diagramme similaire à celui de la Fig. 9.2. On obtient ainsi

a0 ' 1;2 � 10�10 m=s2 : (9.4)

Sachant que la gravitation newtonienne n’a encore jamais été testée pour des champs gravita-
tionnels aussi faibles, la dynamique newtonienne modifiée ne peut être rejetée d’emblée au vu
des contraintes expérimentales actuelles.

Quelques succès rencontrés par MOND
Par ailleurs, la « recette» encodée dans l’équation (9.1) s’avère être particulièrement efficace

pour ajuster individuellement les courbes de rotation de galaxies spirales à l’aide d’un seul pa-
ramètre libre : le rapport masse sur luminosité M=L (voir Fig. 9.1). La procédure d’ajustement
consiste à combiner un modèle du disque galactique (plus éventuellement du bulbe) avec une
mesure du profil de luminosité de surface afin d’obtenir la distribution de matière baryonique

²Il existe des gradients de couleurs dans les galaxies spirales. Lorsque cela s’avère possible, la luminosité est
mesurée dans le proche infrarouge afin d’inclure les populations de vieilles étoiles peu massives, et de minimiser
l’absorption par les poussières [361].
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dans la galaxie. Celle-ci permet de calculer le champ gravitationnel newtonien via l’équation de
Poisson, puis le champ gravitationnel mondien grâce à l’équation MOND (9.1). On en déduit
alors la dynamique des étoiles, ce qui permet de construire la courbe de rotation. Les valeurs dé-
duites de l’ajustement du rapport M=L sont typiquement en très bon accord avec lesmodèles de
synthèse stellaire [47]. Notons que si MOND explique par construction le caractère asymptoti-
quement plat des courbes de rotation galactiques, ainsi que la loi de Tully-Fisher, rien ne garantit
a priori que cette « théorie» parvienne à ajuster avec grande précision les détails fins des courbes
de rotation à l’aide d’un seul paramètre libre.

L’équation MOND (9.1) fait également de nombreuses prédictions sur les propriétés des
systèmes auto-gravitants, parmi lesquelles (voir la revue [361] pour une liste plus exhaustive)
l’existence de la valeur critique de densité de surface

†c �
a0

G
: (9.5)

Milgrom prédit ainsi que les galaxies à faible brillance de surface (dites galaxies LSB pour Low
Surface Brightness), i.e. telles que † � †c, doivent exhiber un fort désaccord entre masse dy-
namique et masse visible [286]. Cette prédiction a par la suite été vérifiée lorsque les moyens
observationnels ont permis de mesurer les courbes de rotation de ces galaxies [280, 281, 148].

Plus récemment, des simulations numériques ont montré qu’il est possible de former des
barres par instabilité du disque galactique en dynamique newtonienne modifiée, et que les vi-
tesses des barres ainsi obtenues dans MOND sont en meilleur accord avec les observations que
dans le scénario standard [404, 405]. À plus grande échelle, des simulations de collisions de ga-
laxies en gravité modifiée parviennent à reproduire la morphologie observée de la paire de ga-
laxies des antennes (NGC4038/NGC4039), ainsi que la formation de galaxies naines demarée
au bout des queues de marée [406]. Voir [123] pour une revue des travaux sur ces sujets.

Une coïncidence cosmique ?

Dans le cadre dumodèle de concordance cosmologique (voir chapitre 8), il existe une échelle
d’accélération associée à la présence d’une constante cosmologique :

aƒ �
c2

2�

r
ƒ

3
; (9.6)

elle-même reliée à la température de Gibbons-Hawking TGH D ~aƒ=.kBc/, dérivée de la théo-
rie semi-classique en espace-temps de de Sitter [193]. Cette échelle d’accélération se trouve être
numériquement très proche de l’échelle d’accélération associée au taux d’expansion de l’Univers
aujourd’hui, i.e.

aH �
cH0

2�
: (9.7)

En effet, avec les valeursH0 ' 70 km�s�1 �Mpc�1 etƒ ' 0;12Gpc�2 dérivées des observations
cosmologiques récentes, on trouve aH ' 1;2 aƒ. Il s’agit du fameux problème de coïncidence
cosmique, ici exprimé en termes des échelles d’accélération (9.6) et (9.7). Il existe une seconde
coïncidence numérique troublante : le fait que ces échelles d’accélération sont également très
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proches de la valeur de l’accélération MOND, qui elle est déterminée à partir d’observations à
l’échelle galactique :

a0 ' 1;3 aƒ ' 1;1 aH : (9.8)

En unités naturelles (ou unités de Planck), ces trois échelles d’accélération coïncident jusqu’à plus
de 60 décimales après la virgule ! Ces coïncidences numériques suggèrent une origine physique
commune [292]. Il a ainsi été envisagé que l’échelle d’accélération MOND n’est pas constante,
mais dynamique, et reliée à l’expansion de l’Univers [288, 290]. Nous verrons au chapitre 10
que la coïncidence numériqueƒ � a2

0=c
4 admet une interprétation naturelle si l’on suppose la

matière noire douée de propriétés de polarisabilité gravitationnelle.

Un problème à l’échelle des amas de galaxies

Le problème de la masse manquante à l’échelle des amas de galaxies est connu depuis les an-
nées 30, grâce au travail deZwicky qui étudia la dynamique de l’amas deComa [426].Une grande
partie de cette masse manquante a depuis été identifiée lors de la découverte du gaz chaud intra-
amas qui émet en rayons X. Mais la masse dynamique Mdyn des amas de galaxies reste typique-
ment 4 fois plus grande que la masse visible (gaz chaud et contenu stellaire des galaxies) Mvis.

Cette masse manquante peut être attribuée à la présence de matière noire. Alternativement,
dans le paradigmeMOND, en utilisant la valeur (9.5) de l’accélérationMONDtelle que déduite
d’observations à l’échelle galactique, le rapport Mdyn=Mvis est réduit de moitié. Il reste donc un
facteur 2 inexpliqué, de sorte que la conjonctiondeMONDet du contenubaryonique connudes
amas de galaxies n’est pas en accord avec les observations à cette échelle [192, 331]. Ce problème
est confirmé par les observations de lentilles gravitationnelles faibles [121] et fortes [359], qui ne
peuvent être reproduites par MOND.

Plusieurs solutions sont envisageables pour combler ce déficit de masse. Seule la moitié des
baryons prévus par le budget baryonique cosmique (voir le chapitre 8) a été identifiée [407]. Il se
peut donc qu’une partie des 50% restants se trouve sous forme de baryons sombres dans les amas
de galaxies [291]. Depuis la découverte de la masse non nulle des neutrinos, une composante
de neutrinos massifs (de l’ordre de 2 eV) a également été envisagée [16], puis exclue au profit de
neutrinos stériles de masse de l’ordre de 11 eV [14, 13]. Le modèle de matière noire et d’énergie
noire que nous détaillerons dans le chapitre 10 possède une composantemonopolaire susceptible
de résoudre ce problème de lamassemanquante à l’échelle de amas de galaxies, tout en expliquant
la phénoménologie de la dynamique newtonienne modifiée à l’échelle galactique ; mais rien n’a
encore été prouvé au sujet des amas de galaxies.

9.3 Extensions relativistes de MOND

Sous la forme (9.1) d’une modification ad hoc de la loi fondamentale de la gravité newto-
nienne, la dynamique newtoniennemodifiée ne constitue pas en soi une théorie physique viable.
Bien que les succès du paradigmeMONDà l’échelle galactique interpellent, la confrontation aux
nombreuses contraintes observationnelles dont nous disposons à l’échelle cosmologique (voir le
chapitre 8) nécessite une formulation relativiste. Ceci a conduit Bekenstein,Milgrom et Sanders
à proposer des extensions relativistes de MOND.



191

Notons dans un premier temps que la formulation MOND (9.1) ne respecte pas les lois de
conservation de l’énergie, de la quantité de mouvement, et du moment cinétique. Il est toutefois
possible de pallier ces problèmes en construisant une théorieMONDqui dérive d’un lagrangien.
Enprenant la divergence de l’Éq. (9.1), onobtient l’équationdePoissonmodifiée—dite elle aussi
équation MOND3

r � .�g/ D �4�G �b ; (9.9)
où �b est la densité de masse baryonique, qui génère le champ gravitationnel newtonien gN via
l’équation de Poisson habituelle r � gN D �4�G�b. Bekenstein et Milgrom notèrent que
l’équation MOND sous sa forme locale (9.9) dérive du lagrangien [40]

LU D �
a2

0

8�G
f

�
jrU j2

a2
0

�
C �bU ; (9.10)

où la fonction f est reliée à la fonction MOND � par f 0.x/ D �.
p

x/. La théorie ainsi dé-
finie : AQUAL, pour Aquadratic Lagrangian, respecte les lois de conservation usuelles. Il s’agit
du point de départ des extensions relativistes de la dynamique newtonienne modifiée [43].

La modification la plus simple de la gravité einsteinienne consiste à ajouter au tenseur mé-
trique g�� un champ scalaire �. Bekenstein et Sanders proposèrent donc de promouvoir le po-
tentiel gravitationnel U au rang de champ scalaire, et d’ajouter au lagrangien d’Einstein-Hilbert4

Lg D R=.16�G/ le lagrangien [44]

L� D �
a2

0

8�G
f

�
g��@��@��

a2
0

�
: (9.11)

Dans la théorie tenseur-scalaire résultante : RAQUAL, pour Relativistic AQUAL, les champs
de matière sont universellement couplés à la gravité (afin de respecter le principe d’équivalence)
via la métrique dite « physique »eg�� D e2�g�� . Les équations de Maxwell étant invariantes
par une transformation conforme de la métrique, les photons ne ressentent pas l’effet du champ
scalaire �. Comme les observations de lentilles gravitationnelles ne peuvent s’expliquer par la
seule présence de matière baryonique, une telle théorie tenseur-scalaire n’est pas viable5.

Ceci a conduit Bekenstein et Sanders à introduire un champ vectoriel dynamique V � sup-
plémentaire, de lagrangien [42, 360]

LV D �
1

32�G

�
Kg��g��W��W�� � 2�

�
g��V�V� C 1

��
; (9.12)

où W�� D @�V� � @�V� est un tenseur antisymétrique, K une constante positive sans dimen-
sions, et � unmultiplicateur de Lagrange imposant à V � d’être un quadrivecteur du genre temps
et de norme unité. Par ailleurs, la partie scalaire de l’action est modifiée, et devient

L� D �
�2

2
.g��

� V �V �/ @��@�� �
G�4

4`2
F
�
kG�2

�
; (9.13)

³Ces deux formulations ne sont équivalentes que dans des situations à forte symétrie [96]. En toute généralité
il existe un champ vectoriel à divergence nulle (un rotationnel r � A) dans le membre de droite de l’équation (9.1).

⁴Nous poserons c D 1 jusqu’à la fin de ce chapitre.
⁵Le raisonnement est en fait un peu plus subtil : contrairement aux photons, les particules massives ressentent

l’effet du champ scalaire, qui semanifeste à l’ordre le plus bas par une renormalisation de la constante gravitationnelle
G. Onmontre alors que l’angle de déflection en théorie tenseur-scalaire se trouve être inférieur au résultat prédit par
la relativité générale ; voir [101] pour plus de détails.
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où k est une constante positive sans dimensions, ` une échelle de longueur constante, F une
fonction libre sans dimensions, et � un second champ scalaire qui, contrairement à �, n’est pas
dynamique. L’accélération MOND a0 s’exprime à l’aide des constantes K, k et `, et de la valeur
moyenne cosmologique du champ scalaire �, tandis que la fonction MOND � est reliée à la
fonction libre F . Les champs de matière sont universellement couplés à la métrique physique

eg�� D e�2�g�� � 2 sinh .2�/V�V� : (9.14)

Celle-ci est reliée à la métrique g�� demanière non conforme, de sorte que les photons sont sen-
sibles à la présence des champs scalaire et vectoriel, ce qui permet de rendre compte des observa-
tions de lentilles gravitationnelles. La théorie résultante : TeVeS, pour «Tensor-Vector-Scalar»,
a récemment évolué vers des théories de type Einstein-æther [226, 225, 425].

Une telle modification du secteur de la gravité basée sur le lagrangien Lg C LV C L� (ainsi
que le lagrangienLmat des champs dematière couplés à lamétrique physiqueeg��)met fortement
à mal le sens esthétique du Créateur. Par ailleurs, cette théorie est sérieusement mise en difficulté
par des contraintes expérimentales (en champ faible dans le système solaire, et en champ fort avec
les pulsars binaires) d’une part, et des exigences théoriques provenant de la théorie quantique des
champs (hamiltonien borné inférieurement) d’autre part [101].

Dans le chapitre qui suit, nous prenons le parti de ne pas choisir entre matière noire froide et
gravité modifiée, mais proposons une troisième alternative ; à savoir garder la théorie de la gra-
vitation standard (la relativité générale), mais modifier le secteur de la matière. En particulier,
nous allons montrer que la phénoménologie de MOND à l’échelle galactique peut s’interpréter
comme résultant d’un effet de polarisation gravitationnelle d’une matière noire un peu plus exo-
tique que la matière noire froide du modèle de concordance cosmologique.
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L modèle de concordance cosmologique, ƒ-CDM, et la phénoménologie de la dynamique
newtonienne modifiée (MOND) font tous deux preuve de succès remarquables aux échelles

cosmologique et galactique respectivement. Afin de tenter de réconcilier ces deux alternatives
foncièrement antithétiques a priori, nous proposons de conserver la théorie de la gravitation
standard, mais de modifier la matière noire elle-même. Notre modèle relativiste décrit la matière
noire comme munie d’une propriété de polarisabilité dans un champ gravitationnel, et permet
ainsi de rendre compte — moyennant une hypothèse qui reste à tester — de la phénoménologie
de MOND à l’échelle des galaxies.

10.1 Analogie avec les milieux diélectriques
Les atomes d’un milieu diélectrique se comportent comme des dipôles électriques p suscep-

tibles de réagir à la présence d’un champ électrique extérieur. Lorsque la polarisation électrique
P D np, où n est le nombre d’atomes par unité de volume, est alignée avec le champ électrique
total E , le milieu est dit polarisé. Dans ce cas, l’une des équations de Maxwell, la loi de Maxwell-
Gauss, peut s’écrire sous les deux formes équivalentes1 [224]

r � E D
1

"0

.�libre C �lié/ () r � ."r E/ D
1

"0

�libre ; (10.1)

où�libre et�lié sont les densités volumiques de charges libres (électrons) et liées (atomes polarisés)
respectivement, "0 est la permittivité du vide, et "r D 1 C �e la permittivité relative du milieu

¹Un milieu diélectrique est également isolant. Nous autoriserons toutefois la présence de charges libres afin
de clarifier la comparaison avec le cas gravitationnel. Ces charges libres sont à l’extérieur du milieu diélectrique, et
génèrent le champ électrique extérieur.
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diélectrique. Cette équivalence repose sur le fait que la densité de charges liées prend la forme
�lié D �r � P , où la polarisation est alignée avec le champ électrique selon P D "0�e.E/E .
Le coefficient de proportionnalité �e est fonction de la norme E D jE j du champ électrique ;
il s’agit de la susceptibilité électrique du milieu diélectrique.

Par complète analogie, on peut réécrire l’équation MOND (9.9) sous la forme habituelle
d’une équation de Poisson, mais avec un terme source additionnel représentant une densité �pol
de «masses polarisées », i.e. [63]

r � g D �4�G
�
�b C �pol

�
() r � .�g/ D �4�G �b ; (10.2)

où g est le champ gravitationnel, �b la densité de masse baryonique, et � la fonction MOND.
Tout comme pour le cas diélectrique, cette réécriture n’est possible qu’à condition que la densité
de masses polarisées apparaisse comme la divergence d’un vecteur, c’est-à-dire prenne la forme
dipolaire

�pol D �r � … ; (10.3)

où… est l’analogue gravitationnel de la polarisation électriqueP . Cette polarisation gravitation-
nelle doit être alignée avec le champ gravitationnel g selon

… D �
�.g/

4�G
g : (10.4)

Le coefficient de proportionnalité �, fonction de la norme g D jgj du champ gravitationnel,
est relié à la fonction MOND par

� D 1 C � : (10.5)

Ce coefficient s’interprète donc naturellement comme la « susceptibilité gravitationnelle » du
milieudematièrenoire dipolaire. L’amplificationduchampgravitationnel dans le régimeMOND
g � a0 s’explique alors par un effet d’anti-écrantage du champ gravitationnel, de sorte que
� < 0, en accord avec le fait que la fonction MOND vérifie� < 1.

L’équation (10.2) indique qu’il est possible de troquer une modification ad hoc des lois de la
gravité au prix de l’introduction d’une matière noire un peu exotique. En nous basant sur cette
analogie formelle, ainsi que sur un travail antérieur de Luc Blanchet [62], nous allons proposer
un modèle relativiste de matière noire (et d’énergie noire) dont la limite non relativiste recouvre
les caractéristiques que nous venons de discuter, et en particulier la forme dipolaire (10.3) de la
densité de masse.

10.2 Modèle relativiste de matière noire dipolaire
Le modèle de matière noire que nous allons introduire est phénoménologique, au sens où au-

cun lien explicite avec une physique valable à l’échelle microscopique n’est établi. Nous adoptons
une descriptionfluide, bien adaptée à l’idée selon laquelle les degrés de liberté internes fondamen-
taux (et inconnus) des particules sous-jacentes sont moyennés sur une échelle mésoscopique, de
sorte que le fluide de matière noire est entièrement caractérisé par la donnée d’un nombre réduit
de champs continus, dont la dynamique dérive d’un certain lagrangien effectif. Il s’agit d’une dé-
marche courante et fructueuse en cosmologie afin de modéliser l’énergie noire et les mécanismes
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inflationnaires. La nécessité d’adopter ces descriptions phénoménologiques reflète la limite de
notre compréhension d’une physique à haute énergie, dont les lois nous échappent encore.

Un fluide parfait sans pression (comme lamatière noire froide habituelle) est entièrement ca-
ractérisé par la donnée de son courant de masse J � D �u�, où u� est la quadrivitesse du fluide,
et � la densité d’énergie de masse au repos. Le courant J � est conservé, i.e. vérifie r�J � D 0.
Notre modèle de matière noire nécessite en plus l’introduction d’un champ vectoriel permettant
de construire la polarisation gravitationnelle. Par analogie avec les milieux diélectriques, nous
introduisons donc le moment dipolaire (par unité de masse) ��. Il s’agit de l’équivalent gravi-
tationnel (et quadridimentionnel) d’un dipôle électrique, à partir duquel nous construisons le
champ de polarisation…� D ���, c’est-à-dire la densité volumique de moments dipolaires.

Nous proposons donc un modèle de matière noire modifiée en relativité générale, dont la
dynamique dans un champ gravitationnel g�� donné est prescrite par une action du type

S D

Z
d

4x
p

�g LŒJ �; ��;g�� � ; (10.6)

à laquelle doivent être ajoutées l’action de Einstein-Hilbert pour la gravité, et les actions habi-
tuelles des autres champs dematière (baryons, photons, neutrinos, etc.).Notremodèle dematière
noire dipolaire est basé sur le lagrangien2

L D �� C J�
P��

� W.…?/ ; (10.7)

où P�� � u�r��
� est la dérivée covariante dumoment dipolaire par rapport au temps propre. Le

premier terme correspond au lagrangien d’un fluide parfait sans pression (comme pour lamatière
noire froidehabituelle), à l’origined’une composantemonopolaire qui se trouvera être dominante
aux échelles cosmologiques. Les deux termes suivants sont responsables du caractère dipolaire
de notre modèle de matière noire, et permettent de retrouver la phénoménologie de MOND à
l’échelle galactique. On remarquera la présence d’un terme de couplage entre le courant de masse
et la dérivée covariante du dipôle ; ce terme évoque le couplage j �A� d’un courant électrique
j � à un potentiel électromagnétique A� en électromagnétisme.

L’introduction d’un potentiel W dans le lagrangien (10.7) est motivée par le modèle mi-
croscopique et newtonien proposé dans [63], qui suggère la nécessité d’une force interne (dé-
rivant du potentiel) afin de garantir la stabilité du milieu dipolaire. Dans ce même modèle, on
observe que le potentielW n’est pas fonction du dipôle lui-même, mais de la polarisation…? D

��?, ici définie à partir de la norme �? du projeté orthogonal ��
?

du moment dipolaire �� sur
l’hypersurface orthogonale à la quadrivitesse u� (voir Fig. 10.5). Le potentielW est connu sous
forme d’un développement en puissances de la polarisation…? jusqu’à l’ordre trois inclus :

W.…?/ D
ƒ

8�G
C 2�G…2

? C
16�2G2

3a0

…3
? C O.…4

?/ : (10.8)

Ce potentiel étant directement relié à la fonction MOND �, les coefficients intervenant dans
ce développement ont été déterminés de façon à retrouver la « bonne » physique aux échelles
cosmologique (constante cosmologique) et galactique (termes quadratique et cubique).

²Ce modèle était initialement [85] basé sur un lagrangien plus complexe [cf. Éq. (10.17)], auquel il convenait
d’adjoindre une contrainte supplémentaire [cf. Éq. (10.29)]. Dans un second temps [85], nous avons montré que la
dynamique et le tenseur énergie-impulsion de ce modèle de matière noire dérivent immédiatement du lagrangien
(10.7), bien plus simple et motivé physiquement, sans qu’il ne soit nécessaire d’imposer la contrainte (10.29).
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10.3 Limite non relativiste et principaux résultats
Afin de se forger une intuition physique du comportement de ce fluide de matière noire, il

est utile de considérer la limite non relativiste c ! C1 du lagrangien (10.7). Dans cette limite,
la densité de lagrangienL D

p
�gL prend la forme (après avoir soustrait le terme relativiste de

masse au repos)

LNR D
1

2
��v2

C ��U C g � …? C J �
d�?

dt
� W.…?/ ; (10.9)

où J D ��v est le courant de masse, avec �� la densité de masse newtonienne habituelle, et v le
champ de vitesse du fluide. Le champ gravitationnel g D rU dérive du potentiel gravitationnel
newtonien U , et …? D ���? est la polarisation, construite à partir du moment dipolaire �?.

L’interpétation physique du lagrangien non relativiste (10.9) est claire : en dehors des termes
d’énergie cinétique et potentielle gravitationnelle, on reconnaît l’analogue gravitationnel g � …?

du couplage E � P de la polarisation électrique P avec un champ électrique E dans un milieu
diélectrique. Le potentiel W est associé à la présence de la force interne. Seul le terme de cou-
plage du courant à la dérivée du dipôle, J � d�?=dt , absent dans le cas diélectrique, n’admet pas
d’interprétation physique immédiate ; ce terme provient du couplage relativiste entre J� et P��

imposé dans le lagrangien (10.7).
Par ailleurs, en étudiant les équations régissant la dynamique de ce fluide, ainsi que son ten-

seur énergie-impulsion — tous dérivés du lagrangien (10.7) — nous parvenons à établir les trois
résultats suivants :

(i) Ce modèle de matière noire et d’énergie noire se réduit au modèle de concordance ƒ-
CDM au premier ordre de perturbations en cosmologie, et bénéficie donc des succès de
ce dernier à grand décalage spectral ; en particulier il prédit ainsi le même spectre de puis-
sance des anisotropies du fond diffus cosmologique3.

(ii) Moyennant un hypothèse raisonnable, mais qui reste à tester par des simulations numé-
riques, ce modèle retrouve la phénoménologie de MOND à l’échelle galactique. De plus,
l’origine physique de l’équation MOND se trouve ainsi « expliquée » par le mécanisme
de polarisation gravitationnelle via l’analogie décrite dans le § 10.1.

(iii) D’après l’expression (10.8) du potentiel W , ce modèle explique naturellement la coïn-
cidence numérique entre les valeurs de l’accélération MOND et de la constante cosmolo-
gique, à savoirƒ � a2

0 (voir Fig 10.6). Il ne permet toutefois pas de calculer le coefficient
de proportionalité entreƒ et a2

0.

La suite de ce chapitre regroupe deux articles publiés dans le journal Physical Review D [84, 85].
Une présentation écourtée de ces travaux a été publiée dans les comptes-rendus des « 43 ren-
contres de Moriond» [86].

³À l’exception de la contribution issue de l’effet Sachs-Wolfe intégré, qui dépend de l’évolution des potentiels
gravitationnels dans le régime non linéaire, régime dans lequel la dynamique du modèle de matière noire dipolaire
diffère a priori de celle deƒ-CDM.
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Abstract

A model of dark matter and dark energy based on the concept of gravitational polar-
ization is investigated. We propose an action in standard general relativity for describing,
at some effective or phenomenological level, the dynamics of a dipolar medium, i.e. one
endowed with a dipole moment vector, and polarizable in a gravitational field. Using first-
order cosmological perturbations, we show that the dipolar fluid is undistinguishable from
standard dark energy (a cosmological constant ƒ) plus standard dark matter (a pressure-
less perfect fluid), and therefore benefits from the successes of theƒ-CDM (ƒ-cold dark
matter) scenario at cosmological scales. Invoking an argument of “weak clusterisation” of
the mass distribution of dipole moments, we find that the dipolar dark matter reproduces
the phenomenology of themodifiedNewtonian dynamics (MOND) at galactic scales. e
dipolar medium action naturally contains a cosmological constant, and we show that if the
model is to come from some fundamental underlying physics, the cosmological constantƒ
should be of the order of a2

0
=c4, where a0 denotes theMOND constant acceleration scale,

in good agreement with observations.
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10.4 Introduction

In the current concordance model of cosmology (theƒ-CDM scenario, see e.g. [316]) based on
Einstein’s general relativity (GR), the mass-energy content of the Universe is made of roughly
4% of baryons, 23% of cold dark matter (CDM) and 73% of dark energy in the form of a cos-
mological constant ƒ. e dark matter accounts for the well-known discrepancy between the
mass of a typical cluster of galaxies as deduced from its luminosity, and the Newtonian dynam-
ical mass [426]. e model has so far been very successful in reproducing the observed cos-
mic microwave background (CMB) spectrum [215] and explaining the distribution of baryonic
matter from galaxy clusters scale up to cosmological scales by the non-linear growth of initial
perturbations [49]. Although the exact nature of the hypothetical dark matter particle remains
unknown, super-symmetric extensions of the standard model of particle physics predict well-
motivated candidates (see [53] for a review). Simulations suggest some universal dark matter
density profile around galaxies [308]. However, in that respect, the CDM hypothesis has some
difficulties [280, 361] at explaining in a natural way the distribution and properties of dark mat-
ter at galactic scales.

emodifiedNewtonian dynamics (MOND)was proposed byMilgrom [285, 286, 287] to
account for the basic phenomenology of dark matter in galactic halos, as evidenced by the flat
rotation curves of galaxies, and the Tully-Fisher relation [408] between the observed luminos-
ity and the asymptotic rotation velocity of spiral galaxies. However, if MOND serves very well
for these purposes (and some others also [361]), we know that MOND does not fully account
for the inferred dark matter at the intermediate scale of clusters of galaxies [192, 360, 121]. In
addition, MOND cannot be considered as a viable physical model, but only as an ad-hoc —
though extremely useful — phenomenological “recipe”. In the usual interpretation, MOND
is viewed (see [290] for a review) as a modification of the fundamental law of gravity or the
fundamental law of dynamics, without the need for dark matter. e relativistic extensions of
MOND, of which the Tensor-Vector-Scalar (TeVeS) theory [358, 42, 360] is the prime example,
share this view of modifying the gravity sector, by postulating some suplementary fields associ-
ated with the gravitational force, in addition to the metric tensor field of GR (see [101] for a
review). Recently, such modified gravity theories have evolved toward Einstein-æther like theo-
ries [226, 225, 425, 423, 206].

Each of these alternatives has proved to be very successful in complementary domains of va-
lidity: the cosmological scale (and cluster scale) for theCDMparadigm and the galactic scale for
MOND. It is frustrating that two successful models seem to be fundamentally incompatible. In
the present paper we shall propose a third approach, which has the potential of bringing together
the main aspects of bothƒ-CDM and MOND in a single relativistic model. Namely, we keep
the standard law of gravity, i.e. GR and its Newtonian limit, but we add to the distribution of or-
dinary matter some specific non-standard form of dark matter (described by a relativistic action
in usual GR) in such a way as to naturally explain the phenomenology of MOND at galactic
scales. Furthermore, we prove that this form of dark matter leads to the same predictions as
for theƒ-CDM cosmological scenario at large scales. In particular, we find that the relativistic
action for this matter model naturally contains the dark energy in the form of a cosmological
constantƒ. us, our model will benefit from both the successes of theƒ-CDM scenario, and
the MOND phenomenology.
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e model will be based on the observation [63, 62] that the phenomenology of MOND
can be naturally interpreted by an effect of “gravitational polarization” of some dipolar medium
constituting the dark matter. e effect can be essentially viewed (in a Newtonian-like inter-
pretation [63]) as the gravitational analogue of the electric polarization of a dielectric material,
whose atoms can be modelled by electric dipoles, in an applied electric field [224]. In the quasi-
Newtonian model of [63] the gravitational polarization follows from a microscopic description
of the dipole moments in analogy with electrostatics. It was shown that the gravitational dipole
moments require the existence of some internal non-gravitational force to stabilize them in a
gravitational field. anks to this internal force, an equilibrium state for the dipolar particle is
possible, in which the dipole moment is aligned with the gravitational field and the medium
is polarized. e MOND equation follows from that equilibrium configuration. However the
model [63] cannot be considered as viable because it is non-relativistic, and involves negative
gravitational-type masses (or gravitational charges) and consecutively a violation of the equiva-
lence principle at a fundamental level.

In a secondmodel [62] we showed that it is possible to describe dipolar particles consistently
with the equivalence principle by an action principle in standardGR.e action depends on the
particle’s position in space-time (as for an ordinary particle action) and also on a four-vector
dipole moment carried by the particle. e particle’s position and the dipole moment are con-
sidered to be two dynamical variables to be varied independently in the action. Furthermore, a
force internal to the dipolar particle was introduced in the form of a scalar potential function
(say V ) in this action. e potential V depends on some adequately defined norm of the dipole
moment vector. Because of that force, the particle is not a “test” particle and its motion in space-
time is non-geodesic. e non-relativistic limit of the relativistic model [62] was found to be
different from the quasi-Newtonian model [63] (hence the two models are distinct) but it was
possible under some hypothesis to recover the same equilibrium state yielding theMONDequa-
tion as in [63]. However the relativistic model [62], if considered as a model for darkmatter, has
some drawbacks — notably the mechanism of alignement of the dipole moment with the grav-
itational field is unclear (so the precise link with MOND is questionable), and the dynamics of
the dipolar particles in the special case of spherical symmetry does not seem to be very physical.

In the present paper, we shall propose a third model which will be based on an action simi-
lar to that of the relativistic model [62] but with some crucial modifications. First we shall add,
with respect to [62], an ordinary mass term in the action to represent the (inertial or passive
gravitational) mass of the dipolar particles. Second, the main improvement we shall make is to
assume that the internal force derives from a potential function in the action (call it W) which
depends not on the dipole moment itself as in [62] but on the local density of dipole moments,
i.e. the polarization field. In this new approach we are thus assuming that the motion of the
dipolar particles is influenced by the density of the surrounding medium. is is analogous to
the description of a plasma in electromagnetism in which the internal force, responsible for the
plasma oscillations, depends on the density of the plasma (cf. the expression of the plasma fre-
quency [224]).1 Because the action [given by (10.12) with (10.17) below] will now depend on
the density of themedium, it becomesmore advantageous to write it as a fluid action rather than
as a particle action.

¹In the quasi-Newtonian model [63] the dipolar medium was formulated as the gravitational analogue of a
plasma, oscillating at its natural plasma frequency.
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is simple modification of the model, in which the potential W depends on the polariza-
tion field, will have important consequences. First of all, the relation with the phenomenology
of MOND will become clear and straightforward. Secondly, we shall find that the motion of
dipolar particles in the central field of a spherical mass (in the non-relativistic limit) makes now
sense physically. e drawbacks of the previous model [62] are thus cured. Last but not least, we
shall find that the model naturally involves a cosmological constant. en, with the equations of
motion and evolution (and stress-energy tensor) derived from the action, we show the following:

1. e dipolar fluid is undistinguishable from standard dark energy (a cosmological con-
stant) plus standard CDM (say a pressureless perfect fluid) at cosmological scales, i.e. at
the level of first-order cosmological perturbations.2 e model is thus consistent with the
observations of the CMB fluctuations. However, the model should differ fromƒ-CDM
at the level of second-order cosmological perturbations.

2. e MOND phenomenology of the flat rotation curves of galaxies and the Tully-Fisher
relation is recovered at galactic scales (for a galaxy at low redshi) from the effect of grav-
itational polarization. ere is a one-to-one correspondence between the MOND func-
tion (say� D 1 C �) and the potential functionW introduced in the action.

3. e minimum of the potential function W is a cosmological constant ƒ. We find that
if W is to be considered as “fundamental”, i.e. coming from some fundamental under-
lying theory (presumably a quantum field theory), the cosmological constant should be
numerically of the order of a2

0=c
4, where a0 denotes the MOND constant acceleration

scale.

A relation of the type ƒ � a2
0=c

4 between a cosmological observable ƒ and a parameter a0

measured from observations at galactic scales is quite remarkable and is in good agreement with
observations. More precisely, if we define the natural acceleration scale associated with the cos-
mological constant,

aƒ D
c2

2�

r
ƒ

3
; (10.10)

then the current astrophysical measurements yield a0 ' 1:3 aƒ. e related numerical coinci-
dencea0 � cH0 was pointed out very early on byMilgrom [285, 286, 287]. enear agreement
between a0 and aƒ has a natural explanation within our model, although the exact numerical
coefficient between the two acceleration scales cannot be determined presently.

Since the present model will not be connected to any (quantum) fundamental theory, it
should be regarded merely as an “effective” or even “phenomenological” model. We shall even
argue (though this remains open) that it may apply only at large scales, from the galactic scale up
to cosmological scales, and not at smaller scales like in the Solar System. However, this model of-
fers a nice unification between the dark energy in the form ofƒ and the dark matter in the form
ofMOND(both effects of dark energy and darkmatter occuringwhen gravity is weak). Further-
more, it reconciles in some sense the observations of dark matter on cosmological scales, where

²Note however that while in the standard scenario the CDM particle is, say, a well-motivated supersymmetric
particle (perhaps tobediscovered at theLHCinCERN), inour case the fundamental nature of the “dipolar particle”
will remain unknown.
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the evidence is for the standard CDM, and on galactic scales, which is the realm of MOND. It
would be interesting to study the intermediate scale of clusters of galaxies and to see if themodel
is consistent with observations. Such a study should probably be performed using numerical
methods.

e plan of this paper is as follows. In section 10.5 we present the action principle for the
dipolar medium, and we vary the action to obtain the equation of motion, the equation of evo-
lution and the stress-energy tensor. In section 10.6 we apply first-order cosmological perturba-
tions (on a homogeneous and isotropic background) to prove that the dipolar fluid reproduces
all the features of the standard dark matter paradigm at cosmological scales. We investigate the
non-relativistic limit of the model in section 10.7, and show that, under some hypothesis, the
polarization of the dipolar dark matter in the gravitational field of a galaxy results in an appar-
ent modification of the law of gravity in agreement with the MOND paradigm. Section 10.8
summarizes and concludes the paper. e dynamics of the dipolar dark matter in the central
gravitational field of a spherically symmetric mass distribution is investigated in the appendix.

10.5 Dipolar fluid in general relativity

10.5.1 Action principle
Ourmodel will be based on a specific action functional for the dipolar fluid in standardGR.is
fluid is described by the four-vector current density J � D �u�, where u� is the four-velocity
of the fluid, normalized to g��u�u� D �1, and where � D

p
�g��J �J � represents its rest

mass density.3 In this paper we shall conveniently rescale most of the variables used in [62] by a
factor of 2m, where m is the mass parameter introduced in the action of [62]. Hence we have
� D 2m n, where n is the number density of dipolemoments in the notation of [62]. e above
current vector is conserved in the sense that

r�J �
D 0 ; (10.11)

where r� denotes the covariant derivative associated with the metric g�� . Our fundamental
assumption is that the dipolar fluid is endowed with a dipole moment vector field �� which will
be considered as a dynamical variable. We have �� D ��=2m where �� is the dipole moment
variable used in [62] (hence �� has the dimension of a length).

Adopting afluiddescriptionof thedipolarmatter rather than aparticle formulation as in [62],4

we postulate that the dynamics of the dipolar fluid in a prescribed gravitational field g�� is de-
rived from an action of the type

S D

Z
d

4x
p

�g L
�
J �; ��; P��;g��

�
; (10.12)

³Greek indices take the space-time values �; �; : : : D 0; 1; 2; 3 and Latin ones range on spatial values
i; j ; : : : D 1; 2; 3. emetric signature is .�;C;C;C/. e convention for theRiemann curvature tensorR

�
���

is the same as in [298]. Symmetrization of indices is .��/ �
1
2
.�� C ��/ and .ij / �

1
2
.ij C j i/. In sections

10.5 and 10.6 we make use of geometrical units G D c D 1.
⁴e fluid action is obtained from the particle one by the formal prescription

PR
d� !

R
d4x

p
�g n,

where the sum runs over all the particles, and n is the number density of the fluid.
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where g D det.g��/, the integration being performed over the entire 4-dimensional manifold.
is action is to be added to the Einstein-Hilbert action for gravity, and to the actions of all the
other matter fields. e Lagrangian L depends on the current density J �, the dipole moment
vector ��, and its covariant derivative P�� with respect to the proper time � (such that d� Dp

�g��dx�dx�), which is defined using a fluid formulation by

P��
�

D��

d�
� u�

r��
� ; (10.13)

andwhereD=d� is denoted by an overdot. In addition, the Lagrangian depends explicitly on the
metric g�� which serves at lowering and raising indices, so that for instance P�� D g��

P�� .
We shall consider an action for the dipolar medium similar to the one proposed in [62],

with however a crucial generalization in that the potential function therein, which is supposed
to describe a non-gravitational force internal to the dipole moment, will be allowed to depend
not only on the dipole moment variable ��, but also on the rest mass density of the dipolar
fluid � . More precisely, we shall assume that the potential function W in the action depends
on the dipole moment �� only through the polarization, namely the number density of dipole
moments, that is defined by

…�
D ��� ; (10.14)

or equivalently …� D n�� in the notation of [62]. e dynamics of dipolar particles will
therefore be influenced by the local density of the medium, in analogy with the physics of a
plasma in which the force responsible for the plasma oscillations depends on the density of the
plasma [224]. Our assumption is thatW is a function solely of the norm…? of the projection
of the polarization field (10.14) perpendicular to the velocity, namely

…? D

q
g��…

�
?
…�

?
D
p

?��…�…� : (10.15)

Here, the orthogonal projection of the polarization vector reads…�
?

D ?
�
� …

� , with the asso-
ciated projector defined by ?�� � g�� C u�u� . Similarly, we can define ��

?
D ?

�
� �

� and its
norm �? so that the (scalar) polarization field reads

…? D ��? : (10.16)

e chosen dependence of the internal potential on…? will result in important differences and
improvements with respect to the model of [62].

Our proposal for the Lagrangian of the dipolar fluid is

L D �

�
�1 �

q�
u� � P��

��
u� � P��

�
C

1

2
P��

P��

�
� W.…?/ ; (10.17)

where the two dynamical fields are the conserved current vector J � D �u� and the dipole mo-
ment vector ��. e fourth term is our fundamental potential which should in principle result
from a more fundamental theory valid at some microscopic level. e third term in (10.17) is
the same as in the previousmodel [62] and clearly represents a kinetic-like term for the evolution
of the dipole moment vector. is term will tell how this evolution should differ from parallel
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transport along the fluid lines. e second term in (10.17) (also the same as in [62]) is made of
the norm of a space-like vector and is inspired by the known action for the dynamics of particles
with spin moving in a background gravitational field [23]. e motivation for postulating this
term is that a dipole moment can be seen as the “lever arm” of the spin considered as a classical
angular momentum (see a discussion in [62]).

Finally, we comment on the first term in (10.17) which is a mass term in an ordinary sense.
e dipolar fluid we are considering will not be purely dipolar (ormostly dipolar) as in the previ-
ous model [62] but will involve a monopolar contribution as well. Here we shall thus have some
dark matter in the ordinary sense. e mass term in (10.17) has been included for cosmological
considerations, so thatwe recover the ordinary darkmatter component at large scales (see section
10.6). However, one can argue that the presence of such mass term � is not fine-tuned. Indeed,
this term corresponds to the simplest and most natural assumption that the relative contribu-
tions of this mass density and the second and third terms in (10.17) are comparable. In addition,
we notice that � D 2m n corresponds to the inertial mass density of the dipole particles in the
quasi-Newtonian model [63], so it is natural by analogy with this model to include that mass
contribution in the action. Notice however that, even if the dipolar fluid is endowed with amass
density in an ordinary sense, its dynamics is well-defined only when the dipole moment is non-
zero. Indeed, we observe that the Lagrangian (10.17) becomes ill-defined when �� D 0 since
the second term in (10.17) is imaginary.

10.5.2 Equations of motion and evolution

In order to obtain the equations governing the dynamics of the dipolar fluid, we vary the action
(10.12) [with the explicit choice of the Lagrangian (10.17)] with respect to the dynamical vari-
ables �� and J �. e calculation is very similar to the one performed in [62], but because of
the different notation adopted here for rescaled variables (e.g. �� D ��=2m), and especially
because of the more general form of the potential function, we present all details of the deriva-
tion. Varying first with respect to the dipole moment variable ��, the resulting Euler-Lagrange
equation reads in general terms5

D

d�

 
@L

@ P��

!
C r�u� @L

@ P��
D
@L

@��
; (10.18)

in which the partial derivatives of the Lagrangian in (10.12) are applied considering the four
variables ��, P��, J � and g�� as independent. For the specific case of the Lagrangian (10.17), we
get what shall be interpreted as the equation ofmotion of the dipolar fluid in the form

PK�
D �F� ; (10.19)

⁵We write the Euler-Lagrange equation in this particle-looking form to emphasize the fact that the action
(10.17) is a particle (or fluid) action. Of course, this equation is equivalent to the usual field equation

r�

�
@L

@r���

�
D
@L

@��
:
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in which the le-hand-side (LHS) is the proper time derivative of the linear momentum6

K�
D P��

C k� : (10.20)

Here, we introduced like in [62] a special notation for a four-vectork� which is space-like, whose
norm is normalized to k�k� D 1, and which reads

k�
D

u� � P��

„
with „ D

q
�1 � 2u�

P�� C P��
P�� : (10.21)

e space-like four-vector k� will not represent the linear momentum (per unit mass) of the
particle — that role will be taken by K� which, as we shall see, will normally be time-like, see
(10.30a) below. e quantity „ has an important status in the present formalism because it
represents the second term in the Lagrangian (10.17) and we shall be able to set it to one in
section 10.5.3 as a particular way of selecting some physically interesting solution. On the right-
hand-side (RHS) of (10.19), the force per unit mass acting on a dipolar fluid element is given by

F�
D O…

�
?
W…?

; (10.22)

in which we denote the unit direction of the polarization vector by O…
�
?

� …
�
?
=…? D �

�
?
=�?

and the ordinary derivative of the potential W by W…?
� dW=d…?. e “internal” force

(10.22) being proportional to the space-like four-vector ��
?

D ?
�
� �� , we immediately get the

constraint
u� F�

D 0 : (10.23)

We now turn to the variation of the action with respect to the conserved current J � D �u�

(hencewededuce� D
p

�J�J � andu� D J �=�). egeneral formof theLagrange equation
for the conserved current density reads (see e.g. [264])7

D

d�

�
@L

@J �

�
D u�

r�

�
@L

@J �

�
: (10.24)

For the case at hands of the Lagrangian (10.17), we get the following equation, later to be inter-
preted as the evolution equation for the dipole moment,

P��
D

1

�
r

� .W �…?W…?
/ � R

�

���
u���K� : (10.25)

A new type of linear momentum�� — having the same meaning as in [62] — has been intro-
duced and defined by

��
D !�

� k� with !�
D u�

�
1 C

1

2
P��

P��
C �?W…?

�
� u��

�F� : (10.26)

⁶e present notation is related to the one used in [62] by K� D P �=2m, k� D p�=2m, F� D F�=m

(and �� D ��=2m). e quantity calledƒ in [62] is now denoted„ in order to avoid confusion with the cos-
mological constant.

⁷is can alternatively be written with ordinary partial derivatives as

u�

�
@�

�
@L

@J �

�
� @�

�
@L

@J �

��
D 0 :
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e Riemann curvature term in the RHS of (10.25) represents the analogue of the coupling
to curvature in the Papapetrou equations of motion of particles with spin in an arbitrary back-
ground [319]. e complete dynamics and evolution of the dipolar fluid is now encoded into
the equations (10.19) and (10.25). Such equations constitute the appropriate generalization for
the case of a density-dependent potentialW , and in fluid formulation, of similar results in [62].

Notice that by contracting (10.25) with J�, the second term in the RHS of (10.25) cancels
because of the symmetries of the Riemann tensor, and we get

J�
P��

D
D

d�
.W �…?W…?

/ : (10.27)

One can readily check that this constraint (10.27) can alternatively be derived from the other
equation (10.19) together with the definition of�� in (10.26). On the other hand, contracting
(10.19) with u� yields u�

PK� D 0, which according to the definition of K�, leads to the other
constraint

u�

D

d�

�
.„ � 1/ k�

�
D 0 : (10.28)

is constraint can be viewed as a differential equation for the variable„.

10.5.3 Particular solution of the equations

Following [62], we shall solve the constraint (10.28) with the most obvious and natural choice
of solution that

„ D 1 : (10.29)

We shall see that this choice greatly simplifies the other equations we have. In particular, we are
going to prove that the equations of motion (10.19) and equations of evolution (10.25), when
reduced by the condition„ D 1, finally depend only on the space-like component of the dipole
moment that is orthogonal to the velocity, namely ��

?
, so that the time-like component along

the velocity, i.e. u��
� , will have no physically observable consequences (actually, in that case this

unphysical component turns out to be complex [62]).
e structure of the subsequent equations and the physical properties of themodel will heav-

ily rely on the condition „ D 1. Note that we could regard this condition not as a choice of
solution but rather as a choice of theory. Indeed, we are going to pick up the simplest theory
out of a whole set of theories in which „ could have some non trivial proper time evolution
obeying (10.28). Actually, we can view the choice „ D 1 as an elegant way to impose into
the Lagrangian formalism the condition that in fine the only physical component of the dipole
moment should be ��

?
, namely the one perpendicular to the four-velocity field. We can imagine

that it would be possible to impose the same physical condition in a different way, for instance
by using Lagrange multipliers into the initial action. For exemple, in TeVeS [358, 42, 360] or in
Einstein-æther gravity [226, 225, 425, 423, 206], a dynamical time-like vector field whose norm
is unity is introduced by this mean. However, the present situation is different because our final
physical vector ��

?
is space-like.
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When the condition (10.29) holds, the two linear momenta (10.20) and (10.26) simplify
appreciably and we obtain

K�
D u� ; (10.30a)

��
D u� .1 C �?W…?

/C ?
�
�

P��
? : (10.30b)

We see that the linear momentum K� is finally time-like. ese expressions depend only on
the orthogonal component ��

?
, and we denote P��

?
� D��

?
=d� . e equations of motion and

evolution take now the simple forms

Pu�
D �F�

D � O…
�
?
W…?

; (10.31a)

P��
D

1

�
r

� .W �…?W…?
/ � ��

?R
�

���
u�u� : (10.31b)

Finally, the whole dynamics of the dipolar fluid only depends on the space-like perpendicular
projection ��

?
of the dipole moment.

10.5.4 Expression of the stress-energy tensor
We vary the action (10.12) with respect to the metric g�� to obtain the stress-energy tensor. We
must first consider the general case where„ is unconstrained, and then only on the result make
the restriction that„ D 1. Weproperly take into account themetric contributions coming from
the Christoffel symbols in the covariant time derivative P�� by using the Palatini formula [413].
Weare also careful thatwhile thedipolemoment �� shouldbe kept fixedduring the variation, the
conserved current J � will vary because of the change in the volume element

p
�g d

4x. Instead
of J �, the relevant metric-independent variable that has to be fixed is the “coordinate” current
density defined by J

�
� D

p
�g J �. Straightforward calculations yield the expression of the

stress-energy tensor for an action of the general type (10.12). We find

T ��
D 2

@L

@g��

C g��

�
L � J � @L

@J �

�
C u�u� P�� @L

@ P��

C r�

�
u�u� @L

@ P��

� u��.� @L

@ P��/

� ��u.� @L

@ P��/

�
; (10.32)

in which we denote @L=@ P�� � g��@L=@ P��. e partial derivatives of the Lagrangian are per-
formed assuming that its “natural” arguments J �, ��, P�� and g�� are independent. e appli-
cation to the particular case of the Lagrangian (10.17) gives, for the moment for a general value
of„,

T ��
D �g�� .W �…?W…?

/C�.�J �/
� r�

�h
��K.�

� K��.�
i

J �/
�
: (10.33)

In the second term of (10.33) we see that the linear momentum�� is related to the monopo-
lar contribution to the stress-energy tensor, while the other linear momentum K� parametrizes
the dipolar contribution in the third term. Comparing with equation (2.14) of [62], we observe
that a new term, proportional to the metric g�� , has been introduced. is term will clearly be
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associated with a cosmological constant, and we shall discuss it in detail below. One can readily
verify that the conservation law r�T �� D 0 holds as a consequence of the equation of conser-
vation of matter (10.11), and the equations of motion and evolution (10.19) and (10.25), for
general„.

In the next step we reduce the expression (10.33) by means of the condition„ D 1 and get

T ��
D �W g��

C �
�
u�u�

C �?W…?
?

��
C u.�

?
�/
�

P�
�
?

�
� r�

�h
�

�
?

u.�
� u��

.�
?

i
J �/

�
: (10.34)

Again we notice that this expression depends only on the perpendicular projection ��
?

of the
dipole moment.

It will be useful in the following to decompose the stress-energy tensor (10.34) according to
the general canonical form

T ��
D r u�u�

C P?
��

C 2 Q.�u�/
C†�� ; (10.35)

where r and P represent the energy density and pressure, where the “heat flow” Q� is orthog-
onal to the four-velocity, i.e. u�Q� D 0, and the symmetric anisotropic stress tensor †�� is
orthogonal to the four-velocity and traceless, i.e. u�†

�� D 0 and†�
� D 0. We get

r D u�u�T �� ; (10.36a)

P D
1

3
?�� T �� ; (10.36b)

Q�
D �?

�
� u� T �� ; (10.36c)

while the anisotropic stress tensor is obtained by subtraction. In the case „ D 1 where the
dipolar fluid is described by the stress-energy tensor (10.34) we find that the energy density,
pressure, heat flow and anisotropic stress tensor read respectively

r D W �…?W…?
C � ; (10.37a)

P D �W C
2

3
…?W…?

; (10.37b)

Q�
D � P�

�
?

C…?W…?
u�

�…�
?r�u� ; (10.37c)

†��
D

�
1

3
?

��
� O�

�
?

O��
?

�
…?W…?

; (10.37d)

where we denote O�
�
?

� �
�
?
=�?, and where we introduced for future use the convenient notation

� D � � r�…
�
? : (10.38)

By contrast to ordinary perfect fluids, the characteristic feature of the dipolar fluid is the existence
of non-vanishing heat flow Q� and anisotropic stresses †�� . Furthermore, we notice that the
energy density r involves (via �) a dipolar contribution given by �r�…

�
?
. at contribution

will play the crucial role, as we will see in section 10.7, when recovering the phenomenology of
MOND.
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10.6 Cosmological perturbations at large scales
We are going to show in this section that the model of dipolar dark matter [i.e. based on the ac-
tion (10.12) and (10.17), with equations of motion reduced by the condition„ D 1] contains
the essential features of standard dark matter at cosmological scales. We shall indeed prove that,
at first order in cosmological perturbations, it behaves like a pressureless perfect fluid. Further-
more, we shall see that the dipolar fluid naturally contains a cosmological constant (the inter-
pretation of which will be discussed below), and is thus supported by the observations of dark
energy. e model is therefore consistent with cosmological observations of the CMB fluctua-
tions.

10.6.1 Perturbation of the gravitational sector
Weapply the theory of first-order cosmological perturbations aroundaFriedman-Lemaître-Robertson-
Walker (FLRW) background. For every generic scalar field or component of a tensor field, say
F , we shall write F D F C ıF , where the background part F is the value of F in a FLRW
metric, while ıF is a first-order perturbation of this background value.

e FLRW metric is written in the usual way in terms of the conformal time �, such that
dt D a d� where a.�/ is the scale factor and t the cosmic time, as

ds2
D g�� dx�

dx�
D a2

�
�d�2

C 
ij dxi
dxj

�
: (10.39)

Here
ij is themetric ofmaximally symmetric spatial hypersurfaces of constant curvatureK D 0

orK D ˙1. eperturbedFLRWmetricds2 D g�� dx�
dx� will be of the general form [327]

ds2
D a2

�
�.1 C 2A/ d�2

C 2 hi d� dxi
C .
ij C hij / dxi

dxj
�
: (10.40)

Making use of the standard scalar-vector-tensor (SVT) decomposition [37, 302], themetric per-
turbations hi and hij are decomposed according to

hi D DiB C Bi ; (10.41a)
hij D 2C
ij C 2DiDjE C 2D.iEj/ C 2Eij ; (10.41b)

where Di denotes the covariant derivative with respect to the spatial backgroundmetric 
ij . e
vectors Bi and Ei are divergenceless, and the tensor Eij is at once divergenceless and trace-free,
i.e.

DiB
i

D DiE
i

D 0 ; (10.42a)

DiE
ij

D Ei
i D 0 : (10.42b)

Spatial indices are lowered and raised with 
ij and its inverse 
 jk . From these definitions, one
can construct the gauge-invariant perturbation variables

ˆ � A C .B 0
C HB/ � .E00

C HE0/ ; (10.43a)
‰ � �C � H.B � E0/ ; (10.43b)
ˆi � E0

i � Bi ; (10.43c)
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togetherwithEij which is already gauge-invariant. eprime stands for a derivativewith respect
to the conformal time �, andH � a0=a denotes the conformalHubble parameter. We shall also
use the alternative definition for a gauge-invariant gravitational potential

X � A � C �

�
C

H

�0

D ‰ CˆC

�
‰

H

�0

: (10.44)

10.6.2 Kinematics of the dipolar fluid

e four-velocity of the dipolar fluid is decomposed into a background part and a perturbation,
u� D u�

C ıu�. We have both g��u�u�
D �1 and g��u�u� D �1. e background part

is supposed to be comoving, that is ui
D 0. is defines a zeroth order in the perturbation. In

a FLRW background this means that it will satisfy the background geodesic equation Pu�
D 0.

With standard notations, we have

u�
D

1

a
.1; 0/ ; (10.45a)

ıu�
D

1

a

�
�A; ˇi

�
; (10.45b)

while the covariant four-velocity will be written as u� D u� C ıu�, with

u� D a .�1; 0/ ; (10.46a)
ıu� D a .�A; ˇi C hi/ : (10.46b)

e velocities of all the other fluids (baryons, photons, neutrinos, …) are decomposed in a similar
way. e perturbation of the three-velocity ˇi is split into scalar and vector parts,

ˇi
D Div C vi with Div

i
D 0 ; (10.47)

and we introduce the gauge-invariant variables describing the perturbed motion,

V � v C E0 ; (10.48a)
Vi � vi C Bi : (10.48b)

e dipolar darkmatter fluid differs from standard darkmatter by the presence of the dipole
moment ��

?
(satisfying u��

�
?

D 0) carried along the fluid trajectories. For the dipole moment
we also write a decomposition into a background part plus a perturbation, namely ��

?
D �

�

? C

ı�
�
?
. However, because a non-vanishing backgrounddipolemomentwould break the isotropy of

space, and would therefore be incompatible with a FLRWmetric, wemustmake the assumption
that the dipole moment is zero in the background, so that it is purely perturbative. Hence, we
pose

�
�

? D 0 ; (10.49a)

ı�
�
?

D
�
0; �i

�
; (10.49b)
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where �i represents the first-order perturbation of the dipole moment. Beware of our notation
for which �i is a vector living in the background spatial metric 
ij . us the covariant com-
ponents of the dipole moment perturbation are ı�?� D

�
0; a2�i

�
where �i � 
ij�

j . Note
that there is no time component in the dipole moment perturbation because of the constraint
u��

�
?

D 0 which reduces to u�ı�
�
?

D 0 at linear order. Like for the three-velocity field ˇi in
(10.47), we split �i into a scalar and a vector part, namely

�i
D Diy C yi with Diy

i
D 0 : (10.50)

However, unlike for v and vi , we notice that y and yi are gauge-invariant perturbation variables.
is is because the background quantity is zero, �

�

? D 0, hence the perturbation ı��
?

is gauge-
invariant according to the Stewart-Walker lemma [386, 385].

10.6.3 Cosmological expansion of the fundamental potential
enext step is tomakemore specific our fundamental potential functionW.…?/ entering the
Lagrangian (10.17). Such function should be a “universal” function of the polarization of the
dipolar medium, described by the polarization scalar field

…? D ��? : (10.51)

Now, we have seen that in cosmology there is no background (FLRW) value for the dipole mo-
ment, hence the background value of the polarization field is zero: …? D 0. In linear pertur-
bations, the polarization is expected to stay around the background value. erefore, it seems
physically well-motivated that the value…? D 0 corresponds to a minimum of the potential
function W , so that…? does not depart too much from this background value, at least in the
linear perturbation regime. We therefore assume thatW.…?/ is given locally8 by an harmonic
potential of the form

W.…?/ D W0 C
1

2
W2…

2
? C O

�
…3

?

�
; (10.52)

whereW0 andW2 are two constant parameters, andwe poseW1 D 0. For linear perturbations,
because…? D ı…? is already perturbative, we shall be able to neglect the higher order terms
O.…3

?
/ in (10.52) because these will contribute to second order at least in the internal force

(10.22). Inserting the ansatz (10.52) into (10.22) we obtain

F�
D W2…

�
?

C O
�
…2

?

�
: (10.53)

We asserted in the previous section that the background motion of the dipolar fluid is geodesic,
i.e. Pu�

D 0. is is now justified by the fact that the force (10.53) drives the non-geodesic
motion via the equation of motion (10.31a), hence since this force vanishes in the background,
the deviation from geodesic motion starts only at perturbation order.

In the present model the coefficients W0, W2, … of the expansion of our fundamental po-
tential W.…?/ are free parameters, and therefore will have to be measured by cosmological or

⁸e domain of validity of this expansion will be made more precise in section 10.7.2.
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astronomical observations. First of all, it is clear from inspection of the action (10.17), or from
the general decomposition of the stress-energy tensor [see (10.37a) and (10.37b)], that W0 is
nothing but a cosmological constant, and we find

W0 D
ƒ

8�
: (10.54)

e coefficient W0 is thereby determined by cosmological measurements of “dark energy”. As
we shall show in section 10.7, the next two coefficients W2 and W3 will be fixed by requiring
that our model reproduces the phenomenology of MOND at galactic scales [361], and we shall
find thatW2 D 4� andW3 D 32�2=a0 where a0 is the constant MOND acceleration scale.

Hence, in this model the cosmological constant ƒ appears as the minimum value of the
potential function W , reached when the polarization field is exactly zero, that is on an exact
FLRWbackground (see Fig. 10.3). us, it is tempting to interpretƒ as a “vacuumpolarization”,
i.e. the residual polarization which remains when the “classical” part of the polarization…? !

0. Of course our model is only classical, hence there is no notion of vacuum polarization which
would be due to quantum fluctuations. However, we can imagine that the present model is an
effective one, describing at somemacroscopic level amore fundamental underlyingquantumfield
theory (QFT) in which there is a non-vanishing vacuum expectation value (VEV) of a quantum
polarization field giving rise to the observed cosmological constant [420]. en, the constant
W0 would play the role of the VEV of this hypothetical quantum polarization field in such a
more fundamental QFT.

10.6.4 Perturbation of the dipolar fluid equations

As for the four-velocityu� D u�
Cıu�, we consider a linear perturbationof the restmass energy

density of the dipolar fluid according to � D � C ı� . e conservation law r�.�u�/ D 0

reduces in the case of the background to

� 0
C 3H � D 0 ; (10.55)

hence � evolves like a�3. Concerning the perturbation, we define � � � .1 C "/ so that the
rest mass density contrast reads

" D
ı�

�
: (10.56)

is quantity is not gauge-invariant, and one can associate with it in the usual way a gauge-
invariant variable by posing

"F � " �
� 0

�

C

H
D "C 3C ; (10.57)

with the index F standing for “flat slicing”. Alternatively, it is possible to introduce other gauge-
invariant variables, like for example

"N � " � 3H.B � E0/ D "F C 3‰ ; (10.58)
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where the index N stands for “Newtonian”. For the linear perturbation, the conservation law
r�.�u�/ D 0 gives the gauge-invariant equations

"0
F C�V D 0 ; (10.59a)
"0
N C�V D 3‰0 ; (10.59b)

where� D 
ijDiDj denotes the usual Laplacian operator. In the following we shall choose to
work only with the flat-slicing variable "F.

According to (10.31a), the motion of the dipolar fluid obeys the equation Pu� D �F�. A
straightforward calculation yields the gauge-invariant expression for the four-acceleration,

Pu�
D

1

a2

�
0;Di.ˆC V 0

C HV /C V i 0
C HV i

�
: (10.60)

On the other hand, the force is given by (10.53) at first-order in the perturbation, in which we
can use…�

?
D .0; ��i/ to this order, with �i D Diy C yi . Hence, in terms of gauge-invariant

quantities, the scalar and vector parts of the equation of motion read

V 0
C HV Cˆ D �4� � a2 y ; (10.61a)

V 0
i C HVi D �4� � a2 yi : (10.61b)

Here we are anticipating on the results of the section 10.7 and have replaced the constant W2

in the expression of the force (10.53) by its value 4� determined from the comparison with
MOND predictions.

If there was no dipole moment (i.e. y D yi D 0), we would recover the standard geodesic
equations for a perturbed pressureless perfect fluid (see e.g. [327]), and according to (10.61b),
the vector modes would satisfy .aVi/

0 D 0, and therefore vanish like a�1. In contrast with the
standard perfect fluid case, the dipolar fluid may have non-vanishing vector modes because of
the driving term proportional to yi . Equation (10.61a) clearly shows that the scalar modes are
also affected by a non-zero dipole moment.

e equation of evolution of the dipole moment was given by (10.31b). Now,�� reduces
to P�

�
?

C u� at first perturbation order, hence the evolution equation gives at that order

R�
�
?

C Pu�
D ���

?R
�

���u�u� ; (10.62)

where R
�

��� is the Riemann tensor of the FLRW background. By easy calculations we find for
the derivatives of the dipole moment variable

P�
�
?

D
1

a

�
0; �i 0

C H�i
�
; (10.63a)

R�
�
?

D
1

a2

�
0; �i 00

C H�i 0
C H0�i

�
: (10.63b)

e scalar and vector parts of the equation of evolution are thus given by

y 00
C H y 0

D �
�
V 0

C HV Cˆ
�
; (10.64a)

y 00
i C H y 0

i D �
�
V 0

i C HVi

�
: (10.64b)
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Notice that the equation for the vector modes can be integrated, giving the simple relation

y 0
i C Vi D

si

a
; (10.65)

where si is an integration constant three-vector.
A comment is in order at this stage. Recall that we have included in the original Lagrangian

(10.17) amass term in the ordinary sense, with themost natural value of themass density simply
given by� . is choice wasmade having inmind the physical analogywith the quasi-Newtonian
model [63] where � D 2m n represented the inertial mass of the dipolar particles. Now we
can see on a more technical level that such mass term is in fact essential for the model to work
properly. If thismass termwas set to zero in the action, then the RHS of both equations (10.64a)
and (10.64b)would be zero. Wewould thenfind thaty 0 andy 0

i vanish likea�1, so that the dipole
momentwould in fact rapidly disappear or at least become non-dynamical, and thewholemodel
would turn out to be meaningless.

Combining the equations ofmotion (10.61) and the evolution equations (10.64), we obtain
some differential equations for the scalar and vector contributions y and yi of the dipole mo-
ment �i D Diy C yi , which turn out to be decoupled from the equations giving V and V i ,
and to be exactly the same, viz

y 00
C H y 0

� 4� � a2 y D 0 ; (10.66a)

y 00
i C H y 0

i � 4� � a2 yi D 0 : (10.66b)

Wefind it remarkable that the dipolemoment decouples from the other perturbation variables so
that its evolution depends in fine only on background quantities, namely� and the scale factora.
Since the equations for the scalar and vector modes are the same, we have also the same equation
for the dipole moment itself,

�00
i C H �0

i � 4� � a2 �i D 0 : (10.67)

Clearly, the solutions of (10.67) behave typically as increasing and decreasing exponentials mod-
erated by a cosmologial damping term H �0

i . We can also write this equation in terms of the
cosmic time t D

R
a d�, namely9

R�i C 2H P�i � 4� � �i D 0 ; (10.68)

where H � Pa=a D a0 is the usual Hubble parameter. We find that the equations (10.67) or
(10.68) are the same as the equation governing the growth of the density contrast of a perfect
fluid with vanishing pressure for the sub-Hubble modes (say k � H ) and when we neglect
the contribution of other fluids; see (10.88) below. In particular this means that like for the
case of the density of a perfect fluid there is no problem of divergence (i.e. blowing up) of the
components of the dipole moment �i between, say, the end of the inflationary era and the re-
combination. We can thus apply the theory of first-order cosmological perturbations even for
the components of the dipole moment itself, which should stay perturbative.

⁹In this equation, the dot stands for a derivative with respect to the coordinate time t , and not the proper time
� as everywhere else.
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Notice that the value of the coefficientW2 D 4� used in (10.67) or (10.68), which makes
such equations identical with the equation of growth of cosmological structures in the standard
CDM scenario, will only be determined in section 10.7 from a comparison with MOND pre-
dictions. ere is thus an interesting interplay between the cosmology at large scales and the
gravitational physics of smaller scales.10

10.6.5 e perturbed stress-energy tensor
Consider next the stress-energy tensor of the dipolar fluid, that we decomposed as (10.35) with
the expressions (10.37)–(10.38). At first perturbation order, these expressions reduce to

r D W0 C � ; (10.69a)
P D �W0 ; (10.69b)

Q�
D

1

a

�
0; ��i 0

�
; (10.69c)

†��
D 0 ; (10.69d)

together with
� D �

�
1 C " � Di�

i
�
: (10.70)

Wefirst note that part of thedipolarmedium is actuallymadeof a fluidof “dark energy” satisfying
�de D �Pde D W0 D ƒ=8� whereƒ is the cosmological constant. Accordingly, we shallwrite
the decomposition

T ��
D T

��
de C T

��
dm ; (10.71)

where the stress-energy tensor associatedwith the cosmological constant is denoted by T
��
de , and

where the other part represents specifically a fluid of “dark matter” whose stress-energy tensor is
T

��
dm . eir explicit expressions read

T
��
de D �W0 g�� ; (10.72a)

T
��
dm D � u�u�

C 2 Q.�u�/ : (10.72b)

Note that the dark matter part of the dipolar fluid, which may be called dipolar dark matter, has
no pressure P , no anisotropic stresses†�� , but a heat flow Q� given by (10.69c) and an energy
density � given by (10.70), or alternatively

� D � .1 C " ��y/ : (10.73)

e background energy density is simply given by the background rest mass energy density, � D

� , and the corresponding energy density contrast is

ı �
ı�

�
D " ��y : (10.74)

¹⁰Actually the coefficient 4� in (10.67) could be changed if we had assumed a mass term in the action (10.17)
different from � (say 2� or �=2). e simplest choice we have made (for different reasons) that � is the correct
mass term in the action corresponds also to the usual-looking evolution equation (10.67).
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It differs from the restmass energy density contrast " because of the internal dipolar energy. Like
for ", one can construct several gauge-invariant perturbations associated with ı. We shall limit
ourselves to the flat-slicing (F) one defined by (recall that y is gauge-invariant)

ıF � ı C 3C D "F ��y ; (10.75)

and whose evolution equation is

ı0
F C�V C�y 0

D 0 : (10.76)

Similar gauge-invariant density contrast variables are also defined for the other fluids. Next, we
split the dark matter stress-energy tensor (10.72b) into a background part plus a linear pertur-
bation, namely T

��
dm D T

��

dm C ıT
��
dm , and find

T
��

dm D � u�u� ; (10.77a)

ıT
��
dm D ı� u�u�

C 2 � ıu.� u�/
C 2 Q.� u�/ : (10.77b)

Wemade use of the fact that the heat flow Q� is already perturbative to replace the four-velocity
in the last term by its background value.

We are now going to show that the dipolar darkmatter stress-energy tensor is undistinguish-
able, at linear perturbation order, from that of a perfect fluid with vanishing pressure. To this
end, we introduce the effective perturbed four-velocity

ıeu�
� ıu�

C
Q�

�
: (10.78)

Notice thateu� D u�
C ıeu� is still an admissible velocity field because ıeu0 D �A=a by virtue

of the transversality property u�Q� D 0. e perturbed part of the dark matter stress-energy
tensor (10.77b) can then be written in the form

ıT
��
dm D ı� u�u�

C 2 � ıeu.� u�/ ; (10.79)

which, together with (10.77a), is precisely the stress-energy tensor of a perfect fluid with vanish-
ing pressure P , vanishing anisotropic stresses†�� , and a four-velocity fieldeu� D u�

C ıeu�.
Using the definition (10.78) of the perturbed four-velocity ıeu�, with the explicit expression of
the heat flow (10.69c), one can check that this perfect fluid consistently follows a geodesic mo-
tion, i.e. ı Peu� D 0.

More explicitly, we can write the latter effective perturbation of the four-velocity in the stan-
dard form ıeu� D a�1.�A; ěi/, and find that the effective ordinary velocity readsěi

D ˇi
C �i 0 ; (10.80)

which can be viewed as a modification of the space-like component of the dipolar dark matter
four-velocity. is allows one to build a new four-velocity which would be tangent to the world-
line of the effective perfect fluid (cf. Fig. 10.1). In terms of scalar and vector parts, if we writeě

i D Diev Cevi , then ev D v C y 0 ; (10.81a)evi D vi C y 0
i : (10.81b)
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δuμ  = −F μ

η uμ = 0
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uμ uμ

δuμ  = 0~

Dipolar dark 
matter worldline

Effective perfect 
fluid worldline

uμ = uμ + δuμ
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Q 
μ
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Figure 10.1: Sketch of the equivalence at first order of cosmological perturbations between dipolar dark matter
and an effective perfect fluid. e dipolar dark matter has a four-velocity u� D u�

C ıu�, and follows a non-
geodesic motion driven by the internal force F�, namely Pu� D �F�. One can construct from u� and the heat
flux Q� an effective four-velocityeu� D u�

C ıeu� satisfying a geodesic motion, i.e. Peu� D 0. is is the four-
velocity field of the effective perfect fluid associated with dipolar dark matter.

Like for the perturbed four-velocity ıu�, we can introduce the gauge-invariant variables

eV �ev C E0
D V C y 0 ; (10.82a)eVi �evi C Bi D Vi C y 0

i : (10.82b)

In terms of the gauge-invariant variables eV , eVi and ıF, the dipolar dark matter fluid equations
(10.61) and (10.76) finally read

eV 0
C H eV Cˆ D 0 ; (10.83a)eV 0

i C H eVi D 0 ; (10.83b)

ı0
F C�eV D 0 : (10.83c)

ese are precisely the standard evolution equations of a perfect fluid with no pressure and no
anisotropic stresses (see e.g. [327]).

To summarize, we have proved that at first order of perturbation theory — and only at that
order — the dipolar fluid behaves exactly as ordinary dark energy (i.e. a cosmological constant)
plus ordinary dark matter (i.e. a perfect fluid). If we specify the background rest mass energy
density � so that �dm � 8��0=3H 2

0 ' 0:23 today as evidenced in cosmological observa-
tions, we can assert that the first-order cosmological perturbation theory with the dipolar fluid
described by the stress-energy tensor (10.71)–(10.72) will lead to the same predictions than the
standardƒ-CDMscenario—and is therefore consistentwith cosmological observations at large
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scales. However, at second order of cosmological perturbations, the dipole moment entering the
stress-energy tensor cannot be absorbed in an effective perturbed velocity field, which means
that the dipolar dark matter fluid could in principle be distinguished from a standard perturbed
dark matter fluid. Working out the theory of second-order cosmological perturbations could
thus yield distinctive features of the present model and reveal a signature of the dipolar nature of
dark matter. We have particularly in mind effects linked with the non-gaussianity of the CMB
fluctuations that are associated with second-order perturbations.

10.6.6 Perturbation of the Einstein equations
e Einstein equations at first perturbation order around the FLRW background read

ıG��
D 8�

�
ıT ��

C
X
f

ıT
��
f

�
; (10.84)

where G�� � R�� �
1
2
g��R is the Einstein tensor and where ıT �� D ıT

��
de C ıT

��
dm is the

perturbative part of the stress-energy tensor of the dipolar fluid given by (10.72). e summation
runs over all the other cosmological fluids present (baryons, photons, neutrinos, …) which are
described by stress-energy tensors T

��
f . Separating out the dark matter from the dark energy

(using the linkW0 D ƒ=8�) we get

ıG��
Cƒıg��

D 8�
�
ıT

��
dm C

X
f

ıT
��
f

�
: (10.85)

As we have seen in the previous section, the dark matter fluid is entirely described at linear per-
turbation order by the gauge-invariant variables eV , eVi and ıF (and the background density �)
obeying the evolution equations (10.83) like for an ordinary pressureless fluid. We can thus im-
mediately write the gauge-invariant perturbation equations in the standard SVT formalism (see
e.g. [327]). ough these are well-known, we reproduce them here for completeness. For the
scalar modes, we have

�‰ � 3H2X D 4� a2
�
� ıF C

X
f

�f ı
F
f

�
; (10.86a)

‰ �ˆ D 8� a2
X
f

�fwf �f ; (10.86b)

‰0
C Hˆ D �4� a2

�
� eV C

X
f

�f .1 C wf/Vf

�
; (10.86c)

HX 0
C
�
H2

C 2H0
�

X D 4� a2
X
f

�f

�
wf �f C c2

f ı
F
f C

2

3
wf��f

�
; (10.86d)

where we have singled out the contribution of the dipolar dark matter (cf. the variables eV , ıF
and �) from the other fluid contributions described by their background density �f, equation
of state wf, adiabatic sound velocity cf, and gauge-invariant entropy perturbation �f. We also
introduced the SVTcomponents of the perturbative part of the anisotropic stress tensor, defined
by ı†ij

f D a2 �fwf
�
�ij�f C D.i�

j/
f C �

ij
f

�
with�ij � DiDj � 
 ij�=3. e variables
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�f, � i
f and � ij

f are gauge-invariant because the background part of†ij
f vanishes in the case of a

perfect fluid. e equations for the vector and tensor modes are

.�C 2K/ˆi
D �16� a2

�
� eV i

C
X
f

�f .1 C wf/V i
f

�
; (10.87a)

ˆi 0
C 2Hˆi

D 8� a2
X
f

�fwf �
i
f ; (10.87b)

Eij 00
C 2HEij 0

C .2K ��/Eij
D 8� a2

X
f

�fwf �
ij
f : (10.87c)

We highlight once more the fact that at first perturbation order, the dipolar dark matter is like
ordinary dark matter, as can be seen from the fluid equations (10.83) and the Einstein equations
(10.86)–(10.87). Indeed, these sets of equations can be evolved without any reference to the
dipole moment �i .

Combining the dipolar darkmatter equations (10.83a) and (10.83c) with the Einstein equa-
tions (10.86a)–(10.86b), we get the equation governing the growth of the dipolar dark matter
density contrast as

ı00
F C H ı0

F � 4� � a2 ıF D 3H2X C 4� a2
X
f

�f

�
ıFf � 2wf��f

�
: (10.88)

Again, we find that the growth of structures driven by the equation (10.83c) or equivalently
(10.88) for the dipolar dark matter of the present model is identical with that in the standard
CDM model at linear perturbation order. For sub-Hubble modes one can neglect the first term
in the RHS, and we expect that the contribution of the dark matter dominates that of the other
fluids, so we can neglect also the second term in the RHS of (10.88).

Interestingly, we have found in (10.67) that each of the components of the dipole moment
obey the same equation as (10.88) butwith exactly zeroRHS. Recall that the dipolar darkmatter
density contrast is defined by (10.75) as

ıF D "F � Di�i : (10.89)

From (10.67) we see that the internal energy due to the dipole moment satisfies the “homoge-
neous” equation that is associated with (10.88), viz. (recalling � D �)

Di�00
i C HDi�0

i � 4� � a2 Di�i D 0 : (10.90)

is result indicates that, in the non-linear regime, the internal energy related to the dipole mo-
ment may contribute significatively to the growth of perturbations (see section 10.7.2 for more
comments). Finally, it is clear that the rest-mass density contrast obeys the same “inhomoge-
neous” equation, i.e.

"00
F C H "0

F � 4� � a2 "F D 3H2X C 4� a2
X
f

�f

�
ıFf � 2wf��f

�
: (10.91)
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10.7 Dipolar dark matter at galactic scales
In this section, we shall show that, under some well motivated assumptions, the dipolar dark
matter naturally recovers the phenomenology of MOND for a typical galaxy at low redshi.
Such a link between a form of dipolar dark matter and MOND was the primary motivation
of previous works [63, 62]. We shall see that with the present improvement of the model with
respect to [62], thanks to the fact that the fundamental potential in the action now depends on
the polarization field…? D ��? (instead of �? in the previous model [62]), the relation with
MOND is straightforward and physically appealing.

10.7.1 Non-relativistic limit of the model
We investigate the non-relativistic (NR) limit of the dipolar fluid dynamics described by the
equations (10.31a) and (10.31b), and by the stress-energy tensor (10.34). To do so, we consider
the formal limit c ! C1,11 which is equivalent to the condition v � c, where v is the typical
value of the coordinate three-velocity of the dipolar fluid. To consistently keep track of the order
of relativistic corrections, we systematically write asO .c�n/ a typical neglected remainder.

We are interested in the dynamics of dipolar dark matter and ordinary baryonic matter in
a typical galaxy at low redshi. Let us introduce a local Cartesian coordinate system fct; zig,
centered on this galaxy around some cosmological epoch, and which is inertial in the sense that
it is without any rotation, nor acceleration with respect to some averaged cosmological matter
distribution at large distances from the galaxy. Such a local coordinate system can be derived
from the cosmological coordinate system f�;xig used in section 10.6 by posing

ct D a.�0/ .� � �0/ ; (10.92a)

zi
D a.�0/ .x

i
� xi

0/ ; (10.92b)

near an event occuring at cosmological time �0 and at the galaxy’s center xi
0. In the local coordi-

nate system, the metric developed at the lowest NR order reads

g00 D �1 C
2U

c2
C O

�
c�4

�
; (10.93a)

g0i D O
�
c�3

�
; (10.93b)

gij D

�
1 C

2U

c2

�
ıij C O

�
c�4

�
; (10.93c)

where U � c2 is a Newtonian-like potential. For the motion of massive (non-relativistic) par-
ticules we need only to include the contribution of U in the 00 metric coefficient. anks to
the standard general relativistic coupling to gravity in the ij metric coefficient, the motion of
photons agrees with the general relativistic prediction with Newtonian-like potential U .

In the NR limit, the equation of motion (10.31a) is readily seen to reduce to

dvi

dt
� gi

D � O…i
?W…?

C O
�
c�2

�
; (10.94)

¹¹From now on, we reintroduce for convenience all factors of c and G.
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where ai � dvi=dt D
�
@t C vj@j

�
vi is the standard Newtonian acceleration of a fluid in

the Eulerian picture, vi being the coordinate three-velocity, and gi D @iU the non-relativistic
local gravitational field. Note that gi is generated by both the ordinary baryonic matter and the
dipolar dark matter. Similarly, the equation of evolution (10.31b) for the dipole moment reads
in the NR limit [using also (10.94)]

d
2� i

?

dt2
� O…i

?W…?
D

1

�
@i .W �…?W…?

/C �
j
?
@jgi

C O
�
c�2

�
; (10.95)

where we explicitly have d2� i
?
=dt2 D

�
@2

t C aj@j C 2vj@2
jt C vjvk@2

jk

�
� i

?
. Notice the sec-

ond term in the RHS which is a tidal term coming from the Riemann curvature coupling in
(10.31b). Finally, the equation (10.11) reduces to the classical continuity equation

@t� C @i

�
�vi

�
D O

�
c�2

�
: (10.96)

Next, we need to be cautious about the relativistic order of magnitude of the potential func-
tionW appearing in the Lagrangian (10.17). It is clear thatW has the dimension either of amass
density or an energy density, depending of where we would reinstall the factors c in (10.17). We
shall from now on assume that W is an energy density, and has a finite non-zero limit when
c ! C1. is will be justified when we show in (10.113) below that the coefficientsW2,W3,
… in the expansion of W considered as an energy density, can be expressed solely in terms of
G and the MOND acceleration a0 (without any c’s). erefore, our assumption means that we
are viewing a0 as a new fundamental acceleration scale a priori independent from c. With such
hypothesis, if we reintroduce the factors of c in the expression of the density r considered as a
mass density and given by (10.37a), we get r D � C .W �…?W…?

/=c2, where � is given by
(10.38). us, the term .W �…?W…?

/=c2 becomes negligible in the formal limit c ! C1,
and we have r D � C O.c�2/. In particular, we observe that the term W0, which is linked to
the cosmological constant by (restoring the c’s and G)

W0 D
ƒc4

8�G
; (10.97)

does not enter the expression of the dipolar fluid density r , and therefore has no influence on the
local dynamics of the dipolar dark matter in the NR limit. Our assumption that W has a finite
non-zero limit when c ! C1 means that the cosmological constantƒ should scale with c�4,
which will be justified later when we show thatƒ � a2

0=c
4.

us, in the NR limit we need to consider only the mass density of the dipolar dark matter
given by �. Now, from (10.38) we have � D � � r�…

�
?

which becomes when c ! C1

� D � � @i…
i
? C O

�
c�2

�
: (10.98)

At that order the dipolar term involves only an ordinary partial space derivative. Finally, we get
the Poisson equation in the standard way as the NR limit of the 00 and i i components of the
Einstein equations, and find

�U D �4�G
�
�b C � � @i…

i
?

�
C O

�
c�2

�
; (10.99)
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where �b is the Newtonian mass density of baryonic matter. is equation can be written in the
alternative form

@i

�
gi

� 4�G…i
?

�
D �4�G

�
�b C �

�
C O

�
c�2

�
: (10.100)

To summarize, the equations governing the dynamics of the dipolar dark matter and the gravita-
tional field in theNR limit are: the equation of motion (10.94), the evolution equation (10.95),
the continuity equation (10.96) and the Poisson equation (10.100). On the other hand, baryons
and photons obey the geodesic equation, which means dvi

b=dt D @iU C O.c�2/ for baryons,
and the standard GR formula for light deflection in a potential U for photons, where U is gen-
erated by (10.99).

10.7.2 e weak clustering hypothesis
We have shown in section 10.6 that at linear perturbation order, in a cosmological context, the
dynamics of dipolar dark matter cannot be distinguished from that of baryonic matter or stan-
dard dark matter. We now argue that the motion of dipolar dark matter being non-geodesic,
its non-linear dynamics should be different. Our main motivation for the argument is the ex-
istence of an exact solution of the equations governing the dynamics of the dipolar dark matter
in the NR limit. Indeed, we show in the appendix that, in the simple case where the baryonic
matter is modeled by a spherically symmetric mass distribution, there is a solution to the equa-
tions for which the dipole moments are in equilibrium (�? D const), and at rest (vi D 0),
with the internal force F i exactly balancing the gravitational field gi . In such a solution, the
dipolar medium is uniformly distributed or more generally spherically symetrically distributed,
and the polarization…i

?
is aligned with the gravitational field gi ; the dipolar fluid is thus polar-

ized. Furthermore, we show in this appendix that the latter solution is stable against dynamical
perturbations.

From that solution, we expect that the dipolar medium will not cluster much during the
cosmological evolution because the internal forcemay balance part of the local gravitational field
generated by an overdensity (see Fig. 10.2 for a picturial view of the argument). From this we
infer that the dark matter density contrast in a typical galaxy at low redshi should be small, at
least smaller than in the standardƒ-CDM scenario. Such a galaxy would therefore be essentially
baryonic, with a typical mass density of the dipolar dark matter � rather small compared to the
baryonic one, and perhaps around its mean cosmological value � . us, the crucial hypothesis
we are making (based on the solution in the appendix) is that

� � �b ; (10.101)

or perhaps that � stays essentially at a value of the order of its mean cosmological value,

� � � � �b : (10.102)

Note that for standard CDM (or baryonic matter), the density contrast between the value of
�cdm (or �b) in a galaxy and the mean cosmological one �cdm (or �b) is typically of order 105.
is means that even if dipolar dark matter clustered enough so that for instance � � 103 � in
a galaxy at low redshi, it would still satisfy the condition (10.101).
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Figure 10.2: Schematic view of two worldlines of baryonic matter and dipolar dark matter. e baryonic matter
follows a geodesicmotion, Pu� D 0, and therefore collapses in the regions of overdensity. Obeying the non-geodesic
equation of motion Pu� D �F�, the dipolar dark matter is expected to have a different behavior in the non-linear
(NL) regime. Namely, the internal forceF i can balance the gravitational field gi created by an overdensity, in order
to keep the rest mass density of dipolar dark matter close to its mean cosmological value, � � � , or at least far
smaller than the baryonic one.

Note also that with this hypothesis, the non-linear growth of structures in our model will
not be triggered by the rest mass � of dipolar dark matter (since it does not cluster much), but
by the internal energy �int of the dipolar medium, which is such that � D � C �int and is
explicitly given by �int D �r�…

�
?

[recall (10.38)]. We have seen that, at first cosmological
perturbation order, the density contrast associated with �int reduces to �Di�i , and obeys the
standard evolution equation (10.90). We expect that at non-linear order it will take over the
dominant role as compared to the rest mass density contrast " in the formation of structures.
On the other hand, in the NR limit �int reduces to �@i…

i
?

[see (10.98)] and, as we shall see in
the following section, will be at the origin of the MOND effect.

We shall refer to the condition (10.101) [or even to the stronger condition (10.102)] as the
hypothesis of weak clustering of the dipolar dark matter fluid. Obviously, the validity of this
hypothesis cannot be addressed with the formalism of first-order cosmological perturbations in
section 10.6, because it is a consequence of the non-linear cosmological evolution. e hypoth-
esis of weak clustering of dipolar dark matter should be validated through numerical N-body
simulations.

Let us thus assume that the dipolar dark matter has not clustered very much, and even that
� might stay more or less at the cosmological mean value � (such that�dm ' 0:23). Because
of its size and typical time-scale of evolution, a galaxy is almost unaffected by the cosmological
expansion of theUniverse. erefore, the cosmologicalmass density� of the dipolar darkmatter
is not only homogeneous, but also almost constant in this galaxy. us, the continuity equation
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(10.96) reduces to @i

�
�vi

�
' 0. e most simple solution obviously corresponds to a static

fluid verifying
vi

' 0 : (10.103)

It is therefore natural to consider that the dipolar dark matter is almost at rest with respect to
some averaged cosmological matter distribution. is is supported by the exact solution found
in the appendix, which indicates that the dipolar dark matter in presence of an ordinary mass
does indeed behave essentially like a static medium. Because of the internal force, the motion is
not geodesic, and the force acts like a “rocket” to compensate the gravitational field and to keep
the dipolar particle at rest with respect to ordinary matter (see Fig. 10.2).

10.7.3 Link with the phenomenology of MOND

Let us now show that under the weak clustering hypothesis, the equations (10.94)–(10.96) and
(10.100) naturally reproduce the phenomenology of MOND. First of all, if (10.103) holds,
equation (10.94) tells that the polarization…i

?
should be aligned with the local gravitational

field gi , namely12

gi
D O…i

?W…?
: (10.104)

is proportionality relation will be the crucial ingredient for recovering MOND.
We must now further specify the “fundamental” potential W entering the original action

(10.17). In section 10.6, we considered the dipolar fluid at early cosmological times, where the
polarization field was perturbative. We shall now consider it at late cosmological times (around
the value �0) but still in a regimewhere the polarization field is weak. is will correspond to the
outer zone of a galaxy at low redshi, where the local gravitational field generated by the galaxy is
weak. We therefore assume that the potentialW can still be expanded in powers of…? and we
keep only a few terms in the expansion. Next, we introduce a fundamental acceleration scale a0

to be later identified with the MOND constant acceleration whose commonly accepted value is
a0 ' 1:2 � 10�10 m=s2 [361]. Associated with a0 we can define a fundamental surface density
scale

† �
a0

2�G
; (10.105)

whose numerical value is† ' 0:3 kg=m2 ' 130 Mˇ=pc2. e numerical value of† is close to
the observed upper limit of the surface brightness of spiral galaxies— the so-called Freeman’s law
which is seen as an empirical evidence for MOND [361]. We now assert that the expansion of
W when…? ! 0 is physically valid when the condition…? � † is satisfied. As will become
obvious, this condition can equivalently be written g � a0, where g D jgij is the norm of the
local gravitational field of the galaxy, and this will correspond to the deep MOND regime (see
Fig. 10.3). With respect to the expansion (10.52) already used in cosmology, we shall be able to
add an extra term. We now write this expansion, for…? � †, as

W.…?/ D W0 C
1

2
W2…

2
? C

1

6
W3…

3
? C O

h�
…?

†

�4i
: (10.106)

¹²From now on, we no longer indicate the neglected remainder termsO.c�2/. Furthermore we assume for the
discussion that (10.103) is exactly verified, i.e. vi D 0.
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e first term W0 is related to the cosmological constant ƒ through (10.97). We now show
that the next two coefficients W2 and W3 are uniquely determined if we want to recover the
phenomenology of MOND. Indeed, by inserting (10.106) into the relation (10.104) we obtain

gi
D …i

?

�
W2 C

1

2
W3…? C O

h�
…?

†

�2i�
; (10.107)

which can be inverted to yield the polarization as an expansion in powers of (the norm of ) the
gravitational field. Anticipating that W2† � a0, this expansion will be valid whenever g �

a0. We obtain

…i
? D

gi

W2

�
1 �

1

2

W3

W2
2

g C O
h�

g

a0

�2i�
: (10.108)

Next, following the conventions of [63, 62], we introduce the coefficient of “gravitational sus-
ceptibility” � of the dipolar medium through

…i
? D �

�

4�G
gi : (10.109)

Inserting that definition13 into the LHS of the Poisson equation (10.100), we find

@i

�
.1 C �/gi

�
D �4�G .�b C �/ : (10.110)

Finally, invoking our hypothesis of weak clustering (10.101), or (10.102) in the more extreme
variant, we can neglect the mass density � of the dipole moments with respect to the baryonic
one, so we obtain theMONDequation which is generated solely by the distribution of baryonic
matter as [40]

@i

�
�gi

�
D �4�G �b : (10.111)

eMOND function� is related to the susceptibility coefficient by� D 1C� and can actually
be interpreted as the “digravitational” coefficient of the dipolar medium [63]. Again, let us stress
that in this model we do have some distribution of dark matter � in an ordinary sense, but we
expect its contribution to become negligible in galactic halos at low redshis (aer cosmological
evolution), so that theMONDfit of rotation curves of galaxies is unaffected by this “monopolar”
dark matter.14 e MOND effect is due to the dipolar part of the dark matter given by the
internal energy �int D �@i…

i
?
.

Now, from astronomical observations we know that the gravitational susceptibility � in the
deep MOND regime g � a0 should behave like

� D �1 C
g

a0

C O
h�

g

a0

�2i
: (10.112)

¹³Note that this definition is valid in bothMONDandNewtonian regimeswhenever the polarization is aligned
with the gravitational field.

¹⁴However, at the larger scale of clusters of galaxies themonopolar part of the dipolar medium � may play a role
to explain the missing dark matter in MOND estimates of the dynamical mass [361, 15]. Note that in the present
model, the motion of photons, needed to interpret weak-lensing experiments, is given by the standard general rela-
tivistic prediction; see (10.93) with potential U solution of the MOND equation (10.111).
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e fact that � should be negative was interpreted in the quasi-Newtonian model [63] as an
evidence for gravitational polarization — the gravitational analogue of the electric polarization
in dielectric media. By inserting (10.112) into (10.109), and comparing with the prediction of
our model as given by (10.108), we uniquely fix the unknown coefficients therein as

W2 D 4�G ; (10.113a)

W3 D 32�2 G2

a0

: (10.113b)

is, together withW0 fixed by (10.97), determines the potential functionW up to third order
from astronomical observations. As we see, the MOND acceleration a0 enters at third order
in the expansion, and therefore does not show up in the linear cosmological perturbations of
section 10.6. At third order, the potentialW deviates from a purely harmonic potential, and a0

can be seen as a measure of its anharmonicity.
To expressW in the best way, we prefer using the surface density scale† D a0=2�G rather

than the acceleration scale a0. To do so, we must introduce a purely numerical dimensionless
coefficient ˛ to express the cosmological constantƒ (which is positive and has the dimension of
an inverse length squared) in units of a2

0=c
4, and we pose

ƒ D 3˛2

�
2�a0

c2

�2

: (10.114)

e definition of ˛ is such that aƒ D ˛ a0 represents the natural acceleration scale associated
with the cosmological constant, and is already given by (10.10) as aƒ D

p
ƒ=3 c2=2� . en,

the cosmological term (10.97) becomesW0 D 6�3G†2 ˛2, and we obtain

W D 6�G†2

(
˛2�2

C
1

3

�
…?

†

�2

C
4

9

�
…?

†

�3

C O
��
…?

†

�4�)
: (10.115)

In the present model there is nothing which can give the relation between ƒ and a0, hence ˛
is not determined. However, if the dipolar fluid action (10.17) is intended to describe at some
macroscopic level a more fundamental theory (presumably aQFT), we expect that the potential
W should depend only on certain more or less fundamental constants, and some dimensionless
variables built from “fundamental fields”. Introducing the dimensionless quantity x � …?=†,
we can rewrite (10.115) asW D 6�G†2w.x/, where

w.x/ D ˛2�2
C

1

3
x2

C
4

9
x3

C O.x4/ (10.116)

represents some “universal” function coming from some fundamental albeit unknown physics.
erefore, we expect that the numerical coefficients in the expansion of w.x/ should be of the
order of one or, say, 10. In particular, it is natural to expect that ˛ should be of the order of one
(to within a factor 10 say), and we deduce from (10.114) that the magnitude ofƒ should scale
approximately with the square of the MOND acceleration, namelyƒ � a2

0=c
4.

e numerical coincidence between the measured values ofƒ and a0 is well-known [290].
e observed value of the cosmological constant is aroundƒ ' 0:12 Gpc�2 [327] which, to-
gether with a0 ' 1:2 � 10�10 m=s2, corresponds to a value for ˛ which is very close to one:
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˛ ' 0:8. us a0 is very close to the scale aƒ associated with the cosmological constant, which
is related to the Gibbons-Hawking temperature TGH D ~aƒ=kc derived from semi-classical
theory on de Sitter space-time [193]. From the previous discussion, we see that the “cosmic”
coincidence betweenƒ and a0 has a natural explanation if dark matter is made of a medium of
dipole moments.

10.7.4 e Newtonian regime

For themoment, we looked at the explicit expression of the potential functionW in theMOND
regime g � a0. We would also like to get some information about this function in the Newto-
nian regime g � a0. To do so, we first derive the general expression of the gravitational suscep-
tibitity coefficient �. Here we assume that the MOND function� D 1 C � is always less than
1. is implies� < 0 and thus using (10.104) and (10.109) wemust haveW…?

> 0 (where we
recall that W…?

� dW=d…?). Taking the norm of (10.104) we get g D W…?
.…?/. Next,

we introduce the function‚.g/ which is the inverse ofW…?
.…?/, i.e. satisfies

g D W…?
.…?/ () …? D ‚.g/ : (10.117)

According to (10.109), the susceptibility � is then given as the following fonction of the gravi-
tational field g,

�.g/ D �4�G
‚.g/

g
: (10.118)

is is the general relation linking � (or equivalently the MOND function � D 1 C �) to the
potential functionW in the dipolar action (10.17). Of course, in the present modelW is to be
considered as more fundamental than � which is a derived quantity.

In the Newtonian regime g � a0, the MOND function � should tend to one, so that �
vanishes in this regime. To discuss more concretely this condition, we assume that in the formal
limit g ! C1, the gravitational susceptibility behaves as � � g�
 , with 
 a strictly positive
real number. More precisely, it should behave like � � �� .g=a0/

�
 , where � is a strictly pos-
itive real number. Beware that even if this power-law behavior is a simple assumption, nothing
garanties that it is verified. en, when g ! C1, we get from (10.117) and (10.118) that

…? � A g1�
 ; (10.119a)

W �
1 � 


2 � 

A g2�


C � ; (10.119b)

where A D � a



0=4�G > 0 and � is an integration constant. We have to distinguish several
cases, depending on the value of the exponent 
 :

(i) If 0 < 
 < 1, then both the polarization…? and the potential W diverge. is would
corresponds to the curve (a) of Fig. 10.4.

(ii) If 
 D 1, the polarization…? tends to a maximum “saturation” value…max D A, and
the potentialW equals the constant �. See curve (b) in Fig. 10.4.
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Σ

Figure 10.3: e minimum of the potential func-
tion W.…?/, reached when…? D 0, is a cosmologi-
cal constantƒ. Small deviations around the minimum,
corresponding to…? � † D a0=2�G, describe the
MOND regime g � a0.

W

Π0

(a)

MOND regime

(b)

Σ Πmax

Newtonian regime

κ

Figure 10.4: e potential W as a function of
the polarization …? for different asymptotic be-
haviors of the gravitational susceptibility � in the
Newtonian regime g � a0. e arrows indicate
the direction of increasing gravitational field g.

(iii) If 1 < 
 < 2, the polarization goes to zero while the potential diverges to �1 like a
power law. is implies that W cannot be a univalued function of…?. erefore, there
must exist two branches corresponding to the Newtonian and MOND regimes.

(iv) If 
 D 2, according to (10.119b) the potential diverges to �1 logarithmically, i.e. W �

�A lng, while the polarization still vanishes. Same conclusions as in case (iii) apply.

(v) Finally, if 
 > 2, the polarization goes to zero while the potential tends to �. Same con-
clusions as in (iii) apply.

If we believe that the potentialW represents a fundamental function in the action, and that our
model should strictly speaking be valid in a Newtonian regime (and not being merely valid in
theMOND regime), we should a priori expect thatW is a univalued function of…?. en, the
susceptibility coefficient should be like � � g�
 with 0 < 
 6 1 in the Newtonian regime.
is would mean that the MOND function� behaves like

� � 1 � �

�
a0

g

�


; (10.120)

with 0 < 
 6 1. Such rather slow transition of � toward the Newtonian regime is consis-
tent with the recent results of [168] who fitted the rotation curves of the Milky Way and galaxy
NGC 3198, and of [362] who fitted 17 early-type disc galaxies, and concluded that the New-
tonian regime is rather slowly reached. For instance, the authors of [168, 362, 424] agreed that

 D 1 yields a better fit to the data than 
 D 2.
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e case 
 D 1 (curve (b) in Fig. 10.4) corresponds to an interesting physical situation in
which the dipolar medium saturates when g ! C1, at the maximum value…max D A, or

…max D
�

2
† ; (10.121)

where† is the surface density scale (10.105). In this saturation case, the gravitational suscepti-
bility coefficient behaves as

� � ��
a0

g
: (10.122)

However, let us remind that such a slow transition from MOND toward the Newtonian
regime is a priori ruled out by Solar System observations. Indeed, according to the MOND
equation, a planet orbiting the Sun feels a gravitational fieldg obeying .1C�/g D gN, wheregN

is the Newtonian gravitational field. Hence, if � scales like g�1 when g � a0 like in (10.122),
the gravitational field experienced by planets will involve a constant supplementary acceleration
directed toward the Sun (i.e. a “Pioneer-type” anomaly) given by

g � gN C � a0 : (10.123)

Of course it is striking that the order of magnitude of the Pioneer anomaly is the same as the
MONDaccelerationa0. Unfortunately, thepresenceof a constant acceleration such as in (10.123)
should be detected in themotion of planets, and this is incompatible with currentmeasurements
(see e.g. [228, 227] for a discussion).

Despite the fact that a slow transition to the Newtonian regime (like for example the case

 D 1) seems to be favored by observations at the galactic scale [168, 424, 362], it does not
seem to be viable when extrapolated up to the scale of the Solar System. In our model, we found
that such a behavior is the result of our belief that the “fundamental” functionW be univalued.
In this respect, the validity of the model should be limited to large scales, from the galactic scale
up to cosmological scales, i.e. in a regime of weak gravity. At smaller scales the description in
terms of a single univalued function W should break down. But our model being an effective
one, or even a phenomenological one, the question of whether the potential W is univalued or
not remains an open issue.

10.8 Summary and conclusion
In this paper, we proposed amodel of darkmatter and dark energy based on the concept of grav-
itational polarization of a medium of dipole moments. e dynamics of the dipolar fluid is gov-
erned by the Lagrangian (10.17) in standard general relativity, and constitutes a generalization
of the previousmodel [62]. Namely, this Lagrangian involves a potential functionW , describing
at some effective level a non-gravitational internal force influencing the dynamics of the dipolar
fluid, and which depends on the polarization field or density of dipole moments…? D ��?

instead of merely the dipole moment itself �? in the model [62]. is new form of the potential
permits recovering in a most elegant way the phenomenology of MOND in a typical galaxy at
low redshi. In addition, we show that the model naturally contains a cosmological constantƒ.

We proved in section 10.6 that whithin the framework of the theory of first-order cosmolog-
ical perturbations, the dipolar fluid behaves exactly as standard dark energy (i.e. a cosmological
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constant) plus standard dark matter (i.e. a pressureless perfect fluid). us, our model is con-
sistent with the cosmological observations at large scales. In particular, it leads to the same pre-
dictions as the standardƒ-CDM model for the CMB fluctuations. However, at second order
in the cosmological perturbations, we expect that the dipolar dark matter should differ from a
perfect fluid because of the influence of the internal force resulting in a non-geodesic motion.
e model could thus be checked by working out the second-order cosmological perturbations
and comparing with CMB fluctuations (notably the effects linked with the non-gaussianity).

edynamics of the dipolar darkmatter being different from that of standard darkmatter (at
the level of non-linear perturbations), we expect the “monopolar” part of the dipolar darkmatter
not to cluster much during the cosmological evolution. We call this expectation the hypothesis
of “weak clustering”. It is supported by an exact solution worked out in the appendix for the
dynamics of dipolar dark matter in the non-relativistic limit and in spherical symmetry. In this
solution, the internal force balances the local gravitational field produced by a spherical mass,
so that the dark matter remains at rest with respect to the central mass. e weak clustering
hypothesis should be checked via N-body numerical simulations. Under that hypothesis, we
show that the Poisson equation for the gravitational field generated by the baryonic and dipolar
dark matter reduces to the MOND equation in the regime of weak gravitational fields g � a0.
Our model of dipolar dark matter therefore naturally explains all the successes of the MOND
phenomenology.

To achieve this result (in section 10.7) we have to adjust the fundamental potential W in
the action. We find that it should be given by an anharmonic potential, the minimum of which,
reached when…? D 0, being directly related to the cosmological constantƒ. It is tempting to
interpretƒ as a “vacuum polarization” of some hypothetical quantum field, when the “classical”
part of the polarization…? ! 0. e expansion around that minimum is fine-tuned in order
to recover MOND. In particular, we show that the MOND acceleration a0 parametrizes the
coefficient of the third-order deviation of W from the minimum. Although fine-tuned to fit
with observations, this potential function W offers a nice unification between the dark energy
in the form of ƒ and the dark matter in the form of MOND (see Fig. 10.3). A consequence
of such unification is that the cosmological constant should scale with the MOND acceleration
according toƒ � a2

0=c
4. is scaling relation is in good agreement with observations and has

a very natural explanation in our model.
To conclude, we proposed to modify the matter sector rather than the gravity sector as in

modified gravity theories [42, 360, 423, 206]. Namely, we investigated a model of dark matter,
but of such an exotic form that it naturally explains the phenomenology of MOND at galac-
tic scales. Furthermore, that form of dark matter has a simple physical interpretation in terms
of the well-known mechanism of polarization by an exterior field. More work is necessary to
test the model, either by studying second-order perturbations in cosmology, or by computing
numerically the non-linear growth of perturbations and comparing with large-scale structures.

Acknowledgments It is a pleasure to thank Alain Riazuelo and Jean-Philippe Uzan for inter-
esting discussions at an early stage of this work.
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Appendix: Dark matter in a central gravitational field
We investigate the dynamics of the dipolar dark matter fluid in presence of a spherically sym-
metric mass distribution of ordinary baryonic matter in the NR limit c ! C1. e equations
to solve are the equation of motion (10.94), the equation of evolution (10.95), the continuity
equation (10.96) and the Poisson equation for the gravitational field (10.100). Let us rewrite
those equations here for convenience:15

dv

dt
D g � F ; (10.124a)

@t� D �r � .�v/ ; (10.124b)
r � g D �4�G .� C �b � r � …/ ; (10.124c)
d

2�

dt2
D F C

1

�
r
�
W �…W 0

�
C .� � r/g ; (10.124d)

where the internal force reads F D O…W 0, with O… � …=….
Our aim is to solve the equations (10.124) in the special case where the baryonic matter

is modeled by a time-independent spherically symmetric distribution of mass �b.r/, say with
compact support. Let us show that there is a simple solution to such a set of equations, in the
case where

v0 D 0 ; (10.125a)
�0 D �0.r/ ; (10.125b)

which corresponds to a static fluid whose mass distribution is time-independent and spherically
symmetric. We denote such particular solution with a lower index 0. From (10.125) we observe
that the continuity equation (10.124b) is immediately satisfied. In such a solution, according
to (10.124a) the internal force balances exactly the gravitational field, i.e. F0 D g0 (this is
somewhat similar to the case of a non-rotating star in hydrostatic equilibrium, where the pressure
gradient plays the role of the internal force). We deduce that the polarization field …0 D �0 �0

is aligned with the gravitational field g0. Hence, from equation (10.124c) both …0 and g0 are
radial. We shall pose g0 D �g0.r; t/ er and …0 D �…0.r; t/ er , where in our notation
g0 > 0 and…0 > 0.

Furthermore, let us show that in addition the polarization field is practically in “equilibrium”,
i.e. …0 is independent on time t , and so is g0. We replace g0 by the explicit expression of the
internal force F0 D O…0W 0

0 into the evolution equation (10.124d), use (10.125a) and get

@2
t …0 � �0W 0

0
O…0 D r

�
W0 �…0 W 0

0

�
C .…0 � r/ . O…0 W 0

0/ : (10.126)

Here O…0 D …0=…0 D �er , and we introduced the shorthand notation W 0
0 � W 0.…0/.

Now, it turns out that theRHSof this equation vanishes in the special casewhere the polarization
field is radial, hence we get

@2
t…0 D �0W 0

0 : (10.127)

¹⁵In this appendix, we adopt 3-dimensional notations with boldface vectors, e.g. F D .F i/. We also remove
the subscript ? from the variables �? and …? for notational simplicity. e derivatives of the potential W with
respect to its argument… will be denoted with a prime, e.g. W 0 � W

…
� dW=d….
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In order to determine the time evolution of…0, an explicit expression for the potentialW is in
principle required. However, we saw in section 10.7.3 that the potentialW only depends on the
polarization… and the constantsa0 andG. e only time-scale one can buildwitha0, G and�0

is the dipolar darkmatter self-gravitating time-scale �g D .�=G�0/
1=2, or equivalently, in terms

of frequency, !2
g D 4�G�0. erefore, the polarization…0 can only evolve on this time-scale.

For instance, in the MOND regime g � a0, we have at leading orderW 0
0 D 4�G…0, hence

(10.127) reduces to
@2

t…0 D !2
g …0 : (10.128)

e most general solution of this equation is a linear combinaison of hyperbolic cosh!gt and
sinh!gt . For a “monopolar” dark matter mass density �0 of, say, the mean cosmological value
� ' 10�26 kg=m3 [in agreement with our weak clustering hypothesis (10.102)], the typical
time-scale of evolution of…0 will be larger than 6 � 1010 years. is is large enough to neglect
any time variation of…0 with respect to a typical orbital time-scale in a galaxy. Our solution is
therefore given by

…0 D �…0.r/ er ; (10.129)

togetherwith (10.125). edipolemoments are at rest and in equilibrium. e explicit function
…0.r/ is determined from the radial gravitational field g0.r/ as16

…0.r/ D ‚.g0.r// ; (10.130)

where‚.g0/ denotes the inverse inverse function ofW 0.…0/ following the notation (10.117).
e gravitational field g0.r/ is determined by the Poisson equation (10.124c) as

g0 � 4�G…0 D
GM0.r/

r2
; (10.131)

where M0.r/ D 4�
R r

0
ds s2Œ�b.s/C �0.s/� is the mass enclosed within radius r .

e existence of this physically simple solution represents a notable progress compared to
the more complicated solution found in the previous model [62] (see section IV there). Such
a solution is quite interesting for the present model because it indicates that during the cosmo-
logical evolution (at non-linear perturbation order) the dipolar darkmatter may not cluster very
much toward regions of overdensity. Most of the effect will be in the dipole moment vectors
which acquire a spatial distribution. is is ourmotivation for the “weak clustering” assumption
(10.101)–(10.102) stating that � � �b, which was used in section 10.7.3 to obtain MOND.
In the present case, neglecting �0 with respect to �b in the RHS of (10.131), we recover the
usual MOND equation generated by the baryonic density only. is being said, such an appeal-
ing solutionmay be physically irrelevant if the spherically symmetric configuration appears to be
unstable with respect to linear perturbations. is motivates the following study of the stability
of the previous solution.

¹⁶Note that if in this solution the polarization field…0.r/ D �0.r/�0.r/ is determined, the density �0.r/ and
dipole moment �0.r/ are not specified separately. For instance, the density could be at the uniform cosmological
value� so that �0.r/ D …0.r/=� . is degeneracy of�0.r/ is an artifact of our assumptions of spherical symmetry
and staticity.
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Consider a general perturbation of the background solution, namely

� D �0 C ı� ; (10.132a)
v D ıv ; (10.132b)

… D …0 C ı… : (10.132c)

We have also g D g0 C ıg and F D F0 C ıF , where the expression of the perturbed force
in terms of the perturbed polarization explicitly reads

ıF D W 00
0 .

O…0 � ı…/ O…0 C W 0
0

�
ı…

…0

�

�
O…0 �

ı…

…0

�
O…0

�
: (10.133)

Assuming a Fourier decomposition for any perturbative quantity ıX , we write for a given mode
of frequency ! and wave number k,

ıX.x; t/ D ıX.k; !/ ei.k�x�!t/ : (10.134)

We want to find the relation between k � er and !, the so-called dispersion relation, which
contains all the physical information about the behavior of the generic perturbation (10.134).
Introducing this ansatz into (10.124), and simplifying the resulting equations by making use of
the background solution, we find

ıv D
i

!
.ıg � ıF/ ; (10.135a)

ı� D
1

!
.�0 k � ıv � i ıv � r�0/ ; (10.135b)

ıg D 4�G
ik

k2
.ı� � ik � ı…/ : (10.135c)

ese algebraic expressions can be combined to express ı� , ıg and ıv in terms of ı… only. Aer
some algebra, we get from the evolution equation (10.124d) a relation expressing the perturbed
polarization field ı… D �0 ı� C ı� �0 as

!2 ı… D !2 ı�

�0

…0 C
i!

�0

.ıv � r�0/…0 � i! .ıv � r/…0 C . O…0 � ı…/r
�
…0W 00

0

�
C…0W 00

0 .
O…0 � ı…/ ik � .ik � …0/ ıg � .ı… � r/g0 � �0 ıF : (10.136)

When replacing ı� , ıg, ıv and ıF into (10.136) we obtain a master equation for the per-
turbed polarization ı… which is quite complicated. Given the complexity of the problem, we
restrict our analysis to the simplest modes in a spherically symmetric background, namely those
propagating radially. We shall thus write k D k er , and study successively the transverse and
longitudinal perturbations.

Firstly, let us consider a transverse perturbation ı…, i.e. one which satisfies ı… � er D 0.
Projecting the master equation (10.136) in the direction of ı…, we get that�

!2
C W 0

0

�
1

�0

�
2

r

��
ı… D 0 ; (10.137)
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which simply states that no transverse perturbations propagating radially are allowed, i.e. ı… D

0. Consider now the case of a longitudinal perturbation ı… D �ı….r; t/ er , where ı… can be
positive or negative (with our convention the norm of … reads… D …0 C ı…), and represents
the arbitrary amplitude of the applied linear perturbation. Aer some lengthy calculations, we
get the dispersion relation

k D i
@r�0

�0

 
1 C

!2

!2
g

"
1 C

�
4�G � W 00

0

�
@r…0

!2 C �0W 00
0 C…0 @rW 00

0

#!�1

: (10.138)

Notice first that, as thewavenumberk is purely imaginary, such aperturbation cannot propagate.
Secondly, the stability of the background solution with respect to this perturbation is related to
the sign of k=i, so an explicit expression for the potential W is required to conclude. Such an
expression is available in the MOND regime g0 � a0 using the expansion (10.115). Assuming
theMONDequationwith a (baryonic) pointmassM for simplicity, i.e. equation (10.131)with
�b D M ı.x/ and negligible �0, we find that the dispersion relation can be recast at the leading
order in the form

k D i
@r�0

�0

!2
g

�
!2 C !2

g � 2!2
K

�
!4 C 2!2

g !
2 C !2

g

�
!2
g � 2!2

K

� ; (10.139)

where !2
K D GM=r3 denotes the Keplerian frequency. We now turn to the analysis of the two

factors in (10.139), namely the !-dependent and �0-dependent ones.
At a given distance r from the center of the galaxy, the !-dependent factor becomes very

large in the vicinity of the resonant frequency

!2
R D !g

�p
2!K � !g

�
: (10.140)

But we are restricting our attention to perturbations in the MOND regime where g0 � a0,
which means at distances r from the galactic center that are far larger than the MOND radius
rM �

p
GM=a0, or equivalently atKeplerian frequencies!K � !M with!2

M D GM=r3
M. For

a typical galaxy of mass M � 1011 Mˇ, and a “monopolar” dark matter mass density around
the mean cosmological value, i.e. �0 � � ' 10�26 kg=m3, we find by reporting the constraint
!K � !M into (10.140) the upper-bound !2

R �
p

2!g !M, which gives numerically !R �

10�17 s�1. Because perturbations with a typical time scale 2�=! � 2 � 1010 years are out of
the present scope, the !-dependent part of (10.139) reduces to a numerically small factor.

Finally, we consider the �0-dependent part of (10.139). Consistent with the “weak cluster-
ing hypothesis” (10.101)–(10.102), we are expecting the background density profile �0 to be
almost homogeneous. us, the factor @r�0=�0 will be of the order of the inverse of the char-
acteristic length scale L of variation of �0 assumed to be far larger than the typical size ` of the
galaxy, which implies jk �xj . `=L ' 0 in (10.134). A longitudinal perturbationwould there-
fore keep oscillating at the frequency ! without propagating, and we conclude that it would be
stable.
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Abstract

In previous work [L. Blanchet and A. Le Tiec, Phys. Rev. D 78, 024031 (2008)], a
model of dark matter and dark energy based on the concept of gravitational polarization
was investigated. is model was shown to recover the concordance cosmological scenario
(ƒ-CDM) at cosmological scales, and the phenomenology of themodifiedNewtonian dy-
namics (MOND) at galactic scales. In this article we prove that the model can be formu-
lated with a simple and physically meaningful matter action in general relativity. We also
provide alternative derivations of the main results of the model, and some details on the
variation of the action.

235



236

10.9 Introduction and motivation

econcordance cosmologicalmodelƒ-CDMbrilliantly accounts for theprecisemeasurements
of the anisotropies in the cosmic microwave background (CMB) [215], for the formation and
growth of large scale structure as seen in deep redshi [88] and weak lensing [39] surveys, and
for the fainting of the light curves of very distant supernovae [349, 326]. e paramount con-
clusion is that the total mass-energy content of the Universe is made by�b ' 4% of ordinary
(essentially baryonic) matter, �dm ' 23% of cold dark matter (CDM), and �de ' 73% of
dark energywhich could be in the formof a cosmological constantƒ. However, no experimental
claim of direct discovery of aCDMparticle has been confirmed, and the attempts at interpreting
ƒ in terms of fundamental quantum mechanics have failed.

With the advent of high precision cosmic N -body simulations (see [54] for a review), the
cosmological model has been extrapolated to the smaller scale of galactic systems, and suggests
the existence of a specific CDM density profile around galaxies [308]. However, the simulated
CDM halos face severe challenges when compared to observations. Most problematic is the
generic formation of cusps of dark matter in the central regions of galaxies, while the rotation
curves seem to favor a constant density profile in the core [357, 190]. We mention also the pre-
diction of numerous but unseen satellites of large galaxies [301, 251], and the recent evidence
[94] that tidal dwarf galaxies are dominated by dark matter — a fact which is at odds with the
CDM tenets [188]. Furthermore, the most important challenge is that the CDM scenario falls
short in explaining in a natural wayMilgrom’s law [285, 286, 287], namely that the need for dark
matter arises only in regions where the typical acceleration of ordinary matter (or, equivalently,
the typical value of the gravitational field) is below some universal constant acceleration scale
a0 ' 1:2�10�10 m=s2. is lawmanifests itself particularly in the flat rotation curves of spiral
galaxies, and in the baryonic Tully-Fisher relation. No convincing mechanism for incorporating
an acceleration scale such as a0 in the N -body simulated CDMhalos has been found. Although
it is possible that some of these problems will be solved within the CDM approach [388, 383],
it is very important to consider alternative solutions.

e most successful alternative approach to the problem of dark matter in galactic halos is
MOND — Milgrom’s modified Newtonian dynamics [285, 286, 287], which insists that there
is no darkmatter and we instead witness a violation of theNewtonian law of gravity. InMOND
the true gravitational field g experienced by ordinary matter (stars and gas) differs from the
Newtonian one, and obeys the modified Poisson equation [40]

r � .�g/ D �4� �b : (10.141)

We use bold-face notation to represent ordinary three-dimensional vectors and pose G D 1.
Here �b is the density of baryonic matter, and� is the MOND function which depends on the
norm g D jgj of the gravitational field. In the regime of weak gravitational fields, g � a0, we
have�.g/ D g=a0CO.g2/, while�.g/ ! 1wheng � a0, so as to recover the usual Poisson
equation. Various forms of the interpolating function � have been proposed to fit observations
in the best way [168, 362].

e ability of the formula (10.141) to reproduce a wide variety of phenomena associated
with dark matter halos is tremendous (see e.g. [361, 404]). However, because (10.141) is non-
relativistic, it does not allow one to answer questions related to cosmology. In particular, it is a
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great challenge to find a theory reproducing bothMOND at galactic scales andƒ-CDM at cos-
mological scales. A number of relativistic field theories have been proposed, recovering (10.141)
in the non-relativistic limit, and sharing with MOND the idea that dark matter is an apparent
reflection of a fundamental modification of gravity. e prime example of such modified grav-
ity theories is the tensor-vector-scalar theory (TeVeS) of Bekenstein and Sanders [358, 42, 360].
Interesting connections between TeVeS and the class of Einstein-æther theories [226] have been
found [425, 377, 124]. Modified gravity theories are rather complicated extensions of general
relativity (GR), and are for the moment not connected to fundamental physics. Moreover, they
do not account for all the mass discrepancy at the intermediate scale of galaxy clusters [14]. To
resolve this difficulty a component of hot dark matter (HDM) in the form of massive neutrinos
has been invoked [16, 13]. At cosmological scales the modified gravity theories also have some
problems at reproducing the observed CMB spectrum [378], even when using a component of
HDM.

e approachwe propose below is able to successfully address both cosmological and galactic
scales. We advocate that a non-standard form of dark matter may exist, while keeping the stan-
dard law of gravity (GR) unchanged. e physical belief of this alternative approach is the strik-
ing analogy between MOND and the electrostatics of (non-linear isotropic) dielectric media
[63]. Indeed, the MOND equation (10.141) can be interpreted as the standard Poisson equa-
tion if the gravitational field is sourced by baryonic matter and by a “digravitational” medium
playing the role of dark matter. e density of “polarization masses” in this medium is then
�pol D �r � …? (anticipating the notation adopted below), where …? denotes the polariza-
tion field, which must be aligned with the local gravitational field,

…? D �
�.g/

4�
g : (10.142)

Here � � � � 1 denotes the “gravitational susceptibility” coefficient of the medium, while �
can be viewed as a “digravitational” constant. It was argued [63] that in the gravitational case the
sign of � should be negative, in agreement with what MOND predicts; indeed, we have� < 1

in a straightforward interpolation between the MOND and Newtonian regimes, hence � < 0.
Furthermore, arguments were given showing that the stability of the dipolar medium requires
the existence of some environment-dependent internal non-gravitational force. More precisely,
the force has to depend on the polarization field, i.e. the density of dipole moments.

Motivated by the previous interpretation of MOND we present in Section 10.10 an action
principle for darkmatter viewed as the gravitational analogue of a polarizable dielectricmedium.
In Section 10.11we show that thismodel is currently viable since it is in agreementwith the stan-
dard cosmological scenario at large scales and recovers MOND at galactic scales. Some details
regarding the variation of the action are relagated to the Appendix.

10.10 Model of dipolar dark matter and dark energy
In previous work [84] (hereaer paper I; see also [62] for an earlier attempt) we proposed a rel-
ativistic model of dark matter and dark energy based on a particular concept of gravitational
polarization. In contrast to modified gravity theories, the model should be viewed as a modi-
fied matter theory. e idea that the phenomenology of MOND could arise from the CDM
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Figure 10.5: edipolar fluid is entirely characterized by (i) its four-velocity u� tangent to the world-line x�.�/,
(ii) its rest mass density � , and (iii) the dipole moment ��. e polarization…? D ��? is build from the norm
�? of the projection ��

?
of the dipole moment �� onto the space-like hypersurface†t orthogonal to u�.

paradigm has been previously discussed [233, 289]. However here we shall consider a true mod-
ification of the physics of dark matter, drastically different from CDM (see also [102] for an
alternative approach in a related spirit).

In paper I we showed that this particular model of modified dark matter permits recovering
the phenomenology ofMONDin a natural way, while being in agreementwith the cosmological
ƒ-CDM model. e aim of this article is to prove that the model can be reformulated from a
simple and physically meaningful matter action.

e dipolarmedium is described as a fluid withmass current J � D �u�, and endowedwith
a dipole moment vector ��. Here u� D dx�=d� is the time-like four-velocity of the fluid, with
d� D

p
�g��dx�dx� being the proper time (we pose c D 1). e rest mass density reads

� D
p

�J�J �, and the mass current is conserved, i.e.

r�J �
D 0 ; (10.143)

where r� denotes the covariant derivative associated with the metric g�� . e dipole moment
�� has the dimension of a length, so that it is more like a displacement vector; the associated
polarization field then reads…� D ���. Wehave inmind that �� and…� are effective variables
resulting from an average performed at some macroscopic scale.

e action of the dipolar dark matter is of the type S D
R
d

4x
p

�g L. It will be added to
the Einstein-Hilbert action for gravity, and to the standard actions of all the other matter fields
(baryons, photons, neutrinos, etc). We find that the Lagrangian consists of three terms: a mass
term � in the ordinary sense (as for CDM), an interaction term built from the coupling between
the current J � and the dipolar field ��, and a potential scalar functionW characterizing an in-
ternal force acting on the dipolar particles, and depending on the polarization field. It explicitely
reads

L D �� C J�
P��

� W.…?/ : (10.144)
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Both J � and �� will be considered as dynamical variables, to be varied independently when ap-
plying the principle of stationary action (cf. the Appendix for details). Here P�� � D��=d� D

u�r��
� denotes the proper time derivative of the dipolemoment. Note that P�� is coupled to the

current J� like an external field would be. However, here the dipole moment �� is an internal
field. e potentialW is assumed to depend solely on the norm…? of the projection of the po-
larization field perpendicular to the four-velocity. us,…? D ��? where �? D

p
?�� ���� ,

with theusual orthogonal projector?�� D g��Cu�u� (cf. Fig. 10.5). As discussed in Sec. 10.9,
the introduction of such an environment-dependent potential is motivated by the previous in-
terpretation of the MOND phenomenology resulting from the mechanism of gravitational po-
larization.

A crucial point is that �� can be replaced in the coupling term of (10.144) by its orthogonal
projection ��

?
D ?

�
� �

� without changing the dynamics. Indeed, a short calculation reveals that
J�

P�� D J�
P�

�
?

C r�.J
�u���/, so that, because a pure divergence can be dropped from the

Lagrangian, the only physical degrees of freedom are the three independent components of the
vector ��

?
, which is space-like (we denote P�

�
?

� D�
�
?
=d�). is is to be contrasted with TeVeS

and Einstein-æther theories which are based on a fundamental time-like vector field.
To obtain the equation of motion of the dipolar fluid we vary the action with respect to the

dipole moment variable ��, and get

Pu�
D �F�

� �O�
�
?
W 0 ; (10.145)

where Pu� � Du�=d� is the four-acceleration, O�
�
?

� �
�
?
=�? is the unit direction along ��

?
, and

W 0 � dW=d…?. e motion is non-geodesic because of the internal force densityF� caused
by the dipole moment ��.

e variationwith respect toJ � yields the equation of evolution for the dipolemoment. e
constraint that thematter current is conserved, Eq. (10.143), is to be satisfiedduring the variation
and we apply a convective variational procedure (see the Appendix). Defining for convenience
the “linear momentum”�� � P�

�
?

C u� .1 C 2�?W 0/, we obtain

P��
D

1

�
r

�
�
W �…?W 0

�
� ��

?R
�

���
u�u� : (10.146)

is tells how the variation of the dipole moment should differ from parallel transport along
the fluid’s worldline. e first term on the right-hand-side (RHS) looks like a pressure term,
while the second term represents the analogue of the standard coupling to Riemann curvature
for spinning particles in GR [319, 23]. Finally, varying with respect to the metric, we get the
stress-energy tensor

T ��
D �.�J �/

� r�

�h
…

�
?

u.�
� u�…

.�
?

i
u�/
�

� g��
�
W �…?W 0

�
: (10.147)

eRHS ismade of amonopolar term associated with��, while the second term is (minus) the
divergence of a “polarization” tensor and is of a dipolar nature. Being proportional to themetric,
the third term on the RHS will be related to a fluid of dark energy. We have r�T �� D 0 as a
consequence of (10.145)–(10.146). We observe, in agreement with our earlier argument at the
level of the Lagrangian, that all equations depend in fine only on the perpendicular projection
�

�
?

D ?
�
� �

� of the dipole moment.
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eequations ofmotion (10.145) and evolution (10.146), and the stress-energy tensor (10.147),
turn out to be exactly the same as in the model of paper I [see (2.20)–(2.21) and (2.24) there].
ose equations were derived starting from the more complicated Lagrangian given by (2.7) in
paper I, and sharing some common features with the one for particles with spin moving in an
arbitrary background [23]. Furthermore, they were obtained aer imposing a particular choice
of solution satisfying some consequence of the initial equations („ D 1 in the notation of paper
I). Despite this rather complicated way to derive them, it was found that the equations provide
the sensible physics for a successful model of dark matter and dark energy. We have now proved
that the same equations derive directly (without any further assumptions) from the remarkably
simple Lagrangian (10.144), which lends itself better to physical interpretation.

10.11 Recovering the standard cosmological model and
MOND

We now review the main consequences of this model, presenting alternative versions of most
arguments compared to paper I. To achieve agreementwithMONDandwithƒ-CDM(to first-
order cosmological perturbations), we have to fine-tune the potential W in the action. Indeed,
we find thatW is “phenomenologically” determined up to third order in an expansion when the
polarization field…? tends to zero. Physically, this corresponds to…? � a0, which in turnwill
mean that gravity is weak, g � a0, like in the outskirts of a galaxy or in a nearly homogeneous
and isotropic cosmology. In this regimeW takes the anharmonic form

W.…?/ D
ƒ

8�
C 2� …2

? C
16�2

3a0

…3
? C O.…4

?/ : (10.148)

e minimum is directly related to the cosmological constantƒ, and the deviations from that
minimumare fixed by the agreementwithMOND; in particulara0 parametrizes the third-order
deviation (see Fig. 10.6).

Let us assume, following paper I, that the theory depends only on one new fundamental
scale— the constantMOND acceleration a0. When entering theMOND regime,…?=a0 is of
order one, thereforeW naturally scales with a2

0. IfW is to come from some fundamental theory,
we expect that the dimensionless coefficients in the expansion (10.148) aer global rescaling
by a2

0 should be of the order of one. In particular, ƒ should itself be of the order of a2
0. As is

well known [290], the current astrophysical measurements verify the “cosmic coincidence” that
ƒ � a2

0. is is a natural consequence of our model.

10.11.1 First-order cosmological perturbations
We now turn to the application at early cosmological time, where we consider a linear pertur-
bation around an homogeneous and isotropic Friedman-Lemaître-Robertson-Walker (FLRW)
universe. Since the dipolemoment ��

?
is space-like, it will break the spatial isotropy of the FLRW

background, and must necessarily belong to the first-order perturbation, which we indicate by
�

�
?

D O.1/. For instance, from (10.148) we find that the internal force is also of first order,
F� D 4� …

�
?

CO.2/. At that order the stress-energy tensor (10.147) simplifies verymuch, and
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Figure 10.6: e potential W is function of the polarization field …?. It has an anharmonic behavior in the
MOND regime…? � a0, and its minimum is given by the cosmological constant ƒ. e leading order non-
harmonicity is parametrized by theMONDacceleration scalea0 [cf. Eq. (10.148)]. eNewtonian regime…? �

a0 is discussed in details in paper I.

can be decomposed into dark energy and darkmatter components, namely T �� D T
��
de CT

��
dm ,

where the dark energy is simply given by the cosmological constant, T ��
de D �

ƒ
8�

g�� C O.2/,
while the dark matter reads

T
��
dm D � Qu�

Qu�
C O.2/ : (10.149)

Here � � � � r�…
�
?

is the energy density of the dark matter fluid, and Qu� D u� C P�
�
?

�

��
?

r�u� (i.e. Qu� D u� � £�?
u�, where £�?

is the Lie derivative) is an effective four-velocity
field, which satisfies Qu� Qu� D �1 C O.2/ and the approximate conservation law r�.� Qu�/ D

O.2/. is shows that, at linear order, the dark matter cannot be distinguished from a pressure-
less perfect fluid; in particular the fluid’s motion is geodesic, Qu�r� Qu� D O.2/. erefore, the
model makes the same predictions as theƒ-CDM cosmological model at linear order (see pa-
per I for more details). In particular, adjusting the background value of � (namely N� such that
� D N� C O.1/; notice that N� D N�) to the measured value of dark matter today,�dm ' 0:23,
and choosingƒ in such a way that the dark energy contribution is�de ' 0:73, we are in agree-
mentwith the observedfluctuations of theCMB.Tobemore precise, the linearized perturbation
equations, given by (3.48)–(3.49) in paper I, are identical with those ofƒ-CDM with no addi-
tional degrees of freedom, since the dipole moment has been absorbed at linear order into the
effective vector field Qu� and mass density �. erefore the model reproduces both the location
and the height of the peaks of the CMB.

At non-linear order in cosmological perturbations, the model should differ from the stan-
dard ƒ-CDM scenario. e fluid’s dynamics will no longer be geodesic. We expect that the
formation of large scale structures will be triggered not by the monopolar part � of dark mat-
ter, which should not cluster much (see below), but by the dipolar component present in � D

� � r�…
�
?
. is should be checked performing numerical simulations in cosmology.
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10.11.2 Non-relativistic limit
Next we investigate the dipolar medium around a typical galaxy at low redshi. For this purpose
it is sufficient to consider the non-relativistic (NR) limit of themodel, when c ! C1. Working
at the level of the Lagrangian (10.144), we find thatL D

p
�g L reduces in this limit to

LNR D �?

�
v2

2
C U C g � �? C v �

d�?

dt

�
� W.…?/ : (10.150)

Here v is the fluid’s ordinary velocity, �? is the dipole moment vector, and g D rU is the
Newtonian gravitational field with U the gravitational potential. e rest mass density �? satis-
fies the usual continuity equation @t�? C r � J? D 0, where the current reads J? D �?v. We
denote by d=dt D @t C v � r the convective time derivative, so that e.g. d�?=dt D ��?r � v.
We discarded for convenience the rest mass term (��?) in the NR Lagrangian (10.150). From
the coupling term J�

P�� in the Lagrangian (10.144), we recover in the NR limit (10.150) the
gravitational analogue g � …? of the coupling of the polarization field to an external electric
field. Notice also the extra term J? � d�?=dt in (10.150), which arises in the gravitational case.

eNR equations ofmotion and evolution are obtained by varying the Lagrangian (10.150)
with respect to � and �0 (note that �? D � � v �0), and J?. We get

dv

dt
D g � F ; (10.151)

d
2�?

dt2
D F C

1

�?

r
�
W �…? W 0

�
C .�? �r/g ; (10.152)

in agreement with the NR limits of (10.145) and (10.146). e gravitational equation follows
from adding to (10.150) the Newtonian Lagrangian LU D �

1
8�

rU �rU (coming from the
NR limit of the Einstein-Hilbert action in GR) and the contribution of baryons. Varying with
respect to U gives

r � .g � 4� …?/ D �4� .�b C �?/ : (10.153)

We proposed in paper I amechanism bywhich the dipolarmedium does not cluster as much
as baryonic matter during the cosmological evolution. is is supported by an exact solution of
(10.151)–(10.153), valid in spherical symmetry, where the dipolar fluid has zero velocity,v D 0,
and a constant mass density �? (see the Appendix in paper I). e dipole moments remain at
rest because the gravitational field g is balanced by the internal force F . From this we inferred
the hypothesis of “weak-clustering”, namely that the typical mass density of dipole moments in
a galaxy (aer cosmological evolution) is much less than the baryonic density, �? � �b, and
perhaps of the order of themean cosmological value,�? � N�?. Furthermore the dipolarmedium
is essentially static, v ' 0. If this hypothesis is true, we have g ' F by (10.151), so the
polarizationfield…? is alignedwith the gravitational fieldg, i.e. themedium is polarized. Using
F D O�? W 0 together with the expression of the potential (10.148), we get

g ' 4� …?

�
1 C 4�

…?

a0

�
C O.…3

?/ : (10.154)

Hence the gravitational susceptibility coefficient � D � � 1 defined by (10.142) takes the
appropriate form in the MOND regime, namely �.g/ ' �1 C g=a0 C O.g2/. We conclude
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that (10.153) is equivalent to theMONDequation (10.141). (See paper I for a discussion of the
Newtonian regime g � a0.) Note that it is crucial that we could neglect the monopolar part
�? of the dipolar medium as compared to �b, so that galaxies appear baryonic in MOND fits of
the rotation curves. On the other hand, the monopolar dark matter �? as we have seen plays the
dominant role in a cosmological context. It may also help explaining the missing dark matter at
the intermediate scale of galaxy clusters [14].

eweak-clusteringmechanism also tells us that the evolution of the dipolemoments should
be slow. In spherical symmetry, the two last terms of (10.152) cancel each other, and we get
@2

t…? D 4��?…? in the MOND regime. is shows the presence of an instability, with
exponentially growing modes. However the unstable modes will develop on the self-gravitating
time scale �g D

p
�=�?, which is very long thanks to �? � �b. Using the mean cosmological

value N�? ' 10�26 kg=m3 we get �g ' 6 � 1010 years. us this instability is not a problem
classically.

10.12 Conclusion

In conclusion, the model (i) explains the phenomenology of MOND by the physical process of
gravitational polarization, (ii) makes a unification between the dark matter à laMOND and the
dark energy in the form of a cosmological constant (with the interesting outcome thatƒ � a2

0),
and (iii) recovers the successful standard cosmologicalmodelƒ-CDMat linear perturbation or-
der. However the model lacks some connection to microscopic physics and describes the dipole
moments in an effective way; notably the potentialW in (10.148) is for themoment purely phe-
nomenological. emodel should be further tested in cosmology, by studying second-order cos-
mological perturbations where we expect a departure fromƒ-CDM, by computing numerically
the non-linear growth of perturbations and formation of large scale structures, and by investi-
gating the intermediate scale of galaxy clusters.

Appendix: Variation of the action functional

Here we provide some details on the derivation of the equations of motion and evolution of the
dipolar fluid. ey derive from an action of the general form

S D

Z
d

4x
p

�g LŒJ �; ��;g�� � ; (10.155)

where as indicated the Lagrangian density L is a functional of the matter current J �, the dipole
moment �� (and its covariant derivative r��

�), and the covariant metric g�� .
We vary first the actionwith respect to the dipolemoment ��. Notice that in our Lagrangian

(10.144) the dependence on r��
� is only through the covariant time derivative P��. In that case,

denoting the conjugate momentum of the dipole by‰� � @L=@ P��, we obtain from the prin-
ciple of stationary action

P‰� C‚‰� D
@L

@��
; (10.156)
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with‚ � r�u� . Since the vector field �� is unconstrained, this equation is equivalent to the
standard Lagrange equation

r�

�
@L

@r���

�
D
@L

@��
: (10.157)

In the case at hands of the Lagrangian (10.144) we then obtain the equation of motion of the
dipolar fluid as given by (10.145).

However, the variation with respect to the current J � is trickier because of the constraint
that this current is conserved: r�J � D 0. We adopt a convective variational approach [396,
113, 114] in which the variation ıJ � is constrained to have the form which is precisely induced
by an infinitesimal displacement of the flow lines of J �. Denoting ıx� the generator of the
displacement of the flow lines we have

ıJ �
D ıx�

r�J �
� J �

r�ıx
�

C J �
r�ıx

� ; (10.158)

which is automatically divergenceless: r�ıJ
� D 0. e variation of the action with respect to

J �, using the fact that ıx� is unconstrained, then yields

J �
�
r�p� � r�p�

�
D 0 ; (10.159)

with p� � @L=@J � being the momentum associated with the current. In the case of a perfect
fluid this equation is equivalent to the usual Euler equation, where p� in that case is the current
of enthalpy [389, 264]. For the Lagrangian (10.144), the equation (10.159) yields the equation
of evolution of the dipolar fluid in the form (10.146).

Finally the stress-energy tensor is derived by variation of the Lagrangian with respect to
the metric. We take into account the dependence of the current J � on the metric through
the volume element p

�g d
4x, which means that the so-called “coordinate” current density

J
�
� D

p
�gJ � is the relevant metric-independent variable. In addition we treat the change

in the metric that is hidden into the covariant time derivative P�� by means of the Palatini for-
mula. e result is

T ��
D 2

@L

@g��

C g��
�
L � J �p�

�
C u�u� P��‰�

C r�

�
u.���/‰�

� u��.�‰�/
� ��u.�‰�/

�
: (10.160)

(Notice the misprint in the first dipolar term in the corresponding equation (2.22) of [84].)
Straightforward calculations in the case of the Lagrangian density (10.144) give the explicit ex-
pression (10.147).
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C thèse a exploré certains aspects de la physique des systèmes binaires coalescents de trous
noirs dans le contexte de l’astronomie gravitationnelle naissante, ainsi qu’une possible alter-

native au paradigme de la matière noire froide et à la dynamique newtonienne modifiée.

Développements post-newtoniens et théorie des perturbations

La construction de patrons d’ondes pour la phase spiralante des systèmes binaires compacts
coalescents, nécessaire à l’analyse du signal en sortie des détecteurs interférométriques terrestres
LIGO/VIRGO, est essentiellement achevée. Les efforts se portent désormais vers l’inclusion des
effets des spins intrinsèques des corps compacts, en particulier pour la détection et l’exploitation
scientifique des ondes gravitationnelles en provenance des systèmes binaires de trous noirs super-
massifs par LISA.

La modélisation des binaires à rapport de masses extrême, ou EMRIs, une autre classe de
sources particulièrement prometteuse pour ce détecteur spatial, est quant à elle bienmoins avan-
cée. La mise au point de patrons d’ondes suffisamment précis pour rester en phase avec le signal
physique nécessite le calcul de la force propre pour une orbite générique autour d’un trou noir
de Kerr, et le développement d’un schéma d’évolution de l’orbite géodésique ainsi perturbée.

Du point de vue du théoricien s’efforçant de construire des patrons d’ondes gravitationnelles
pour les systèmes binaires coalescents de trous noirs, l’interface entre les développements post-
newtoniens et le formalisme de la force propre est donc particulièrement attrayante et promet-
teuse. La résolution du problème de la force propre en relativité générale a désormais atteint un
niveau de maturité suffisant pour permettre l’extraction d’informations physiques intéressantes
(au moins conceptuellement), et la comparaison avec les prédictions issues du formalisme post-
newtonien.

Les travaux présentés dans les chapitres 4 & 5 font un premier pas dans cette direction ; ils
illustrent la cohérence des résultats de calculs effectués à l’aide de formalismes différents, dans
des systèmes de coordonnées différents, et faisant usage de schémas de régularisation différents,
lorsque ceux-ci sont comparés dans leur domaine de validité commun. Ces travaux confirment
ainsi la pertinence de ces formalismes pour décrire les systèmes binaires coalescents de trous noirs.

Par ailleurs, la possibilité d’extraire du résultat perturbatif les valeurs de coefficients post-
newtoniens d’ordres élevés, coefficients qu’il serait très difficile d’obtenir analytiquement par les
méthodes post-newtoniennes standards, illustre également la complémentarité de ces schémas
d’approximation.De nombreuses autres comparaisons pourront êtremenées à bien dans un futur
proche, parmi lesquelles :
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• Les corrections induites par la force propre sur l’orbite elliptique générique décrite par une
particule en orbite autour d’un trou noir de Schwarzschild.

• Des comparaisons similaires pour une orbite circulaire équatoriale, puis une orbite géné-
rique dans le cas d’un trou noir de Kerr.

• Les corrections induites dans le flux d’ondes gravitationnelles par le mouvement non géo-
désique de la particule autour du trou noir super-massif.

Il pourrait également s’avérer fructueux d’utiliser les outils développés dans le cadre du forma-
lisme post-newtonien (développement multipolaire post-minkowskien, raccordement de séries
asymptotiques, régularisation dimensionnelle, etc.) — pour l’étude des binaires d’objets com-
pacts demasses comparables— afin de calculer analytiquement la force propre s’exerçant sur une
particule en orbite autour d’un trou noir de Schwarzschild ou de Kerr. En résumé, l’interface
entre le formalisme de la force propre et les développements post-newtoniens est un domaine de
recherche nouveau, très prometteur, et dans lequel j’envisage de m’aventurer plus avant dans le
cadre de mon séjour post-doctoral à l’université du Maryland.

Après avoir comparé le formalisme post-newtonien à la théorie des perturbations d’un trou
noir, nous avons présenté dans les chapitres 6 & 7 des travaux qui visaient à combiner ces deux
méthodes d’approximation en relativité générale. Bien que nous ayons fait usage de la métrique
post-newtonienne au-delà de son domaine de validité formel, cetteméthode s’est avérée adéquate
pour calculer le recul gravitationnel d’une binaire de trous noirs durant la phase de vibration.
Ces résultats suggèrent que l’essentiel de la physique du problème à deux corps est potentielle-
ment capturé par une combinaison de méthodes analytique ou semi-analytique, y compris dans
le régime de champ fort. Plusieurs extensions de ce travail encourageant sont envisageables :

• Le calcul de l’énergie totale et du moment cinétique total rayonnés, à l’aide de la même
combinaison de méthodes post-newtoniennes et perturbatives, puis la comparaison avec
les résultats issus de simulations en relativité numérique.

• L’extension de ce formalisme au cas de trous noirs en rotation, ce qui requerra l’inclusion
de termes de couplage spin-orbite dans la métrique post-newtonienne, et l’utilisation du
formalismedeTeukolsky pour traiter la perturbationd’un trounoir deKerr dans l’approxi-
mation de limite proche.

Ces travaux ne sont toutefois pas une priorité du point de vue de l’astronomie gravitationnelle,
car le problème à deux corps en relativité générale admet désormais une solution approchée ex-
trêmement précise en combinant les résultats post-newtoniens à ceux de la relativité numérique.

Matière noire dipolaire et croissance des structures
Le modèle de matière noire et d’énergie noire présenté dans le chapitre 10 mérite d’être étu-

dié plus en profondeur ; d’un point de vue théorique, il est basé sur un lagrangien simple et bien
motivé physiquement, contrairement à certaines approches de gravité modifiée basées sur des
lagrangiens particulièrement compliqués et relativement ad hoc. Par ailleurs, nous avons vu que
la matière noire dipolaire se comporte comme la matière noire froide ordinaire aux échelles cos-
mologiques, et permet de retrouver la phénoménologie de la dynamique newtoniennemodifiée à
l’échelle galactique — moyennant l’hypothèse de « faible agrégation» — grâce à un mécanisme
de polarisation gravitationelle. En l’état, cemodèle est donc compatible avec toutes les contraintes
observationnelles auxquelles il a été confronté jusqu’à présent.
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Cette situation est à contraster avec les paradigmes de la matière noire froide et la phénomé-
nologie de MOND (ou ses extensions relativistes), qui rencontrent des problèmes aux échelles
galactique et cosmologique respectivement. Il convient toutefois denoter que lemodèle de concor-
danceƒ-CDM a pu être confronté à un nombre bien plus important d’observations que notre
modèle de matière noire dipolaire. Afin de tester ce dernier, il est crucial de comparer les prédic-
tions du modèle aux contraintes observationnelles présentes ou à venir ; pour ce faire, un certain
nombre de directions de recherche s’annoncent particulièrement prometteuses :

• Déterminer si la naturedipolaire de lamatièrenoire génèreune signaturedenon-gaussianité
spécifiquedans le spectre depuissancedes anisotropies du fonddiffus cosmologique.Cette
prédiction pourra alors être comparée avec les mesures du satellite Planck.

• Utiliser la théorie des perturbations afin d’étudier la croissance des structures aux échelles
sub-Hubble, dans le régime semi-linéaire, puis comparer les résultats ainsi obtenus aux
contraintes observationnelles déduites des grands relevés de galaxies.

• Étudier la croissance non linéaire des structures à l’aide de simulations numériques valables
de l’échelle des amas de galaxies jusqu’aux échelles cosmologiques. De telles simulations
permettraient également de tester l’hypothèse de « faible agrégation».

• Caractériser le fond stochastique d’ondes gravitationnelles généré par les contraintes ani-
sotropes présentes dans ce modèle de matière noire dipolaire.

Enfin, un projet de recherche plus ambitieux et incertain consisterait à établir un lien entre
ce modèle de matière noire, qui demeure phénoménologique, et la physique des particules élé-
mentaires au-delà du modèle standard.
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Titre Coalescence de trous noirs en relativité générale & Le problème de la matière noire en
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Résumé La première partie de cette thèse s’inscrit dans le cadre de la modélisation des ondes
gravitationnelles en provenance des systèmes binaires coalescents de trous noirs, dans la pers-
pective de leur détection par les antennes gravitationnelles terrestres LIGO/VIRGO et spatiale
LISA. Nous étudions la dynamique relativiste de tels systèmes binaires d’objets compacts à l’aide
de deux méthodes d’approximation en relativité générale : les développements post-newtoniens,
et le formalisme de la force propre, une extension naturelle de la théorie des perturbations d’un
trou noir ; nous démontrons la cohérence des résultats ainsi obtenus dans leur domaine de va-
lidité commun. Dans un second temps, nous combinons ces deux méthodes perturbatives afin
d’estimer l’effet de recul gravitationnel lors de la coalescence de deux trous noirs de Schwarz-
schild ; nos résultats sont en très bon accord avec ceux obtenus par des simulations en relativité
numérique. La seconde partie de cette thèse traite du problème de la matière noire en astrophy-
sique. L’hypothèse de la matière noire rend compte de nombreuses observations indépendantes
de l’échelle des amas de galaxies jusqu’aux échelles cosmologiques. Les observations à l’échelle
galactique sont toutefois en bien meilleur accord avec la phénoménologie de la dynamique new-
tonienne modifiée (MOND), qui postule une modification des lois de la gravité en l’absence de
matière noire. Nous proposons une troisième alternative : conserver la théorie de la gravitation
standard, mais doter la matière noire d’une propriété de polarisabilité dans un champ gravita-
tionnel, de façon à rendre compte de la phénoménologie de MOND à l’échelle des galaxies.
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Astrophysics

Abstract e first part of this PhD thesis is concerned with the modelling of the gravitational
radiation emitted by coalescing binary black holes, to be detected by the ground and spaced-
based gravitational-wave antennas LIGO/VIRGO and LISA. We study the relativistic dynam-
ics of such compact binary systems using two approximation schemes in general relativity: the
post-Newtonian formalism, and the self-force approach, a natural extension of black hole per-
turbation theory; we demonstrate the consistency of these results in their common domain of
validity. We then combine these same two perturbative methods in order to estimate the grav-
itational recoil effect for coalescing binaries of Schwarzschild black holes; the results are shown
to be in very good agreement with those obtained from simulations in numerical relativity. e
second part of this thesis is devoted to the darkmatter problem in astrophysics. e darkmatter
hypothesis successfully accounts for many independent observations from cosmological down
to galaxy cluster scales. However, observations at the galactic scale are better reproduced by the
modified Newtonian dynamics (MOND) proposal, which posits a modification of the funda-
mental laws of gravity in the absence of dark matter. We propose a third alternative: retaining
the standard theory of gravitation, while endowing the dark matter particles with a property of
polarizability in a gravitational field, in order to account for the phenomenology of MOND at
the scale of galaxies.
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