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Abstract. In this article, we review a new approach to the scalar Aharonov-Bohm effect for
both the electromagnetic and gravitational interaction. For both interactions a quantum system
is placed in a time-dependent electromagnetic or gravitational potential, but with no force (spa-
tial derivative of the potential) acting on the quantum system. Nevertheless, we show that the
energy levels of the quantum system develop side bands which can be detected as the signature
of this version of the scalar Aharonov-Bohm effect. We briefly look at the specific experimental
setups required to detect the energy side bands.

https://creativecommons.org/licenses/by/4.0/


9th Symposium on Frequency Standards and Metrology
Journal of Physics: Conference Series 2889 (2024) 012062

IOP Publishing
doi:10.1088/1742-6596/2889/1/012062

2

1. The Time-Dependent Scalar/Electric Aharonov-Bohm effect
Prior to the seminal work by Aharonov and Bohm in reference [1] the standard view was that
it was only derivatives of the potential of a particular interaction (i.e. the force associated
with the interaction) that led to physical results, while the potentials of the interaction were
a mathematical convenience. However, Aharonov and Bohm in [1] showed that the potentials
associated with a given interaction had more physical reality than had previously been thought.

The best-known version of the Aharonov-Bohm (AB) effect involves the vector potential
(i.e. A) and magnetic field (i.e. B = ∇ × A) of electromagnetism. In the idealized
version of this vector/magnetic AB effect, an infinite solenoid is placed between the slits of
a double-slit experiment for some quantum particle – normally electrons. The signature of this
vector/magnetic AB effect is a shift of the interference pattern that depends on the magnetic flux
inside the solenoid. This shift occurs despite the electrons moving entirely in a magnetic field-
free region. This vector/magnetic version of the AB effect was first confirmed experimentally
by Chambers [2]. A loophole-free version of the vector/magnetic AB effect using a micro-scale
torus rather than an infinite solenoid was carried out in an experiment by Tonomura et al. [3].

There is also a scalar/electric version of the AB effect which involves the scalar potential (i.e.
φe) and electric field (i.e. E = −∇φe). In this proceeding we focus on the scalar interaction eφe
– the product of electric charge, e, with scalar potential, φe. i.e. the scalar coupling between
the charge and the electric scalar potential. The original set-up for the scalar/electric AB effect
is shown in Fig. 1, where a path of a charged particle is split and sent through two different,
spatially separated metal tubes (Faraday cages), which are kept at different potentials while
the charged particle is inside the tubes, but with the potential difference (and electric field)
turned off when the charged particle is outside the tubes. When the paths of the charged
particle are recombined they show a phase difference proportional to the product of the size
of the potential difference and the time in the tubes. This version of the scalar/electric AB
effect is harder to realize in practice due to the need to synchronize the turning off and on of
the potential difference with the charged particle exiting and entering the tube. Because of
this, the experimental verification of the scalar/electric AB effect is much less robust than the
vector/magnetic AB effect. A well-known experimental verification of the scalar/electric AB
effect was given in [4]. However, this experiment measured the effects of both the scalar electric
and vector AB effect, rather than the effect of only the scalar electric AB effect. Also at some
point in the experiment, the electrons did move in a region where the E-field was non-zero. Thus
this was not a clean/pure test of the scalar/electric AB effect.

In [5] we proposed a new and cleaner version of the scalar/electric AB effect. The experimental
set-up for our proposal to test the scalar electric AB effect, as given in Fig. 2, consists of a
Faraday shell of radius R with a time-varying voltage. Outside R there is a time-varying E(t)
field and time-varying scalar potential φe(t), while inside R there is only a time-varying potential,
φe(t). The E field inside is zero. Next, we place a quantum system (i.e. a hydrogen-like atom
like rubidium) inside this Faraday shell. In the next section we will show that this leads to the
generation of additional energy levels - i.e. side-bands - in the quantum system. It is these
energy side-bands that are the signature of this version of the scalar/electric AB effect.

It is useful to compare and contrast the two different approaches - from Fig. 1 versus Fig.
2 - to the scalar/electric AB effect. In the original set-up in Fig. 1, charged particles are
spatially separated and then recombined after the potential difference has been turned on while
the charges are inside the Faraday tubes, and then off when they are outside the tubes. The
signature of this version of the scalar/electric AB effect is a phase difference between the two
paths that the charged particles took. In the new set-up in Fig. 2, the quantum system is in
one spatial location and the potential is varied with time. This exposes the quantum system to
a time-varying potential but zero E-field. The signature of the setup in Fig. 2 is a shifting of
energy levels (or more precisely the generation of energy side bands) rather than a shifting of
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Figure 1. The originally proposed setup for the electric AB effect.

Figure 2. The basic set-up of our proposed test of the scalar electric AB effect

interference fringes. This shifting of the energy levels for the set-up in Fig. 2 is similar to what
happens in the ac Stark effect [6, 7] and later we show that the mathematical analysis of the
scalar/electric AB effect in Fig. 2 is almost identical to the analysis of the ac Stark effect.

2. General analysis of scalar AB effect
Here we give a general analysis for a quantum system that sees a time-varying, but spatially
uniform potential. Since the potential is spatially uniform the force field associated with this
potential will be zero since the force field is proportional to the spatial derivative of the potential.
Thus the quantum system will see a time-varying potential but a zero force field.

To start we assume that our quantum system is described by a Hamiltonian, H0, for which
the solutions to the time-independent Schrödinger equation are known i.e. H0Ψi(x) = EiΨi(x).
We now place this quantum system in a time-varying, spatially uniform potential, V (t), with a
“charge” Q so that the total Hamiltonian is

H = H0 +QV (t) (1)

In section 3 we will take V (t) to be the electric scalar potential, φe, and the “charge” to be
the electric charge, Q = e, while in section 4 we will take V (t) to be the gravitational scalar
potential, φg, and the “charge” to be mass, Q = m. We take V (t) to be sinusoidal of the form

V (t) = 0 for t < 0

V (t) = V0 cos Ωt for t ≥ 0 . (2)
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Ω
2π is the frequency and V0 is the amplitude. For t < 0 where V (t) = 0 the Hamiltonian is
just H0 with wave function solutions Ψi(x), and energy eigenvalues Ei. The time-dependent
Schrödinger equation for this new system is

ih̄
∂ψ

∂t
= Hψ = (H0 +QV (t))ψ (3)

Hamiltonians of the form (3) with a piecewise, continuous periodic potential can be solved using
Floquet’s theorem. We briefly run through the solution of (3).

We begin by applying the separation-of-variables ansatz ψ(x, t) = X(x)T (t). Substituting
this into (3) gives

ih̄
∂ψ

∂t
= ih̄X

dT

dt
= (H0 +QV )XT = TH0X +X (QV )T (4)

Dividing by XT and moving the QV (t) term to the left-hand side gives

−QV + ih̄
1

T

dT

dt
=

1

X
H0X (5)

Since the left-hand side of this equation only depends on t while the right-hand side only depends
on x each side must be equal to a constant which we denote as E. This leads to the separated
equations

−QV + ih̄
d lnT

dt
= E and H0X = EX (6)

The solution to the second equation in (6) is just the known solution to the time-independent
Schrödinger equation namely X = Ψi(x) and E = Ei i.e. H0Ψi(x) = EiΨi(x). Next we
integrate the first, temporal equation in (6) over t giving

−Q
∫
V (t)dt+ ih̄

∫
d lnT (t)

dt
dt =

∫
Eidt (7)

Carrying out the integrations in (7) and solving for T (t), gives

T (t) = exp

(
− i
h̄
Eit

)
exp

(
− i
h̄
Q

∫
V dt

)
= exp

(
− i
h̄
Eit− iα sin Ωt

)
= exp

(
− i
h̄
Eit− iϕ(t)

)
, (8)

where α is called the FM depth of modulation parameter and is defined as

α =
QV0

h̄Ω
(9)

Multiplying X(x) = Ψi(x) and T (t) from (8) gives the wave function, ψi(r, t), for the full
Hamiltonian, H0 +QV (t) from (1) gives

ψi(r, t) = Ψi(r) exp

(
− iEit

h̄
− iϕ(t)

)
. (10)

This new wave function is the original wave function with an added AB phase factor exp (−iϕ(t)).
From (8) the AB phase, ϕ(t), is given by

ϕ(t) =
Q

h̄

∫
V (t)dt = α sin Ωt . (11)
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Figure 3. A plot of Jn(α) vs. n for the case when α = 1000. There are side-bands in the

energy E
(n)
i which occurs up to some maximum index n given by nmax ≈ α. From the plot,

one can see that the weighting, Jn(α), is largest when n = nmax ≈ α and it is this state which
contributes the most.

To see the emergence of the energy side-bands we exponentiate the AB phase from (11) and
use the Jacobi-Anger expansion 1

exp (−iϕ(t)) = exp (−iα sin Ωt) =
∞∑

n=−∞
(−1)nJn(α) exp (inΩt) . (12)

Using (12) in (10), the wave function now reads

ψi(r, t) = Ψi(r)
∞∑

n=−∞
(−1)nJn(α) exp (inΩt) exp

(
− iEit

h̄

)

= Ψi(r)

∞∑
n=−∞

(−1)nJn(α) exp

(
− i (Ei − nh̄Ω) t

h̄

)
(13)

Reading off (13) we can see that each energy level Ei is split into a series of energy side-bands,

E
(n)
i , given by

E
(n)
i = Ei ± nh̄Ω, with n, an integer (14)

Equation (14) would seem to imply that there is an infinite ladder of energy levels above and
below Ei characterized by integer multiples of h̄Ω. However, this ignores the Bessel function
“weighting” factor Jn(α) for each oscillator term from (13). If one plots this weighting factor
as a function of n (see Fig. 3) one sees that beyond a maximum value of n the contributions to
ψi(r, t) are exponentially suppressed. From Fig. 3 one can see that this maximum value of n is
approximately equal to the value of α i.e.

nmax ≈ α . (15)

Effectively one only has a finite number of energy side bands that run up to n = nmax ≈ α.
Further from Fig. 3 one sees that the maximum weighting, Jn(α), occurs also at this nmax so

1 The Jacobi-Anger expansion replaces the exponential of a sinusoidal function with an infinite series of the
product of Bessel function Jn(α) and oscillatory functions of the form exp (inΩt).
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that one can approximate the energy side-bands as consisting only of one upper and one lower
side-band

Ei ± nmaxh̄Ω ≈ Ei ±QV0 , (16)

where in the last step in (16) we have used nmax ≈ α = QV0
h̄Ω .

In conclusion, the generic scalar AB phase, ϕ(t), creates energy side bands, equations (14)
(16), which can be probed for via spectroscopic experiments. The dominant energy side-bands
occur for n = nmax ≈ α. These energy side-bands are essentially the quasi-energy levels of
Zeldovich [8] and studied later in more detail by Sambe [9].

3. Electric scalar AB effect
To apply the above results of section 2 to the electric/scalar AB effect we simply need to take
Q→ e (general charge goes to electric charge) and V (t)→ φe (general potential goes to electric
scalar potential). With these changes, the results of section 2 can be used for our version of the
scalar/electric AB effect as sketched in Fig. 2.

In reference [5] it was shown that our version of the scalar/electric AB effect from Fig. 2
was mathematically similar to the ac Stark effect (also known as the Autler-Townes effect) [6])
which also led to the generation of energy side bands as in (16). Physically the ac Stark effect
is different from our set-up in Fig. 2 since in the ac Stark effect the quantum system sees a
non-zero vector potential and non-zero electric field, while in the scalar/electric AB set-up from
Fig. 2 the quantum system sees only a time-varying scalar potential.

The difference between the ac Stark effect and our version of the scalar/electric AB effect
can be seen in how the vector and scalar potentials are coupled to the charge e. Starting from

the time-independent Schrödinger equation, ih̄ ∂
∂tΨ = p̂2

2mΨ for a particle of mass m and charge
e, for the ac Stark effect, one uses minimal coupling of the vector potential p̂2 → (p̂ − eA)2.
The vector potential in this case is taken as A(t) = E0

Ω cos(Ωt)ẑ, which leads to an electric field

of E = −∂A
∂t = E0 sin(Ωt)ẑ. Following the analysis of the ac Stark effect from [7] shows that the

quantum system will develop energy side-bands of the form given in (16). For the scalar/electric
AB effect, the minimal coupling of the scalar potential is accomplished via ih̄ ∂

∂t → ih̄ ∂
∂t − eφe(t)

with φe(t) = V0 cos(Ωt). Then via the analysis in section 2 one also sees side-bands of the form
given in (16). Now however, the quantum system sees only the scalar potential; the electric field
is zero since E = −∇φe(t) = 0. The ac Stark effect has been observed experimentally, and we
proposed in [5] that one should be able to observe the scalar/electric AB effect as similarly given
in Fig. 2.

As a final comment on this version of the scalar/electric AB effect one can question this
setup in Fig. 2 (and detailed in section 2) since it is possible to gauge away the scalar potential,
φe(t) = V0 cos(Ωt). A general gauge transformation of the scalar and vector potential is

φ′e = φe − ∂tλ and A′ = A +∇λ , (17)

with the gauge function λ(r, t). By choosing λ(t) = V0
Ω sin(Ωt) one can cancel out φe(t) =

V0 cos(Ωt) so that φ′e = 0. Also since ∇λ = 0 the new vector potential will remain zero, A′ = 0.
Thus one has gauge transformed away all electromagnetic potentials so how can there be any
effect? The resolution to this question is that (17) is only half of the gauge transformation. One
must also transform the wave function as

ψ′i(r, t) = exp
(
−i e
h̄
λ
)
ψi(r, t) = exp

(
−ieV0

h̄Ω
sin(Ωt)

)
Ψi(r) exp

(
−iEit

h̄

)
= Ψi(r) exp

(
−iEit

h̄
− iϕ(t)

)
. (18)
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In arriving at the results in (18) we have used results from (10) and (11). The wave function ψ′

from (18), which is in the gauge where all electromagnetic potentials are zero, matches the wave
function ψ from (10) which has the non-zero, sinusoidal scalar potential. The results leading to
the energy side bands are gauge invariant.

4. Gravitational AB effect
In this section, we show that one can set up a gravitational version of the scalar/electric AB
effect discussed above in sections 2 and 3. The gravitational AB phase can be obtained from
the general formula in (11) by letting Q → m (generic charge goes to mass) and V (t) → φg(t)
(generic potential goes to gravitational potential. This gives the gravitational AB phase as

ϕg(t) =
m

h̄

∫ t

0
φg(t

′)dt′ . (19)

For the scalar/electric AB effect, the quantum system was placed inside a Faraday cage with
a sinusoidal varying potential, φe(t) = V0 cos(Ωt) - see Fig. 2. This does not work for the
gravitational case, for reasons discussed below and in more detail in [10]. For the gravitational
AB effect, we will instead place our quantum system in a satellite in an elliptical orbit so that the
distance between the satellite and center of the Earth changes with time. Thus the gravitational
potential will be of the form

φg(t) = −GM
r(t)

(20)

where G is Newton’s constant, M is the mass of some large body (e.g. the Earth) about which
our quantum system will orbit, and r(t) is the time-dependent distance between the satellite
and one focus of the orbit i.e. the center of the Earth. In the scalar/electric AB effect set-up we
varied the scalar potential, φe(t), by varying the charges oscillated onto and off of the Faraday
shell i.e. the charge on the shell was time-dependent e(t). A similar set-up for the gravitational
interaction would require varying the mass rapidly i.e. M → M(t). This is not practical, and
so we vary the radius r → r(t), by placing the quantum system in an elliptical orbit.

Since our quantum system is in orbit (free fall) in a satellite, then by the equivalence principle
the quantum system will be locally in a zero gravitational field, i.e. the field has been transformed
away by going to a free falling frame.

First we consider the orbit of the International Space Station (ISS), which is an almost
circular, low Earth orbit with orbital parameters given by: (i) perigee and apogee radius from
the center of the Earth are rp = 6.800 × 106 m and ra = 6.810 × 106 m, respectively, which
corresponds to a perigee altitude of 400 km and apogee altitude of 410 km given that the
Earth’s radius is rE ≈ 6400 km. (ii) The period of the ISS with this apogee/perigee is about
T ≈ 90 minutes or 5400 seconds giving an angular frequency of Ω = 2π

T = 1.0 × 10−3 rad
sec (or a

standard frequency of f = 1.59× 10−4 Hz). The radius of the orbit as a function of time can be
approximated as 2

r(t) =
rp + ra

2
+
rp − ra

2
cos(Ωt) ≡ A+B cos(Ωt) . (21)

Using the rp and ra values above, we find the A and B parameters defined in (21) become
A = 6.805 × 106 m and B = −5.000 × 103 m. Perigee occurs at t = 0 and apogee at t = π/Ω.
For the chosen ra and rp, A� B so one can approximate 1

r(t) = 1
A+B cos(Ωt) ≈

1
A

(
1− B

A cos(Ωt)
)
.

With this the gravitational potential in (20) becomes

φg(t) ≈ −
GM

A

[
1− B

A
cos(Ωt)

]
, (22)

2 This treatment of nearly circular orbits is essentially that found in section 9.5 of reference [11]
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Inserting this in (19) gives

ϕg(t) = −GmM
h̄A

∫ t

0

(
1− B

A
cos(Ωt′)

)
dt′ . (23)

The second sinusoidal term in (23) gives the gravitational AB phase. The term linear in t is
packaged with the energy to give a shift of the base energy of the quantum system.

With (22) and (23) in hand we can repeat the analysis in section 2 (from (1) through (16))
to obtain the result for the gravitational AB effect.

As before, in the absence of the gravitational potential, φg(t), we assume that the quantum
system has a known solution to the time-independent Schrödinger (i.e. H0Ψi(x) = EiΨi(x))
where H0, Ψi and Ei are the Hamiltonian, wavefunction and energy eigenvalues, respectively,
of the quantum system. Placing the quantum system in the potential, φg(t), leads to the
Hamiltonian H = H0 + mφg(t), with the new term being the time-dependent gravitational
potential energy. The Schrödinger equation for H is analogous to (3)

ih̄
∂ψ

∂t
= Hψ = (H0 +mφg(t))ψ. (24)

At this point we solve (24) exactly using separation-of-variables with ψ(x, t) = X(x)T (t). As
before the spatial part of this solution is just X = Ψi(x) and the energy eigenvalue is E = Ei.
These are the given solutions to the time-independent Schrödinger equation H0Ψi(x) = EiΨi(x).

Carrying out steps similar to those in section 2 we find that the time part of the separation
of variables is

T (t) = exp

(
− i
h̄
Eit

)
exp

(
− i
h̄
m

∫
φgdt

)
= exp

(
− i
h̄

(
Ei +

GmM

A

)
t− iα sin Ωt

)
(25)

= exp

(
− i
h̄

(
Ei +

GmM

A

)
t− iϕg(t)

)
,

where α ≡ GmMB
h̄ΩA2 is the dimensionless gravitational depth of modulation parameter. To obtain

a value for α we assume the satellite orbits the Earth so that M = 5.97 × 1024 kg. The
value of A and B for the almost circular orbit are given above (22) as A = 6.805 × 106 m and
B = −5.000×103 m, and the angular frequency given above (21) is Ω = 2π

T = 1.0×10−3 rad
sec . If the

quantum system is an atomic system, m→ me = 9.11×10−31 kg (the electron mass), and if it is
a nuclear system m→ mN = 1.67× 10−27 kg (the nucleon mass). If the system for comparison
is a photon, which is absorbed by a quantum system, then the energy level is the difference
between two quantum states with a rest mass increase of mph = Eph/c

2. Using these values for
A,B,M , Ω and m we find αatomic ≈ −3.7× 1011 for atomic systems, αnuclear ≈ −6.8× 1014 for
a nuclear system and αph ≈ −2.6fph for the photonic system, where fph is the photon frequency
in GHz.

The GmM
A term in (25) gives a constant shift to the unperturbed energy Ei which was not

present in the scalar/electric AB effect. In the scalar/electric AB case, this constant part of the
electric potential was equal to zero. It is only the ϕg(t) term in (25) which is associated with
the gravitational AB effect.

Combining the spatial part of the solution X(x) = Ψi(x) and the temporal part of the
solution T (t) from (8) gives the wave function, ψi(r, t) as

ψi(r, t) = Ψi(r) exp

(
−
i
(
Ei + GmM

A

)
t

h̄
− iϕg(t)

)
. (26)
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This new wave function is the original wave function with an added AB phase factor
exp (−iϕg(t)), with the gravitational AB phase given by ϕg(t) = m

h̄

∫
GMB
A2 cos(Ωt)dt = α sin Ωt.

Again using the Jacobi-Anger expansion to evaluate the exponentiation of ϕg(t) gives the wave
function as

ψi(r, t) = Ψi(r)
∞∑

n=−∞
(−1)nJn(α) exp (inΩt) exp

(
−
i
(
Ei + GmM

A

)
t

h̄

)

= Ψi(r)
∞∑

n=−∞
(−1)nJn(α) exp

(
−
i
(
Ei + GmM

A − nh̄Ω
)
t

h̄

) (27)

The result in (27) is similar to the generic AB analysis in (13) and we can see that each energy

level Ei is split into a multiplet E
(n)
i

E
(n)
i = Ei +

GmM

A
± nh̄Ω ≡ Ẽi ± nh̄Ω, with n, an integer . (28)

In distinction from the generic result of (14) the result in (28) has a constant shift of GmM
A

which we have absorbed into the definition of Ẽi. It is the energy side bands represented by
±nh̄Ω which are signature for this version of the AB effect. Note, if we consider comparing
photons from stable clocks in different potentials then Ẽi = Ei(1 + GM

c2A
), which is equivalent to

the energy/frequency shift of the photon due to the gravitational potential, which causes the
gravitational redshift of a photon as it escapes a gravitational potential.

5. Experimental set-up and considerations
In this short section, we summarize and briefly discuss some of the details and issues associated
with this new proposal to probe both the scalar/electric AB effect and the gravitational AB
effect.

5.1. Experimental set-up for scalar/electric AB effect
The new version of the scalar electric AB effect, shown in Fig. 2, is cleaner than the original
proposal shown in Fig. 1. We do not have to time the turn-on and turn-off of the potential
difference with the charge entering or exiting the metal tubes. Also for the setup in Fig. 1, there
are always fringing fields, while for the Faraday sphere setup, the electric field is zero inside the
shell, modulo very small electric and magnetic fields that arise whenever there is a time variation
in charges/fields.

A full discussion of the experimental details to probe this version of the scalar/electric AB
effect can be found in [5]. In order to ensure that only the side bands with n = nmax ≈ α = eV0

h̄Ω
dominate one needs to have QV0 → eV0 � h̄Ω or α� 1. In [5] it was shown that this condition
was easy to achieve for obtainable values of V0 and Ω (in [5] we chose V0 = 0.5mV , and Ω = 108

s−1 which gave α ≈ 104).
Another avenue to probe the energy sidebands of (16) was to use electromagnetically induced

transparency (EIT). Details of this can be found in [5].

5.2. Experimental set-up for gravitational AB effect
We briefly review some details of the experimental setups to probe the gravitational AB effect.
From equation (28) it again seems that there are an infinite number of energy sidebands above
and below Ẽi. However, using Fig. 2 and as discussed below (16) it is only the two energy
side bands with n = nmax ≈ α which will dominate if the condition α � 1 is met. For the
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ISS orbit this will be true for atomic and nuclear system, but only for the photonic system if
fph � 340MHz.

In contrast to the scalar/electric AB effect, which only has one unit of charge (Q = e), the
gravitational AB effect has several possible charges depending on the mass of the particle of the
quantum state. If the quantum system in the satellite is atomic (in this case Q = me with me

being the electron mass) or nuclear (in this case Q = mN with mN being the nucleon mass.)
Using the numerical values for A,B,Ω,M,me,mN below (25) gives |αatomic| ≈ 3.7×1011 ≈ nmax,
and for atomic systems, |αnuclear| ≈ 6.8×1014 ≈ nmax for nuclear systems. For a photonic system
generated by a nuclear or atomic transition, the change in rest mass, mph, of the particle in the
excited state depends on the energy of the transition through Eph = mphc

2 = hfph, and for the
ISS orbit |αph| ≈ 2.9× 10−9fph, where fph is in Hz.

The issue becomes if one can observe the energy side bands given their magnitude. In [10] it
was shown that one could observe the energy sidebands using the ACES (Atomic Clock Ensemble
in Space) mission [12], which involves putting optical/microwave frequency clocks on the ISS.
For the nuclear case reference [10] proposed using the Mössbauer effect to observe the energy
sidebands. This was a temporal version of the famous Pound-Rebka experiment [14]. The
Pound-Rebka experiment observed the gravitational shift of gamma rays emitted and absorbed
by 57Fe with the emitter and absorber being spatially separated vertically in a gravitational field.
Here the emission and absorption are temporally separated due to the change of the satellite as
it orbits the Earth. More experimental details about both the atomic and nuclear probes for
the gravitational AB effect are in reference [10].

Data from Galileo satellites in eccentric orbits, which have been used to put the best limits on
the redshift from the comparison of onboard hydrogen maser clocks with ground clocks [15, 16],
may also be used to search for effects of the gravitational AB effect. When a photon excites an
energy transition and is absorbed, the mass of the excited electron increases through a quantum

electrodynamics virtual process, given by ∆me =
hfph
c2

. Thus, these eccentric orbits, which will
experience a significant modulation of the gravitational potential, will in turn cause the energy
levels of the hydrogen maser transition to change and hence the mass of the excited hydrogen
atoms to vary. In this case the DC term in (28) is equivalent to the redshift, which was measured
in [15, 16] at a precision of parts in 105, while the Aharonov-Bohm phase proposed here predicts
extra sidebands. The orbital period of these Galileo satellite is 12.94 hours (21.5 µHz) with
an eccentricity of e = 0.162, with a perigee and apogee radius from the center of the Earth of
rp = 23, 445km and ra = 32, 510km, respectively, so AG = 27, 977.5 km, and BG = −453.2
km and thus the gravitational modulation parameter for the Galileo orbit, given by (9), is

αG ≡ G∆meMBg

h̄ΩA2
g

= 1.2 × 10−6fph where fph is in Hz. For the hydrogen maser clock transition

at 1.42 GHz, αG = 1699, with a predicted maximum modulation sideband at around 26.2 mHz.
Note, that this orbit causes a depth in modulation, αG, which is more than 450 times greater
than the modulation index induced by the ISS orbit, which the ACES clocks experience.
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