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Abstract 

 

The Feynman-Cayley Path Integral extends the notion of “all paths”, with path 

integration generally involving a real or matrix object, to “all paths with all higher-

dimensional Cayley algebras and their propagating sub-algebra (loop) objects”. The 

highest order algebraic structure that can be ‘propagated’ in the path integral 

computations is sought for this reason.  An 8 dimensional subspace (two versions, so 

chiral) of the 15dim unit norm sedenions is shown to propagate. A 9 dimensional 

subspace (chiral again) of the 31dim unit norm bi-sedenions is shown to propagate in 

a similar manner. The results are verified both computationally and theoretically. The 

theoretical proof, in turn, indicates where the breakdown in the chiral extensions 

occurs, which is then verified computationally. This may provide a deeper 

understanding of why higher order extensions aren’t allowed in a number of other 

mathematical areas, some of which are discussed. At the maximal order of propagate-

able Feynman-Cayley Path Integral, the computational and theoretical results indicate 

a 10-dimensional space-time theory, in agreement with string theory, and yet still 

clearly indicates how we have spacetime and Lorenz transformation (and all of the 

standard model embedded for that matter).  Chirality at the sedenions level, with two 

octonions sub-spaces, could be used to describe bosonic and fermionic matter. 

Chirality at the bi-sedenion level could provide an explanation for (normal) light 

matter and dark matter. 
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1 Introduction 
 

For Real numbers unit norm propagation is trivial, consisting of multiplying by +1 or 

-1. For Complex numbers unit norm propagation involves multiplication by complex 

numbers on the classic unit circle in the complex plane, which reduces to simple 

phase addition according to rotations about the center of that circle (motions on S1). 

For quaternion numbers unit norm propagation is still straightforward since it’s still, 

in the end, a normed division algebra, where N(xy)=N(x)N(y). Instead of motion on 

S1 we now have motion on S3, the unit hypersphere in four dimensions. This still 

holds true for Octonions, with unit norm still directly maintained when multiplying 

unit norm objects in general. Now the motion is that of a point on a seven 

dimensional hypersphere S7.  Sedenions are not normed division algebras, lacking 

linear alternativity and the moufang loop identities, thus multiplication of unit norm 

objects for sedenions (points on S15) will not, generally, remain unit norm, i.e., will 

leave the S15 space.  

 

 

The question then arises is there is a sub-algebra or loop construct in the sedenions, 

that is not just trivially the octonions, that can still allow unit norm propagation? If 

this works for Sedenions, what about Bi-sedenions and higher dimensional Cayley 

algebras? In this paper it will be shown that there are two Sedenion subspaces, 

associated with ‘left’ and ‘right’ propagation, where the unit norm property is 

retained. This is found again at the level of the Bi-Sedenions by a similar 

construction. The results were initially explored computationally, then later 

established in theoretical proofs. In those proofs a key step fails when attempting to 

go to higher orders beyond the bi-sedenions and its sub-algebra propagation. 

(Propagation is taken to mean that a unit norm element of an algebra when multiplied 

by a unit norm element of an algebra or subalgebra or loop or chiral-loop can be 

propagated: (unit norm)*(unit norm subalgebra)=(unit norm), where the one-sided 

multiplication by the special subalgebra results in a product that remains unit norm.) 

 

 

So, if the Feynman-Cayley construction works on all algebras, it essentially allows a 

selection argument to be made for the highest order unit norm propagating algebra in 

devising theories to describe matter. The highest order propagating structure might, 

thus, be the nine dimensional bi-sedenion elements, that are shown here, that are 

(chirally) extended sedenions that are themselves made from chirally extended 

octonions. The nine space dimensionality when paired with the implicit time 

dimension provides a 10 dim (1,9) spacetime theory, in agreement with string theory. 

(If the time is augmented to be a complex limit parameter, then we get an 11-dim 

theory, which shows agreement with M-theory and agreement with a role for 

Euclideanization related thermodynamics properties.) The core recursive algorithm in 

the computational work with the Cayley multiplication is shown after the theoretical 

proofs.  
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2 Background on Cayley Algebras 
 

The list representation for hypercomplex numbers will make things clearer in what 

follows so will be introduced here for the first seven Cayley algebras: 

 

Reals: X0   (X0) . 

Complex: (X0 + X1 i)  (X0 , X1 ) . 

Quaternions: (X0 + X1 i + X2 j + X3 k)   (X0 , X1 , X2 , X3)   (X0 , … , X3) . 

Octonions: (X0 , … , X7) with seven imaginary numbers. 

Sedenions: (X0 , … , X15) with fifteen imaginary numbers. 

Trigintaduonions (a.k.a Bi-Sedenions): (X0 , … , X31) with 31 imaginary numbers. 

Bi-Trigintaduonions: (X0 , … , X63) with 63 types of imaginary number. 

 

Consider how the familiar complex numbers can be generated from two real numbers 

with the introduction of a single imaginary number ‘i’, {X0 , X1}   (X0 + X1 i). This 

construction process can be iterated, using two complex numbers, {Z0 , Z1} , and a 

new imaginary number ‘j’: 

 

(Z0 + Z1 j) =  (A+Bi ) + (C+Di ) j  = A+Bi + Cj +Dij = A+Bi + Cj +Dk,  

 

where we have introduced a third imaginary number ‘k’ where ‘ij=k’. In list notation 

this appears as the simple rule ((A,B),(C,D)) = (A,B,C,D). This iterative construction 

process can be repeated, generating algebras doubling in dimensionality at each 

iteration, to generate the 1, 2, 4, 8, 16, 32, and 64 dimensional algebras listed above. 

The process continues indefinitely to higher orders beyond that, doubling in 

dimension at each iteration, but we will see that the main algebras of interest for 

physics are those with dimension 1, 2, 4, and 8, and sub-spaces of those with 

dimension 16 and 32 dimensional algebras. 

 

Addition of hypercomplex numbers is done component-wise, so is straightforward. 

For hypercomplex multiplication, list notation makes the freedom for group splittings 

more apparent, where any hypercomplex product ZxQ to be expressed as (U,V)x(R,S) 

by splitting Z=(U,V) and Q=(R,S). This is important because the product rule, 

generalized by Cayley, uses the splitting capability.  The Cayley algebra 

multiplication rule is: 

 

(A,B)(C,D) = ([ACD*B],[BC*+DA]), 

 

where conjugation of a hypercomplex number flips the signs of all of its imaginary 

components: 

(A,B)* = Conj(A,B) = (A*,B) 

The specification of new algebras, with addition and multiplication rules as indicated 

by the constructive process above, is known as the Cayley-Dickson construction, and 

this gives rise to what is referred to as the Cayley algebras in what follows. 
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3 Relation of Hypercomplex Formulations to Physics Theories 
 

Physics has a lengthy ‘love-hate’ relationship with hypercomplex numbers. The 

original formulations of electromagnetism by Maxwell involved quaternionic 

mathematics, and even at that time this relationship was off to a difficult start. As 

stated by Maxwell in a manuscript on the application to electromagnetism in 

November of 1870 [1]: “... The invention of the Calculus of Quaternions by Hamilton 

is a step towards the knowledge of quantities related to space which can only be 

compared for its importance with the invention of triple coordinates by Descartes. 

The limited use which has up to the present time been made of Quaternions must be 

attributed partly to the repugnance of most mature minds to new methods involving 

the expenditure of thought ...” (with emphasis mine). The enthusiasm of Maxwell for 

use of Quaternionic mathematics did not win over the great physicists of his day, 

Josiah Willard Gibbs and Oliver Heaviside in particular, who discarded the 

quaternionic mathematics in favor of a new mathematics (vector calculus) that they 

invented so as to avoid the ‘foreign’ hypercomplex mathematics. In a biography of 

Hamilton [2], in a quotation attributed to Gibbs: “My first acquaintance with 

quaternions was in reading Maxwell's E.&M. where Quaternion notations are 

considerably used. ... I saw, that although the methods were called quaternionic the 

idea of the quaternion was quite foreign to the subject.” 

 

The stigma associated with hypercomplex mathematics, and the higher-dimensional 

physics unification attempts of Maxwell and later Einstein, was still significant 

decades later when Feynman obtained an unusual proof of the homogeneous Maxwell 

equations [3-6] in a higher (than 3) dimensional space. Feynman was trying to see if 

any new theoretical theory would be indicated and the fact that he had obtained a 

novel new way to explain the existing Maxwell’s equations in higher dimensions was 

not interesting at the time. The inextricable problems of quantum gravity and the 

discovery of higher-dimensional string theory, among other things, have changed the 

focus since that time almost 70 years ago. The accessibility of computational 

resources makes a big difference too.  

It has been shown in numerous papers that the (1, 9) dimensional superstring has a 

natural parameterization in terms of octonions [7-9]. In [10, 11] the Dirac and 

Maxwell equations (in vacuum) are derived using octonionic algebras. In [12] a 

quaternionic equation is described for electromagnetic fields in inhomogenous media. 

In [13], the D4-D5-E6 model that includes the Standard Model plus Gravity is 

constructed using octonionic fermion creators and annihilators. In [14] octonionic 

constructions are shown to be consistent with the SU(3)C gauge symmetry of QCD. It 

would appear that there are a number of implementations involving hypercomplex 

numbers that are consistent with the Standard Model. But there is still the question of 

why bother? What is shown here is why the bother might be worth it as a critical new 

link to string theory is provided, that may explain what dimensional reduction will 

relate to experiments involving the standard model, and the formalism also allows for 

an explanation for Dark matter, all in a mathematics that can be absorbed into a 

Lagrangian formulation that could be consistent with a theory of Gravity. 
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4 The Formulation of the Problem for Sedenion Propagation 
 

Further theoretical details on hypercomplex numbers can be found at [15, 16]. In 

what follows multiplications involving unit norm Cayley numbers will be done at the 

various orders using the Cayley algebra multiplication rule described above, that 

reduces the order of hypercomplex complex multiplication, which when iterated 

allows all hypercomplex products to reduce to a collection of Real multiplications. 

Millions of repeated hypercomplex multiplications are done computationally to 

demonstrate unit norm propagation in the situations that follow, where B denotes a 

bisedenion, S denotes a sedenion, O a octonion, Q a quaternion, C for complex, and R 

for a real: 

 

Sedenions have two unit norm propagators of the form: 

 

S(unit norm)  S(unit norm propagator) = S(unit norm) 

S(unit norm) = S1(OLeft,ORight) = S1(OL,OR) = (O1L,O1R) 

 

If  S1 is unit norm, then norm(S1) = S1  S1* = 1, which for our notation means: 

1 = (O1L,O1R)(O1L*,O1R) = ( [O1LO1L*+O1R*O1R], [O1RO1L+O1RO1L] ) 

1 = ( [norm(O1L)+norm(O1R)], 0 ) 

1 = norm(O1L)+norm(O1R) 

 

S(unit norm propagator) = S2(OLeft,OReal)  = (O2L, ) for the right octonion real, e.g., 

in list notation have OReal  = (,0,0,0,0,0,0,0), so have (O2L, (,0,0,0,0,0,0,0)) which 

is abbreviated as (O2L, )  where it is understood that  is real and is the real part of 

the purely real right octonion. There is another type of unit norm propagator where 

we have (OReal,ORight) where the same results hold, but the example that follows will 

use the (O2L, ) form. 

If S2 is unit norm, then norm(S2) = S2  S2* = 1, which for our notation means: 

1 = norm(O2L)+2 

 

So we can now ask the question,  

Does S(unit norm)  S(unit norm propagator), return a unit norm Sedenion when 

using the special class of unit norm propagators indicated? 

 

5 Proof that Norm(S1S2)=1 
 

(S1S2)=(O1L,O1R)(O2L, ) = ( [O1LO2L O1R], [O1L+O1RO2L*] )   

(S1S2)* = ( [O1LO2L O1R]*, [O1L+O1RO2L*] )   

 

norm(S1S2) = (S1S2)  (S1S2)*   

= ( [O1LO2L O1R]  [O1LO2L O1R]* +[O1L+O1RO2L*]*  [O1L+O1RO2L*], 

[O1L+O1RO2L*]  [O1LO2L O1R] + [O1L+O1RO2L*]  [O1LO2L O1R]) 
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= ( norm(O1LO2L)+norm(O1RO2L*)+2 norm(O1R)+2 norm(O1L) 

(O1LO2L)O1R*O1R(O1LO2L)*+O1L*(O1RO2L*)+(O1RO2L*)*O1L, 0) 

 

Multiplying the expressions previously obtained, 1 = norm(O1L)+norm(O1R) with 1 = 

norm(O2L)+2, and making use of the norm property norm(xy)=norm(x)norm(y), we 

have: 

norm(S1S2) = (1-Z, 0), where, 

Z = +(O1LO2L)O1R*+O1R(O1LO2L)*O1L*(O1RO2L*)(O1RO2L*)*O1L. 

 

Since we are computing the norm, which returns only the real component, we know Z 

must be real. To work with this expression with a little more clarity, switch to the 

notation: 

 

A=O1L; B=O2L; C=O1R*, then have 

Z = (AB)C + C*(AB)*A*(C*B*)(C*B*)*A 

Z = (AB)C + C*(AB)*A*(BC)*(BC)A 

 

The Cayley algebras up to octionic are also known as the composition algebras for 

which a number of properties exist. We need the braid laws to proceed, so let’s 

briefly detour to address that. The fundamental composition rule is simply that of the 

norm of a product being the product of the norms: norm(XY) = norm(X) x normY) 

Consider the norm of two things added: 

 

Norm(X+Y) = (X+Y)(X+Y)* = XX* +XY*+YX*+YY*  

                     = norm(X) + norm(Y) + 2 real(XY*) 

 

Define [X,Y] = real(XY*) = [norm(X+Y)norm(X)norm(Y)]/2, then have another 

way to express conjugation using norms and real parts: 

 

X* = 2[X,1]-X = 2real(X)-X = (real(X) unchanged, imag(X) negated))  

 

The composition algebras (up to octionic) build from the core norm(XY) = norm(X) x 

normY) relation to arrive at a number of interesting properties, including the ‘braid’ 

laws: [XY,Z] = [Y,X*Z] and [XY,Z]=[X,ZY*]. To arrive at the Braid law (following 

[15]) you start with the composition law norm(XY)=norm(X)norm(Y), you then 

prove the scaling law, [XY,XZ]=norm(x)[Y,Z], by substituting Y with Y+Z in the 

composition law. Then establish the exchange law [XY,UZ] = 2[X,U][Y,Z]-[XZ,UY] 

by substituting X with X+U in the scaling law. If you put U=1 in the exchange law, it 

reduces to forms allowing the braid law to be shown.  

Let’s apply the braid law for the form [XY,Z] to the (BC)A term, so let’s look at 

the braid law for [BC,A*] = [C,B*A*], which can be rewritten as: 

 

norm(BC+A*)norm(BC)norm(A*) = norm(C+B*A*)norm(C)norm(B*A*) 

norm(BC+A*)=norm(BC)+norm(A*)+(BC)A+A*(BC)* 

norm(C+B*A*)=norm(C)+norm(B*A*)+C(AB)+(AB)*C* 
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putting this together: (BC)A+A*(BC)*=C(AB)+(AB)*C*. So we can now rewrite the 

(BC)A term as: (BC)A = C(AB)+(AB)*C*A*(BC)*. Substituting this 

back into Z: 

 

Z = (AB)C + C*(AB)*C(AB)(AB)*C* 

    = [(AB)CC(AB)] + [C*(AB)*(AB)*C*] 

 

What is a commutator on the Cayley numbers, is it necessarily non-real? 

 

XY=(A,B)(C,D) = ([ACD*B],[BC*+DA]) 

YX=(C,D)(A,B)=  ([CAB*D],[DA*+BC]) 

{X,Y}=XY-YX=  ([ACCA+B*DD*B],[BC*BC+DADA*]) 

{X,Y}= ( [{A,C}+2Im(B*D)], [B 2Im(C) + D 2Im(A)] ) 

 

So the commutator at one order of Cayley number is reduced to an expression 

involving the commutator at the next lower order Cayley number, plus a bunch of 

other terms that don’t contribute to the real component. This can be iterated to arrive 

at the real algebra in the commutator, where the commutator is zero, thereby 

establishing that the commutator on the Cayley numbers must result in a pure 

imaginary Cayley number. This being the case, we see that since Z consists of two 

commutator terms, neither of which has a real contribution, and since Z must be real, 

this proves that Z=0. 

 

This proves the first extension, for unit-norm propagators that are Sedenions of the 

form SLeft=(OLeft,) or SRight=(,ORight), where OLeft and ORight are any octonion. The 

next extension is to unit-norm propagators that are Bisedenion by using similar 

constructions, e.g., Bisedenions, of the form B=(SLeft,SReal) = ( (OLeft,) ,  ). (Note 

that  is a real octonion, while  is a purely real sedenion.)  

 

6 The Formulation of the Problem for Bi-Sedenion Propagation 
 

Bisedenions have two unit norm propagators of the form: 

B(unit norm)  B(unit norm propagator) = B(unit norm) 

B(unit norm) = B1(SLeft,SRight) = B1(SL,SR) = (S1L,S1R) 

 

If  B1 is unit norm, then norm(B1) = B1  B1* = 1, which for our notation means: 

1 = (S1L,S1R)(S1L*,S1R) = ( [S1LS1L*+S1R*S1R], [S1RS1L+S1RS1L] ) 

1 = ( [norm(S1L)+norm(S1R)], 0 ) 

1 = norm(S1L)+norm(S1R) 

 

B(unit norm propagator) = B2(SLeft,SReal)  = (S2L, ) for the right sedenion real, e.g., in 

list notation have SReal  = (,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0), so have (O2L, 

(,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)) which is abbreviated as (O2L, )  where it is 

understood that  is real and is the real part of the purely real right sedenion. There is  
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another type of unit norm propagator where we have (SReal,SRight) where the same 

results hold, but the example that follows will use the (S2L, ) form. 

 

If B2 is unit norm, then norm(B2) = B2  B2* = 1, which for our notation means: 

1 = norm(S2L)+2 

 

So we can now ask the question:  

Does B(unit norm)  B(unit norm propagator), return a unit norm Bisedenion when 

using the special class of unit norm propagators indicated? 

 

7 Proof that Norm(B1B2)=1  
 

(B1B2)=(S1L,S1R)(S2L, ) = ( [S1LS2L S1R], [S1L+S1RS2L*] )   

(B1B2)* = ( [S1LS2L S1R]*, [S1L+S1RS2L*] )   

 

norm(B1B2) = (B1B2)  (B1B2)*   

= ( [S1LS2L S1R]  [S1LS2L S1R]* +[S1L+S1RS2L*]*  [S1L+S1RS2L*], 

[S1L+S1RS2L*]  [S1LS2L S1R] + [S1L+S1RS2L*]  [S1LS2L S1R]) 

 

= ( norm(S1LS2L)+norm(S1RS2L*)+2 norm(S1R)+2 norm(S1L) 

  (S1LS2L)S1R*S1R(S1LS2L)*+S1L*(S1RS2L*)+(S1RS2L*)*S1L, 0) 

 

To proceed as before we need to show that the norm property norm(xy) = 

norm(x)norm(y) holds for the sedenions when one of them is constrained to be in the 

form of the sedenion propagator, e.g., does norm(S1LS2L)=norm(S1L)norm(S2L) 

where S2L is in the form of the sedenion propagator?  

 

norm(S1LS2L) = (S1LS2L)  (S1LS2L)*   

= ( [O1LLO2LL O1LR]  [O1LLO2LL O1LR]* + 

      [O1LL+O1LRO2LL*]*  [O1LL+O1LRO2LL*], 

    [O1LL+O1LRO2LL*]  [O1LLO2LL O1LR] +  

      [O1LL+O1LRO2LL*]  [O1LLO2LL O1LR]) 

 

= ( norm(O1LLO2LL)+norm(O1LRO2LL*)+2 norm(O1LR)+2 norm(O1LL) 

        (O1LLO2LL)O1LR*O1LR(O1LLO2LL)*+ 

        O1LL*(O1LRO2LL*)+(O1LRO2LL*)*O1LL,   0) 

 

Now that we’ve reduced to this level, we know that the octonions will offer the 

standard norm property whereby norm(O1LLO2LL)=norm(O1LL)norm(O2LL) and we 

show the other terms are zero since real yet consisting of  commutators, the latter 

arrangements made possible by manipulations according to the braid laws that hold 

for the composition algebras (including the octonions) without restriction. 
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So as before, by multiplying the expressions previously obtained, 1 = norm(S1L) + 

norm(S1R) with 1 = norm(S2L)+2, and making use of the norm property 

norm(xy)=norm(x)norm(y) applicable for the terms of interest, we have: 

 

norm(B1B2) = (1-Z, 0), where, 

Z = +(S1LS2L)S1R*+S1R(S1LS2L)*S1L*(S1RS2L*)(S1RS2L*)*S1L. 

 

Since we are computing the norm, which returns only the real component, we know Z 

must be real. As with the lower order Cayley extension, we need the braid laws to 

proceed at this juncture.  

 

What is (S1LS2L)S1R* when accounting for the special form of  S2L=(O2LL, )? First 

calculate (S1LS2L): 

 

(S1LS2L)=(O1LL,O1LR)(O2LL, ) = ( [O1LLO2LL O1LR], [O1LL+O1LRO2LL*] ) 

 

Then 

(S1LS2L)S1R* = ( [O1LLO2LL O1LR], [O1LL+O1LRO2LL*] ) (O1RL*,-O1RR) 

= ([O1LLO2LL O1LR]O1RL* + O1RR*[O1LL+O1LRO2LL*], 

    O1RR [O1LLO2LL O1LR] + [O1LL+O1LRO2LL*]O1RL) 

= ( (O1LLO2LL)O1RL* O1LRO1RL*+ O1RR*O1LL+ O1RR*(O1LRO2LL*), 

    O1RR (O1LLO2LL)+O1RRO1LR+O1LLO1RL+(O1LRO2LL*)O1RL  ) 

 

S1R(S1LS2L)* = (O1RL,O1RR)  ( [O1LLO2LL O1LR]*, [O1LL+O1LRO2LL*] ) 

= ( O1RL[(O1LLO2LL)* O1LR*]+[O1LL*+(O1LRO2LL*)*]O1RR,  

    [O1LL+O1LRO2LL*]O1RL+O1RR[O1LLO2LL O1LR] ) 

= ( O1RL(O1LLO2LL)* O1RLO1LR* +O1LL*O1RR+(O1LRO2LL*)*O1RR , 

    O1LLO1RL(O1LRO2LL*)O1RL+O1RR(O1LLO2LL) O1RRO1LR ) 

 

Putting these first two terms together: 

+(S1LS2L)S1R*+S1R(S1LS2L)* =  

( (O1LLO2LL)O1RL*+O1RL(O1LLO2LL)* 

 O1LRO1RL*+ O1RR*O1LL O1RLO1LR* +O1LL*O1RR 

+ O1RR*(O1LRO2LL*)+(O1LRO2LL*)*O1RR,      0) 

 

For S1L*(S1RS2L*) we have: 

(S1RS2L*)=(O1RL,O1RR)(O2LL*, ) = ([O1RLO2LL*+ O1RR], [O1RL+O1RRO2LL] ) 

So, S1L*(S1RS2L*) = (O1LL*,O1LR)([O1RLO2LL*+O1RR], [O1RL+O1RRO2LL] ) 

= ( O1LL*(O1RLO2LL*)+O1LL*O1RRO1RL*O1LR+(O1RRO2LL)*O1LR , term) 

While for (S1RS2L*)*S1L have 

(S1RS2L*)*S1L= ([O1RLO2LL*+ O1RR]*, [O1RLO1RRO2LL] )(O1LL,O1LR) 

= ([O1RLO2LL*+ O1RR]*O1LLO1LR*[O1RLO1RRO2LL], - term) 
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S1L*(S1RS2L*)+(S1RS2L*)*S1L= 

( O1LL*(O1RLO2LL*)+(O1RLO2LL*)*O1LL 

+O1LL*O1RRO1RL*O1LR+ O1RR*O1LLO1LR*O1RL 

+(O1RRO2LL)*O1LR+O1LR*(O1RRO2LL),    0) 

 

So have, 

Z =  (   {(O1LLO2LL)O1RL*+O1RL(O1LLO2LL)* 

           O1LL*(O1RLO2LL*)(O1RLO2LL*)*O1LL} + 

      {O1RR*(O1LRO2LL*)+(O1LRO2LL*)*O1RR 

      (O1RRO2LL)*O1LRO1LR*(O1RRO2LL)} + 

 O1LRO1RL*+ O1RR*O1LL O1RLO1LR* +O1LL*O1RR 

O1LL*O1RR+O1RL*O1LRO1RR*O1LL+O1LR*O1RL  , 0) 

 

Z = ({im}+{O1RL*O1LR+O1LR*O1RL O1LRO1RL* O1RLO1LR*} , 0) 

Z = ({im}+{2Im{O1RL*O1LR} +2Im{O1LR*O1RL} , 0) 

 

So again, have that Z = pure imaginary, and since it must be real, it is thus zero. 

Thus, we have norm(B1B2) = 1. This proves the second extension, for unit-norm 

propagators that are Bisedenions of the form BLeft=(SLeft,) or BRight=(,SRight), where 

SLeft and SRight are sedenion propagators shown in the first extension, e.g., 

SLeft=(OLeft,). (Note that  is a purely real octonion, while  is a purely real 

sedenion.)  

 

8 The Formulation of the Problem: Bitrigintaduonion Propagation 
 

After the bisedenions (also known as trigintaduonions) come the bitrigintaduonions, 

the 64-component Cayley algebra (denoted by ‘T’ in following but later when I 

reference the RCHO(ST) hypothesis, the ‘T’ refers to trigintaduonions). Let’s try 

extending further to see if we can have norm(T1T2) = 1, when we build with a 

similar extension method to define our unit-norm propagator: TLeft=(BLeft,) , 

BLeft=(SLeft,) , and SLeft=(OLeft,), where, as before, once we get to the octionic 

Cayley level we are unrestricted (e.g., OLeft can be any octonion). Let’s see if we can 

construct, as before, a T unit norm propagators of the form: 

 

T(unit norm)  T(unit norm propagator) = T(unit norm) 

T(unit norm) = T1(BLeft,BRight) = T1(BL,BR) = (B1L,B1R) 

 

If  T1 is unit norm, then norm(T1) = T1  T1* = 1, which for our notation means: 

1 = (B1L,B1R)(B1L*,B1R) = ( [B1LB1L*+B1R*B1R], [B1RB1L+B1RB1L] ) 

1 = ( [norm(B1L)+norm(B1R)], 0 ) 

1 = norm(B1L)+norm(B1R) 

 

T(unit norm propagator) = T2(BLeft,BReal)  = (B2L, ) for the right bisedenion real  is 

real and is the real part of the purely real right bisedenion.  
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If T2 is unit norm, then norm(T2) = T2  T2* = 1, which for our notation means: 

1 = norm(B2L)+2 

 

So we can now ask the question,  

Does T(unit norm)  T(unit norm propagator), return a unit norm  bitrigintaduonion 

when using the special class of unit norm propagators indicated? 

 

9 Failure of Proof construction for Norm(T1T2)=1, and 

computational proof of failure of  Norm(T1T2)=1  
 

(T1T2)=(B1L,B1R)(B2L, ) = ( [B1LB2L B1R], [B1L+B1RB2L*] )   

(T1T2)* = ( [B1LB2L B1R]*, [B1L+B1RB2L*] )   

 

norm(T1T2) = (T1T2)  (T1T2)*   

= ( [B1LB2L B1R]  [B1LB2L B1R]* +[B1L+B1RB2L*]*  [B1L+B1RB2L*], 

[B1L+B1RB2L*]  [B1LB2L B1R] + [B1L+B1RB2L*]  [B1LB2L B1R]) 

 

= ( norm(B1LB2L)+norm(B1RB2L*)+2 norm(B1R)+2 norm(B1L) 

  (B1LB2L)B1R*B1R(B1LB2L)*+B1L*(B1RB2L*)+(B1RB2L*)*B1L, 0) 

 

To proceed as before we need to show that the norm property norm(xy) = 

norm(x)norm(y) holds for the bisedenions when one of them is constrained to be in 

the form of the bisedenion propagator, e.g., does norm(B1LB2L) = 

norm(B1L)norm(B2L) where B2L is in the form of the bisedenion propagator?  

 

norm(B1LB2L) = (B1LB2L)  (B1LB2L)*   

= ( [S1LLS2LL S1LR]  [S1LLS2LL S1LR]* + 

      [S1LL+S1LRS2LL*]*  [S1LL+S1LRS2LL*], 

    [S1LL+S1LRS2LL*]  [S1LLS2LL S1LR] +  

      [S1LL+S1LRS2LL*]  [S1LLS2LL S1LR]) 

 

= ( norm(S1LLS2LL)+norm(S1LRS2LL*)+2 norm(S1LR)+2 norm(S1LL) 

        (S1LLS2LL)S1LR*S1LR(S1LLS2LL)*+ 

        S1LL*(S1LRS2LL*)+(S1LRS2LL*)*S1LL,   0) 

 

Now that we’ve reduced to this level we see there is a problem. In the prior reduction 

we arrived at the variables being octonions at this stage, for which the norm property 

and braid laws of the octionoic composition algebra allowed norm(O1LLO2LL) = 

norm(O1LL)norm(O2LL) and showed the non-norm terms were zero by manipulations 

using the braid laws that hold for the composition algebras. Now that we’ve moved to 

the next higher Cayley algebra’s in the derivation, and in our extension construction, 

we now are asking the sedenions to act as a composition algebra to proceed (on an 

unrestricted part of the Sedenion algebra). The construction fails. Thus, the extension  
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process does not extend past the Bisedenions, it basically requires the Cayley algebra 

at two Cayley levels lower to still be a composition algebra. It is still possible to 

extend to the bisedenions because at two levels lower you still have the octonions, 

which are a composition algebra as needed. Computationally we see a failure to 

propagate the bitrigintaduonions so this is consistent. 

 

 

The key software solution to discover/verify the results computationally is a the 

recursive Cayley definition for multiplication, which avoids use of lookup tables and 

avoids commutation and associativity issues encountered at higher order. It is shown 

next. The cayley subroutine takes the references to any pair of Cayley numbers 

(represented in list form, so represented as simple arrays), and multiplies those 

Cayley numbers and returns the Cayley number answer (in list form, thus an array). 

The main usage was with randomly generated unit norm Cayley numbers that were 

multiplied (from right) against a “running product”. Tests on unit norm hold for 

millions of running product evaluations in cases where there the unit norm 

propagations are validated, so, like the perfectly meshed gears of a machine, or the 

perfectly ‘braided’ threads of a very long string. 

 

 

10 The Code 
 
---------------------------------- cayley_multiplication.pl -------------------------------------------- 

sub cayley { 

    my ($ref1,$ref2)=@_; 

    my @input1=@{$ref1}; 

    my @input2=@{$ref2}; 

    my $order1=scalar(@input1); 

    my $order2=scalar(@input2); 

    my @output; 

    if ($order1 != $order2) {die;} 

    if ($order1 == 1) { 

        $output[0]=$input1[0]*$input2[0]; 

    } 

    else{ 

        my @A=@input1[0..$order1/2-1]; 

        my @B=@input1[$order1/2..$order1-1]; 

        my @C=@input2[0..$order1/2-1]; 

        my @D=@input2[$order1/2..$order1-1]; 

        my @conjD=conj(\@D); 

        my @conjC=conj(\@C); 

        my @cay1 = cayley(\@A,\@C); 

        my @cay2 = cayley(\@conjD,\@B); 

        my @cay3 = cayley(\@D,\@A); 

        my @cay4 = cayley(\@B,\@conjC); 

        my @left; 

        my @right; 

        my $length = scalar(@cay1); 

        my $index; 

        for $index (0..$length-1) { 

            $left[$index] = $cay1[$index] - $cay2[$index]; 

            $right[$index] = $cay3[$index] + $cay4[$index]; 
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        } 
        @output=(@left,@right); 

    } 

    return @output; 

} 

 

---------------------------------- cayley_multiplication.pl -------------------------------------------- 

 

11 Discussion 
 

Consider the Feynman-Cayley Path Integral, where we extend the notion of all paths 

with path integration generally involving a real or matrix object to all paths with all 

higher-dimensional Cayley algebras and their propagating sub-algebra (loop) objects. 

It is hypothesized that the usual configuration space path integral construction in this 

larger Cayley space domain can be undertaken in a straightforward manner, allowing 

many choices to be resolved, or explained, from what is allowed within that 

formulation. Let’s suppose the following was possible: 

 

(1) Reality can be described in terms of a completely multiplicative propagator. 

 

(2) The Path Integral formalism selects against fields involving algebras with zero 

divisors, and loss of braid laws, thereby reducing to a RCHO(ST) based theory, where 

equilibrium and martingale constructs occur asymptotically. 

 

(3) The path integral formalism resuling from the propagotor has two forms, the 

Feynman-Cayley Path Integral and Weiner Path Integral, according to the 

introduction of an analytic (complex) time parameter, where the forms are related via 

Euclideanization. 

 

The central role of path integrals and of time Euclideanization is posited as 

fundamental in and of itself. The core hypothesis is that complex wavefunctions can 

be written in a path integral formalism with propagators that involve fields based on 

Cayley algebras at all orders. The Cayley algebras with no zero divisors include the 

Real Numbers (R), the Complex Numbers (C), the Quaternions (Q), and the 

Octonians (O). And what is shown is here is how to extend by two more dimensions 

beyond the octonions, and in the lower algebras the same methods suggest sub-

algebras (e.g., quaternions have four dimensions, if they were extended would 

possibly have five and six dimensional subalgebras of the octonions and sedenions,). 

 

The stationary phase of a solution, or highly peaked density of states in the 

Euclideanized time domain, is not possible for fields over the Cayley algebra’s that 

have zero divisors, e.g., that are no longer composition algebras. The zero divisors are 

posited to disrupt all such higher order Cayley field propagations, thereby eliminating 

them from path integral considerations except when such a short step is taken that the 

likelihood of a disruptive (to phase or cohesion) zero divisor occurrence is low. In the  
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extension proofs it was shown how a normed algebra allowed for the braid laws to be 

valid, which were used repeatedly in the extension proofs. So just as critical as 

disruption due to zero divisor is disruption in unit norm propagation due to loss of 

‘braiding’. (It is conceivable that you might operate in a sector, where you are not 

free to multiply anything together, and the zero divisor problem is avoided, the 

braiding failure, however, is still unavoidable.) 

 

A number of embedded Cayley algebra’s arise in a natural way. Recall that embedded 

in a Cayley algebra at any order above quaternionic, there is a quaternionic sub-

algebra. Similarly, within that quaternionic algebra is a complex sub-algebra. The 

embeddings on sub-algebras works for octonians within higher order Cayley algebras, 

also, but beyond that the sub-algebras don’t appear to embed (so only have a C  H  

O embedding description within the higher order Cayley algebras). 

 

 

The RCHO(ST) hypothesis, motivated by Maxwell, Feynman and Cayley, may be 

able to directly encode the standard model and statistical mechanics, as well as 

provide a unified framework whereby matter/antimatter (possibly from braiding since 

there are two types of braiding), boson/fermion (from choice of chiral octionic 

sector), and light/dark matter or energy (from choice of chiral sedenionic sector), may 

be encoded. A variational formalism at the level of the10 dim spacetime description 

may allow quantum gravity by use of the renormalizability of the (10 dim) string 

theories. 

 

12 Conclusion 
 

The Feynman-Cayley path integral appears to indicate a (1,9) spacetime setting, 

sufficient to encompass the standard model [10-14,17] and explain other, chiral, 

structures of matter. The 10-dim spacetime indicated by the RCHO(ST) hypothesis is 

also consistent with the 10 dimensions indicated by string theory. 

 

Other forms of multiplication rule (than Cayley) are very useful, one being scalar-

vector representations that ties into representing physics equations in compact form 

[17]. Descriptions of the standard model in terms of hypercomplex mathematics is 

described in [10-14, 17]. 

 

 

Generalization of the N-square theorem is discussed by Rajwade in [20]. Rajwade 

defines generalized N-square theorems to exist when a triple of integers (P,Q,R) are 

admissible, where admissible occurs if and only if the product of a sum of P squares 

and a sum of Q squares is a sum of  R  squares (over some field). The standard N-

square theorem is that (N,N,N) is admissible for N=1,2,4,8, paralleling the 

dimensionality of the composition algebra in which they operate. So have (1,1,1) for 

the reals, (2,2,2) for the complex numbers, (4,4,4) for the quaternions, and (8,8,8) for 

the octonions. Rajwade shows that (16,16,16) is NOT admissible, but that (16,16,32)  
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is admissible over the reals. The results here appear to partly overlap with Rajwade’s 

results and suggests additional admissible triplets:(8,8,16),for products of special 

sedenion propagator;(16,8,16) for norm one propagation using sedenion propagator; 

(16,16,32), for products of bisedenion propagator (in agreement with Rajwade);  and 

(32,16,32), for norm one propagation using the bisedenion propagator. 

 

 

This work appears to relate to efforts to describe a left loop on the 15-sphere and 

examining sub-loops on the sedenions [21, 22], suggesting that similar subloops may 

be found in the bisedenions as well (but not in higher order Cayley algebras). 

 

 

Other than a new link to string theory, consistent with the 10-dim theory, the 

hypercomplex formulation indicated here may indicate what dimensional reductions 

will relate to experiments involving the standard model, and the natural chirality of 

the formalism also allows for an explanation for Dark matter, all in a mathematics 

that can be absorbed into a Lagrangian formulation that could be consistent with a 

theory of Gravity. 
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