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Abstract: Using a Dyson–Schwinger approach, we perform an analysis of the non-trivial

ground state of thermal SU(N) Yang–Mills theory in the non-perturbative regime where

chiral symmetry is dynamically broken by a mass gap. Basic thermodynamic observables

such as energy density and pressure are derived analytically, using Jacobi elliptic functions.

The results are compared with the lattice results. Good agreement is found at low tem-

peratures, providing a viable scenario for a gas of massive glue states populating higher

levels of the spectrum of the theory. At high temperatures, a scenario without glue states

consistent with a massive scalar field is observed, showing an interesting agreement with

lattice data. The possibility is discussed that the results derived in this analysis open up a

novel pathway beyond lattice to precision studies of phase transitions with false vacuum

and cosmological relics that depend on the equations of state in strong coupled gauge

theories of the type of Quantum Chromodynamics (QCD).

Keywords: finite temperature QCD; Yang-Mills theory; Dyson-Schwinger approach

1. Introduction

Nowadays, only lattice simulations and other very limited theoretical approaches can

reliably analyze the key observables in quantum Yang–Mills theories at finite temperatures

in the strong coupling regime. Existing analytic methods such as the Polyakov loop

model [1,2] still rely on sets of unknown non-perturbative parameters in the effective

potential obtained by properly fitting lattice data. The exact form of the coefficients of

a thermodynamic potential is found by an appropriate fit to the corresponding lattice

data [3], which fully determines this potential for a given theory. Such a lattice-inspired

effective model has been extensively employed in view of cosmological studies involving

dark sectors (see, e.g., Ref. [4]).

In this work, we develop an approach enabling a fully analytical treatment of non-

perturbative quantum field thermodynamics in terms of physical parameters alone. Our

technique provides, in principle, a systematic way of incorporating finite temperature

corrections to the exact Green function in the framework of a Dyson–Schwinger approach

with a non-trivial ground state [5–8]. We consider a pure Yang–Mills theory, i.e., a gauge

theory that has no other degrees of freedom than its potentials. It should be noted that

Yang–Mills theories appear in nature only in interaction with other fields like fermions

and scalars, such as in the Standard Model or QCD. Therefore, the idealized situation

without other fields we consider here can only be compared to lattice calculations [9,10].
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We demonstrate the robustness of our method by computing the effective action of a

pure Yang–Mills quantum thermal theory under the SU(N) symmetry group in the non-

perturbative regime. The latter is then used to estimate some of the basic thermodynamic

observables such as energy density and pressure. This is achieved by computing the

effective energy–momentum tensor of the Yang–Mills theory and evaluating the thermal

averages of its components in terms of the correlation functions [11,12]. Comparing the

thermodynamic observables with the lattice data available for N = 3 or N = 4 colors [3]

reveals an overall consistency in our results, suggesting that our method captures the

most essential features of non-perturbative Yang–Mills dynamics at low temperatures. A

recent approach with a free gas of glueballs shows a similar consistency [13]. As pure

Yang–Mills theory is not seen in experiments, we emphasize that a proof of principle of

the symmetry breaking in Yang–Mills theory can only be obtained by comparison with

lattice calculations [3]. Our aim is to show how, from calculations based on the full theory,

very good fits can be obtained at low and high temperatures, providing a sound physical

interpretation for the lattice results.

To properly frame this work, we study a Yang–Mills theory without interactions

with other fields like quarks or scalars. This is done by starting with the full theory and

developing an exact solution that is afterwards fitted to the lattice results presented in

Ref. [3]. This procedure should prove the soundness of our technique for thermal field

theory too. It should be emphasized that, at low temperatures, the results presented in

Ref. [3] are too few to obtain a significant result beyond SU(3) and SU(4) Yang–Mills

theories. Therefore, we limit our analysis to these cases.

The paper is structured as follows. In Section 2, we present our technique to obtain an

exact solution of the quantum Yang–Mills theory. In Section 3, we show how the partition

function is obtained in our case. In Section 4, we derive all the thermodynamic variables

for the Yang–Mills theory. In Section 5, we evaluate the partition function and present our

results in comparison with lattice data. Finally, in Section 6, we give our conclusions.

2. Gaussian Solution of Quantum Yang–Mills Theory

We study an exact solution of the quantum Yang–Mills field theory that provides a

Gaussian partition function [5–8,14]. It is worthwhile to study such a solution because

exact solutions in quantum field theory are quite rare and are mostly given for non-physical

models alone. We expect that the solution found here represents the behavior of the

Yang–Mills theory. In order to simplify the presentation, we consider a Yang–Mills theory

with a SU(N) gauge group. The action at the classical level is given by

SYM =
∫

d4x

(

−
1

4
Fa

µνF
µν
a + j

µ
a Aa

µ

)

(1)

(latin letters a, b, c, . . . represent group indices taking the values 1, 2, 3), where j
µ
a is a generic

source and an element of the su(2) algebra. The field strength tensor is given by

Fa
µν = ∂µ Aa

ν − ∂ν Aa
µ + g f abc Ab

µ Ac
ν, (2)

where g is the coupling constant and f abc are the structure constants of the gauge group,

leading to the classical equations of motion given by

∂µFa
µν + g f abc AbµFc

µν = ja
ν. (3)

In the following, we will provide a solution to Equation (3). The classical equation of

motion generalizes to the quantum case by introducing a gauge fixing term and ghost
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fields and by considering the partition function (also known as the generating functional,

cf., e.g., Ref. [15])

Z [j, η̄, η] =
∫

[dA][dc̄][dc] exp
(

− SYM +
∫

d4x
1

2ξ
(∂µ A

µ
a )(∂ν Aν

a)

+
∫

d4x
(

c̄a∂µ∂µca + gc̄a f abc∂µ Abµcc
)

−
∫

d4x(η̄aca + c̄aηa)
)

. (4)

From the partition function, we can derive the pure correlation functions

G
a1a2 ...an
nµ1µ2 ...µn(x1, x2, . . . , xn) =

δn ln Z[j, η̄, η]

δj
µ1
a1
(x1)δj

µ2
a2
(x2) · · · δj

µn
an (xn)

,

P
a1a2 ...an
n (x1, x2, . . . , xn) =

δn ln Z[j, η̄, η]

δη̄a1
(x1)δη̄a2(x2) · · · δη̄an(xn)

, (5)

P̄
a1a2 ...an
n (x1, x2, . . . , xn) =

δn ln Z[j, η̄, η]

δηa1
(x1)δηa2(x2) · · · δηan(xn)

and mixed correlation functions, for instance,

Kab
2µ(x1, x2) =

δ2 ln Z[j, η̄, η]

δja
µ(x1)η̄b(x2)

. (6)

Our aim is to find a Gaussian solution where all the correlation functions can be expressed

by G1 and G2, given the expectation values of the gauge field, that is, the cumulant expan-

sion of the partition function. It should be emphasized that the first two Dyson–Schwinger

equations give the analogues of the classical equations of motion and the propagator of the

theory, respectively, if the quantum corrections are properly accounted for.

This aim can be achieved by solving the Dyson–Schwinger Equations [5–8]

∂2Ga
1ν(x) + g f abc

(

Gb
1µ(x)∂µGc

1ν(x)− Gb
1µ(x)∂νG

µc
1 (x) + ∂µ

(

Gb
1µ(x)Gc

1ν(x)
))

+g2 f abc f cde
(

G
µbd
2µ (x, x)Gνe

1 (x) + G
µbe
2ν (x, x)Gd

1µ(x) (7)

+Gde
2µν(x, x)G

µb
1 (x) + G

µb
1 (x)Gd

1µ(x)Ge
1ν(x)

)

= 0,

and

∂2Gam
2νκ(x, y) + g f abc

(

∂µGbm
2µκ(x, y)Gc

1ν(x) + ∂µGb
1µ(x)Gcm

2νκ(x, y)− ∂νGbm
2µκ(x, y)G

µc
1 (x)

−∂νGb
1µ(x)G

µcm
2κ (x, y) + ∂µ

(

Gbm
2µκ(x, y)Gc

1ν(x) + Gb
1µ(x)Gcm

1νκ(x, y)
)

(8)

+ g2 f abc f cde
(

Gbd
2µν(x, x)G

µem
2κ (x, y) + Geb

2νρ(x, x)G
ρdm
2κ (x, y) + G

µbm
2κ (x, y)Gd

1µ(x)Ge
1ν(x)

+G
µb
1 (x)Gdm

2µκ(x, y)Ge
1ν(x) + G

µb
1 (x)Gd

1µ(x)Gem
2νκ(x, y)) = δamgνκδ4(x − y).

To solve these equations, we use a mapping theorem on the solutions of the classical Yang–

Mills equations of motion [16,17] in order to take all components for the 1P-correlation

function as equal,

Ga
1µ(x) = ηa

µϕ(x), (9)

where ηa
µ are sets of constants (e.g., η = ((0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)) for SU(2)), and ϕ

is a scalar field to be determined. We also take

G̃ab
2µν(x, y) = δabηµν∆(x, y) (10)
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where we have made explicit the projector, and ∆(x, y) is a scalar propagator to be

determined. Anticipating this ansatz, the anti-symmetry of f abc was already used in

Equations (7) and (8). In doing so, we are able to obtain both G1 and G2 in closed form and,

in principle, compute the partition function at any desired order for this Gaussian solution.

By direct substitution, we see immediately that

∂2ϕ + 2λ∆(x, x)ϕ + λϕ3 = 0

∂2∆(x, y) + 2λ∆(x, x)∆(x, y) + 3λϕ2(x)∆(x, y) = δ4(x − y) (11)

with λ = Ng2. As ∆(x, x) is a constant, we can identify this as a mass correction that arises

from quantum effects,

δm2 = 2λ∆(x, x). (12)

In the following, we will neglect this correction that, after renormalization, is assumed to

have a small effect on the spectrum of the theory [7]. The two-point correlation function we

obtain is translation invariant. We show this in Appendix A. Though the description of the

Yang–Mills theory by a Lagrange density invariant unveils a symmetry under the SU(N)

gauge group that is broken by the introduction of the gauge fixing parameter, this is not

the symmetry we concentrate on in this paper. Instead, we investigate the breaking of the

chiral symmetry of this theory by a mass gap generated dynamically.

3. Partition Function in the IR Regime

Neglecting the mass correction, the solution for G1 and G2 can be obtained by taking

G1µ(x) = ηa
µµ sn(p · x + θ| − 1) (13)

in terms of integration constants µ and θ, where the gluon momentum p satisfies the

dispersion relation p2 = µ2λ/2, and sn(ζ|κ) is the Jacobi elliptic function of the first kind

with parameter κ. In our approach, G1 is treated as a background field or as a specific

non-trivial vacuum. For more details on the solution, cf. Appendix B.

In a first approximation that holds in the infrared (IR) limit of the Yang–Mills theory

(confined phase), our approach allows us to truncate the functional series derived from

Equation (4) at the quadratic term with the exact translationally invariant two-point func-

tion Gab
2µν(x1, x2) ≡ D̃ab

µν(x1 − x2), while the three- and four-point functions are represented

as products of one- and two-point functions evaluated at different points. Because of

this, the theory is manifestly translation invariant at the level of observables where the

Lehmann–Symanzik–Zimmermann reduction formula is assumed to hold.

In the considered approximation with the partition function truncated at the quadratic

order, the IR truncated partition function reads [18]

ZYM[j]
∣

∣

∣

IR
≈ ZYM[0]

∣

∣

∣

IR
exp

{

−
∫

d4xGa
1µ(x)jaµ(x)−

1

2

∫

d4xd4yjaµ(x)G̃ab
2µν(x − y)jbν(y)

}

. (14)

The momentum space propagator in the Feynman gauge takes the shape

Gab
2µν(p) = δabηµν

∞

∑
n=0

Bn

p2 − m2
n + iϵ

(15)

(see Appendix A for a derivation), where

Bn = (2n + 1)2 π3

4K3(−1)

e−(n+ 1
2 )π

1 + e−(2n+1)π
, (16)
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and the mass spectrum reads

mn = (2n + 1)m0, m0 ≡
πµ

2K(−1)
, (17)

in terms of the mass of the lowest excitation, m0. Note that m0 is a physical parameter

in the same way as the scale of asymptotic freedom is generated dynamically in QCD

by perturbation theory. We can identify this parameter with the string tension normally

evaluated at σ = (440 MeV)2. Stopping to the two-point correlation function, one obtains

ZYM[j] ∝ exp

[

−
1

2

∫

d4 pj
µ
a (p)Gab

2µν(p)jν
b (−p)

]

= exp

[

−
1

2

∫

d4 pja
µ(p)

∞

∑
n=0

Bn

p2 − m2
n + iϵ

j
µ
a (−p)

]

. (18)

Due to the sum, this is equivalent to a product of partition functions of an infinite set

of scalar fields {ϕn} (i.e., glue states of mass mn), each with weight ng = 2(N2 − 1) (the

factor 2 arises from the Minkowski metric, assuming all the currents are equal). Such

a truncation represents a gas of free massive glue states. For such a gas, we expect a

very good agreement at low temperatures, as we will see below. Finally, one can use the

functional identity

{

exp

[

−
1

2

∫

d4 pj(p)
∞

∑
k=0

Bk

p2 + m2
k

j(−p)

]}ng

=

{

∞

∏
k=0

∫

Dϕk(p) exp

[

−1

2Bk

∫

d4 pϕk(p)(p2 + m2
k)ϕk(−p)−

∫

d4 pj(p)ϕk(−p)

]

}ng

. (19)

Turning back to the partition function of each of the scalar field separately, one can

write the Yang–Mills partition function in Equation (14) as

ZYM[0]
∣

∣

∣

IR
∝ ZIR ≡

[

∏
k

∫

Dϕk exp
{

−
1

2Bk

∫

d4 p

(2π)4
ϕk(p)(p2 + m2

k)ϕk(−p)
}]ng

(20)

up to an overall multiplicative constant that is irrelevant for further considerations. Indeed,

the source-free Yang–Mills partition function in the non-perturbative regime can be seen

as a partition function of a system of infinitely many free scalar fields, where each field

contributes with different weights, depending on its mass mk determined by Equation (20).

We see that, in the IR limit, the spectrum of the theory is quite different from that of the

UV limit, where the true states of the theory are massless gluons and we have asymptotic

freedom. In the IR limit, we have an infinite spectrum of massive particles that, in our

approximation, are not interacting with each other. If we also use this spectrum for the

regime of asymptotic freedom as well, i.e., for high temperatures, this will yield an infinite

free energy for the model. We will see that for the high-temperature limit, the omission of

the gluon states beyond the lowest one is a fairly good approximation.

4. Thermal Yang–Mills Theory

In what follows, we aim to derive the basic thermodynamic properties of the thermal

Yang–Mills theory. Note that Equation (20) is the partition function of an infinite number of

free scalar fields. Raised to the exponent, the product over the scalar fields adds a further

sum over the scalar field modes. In the imaginary-time formulation, Equation (20) can be

rewritten as [19]
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ln ZIR = −
ng

2 ∑
k

∞

∑
n=−∞

∫

d3 p

(2π)3
ln
(

β2 B−1
k (ω2

n + p2 + m2
k)
)

, (21)

where ωn = 2nπ/β (with β ≡ 1/T) are the Matsubara frequencies. Furthermore, making

use of the representation

ln[(2πn)2 + β2ϵ2
k ] =

∫ β2ϵ2
k

1

dx2

x2 + (2πn)2
+ ln[1 + (2πn)2]

with ϵ2
k = ϵ2

k(p) ≡ p2 + m2
k , performing the summation

∞

∑
n=−∞

1

n2 + (x/2π)2
=

2π2

x

(

1 +
2

ex − 1

)

, (22)

and turning to the continuum limit for momentum p in the system of volume V, we arrive

at the final form for the partition function of the thermal Yang–Mills theory, given by

ln ZIR = ngV
∞

∑
k=0

∫

d3 p

(2π)3

[

−
βϵk(p)

2
− ln

(

1 − e−βϵk(p)
)]

. (23)

Here, the first expression in square brackets represents the contribution of the zero-point

fluctuations of fields with mass mk in the ground state. In general, the vacuum term

ln Zvac
IR does not affect the thermodynamic observables in the thermal equilibrium but

effectively renormalizes the physical observables by absorbing divergences emerging in the

summation over k as T → ∞, such that the physics is recovered through a finite, properly

regulated, partition function, ln ZIR → ln Z
reg
R ≡ ln ZIR − ln Zvac

IR .

For further considerations, it is instructive to turn to a more compact representation in

terms of a dimensionless variable z = pβ (with p ≡ |p|), such that

ln Z
reg
R = −P0Vβg(α), P0 =

ng

β4
, (24)

g(α)
reg

=
∞

∑
k=0

J(ak), ak ≡ (2k + 1)α =
mk

T
, (25)

J(ak) ≡
1

2π2

∫ ∞

0
z2dz ln

(

1 − e
−
√

z2+a2
k

)

, (26)

where a proper regularization of the summation is implied, J(ak) is the standard thermal

integral for a given state with mass mk defined in Equation (17), α ≡ βm0 is the inverse of

the temperature measured in units of the mass gap m0, and P0 is the pressure of the free

gluon gas. In what follows, we are interested in analyzing such thermodynamic observables

of the quantum Yang–Mills fields like pressure

P = β−1 ∂

∂V
ln Z

reg
R = −P0g(α), (27)

which is essentially the (normalized) partition function (cf. Equation (23)), and energy density

ϵ = −
1

V

∂

∂β
ln Z

reg
R =

∂

∂β
(βg(α)) (28)

as well as the trace of the energy-momentum tensor (trace anomaly), ∆ ≡ ϵ − 3P.

The characteristic energy scale for the Yang–Mills theory will enter our analysis

through the ratio m0/Tc, where m0 is the mass gap of the theory and Tc the critical tempera-

ture of the phase transition, which will be the only parameter to be fitted against the lattice
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data. The critical temperature is known from lattice data being around 271 MeV for SU(3)

and around 262 MeV for SU(4), according to Ref. [20].

5. Evaluation of the Partition Function

In order to determine the pressure and energy density, we have to evaluate g(α). This

is known in series form as

g(α) = −
α2

2π2

∞

∑
k=0

∞

∑
n=1

1

n2
(2k + 1)2K2(n(2k + 1)α) (29)

(see Appendix C for a derivation), where K2(x) is a modified Bessel function. In the low-

temperature limit, no convergence problems arise, and the series can be trusted enough for a

comparison with lattice data. On the other hand, for α → 0, i.e., the high-temperature limit,

this is no longer true for the series (29), as it should be expected by the infinite spectrum

of free particles we are considering. The reason is that we are using an IR approximate

solution to evaluate the UV limit of the Yang–Mills theory. This would be possible only by

setting the mass gap of the theory to zero.

In the following plots, we compare our results for the pressure and the energy density

for SU(3) and SU(4) with those from the lattice. As a single fitting parameter for both

plots, we use the ratio m0/Tc. For the pressure displayed in Figure 1, we see a fairly good

approximation m′
0/Tc ≈ (m0/Tc)(N/3)−1/4, where m′

0 is the mass gap for SU(3). Both

masses are obtained independently by a fit. Because of this, they already take into account

the number of colors. For the energy density, we obtain the result shown in Figure 2. Again,

we have good agreement, with the dependency on the number of colors being the same as

that for the pressure. We see that the ratio m0/Tc, both for the pressure and energy density,

is very similar within the errors of the corresponding fits.

Low-T result

lattice

0.80 0.85 0.90 0.95 1.00
-0.001

0.000

0.001

0.002

0.003

0.004

T/Tc

P
/(
n
g
T
4
)

T/Tc

low T regime

Figure 1. Cont.
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Low-T result

lattice

0.80 0.85 0.90 0.95 1.00
-0.0010

-0.0005

0.0000

0.0005

0.0010

T/Tc

P
/(
n
g
T
4
)

T/Tc

low T regime

Figure 1. Upper: Plot of the pressure p for SU(3) with the fitted ratio m0/Tc ≈ 1.61 compared to the

lattice data. Lower: The same for SU(4) with the fitted ratio m0/Tc ≈ 1.95.

low-T result

lattice

0.80 0.85 0.90 0.95 1.00
0.00

0.02

0.04

0.06

0.08

0.10

0.12

T/Tc

ϵ/(ng
T
4
)

low T regime

low-T result

lattice

0.80 0.85 0.90 0.95 1.00

0.00

0.01

0.02

0.03

0.04

0.05

T/Tc

ϵ/(ng
T
4
)

low T regime

Figure 2. Upper: Plot of the energy density ϵ for SU(3) with the fitted ratio m0/Tc ≈ 1.61 compared

to the lattice data. Lower: The same for SU(4) with the fitted ratio m0/Tc ≈ 1.95.
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In the high-temperature regime, where perturbative QCD can be satisfactorily

applied [21], we achieve the somewhat surprising result that the corresponding thermal

series for a scalar field seems to fit very well to the results, mostly for the case of the

energy density. We would like to emphasize that the fits we obtain in this regime cannot be

successful for the same values of the ratio m0/Tc. The reason is that we are just extending

our approach with a spectrum of massive glue particles to a regime with massless gluons.

In addition, the glueball mass can entail some dependence on the temperature that we

are not able to catch at this stage [22]. The achievement of satisfactory results, in the

high-temperature limit (i.e., for small values of α) too, warrants some extended discussion.

For this we consider the expansion

g(α) =
π2

90
−

α2

24
+

α3

12π
+

α4

64π2

(

log(α2)−
3

2
− 2 log(4π) + 2γE

)

+ π
3
2

∞

∑
k=1

(−1)k ζ(2k + 1)

(k + 1)!
Γ

(

k +
1

2

)(

α2

4π2

)k+2

, (30)

where γE is the Euler–Mascheroni constant. This corresponds to considering Equation (29)

for only a single term and expanding for high temperatures for α → 0. The corresponding

plots are given in Figures 3 and 4. From these plots, it can be easily observed how harsh our

approximation is compared to standard perturbative computation. Nevertheless, for the

energy density in the high-temperature regime, we obtain Figure 4. The agreement in this

case is excellent with the rule for the ratio m0/Tc and the number of colors satisfied again.

We have fitted each quantity separately, as we cannot expect that the ratio m0/Tc

will stay the same, and for consistency reasons. For the high-temperature limit, the ratio

m0/Tc for the energy density is somewhat distant from the one for the pressure for SU(4).

Overall, the agreement is excellent for a single fit parameter. Taking into account that we

are working with asymptotic series with zero radius of convergence, we seem to have

evaluated the optimal number of terms for a satisfactory agreement with lattice data.

Low-T result

lattice

1.0 1.5 2.0 2.5 3.0 3.5
0.00

0.02

0.04

0.06

0.08

0.10

0.12

T/Tc

P
/(
n
g
T
4
)

low T regime

Figure 3. Cont.
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High-T result

lattice
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0.08

0.10

T/Tc

P
/(
n
g
T
4
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High T regime

Figure 3. Upper: Plot of the pressure p for SU(3) in the high-temperature limit with the fitted

ratio m0/Tc ≈ 0.53 compared to the lattice data. Lower: The same for SU(4) with the fitted ratio

m0/Tc ≈ 0.41.

High-T result

lattice

1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.1

0.2

0.3

0.4

T/Tc

ϵ/(ng
T
4
)

High T regime

High-T result

lattice

1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.1

0.2

0.3

0.4

T/Tc

ϵ/(ng
T
4
)

High T regime

Figure 4. Upper: Plot of the energy density ϵ for SU(3) with the fitted ratio m0/Tc ≈ 0.53, as

compared to the lattice data. Right: The same for SU(4) with the fitted ratio m0/Tc ≈ 1.59.
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6. Discussion and Conclusions

In this work, we have presented the non-perturbative partition function of the thermal

SU(N) Yang–Mills theory in the framework of Dyson–Schwinger equations with a non-

trivial ground state in analytic form. Utilizing a novel technique for solving these equation

in a differential form, we find very good consistency for the resulting thermodynamical

observables—pressure and energy density—with the corresponding lattice results available

for N = 3 and N = 4 colors. Our analytical approach provides a pathway for obtaining

thermodynamic characteristics in terms of input parameters to a given action of the Yang–

Mills theory. Indeed, in the considered IR limit of the theory, we show that the functional

series for the partition function, already truncated at the quadratic term, shows good

agreement between our results and the lattice data at low temperatures. While a standard

technique could be applied for high temperatures, we considered the solution for the scalar

field and found very good agreement for the energy density.

As the quadratic approximation already captures the most essential features of non-

perturbative Yang–Mills dynamics at low temperatures, we believe that, with a complete

evaluation of the partition function going beyond the quadratic order and accounting for

higher-order correlation functions, a more precise behavior could be found, possibly with

evidence for a smooth transition from a low-energy spectrum with glue states to that of a

pure massless gluon spectrum, as observed in the asymptotic freedom regime.

A scenario with a spectrum of massive glue state excitations in a thermal setting for

the Yang–Mills theory, starting from the available lattice data, has already been devised

in the literature [23,24]. In our study, we demonstrate that the same behavior can be

obtained analytically.

Cosmological first-order phase transitions (FOPT) in the early universe are known

to radiate gravitational waves (GWs), which are potentially detectable in upcoming GW

missions like LISA [25–28]. If such a signal were to be detected, this would inevitable give

hints for new physics, since the electroweak and QCD phase transitions in the standard

model are known as cross-overs, not as FOPT. Consequently, studying such GW signals

could allow us to probe the dynamics of otherwise completely inaccessible dark or hidden

sectors [29–31]. Therefore, we envisage a possible application of our approach to studies of

such phase transitions in the early universe, particularly for strong coupling. SU(N) Yang–

Mills theories, featuring color confinement string FOPTs [3,32], naturally appear in several

well-motivated viable extensions of the standard model; see studies in Refs. [33–41]. Since

the only free and independent parameter here is the confinement scale, these scenarios

can be deemed minimal, thus serving as suitable benchmark models. Previous attempts

to study the GW signal in such models in Refs. [42–49] suffer from uncertainties related

to non-perturbative effects, or rely on lattice calculations or methods like AdS/CFT [50]

due to the strong coupling involved. We envisage the method developed in this paper to

make quantitative estimates for such scenarios. As this is beyond the scope of the present

paper, we plan to take up this subject in a future publication, given the timeline of the LISA

experiment that is coming very soon and LiGO already taking data at present.

Our results are expected to also have a strong impact on a possible resolution of

the long-standing problem of deriving the QCD equation of the state and the precise

reconstruction of the QCD phase diagram, critical for many ongoing studies in particle

physics (e.g., physics of the quark–gluon plasma) and astrophysics (e.g., the dynamics of

neutron stars), and other issues in cosmology (e.g., dark matter, dark energy, and inflation);

see Refs. [51–53].
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Appendix A. Two-Point Correlation Function and Spectrum

We have to solve the set of Dyson–Schwinger Equation (11); cf. Refs. [5–8]. The

aim is to obtain a Fubini–Lipatov solution to represent the vacuum of the theory and a

translation invariant two-point correlation function. Actually, both the equations can be

solved analytically using Jacobi elliptic functions [54,55]. In physics, elliptic integrals and

functions appear, for instance, for the exact solution of the physical pendulum, in the small

angle approximation limited by the mathematical pendulum that obeys a linear differential

equation. Without going into too much detail, the period of a physical pendulum is

expressed in terms of the incomplete elliptic integral

F(φ|κ) =
∫ φ

0

du
√

1 − κ sin2 u
(A1)

with parameter κ, where the complete elliptic integral given by K(κ) = F(π/2|κ). The

Jacobi elliptic functions are defined via this incomplete elliptic integral by the inversion

of the equation z = F(φ|κ), in the sense that sn(z|κ) := sin φ, cn(z|κ) := cos φ, and

dn(z|κ) := (1 − κ sin2 φ)1/2. Using the Jacobi elliptic sine, we can write

ϕ(x) = µ sn(p · x + θ, κ), κ =
δm2 − p2

p2
, (A2)

where δm2 = 2λ∆(x, x), and θ and µ are two integration constants. This function is a

solution for the nonlinear differential equation shown in the first line of (11), provided the

dispersion relation

p2 = δm2 + µ2 λ

2
(A3)

holds. It is interesting to point out that −ϕ(x) also solves the first equation in (11). Therefore,

to choose one or the other solution spontaneously breaks the Z2 symmetry. Similarly, one

can show that the two-point correlation function can be written in the form

∆(p) =
π3

4K3(κ)

∞

∑
n=0

(−1)n(2n + 1)2 qn+1/2

1 − q2n+1

1

p2 − m2
n + iϵ

, (A4)

where q = exp(−πK(1 − κ)/K(κ)), with K(κ) being the complete elliptic integral of the

first kind. The technique is shown in Ref. [14] for the classical case but also applies

straightforwardly here. The mass spectrum is

mn = (2n + 1)
πµ

2K(κ)
. (A5)
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In order to go back to Equation (16), we set δm = 0. In this case we obtain κ = −1 and

q = exp(−π(1 − i)). Inserting this back into Equation (A4), we are able to obtain the

coefficients given in the main text.

Appendix B. One-Point Correlation Function

In taking Aa
µ(x) instead of Ga

1µ(x), Equation (7) for Ga
1ν(x) maps the classical equation

of motion very well, given by

∂µ(∂µ A
a(0)
ν − ∂ν A

a(0)
µ + g f abc A

b(0)
µ A

c(0)
ν )

+ g f abc Ab(0)µ(∂µ A
c(0)
ν − ∂ν A

c(0)
µ + g f cde A

d(0)
µ A

e(0)
ν ) = 0, (A6)

once we select the Feynman gauge [5]. However, there is an important difference as follows:

Equation (7) contains a quantum correction of the form Gab
2µν(x, x). After regularizing the

divergences, this correction can have the effect of a small shift in the spectrum of the

theory [7] that can be neglected. Our aim is to show how the Jacobi elliptic functions are

suited to this equation. By taking the mixed symbols, in the simple case of SU(2) (a = 1, 2, 3

is the group index), in the form

η1
µ = (0, 1, 0, 0), η2

µ = (0, 0, 1, 0), η3
µ = (0, 0, 0, 1), (A7)

and using the mapping theorem between a scalar field and the Yang–Mills field [16,17],

A
a(0)
µ (x) = ηa

µϕ0(x), (A8)

ϕ0(x) solves

∂2ϕ0 + 2g2ϕ3
0 = 0, (A9)

that is the first of Equation (11) for SU(2) when the quantum corrections are neglected.

Considering a solution of the form ϕ0(x) = µ sn(p · x + θ| − 1), we obtain

∂2
t ϕ0(x) = µp2

0(cn2(p · x + θ| − 1)− dn2(p · x + θ| − 1)) sn(p · x + θ| − 1),

∇2ϕ0(x) = µ|p|2(cn2(p · x + θ| − 1)− dn2(p · x + θ| − 1)) sn(p · x + θ| − 1). (A10)

Therefore,

∂2ϕ0 + 2g2ϕ3
0 = µ sn(p · x + θ| − 1)× (A11)

[

(E2 − |p|2)(cn2(p · x + θ| − 1)− dn2(p · x + θ| − 1)) + 2g2µ2 sn2(p · x + θ| − 1)
]

.

Using the identity cn2(z| − 1)− dn2(z| − 1) = −2 sn2(z| − 1) [56], Equation (A9) is solved,

provided the dispersion relation p2 = µ2g2 for SU(2) holds. If the quantum corrections are

neglected, we then obtain

Ga
1µ(x) = ηa

µϕ0(x) = ηa
µµ sn(p · x + θ| − 1), (A12)

that is Equation (13).

Appendix C. Evaluation of the Partition Function

Noting that the exponential function grants convergence for z > 0, one can expand

ln

(

1 − e
−
√

z2+a2
k

)

= −
1

n
e
−n

√

z2+a2
k . (A13)
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Because of the convergence of this series, one can freely interchange the integration and

summation to obtain

Jk =
∫ ∞

0
ln

(

1 − e
−
√

z2+a2
k

)

z2dz = −
∞

∑
n=1

1

n

∫ ∞

0
e
−n

√

z2+a2
k z2dz. (A14)

The integral term can be rewritten in a known form via the change of variables w2 = z2 + a2
k .

This yields (see Ref. [57], 3.389.4)

∫ ∞

ak

w(w2 − a2
k)

1
2 e−nwdw =

1

n
a2

kK2(nak), (A15)

where K2(x) is a modified Bessel function of the second kind. This yields Equation (29) in the

main text. In physics, Bessel functions describe the vibration modes of a circular membrane,

being solutions to the Bessel differential equation x2 f ′′(x) + x f ′(x) + (x2 − α2) f (x) = 0.

Modified Bessel functions are those that obey the modified Bessel differential equation

x2 f ′′(x) + x f ′(x) + (x2 + α2) f (x) = 0. An integral representation of the modified Bessel

function of the second kind (diverging at the origin) is given by

Kα(x) =
∫ ∞

0
e−x cosh t cosh(αt)dt, cosh(z) =

1

2
(ez + e−z). (A16)
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