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Abstract: Using a Dyson-Schwinger approach, we perform an analysis of the non-trivial
ground state of thermal SU(N) Yang—Mills theory in the non-perturbative regime where
chiral symmetry is dynamically broken by a mass gap. Basic thermodynamic observables
such as energy density and pressure are derived analytically, using Jacobi elliptic functions.
The results are compared with the lattice results. Good agreement is found at low tem-
peratures, providing a viable scenario for a gas of massive glue states populating higher
levels of the spectrum of the theory. At high temperatures, a scenario without glue states
consistent with a massive scalar field is observed, showing an interesting agreement with
lattice data. The possibility is discussed that the results derived in this analysis open up a
novel pathway beyond lattice to precision studies of phase transitions with false vacuum
and cosmological relics that depend on the equations of state in strong coupled gauge
theories of the type of Quantum Chromodynamics (QCD).

Keywords: finite temperature QCD; Yang-Mills theory; Dyson-Schwinger approach

1. Introduction

Nowadays, only lattice simulations and other very limited theoretical approaches can
reliably analyze the key observables in quantum Yang-Mills theories at finite temperatures
in the strong coupling regime. Existing analytic methods such as the Polyakov loop
model [1,2] still rely on sets of unknown non-perturbative parameters in the effective
potential obtained by properly fitting lattice data. The exact form of the coefficients of
a thermodynamic potential is found by an appropriate fit to the corresponding lattice
data [3], which fully determines this potential for a given theory. Such a lattice-inspired
effective model has been extensively employed in view of cosmological studies involving
dark sectors (see, e.g., Ref. [4]).

In this work, we develop an approach enabling a fully analytical treatment of non-
perturbative quantum field thermodynamics in terms of physical parameters alone. Our
technique provides, in principle, a systematic way of incorporating finite temperature
corrections to the exact Green function in the framework of a Dyson-Schwinger approach
with a non-trivial ground state [5-8]. We consider a pure Yang-Mills theory, i.e., a gauge
theory that has no other degrees of freedom than its potentials. It should be noted that
Yang-Mills theories appear in nature only in interaction with other fields like fermions
and scalars, such as in the Standard Model or QCD. Therefore, the idealized situation
without other fields we consider here can only be compared to lattice calculations [9,10].
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We demonstrate the robustness of our method by computing the effective action of a
pure Yang-Mills quantum thermal theory under the SU(N) symmetry group in the non-
perturbative regime. The latter is then used to estimate some of the basic thermodynamic
observables such as energy density and pressure. This is achieved by computing the
effective energy—-momentum tensor of the Yang-Mills theory and evaluating the thermal
averages of its components in terms of the correlation functions [11,12]. Comparing the
thermodynamic observables with the lattice data available for N = 3 or N = 4 colors [3]
reveals an overall consistency in our results, suggesting that our method captures the
most essential features of non-perturbative Yang-Mills dynamics at low temperatures. A
recent approach with a free gas of glueballs shows a similar consistency [13]. As pure
Yang-Mills theory is not seen in experiments, we emphasize that a proof of principle of
the symmetry breaking in Yang-Mills theory can only be obtained by comparison with
lattice calculations [3]. Our aim is to show how, from calculations based on the full theory,
very good fits can be obtained at low and high temperatures, providing a sound physical
interpretation for the lattice results.

To properly frame this work, we study a Yang-Mills theory without interactions
with other fields like quarks or scalars. This is done by starting with the full theory and
developing an exact solution that is afterwards fitted to the lattice results presented in
Ref. [3]. This procedure should prove the soundness of our technique for thermal field
theory too. It should be emphasized that, at low temperatures, the results presented in
Ref. [3] are too few to obtain a significant result beyond SU(3) and SU(4) Yang-Mills
theories. Therefore, we limit our analysis to these cases.

The paper is structured as follows. In Section 2, we present our technique to obtain an
exact solution of the quantum Yang-Mills theory. In Section 3, we show how the partition
function is obtained in our case. In Section 4, we derive all the thermodynamic variables
for the Yang-Mills theory. In Section 5, we evaluate the partition function and present our
results in comparison with lattice data. Finally, in Section 6, we give our conclusions.

2. Gaussian Solution of Quantum Yang-Mills Theory

We study an exact solution of the quantum Yang-Mills field theory that provides a
Gaussian partition function [5-8,14]. It is worthwhile to study such a solution because
exact solutions in quantum field theory are quite rare and are mostly given for non-physical
models alone. We expect that the solution found here represents the behavior of the
Yang-Mills theory. In order to simplify the presentation, we consider a Yang-Mills theory
with a SU(N) gauge group. The action at the classical level is given by

1 .
Sym = /d4x<—4FﬁvaV +]5’A;> (1)

(latin letters a, b, c, . . . represent group indices taking the values 1,2, 3), where j} is a generic
source and an element of the su(2) algebra. The field strength tensor is given by

i, =0, AY — 9, A5 + gf*" AL AS, (2)

where g is the coupling constant and f* are the structure constants of the gauge group,
leading to the classical equations of motion given by

Oy, +gf"AME,, = ). 3)

In the following, we will provide a solution to Equation (3). The classical equation of
motion generalizes to the quantum case by introducing a gauge fixing term and ghost
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fields and by considering the partition function (also known as the generating functional,
cf., e.g., Ref. [15])

2l = [l exp (= Svu+ [ atgz (0,40 @00)
+ / e (caydtct + et fobe, Alec) — / Fr(lac’ + ). @)

From the partition function, we can derive the pure correlation functions

ala an 5” ]‘nz[]’ﬁ ;7}
Gnlﬂlz.”z -Hn (xl’ X2y eny x”) 5]-51 (xl)(s]'gz (XZ) 5][{ ( )
1 2 n
" InZ[j, 7, 1]
PRt (e s X = - - - , 5
) ey (32) - 0Ty () ®
o"InZ[j, 1,1

Pyt (xq,x0, ..., xp) =

517“1 (xl )517'12 (x2> e 5;7[1;1 (xn)
and mixed correlation functions, for instance,

& InZ[j,7,7]

Sj (x1)77b (x2) ©

Ky, (x1,%2) =

Our aim is to find a Gaussian solution where all the correlation functions can be expressed
by G; and Gy, given the expectation values of the gauge field, that is, the cumulant expan-
sion of the partition function. It should be emphasized that the first two Dyson-Schwinger
equations give the analogues of the classical equations of motion and the propagator of the
theory, respectively, if the quantum corrections are properly accounted for.

This aim can be achieved by solving the Dyson-Schwinger Equations [5-8]

9G4, (x) + f™ (G, (x)9" G5, (x) — G, (1)9, G (x) + 9% (Gl (x)GE, () )
+g2 1 f% (G (x, %) G (x) + G, (x, ) G, () )
+G55, (3,206} (x) + G () G, (x) G4, (%)) =0,

and

PGam(x,y) + 8f ™ (3Gl (x,y) G5, (x) + DG, (x) G (x, ) — 0, Gl (v, )Gl ()
—3,Gl, () Ghe" (x,y) + 9 (Gl (%,) G5, (%) + Gl () Gl (1)) ®)
+ g2 FF(Gh (,x) G (x, ) + Gil (x, x)GEE™ (x, ) + G (x,) G, () G5, (%)
+G1" (x)Gai (x,y) G, (x) + GI () G, (%) Gl (x,)) = damgund™ (x = ).

To solve these equations, we use a mapping theorem on the solutions of the classical Yang-
Mills equations of motion [16,17] in order to take all components for the 1P-correlation
function as equal,

Gy (%) = mup(x), ©)
where 77;; are sets of constants (e.g., 7 = ((0,1,0,0), (0,0,1,0), (0,0,0,1)) for SU(2)), and ¢

is a scalar field to be determined. We also take

GZyV(x y) - §ub77HVA(xly) (10)



Symmetry 2025, 17, 543

40f16

where we have made explicit the projector, and A(x,y) is a scalar propagator to be
determined. Anticipating this ansatz, the anti-symmetry of f?° was already used in
Equations (7) and (8). In doing so, we are able to obtain both G; and G; in closed form and,
in principle, compute the partition function at any desired order for this Gaussian solution.
By direct substitution, we see immediately that

% +2AA(x,x)p +Ap> = 0
O2A(x,y) + 2AA(x, X)A(x,y) + 3Ap? (x)A(x, ) tx—y) (11)

with A = Ng2. As A(x, x) is a constant, we can identify this as a mass correction that arises
from quantum effects,
om* = 2AA(x, x). (12)

In the following, we will neglect this correction that, after renormalization, is assumed to
have a small effect on the spectrum of the theory [7]. The two-point correlation function we
obtain is translation invariant. We show this in Appendix A. Though the description of the
Yang-Mills theory by a Lagrange density invariant unveils a symmetry under the SU(N)
gauge group that is broken by the introduction of the gauge fixing parameter, this is not
the symmetry we concentrate on in this paper. Instead, we investigate the breaking of the
chiral symmetry of this theory by a mass gap generated dynamically.

3. Partition Function in the IR Regime

Neglecting the mass correction, the solution for G; and G, can be obtained by taking
Guu(x) = npusn(p-x+60| —1) (13)

in terms of integration constants u and 6, where the gluon momentum p satisfies the
dispersion relation p? = u2A /2, and sn({|«) is the Jacobi elliptic function of the first kind
with parameter x. In our approach, G is treated as a background field or as a specific
non-trivial vacuum. For more details on the solution, cf. Appendix B.

In a first approximation that holds in the infrared (IR) limit of the Yang-Mills theory
(confined phase), our approach allows us to truncate the functional series derived from
Equation (4) at the quadratic term with the exact translationally invariant two-point func-
tion Ggl’iv
as products of one- and two-point functions evaluated at different points. Because of

(x1,%2) = foi(xl — x2), while the three- and four-point functions are represented

this, the theory is manifestly translation invariant at the level of observables where the
Lehmann-Symanzik-Zimmermann reduction formula is assumed to hold.

In the considered approximation with the partition function truncated at the quadratic
order, the IR truncated partition function reads [18]

Zelil] = Zl0]] exp { = [atxG, (0 (x) - 5 [ atxatyi () gl e - ) () ) (14)

The momentum space propagator in the Feynman gauge takes the shape

> B
b _ n
Ga (P) = Oaplfuw n;) 2 —m? +ie (15)
(see Appendix A for a derivation), where
3 —(n+3)m
By=(2n+1)2— " ¢ (16)

4K3(—1) 14 e~ (@ntl)m’
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and the mass spectrum reads

T
= (2 1)my, = , 17
in terms of the mass of the lowest excitation, my. Note that m is a physical parameter
in the same way as the scale of asymptotic freedom is generated dynamically in QCD
by perturbation theory. We can identify this parameter with the string tension normally
evaluated at ¢ = (440 MeV)?2. Stopping to the two-point correlation function, one obtains

Zwljl o« ep|-3 [ d4pﬁ<p>cgzy<p>jz<—p>}

(¢
= exp [_; /d4p]y Z mz +l€]-ﬂ(_p)‘|. (18)
Due to the sum, this is equivalent to a product of partition functions of an infinite set
of scalar fields {¢,} (i.e., glue states of mass my), each with weight ng = 2(N? — 1) (the
factor 2 arises from the Minkowski metric, assuming all the currents are equal). Such
a truncation represents a gas of free massive glue states. For such a gas, we expect a
very good agreement at low temperatures, as we will see below. Finally, one can use the

functional identity

oo -3 fasitn £ i) }
= {H/D¢k eXPLB /d4p¢k (P + m) i (— /d4P] )¢ (= )}}”H. (19)

Turning back to the partition function of each of the scalar field separately, one can
write the Yang-Mills partition function in Equation (14) as

20l o 7w = [IT [ Do owp { - 55 i o 44’k )2+ mRe(-p) } " @0)

up to an overall multiplicative constant that is irrelevant for further considerations. Indeed,
the source-free Yang—Mills partition function in the non-perturbative regime can be seen
as a partition function of a system of infinitely many free scalar fields, where each field
contributes with different weights, depending on its mass m; determined by Equation (20).

We see that, in the IR limit, the spectrum of the theory is quite different from that of the
UV limit, where the true states of the theory are massless gluons and we have asymptotic
freedom. In the IR limit, we have an infinite spectrum of massive particles that, in our
approximation, are not interacting with each other. If we also use this spectrum for the
regime of asymptotic freedom as well, i.e., for high temperatures, this will yield an infinite
free energy for the model. We will see that for the high-temperature limit, the omission of
the gluon states beyond the lowest one is a fairly good approximation.

4. Thermal Yang-Mills Theory

In what follows, we aim to derive the basic thermodynamic properties of the thermal
Yang-Mills theory. Note that Equation (20) is the partition function of an infinite number of
free scalar fields. Raised to the exponent, the product over the scalar fields adds a further
sum over the scalar field modes. In the imaginary-time formulation, Equation (20) can be
rewritten as [19]



Symmetry 2025, 17, 543

6 of 16

» / dp sIn(B B (@2 +p2+ ), (21)

n=—oo

n
anIR = —?g Z
k

where w,, = 2nm/p (with g = 1/T) are the Matsubara frequencies. Furthermore, making
use of the representation

Bt dx?
2 2.2
nf(2m)? + pef] = [

2 +1In[1 + (271)?]

with €7 = €2(p) = p* 4+ m?, performing the summation

> 1 272 2
n;oonzﬂx/zn) X < 1)’ -

and turning to the continuum limit for momentum p in the system of volume V, we arrive

at the final form for the partition function of the thermal Yang-Mills theory, given by

nmnd B [ - A o)) e

Here, the first expression in square brackets represents the contribution of the zero-point
fluctuations of fields with mass m; in the ground state. In general, the vacuum term
In Z;3¢ does not affect the thermodynamic observables in the thermal equilibrium but
effectively renormalizes the physical observables by absorbing divergences emerging in the
summation over k as T — oo, such that the physics is recovered through a finite, properly
regulated, partition function, In Zjg — In Zf{e $=InZgr—1In VAL

For further considerations, it is instructive to turn to a more compact representation in
terms of a dimensionless variable z = pg (with p = |p|), such that

InZ = —PpVpg(n), Py = % (24)

@) = Y ), o= (@2k+Da="E, (25)
=0

J(ap) = ;ﬂ/()wzzdzln(l—e_szﬂi), (26)

where a proper regularization of the summation is implied, J(ay) is the standard thermal
integral for a given state with mass my defined in Equation (17), « = Bmy is the inverse of
the temperature measured in units of the mass gap myg, and Py is the pressure of the free
gluon gas. In what follows, we are interested in analyzing such thermodynamic observables
of the quantum Yang-Mills fields like pressure

P=p7lonInZg® = —Pog(w), (27)

which is essentially the (normalized) partition function (cf. Equation (23)), and energy density

e =54 = 5 (psla) 28)

9P
as well as the trace of the energy-momentum tensor (trace anomaly), A = € — 3P.
The characteristic energy scale for the Yang-Mills theory will enter our analysis
through the ratio mg/ Tc, where my is the mass gap of the theory and T the critical tempera-
ture of the phase transition, which will be the only parameter to be fitted against the lattice
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data. The critical temperature is known from lattice data being around 271 MeV for SU(3)
and around 262 MeV for SU(4), according to Ref. [20].

5. Evaluation of the Partition Function

In order to determine the pressure and energy density, we have to evaluate ¢(«). This
is known in series form as

2 co 0
o(a) = —%kg 2 iz 2k +1)%Kp (n(2k + 1)a) (29)

(see Appendix C for a derivation), where K (x) is a modified Bessel function. In the low-
temperature limit, no convergence problems arise, and the series can be trusted enough for a
comparison with lattice data. On the other hand, for « — 0, i.e., the high-temperature limit,
this is no longer true for the series (29), as it should be expected by the infinite spectrum
of free particles we are considering. The reason is that we are using an IR approximate
solution to evaluate the UV limit of the Yang—-Mills theory. This would be possible only by
setting the mass gap of the theory to zero.

In the following plots, we compare our results for the pressure and the energy density
for SU(3) and SU(4) with those from the lattice. As a single fitting parameter for both
plots, we use the ratio m/T.. For the pressure displayed in Figure 1, we see a fairly good

approximation m)/T. ~ (mg/Tc)(N/3)~1/4

, where mj) is the mass gap for SU(3). Both
masses are obtained independently by a fit. Because of this, they already take into account
the number of colors. For the energy density, we obtain the result shown in Figure 2. Again,
we have good agreement, with the dependency on the number of colors being the same as
that for the pressure. We see that the ratio mg/ T, both for the pressure and energy density,

is very similar within the errors of the corresponding fits.

low T regime

0.0 —m—m————————————

0.003

0.002 }

= = = Low-T result + +

0.001f 4 I
i T
lattice e m i 4

P/(ng T*)

o — -

0.000F——* T

-0.001 ; ; ;
0.80 0.85 0.90 0.95 1.00

T/Tc

Figure 1. Cont.
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1.00

low T regime
0.0010y : : :
0.0005} ]
= = = Low-T result
0 0.0000F ====5==j=7=~="" e i
E » lattice } ’ ’ ’ ’ ‘ ]
~0.0005} ]
~0.0010" - - -
0.80 0.85 0.90 0.95
T/Tc

Figure 1. Upper: Plot of the pressure p for SU(3) with the fitted ratio my /T, ~ 1.61 compared to the
lattice data. Lower: The same for SU(4) with the fitted ratio mg/ T, = 1.95.

low T regime

0.12

= = = low-T result

0.04} « lattice
0.02¢ | + } +
4 bl _+ ______
R B o e ol A ,
0.80 0.85 0.90 0.95 1.00
T/Tc
low T regime
0.05 , , ,
0.041
~ 0.03}
B~
%0 = = = low-T result
< 0.02}
« lattice \ }
0.01¢ + J ]
0.00F = = = - F——f—\——} —————————— ‘— -]
0.80 0.85 0.90 0.95
T/Tc

Figure 2. Upper: Plot of the energy density € for SU(3) with the fitted ratio mg/Tc = 1.61 compared
to the lattice data. Lower: The same for SU(4) with the fitted ratio mg/ T, ~ 1.95.
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In the high-temperature regime, where perturbative QCD can be satisfactorily
applied [21], we achieve the somewhat surprising result that the corresponding thermal
series for a scalar field seems to fit very well to the results, mostly for the case of the
energy density. We would like to emphasize that the fits we obtain in this regime cannot be
successful for the same values of the ratio m(/T;. The reason is that we are just extending
our approach with a spectrum of massive glue particles to a regime with massless gluons.
In addition, the glueball mass can entail some dependence on the temperature that we
are not able to catch at this stage [22]. The achievement of satisfactory results, in the
high-temperature limit (i.e., for small values of &) too, warrants some extended discussion.
For this we consider the expansion

m  a? o’ at n 3
glw) = 0 21 1t an <log(¢x ) — 5 2log(4r) +2'yE>
k+2
3o, G2k +1) 1)\ [ a*
+ 2 k;( 1) SCESl r k+2 s, p (30)

where 7 is the Euler-Mascheroni constant. This corresponds to considering Equation (29)
for only a single term and expanding for high temperatures for « — 0. The corresponding
plots are given in Figures 3 and 4. From these plots, it can be easily observed how harsh our
approximation is compared to standard perturbative computation. Nevertheless, for the
energy density in the high-temperature regime, we obtain Figure 4. The agreement in this
case is excellent with the rule for the ratio mg /T, and the number of colors satisfied again.
We have fitted each quantity separately, as we cannot expect that the ratio my/Tc
will stay the same, and for consistency reasons. For the high-temperature limit, the ratio
mg/ T, for the energy density is somewhat distant from the one for the pressure for SU(4).
Overall, the agreement is excellent for a single fit parameter. Taking into account that we
are working with asymptotic series with zero radius of convergence, we seem to have
evaluated the optimal number of terms for a satisfactory agreement with lattice data.

low T regime

0.12

0.04} / o lattice ]

0.02f 7 -

0.00L . . . .

1.0 1.5 2.0 2.5 3.0 35
T/Tc

Figure 3. Cont.
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Figure 3. Upper: Plot of the pressure p for SU(3) in the high-temperature limit with the fitted
ratio mo/T; =~ 0.53 compared to the lattice data. Lower: The same for SU(4) with the fitted ratio

mg/ T, =~ 0.41.

High T regime
0.4
03¢ M e et i
o
~ {e‘
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1.0 1.5 2.0 2.5 3.0 3.5
T/Tc
High T regime
0.4
SIS bR — T T T
0.3F - _._.’;«w“v»“‘o _
L - ’w o
T 1
o0 0.2 _ ]
§ } = = = High-T result
v « lattice
0.1 1
0.0 : : : :
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Figure 4. Upper: Plot of the energy density € for SU(3) with the fitted ratio my/T, ~ 0.53, as
compared to the lattice data. Right: The same for SU(4) with the fitted ratio mg/ T, &~ 1.59.
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6. Discussion and Conclusions

In this work, we have presented the non-perturbative partition function of the thermal
SU(N) Yang—Mills theory in the framework of Dyson-Schwinger equations with a non-
trivial ground state in analytic form. Utilizing a novel technique for solving these equation
in a differential form, we find very good consistency for the resulting thermodynamical
observables—pressure and energy density—with the corresponding lattice results available
for N = 3 and N = 4 colors. Our analytical approach provides a pathway for obtaining
thermodynamic characteristics in terms of input parameters to a given action of the Yang-
Mills theory. Indeed, in the considered IR limit of the theory, we show that the functional
series for the partition function, already truncated at the quadratic term, shows good
agreement between our results and the lattice data at low temperatures. While a standard
technique could be applied for high temperatures, we considered the solution for the scalar
field and found very good agreement for the energy density.

As the quadratic approximation already captures the most essential features of non-
perturbative Yang-Mills dynamics at low temperatures, we believe that, with a complete
evaluation of the partition function going beyond the quadratic order and accounting for
higher-order correlation functions, a more precise behavior could be found, possibly with
evidence for a smooth transition from a low-energy spectrum with glue states to that of a
pure massless gluon spectrum, as observed in the asymptotic freedom regime.

A scenario with a spectrum of massive glue state excitations in a thermal setting for
the Yang—Mills theory, starting from the available lattice data, has already been devised
in the literature [23,24]. In our study, we demonstrate that the same behavior can be
obtained analytically.

Cosmological first-order phase transitions (FOPT) in the early universe are known
to radiate gravitational waves (GWs), which are potentially detectable in upcoming GW
missions like LISA [25-28]. If such a signal were to be detected, this would inevitable give
hints for new physics, since the electroweak and QCD phase transitions in the standard
model are known as cross-overs, not as FOPT. Consequently, studying such GW signals
could allow us to probe the dynamics of otherwise completely inaccessible dark or hidden
sectors [29-31]. Therefore, we envisage a possible application of our approach to studies of
such phase transitions in the early universe, particularly for strong coupling. SU(N) Yang-
Mills theories, featuring color confinement string FOPTs [3,32], naturally appear in several
well-motivated viable extensions of the standard model; see studies in Refs. [33—41]. Since
the only free and independent parameter here is the confinement scale, these scenarios
can be deemed minimal, thus serving as suitable benchmark models. Previous attempts
to study the GW signal in such models in Refs. [42—49] suffer from uncertainties related
to non-perturbative effects, or rely on lattice calculations or methods like AdS/CFT [50]
due to the strong coupling involved. We envisage the method developed in this paper to
make quantitative estimates for such scenarios. As this is beyond the scope of the present
paper, we plan to take up this subject in a future publication, given the timeline of the LISA
experiment that is coming very soon and LiGO already taking data at present.

Our results are expected to also have a strong impact on a possible resolution of
the long-standing problem of deriving the QCD equation of the state and the precise
reconstruction of the QCD phase diagram, critical for many ongoing studies in particle
physics (e.g., physics of the quark-gluon plasma) and astrophysics (e.g., the dynamics of
neutron stars), and other issues in cosmology (e.g., dark matter, dark energy, and inflation);
see Refs. [51-53].
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Appendix A. Two-Point Correlation Function and Spectrum

We have to solve the set of Dyson-Schwinger Equation (11); cf. Refs. [5-8]. The
aim is to obtain a Fubini-Lipatov solution to represent the vacuum of the theory and a
translation invariant two-point correlation function. Actually, both the equations can be
solved analytically using Jacobi elliptic functions [54,55]. In physics, elliptic integrals and
functions appear, for instance, for the exact solution of the physical pendulum, in the small
angle approximation limited by the mathematical pendulum that obeys a linear differential
equation. Without going into too much detail, the period of a physical pendulum is
expressed in terms of the incomplete elliptic integral

(A)

F( |K)_/(pd7”
=l T rsinu

with parameter x, where the complete elliptic integral given by K(x) = F(7r/2|«). The
Jacobi elliptic functions are defined via this incomplete elliptic integral by the inversion

of the equation z = F(¢|«x), in the sense that sn(z|x) := sin¢, cn(z|x) = cos ¢, and
dn(z|x) := (1 — xsin? ¢)!/2. Using the Jacobi elliptic sine, we can write
) 2 2
90x) = pon(p-x+0,), =R (42)

where ém?> = 2AA(x,x), and 6 and y are two integration constants. This function is a
solution for the nonlinear differential equation shown in the first line of (11), provided the
dispersion relation

A
p? = om® + yzz (A3)

holds. Itis interesting to point out that —¢(x) also solves the first equation in (11). Therefore,
to choose one or the other solution spontaneously breaks the Z; symmetry. Similarly, one
can show that the two-point correlation function can be written in the form

7.[3 n+1/2 1

Alp) = 4K3(x)

(—1)"(2n +1)2-1 (A4)

1— q2n+1 pz _ m% + ie'

agk

n=0

where g = exp(—nK(1 —«x)/K(x)), with K(x) being the complete elliptic integral of the
first kind. The technique is shown in Ref. [14] for the classical case but also applies
straightforwardly here. The mass spectrum is

= (2n+1)217<t(’j{). (A5)
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O*po + 28°¢5
[(E2 = |pP)(en®(p- x+6] = 1) = dn®(p - x 46| = 1)) + 2822 sn?(p - x + 6] — 1) .

In order to go back to Equation (16), we set dm = 0. In this case we obtain xk = —1 and
g = exp(—m(1—1i)). Inserting this back into Equation (A4), we are able to obtain the
coefficients given in the main text.

Appendix B. One-Point Correlation Function
In taking Af,(x) instead of G, (x), Equation (7) for G{,,(x) maps the classical equation
of motion very well, given by
0 0 b 0
oM (ayAﬁ( ) 8VA‘:,( ) +gfubCAy(0)A1C/( ))

+ gfubCAb(O)H(ayAf/(O) _ avA]L:t(O) + ngdeAfl(O)Af/(O)> =0, (A6)
once we select the Feynman gauge [5]. However, there is an important difference as follows:
Equation (7) contains a quantum correction of the form GZa;bn/ (x, x). After regularizing the
divergences, this correction can have the effect of a small shift in the spectrum of the
theory [7] that can be neglected. Our aim is to show how the Jacobi elliptic functions are

suited to this equation. By taking the mixed symbols, in the simple case of SU(2) (2 = 1,2,3
is the group index), in the form

;= (0,1,0,0), 7 =1(0,0,1,0), 7, =1(0,0,0,1), (A7)

and using the mapping theorem between a scalar field and the Yang-Mills field [16,17],

AR (x) = nigo(x), (A8)

¢o(x) solves
g0 + 28¢5 = 0, (A9)

that is the first of Equation (11) for SU(2) when the quantum corrections are neglected.
Considering a solution of the form ¢(x) = usn(p - x + 6| — 1), we obtain

RFpo(x) = ppj(en®(p-x+6]—1)—dn’(p-x+6] —1))sn(p-x+6| 1),

Vio(x) = wulplP(en®(p-x+6]—1)—dn®(p-x+6]—1))sn(p-x+6|—1). (A10)
Therefore,
= psn(p-x+0[—1) x (A11)

Using the identity cn?(z| — 1) — dn?(z| — 1) = —2sn?(z| — 1) [56], Equation (A9) is solved,
provided the dispersion relation p? = pu?g? for SU(2) holds. If the quantum corrections are
neglected, we then obtain

a

1u(x) = muo(x) =musn(p-x+ 6] - 1), (A12)
that is Equation (13).

Appendix C. Evaluation of the Partition Function

Noting that the exponential function grants convergence for z > 0, one can expand

In (1 _eV Zz*"f) = Ly (A13)

n
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Because of the convergence of this series, one can freely interchange the integration and
summation to obtain

Je = / ln<1 —e V 22+ai)fdz =-) %/ einvzz+”£z2dz. (A14)
0 = nlJo

The integral term can be rewritten in a known form via the change of variables w? = z% + ai.
This yields (see Ref. [57], 3.389.4)

/oo w(w? — a%)%e*”wdw = %a%Kz(nak), (A15)
Ak

where K;(x) is a modified Bessel function of the second kind. This yields Equation (29) in the
main text. In physics, Bessel functions describe the vibration modes of a circular membrane,
being solutions to the Bessel differential equation x?f”(x) + xf'(x) + (¥* — a?)f(x) = 0.
Modified Bessel functions are those that obey the modified Bessel differential equation
X2 f"(x) + xf'(x) + (x*> + a?) f(x) = 0. An integral representation of the modified Bessel
function of the second kind (diverging at the origin) is given by

o0
Ky(x) = /0 e~ *osht cosh(at)dt, cosh(z) = %( e ). (A16)

References

1. Pisarski, R. Quark gluon plasma as a condensate of SU(3) Wilson lines. Phys. Rev. D 2000, 62, 111501. [CrossRef]

2. Sannino, F. Polyakov loops versus hadronic states. Phys. Rev. D. 2002, 66, 034013. [CrossRef]

3.  Panero, M. Thermodynamics of the QCD plasma and the large-N limit. Phys. Rev. Lett. 2009, 103, 232001. [CrossRef] [PubMed]

4. Carenza, P; Pasechnik, R.; Salinas, G.; Wang, Z. Glueball Dark Matter Revisited. Phys. Rev. Lett. 2022, 129, 261302. [CrossRef]
[PubMed]

5. Frasca, M. Quantum Yang-Mills field theory. Eur. Phys. J. Plus 2017, 132, 38; Erratum in Eur. Phys. ]. Plus 2017, 132, 242. [CrossRef]

6.  Frasca, M. Confinement in a three-dimensional Yang-Mills theory. Eur. Phys. ]. C 2017, 77, 255. [CrossRef]

7. Frasca, M. Spectrum of Yang-Mills theory in 3 and 4 dimensions. Nucl. Part. Phys. Proc. 2018, 294-296, 124-128. [CrossRef]

8.  Chaichian, M.,; Frasca, M. Condition for confinement in non-Abelian gauge theories. Phys. Lett. B 2018, 781, 33-39. [CrossRef]

9.  Koberinski, A. Mathematical developments in the rise of Yang-Mills gauge theories, Synthese 2021, 198 (Suppl. S16), 3747-3777.

10.  Brink, L.; Phua, K.K. (Eds.) Proceedings of the Conference on 60 Years of Yang—Mills Gauge Field Theories: C.N. Yang’s Contributions to
Physics, Nanyang Technological University, Singapore, 25—-28 May 2015; World Scientific Publishing Co. Pte Ltd.: Singapore, 2016.

11. Silva, J.; Khanna, E; Matos Neto, A.; Santana, A. Generalized Bogolyubov transformation for confined fields: Applications in
Casimir effect. Phys. Rev. A 2002, 66, 052101. [CrossRef]

12.  Santos, A.; Khanna, F. Casimir effect and Stefan—-Boltzmann law in Yang-Mills theory at finite temperature. Int. J. Mod. Phys. A
2019, 34, 1950128. [CrossRef]

13. Trotti, E.; Jafarzade, S.; Giacosa, F. Thermodynamics of the glueball resonance gas. Eur. Phys. J. C 2023, 83, 390. [CrossRef]

14. Frasca, M.; Groote, S. Exact solutions to non-linear classical field theories. Symmetry 2024, 16, 1504. [CrossRef]

15. Bohm, M.; Denner, A.; Joos, H. Gauge Theories of the Strong and Electroweak Interaction; B.G. Teubner: Stuttgart, Germany, 2001.

16. Frasca, M. Infrared Gluon and Ghost Propagators. Phys. Lett. B 2008, 670, 73-77. [CrossRef]

17.  Frasca, M. Mapping a massless scalar field theory on a Yang-Mills theory: Classical case. Mod. Phys. Lett. A 2009, 24, 2425-2432.
[CrossRef]

18. Frasca, M.; Ghoshal, A.; Groote, S. Nambu-Jona-Lasinio model correlation functions from QCD. Nucl. Part. Phys. Proc. 2022,
318-323, 138-141. [CrossRef]

19. Le Bellac, M. Thermal Field Theory; Cambridge University Press: Cambridge, UK, 2008.

20. Lucini, B.; Panero, M. SU(N) gauge theories at large N. Phys. Rept. 2013, 526, 93-163. [CrossRef]

21. Borsanyi, S.; Endrodi, G.; Fodor, Z.; Katz, S.; Szabo, K. Precision SU(3) lattice thermodynamics for a large temperature range.
J. High Energy Phys. 2012, 7, 56. [CrossRef]

22. Silva, PJ.; Oliveira, O.; Bicudo, P.; Cardoso, N. Gluon screening mass at finite temperature from the Landau gauge gluon
propagator in lattice QCD. Phys. Rev. D 2014, 89, 074503. [CrossRef]

23. DPeshier, A.; Kampfer, B.; Pavlenko, O.; Soff, G. A Massive quasiparticle model of the SU(3) gluon plasma. Phys. Rev. D 1996,

54, 2399-2402. [CrossRef]


http://doi.org/10.1103/PhysRevD.62.111501
http://dx.doi.org/10.1103/PhysRevD.66.034013
http://dx.doi.org/10.1103/PhysRevLett.103.232001
http://www.ncbi.nlm.nih.gov/pubmed/20366143
http://dx.doi.org/10.1103/PhysRevLett.129.261302
http://www.ncbi.nlm.nih.gov/pubmed/36608176
http://dx.doi.org/10.1140/epjp/i2017-11321-4
http://dx.doi.org/10.1140/epjc/s10052-017-4824-7
http://dx.doi.org/10.1016/j.nuclphysbps.2018.02.005
http://dx.doi.org/10.1016/j.physletb.2018.03.067
http://dx.doi.org/10.1103/PhysRevA.66.052101
http://dx.doi.org/10.1142/S0217751X19501288
http://dx.doi.org/10.1140/epjc/s10052-023-11557-0
http://dx.doi.org/10.3390/sym16111504
http://dx.doi.org/10.1016/j.physletb.2008.10.022
http://dx.doi.org/10.1142/S021773230903165X
http://dx.doi.org/10.1016/j.nuclphysbps.2022.09.029
http://dx.doi.org/10.1016/j.physrep.2013.01.001
http://dx.doi.org/10.1007/JHEP07(2012)056
http://dx.doi.org/10.1103/PhysRevD.89.074503
http://dx.doi.org/10.1103/PhysRevD.54.2399

Symmetry 2025, 17, 543 15 of 16

24.

25.

26.

27.

28.

29.
30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.
52.

53.

54.

55.

Castorina, P,; Greco, V.; Jaccarino, D.; Zappala, D. A Reanalysis of Finite Temperature SU(N) Gauge Theory. Eur. Phys. ]. C 2011,
71,1826. [CrossRef]

Auclair, P; Bacon, D.; Baker, T.; Barreiro, T.; Bartolo, N.; Belgacem, E.; Bellomo, N.; Ben-Dayan, I.; Bertacca, D.; Besancon, M.; et al.
Cosmology with the Laser Interferometer Space Antenna. Living Rev. Rel. 2023, 26, 5.

Amaro-Seoane, P.; Audley, H.; Babak, S.; Baker, ].; Barausse, E.; Bender, P; Berti, E.; Binetruy, P.; Born, M.; Bortoluzzi, D.; et al.
Laser Interferometer Space Antenna. arXiv 2017, arXiv:1702.00786.

Janssen, G.; Hobbs, G.; McLaughlin, M.; Bassa, C.G.; Deller, A.T.; Kramer, M.; Hobbs, G.; McLaughlin, M.; Bassa, C.G.;
Deller, A.T.; et al. Gravitational wave astronomy with the SKA. Proc. Sci. 2015, AASKA14, 37.

Yagi, K.; Seto, N. Detector configuration of DECIGO/BBO and identification of cosmological neutron-star binaries. Phys. Rev. D
2011, 83, 044011. Erratum in Phys. Rev. D 2017, 95, 109901.

Schwaller, P. Gravitational Waves from a Dark Phase Transition. Phys. Rev. Lett. 2015, 115, 181101. [CrossRef]

Breitbach, M.; Kopp, J.; Madge, E.; Opferkuch, T.; Schwaller, P. Dark, Cold, and Noisy: Constraining Secluded Hidden Sectors
with Gravitational Waves. J. Cosmol. Astropart. Phys. 2019, 7, 7. [CrossRef]

Fairbairn, M.; Hardy, E.; Wickens, A. Hearing without seeing: Gravitational waves from hot and cold hidden sectors. J. High
Energy Phys. 2019, 7, 44.

Svetitsky, B.; Yaffe, L.G. Critical Behavior at Finite Temperature Confinement Transitions. Nucl. Phys. B 1982, 210, 423-447.
Gross, D.J.; Harvey, J.A.; Martinec, E.J.; Rohm, R. The Heterotic String. Phys. Rev. Lett. 1985, 54, 502-505.

Dixon, L.J.; Harvey, J.A.; Vafa, C.; Witten, E. Strings on Orbifolds. Nucl. Phys. B 1985, 261, 678-686.

Dixon, L.J.; Harvey, J.A.; Vafa, C.; Witten, E. Strings on Orbifolds. 2. Nucl. Phys. B 1986, 274, 285-314. [CrossRef]

Acharya, B.S. M theory, Joyce orbifolds and super Yang-Mills. Adv. Theor. Math. Phys. 1999, 3, 227-248. [CrossRef]

Halverson, J.; Morrison, D.R. On gauge enhancement and singular limits in G, compactifications of M-theory. J. High Energy Phys.
2016, 4, 100.

Asadi, P; Kramer, E.D.; Kuflik, E.; Ridgway, G.W.; Slatyer, T.R.; Smirnov, ]. Thermal squeezeout of dark matter. Phys. Rev. D 2021,
104, 095013. [CrossRef]

Asadi, P; Kramer, E.D.; Kuflik, E.; Ridgway, G.W.; Slatyer, T.R.; Smirnov, J. Accidentally Asymmetric Dark Matter. Phys. Rev. Lett.
2021, 127, 211101. [CrossRef] [PubMed]

Bai, Y.; Schwaller, P. Scale of dark QCD. Phys. Rev. D 2014, 89, 063522. [CrossRef]

Schwaller, P,; Stolarski, D.; Weiler, A. Emerging Jets. J. High Energy Phys. 2015, 5, 59. [CrossRef]

Halverson, J.; Long, C.; Maiti, A.; Nelson, B.; Salinas, G. Gravitational waves from dark Yang-Mills sectors. ]. High Energy Phys.
2021, 5, 154. [CrossRef]

Bigazzi, F.; Caddeo, A.; Cotrone, A.L.; Paredes, A. Fate of false vacua in holographic first-order phase transitions. J. High Energy
Phys. 2020, 12, 200. [CrossRef]

Bigazzi, F.; Caddeo, A.; Cotrone, A.L.; Paredes, A. Dark Holograms and Gravitational Waves. . High Energy Phys. 2021, 4, 94.
[CrossRef]

Huang, W.C.; Reichert, M.; Sannino, F.; Wang, Z.W. Testing the dark SU(N) Yang-Mills theory confined landscape: From the
lattice to gravitational waves. Phys. Rev. D 2021, 104, 035005. [CrossRef]

Wang, X.; Huang, FP.; Zhang, X. Bubble wall velocity beyond leading-log approximation in electroweak phase transition. arXiv
2011, arXiv:2011.12903.

Kang, Z.; Zhu, J.; Matsuzaki, S. Dark confinement-deconfinement phase transition: A roadmap from Polyakov loop models to
gravitational waves. J. High Energy Phys. 2021, 9, 60.

Yamada, M.; Yonekura, K. Cosmic F- and D-strings from pure Yang—Mills theory. Phys. Lett. B 2023, 838, 137724.

Yamada, M.; Yonekura, K. Cosmic strings from pure Yang-Mills theory. Phys. Rev. D 2022, 106, 123515. [CrossRef]

Morgante, E.; Ramberg, N.; Schwaller, P. Gravitational waves from dark SU(3) Yang-Mills theory. Phys. Rev. D 2023, 107, 036010.
[CrossRef]

Hindmarsh, M.; Philipsen, O. WIMP dark matter and the QCD equation of state. Phys. Rev. D 2005, 71, 087302. [CrossRef]
Drees, M.; Hajkarim, F.; Schmitz, E. The Effects of QCD Equation of State on the Relic Density of WIMP Dark Matter. J. Cosmol.
Astropart. Phys. 2015, 6, 25.

Hajkarim, F,; Schaffner-Bielich, J.; Wystub, S.; Wygas, M. Effects of the QCD equation of state and lepton asymmetry on primordial
gravitational waves. Phys. Rev. D 2019, 99, 103527.

Bateman, H. Higher Transcendental Functions [Volumes I-111]; Bateman Manuscript Project; McGraw-Hill Book Company: New York,
NY, USA, 1953.

Whittaker, E.T.; Watson, G.N. A Course of Modern Analysis, 4th ed.; Cambridge University Press: Cambridge, UK, 1927.


http://dx.doi.org/10.1140/epjc/s10052-011-1826-8
http://dx.doi.org/10.1103/PhysRevLett.115.181101
http://dx.doi.org/10.1088/1475-7516/2019/07/007
http://dx.doi.org/10.1016/0550-3213(86)90287-7
http://dx.doi.org/10.4310/ATMP.1999.v3.n2.a3
http://dx.doi.org/10.1103/PhysRevD.104.095013
http://dx.doi.org/10.1103/PhysRevLett.127.211101
http://www.ncbi.nlm.nih.gov/pubmed/34860089
http://dx.doi.org/10.1103/PhysRevD.89.063522
http://dx.doi.org/10.1007/JHEP05(2015)059
http://dx.doi.org/10.1007/JHEP05(2021)154
http://dx.doi.org/10.1007/JHEP12(2020)200
http://dx.doi.org/10.1007/JHEP04(2021)094
http://dx.doi.org/10.1103/PhysRevD.104.035005
http://dx.doi.org/10.1103/PhysRevD.106.123515
http://dx.doi.org/10.1103/PhysRevD.107.036010
http://dx.doi.org/10.1103/PhysRevD.71.087302

Symmetry 2025, 17, 543 16 of 16

56. [DLMF]. NIST Digital Library of Mathematical Functions; Olver, EW.]J., Olde Daalhuis, A.B., Lozier, D.W., Schneider, B.IL,
Boisvert, R.F.,, Clark, C.W., Miller, B.R., Saunders, B.V., Cohl, H.S., McClain, M.A., Eds.; Release 1.1.6 of 2022-06-30. Available
online: https://dlmf.nist.gov/ (accessed on 23 March 2025).

57.  Gradshteyn, I.S.; Ryzhik, M. Table of Integrals, Series, and Products, 7th ed.; Translated from the Russian; Jeffrey, A., Zwillinger, D.,
Translators; Elsevier; Academic Press: Amsterdam, The Netherlands, 2007; p. xlviii+1171, ISBNs: 978-0-12-373637-6; 0-12-373637-4.

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.


https://dlmf.nist.gov/

	Introduction
	Gaussian Solution of Quantum Yang–Mills Theory
	Partition Function in the IR Regime
	Thermal Yang–Mills Theory
	Evaluation of the Partition Function
	Discussion and Conclusions
	Appendix A
	Appendix B
	Appendix C
	References

