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Abstract: We provide a concise review of the problem of calculating the electromagnetic
field and radiation of a charged particle in the vicinity of a black hole. The interest in this
problem has been revived due to recent progress in multimessenger observations. Many
astrophysical models of energy extraction from a black hole involve consideration of such
motion and radiation. Our main goal is to highlight the basic assumptions and limitations
of various techniques and point out the main conclusions of these studies.
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1. Introduction
The dynamics of electromagnetic fields and electromagnetic radiation of charged

particles moving in the vicinity of a black hole are relevant in many astrophysical problems,
and they are involved in the description of active galactic nuclei, X-ray binaries, and
microquasars. Recently, the interest in this subject has been revived due to the realization
that magnetized black holes may accelerate particles [1–3] and, thus, produce strong
electromagnetic signals [4,5], charging black holes [6]. This is an important subject for
models of energy extraction from black holes, e.g., [7–12].

Given the fact that the problem under consideration is quite involved [13], the solution
is approached in steps. The first step is the determination of the electromagnetic field of
a static charge outside the black hole. Then, the dynamical problem is addressed with
the motion of a charge without radiation. Next, the problem of a charge (mass) emitting
electromagnetic (gravitational) radiation is considered. Finally, the radiation reaction on
the motion of the charge is taken into account.

The simplest case of a charged particle in a gravitational field is a test charge fixed in a
given geometry. The electric field of such fixed electric charge in the field of a Schwarzschild
black hole is considered in [14–16]. The electric and magnetic fields of a charged ring around
a black hole are considered in [17–19].

However, particles cannot stay at rest near black holes without external support; hence,
consideration of moving charges is necessary. Accelerated charges emit electromagnetic ra-
diation. The simplest case, emission by a charge, radially falling into a Schwarzschild black
hole was considered in [20], adopting the expression for emitted power for flat spacetime.

Particle motion and radiation have been considered for a spherically symmetric black
hole, e.g., in [21–24]; for a rotating black hole, e.g., in [25–28]; and, more recently, with
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a focus on magnetized black holes, e.g., in [29–33]. The general approach to the evalua-
tion of electromagnetic fields of a particle moving near a Schwarzschild black hole was
developed in [34] by expanding Maxwell equations in multipoles. The spectra of the first
few multipoles together with the total radiated energy were found in [35,36]. Recently,
more multipoles were computed in [37]. The studies of electromagnetic fields and radia-
tion of a charged particle are closely related to the studies of gravitational radiation of a
massive particle in a gravitational field. Indeed, perturbation techniques developed in the
1970s [38–40] allowed the consideration of not only perturbations of the gravitational field
of black holes and their stability but also the interaction of scalar, vector, and tensor fields
in curved spacetime around black holes.

Finally, by approximating the potential barrier in the Regge–Wheeler equation with
the Dirac delta function and rectangular barrier, it was shown [41] that the electromagnetic
field of a charge falling into a Schwarzschild black hole exponentially approaches the
spherically symmetric electrostatic field.

The scope of this paper is to review the basic results and illustrate novel approaches
to the problem of radiation of charged particles near a Schwarzschild black hole. The
paper is organized as follows. First, we review different approaches to the problem in
Section 2. Then, we discuss a general formalism in Section 3. Equations of motion are
given in Section 4. Multipolar decomposition of the electromagnetic field of a charged
particle moving near a black hole is given in Section 5. Radiated power and energy are
discussed in Section 6. The cases of radial motion and non-radial motion are described
in Sections 7 and 8, correspondingly. Stationary component of the electromagnetic field is
discussed in Section 9. Finally, we conclude in Section 10.

2. State of the Art
Different approaches to the study of electromagnetic fields of charged particles around

black holes can be summarized as follows.

2.1. Electrostatic Electromagnetic Field of a Charge Near Schwarzschild Black Hole

The first attempts to compute the electromagnetic energy of a charge in curved back-
ground geometry were based on the assumption that the charge is at rest. The electrostatic
field of a test charge in the Schwarzschild metric was found by Copson [14] in 1928. Physical
properties of this solution were analyzed by Hanni and Ruffini [16], with particular atten-
tion to the lines of force of a charge located near the event horizon. The complete derivation
of the exact analytic solution was finally given by Linet [15]. What is interesting in the
solution of Linet is that when the charge is located precisely on the event horizon of a black
hole, its electromagnetic field becomes spherically symmetric. In other words, the charge
appears to be uniformly distributed over the horizon. Clearly, this solution is different from
the Reisnner–Nordström solution, as there is no charge inside the horizon. However, the
exterior solution in this case is indistinguishable from the Reisnner–Nordström solution.

2.2. Special Relativistic Calculation for Radiation Power for a Particle Following Geodesic on
a Given Background

The cases of radial infall and finite motion of the charged particle in the vicinity of the
Schwarzschild black hole were considered in [20]. The power of electromagnetic radiation
is calculated using the formula for flat spacetime:

dPî =
2q2

3
d2xk̂

dτ2

d2xk̂
dτ2 uîdτ . (1)
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where xk̂ is the Cartesian coordinates of the particle, uî is its four-velocity, q is electric
charge, and τ is the proper time of the particle.

As the charge moving near the horizon gets accelerated to relativistic velocities, its
emission gets concentrated in a narrow angle in the direction of motion. For radial infall,
this implies that most of the radiation is captured by the black hole.

Also, gravitational radiation of this particle is considered. It is shown that the whole
electromagnetic energy radiated by an electron falling into a black hole is 1043 times larger
than the gravitational energy radiated by this electron.

Electromagnetic radiation of pointlike charged test particles and dipoles is considered
also in [42]. It is shown that the electromagnetic radiation for the point particle, as well
as for the electric dipole, has a dipolar character (the emitted energy is ∼1/c2). It is also
pointed out that the whole energy of electromagnetic radiation for the case of a black
hole with mass < 1014 g is larger than its rest energy mc2, which implies that a quantum
description of such black holes is required.

2.3. General Relativistic Calculation of Electromagnetic Field for Test Particle Falling Radially into
a Black Hole

A more interesting problem concerns the description of electromagnetic radia-
tion as well as the motion of the particle in the framework of General Relativity,
considered in [34–36]. In these works, it is shown that the Fourier transform of the mul-
tipole components of the electromagnetic field satisfies the well-known Regge–Wheeler
equation [35,38,39,43]. The numerical solution of this equation for a number of multipoles
gives a possibility to determine the physical characteristics of electromagnetic radiation,
such as total radiated energy and its spectrum.

The fully general-relativistic treatment of the electromagnetic radiation of a particle
falling into the Reisnner–Nordström black hole is presented in [34]. It is important to stress
that the radiation reaction is nevertheless neglected. The main results of these studies can
be summarized as follows:

• The largest part of the radiated electromagnetic energy (about 90%) corresponds to
the dipole term;

• In particular, for initial kinetic energy (E) per unit mass (m) of the particle E/m = 1.4,
the total radiated energy was found to be ≈10−2q2/M, where q is particle charge, M is
black hole mass;

• For the case of a charged particle (with negative charge) falling into a charged black
hole (with positive charge), the contribution to the radiated energy of higher multipoles
(l > 1) is more significant than in the case of an electrically neutral black hole.

2.4. A Complex Angular Momentum Description

Electromagnetic radiation of the charged particle falling into a black hole radially and
moving along circular orbits has been calculated recently using the alternative description
based on the evaluation of Regge poles of the S-matrix, associated with complex amplitudes
of the solutions of the Regge–Wheeler equation. The mathematical technique, which also
applies to the calculation of gravitational waves and other black hole perturbations [44,45] is
based on analytic continuation of both frequency and angular momentum into the complex
plane, see [46] for earlier work. The application of this formalism to electromagnetic
radiation of a charged particle plunging from below the last circular orbit was performed
in [47], while the calculation of electromagnetic emission for a radially falling particle was
conducted in [37]. Also, radiated energy as a function of time was calculated for both cases
using the Sommerfeld–Watson approach. This method allows the calculation of intensity
of radiation and radiated spectrum for a large number of multipoles.
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2.5. Non-Radial Motion and Calculation of Non-Gravitational Radiation Reaction Force

In [48], the case of charged particle motion in the vicinity of a magnetized Schwarzschild
black hole is considered. It was shown that Formula (1) can be applied only when the
curvature of particle trajectory is much smaller than the spacetime curvature. The direction of
particle motion was assumed to be such that the deviation of the trajectory from the magnetic
field is opposite to the deviation from the gravitational field. In that case, the condition of
applicability of Equation (1) is satisfied. The main conclusion is that initial non-geodesic
orbital motion, which has loops due to the magnetic field, decays as a consequence of the
synchrotron radiation, and the final trajectory is a non-geodesic stable circular orbit.

The influence of the radiation reaction force on the motion of the charged particle in
the vicinity of the Schwarzschild black hole is taken into account in [49]. The formulas for
calculating the influence of spacetime curvature on electromagnetic radiation are presented,
but all results are obtained neglecting the curvature. The motion and electromagnetic
radiation of the particle in the field of a magnetized black hole are also considered. The
following results are obtained:

• The whole electromagnetic energy, radiated by the charged particle, falling into a black
hole from rest at infinity is ≈0.022q2/M.

• The radiated energy calculated using general relativistic treatment exceeds the radiated
energy by a factor of few, calculated using Formula (1).

• For black holes with mass M∼M⊙, where M⊙ is the mass of the Sun, the characteristic
frequency of electromagnetic radiation is 104Hz.

• In contrast with the radiation emitted outward from the black hole, the power of
electromagnetic radiation emitted towards the black hole is not decreasing with
multipole number l.

3. A General Formalism for the Calculation of Electromagnetic Fields
Created by Moving Particles in Curved Spacetime

Consider a charged test particle, moving in the gravitational field of a Schwarzschild
black hole. Electromagnetic radiation of the particle can be found from the general covariant
Maxwell equations (see, e.g., [50]):

Fls
;s = 4π jl , (2)

F[ij,k] = 0 . (3)

Here, Jl is the electric current density, created by the particle, and Fij is the tensor of
electromagnetic field. It follows from Equation (3) that tensor Fij can be expressed as

Fij = Aj;i − Ai;j ; (4)

where Ai is the four-potential of the electromagnetic field. In the case of a pointlike charged
particle, jl can be represented as

jl(xk) = q
δ(x1 − x̃1(x0))δ(x2 − x̃2(x0))δ(x3 − x̃3(x0))√−gu4(x0, x̃α(x0))

×ul(x0, x̃α(x0)) . (5)

Here, g = det(gij). Coordinates with a tilde x̃i are functions describing the worldline of the
source and without tilde xi are arbitrary coordinates of spacetime.

The modern approach to the derivation of electromagnetic radiation and equations of
motion of charged particles taking into account radiation reaction in curved spacetime is
presented by Poisson [51]. According to the results of this paper, the general solution of
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(2) and (3) with source (5) for the four-potential of electromagnetic field Aj can be expressed
using Synge’s world function σ, which is a two-point scalar (biscalar) [52]. Define the
geodesic curve as a curve in spacetime with local minimum length between two fixed

points (events) X1 and X2:
X2∫
X1

ds =
X2∫
X1

√
|gijdxidxj| = extremum (see also [53]). For the

general parametrization of the curve xi = xi(ν), this leads to the differential equation

d2xi

dν2 +
dxi

dν
A(ν) + Γi

jk
dxj

dν

dxk

dν
= 0 . (6)

Here, A(ν) is the certain function that is determined by xi(ν) [50]. In order to simplify (6),
one can solve the following differential equation:

A(ν) =

(
dλ

dν

)2 d2ν

dλ2 . (7)

A solution of (7) λ is called the affine parameter along the geodesic xi(λ). In the obtained
parametrization, the geodesic equation has a simpler form:

Dxk

Dλ
=

d2xi

dλ2 + Γi
jk

dxj

dλ

dxk

dλ
= 0 .

It is well known that massive particles in the absence of non-gravitational interaction
move along timelike geodesics (see, e.g., [50,53]). Proper time of the particle τ can be

used as affine parameter in this case and ui =
dxi

dτ
, uiui = −c2. Isotropic geodesics

are characterized by another property of the tangent vector ki =
dxi

dλ
, namely, kiki = 0.

Only massless particles, such as photons, move along isotropic geodesics. Proper time for
photons cannot be determined; thus, affine parameter λ for the isotropic geodesics has no
simple physical interpretation.

Synge’s World function σ(x, x′) can be expressed as

σ(x, x′) =
1
2
(λ1 − λ0)

λ1∫
λ0

gijtitjdλ , (8)

where λ ∈ [λ0, λ1] is an affine parameter on geodesic, connecting initial point x (that corre-
sponds to the value λ0) and final point x′ (that corresponds to the value λ1, see Figure 1).

Here, we define unit tangent vector to the geodesic in arbitrary point z: tj = dzj/dλ

(||t||2 = gijtitj = ±1, where the sign depends on whether the geodesic is timelike or
spacelike. In the case of isotropic geodesic, the norm is 0.). Also, we use the following
abbreviation for covariant derivatives of biscalar σ (D/Dxi denotes covariant derivative at
the point x, while D/Dxi′ denotes covariant derivative at the point x′):

∂

∂xl σ(x, x′) = σl ;
∂

∂xl′ σ(x, x′) = σl′ ;

gms D
Dxm

∂

∂xl′ σ(x, x′) = σs
l′ ; . . .

The general solution for electromagnetic potential Al has the following form:

Al = q
ul′ gl

l′
√

∆
σk′uk′

∣∣∣∣∣
σ=0

+ q
τ′∫

−∞

V l
l′′u

l′′dτ′′ . (9)
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Here, q is the charge of the particle, ∆ = −det
[

gl
l′σ

l′
m

]
is the van Vleck determinant. Vii′

is a bitensor satisfying d’Alembert’s equation in the curved spacetime

gij D2

DxiDxj V l
l′′ − Rl

sVs
l′′ = 0 , (10)

and the initial condition is in the following form:

Vl′ l′ =
1

12
Rgl′ l′ −

1
2

Rl′ l′ ; (11)

Condition σ = 0 in (9) means that the corresponding expression must be calculated at the
point x′, connected with argument point x by an isotropic geodesic.

 Black hole

Test particle

q

D

Isotropic geodesic

xi'

xi

Figure 1. An isotropic geodesic connecting the particle in xi′ and the point of observation xi.

The obtained four potential (9) is used in order to obtain the equation of motion of
the test charge in curved spacetime that undergoes an electromagnetic radiation reaction
force [51]:

m
Dui
Dτ

= qFext
ij uj − 2q2

3s
Dui
Dτ

+ q
(

gij + uiuj
)(2

3
D2uj

Dτ2 +
1
3

Rj
kuk
)
+ Ftail

i . (12)

Here, Fext
ij is the external electromagnetic field, and we have introduced the tail term

Ftail
i =

τ∫
−∞

Vii′ ;jui′ujdτ′ . In the absence of external electromagnetic field (Fext
ij = 0), if we

neglect the tail term Ftail
i in equation (12), the geodesic motion satisfies this equation and

moving charge does not experience radiation reaction. It is obvious that the radiation
reaction in purely gravitational field (without electromagnetic one) is determined by the tail
term. This conclusion was obtained in [54], where numerical estimations of the influence of
the tail term on the motion of the charge were made.

In general, calculation of the Ftail
i is a very complicated task (see, e.g., [55,56]). The

approximation of small velocity of motion and small distance was calculated by De Witt
and De Witt [55] using the analogy with the quantum field theory. The same result was
obtained in [56] in the framework of post-Newtonian expansion in General Relativity. The
result is

Ftail
α =

q2Mxα

r4 − 2q2M
3

(
vα

r3 − 3
xα(xβvβ)

r5

)
. (13)

Here, vα is the usual 3-dimension velocity of the test-charge, r =
√

xαxα.
In the special case when the charge is at rest in the vicinity of Schwarzschild black

hole, the tail term was calculated in [57]. In this paper, consideration based on the calcu-
lation of Synge’s World function for a large distance from a black hole was applied and
electromagnetic self-force was computed. The radial component of the self-force Fr was
found to be

Fr ≈ q2
0∫

−∞

Vji′′ ;rui′′ gj
k′′u

k′′dτ′′ ≈ q2M
r′3

. (14)
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This result coincides with the results, obtained in the framework of membrane paradigm
(see, e.g., [58]), and with those obtained from different approaches (see, e.g., [59,60]) and
Formula (13) (for vα = 0).

The self-force in the form (14) for the test charge at rest in the field of Schwarzschild
black hole is also obtained in [61], where the stress–energy tensor conservation law was
used. The physical consequences of this force for the black holes with different masses are
also discussed there.

In what follows, we concentrate on the most widely used approach based on multipolar
expansion of electromagnetic fields. Before that, we review the basic results of geodesic
motion in Schwarzschild geometry.

4. Geodesic Motion in Schwarzschild Geometry
Assume that electromagnetic radiation of the particle cannot influence its motion,

which implies that radiation reaction is neglected. So, in what follows, we consider only
the geodesic motion of the particle, which is determined by the equation

Dui

Dτ
= 0 . (15)

Here, D/Dτ denotes the covariant derivative with respect to proper time τ along vector ui.
The exact conditions under which radiation reaction force can be neglected are discussed,
for instance, in [49].

Consider a test particle that moves along a geodesic in Schwarzschild geometry. Let
xi (We use the system of units where the speed of light in vacuum is c = 1. The signature
of the metric is +2, x0 = t. Greek indices run from 1 to 3; Latin indices run from 0 to 4) be
coordinates of the particle, τ its proper time, and ui = dxi/dτ its four-velocity. Metric in
the case of Schwarzschild geometry has the following form (see, e.g., [50]):

ds2 = gijdxidxj = −
(

1 − 2M
r

)
dt2 +

dr2(
1 − 2M

r

) + r2dθ2 + r2 sin2 θdϕ2 . (16)

Here, gij is the metric tensor; {t, r, θ, ϕ} = {x0, x1, x2, x3} are Schwarzschild coordinates;
and M = GmBH, where mBH is the black hole mass and G is Newton’s gravitational constant.

Solving the geodesic Equation (15) for the metric (16), we obtain the following result
(see, e.g., [50]): 

u0 =
E(

1 − 2M
r

) ;

u1 = ±

√
E2 −

(
1 +

L2

r2

)(
1 − 2M

r

)
;

u2 = 0 ;

u3 =
L
r2 .

(17)

Here, we choose the orientation of the spatial part of the coordinate system in such a way that
the orbit plane coincides with the plane θ = π/2. E is the energy of the particle per unit mass,
and L is the angular momentum of the particle per unit mass. The sign ± in the formula for
u1 corresponds to the motion from the field center and to the field center, respectively.

It is well known that the equation for u1 (see (17)) can be used to introduce the effective
potential V(r) [50] (see also Figure 2):
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(
dr
dτ

)2
= E2 − V(r) . (18)

Here,

V(r) =
(

1 +
L2

r2

)(
1 − 2M

r

)
. (19)

20 40 60 80 100 120

r

M

0.8

0.9

1.0

1.1

1.2

1.3

1.4

V(r)

Figure 2. Effective potential V(r) for radial motion in Schwarzschild geometry for L = 5M.
E1, E2, E3, E4 denote four qualitatively different levels of the energy per unit mass of the test particle.

Effective potential for L = 5M and four levels of the energy per unit mass for the test
particle are depicted in Figure 2. The values of the energy per unit mass E1 correspond to
the trajectories when the particle is falling into the black hole. The value E2 corresponds to
the case when the particle comes from the spatial infinity goes through the pericenter of
the orbit and moves to the spatial infinity. The value E3 corresponds to the finite motion
of the particle in the vicinity of the black hole. The value E4 is a special case of the finite
motion when the trajectory of the particle is a circle.

Using equations for the components of the four-velocity vector (17), we can construct
the differential equation for the trajectory of the test particle (see, e.g., [50]). An example
of the trajectory of motion corresponding to the type of trajectory with energy E2 (see
Figure 2) is presented in Figure 3.

10 20 30 40

r

M

-5

5

10

15

20

25

r

M

Figure 3. Example of the trajectory of a test particle in Schwarzschild geometry. Energy per unit mass
of the particle E = 1.05 and angular momentum per unit mass L = 4.5M.
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5. Electromagnetic Field of a Charged Test Particle in
Schwarzschild Geometry

The solution of Equations (2)–(4) for the radiated electromagnetic field can be found
in the following form (see, e.g., [36,62]):

A0 =
l

∑
m=−l

∞

∑
l=0

flm(r, t)Ylm(θ, ϕ) ,

A1 =
l

∑
m=−l

∞

∑
l=0

hlm(r, t)Ylm(θ, ϕ) ,

A2 =
l

∑
m=−l

∞

∑
l=0

klm(r, t)
∂Ylm(θ, ϕ)

∂θ
+

alm(r, t)
sin θ

∂Ylm(θ, ϕ)

∂ϕ
,

A3 =
l

∑
m=−l

∞

∑
l=0

klm(r, t)
∂Ylm(θ, ϕ)

∂ϕ
− alm(r, t)

sin θ

∂Ylm(θ, ϕ)

∂θ
.

(20)

Here, Ylm(θ, ϕ) are spherical functions [63]. flm(r, t), hlm(r, t), klm(r, t), and alm(r, t) are cer-
tain functions that must be determined. It is convenient to use the following abbreviation:

blm = r2(hlm,t − flm,r)
1

l(l + 1)
, if l > 0 ;

b00 = r2(h00,t − f00,r) .

We will use the Fourier transform of these functions and denote it by tilde. For example,
b̃lm(r, ω) =

1
2π

+∞∫
−∞

blm(r, t)eiωtdt ;

ãlm(r, ω) =
1

2π

+∞∫
−∞

alm(r, t)eiωtdt .

(21)

Substituting (20) into (2) and (4), and using (21), for ãlm(r, t), we obtain the
following equation:

l

∑
m=−l

∞

∑
l=0

{(
1 − 2M

r

)
∂

∂r

[(
1 − 2M

r

)
∂ãlm

∂r

]
+

[
ω2 − l(l + 1)

r2

(
1 − 2M

r

)]
ãlm

}
×
{

∂Ylm
∂θ

+ imYlm

}
=

l

∑
m=−l

∞

∑
l=0

[
(im − 1)

ξlmYlm
sin θ

]
. (22)

In order to obtain equations for coefficients b̃lm, expand components of the current density
jk into spherical functions (the orbit of the particle lies in the plane and, therefore, we can
choose the orientation of the coordinate system in such a way that j2 = 0).

4π j0 =
l

∑
m=−l

∞

∑
l=0

ψlm(r, t)Ylm(θ, ϕ) ;

4π j1 =
l

∑
m=−l

∞

∑
l=0

ηlm(r, t)Ylm(θ, ϕ) ;

j2 = 0 ;

4π j3 =
l

∑
m=−l

∞

∑
l=0

ξlm(r, t)Ylm(θ, ϕ) .

(23)
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From (2), the following equations are obtained:

ηlmr2 = −l(l + 1)hlm + l(l + 1)
∂klm
∂r

− l(l + 1)
1 − 2M/r

∂blm
∂t

, (24)

ψlmr2 = −l(l + 1) flm + l(l + 1)
∂klm

∂t
−
(

1 − 2M
r

)
∂blm
∂r

l(l + 1) . (25)

Combining Equations (24) and (25), we obtain(
1 − 2M

r

)[(
1 − 2M

r

)
b̃lm,r

]
,r
+

[
ω2 − l(l + 1)

r2

(
1 − 2M

r

)]
b̃lm = Alm(r) . (26)

Here,

Alm(r) =
[(

r2ψ̃lm

)
,r
+ iωη̃lmr2

]
1

l(l + 1)
, if l > 0 ; (27)

A00(r) =
[(

r2ψ̃00

)
,r
+ iωη̃00r2

]
, if l = 0 . (28)

It is convenient to introduce the tortoise coordinate r∗, which can be defined in the region
outside the black hole (see, e.g., [50]) as

r∗(r) = r + 2M ln (r/2M − 1) ;
dr
dr∗

= 1 − 2M/r . (29)

It follows from the definition that when r changes from 2M to ∞ (this corresponds to the
region outside the black hole), r∗ changes from −∞ to ∞.

Equation (26) is the well-known Regge–Wheeler equation. Boundary conditions for
this equation in our case should represent the outgoing wave at spatial infinity and the
ingoing wave at the horizon [35,36,64]

b̃l(r∗, ω) → α(ω)eiωr∗ , for r∗ → +∞ ; (30a)

b̃l(r∗, ω) → β(ω)e−iωr∗ , for r∗ → −∞ . (30b)

Here, α(ω) and β(ω) are certain unknown functions.

6. Radiated Power and Energy
The radiated electromagnetic power dE/dt can be calculated as an integral of the

energy–momentum density T0j through a closed two-dimensional surface, covering the
considered system:

dE
dt

=
∮

T0jdΣj . (31)

Here, dΣj is the element of the surface

dΣj = ε0jlmd1xld2xm , (32)

where d1xl and d2xm are infinitesimal linearly independent vectors in . We chose σ as a sphere
of radius r with the center that coincides with the position of the black hole. Then, we obtain

dE
dt

=
∮

T01r2 sin θdθdϕ . (33)

The energy–momentum tensor of electromagnetic field has the following form:

Tij = FsiFs
j − 1

4
gijFsl Fsl . (34)
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Substituting (20) into (34) and into (33), we obtain the expression for the power of electro-
magnetic radiation. This expression is complicated; due to this, here, we write down only
the terms that correspond to m = 0. The physical meaning of this restriction will be seen in
the following sections, where concrete examples of the trajectories of the test particle will
be considered. We arrive to

dE
dt = 2

∞
∑

l=0

l(l+1)
2l+1

[(
∂kl0
∂t − fl0

)(
∂kl0
∂r − hl0

)
+ ∂al0

∂t
∂al0
∂r

]
+M(r, t) .

(35)

Here, M(r, t) denotes part of the expression that is non-zero only if harmonics m ̸= 0 are
present. Further, we can use (25) and (24) in order to simplify expression (35).

The spectrum of radiation dE/dω is

E =
+∞∫
−∞

dE
dt dt = 2

∞
∑

l=0

l(l+1)
2l+1

×
+∞∫
−∞

[((
1 − 2M

r

)
∂b̃l0(ω,r)

∂r + ψ̃l0(ω,r)r2

l(l+1)

)(
iωb̃l0(−ω,r)

1−2M/r + η̃l0(−ω,r)
l(l+1)

)
−iωãl0(ω, r) ∂ãl0(−ω,r)

∂r

]
dω +

+∞∫
−∞

M(r, t)dt .

(36)

7. Radial Motion
Radial motion is the simplest case of the motion in Schwarzschild geometry. It is

realized when L = 0. The angular component is u3 = 0, and the trajectory of the particle
coincides with the coordinate line r. Then, we can choose the orientation of the coordinate
system in such a way that the trajectory corresponds to θ = 0. We obtain, see (23),

ξlm = 0 . (37)

Due to the axial symmetry of the problem, the electromagnetic field does not depend on the
azimuthal angle ϕ. Consequently, using the representation of spherical functions through
associated Legendre polynomials Pm

l (cos θ) (see, e.g., [63]),

Ylm(θ, ϕ) = Pm
l (cos θ)eimϕ , (38)

we obtain that only components with m = 0 can be present in the solution (20). Note that
P0

l (cos θ) = Pl(cos θ), where Pl(cos θ) are usual Legendre polynomials (see, e.g., [63]).
In our case, due to (37) from (22) we obtain a homogeneous differential equation

relative to ãlm. Boundary conditions imply that the electromagnetic field and its derivatives
must be null at infinity. Therefore, the unique solution of this equation is ãlm = 0.

Consequently, in the case of the radial motion of the test particle, the solution for
electromagnetic potential can be found in the form

A0 =
∞

∑
l=0

fl(r, t)Pl(cos θ) ,

A1 =
∞

∑
l=0

hl(r, t)Pl(cos θ) ,

A2 =
∞

∑
l=0

kl(r, t)
dPl(cos θ)

dθ
, A3 = 0 .

(39)
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From (23) and (5), we obtain the following representation for the functions ψlm and ηlm for
the case of radial motion (ξlm = 0, θ = 0, ϕ = 0, x1(t) = R(t)):

ψlm(r, t) = −q
2l + 1

r2

(
1 − 2M

r

)
δ(r − R(t)) ; (40)

ηlm(r, t) = q
2l + 1

r2

(
1 − 2M

r

)
dR(t)

dt
δ(r − R(t)) . (41)

Here, r = R(t) represents the worldline of the particle.
By using (29); carrying out a Fourier transform of (40), (41); and substituting it into (26),

we obtain the following equation:

b̃′′l0 +
[
ω2 − U(r∗)

]
b̃l0 = eiωT(r)Bl(r∗) , (42)

where

U(r∗) =
(

1 − 2M
r(r∗)

)
l(l+1)
r(r∗)2 , (43)

Bl(r∗) =
q

2π
2l+1

l(l+1)

[
T′′(r∗) + iω(T′(r∗))2 − iω

]
, (44)

B0(r∗) =
q

2π

[
T′′(r∗) + iω(T′(r∗))2 − iω

]
. (45)

Here, the prime denotes derivative with respect to tortoise coordinate r∗ and T(r∗) = t
represents the equation of the worldline of the particle. For instance, when the particle
starts at the spatial infinity at rest, it has the form

T(r∗) = − 2
3
√

2M
r(r∗)3/2 − 2

√
2Mr(r∗)

−2M ln
(√

r(r∗)−
√

2M√
r(r∗)+

√
2M

)
. (46)

For the spectrum of electromagnetic radiation in the case of radial motion from (36),
we obtain

dE
dω

= 2
∞

∑
l=0

l(l + 1)
2l + 1

((
1 − 2M

r

)
∂b̃l0(ω, r)

∂r
+

ψ̃l0(ω, r)r2

l(l + 1)

)
×
(

iωb̃l0(−ω, r)
1 − 2M/r

+
η̃l0(−ω, r)

l(l + 1)

)
. (47)

Note that, in some papers in the literature, there is a typo in the formula for the spectrum
because it does not consist of the term with ψ̃l0, η̃l0 (see, e.g., [36]).

From Formula (47), it follows that in order to calculate the spectrum of radiation, it
is necessary to solve Equation (42). It is the second kind of non-homogeneous differen-
tial equation in which the solution can be obtained using Green’s function method (see,
e.g., [63]). For this purpose, consider a homogeneous equation, corresponding to (42), for
the function y(r∗):

y′′(r∗) +
[
ω2 − U(r∗)

]
y(r∗) = 0 . (48)

Equation (48) has two linearly independent solutions, y1(r∗) and y2(r∗). Choose these
solutions in such a way that the first solution y1(r∗) satisfies the boundary condition (30a)
and the second solution y2(r∗) satisfies the boundary condition (30b). These solutions can
be expressed through Heun’s functions (see, e.g., [43]). Then, the solution of the boundary
value problem (30) for b̃l0 has the following form:
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b̃l(r∗, ω) = 1
W(r∗)

[
y1(r∗)

+∞∫
r∗

y2(x)a(x)eiωT(x)dx

+y2(r∗)
r∗∫

−∞
y1(x)a(x)eiωT(x)dx

]
,

(49)

where W(r∗) is the Wronskian of the solutions y1(r∗) and y2(r∗):

W(r∗) = y1(r∗)y′2(r
∗)− y2(r∗)y′1(r

∗) . (50)

Further simplification of (49) is possible by expressing the functions yA(r∗) through their
derivatives using (48) and performing integration by parts. The result reads

b̃l(r∗, ω) =
q

2π

2l + 1
l(l + 1)

eiωT(r∗)

iω
+ I , for l ≥ 1 ; (51a)

b̃0(r∗, ω) =
q

2π

eiωT(r∗)

iω
. (51b)

Here,

I =
y2(r∗)

W
q

2π

2l + 1
iω

r∗∫
−∞

U(x)y1(x)eiωTdx . (52)

Evaluating integral (52) numerically and substituting it into (51a) and (47), one can obtain
the spectrum of radiation. An example of the spectrum of radiation for the different
energies of the particle was calculated in [36]. The case of ultrarelativistic initial motion is
considered in [65]. The spectrum calculated in [41] is presented in Figure 4.

0.2 0.4 0.6 0.8
Mω

0.01

0.02

0.03

0.04

0.05

dE

dω

Figure 4. Spectrum of electromagnetic radiation of the particle, falling radially into the Schwarzschild
black hole (q = 1, E = 1), for different multipole indexes l = 1 (green), 2 (red), 3 (yellow). The
frequency is calculated in units of 1/M.

8. Non-Radial Motion
In the present section, we consider the case of geodesic non-radial motion of the

charged particle in the Schwarzschild geometry. Non-radial motion corresponds to the
level of the mechanical energy of the particle, which intersects the effective potential energy
curve (E2 and E3 in Figure 2). Energy level E2 corresponds to an unbounded motion, and
energy level E3 corresponds to a bound motion.
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For the case of non-radial motion, it is convenient to orient the spatial part of the
Schwarzschild system of coordinates in such a way that the trajectory of the particle lies in
the plane θ = 0. Then, it is necessary to solve both equations for ãlm (22) and for b̃lm (26).
The electromagnetic spectrum can be calculated using (36). The simplest case of bound
motion is a circular orbit. The calculation of radiation in this case was performed in [62].

The mechanical energy level E2 corresponds to unbound orbits. An example for
calculations of the multipole moments for this case is presented in Figure 5. It can be seen
from the figure that, in the case of non-bound orbits, there is a qualitative difference with
the case of radially falling charge: the spectrum in the former case has two local maxima.

0.5 1.0 1.5 2.0 2.5
ωM

1

2

3

4

dE

dω q2

Figure 5. The energy spectrum (for multipole l = 1, m = 0), radiated by the particle, moving along
the unbound orbit (see Figure 3) in the Schwarzschild geometry.

9. Stationary Component of Electromagnetic Field
Consider test particles moving in the vicinity of a Schwarzschild black hole. This

system as a whole will have some non-zero charge of non-zero electric multipole moments,
which create the electric field. For the determination of this field, it is sufficient to consider
the field created by only one test charge. Then, the field cheated by the system of test
charges can be found using the superposition principle.

Solutions for the electric field of one test charge and circular charged ring that are
fixed in space are considered, e.g., in [15,66], respectively. In a more realistic situation, the
motion of the particle in an external gravitational field should be taken into account. This
problem was recently addressed in [41].

Consider the electromagnetic field of the particle radially falling into a black hole. The
monopole component of this field can be obtained using Stokes theorem. From Maxwell’s
Equation (2),

q =
∫
Σ

jidSi =
1

4π

∫
Σ

Fij
;jdSi =

1
4π

∮
σ

Fijdσij , (53)

where Σ is a spacelike hypersurface, which can be chosen as t = const, and σ is a closed
surface in S, which can be chosen as sphere t = const, r = const. Then,
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b0(r, t) = r2(F10)0 ={
− q , when the charge is inside the surface σ ,

0 , when the charge is outside the surface σ .
(54)

Here, (F10)0 denotes the monopole term in multipole expansion of F10.
Other multipole components of the electromagnetic field bl(r∗, ω) can be determined

from equation (48). For this purpose, we note that this equation mathematically coincides
with the Schrodinger equation in quantum mechanics for the particle in potential U(r∗).
The approximate solution of this equation can be found using the following approximation,
see [41]

U(r∗) ≈ U0δ(r∗ − r∗0) , (55)

where U0 is a constant (see Figure 6). Choose two linearly independent solutions of (48) in
the following form:

-10 10 20 30

r
*

M

0.05

0.10

0.15

0.20

0.25

M
2
U(r*)

Figure 6. Potential barrier of the Regge–Wheeler equation for multipole moments l = 1 and l = 2.

y1(r∗) =

{
e−iωr∗ , r < 3M ,

Ce−iωr∗ + Deiωr∗ ; r > 3M ;
(56)

and

y2(r∗) =

{
Ceiωr∗ + De−iωr∗ , r < 3M ;

eiωr∗ , r > 3M ,
(57)

where coefficients are (see, e.g., [66])

C = 1 − U0
2iω ; (58)

D = D
2iω e−2iω·3M∗

; (59)

W = 2iωC = 2iω − U0 . (60)

Due to the asymptotic form of (56) and (57) for r∗ → ±∞, it follows from (26) that boundary
conditions (30b) and (30a) are satisfied for the functions y1(r∗) and y2(r∗), respectively.
Term I in (51a) has the following form:
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q
2π

2l + 1
l(l + 1)

U0

iω
eiωr∗

2iω − U0

r∗∫
−∞

δ(x − r∗0)e
−ixωeiωT(x)dx

=
q

2π

2l + 1
l(l + 1)

U0

iω
eiω(r∗+T(r∗0 )−r∗0 )

2iω−U0
.

(61)

The inverse Fourier transform gives

U0
q

2π

2l + 1
l(l + 1)

+∞∫
−∞

eiω(r∗+T(r∗0 )−r∗0−t)

iω(2iω − U0)
dω . (62)

The integral (62) can be carried out using Cauchy’s residue theorem. The contour of
integration depends on the sign of the factor under the exponent. Due to this, consider two
cases. For r∗ + T(r∗0)− r∗0 − t > 0, one has

bl = πi res
ω=0

[
U0

q
2π

2l+1
l(l+1)

eiω(r∗+T(r∗0 )−r∗0−t)

iω(2iω−U0)

]
= − ρ

2
2l+1

l(l+1) .
(63)

If r∗ + T(r∗0)− r∗0 − t < 0, one has

bl = −πi res
ω=0

[
U0

q
2π

2l+1
l(l+1)

eiω(r∗+T(r∗0 )−r∗0−t)

iω(2iω−U0)

]
−2πi res

ω=−iU0/2

[
U0

ρ
2π

2l+1
l(l+1)

eiω(r∗+T(r∗0 )−r∗0−t)

iω(2iω−U0)

]
= q

2
2l+1

l(l+1) − ρ 2l+1
l(l+1) e

U0
2 ω(r∗+T(r∗0 )−r∗0−t) .

(64)

Substituting (63) and (64) into (51a), we finally obtain

bl(r(r∗), t) =



− ρ
2l + 1

l(l + 1)
,

if T(r∗) < t < r∗ + T(r∗)− r∗0 ;

− ρ
2l + 1

l(l + 1)
e

U0
2 ω(r∗+T(r∗0 )−r∗0−t) ,

if t > r∗ + T(r∗0)− r∗0 .

(65)

It follows from (65) that all multipole moments with l ≤ 1 tend to zero when the test charge
approaches the event horizon of the black hole. The same conclusion is obtained with a
rectangular potential approximation of U(r∗), see [41].

10. Conclusions
The motion and radiation of charged particles in the vicinity of black holes is a

fundamental subject, which is on the basis of virtually all models of relativistic astrophysical
objects such as accreting black holes, neutron stars, quasars, etc. Hence, the study of
this problem is essential. Given the difficulty of the problem, it was approached with
several steps.

We provided a concise review of the most relevant works related to the electromagnetic
radiation of a particle in the vicinity of a black hole. Recently, the interest in these works
has been revived in the context of models of energy extraction from a black hole.

The first attempts to study electromagnetic fields of a charged particle in the vicinity of
a spherically symmetric black hole were based on the assumption that the particle is at rest.
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Out of these works, it became clear that when the particle is located on the event horizon,
the electric field becomes spherically symmetric. This fact is important for astrophysical
models involving charge accretion by a black hole. Indeed, when charges of opposite signs
are accreted in equal amounts, the black hole remains uncharged. Instead, when there is
a preferential accretion of a charge of a certain sign, the black hole appears to a distant
observer to be charged. The same result holds for magnetized black holes.

Analysis of the electromagnetic radiation of a charged particle moving in the vicinity
of a spherically symmetric black hole was performed, assuming that the radiation reaction
is negligible. Recently, we considered [41] the case of radial infall. Our results, based on
the approximate solution of the Regge–Wheeler equation, show that when the particle
approaches the event horizon all multipoles, but the monopole, decrease exponentially
with time. Hence, the analysis of the dynamical problem leads to the same conclusion as
discussed above.

To our knowledge, there is a gap in the literature considering motion and electromag-
netic radiation of the particle with arbitrary initial conditions corresponding to different
types of motion as presented in Figure 2. We hope to stimulate such general analysis, as it
is required for realistic astrophysical models of accreting black holes.
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