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Abstract

Integrability proved to be a powerful tool to calculate observables in the AdS/CFT
correspondence. At first discovered in the planar spectral problem, methods have since
been devised for calculating higher-point functions as well. In this thesis we will consider
two instances of the correspondence, that is AdS5/CFT4 as well as AdS3/CFT2, aiming
at extending the integrability framework.

In Part I we focus on integrability in N = 4 SYM theory, where the hexagon form
factor provides a formalism to calculate three-point functions. For this, the correlator
is cut into two hexagonal patches. Considering the local operators in the spin chain
picture, the Bethe states also need to be cut, resulting in an entangled state. Most
applications in the literature have been restricted to rank-one sectors. In this thesis, we
extend the hexagon formalism to higher-rank sectors, while preserving its operator-like
structure and importing only a minimum of information from the nested Bethe ansatz.
We test this idea against free field theory results for correlators in the so-called SU(3)
and SU(1|2) sectors. Further, we investigate the use of the hexagon formalism for the
evaluation of correlators in the presence of the β-deformation in SU(1|2) and SU(2)
sectors.

Moreover, considering double excitations in the spin chain picture allows us to
accommodate for the full set of fields in N = 4 SYM theory. For the Konishi
operator we present a tree-level analysis of the related creation amplitudes in the nested
Bethe ansatz as well as in the matrix picture, where the excitations scatter via the
Beisert S matrix. Remarkably, the local structure of double excitations is hidden in the
hexagon calculation. Building on these ideas, we work out Bethe solutions and build
the chiral Yang-Mills field strength tensor from four fermions at leading order in the
coupling. We put forward a Lagrangian insertion method in the hexagon formalism
and perform a first test, namely that the three-point function of the Lagrangian with
two half-BPS operators of equal length ought to vanish.

In Part II we propose a hexagon formalism for superstrings in AdS3 × S3 × T4

backgrounds with an arbitrary mixture or Ramond-Ramond and Neveu-Schwarz-Neveu-
Schwarz fluxes. We bootstrap the hexagon form factor for one- and two-particle states
from symmetry and give a proposal for the evaluation of many particle states in terms
of the theories S matrix. By imposing physical constraints, we find that the hexagons
dressing factors are related to those of the S matrix in the spectral problem. In addition,
we calculate some correlation functions of protected operators and find agreement with
results in the literature.

Finally, we consider the thermodynamic Bethe ansatz (TBA) equations constructed
by Frolov and Sfondrini for the spectrum of strings on the pure-Ramond-Ramond
AdS3 × S3 × T4 background. Here we study the small tension limit of the mirror TBA
equations and find that the equations simplify considerably. We observe, that the
leading-order contribution to the anomalous dimensions is due to massless excitations.
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Zusammenfassung

Integrabilität hat sich als ein mächtiges Werkzeug zur Berechnung von Observablen
in der AdS/CFT-Korrespondenz erwiesen. Zunächst für das planare Spektralproblem
entdeckt, wurden inzwischen auch Methoden zur Berechnung von Mehrpunktfunktionen
entwickelt. In dieser Arbeit werden die Realisierungen dieser Korrespondenz für
AdS5/CFT4 und AdS3/CFT2 betrachtet mit dem Ziel, den Anwendungsbereich der
Integrabilität zu erweitern.

Teil I behandelt Integrabilität in der N = 4 SYM-Theorie, wo der Hexagon-
Formalismus die Berechnung von Dreipunktfunktionen ermöglicht. Hierfür wird der
Korrelator in zwei hexagonale Stücke zerlegt. Betrachtet man die lokalen Operatoren
dabei im Spinkettenbild, müssen auch die Bethe-Zustände zerschnitten werden, was
zu einem verschränkten Zustand führt. Die meisten Anwendungen in der Literatur
beschränken sich auf Sektoren vom Rang eins. In dieser Arbeit wird der Hexagon-
Formalismus auf Sektoren mit höherem Rang ausgedehnt, wobei die operatorartige
Struktur erhalten bleibt und nur ein Minimum an Informationen aus dem verschachtel-
ten Bethe-Ansatz genutzt wird. Diese Idee wird mit Ergebnissen der freien Feldtheorie
für Korrelatoren in den sog. SU(3)- und SU(1|2)-Sektoren getestet. Außerdem wird
die Anwendung des Hexagon-Formalismus für die Auswertung von Korrelatoren in
β-deformierten SU(1|2)- und SU(2)-Sektoren untersucht.

Des Weiteren erlaubt die Betrachtung von Doppelanregungen im Spinkettenbild die
Realisierung aller Felder der N = 4 SYM-Theorie. Für den Konishi-Operator werden
die zugehörigen Erzeugeramplituden sowohl im verschachtelten Bethe-Ansatz als auch
im Matrixbild, wo die Anregungen durch die Beisert S Matrix streuen, auf Baumniveau
ausgearbeitet. Die lokale Struktur der Doppelanregungen ist in der Hexagonberech-
nung verborgen. Es werden Bethe-Lösungen erarbeitet und der chirale Yang-Mills-
Feldstärketensor aus vier Fermionen in führender Ordnung der Kopplung konstruiert.
Eine Methode zur Einsetzung des Lagrangeoperators im Hexagon-Formalismus wird
vorgeschlagen und ein erster Test durchgeführt, nämlich dass die Dreipunktfunktion
dieses Operators mit zwei halb-BPS-Operatoren gleicher Länge verschwinden sollte.

Teil II behandelt den Hexagon-Formalismus für Superstrings auf AdS3 × S3 × T4

Hintergründen mit einer beliebigen Mischung von Ramond-Ramond und Neveu-Schwarz-
Neveu-Schwarz Flüssen. Der Hexagon-Formfaktor wird für Ein- und Zwei-Teilchen-
Zustände konstruiert und lässt sich für viele Teilchen unter Nutzung der S Matrix
verallgemeinern. Weitere physikalische Bedingungen stellen einen Zusammenhang
zwischen den Phasenfaktoren der Hexagon-Formfaktoren und denen der S-Matrix im
Spektralproblem her. Darüber hinaus werden Korrelationsfunktionen geschützter Op-
eratoren berechnet und Übereinstimmung mit Ergebnissen aus der Literatur gefunden.

Schließlich werden die thermodynamischen Bethe-Ansatz (TBA)-Gleichungen betrach-
tet, die von Frolov und Sfondrini für das Spektrum von Strings auf reinem Ramond-
Ramond AdS3 × S3 × T4 Hintergrund konstruiert wurden. Bei schwacher Kopplung
lassen sich die TBA-Gleichungen erheblich vereinfachen. Der Beitrag zu den anomalen
Dimensionen in führender Ordnung ist auf masselose Anregungen zurückzuführen.
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Chapter 1.

Introduction

Quantum field theories (QFT) form the mathematical framework for the description of
elementary particles and their interactions in the universe. In particular, Yang-Mills
theories have been studied for almost 70 years leading to the Standard Model of particle
physics. Its predictions have been tested against data from high-precision measurements,
which require the largest machines mankind ever built in order to conduct experiments,
such as the Large Hadron Collider. However, most theoretical predictions can only be
obtained perturbatively in the coupling constant. The interaction is then considered as
a perturbation around the free theory. The terms contributing at each order of the
coupling can be represented graphically using Feynman diagrams. In order to obtain
predictions with higher precision it is necessary to evaluate the perturbative series
to higher orders, which becomes very challenging. On the one hand, the number of
diagrams grows factorially with the order. On the other hand, the evaluation of a
diagram at a given order involves a certain number of integrals, which are complicated
to compute. Furthermore, in physical models like quantum chromodynamics (QCD) at
low energy, the coupling constant is not small and a series expansion is not applicable.
Hence it is desirable to devise non-perturbative methods, as these would allow to
circumvent such problems.

For the purpose of developing these methods it is helpful to consider toy models with
a large amount of symmetry. A famous example in this regard is N = 4 supersymmetric
Yang-Mills theory (N = 4 SYM). This is the unique maximally supersymmetric gauge
theory in four spacetime dimensions. This theory is conformal even at the quantum
level and the large amount of symmetry allows us to constrain the form of observables.
For instance, the two-point function of scalar operators Oj(x) with scaling dimension ∆
must be of the form

⟨Oj(x1)Ok(x2)⟩ =
δj,k

|x1 − x2|2∆
, (1.1)

using an appropriate normalisation of the operators. Moreover, in a similar way the
form of three-point functions can be determined in terms of the scaling dimensions ∆j

and the structure constant Cijk of the involved operators. A conformal field theory
is characterised by the set {∆j, Cijk}, since this data captures the dynamical content.
Higher-point correlation functions cannot be fully fixed using conformal symmetry,
but can be obtained from the operator product expansion (OPE). However, the OPE
requires the explicit knowledge of the set {∆j, Cijk} for actual calculations.

Customarily, for N = 4 SYM theory the gauge group SU(N) is chosen and gauge
invariant local operators can be build. The theory simplifies considerably in the large
N limit, which is also called the planar limit. In [6] ’t Hooft observed, that when
organising the Feynman diagrams in a 1/N expansion, there exists a correspondence to
their topology. To have diagrams at a given order in 1/N without crossing propagators
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one needs to draw them on the topology of a certain genus. When taking the rank
N of the gauge group to infinity and the Yang-Mills coupling gYM to zero, while
keeping the ’t Hooft coupling λ = g2YMN finite, only planar diagrams contribute.
The large N expansion resembles the sum over worldsheet topologies with the string
coupling gs ∼ 1/N .

The AdS/CFT correspondence. In 1997 Maldacena conjectured the famous
AdS/CFT correspondence [7]. It states a duality between conformal field theories
in d dimensions and string theories embedded into a (d+ 1)-dimensional Anti-de-Sitter
spacetime. Thus, every observable in the field theory should have a corresponding dual
in the string theory. The most famous example for this connection is the duality between
N = 4 super Yang-Mills theory and type IIB superstring theory on the AdS5 × S5

background. Strikingly, both theories share the same global symmetries. The bosonic
isometries of AdS5 and S5 are given by su(2, 2) and su(4), respectively. Combined
with supersymmetry this leads to psu(2, 2|4), which coincides with the superconformal
symmetry algebra of N = 4 SYM. Furthermore, as string theories naturally contain a
description of gravity, the duality might also pave a way towards a quantum theory of
gravity.

Though the duality is not proven formally, agreement has been found in all the
cases considered. For instance, the spectrum of scaling dimensions of local operators
corresponds to the energy spectrum of free string states. The ’t Hooft coupling λ
and the rank of the gauge group N are related to the inverse string tension α′ and
the radius R of the AdS5 and S5 spaces as

√
λ ∼ R2/α′ and gs ∼ λ/N . Further, the

AdS/CFT correspondence conjectures a weak/strong duality between λ and the inverse
string tension α′. While for weak ’t Hooft coupling λ we can use perturbative techniques
on the gauge theory side, this corresponds to large inverse tension α′ on the side of the
string theory. Vice versa, for strong gauge coupling, the inverse string tension is small
and a perturbative expansion can be applied. Hence, to study observables at weak or
strong coupling, one can choose the side of the correspondence, where perturbative
techniques can be used. The drawback is, that the duality cannot be verified by an
explicit perturbative calculation on the other side of the correspondence. Fortunately,
integrability will help in this regard. A review of the various aspects of integrability in
the context of the AdS5/CFT4 correspondence is given in [8].

A further example of the AdS/CFT correspondence is AdS4/CFT3. In the planar
limit one has that type IIA string theory on an AdS4 × CP3 background is dual
to the ABJM theory of [9]. Moreover, beyond AdS5/CFT4, in this thesis we will
consider AdS3/CFT2 with an AdS3 × S3 × T4 background. A review is given in [10].
It should be mentioned that for this correspondence there are two further families of
backgrounds, namely AdS3 × S3 × S3 × S1 and AdS3 × S3 ×K3. We refer the reader to
the reviews [8, 10] for a more detailed discussion of integrability in the context of the
AdS/CFT correspondence.

The spectral problem in N = 4 SYM theory. The first objects which were
studied in the framework of this correspondence were correlation functions as given
in eq. (1.1) of gauge-invariant composite operators [11, 12]. For instance, one could
consider the protected half-BPS operators. The scaling dimensions ∆ of local operators
in a conformal field theory are measured by the dilataion operator D. The scaling
dimensions of BPS operators do not receive quantum corrections and are hence given

2



by their classical values ∆0. Further, the spectrum problem of BMN [13] operators
was studied in the large N limit. These operator’s scaling dimensions receive quantum
corrections, which are also called anomalous dimensions γ and depend on the ’t Hooft
coupling λ and the rank N of the gauge group. The spectral problem amounts then to
finding the eigenvalues of the dilatation operator

DO = ∆O with ∆ = ∆0 + γ . (1.2)

In the AdS/CFT correspondence the anomalous dimensions of the operators are dual
to the energy levels of string states. Moreover, in the planar limit N = 4 SYM theory
becomes integrable and exact results can be obtained at arbitrary coupling λ. In
fact, the dilatation operator of the spectral problem for the SO(6) subsector at one-
loop was mapped to the diagonalisation of an integrable nearest-neighbour spin chain
Hamiltonian [14] at weak coupling. This allows us to use Bethe ansatz techniques [15]
to diagonalise the Hamiltonian and solve the spectral problem. The map to integrable
spin chains has then been extended to the full superconformal algebra psu(2, 2|4) of
N = 4 SYM theory [16–18]. The underlying symmetry of the model also permits to
find the spin chain S matrix [19] up to an overall dressing phase. By fixing a vacuum,
the symmetry is broken and the excitations of the spin chain transform under the
remaining su(2|2)2 symmetry. The full S matrix S is then given by two copies of the
su(2|2) S matrix S, which has to fulfil unitarity constraints. Moreover, the scattering
of multi-particle states factorises into several two-particle scattering events. This is
a characteristic property of two-dimensional integrable quantum field theories and
was first observed by Zamolodchikov and Zamolodchikov in [20]. Further, the result
of the scattering process must not depend on the sequence of two-particle scattering
events. For three-particles this gives a cubic constraint on the S matrix, which is known
as the Yang-Baxter equation. The respective overall dressing phase of the S matrix
cannot be fixed from symmetries but from physical constraints, as it has to have a
certain analytic structure. The solution is known as the Beisert-Eden-Staudacher (BES)
dressing phase [21].

Furthermore, integrability was also conjectured to hold at higher loop orders, using
the asymptotic Bethe ansatz [22, 23], which includes next-to-nearest-neighbour and
higher-neighbouring interactions. However, it should be mentioned, that the form of
the full dilatation operator is not completely known beyond one loop. Considering a
spin chain of finite length, so called wrapping effects have to be taken into account [24].
These effects are suppressed by the length of the spin chain and hence the asymptotic
Bethe ansatz is only valid for infinitely long spin chains. In the dual string theory,
wrapping effects can be interpreted as virtual particles traveling around the worldsheet
and interacting with the physical excitations. These interactions are suppressed by
the size of the states and hence start to contribute at a certain loop order. By using
the thermodynamic Bethe ansatz (TBA) [25] and going to the mirror model wrapping
corrections can also be included into the solution of the spectral problem [24,26–28].
Further, the TBA equations can be simplified [29] and recast into the Quantum Spectral
Curve (QSC) [30, 31]. In principle, the QSC allows us to calculate the spectrum at
weak coupling to arbitrary order in the coupling constant. In [32] this has been done
up to including 10th order loop corrections for operators in the sl(2) sector. Finally,
integrability in N = 4 SYM theory is believed to be related to an underlying symmetry
captured by the Yangian algebra [33].

3



As mentioned above, N = 4 SYM theory is rather viewed as a toy model, considered
to develop and test new methods. Hence, it seems natural to ask, whether these
powerful techniques borrowed from integrability can also be applied to theories with
less symmetry. A first step is to study exactly marginal deformations, which preserve
conformal invariance. In addition, considering deformations of the type classified by
Leigh and Strassler [34] N = 1 supersymmetry can be preserved. A special case is
the real β-deformed N = 4 SYM theory, which is integrable [35]. The deformation
depends on the internal su(4) charges of the fields and hence in the dual string theory
the sphere S5 is deformed. The corresponding string background was found by Lunin
and Maldacena [36]. We will consider some three-point functions in the β-deformed
theory in this thesis.

Higher-point functions by integrability in N = 4 SYM theory. After the
success of integrability in the spectral problem, turning to three-point functions seems
a natural next step. In [37] new tools for spin chains were introduced, allowing to
calculate tree-level correlators of three closed spin chain states. Here the spin chains,
i.e. Bethe eigenstates, are cut into subchains and then sewed back together, using an
inner product. When cutting the Bethe state, the excitations can end up on either
subchain, hence all possible partitions need to be summed. This idea was then further
developed to the hexagon form factor [38]. Considering the correlator in the dual string
theory, the three-point function is given by a worldsheet with three punctures, i.e. the
operators. This topology can then be cut into two hexagonal patches, which can be
evaluated using the hexagon operator. Since the operators are cut in a similar way as
in the tailoring picture of [37], the partitions also need to be summed here. The edges
of the hexagon corresponding to the operators are also called physical edges, while
those coming from the cut worldsheet are called virtual edges. The evaluation in this
formalism yields the asymptotic three-point function.

Moreover, the hexagon form factor can be bootstrapped from symmetry constraints
and is in fact given in terms of the Beisert S matrix [19]. Wrapping corrections can
also be included into this formalism [38–40]. In a sense, by cutting the worldsheet,
information is lost and in order to retrieve it, a full set of states needs to be inserted
on the virtual edges. The explicit evaluation of these processes has to be done order by
order and is rather involved [38–44]. However, these corrections are suppressed by the
bridge lengths, i.e. the number of propagators connecting the respective operators.

In addition, the hexagon formalism paves the way to studying higher-point functions
using methods from integrability. The tessellation of four-point functions was considered
in [41,45]. In contrast to two- and three-point functions, the form of four-point functions
is not fully fixed by symmetry and they depend non-trivially on the conformal cross-
ratios. Cutting the latter into four hexagons, the form factor allows to circumvent
the operator product expansion (OPE). It is here necessary to sum over all distinct
ways to tessellate the correlator. Including the cross-ratio dependence into the hexagon
formalism then reproduces the correct dependence for higher-point functions [41,42,45].
Further, it was noticed that diagrams calculated by hexagons have to be dressed by their
respective SU(N) colour factors, in order to reproduce field theory results [42], allowing
to also include 1/N corrections by tessellating higher-genus manifolds [42, 46,47].

The spectral problem in AdS3/CFT2. Another example of the AdS/CFT corre-
spondence it the duality between type IIB superstring theory on an AdS3 × S3 × T4
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background and a two-dimensional CFT2. Compared to AdS5/CFT4, this background
preserves only half the amount of supersymmetry. For the spectral problem in the pla-
nar limit, there are two important parameters [48], as the background can be supported
by a mixture of Ramond-Ramond (RR) flux h as well as Neveu-Schwarz-Neveu-Schwarz
(NSNS) flux k. The background at hand is most similar to the case of AdS5 × S5 when
there is pure RR flux, i.e. no NSNS flux. In this case, as well as for mixed flux, the dual
CFT2 is not known. On the other hand, for pure NSNS flux, the model can be described
as a worldsheet CFT and is given by a supersymmetric sl(2,R) Wess-Zumino-Witten
model at level k [49–51]. For the special case of k = 1 the dual CFT2 is known to be the
symmetric product orbifold SymN (T4) [52–54]. This theory is given by N copies of T4,
containing four free bosons and fermions each, which are identified under permutations.

Moreover, the background is known to be classically integrable for mixed flux, as
well as for pure-RR or pure-NSNS flux [55, 56] and the theory is believed to be also
integrable at quantum level. The spectrum problem was then studied for pure-RR
and mixed flux and the S matrix was fixed from symmetry constraints [57–59]. A
qualitative difference to the case of AdS5×S5 is, that the particle content of this theory
contains massive as well as massless excitations. The scattering processes between
the different representations are captured by different blocks in the S matrix. Finally,
there are five independent dressing factors for the S matrix [60]. A proposal for these
factors for pure-RR flux was made in [61, 62], which however featured some difficulties
and led to the new proposal [63]. For pure-NSNS flux the S matrix cannot be fixed by
symmetries and a proposal for it was made in [64].

Having worked out the S matrix and its dressing factors for pure-RR flux, the mirror
thermodynamic Bethe ansatz equations were derived in [65]. Here, we should also
mention, that a quantum spectral curve was proposed for AdS3 × S3 × T4 in [66,67].
While the construction of the QSC for AdS5 × S5 was based on the TBA equations, it
is based on symmetry considerations in [66,67] and it will be interesting to see whether
these two approaches yield a consistent description for AdS3 × S3 × T4.

Outline

This thesis is divided into two parts, which are dedicated to certain aspects of integra-
bility in AdS5/CFT4 and AdS3/CFT2, respectively. Here, we will give a brief outline
of the material discussed in the two parts.

Part I: Integrability in N = 4 SYM. In this part we focus on the CFT side of the
AdS5/CFT4 duality. In Chapter 2 we review N = 4 SYM theory as well as methods
from integrability in order to solve the spectral problem. In particular, we consider
higher-rank models and the nested Bethe ansatz in Sec. 2.2, which allows us to construct
the respective Bethe eigenstates in a straightforward way. In addition, we introduce
marginal deformations and consider the implications of the real β-deformation for the
Bethe equations in Sec. 2.3.

Chapter 3 is devoted to applications of the hexagon form factor in N = 4 SYM.
We begin by reviewing the hexagon formalism in Sec. 3.1, discussing the evaluation
of higher-point functions as well as the inclusion of wrapping corrections. As this
formalism was mainly studied for rank-one sectors, we consider its extension to higher-
rank sectors in Sec. 3.2. There we study tree-level correlators of operators from the
SU(3) and SU(1|2) sectors, respectively. In Sec. 3.3 we ask whether a similar formalism
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exists for the β-deformed theory. Here we consider a minimal change of the original
hexagon form factor only by dressing it with deformation factors. We use the resulting
prescription to compute correlators in the SU(1|2) as well as SU(2) sector and discuss
some conceptual difficulties. In Sec. 3.4 we study double excitations, which allow us to
also consider excitations which can a priori not be realised in the spin chain picture.
We introduce the respective creation amplitudes and work out an example in the SO(6)
sector. Moreover, we can use these results to build the Yang-Mills term of the Lagrange
operator in Sec. 3.5. Using the concept of the Lagrangian insertion method, which
is well established for field theory calculations in N = 4 SYM [68,69], we propose a
way to calculate loop corrections in the hexagon formalism without having to include
mirror magnons. We test this proposal by considering a simple but non-trivial example
of protected correlators.

Part II: Integrability in AdS3. In this part we address integrability techniques in
AdS3×S3×T4 string theory. We begin by reviewing important results from the literature
in Sec. 4. In particular, we consider the particle content as well as the scattering matrix.
Since integrability proved to be a powerful tool also for the calculation of higher-point
functions in AdS5/CFT4, we will turn to three-point functions in Sec. 5 and ask whether
a hexagon formalism can be devised for AdS3 × S3 × T4. As only for the background
with pure-NSNS flux CFT techniques exist this would be a desirable advance. In
fact, in Sec. 5.2 we will bootstrap the one- and two-particle hexagon form factor for
backgrounds supported by pure-RR and mixed flux. The form factor is related to the
Borsato–Ohlsson-Sax–Sfondrini S matrix [70] and we can extend it to arbitrarily many
particles. Further, we find that the dressing phases for the hexagon are related to those
of the S matrix in the spectral problem by imposing consistency constraints in Sec. 5.4.
Finally, we consider some correlation functions of protected operators in Sec. 5.5 and
compare the hexagons predictions with results in the literature [71].

In Chapter 6 we will consider the mirror TBA equations for AdS3 × S3 × T4 back-
grounds with pure-RR flux derived in [65] and study how they can be simplified in
the small tension limit. We begin by reviewing the TBA for the simpler example of
the Heisenberg XXX spin chain in Sec. 6.1. This allows us to introduce the relevant
concepts and ideas before moving to the more involved set of equations at hand in
Sec. 6.2. There we will use the contour deformation trick [72] in order to excite
massless modes. In Sec. 6.3 we will then study the simplification of the equations in
the tensionless limit h→ 0. Magnificently, in this limit the massless modes decouple
and the resulting equations only contain the Cauchy kernel and corresponding source
terms.

In the concluding Chapter 7 the results are summarised and we will discuss several
directions for future research. In addition, we added two appendices where some rather
technical details are collected for the reader’s convenience. In App. A we give details
on the evaluation of the hexagon form factor in N = 4 SYM [38] relevant for Part I.
Furthermore, App. B lists the S matrices from [63,65] relevant for the TBA equations
in AdS3 from Part II.
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Part I.

Integrability in N = 4 SYM
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Chapter 2.

Review of integrability in N = 4 super
Yang-Mills theory

In this chapter we will review N = 4 SYM theory and its connection to integrability.
We will begin by introducing the maximally supersymmetric N = 4 SYM field theory
and discuss its symmetry algebra. In particular, we consider the oscillator picture,
which will be helpful later on in the context of double excitations. Further, we will
discuss the spectrum problem and the one-loop dilatation operator. Following Minahan
and Zarembo [14], the planar one-loop mixing problem in the scalar sector can be
mapped to an integrable spin chain. Thus, we will introduce methods from integrability.
In particular, we will consider the coordinate Bethe ansatz as well as the nested Bethe
ansatz, which plays a crucial role for higher-rank sectors. The concepts introduced here
will also be useful later on in this thesis in the context of integrability in AdS3/CFT2.
Finally, we discuss marginal deformations of N = 4 SYM and focus in particular on
the real β-deformation.

2.1. Field theory

2.1.1. Field content and the Lagrangian

In four-dimensional spacetime N = 4 SYM theory [73, 74] is the unique maximally
supersymmetric gauge theory. The matter content of the theory is given by three
complex scalar fields ΦIJ = −ΦJI as well as four fermions ΨI

α and four anti-fermions
Ψ̄Iα̇. The latin indices I, J = 1, 2, 3, 4 correspond to the internal flavour symmetry,
which is given by the global R-symmetry group SO(6) ≃ SU(4). Under this group the
bosons and fermions transform in the fundamental representation, while the conjugate
fermions transform in the anti-fundamental representation. The su(2) spinor indices
α, α̇ may take the values 1, 2 or 1̇, 2̇, respectively. Finally, there is the gauge field Aµ

with the spacetime index taking values µ = 0, 1, 2, 3. We will consider the gauge group
SU(N) with all the fields transforming in its adjoint representation. Furthermore, we
can define the covariant derivative Dµ and its action on any field X as

Dµ = ∂µ − igYMAµ , DµX = (∂µX )− igYM[Aµ,X ] , (2.1)

where we introduced the dimensionless Yang-Mills coupling constant gYM. Introducing
the field strength Fµν through

Fµν =
i

gYM
[Dµ,Dν ] = ∂µAν − ∂νAµ − igYM[Aµ,Aν ] (2.2)
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we can write the Lagrangian of N = 4 SYM theory [74]

LN=4 = tr

(
− 1

4
FµνFµν −

1

2
(DµΦIJ)(DµΦIJ) +

1

8
g2YM[ΦIJ ,ΦKL][ΦIJ ,ΦKL]

+
√
2gYMΨIα[ΦIJ ,Ψ

J
α] +

√
2gYMΨ̄Iα̇[Φ

IJ , Ψ̄α̇
J ] + iΨ̄Iα̇σ̄

α̇α
µ DµΨI

α

)
,

(2.3)

where (σ̄µ)
α̇α = (1, σ1, σ2, σ3)α̇α denotes the Pauli matrices. Taking the gauge-group

trace ensures that we obtain a gauge invariant Lagrangian. Further, the scalar fields
are self-dual as under conjugation they obey Φ̄IJ = ΦIJ = 1

2
ϵIJKLΦ

KL. Similarly, for
the anti-fermion we have Ψ̄IJK

α̇ = ϵIJKLΨ̄Lα̇ with three antisymmetrized fundamental
SU(4) indices.

2.1.2. Gauge group

Let us introduce the generators T a for the SU(N) gauge group. In the fundamental
representation the T a are given by N × N hermitian and traceless matrices with
a = 1, . . . , N2 − 1. Further, the generators obey the commutation relation

[T a, T b] = i
√
2fab

c T
c , (2.4)

with the structure constant fab
c . We may choose a diagonal basis, such that

tr
(
T aT b

)
= δab . (2.5)

Going to the adjoint representation, under which all fields of the theory transform, we
write the generators as (T a)bc = −i

√
2fab

c . For SU(N) we notice the important identity

(T a)bc(T
a)ef = δbfδ

e
c −

1

N
δbcδ

e
f , (2.6)

where the last terms ensures the tracelessness. The fields are matrix-valued, for instance
the complex scalar fields ΦIJ should implicitly be understood as ΦIJ

a T a, with N2 − 1
component fields ΦIJ

a .

Planar limit. The planar limit or ’t Hooft limit can be obtained by taking the rank
of the SU(N) gauge group to infinity and the coupling gYM to zero, while keeping the
’t Hooft coupling λ = g2YMN finite [6]. The Feynman diagrams can then be classified
by the genus of the surface on which they can be drawn without crossing propagators.
In the large-N limit diagrams are then suppressed according to their genus. Therefore,
taking the planar limit simplifies the theory, as only Feynman diagrams that can be
drawn on a sphere contribute. Further, we can rescale the coupling and define

g2 =
λ

16π2
, (2.7)

which we will mainly use as the coupling throughout this work.
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2.1.3. Symmetry algebra

N = 4 SYM theory is the maximally supersymmetric gauge theory in d = 4 di-
mensions. The theory is conformal and the conformal symmetry algebra is given by
so(2, 4) ≃ su(2, 2). In addition to the Lorentz transformations Lα

β, L̇
α̇
β̇

and transla-
tion Pαα̇ generating the Poincaré symmetry, the conformal symmetry algebra also
contains the dilatation generator D as well as the special conformal transformations Kαα̇.
The su(4) R-symmetry is generated by the R-charges RI

J . The N = 4 supersymme-
try includes 16 supercharges Qα

I , Q̇
Iα̇. Combining the conformal symmetry algebra

with supersymmetry leads to su(2, 2|4), which also contains the 16 superconformal
charges SI

α, Ṡ
α̇I . Further, the algebra su(2, 2|4) contains the central charge C. The

superconformal algebra is then given by the irreducible part psu(2, 2|4).
For a semi-simple super Lie algebra the Dynkin diagram is not unique. However, the

beauty diagram given in Fig. 2.1 turns out to be very useful [16]. Composite operators
formed from the fundamental fields of N = 4 SYM are called primary states, if they
are annihilated by all the lowering operators, i.e. the generators

{Kαα̇, L
α
β forα > β, L̇α̇

β̇
for α̇ > β̇, RI

J for I > J, SI
α, Ṡ

α̇I} . (2.8)

For instance the field Z ≡ Φ34 is a primary field. Acting with the raising operators on
primary states yields then descendant operators. Correspondingly, the raising operators
are given by

{Pαα̇, Lα
β forα < β, L̇α̇

β̇
for α̇ < β̇, RI

J for I < J, Qα
I , Q̇

Iα̇} . (2.9)

Finally, the generators of the Cartan subalgebra commute among each other. Their
action on primary operators can be used to classify them by their charges. For later
convenience let us give here the Cartan charges of the su(4) R-symmetry group

q1 = R2
2 −R1

1 , p = R3
3 −R2

2 , q2 = R4
4 −R3

3 , (2.10)

where the eigenvalues [q1, p, q2] are the su(4) Dynkin labels for a given state. Further,
when discussing twists and marginal deformations, it will be useful to introduce the
so(6) weights [j1, j2, j3] defined as

j1 =
q1 + 2p+ q2

2
, j2 =

q1 + q2
2

, j2 =
q1 − q2

2
. (2.11)

The charges of the fundamental fields of N = 4 SYM are given in Tab. 2.1. Conjugate
fields have the opposite charges while the derivatives Dαα̇ are not charged.

Φ34 Φ24 Φ23 Ψ1
α Ψ2

α Ψ3
α Ψ4

α

j1 1 0 0 −1/2 −1/2 +1/2 +1/2
j2 0 1 0 −1/2 +1/2 −1/2 +1/2
j3 0 0 1 −1/2 +1/2 +1/2 −1/2

Table 2.1.: The so(6) Cartan charges of the fundamental fields. Conjugate fields carry
opposite charges while the derivatives Dαα̇ are not charged.

Moreover, we have the Dynkin labels of the Lorentz algebra so(3, 1) ≃ su(2)× su(2)
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Figure 2.1.: Dynkin diagram in the beauty grading. The momentum carrying node is
in the middle and the left (orange) and right (blue) su(2|2) wings become
apparent. The simple roots are given in the oscillator picture. By acting
with the roots we can create excitations.

given through
s1 = L2

2 − L1
1 , s2 = L̇2̇

2̇
− L̇1̇

1̇
, (2.12)

as well as the scaling dimension ∆, which is measured by the dilatation operator D.
Unitary representations of psu(2, 2|4) have been classified in [75]. The shortest

physical multiplet is the half-BPS multiplet with highest weight given by the Dynkin
labels ∆ = p and the remaining labels vanish with s1 = s2 = q1 = q2 = 0. In the field
theory the highest weight state is composed from the fields Z = Φ34 and hence all the
states of the form tr

(
ZL
)

are half-BPS states. Moreover, half-BPS states are protected,
i.e. their scaling dimension does not receive quantum corrections.

The oscillator picture. Another useful concept is the oscillator picture [17, 76, 77]
which allows us to realise the elementary fields in terms of oscillators.

We introduce the bosonic creation operators aα†,bα̇† with two-component spinor
indices α, α̇ as well as the fermionic creation operators cI†, with flavour indices I ∈
{1 . . . 4}. The commutation operators are given by

[aα, a
β†] = δβα , [bα̇,b

β̇†] = δβ̇α̇ , {cI , cJ†} = δJI . (2.13)

The highest weight state Z is then given by Z = c3†c4† |0⟩. The remaining funda-
mental fields can be written in terms of the oscillators as well

Z = Φ34 = c3†c4† |0⟩ , Z̄ = Φ12 = c1†c2† |0⟩ ,
X = Φ24 = c2†c4† |0⟩ , X̄ = Φ13 = c1†c3† |0⟩ ,
Y = Φ14 = c1†c4† |0⟩ , Ȳ = Φ23 = c2†c3† |0⟩ ,

ΨαI = aα†cI† |0⟩ , Ψ̄α̇
I =

1

3!
ϵJKLIb

α̇†cJ†cK†cL† |0⟩ ,

Fαβ = aα†aβ† |0⟩ , F̄ α̇β̇ = bα̇†bβ̇†c1†c2†c3†c4† |0⟩ ,
Dαα̇ = aα†bα̇† ,

(2.14)

where the covariant derivative Dαα̇ always acts on some other field, as indicated by
omitting |0⟩ in the last line.

Moreover, the symmetry generators can be expressed in the oscillator picture, for
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instance the positive roots can be written as, cf. the Dynkin diagram in Fig. 2.1

L1
2 = a1†a2 , L̇1̇

2̇
= b1̇†b2̇ ,

Q2
1 = a2†c1 , Q̇42̇ = b2̇†c4† ,

R1
2 = c1†c2 , R3

4 = c3†c4 ,

R2
3 = c2†c3 .

(2.15)

For physical states the central charge C of su(2, 2|4) needs to vanish. In terms of the
oscillators it is given as [17]

C = 1− 1

2
aα†aα +

1

2
bα̇†bα̇ − 1

2
cI†cI , (2.16)

which vanishes for all the fields given in eq. (2.14).

The excitation picture. Since the highest weight state Z is the physical vacuum, it
breaks the su(4) symmetry. However, it is invariant under an su(2)× su(2) subgroup.
Therefore, we introduce a more convenient notation by splitting the su(4) index
I = 1, 2, 3, 4 into a = 1, 2 and ȧ = 3̇, 4̇ with the oscillators [77]

d3̇† = c3 , d4̇† = c4 , d3̇ = c3† , d4̇ = c4† . (2.17)

This notation ensures, that the primary field Z is annihilated by the operators
aα,bα̇, ca,dȧ. If we now group the creation operators as (aα†, ca†) and (bα̇†,dȧ†),
with the annihilation operators respectively, we have manifest su(2|2)× su(2|2) sym-
metry. These two su(2|2) correspond to the three left and right nodes in the Dynkin
diagram in Fig. 2.1, respectively, which are also referred to as left and right wings.

We can then write the excitations transforming under su(2|2) × su(2|2) as bi-
fundamental excitations. In this excitation picture we have

X = ϕ2 ⊗ ϕ̇4̇ , X̄ = ϕ1 ⊗ ϕ̇3̇ ,

Y = ϕ1 ⊗ ϕ̇4̇ , Ȳ = ϕ2 ⊗ ϕ̇3̇ ,

Ψαȧ = ψα ⊗ ϕ̇ȧ , Ψ̄aα̇ = ϕa ⊗ ψ̇α̇ ,

Dαα̇ = ψα ⊗ ψ̇α̇ ,

(2.18)

where (ϕ1, ϕ2, ψ1, ψ2) transform in the fundamental representation under the first and
(ϕ̇3̇, ϕ̇4̇, ψ̇1̇, ψ̇2̇) under the second copy of su(2|2). Moreover, since we can obtain these
excitations by acting with lowering generators in the left or right wing in the Dynkin
diagram in Fig. 2.1, we will denote them as left or right excitations, respectively. For
instance, the middle node creates an excitation |X⟩ from the physical vacuum |Z⟩.
Moving one note to the left or right, we obtain a |Y ⟩ or |Ȳ ⟩, while combining both
yields |X̄⟩. In this way we can construct the excitations in eq. (2.18). Note further,
that this picture seems to exclude excitations such as the field strength Fαβ, F̄ α̇β̇ and
the fermions Ψα1,Ψα2, Ψ̄α̇

3̇
, Ψ̄α̇

4̇
. We will see later, that these can be incorporated by

allowing for double excitations.
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2.1.4. Correlation functions

In this thesis we are mainly interested in the computation of correlation functions of two
or three operators. Though we will focus on integrability methods for the evaluation,
let us review how to obtain results from field theory. The path integral formalism
allows us to lift a field theory to a quantum field theory. Using the path integral a
time-ordered correlation function can be written as

⟨O1(x1) . . .On(xn)⟩ =
∫

Dξ O1(x1) . . .On(xn) e
iS[ξ] (2.19)

where the action is given by

S[ξ] =

∫
d4x LN=4[ξ] , (2.20)

with the Lagrangian LN=4 from eq. (2.3) and the normalisation chosen such that∫
Dξ eiS[ξ] ≡ 1. Here we use ξ to represent the set of elementary fields of N = 4 SYM

discussed in Sec. 2.1.1. The integration measure Dξ formally sums the expression
under the path integral over all field configurations weighted by the exponential of the
action S[ξ]. The generating functional is defined as

Z[J ] ≡
∫

Dξ exp
(
iS[ξ] + i

∫
d4x JA(x)ξ

A(x)

)
, (2.21)

and couples the fields ξA(x) to an auxiliary current JA(x). This yields a convenient way
to calculate correlation functions. For instance, the correlation function of n elementary
fields can be obtained by taking the functional derivative with respect to the currents

⟨ξA1(x1) . . . ξ
An(xn)⟩ =

(−i)n

Z[0]

δnZ[J ]

δJA1(x1) . . . δJAn(xn)

∣∣∣∣
J=0

. (2.22)

Further, in the perturbative regime the action can be split into S = S0 + Sint, where
S0 is the free action. The interacting part Sint is cubic and quartic in the fields. The
free generating functional can be obtained from combining the free action with the
currents and may then be written as

Z0[J ] = e
∫

d4x d4y tr(JA(x)Π(x,y) JA(y)) , (2.23)

where we introduced the free propagator Π(x, y), which is given by the inverse of the
kinetic term. This allows us to rewrite the correlation function from eq. (2.19) as

⟨O1[ξ] . . .On[ξ]⟩ =
(
O1

[
δ

δJ

]
. . .On

[
δ

δJ

]
eiSint[ δ

δJ ]Z0[J ]

) ∣∣∣∣
J=0

. (2.24)

This expression can be used to generate Feynman diagrams in perturbation theory by
expanding the interacting part in the coupling. A given loop-order in perturbation
theory introduces a certain number of interaction vertices Sint. The variations δ

δJ

then introduce propagators, connecting the fields from the local operators Oj and the
interaction vertices Sint in all possible ways.

In addition, gauge fixing is required, since gauge invariance allows non-propagating
modes of the gauge field. In order to obtain a well defined propagator for the gauge
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field a gauge fixing term is introduced, which contains Faddeev-Popov ghosts. These
ghosts are auxiliary fermionic fields and must not appear in external states but may
do so inside loops coupling to the gauge boson. Furthermore, divergencies appear
in perturbative calculations and need to be regularised. This can be achieved using
dimensional regularisation. This technique analytically continues the integral to 4− 2ϵ
dimensions, where ϵ is the regularisation parameter. The divergence of the correlator
becomes then a pole at ϵ→ 0.

Moreover, in a conformal field theory, the conformal symmetry constrains correlation
functions of local operators. Let us consider a two-point function ⟨O1(x1)O2(x2)⟩,
where Oj may be scalar primary operators inserted at the point xj. Invariance under
Poincaré symmetry enforces that the correlator solely depends on the distance between
the two operators |x1 − x2|. Further, requiring invariance under dilatations and special
conformal transformations, the form of the correlator is fixed to

⟨O1(x1)O2(x2)⟩ =
δ1,2

|x1 − x2|2∆
, (2.25)

where ∆ = ∆1 = ∆2 is the scaling dimension of the respective operator and we chose a
convenient normalisation. Similarly, three-point functions can be constrained to

⟨O1(x1)O2(x2)O3(x3)⟩ =
C123

|x12|∆1+∆2−∆3 |x23|∆2+∆3−∆1 |x31|∆3+∆1−∆2
, (2.26)

where the structure constant C123 cannot be absorbed into a normalisation but yields
physical data on the conformal field theory considered. Moreover, such correlation
functions can always be brought to a generic configuration for two and three points
by using conformal transformations. We will make use of this later in this thesis and
consider a configuration where the three operators are placed on a line at x1 = 0, x2 = 1
and x3 = ∞.

For higher-point functions, the conformal symmetry is not constraining enough to fix
the spacetime dependence of the correlation function. For instance, four-point functions
depend on the two conformally invariant cross ratios given by

u =
x212x

2
34

x213x
2
24

, v =
x214x

2
23

x213x
2
24

. (2.27)

However, the dependence of the function on u and v is not fully fixed.
Further, conformal field theories allow for an operator product expansion (OPE),

which can be used to approximate the product of two sufficiently close operators
Oj(x),Ok(y) by a linear combination of operators at one of the points, i.e.

Oj(x)Ok(y) =
∑
l

C̃ l
jk(x− y)Ol(x) . (2.28)

The functions C̃ l
jk(x− y) are related to the structure constant Cjkl. For a four-point

function one obtains

⟨Oj(x1)Ok(x2)Ol(x3)Om(x4)⟩ =
∑
r,s

C̃r
jk(x1 − x2)C̃

s
lm(x3 − x4) ⟨Or(x1)Os(x3)⟩ , (2.29)

where we assumed that the pairs x1, x2 and x3, x4 are sufficiently close. The OPE can
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be generalised to higher-point functions straightforwardly. The form of eq. (2.29) then
suggests, that the OPE can also be understood as an insertion of a full set of states.
Nonetheless, the explicit knowledge of all the involved structure constants is necessary
for the evaluation, which makes the OPE somewhat impractical.

2.2. The spectral problem and integrability
Classically conformal theories do not necessarily inherit conformal invariance in the
quantum theory. Remarkably, N = 4 SYM theory is a (super)conformal theory even
at the quantum level, as its β-function is believed to vanish identically [78–80]

β(gYM) = µ
dgYM

dµ
≡ 0 . (2.30)

Since the β-function describes the dependence of the theory on the renormalization
scale µ, a non-vanishing β-function is related to the breakdown of scale invariance.
The vanishing of the β-function in N = 4 SYM implies, that divergencies and the
dependence on the scale µ drop out in the calculation of physical quantities after
properly normalising the operators involved.

In general, the classical scaling dimension ∆0 of local composite operators receives
quantum corrections. At weak coupling in the planar limit, the scaling dimension of
an operator O may be written as

∆ = ∆0 +
∞∑
ℓ=1

g2ℓγℓ , (2.31)

with g2 as defined in eq. (2.7). The anomalous dimension γℓ is the quantum correction
to ∆ at ℓ-th loop order.

The dilatation operator D generates dilatations and hence it measures the scaling
dimension of a local operator. In the perturbative regime the dilatation operator may
be written as

D =
∑
n

g2ℓD2ℓ . (2.32)

The One-loop Dilatation operator. Let us consider the example of a rank-one
sector. We consider the SU(2) sector spanned by two complex scalar fields X and Z.
To form gauge invariant operators, the fields have to appear under the trace, such as

tr
(
XZℓ1XZℓ2 . . . XZℓM

)
, or tr

(
XZℓ1XZℓ2

)
tr
(
XZℓ3 . . . XZℓM

)
. (2.33)

We will denote the first example as a single-trace operator, while the latter is an
example of multi-trace type. This sector is known to be closed under the action of the
dilatation operator and does therefore not mix with operators containing the other
types of fields. The one-loop dilatation operator D2 can be written as [18]

D2 = − 1

N
: tr
(
[X,Z][X̌, Ž]

)
: , (2.34)
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where the check indicates a functional derivative of fields as

(Ž)bc ≡
δ

δ(Z)cb
with (Ž)bc(Z)

d
e = δbeδ

d
c −

1

N
δbcδ

d
e . (2.35)

Of course, the action of the functional derivative Ž on the field X vanishes. The
normal-ordering ensures that the functional derivatives do not act on the fields within
the colons. Further, we have the joining and splitting rules for SU(N) following with
eq. (2.6) as

tr
(
ŽA
)
tr(ZB) = tr(AB)− 1

N
tr(A) tr(B) ,

tr
(
ŽAZB

)
= tr(A) tr(B)− 1

N
tr(AB) .

(2.36)

Similarly, Ž acts on fields Z within A and B. In this thesis we will always consider the
planar limit.

Example with L = 4. Let us consider a simple example with operators of length four
carrying two fields X. Due to the cyclicity of the trace, there are only the two distinct
operators O0

4 = tr(ZZXX) and O1
4 = tr(ZXZX). Applying the planar one-loop

dilatation operator we find

D2O0
4 = 2(O0

4 −O1
4) , and D2O1

4 = 4(O1
4 −O0

4) . (2.37)

Diagonalizing the resulting mixing matrix yields two eigenvectors. The first being
2O0

4 +O1
4, which has anomalous dimension γ1 = 0. In fact, it can be easily seen, that

this is a vacuum descendant, which can be obtained by acting twice with the raising
generator R2

3̇
on the vacuum tr(ZZZZ). The second eigenvector is O0

4 −O1
4. It has

anomalous dimension γ1 = 6 and is a primary operator in the SU(2) sector considered
here. Such primary operators are also denoted BMN operators [13].

2.2.1. Classical integrability

Exactly solvable models are highly constrained by symmetry, allowing to solve for the
dynamical variables analytically. Often the reason for the solvability of the model
lies in its integrability. The concept of integrability was discovered in the context
of classical Hamiltonians, where the requirement is that sufficiently many conserved
quantities exist (along the flow of the Hamiltonian). The equations of motion can then
be integrated, hence the historically shaped term integrability.

The concept of integrability can also be extended to quantum mechanical models.
Though there is no universal mathematical definition, there are some features that
integrable systems share. We will consider the SU(2) spin chain in great detail in the
next section. Let us briefly review classical integrability in this paragraph. A road to
construct the conserved quantities is through Lax pairs. In a classical mechanics system
of M particles, the phase space is 2M dimensional. The Hamiltonian H generates then
the time flow of the canonical coordinates qj and momenta pj by

q̇j =
∂H

∂pj
, ṗj = −∂H

∂qj
, (2.38)
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with j = 1 . . .M . The Liouville-Arnol’d theorem states then that if there exist M
independent quantities that Poisson commute with the Hamiltonain, the phase space
reduces to an M dimensional manifold, which is diffeomorphic to the M -torus TM .
Moreover, there exists a canonical transformation to action-angle variables Ij, θj such
that the equations of motion take the form

İj = 0 , θ̇j = 1 . (2.39)

Sometimes the symmetry of the problem allows to find the set of conserved quantities.
An example is the Kepler problem. When describing models with infinitely many
degrees of freedom, such as classical field theories, it becomes handy to use the Lax
pair formalism. The Lax pair is given by the pair of square matrices L,M satisfying
the relation

dL
dt

= [L,M ] . (2.40)

Given a Lax pair, we can easily generate conserved quantities by considering tr
(
Lk
)
.

Taking the derivative we have

d
dt

tr
(
Lk
)
= k tr

(
Lk−1[M,L]

)
= 0 , (2.41)

which vanish due to the cyclicity of the trace. The Lax pair allows to generate the
conserved charges of classical integrable models. In addition, the conserved charges must
also Poisson commute with each other. This structure of the underlying Hamiltonian
system can be reinstated by introducing the classical R matrix, which also has to
satisfy the classical Yang-Baxter equation.

For a more detailed discussion of classical integrability we refer the reader to the
books [81,82] or lecture notes [83,84].

2.2.2. SU(2) spin chain

An important development was the observation by Minahan and Zarembo [14], that
in the planar limit the one-loop mixing problem in the scalar sector of N = 4 SYM
can be mapped to an integrable spin chain. More precisely, the mixing matrix can be
identified with the spin chain Hamiltonian and the anomalous dimension corresponds
to the spin chain energy. There are various approaches to solving the Heisenberg spin
chain. In the following we will discuss the coordinate Bethe ansatz for the SU(2) sector.
Further, considering higher-rank sectors in Section 2.2.4 we make use of the nested
Bethe ansatz.

For completeness, let us also briefly mention the algebraic and the thermodynamic
Bethe ansatz, which we will not need here. The algebraic Bethe ansatz ansatz uses
the construction of the monodromy and transfer matrix to find the Bethe equations
and state. The thermodynamic Bethe ansatz considers the model in a thermodynamic
limit. Moreover, it allows to capture finite size or wrapping corrections. We will review
and discuss it in more detail in the context of AdS3 in Sec. 6.

Heisenberg spin chain. Let us introduce the spin chain notation for single-trace
operators in the SU(2) sector. The idea is to write the single trace operator containing
L fields as a cyclic spin chain of length L. The particle at the i-th site of the spin
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chain can have spin up |↑⟩ or down |↓⟩ and therefore generates a local two-dimensional
Hilbert space C2. Hence, the model is defined on H = (C2)⊗L. We will identify the
vacuum field Z with |↓⟩ and a BPS operator can therefore be written as

tr
(
ZL
)

→ |↓ . . . ↓⟩L , (2.42)

Correspondingly, the field X will be identified with |↑⟩. Inserting M fields X into a
vacuum of (L−M) fields Z, we can write

tr
(
Zn1−1XZn2−n1−1X . . .

)
→ |↓ . . . ↓︸ ︷︷ ︸

n1−1

↑ ↓ . . . ↓︸ ︷︷ ︸
n1+n2−1

↑ . . .⟩L ≡ |Xn1Xn2 . . . XnM ⟩L ,

(2.43)
where the labels ni denote the sites at which the magnons are inserted. We will
implicitly assume periodic boundary conditions by defining |. . . XL+1⟩L ≡ |X1 . . .⟩L.

The planar one-loop dilatation operator from eq. (2.34) acts as

H =
L∑
i=1

(1i,i+1 − Pi,i+1) =
L∑
i=1

1

2
(1− σ⃗i · σ⃗i+1) , (2.44)

where the permutation operator Pi,i+1 exchanges the fields at the sites i and (i+ 1). It
can be identified with the Hamiltonian of the Heisenberg spin chain describing nearest
neighbour spin-spin interactions [14], where the operator σ⃗i at site i is given by the
Pauli matrices σ⃗i = (σ1

i , σ
2
i , σ

3
i ). Thus, the spectral problem of finding the anomalous

dimensions at one loop is equivalent to finding the energy spectrum of the Heisenberg
spin cain. The action of the Hamiltonian on a state is then given by

H|Xn1Xn2 . . . ⟩L

=
M∑
j=1

(
2 |. . . Xnj . . .⟩L − |. . . Xnj−1 . . .⟩L − |. . . Xnj+1 . . .⟩L

)
,

(2.45)

where two magnons cannot occupy the same site. The Bethe ansatz aims at diagonalising
the Hamiltonian above.

Coordinate Bethe ansatz. The coordinate state containing M excitations is given
by

|Ψ(p1, . . . , pM)⟩L =
∑

1≤n1<···<nM≤L

ψ(n1, . . . , nM) |Xn1 . . . XnM ⟩L . (2.46)

Here we have introduced the position space wave function ψ(n1, . . . , nM ) depending on
the position ni of the magnons on the chain. The state |Ψ(p1, . . . , pM)⟩ is characterised
by the set of momenta {p}.

For the position space wave function we can use the coordinate Bethe ansatz [15],
which reads

ψ(n1, . . . , nM) =
∑
σ∈SM

ei
∑M

k=1 pσ(k)nk

∏
j>k

σ(j)<σ(k)

A(pσ(j), pσ(k)) , (2.47)

where we sum over all permutations σ of M excitations. Here, the amplitude A is the
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scattering matrix and describes the scattering between the magnons, when a particle
with momentum pσ(j) overtakes a particle with momentum pσ(k). The S matrix element
takes the form

A(pj, pk) = −e
ipj+ipk + 1− 2eipk

eipj+ipk + 1− 2eipj
. (2.48)

Acting with the Hamiltonian on the state (2.47), yields the energy

E(p1, . . . , pM) =
M∑
j=1

4 sin2
(pj
2

)
. (2.49)

The total energy is then given as the sum of the energies Ej of the individual magnons
with momentum pj . Introducing the Bethe rapidities uj = 1

2
cot (

pj
2
) allows us to write

the momentum factor, the S matrix and the energy as

eipj =
uj +

i
2

uj − i
2

, A(uj, uk) =
uj − uk − i

uj − uk + i
, E({uj}) =

M∑
j=1

1

u2j +
1
4

. (2.50)

The cyclicity of the trace for gauge-theory operators translates to the invariance of
the state from eq. (2.47) under the simultaneous shift nj → nj + 1 of all nj . This leads
to the zero-momentum constraint

M∏
j=1

eipj = 1 , (2.51)

ensuring that the total momentum of the magnons vanishes. Further, we can shift the
j-th magnon once around the spin chain, i.e. nj → nj + L. The wave function picks
up a phase eipjL and S matrix elements from scattering the j-th magnon with the other
(M − 1) magnons on the chain. Since this should not change the state, we can write
the Bethe equations

eipjL
∏
k ̸=j

A(uj, uk) = 1 . (2.52)

By solving these constraints, we can obtain solutions for the set of momenta {p} and
their corresponding Bethe rapidities {u}. Note that we can also add roots at infinity.
The respective magnon carries zero momentum and hence it does not contribute to the
energy in eq. (2.50). States with infinite rapidities correspond to descendant operators,
i.e. they can be obtained from primary operators by acting with raising operators.

Substituting the solutions of eqs. (2.52) and (2.51) into the ansatz (2.47), we obtain
the conformal eigenoperators, that we would also find from the dilatation operator.
The unit norm is obtained by normalising as [85, 86]

|Ψ({pj})⟩L√
LG

∏
j(u

2
j +

1
4
)
∏

j <k A(uj, uk)
. (2.53)

The state does not depend on the ordering of the rapidities as long as the latter is
equal in the wave function and the phase factor

∏
A(uj, uk). In the last formula, we
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introduced the Gaudin norm, which is defined as

G = Det ϕjk , ϕjk = −i
∂ log

(
eipjL

∏
j ̸=k A(uj, uk)

)
∂uk

. (2.54)

Cutting Bethe States. In the following we will introduce the method of cutting a
Bethe state. Consider a generic spin chain state |Ψ({u})⟩L of length L. We now want
to cut this state into two shorter subchains of length ℓ and L − ℓ. Introducing the
splitting factor

ω(α, ᾱ; ℓ) =
∏
uj∈ᾱ

eipjℓ
∏
j<k
uk∈α

A(uj, uk) , (2.55)

the entangled state can be written as [37]

|Ψ({u})⟩L =
∑

{u}=α∪ᾱ

ω(α, ᾱ; ℓ) |Ψ(α)⟩ℓ |Ψ(ᾱ)⟩L−ℓ . (2.56)

This identity has a quite vivid interpretation: Say we place a magnon with rapidity uj
on the first subchain of length ℓ, it can propagate to the second subchain of length
L− ℓ, picking up the shift factor eipjℓ. In addition, by propagating it might overtake
other magnons with rapidities uk with j < k sitting on the first subchain. Thus,
the scattering phases A(uj, uk) have to be taken into account. For short states, the
identity (2.56) can also be checked explicitly.

Two-magnon example. Let us consider the example of an operator of length L
carrying two excitations X. The momentum constraint yields p2 = −p1 and written in
terms of the rapidities u2 = −u1. The Bethe equation for u1 is given by(

u1 +
i
2

u1 − i
2

)L
u1 − u2 − i

u1 − u2 + i
= 1 . (2.57)

Solving explicitly for short lengths L = 4, 5, 6, 7, we find the rapidities and energies listed
in Tab. 2.2. Once again, the energies can also be obtained by explicitly diagonalising
the planar one-loop dilatation operator.

L u E G
4 1

2
√
3

6 108

5 1
2

4 80

6 1
2

√
1± 2√

5
5∓

√
5 75(

√
5± 3)

7
√
3
2

2 42
1

2
√
3

6 378

Table 2.2.: Bethe rapidities u, energies E and Gaudin norm G for operators in the
SU(2) sector with lengths L = 4, . . . , 7.

We can also write the coordinate Bethe state from eq. (2.46) more explicitly for two
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magnons as

|Ψ(p1, p2)⟩L =
∑

1≤n1<n2≤L

(
ei(p1n1+p2n2) +A(p1, p2)e

i(p1n2+p2n1)
)
|Xn1Xn2⟩L . (2.58)

For short lengths we plug in the rapidities from Tab. 2.2 and using the normalisation
from eq. (2.53), we will find the normalised Bethe states. Moreover, mapping the spin
chain to single trace operators, we can identify them with the eigenstates obtained
from directly diagonalising the one-loop dilatation operator.

For short states with few magnons the identity in eq. (2.56) can also be written
explicitly. For instance, for a two magnon state in the SU(2) sector it reads

|Ψ(u1, u2)⟩L = |Ψ(u1, u2)⟩ℓ |Ψ({})⟩L−ℓ + eip2ℓ |Ψ(u1)⟩ℓ |Ψ(u2)⟩L−ℓ +

eip1ℓA(u1, u2) |Ψ(u2)⟩ℓ |Ψ(u1)⟩L−ℓ + ei(p1+p2)ℓ |Ψ({})⟩ℓ |Ψ(u1, u2)⟩L−ℓ .
(2.59)

Let us address some remarkable points here: Firstly, the energy of a multi-particle
state is just the sum of the single-particle energies. Next, the multi-particle scattering
factorises into two-particle scattering processes. Since the result must not depend
on the order of the two-particle scattering processes, the S matrix needs to obey the
Yang-Baxter equation. This property is a direct consequence of the integrability of the
system and we will come back to it below. Further, the analogy between the planar
one-loop dilatation operator and an integrable spin chain Hamiltonian can be extended
beyond the scalar sector. The complete one-loop dilatation operator for N = 4 SYM is
given in [17]. At higher-loop orders, the system is still integrable and can be solved
via the asymptotic Bethe ansatz, but the corresponding Hamiltonian describes no
longer a nearest-neighbour interaction. At ℓ-th loop order it rather involves the ℓ-th
neighbouring magnons. When the loop order and the length of the spin chain are of the
same magnitude, the asymptotic Bethe ansatz breaks down, as wrapping corrections
start to contribute. As the name implies these interactions wrap around the spin chain.

2.2.3. S matrix from symmetries

In the preceding subsection, we constructed the S matrix for the SU(2) sector using
the coordinate Bethe ansatz. In Sec. 2.1.3 we saw, that by choosing the vacuum Z,
the symmetry is broken to psu(2|2)⊕2 and excitations can be obtained from acting
with the lowering operators from either of the two algebras. It turns out, that the full
S matrix S, describing the scattering of the magnons, is given by the tensor product of
two copies of su(2|2) S matrices [19] with an appropriate overall dressing factor

S = S ⊗ Ṡ , (2.60)

where the dot indicates, that the matrix acts on the second copy.
The su(2|2) S matrix can be found from the symmetries of the model using the

concept of a dynamic spin chain as worked out by Beisert in [19]. Here dynamic refers
to length changing effects, as vacuum sites can be inserted or removed. This is indicated
by writing Z±. These insertions can be shifted over the chain, yielding factors e∓ip

whenever they overtake a magnon with momentum p, i.e.

|Z±X⟩ = e∓ip |XZ±⟩ . (2.61)
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The S matrix S(uj, uk) scatters the two adjacent magnons of the spin chain with
momenta pj and pk. The operator can be fixed by the requirement, that it commutes
with the su(2|2) algebra generators J, such that

[Jj + Jk,S(uj, uk)] = 0 , (2.62)

where the indices j, k indicate on which particle the generators act, respectively. Since
the central charges act diagonally, commutators involving these are automatically
satisfied. The bosonic generators L, R fix the form of the S matrix up to ten coefficient
functions A(uj, uk) to L(uj, uk). The commutation relation with the fermionic charges
Q,S yield a unique solution up to an undetermined overall phase S0(uj, uk). We refer
the reader to [19] for the explicit form.

Additionally, the S matrix has to fulfil the unitarity condition

S(uk, uj)S(uj, uk) = 1 , (2.63)

ensuring that scattering the same particles twice does not change the state. The
physical unitarity condition requires the S matrix to be unitary as a matrix

S(uj, uk)† S(uj, uk) = 1 . (2.64)

Finally, the scattering matrix S does also fulfil the Yang-Baxter equation

S23 S13 S12 = S12 S13 S23 , (2.65)

where the subscripts indicate the particles the S matrix acts on. Remarkably, the
Yang-Baxter equation states that the result of a multi-particle scattering process is
independent of the order in which the individual two-particles scattering processes
occur. For instance, on the left hand site of eq. (2.65) the particles 1 and 2 are scattered
first, whereas on the right hand site we begin by scattering particles 2 and 3.

2.2.4. Higher rank models and the nested Bethe Ansatz

So far, we introduced the coordinate Bethe ansatz for the rank-one SU(2) sector in
Sec. 2.2.2. In order to generalise the description to higher-rank cases, let us start
by considering an SU(3) model with excitations X and Y on top of the vacuum Z.
Though this subsector is not closed at higher loops, it is an illustrative example and
we will make use of it for tree-level calculations later in this work.

Using the tensor-product notation from eq. (2.18) for the excitations X = ϕ2 ⊗ ϕ̇4̇

and Y = ϕ1 ⊗ ϕ̇4̇, we can put the excitations on a chain and consider their scattering
with the S matrix

S |X(u1)Y (u2)⟩ = (S |ϕ2(u1)ϕ
1(u2)⟩)⊗ (Ṡ |ϕ̇4̇(u1)ϕ̇

4̇(u2)⟩) . (2.66)

Since scattering the ϕ̇4̇ on the right chain leads only to a phase A(uj, uk), we will
consider only the left chain and neglect the overall dressing factors in the following. At
leading order, i.e. neglecting length changing effects, the two excitations can either be
transmitted through each other or they are reflected and exchange their flavour

S |ϕ2(u1)ϕ
1(u2)⟩ = T (u1, u2) |ϕ1(u2)ϕ

2(u1)⟩+R(u1, u2) |ϕ2(u2)ϕ
1(u1)⟩ . (2.67)
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Figure 2.2.: Illustration of the nested Bethe state. We start with a level-I vacuum
(grey sites), on which we can place level-I excitations (blue sites). Level-II
excitations (red sites) then move over a level-II vacuum built from the
level-I excitations.

The coefficients T (u1, u2) and R(u1, u2) are the transmission and reflection amplitudes,
respectively. Using the Beisert S matrix and its elements A(u1, u2) and B(u1, u2) [19],
we can easily identify

T12 =
A12 − B12

2
=

u1 − u2
u1 − u2 + i

, R12 =
A12 + B12

2
=

−i
u1 − u2 + i

, (2.68)

where the indices indicate the rapidities. For instance, we can now place two excitations
ordered as X(u1) and Y (u2) on the spin chain and let them propagate as in eq. (2.46).
This yields

|Ψ(X1, Y2)⟩L =
∑
n1<n2

eip1n1+ip2n2 |Xn1
1 Y n2

2 ⟩L +∑
n1<n2

eip2n1+ip1n2 (T12 |Y n1
2 Xn2

1 ⟩L +R12 |Xn1
2 Y n2

1 ⟩L) .
(2.69)

In order to maintain a simple notation, we put the position of the excitation in
the superscript, while the subscript indicates the momentum. Obviously, the wave
function (2.69) does not lead to a periodic state, since the transmission changes the
ordering of the flavours. In order to obtain a periodic state, we need to add a second
wave function |Ψ(Y1, X2)⟩L with the excitations ordered as Y1, X2. By introducing the
yet to be determined coefficients gXY and gY X , we can write the Bethe state as the
sum

|ΨXY (p1, p2)⟩L = gXY |Ψ(X1, Y2)⟩L + gY X |Ψ(Y1, X2)⟩L . (2.70)

Similar to the SU(2) case, we could now impose periodicity constraints to obtain a
set of Bethe equations, which fix the rapidities as well as the ratio of the coefficients
gXY /gY X . The generalisation to higher numbers of magnons is straightforward, though
the wave functions become rather bulky.

Nested Bethe ansatz. A means to diagonalise the scattering matrix is the nested
Bethe ansatz [87]. We will discuss this technique in the following. The reasoning here
relies on the oscillator picture introduced in Sec. 2.1.3. Let us start by considering a
vacuum consisting of the fields Z only. The action of the operator R2

3̇
creates a level-I

excitation X with rapidity u moving over the chain of vacua Z. These can scatter with
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other level-I excitations. Hence, we write

SI,0(u) = eip , SI,I
jk ≡ SI,I(uj, uk) = Ajk , (2.71)

where the superscripts indicate the level of the excitations involved. This yields the
previously discussed SU(2) sector. The factor SI,0(u) describes the shift of the level-I
excitation over the vacuum, i.e. level-0 excitations. The scattering of two level-I
excitations is given by SI,I

jk .
Suppose we now have a chain of length L with M1 excitations X. Next, we use R1

2 to
create the excitation Y from the excitations X. The excitation Y then moves over the
length M1 subchain of all the X, cf. Fig. 2.2. Thus we associate a secondary rapidity v
to this level-II excitation. Again, there is a shift operator as well as a scattering matrix

SII,I(v, u) =
v − u+ i

2

v − u− i
2

, SII,II
jk ≡ SII,II(vj, vk) =

vj − vk − i

vj − vk + i
. (2.72)

Since the factor SII,I(v, u) shifts the level-II excitation over the subchain, it is referred
to as level-I vacuum. Additionally, there is the creation amplitude f II,I(v, u) for the
creation of a Y with rapidity v on top of the excitation X with rapidity u. This
amplitude is given by

f II,I(v, u) =
1

v − u− i
2

. (2.73)

This feature is inherent to higher-rank sectors. The analogous amplitude corresponding
to the creation of a level-I excitation from the vacuum is simply given by one.

The nested structure becomes apparent, when we write the nested Bethe equation.
The M1 level-I magnons carry the rapidities from the set {u}. On top of the level-I
vacuum we have M2 level-II excitations Y and hence we have (M1 −M2) excitations X.
By demanding that the configuration is identically reproduced by taking any one
excitation once around the chain, we find the SU(3) Bethe equations

1 =

M1∏
j=1

eipj ,

1 = eipjL
M1∏
k=1
k ̸=j

uj − uk − i

uj − uk + i

M2∏
l=1

uj − vl +
i
2

uj − vl − i
2

,

1 =

M1∏
k=1

vj − uk +
i
2

vj − uk − i
2

M2∏
l=1
l ̸=j

vj − vl − i

vj − vl + i
.

(2.74)

Since the primary rapidities uj are associated to the eipj factors, they are also called
momentum-carrying roots. The secondary rapidities vj are also called auxiliary roots.

Though the construction above focused on the SU(3) sector, its generalisation to
other sectors is quite straightforward.

Nested wave function. Let us put the ingredients gathered above together to
construct the nested wave function. We will continue with the explicit SU(3) example

24



for concreteness. We aim to construct the wave function

|ΨXY ({u})⟩L =
∑

1≤n1<···<nM1
≤L

1≤m1<···<mM2
≤M1

ψI({n}, {m}) |Xn1 . . . Y nm . . . XM1⟩L , (2.75)

where the level-I excitations are placed at the positions {n} with momentum carrying
rapidities {u}. The level-II excitations move on top of the M1 level-I excitations and
can hence take the positions {m} with 1 ≤ m1 < · · · < mM2 ≤ M1. For the level-I
wave function we can write

ψI({n}, {m}) =
∑

σI∈SM1

M1∏
k=1

(
SI,0(uσI(k))

)nk
∏
j>k

σI(j)<σI(k)

SI,I(uσI(j), uσI(k)) ψ
II({m}) , (2.76)

where ψII({m}) is the level-II wave function. The level-II excitations are then described
by

ψII({m}) =∑
σII∈SM2

M2∏
k=1

f II,I(vσII(k), uσII(k))

mk−1∏
j=1

SII,I(vσII(k), uσI(j))
∏
l>k

σII(l)<σII(k)

SII,II(vσII(l), vσII(k)) .

(2.77)
This emphasises the nested structure. In a similar fashion, we can introduce further
levels and write corresponding wave functions.

Two-magnon example. Let us consider a state in the SU(3) sector with two
magnons. Using the notation introduced above we can write the level-I state given in
eq. (2.46) as

|ΨX(u1, u2)⟩L =
∑

ψI(n1, n2) |Xn1Xn2⟩IL , (2.78)

where the level-I wave function is given in eq. (2.47). Since this is simply a state in
the SU(2) sector, it is identical with eq. (2.59). We can now consider it as a level-II
vacuum |0⟩II on which we can place level-II excitations. Adding one excitation Y with
auxiliary rapidity v can then write

|ΨXY (u1, u2)⟩L =
∑
n1<n2

(
ei(p1n1+p2n2)f II,I(v, u1) |Y n1

1 Xn2
2 ⟩IL

+ei(p1n1+p2n2)f II,I(v, u2)SII,I(v, u1) |Xn1
1 Y n2

2 ⟩IL
+ei(p1n2+p2n1)f II,I(v, u2) SI,I(u1, u2) |Y n1

2 Xn2
1 ⟩IL

+ei(p1n2+p2n1)f II,I(v, u1)SII,I(v, u2)SI,I(u1, u2) |Xn1
2 Y n2

1 ⟩IL
)
.

(2.79)
Solving the Bethe equations (2.74) for these kinds of states with M1 = 2 and M2 = 1,

we find for L = 3, 4, 5 the set of solutions given in Tab. 2.3.
Similar to the construction in eq. (2.70), we can write the Bethe wave function for
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L u v E G
3 1

2
√
3

0 6 486

4 1
2

0 4 256

5 1
2

√
1± 2√

5
0 5∓

√
5 250

(
5∓ 2

√
5
)

Table 2.3.: Set of SU(3) states containing two excitations.

SU(3) states with two excitations. Up to a normalisation it is schematically given by

|ΨXY (u1, u2)⟩L =
∑
n1<n2

(
gXY e

i(p1n1+p2n2) + (gXYR12 + gY XT12)e
i(p2n1+p1n2)

)
|Xn1Y n2⟩L

+
∑
n1<n2

(
gY Xe

i(p1n1+p2n2) + (gY XR12 + gXY T12)e
i(p2n1+p1n2)

)
|Y n1Xn2⟩L .

(2.80)
For readability purposes we left the magnon momenta implicit here. The transmission
and reflection amplitudes are given in eq. (2.68). By comparing with eq. (2.79), the
coefficients gXY and gY X can be easily identified as

gY X = f II,I(v, u1) , gXY = f II,I(v, u2)SII,I(v, u1) . (2.81)

In the example with M1 = 2 and M2 = 1, it is easy to see that gXY = −gY X and hence
up to normalisation the state reads

|ΨXY (u1, u2)⟩L =
∑
n1<n2

(
ei(p1n1+p2n2) − ei(p2n1+p1n2)

)
(|Xn1Y n2⟩ − |Y n1Xn2⟩) . (2.82)

It is remarkable that all the information from the auxiliary Bethe roots is hidden
in the prefactors gXY , gY X in eq. (2.81), while the momentum carrying roots appear
more explicitly in the transmission and reflection processes. We will make use of this
observation later on.

Higher-rank Bethe equations from Dynkin diagrams. There is also a neat way
to obtain the Bethe equations from the Dynkin diagram [16] in Fig. 2.1. For this we
associate the momentum carrying Bethe roots u4,j = uj to the middle node. As before,
we get the constraint for the vanishing total momentum

1 =

Mk∏
j=1

ukj ,j +
i
2
δ4,kj

ukj ,j − i
2
δ4,kj

. (2.83)

Further we associate the auxiliary rapidities u1,j = v3,j, u2,j = v2,j, u3,j = v1,j for the
left wing of the beauty diagram in Fig. 2.1 as well as u5,j = w1,j, u6,j = w2,j, u7,j = w3,j

for the right wing. The Bethe equations can then be written in the compact form(
ukj ,j +

i
2
δ4,kj

ukj ,j − i
2
δ4,kj

)L

=

M1∏
l=1
l ̸=j

ukj ,j − ukl,l +
i
2
Akj ,kl

ukj ,j − ukl,l − i
2
Akj ,kl

, (2.84)
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where Akj ,kl are the entries of the Cartan matrix corresponding to the Dynkin diagram.
The Gaudin norm can also be generalised to higher-rank sectors. In order to do this,

let us introduce ϕuk,j as the logarithm of the nested Bethe equations, i.e. the Bethe
equations can be rewritten as eiϕuk,j = 1. The full Gaudin norm G is then given by the
determinant of the matrix

G = Det
∂ ϕukj,j

∂ ukl,l
. (2.85)

Using the full Gaudin norm in eq. (2.53) generalises the normalisation of states to
higher-rank sectors.

In this chapter we considered the beauty diagram. However, it is also possible to
generalise to alternative choices of the Dynkin diagram. In that case the δ4,kj need to
be replaced by the Dynkin labels of the spin representation Vkj , cf. [16] for a discussion
of the beast diagram.

2.3. Marginal deformations
To obtain a better understanding of why N = 4 SYM is integrable, one might consider
looking for deformations of the theory that preserve integrability. Here we will consider
the exactly marginal deformations of N = 4 SYM theory that preserve N = 1
supersymmetry, which were classified by Leigh and Strassler in [34]. These classes of
theories are very interesting to study as they preserve quantum conformal invariance.
The deformation can be written using an N = 1 superfield formulation, where the
superfields are built out of the N = 4 fields encountered in Sec. 2.1.1 and appear as
component fields. For instance, the three complex scalar fields are combined with a
fermion into the three chiral superfields ϕϕϕ1,ϕϕϕ2,ϕϕϕ3. Further, the remaining gauge field
and fermion build the N = 1 vector superfield V . The super Yukawa vertex of the
N = 4 SYM Lagrangian in terms of the N = 1 superfields is given by

WN=4 = gYM tr([ϕϕϕ1,ϕϕϕ2]ϕϕϕ3) . (2.86)

Introducing the two-parameter Leigh-Strassler deformation [34] leads to

WLS = κ tr

(
ϕϕϕ1ϕϕϕ2ϕϕϕ3 − q ϕϕϕ2ϕϕϕ1ϕϕϕ3 +

h

3
(ϕϕϕ3

1 + ϕϕϕ3
2 + ϕϕϕ3

3)

)
, (2.87)

where κ, q and h are complex parameters. Requiring conformal invariance at the
quantum level poses a constraint on the parameters. A derivation is given in [88] and
for instance at one loop the constraint reads

2g2YM = |κ|2
(

2

N2
|1 + q|2 +

(
1− 4

N2

)
(1 + |q|2 + |h|2)

)
. (2.88)

While the N = 4 superpotential WN=4 from eq. (2.86) has a global SU(3) × U(1)
symmetry, the Leigh-Strassler superpotential (2.87) has in general only U(1) symmetry.
It is easy to see, that the undeformed N = 4 SYM theory is recovered by setting
κ = gYM, q = 1 and h = 0. For generic values of q and h the theory is not integrable in
the planar limit. In fact, integrability yields a strong constraint on the parameters and
is only satisfied for special values, cf. [89–91].
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The real β-deformed N = 4 SYM theory is integrable [35] and corresponds to the
choice q = eiβ with β ∈ R and h = 0. Moreover, taking the planar limit of the real
β-deformation, the constraint (2.88) simplifies considerably to g2YM = |κ|2 and receives
no higher-loop corrections [92]. It is natural to ask, what kind of geometry the string
dual posses corresponding to the β-deformed theory. The according background was
found by Lunin and Maldacena [36] and is obtained by deforming the sphere S5.

Introducing the non-commutative star-product, the β-deformation can be defined
through the action on two fields given by

A ∗B = AB e
i
2
(j(A)∧j(B)) , (2.89)

where we denote the so(6) charges of a field A by the vector j(A) = (j1(A), j2(A), j3(A)).
The Cartan charges of the respective fields are given in Tab. 2.1. For two particles of
type A,B we define the charge wedge as [36]

j(A) ∧ j(B) = −β
3∑

a,b,c=1

ϵabc ja(A) jb(B) , (2.90)

where we chose the normalisation ϵ123 = 1.
The Lagrangian of the β-deformed N = 4 SYM theory can be obtained as a

single-trace deformation from the N = 1 superfield formalism by exchanging all the
products with ∗-products. Written in terms of the component fields as in eq. (2.3),
an additional double-trace deformation is present [93,94]. However, this double-trace
term is suppressed by 1/N and does not contribute for long operators in the planar
limit. For short operators, such as tr(Y Z), it may be relevant at leading order. We
will restrict to sufficiently long operators and the planar limit in the following.

Though one might worry that calculations will become more complicated in the
β-deformed theory, they are in fact very similar to calculations in the undeformed
theory due to Filk’s theorem [95]. Evaluating Feynman diagrams, the β-deformation
results in decorating the planar amplitudes by a phase factor associated to the external
legs [94]. More precisely, this phase factor only depends on the so(6) Cartan charges of
the incoming and outgoing particles [94,96].

Moreover, the Bethe equations for the β-deformed theory can be worked out. In [97]
it has been observed, that this introduces deformation factors into the Bethe equations
as well as the various S matrices of the nested Bethe ansatz. Let us make this more
explicit in the following.

2.3.1. The β-deformed SU(2) sector

Considering the β-deformed SU(2) sector, we can work out the differences to Sec. 2.2.2.
The commutator in the deformed theory is given by

[Y, Z]β = eiβY Z − e−iβZY . (2.91)

The single-trace contribution to the planar one-loop dilatation is obtained by introducing
the ∗-product in eq. (2.34). Restricting to operators of length L > 2, the single trace
part is sufficient to find the anomalous dimension. As in the undeformed theory, the
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dilatation operator can be mapped to an integrable Hamiltonian [35,89], acting as

Hβ|Xn1Xn2 . . . ⟩L

=
M∑
j=1

(
2 |. . . Xnj . . .⟩L − e2iβ |. . . Xnj−1 . . .⟩L − e−2iβ |. . . Xnj+1 . . .⟩L

)
.

(2.92)

The coordinate Bethe Ansatz then yields the deformed S-matrix element Aβ(pj, pk)
given by

Aβ(pj, pk) = −e
i(pj+pk)e2iβ + e−2iβ − 2eipk

ei(pj+pk)e2iβ + e−2iβ − 2eipj
. (2.93)

Similarly, the energy is given by

E(p1, . . . , pM) =
M∑
j=1

4 sin2

(
pj + 2β

2

)
. (2.94)

The Bethe equations and cyclicity condition in the SU(2) sector can be directly derived
from the β-deformed dilatation operator, cf. [89].

The introduction of the shifted momenta via p̃ = p + 2β removes the explicit β-
dependence from the S-matrix, which then takes the form of the undeformed S-matrix
element A(uj, uk) of (2.48). This comes at the cost of an explicit β-dependence of the
Bethe equations and cyclicity constraint, given by

ei(p̃j−2β)L
∏
k ̸=j

ũj − ũk − i

ũj − ũk + i
= 1 , and

n1∏
j=1

ei(p̃j−2β) = 1 , (2.95)

where we introduced the rapidities ũj via the relation p̃j = 2 arccot(2ũj). We can solve
the Bethe equations (2.95) perturbatively as a small β-expansion. For short lengths
L = 4, 5 and two magnons, we find the following rapidities ũ±

L = 4 : ũ± = ± 1

2
√
3
− 2β

3
± 8β2

9
√
3
− 16β3

27
± 112β4

81
√
3
+O(β5) ,

L = 5 : ũ± = ±1

2
− β ± 5β2

4
− 11β3

6
± 145β4

48
+O(β5) ,

(2.96)

where the two signs (±) correspond to the rapidities of the two magnons.
As mentioned earlier, in the undeformed theory the Bethe equations allow for so-

called vacuum descendants, i.e. solutions to the Bethe equations with infinite rapidities.
As the energy of such operators vanishes, they are still BPS even though there are
magnons on top of the vacuum. In the β-deformed theory however, roots at infinity
are no longer a solution due to the presence of the phase e−iβL in the deformed Bethe
equations. Thus, the deformation lifts the degeneracy of these operators with the
vacuum and their roots become proportional to β−1 at leading order in a perturbative
expansion in β. For instance, we can find the following solutions for operators of short
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lenghts with two magnons

L = 2 : ũ± =
1± i

4

1

β
+

−2± i

6
β +

−8± 7i

90
β3 +O(β5) ,

L = 3 : ũ± =
2± i

√
2

6

1

β
+

−8± 3i
√
2

24
β +

(
− 7

45
± 67i

480
√
2

)
β3 +O(β5) ,

L = 4 : ũ± =
3± i

√
3

8

1

β
+

−3± i
√
3

9
β +

4

405
(−21± 8

√
3i)β3 +O(β5) ,

L = 5 : ũ± =
2± i

5

1

β
+

−8± 5i

24
β +

(
−23

90
± 211i

1152

)
β3 +O(β5) .

(2.97)

The signs correspond to the two magnons again. Note, that here we also have L = 2,
which is fine as we consider states with two excitations. Obviously, taking the limit
β → 0 sends the rapidities back to infinity and the operators become protected again
as their energy vanishes.

2.4. Chapter summary
In this chapter, we reviewed important results in the field of integrability in N = 4 SYM
theory. In Sec. 2.1 we considered the field content and the symmetry algebra psu(2, 2|4)
of the model. By fixing the highest weight state tr

(
ZL
)

as the vacuum, we obtained
the magnon group psu(2|2)⊕2, under which excitations on top of the vacuum transform.
Further, we introduced the oscillator picture. Finally, we considered correlators and
the constraints from conformal symmetry, which fix two- and three-point functions.

In Sec. 2.2 we reviewed the spectrum problem and one-loop dilatation operator for
the closed SU(2) subsector. After briefly introducing classical integrability, we turned
to the SU(2) spin chain and saw how the spectrum problem can be equivalently solved
by Bethe ansatz techniques. In Sec. 2.2.3 we discussed the construction of the S matrix
from symmetry, which scatters the su(2|2)⊕2 excitations. Further, in Sec. 2.2.4 we
considered the generalisation of the Bethe ansatz to higher-rank models by means of
the nested Bethe ansatz.

Finally, in Sec. 2.3, we turned to marginal deformations of N = 4 SYM, which
preserve integrability. We focused in particular on the real β-deformation and worked
out the corresponding deformed Bethe equations and S matrix for the SU(2) subsector.
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Chapter 3.

The hexagon form factor for
three-point functions

As discussed in the preceding chapter, methods from quantum integrable systems
have played an essential role in the study of the spectrum problem. It is natural to
wonder whether these tools can also be used for the calculation of correlation functions
involving more than two operators. The introduction of the hexagon form factors [38]
made three-point functions accessible through integrability. We will review the general
idea and the formalism in Sec. 3.1, in order to introduce the tools for calculations. We
refer the reader interested in more technical details of the construction to the original
literature [38] or to Chapter 5 for the conceptionally similar construction of the hexagon
form factor in AdS3/CFT2.

Further, we will consider the calculation of correlation functions involving operators
from higher-rank sectors. Here we will use a hybrid formalism to import information
from the nested Bethe ansatz into the hexagon-operator formalism. Equipped with these
techniques, we give a variety of explicit examples for three-point functions at tree-level,
involving operators of short length in the SU(3) and SU(1|2) sector, respectively.

In Sec. 3.3, we will also consider marginal deformations. Our aim is to extend the
hexagon formalism to β-deformed N = 4 SYM by introducing additional deformation
factors in the evaluation. Though this seems not applicable in general, we will give a
set of examples, for which we find agreement with field theory results.

Moreover, in Sec. 3.4 we will introduce the concept of double excitations. This allows
us to consider excitations in the hexagon formalism, which are not in the magnon group.
Finally, we will use the results from the preceding sections in Sec. 3.5 to construct and
insert a Lagrangian into a correlation function evaluated with hexagons. This might
offer an adittional way to incorporate loop corrections into the hexagon formalism.

3.1. Review of the hexagon form formalism
In this section we will review the hexagon form factor and its application. For details
on the construction for N = 4 SYM we refer the reader to the original literature [38].

The hexagon formalism introduced in [38] allows us to compute three-point functions
by summing over a set of hexagon form factors. The idea is to cut a three-point function
into two hexagonal patches and associate a form factor to those, cf. Fig. 3.1. The form
factors can be fixed by the symmetry of the three-point function and the form factor
axioms [38], cf. also [98] and references therein. Considering operators with physical
excitations, these can end up on either hexagon after cutting. Hence, one has to sum
over all possible partitions of the excitations. Since the operators can be viewed as
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Figure 3.1.: A three-point function can be cut into two hexagonal patches. Since the
magnons of the respective operators can end up on either hexagon (blue
squares), their partitions need to be summed. To glue the hexagons back
together a full set of virtual particles (red squares) needs to be inserted
along the cuts.

spin chains carrying magnons, the cutting of these states is governed by the Bethe
equations and leads to additional weight factors for the different partitions, cf. the
discussion in Sec. 2.2.2.

Cutting three-point functions. Consider for instance a planar three-point function
involving one non-BPS operators B and two BPS operators O, given by ⟨BL1OL2OL3⟩.
By cutting the three-point function, the operator B of length L1 is cut into two
subchains of lengths ℓ12 = L1+L2−L3

2
and ℓ13 =

L1+L3−L2

2
. We denote ℓ12, ℓ13 as bridge

lengths as they correspond to the number of propagators between the operators 1, 2 and
1, 3 in a tree-level diagram, respectively. After cutting the operator B its excitations
can end up either on the front hexagon, denoted by the set α or on the back hexagon
denoted by ᾱ. With two magnons, there are four partitions that need to be summed
up with an appropriate splitting factor ω(α, ᾱ, ℓ1j) given in eq. (2.55). We can then
evaluate the thee-point function as

⟨BL1OL2OL3⟩ =

√
L1L2L3

GA(u1, u2)

∑
α∪ᾱ={u1,u2}

(−1)|ᾱ| ω(α, ᾱ, ℓ1j) ⟨h|α⟩ ⟨h|ᾱ⟩ . (3.1)

The hexagon form factor ⟨h|α⟩ is given by a combination of the matrix elements
from the Beisert S matrix [19] and the scalar factor h found in [38]. Further, all the
expressions in eq. (3.1) depend on the rapidities of the magnons. As the operators can
be viewed as spin chain eigenstates, the corresponding rapidities can be found by using
the Bethe ansatz. The factor ω(α, ᾱ, ℓ1j) additionally depends on the bridge-length
ℓ1j, which counts the numbers of propagators between the operator B1 and the BPS
operator Oj, as well as on the partition {u1, u2} = α ∪ ᾱ.

Bootstrapping the hexagon. The form factor can be constructed from symmetry.
The idea of the bootstrap is, that the three-point function should preserve as much
(super)symmetry as possible. To achieve this, the twisted translation generator [38] is
introduced

T = −iϵαα̇ Pαα̇ + ϵaȧ R
aȧ , (3.2)
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with the translation operator P and the internal-space rotation R from Sec. 2.1.3. This
generator is then used to translate the operators in the generic configuration. It turns
out, that the generators commuting with T form a diagonal psu(2|2)D subalgebra in
psu(2|2)⊕2. The hexagon form factor should preserve this diagonal subalgebra and
indeed this constraint yields a unique solution for one- and two-particle form factors.
Similar to the S matrix the hexagon is fixed up to a scalar phase h(uj, uk). For instance,
the non-vanishing one-particle form factors are given by

⟨h|Y ⟩ = −⟨h|Ȳ ⟩ = 1 , and ⟨h|D12̇⟩ = −⟨h|D21̇⟩ = i . (3.3)

We will evaluate three-point functions with operators inserted along the line (0, 0, t, 0)
at the positions t = 0, 1,∞. In order to do so, we construct the operators at t = 0 and
then translate them with the help of the twisted-translation operator given in eq. (3.2).
As T contains the lowering operators R1

3̇
, R2

4̇
of the internal flavour symmetry su(4),

it acts on the field Z as [99]

Ẑ(t) = Z + t (Y − Ȳ ) + t2 Z̄ , (3.4)

mixing the spin-chain vacuum Z with the scalars Y, Ȳ . We will call Ẑ(t) the co-moving
vacuum. At the point t = 1 this creates an inhomogeneous superposition of operators,
which ensures the matching between hexagon and free field theory results. For the
transversal and longitudinal scalars, the twisted translation acts as

X̂(t) = X , ˆ̄X(t) = X̄

Ŷ (t) = Y + t Z̄ , ˆ̄Y (t) = Ȳ − t Z̄ .
(3.5)

The resulting effective propagator for the co-moving vacuum is ⟨Ẑ(t1)Ẑ(t2)⟩ = 1,
and there exist non-vanishing off-diagonal propagators ⟨Ẑ(t1)Ŷ (t2)⟩, ⟨Ẑ(t1) ˆ̄Y (t2)⟩.
Therefore, we will denote Ŷ and ˆ̄Y as longitudinal scalars, whereas we refer to X̂ and
ˆ̄X as transversal since these cannot be contracted with Ẑ. The possibility to contract
two operators with fermions is similarly provided by the twisted translation. It acts on
the fermions in the magnon group Ψİ and Ψ̄I as

Ψ̂3̇(t) = Ψ3̇ + tΨ1 , ˆ̄Ψ1(t) = Ψ̄1 − t Ψ̄3̇ ,

Ψ̂4̇(t) = Ψ4̇ + tΨ2 , ˆ̄Ψ2(t) = Ψ̄2 − t Ψ̄4̇ .
(3.6)

It is worth noting, that the twisted translation mixes fermions which are in the magnon
group with the ones which are not in the magnon group, i.e. Ψ1,Ψ2 and Ψ̄3̇, Ψ̄4̇. Hence
the effective fermion propagators like ⟨Ψ̂4(t1)

ˆ̄Ψ2(t2)⟩ are proportional to 1/(t1 − t2)
2,

as is the bosonic propagator ⟨X̂(t1)
ˆ̄X(t2)⟩.

Evaluation of the hexagon form factor. We can evaluate the M -particle hexagon
form factor by using the excitation picture from eq. (2.18) and write a generic excitation
as ΞAȦ

p = ξAp ⊗ ξ̇Ȧp . The evaluation prescription is then given by〈
h
∣∣ΞA1Ȧ1

p1
ΞA2Ȧ2
p2

. . .ΞAM ȦM
pM

〉
≡

≡ (−1)F12···M K12···M

[∣∣ξAN
pM

. . . ξA2
p2
ξA1
p1

〉
⊗ Ṡ12···M

∣∣ξ̇Ȧ1
p1
ξ̇Ȧ1
p1
. . . ξ̇ȦM

pM

〉]
.

(3.7)
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The sign above is given by

F12···N ≡
∑

1≤i<j≤M

(FAi
+ FȦi

)FAj
, (3.8)

and stems from moving all the undotted fields to the very left and reordering them.
We have FAj

= 0 for Aj a boson and FAj
= 1 for a fermion. The S matrix Ṡ12···M

acts on the M dotted fields. The multi-particle scattering factorises into a series of
two-particle scattering processes and the Yang-Baxter equation allows to write the
self-consistent ansatz from eq. (3.7). Finally, the M -particle contraction operator acts
on the expression

K12···M ≡ Kp1Kp2 · · ·KpM , (3.9)

where the one-particle contraction operator is given by

Kp = hY
∂

∂ϕ1
p

∂

∂ϕ̇4̇
p

+ hȲ
∂

∂ϕ2
p

∂

∂ϕ̇3̇
p

+ hD12̇

∂

∂ψ1
p

∂

∂ψ̇2̇
p

+ hD21̇

∂

∂ψ2
p

∂

∂ψ̇1̇
p

, (3.10)

with the one-particle form factors hY , hȲ , hD12̇ , hD21̇ given in eq. (3.3). Note, that in
the original work [38] a contraction rule was introduced to contract the left on the
right chain. However, this leads to a potential ambiguity for the hexagon formalism in
AdS3/CFT2, which will be explained below in Sec. 5. For convenience we will solely
use the more general description using the contraction operator [1].

The prescription given in eq. (3.7) can be used when all the excitations are located
on the same edge. Evaluating a generic hexagon this is not necessarily the case. A
priori the excitations can be on any of the three physical edges of the hexagon. In order
to evaluate the form factor, we need to move all the magnons to the same edge. This
can be done by crossing transformations [38]. The idea here is to take an incoming
particle with momentum p and energy E to an outgoing antiparticle with momentum
−p and energy −E. We will denote this as a 2γ transformation. The hexagon’s scalar
phase h(uj, uk) is related to the dressing phase of the S matrix and therefore to the
Beisert-Eden-Staudacher (BES) phase σBES. Since the BES phase has a non-trivial
monodromy, the h-phase will also inherit it. Details on the parametrisation and the
crossing equation for the scalar h-phase are given in Appendix A.

Higher-point functions and non-planar corrections. The hexagon form factor
can also be used to calculate higher-point functions. In [45] it was used for the
evaluation of planar four-point functions at tree-level involving one BMN operator. For
the calculation one has to consider all the graphs arising from Wick contractions and
tessellate them in all possible ways into hexagonal patches. For instance, a four-point
function contains four hexagons. Finally, one has to sum over the tessellations and,
like before, the partitions of excitations. Since different tessellations may correspond
to the same diagram if one or several of the edge widths vanish, i.e. ℓjk = 0, one has to
be careful not to overcount. Further, in order to reproduce field theory results, the
higher-point functions need to be dressed by space-time factors [41,42].

Moreover, by studying four-point functions involving two BMN operators, it was
found in [42] that the graphs need to be dressed by their corresponding SU(N) colour
factors. This allows us also to include non-planar diagrams, as they contribute at higher
order in the 1/N -expansion in the large N limit. For instance, the 1/N correction to a
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tree-level two-point function was considered in [42] by tessellating a torus diagram into
eight hexagons.

Wrapping corrections. The hexagon formalism described so far reproduces the
asymptotic part of a three-point function, i.e. it does not include finite size corrections.
These can be accounted for by including virtual excitations living on the cut edges,
also called mirror edges [38]. Summing over a full set of these virtual particles, the
two hexagons are glued back into a three-point function. The evaluation of these
processes is involved, as one has to sum over an infinite set of mirror bound states,
evaluate the hexagon and integrate over the mirror rapidity. For more details on
calculations of three-point functions including finite size corrections, we refer the reader
to the literature [38, 39] and for four-point functions to [41, 42]. Further, in [43, 44] the
one-loop correction to a five-point function of BPS operators was studied. Finally, also
non-planar correlation functions of four BPS operators were considered in [46].

Fortunately, the finite size corrections are suppressed by the number of propagators.
In general, for a bridge length ℓ they will start to contribute at order g2ℓ+2. Hence for
sufficiently large bridge lengths, the asymptotic hexagon does not receive corrections.
In this thesis we will restrict to hexagon calculations, where this is the case.

3.2. Higher-rank sectors
The power of the hexagon as a tool for calculations so far was mainly limited to rank-
one sectors. Such sectors are the su(2) containing bosonic excitations, cf. for instance
refs. [38,42,45] as well as the su(1|1) containing fermions, cf. ref. [100]. Further, there is
the non-compact sl(2) sector with Yang-Mills covariant derivatives, where the hexagon
was also tested up to three loops, cf. refs. [38, 39] and four loops, cf. refs. [101–103].

In order to evaluate structure constants in higher-rank sectors, the nested hexagon
approach was introduced in [104], where the hexagon operator is to some extent replaced
by a wave function of the nested Bethe ansatz1. In the following we will take another
approach, aiming to use the original hexagon construction, i.e. maintaining the matrix
picture for the hexagon operator.

3.2.1. The hybrid formalism

In order to use the hexagon formalism for calculations in higher-rank sectors, we need
to understand how to cut such states. For rank-one sectors the entangled state was
given in eq. (2.56). In the following, let us consider an example in the SU(3) sector to
obtain a similar cutting prescription, which we will denote as the hybrid formalism.

To cut a state as given in eq. (2.70), we will start with |Ψ(X1, Y2)⟩L and |Ψ(Y1, X2)⟩L,
for which we find

|Ψ(X1, Y2)⟩L = |Ψ(X1, Y2)⟩ℓ1 |Ψ({})⟩ℓ2 + eip2ℓ1 |Ψ(X1)⟩ℓ1 |Ψ(Y2)⟩ℓ2 +

eip1ℓ1
[
T12 |Ψ(Y2)⟩ℓ1 |Ψ(X1)⟩ℓ2 +R12 |Ψ(X2)⟩ℓ1 |Ψ(Y1)⟩ℓ2

]
+

ei(p1+p2)ℓ1 |Ψ({})⟩ℓ1 |Ψ(X1, Y2)⟩ℓ2 ,
(3.11)

1See especially the presentation in appendix F of [104].
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as well as

|Ψ(Y1, X2)⟩L = |Ψ(Y1, X2)⟩ℓ1 |Ψ({})⟩ℓ2 + eip2ℓ1 |Ψ(Y1)⟩ℓ1 |Ψ(X2)⟩ℓ2 +

eip1ℓ1
[
T12 |Ψ(X2)⟩ℓ1 |Ψ(Y1)⟩ℓ2 +R12 |Ψ(Y2)⟩ℓ1 |Ψ(X1)⟩ℓ2

]
+

ei(p1+p2)ℓ1 |Ψ({})⟩ℓ1 |Ψ(Y1, X2)⟩ℓ2 ,
(3.12)

where L1 = ℓ1 + ℓ2 and T12, R12 are the transmission and reflection amplitudes
given in eq. (2.68). Equipped with this, we can consider the total wave function
gXY |Ψ(X1, Y2)⟩L + gY X |Ψ(Y1, X2)⟩L and find that the transmitted and reflected parts
combine in a particular way. More precisely

|ΨXY (p1, p2)⟩L = . . .+ eip1ℓ1 |Ψ(Y2)⟩ℓ1 |Ψ(X1)⟩ℓ2 [gXY T12 + gY XR12] +

eip1ℓ1 |Ψ(X2)⟩ℓ1 |Ψ(Y1)⟩ℓ2 [gXYR12 + gY XT12] + . . .
(3.13)

Using the nested S matrix and the creation amplitude from eqs. (2.72) and (2.73), the
expressions in the square brackets can be rewritten as

eip1ℓ1 [gXY T12 + gY XR12] = eip1ℓ1f II,I(v, u2)SI,I(u1, u2) ,

eip1ℓ1 [gXYR12 + gY XT12] = eip1ℓ1f II,I(v, u1)SII,I(v, u2)SI,I(u1, u2) ,
(3.14)

which is the splitting factor we aimed to construct. Again, this has a nice interpretation,
as the magnon with rapidity u1 moves to the second chain, picking up the shift factor
eip1ℓ as well as the level-I S matrix SI,I(u1, u2). The first line in eq. (3.14) has the
magnon Y created on top of u2 on the first subchain and there is only the creation
amplitude f II,I(v, u2). In the second line, the magnon is created on top of u1, hence it
needs to move over the subchain of length ℓ1, thus adding SII,I(v, u2) by overtaking u2.
Finally, there is the creation amplitude f II,I(v, u1).

In the following, when cutting higher-rank sector states in this work, we will construct
the entangled state in the way described above to obtain the splitting factors. Sorting
by inequivalent partitions, we can factor their total splitting amplitudes as in eq. (3.14)
in order to minimise the number of terms. For instance, we find eight partitions when
cutting a state with two magnons in the SU(3) sector. In comparison, we find four
partitions for two-magnon SU(2) states. The added complexity of higher-rank sector
states is put into the larger sets of partitions. In this way, we can maintain the operator
structure of the hexagon. The hexagon acts on the set of magnons from the respective
partition and is evaluated in terms of the momentum carrying rapidities {u}. The
information about the nesting is hidden in the splitting factors, which additionally
depend on the auxiliary rapidities {v}. Due to this use of information from the nested
Bethe ansatz for the matrix picture we refer to it as hybrid formalism.

Let us close this discussion with a comment on the literature, where the components
of the wave function are often regrouped and ordered by the flavours of the magnons
appearing on the chain, cf. refs [22,23]. For instance, in our example we could attribute
the transmission terms to the other wave functions, respectively. So the terms with
T12 in eqs. (3.11) and (3.12) are viewed as belonging to the wave functions with the
magnons ordered {Y X} and {XY }. However, in order to maintain a notion of the
entangled state similar to the rank-one sectors we will not adapt this view here.
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3.2.2. Correlators in the SU(3) sector

As a first test of our hybrid formalism introduced above, let us consider the calculation of
correlators in the scalar SU(3) sector at tree-level. The sector is spanned by the vacuum
field Z, the transversal excitation X and the longitudinal excitation Y . Similarly as
before, we consider a vacuum built from the fields Z, on which M1 excitations X and Y
are placed. In the nested Bethe ansatz, the scalars X correspond to level-I excitations,
and Y to level-II excitations whose number we denote by M2.2 We restrict to operators
with two excitations, in particular we consider M1 = 2 and M2 = 1, which will be of
the form

OL
A = tr

(
ẐL−2XŶ

)
, OL

Ã
= tr

(
ẐL−2X̄ ˆ̄Y

)
, OL

Ǎ
= tr

(
ẐL−2X̄Ŷ

)
. (3.15)

Together with the vacuum operator

OL
D = tr

(
ẐL
)
, (3.16)

we study the structure constants CL1,L2,L3

A,Ã,D
and CL1,L2,L3

A,Ǎ,D
, where the indices refer to the

operators considered. For L = 3, 4, 5 the solutions to the Bethe equations are given in
Tab. 2.3.

We now use the results from Sec. 3.2.1 to cut this state and obtain the splitting
factors. Written out explicitly, we find the eight partitions

|ΨXY (p1, p2)⟩L = |Ψ(X1, Y2)⟩ℓ1 |Ψ({})⟩ℓ2 − |Ψ(Y1, X2)⟩ℓ1 |Ψ({})⟩ℓ2 +
eip2ℓ1

(
|Ψ(X1)⟩ℓ1 |Ψ(Y2)⟩ℓ2 − |Ψ(Y1)⟩ℓ1 |Ψ(X2)⟩ℓ2

)
+

eip1ℓ1 (R12 − T12)
(
|Ψ(X2)⟩ℓ1 |Ψ(Y1)⟩ℓ2 − |Ψ(Y2)⟩ℓ1 |Ψ(X1)⟩ℓ2

)
+

ei(p1+p2)ℓ1
(
|Ψ({})⟩ℓ1 |Ψ(X1, Y2)⟩ℓ2 − |Ψ({})⟩ℓ1 |Ψ(X1, Y2)⟩ℓ2

)
.
(3.17)

Again, the normalisation of the states can be obtained by generalising the Gaudin
norm G in eq. (2.53) to the full Gaudin determinant of the SU(3) sector, as defined in
eq. (2.85).

We aim to calculate three-point functions involving two of the operators given
in (3.15). Since the transversal excitations X, X̄ are involved, it is clear, that only
hexagons carrying these pairs will be non-vanishing. Moreover, since for coinciding
rapidities particle creation poles appear, it is useful to start from a more symmetric
partition of the magnons and move them over the same edge in order to factor out
the poles. Putting the ingredients together, we reproduce the non-vanishing results
obtained from field theory

C3,3,2

A,Ã,D
= −

√
2 , C4,3,3

A,Ã,D
= −

√
3 , C5±,3,2

A,Ǎ,D
=

√
5∓

√
5 ,

C5±,3,4

A,Ã,D
= −

√
2± 2√

5
, C5±,4,3

A,Ǎ,D
=

√
3∓ 6√

5
, C5±,4,3

A,Ã,D
= ∓

√
3± 6√

5
.

(3.18)

Further, we find a set of vanishing correlation functions, namely C3,3,2

A,Ǎ,D
, C4,3,3

A,Ǎ,D
, C4,3,5

A,Ã,D
,

2We could similarly use Y as level-I excitation with X as level-II excitation, as well as Ȳ as level-I
excitation and X as level-II excitation.
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C4,3,5

A,Ǎ,D
, C5±,3,2

A,Ǎ,D
, C5±,3,4

A,Ǎ,D
as expected from field theory calculations.

3.2.3. Correlators in the SU(1|2) sector

Another higher-rank sector we would like to consider here is the SU(1|2) sector, which
is also known as the t-J model. This model is well-studied in the solid-state literature,
and is spanned by one type of bosonic and one type of fermionic excitations. For a
comprehensive discussion of this model in the context of AdS/CFT we refer the reader
to [22, 23]. This sector is a closed subsector, meaning that there is no mixing with
other operators.

In fact, there are two SU(1|2) subsectors, depending on whether we excite the left or
right nodes in the Dynkin diagram. For either sector the Bethe equations are given by

1 =

M1∏
j=1

eipj ,

1 = eipjL
M1∏
k=1
k ̸=j

uj − uk − i

uj − uk + i

M2∏
l=1

uj − vl +
i
2

uj − vl − i
2

,

1 =

M1∏
k=1

vj − uk +
i
2

vj − uk − i
2

.

(3.19)

In this subsection, we will consider the magnon X = ϕ2 ⊗ ϕ̇4̇ as the level-I excitation
and the magnon Ψ24̇ = ψ2⊗ ϕ̇4̇ as the level-II excitation. We can now perform a similar
construction as in Sec. 2.2.4, where the transmission and reflection amplitudes T12, R12

are now given as

G12 = L12 =
u1 − u2

u1 − u2 + i
, H12 = K12 =

−i
u1 − u2 + i

, (3.20)

with the elements G,H,K and L from the S matrix [19]. Thus we can use the Bethe
rapidities from Tab. 2.3. Further, also the coefficients gΨX , gXΨ take a similar form as
in the SU(3) sector and are given by

gΨX = f II,I(v, u1) , gXΨ = f II,I(v, u2)SII,I(v, u1) , (3.21)

with the nested S matrix from eq. (2.72).
We define the operators used here as

OL
B = tr

(
ẐL−2XΨ̂13̇

)
, OL

B̃
= tr

(
ẐL−2X̄Ψ̂22̇

)
. (3.22)

The excitations on the second operator are chosen in such a way, that we can contract
the hexagon.

In a similar vein to the SU(3) sector computations, we can avoid particle creation
poles by starting from a more symmetric partition. For the set of correlators with
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bridge length ℓ12 = 2 we find

C3,3,2

B,B̃,D
= −

√
2 , C4,3,3

B,B̃,D
= −

√
3 , C5±,3,4

B,B̌,D
=

√
2

5
(5±

√
5) ,

C4,4,4

B,B̃,D
= 2 , C5±,4,5

B,B̌,D
=

√
1

5
(5±

√
5) ,

(3.23)

whereas for bridge length ℓ12 = 3 the correlators evaluate to

C5±,3,2

B,B̃,D
=

√
5∓

√
5 , C4,4,2

B,B̃,D
= 2

√
2 , C5±,4,3

B,B̌,D
=

√
6

5
(5±

√
5) ,

C5±,5±,4

B,B̃,D
= 3± 1√

5
, C5±,5∓,4

B,B̌,D
=

2√
5
.

(3.24)

Finally, for bridge length ℓ12 = 4, only correlators with L1 = L2 = 5 are connected,
resulting in

C5±,5±,2

B,B̃,D
= 3

√
2 , C5±,5∓,2

B,B̃,D
= 0 . (3.25)

3.3. Marginal deformations
In this section we aim to understand how a β-deformed hexagon approach could be
achieved by simply dressing the hexagon amplitudes with deformation factors. We will
begin by studying the SU(1|2) sector and will see that some conceptual difficulties arise
regarding the co-moving vacuum Ẑ. Further, we will consider the simplest sectors in
which the deformation occurs, namely the SU(2) sector with transversal excitations X,
as well as the SU(2) sector with longitudinal excitations Y .

In the following we compute structure constants of operators with two magnons, taken
from both the β-deformed transversal and longitudinal SU(2) sector. In particular, we
study three-point functions in these sectors where two operators carry two excitations
each, while the third is a vacuum operator OL

D = Tr(ẐL). For the excited operators we
define

OL
F = tr

(
ẐL−2XX

)
, OL

F̃
= tr

(
ẐL−2X̄X̄

)
, (3.26)

carrying the transversal excitations X, but also

OL
G = tr

(
ẐL−2Ŷ Ŷ

)
, OL

G̃
= tr

(
ẐL−2 ˆ̄Y ˆ̄Y

)
, (3.27)

with the longitudinal magnons Y . We also study correlators involving excited operators
which correspond to vacuum descendants in the undeformed theory, but acquire non-
vanishing anomalous dimension in the deformed case and denote them as O′L

D . As
vacuum descendants these operators can carry either type of excitation. Further, we
do not only compute these correlators at tree-level, but also at one-loop order in the
deformed hexagon approach and compare then to the respective field-theory results.

Though these results look promising, it is not possible to calculate β-deformed
correlators in larger sectors, such as PSU(1, 1|2), of which we considered some examples
in [2]. Thus, it would be desirable to obtain a more systematic understanding by
constructing the hexagon form factor using a bootstrap approach in deformed theories.
However, this is beyond the scope of this thesis.
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3.3.1. Correlators in the SU(1|2) sector

By introducing deformation factors into the Bethe equations as in [97], we can obtain
the β-deformed Bethe equations. Nonetheless, let us be more general here and introduce
real deformation coefficients djk into the S matrices by defining

S̃II,I(ṽj, ũk) = eiβd21SII,I(ṽj, ũk) . (3.28)

The SI,I(ũj, ũk) and SII,II(ṽj, ṽk) elements of the nested Bethe ansatz do not receive
any additional deformation factors. This follows from the vanishing charge wedge
j(A) ∧ j(A) for identical flavours. Likewise, the creation amplitude remains unaltered.
Further, all momentum factors eipj are dressed by a deformation eiβd1 . In the nesting
picture, the entire combination becomes S̃I0(uj) = eiβd1+ipj , describing the shift of a
level-I excitation over a vacuum site Z. Similarly, we introduce the additional factor

S̃II,0 = eiβd2 , (3.29)

for moving a level-II magnon over one vacuum site Z. The factor S̃II,0 is trivial for the
undeformed N = 4 SYM theory.

With these considerations, we can introduce deformations into the Bethe equations
from eq. (3.19) in a similar way as in [97]

1 = eiβ(d1M1+d2M2)

M1∏
j=1

eip̃j ,

1 = eip̃jL eiβ(d1L−d21M2)

M1∏
k ̸=j, k=1

SI,I(ũj, ũk)

M2∏
l=1

1

SII,I(ṽl, ũj)
,

1 = eiβ(d2L+d21M1)

M1∏
k=1

SII,I(ṽj, ũk) .

(3.30)

We will match the coefficients d1, d2 and d21 against field theory results to relate them
to the β-deformation.

By studying the Bethe states corresponding to operators in the SU(1|2) sector and
their anomalous dimensions, we can fix the parameters d in our ansatz. For the left
and right SU(1|2) sectors with vacuum Z we find

{X,Ψ4} : d12 = −2β , d1 = 2β , d2 = 0 ,

{X̄, Ψ̄2} : d12 = 0 , d1 = −2β , d2 = 2β .
(3.31)

We will perform the computation of structure constants in the deformed theory in a
perturbative expansion in β. Expanding the Bethe equations up to O(β6), one can
determine ũj, ṽk up to the same order. Here we will exclude infinite rapidities for now.
For the states in question, the Bethe roots receive corrections at O(β1). Equipped with
these solutions, let us turn to the evaluation of the form factor.

Hexagon calculation. We lack a construction from first principle for a hexagon form
factor in the presence of marginal deformations. However, taking into consideration
that the deformed spectrum problem can be obtained by dressing the various S matrices
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in the nested Bethe ansatz with appropriate factors [97], it seems a natural guess to
use a similar procedure for the hexagon amplitudes. A deformed state can be cut by
dressing the splitting coefficients from eq. (3.21), i.e. deforming SII,I.

For a correlator of the form CB,B̃,D there are 16 different partitions of magnons,
reading explicitly

⟨h|{Ψ}, {Ψ̄}, {}⟩ ⟨h|{X}, {}, {X̄}⟩ , ⟨h|{Ψ}, {}, {Ψ̄}⟩ ⟨h|{X}, {X̄}, {}⟩ ,
⟨h|{Ψ, X}, {}, {Ψ̄, X̄}⟩ , ⟨h|{Ψ, X}, {}, {X̄, Ψ̄}⟩ ,
⟨h|{Ψ, X}, {Ψ̄, X̄}, {}⟩ , ⟨h|{Ψ, X}, {X̄, Ψ̄}, {}⟩ ,
⟨h|{X,Ψ}, {}, {Ψ̄, X̄}⟩ , ⟨h|{X,Ψ}, {}, {X̄, Ψ̄}⟩ ,
⟨h|{X,Ψ}, {Ψ̄, X̄}, {}⟩ , ⟨h|{X,Ψ}, {X̄, Ψ̄}, {}⟩ .

(3.32)

Here we dropped the momenta, such that the first two cases would appear with four
different permutations of the momenta, each. Further, we dropped the empty hexagon
as ⟨h|{}⟩ = 1. We now decorate the ten products of form factors in eq. (3.32) by a global
deformation factor eiβrj , with j ∈ 1, . . . , 10 and rj ∈ R. As the deformation should be
momentum independent, we can now try to fix the ten coefficients rj. Nonetheless,
we still need to take the global deformation factors of the splitting amplitudes into
account.

Marginal deformations have the potential to destroy the usual twisted translation T
from eq. (3.2), as T mixes operators with different R-charges. Hence, it is not clear
how to proceed in the presence of the deformation. Since we consider transversal
excitations, we can circumvent these issues to some extent by restricting to three-point
functions with ℓ12 = 2. In these cases there are no ⟨Ẑ(t = 0)Ẑ(t = 1)⟩ propagators
and the only lines between these operators are the propagators connecting the two
transversal excitations. The shifted vacua in the operators at points 1 and 2 are now
contracted with the shifted vacuum OL3

D at point 3, whose length is therefore fixed
to L3 = L1 + L2 − 4. Further, the operator OL3

D becomes tr
(
Z̄L3

)
at t = ∞, thus

projecting out only the Z of the twisted vacuum Ẑ at point 2. Therefore we conclude,
that the operator at point 2 is a conformal eigenoperator also in the deformed theory.
We are obliged to trust the effective propagator for fermions, however this seems a
mild assumption because the fermions are transversal excitations, i.e. they do not mix
with the vacuum under the twisted translation.

We can also have particle-creation poles in the hexagon computation when we consider
degenerate rapidities. In [105] the β-deformation was used to regulate degeneracies
in a 1/N -expansion in the large N limit. In the same spirit, here we will use the
deformation parameter β as a regulator for the hexagon amplitudes. The particle-
creation singularities of the hexagon amplitudes are seen as first and second order poles
in β. Our strategy is to expand in β, demanding that:

- poles cancel,

- the undeformed amplitude is reproduced for β → 0,

- the deformed hexagon computation reproduces free field theory results for the
deformed Bethe states (up to rescalings of the operators).

The last condition leads to constraints on the parameters rj. It will be useful to
consider the cases with non-degenerate rapidities and degenerate rapidities separately.

41



All the constraints are homogeneous in the total power of rj which increases with the
order in β. Fortunately, even at higher orders it is still possible to single out linear
constraints by factoring out linear combinations.

Using the β-deformed analogues of the correlators given in eqs. (3.23), (3.24) and
(3.25), we can fix the parameters and find that certain hexagon form factors need to
be dressed by additional deformation factors. Hexagons with two excitations on the
0γ edge receive a factor of e12iβ, while for two excitations on the 2γ edge the hexagon
picks up the inverse dressing factor e−12iβ. Finally, for excitations on the 4γ edge there
is no additional deformation factor. Further, we find a global phase e−iβ, which is
unphysical as it can be removed by changing the normalisation.

Although, for ℓ12 = 2 we can solve for the parameters rj, we cannot obtain agree-
ment between the hexagon computation and the free field theory allowing for edge-
widths ℓ12 > 2. We suspect the cause of this mismatch in propagators of the form
⟨Ẑ(t = 0)Ẑ(t = 1)⟩. It is worth stressing again, that we assumed no change in the
definition of the twisted translation T in our analysis and used the N = 4 hexagon
amplitudes with global deformation factors introduced only.

3.3.2. Correlators in the SU(2) sector

In the following we compute structure constants of operators in the β-deformed SU(2)
sector. Here, we can have transversal and longitudinal excitations, whereas in the
examples above, we restricted to transversal excitations only. In particular, the three-
point functions we consider have operators at t = 0 and t = 1 carrying two excitations
each, while the operator at t = ∞ is a vacuum operator OL

D = Tr(ẐL). To be able to
Wick-contract, we need to insert the conjugate magnons on the second operator.

As mentioned earlier, in the undeformed theory the Bethe equations allow for so-
called vacuum descendants, i.e. solutions to the Bethe equations with infinite rapidities.
As the energy of such operators vanishes, they are still BPS even though they carry
magnons on top of the vacuum. However, in the β-deformed theory infinite roots are
no longer a solution due to the presence of the phase e−iβL in the deformed Bethe
equations, cf. the discussion in Sec. 2.3.1. This deformation lifts the degeneracy of
these operators with the vacuum and their roots become proportional to β−1 at leading
order in a perturbative expansion in β. A set of examples with L = 2, . . . , 5 is given
in eq. (2.97). Taking the limit β → 0 sends the rapidities back to infinity and the
operators become protected again, i.e. their energies vanish. We will indicate these
operators as O′L

D , due to their relation to the vacua.
Again, we restrict here to the calculation of three-point functions with ℓ12 = 2. This

is done in order to avoid propagators of the form ⟨Ẑ(t = 0)Ẑ(t = 1)⟩, as these might
need to be altered for the deformed theory.

Tree-level results. Let us now use the hexagon form factor to compute three-point
functions. Considering transversal excitations X first, we find that the correlators can
be evaluated straightforwardly by using the shift factor ei(p̃−2β)ℓ12 (= eipℓ12) for the
partitions. Independently of whether the twisted translated vacuum is used or not, the
corresponding results from field theory calculations give the following results
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Correlator Tree-level structure constant
C4,2,2
G,D′,D − 2√

3
+ 8

9
√
3
β2 + 112

81
√
3
β4 +O(β6)

C4,3,3
G,D′,D −1 + 4

9
β2 + 56

81
β4 +O(β6)

C4,4,4
G,D′,D −2

√
2

3
+ 4

√
2

27
β2 + 28

√
2

81
β4 +O(β6)

C4,5,5
G,D′,D −

√
5
6
−

√
5

18
√
6
β2 + 133

√
5

648
√
6
β4 +O(β6)

C5,2,3
G,D′,D −

√
3 +

√
3
2
β2 + 23

8
√
3
β4 +O(β6)

C5,3,4
G,D′,D −

√
2 + 1√

2
β2 + 23

12
√
2
β4 +O(β6)

C5,4,5
G,D′,D −

√
5
3
+ 5

√
5

18
√
3
β2 + 517

√
5

648
√
3
β4 +O(β6)

C4,4,4
G,G,D

2
3
− 16

27
β2 − 64

81
β4 +O(β6)

C5,4,5
G,G,D

√
5
6
− 17

18

√
5
6
β2 − 925

√
5

648
√
6
β4 +O(β6)

C3,3,2
D′,D′,D

√
2 +O(β6)

C4,3,3
D′,D′,D

√
2 + 2

√
2

9
β2 + 22

√
2

81
β4 +O(β6)

C4,4,4
D′,D′,D

4
3
+ 16

27
β2 + 64

81
β4 +O(β6)

C5,4,5
D′,D′,D

√
5
3
+ 13

18

√
5
3
β2 + 707

648

√
5
3
β4 +O(β6)

In order to reproduce these results in the hexagon approach, we need to use the same
Bethe equations for the operators at point 1 and 2. Therefore in the hexagon picture it
seems like the operators at point 2 are conjugate with respect to operators at point 1,
even though in the field theory they are being built on the same vacuum Ẑ. This seems
not obvious and should be investigated in more detail in future work. Despite these
conceptual difficulties, our prescription reproduces the correct results. Moreover, we
can calculate three-point functions with longitudinal excitations, as well as at one-loop
level, as elaborated in the following.

The normalisation of the three-point functions is given in analogy to the undeformed
case in eq. (3.1). The exception is, that the rapidities entering in the Gaudin norm G
and the S matrix depend on β now. For instance, the Gaudin norm corresponding to
the operators O4

G and O5
G is given by

G4 = 108− 384β2 +
1216

3
β4 − 7168

45
β6 +O(β7) ,

G5 = 80− 440β2 +
2000

3
β4 − 1586

9
β6 +O(β7) ,

(3.33)

respectively. The Gaudin norm for the descendant operators O′L
D starts contributing at

order O(β4), while the hexagons involving a vacuum descendant start contributing at
order O(β2). The normalisation factor (3.1) contains a factor 1/

√
G and thus the final

result is of leading order O(1). This makes the calculation of correlators to a given
order βk harder, as one has to use the rapidities up to order βk+2.

Considering longitudinal excitations Y , we need to introduce additional deformation
factors e2iβ(dα−dᾱ). The parameters dα depend on the partition α as well as the flavour
and are necessary to find agreement with field theory. Then, the splitting factor
becomes

ωl(α, ᾱ) = (−1)|ᾱ|
∏
ũi∈ᾱ

e2iβ(dα−dᾱ)

(
ui +

i
2

ui − i
2

)ℓ

e−2iβℓ
∏

u1∈ᾱ ,u2∈α

u1 − u2 − i

u1 − u2 + i
. (3.34)
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We can calculate the structure constants with hexagons by using the usual evaluation
formula

CL1,L2,L3

X ,X ,D = N
∑

α1∪ᾱ1={u1,u2}
α2∪ᾱ2={u3,u4}

ωl12(α1, ᾱ1)ωl23(α2, ᾱ2) ⟨h|α1, α2, {}⟩ ⟨h|ᾱ1, {}, ᾱ2⟩ , (3.35)

where X represents any operator from the table above in one of the SU(2) sectors. We
find agreement with field theory when setting

d{} = 0 , d{Y } = 1 , d{Y,Y } = 2 , d{Ȳ } = −1 . (3.36)

Further, we can easily include the transversal SU(2) sector by setting

d{X} = −d{X̄} . (3.37)

The resulting structure constants are the same as in the transversal case listed in the
table above.

Asymptotic one-loop corrections. So far, we restricted the calculations to tree-
level. Therefore, let us test the proposed formalism at one-loop order, i.e. at order g2 in
an expansion of the gauge coupling. There are two ingredients necessary for the hexagon
computation, as there is the asymptotic hexagon as well as the contribution of virtual
particles placed on the mirror-edges of the hexagon. In general, the contributions of
virtual particles are suppressed by the bridge length ℓ and start at order g2ℓ+2. Thus,
at one-loop order the virtual particles can only contribute if they are placed on an edge
with width ℓ = 0. In the weak coupling limit, we can use x±(p̃j) =

ũj± i
2

g
to leading

order in the coupling g. Solving the asymptotic Bethe equations at first loop order,
we find one-loop corrections to the tree-level rapidities. For the operators considered
above, they are of the form

Operator One-loop corrections to rapidities u±
O′2

D ∓4iβ ± 8i
3
β3 +O(β5)

O′3
D

(
2∓ 3i√

2

)
β −

(
−4

3
± 17i

4
√
2

)
β3 +O(β5)

O4
G ± 4√

3
− 8

3
β ∓ 16

3
√
3
β2 + 64

27
β3 ± 64

81
√
3
β4 +O(β5)

O′4
D

8
9

(
3∓ i

√
3
)
β − 64

81
(3∓ 2i

√
3)β3 +O(β5)

O5
G ±5

2
− β ∓ 15

4
β2 + 5

3
β3 ± 15

16
β4 +O(β5)

O′5
D

(
3∓ 5i

4

)
β −

(
3∓ 245i

96

)
β3 +O(β5)

Finally, we need to include the measure factors µ(uk) given in [38] for the hexagon
calculation. Using the splitting factor from eq. (3.34), we find the results for the
one-loop corrections to structure constants as listed in the table below.

For the field-theory computation3, the results of [106] and [107] for undeformed
and β-deformed N = 4 SYM theory were used. There, the one-loop corrections for
structure constants of scalar operators are obtained from inserting a Hamiltonian into
the respective three-point function. Using these methods, and comparing the hexagon
results against the field-theory predictions, we find agreement.

3We thank Anne Spiering for providing the data to check against.
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Correlator One-loop corrections to structure constants
C4,3,3
G,D′,D 6− 68

9
β2 +O(β4)

C4,4,4
G,D′,D 4

√
2− 56

√
2

27
β2 +O(β4)

C4,5,5
G,D′,D

√
30− 1

18

√
5
6
β2 +O(β4)

C5,3,4
G,D′,D 4

√
2− 5√

2
β2 +O(β4)

C5,4,5
G,D′,D 4

√
5
3
+

√
15
2
β2 +O(β4)

C4,4,4
G,G,D −8 + 512

27
β2 +O(β6)

C5,4,5
G,G,D −10

√
5
6
+ 137

6

√
5
6
β2 + 196

81

√
5
6
β4 +O(β6)

As mentioned above, for structure constants involving operators O′
D, we need to use

rapidities to higher orders in β as their leading order is O(β−1). Since this is a more
expensive computation, we only include correlators of the form CG,G,D and CG,D′,D, and
leave CD′,D′,D for future work. However, we do not expect any conceptual difference in
the last case. Finally, we should mention, that we disregard the extremal correlation
functions (with L1 = L2 + L3) at one-loop order. Here the bridge length l23 vanishes
and wrapping corrections contribute already at one-loop order. It would be interesting
to understand how wrapping effects can be systematically included into the hexagon
formalism for the β-deformed theory. As wrapping corrections also remain an obstacle
in the undeformed case, we restrict the study presented here to asymptotic results.

3.4. Double excitations
At first glance some fields, such as for instance Z̄, cannot be realised in the excitation
picture. However, allowing for double excitations, i.e. the possibility of two magnons
occupying the same spin chain site, those missing excitations can be realised. This
can also be seen from the oscillator picture discussed in Sec. 2.1.3. Let us for instance
take an excitation Y as well as a Ȳ , which can be obtained by acting with lowering
operators on the physical vacuum |Z⟩ as

|Y ⟩ = R1
2 R2

3̇
|Z⟩ = c1†c3̇ |Z⟩ , and |Ȳ ⟩ = R3̇

4̇
R2

3̇
|Z⟩ = c4̇c

2† |Z⟩ . (3.38)

Next, when placing the two excitations at the same site, i.e. acting with the four
corresponding R generators on the same vacuum, we create the double excitation

| Y
Ȳ ⟩ = R1

2 R2
3̇
R3̇

4̇
R2

3̇
|Z⟩ = c1†c2† |0⟩ = |Z̄⟩ , (3.39)

which we indicate by stacking Y on top of Ȳ . A similar concept of double excitations
was already introduced for the SU(2|2) S matrix in [19]. Introducing an additional
creation amplitude, two level-II excitations ψ1, ψ2 of the SU(2|2) can be placed at the
same site to create ϕ2. In the following, we aim at building SU(2|2)2 double excitations
and will see, that analogous creation amplitudes need to be introduced. As in the
example above, we will combine a left level-II magnon Y and a right level-II magnon Ȳ
into a double excitation Z̄. We will support this idea with the example of the Konishi
singlet.
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3.4.1. Creation amplitudes for double excitations

In the following we will denote the excitation Y as a left level-II excitation as it is
obtained from generators in the left su(2|2) subalgebra of the Dynkin diagram in
Fig. 2.1. Similarly, we have the right level-II excitation Ȳ . In order to highlight this
distinction in the nested Bethe ansatz, we will use dotted creation amplitudes for the
right excitations, i.e. ḟ II,I(w, u1), and denote the corresponding auxiliary rapidity w.
Further, we can build X̄ by placing a left and a right level-II excitation on top of one
level-I excitation. The double excitations we consider here are created, when placing
two level-I excitation with rapidity u1, u2 at the same site.

Considering a state with a left excitation Y as well as a right excitation Ȳ , in the
nested Bethe ansatz we thus have the two creation amplitudes f II,I(v, u1)ḟ

II,I(w, u2) for
|. . . Y . . . Ȳ . . .⟩. Next, we allow double excitations Z̄ to form, by letting both Y and Ȳ
to occupy the same site. We will indicate this by placing the magnons on top of each
other, e.g. | Y

Ȳ ⟩ as in eq. (3.39) or | Ȳ
Y ⟩ which also yields the double excitation Z̄. Each of

the auxiliary rapidities v, w sits now on top of the two primary rapidities u1, u2. Hence,
the double excitation creation amplitude should contain the four corresponding creation
amplitudes f II,I(v, u1)f

II,I(v, u2)ḟ
II,I(w, u1)ḟ

II,I(w, u2). However, when comparing with
dilatation-operator eigenstates obtained by direct diagonalisation, we find a mismatch
of the coefficients using the creation amplitude above. Matching on known eigenstates
allows us to fix an additional polynomial factor, such that the double excitation creation
amplitude for Z̄ reads

f̂(u1, u2, v, w) = f II,I(v, u1)f
II,I(v, u2)ḟ

II,I(w, u1)ḟ
II,I(w, u2) (u1 − u2)(u1 − u2 − i) .

(3.40)
It is worth noting that f̂(u1, u2, v, w) is not symmetric under the exchange of u1 and u2.
This implies that the level-I rapidities are implicitly ordered, even though they are
sitting at the same site. The order is fixed by their initial ordering, when placed on
the chain. In our notation this is indicated, as the magnon on top is shifted slightly to
the right, i.e. | Y

Ȳ ⟩.
Naturally we can ask, whether we can match the nested ansatz onto a matrix picture

including double excitations. We will consider the example of a Konishi operator
below and construct the double excitations by introducing extra creation amplitudes
in the matrix picture. As the nested Bethe ansatz is supposed to diagonalise the
matrix picture in which excitations of the four flavours X, Y, Ȳ , X̄ scatter with the full
S matrix, we include the double excitation Z̄ and work out the corresponding creation
amplitude by comparing with the nested result. In fact, it turns out that there is one
universal creation amplitude valid for all types of double excitations, which is given by

ê(u1, u2) = − u1 − u2
u1 − u2 − i

. (3.41)

In the following subsection the derivation will be explicitly shown by way of example
for the SO(6) Konishi singlet.

3.4.2. The Konishi singlet

Let us illustrate the concept described above by considering the explicit example of the
Konishi singlet at length L = 2. Solving the SO(6) Bethe equations for L = 2 with two
level-I as well as one left and one right level-II excitation we obtain a primary state with
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rapidities u1 = −u2 = 1
2
√
3
, v = w = 0. It is worth stressing that the equivalence of the

nested and matrix picture should take place off shell and without imposing cyclicity on
the ket states. Therefore, let us for now keep L arbitrary in the construction and only
specify it for the concrete example.

We begin by constructing the nested state as

|KL(u1, u2)⟩ =∑
n1<n2

(
ei(p1n1+p2n2)f II,I(v, u2) ḟ

II,I(w, u2)SII,I(v, u1) ṠII,I(w, u1) |Xn1
1 X̄n2

2 ⟩IL

+ ei(p1n1+p2n2)f II,I(v, u1) ḟ
II,I(w, u1) |X̄n1

1 Xn2
2 ⟩IL

+ ei(p1n2+p2n1)f II,I(v, u1) ḟ
II,I(w, u1)SII,I(v, u2) ṠII,I(w, u2)SI,I(u1, u2) |Xn1

2 X̄n2
1 ⟩IL

+ ei(p1n2+p2n1)f II,I(v, u2) ḟ
II,I(w, u2)SI,I(u1, u2) |X̄n1

2 Xn2
1 ⟩IL

+ terms involving Y and Ȳ
)

+
∑
n1=n2

ei(p1+p2)n1 f̂(u1, u2, v, w) |Z̄n1⟩IL ,

(3.42)
where we omitted writing the terms involving Y and Ȳ for readability. They can be
easily added by using the appropriate creation amplitudes. Further, we introduced here
the double excitation Z̄, which is created with the creation amplitude f̂(u1, u2, v, w)
from a pair of magnons sitting on top of each other, i.e. X and X̄ or Y and Ȳ . By
matching on know eigenstates found from the dilatation operator, we find f̂(u1, u2, v, w)
to be of the form given in eq. (3.40).

Next, let us construct the same state in the matrix picture. Similarly to the higher-
rank examples considered in Sec. 3.2 we have the coefficients gXX̄ , gX̄X , gY Ȳ , gȲ Y for
the four possible wave functions. These can be fixed as before by comparing the nested
and matrix states without double excitations. In the case at hand, we obtain

gXX̄ = f II,I(v, u2) ḟ
II,I(w, u2)SII,I(v, u1) ṠII,I(w, u1) ,

gX̄X = f II,I(v, u1) ḟ
II,I(w, u1) ,

gY Ȳ = f II,I(v, u1) ḟ
II,I(w, u2) ṠII,I(w, u1) ,

gȲ Y = f II,I(v, u2) ḟ
II,I(w, u1) SII,I(v, u1) .

(3.43)

Hence we can write the state in the matrix picture as

|KL(u1, u2)⟩ = gXX̄

[ ∑
n1<n2

(
ei(p1n1+p2n2) |Xn1

1 X̄n2
2 ⟩L +

ei(p2n1+p1n2)

[
(T12)

2

A12

|X̄n1
2 Xn2

1 ⟩L +
(R12)

2

A12

|Xn1
2 X̄n2

1 ⟩L
]
+

ei(p2n1+p1n2)

[
R12T12
A12

|Y n1
2 Ȳ n2

1 ⟩L +
R12T12
A12

|Ȳ n1
2 Y n2

1 ⟩L
])

+∑
n1=n2

ei(p1+p2)n1 ê(u1, u2) |Z̄n1⟩L
]

+ corresponding terms for gX̄X , gY Ȳ and gȲ Y ,
(3.44)
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where we have used the transmission and reflection amplitudes T12 and R12 from
eq. (2.68). Again we only wrote a part of the full expression for readability. As for
the nested case, we introduce the double excitation Z̄ with an additional creation
amplitude ê(u1, u2). This additional term is equivalent to allowing the two magnons X,
X̄ to occupy the same site, i.e. n1 = n2, with a corresponding amplitude. Similarly, we
have to allow such terms and their creation amplitudes for X̄,X as well as Y, Ȳ and
X̄,X. Demanding the equivalence of the nested and the matrix picture state fixes the
creation amplitude to be of the form given in eq. (3.41). In principle, we could have
introduced distinguished amplitudes in the different terms. However, it turns out, that
they are universal and hence

ê(u1, u2) ≡ eXX̄ = eX̄X = eY Ȳ = eȲ Y = − u1 − u2
u1 − u2 − i

. (3.45)

Coming to our example with L = 2, we can explicitly evaluate the nested and the
matrix state. Normalising the state accordingly by using eq. (2.53), both descriptions
yield the on-shell unit-norm Konishi singlet operator

K =
1√
3
tr
(
XX̄ + Y Ȳ + ZZ̄

)
. (3.46)

The matrix picture prefactors become all equal up to signs and read

gXX̄ = gX̄X = −gY Ȳ = −gȲ Y =
(−1)1/3

4
√
3

. (3.47)

Equipped with the operator let us briefly turn to the class of structure constants
corresponding to three-point functions

⟨KL1 OL2 OL3⟩ , (3.48)

with the two vacua OL2 and OL3 of lengths L2 and L3. Here the Konishi operator
KL1 has the length L1 with two level-I excitations and one left and one right level-II
excitation, which generalises the L1 = 2 discussion above. The operators KL1 are the
primary states of the multiplets containing the two-magnon BMN operators [13]. Their
one-loop anomalous dimensions γ1 are given as

p1 = −p2 =
π n

L1 + 1
, γ1 = 8 sin2(p1) = 6, 4, 5±

√
5, . . . (3.49)

where the integer n labels the solutions with 0 < n < L1 + 1.
The remaining input needed for using the hexagon form factors for the calculation

of the correlator (3.48), is the entangled state for the non-trivial operators KL1 . As in
the examples considered in Sec. 3.2, we have four wave functions with initial magnon
orderings {X1X̄2}, {X̄1X2}, {Y1Ȳ2}, {Ȳ1Y2}. Again, each of the wave functions is cut
into two parts, the first of which has length ℓ12 = (L1 + L2 − L3)/2. For instance, the
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first wave function can be cut as:

|Ψ(X1, X̄2)⟩L = |Ψ(X1, X̄2)⟩ℓ |Ψ({})⟩ℓ̃ − eip2ℓ |Ψ(X1)⟩ℓ |Ψ(X̄2)⟩ℓ̃ −

eip1ℓ
[
(T12)

2

A12

|Ψ(X̄2)⟩ℓ |Ψ(X1)⟩ℓ̃ +
(R12)

2

A12

|Ψ(X2)⟩ℓ |Ψ(X̄1)⟩ℓ̃
]
−

eip1ℓ
[
R12T12
A12

|Ψ(Ȳ2)⟩ℓ |Ψ(Y1)⟩ℓ̃ +
R12T12
A12

|Ψ(Y2)⟩ℓ |Ψ(Ȳ1)⟩ℓ̃
]
+

ei(p1+p2)ℓ |Ψ({})⟩ℓ |Ψ(X1, X̄2)⟩ℓ̃ + O(g) .

(3.50)

Here we have introduced the shorthand notation ℓ = ℓ12 and ℓ̃ = L1 − ℓ12. Also it can
be checked explicitly here, that eq. (3.50) is an identity. It is worth emphasising, that
these wave functions implicitly include the ket states with the double excitation Z̄. So
when cutting the state, we need not to take care of those, as they are hidden in the
(sub)states.

Like in the SU(3) examples from Sec. 3.2.2, the C(u1, u2) element of the S matrix [19]
can scatter two bosons into two fermions, whenever such a process is allowed by the
quantum numbers of the state. However, as this would introduce terms depending
on the coupling constant, we can omit these processes by restricting to the leading
order, indicating possible corrections by O(g). Moreover, since the SO(6) sector is not
closed, the analysis presented here must be limited to tree-level results. In principle, it
should be possible to recover the KL1 states from the higher-loop nested Bethe ansatz
of [22,23], though at the cost of much higher excitation numbers. If we managed to
extract the g-coefficients of the matrix ansatz and the level-I rapidities from there, our
approach might also allow to reproduce loop effects, both in the spectrum problem and
for structure constants. Further sources of a dependence on the coupling would be the
introduction of Zhukowsky variables x± [22, 23] replacing the rapidities as well as the
BES phase [21], the loop corrections introduced into the rapidities upon solving the
nested Bethe equations, and finally gluing corrections [38].

Returning to the correlator from eq. (3.48) at tree-level and taking the normalisation
into account, we expect the relation

AQFT =

(
u2 +

1

4

)
L1

√
L2L3 Ah , (3.51)

between the field theory amplitude AQFT and hexagon amplitude Ah. Apart from the
momentum carrying rapidities u, the hexagon amplitudes only depend on the quantum
number ℓ12. The amplitude for ℓ12 = 0 manifestly vanishes, while for ℓ12 = 1 we have

Aℓ12=1
h (−u, u) = 8 gXX̄ u

(u− i
2
)(u+ i

2
)2
, (3.52)

for the L1 = 2, 3 and the two L1 = 4 operators this evaluates to

L1 = 2 : Aℓ12=1
h =

√
3

2
, L1 = 3 : Aℓ12=1

h =

√
2

3
, L1 = 4 : Aℓ12=1

h =
1

4
.

(3.53)
A field theory check is very easy in this case, as we simply put the unit-norm KL1

operator into a three-point function with two unit-norm vacua tr
(
ZL2

)
/
√
L2 and

tr
(
Z̄L3

)
/
√
L3. Placing the operators at the points 0, 1,∞, we can perform the Wick
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Figure 3.2.: We can generate the fermions needed for the double excitations of the
Lagrangian, by acting with the simple roots as in the diagram.

contractions. Restricting to the planar limit, we find

AQFT = cZ̄(L1)
√
L2L3 (3.54)

for the existing correlators. Here cZ̄(L1) is the coefficient of the tr
(
Z̄ZL1−1

)
term in

the operator KL1 . The numbers obtained from eq. (3.54) immediately satisfy eq. (3.51)
reproducing the values listed in eq. (3.53).

Beyond ℓ12 = 0, 1, for every Bethe solution the hexagon computations are ℓ12 →
L1 − ℓ12 symmetric. Moreover, these can also be reproduced from Wick contractions,
by using the twisted vacua Ẑ from eq. (3.4) at points 2 and 3, where the operator at
point 2 is placed at the position t along the x2 axis [38].

3.5. Lagrangian insertion method
The Lagrangian insertion method proved to be a powerful technique for field-theory
computations in N = 4 SYM theory [68,69]. Differentiating a corrleator with respect
to the coupling constant inserts an additional Lagrange operator into an n-point
function, which has to be integrated. At least for higher-point functions of half-BPS
operators, this trick gives a convenient way of constructing higher-loop integrands
without the necessity of drawing the Feynman graphs involved [108, 109]. In the
hexagon formalism, this may allow to avoid or at least simplify the evaluation of gluing
contributions [41,43,44]. Further, we may hope that if successful, this procedure can
be used to compute non-planar corrections to the spectrum by inserting the Lagrange
operator into a two-point function on a tessellation of a torus or possibly higher-genus
diagram [42,46,47].

The Lagrangian of N = 4 super Yang-Mills theory has the full supersymmetry
only on shell, i.e. when the equations of motion are satisfied. In the following we
will use an on-shell Lagrangian in the form of the chiral Yang-Mills Lagrangian with
two higher-order admixtures [110]. These admixtures are given by a Yukawa term at
linear order in the coupling constant, and the quartic scalar superpotential at O(g2),
which ensure that the Lagrangian is protected. In the integrability description [22,23]
admixtures are usually not mentioned as their effects are captured by loop corrections to
the rapidities of a given solution of the asymptotic Bethe equations and the dependence
of the Zhukowsky variables on the coupling constant.

3.5.1. The on-shell Lagrangian

The N = 4 SYM Lagrangian is given in eq. (2.3). However, for the Lagrangian insertion
it is customary to use the on-shell and chiral form. It is obtained from eq. (2.3) by
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using the equations of motion and dropping total derivative terms. The result can be
found in [110] and reads

L = tr

(
−1

2
FαβFαβ +

√
2gYM ΨαI [ΦIJ ,Ψ

J
α]−

1

8
g2YM [ΦIJ ,ΦKL][ΦIJ ,ΦKL]

)
. (3.55)

Note that the on-shell Lagrangian involves only the chiral field strength Fαβ. In the
integrability picture the admixtures should be captured by the solution of the mixing
problem corresponding to the leading-order eigenstate tr

(
FαβFαβ

)
. In the following

we will construct this highly-excited state and perform a simple but non-trivial test of
the proposal with a protected correlation function.

As discussed above, the excitation picture excludes certain fields such as Z̄, but also
half of the fermionic excitations, namely Ψ1α,Ψ2α, Ψ̄α̇

3 , Ψ̄
α̇
4 , as well as the chiral and

antichiral field strengths Fαβ, F̄ α̇β̇. However, using the double excitations from above
we can realise these types of excitations. As we now aim to recover the Yang-Mills term

|F11F22⟩ − 2 |F12F12⟩+ |F22F11⟩ , (3.56)

we choose the nested Bethe ansatz corresponding to the diagram in Fig. 3.2. Allowing
the double excitations in the same spirit as for Z̄, we find, that we can combine two
fermions as

| Ψ14̇

Ψ23̇ ⟩ = L1
2 Q2

3̇
R3̇

4̇
Q2

3̇
|Z⟩ = a1†a2† = |F12⟩ ,

| Ψ14̇

Ψ13̇ ⟩ = L1
2 Q2

3̇
L1

2 R3̇
4̇
Q2

3̇
|Z⟩ = a1†a1† = |F11⟩ ,

| Ψ24̇

Ψ23̇ ⟩ = Q2
3̇
R3̇

4̇
Q2

3̇
|Z⟩ = a2†a2† = |F22⟩ .

(3.57)

The lowering operator Q2
3̇

creates the level-I excitation Ψ24̇ from the vacuum Z. The
level-I rapidity u moves over the chain as before. However, the S matrix scattering
two level-I excitations is given by SI,I(u1, u2) = −1 here, since we consider fermions on
the spin chain. We can now create a left or right excitation by acting with L1

2 or R3̇
4̇
,

respectively, introducing the corresponding auxiliary rapidities v and w. The Bethe
equations are given by

1 =
M∏
j=1

eipj ,

1 = eipj
M∏
k=1
k ̸=j

SI,I(uj, uk)

ML∏
l=1

SI,II(uj, vl)

MR∏
m=1

ṠI,II(uj, wm) ,

1 =
M∏
l=1

SII,I(vj, ul)

ML∏
m=1

SII,II(vj, vm) ,

1 =
M∏
l=1

ṠII,I(wj, ul)

MR∏
m=1

ṠII,II(wj, wm) ,

(3.58)

where M is the number of primary roots and ML, MR are the numbers of left and right
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auxiliary roots, respectively. For the S matrices we have

SI,II(u, y) =
1

ṠI,II(u, y)
=
y − u+ i

2

y − u− i
2

,

SII,II(y1, y2) =
1

ṠII,II(y1, y2)
=
y1 − y2 + i

y1 − y2 − i
,

(3.59)

as well as SII,I(y, u) = 1/SI,II(u, y) and similar for ṠII,I. It turns out, that the creation
amplitudes needed in the nested ansatz take a somewhat different form from the ones
in the Konishi example. However, in the matrix picture the creation amplitude is given
by the universal ê(u1, u2) from eq. (3.41), sometimes picking up an additional minus
sign. Again, explicit examples can be constructed for short lengths L = 4, 5, 6 and
compared to eigenstates obtained from the dilatation operator. We spare the technical
details here, since we will not need the explicit amplitudes and states in the hexagon
computations, as we observed in the preceding section.

Let us come back to the leading-order eigenstate tr
(
FαβFαβ

)
. This should be given

as an L = 2 state and according to eq. (3.57) carry excitations M = 4, ML = 2,
MR = 2. Moreover, the Lagrangian is a vacuum descendant and hence all the rapidities
are infinite. In Sec. 3.3 we introduced twist to regularise the rapidities of vacuum
descendants. Similarly, we can introduce twist factors with coefficients d0, . . . , d3 in
the Bethe equations (3.58). Analogously we will denote the twist as β here, though
it should be stressed that it is not related to the β-deformation. For the momentum
carrying rapidities we find

u1 =
1 + i√
2β

, u2 =
1− i√
2β

, u3 = −1 + i√
2β

, u4 = −1− i√
2β

. (3.60)

Further, for the auxiliary roots we have

v1 = −v2 = − 1
4
√
3β

, w1 = w̄2 = −
√
2 + i
4
√
3β

, (3.61)

and finally there is the constraint d3 = −2d1 = 2
√

2
√
3. As in Sec. 3.3, there will be

non-trivial corrections to the rapidities in the odd powers of β only. Expanding the
Bethe state incorporating double excitations, using the solution above and normalising
appropriately, we obtain the pure Yang-Mills Lagrangian from eq. (3.56).

3.5.2. A simple test of the Lagrangian insertion method

We can absorb a factor of the Yang-Mills coupling gYM into all fields in the N = 4
super Yang-Mills Lagrangian (3.55). The path integral from eq. (2.19) for an n-point
function of gauge-invariant composite operators can then be written as

⟨O1 . . .On ⟩ =
∫
Dξ e

i

g2YM

∫
d4x0L(x0) O1 . . .On . (3.62)

Taking the derivative with respect to the coupling yields

∂

∂g2YM
⟨O1 . . .On ⟩ = − i

g4YM

∫
d4x0 ⟨ L(x0) O1 . . .On ⟩ . (3.63)
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Remarkably, this implies that the one-loop correction to an n-point function can be
computed from the Born level of an (n+1)-point function in which a Lagrange operator
is inserted and integrated over. The right-hand side is indeed a tree-level contribution.
This is a consequence of the field rescaling that causes a factor g2YM on each propagator.
The rescaling can be undone without affecting the functional relation between the two
correlation functions.

Since two-point functions of BPS operators are protected [68,69], we must have

⟨ L0 OL
1 OL

2 ⟩ = 0 (3.64)

for two spin-chain vacua OL. In the following we will use this identity as a non-trivial
test of our approach.

In the hexagon computation we have to cut the Lagrange operator into two parts.
The Bethe state we consider carries the four magnons {Ψ42̇,Ψ41̇,Ψ32̇,Ψ31̇}. Apart
from the momentum shift ei p ℓ that every magnon picks up moving from the first to
the second hexagon, the form of the entangled state is independent of the length ℓ.
Moreover, as we already saw in Sec. 3.4.2, there is no reference to double excitations
as the local structure is hidden inside the cut wave function. We can thus think of a
higher length spin chain with four elementary excitations moving on it. Nevertheless,
the scattering between the magnons is quite involved, as the F12 and C12 elements of
the S matrix can transform a pair of bosons into a pair of fermions and vice versa. As
there are no magnons from the two other operators in the three-point function, we only
have to partition the four particles over the two hexagons.

Further, the operator tr
(
FαβFαβ

)
is chiral, hence in the excitation picture we have

four fermions ψα on the left su(2|2) chain and four bosons ϕ̇ȧ on the right su(2|2)
chain. Recall that the one-particle hexagon form factors are only non-vanishing for
Y, Ȳ and D12̇,D21̇ as stated in eq. (3.3). Therefore, any non-vanishing contribution to
the three-point function in eq. (3.64) must involve at least two C(uj, uk) or F(uj, uk)
processes and is thus of order g2. If fewer of these arise when scattering magnons
during the construction of the entangled state, then the missing C and F elements
must be contributed in the evaluation of the hexagon form factor. We can thus restrict
the computation to leading order in the coupling g and the twist β in all terms. The
effect simplifies the entangled state considerably as the only contributing partitions are

⟨L0 OL
1 OL

2 ⟩ = 2
[
⟨h|Ψ24̇

1 Ψ23̇
2 Ψ14̇

3 Ψ13̇
4 ⟩+ ⟨h|Ψ24̇

1 Ψ13̇
4 ⟩ ⟨h|Ψ23̇

2 Ψ14̇
3 ⟩
]
+

g̃
[
⟨h|D21̇

1 ⟩ ⟨h|Ψ23̇
2 Ψ14̇

3 D12̇
4 ⟩+ ⟨h|D21̇

2 ⟩ ⟨h|Ψ24̇
1 D12̇

3 Ψ13̇
4 ⟩+

⟨h|D12̇
3 ⟩ ⟨h|Ψ24̇

1 D21̇
2 Ψ13̇

4 ⟩+ ⟨h|D12̇
4 ⟩ ⟨h|D21̇

1 Ψ23̇
2 Ψ14̇

3 ⟩+

⟨h|Y1⟩ ⟨h|Ψ23̇
2 Ψ14̇

3 Ȳ4⟩+ ⟨h|Ȳ2 ⟩ ⟨h|Ψ24̇
1 Y3 Ψ

13̇
4 ⟩ +

⟨h|Y3⟩ ⟨h|Ψ24̇
1 Ȳ2 Ψ

13̇
4 ⟩+ ⟨h|Ȳ4⟩ ⟨h|Y1 Ψ23̇

2 Ψ14̇
3 ⟩
]
+

g̃2
[
⟨h|D21̇

1 D21̇
2 ⟩ ⟨h|D12̇

3 D12̇
4 ⟩+ ⟨h|D21̇

1 Ȳ2⟩ ⟨h|Y3D12̇
4 ⟩+

⟨h|Y1D21̇
2 ⟩ ⟨h|D12̇

3 Ȳ4⟩+ ⟨h|Y1 Ȳ2⟩ ⟨h|Y3 Ȳ4⟩
]

+ permutations of the initial state .

(3.65)
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The effective coupling g̃ = 2
√
2g i β2 arises from the C12 and F12 elements. Inserting

the hexagon amplitudes, the expressions in square brackets become

⟨ L0 OL
1 OL

2 ⟩ → 4 g̃2 (1− 2 + 1) = 0 (3.66)

as desired. Curiously, the sign of the individual parts does not flip according to the
signature of the permutation when we choose a different initial flavour ordering of the
magnons. This already implies that their sum must vanish. Moreover, in eq. (3.65) we
also need to sum over the 23 remaining initial orderings of the four fermions and their
respective entangled states. The overall order g2 signals a one-loop computation as
expected. The normalisation can be chosen in the usual way. The non-normalised wave
function has an overall coefficient gΨ24̇Ψ23̇Ψ14̇Ψ13̇ ∼ β4. This will be offset by the root of
the full Gaudin determinant when normalising the hexagon amplitude. Alternatively,
we can normalise the nested Bethe state to 1, for which we have gΨ24̇Ψ23̇Ψ14̇Ψ13̇ = 1/

√
24

and therefore the computation stays at O(β4) as in eq. (3.66). The Korepin factor is
given by

√∏
(u2i + 1/4) ∼ 1/β4 and hence the final result will be of order O(β0) in

accordance with eq. (3.51).
Finally, we evaluated the hexagons in the spin-chain frame, which requires carrying

along Z markers [19,38]. On the other hand, when constructing the entangled state we
neglected the appearance of Z markers. This can be justified, as in the case at hand
all momentum factors eipℓ become 1 in the limit β → 0. In fact, the edge width as
a quantum number in the entangled state drops out. However, considering magnons
with non-zero momenta the consequences of length changing will become a subtle issue
in the evaluation due to the appearance of Z markers on the spin chain. Nonetheless,
this is a first simple but non-trivial check that the Lagrangian insertion might be used
in the hexagon formalism.

It would be interesting to study the insertion of tr
(
FαβFαβ

)
into a two-point function

of scalar two-excitation BMN operators [13] in order to further test our proposal.
However, length-changing effects need to be taken into account, as they introduce shift
factors for excitations with non-vanishing momenta.

3.6. Chapter summary
In this chapter we used the hexagon form factor to calculate three-point functions in
N = 4 SYM using methods from integrability. In Sec. 3.1 we reviewed the original
proposal [38] to cut the correlators into hexagonal patches. Using symmetry constraints,
the one- and two-particle form factor can be bootstrapped and generalised to multi-
particle states, by using factorised scattering and the Yang-Baxter equation.

In Sec. 3.2 we extended the formalism to higher-rank sectors. In order to obtain this
we used a hybrid formalism to extract wave function coefficients gΨ from the nested
Bethe ansatz. We then used these coefficients to import information on the state into
the hexagon calculation, allowing us to preserve the operator structure of the formalism.
Further, we gave a set of explicit examples for tree-level correlators in the SU(3) and
SU(1|2) sectors, respectively.

In Sec. 3.3 we asked, whether the hexagon formalism can also be amended to calculate
correlators in less supersymmetric theories. In particular, we considered β-deformed
N = 4 SYM. Interestingly, in the sectors considered, the hexagons of the undeformed
theory can be used by simply dressing them with a deformation factor. It is also
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necessary to introduce deformation factors in the splitting amplitudes as required by
the Bethe equations. Finally, for the evaluation of the form factor the solutions of
the deformed Bethe equations are used. Further, we calculated asymptotic one-loop
corrections, finding agreement with field theory results. However, this strategy is not
compatible with other higher-rank sectors. For instance for the psu(1, 1|2) sector, it is
not possible to evaluate β-deformed correlators introducing global twist factors [2]. In
general, it would be interesting to study whether a hexagon can also be bootstrapped
for the deformed model.

In addition, we introduced the concept of double excitations in Sec. 3.4. This allowed
us to describe excitations, which are not in the magnon group, like for instance Z̄.
These double excitations come with respective creation amplitudes in the nested and in
the matrix picture. In an illustrative example for the Konishi singlet, cf. Sec. 3.4.2, we
constructed the amplitudes and states explicitly. Moreover, the matrix picture creation
amplitude turns out to be general for any kind of double excitation.

Using the results for deformations and double excitations, we constructed the Yang-
Mills part tr

(
FαβFαβ

)
of the Lagrange operator as a vacuum descendant in Sec. 3.5.

It can be obtained by creating double excitations from fermions. The exact form of
the state is not needed in hexagon computations, as its local structure is hidden in
the wave function even after cutting the entangled state. We then proposed to use
the Lagrangian insertion method to calculate loop corrections to correlation functions
by means of the hexagon form factor. This technique has already been proven to
be powerful in field-theory computations, cf. refs [68, 69]. Finally, we tested our
proposal for the simplest possible set-up ⟨LOO⟩, i.e. a three-point function of two
BPS operators O and the Lagrangian L. As expected, the one-loop correction to the
protected two-point function vanishes. However, this provided a first non-trivial check,
as different contributions arise in the hexagon evaluation at g2, which only cancel in
the end.
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Part II.

Integrability in AdS3
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Chapter 4.

Review of integrability in
AdS3 × S3 × T4

Remarkably, the integrable structures arising in AdS3×S3×T4 are very similar to those
in AdS5 × S5. In the following we will review and highlight certain aspects, that will
be important in this part of the thesis. We will consider a type IIB superstring theory
on AdS3 × S3 × T4 background, which is classically integrable [55,56] and believed to
be so as well at quantum level.

One of the main differences to AdS5 is, that in the case at hand the background can
be supported by Ramond-Ramond (RR) and Neveu-Schwarz-Neveu-Schwarz (NSNS)
fluxes [59]. The amount of RR flux is measured by h > 0 and the NSNS flux by k ∈ N0

in units of the radius of AdS3, respectively. Note that the NSNS flux is quantised. We
can distinguish the following three different regimes in the corresponding two-paramter
space.

Mixed flux. In this general regime we have h > 0 and k > 0. Its integrability
properties, such as factorised scattering, were studied in refs [57–59]. Further, the dual
CFT2 is not known.

Pure RR. In this case we have k = 0 and h > 0. When there is no NSNS flux, the
background is most similar to case of AdS5 × S5. Hence, this analogy offered a starting
point to study its integrability, see ref. [10] for a review. Also in this case the dual
CFT2 is unknown.

Pure NSNS. This case is obtained for h = 0 and k > 0. Only for pure NSNS flux a
simple worldsheet CFT description exists, which is given by a supersymmetric sl(2,R)
Wess-Zumino-Witten model at level k [49–51]. For k = 1 the dual CFT2 is given by
the symmetric product orbifold of N copies of T4, namely SymN(T4) [52–54].

4.1. Light-cone gauge fixing of the bosonic string
Let us start by motivating how the isometries of the AdS3 × S3 ×T4 superstring theory
are broken by the light-cone gauge-fixing procedure. Here we will consider the simpler
example of a bosonic non-linear sigma model (NLSM), which will be sufficient to convey
the concepts involved. For more details we refer the reader to the review [10].
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The NLSM describing the bosonic part of closed strings reads

S = −h
2

∫ ℓ/2

−ℓ/2

dσ dτ
√

|γ|γαβ ∂αXµ ∂βX
ν Gµν(X) , (4.1)

where ℓ is the string length and Xµ are the target space coordinates. Further, the
worldsheet and target space metrics are given as γαβ and Gµν(X), respectively. The
conjugate momenta are then given through

pµ =
δS

δ(∂τXµ)
= −h γτβ ∂βXν Gµν(X) . (4.2)

Specialising to the background AdS3 × S3 × T4, we can pick the time-coordinate t
in AdS3 and an angle ϕ parametrising one of the big circles of S3 and introduce the
target space light-cone coordinates

X+ =
ϕ+ t

2
, X− = ϕ− t . (4.3)

The remaining coordinates are transverse coordinates X1, . . . , X8. Translations along t
and rotations in ϕ are isometries with corresponding conserved Noether charges

Ht.s. = −
∫ ℓ/2

−ℓ/2

dσ pt , J = +

∫ ℓ/2

−ℓ/2

dσ pϕ , (4.4)

where pt and pϕ are conjugate momenta. The conserved charges are the target space
energy Ht.s. and the angular momentum J. In terms of the target space light-cone
momenta, the conserved charges are given as∫ ℓ/2

−ℓ/2

dσ p+ = J−Ht.s. ,

∫ ℓ/2

−ℓ/2

dσ p− =
J+Ht.s.

2
. (4.5)

The NSLM action is invariant under Weyl rescalings and diffeomorphisms. However,
these redundancies need to be removed by choosing a specific gauge in order to study
the physical degrees of freedom. For a more detailed discussion of gauge-fixing in the
context of AdS/CFT we refer the reader to [10, 111]. The uniform light-cone gauge is
then obtained by fixing

X+ = τ , p− = 1 . (4.6)

From the second condition we find

J+Ht.s.

2
=

∫ ℓ/2

−ℓ/2

dσ p− = ℓ . (4.7)

Hence, the worldsheet size ℓ is fixed by the charges of the state after gauge fixing, i.e.
the energy Ht.s. and the angular momentum J of the state.

Further, the gauge fixing conditions imply that the worldsheet light-cone Hamiltonian
is related to the target-space energy and angular momentum through

Hl.c. = Ht.s. − J . (4.8)
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Diagonalising the light-cone Hamiltonian Hl.c. yields the spectrum of the theory.
After fixing the light-cone gauge, not all the charges generated by the isometries will

be conserved. In fact, all the conserved charges must commute with the worldsheet
Hamiltonian Hl.c.. We will study the symmetry in more detail in the following section.

4.2. The Superalgebra
The superisometries of the AdS3 × S3 × T4 metric are given by two copies of the
superalgebra psu(1, 1|2). We will use the notation

psu(1, 1|2)L ⊕ psu(1, 1|2)R , (4.9)

where we denote the copies as left and right as indicated by the subscripts. Each of
these superalgebras contains bosonic subalgebras given by a non-compact su(1, 1) and
a compact su(2) algebra. These subalgebras can be thought of as the isometries from
AdS3 and S3. Further, there are eight fermionic supercharges for each of the two copies.

Considering psu(1, 1|2)L, let us denote the three su(1, 1) generators by Lm with
m = ±, 0, as well as the three su(2) (R-symmetry) generators Jα with α = ±, 3.
Additionally, we have eight supercharges Qmαa, where the indices can take values
α = ±, a = ±,m = ±. Of course, the right copy psu(1, 1|2)R contains similar
generators, which we will indicate by tilde, i.e. L̃m, J̃α, Q̃mαa. Further, the supercharges
carry the index a = ± and transform in the fundamental representation of an su(2)•
automorphism. In fact, this automorphism is a subalgebra of so(4)T4 and can be seen
geometrically [60].

Using the raising and lowering operators, the commutation relations of the algebra
psu(1, 1|2) are given by

[L0,L±] = ±L± , [L+,L−] = 2L0 ,

[J3,J±] = ±J± , [J+,J−] = 2J3 ,

[L0,Q±αA] = ±1

2
Q±αA , [L±,Q∓αA] = Q±αA ,

[J3,Qa±A] = ±1

2
Qa±A , [J±,Qa∓A] = Qa±A ,

{Q±+A,Q±+B} = ±ϵABL± , {Q+±A,Q−±B} = ∓ϵABJ± ,

(4.10)

and finally
{Q+±A,Q−∓B} = ϵAB

(
− L0 ± J3

)
. (4.11)

For later convenience, it is also useful to construct a matrix realisation in terms of
4× 4 supermatrices

M =

(
m θ
η n

)
, (4.12)

where the 2× 2 blocks m,n have bosonic grading, while θ, η are fermionic. Using the
hermiticity condition

M† +H−1MH = 0 , with H = H−1 = diag(1,−1, 1, 1) , (4.13)
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leads to the subalgebra u(1, 1|2). Imposing the vanishing of the supertrace

strM ≡ trm− trn = 0 , (4.14)

defines the matrix algebra su(1, 1|2). This algebra also contains the central element
1 = diag(1, 1, 1, 1). To obtain psu(1, 1|2) one would have to form the quotient of
su(1, 1|2) over the u(1)-factor. However, psu(1, 1|2) has no matrix realisation. This can
be seen by imposing trM = 0, which removes 1. For a generic fermionic element Mf

of su(1, 1|2), which automatically satisfies trMf = 0, we find

tr({Mf ,Mf}) = −2 tr
(
MfH

−1M†
fH
)
< 0 , (4.15)

where we used the hermiticity condition (4.13).
The following explicit su(1, 1|2) matrix realisation for the complexified algebra will

be useful later on

L0 =
1

2


−1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

 , L+ =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 0 0

 , L− =


0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

 ,

(4.16)

J3 =
1

2


0 0 0 0
0 0 0 0
0 0 1 0
0 0 0 −1

 , J+ =


0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 , J− =


0 0 0 0
0 0 0 0
0 0 0 0
0 0 1 0

 ,

(4.17)

Q−−1 =


0 0 0 0
0 0 0 0
0 0 0 0
0 −1 0 0

 , Q++2 =


0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0

 , (4.18)

Q++1 =


0 0 0 0
0 0 0 0
1 0 0 0
0 0 0 0

 , Q−−2 =


0 0 −1 0
0 0 0 0
0 0 0 0
0 0 0 0

 , (4.19)

Q+−1 =


0 0 0 0
0 0 0 0
0 0 0 0
1 0 0 0

 , Q−+2 =


0 0 0 1
0 0 0 0
0 0 0 0
0 0 0 0

 , (4.20)

Q−+1 =


0 0 0 0
0 0 0 0
0 −1 0 0
0 0 0 0

 , Q+−2 =


0 0 0 0
0 0 −1 0
0 0 0 0
0 0 0 0

 . (4.21)

When checking the commutation relations, the equalities in eq. (4.10) hold up to a
multiple of the identity 1.

Next, the Weyl-Cartan basis of the algebra takes the following form

[hi, hj] = 0 , [ei, fj] = δijhj, [hi, ej] = Aijej, [hi, fj] = −Aijfj, (4.22)
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with the roots given by

h1 = −L0 − J3, e1 = +Q+−1 f1 = +Q−+2,

h2 = 2J3, e2 = +J+ f2 = +J−,

h3 = −L0 − J3, e3 = +Q+−2 f3 = −Q−+1 ,

(4.23)

and the Cartan matrix

A =

 0 −1 0
−1 +2 −1
0 −1 0

 . (4.24)

BPS condition and left Hamiltonian. In this notation, the BPS condition for
the algebra is

−L0 − J3 ≥ 0 . (4.25)

This positive-semidefinite operator of the left algebra can be used to define the left
Hamiltonian. Indeed it can be shown that this is the contribution of left charges to the
light-cone Hamiltonian Hl.c. from eq. (4.8) [60,112]

H ≡ −L0 − J3 . (4.26)

The supercharges commuting with the left Hamiltonian H are

Q1 ≡ f1 = +Q−+2, Q2 ≡ f3 = −Q−+1,

S1 ≡ e1 = +Q+−1, S2 ≡ e3 = +Q+−2.
(4.27)

It is easy to see, that they form the algebra psu(1|1)⊕2 ⊕ u(1){
QA, SB

}
= δAB H ≥ 0 . (4.28)

Moreover, the charges satisfy the Hermiticity conditions

(Q+−1)
† = +Q−+2 , (Q−+2)

† = +Q+−1 ,

(Q−+1)
† = −Q+−2 , (Q+−2)

† = −Q−+1 ,
(4.29)

or written equivalently
(QA)† = SA , (SA)

† = QA . (4.30)

Weyl-Cartan basis and Hamiltonian for the right algebra. Let us also consider
the second copy of psu(1, 1|2)R. The matrix representation is identical to the one given
in eqs. (4.16) to (4.21). It will however be convenient to pick a slightly different
Weyl-Cartan basis. In terms of the generators, we choose

h̃1 = +L̃0 + J̃3, ẽ1 = +Q̃−+1 f̃1 = +Q̃+−2,

h̃2 = −2L̃0, ẽ2 = +L̃+ f̃2 = −L̃−,

h̃3 = +L̃0 + J̃3, ẽ3 = +Q̃−+2 f̃3 = −Q̃+−1 ,

(4.31)

62



with the Cartan matrix

Ã =

 0 +1 0
+1 −2 +1
0 +1 0

 . (4.32)

Since the algebra (4.9) is factorised, we can choose the positive roots in either copy
of the algebra independently. In order to consider off-shell states the symmetry needs
to be extended by two central charges, which vanish on-shell. These two central charges
will couple the left and right algebras [61] and hence our choice of positive roots will
prove convenient.

In a similar manner, we define the right contribution to the light-cone Hamiltonian

H̃ ≡ −L̃0 − J̃3 ≥ 0 , (4.33)

and find the charges commuting with H̃ as

Q̃1 ≡ +e1 = +Q̃−+1, Q̃2 ≡ +e3 = +Q̃−+2,

S̃1 ≡ −f1 = −Q̃+−2, S̃2 ≡ −f3 = +Q̃+−1,
(4.34)

so that
{Q̃A, S̃

B} = δA
B H̃ ≥ 0 . (4.35)

Like before we have the Hermiticity conditions given through

(Q̃A)† = S̃A, (S̃A)
† = Q̃A. (4.36)

4.3. Centrally extended off-shell symmetry algebra
Similar to AdS5/CFT4 [19,113], the algebra relevant for integrability features a central
extension to the superisometry algebra. This central extension annihilates all physical
states. However, it acts nontrivially on the individual worldsheet excitations that make
up a physical state. Referring to the spin-chain language, it acts on the magnons
that form the Bethe state. The construction in the context of AdS5/CFT4 is reviewed
in [8, 111].

In the following we are interested in the central extension of the symmetries com-
muting with H and H̃ and will use the results from [112]. In our notation, the algebra
is {

QA, SB

}
= H δAB ,

{
Q̃A, S̃

B
}
= H̃ δA

B . (4.37)

Introducing two central charges P and K we have{
QA, Q̃B

}
= P δAB ,

{
SA , S̃

B
}
= K δA

B , (4.38)

where the Hermiticity conditions discussed above imply that for a unitary representation
K† = P and P† = K. This central extension is also the reason for our different choices
of simple roots in eq. (4.27) and eq. (4.34). Since K is central and if QA is a negative
root, then Q̃A needs to be a positive root, and similarly for S̃A and SA.

Factorisation of the centrally extended algebra. The algebra we have is
psu(1|1)⊕4 centrally extended. This algebra has a factorised structure, which we
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can see by introducing the following psu(1|1)⊕2 centrally extended algebra{
q, s

}
= H,

{
q̃, s̃
}
= H̃ ,

{
q, q̃

}
= P,

{
s, s̃
}
= K . (4.39)

We can then obtain the larger algebra by setting

Q1 ≡ q⊗ 1 , Q2 ≡ Σ⊗ q, S1 ≡ s⊗ 1 , S2 ≡ Σ⊗ s , (4.40)

where Σ is the graded identity, Σ = δij(−1)Fj and

Q̃1 ≡ q̃⊗ 1 , Q̃2 ≡ Σ⊗ q̃, S̃1 ≡ s̃⊗ 1 , S̃2 ≡ Σ⊗ s̃ . (4.41)

Note that the indices are lowered for the second copy. To show that this gives the same
psu(1|1)⊕4 centrally extended as above, we use that on any supercharge we have

ΣqΣ = −q . (4.42)

Indices are raised and lowered with the Levi-Civita symbol with ε12 = −ε12 = 1.
Let us note, that psu(1|1)⊕4 centrally extended plays a role similar to su(2|2)⊕2 in

AdS5/CFT4. The factorisation is quite useful to simplify computations. For instance
it is sufficient to work out a su(2|2)-invariant S matrix [19] which served as a building
block of the full su(2|2)⊕2-invariant S matrix, cf. Sec. 2.2.3. Similarly, the algebra in
eq. (4.39) plays the role that su(2|2) plays for AdS5/CFT4.

4.4. Short representations of the light-cone symmetry
algebra

We have identified the algebra psu(1|1)⊕4, which commutes with the left and right
Hamiltonians H and H̃, as well as its central extension. We will now construct its short
representation. Worldsheet excitations will transform in these representations [60, 61].
It is convenient to start from the smaller algebra (4.39).

We are interested in the short representations of the smaller algebra (4.39). Let us
denote the highest weight state as |ϕ⟩, and let us say that q is a lowering operator.
Then s is a raising operator and it follows that we must have s |ϕ⟩ = 0. From the
commutation relation involving P, we see that q̃ must also act as a raising operator on
q |ϕ⟩. Assuming that q̃ |ϕ⟩ = 0 and s̃(q |ϕ⟩) = 0, we obtain a short representation, so
that no new states are generated and the representation is two-dimensional. In that
case we can write

0 =
[
s̃q̃q− s̃q̃q

]
|ϕ⟩ =

[
(s̃q̃+ q̃s̃)q− q̃s̃q− s̃(q̃q+ qq̃)

]
|ϕ⟩

=
[
H̃q− q̃s̃q− s̃P

]
|ϕ⟩ =

[
H̃q− s̃P

]
|ϕ⟩ .

(4.43)

Taking the anticommutator of this expression with s we can find a condition which
depends only on the central charges. Since the central charges act diagonally, this
condition holds for the whole representation and reads

HH̃ = PK . (4.44)
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Note, that if for instance P = 0 it must be either H = 0 or H̃ = 0, i.e. the representation
is chiral. In conclusion, the only short representations (besides singlets) are two
dimensional, they consist of one boson and one fermion, and we indicate them as (1|1).

A short representation with highest weight state |ϕ⟩ is parametrised by the eigenvalues
of the central charges given by P,K,H, H̃, respectively. The shortening condition (4.44)
implies that, if the representation is unitary,

P K ≥ 0 . (4.45)

For this reason for unitary representations we introduce the notation

C ≡ P , C† ≡ K . (4.46)

The representation has the form

q |ϕ⟩ = a |φ⟩, s |φ⟩ = a∗ |ϕ⟩, s̃ |ϕ⟩ = b∗ |φ⟩, q̃ |φ⟩ = b |ϕ⟩ , (4.47)

where a, b ∈ C are called the representation parameters. Note that we chose this
representation as

|ϕ⟩ = highest-weight state , |φ⟩ = lowest-weight state , (4.48)

where |ϕ⟩ and |φ⟩ must have opposite statistics. We can now obtain two distinct types
of representations by choosing |ϕ⟩ to be a boson or a fermion, i.e. we have

ϕ→ ϕB ≡ Boson , φ→ φF ≡ Fermion , (4.49)

or viceversa
ϕ→ ϕF ≡ Fermion , φ→ φB ≡ Boson. (4.50)

Finally the central charges can be expressed in terms of the representation parameters
as

C = C 1 = ab1, C† = C∗ 1 = (ab)∗ 1,

H = H 1 = |a|2 1, H̃ = H̃ 1 = |b|2 1.
(4.51)

Moreover, a, b can be rewritten as a functions of (C,H, H̃).

Physical values of the central charges. The central charges can be written in
terms of the coupling constants and the momentum p of the magnon [112] as

C = +i
h

2
(eip − 1)e2iξ , C∗ = −ih

2
(e−ip − 1)e−2iξ , (4.52)

where the representation coefficient ξ is related to an automorphism of the algebra.
As we will see below ξ is important to establish the coproduct of the algebra, since it
labels the representation. Further, ξ can also be interpreted as arising from the fields’
boundary conditions [111]. The central charges vanish for physical states, i.e. when
p = 0 mod 2π. As stated above, the parameter h is a property of the background and
measures the amount of Ramond-Ramond flux. In what follows, we will be interested
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in the most-symmetric coproduct [112], chosen as

C = C∗ = −h sin(p/2) . (4.53)

Combining the left and right Hamiltonians H and H̃, we obtain

E ≡ Hl.c. = H+ H̃ = −L0 − L̃0 − J3 − J̃3 ≥ 0 ,

M ≡ H− H̃ = −L0 + L̃0 − J3 + J̃3 .
(4.54)

The eigenvalues of M should be quantised in integers for physical states. Considering
a bosonsic state this can easily be seen as the AdS3 and S3 spins are integer. For
fermionic states, both spins are half-integer, so that the total spin in M is integer again.
It turns out that it takes the following eigenvalues [58,59]

M = |a|2 + |b|2 = k

2π
p+m, m ∈ Z . (4.55)

Again, k = 1, 2, 3, . . . is a property of the string background and measures the amount
of NSNS flux, which is quantised. Further, we can use the shortening condition (4.44)
to express the last central charge E as

E2 =M2 + |C|2 , E =

√(
m+

k

2π
p

)2

+ h2 sin2 p

2
. (4.56)

In this dispersion relation, we see that m plays the role of a mass. Therefore it is
convenient to introduce the following nomenclature:

Massless representation: m = 0. Here we have that E = 0 at p = 0 for any
value of h and k.

Left representation: m = +1,+2, . . . . At p = 0 we have that E = m and
M = m, which implies H = m > 0 and H̃ = 0, hence the name left.

Right representation: m = −1,−2, . . . . At p = 0 we have that E = −m and
M = m, which implies H = 0 and H̃ = −m > 0, hence the name right.

Further, the case |m| = 1 corresponds to fundamental massive particles. These can
then form bound states, which have masses |m| = 2, 3, . . . [58, 61].

4.5. Particle content of the theory
In order to describe the particle content of the theory, let us consider the irreducible
representations of psu(1|1)⊕2 centrally extended. In fact, four irreducible representations
will be important in what follows. We denote them by

ρL = (ϕB
L |φF

L) , ρR = (ϕF
R|φB

R) , ρo = (ϕB
o |φF

o ) , ρ′o = (ϕF
o |φB

o ) , (4.57)

where the first state is always the highest-weight state,

|ϕ∗
∗⟩ = highest-weight state , |φ∗

∗⟩ = lowest-weight state . (4.58)
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Here ρL and ρR are the left and right representation, respectively. Further, we have
two massless representations ρo and ρ′o. The representations take the same form up to
relabelling the representation coefficients. Written out explicitly, this yields

q |ϕB
L⟩ = aL |φF

L⟩, s |φF
L⟩ = a∗L |ϕB

L⟩, s̃ |ϕB
L⟩ = b∗L |φF

L⟩, q̃ |φF
L⟩ = bL |ϕB

L⟩ ,

q |ϕF
R⟩ = aR |φB

R⟩, s |φB
R⟩ = a∗R |ϕF

R⟩, s̃ |ϕF
R⟩ = b∗R |φB

R⟩, q̃ |φB
R⟩ = bR |ϕF

R⟩ ,

q |ϕB
o ⟩ = ao |φF

o ⟩, s |φF
o ⟩ = a∗o |ϕB

o ⟩, s̃ |ϕB
o ⟩ = b∗o |φF

o ⟩, q̃ |φF
o ⟩ = bo |ϕB

o ⟩ ,

q |ϕF
o ⟩ = ao |φB

o ⟩, s |φB
o ⟩ = a∗o |ϕF

o ⟩, s̃ |ϕF
o ⟩ = b∗o |φB

o ⟩, q̃ |φB
o ⟩ = bo |ϕF

o ⟩ .

(4.59)

Similarly to AdS5, the explicit form of the representation coefficients a∗, b∗ can be
given in terms of Zhukovski variables. In order to do this, let us introduce the different
sets of Zhukovsky variables given by

aL = eiξηL,p , bL = −eiξ e
−ip/2

x−L,p
ηL,p , a∗L = e−iξe−ip/2ηL,p , b∗L = −e−iξ 1

x+L,p
ηL,p,

bR = eiξηR,p , aR = −eiξ e
−ip/2

x−R,p
ηR,p , b∗R = e−iξe−ip/2ηR,p , a∗R = −e−iξ 1

x+R,p
ηR,p,

ao = eiξηo,p , bo = −eiξ e
−ip/2

x−o,p
ηo,p , a∗o = e−iξe−ip/2ηo,p , b∗o = −e−iξ 1

x+o,p
ηo,p ,

(4.60)
where the parameter η is always of the form

η∗,p = eip/4
√
ih

2
(x−∗,p − x+∗,p) , (4.61)

with the star symbols indicating the respective representation L, R, o. Moreover, the
Zhukovsky variables satisfy the shortening conditions

x+L,p +
1

x+L,p
− x−L,p −

1

x−L,p
=

2i
(
1 + k

2π
p
)

h
,

x+R,p +
1

x+R,p
− x−R,p −

1

x−R,p
=

2i
(
1− k

2π
p
)

h
,

x+o,p +
1

x+o,p
− x−o,p −

1

x−o,p
=

2i
(
0 + k

2π
p
)

h
,

(4.62)

and can be parametrised as follows

x±L,p =
e±ip/2

2h sin
(
p
2

)((1 + k
2π
p
)
+

√(
1 + k

2π
p
)2

+ 4h2 sin2
(
p
2

))
,

x±R,p =
e±ip/2

2h sin
(
p
2

)((1− k
2π
p
)
+

√(
1− k

2π
p
)2

+ 4h2 sin2
(
p
2

))
,

x±o,p =
e±ip/2

2h sin
(
p
2

)((0 + k
2π
p
)
+

√(
0 + k

2π
p
)2

+ 4h2 sin2
(
p
2

))
.

(4.63)

It is easy to check, that this parametrisation satisfies the shortening condition in
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AdS3 Bosons S3 Bosons T4 Bosons Fermions

Left, m = +1 Z(p) Y (p) ΨA(p)

Right m = −1 Z̃(p) Ỹ (p) Ψ̃A(p)

Massless m = 0 TAȦ(p) χȦ(p), χ̃Ȧ(p)

Table 4.1.: The fundamental excitations of AdS3 × S3 × T4 are eight bosons and eight
fermions. We arranged them here according to their representation as well
as their geometrical interpretation.

eq. (4.62) as well as

x+∗,p −
1

x+∗,p
− x−∗,p +

1

x−∗,p
=

2i E

h
. (4.64)

Naively one might expect that the left and right representation are simply related by
sending m→ −m. However, the parametrisation of the representation coefficients and
of the Zhukovski variables in eq. (4.63) is genuinely different. For physical particles
the Zhukovski variables are chosen to lie outside of the unit disk, i.e. |x±∗,p| ≥ 1 and
hence the different parametrisation [70,114].

In addition, for the massless representation we used the limit

ao = lim
m→0

aL , bo = lim
m→0

bL , x±o,p = lim
m→0

x±L,p . (4.65)

Similarly, we could have used the right representation instead. This results in flipping
the sign of p in (4.63) and exchanging ao ↔ bo in (4.60). This does not change the
central charges and hence the two representations obtained in the two limits must
be isomorphic. This may be seen through a change of basis, e.g. rescaling only the
lowest-weight state we have

|φ⟩ → σp |φ⟩ , (4.66)

where we introduced the momentum dependent sign factor

σp ≡
[aL

aR

]
m→0

= −sgn
[
sin p/2

]
. (4.67)

Moreover, the following identity will be useful

lim
m→0

(
x±L (p) x

∓
R (p)

)
= 1 . (4.68)

This is valid for any k. For the massless parametrisation we have that x+o (p) = 1/x−o (p),
which is valid at k = 0.

The fundamental particle content of the theory is summarised in Tab. 4.1. It can be
arranged in representations constructed out of the ρ±, ρ0, ρ′0 representations discussed
above. We want to use these short, two-dimensional representations ρ to construct
the representations ϱ of psu(1|1)⊕4 centrally extended. To achieve this, we can for
instance set ϱ = ρ± ⊗ ρ±, or ϱ = ρ0 ⊗ ρ0. However, to obtain a valid representation the
two psu(1|1)⊕2 representations appearing in the tensor product need to have the same
central charge. Hence, a representation of the form e.g. ϱ = ρ± ⊗ ρ∓ or ϱ = ρ± ⊗ ρ0

68



would not be a representation of the centrally extended psu(1|1)⊕4 algebra.

The left representation. To construct the left representation with M = +1 we
consider

ϱ+ = ρ+ ⊗ ρ+ . (4.69)

We define the following states

|Y (p)⟩ = |ϕB
L(p)⊗ ϕB

L(p)⟩ ,
|Ψ1(p)⟩ = |φF

L(p)⊗ ϕB
L(p)⟩ , |Ψ2⟩ = |ϕB

L(p)⊗ φF
L(p)⟩ ,

|Z(p)⟩ = |φF
L(p)⊗ φF

L(p)⟩ .
(4.70)

From this definition we can see that the supercharges act in the following way

|Y (p)⟩

|Ψ1(p)⟩ |Ψ2(p)⟩

|Z(p)⟩

Q1, S̃1 Q2, S̃2

Q2, S̃2 Q1, S̃1

(4.71)

In the figure only the lowering operators are indicated to maintain readability. Further,
the states |Ψ1(p)⟩ , |Ψ2(p)⟩ transform as a su• doublet. By using the definitions of
Sec. 4.3 we find the action of the supercharges as

QA|Y (p)⟩ = aL(p) |ΨA(p)⟩ , QA|ΨB(p)⟩ = εABaL(p) |Z(p)⟩ ,
SA|ΨB(p)⟩ = δA

B a∗L(p) |Y (p)⟩ , SA|Z(p)⟩ =− εAB a
∗
L(p) |ΨB(p)⟩ ,

S̃A|Y (p)⟩ = b∗L(p) |ΨA(p)⟩ , S̃A|ΨB(p)⟩ = εABb∗L(p) |Z(p)⟩ ,
Q̃A|ΨB(p)⟩ = δA

B bL(p) |Y (p)⟩ , Q̃A|Z(p)⟩ =− εAB bL(p) |ΨB(p)⟩ ,

(4.72)

where only the non-vanishing actions are listed. Recall our convention ε12 = −ε12 = +1.

The right representation. For the right representation we have

ϱ− = ρ− ⊗ ρ− , (4.73)

and M = −1. As before we define

|Z̃(p)⟩ = |ϕF
R(p)⊗ ϕF

R(p)⟩ ,
|Ψ̃1(p)⟩ = |φB

R(p)⊗ ϕF
R(p) , |Ψ̃2(p)⟩ = −|ϕF

R(p)⊗ φB
R(p)⟩ ,

|Ỹ (p)⟩ = |φB
R(p)⊗ φB

R(p)⟩ ,
(4.74)

where the minus sign stems from the definitions of the right supercharges, which
are canonically defined with lower su(2)• indices, cf. eq. (4.41). Again, the states
|Ψ̃1(p)⟩ , |Ψ̃2(p)⟩ transform as a doublet under su•. Acting with the lowering operators,
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we can arrange the representation as above

|Z̃(p)⟩

|Ψ̃1(p)⟩ |Ψ̃2(p)⟩

|Ỹ (p)⟩

Q1, S̃1 Q2, S̃2

Q2, S̃2 Q1, S̃1

(4.75)

where the representation takes the form

QA|Z̃(p)⟩ = aR(p) |Ψ̃A(p)⟩ , QA|Ψ̃B(p)⟩ =− εABaR(p) |Ỹ (p)⟩ ,
SA|Ψ̃B(p)⟩ = δA

B a∗R(p) |Z̃(p)⟩ , SA|Ỹ (p)⟩ = εAB a
∗
R(p) |Ψ̃B(p)⟩ ,

S̃A|Z̃(p)⟩ = b∗R(p) |Ψ̃A(p)⟩ , S̃A|Ψ̃B(p)⟩ =− εABb∗R(p) |Ỹ (p)⟩ ,
Q̃A|Ψ̃B(p)⟩ = δA

B bR(p) |Z̃(p)⟩ , Q̃A|Ỹ (p)⟩ = εAB bR(p) |Ψ̃B(p)⟩ .

(4.76)

Notice that there is a discrete left-right symmetry [59, 70] when swapping the particles

|Y ⟩ ↔ |Ỹ ⟩ , |ΨA⟩ ↔ |Ψ̃A⟩ , |Z⟩ ↔ |Z̃⟩ . (4.77)

The massless representations. There are two massless representations with M = 0,
which carry a charge under the su(2)◦ algebra, that commutes with all symmetries
introduced. As noted above, this su(2)◦ emerges from the decomposition of so(4)T4 .
For the massless representations we write

ϱȦ0 =
(
ρ0 ⊗ ρ′0

)
⊕
(
ρ′0 ⊗ ρ0

)
, Ȧ = 1, 2 , (4.78)

imposing that the two modules ρ0 ⊗ ρ′0 and ρ′0 ⊗ ρ0 must also transform as a doublet
under su(2)◦. This is fine since the su(2)◦ commutes with psu(1|1)⊕4 centrally extended.
In fact, as in ref. [115], the same representation ρ0 ⊗ ρ′0 can be used for both Ȧ = 1
and Ȧ = 2. This amounts to a change of basis. However, it will be useful later on to
consider two distinct representations. Hence, we have eight states

|χ1̇(p)⟩ = |ϕB
0(p)⊗ ϕF

0(p)⟩ ,
|T 1̇1(p)⟩ = |φF

0(p)⊗ ϕF
0(p)⟩ , |T 1̇2(p)⟩ = |ϕB

0(p)⊗ φB
0(p)⟩ ,

|χ̃1̇(p)⟩ = |φF
0(p)⊗ φB

0(p)⟩ ,

(4.79)

and

|χ2̇(p)⟩ = i|ϕF
0(p)⊗ ϕB

0(p)⟩ ,
|T 2̇1(p)⟩ = i|φB

0(p)⊗ ϕB
0(p)⟩ , |T 2̇2(p)⟩ = −i|ϕF

0(p)⊗ φF
0(p)⟩ ,

|χ̃2̇(p)⟩ = −i|φB
0(p)⊗ φF

0(p)⟩ .

(4.80)
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Note that we have also introduced an overall i in the latter representation. Again,
this will be convenient later on, as it simplifies the notation. Of course, it can also
be addressed by introducing a suitable normalisation later on. As for the massive
representations, we see that the lowering operators act in the same way on either of
the massless representation

|χ1̇(p)⟩

|T 1̇1(p)⟩ |T 1̇2(p)⟩

|χ̃1̇(p)⟩

Q1, S̃1 Q2, S̃2

Q2, S̃2 Q1, S̃1

|χ2̇(p)⟩

|T 2̇1(p)⟩ |T 2̇2(p)⟩

|χ̃2̇(p)⟩

Q1, S̃1 Q2, S̃2

Q2, S̃2 Q1, S̃1

J◦

(4.81)

Here, we also indicated the su(2)◦ symmetry. Regardless of the value of the index
Ȧ = 1, 2 the representation takes the form

QA|χȦ(p)⟩ = ao(p) |T ȦA(p)⟩ , QA|T ȦB(p)⟩ = εABao(p) |χ̃Ȧ(p)⟩ ,

SA|T ȦB(p)⟩ = δA
B a∗o(p) |χȦ(p)⟩ , SA|χ̃Ȧ(p)⟩ =− εAB a

∗
o(p) |T ȦB(p)⟩ ,

S̃A|χȦ(p)⟩ = b∗o(p) |T ȦA(p)⟩ , S̃A|T ȦB(p)⟩ = εABb∗o(p) |χ̃Ȧ(p)⟩ ,

Q̃A|T ȦB(p)⟩ = δA
B bo(p) |χȦ(p)⟩ , Q̃A|χ̃(p)⟩ =− εAB bo(p) |T ȦB(p)⟩ .

(4.82)

Multi-particle representation. Since we would like to consider multi-particle states
it is useful to understand the multi-particle representation. For instance the S matrix
considered in the next section is an operator acting on two-particle states. Let us
start by considering a two-particle state obtained through the tensor product of two
one-particle representations, i.e. |Ξ1(p1)Ξ2(p2)⟩ = Ξ1(p1)⊗ Ξ2(p2) with Ξj a particle in
one of the representations considered above. The action of a generic bosonic generator
J is then given by the trivial coproduct through

∆(J) = J⊗ 1+ 1⊗ J . (4.83)

Thus, the generator acts on the first and second particle in the state, respectively.
When considering the central charge C, we expect it to depend on the total momentum
of the two-particle state. From eq. (4.52) it follows that

∆(C) |Ξ1(p1)Ξ2(p2)⟩ = −ih
2
(ei(p1+p2) − 1)e2iξ |Ξ1(p1)Ξ2(p2)⟩ . (4.84)
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In order to obtain the most symmetric coproduct from eq. (4.53) we need to choose
ξ = −p1+p2

4
. Using the definition of the coproduct from eq. (4.83), we obtain

∆(C) |Ξ1(p1)Ξ2(p2)⟩ = −ih
2

(
(eip1 − 1)e2iξ1 + (eip2 − 1)e2iξ2

)
|Ξ1(p1)Ξ2(p2)⟩ (4.85)

This reproduces the expression of the central charge in eq. (4.84) for

ξ1 = −p1 + p2
4

ξ2 = −−p1 + p2
4

or ξ1 = −p1 − p2
4

ξ2 = −p1 + p2
4

. (4.86)

Denoting the four dimensional space spanned by one excitation as V , we can label the
representation by V(pj, ξj). The central charge acts on the two-particle state then as

∆(C)(p1, p2) = C(p1, ξ1)⊗ 1+ 1⊗C(p2, ξ2) . (4.87)

For the supercharges we can write corresponding expressions. Here we have to take
the graded identity Σ into account, leading to

∆(Q)(p1, p2) = Q(p1, ξ1)⊗ 1+Σ⊗Q(p2, ξ2) , (4.88)

and similarly for Q̃,S, S̃.
Instead of using the trivial coproduct and keeping track of the ξj , we can also modify

the coproduct itself, introducing the braided coproduct ∆B. More explicitly, we can
write for the two-particle representation

∆B(Q)(p1, p2) = Q(p1)⊗ 1+ e
i
2
p1Σ⊗Q(p2) ,

∆B(S)(p1, p2) = S(p1)⊗ 1+ e−
i
2
p1Σ⊗ S(p2) ,

(4.89)

where all the ξj are set to be equal. The appearance of the non-trivial coproduct is a
hint towards the mathematical structure of a Hopf algebra, which plays an important
role in AdS/CFT and integrable models, cf. [116,117].

We can also generalise the above to multi-particle states. This can be achieved by
repeatedly applying the twisted coproduct. In terms of the ξj we have

ξ1 = −p1 + · · ·+ pn
4

, ξ2 − ξ1 =
p1
2
, . . . ξn − ξn−1 =

pn−1

2
, (4.90)

which is the generalisation of the first solution from eq. (4.86). Analogously, the second
choice can be generalised.

4.6. Scattering matrix
The construction of the S matrix of AdS3 × S3 × T4 closely resembles the construction
in AdS5×S5. The full psu(1|1)⊕4 S matrix can be obtained by taking the graded tensor
product [112] of two copies of the psu(1|1)⊕2 S matrix of [70],

S = S⊗̂Ś, (4.91)
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which can be defined in terms of the S matrix elements M by

(M⊗̂Ḿ)IÍ,JJ́
KḰ,LĹ

= (−1)FḰFL+FJFÍMIJ
KLḾÍ J́

ḰĹ
. (4.92)

Up to the dressing factors, the psu(1|1)⊕2 S matrix can be bootstrapped by demanding
it to commute with the symmetry generators [112]. The action of the S matrix on a
two-particle representation is then given by

S : V(p1, ξ1)⊗ V(p2, ξ2) → V(p2, ξ2)⊗ V(p1, ξ1) , (4.93)

where the action of the S matrix exchanges the first and second set from eq. (4.86).
However, comparing the constructions, there are two main differences. Firstly, here

we have psu(1|1)⊕2 centrally extended rather than the centrally extended su(2|2) algebra.
Secondly, instead of dealing with a single irreducible representation we now have four
irreducible representations. In AdS5 × S5 we have four-dimensional representations
of su(2|2) leading to 42 = 16 dimensional representations of su(2|2)⊕2. Here we start
from two-dimensional representations instead. As a result of having four irreducible
representations, the S matrix will consist of sixteen blocks with as many dressing
factors. Fortunately unitarity and symmetries reduce the number of independent
dressing factors to four.

In the following we will introduce the scattering matrices between psu(1|1)⊕2 centrally
extended representations that play a role in the next chapter. It can be checked explicitly
that this S Matrix also fulfils the unitarity conditions and the Yang-Baxter equation,
cf. Sec. 2.2.3.

Left-left scattering. The scattering matrix for particles in the ρL representation of
psu(1|1)⊕2 centrally extended is given by

S|ϕB
L,pϕ

B
L,q⟩ = ALL

pq |ϕB
L,qϕ

B
L,p⟩, S|ϕB

L,pφ
F
L,q⟩ = BLL

pq |φF
L,qϕ

B
L,p⟩+ CLL

pq |ϕB
L,qφ

F
L,p⟩,

S|φF
L,pφ

F
L,q⟩ = F LL

pq |φF
L,qφ

F
L,p⟩, S|φF

L,pϕ
B
L,q⟩ = DLL

pq |ϕB
L,qφ

F
L,p⟩+ ELL

pq |φF
L,qϕ

B
L,p⟩,

(4.94)

where the matrix elements are determined up to an overall prefactor ΣLL
pq ,

ALL
pq = ΣLL

pq , BLL
pq = ΣLL

pqe
− i

2
p
x+L,p − x+L,q
x−L,p − x+L,q

,

CLL
pq = ΣLL

pqe
− i

2
pe+

i
2
q
x−L,q − x+L,q
x−L,p − x+L,q

ηL,p

ηL,q

, DLL
pq = ΣLL

pqe
+ i

2
q
x−L,p − x−L,q
x−L,p − x+L,q

,

ELL
pq = Cpq , F LL

pq = −ΣLL
pqe

− i
2
pe+

i
2
q
x+L,p − x−L,q
x−L,p − x+L,q

.

(4.95)

We include a minus sign in F LL
pq to account for the fermion permutation. Therefore, in

the free theory the S matrix reduces to the graded permutation operator.

Right-right scattering. For the scattering matrix of particles in the ρR representa-
tion

S|φB
R,pφ

B
R,q⟩ = ARR

pq |φB
R,qφ

B
R,p⟩, S|φB

R,pϕ
F
R,q⟩ = BRR

pq |ϕF
R,qφ

B
R,p⟩+ CRR

pq |φB
R,qϕ

F
R,p⟩,

S|ϕF
R,pϕ

F
R,q⟩ = F RR

pq |ϕF
R,qϕ

F
R,p⟩, S|ϕF

R,pφ
B
R,q⟩ = DRR

pq |φB
R,qϕ

F
R,p⟩+ ERR

pq |ϕF
R,qφ

B
R,p⟩,

(4.96)
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with

ARR
pq = ΣRR

pq , BRR
pq = ΣRR

pq e
− i

2
p
x+R,p − x+R,q
x−R,p − x+R,q

,

CRR
pq = ΣRR

pq e
− i

2
pe+

i
2
q
x−R,q − x+R,q
x−R,p − x+R,q

ηR,p

ηR,q

, DRR
pq = ΣRR

pq e
+ i

2
q
x−R,p − x−R,q
x−R,p − x+R,q

,

ERR
pq = Cpq , F RR

pq = −ΣRR
pq e

− i
2
pe+

i
2
q
x+R,p − x−R,q
x−R,p − x+R,q

.

(4.97)

Left-right scattering. Scattering particles in the left and right representation, we
have

S|ϕB
L,pφ

B
R,q⟩ = ALR

pq |φB
R,qϕ

B
L,p⟩+BLR

pq |ϕF
R,qφ

F
L,p⟩, S|ϕB

L,pϕ
F
R,q⟩ = CLR

pq |ϕF
R,qϕ

B
L,p⟩,

S|φF
L,pϕ

F
R,q⟩ = ELR

pq |ϕF
R,qφ

F
L,p⟩+ F LR

pq |φB
R,qϕ

B
L,p⟩, S|φF

L,pφ
B
R,q⟩ = DLR

pq |φB
R,qφ

F
L,p⟩,

(4.98)

with

ALR
pq = ΣLR

pq e
− i

2
p
1− x+L,px

−
R,q

1− x−L,px
−
R,q

, BLR
pq = ΣLR

pq e
− i

2
pe−

i
2
q 2i

h

ηL,pηR,q

1− x−L,px
−
R,q

,

CLR
pq = ΣLR

pq , DLR
pq = ΣLR

pq e
− i

2
pe−

i
2
q
1− x+L,px

+
R,q

1− x−L,px
−
R,q

,

ELR
pq = −ΣLR

pq e
− i

2
q
1− x−L,px

+
R,q

1− x−L,px
−
R,q

, F LR
pq = −BLR

pq .

(4.99)

Right-left scattering. The right-left S matrix is related to the left-right one by
unitarity. It reads

S|φB
R,pϕ

B
L,q⟩ = ARL

pq |ϕB
L,qφ

B
R,p⟩+BRL

pq |φF
L,qϕ

F
R,p⟩, S|φB

R,pφ
F
L,q⟩ = CRL

pq |φF
L,qφ

B
R,p⟩,

S|ϕF
R,pφ

F
L,q⟩ = ERL

pq |φF
L,qϕ

F
R,p⟩+ F RL

pq |ϕB
L,qφ

B
R,p⟩, S|ϕF

R,pϕ
B
L,q⟩ = DRL

pq |ϕB
L,qϕ

F
R,p⟩,

(4.100)

with

ARL
pq = ΣRL

pq e
+ i

2
q
1− x+R,px

−
L,q

1− x+R,px
+
L,q

, BRL
pq = ΣRL

pq

2i

h

ηR,pηL,q

1− x+R,px
+
L,q

,

CRL
pq = ΣRL

pq e
+ i

2
pe+

i
2
q
1− x−R,px

−
L,q

1− x+R,px
+
L,q

, DRL
pq = ΣRL

pq ,

ERL
pq = −ΣRL

pq e
+ i

2
p
1− x−R,px

+
L,q

1− x+R,px
+
L,q

, F RL
pq = −BRL

pq .

(4.101)

Massless scattering. The massless representation coefficients may be obtained either
from ρL or ρR by taking the m→ 0 limit. Similarly, the relevant matrix part from the
scattering matrix elements can be constructed from the limit. We choose to obtain the
massless S-matrix elements from the left-left scattering. Additional caution is needed
when it comes to the statistics of the excitations, since in massless representations we
may encounter fermionic highest-weight states. This leads to different signs, which we
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spell out here, starting by recalling the standard scattering matrix

S|ϕB
o,pϕ

B
o,q⟩ = ALL

pq |ϕB
o,qϕ

B
o,p⟩, S|ϕB

o,pφ
F
o,q⟩ = BLL

pq |φF
o,qϕ

B
o,p⟩+ CLL

pq |ϕB
o,qφ

F
o,p⟩,

S|φF
o,pφ

F
o,q⟩ = F LL

pq |φF
o,qφ

F
o,p⟩, S|φF

o,pϕ
B
o,q⟩ = DLL

pq |ϕB
o,qφ

F
o,p⟩+ ELL

pq |φF
o,qϕ

B
o,p⟩.

(4.102)

When both particles are in the ρ̃L representation we have, instead

S|φB
o,pφ

B
o,q⟩ = −F LL

pq |φB
o,qφ

B
o,p⟩, S|φB

o,pϕ
F
o,q⟩ = DLL

pq |ϕF
o,qφ

B
o,p⟩ − ELL

pq |φB
o,qϕ

F
o,p⟩,

S|ϕF
o,pϕ

F
o,q⟩ = −ALL

pq |ϕF
o,qϕ

F
o,p⟩, S|ϕF

o,pφ
B
o,q⟩ = BLL

pq |φB
o,qϕ

F
o,p⟩ − CLL

pq |ϕF
o,qφ

B
o,p⟩.

(4.103)

In analogy with the above, we could have also defined AL̃L̃ ≡ −F LL, BL̃L̃ ≡ DLL,
C L̃L̃ ≡ −ELL, DL̃L̃ ≡ BLL, E L̃L̃ ≡ −CLL, and F L̃L̃ ≡ −ALL. Similarly, in the mixed case
we have

S|ϕB
o,pφ

B
o,q⟩ = BLL

pq |φB
o,qϕ

B
o,p⟩ − CLL

pq |ϕF
o,qφ

F
o,p⟩, S|ϕB

o,pϕ
F
o,q⟩ = ALL

pq |ϕF
o,qϕ

B
o,p⟩,

S|φF
o,pϕ

F
o,q⟩ = −DLL

pq |ϕF
o,qφ

F
o,p⟩+ ELL

pq |φB
o,qϕ

B
o,p⟩, S|φF

o,pφ
B
o,q⟩ = −F LL

pq |φB
o,qφ

F
o,p⟩,

(4.104)

and finally

S|φB
o,pϕ

B
o,q⟩ = DLL

pq |ϕB
o,qφ

B
o,p⟩+ ELL

pq |φF
o,qϕ

F
o,p⟩, S|φB

o,pφ
F
o,q⟩ = −F LL

pq |φF
o,qφ

B
o,p⟩,

S|ϕF
o,pφ

F
o,q⟩ = −BLL

pq |φF
o,qϕ

F
o,p⟩ − CLL

pq |ϕB
o,qφ

B
o,p⟩, S|ϕF

o,pϕ
B
o,q⟩ = ALL

pq |ϕB
o,qϕ

F
o,p⟩.

(4.105)

Mixed-mass scattering. When considering the massless limit of the representation
parameters only for one of the variables, we obtain the mixed-mass S matrix. Again,
we have to be cautious regarding the various signs that may arise due to the grading
of the highest weight state. Below we list those related to the ρ′0 ⊗ ρ− and ρ− ⊗ ρ′0
representations, since the ones related to ρ′0 ⊗ ρ+ and ρ+ ⊗ ρ′0 are the same as the ones
given in eqs. (4.105) and (4.104), respectively. We have

S|φB
R,pφ

B
o,q⟩ = +CRo

pq |φB
o,qφ

B
R,p⟩, S|φB

R,pϕ
F
o,q⟩ = +ARo

pq |ϕF
o,qφ

B
R,p⟩ − BRo

pq |φB
o,qϕ

F
R,p⟩,

S|ϕF
R,pϕ

F
o,q⟩ = −DRo

pq |ϕF
o,qϕ

F
R,p⟩, S|ϕF

R,pφ
B
o,q⟩ = −ERo

pq |φB
o,qϕ

F
R,p⟩+ F Ro

pq |ϕF
o,qφ

B
R,p⟩,
(4.106)

and

S|φB
o,pφ

B
R,q⟩ = +DoR

pq |φB
R,qφ

B
o,p⟩, S|φB

o,pϕ
F
R,q⟩ = −EoR

pq |ϕF
R,qφ

B
o,p⟩ − F oR

pq |φB
R,qϕ

F
o,p⟩,

S|ϕF
o,pϕ

F
R,q⟩ = −CoR

pq |ϕF
R,qϕ

F
o,p⟩, S|ϕF

o,pφ
B
R,q⟩ = +AoR

pq |φB
R,qϕ

F
o,p⟩+BoR

pq |ϕF
R,qφ

B
o,p⟩.
(4.107)

4.7. Dressing factors and the crossing equation
In a relativistic theory we can go from the s- to the t-channel by crossing some of the
particles involved. The crossing symmetry allows us to replace an incoming particle by
an outgoing antiparticle or vice versa. Analogously, in what follows it will be useful to
consider particles whose momentum is analytically continued to the crossed region, i.e.

p→ −p , E(p) → −E(p) . (4.108)
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Following the notation of ref. [38] we indicate the crossed momentum as p2γ. This is
justified by the fact that pγ represents the continuation of momentum to the mirror
region [26] which loosely speaking can be considered as half crossing. We will give
details on this continuation to the mirror theory in Sec. 6.2, where we need it for the
thermodynamic Bethe ansatz equations in the pure RR sector. For a more detailed
discussion of the mirror and crossed regions we refer the readers to [111] and, in the
context of AdS3 × S3 × T4, to [59,61,62].

Parametrisation after crossing. Under the crossing transformation we have [59]

x±L (p
2γ) =

1

x±R (p)
, x±R (p

2γ) =
1

x±L (p)
. (4.109)

Hence, the Zhukovsky variables and any rational function thereof map to themselves
under a 4γ-shift. Instead, the functions ηL(p) and ηR(p) behave as it follows,

ηL(p
±2γ) =

±i
x+R (p)

ηR(p) , ηR(p
±2γ) =

±i
x+L (p)

ηL(p) . (4.110)

Crossing for massless modes is essentially given by the m→ 0 limit of the massive case
and by recalling the identity (4.68). We have

x±o (p
2γ) = x∓o (p) , ηo(p

±2γ) = ∓iσp e−ip/2ηo(p) . (4.111)

Charge conjugation matrix. So far, we considered states with E > 0 (cf. eq. (4.56))
which are related to unitary representations. However, we can obtain another rep-
resentation by transforming all the charges and supercharges J → −Jst, where st is
the supertransposition defined on a matrix as M st

jk = (−1)(Fj+1)FkMkj. This flips the
signs of the central charges [111], i.e. this representation has E < 0. Introducing
the charge conjugation matrix C allows to relate the crossing symmetry with the
supertransposition.

For the supercharges the charge conjugation matrix C satisfies [10]

e+
i
2
(4ξ+p)[q(p̄)]st = −C q(p)C−1 , e−

i
2
(4ξ+p)[s(p̄)]st = −C s(p)C−1 , (4.112)

and similarly for q̃, s̃. From the respective anticommutators we get

e+i(4ξ+p)[C(p̄)]st = −CC(p)C−1 , e−i(4ξ+p)[C†(p̄)]st = −CC†(p)C−1 , (4.113)

while
H(p̄) = −CH(p)C−1 , H̃(p̄) = −C H̃(p)C−1 . (4.114)

In the last formula the supertransposition is omitted because the charges are bosonic,
and moreover they are diagonal. Considering the four representations of psu(1|1)⊕2 in
the basis

(ϕB
L , φ

F
L, ϕ

F
R, φ

B
R, ϕ

B
o , φ

F
o , ϕ

F
o , φ

B
o ) , (4.115)
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the charge conjugation matrix is given by

C =



0 0 0 1
0 0 i 0
0 i 0 0
1 0 0 0

0 0 0 1
0 0 iσ 0
0 iσ 0 0
1 0 0 0


, σ = −sgn

[
sin p/2

]
. (4.116)

Crossing equation. Coming back to representations of psu(1|1)⊕4 c.e., we will
denote the crossing matrix for the larger algebra by C in the following. The crossing
equation is then given by [10,111]

C(1)St1(p2γ, q)C†
(1) = S−1(p, q) , (4.117)

where C(1) = C ⊗ 1 with the charge conjugation matrix C. The superscript t1 indicates
the transposition of the S-matrix with respect to the first space. Transposing in the
second space leads to a similar crossing equation

C(2)St2(p, q−2γ)C†
(2) = S−1(p, q) , (4.118)

where the charge conjugation C(2) = 1⊗ C acts on the second space, correspondingly.
Another way to obtain the crossing equation is by scattering a Beisert singlet |112⟩ [19].

The singlet is annihilated by all the central charges. Hence it can be realised as a
particle-antiparticle pair where the two excitations have momenta p1 and p2 = p2γ1 .
The scattering of the singlet with any excitation Ξ should be trivial, i.e.

S(p1, p3)S(p
2γ
1 , p3) |112Ξ3⟩ = |Ξ3112⟩ . (4.119)

For eq. (4.117) or equivalently eq. (4.119) to hold, the prefactors Σ∗∗
pq introduced in

the S matrix elements need to satisfy the crossing equations. Further they must obey
unitarity constraints and need to have the correct analytic structure to give a sensible
S-matrix for the full psu(1|1)⊕4 c.e. S matrix. It is possible to rewrite the prefactors
Σ∗∗

pq in the form [61,62]

(
ΣLL

pq

)2
=
(
ΣRR

pq

)2
=

ei(p−q)

σ∗∗(p, q)2
x−∗,p − x+∗,q
x+∗,p − x−∗,q

1− 1
x−
∗,px

+
∗,q

1− 1
x+
∗,px

−
∗,q

,

(
ΣLR

pq

)2
=

eip

σLR(p, q)2
1− x−L,px

−
R,q

1− x+L,px
+
R,q

1− 1
x−
L,px

+
R,q

1− 1
x+
L,px

−
R,q

,

(
ΣRL

pq

)2
=

e−iq

σRL(p, q)2
1− x+R,px

+
L,q

1− x−R,px
−
L,q

1− 1
x−
R,px

+
L,q

1− 1
x+
R,px

−
L,q

,

(4.120)
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and for the massless case

(
Σoo

pq

)2
= − e

i
2
(p−q)

σoo(p, q)2
x−o,p − x+o,q
x+o,p − x−o,q

. (4.121)

Moreover, for the mixed-mass cases we have

Σ•◦
Lo(p, q)

2 = e+i p
2
x−L,p − x+o,q
x+L,p − x+o,q

ζ(p, q)
1

σ•◦
Lo(p, q)

2
,

Σ◦•
oL(p, q)

2 = e−i q
2
x−o,p − x+L,q
x−o,p − x−L,q

ζ(p, q)
1

σ◦•
oL(p, q)

2
,

Σ•◦
Ro(p, q)

2 = e−i( p
2
+q)

(1− x−R,px
+
o,q)(1− x+R,px

+
o,q)

(1− x−R,px−o,q)
2

ζ̃(p, q)
1

σ•◦
Ro(p, q)

2
,

Σ◦•
oR(p, q)

2 = e+i(p+ q
2
)
(1− x−o,px

+
R,q)(1− x−o,px

−
R,q)

(1− x+o,px
+
R,q)2

ζ̃(p, q)
1

σ◦•
oR(p, q)

2
,

(4.122)

where we introduced the functions

ζ(p, q) =

√
x−∗,p − x−∗,q

x+∗,p − x−∗,q

x+∗,p − x+∗,q

x−∗,p − x+∗,q
,

ζ̃(p, q) =

√
1− x+∗,px

+
∗,q

1− x+∗,px
−
∗,q

1− x−∗,px
−
∗,q

1− x−∗,px
+
∗,q
.

(4.123)

All of the above formulae are written in terms of some functions σ∗∗ which have branch
cuts on the Zhukovski plane. The transformations of the Zhukovski variables are
given above. Using these expressions, we can find from eq. (4.117) and eq. (4.118) the
crossing equations for the functions σ∗∗ given by

σLL(p+2γ, q)2σRL(p, q)2 = gRL(p, q) , σLL(p, q)2σRL(p+2γ, q)2 = g̃LL(p, q) ,

σRR(p+2γ, q)2σLR(p, q)2 = gLR(p, q) , σRR(p, q)2σLR(p2γ, q)2 = g̃RR(p, q) ,

σLL(p, q−2γ)2σLR(p, q)2 =
1

g̃LL(q2γ, p)
, σLL(p, q)2σLR(p, q−2γ)2 =

1

gRL(q2γ, p)
,

σRR(p, q−2γ)2σRL(p, q)2 =
1

g̃RR(q2γ, p)
, σRR(p, q)2σRL(p, q−2γ)2 =

1

gLR(q2γ, p)
,

(4.124)
where the rational functions g(p, q) and g̃(p, q) were introduced as

g∗∗(p, q) = e−2iq

(
1− 1

x+
∗,px

+
∗,q

)(
1− 1

x−
∗,px

−
∗,q

)
(
1− 1

x+
∗,px

−
∗,q

)2 x−∗,p − x+∗,q
x+∗,p − x−∗,q

,

g̃∗∗(p, q) = e−2iq
(x−∗,p − x+∗,q)

2

(x+∗,p − x+∗,q)(x
−
∗,p − x−∗,q)

1− 1
x−
∗,px

+
∗,q

1− 1
x+
∗,px

−
∗,q

.

(4.125)
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Similarly, for the massless phase we have that

σoo(p2γ, q)2σoo(p, q)2 =
x+o,p − x−o,q
x+o,p − x+o,q

x−o,p − x+o,q
x−o,p − x−o,q

, (4.126)

and for the mixed-mass phases,

σ•◦
Ro(p

2γ, q)2σ•◦
Lo(p, q)

2 =
x−L,p − x+o,q
x+L,p − x+o,q

x+L,p − x−o,q
x−L,p − x−o,q

= σ◦•
oL(q

2γ, p)2σ◦•
oL(q, p)

2 ,

σ•◦
Lo(p

2γ, q)2σ•◦
Ro(p, q)

2 =
1− 1

x+
R,px

+
o,q

1− 1
x+
R,px

−
o,q

1− 1
x−
R,px

−
o,q

1− 1
x−
R,px

+
o,q

= σ◦•
oR(q

2γ, p)2σ◦•
oR(q, p)

2 .

(4.127)

For the detailed description of the cuts of the dressing factors σ∗∗ we refer the reader
to the review [10] and the original literature [61–63]. In the following Chapter 5 on
hexagon form factors we will not use the explicit form of the dressing factors, but
merely their properties under crossing and unitarity. However, for the thermodynamic
Bethe ansatz in Chapter 6 we will need the dressing factors more explicitly.

4.8. Chapter summary
In this chapter we reviewed a selection of important results of integrability in AdS3 ×
S3 ×T4 string theory. In Sec. 4.1 we fixed the light-cone Hamiltonian and proceeded in
Sec. 4.2 to study the symmetry algebra psu(1, 1|2)L ⊕ psu(1, 1|2)R of the theory. After
light-cone fixing, the algebra factorises to psu(1|1)⊕4, the central extension of which
was considered in Sec. 4.3. It is worth emphasising again, that this symmetry algebra
plays a similar role in AdS3/CFT2 as su(2|2)⊕2 plays in AdS5/CFT4. In Sec. 4.4 short
representations were considered in order to describe the particle content of the theory
in Sec. 4.5. There we considered the different representations, namely left, right and
massless, as well as multi-particles representations. Further, we explicitly gave the
psu(1|1)⊕2 S matrix of [70] in Sec. 4.6 for later convenience. The S matrix consists of
blocks capturing the scattering between the different representations and can be found
from the symmetry up to an overall dressing phase. Finally, in Sec. 4.7, we considered
crossing symmetry and worked out the crossing equations, which the dressing phases
of the S matrix need to obey.
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Chapter 5.

Hexagon form factors in AdS3
In Sec. 3.1 we reviewed the hexagon proposal for AdS5 × S5 superstrings. The goal is
to construct three- [38] and higher-point functions [41,45] of generic operators by using
integrability techniques. This follows a similar idea as in the spectral problem. There,
one goes from a closed string to a decompactified worldsheet on which the S matrix
may be defined [111]. Similarly, one wants to consider such a decompactification for
three-point functions by cutting it into two hexagonal patches. As described in Sec. 3.1
the respective patches contain pieces of each of the three closed-string states, see
Fig. 5.1. In the case of AdS5 × S5, it was possible [38] to bootstrap the form factors
of generic operators by starting from the light-cone gauge symmetries that helped
determine the S matrix. It is therefore natural to ask whether a similar construction
may be applied to the setup we have at hand in AdS3 × S3 × T4. In this section
we will perform the bootstrap construction and use further constraints to propose a
self-consistent multi-particle hexagon form factor. We will further perform a simple
test, calculating a protected three-point function and comparing to known results.

5.1. The supertranslation operator and the hexagon
subalgebra

In the following we will consider three-point functions in AdS3 × S3 × T4 with the
generic configuration, where one operator is placed at the origin t = 0, the second at
t = 1 and the third is sent to infinity t = ∞. Recall that in the case of a two-point
function and the S matrix the original psu(1, 1|2)⊕2 supersymmetry was broken to
psu(1|1)⊕4 by gauge fixing. In the dual CFT this comes from picking a reference
two-point function involving one half-BPS operator O(0) and its conjugate O†(∞).
Similarly, in the case of three-point functions we can ask, what the maximal amount of
preserved supersymmetry is. Let us use a similar construction to that of ref. [118].

We begin by choosing a reference half-BPS scalar operator O(0) at t = 0. It follows
from Sec. 4.2 that this operator is a highest-weight state with

−L0 = J3 = j , −L̃0 = J̃3 = j . (5.1)

We are now interested in constructing translated operators O(t). In terms of generators
a translation is given by

T = iL− + iL̃− , (5.2)

where the L− and L̃− are the left and right lowering operators of the psu(1, 1|2)⊕2

algebra. For the three-point function, we are interested in constructing three translated
operators in a way, that preserves as much (super)symmetry as possible. As it turns
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Figure 5.1.: A three-point function can be cut into two hexagons, containing pieces of
the three closed-string states.

out, this requires combining the translation with an R-symmetry rotation [38,118]. Let
us introduce the supertranslation generator as

Tκ = iL− + iL̃− + κJ− + κ J̃− , (5.3)

where κ ∈ C is some free constant, which will be determined below. We may introduce
distinct κ and κ̃ for the left and right part of the algebra. Fortunately, we will be able
to carry out the bootstrap procedure with a single κ = κ̃. The twisted translation
generator Tκ allows us to construct a one parameter family of operators Ot,κ sitting at
position t starting from O(0), namely

Ot,κ = etTκ O(0) e−tTκ . (5.4)

At the same time, we have that the operator is t-rotated in R-symmetry space. For
instance, sending the operator to infinity yields Ot=∞,κ = O†(∞).

Similarly to picking a two-point function in the spectrum problem, also here we
expect some of the psu(1|1)⊕4 centrally extended symmetry described in Sec. 4.3 to
be broken. We can construct four supercharges Q1,Q2 and Q̃1, Q̃2 in psu(1|1)⊕4 with
which the supertranslation generator Tκ from eq. (5.3) commutes. The explicit form
of these charges is given by

QA = SA − i

κ
ϵAB QB,

Q̃A = Q̃A − iκ ϵAB S̃B .
(5.5)

Further, the anticommutation relations can be worked out as

{QA,QA} = 0, {Q1,Q2} = − i

κ

(
{S1, ϵ21Q

1}+ {ϵ12Q2,S2}
)
= 0 , (5.6)

using the relations from Sec. 4.3. Finally, we have{
QA, Q̃B

}
= −iκ{SA, ϵBCS̃

C} − i

κ
{ϵACQ

C , Q̃B} = − i

κ
ϵAB

(
P− κ2K

)
, (5.7)

where P and K are the central extensions of the psu(1|1)⊕4 algebra which are not in
psu(1, 1|2)⊕2.

For a unitary representation of the psu(1|1)⊕4 algebra the central charges P and K
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should be hermitian conjugate to each other. Further it is possible and convenient to
take them to be real, cf. eq. (4.53) in Sec. 4.3. Introducing the central charge

C ≡ − i

κ

(
P− κ2K

)
, (5.8)

we have that on a multi-excitation state involving momenta p1, . . . pN ,

C |p1, . . . pN⟩ =
(κ2 − 1)h

iκ
sin

(
p1 + · · ·+ pN

2

)
|p1, . . . pN⟩ . (5.9)

From the definition in eq. (5.5) and their commutation relations, we see, that the
charges commuting with the supertranslation generator Tκ from eq. (5.3) form a
diagonal psu(1|1)⊕2

D subalgebra of the centrally extended psu(1|1)⊕4. In the following
we will refer to this diagonal psu(1|1)⊕2

D as the hexagon subalgebra.

5.2. Bootstrap principle
For a three-point functions we need to consider three images of the half-BPS operator
O(0). Without loss of generality we may take the images under the superstranslation
with t = 0, t′ = 1 and t′′ = ∞, owing to conformal symmetry. The first operator, sitting
at t = 0, will be O(0), and is the highest-weight state in its R-symmetry multiplet.
The third operator will be Ot=∞,κ = O†(∞), sitting at t = ∞ and being the lowest
weight state in the R-symmetry multiplet. The second operator will be sitting at
t = 1 and it will be neither the highest- nor the lowest-weight state in the R-symmetry
multiplet. The symmetry algebra preserved by this configuration is generated by the
four supercharges QA and Q̃A, i.e. the hexagon subalgebra. Following [38] we shall
assume that this is also the symmetry preserved by the hexagon operator h. Indicating
the form factor of the operator h with any state Ψ as ⟨h|Ψ⟩, it follows that

⟨h|QA|Ψ⟩ = 0 , ⟨h|Q̃A|Ψ⟩ = 0 , (5.10)

where the supercharges QA, Q̃A act on the state. Similarly, also anticommutators of
these charges annihilate the form factor

⟨h|C|Ψ⟩ = 0 . (5.11)

The bootstrap condition (5.11) takes a particular simple form, since the central charge C
acts diagonally and independently on the particles’ flavour. From eq. (5.9) it follows,
whenever the Ramond-Ramond coupling h ̸= 0, C only annihilates physical states,
i.e. on-shell. This is also the case for P and K in the spectral problem. However, by
setting κ2 = 1 eq. (5.11) is also fulfilled for off-shell states. Let us recall that κ is a
free parameter in eq. (5.3) and we can choose its value most suitable for the bootstrap
procedure. Following the reasoning of [38], we must require κ2 = 1. Otherwise, the
hexagon form factor in eq. (5.10) would annihilate all non-physical states, which would
be too strong a requirement. Similarly to the S matrix, we want to define an off-shell
object that acts on just a subset of excitations of a physical state. Therefore, we will
set

κ = 1 . (5.12)
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Acting with the charges in eq. (5.10) on the ket yields a set of linear constraints on
the hexagon form factor. We will now use these constraints to bootstrap the one- and
two-particle form factor.

In the following we will use the bootstrap principle of eq. (5.10) to fix the matrix part
of the hexagon form factor up to an overall phase factor. We will explicitly consider the
case where |Ψ⟩ is a single-particle state, as well as two-particle states. Unfortunately,
the symmetry is not constraining enough to fix multi-particle states. However, using
factorized scattering and the Yang-Baxter equation, we will propose a self-consistent
ansatz for multi-particle states.

5.2.1. One-particle states

We will use the representation of the psu(1|1)⊕4 c.e. excitations of the theory in terms
of tensor products of excitations in psu(1|1)⊕2 c.e. as discussed in Sec. 4.5. For instance,
we can represent the massive left representation as |Y ⟩ = |ϕB

L ⊗ ϕB
L⟩, |Ψ1⟩ = |φF

L ⊗ ϕB
L⟩,

|Ψ2⟩ = |ϕB
L ⊗ φF

L⟩ and |Z⟩ = |φF
L ⊗ φF

L⟩. To act on these excitations, it is useful to
rewrite the supercharges of the hexagon subalgebra given in eq. (5.5) in terms of the
same decomposition,

Q1 = s⊗ 1+ iΣ⊗ q, Q2 = Σ⊗ s− iq⊗ 1,

Q̃1 = q̃⊗ 1+ iΣ⊗ s̃, Q̃2 = Σ⊗ q̃− i s̃⊗ 1,
(5.13)

where Σ is again the fermion sign operator. Imposing the bootstrap equation (5.10) we
get relations of the form

⟨h|Q1|Y (p)⟩ = 0 ⇒ ⟨h|Ψ2(p)⟩ = 0 , (5.14)

which yields that the one-particle form factor ⟨h|Ψ2(p)⟩ has to vanish. Similarly, it
is easy to find that ⟨h|Ψ1(p)⟩ = 0. This is also expected from the su(2)• symmetry.
We note, that we have more bootstrap equations than undetermined one-particle form
factors. However, they all lead to one single relation

⟨h|Y (p)⟩ = i
aL(p)

aL(p)∗
⟨h|Z(p)⟩ = i ⟨h|Z(p)⟩ , (5.15)

where aL(p) is the representation coefficient introduced in Sec. 4.4. Since the equations
we are imposing are linear, we are not able to fix the overall normalisation of the form
factor. For the other representations, the bootstrap principle yields analogous results

⟨h|Yp⟩ = i ⟨h|Zp⟩, ⟨h|Z̃p⟩ = −i ⟨h|Ỹp⟩,
⟨h|χ1̇

p⟩ = i ⟨h|χ̃1̇
p⟩, ⟨h|χ2̇

p⟩ = i ⟨h|χ̃2̇
p⟩,

(5.16)

while the remaining form factors vanish,

⟨h|ΨA
p ⟩ = 0 , ⟨h|Ψ̃A

p ⟩ = 0 , ⟨h|T̃AȦ
p ⟩ = 0 . (5.17)
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Without loss of generality, we normalise the form factor so that

⟨h|Yp⟩ = 1 , ⟨h|Zp⟩ = −i , ⟨h|Ỹp⟩ = 1 , ⟨h|Z̃p⟩ = −i ,
⟨h|χ1̇

p⟩ = 1 , ⟨h|χ̃1̇
p⟩ = −i , ⟨h|χ2̇

p⟩ = 1 , ⟨h|χ̃2̇
p⟩ = −i .

(5.18)

Only highest and lowest weight one-particle form factors are non-vanishing. This
leads in the massless case to one-particle form factors involving fermions. Note that our
choice in eq. (5.18) also ensures left-right symmetry for the massive as well as su(2)◦
symmetry for the massless one-particle form factors.

5.2.2. Two-particle states

We can determine the hexagon form factor for two-particle states by explicitly evaluating
the bootstrap constraint from eq. (5.10). At this point it is worth recalling that the
hexagon subalgebra that we are exploiting is a diagonal psu(1|1)⊕2

D subalgebra in
psu(1|1)⊕4. We will see, that the two-particle form-factor may be expressed in terms of
the Borsato–Ohlsson-Sax–Sfondrini S matrix [70]. This does not come as a surprise as
the scattering matrix was also bootstrapped from two short psu(1|1)⊕2 representations.
The analogous also happens in AdS5 × S5, where the hexagon subalgebra is a diagonal
psu(2|2)D and relates the hexagon to the Beisert S matrix [19], cf. also Sec. 3.1. A
solution of all bootstrap equations for the two-particle form factor may be written
explicitly in terms of the S-matrix elements of Sec. 4.6. Note that, as expected, we are
unable to fix the overall prefactor for each choice of irreducible representations. We
will denote the prefactors as h(p, q) and study their properties in Sec. 5.4.

Form factor for two massive excitations. Solving the bootstrap conditions (5.10)
explicitly, we have to distinguish, whether the two exitations are left or right. When
they are both left we have

⟨h|YpYq⟩ = +ALL
pq , ⟨h|ZpZq⟩ = +F LL

pq ,

⟨h|YpZq⟩ = −iBLL
pq , ⟨h|ZpYq⟩ = −iDLL

pq ,

⟨h|Ψ2
pΨ

1
q⟩ = +iCLL

pq , ⟨h|Ψ1
pΨ

2
q⟩ = −iCLL

pq .

(5.19)

When both particles are right we get

⟨h|ỸpỸq⟩ = +ARR
pq , ⟨h|Z̃pZ̃q⟩ = +F RR

pq ,

⟨h|ỸpZ̃q⟩ = −iBRR
pq , ⟨h|Z̃pỸq⟩ = −iDRR

pq ,

⟨h|Ψ̃1
pΨ̃

2
q⟩ = −iCRR

pq , ⟨h|Ψ̃2
pΨ̃

1
q⟩ = +iCRR

p,q .

(5.20)

In the case of mixed chirality, we find for the left–right form factors

⟨h|YpỸq⟩ = +ALR
pq , ⟨h|Ψ1

pΨ̃
2
q⟩ = −F LR

pq ,

⟨h|Ψ2
pΨ̃

1
q⟩ = −BLR

pq , ⟨h|ZpỸq⟩ = −iDLR
pq ,

⟨h|YpZ̃q⟩ = −iCLR
pq , ⟨h|ZpZ̃q⟩ = +ELR

pq .

(5.21)
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Finally, for right–left we have

⟨h|ỸpYq⟩ = +ARL
pq , ⟨h|Ψ̃2

pΨ
1
q⟩ = −F RL

pq ,

⟨h|Ψ̃1
pΨ

2
q⟩ = −BRL

pq , ⟨h|Z̃pYq⟩ = −iDRL
pq ,

⟨h|ỸpZq⟩ = −iCRL
pq , ⟨h|Z̃pZq⟩ = +ERL

pq .

(5.22)

One massless and one massive particle. In this case we have left and right
massive particles and massless particles carrying the su(2)◦ charge. Further, we have
to distinguish their order, i.e. massive–massless or massless–massive. Fortunately, it
turns out that the hexagon form factor is blind to the su(2)◦ charge, which allows us
to write the formulae in a more compact way. This is not surprising, as the hexagon
subalgebra which we are using here commutes with su(2)◦.

In the case of one left-massive particle and one massless particle we obtain

⟨h|YpχȦ
q ⟩ = +ALo

pq , ⟨h|Zpχ̃
Ȧ
q ⟩ = +F Lo

pq ,

⟨h|Ypχ̃Ȧ
q ⟩ = −iBLo

pq , ⟨h|Zpχ
Ȧ
q ⟩ = −iDLo

pq ,

⟨h|Ψ2
pT

Ȧ1
q ⟩ = +iCLo

pq , ⟨h|Ψ1
pT

Ȧ2
q ⟩ = −iCLo

pq .

(5.23)

Similarly, for one right-massive particle and one massless particle we have

⟨h|ỸpχȦ
q ⟩ = +ARo

pq , ⟨h|Ψ̃2
pT

Ȧ1
q ⟩ = −F Ro

pq ,

⟨h|Ψ̃1
pT

Ȧ2
q ⟩ = −BRo

pq , ⟨h|Z̃pχ
Ȧ
q ⟩ = −iDRo

pq ,

⟨h|Ỹpχ̃Ȧ
q ⟩ = −iCRo

pq , ⟨h|Z̃pχ̃
Ȧ
q ⟩ = +ERo

pq .

(5.24)

Let us also list the mixed-mass form factors when particles are in the reversed order,

⟨h|χȦ
p Yq⟩ = +AoL

pq , ⟨h|χ̃Ȧ
p Zq⟩ = +F oL

pq ,

⟨h|χȦ
p Zq⟩ = −iBoL

pq , ⟨h|χ̃Ȧ
p Yq⟩ = −iDoL

pq ,

⟨h|T Ȧ2
p Ψ1

q⟩ = −iCoL
pq , ⟨h|T Ȧ1

p Ψ2
q⟩ = +iCoL

pq ,

(5.25)

and finally
⟨h|χȦ

p Ỹq⟩ = +AoR
pq , ⟨h|T Ȧ1

p Ψ̃2
q⟩ = +F oR

pq ,

⟨h|T Ȧ2
p Ψ̃1

q⟩ = +BoR
pq , ⟨h|χ̃Ȧ

p Ỹq⟩ = −iDoR
pq ,

⟨h|χȦ
p Z̃q⟩ = −iCoR

pq , ⟨h|χ̃Ȧ
p Z̃q⟩ = +EoR

pq .

(5.26)

Two massless particles. The massless two-particle form factor is again blind to the
su(2)◦, which allows us to compactly write

⟨h|χȦ
p χ

Ḃ
q ⟩ = +Aoo

pq, ⟨h|χ̃Ȧ
p χ̃

Ḃ
q ⟩ = +F oo

pq ,

⟨h|χȦ
p χ̃

Ḃ
q ⟩ = −iBoo

pq, ⟨h|χ̃Ȧ
p χ

Ḃ
q ⟩ = −iDoo

pq,

⟨h|T Ȧ1T Ḃ2⟩ = +iCoo
pq, ⟨h|T Ȧ2T Ḃ1⟩ = −iCoo

pq.

(5.27)

Let us stress here again that the eqs. (5.10) we have imposed are linear. The results
obtained above for the different blocks, i.e. left–left, left–right, etc., are only determined
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up to an overall factor. Hence, multiplying each block by an arbitrary function, yields
new solutions. Similarly, in the S matrix bootstrap the matrix elements are fixed up to
the prefactors ΣLL

p,q, ΣLR
p,q, etc. Hence, additional constraints are necessary for finding

these phase factors. We shall use further constraints later to determine the hexagon
prefactors h(p, q), see Sec. 5.4.

The possibility of writing the formulae in such a compact way is already a sign of
the symmetry structure underlying the form factor. We shall further investigate this in
the next section.

5.2.3. General form of the two-particle hexagon form factor

We found, that the two-particle hexagon form factors are related to S matrix elements. It
seems therefore natural to ask, whether we can summarize it in a way that encompasses
the different representations. To obtain this, let us denote a generic psu(1|1)⊕4 excitation
in the tensor product form of Sec. 4.3 as

Ξaá ≡ ξa ⊗ ξ́á , (5.28)

where the prime denotes the second entry of the tensor product. Here ξa and ξ́á could
transform under any of the representations which we encountered in Sec. 4.5, i.e. ρ±,
ρ0 or ρ′0. The information of the representation is hidden in the indices a and á for
sake of readability. Then, we can relate the two-particle hexagon form factor to the
S matrix as

⟨h|Ξaá
p Ξbb́

q ⟩ = KpKq(−1)(Fa+Fá)Fb

[
|ξbqξap⟩ ⊗ S|ξ́áp ξ́ b́q⟩

]
= (−1)(Fa+Fá)Fb S áb́

d́ć
(p, q)KpKq

[
|ξbqξap⟩ ⊗ |ξ́d́q ξ́ ćp⟩

]
,

(5.29)

where we have introduced the contraction operator

Kp ≡
(
hY

∂

∂ϕ́B
L(p)

∂

∂ϕB
L(p)

+ hZ
∂

∂φ́F
L(p)

∂

∂φF
L(p)

)
+
(
hỸ

∂

∂φ́B
R(p)

∂

∂φB
R(p)

+ hZ̃
∂

∂ϕ́F
R(p)

∂

∂ϕF
R(p)

)
+
(
hχ1

∂

∂ϕ́F
o (p)

∂

∂ϕB
o (p)

+ hχ̃1

∂

∂φ́B
o (p)

∂

∂φF
o (p)

)
+
(
hχ2

∂

∂ϕ́B
o (p)

∂

∂ϕF
o (p)

+ hχ̃2

∂

∂φ́F
o (p)

∂

∂φB
o (p)

)
.

(5.30)

Here we also introduced the short-hand notation for the one-particle hexagon form
factors of eq. (5.18) as hY = ⟨h|Y ⟩, etc.

Let us elaborate on this notation, as in the first equality in eq. (5.29) we rearrange the
excitations and group them with respect to their corresponding factor of the diagonal
symmetry algebra. This reordering leads to picking up appropriate fermion signs.
Hence we define

Fa =

{
0 if ξa is a boson
1 if ξa is a fermion

and Fá =

{
0 if ξ́á is a boson
1 if ξ́á is a fermion

(5.31)
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We then scatter the primed particles by using the psu(1|1)⊕2
c.e. S matrix. Depending

on the indices á, b́, we have to use the S matrix in the appropriate representation,
e.g. the respective blocks for ρL ⊗ ρL, ρL ⊗ ρ′o, etc. This yields the relative S matrix
elements, which now additionally contain a prefactor háb́(p, q), that explicitly depends
on the representation. Finally, we act with the contraction operator. From eq. (5.30)
we see that Kp simply picks out the one-particle states with a non-trivial hexagon form
factor and assigns them the respective value, i.e. Kp|Ξaá(p)⟩ = ⟨h|Ξaá⟩. While such an
operator is not necessary in AdS5 × S5, it becomes important here. The reason is that
one-particle hexagon form factors in the massless representations are non-vanishing
for particles with fermionic statistics. This creates a potential ambiguity for massless
particles whenever we want to contract multi-particle states. Indeed, by introducing
the contraction operator this can be circumvented as the commutator [Kp,Kq] does
not vanish for massless particles due to the statistics. The graded differential operator
Kp will make it easier to properly account for signs from the statistics. Acting with the
contraction operator in eq. (5.29) and keeping track of the statistics we can perfectly
reproduce the results which we listed above.

It is worth stressing that this prescription can also be applied to the hexagon
in AdS5 × S5, cf. the discussion in Sec. 3.1, which is compatible with the original
proposal [38].

5.2.4. Many-particle states

In principle we can also impose eq. (5.10) for three- and higher-particle states. While
the symmetry is constraining enough to fix the form factor completely for two-particle
states (up to the scalar prefactor for each choice of representations), it is not sufficient
to fix the coefficients for a higher number of particles. Therefore, let us utilise the result
that the two-particle solution can be written in terms of a factorised S matrix [70, 115].
Then the Yang-Baxter equation allows us to write a self-consistent ansatz which is
guaranteed to satisfy all symmetry requirements. This follows the approach in ref. [38]
for the proposal of a multi-particle hexagon in AdS5 × S5. We set〈

h
∣∣Ξa1á1

p1
Ξa2á2
p2

. . .ΞaN áN
pN

〉
≡

≡ (−1)F12···N K12···N

[∣∣ξaNpN . . . ξa2p2 ξa1p1 〉⊗ S12···N
∣∣ξ́á1p1 ξ́á1p1 . . . ξ́áNpN 〉] , (5.32)

where
F12···N ≡

∑
1≤i<j≤N

(Fai + Fái)Faj , K12···N ≡ Kp1Kp2 · · ·KpN , (5.33)

and S12···N is the N -particle S matrix, which factorizes and hence the Yang-Baxter
equation can be used. Again, it is worth remarking that the contraction operator K
can also be amended to the case of AdS5×S5 and, despite the apparent difference from
the original proposal of [38], it is perfectly equivalent to that.

5.3. Representations of the hexagon algebra and
crossing

Let us consider more closely the structure of the hexagon subalgebra, which is given by
psu(1|1)⊕2

D without any central extension. As stated above, this emerges as a sort of
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diagonal subalgebra of psu(1|1)⊕4 c.e., see for instance eq. (5.5). Further, we found that
the two-particle hexagon form factor from Sec. 5.2.2 is related to the Borsato–Ohlsson-
Sax–Sfondrini psu(1|1)⊕2 c.e. S matrix [70, 115]. We would now like to take a closer
look at the tensor product decomposition of these representations. For this we will use
that the AdS3 × S3 ×T4 symmetries and representations can be factorised as described
in Sec. 4.3. Using the short hand notation introduced above, we can again indicate a
psu(1|1)⊕4 state as Ξaá and a generic psu(1|1)⊕2 state as either ξa or ξ́á depending on
its embedding in the (psu(1|1)⊕2)⊗2 decomposition. Let us now recall the form of the
generators of the hexagon subalgebra QA, Q̃A in terms of this factorisation given in
eq. (5.13). Rewriting the charges Q2 and Q̃2 slightly by multiplying with i for later
convenience, we obtain

Q1 = s⊗ 1+ iΣ⊗ q, iQ2 = q⊗ 1+ iΣ⊗ s,

Q̃1 = q̃⊗ 1+ iΣ⊗ s̃, iQ̃2 = s̃⊗ 1+ iΣ⊗ q̃ .
(5.34)

Of course, this way of writing is completely equivalent. But in fact, it will be easier to
consider the representations of the algebra generated by Q1, Q̃1, iQ2, iQ̃2. Similarly,
a generic psu(1|1)⊕2 state ξa or ξ́á can then be written in the factorized form as

|ξ⟩ ≡ ξ ⊗ 1 , |ξ́⟩ ≡ 1⊗ ξ́ . (5.35)

Massive representations. Let us consider the action of the generators genera-
tors (5.34) on massive excitations. We first consider states of the type |ψ⟩ = ψ ⊗ 1
where ψ ∈ ρL or ψ ∈ ρR is a massive psu(1|1)⊕2 excitation. In the notation of eq. (5.35)
we have

Q1 |φF
L⟩ = a∗L |ϕB

L⟩ , Q1 |φB
R⟩ = a∗R |ϕF

R⟩ ,
iQ2 |ϕB

L⟩ = aL |φF
L⟩ , iQ2 |ϕF

R⟩ = aR |φB
R⟩ ,

Q̃1 |φF
L⟩ = bL |ϕB

L⟩ , Q̃1 |φB
R⟩ = bR |ϕF

R⟩ ,
iQ̃2 |ϕB

L⟩ = b∗L |φF
L⟩ , iQ̃2 |ϕF

R⟩ = b∗R |φB
R⟩ .

(5.36)

Comparing with the psu(1|1)⊕2 c.e. representations reviewed in Sec. 4.2, we see that
these are precisely ρL and ρR. Of course, this can be easily seen from eq. (5.34), as the
action of the charges in the first space is given by q, q̃, s and s̃. Considering instead
excitations of the form |ψ́⟩ = 1⊗ ψ, the action looks less trivial. Here we find

Q1 |ϕ́F
R⟩ = iaR |φ́B

R⟩ , Q1 |ϕ́B
L⟩ = iaL |φ́F

L⟩ ,
iQ2 |φ́B

R⟩ = ia∗R |ϕ́F
R⟩ , iQ2 |φ́F

L⟩ = ia∗L |ϕ́B
L⟩ ,

Q̃1 |ϕ́F
R⟩ = ib∗R |φ́B

R⟩ , Q̃1 |ϕ́B
L⟩ = ib∗L |φ́F

L⟩ ,
iQ̃2 |φ́B

R⟩ = ibR |ϕ́F
R⟩ , iQ̃2 |φ́F

L⟩ = ibL |ϕ́B
L⟩ .

(5.37)

By using the definition of the crossing transformation from Sec. 4.7, we notice that the
representations of eq. (5.37) are actually the analytic continuation of those in eq. (5.36).
For instance, we find

a∗L(p
±2γ) = ∓iaR(p) and bL(p

±2γ) = ∓ib∗R(p) , (5.38)

where we denote crossing and anti-crossing of a particle of momentum p by p2γ and p−2γ ,
respectively. Because of this identifications |ϕ́F

R⟩ and |φ́B
R⟩ transform as the analytic
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continuation of ρL, while ϕ́B
L and φ́F

L transform as the analytic continuation of ρR. More
explicitly, we can identify

|ϕ́B
L(p)⟩ = |φB

R(p
−2γ)⟩ , |φ́F

L(p)⟩ = |ϕF
R(p

−2γ)⟩ ,
|ϕ́F

R(p)⟩ = |φF
L(p

−2γ)⟩ , |φ́B
R(p)⟩ = |ϕB

L(p
−2γ)⟩ .

(5.39)

Let us emphasise that the psu(1|1)⊕2 c.e. representations are not invariant under
4γ-shifts, but instead they pick up some minus sign [10]. This is due to the fact that
the representation parameter η∗(p) from eq. (4.61) is not 4γ-periodic since it is not a
meromorphic function of the Zhukovski variables, cf. Sec. 4.7. In practice this means
that fermions pick up a minus sign after a 4γ transformation,

ϕB
L(p

2γ) = +ϕB
L(p

−2γ) , φF
L(p

2γ) = −φF
L(p

−2γ) ,

φB
R(p

2γ) = +φB
R(p

−2γ) , ϕF
R(p

2γ) = −ϕF
R(p

−2γ) .
(5.40)

Such monodromies are well known from the study of the S matrix in AdS5 × S5 [111].
These considerations allow us now to consider the true massive excitations of AdS3×

S3 × T4, i.e. those that lie in the ϱL = ρL ⊗ ρL and ϱR = ρR ⊗ ρR representations. Of
course, we could act straightforwardly with the diagonal generators from eq. (5.34) on
this representation. However, having seen that we can identify this diagonal algebra
as the Borsato–Ohlsson-Sax–Sfondrini psu(1|1)⊕2 c.e. let us use the representations as
the tensor products ρL ⊗ ρ−2γ

R and ρR ⊗ ρ−2γ
L . More specifically, we write

Yp = ϕB
L,p φ

B
R,p−2γ , Z̃p = ϕF

R,p φ
F
L,p−2γ ,

Ψ1
p = φF

L,p φ
B
R,p−2γ , Ψ̃1

p = φB
R,p φ

F
L,p−2γ ,

Ψ2
p = ϕB

L,p ϕ
F
R,p−2γ , Ψ̃2

p = ϕF
R,p ϕ

B
L,p−2γ ,

Zp = φF
L,p ϕ

F
R,p−2γ , Ỹp = φB

R,p ϕ
B
L,p−2γ .

(5.41)

Using these identifications, we find the crossing rules for the physical particles. For the
left representation these read

Yp = ϕB
L,p φ

B
R,p−2γ

2γ−→ Yp2γ = ϕB
L,p2γ φ

B
R,p = +φB

R,p ϕ
B
L,p−2γ = +Ỹp ,

Ψ1
p = φF

L,p φ
B
R,p−2γ

2γ−→ Ψ1
p2γ = φF

L,p2γ φ
B
R,p = −φB

R,p φ
F
L,p−2γ = −Ψ̃1

p ,

Ψ2
p = ϕB

L,p ϕ
F
R,p−2γ

2γ−→ Ψ2
p2γ = ϕB

L,p2γ ϕ
F
R,p = +ϕF

R,p ϕ
B
L,p−2γ = −Ψ̃2

p ,

Zp = φF
L,pϕ

F
R,p−2γ

2γ−→ Zp2γ = φF
L,p2γ ϕ

F
R,p = +ϕF

R,p φ
F
L,p−2γ = +Z̃p .

(5.42)

Note that we used the automorphism from eq. (5.40) that relates 4γ-shifted represen-
tations. This yields an additional minus signs in the second and last line. For the right
representation we find similar crossing rules

Z̃p2γ = Zp , Ψ̃1
p2γ = Ψ1

p , Ψ̃2
p2γ = Ψ2

p , Ỹp2γ = Yp . (5.43)

Let us emphasise, that these signs differ from the ones found in eq. (5.42).

Massless representations. A similar reasoning can be applied to the massless
representations of Sec. 4.4. We can obtain the massless representations by taking the
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limit m → 0 of either the right or the left representation [62]. In particular we can
write

Q1 |φF
o ⟩ = a∗o |ϕB

o ⟩ , Q1 |φB
o ⟩ = a∗o |ϕF

o ⟩ ,
iQ2 |ϕB

o ⟩ = ao |φF
o ⟩ , iQ2 |ϕF

o ⟩ = ao |φB
o ⟩ ,

Q̃1 |φF
o ⟩ = bo |ϕB

o ⟩ , Q̃1 |φB
o ⟩ = bo |ϕF

o ⟩ ,
iQ̃2 |ϕB

o ⟩ = b∗o |φF
o ⟩ , iQ̃2 |ϕF

o ⟩ = b∗o |φB
o ⟩ ,

(5.44)

while for massless excitations of the form |ψ́⟩ = 1⊗ ψ, we have

Q1 |ϕ́F
o ⟩ = iao |φ́B

o ⟩ , Q1 |ϕ́B
o ⟩ = iao |φ́F

o ⟩ ,
iQ2 |φ́B

o ⟩ = ia∗o |ϕ́F
o ⟩ , iQ2 |φ́F

o ⟩ = ia∗o |ϕ́B
o ⟩ ,

Q̃1 |ϕ́F
o ⟩ = ib∗o |φ́B

o ⟩ , Q̃1 |ϕ́B
o ⟩ = ib∗o |φ́F

o ⟩ ,
iQ̃2 |φ́B

o ⟩ = ibo |ϕ́F
o ⟩ , iQ̃2 |φ́F

o ⟩ = ibo |ϕ́B
o ⟩ .

(5.45)

Analogously to the massive case, we can then identify

ϕ́B
o (p) = −σp φF

o (p
−2γ) , φ́B

o (p) = −σp ϕF
o (p

−2γ) ,

ϕ́F
o (p) = φB

o (p
−2γ) , φ́F

o (p) = ϕB
o (p

−2γ) .
(5.46)

We should highlight an important difference here. In the massive case, crossing linked
the left to the right representation. By taking the m→ 0 limit we have that the left
and right representation are isomorphic. Thus we can link the massless representation
to itself, but we need to keep track of the sign σ(p) = −sgn[sin(p/2)] appearing in
the isomorphism. In fact, we have σ(p−2γ) appearing in eq. (5.46), but this can be
simplified to −σ(p), due to the fact that the momentum p changes sign under ±2γ
crossing. Another difference to the massive case is that the massless representation
parameter ηo(p) given in eq. (4.61) is 4γ-periodic, cf. Sec. 4.7. Hence, in the massless
case we do not pick up a minus sign for the fermions after 4γ,

ϕB
o (p

2γ) = +ϕB
o (p

−2γ) , φF
o (p

2γ) = +φF
o (p

−2γ) ,

φB
o (p

2γ) = +φB
o (p

−2γ) , ϕF
o (p

2γ) = +ϕF
o (p

−2γ) .
(5.47)

Therefore we can write

χ1̇
p = ϕB

o,p φ
B
o,p−2γ , χ2̇

p = −iσpϕF
o,p φ

F
o,p−2γ ,

T 1̇1
p = φF

o,p φ
B
o,p−2γ , T 2̇1

p = −iσpφB
o,p φ

F
o,p−2γ ,

T 1̇2
p = −σpϕB

o,p ϕ
F
o,p−2γ , T 2̇2

p = −iϕF
o,p ϕ

B
o,p−2γ ,

χ̃1̇
p = −σpφF

o,p ϕ
F
o,p−2γ , χ̃2̇

p = −iφB
o,p ϕ

B
o,p−2γ .

(5.48)

Using these identifications, the crossing rules for the physical particles are given by

χ1̇
p = ϕB

o,p φ
B
o,p−2γ

2γ−→ χ1̇
p2γ = ϕB

o,p2γ φ
B
o,p = iχ̃2̇

p ,

T 1̇1
p = φF

o,p φ
B
o,p−2γ

2γ−→ T 1̇1
p2γ = φF

o,p2γ φ
B
o,p = iσpT

2̇1
p ,

T 1̇2
p = −σpϕB

o,p ϕ
F
o,p−2γ

2γ−→ T 1̇2
p2γ = −σp2γϕB

o,p2γ ϕ
F
o,p = iσpT

2̇2
p ,

χ̃1̇
p = −σpφF

o,pϕ
F
o,p−2γ

2γ−→ χ̃1̇
p2γ = −σp2γφF

o,p2γ ϕ
F
o,p = −iχ2̇

p .

(5.49)
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Similarly, we find

χ2̇
p2γ = iχ̃1̇

p , T 2̇1
p2γ = iσpT

1̇1
p , T 2̇2

p2γ = iσpT
1̇2
p , χ̃2̇

p2γ = −iχ1̇
p . (5.50)

In this construction we explicitly used two different representations for Ȧ = 1, 2 to
construct the crossing rules. This is essential to understand the rules for the massless
tensor-product representation in a similar vein as crossing in the massive case. However,
we should stress, that these two massless representations are isomorphic and that the
hexagon is blind to the su(2)◦ index. Therefore we can sweep aside the explicit form of
the representations and instead use the resulting effective crossing rules

χȦ
p2γ = iχ̃Ȧ

p , T Ȧ1
p2γ = iσpT

Ȧ1
p , T Ȧ2

p2γ = iσpT
Ȧ2
p , χ̃Ȧ

p2γ = −iχȦ
p . (5.51)

5.4. The scalar factors
The symmetry given by the hexagon subalgebra allowed us to fix the two-particle
hexagon form factor for the various combinations of particles. Since the conditions
imposed lead to linear equations, there is still the freedom of a scalar factor h(p, q) for
each pair of irreducible representations. This is similar to the role that the dressing
phase Σ(p, q) plays in the S matrix. For instance, in the case of two left representations
we have the dressing phase ΣLL(p, q) in the S matrix and the prefactor hLL(p, q) in
the hexagon. Choosing the normalisation of the massive–massive form factors in a
convenient way

⟨h|YpYq⟩ = hLL(p, q) , ⟨h|ỸpỸq⟩ = hRR(p, q) ,

⟨h|YpZ̃q⟩ = hLR(p, q) , ⟨h|Z̃pYq⟩ = hRL(p, q) ,
(5.52)

allows us to use the S matrix elements given in Sec. 4.6 up to simply replacing Σ with h.
Further, by imposing left-right symmetry [70], we can halve the number of independent
scalar factors like in [61]. We set

h••(p, q) ≡ hLL(p, q) = hRR(p, q) , (5.53)

which ensures that ⟨h|YpYq⟩ = ⟨h|ỸpỸq⟩, and so on. Further, setting

h̃••(p, q) ≡ hLR(p, q) = e
i
2
(p+q)

1− x−R,px
−
L,q

1− x+R,px
+
L,q

hRL(p, q) , (5.54)

ensures that ⟨h|YpZ̃q⟩ = ⟨h|ỸpZq⟩, etc. For massless particles, we assume the prefactors
to be blind regarding the su(2)◦ structure like it is the case for the prefactors of the
S matrix [60, 63, 115]. In this case, we have a single massless dressing factor, which
appears as

⟨h|χȦ
p χ

Ḃ
q ⟩ = h◦◦(p, q) . (5.55)

Finally, we have processes that involve one massive and one massless particle. Using
again su(2)◦ as well as left-right symmetry, we obtain two dressing factors

⟨h|YpχȦ
q ⟩ = ⟨h|ỸpχȦ

q ⟩ = h•◦(p, q) , ⟨h|χȦ
p Yq⟩ = ⟨h|χȦ

p Ỹq⟩ = h◦•(p, q) . (5.56)
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Figure 5.2.: The Watson equation allows us to relate the form factor and its dressing
phase h(p, q) to the full S matrix of the theory, complete with dressing
factors SAdS3×S3×T4

(p, q).

In the following we will further constrain these five prefactors, allowing us to propose a
solution. There are three physical constraints we shall impose: The first is the Watson
equation, which relates the form factor to the full S matrix of the theory [38, 119,120].
Further the decoupling condition states that a singlet should decouple from the form
factor [19,38]. This yields a crossing equations for the scalar prefactors. Thirdly, we
impose a cyclicity condition for excitations on the form factor.

5.4.1. The Watson equation

The Watson equation relates the original psu(1|1)⊕4 S matrix and the hexagon form
factor, see Fig. 5.2. It states that we may scatter a pair of particles in the form factor
using the S matrix,

⟨h|Ξa1á1
p1

· · ·Ξaj áj
pj

Ξaj+1áj+1
pj+1

· · · ⟩ = ⟨h|SAdS3×S3×T4

j,j+1 |Ξa1á1
p1

· · ·Ξaj áj
pj

Ξaj+1áj+1
pj+1

· · · ⟩ . (5.57)

Importantly, here SAdS3×S3×T4 is the full psu(1|1)⊕4 S matrix of [115] including the
corresponding dressing factors. Exploiting the factorisation of the multi-particle ansatz,
we can restrict to the two-particle form factor to impose this constraint. The resulting
expression is a matrix equation. Using the explicit evaluation of the form factors and
matrix elements, it boils down to only one non-trivial relation per phase factor h∗∗.
Nonetheless, the evaluation of the whole matrix equation yields an important check to
ensure that the form factor and the psu(1|1)⊕4 S matrix are compatible, i.e. written in
the same basis. We find the following conditions

h••(p, q)

h••(q, p)
=
[
Σ••(p, q)

]2
,

h̃••(p, q)

h̃••(q, p)
=
[
Σ̃••(p, q)

]2
,

h◦◦(p, q)

h◦◦(q, p)
= −

[
Σ◦◦(p, q)

]2
,

h•◦∗ (p, q)

h◦•∗ (q, p)
=
[
Σ•◦

∗ (p, q)
]2
,

h◦•∗ (p, q)

h•◦∗ (q, p)
=
[
Σ◦•

∗ (p, q)
]2
,

(5.58)

where the asterisk in the subscript stands for either L or R. Though surprising at
first glance, the minus sign appearing for massless excitations can be explained by
recalling that we are scattering fermions, when looking at highest-weight states. To
sum up, these conditions resemble the antisymmetry conditions for Σ that are imposed
by braiding unitarity.
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Figure 5.3.: The decoupling condition states that a particle-antiparticle pair decouples
from the form factor. In the figure these are the particles with momenta
p1 and p2, with the latter in the crossed channel. The form factor features
a simple pole and its residue is given by the form factor of the remaining
particles q1, . . . , qn. This condition yields crossing equations for the scalar
prefactors.

5.4.2. Decoupling condition and crossing

The decoupling condition states that, whenever two particles form a singlet, they
decouple from the form factor. More precisely, the singlet must be annihilated by the
momentum and energy operators, which means that p1+ p2 = 0 and E(p1)+E(p2) = 0.
In order to have this, the momenta of the particles p1 and p2 cannot both be physical
and one of the momenta has to be crossed, i.e. p1 = p±2γ

2 .
Then, when the momenta satisfy this condition, the form factor has a pole. Its

residue is given by

Resp2→p2γ1
⟨h|Ξa1á1

p1
Ξa2á2
p2

· · ·ΞaN áN
pN

⟩ = Ca1á1,a2á2⟨h|Ξa3á3
p3

· · ·ΞaN áN
pN

⟩ , (5.59)

where the factor Ca1á1,a2á2 projects onto the singlet representation and must be inde-
pendent of p3, . . . pN . Using that the evaluation of the multi-particle hexagon form
factor factorises from eq. (5.32), we find that this becomes the requirement, that for
the psu(1|1)⊕2 S matrix scattering processes with the singlet are trivial. More precisely,
the process of scattering the singlet with a particle of momentum p3 reads

S12S23

(
Cá1,á2 |ξ́á1(p1)ξ́á2(p

2γ
1 )ξ́á3(p3)⟩

)
= Cá1,á2 |ξ́á3(p3)ξ́á1(p1)ξ́á2(p

2γ
1 )⟩ , (5.60)

where the scattering phase on the right-hand side is precisely equal to one. This is
precisely the crossing equation (4.119) for the psu(1|1)⊕2 S matrix as derived in ref. [70].
The relationship between the projectors Cá1,á2 for psu(1|1)⊕2 and Ca1á1,a2á2 for the
psu(1|1)⊕4 was discussed in ref. [112]. Therefore, the decoupling condition for the
hexagon form factors boils down to the crossing equation of the psu(1|1)⊕2 S matrix,
which is now normalised in terms of the prefactors h(p, q). This yields the following
crossing equations for the hexagon prefactors in the massive sector,

h••(p, q)h̃••(p2γ, q) = h••(p, q)h̃••(p, q−2γ) =

[
e−

i
2
p
x+∗,p − x−∗,q
x−∗,p − x−∗,q

]−1

,

h••(p2γ, q)h̃••(p, q) = h••(p, q−2γ)h̃••(p, q) =

[
e−

i
2
p
1− x+∗,px

+
∗,q

1− x−∗,px
+
∗,q

]−1

.

(5.61)

Much like in the case of the psu(1|1)⊕2 S matrix also the prefactors h(p, q) have non-
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Figure 5.4.: Cyclic invariance is a further consistency condition for the hexagon con-
struction. Left: Cyclically relabeling the edges of the hexagon amounts to
“moving” all excitations by 2γ in the sense of Sec. 5.3. Right: We can also
move a particle by 6γ to obtain a different ordering of momenta.

trivial double crossing equations. For instance, by crossing in the first line p by 2γ and
dividing it by the second line we have

h̃••(p4γ, q)

h̃••(p, q)
=

1− x+∗,px
+
∗,q

1− x−∗,px
+
∗,q

1− x−∗,px
−
∗,q

1− x+∗,px
−
∗,q
, (5.62)

i.e. a non-trivial monodromy. Similarly, by crossing the second line by 2γ and dividing
by the first we find h••(p4γ, q) ̸= h••(p, q). The crossing equations in the massless sector
read

hoo(p, q)hoo(p2γ, q) =

[
e

i
2
q
x+o,p − x−o,q
x+o,p − x+o,q

]−1

,

hoo(p, q)hoo(p, q−2γ) =

[
e−

i
2
p
x+o,p − x−o,q
x−o,p − x−o,q

]−1

.

(5.63)

Finally, in the mixed-mass sector we have

h•◦Ro(p
2γ, q)h•◦Lo(p, q) = e−i q

2
x+L,p − x+o,q
x+L,p − x−o,q

,

h◦•oL(p
2γ, q)h◦•oL(p, q) = e−i q

2
x+o,p − x+L,q
x+o,p − x−L,q

,

h•◦Lo(p
2γ, q)h•◦Ro(p, q) = e−i q

2
1− x−R,px

+
o,q

1− x−R,px−o,q
,

h◦•oR(p
2γ, q)h◦•oR(p, q) = e+i q

2
1− x+o,px

−
R,q

1− x+o,px
+
R,q

.

(5.64)

5.4.3. Cyclic invariance

The last set of conditions we impose is cyclic invariance. This is also observed in [38],
though there it is not used to constrain the scalar factor. Let us use the fact that none
of the three operators appearing in the three-point function should play a special role.
In the hexagon formalism, it is postulated that bringing an excitation from one edge
to another amounts to a 2γ crossing transformation [38]. Hence we should have that
the scalar factor and the matrix part of the S matrix remain invariant under a 2γ-shift
of all momenta. In particular, for the massive–massive case this means

h••(p, q) = h••(p2γ, q2γ) , (5.65)
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see Fig. 5.4 left. This, as well as the similar conditions for the other sectors, is actually
a consequence of the crossing equations above. This can be seen from the first equality
in eq. (5.61). Similar conditions hold for other processes, where we also have to use
the monodromies of the matrix part of the psu(1|1)⊕2 S matrix [70, 111].

Moreover, we can study the case where we pick a two-particle process and cycle
only the second particle all around the hexagon, see Fig. 5.4 right. In the case of the
massive-left representation, this gives for the highest-weight states

⟨h|Y (p)Y (q)⟩ = ⟨h|Ỹ (q6γ)Y (p)⟩ , (5.66)

where we used eqs. (5.42) and (5.43). An explicit evaluation yields

h••(p, q) = e−iq/2x
−
L (p)− x+L (q)

x−L (p)− x−L (q)
h̃••(q6γ, p) . (5.67)

We can further simplify this expression by using the monodromy condition from
eq. (5.62) and the crossing equation (5.61) itself, resulting in

h••(p, q)h••(q, p) =
x+L (p)− x+L (q)

x−L (p)− x+L (q)

x−L (p)− x−L (q)

x+L (p)− x−L (q)
. (5.68)

Finally, combining this equation with the Watson equation (5.58) one can fix h••(p, q)
up to an overall sign.

Similarly, h̃••(p, q) should remain invariant under 2γ-shifts

h̃••(p, q) = h̃••(p2γ, q2γ) . (5.69)

The highest-weight state form-factor leads to

⟨h|Y (p)Z̃(q)⟩ = ⟨h|Z(q6γ)Y (p)⟩ , (5.70)

which can be written explicitly as

h̃••(p, q) = eip/2
1− x−L (p)x

−
R (q)

1− x+L (p)x
−
R (q)

h••(q6γ, p) . (5.71)

Using the crossing equations, this leads to

h̃••(p, q)h̃••(q, p) =
1− x+L (p)x

−
R (q)

1− x−L (p)x
−
R (q)

1− x−L (p)x
+
R (q)

1− x+L (p)x
+
R (q)

. (5.72)

This condition takes care of all cyclicity requirements on the hexagon for massive
particles.

In the massless case we have

⟨h|χ(p)χ(q)⟩ = i⟨h|χ̃(q6γ)χ(p)⟩ , (5.73)

which reads explicitly

h◦◦(p, q) = eip/2
x−o (p)− x+o (q)

x+o (p)− x+o (q)
h◦◦(q6γ, p) . (5.74)
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Using the crossing equation for h◦◦(p, q) leads to

h◦◦(p, q)h◦◦(q, p) =
x+o (p)− x+o (q)

x+o (p)− x−o (q)

x−o (p)− x−o (q)

x−o (p)− x+o (q)
. (5.75)

It is interesting to note a peculiar observation. When cycling a massless boson around
the hexagon, we sometimes pick up an overall minus sign. This is not surprising as for
an odd number of massless particles, the hexagon has fermionic statistics. As a result,
when cycling a massless boson around an object with an overall fermion statistic, we
must account for an additional minus sign.

For the remaining mixed–mass dressing factors, we obtain similar equations, namely

h•◦Lo(p, q)h
◦•
oL(q, p) =

x+L (p)− x+o (q)

x−L (p)− x+o (q)

x−L (p)− x−o (q)

x+L (p)− x−o (q)
, (5.76)

and
h•◦Ro(p, q)h

◦•
oR(q, p) =

1− x−R (p)x
+
o (q)

1− x+R (p)x+o (q)

1− x+R (p)x
−
o (q)

1− x−R (p)x−o (q)
. (5.77)

Once again, we observe, that when cycling a massless boson around an object with
fermionic statistics, we pick up a minus sign.

5.4.4. Solution for the scalar factors

We can now put together the conditions we encountered to write down a solution for the
square of the various dressing factors h∗∗(p, q). For instance, for the massive–massive
sector we can simply multiply eq. (5.58) by eq. (5.68). Taking the square root of the
resulting expression, we may write

h••(p, q) =
ei(p+q)/2

σ••(p, q)

√
[x+∗ (p)− x+∗ (q)][x

−
∗ (p)− x−∗ (q)]

[x+∗ (p)− x−∗ (q)]2

√√√√1− 1
x−
∗ (p)x+

∗ (p)

1− 1
x+
∗ (p)x−

∗ (p)

,

h̃••(p, q) =
e−i q

2

σ̃••(p, q)

1− 1
x−
∗ (p)x+

∗ (q)

1− 1
x+
∗ (p)x+

∗ (q)

,

(5.78)

where we have chosen the branches so that in the BMN limit (schematically given
by k = 0, p ∼ p/h, and h → ∞) the prefactor reduces to plus one. The non-trivial
monodromy of the prefactor is due to σ••(p, q), which is known for pure-Ramond-
Ramond backgrounds and was proposed in ref. [61, 63].

Similarly, in the massless sector we find

h◦◦(p, q) =
ei(p−q)/4

σ◦◦(p, q)

√
[x+o (p)− x+o (q)][x

−
o (p)− x−o (q)]

[x+o (p)− x−o (q)]
2

. (5.79)
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In the mixed-mass sector we find the prefactors

h•◦Lo(p, q) = e+i p
4

√
x−L (p)− x+o (q)

x−L (p)− x−o (q)
ζ(p, q)

1

σ•◦
Lo(p, q)

,

h◦•oL(p, q) = e−i q
4

√
x+o (p)− x+L (q)

x+o (p)− x−L (q)
ζ(p, q)

1

σ◦•
oL(p, q)

,

h•◦Ro(p, q) = e−i( p
4
+ q

2
)

√
[1− x−R (p)x+o (q)][1− x+R (p)x+o (q)]

[1− x−R (p)x−o (q)]
2

ζ̃(p, q)
1

σ•◦
Ro(p, q)

,

h◦•oR(p, q) = e+i( p
2
+ q

4
)

√
[1− x−o (p)x

+
R (q)][1− x−o (p)x

−
R (q)]

[1− x+o (p)x
+
R (q)]2

ζ̃(p, q)
1

σ◦•
oR(p, q)

,

(5.80)

where again we use the functions introduced in Sec. 4.7 as

ζ(p, q) =

√
x−∗,p − x−∗,q

x+∗,p − x−∗,q

x+∗,p − x+∗,q

x−∗,p − x+∗,q
,

ζ̃(p, q) =

√
1− x+∗,px

+
∗,q

1− x+∗,px
−
∗,q

1− x−∗,px
−
∗,q

1− x−∗,px
+
∗,q
,

(5.81)

for a more compact notation of the prefactors.

5.5. An explicit check with protected three-point
functions

In order to test the proposed hexagon form factor, let us compute some explicit result
and compare it with the literature. Let us do so by considering a simple, but non-
trivial example of three-point functions involving only protected half-BPS operators,
which are themselves protected by supersymmetry [121]. For generic operators, e.g.
non-protected, we would only be able to carry out such a comparison in the case of
pure-NS-NS backgrounds.

5.5.1. Definition of the correlation functions

In AdS5/CFT4 the highest weight state in a half-BPS supermultiplet is the BMN
vacuum |0⟩ not carrying any excitations, which corresponds to the single trace operator
tr
(
ZL
)
, cf. Sec. 2.1.3. These states are annihilated by half of the supersymmetry gen-

erators. For each value J of the R-charge we have exactly one BPS operator. However,
in comparison with AdS5/CFT4 we have only half of the amount of supersymmetry in
AdS3/CFT2. Therefore, the half-BPS states are less restricted and there is a total of
16 multiplets.

Structure of protected operators. Let us describe the multiplets in more detail.
First of all, we have two su(2) corresponding to left and right orbital quantum numbers,
which we indicate by (J, J̃). These are the eigenvalues of the highest-weight state in
the BPS representation under (J3, J̃3), respectively. For BPS states we must have
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Magnon J3 J̃3

limp→0+ |χ1(p)⟩ −1
2

0

limp→0− |χ2(p)⟩ 0 +1
2

limp→0+ |χ̃1(p)⟩ +1
2

0

limp→0− |χ̃2(p)⟩ 0 −1
2

Table 5.1.: The fermions |χȦ(p)⟩ have su(2) spin −1/2 under (J3 − J̃3), while |χ̃Ȧ(p)⟩
have +1/2. Since they are massless, it follows from eq. (4.54) that the
su(1, 1) spin is (−L0 + L̃0). Further, the particles are chiral depending on
the sign of sin(p/2), cf. eq. (4.56). Hence, we propose this identification of
the massless modes.

−L0 = J3 and −L̃0 = J̃3. For every positive integer value j there is the following
diamond of BPS multiplets (

j−1
2
, j−1

2

)
(
j
2
, j−1

2

)Ȧ (
j−1
2
, j
2

)Ȧ(
j+1
2
, j−1

2

) (
j
2
, j
2

)ȦḂ (
j−1
2
, j+1

2

)
(
j+1
2
, j
2

)Ȧ (
j
2
, j+1

2

)Ȧ(
j+1
2
, j+1

2

)
(5.82)

indicated here by the charge of their highest-weight states. The dotted indices indicate
that some of these states transform in an su(2)◦ representations. Moreover, these
multiplets may be identified with those arising in the dual CFT from the symmetric-
product orbifold SymNT4. Using the notation of ref. [71], the diamond can be written
as

V−−
j

VȦ−
j V−Ȧ

j

V+−
j VȦḂ

j V−+
j

V+Ȧ
j VȦ+

j

V++
j

(5.83)

where the subscript index j in V∗∗
j denotes the length of the permutation cycle of the

operator.
Coming back to the language of integrability that we have been using so far, we

have the BMN vacuum |0⟩, featuring no particles at all. We can now add massless
fermions χȦ(p) and χ̃Ȧ(p) at zero momentum [122], which neither contribute to the
mass nor the energy. The zero-modes which we can use have charges under (J3, J̃3) as
in Tab. 5.1 [123] and yield the 16 states owing to Pauli’s principle. Of course, we could
also add zero-modes of massive states, however, these are vacuum descendants, which
can be obtained from acting with charges. This is similar to the discussion in Sec. 2.2.2,
where we considered zero momentum (or infinite rapidity) excitations to describe
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vacuum descendants in the context of AdS5/CFT4. Here, it is worth stressing, that
the zero-modes of χȦ(p) and χ̃Ȧ(p) yield genuinely new psu(1, 1|2)⊕2 multiplets. Based
on Tab. 5.1, the highest-weight states can be identified with the following insertion of
fermions

|χ1χ̃2⟩(
|χ1χ̃1χ̃2⟩, |χ̃2⟩

) (
|χ1⟩, |χ1χ2χ̃2⟩

)
|χ̃1χ̃2⟩ |0⟩ ⊕

(
|χ1χ̃1⟩, |χ1χ̃1χ2χ̃2⟩, |χ2χ̃2⟩

)
|χ1χ2⟩(

|χ̃1⟩, |χ2χ̃1χ̃2⟩
) (

|χ1χ2χ̃1⟩, |χ2⟩
)

|χ2χ̃1⟩

(5.84)

It should be emphasised that the number of magnons, i.e. the length of the operators,
is not a quantum number, and it is not preserved by the su(2)◦ action.

From the above we see that most of the half-BPS multiplets can mix among them-
selves, as there are several multiplets with the exact same charge. Consider for instance,
the states V−−

j+1, εȦḂVȦḂ
j and V++

j−1 which all have the same charges. Therefore, we
cannot distinguish the multiples just by their quantum numbers. In principle they
could all mix with |0⟩, |χ2χ̃1⟩ and |χ1χ̃2⟩. Fortunately, the multiplets V+−

j and V−+
j do

not mix. Hence it will be convenient to consider them in the following.

The correlation functions. We are interested in three-point functions constructed
out of operators in the multiplets V+−

j and V−+
j for appropriate values of j. Therefore,

we can either have three-point functions involving all operators from the same type of
multiplets or those involving two operators from one type of multiplet and the third
from the other. Hence there are two categories of correlators we can consider, since the
other combinations follow from exchanging the left and right algebra. These correlation
functions are well-known in the literature [71,124,125]. In particular, we consider the
result as written in ref. [71]. Recall from Sec. 5.1 that in our construction we want one
of the operators to be the highest-weight state, one to be the lowest-weight state, and
one to have vanishing su(2) quantum number.

The result of [71] reads for the correlation functions in question

⟨V−+
j1

V−+
j2

V−+
j3

⟩ = − 1

4
√
N
DJ1J2J3DJ̃1J̃2J̃3

(j1 + j2 + j3 − 1)(j1 + j2 + j3 + 1)√
j1j2j3

,

⟨V−+
j1

V−+
j2

V+−
j3

⟩ = − 1

4
√
N
DJ1J2J3DJ̃1J̃2J̃3

(j1 + j2 − j3 − 1)(j1 + j2 − j3 + 1)√
j1j2j3

,

(5.85)

where in the first line Jk = jk + 1 and J̄k = jk − 1. In the second line the same holds
but for operator 3, for which instead J3 = j3 − 1 and J̄3 = j3 + 1. The factors DJ1J2J3

and DJ̃1J̃2J̃3
depend also on the su(2) charges, i.e. on the J3 and J̃3 charges of the

operators, respectively. Recall that we have that operator 1 is a highest-weight state,
operator 3 is a lowest weight state, and operator 2 has vanishing orbital quantum
numbers. All in all, for our configuration of states they are simply given by

DJ1J2J3 = (−1)J2+2J3
J2!√
(2J2)!

. (5.86)

The prefactor 1/
√
N is an overall normalisation common to all three-point functions and

is related to the number of copies N in the symmetric product orbifold CFT SymN (T4).
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Figure 5.5.: The three-point function is cut into two hexagons, one corresponding
to the front and one to the back. We need to sum over all possible
ways of distributing each pair of particles over the two patches, for a
total of (22)3 = 64 possibilities, weighted as in eq. (5.91). Schematically
some of the terms are presented. The first 22 = 4 terms correspond to
distributing {p1,−p1} (in blue), and one term relative to moving {p2,−p2}
(in green).

For the three-point function to be non-vanishing, we will specialise eq. (5.85) to the
case J3 = J1, J̃3 = J̃1.

5.5.2. Hexagon computation

Similarly to the calculation of three-point functions in AdS5/CFT4 in Sec. 3.1, we
now aim to use the formalism developed in order to reproduce the result (5.85). In
principle the integrability machinery is suitable for computing non-protected correlation
functions. However, the example considered here is merely intended as a relatively
simple check of our proposal.

We are interested in the operators related to V−+
j and V+−

j , which we identified as

V−+
j ∼ lim

p→0+
lim
q→0−

|χ̃1(p)χ̃2(q)⟩ , V−+
j ∼ lim

p→0+
lim
q→0−

|χ1(p)χ2(q)⟩ . (5.87)

These are constructed over a vacuum of total R-charge j. We need to be careful
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describing the zero-momentum magnons considered above. As we have seen in Sec. 3.3
in the context of vacuum descendants in AdS5/CFT4, zero-momentum magnons may
lead to singularities in the p, q → 0 limit. There we used the β-deformation as a
regulator. It is not surprising that also here singularities appear, given that the
dispersion relation from eq. (4.56) is singular at that point. It turns out that the
resulting expressions may be simplified, when we take the limit on the two momenta
symmetrically,

V+−
j ∼ lim

p→0+
|χ̃1(p)χ̃2(−p)⟩ , V−+

j ∼ lim
p→0+

|χ1(p)χ2(−p)⟩ . (5.88)

We are interested in inserting three such operators on the three distinguished edges
of the hexagon, which we have labeled with 0γ, 2γ and 4γ. Hence we have to consider
the following sets of excitations

⟨V−+
j1

V−+
j2

V−+
j3

⟩ ∼
(
{χ1(p1), χ

2(−p1)}, {χ1(p2), χ
2(−p2)}, {χ1(p3), χ

2(−p3)}
)
. (5.89)

Here and from now on, we leave the momenta pj generic and take the limit later.
Similarly, we have

⟨V−+
j1

V−+
j2

V+−
j3

⟩ ∼
(
{χ1(p1), χ

2(−p1)}, {χ1(p2), χ
2(−p2)}, {χ̃1(p3), χ̃

2(−p3)}
)
. (5.90)

The hexagon prescription [38] requires us to partition the three sets of excitations
identified above in all possible ways over the two hexagonal patches of the worldsheet,
see Fig. 5.5. Let us begin with the setting in eq. (5.89). There we have three
sets X1 = {χ1(p1), χ

2(−p1)}, X2 = {χ1(p2), χ
2(−p2)} and X3 = {χ1(p3), χ

2(−p3)}.
Accordingly, we sum over all partitions of the form Xj = αj ∪ ᾱj obtaining

( 3∏
j=1

∑
Xj=αj∪ᾱj

(−1)ᾱjωαj ,ᾱj

)
⟨h|α4γ

1 α
2γ
2 α

0γ
3 ⟩ ⟨h|ᾱ4γ

2 ᾱ
2γ
1 ᾱ

0γ
3 ⟩ . (5.91)

Further, we also indicated how the particles have to be analytically continued on the
various edges. Following the rules devised in Sec. 5.3, a 2γ-shift results in a flavour
change, e.g. χ1(p2γ) = iχ̃2(p). Finally, the sum is weighted by the splitting factor ωα,ᾱ,
which takes as similar form as in AdS5/CFT4, namely

ωα,ᾱ =
∏
pj∈ᾱ

eipjℓ12
∏
j<k
pk∈α

Sχχ(pj, pk) . (5.92)

In the small-p limit the expression further simplifies as Sχχ(p,−p) → 1. The bridge
length ℓ12 [38] we have introduced here is given by

ℓ12 =
j1 + j2 − j3

2
, ℓ23 =

j2 + j3 − j1
2

, ℓ13 =
j1 + j3 − j2

2
. (5.93)

Similar formulae hold for the weight factors for the other partitions, up to cycling the
indices 1, 2 and 3. Finally, there might be additional signs which should be assigned
to a given partition, especially when the permuted particles are fermionic [38, 100].
Unfortunately, these rules still lack a systematic understanding. In our case we will
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impose that the signs satisfy all relevant self-consistency and symmetry conditions, at
which point we will be able to obtain the result and match the existing literature.

Limit procedure and evaluation. As we have mentioned, the limit pj → 0 requires
a careful treatment as we encounter two types of singular behaviour. The first one
arises because of possible singularities at p = 0, while the second occurs when a pair of
momenta approaches each other, i.e. pj = pk. As discussed in Sec. 5.3 in the context of
crossing, a particle-antiparticle pair results in a pole, which is what happens in our
setup when for instance p2 → p1. Finally, we require that the hexagon formalism does
not depend on the details of how we construct the external states. For instance, it
should not depend on the ordering of the particles within each state. This is indeed
the case, but only as long as the particles in each state satisfy the Bethe equations. In
other words, in order to have a consistent formalism we need to require p1, p2 and p3
to obey the Bethe equations. Fortunately, these are very simple in our setup, as we are
interested in a limit where particles behave as free, i.e. Sχχ(p,−p) = Sχ̃χ̃(p,−p) = 1.
Still, they impose three non-trivial conditions on the momenta,

eipkjk = 1 ⇒ pk =
2πνk
jk

, νk ∈ Z , k = 1, 2, 3 . (5.94)

This discrete structure of the momenta requires care when taking the coincident-
momenta limit. We can introduce a small ε > 0 and three real numbers ϵk and
redefine

jk →
jk

1 + ε ϵk
, pk → pk(1 + ε ϵk) , (5.95)

which leaves the Bethe equations (5.94) unchanged. In this way, we can get the
coincident-momenta limit by setting

p1 = p2 = p3 , and ε→ 0 . (5.96)

Since the limit should be independent from ϵ1, ϵ2 and ϵ3, this yields an additional check
of the construction.

To perform the computation it will be useful to consider an additional limit. As
already stated, the structure constants for the three-point correlation functions of
protected operators are themselves protected [126]. Hence, the result is independent of
the values of h and k. Moreover, we can see from eq. (4.63) that the kinematics for
massless particles only depends on the ratio h/k. Hence it is convenient to take the
limit h/k → 0 with k arbitrary. The upshot is that, in this way, we may rewrite all the
ingredients necessary for the computation in terms of the new variables

y±(p) ≡ e±i p
2
sin
(
p
2

)
p
2

, (5.97)

which play the role of the Zhukovsky variables x±o . In terms of these, we can easily
rewrite the various S-matrix elements necessary for the hexagon computation, including
the relevant scalar factor.

Turning to the computation of the hexagon form factors for the two correlators of
interest in eqs. (5.89) and (5.90), we can expect a singularity when any pair of momenta
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approach. This yields, that the most singular part of (5.89) should go like

1

ε6
1

(ϵ1 − ϵ2)2(ϵ2 − ϵ3)2(ϵ1 − ϵ3)2
. (5.98)

Further, for the correlator of eq. (5.90) the decoupling condition yields only a pole for
operators one and two, since the third operator is different. Therefore we expect the
most singular part to go like

1

ε2
1

(ϵ1 − ϵ2)2
. (5.99)

At first glance this mismatch seems to be an issue, given that both correlators should
eventually give a finite result, possibly up to an overall factor. Evaluating the partitions
carefully, the term which would naively be the most divergent as in eq. (5.98) eventually
goes like O(ε−2), i.e. exactly like eq. (5.99). Finally, in the limit p→ 0 we find for the
correlator from eq. (5.89) the result

4
(
j1 + j2 + j3 − 1

)(
j1 + j2 + j3 + 1

)
p2 + . . . , (5.100)

as expected from eq. (5.85). In a similar way we can compute the hexagon form factor
for the correlator (5.90). In this case, the result in the p→ 0 limit is

−4 (1− 2 ℓ12)(1− 2 ℓ12) p
2 + . . . , (5.101)

which again matches with eq. (5.85). In particular, if we disregard the overall normali-
sations, we find that the ratio of the two families of correlation functions matches for
arbitrary j1, j2 and j3.

To conclude this discussion, we note that our result only relied on the asymptotic
part of the hexagon, without accounting for wrapping effects. This can be done in the
hexagon formalism order by order [38–40,103] by considering Lüscher-type corrections.
The computation above was redone in [127], taking wrapping corrections explicitly
into account. However, our result matches those in the literature nonetheless. This is
because we are dealing with half-BPS states, which are composed of zero-momentum
excitations only. The argument was first noted in the context of the computation of the
spectrum for the very same operators in refs. [122,128]. The transfer matrix appearing
in the computation of wrapping effects only involves zero-momentum excitations and
as such it gets precisely the same and opposite corrections for fermionic and bosonic
mirror particles, leading to a complete cancellation of wrapping effects.

5.6. Chapter summary
In this chapter we constructed the hexagon form factor for AdS3 × S3 × T4 and
performed a first test with protected three-point functions. To achieve this, we used
the supertranslation operator T in Sec. 5.1 to find the hexagon subalgebra. This
subalgebra turns out to be a diagonal psu(1|1)⊕2

D subalgebra of the centrally extended
psu(1|1)⊕4 symmetry algebra of the gauge fixed theory.

In Sec. 5.2 we then used the bootstrap principle to find the one- and two-particle
hexagon form factors. The latter are given in terms of the Borsato–Ohlsson-Sax–
Sfondrini S matrix [70], up to overall prefactors h∗∗(p, q), which depend on the rep-
resentation. Building on these results, we gave a rule for the evaluation of general
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two-particle hexagon form factors by scattering with the psu(1|1)⊕2 S matrix and con-
tracting the resulting state. Moreover, we needed to introduce contraction operators,
resolving a potential ambiguity, due to the non-vanishing one-particle form factor for
massless fermions. We were then able to propose a generalisation of the evaluation rule
to many-particle states, by using factorised scattering and the Yang-Baxter equation.

Further, we considered the representation of the hexagon subalgebra in Sec. 5.3.
This also allowed us to work out the crossing rules for physical particles. These are
necessary in order to evaluate a general hexagon with excitations on all physical edges,
as the crossing rules can be used to move all excitations to the same edge.

In Sec. 5.4 we then focussed on the scalar prefactors h∗∗(p, q). In fact, by imposing
some constraints, these can be further fixed. The first constraint is the Watson
equation, relating the hexagon phases h∗∗(p, q) to the dressing phases Σ∗∗(p, q) of
the full psu(1|1)⊕4 S matrix. Next, we have the decoupling condition, stating that,
whenever a particle-antiparticle pair appears, it decouples from the form factor. This
condition yields crossing equations for the scalar prefactors h∗∗(p, q). Finally, there
is the cyclicity constraint, demanding that the form factor should yield the same
result, even if we bring one excitation once around the hexagon by a 6γ crossing
transformation. Combining these three constraints, the solutions for the different
h∗∗(p, q) can be written in terms of rational functions and the dressing phases σ∗∗(p, q)
for the respective representations.

Finally, in Sec. 5.5, we considered a protected three-point function. The three
operators we considered carry two massless fermionic excitations at zero momentum
each. In order to perform the hexagon calculation, which has possible singularities at
p = 0, we considered finite momenta by slightly deforming the Bethe equations and
taking the zero momentum limit in the end. In this way we were able to reproduce the
results for the correlation functions as written in ref. [71], providing a first successful
check of the hexagon form factor in AdS3/CFT2.
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Chapter 6.

Thermodynamic Bethe Ansatz for
pure Ramond-Ramond flux

The thermodynamic Bethe ansatz (TBA) can be applied to integrable models in a
thermodynamic setting. In the context of the integrable spin chains discussed in Sec. 2.2,
the Bethe ansatz allowed us to find the momenta or equivalently rapidities of spin chain
excitations. In the thermodynamic limit, we consider large chains aiming to describe
the particle and hole distributions in the thermodynamic equilibrium. Considering
an integrable field theory, the TBA then allows to compute the free energy in large
volume. Moreover, by going to the mirror theory, the exact ground state energies can
be computed for states of finite length [25]. This can be viewed as putting the field
theory on a cylinder of finite size, where the mirror TBA then captures corrections
from virtual particles travelling around the cylinder. These corrections are also called
Lüscher like or wrapping corrections [129]. Further, by analytic continuation of the
mirror TBA, the energies of excited states can be captured [72].

In this chapter, we will review the thermodynamic Bethe ansatz for the simple model
of the Heisenberg XXX spin chain and work out the corresponding TBA equations.
Once we have introduced the concept and notation, we will consider the mirror TBA
equations for pure Ramond-Ramond flux in AdS3 × S3 ×T4 which were derived in [65].
We are especially interested in the excited TBA equations with pairs of massless modes
excited only. As it turns out, the resulting equations can be simplified significantly in
the small-tension limit h→ 0.

6.1. Review of the Thermodynamic Bethe Ansatz
Before considering the TBA equations for AdS3 × S3 × T4, let us begin by reviewing
the basic ideas. We refer the reader to refs. [26,130–132] for a more detailed discussion,
especially in the context of AdS5/CFT4.

In order to familiarise with the TBA, we will start out with the simpler example
of the Heisenberg XXX spin chain as in the review [131]. This model was already
discussed in Sec. 2.2.2. Recall the Bethe equations for M particles, which read

eipjL
M∏
k ̸=j

uj − uk − i

uj − uk + i
= 1 , (6.1)

where L is the length of the spin chain. We now want to consider the thermodynamic
limit, which corresponds to taking the volume and the number of particles to be large,
while keeping their ratio fixed. In doing so, the number of complex solutions for the
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Bethe equations grows very fast. However, in the large volume limit L → ∞ states
with complex momenta Im(p1) > 0 lead to eip1L → 0. The only way to satisfy the
Bethe equation (6.1) for p1 is, if there is a pole in the S matrix. For instance we can
choose u2 = u1 + i and pulling the S matrix involving u1 and u2 out of the product, we
get

eip1L
u1 − u2 − i

u1 − u2 + i

M∏
k ̸=1,2

u1 − uk − i

u1 − uk + i
= 1 . (6.2)

Of course, now one might worry that we have created an issue for the Bethe equation
involving p2. By multiplying the eq. (6.2) by the analogous equation for p2, we obtain

ei(p1+p2)L

M∏
k ̸=1,2

u1 − uk − i

u1 − uk + i

u2 − uk − i

u2 − uk + i
= 1 . (6.3)

We immediately see that this equation is fine, if Im(p1 + p2) = 0, in which case we have
the Bethe roots u1 = u− i

2
and u2 = u+ i

2
for some u ∈ R. However, if Im(p1+ p2) > 0

we need to have another pole at u3 = u2 + i for instance. For real total momentum, we
would then have the solution u1 = u− i, u2 = u and u3 = u+ i.

It is easy to see how to continue this procedure. The solutions constructed in this
way are called Bethe strings, as they form a sort of string in the complex rapidity plane
around the real rapidity u. In general the rapidities uQj of a Bethe string of length Q
are given by

uQj = u− i
Q+ 1− 2j

2
, (6.4)

with u ∈ R being the center of the string and j = 1, . . . , Q. It is worth stressing, that
these string solutions are only solutions of the Bethe equations for L→ ∞. The string
hypothesis is the assumption, that all solutions relevant in the thermodynamic limit
are Bethe strings. For instance, in the example considered at hand, solutions which
are not of this form can be found, cf. refs. [133–135]. However, it turns out that for
low magnon densities it is sufficient to consider only the contribution of Bethe string
configurations, as the free energy is captured correctly [136].

Further, Bethe strings can be viewed as bound states, as their energy amounts to less
than the sum of energies of two individual magnons with real momenta. In particular,
the energy of a Q-string is given by

EQ(u) =

Q∑
j=1

1

(uQj )
2 + 1

4

=
4Q

4u2 +Q2
, (6.5)

and the Q-string momentum is also given as the sum over the individual momenta,
which simplifies to

pQ(u) =

Q∑
j=1

−i log

(
uQj + i

2

uQj − i
2

)
= −i log

(
u+ iQ

2

u− iQ
2

)
. (6.6)

To obtain the equations above we used uQj + i
2
= uQj+1 − i

2
in order to cancel most of

the numerators and denominators.
The interpretation of the Q-strings as bound states is also indicated by the pole
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structure of the two-particle S matrix. Moreover, for a given string of length Q, we
can simplify the products of S matrices and define

SQ1(u− uk) ≡
Q∏

j=1

uQj − uk − i

uQj − uk + i
=
u− uk − Q+1

2
i

u− uk +
Q+1
2
i

u− uk − Q−1
2
i

u− uk +
Q−1
2
i
. (6.7)

This is quite remarkable as the resulting S matrix depends only on the center rapidity
u of the sting and the second magnons rapidity uk. The combination of scattering
processes into a bound state scattering matrix is also called fusion of the corresponding
scattering amplitudes, cf. the discussion in the review [130]. The Bethe equations for a
magnon with rapidity uk can then be written as

eipkL
∞∏

Q=1

MQ∏
j ̸=k

S1Q(uk − uQj) = 1 , (6.8)

where MQ is the number of bound states of length Q, such that the total number of
magnons M is given by

∞∑
Q=1

QMQ =M . (6.9)

In a similar fashion, we can fuse products of S matrices S1Q to construct an object that
describes the scattering between P -strings with center u and Q-strings with center u′,
namely SPQ(u− u′). The corresponding Bethe equations become

eip
QjL

∞∏
Qk=1

MQj∏
j ̸=k

SQjQk(uj − uk) = 1 , (6.10)

where uj is the center of the j-th Bethe string of length Q.

Free energy. The partition functions allows to describe the thermodynamical system
and is given by

Z =
∑
k

⟨ψk|e−βH |ψk⟩ = e−βF , (6.11)

where F ist the free energy and β = 1/T is the inverse temperature. In order to obtain
the partition function, we need to find the free energy per site f , which is given by

f = e− Ts , (6.12)

with e and s being the energy and the entropy per site, respectively. The entropy is
defined as the logarithm of the number of possible states. In the following it will be
useful to introduce the densities ρ, defined as

Lρ(u)∆u = number of magnons with rapidity in [u, u+∆u] ≡ n ,

Lρ̄(u)∆u = number of holes with rapidity in [u, u+∆u] ≡ n̄ ,
(6.13)

where holes are understood as sites, which are not occupied by a magnon. Further, we
can introduce the total density of states ρt = ρ + ρ̄ and number of sites nt = n + n̄.
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The entropy is then given as the logarithm of the number of possible distributions of n
particles over the nt vacant sites

∆S = log

(
(Lρt(u)∆u)!

(Lρ(u)∆u)!(Lρ̄(u)∆u)!

)
. (6.14)

Using Stirlings formula log n! ≈ n log n+O(log n) in the large L limit, eq. (6.14) yields

∆S = L∆u (ρt log ρt − ρ log ρ− ρ̄ log ρ̄) . (6.15)

Finally, for the entropy per site we have

s =

∫ ∞

−∞
du (ρt log ρt − ρ log ρ− ρ̄ log ρ̄) . (6.16)

TBA equations. Let us consider the Bethe equations in logarithmic form. Thus,
eq. (6.10) becomes

pQjL− i

∞∑
Qk=1

MQj∑
j ̸=k

log
(
SQjQk(uj − uk)

)
= −2πm

Qj

j , (6.17)

here m
Qj

j is an integer labelling the solutions. Introducing the counting function
cQj(u) = m

Qj

j /L, we can further write

−p
Q

2π
− 1

2πi

∞∑
Q′=1

∫ ∞

−∞
du′ log

(
SQQ′

(u− u′)
)
ρ(u′) = cQ(u) , (6.18)

where we used 1
L
= ∆u′

L∆u′ =
ρ(u′)
n

∆u′ and took the large L limit to obtain the integration
over u′. The counting function allows to move between different Bethe solutions.
Taking for instance a state with labels mQj

j , then the rapidities of the corresponding
particles are given by LcQ(uj) = m

Qj

j . On the other hand, holes can be captured by the
rapidities satisfying LcQ(uk) = mQk

k with mQk

k ̸= m
Qj

j . Hence, taking the derivative of
the counting functional with respect to the rapidity u yields the total density of states

dcQ(u)
du

= ρQt (u) = ρQ(u) + ρ̄Q(u) . (6.19)

Differentiating eq. (6.18) with respect to u, the Bethe equation becomes

− 1

2π

dpQ

du
−

∞∑
Q′=1

∫ ∞

−∞
du′KQQ′

(u− u′)ρQ(u′) = ρQ(u) + ρ̄Q(u) . (6.20)

The function KQQ′
(u−u′) introduced above is referred to as kernel and is given through

KQQ′
(u− u′) =

1

2πi

d
du

log
(
SQQ′

(u− u′)
)
. (6.21)

Let us come back to the free energy per site, which can be written in terms of the
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densities as

f =
∞∑

Q=1

∫ ∞

−∞
du

(
EQρQ − T

(
ρQ log

(
ρQt
ρQ

)
+ ρ̄Q log

(
ρQt
ρ̄Q

)))
. (6.22)

In the thermodynamic equilibrium the free energy becomes stationary and we have
δf = 0. The variation here is done with respect to ρ and ρ̄. In the same manner, we
also variate eq. (6.20). Solving for δρ̄ and substituting the result into δf = 0, we find
the thermodynamic Bethe ansatz equations as

log

(
ρ̄Q

ρQ

)
=
EQ

T
+
∑
Q′

log

(
1 +

ρQ
′

ρ̄Q′

)
⋆ KQ′Q(u) . (6.23)

We also introduced the convolution here, which is defined for the functions g(u) and
h(u) as

g ⋆ h(u) =

∫ ∞

−∞
du′g(u′)h(u′ − u) . (6.24)

Finally, we can define the Y-functions as the ratio of the densities

YQ′ =
ρQ

′

ρ̄Q′ . (6.25)

This allows us to rewrite the TBA equations as well as the free energy E0 = Lf as

− log(YQ) =
EQ

T
+
∑
Q′

log(1 + YQ′) ⋆ KQ′Q(u) ,

E0 =
LT

2π

∑
Q

∫ ∞

−∞
du

dpQ

du
log(1 + YQ) .

(6.26)

As usual, we will not write the explicit sum over Q′, but leave it implicit as the index
appears as a sub- and superscript.

The mirror theory. The thermodynamic Bethe equations given above describe
the system in the large volume limit at finite temperature T . However, by going to
the mirror model they also allow us to study the theory in finite volume at vanishing
temperature [25]. To make this more precise, let us start by considering the ground
state energy E0. At low temperature β = 1/T → ∞, E0 is the leading contribution to
the partition function

Z(β, L) =
∑
k

e−βEk(L) ≈ e−βE0(L) + . . . , (6.27)

where the dots indicate terms exponentially suppressed in β. The model can be
analytically continued to the mirror model. In the mirror theory the role of space and
time have been interchanged, which can be achieved by a double Wick rotation [26],
sending τ → σ̃ = iτ and σ → τ̃ = iσ. The mirror energy and the mirror momentum,
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Figure 6.1.: The excited TBA equations can be obtained by deforming the integration
contour in such a way, that it includes singularities of the integrand located
at u∗j . This corresponds to integrating over the original domain and picking
up the corresponding residues, which are called source terms in this context.

are related to the momentum and the energy through

Ẽ = −ip , p̃ = −iE , (6.28)

where the tildes denote the mirror quantities. The partition function Z(β, L) can now
be evaluated by using the partition function of the mirror theory

Z(β, L) = Z̃(L, β) =
∑
k

e−LẼk(β) . (6.29)

Hence, the mirror model computes the partition function at temperature 1/L and
volume R = β. Note that the mirror volume is canonically denoted as R. For further
details on the double Wick rotation and the analytical continuation to the mirror
theory, we refer the reader to ref. [26] and the reviews [130,132].

The mirror model allows us to work in the infinite volume limit R → ∞, where
factorised scattering and the asymptotic Bethe ansatz is valid. On the other hand, we
have the finite temperature 1/L, which can be dealt with by using the TBA for the
mirror model. Hence by analytically continuing the thermodynamic Bethe equations
from eq. (6.26) to the mirror region, we obtain the mirror TBA equations and ground
state energy E0(L) = Lf̃ for a ground state of length L as

− log(YQ(u)) = LẼQ(u) +
(
log(1 + YQ′) ⋆ KQ′Q

)
(u) ,

E0(L) = − 1

2π

∫ ∞

−∞
du

dp̃Q

du
log(1 + YQ) .

(6.30)

For readability, the dependence on u in the first line is usually not written explicitly.

Excited TBA. Let us suppose that we can analytically continue in some parameter
to reach all excited states. The appearance of the excited states can be understood
as picking up residues. To see this, let us consider eq. (6.30) and suppose that by
analytically continuing in the rapidity u, we can reach singularities YQ(u∗j) = −1, which
are located at the rapidities u∗j . We can then deform the integration contour of the
convolution in such a way that it also includes u∗j , see Fig. 6.1. We will denote the
deformed contour by C ′. For instance, we can write the energy as
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E(L) =
1

2π

∫
C′

du p̃Q(u)
Y ′
Q(u)

1 + YQ(u)

=
1

2π

∫ ∞

−∞
du p̃Q(u)

Y ′
Q(u)

1 + YQ(u)
+ i
∑
j

Res
u=u∗

j

p̃Q(u)
Y ′
Q(u)

1 + YQ(u)
,

(6.31)

where we used partial integration and that Y ′
Q(u) is the derivative of YQ(u) with respect

to u. Subsequently, the residue can then be evaluated to p̃Q(u∗). Further, the same
contour deformation can be used in the TBA equation for the Y-functions, resulting
in contributions of the form log

(
SQ′Q(u∗j , u)

)
. The terms log

(
SQ′Q

)
and ip̃, that we

picked up through the contour deformation are called driving terms. We can then write
the excited TBA equations as well as the energy as

− log(YQ)(u) = LẼQ(u) +
(
log(1 + YQ′) ⋆ KQ′Q

)
(u) −

∑
j

log
(
SQ′Q(u∗j , u)

)
,

E(L) = − 1

2π

∫ ∞

−∞
du

dp̃Q

du
log(1 + YQ(u)) +i

∑
j

p̃(u∗j) .
(6.32)

By substituting ip̃(u∗j) = E(u∗j) in the equation above, we see the rapidities u∗j contribute
to the energy. Solving these equations at large L and neglecting the corrections from
the convolutions, it turns out, that the positions of the singularities u∗j are solutions to
the asymptotic Bethe equations, i.e. in our example

−1 = eip
∗
jL
∏
k

SQ′Q(u∗j , u
∗
k) . (6.33)

Note that, unlike the case studied in Sec. 2.2.2, here we did include SQ′Q(u∗j , u
∗
j) = −1

and thus we also have −1 on the left-hand side. In eq. (6.30), we use the rapidity u for
the parametrisation of the mirror region, however, these u∗j correspond to solutions of
the Bethe equations in the physical region. Therefore, the contour deformation can be
understood as analytically continuing the mirror rapidity u to the physical region to
include excitations. These excitations contribute source terms to the TBA and energy
equations as in eq. (6.32) as they give rise to singularities. This contour deformation
trick was found by Dorey and Tateo [72].

We can further analytically continue the excited TBA eqs. (6.32) back to physical
rapidities and evaluate at u∗j , which yields

iπ(2nj + 1) = −ipjL+
(
log(1 + YQ′) ⋆ KQ′Q

)
(u∗j) −

∑
k

log
(
SQ′Q(u∗k, u

∗
j)
)
, (6.34)

where nj ∈ Z labels the different branches of log YQ(u∗j) = log(−1). This equation is
also called exact Bethe equation, as it contains corrections to the asymptotic part from
the convolution of the Y-function with the kernel. Moreover, the Bethe roots u∗j have
to satisfy the exact Bethe equation (6.34).

Again we refer the reader to the reviews [130,132] for a more detailed discussion of
TBA techniques and examples of its application to other models.
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6.2. TBA equations in the pure-RR sector
Let us study the mirror TBA equations for AdS3 × S3 × T4 with pure RR flux, which
were worked out in [65]. For pure RR flux the dispersion relation from eq. (4.56)
becomes

E =

√
m2 + h2 sin2 p

2
. (6.35)

Similarly to the example in Sec. 6.1, the particles involved can organise into Bethe
strings. Again, the string hypothesis is assumed, namely that all the relevant solutions
are captured by Bethe strings. Let us therefore discuss the relevant types of particles
in the following.

Fundamental excitations. The fundamental excitations were given in Sec. 4.5. In
comparison with our choice in Sec. 4.2 the grading in ref. [65] is chosen such that the
left momentum carrying modes are in the sl(2) grading. Hence the right modes are
in the su(2) grading. This simply amounts to an exchange of what we called left and
right before. In the following we will use the choice from [65]. The massless modes are
in a fermionic grading. Similarly to the Bethe equations in AdS5 (or its subsectors as
in Sec. 2.2.4) we have auxiliary Bethe roots y here from creating level-II excitations,
i.e. acting with the lowering operators. These roots transform in the fundamental
representation of the su(2)• algebra. The mirror Bethe-Yang equations as well as the
two-particle S matrices can be found in [65].

Massive bound states. As mentioned before, the fundamental particles can be
organised in Bethe strings forming bound states. While the individual particles may
have complex momenta and energies, the corresponding bound states have real mirror
momenta and energies. The bound states are created from poles in the S matrix.
Considering left particles it turns out, that the pole structure takes such a form, that
only left particles can form bound states. Combining Q particles with u(1) charge
m = +1, the bound state will have mass m = Q and hence be denoted as Q-particle [65].

A similar analysis can be done for right particles. However, due to the su(2) grading
the S matrix has poles and zeros and thus additional zeros and poles from the auxiliary
equations are needed to satisfy the Bethe-Yang equations. We will denote right bound
states as Q̄-particles [65].

There exist no bound states consisting of left and right particles, as the corresponding
left-right S matrix does not have poles in the mirror region.

Massless excitations. Massless particles do not form bound states, as the scattering
matrix has neither poles nor zeros in the mirror region. Accordingly physical massless
excitations have real momenta [63]. Further, there are also no bound states between
massive and massless particles [65]. As discussed in Sec. 4.2, there are two massless
representations, labelled by the index α̇ = 1, 2 transforming as a doublet under su(2)◦.

Auxiliary roots. Also the auxiliary roots y do not form bound states. Moreover,
they are neither contributing to the momentum nor the energy. These roots are labelled
by the index α = 1, 2, transforming as a doublet under su(2)•.
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6.2.1. Parametrisation

Before moving to the study of the mirror TBA equations in the tensionless limit, let
us introduce the parametrisation we will be using in the following. The Zhukovsky
variables in the string region can be used as introduced in terms of the momenta p in
eq. (4.63). Below we will also consider the parametrisation in the mirror region. In
addition to the Bethe rapidity u, which obeys

u = x+ +
1

x+
− i

h
|m| = x− +

1

x−
+
i

h
|m| , (6.36)

it will be convenient to introduce the Fontanella-Torrielli parametrisation [137] in terms
of γ-rapidities, cf. the detailed discussion of the parametrisation in ref. [63].

String region. In terms of the rapidity u and setting k = 0, we can write the
Zhukovsky variable in the string region as

xs(u) =
u

2

(
1 +

√
1− 4

u2

)
, (6.37)

which has cuts for −2 < u < 2 and are therefore called short cuts. Further, for massive
excitations we then have

x±s (u) = xs(u±
i

h
|m|) , (6.38)

where the subscript indicates that we consider particles in the string region here. For
physical particles in the string region the rapidities u are real. As in Sec. 4.5 we can
take the m→ 0 limit to obtain the parametrisation for massless particles. Let us define
xs(u) = xs(u+ i0), which then satisfies the constraint

xs(u+ i0) =
1

xs(u− i0)
, (6.39)

with the rapidity taking values just above the short cut −2 < u < 2 for real momenta p.
Hence, we have (xs(u))

2 = eip. It follows from this parametrisation, that xs lies on the
upper half-circle for massless particles with real momentum.

Moreover, it will be useful to work in the γ-parametrisation introduced in [137]. For
massive excitations we then have [63]

x±s (γs) =
i∓ eγ

±

i± eγ± . (6.40)

Since we should have |x±| > 1 in the string region (or physical region), we pick the
region −π < Im(γ+) < 0 for γ+, while for γ− we choose 0 < Im(γ−) < π, following [63].
Then we have

γ± = log

(
∓ix

± − 1

x± + 1

)
. (6.41)

Finally, in this parametrisation the energy can be written as

E(γ±s ) = h

(
1

cosh γ+s
+

1

cosh γ−s

)
. (6.42)
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Figure 6.2.: The crossing transformation can be understood as an analytical continua-
tion to the complex rapidity plane. The short cuts are depicted for x±s (u)
between the branch points at u = ±2 + i

h
for the upper and u = ±2− i

h

for the lower cut. Note, that in the figure γ refers to the mirror transfor-
mations.

Similarly, we have for massless particles

xs(γs) =
i− eγs

i+ eγs
, γs = log

(
−ixs − 1

xs + 1

)
. (6.43)

As stated above, for real momenta, the variable xs(γs) takes values on the upper half
of the unit circle and hence γ is real. The energy can be written as

E0(γs) =
2h

cosh γs
. (6.44)

Mirror region. In Sec. 4.7 we considered the crossing transformation, which takes a
particle to its antiparticle. Here we will consider mirror transformations, which are
sometimes referred to as half crossing. The name will become clear in the following. As
noted above, the Zhukovsky parametrisation in eq. (6.37) has short cuts at −2 < u < 2.
Let us begin with massive particles x±s (u). The mirror transformation then corresponds
to analytically continuing x+s (u) to the complex u plane and around the branch points,
see Fig. 6.2. This continuation is also denoted by uγ and under the mirror transformation
we have

uγ : x+s (u
γ) =

1

x+s (u)
, (6.45)

for massive particles. As discussed in Sec. 6.1, by going to the mirror theory we obtain
the mirror energy Ẽ and mirror momentum p̃ as

Ẽ = −ip , p̃ = −iE . (6.46)

As we are interested in the mirror TBA equations, we will mostly work with the mirror
theory in the remainder of this section. Therefore, let us introduce a more suitable
mirror Zhukovsky parametrisation given by

x(u) =
1

2

(
u− i

√
4− u2

)
, (6.47)
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which has cuts on the real u-line for |u| > 2 and are hence also called long cuts. Again,
for massive particles we can write

x±(u) = x(u± i
h
|m|) . (6.48)

In the mirror region the momentum for a Q-particle is given by

p̃Q(u) = h
(
x(u− i

h
Q)− x(u+ i

h
Q)
)
+ iQ , (6.49)

while the mirror energy for a Q-particle is

ẼQ(u) = log
x(u− i

h
Q)

x(u+ i
h
Q)

, (6.50)

and analogously for Q̄-particles [65]. Similarly to the string region, particles with real
mirror momentum p̃Q are defined for real rapidities u ∈ R.

Like in the string region, for massless particles we define

x(u) = x(u+ i0) =
1

x(u− i0)
. (6.51)

Here, we have u just above the long cut on the real u-line with |u| > 2. In the mirror
theory x(u+ i0) also lies on the real axis and takes the values −1 ≤ x ≤ 1.

Let us also introduce the parametrisation in terms of the γ-rapidities here. For the
massive particles it is given by [63]

γ+ =
1

2
log

(
−
u+ iQ

2
− 2

u+ iQ
2
+ 2

)
− iπ , γ− =

1

2
log

(
−
u− iQ

2
− 2

u− iQ
2
+ 2

)
. (6.52)

Analogously, for the massless case we have

γ(u) =
1

2
log

(
−u− 2

u+ 2

)
+
iπ

2
. (6.53)

Further, for massless mirror particles, the relation between the γ-parameter and the
Zhukovsky variable x in the mirror theory is

x(γ) = − tanh
γ

2
, γ(x) = −2 arctanh(x) . (6.54)

Moreover, by directly comparing the definition of γ given here with the one given for
the string region we see that

γs = γ − iπ

2
. (6.55)

where γ(u) is defined in the mirror region by eq. (6.53) and γs(u) = γ(xs(u)) in the
string region by eq. (6.43). In particular, we can use the shifted rapidities to obtain
the relation given in eq. (6.46)

E0(γ − iπ
2
) = −i p̃0(γ) , p0(γ − iπ

2
) = −i Ẽ0(γ) . (6.56)

In what follows, we will use the notation introduced here and indicate whenever a
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variable is defined in the string region by the resepective subscript.

Anti-string region. Going from the string to the anti-string region corresponds to a
crossing transformation, as discussed in Sec. 4.7. However, it can also be understood as
the analytic continuation through the cuts for x+s (u) and x−s (u), as depicted in Fig. 6.2.
The 2γ crossing transformations for massive and massless particles are then given by
the rules presented in Sec. 4.7.

More on massless particles. In the following we will focus on massless particles in
particular. Hence, it will be convenient to explicitly give the parametrisation of the
physical quantities in terms of the γ- and γs-rapidities in the mirror and string region,
respectively. In the string region we have

E0 =
2h

cosh γs
, p0 = −i log

(
i− eγs

i+ eγs

)2

, (6.57)

where we choose the branches of the logarithm in such a way, that

p0 =

{
−2i log

(
+ i−eγs

i+eγs

)
, γs > 0 (−π ≤ p ≤ 0),

−2i log
(
− i−eγs

i+eγs

)
, γs < 0 (0 ≤ p ≤ +π).

(6.58)

The gapless dispersion relation for massless particles makes this choice of different
branches for positive and negative momentum necessary, cf. also the discussion in
ref. [138]. Taking γ slightly above the real axis, we have for the mirror particles

p̃0 = − 2h

sinh γ
, Ẽ0 = − log

(
1− eγ

1 + eγ

)2

. (6.59)

Again we choose the branches of the logarithm as in [138] and distinguish positive and
negative mirror momentum modes

Ẽ0(γ) =

{
−2 log

(
1−eγ

1+eγ

)
+ 2πi, γ > 0 (i.e. p̃0 < 0),

−2 log
(
1−eγ

1+eγ

)
, γ < 0 (i.e. p̃0 > 0),

(6.60)

and the variables γ take values just above the real line. Note, that the mirror energy is
not analytic around γ = 0 or equivalently p = 0, as discussed in [138].

Auxiliary roots. Finally, we need to parametrise the auxiliary particles. We only
need to consider them in the mirror theory here. They can be described by Zhukovsky
variables taking values on the unit circle [65]. Moreover, it turns out, that for the
parametrisation of the mirror kinematics of auxiliary particles, the string kinematics
of massless particles can be used. In contrast, to the massless particles however, the
auxiliary particles have neither energy nor momentum associated to the auxiliary roots.
Another difference is, that the auxiliary particles can take values on the upper or lower
half circle. Hence, it is customary to introduce two types of auxiliary roots as in the
following table [65]:
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Auxiliary Parametrisation
y+ particles 1/x(u) on the upper half circle with −2 < u < 2; we will use xs(u)
y− particles x(u) on the lower half circle with −2 < u < 2; we will use 1/xs(u)

The parametrisation in terms of the γ-rapidities is then analogous to the parametrisation
of the massless particles in the string region as well.

6.2.2. Mirror TBA equations

The mirror TBA equations were derived in [65]. As in Sec. 6.1, the kernels are defined
by taking the logarithmic derivative of the corresponding S matrix in the mirror-mirror
kinematics, i.e.

K∗∗(u, u′) =
1

2πi

d
du

log S∗∗(u, u′) , (6.61)

where the stars indicate massive, massless or auxiliary particles. For the reader’s
convenience, we collect the various kernels in App. B. The TBA equations are written
in terms of the rapidity variables u, the domains of which are chosen such that all
real momenta are covered. In particular, this makes it necessary to introduce the
convolutions

⋆↔
+∞∫

−∞

du, ⋆̂↔
+2∫

−2

du, ⋆̌↔
−2∫

−∞

du+
+∞∫
+2

du . (6.62)

From the discussion of the parametrisation it becomes clear, that we use ⋆ for Q and
Q particles, while for massless particles we need to use ⋆̌. Finally, for convolutions
involving auxiliary particles we use ⋆̂.

Similarly to Sec. 6.1, we can find the excited TBA equations from the ground state
equations. In the following, we will consider massless excitations only. By using
the Dorey-Tateo contour deformation trick [72], we can pick up an even number of
massless excitations with pairs of real momenta (−pj, pj). This directly ensures that
the level-matching condition is satisfied. Moreover, the Y-functions are symmetric
under u↔ −u. The driving terms for massless excitations stem then from deforming
the contour in such a way, that residues are picked up in the convolutions, when for
the massless Y-functions we have

Y
(α̇)
0 (u

α̇j

s,j) = −1 , with j = 1, . . . , 2M . (6.63)

The values of uα̇j

s,j lie in the string region, as indicated by the subscript. For massless
particles, this means, that uα̇j

s,j takes values between −2 and 2.
The excited state mirror TBA equations are given below in terms of the Y-functions

with the driving terms added in grey. As in the example in Sec. 6.1, the driving terms
are of the form log S0∗∗(u

α̇j

s,j, ·), where the dot indicates the free argument. It is worth
stressing, that these S matrix elements have the first argument in the string region.
This is further highlighted by the index 0∗.

Moreover, the ground state equations from [65] can be recovered straightforwardly by
simply dropping the driving contributions. In the following equations we will explicitly
write the dependence on u. However, in order to improve readability we will mostly
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leave it implicit in our discussion in Sec. 6.3.

Equation for Q-particles.

− log YQ(u) = LẼQ(u)−
(
log (1 + YQ′) ⋆ KQ′Q

sl

)
(u)−

(
log (1 + ȲQ′) ⋆ K̃Q′Q

su

)
(u)

−
N0∑
α̇=1

(
log (1 + Y

(α̇)
0 )⋆̌K0Q

)
(u)+

2M∑
j=1

log S0∗Q(u
α̇j

s,j, u)

−
∑
α=1,2

(
log

(
1− 1

Y
(α)
+

)
⋆̂KyQ

+

)
(u)−

∑
α=1,2

(
log

(
1− 1

Y
(α)
−

)
⋆̂KyQ

−

)
(u) .

(6.64)

Equation for Q̄-particles.

− log ȲQ(u) = LẼQ(u)−
(
log (1 + ȲQ′) ⋆ KQ′Q

su

)
(u)−

(
log (1 + YQ′) ⋆ K̃Q′Q

sl

)
(u)

−
N0∑
α̇=1

(
log (1 + Y

(α̇)
0 )⋆̌K̃0Q

)
(u)+

2M∑
j=1

log S̃0∗Q(u
α̇j

s,j, u)

−
∑
α=1,2

(
log

(
1− 1

Y
(α)
+

)
⋆̂KyQ

−

)
(u)−

∑
α=1,2

(
log

(
1− 1

Y
(α)
−

)
⋆̂KyQ

+

)
(u) .

(6.65)

Equations for Massless particles.

− log Y
(α̇)
0 (u) = LẼ0(u)−

N0∑
β̇=1

(
log (1 + Y

(β̇)
0 )⋆̌K00

)
(u)+

2M∑
j=1

log S0∗0(u
α̇j

s,j, u)

−
(
log (1 + YQ) ⋆ K

Q0
)
(u)−

(
log (1 + ȲQ) ⋆ K̃

Q0
)
(u)

−
∑
α=1,2

(
log

(
1− 1

Y
(α)
+

)
⋆̂Ky0

)
(u)−

∑
α=1,2

(
log

(
1− 1

Y
(α)
−

)
⋆̂Ky0

)
(u) .

(6.66)

Equations for auxiliary y−-particles.

log Y
(α)
− (u) =−

(
log (1 + YQ) ⋆ K

Qy
−

)
(u) +

(
log (1 + ȲQ) ⋆ K

Qy
+

)
(u)

+

N0∑
α̇=1

(
log (1 + Y

(α̇)
0 )⋆̌K0y

)
(u)−

2M∑
j=1

log S0∗y(u
α̇j

s,j, u) .
(6.67)
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Equations for auxiliary y+-particles.

log Y
(α)
+ (u) =−

(
log (1 + YQ) ⋆ K

Qy
+

)
(u) +

(
log (1 + ȲQ) ⋆ K

Qy
−

)
(u)

−
N0∑
α̇=1

(
log (1 + Y

(α̇)
0 )⋆̌K0y

)
(u)+

2M∑
j=1

log S0∗y(u
α̇j

s,j, u) .
(6.68)

Note that we wrote the equations with a sum over the N0 massless modes. In
the original proposal [65] the value is N0 = 2. However, in the recent work [139] a
comparison of the ground state energy with a direct computation from string theory
suggests, that only one massless mode should be included, i.e. N0 = 1. We will keep
the following analysis as general as possible by writing N0.

Energy and momentum. Similar to the example in Sec. 6.1, we can compute the
energy from the Y-functions. However, here we have to consider the contributions from
the massive as well as the massless Y-functions.

E(L) =−
∞∫

−∞

du
2π

dp̃Q(u)
du

log
(
(1 + YQ(u))(1 + ȲQ(u))

)
−
∫

|u|>2

du
2π

dp̃0(u)
du

N0∑
α̇=1

log
(
1 + Y

(α̇)
0 (u)

)
+

2M∑
j=1

E0(u
α̇j

s,j) .

(6.69)

The auxiliary Y-functions do not contribute to the energy. It is also useful to write
a similar formula to impose that the total-momentum of the (ground) state vanishes,
namely

0 =−
∞∫

−∞

du
2π

dẼQ(u)

du
log
(
(1 + YQ(u))(1 + ȲQ(u))

)
−
∫

|u|>2

du
2π

dẼ0(u)

du

N0∑
α̇=1

log
(
1 + Y

(α̇)
0 (u)

)
+

2M∑
j=1

p(u
α̇j

s,j) .

(6.70)

This is the level-matching condition in string theory (without winding around the
lightcone, see [111]). Since we chose pairs of momenta (−pj, pj) with j = 1, . . . ,M , the
last sum does not contribute.

Exact Bethe equations. The rapidities uα̇j

s,j have to satisfy the exact Bethe equations.
Similarly to the example in Sec. 6.1, we can write them by analytically continuing the
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massless TBA eq. (6.66) to the string region. Introducing the label nα̇
k ∈ Z we get

iπ(2nα̇
k + 1) =

− iLpα̇k
k −

N0∑
β̇=1

(
log (1 + Y

(β̇)
0 )⋆̌K00∗

)
(uα̇k

s,k)+
2M∑
j=1

log S0∗0∗(u
α̇j

s,j, u
α̇k
s,k)

−
(
log (1 + YQ) ⋆ K

Q0∗
)
(uα̇k

s,k)−
(
log (1 + ȲQ) ⋆ K̃

Q0∗
)
(uα̇k

s,k)

−
∑
α=1,2

(
log

(
1− 1

Y
(α)
+

)
⋆̂Ky0∗

)
(uα̇k

s,k)−
∑
α=1,2

(
log

(
1− 1

Y
(α)
−

)
⋆̂Ky0∗

)
(uα̇k

s,k) ,

(6.71)
for k = 1, . . . , 2M . Again, the 0∗ signals, that the corresponding function is analytically
continued to the string region.

6.3. Simplified TBA equations in the tensionless limit
The mirror TBA equations written above can be simplified. In the following, we will
begin to rewrite them, dropping the su(2) labels and introducing renormalised kernels.
Afterwards, we will consider the small-tension limit h→ 0. In this limit the massive
modes will decouple, allowing us to write TBA equations involving only massless and
auxiliary modes.

6.3.1. Rewriting of the TBA equations

We will drop the su(2) labels in what follows and will from now on use

Y0(u) ≡ Y
(1)
0 (u) = Y

(2)
0 (u) , and Y±(u) ≡ Y

(1)
± (u) = Y

(2)
± (u) . (6.72)

However, we still have to use the label to distinguish the Bethe roots, as two Bethe
roots may take the same value as long as they satisfy the Pauli exclusion principle.
This allows us to replace the sum over α̇ by the factor N0.

Considering the above TBA equations we can identify a potential problem with the
auxiliary-massless convolutions. For the corresponding S matrices in the mirror-mirror
region we have

S0y(u, u′) =
1√
x(u)2

x(u)− xs(u
′)

1
x(u)

− xs(u′)
, Sy0(u′, u) =

1

S0y(u, u′)
, (6.73)

with u just above the long cut for a massless mirror particle and u′ just above the short
cut for the auxiliary particles. Let us consider the source term S0∗y(u

α̇j

s,j, u
′). As uα̇j

s,j is
in the string region, we have that xs(u

α̇j

s,j) is on the upper half-circle, just like xs(u′). It
follows that the source term S0∗y(u

α̇j

s,j, u
′) has a zero when u′ is on the real mirror line.

This leads to a logarithmic singularity in the convolutions involving log
(
1− 1

Y+

)
in

eqs. (6.64), (6.65) and (6.66). It is convenient to rewrite the convolution as

− log

(
1− 1

Y+

)2

⋆̂Ky0 =
(
− log (1− Y+)

2 + log(Y+)
2) ⋆̂Ky0 . (6.74)
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Note that the representation of the logarithm is important here. Depending on whether
we write log z2 or 2 log z, we might obtain an additional 2πi term. Convoluting this
additional term with Ky0 yields 2iπ⋆̂Ky0 = iπ. This ambiguity can be fixed later on
by demanding compatibility of the exact Bethe equations and the asymptotic Bethe
equations.

Apparently the first convolution in eq. (6.74) is regular, while the second is still
divergent. However, we can now use eq. (6.68) to express the contribution of the latter
through multiple convolutions. Using this and leaving the dependence on the rapidity u
implicit, we can rewrite the massless TBA equations as

− log Y0 =LẼ0 − log (1 + Y0)
N0 ⋆̌K00

ren+
2M∑
j=1

log S0∗0
ren (u

α̇j

s,j, · )

− log (1 + YQ) ⋆ K
Q0
ren − log (1 + ȲQ) ⋆ K̃

Q0
ren

− log (1− Y+)
2⋆̂Ky0 − log

(
1− 1

Y−

)2

⋆̂Ky0 ,

(6.75)

where we defined the renormalised kernels as

K00
ren = K00 + 2K0y⋆̂Ky0 ,

KQ0
ren = KQ0 + 2KQy

+ ⋆̂Ky0 , K̃Q0
ren = K̃Q0 − 2KQy

− ⋆̂Ky0 ,
(6.76)

as well as the renormalised source term

log S0∗0
ren (u

α̇j

s,j, u
′) = log S0∗0(u

α̇j

s,j, u
′) + 2

+2∫
−2

dv log S0∗y(u
α̇j

s,j, v)K
y0(v, u′) . (6.77)

Analogously, this rewriting can be done for the massive TBA equations (6.64) and (6.65).
However, as we will see in the following subsection, these will not be important in the
small tension limit. Further, by defining

K00∗
ren = K00∗ + 2K0y⋆̂Ky0∗ ,

KQ0∗
ren = KQ0∗ + 2KQy

+ ⋆̂Ky0∗ , K̃Q0∗
ren = K̃Q0∗ − 2KQy

− ⋆̂Ky0∗ ,
(6.78)

we can obtain from eq. (6.71) the renormalised exact Bethe equations given as

iπ(2nα̇
k + 1) =−iLpα̇k

k − log (1 + Y0)
N0 ⋆̌K00∗

ren +
2M∑
j=1

log S0∗0∗
ren (u

α̇j

s,j, u
α̇k
s,k)

− log (1 + YQ) ⋆ K
Q0∗
ren − log (1 + ȲQ) ⋆ K̃

Q0∗
ren

− log (1− Y+)
2⋆̂Ky0∗ −

∑
α=1,2

log

(
1− 1

Y−

)2

⋆̂Ky0∗ .

(6.79)

6.3.2. Analysing the scaling in the small-tension limit

We are interested in the small tension limit h → 0. To find the excited mirror TBA
equations as well as the exact Bethe equations and exact energy in this limit, let us
start by considering the scaling of the Y-functions. It will turn out, that the massive
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modes decouple, giving a simpler set of equations, which can be simplified further.

Assumptions and resulting scaling. Let us begin by considering the scaling
behaviour of the massive Y-functions. The TBA equations for YQ and ȲQ are given in
eqs. (6.64) and (6.65), respectively. The mirror energy ẼQ(u) is bounded from below
by its value at p̃ = 0, that is at u = 0. In fact,

ẼQ(u) = log
Q2

h2
+O(h2) for Q ̸= 0 . (6.80)

Since the mirror energy is divergent for h→ 0, we conclude that there is at least one
divergent term in the equations for YQ and ȲQ with Q ̸= 0. Further, let us assume,
that all the remaining terms on the right hand side of the excited state TBA equations
for YQ and ȲQ are finite in the limit h → 0. Then we find from the respective TBA
equations that

YQ(u) = h2L yQ(u) , ȲQ(u) = h2L ȳQ(u) , (6.81)

where we introduced the functions yQ(u) and ȳQ(u), which are convergent and finite as
h→ 0.

Similarly, we can consider the scaling of the massless Y-functions. The mirror energy
Ẽ0(u) is given in eq. (6.59). As it does not explicitly depend on h, it is finite in the
h→ 0 limit. Let us further assume, that the kernels involving massive particles, i.e.
KQ0 and K̃Q0, are convergent and finite as h→ 0. Under these assumptions and using
the scaling of YQ and ȲQ from eq. (6.81), we find

− log (1 + YQ) ⋆ K
Q0 − log (1 + ȲQ) ⋆ K̃

Q0 = O(h2L) , (6.82)

which contributes at a higher order in h than the mirror energy Ẽ0(u) = O(h0).
Therefore, we can neglect the contribution from massive modes to the massless TBA
equations.

Making similar assumptions about the kernels involving massive modes in the
auxiliary equations, namely KQy

± , and the analytically continued kernels KQ0∗ and
K̃Q0∗ in the exact Bethe equations, there the massive modes decouple at leading order
in the coupling h as well.

After these considerations, we are left with a system of equations for and involving
only Y0(u) and Y±(u). Assuming again, that the remaining kernels are well behaved
for h→ 0, we find the scaling

Y0(u) = O(h0) , and Y±(u) = O(h0) . (6.83)

With this, we can consider the scaling of the energy for an excited state. As before, the
integrals involving YQ and ȲQ functions in eq. (6.69) are of the order h2L and hence
suppressed. We find for the energy at leading order O(h1),

E(L) = −
∫

|u|>2

du
2π

dp̃0

du
log (1 + Y0)

N0 +
2M∑
j=1

E0(u
α̇j

s,j) . (6.84)

From eqs. (6.44) and (6.59) it is clear, that the dependence on h is introduced through
E0(u) and p̃0(u).
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In the following paragraphs we will justify the assumptions made about the kernels.
However, we will keep the discussion rather compact due to its technical nature. Our
focus is on the simplification of the TBA equations, given that the kernels are sufficiently
well-behaved. We will discuss the kernels involved in the convolutions in the TBA
equations, but, of course, a similar analysis needs to be done for the source terms and
finally the exact Bethe equations. For more details and a more technical discussion, we
refer the reader to [4, 5].

Vindicating the assumptions for massive particles. In the h → 0 limit the
leading order of the kernels KQ′Q

sl (u′, u) and K̃Q′Q̄
su (u′, u) are given by the contributions

from the BES terms, namely KQ′Q
Σ (u′, u) and K̃Q′Q̄

Σ (u′, u). The kernels are regular for
real values of the rapidities u′, u.

Next, we consider the massless-massive kernel K0Q(u1, u2), that has multiple diver-
gences. Firstly, there are divergences at u1 = ±2, which are integrable as long as the
kernel is convoluted with a finite function. Further, there are divergencies for u1 → ±∞,
as the BES kernel diverges like 1/x(u1)

2 for x(u1) → 0 and |x(u1)| ≪ h≪ 1. Therefore,
the functions we integrate the kernel against have to vanish around x(u1) = 0. We
can also see from the formula for the energy eq. (6.84), that we need log(1 + Y0) to
vanish around x(u1) = 0. Since the mirror momentum diverges at x(u1) = 0 this is
necessary for a well-defined energy. This behaviour of Y0 follows from the term LẼ0 in
the massless TBA equations as Y0(u1) ∼ x(u1)

2L in the vicinity |x(u1)| ≪ 1. Hence, it
can be concluded, that the convolution is regular and the h → 0 limit can be taken.
The analysis of the kernels KyQ

± is similar. Also these feature singularities, which are
integrable as long as the functions Y±(u1) remain finite near the rapidities for which
the kernels diverge.

Following these statements, it can be concluded, that all the convolutions in the
equations for massive particles are regular for small h. The scaling of YQ is therefore
solely dictated by the term LẼQ, as assumed above.

Vindicating the assumptions for massless particles. We also have to consider
the kernels appearing in the massless TBA equations. Let us begin by stating, that
the auxiliary kernel Ky0 is regular.

Next, the massive-massless kernel KQ0(u2, u1) behaves like K0Q(u1, u2) considered
above. Though the kernel is singular for x(u1) → 0, i.e. u1 → ±∞, its convolution
with the massive Y-functions behaves like h2L log(x(u1)) for |x(u1)| ≪ h≪ 1. Hence
the contribution from massive particles can be neglected at leading order.

Finally, we have the massless-massless kernel K00(u1, u2). For later convenience, let
us already state here, that the massless-massless BES kernel K00

BES(u1, u2) decouples at
leading order in h. Also this kernel is divergent at x1 → 0. However, the convolution
with the massless Y-functions vanishes for h → 0, as long as Y0 also vanishes in the
vicinity of x1 = 0, as discussed above.

With these observations, we see that also for the massless TBA equations most
kernels decouple.

6.3.3. Simplifying the TBA equations

Having analysed the leading order at which the Y-functions (at O(h0)) and the energy
(at O(h1)) contribute, we found, that the massive modes decouple. Hence the excited
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mirror TBA equations at leading order in h are given by

− log Y0 =LẼ0 − log (1 + Y0)
N0 ⋆̌K00

ren+
2M∑
j=1

log S0∗0
ren (u

α̇j

s,j, · )

− log (1− Y+)
2⋆̂Ky0 − log

(
1− 1

Y−

)2

⋆̂Ky0 ,

log Y− =+ log (1 + Y0)
N0 ⋆̌K0y−

2M∑
j=1

log S0∗y(u
α̇j

s,j, · ) ,

log Y+ =− log (1 + Y0)
N0 ⋆̌K0y+

2M∑
j=1

log S0∗y(u
α̇j

s,j, · ) .

(6.85)

Here we left the dependence of the source terms on the rapidity u implicit and merely
indicated it by a dot. Let us now take a closer look at the remaining kernels and
S matrices. Further, we will rewrite the equations in terms of the real γ-rapidity.
Arguments in the string region can be realised by appropriately shifting the kernels,
taking γs = γ − iπ

2
from eq. (6.55) into account. For this purpose, let us introduce the

Cauchy kernel s(γ) and the corresponding S matrix S(γ), which are defined as

s(γ) =
1

2πi

d
dγ

log S(γ) =
1

2π cosh γ
, S(γ) = −i tanh

(
γ

2
− iπ

4

)
. (6.86)

Moreover, since we work in the γ-parametrisation, we will introduce calligraphic kernels,
which are related to the kernels from eq. (6.61) through

K∗∗(u, u′) =
dγ
du

K∗∗(γ(u), γ(u′)) , with K∗∗(γ, γ′) =
2

2πi

d
dγ

log S∗∗(γ, γ′) . (6.87)

Let us now consider the expressions relevant for the TBA equations above. First
of all, looking at the auxiliary equations, we can observe that we can rewrite the S
matrices involving massless and auxiliary particles as

S0y(x(γ), xs(γ
′)) =

−i sgn(γ)
S(γ − γ′)

, Sy0(xs(γ), x(γ
′)) =

+i sgn(γ′)
S(γ − γ′)

, (6.88)

so that the respective kernels are given by

K0y(γ, γ′) = −s(γ − γ′) +
1

2
δ(γ) , Ky0(γ, γ′) = −s(γ − γ′) . (6.89)

Neglecting the δ-functions1, the TBA equations for the auxiliary particles become

log Y−(γ) =−
(
log (1 + Y0)

N0 ∗ s
)
(γ)−

M∑
j=1

log
(
S∗(−γ

α̇j

j − γ)S∗(γ
α̇j

j − γ)
)
,

log Y+(γ) = +
(
log (1 + Y0)

N0 ∗ s
)
(γ) +

M∑
j=1

log
(
S∗(−γ

α̇j

j − γ)S∗(γ
α̇j

j − γ)
)
,

(6.90)

1Neglecting log (1 + Y0)
N0 ⋆̌K0y can be justified, as Y0(γ) vanishes at γ = 0 as argued above.
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where the analytic continuation of the S matrices in the source term is indicated by
the asterisk. We use the definition

S∗(γ) ≡ S(γ +
iπ

2
) , (6.91)

for the continuation of S(γ) to the mirror-string region. We also paired the roots of
opposite signs in eq. (6.90). Note further, that here we used ∗ for the convolution,
since we always integrate the γ-rapidity over the real line, i.e.

∗ ↔
+∞∫

−∞

dγ . (6.92)

By adding the two lines in eq. (6.90), we see that at leading order in the coupling we
have Y+(γ)Y−(γ) = 1 and hence we can introduce

Y (γ) ≡ Y+(γ) =
1

Y−(γ)
. (6.93)

This leads to only one equation for the auxiliary particles written in terms of Y (γ).
Let us proceed with the massless TBA equations. The renormalised calligraphic

kernel K00
ren, as found in eq. (6.76), is given by

K00
ren(γ, γ

′) = K00(γ, γ′) + 2

(
du

dγ

)
(K0y⋆̂Ky0)(γ, γ′) , (6.94)

where the kernel K00(γ, γ′) is the sum of three terms (cf. also eq. (B.5) in App. B)

K00(γ, γ′) = s(γ − γ′) + 2KSG(γ, γ
′)− 2K00

BES

(
x(γ), x(γ′)

)
. (6.95)

The last term is related to the BES-phase, which does not contribute at leading order in
the coupling h. We can therefore neglect it in the following. Further, the Sine-Gordon
kernel is of difference form in the rapidities and given by

KSG(γ, γ
′) =

γ − γ′

2π2 sinh(γ − γ′)
. (6.96)

Let us now evaluate the convolution in eq. (6.94). The calculation can be done explicitly
and yields

K0y⋆̂Ky0(u, u′) =

∫ 2

−2

du′′K0y(u, u′′)Ky0(u′′, u′)

= −
∫ ∞

−∞
dγ′′K0y(u(γ), us(γ

′′))
du′′

dγ′′
Ky0(us(γ

′′), u(γ′))

=

(
dγ

du

)(
−KSG(γ, γ

′) +
1

4
δ(γ)

)
.

(6.97)

Substituting this into eq. (6.94) and again neglecting the δ-functions, we see, that at
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leading order in the coupling h the renormalised massless kernel becomes

K00
ren(γ, γ

′) = s(γ − γ′) +O(h) . (6.98)

In a similar way, we can find that the analytically continued renormalised massless
S matrix is in the small h limit given by

S0∗0
ren (γ, γ

′) = − 1

S∗(γ − γ′)
+O(h) . (6.99)

Equipped with these results, we can finally write the TBA equations from eq. (6.85)
in the simplified form

− log Y0(γ) = LẼ0(γ)−
(
log (1 + Y0)

N0 ∗ s
)
(γ)−

M∑
j=1

log
(
S∗(−γ

α̇j

j − γ)S∗(γ
α̇j

j − γ)
)

−
(
log (1− Y )4 ∗ s

)
(γ) ,

log Y (γ) =
(
log (1 + Y0)

N0 ∗ s
)
(γ) +

M∑
j=1

log
(
S∗(−γ

α̇j

j − γ)S∗(γ
α̇j

j − γ)
)
.

(6.100)
It is worth noting, that picking the pairs of rapidities (−γα̇j

j , γ
α̇j

j ) introduces a sign into
the source term of the auxiliary TBA equations, given by sgn(−γα̇j

j ) sgn(γα̇j

j ) = −1.
However, there is also another factor i2 = −1 from eq. (6.88) compensating the sign
from the Signum function. Hence, the source terms in the auxiliary TBA equations are
identical to the one in the massless TBA equation.

Finally, we also have the exact Bethe equation, which reads

iπ(2nα̇
k + 1) =− iLp(γα̇k

k )−
(
log (1 + Y0)

N0 ∗ s∗
)
(γα̇k

k ) +
2M∑
j=1

log S(γ
α̇j

j − γα̇k
k )

−
(
log (1− Y )4 ∗ s∗

)
(γα̇k

k ) .

(6.101)

Let us emphasise again, that the pairs of Bethe roots ±γα̇j

j need to satisfy the exact
Bethe equation.

One can now attempt to solve this set of eqs. (6.100) and (6.101), to obtain the
Y-functions Y0 and Y as well as the Bethe roots ±γα̇j

j . Using the solutions together
with eq. (6.84), the exact energy can be calculated. By rewriting eq. (6.84) in terms of
the γ-rapidities, we obtain

E(L) = −
+∞∫

−∞

dγ
2π

dp̃0

dγ
log (1 + Y0(γ))

N0 +
2M∑
j=1

E(γα̇j

j ) . (6.102)

We can see that there is no contribution to the energy at O(h0), as both p̃0(γ) and
E(γs) are of order O(h1). Hence, at this order, massless states have zero energy and are
highly degenerate. Further, since log (1 + Y0(γ))

N0 ∼ O(h0), the massless Y-functions
contribute to the energy at O(h1). This indicates, that wrapping correction start
contributing at the earliest order possible. This also lifts the degeneracy of the massless
states. From our discussion around eq. (6.81), we can then expect wrapping corrections
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to the energy from the massive Y-functions contributing at O(h2L).

Ground state solution. Let us study the ground state TBA equations, which we
can obtain from eq. (6.100) by simply dropping the source terms. Since the equations
are written over a BPS vacuum, the ground state energy must vanish. Let us consider
this more explicitly. The TBA equation for Y0 is singular and we need to regularise it
by introducing a small chemical potential µ, as it was done for AdS5 × S5 in [140]. A
similar analysis for the TBA equations at hand has been performed in [139] including
the massive modes. Let us repeat the analysis here for the equations obtained in the
small tension limit given in eq. (6.100). We introduce µ in the following way

− log Y0(γ) = LẼ0(γ)−
(
log (1 + Y0)

N0 ∗ s
)
(γ)−

(
log (1− Y )4 ∗ s

)
(γ) ,

log Y (γ) = µ +
(
log (1 + Y0)

N0 ∗ s
)
(γ) .

(6.103)

We can now make an ansatz for the Y-functions as a series in the chemical potential of
the form

Y0(γ) =
∑
k=0

µky
(k)
0 (γ) , Y (γ) =

∑
k=0

µky(k)(γ) , (6.104)

and substitute it into the ground state TBA equations (6.103). Expanding in µ, we
can solve for the coefficient functions y(k)0 (γ) and y(k)(γ) up to a certain order. For
N0 = 1, 2 we find

Y0(γ) = µ2e−LẼ0(γ) + µ3
(
eLẼ0(γ) +N0 e

−2LẼ0(γ)
)
+O(µ4) ,

Y (γ) = 1 + µ+
µ2

2

(
1 +N0 e

−LẼ0(γ)
)
+O(µ3) .

(6.105)

For the solutions the exact energy evaluates at leading order in µ to

E(L) = −h
π

∫ ∞

−∞
dγ

cosh γ

sinh2 γ
log(1 + Y0(γ))

N0

= −µ2 N0hL

L2 − 1
4

+O(µ3) .
(6.106)

As expected, in the limit µ→ 0 we find that the ground state energy of a BPS state
vanishes. This result agrees with the massless contribution in eq. (3.12) of [139], in
which a term related to the massive modes is also present. Further, this means, that
the ground state Y-functions are given by Y0 = 0 and Y = 1.

Comments on solutions for excited states. In order to solve the simplified TBA
equations (6.100) in the tensionless limit numerical methods need to be used. This
can be done iteratively. Making an ansatz for the Y-functions, the TBA equations are
evaluated numerically and the result is used to update the Y-functions. If the iteration
is convergent, the resulting function for Y0 can be used to calculate the correction
to the energy. The TBA equations given in eq. (6.100) were solved to high precision
in [4,5]. Fig. 6.3 is taken from [4] and shows the anomalous dimensions for states of
lengths L = 4, 8, 16, 256, for which we find L/2 distinct energies labelled by ν1. We see,
that the anomalous dimensions are rather well-approximated by the asymptotic result
and quite close to the energies of the free model given by eq. (6.35) with p1 = 2πν1/L.
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Figure 6.3.: This figure shows the anomalous dimensions for states with rapidities
γ1 = −γ2 and is taken from [4]. Expanding the energy as E = H(1)h+O(h2),
the plots show the leading contribution H(1) for lengths L = 4, 8, 16, 256.
These results are compared with the predictions from the Bethe-Yang
equation eip1L

∏2
k=1 S

00(p1, pk) = −1 and the energy of a free model with
the dispersion relation given in eq. (6.35).

This suggests that in the weak-coupling limit this model becomes similar to one of free
particles with a massless periodic dispersion relation E(p) ∼ | sin(p/2)|. It is worth
stressing, that this similarity is not exact, implying that we have an interacting model
already at leading order in h.

6.4. Chapter summary
In this chapter we considered the thermodynamic Bethe ansatz, which allows us to
describe integrable models in a thermodynamic setting. In Sec. 6.1 we reviewed the
TBA for the Heisenberg XXX spin chain and familiarised with the concepts involved.
In particular, we considered the formation of bound states and the free energy. Going
to the mirror TBA allows then to capture wrapping corrections. Further, we introduced
the contour deformation trick [72] to consider excited states as well.

In Sec. 6.2 we turned to the mirror TBA equations for the pure Ramond-Ramond
sector of AdS3 × S3 × T4, which were derived in [65]. Here we introduced the relevant
particles as well as a parametrisation for the different kinematical regions. Moreover,
the parametrisation used here can be conveniently rewritten using γ-rapidities. Finally,
we gave the excited TBA equations, where we considered the excitation of massless
modes only.

The simplification of the excited TBA equations was studied in Sec. 6.3. Dropping the
su(2) labels of the Y-functions, we rewrote the equations and introduced renormalised
kernels. From analysing the scaling behaviour of the Y-functions in the small-tension
limit, we concluded, that the massive modes decouple, leaving us only with the
massless and auxiliary equations. Finally, we rewrote the remaining kernels and
S matrix elements in terms of the γ-rapidities, yielding the simplified small tension
TBA equations (6.100). From these we could see, that wrapping corrections from
massless modes start contributing at the earliest order possible, i.e. at O(h1).
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Chapter 7.

Conclusions

In this thesis we worked on different aspects of integrability in AdS5/CFT4 as well as
AdS3/CFT2. In the following we summarise the results and discuss possible directions
of future research. Since we considered integrability in two different models, let us also
discuss the results of the different parts respectively.

Part I: Integrability in N = 4 SYM
We began this part with a review of integrability in N = 4 SYM theory. In particular
integrability provides powerful tools and methods to solve the spectral problem of the
planar theory. These can even be extended to three- and higher-point functions by using
the hexagon formalism [38]. Over the last years this machinery was further developed
and used for the calculation of loop-corrections as well as non-planar corrections.
Moreover, most of the hexagon results in the literature are for operators in rank-one
sectors, as the formalism can be straightforwardly applied in these sectors.

Higher-rank sectors. An application of the hexagon form factor to higher-rank
cases is more involved due to the more complicated structure of the physical states
and scattering processes involved. Therefore, in Sec. 3.2 we considered this extension
with the goal to maintain the operator structure of the formalism, while importing
only the necessary minimum of information from the nested Bethe ansatz into the
hexagon. This allows us to consider operators from higher-rank sectors at all three
points. We dubbed this procedure hybrid picture, as we need the nested Bethe wave
function to find the coefficients of the multi-component Bethe wave function, on which
we act with the hexagon in the usual matrix formalism. In the examples we considered,
these coefficients capture the information supplied by the auxiliary rapidities from the
nested ansatz. The evaluation of the hexagon depends only on the momentum carrying
rapidities. Hence, our hybrid approach eclipses local details of the wave functions, as
all relevant information is hidden in the Bethe rapidities.

In [104] a nested hexagon was introduced. For instance, eq. (19) there resembles our
expressions for the coefficients gΨ, though it does not contain the creation amplitudes
for higher-level magnons of the nested Bethe ansatz. Moreover, the construction in [104]
relies heavily on the construction of the Bethe wave functions. Since already in the
spectral problem the wave functions can have a complicated local structure, we aimed
at avoiding this route. What is more, the hexagon operator features poles between
conjugate particles at different edges due to crossing. Dissolving the matrix structure of
the hexagon, it is hard to see how the correct crossing properties could be recovered from
a nested Bethe ansatz wave function. The only part of the Beisert S matrix occurring
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there is the A(u1, u2) element [97], which does not yield the right pole structure under
crossing. However, when considering multiple higher-rank operators, this structure is
crucial. Finally, when using the hexagon for the computation of higher-point functions,
the construction of a single wave function for the correlator seems discouraging. Despite
these differences in the construction, it would be interesting to use the hybrid picture
considering three-point functions with only one higher-rank operator and compare the
results with [104].

Marginal deformations. In Sec. 3.3 we aimed to generalise the hexagon formalism
of N = 4 SYM to the β-deformed theory. Since marginal deformations can be
incorporated into the nested Bethe ansatz for the spectral problem by introducing
deformation factors as in [97], our approach tried to introduce deformation factors into
the undeformed hexagons. Already when studying the splitting factors we observed
that they are dressed by such factors due to the deformation of the nested Bethe ansatz.
We considered three-point functions with operators in the SU(1|2) sector and were able
to fix these deformation factors. Further, the deformation is implicitly put into the
hexagon through the Bethe roots characterising the three operators. However, there
is a caveat when we choose the R-charges of the outer operators. There must be no
effective vacuum-vacuum propagators ⟨ẐẐ⟩ between the two non-trivial operators on
the three-point function. Such propagators exist in the undeformed theory as a result
of the twisted translation. The underlying symmetry is broken by the deformations
and the defining axioms from the undeformed theory cannot easily be adapted to
the deformed case. While one could hope that the symmetry somehow survives, it is
hard to see how to repair the twisted translation. Though a coproduct structure as
in [141] can be used to carry out the bootstrap of a deformed hexagon, it does not map
single-trace operators to their descendants as it does not respect cyclic symmetry. As
long as we restrict to such sets of operator lengths that the problematic propagators
are not present, the undeformed twisted translation can lead to correct results. Thus
we can use the N = 4 hexagon amplitudes dressed as in our non-trivial examples.
Moreover, although we restricted to the real β-deformation in this thesis, in [2] this
analysis was extended to PSU(1, 1|2) sectors using the more general three-parameter
γ-deformation. While the β-deformation cannot be implemented in the way described
here, it was however possible to reproduce results involving only one γ-parameter,
sensitive to two of the R-charges.

Further, the SU(1|2) sector only contains transversal excitation, i.e. they cannot be
contracted on the rotated vacuum Ẑ and thus their one-particle hexagon form factor
vanishes. The mentioned problems with the twisted translation will be most prominent
when the longitudinal scalar excitations Y, Ȳ are involved, since effective propagators
⟨Ŷ Ẑ⟩ and ⟨ ˆ̄Y Ẑ⟩ exist with the rotated vacuum. In Sec. 3.3.2 we considered examples
from the β-deformed SU(2) sector. The asymptotic part of the coupling dependence
of these correlators could be recovered from the hexagon computations even in the
presence of the deformations. We only considered the asymptotic contribution at
one-loop order, but it should be possible to recover it to higher orders and also for
operators from the SU(1|2) sector, as the dependence is captured by the Zhukowsky
variables. An open and interesting question is how the gluing prescription of [38] can
be adapted. Since additional non-trivial deformation factors need to be introduced
into the splitting factor for longitudinal excitations, cf. eq. (3.34), we need a better
understanding of these in order to consider gluing corrections.
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More generally, it would be desirable to obtain a first principle derivation of a
deformed hexagon formalism. A first step could be to investigate, whether a tailoring
picture for spin chains similar to the one developed in [37] does also exist for deformed
theories. Building on that, one might think of a more intricate bootstrap procedure for
these less supersymmetric theories. Hitherto, we did only muse about the introduction
of twist factors for the hexagon operator in a similar spirit as for the S-matrix in [142].
Finally, considering a γ-deformed hexagon formalism, it would be interesting to take a
particular limit of the deformation, trying to make contact with the hexagon introduced
for fishnet theories in [143].

Double excitations. As discussed, fixing the vacuum breaks the symmetry algebra
to a su(2|2) × su(2|2) subalgebra and the magnons in the spin chain picture can be
considered as bi-fundamental excitations transforming under this subalgebra. However,
this picture excludes some of the N = 4 SYM fields, such as the conjugate vacuum
Z̄, half of the fermions Ψα1,Ψα2, Ψ̄α̇

3̇
, Ψ̄α̇

4̇
, as well as the chiral and anti-chiral field

strength Fαβ, F̄ α̇β̇. In Sec. 3.4 we regained these as double excitations. Since we need
a description in the hybrid picture to carry out hexagon calculations, we considered
both, the nested and the matrix picture. In both pictures double excitation creation
amplitudes are necessary. Restricting to tree-level, we also provided an illustrative
example with Konishi operators in the SO(6) sector.

In the nested ansatz a double excitation Z̄ is created by allowing the combination of
simple roots R1

2,R
2
3̇
,R3̇

4̇
,R2

3̇
to act on the same vacuum site. The inclusion of higher-

loop effects should also be possible by considering certain gradings of the symmetry
algebra [23]. While the creation amplitude in the nested Bethe ansatz depends on the
excitations involved, in the matrix picture, we found a universal creation amplitude
ê(u1, u2). The structure of these amplitudes suggests, that a dependence on the coupling
constant may be introduced by rewriting them in terms of the Zhukovsky variables.
The results presented here were worked out from rather simple examples. However,
they should be put to more involved tests. For instance, we would like to study local
terms also in the Bethe wave functions with multiple derivatives as excitations.

Lagrangian insertion method. Combining the hybrid formalism with the concept
of double excitations, we considered the chiral Yang-Mills Lagrangian tr

(
FαβFαβ

)
in

Sec. 3.5. At least at tee-level, the existence of double excitations allows to describe the
chiral field strength Fαβ as a site with two fermions. The Yang-Mills Lagrangian of
length L = 2 carries consequentially four fermionic excitations. Since the Lagrangian
is a vacuum descendant, the fermions feature infinite level-I rapidities.

The on-shell field theory Lagrangian further contains admixtures in form of a Yukawa
term and the scalar superpotential. In the integrability picture these should be captured
by coupling corrections to elements of the respective Bethe ansatz and the relevant
solution. We wish to study the implications of this constructions more deeply and hope
to clarify this point in future work.

Furthermore, we considered this construction in order to apply the Lagrangian
insertion method [68,69] to the hexagon formalism. Magnificently, since the double
excitations are hidden in the local structure of the wave function, the hexagon formalism
can be used straightforwardly. This was tested for a simple protected correlator
in Sec. 3.5.2. Moreover, as tessellations of higher-point functions are well studied,
cf. refs. [41, 42, 45], we are confident that loop-corrections for such correlators can
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be addressed by these methods. The evaluation of gluing corrections in the hexagon
formalism is involved, cf. refs. [38, 43, 44], whereas the Lagrangian insertion trades this
for the evaluation of a tree-level correlator and an integration. We may hope that
this simplifies the explicit calculation. Excitingly, our method would also allow the
computation of non-planar corrections to the spectrum problem by placing a Lagrangian
on a tiling as in [42,46,47,144]. On the downside, considering more elaborate examples
there are some conceptual difficulties to be overcome. For instance, in correlation
functions involving physical operators length-changing effects become apparent. We
leave these questions for future work.

Part II: Integrability in AdS3

In this part we considered integrability in AdS3 × S3 × T4. Though many concepts
and methods from integrability were already introduced in Part I, we reviewed the
peculiarities of this model in Sec. 4.

Hexagon form factors in AdS3. Having reviewed the hexagon approach for the
computation of three-point functions in AdS5 × S5 in Part I, we may wonder, whether
such an integrability method can also be devised for AdS3 × S3 × T4. Our aim in this
chapter was to perform the bootstrap procedure for the hexagon form factor and fix its
scalar prefactors. This is the first example of such a machinery other than the original.
Furthermore, we checked its internal consistency and used it to calculate protected
three-point functions, reproducing results from the literature [71].

There are many directions which we may pursue. First of all, our construction can be
applied to calculations for backgrounds with a mixture of NSNS and RR background
fluxes. Most similar to the case at hand in AdS5 × S5 is the consideration of pure RR
flux. Moreover, in this case the dressing factors are known [61–63]. On the other hand,
restricting to pure NSNS flux should allow us to compare the hexagon results with
correlation functions from worldsheet CFT techniques [51]. However, there are two
obstructions when trying to find the pure NSNS hexagon. Firstly, the central charges
from eq. (4.52) vanish identically for all values of the momentum p. The bootstrap
constraints from Sec. 5.2 are then too weak to fix the two-particle from factors. One
might expect the hexagon to be related to the two-particle S matrix, although also the
S matrix cannot be fixed from symmetry arguments. A proposal for the two-particle S
matrix of pure NSNS backgrounds was introduced in [64]. Secondly, even the scalar
dressing factors at the pure NSNS point are unknown. Finally, we have the most
general case of background supporting both NSNS and RR flux. Unfortunately, this
case will possibly be very challenging, as once again the scalar factors are unknown.

For the simple calculation performed here, the asymptotic part of the hexagon was
sufficient. Nonetheless, it would be interesting to study the incorporation of mirror
corrections into this machinery. A first step into this direction was taken in [127],
considering the class of correlators we also studied here. However, due to the presence
of massless modes [145] the evaluation may generally be more complicated than in
AdS5 × S5.

As mentioned several times, the hexagon formalism can also be used to calculate
higher-point correlation functions [41, 42, 45] as well as non-planar correlators [42,
46, 47, 144]. For correlation functions of BPS operators wrapping corrections may
be controllable. In [127] four-point functions were considered. However, in order to
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apply the formalism for such computations, there are still some conceptual issues to be
overcome. For instance, there is no clear prescription for the Z-markers yet.

To sum up, though there are missing pieces and open questions, this formalism yields
nonetheless the potential to contribute to the understanding of AdS3/CFT2. Moreover,
one may wonder whether there are further backgrounds allowing for this bootstrap
procedure. An important feature so far seems the factorisation of the symmetry
algebra of these backgrounds. For instance, with respect to the spectral problem
AdS4 ×CP3 [146] and AdS3 × S3 × S3 × S1 [147] are integrable, though neither of these
backgrounds has a factorised symmetry algebra. It would be very interesting to study
the possibility of bootstrapping correlation functions for these models.

TBA for AdS3. We considered the mirror TBA equations for AdS3 × S3 × T4 with
pure RR flux, which were derived in [65] and used the contour deformation trick [72]
to excite massless modes. In particular we were interested in the weak tension limit.
Given that the kernels behave sufficiently well the equations simplify significantly. The
massive modes decouple and the resulting TBA equations given in eq. (6.100) are of
difference form, featuring only the Cauchy kernel. In [4, 5] the simplified equations
were also solved numerically and we saw that the anomalous dimensions are rather
well-approximated by the asymptotic result and quite close to the energies of the free
model. One may ask, what the dual CFT of AdS3 × S3 × T4 string theory with pure
RR flux at small-tension is and wonder whether it would be related to the symmetric
product orbifold of a free theory. In the case of AdS3 × S3 × T4 with one unit of pure
NSNS flux the dual theory is indeed SymN(T4). However, our results show, that for
pure RR flux already at leading order in the tension h we have an interacting model.
Hence, it would be interesting to study the dynamics of the system at hand more
closely. In doing so, we may also hope to obtain a better understanding of the dual
CFT.

Further, for a particular set of states one may consider interpolating from small
tension to finite and possibly large tension. Comparing with perturbative results
provides further testing ground. In [139] this was initiated by studying the ground state
energy in the semi-classical approximation, where L and h are large, but their ratio is
kept fixed. Agreement with the mirror TBA equations was found, including only one of
the massless modes, i.e. setting N0 = 1. Furthermore, it would be fascinating, trying to
make contact with the Quantum Spectral Curve (QSC) conjectured in [66, 67]. In [148]
such an investigation was initiated for some massive states. Comparing results obtained
from the mirror TBA and QSC would help to test whether the two descriptions match
and may further settle the question of what role massless modes play in the QSC.
These questions may also be answered by deriving the QSC from the mirror TBA in a
similar fashion to [149, 150]. Finally, one may wonder whether the mirror TBA can
also be extended to mixed flux backgrounds. Once again, the main obstacle here is
that the dressing factors for this setting are unknown.
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Appendix A.

Evaluation of the N = 4 SYM hexagon

A.1. Parametrisation and crossing
We introduce the Zhukovsky variables x±(u) used for N = 4 SYM through the relation

u

g
= x(u) +

1

x(u)
and x±(u) = x(u± i

2
) . (A.1)

We choose the branch which has |x(u)| > 1 as the physical branch and hence find the
solution

x(u) =
u

2g

(
1 +

√
1− 4g2

u2

)
. (A.2)

This solution has branch points for u = ±2g. Therefore, x−(u) has a short cut between
−2g + i

2
and 2g + i

2
in the complex u-plane. Similarly, for x+(u) the short cut is

between −2g − i
2

and 2g − i
2
.

Continuing the rapidity u along a closed path across the cuts one gets to another
sheet. This analytic continuation of taking the rapidity u into the complex plane and
across the branch cuts is also called a 2γ transformation. Similarly, one could only
cross one of the cuts. If only the cut for x+ is crossed, the transformation is denoted as
γ transformation or mirror transformation. The action of the mirror transformations
on the Zhukowsky variables is given by

uγ : x+ → 1

x+
, x− → x− ,

u2γ : x+ → 1

x+
, x− → 1

x−
,

u3γ : x+ → x+ , x− → 1

x−
,

u4γ : x+ → x+ , x− → x− .

(A.3)

Hence, two mirror transformations result in a crossing transformation, taking a particle
into an antiparticle. Further, two crossing transformations take the particle back to
itself. Functions with a simple dependence on the variables x± are not affected by two
crossing or four mirror transformations, respectively. In Appendix A.2 we will consider
the hexagon phase, which has non-trivial monodromies under crossing.

Finally, there is also a crossing rule for moving magnons from edge to edge. These
rules were worked out in [38]. For bosonic excitations X, Y, X̄, Ȳ and derivatives Dαβ̇

they read
Φaḃ 2γ→ −Φbȧ , Dαβ̇ 2γ→ −Dβα̇ , (A.4)
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while for fermionic magnons the rule is

Ψaβ̇ 2γ→ −Ψβȧ , Ψαḃ 2γ→ +Ψbα̇ . (A.5)

A.2. Dressing phase and measure factor
The dressing phase for hexagon form factors in N = 4 SYM was proposed in [38]. It is
given by

h(u1, u2) =
x−(u1)− x−(u2)

x−(u1)− x+(u2)

1− 1
x−(u1)x+(u2)

1− 1
x+(u1)x+(u2)

1

σ(u1, u2)
, (A.6)

where the σ(u1, u2) is the Beisert-Eden-Staudacher dressing phase [21]. Further, from
the unitarity condition it follows that σ(u1, u2) = 1

σ(u2,u1)
. The crossing equation for

the BES phase is given by [151]

σ(u2γ1 , u2) σ(u1, u2) =
1− x−(u1)

x+(u2)

1− x−(u1)
x−(u2)

1− 1
x+(u1)x+(u2)

1− 1
x+(u1)x−(u2)

. (A.7)

For the scalar h factor, an analogous crossing equation can be obtained straightfor-
wardly [38]

h(u2γ1 , u2)h(u1, u2) =
1− 1

x+(u1)x−(u2)

1− 1
x+(u1)x+(u2)

x−(u1)− x−(u2)

x−(u1)− x+(u2)
. (A.8)

Further useful relations are given by

h(u2γ1 , u
2γ
2 ) = h(u1, u2) , h(u4γ1 , u2) =

1

h(u2, u1)
, (A.9)

where the first reflects the invariance of a hexagon amplitude under crossing the full
set of excitations from one edge to another.

Finally, there is also the measure factor µ(u). Considering a form factor featuring a
particle-antiparticle pair, the measure factor is given by [38]

Res
u1=u2

⟨h|Ξ̄(u2γ1 )Ξ(u2)⟩ =
i

µ(u1)
. (A.10)

A.3. String and spin chain frame
In Chapter 3, we match the results for correlation functions obtained from the hexagon
formalism against field theory results. However, for the evaluation of hexagon form
factors it is convenient to use the string frame applying the crossing rules given above.
To compare with weak coupling results from field theory, we need to map the result to
the spin chain frame. A suitable map was introduced in [38,100] dressing the magnons
with Z-markers as

Ds = Ds.c. , Ψs = Z
1
4Ψs.c.Z

1
4 , Φs = Z

1
2Φs.c.Z

1
2 , (A.11)
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where the subscript s refers to string and s.c. to spin chain frame. These factors then
introduce momentum dependent phase factors, which map between the different frames.
In order to do so all the Z-markers are moved to the very left using |Z±X⟩ = e∓ip |XZ±⟩.
The Z-markers can then be pulled out of the hexagon by using the rule [38]

⟨h|Znα⟩s.c. = e−in
2
P ⟨h|α⟩s.c. , (A.12)

with P the total momentum of the state α. The map for a generic state with excitation
on all three edges is then given by

⟨h|α1⟩ |α2⟩ |α3⟩s.c. = (F{p}F{q}F{r})
−1e

i
4
[P (l+m−n)+Q(m+n−l)+R(n+l−m)] ⟨h|α1⟩ |α2⟩ |α3⟩s ,

(A.13)
where P,Q,R are the total momenta of the excitations on the respective edges α1, α2, α3.
The factors F{p} arise by moving the Z-markers and are given as

F{p} = exp

i |α|∑
k=1

nk

2

(
pk
2

+
k−1∑
j=1

pj

) , (A.14)

where nk characterises the k-th particle in α. We have nk = 2 for a boson, nk = 1
for a fermion and nk = 0 for a derivative. Analogously, we have the factors F{q}, F{r}
for α2, α3 with mk and lk. Finally, the numbers n,m, l in eq. (A.13) are given by the
sums n =

∑|α|
k=1 nk and accordingly for m and l. Using this rule, we can evaluate the

correlators considered in Sec. 3 in the spin chain frame and compare against field theory
results.
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Appendix B.

S Matrices and kernels for AdS3
For the reader’s convenience, we list here the various S matrices needed for the mirror
TBA equations in Sec. 6.2. The kernels are then obtained by taking the logarithmic
derivative. The material listed here was derived in [63,65].

B.1. S matrices
All the S matrices given here can be found in Appendix B of ref. [65]. We will use a
similar notation. Further, we always take the u+ i0 prescription, when the u-rapidity
lies on the branch cut.

The standard bound state S matrix is given by

SQQ′
(u− u′) = SQ+Q′

(u− u′)SQ−Q′
(u− u′)

Q′−1∏
j=1

(
SQ−Q′+2j(u− u′)

)2
, (B.1)

where the rational S matrix SQ reads

SQ(u, u′) =
u− u′ − iQ

h

u− u′ + iQ
h

(B.2)

Left-anything scattering:

SQaQb

sl (ua, ub) = SQaQb(ua − ub)
−1(ΣQaQb

ab )−2 ,

S̃QaQ̄b

sl (ua, ub) = eipa
1− 1

x+
a x+

b

1− 1
x−
a x−

b

1− 1
x+
a x−

b

1− 1
x−
a x+

b

(Σ̃QaQ̄b

ab )−2 ,

SQa0(ua, xj) = ie−
i
2
pa
x+a xj − 1

x−a − xj

(ΣQa0
BES(x

±
a , xj))

−2

ΦSG(γ
+◦
aj )ΦSG(γ

−◦
aj )

,

SQay
+ (u, v) = e

i
2
pa x

−(ua)− x(v)

x+(ua)− x(v)
,

SQay
− (u, v) = e

i
2
pa
x−(ua)− 1

x(v)

x+(ua)− 1
x(v)

.

(B.3)

Here we use the notation γ±◦
aj = γ±a − γj . Moreover, the phases include the improved

BES dressing factors such as ΣQaQb

ab and ΣQa0
BES which will be given in Appendix B.2.1.

Further, the phases also feature the Sine-Gordon factor ΦSG = eφSG , which is given
below in Appendix B.2.2.
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Right-anything scattering:

SQ̄aQ̄b
su (ua, ub) = eipae−ipb

(
x+a − x−b
x−a − x+b

)−2

SQ̄aQ̄b(ua − ub)
−1(ΣQ̄aQ̄b

ab )−2 ,

S̃Q̄aQb
su (ua, ub) = e−ipb

1− 1
x−
a x−

b

1− 1
x+
a x+

b

1− 1
x+
a x−

b

1− 1
x−
a x+

b

(Σ̃Q̄aQb

ab (ua, ub))
−2 ,

S̃Q̄a0(ua, xj) = ie+
i
2
pa
x−a − xj
x+a xj − 1

(ΣQ̄a0
BES(x

±
a , xj))

−2

ΦSG(γ
+◦
aj )ΦSG(γ

−◦
aj )

.

(B.4)

Massless-anything scattering:

S00(uj, uk) = a(γjk)ΦSG(γjk)
2(Σ00

BES(xj, xk))
−2 , (B.5)

S0Qb(xj, ub) =
1

SQb0(ub, xj)
, (B.6)

S̃0Q̄b(xj, ub) =
1

S̃Q̄b0(ub, xj)
, (B.7)

S0y(u, v) =
1√

x(u+ i0)2
x(u+ i0)− xs(v + i0)

1
x(u+i0)

− xs(v + i0)
. (B.8)

The auxiliary factor a(γ) was introduced in [63] and is given by

a(γ) = −i tanh
(
γ

2
− iπ

4

)
≡ S(γ) . (B.9)

Auxiliary-anything scattering:

SyQ
− (v, uj) = e+

i
2
pj

1
x(v)

− x−(uj)
1

x(v)
− x+(uj)

=
1

SQy
− (uj, v)

, (B.10)

SyQ
+ (v, uj) = e−

i
2
pj x(v)− x+(uj)

x(v)− x−(uj)
=

1

SQy
+ (uj, v)

, (B.11)

Sy0(v, uj) =
1√

x(uj + i0)2
x(v)− x(uj + i0)

x(v)− 1
x(uj+i0)

=
1

S0y(uj, v)
. (B.12)

We note that SyQ
∓ (v, u) are identical to SyQ

± (v, u) in [152]. The corresponding kernels
are positive in the mirror-mirror region.

Kernels. The kernels are defined by taking the logarithmic derivative with respect
to the rapidity u of the corresponding S matrix in the mirror-mirror kinematics, i.e.

K∗∗(u, u′) =
1

2πi

d
du

log S∗∗(u, u′) . (B.13)

The asterisks indicate massive, massless or auxiliary particles. For instance, the kernel
associated to the massive S matrix SQ′Q

sl (u′, u) will be denoted as KQ′Q
sl (u′, u) and

similarly for the other matrices.
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B.2. Dressing factors
The S matrices and kernels encountered in Sec. 6.2 contain the matrix part, but also
the dressing phases. The dressing factors given here were proposed in [65].

B.2.1. The BES phase

The improved BES factor in the mirror-mirror region for QQ′ particles [65] is the same
as in [153],

1

i
log ΣQQ′

BES(x
±
1 , x

±
2 ) = Φ(x+1 , x

+
2 )− Φ(x+1 , x

−
2 )− Φ(x−1 , x

+
2 ) + Φ(x−1 , x

−
2 )

− 1

2

(
Ψ(x+1 , x

+
2 ) + Ψ(x−1 , x

+
2 )−Ψ(x+1 , x

−
2 )−Ψ(x−1 , x

−
2 )
)

+
1

2

(
Ψ(x+2 , x

+
1 ) + Ψ(x−2 , x

+
1 )−Ψ(x+2 , x

−
1 )−Ψ(x−2 , x

−
1 )
)

+
1

i
log

iQ Γ
[
Q′ − i

2
h
(
x+1 + 1

x+
1

− x+2 − 1
x+
2

)]
iQ′Γ

[
Q+ i

2
h
(
x+1 + 1

x+
1

− x+2 − 1
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)] 1− 1
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1 x−

2

1− 1
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2
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(B.14)

Here, the functions Φ(x1, x2) and Ψ(x1, x2) were introduced, which are given by

Φ(x1, x2) = i

∮
dw1

2πi

∮
dw2

2πi

1

(w1 − x1)(w2 − x2)
log

Γ
[
1 + i

2
h
(
w1 +

1
w1

− w2 − 1
w2

)]
Γ
[
1− i

2
h
(
w1 +

1
w1

− w2 − 1
w2

)] ,
Ψ(x1, x2) = i

∮
dw
2πi

1

w − x2
log

Γ
[
1 + i

2
h
(
x1 +

1
x1

− w − 1
w

)]
Γ
[
1− i

2
h
(
x1 +

1
x1

− w − 1
w

)] ,
(B.15)

where the integration contour is the unit circle. The function Φ(x1, x2) is defined for
all values of x1, x2 with |x1| ̸= 1 and |x2| ̸= 1.

B.2.2. Sine-Gordon dressing factor

The Sine-Gordon dressing factor is given by [63]

ΦSG(γ) = eφSG(γ) , (B.16)

with

φSG(γ) =
i

π
Li2(−e−γ)− i

π
Li2(e−γ) +

iγ

π
log
(
1− e−γ

)
− iγ

π
log
(
1 + e−γ

)
+
iπ

4
. (B.17)

This expression is valid for values of γ with −π < Im{γ} < π. Further, for real values
of γ, the function φSG(γ) takes purely imaginary values. The functions is defined in
such a way, that it satisfies

ΦSG(γ)ΦSG(−γ) = 1 , ΦSG(γ)
∗ =

1

ΦSG(γ∗)
, ΦSG(γ)ΦSG(γ+iπ) = i tanh

γ

2
. (B.18)
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Note also, that the Sine-Gordon kernel is then given by

KSG(γ) =
1

2πi

d
dγ
φSG(γ) =

γ

2π2 sinh γ
. (B.19)

B.2.3. Massive dressing factors

The massive dressing factors in the mirror-mirror kinematics, with Q,Q′ = 1, 2, . . . are
given in appendix C of [65] and read

(ΣQQ′

12 )−2 = −
sinh

γ−+
12

2

sinh
γ+−
12

2

eφ
••(γ±

1 ,γ±
2 )(ΣQQ′

BES(x
±
1 , x

±
2 ))

−2 ,

(Σ̃QQ′

12 )−2 = +
cosh

γ+−
12

2

cosh
γ−+
12

2

eφ̃
••(γ±

1 ,γ±
2 )(ΣQQ′

BES(x
±
1 , x

±
2 ))

−2 ,

(B.20)

where the rapidities with two indices are defined as their difference, i.e. γ±∓
12 = γ±1 −γ∓12.

As defined in eq. (B.13), the corresponding kernels are given as

KQ1Q2

Σ (u1, u2) =
1

2πi

∂

∂u1
log ΣQ1Q2

12 (x±1 , x
±
2 ),

K̃Q1Q2

Σ (u1, u2) =
1

2πi

∂

∂u1
log Σ̃Q1Q2

12 (x±1 , x
±
2 ).

(B.21)

The phases φ•• and φ̃•• are given by eqs. (5.6) and (5.7) in [63]. There the phases
are written as

eφ
••(γ±

1 ,γ±
2 ) = exp

(
φ+(γ

−−
12 ) + φ+(γ

++
12 ) + φ−(γ

−+
12 ) + φ−(γ

+−
12 )
)
,

eφ̃
••(γ±

1 ,γ±
2 ) = exp

(
φ−(γ

−−
12 ) + φ−(γ

++
12 ) + φ+(γ

−+
12 ) + φ+(γ

+−
12 )
)
,

(B.22)

where the functions φ± are given through

φ−(γ) = +
i

π
Li2 (+eγ)−

i

4π
γ2 +

i

π
γ log (1− eγ)− iπ

6
,

φ+(γ) = − i

π
Li2 (−eγ) +

i

4π
γ2 − i

π
γ log (1 + eγ)− iπ

12
.

(B.23)

B.2.4. Mixed-mass and massless dressing factors

The mixed-mass dressing factors are given by the Sine-Gordon dressing factor ΦSG

as well as the corresponding BES phases. The mixed-mass BES dressing factor can
be obtained from eq. (B.14) by setting Q = 0 or Q′ = 0 as needed and the massless
ones by setting both to zero. For massless particles in the mirror region the x variable
takes values on the real axis with −1 < x < 1. Hence, it does not lie on the integration
contour and there is no ambiguity in taking the massless limit. As stated in the main
text, the BES phase diverges around x = 0. However, the convolutions with the
massless Y-functions are still finite, if Y0 vanishes around x = 0.

Further, exciting massless modes in the TBA equations, we also need to consider
the string-mirror and mirror-string kinematics, where the massless excitation is in
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the string region. For instance, let us consider Σ0Q′

BES(x, y
±) where we set Q = 0. For

massless particles in the string region, the Zhukovsky variable x lies on the upper-half
circle. Considering the functions Φ and Ψ from eq. (B.15) this appears problematic. As
the massless particle lies on the integration contour, this seems to lead to a pole. For
our example of Σ0Q′

BES(x, y
±) the potential issues arise from the integrals in the functions

Φ(x, y±), Φ( 1
x
, y±), Ψ(y±, x), and Ψ(y±, 1

x
). However, the integrals can be continued

inside the unit circle as long as h is finite, as no singularities occur outside a disk of
radius (

√
1 + (2h)−2 − (2h)−1). For a detailed discussion of the analytic properties we

refer the reader to ref. [153]. In practice, also a principal-value prescription can be
used. Here the relevant residues at the poles are added, when we want to compute the
explicit values of the BES dressing factor.
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