
The U(1)3 Model of Euclidean
Quantum Gravity

Faculty of Physics of
Shahid Beheshti University (SBU)

and
Der Naturwissenschaftlichen Fakultät

der Friedrich–Alexander–Universität Erlangen–Nürnberg (FAU)

For the degree of Doctor of Philosophy (SBU)
and

zur Erlangung des Doktorgrades Dr. rer. nat. (FAU)

vorgelegt von

Sepideh Bakhoda
aus

Tehran



Als Dissertation genehmigt von der Naturwissenschaftlichen Fakultät der
Friedrich–Alexander–Universität Erlangen–Nürnberg

Tag der mündlichen Prüfung:
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Abstract

Loop quantum gravity is one of the leading candidates to construct a mathematically
well-defined, non-perturbative and background independent quantisation of general rel-
ativity. In spite of the well developed kinematical structure, loop quantum gravity is
plagued by the lack of an unambiguous formulation of its dynamics. This long-standing
issue of dynamics is one of the main open problems yet to be addressed.
Finding a way to improve the situation requires rumination and a deeper understanding
of the problem which can be provided by applying LQG techniques to simpler theories.
So far, studying such toy models has given us a new perception of the difficulties and
ambiguities of dynamics. The weak coupling limit of Euclidean gravity serves as a
toy model which captures the significant structure of GR. It is simply constructed by
replacing the constraints of the Ashtekar-Barbero SU(2) gauge theory of Euclidean
gravity with their U(1)3 version. In particular, it demonstrates a non-trivial realisation
of the hypersurface deformation algebra which proves it can be an interesting testing
ground for (Euclidean) quantum gravity.
In this thesis, we study different approaches for the quantisation of the U(1)3 model.
Since important levels of Dirac quantisation have already been processed and analysed
by Varadarajan et al, our key results mainly concern establishing a suitable framework
for the other two approaches; i.e. the reduced phase space and path integral quanti-
sations. This is especially attractive because, in the end, one can compare outcomes
of different methods of quantisation to gain fascinating insights into the problem of
dynamics.
More precisely, we show that in suitable gauges, it is feasible to find a closed and explicit
formula for the physical Hamiltonian governing dynamics of physical observables. The
rather simple expression of the physical Hamiltonian promises that its quantisation may
not be as difficult as one expects. It turns out that analysis of the reduced phase space
needs the asymptotic behaviours of the canonical variables, we hence investigate in
detail the asymptotically flat boundary conditions of the U(1)3 model, leading to well-
defined generators for temporal and spatial asymptotic translations. Furthermore, the
covariant origin of the U(1)3 model is found which is considered as the main foundation
of path integral quantisation.



 
 
 
 
 

 

 چکیده 
 
 
 
 

ریف  تعخوش  نظریه کوانتومی  کی  ساخت  یبرا  شرویپ  یداهای از کاند  یکی  ایحلقه  یگرانش کوانتوم
  افته،ی توسعه  یبه خوب  یک ینماتی ساختار سداشتن    رغمیاست. علزمینه  پس  مستقل ازغیراختلالی و  
  نه یرید  مشکل  نیااست.    آن  کی نامیفرمول روشن از د  کیفقدان    گرفتار  ایحلقه  ی گرانش کوانتوم

 .شودبه آن پرداخته باید  است که هنوز اصلی باز  مسائلاز  یکی  کی نامید
  ی هاکی تکن   کار بستنبه  با    تواندیمشکل دارد که م  از این   ترقیعم   یدرک  به  ازین  تیبهبود وضع  یبرا  یراه  افتنی

LQG    آید.به  تر  ساده  هاینظریهدر ا  دست  از مشکلات و   یدیدرک جد  هاگونه مدل  نیتاکنون مطالعه 
  ودشتلقی می  هامدل   ی از اینکی  یدسیگرانش اقل  فیضع  . حدتدینامیک برای ما فراهم کرده اس  ابهامات  

  ، ی دسی گرانش اقل هینظر  ودیق ین یگزیبا جا یبه سادگنظریه  نی. ادهدنمایش می را  GR تبااهمیکه ساختار 
. به طور شودمی آنها ساخته    𝑈(1)3با نسخه    اند،شده   نوشته  باربرو-اشتکار  𝑆𝑈(2)  متغیرهای  برحسب  که  

تواند  یماین نظریه  کند  یدهد که ثابت می را نشان م  ایرویهراب  دگردیسیاز جبر    بدیهیریتحقق غ  کیخاص،  
 ( باشد. ی دسی )اقل  یگرانش کوانتوم  یجالب برا  یش یآزما  نهیزم  کی

  فرآیند  که  ییجا. از آنمیکن یمطالعه م  𝑈(1)3مدل    کوانتش  یمختلف را برا  یکردهاینامه، ما روان یپا  نیدر ا
ما عمدتاً مربوط به   یدی کل  جیشده است، نتا  لیتکم   شو همکاران  واراداراجانقبلاً توسط    راکید  کوانتش

کوانتش  و    یافتهانتش فضای فاز تقلیل کو  یعن ی  ،است  گرید  کردیدو رو  یچارچوب مناسب برا   کی  جادیا
مختلف    یهاروش   جی نتا  توانی م  ان،یدر پا  ،فته در این مطالعات در این است کههیت نجذاب.  رینتگرال مسا

 . افتیدست    کینامیدر مورد مسئله د  بهتری  یهانشیکرد تا به ب  سهی را با هم مقا  وانتشک
  ی ک یزیف  هامیلتونی  یبرا  حیصرفرمول    کی  افتنیمناسب،    هایپیمانهکه در    میدهی نشان م  تر،قیطور دقبه

  د ینواین    یکیزیف  یلتونیمانسبتاً ساده ه  عبارتاست.    ریپذامکان   یکیزیف  پذیرهایمشاهده   دینامیکحاکم بر  
  در این مسیر به این نتیجه رسیدیم  .  درود دشوار نباشیکه انتظار م  گونهآن  احتمالاًآن    کوانتشدهد که  یم  را

از  مند استازین  کانونی  یرهایمتغ  یمجانب   یرفتارهاچگونگی  به    یافتهتقلیلفاز    یفضاکامل    بررسیکه    ،
  ی هامولدکه منجر به    ،نیمک  یبررس  اتیرا با جزئ  𝑈(1)3مدل    یمجانب   ی مرز  طیشرا  مجبور شدیم  رونیا

 یافتیمهم  را    𝑈(1)3مدل    هموردایمنشاء    ن، یعلاوه بر ا.  شد  های فضایی و زمانیانتقالبرای    تعریفخوش 
 شود.ی در نظر گرفته م  ریانتگرال مس  انتشوک  یاصل  هیکه به عنوان پا

 
 
 
 
 
 



Zusammenfassung

Die Schleifenquantengravitation ist eine der führenden Kandidatinnen für eine mathe-
matisch wohldefinierte, nicht-perturbative und hintergrundunabhängige Quantisierung
der Allgemeinen Relativitätstheorie (ART). Trotz der weit entwickelten kinematischen
Struktur dieser Theorie bestehen noch einige Defizite hinsichtlich einer eindeutigen For-
mulierung ihrer Dynamik. Dieses seit langem bestehende Problem der Dynamik ist eines
der wichtigsten offenen Probleme der Schleifenquantengravitation, die noch angegangen
werden müssen.
Um einen Weg zu finden, die Situation zu verbessern ist ein tieferes Verständnis des
Problems erforderlich, das durch die Anwendung von LQG-Techniken auf einfachere
Theorien gewonnen werden kann. Bisher hat das Studium solcher Spielzeugmodelle eine
bessere Einsicht in die Schwierigkeiten und Mehrdeutigkeiten der Dynamik ermöglicht.
Der Grenzfall einer schwachen Kopplung der euklidischen Gravitation kann hierbei
als Spielzeugmodell dienen, das die Struktur der ART erfasst. Sie wird konstruiert,
indem die Randbedingungen der Ashtekar-Barbero SU(2) Eichtheorie der euklidischen
Gravitation durch ihre U(1)3 Version ersetzt werden. Insbesondere zeigt es eine nicht-
triviale Realisierung der Hyperflächen-Deformationsalgebra, die beweist, dass sie ein
interessantes Testfeld für die (euklidische) Quantengravitation sein kann.
In der vorliegenden Dissertationsschrift untersuchen wir deshalb verschiedene Ansätze
zur Quantisierung des U(1)3 Modells. Da wichtige Stufen der Dirac Quantisierung
bereits von Varadarajan et al bearbeitet und analysiert wurde, beziehen sich unsere
wichtigsten Ergebnisse hauptsächlich auf die Schaffung eines geeigneten Rahmens für
die anderen beiden Ansätze, insbesondere auf die reduzierten Phasenraum- und Pfad-
integralquantisierungen. Letztere sind besonders attraktiv, da man nun die Ergebnisse
verschiedener Quantisierungsmethoden vergleichen kann, um tiefere Einblicke in das
Problem der Dynamik zu erhalten.
Genauer gesagt zeigen wir, dass es bei einer geeigneten Wahl der Eichung möglich
ist, eine geschlossene und explizite Formel für den physikalischen Hamilton-Operator
zu finden, der die Dynamik physikalischer Observablen bestimmt. Die eher einfache
Form dieses physikalischen Hamilton-Operators weist darauf hin, dass dessen Quan-
tisierung möglicherweise nicht so schwierig ist, wie man es erwartet. Es stellt sich
heraus, dass die Analyse des reduzierten Phasenraums das asymptotische Verhalten
der kanonischen Variablen benötigt. Daher untersuchen wir im Detail die asympto-
tisch flachen Randbedingungen des U(1)3-Modells, was zu wohldefinierten Generatoren
für zeitliche und räumliche asymptotische Translationen führt. Außerdem wird der
kovariante Ursprung des U(1)3-Modells gefunden, das als Hauptgrundlage der Pfadin-
tegralquantisierung angesehen wird.
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CHAPTER 0.

Introduction

0.1. Motivation and Historical Review
0.1.1. Quantum Gravity
Quantum field theory (QFT) [3] and general relativity (GR) [4] are broadly deemed to be two
successful and well-verified fundamental theories describing nature. Defining a theory of quantum
gravity, i.e., a theory that consistently combines GR and QFT has been one of the main challenges
in theoretical physics in the past decades. In addition to the interest in constructing a unified
theory to describe the world, the significance of having a quantum gravity theory becomes crucial
in circumstances where both quantum mechanics and strong gravity are relatively important.
Also, due to the interactions between the quantum world and the gravitational field itself, gravity
is automatically required to be understood in a quantum language. However, at first glance, these
two theories do not seem to be conciliable because they portray the world in discrepant ways:
while GR works with smooth structures and fully deterministic systems, where space-time is a
dynamical object like any other, QFT uses a probabilistic one where space-time variables are just
parameters. Moreover, as the sought-after theory of quantum gravity is expected to manifest itself
mainly at the Plank scale which is so far away from the scope of our experimental instruments,
the theory cannot be constructed based on a wealth of physical evidence. Nevertheless, the hope
is that in the pursuit of a conceptual and theoretical unification, not only might new testable
predictions spring up but shortcomings of both theories might also be addressed. In QFTs,
divergences are often treated by introducing a cutoff and casting away terms including this cutoff.
It is envisioned that if gravity can be consistently taken into account, this problem will be cured
naturally as GR provides a cutoff in terms of the Planck length. On the other hand, GR suffers
from inevitable singularities in the framework of gravitational collapse under reasonable physical
conditions on energy and causality [5, 6, 7]. These singularities rule the internal structure of
black holes and to the initial singularity of the cosmos. Hence, in presence of strong gravitational
fields, GR loses its predictability and cannot be considered as a valid theory. Fundamentally,
such singularities are unphysical and considering quantum effects is expected to resolve them [8].

Despite the fact that a consensual theory for quantum gravity is yet to be discovered, there
are several promising approaches available with impressive progress, e.g. string theory [9], Loop
Quantum Gravity (LQG) [1, 10], group field theory [11], Causal sets [12], asymptotic safety
[13], causal dynamical triangulation [14], etc. A key objective that needs to be addressed in all
tentative theories of quantum gravity, is their ability to produce clear observational predictions
[15] that can be tested against data to confirm the validity of the theory. In this regard, there
is reasonable hope that primordial gravitational waves may soon be observed through B-modes
in the CMB: this would be the first direct observation of a quantum gravity phenomenon, albeit
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at a linear level. Nonetheless, alongside working on the observational predictions, it is of critical
importance to work on the completion of their theoretical aspects simultaneously, to gain a better
and deeper understanding of the sector where gravity and quantum both play notable roles.

The first endeavours to quantise gravity date back almost to the years of the invention of
quantum theory, when in the context of the linearised GR, the metric perturbations propagating
on a fixed Minkowskian spacetime was quantised and the graviton was introduced [16, 17]. Af-
terwards, the Feynman rules of GR were founded [18] and it was realised that there are two loop
divergences in the theory that make it non-renormalisable. This is rooted in the “dimensionful”
coupling constant of graviton that gives rise to a perturbatively non-renormalizable QFT [19, 20].
In spite of that supergravity [21] and supersymmetric string theory emerges in the hope that one
can still think of GR as the low energy limit of a more fundamental QFT such that additional
higher energy terms in the Lagrangian may resolve the intrinsic divergencies of GR. But, so far,
there is no proof that string theory cures the whole divergencies of the four-dimensional quan-
tum linearised version of GR [1]. Although important efforts were made also in the direction
of non-perturbative string theory (i.e. M-theory), a full background independent formulation
of the theory is still elusive. This justifies investigating other non-perturbative and background
independent approaches to quantum gravity such as loop quantum gravity1.

In parallel with Feynman’s quantisation approach, attempts to tackle the quantum gravity
problem from the canonical point of view was also developed. Dirac worked out the formalism
of constrained systems and applied it to GR to obtain the canonical structure of the theory
that was simplified by Arnowitt, Deser and Misner [23, 24], i.e. in the so-called ADM approach.
It turned out that GR is a fully constrained system with two families of constraints, namely
diffeomorphism and Hamiltonian constraints. According to Dirac’s algorithm, one first has to
find a kinematical Hilbert space that supports the quantum operators corresponding to the
constraints, and then the kernel of the operators, which defines the physical Hilbert space, is
supposed to be determined. The first quantum form of the Hamiltonian constraint (that was
the representative of the dynamics) was written down formally by Wheeler and DeWitt, which
became known as the Wheeler-DeWitt equation. This could not be the end of the story as this
equation turned out to be too ill-defined and the early attempts [8, 25, 26, 27] to rigorously define
it, were doomed to failure. In fact, the highly complicated and non-polynomial structure of the
Hamiltonian constraint would preclude any progress in even defining the quantum operator, let
alone constructing a kinematical Hilbert space. The solution to this problem remained obscure
for almost twenty years until the building blocks of “loop quantum gravity” were gradually
established.

0.1.2. Loop Quantum Gravity
LQG is a very favourable approach to quantise gravity that is non-perturbative and manifestly
background-independent. Moreover, in contrast to string theory, it does not rely on additional
dimensions or the existence of supersymmetric particles, albeit extra dimensions or supersym-
metry can be assimilated into LQG, as shown in [28, 29, 30, 31, 32, 33, 34]. In principle, LQG
strives to quantise GR directly by employing the least possible number of extra structures.

The starting point of LQG traces back to Ashtekar’s papers [35, 36] in which, inspired by [37],
he introduced new variables for GR and provided a canonical formulation of GR similar to that
of Yang-Mills theory. In other words, he provides tools to describe the phase space of GR in
such a way that is feasible to convert it into a quantum language. Instead of the spatial metric

1For more information on the history of quantum gravity see [22]. Moreover, in his book [1], Thiemann provided
a large amount of historical and physical reasons pushing us to work on LQG.
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and extrinsic curvature, Ashtekar used triads and complex connections as canonical variables
in terms of which the Hamiltonian constraint turned to a fourth-order polynomial that was a
drastic simplification compared to the highly non-polynomial Wheeler-DeWitt equation. He
introduced the new variables at the price of enlarging the phase space and, hence, having an
additional constraint known as the Gauß constraint. Since Ashtekar’s original connection was a
sl(2,C)-valued 1-form, there were two obstacles to accessing a Hilbert space representation: 1)
non-compactness feature of the group SL(2,C): a mathematically rigorous quantisation for non-
compact gauge groups invokes severe technical difficulties, and 2) non-real canonical variables
that drag along the reality conditions in order to recover real GR: the quantum implementation
of the reality conditions is intricate. Neither of these two problems has been overcome as yet.

After about nine years, Barbero and later Immirzi [38, 39, 40] generalised Ashtekar’s original
idea by introducing a free parameter γ named after them, such that γ = i recovers Ashtekar’s
original proposal. Furthermore, for a real non-zero Barbero-Immirzi parameter not only is the
connection real but also it is valued in the Lie algebra of the “compact” group SU(2). However,
this was achieved at the price of losing the simple structure of the Hamiltonian constraint; again
one had to deal with a highly non-polynomial constraint!

Although the Hamiltonian constraint was again complicated, the virtue of working with Bar-
bero’s real variables was that thanks to the compactness of SU(2), one could now rigorously
construct a kinematical Hilbert space. In fact, a great deal of progress had been made in
the front line of background-independent quantisation of gauge theories with compact groups
[41, 42, 43, 44, 45, 46, 47, 48]. Applying this quantisation procedure to the SU(2) Ashtekar-
Barbero formulation nowadays is called canonical loop quantum gravity. An orthogonal basis
for the resulting kinematical Hilbert space was introduced by Rovelli and Smolin [49]. They
realised that the Hilbert space is spanned by spin network functions that are functions of connec-
tions defined on finite graphs in the spatial hypersurface, whose edges are labelled by irreducible
representations of SU(2). This recovered an independent construction of spin networks due to
Penrose [50]. The next step toward completing the quantisation was the implementation of the
constraints. The Gauß constraint was the most straightforward to incorporate in the kinematical
Hilbert space. Indeed, by placing an intertwiner at each vertex of the graph the spin network
is based on, one can naturally obtain gauge-invariant spin network functions. The incorporation
of the diffeomorphism constraint turned out to be more subtle but was achieved using group
averaging methods in [51, 52]. Therefore, the general quantum solutions to two of three types
of constraints were attained [48]. Afterwards, this notable theorem was proven that, under mild
assumptions, the chosen representation actually is unique [53, 54]. What remained is dealing
with the Hamiltonian constraint which encodes the “dynamics” of the theory and is the most
difficult to impose.

0.1.2.1. Achilles’ Heel of LQG: Dynamics

Following Dirac’s quantisation procedure, the dynamics should be assigned to the quantum the-
ory by 1) promoting the classical Hamiltonian constraint into an operator, 2) seeking the states
belonging to its kernel, which are called physical states, and 3) finding a suitable inner product
between the physical states. Then, the inner product of the physical Hilbert space consisting of
physical states determines the dynamics, i.e. transition amplitudes between physical states. For
about ten years, not even a well-defined operator could be constructed for this intractable con-
straint, let alone to get the desired physical Hilbert space. Finally, Thiemann, in his trailblazing
work [55, 56, 57], introduced a strategy that takes advantage of an identity between the triads
and the Poisson bracket among the connection and the volume function. Using this identity, he
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managed to build a well-defined Hamiltonian operator on the kinematical Hilbert space. Let’s
denote the resulting operator by Ĉ(N), where N is the smearing function. Although the for-
mal solutions of Ĉ(N) are known, explicit derivation of any non-trivial solution has turned out
to be extremely difficult, and hence the structure of the physical Hilbert space is still scarcely
perceived.

Apart from this, despite the fact that the original formulation [55, 56, 57] is anomaly free2,
it does not mean that the precise structure functions of the classical formulation are recovered.
This must indeed be a delicate issue because in contrast to the classical theory, in the quantum
theory the generator of spatial diffeomorphisms does not exist due to lack of continuity of 1-
parameter unitary subgroups of the spatial diffeomorphism group. This is an important issue to
be addressed because Thiemann’s Hamiltonian constraint operator suffers from ambiguities that
are expected to be resolved by achieving a faithful representation of the constraint algebra.

The problem of dynamics has become a prolific source of inspiration for several other approaches
and researches attempting to fix the quantisation ambiguities, such as the master constraint
programme [58, 59], algebraic quantum gravity [60, 61, 62, 63], the spin foam models [64, 65, 66],
the Hamiltonian renormalisation approach [67, 68, 69, 70], etc.
In addition, working on “toy models” sharing essential features of GR, i.e. general covariance
and background independence, can provide significant insight and primary directions for future
progress.

0.1.2.2. Testing Grounds of Dynamics: Toy Models

A very interesting idea to better scrutinise the dynamics is to apply the techniques of LQG
to simpler models possessing similar mathematical structures to that of GR, then try to find
a strategy to fix possible ambiguities that naturally arise in the quantisation procedure and
finally investigate what happens if we employ that strategy in the full theory. The toy models
existing in the literature are symmetry reduced gravitational systems, gravity in lower dimensions,
parametrized field theory (PFT) [71, 72], Husain-Kuchar model [73] and U(1)3 model of Euclidean
gravity [2], each of which provides a simpler arena to probe the problems of dynamics either
by reducing the degrees of freedom and the number of constraints or by allowing comparison
with systems whose quantisation is known through other methods. They all intend to dissect
the structure of the loop quantisation and look for new improvements which are, sometimes
surprisingly, fully susceptible.

For example, loop quantum cosmology (LQC) [74, 75] makes provision for probing the problem
of dynamics in a mathematically simpler yet physically appealing framework because thanks to
the high degree of symmetry cosmological models admit, one can construct the physical Hilbert
space and analyse it meticulously (see e.g. [76, 77, 78, 79, 80]). Accordingly, LQC has improved
our understanding of the dynamics of LQG by giving hints about the correction of the Hamil-
tonian constraint and also the extraction of physical information. On the other hand, insights
from working on the loop quantisation of PFT [81, 82, 83, 84, 85] whose Fock representation had
already been available, culminated in the construction of a diffeomorphism constraint operator
in full LQG [86]. Therefore, insights from toy models can have profound influences on the full
theory of LQG.

To improve the original formulation [55, 56, 57] and find a faithful representation of quantum

2It is anomaly free in the sense that ℓ([Ĉ(N1), Ĉ(N2)]ψ) = 0 for all test functions N1, N2, for each state ψ in
the common dense and invariant domain D of all the Ĉ(N) and all ℓ ∈ L, the space of diffeomorphism invariant
algebraic distribution on D (i.e. a linear functional on D without continuity conditions, D can be identified with
the finite linear span of spin network functions).
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dynamics for GR, we cannot resort to PFT or the Husain-Kuchar model since both do not model
the aspect that the constraint algebra is not a Lie algebra but a Lie algebroid with non-trivial
structure functions. On the other hand, the U(1)3 model of Euclidean gravity, in which the
structure group SU(2) is simply replaced by U(1)3, is intriguing to focus on since the constraint
algebra of this model has structure functions similar to the gravitational case. As the U(1)3 model
shares many of the conceptual and mathematical structures of GR, it provides a fertile ground
to examine various ideas of full LQG. While Dirac quantisation of this model has been studied
extensively in [87, 88], in this dissertation we aim at moving toward its quantisation through
other approaches, i.e. reduced phase space and path integral quantisations, to allow comparisons
enlightening the pathway to progress! In particular, a reduced phase space quantisation approach
has the additional advantage that it frees us from the steps to compute 1) kernel of constraints 2)
physical Hilbert space and 3) Dirac observables, as one only quantises classical gauge-invariant
degrees of freedom. These steps are exactly those that are still missing in the work of Varadarajan
et al [87, 88].

0.2. Outline
This thesis is substantially based on the publications [89, 90, 91] arisen from collaborations of the
author with Thomas Thiemann and Hossein Shojaie. The main results are presented in chapters
8, 6 and 9 together with section 5.2, respectively. Moreover, the paper [92] was also published
during the author’s PhD programme.

General structure:
The content of this dissertation is divided into three parts. Since the main purpose of
our research course is to comprehensively study the U(1)3 model of Euclidean quantum
gravity, first it is necessary for the reader to have a good knowledge of different quantisation
methods. This is provided in the first part. In the second part, we introduce the classical
theory of the model we intend to focus on, and in the last part, we try to apply the methods
presented in the first part to the model introduced in the second part. The first section of
each chapter is devoted to the preliminaries required to explain the purpose of the chapter.
This section helps the reader to understand the general outline of the chapter before going
into details.

Part I
The first part is concerned with different approaches to quantising a constrained system.
There are three main methods to quantise a system with constraints: the Dirac quantisation
and the reduced phase space quantisation as canonical approaches, in addition to the path
integral method being the covariant quantisation of gauge-invariant systems. The first three
chapters are devoted to reviewing these approaches and, in particular, applying them to
the special case of GR.

Chapter 1
The cornerstone of the Dirac quantisation dwells in imposing quantum mechanically
the constraints as operator conditions on the states for identifying the physical ones. In
the second section, we present the steps one has to take in order to quantise a general
constrained system following which we exhibit the structure of canonical loop quantum
gravity in the next section. Indeed, we apply the Dirac quantisation procedure to GR,
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which is a fully constrained system, and provide the techniques utilised to solve the
kinematical constraints. Discussion on the dynamics is more subtle and deserve a
complete chapter, hence it will be carried over to the second part of this dissertation
where the main motivation of studying the U(1)3 model is presented. The content of
this chapter will be extensively used in chapter 7 deriving the Dirac quantisation of
the U(1)3 model.

Chapter 2
The basic idea of the reduced phase space quantisation consists in first identifying the
physical degrees of freedom at the classical level by factorising the constraint surface
with respect to the action of the gauge group, generated by the constraints. Then
the resulting Hamiltonian system is quantised as a usual unconstrained system. In
the second section, we present the steps of this kind of quantisation for a general
constrained system by deriving the physical observables and defining the physical
Hamiltonian governing the dynamics of observables. While this method cannot be
easily applied to pure gravity due to the complexity of the constraints, it is technically
easier applicable to the case of GR coupled to a suitable kind of matter (e.g. dust).
This is what we will provide in the succeeding section. In the end, we compare the
two approaches of canonical quantisation. The content of this chapter is essential for
chapter 7.

Chapter 3
There is another approach for quantising constrained systems which tackle the problem
from the covariant point of view, that is path integral quantisation. This will be briefly
presented in the second section for a general constrained system. As the path integral
quantisation of BF theory, which is closely related to GR, is well-known we begin the
succeeding section with an introduction and display path integral of the BF theory.
Then we formulate GR as a “constrained” BF theory and try to impose the constraints
at the quantum level. This procedure is known as spin foam models to which half of
the activities in the LQG community are devoted. The main motivation of chapter 9
is to provide an interesting test ground for these models.

Part II
In this part, by presenting the dynamics of LQG and its shortcomings, we express the mo-
tivation for our research study and then we will introduce the U(1)3 model as an appealing
test laboratory of dynamics. Next, we study its asymptotic structure needed to perform
the reduced phase space quantisation.

Chapter 4
We express the main idea of Thiemann’s construction of Hamiltonian constraint which
is responsible for the dynamics. Then we will specify its virtues as well as its short-
comings. Besides the ambiguities arising in the quantisation procedure, the drawback
of Thiemann’s Hamiltonian constraint is that although the quantum algebra is math-
ematically anomaly-free, it was not possible to check explicitly that it implements
the classical constraint algebra at the quantum level. Because the constraint algebra
of the U(1)3 model involves structure functions, similar to that of GR, this simpler
model can be employed to test the ideas suggested to faithful implementation of the
constraint algebra.

Chapter 5
The U(1)3 model is introduced as a weak coupling limit of Euclidean GR. We describe
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the model using two different canonical variables, i.e. (A,E) and (B, f). We show that
the Lagrangian proposed in the original paper as the covariant origin of this theory is
not correct. This forces us to look for the proper Lagrangian in chapter 9.

Chapter 6
We try to produce well-defined generators for asymptotic symmetries out of the con-
straints of the U(1)3 model. To do this, first, we seek a boundary term spoiling the
differentiability of a given constraint and then it will be subtracted from the variation
of the constraint. If this boundary term happens to be an exact one-form in the field
space, one concludes that the resulting expression is functionally differentiable. At
that point, only the examination of its finiteness is left to make sure that it is well-
defined. In the case of the U(1)3 model, we show that although space-time translations
are admissible asymptotic symmetries, boosts and rotations do not have well-defined
generators [90].

Part III
We try to provide appropriate circumstances for the quantisation methods studied in the
first part to become applicable to the U(1)3 model. Albeit the Dirac quantisation has taken
already major steps in [87, 88], the work on the other ones is still in progress.

Chapter 7
As proposed in [87, 88], instead of working with density weight one Hamiltonian con-
straint we will construct the quantum counterpart of the Hamiltonian constraint of
density weight 4/3 so as to produce a non-trivial constraint algebra on a subspace of
the algebraic dual of a dense subset of the kinematical Hilbert space rather than on
that subset itself as it is done in [55]. We see that this idea works well but still needs
to be tested. Hence, if one can establish the quantum theory through other methods,
the comparison of the final results can help to gain better understanding of the idea
and its applicability. This is another motivation for the main content of this thesis
[89, 90, 91].

Chapter 8
First, we prove two theorems concerning the construction of the physical Hamiltonian
for a system with first-class constraints that are at most linear in the momenta. They
are achieved by means of a choice of gauge fixings. Then, for various choices of gauge
fixings, we apply our theorems to the U(1)3 model to obtain the physical Hamiltonian.
The degree of spatial non-locality and non-polynomiality of the physical Hamiltonian
critically depends on the choice of gauge fixings. These choices are related by a gauge
transformation and hence classically equivalent, but when it comes to quantisation cer-
tain choices seem to be preferred. We obtain several physical Hamiltonians displaying
a rather manageable form, discuss their properties, and find the physical equations of
motion [89].

Chapter 9
To begin with, we consider the U(1)6 Palatini action as a possible covariant origin
of the U(1)3 model. Surprisingly, we reveal that this theory is topological, there
are no propagating degrees of freedom. The noticeable difference with the SO(4)
theory is that, in a vital step of the constraint stability analysis, the Abelian nature
of the model precludes solving the equations for the Lagrange multipliers but instead
additional secondary constraints emerge. Then, based on the gauge group U(1)3, we
introduce a one-parameter family of Lagrangians. The parameter is similar to but
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different from the Immirzi-Barbero parameter and yields a “twisted self-dual” and
Abelian connection. It turns out that in this case, the Hamiltonian theory is indeed
equivalent to the U(1)3 model of Euclidean GR. As a byproduct, we prove that the
same action for SU(2) also results in the Hamiltonian formulation of Euclidean General
Relativity that so far was only known for the Euclidean (anti-)self-dual theory (the
parameter is equal to plus/minus unity). As a technical stride, we present the analysis
using half densitised tetrads and bypassing the introduction of simplicity constraints
that always produce spurious solutions. Furthermore, a pure connection formulation
of the theory is also derived [91].

Chapter 10
We conclude and give an outlook to future research.

Appendices
There are also two appendices devoted to displaying the detailed calculations of solving some
systems of equations, the first one is related to the constraints in the (B, f) description in
chapter 8 and the second one concerns the system of constraints we faced in chapter 9.
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CHAPTER 1.

Dirac Quantisation

1.1. Preliminaries
1.1.1. Why Constrained Systems Are Important
It is quite often the case that in modern physics theories of interest are formulated in terms
of fields which are specified with respect to an arbitrary reference frame. Only those variables
can be called measurables that are independent of the choice of the reference frame. The field
theories have an attribute in common that the fundamental fields are not directly measurable,
however, some associated quantities, such as charges, energies, etc. can be measured. In such
theories it is quite possible that different configurations of non-observable fundamental fields lead
to an identical observable quantity. A transformation from one such configuration to one another
is called gauge transformation and the lack of change in the observable quantities, despite the
fundamental field being changed, is a feature called gauge invariance and a theory describing
such a system is called gauge theory [93]. In gauge theories, because of the presence of gauge
transformations that are physically irrelevant, the equations of motion with given initial data do
not have a unique solution, thus one can easily see that the Legendre transformation cannot be
invertible. Dirac revealed that despite this non-invertibility one can still develop the Hamiltonian
formalism for these theories but with this major difference that the canonical variables are not
free anymore. Rather, the allowed states are constrained to be on the so-called “constrained
surface” and such systems are called “constrained Hamiltonian systems” [94, 95].
Put it briefly, in modern physics, a situation is often treated as a gauge system which is always
a constrained Hamiltonian system, therefore the quantisation of systems with constraints is of
prominent importance in physics.

1.1.2. How a Constrained System is Mathematically Described
The Lagrangian L(qi, q̇i) is said to be singular if the momenta pi := ∂L

∂q̇i are not independent
functions. It follows that there exists some equations Ca(p, q) = 0 expressing the dependence
which is called primary constraints. It can be shown that time evolution of any function f(q, p)
defined on phase space is obtained via the equation ḟ = {f,HT } where HT = HC + λaCa in
which HC is the canonical Hamiltonian and λa are Lagrange multipliers. To have a consistent
theory, the primary constraints should not change over time. Hence, the consistency conditions
Ċ = {Ca, HC}+λb{Ca, Cb} ≈ 0 have to be satisfied, where ≈ denotes weak equality, i.e. equality
holding on the constraint surface1. The consistency conditions may lead to specifying some of
Lagrange multipliers and/or emerging some new constraints, known as secondary constraints. In

1the surface which is implicitly defined by the simultaneous vanishing of all the constraints.
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other words, secondary constraints are those constraints arising in the theory using the equations
of motion. The procedure should be repeated until one ensures that all the constraints are
weakly preserved by time. The whole system of constraints can be divided into two sets: first
class constraints CI that Poisson commute with all the constraints, and second class constraints
χα, otherwise2. Mathematically speaking, {Ca, Cb} ≈ 0 ≈ {Ca, χα} and {χα, χβ} ≈ Mαβ with
det(Mαβ) ̸= 0 3. That the first-class constraints generate gauge transformations is rather clear in
the case of the first-class primary constraints, since these appear explicitly in the generator of the
time evolution multiplied by arbitrary functions. That it also holds for the first-class secondary
constraints is known as the “Dirac conjecture”. This conjecture can be proved under reasonable
assumptions (see, e.g. [96]). The reason that the secondary first-class constraints also correspond
to gauge transformations is that they appear in the brackets of the Hamiltonian with the primary
first-class constraints. Thus, different choices of arbitrary functions λa in the dynamical equations
of motion will lead to phase-space points that differ by a canonical transformation whose generator
involves the secondary first-class constraints as well. Since an (strong) observable quantity O is a
gauge-invariant phase-space function, and first-class constraints generate gauge transformations,
it is then concluded that {O,Ca} = 0 for all Ca. If the equality is substituted by ≈, then O is
called a weak observable.
As second-class constraints do not map the constraint surface on itself, they cannot generate
admissible transformations. Therefore, it is advantageous to consistently eliminate them by using
the Dirac bracket instead of the Poisson bracket. By construction, the Dirac bracket {F,G}D of
two phase-space functions F and G is given by {F,G}D = {F,G} − {F, χα}Mαβ{χβ, F} where
Mαβ is the inverse to Mαβ. It fulfils two essential properties: 1) the Dirac bracket of any function
with any second-class constraint vanishes, {F, χα} = 0, 2) the Dirac bracket of two first-class
functions equals to their Poisson bracket. Thus, one can consistently eliminate the second-class
constraints and replace the Poisson bracket with the Dirac bracket.

1.1.3. Purpose of This Chapter
In this chapter, we concisely represent the steps engaged in the process of a certain approach for
quantising a constrained system known as Dirac quantisation [97, 98, 99, 100] in which “quantising
before constraining” is the main idea. Given a symplectic manifold (P,Ω) together with a set of
first-class constraints CI

4, according to the main idea by Dirac, in this approach one first quantises
the unconstrained system giving rise to a kinematical Hilbert space Hkin in which the set of
elementary variables of the full phase space are represented by self-adjoint operators. Afterwards
one has to promote the constraints CI to well-defined operators ĈI in Hkin the intersection of
whose kernels determines the physical states. Finally, if an inner product can be defined for the
physical states, the sought-after physical Hilbert space will be achieved 5. Whether it is also
applicable to take the opposite direction of this approach, i.e. “quantising after constraining”, is
the subject of the next chapter where a comparison of the two approaches will also be done; the
advantages and disadvantages of applying them will be given.

Section 1.2 is devoted to a review of the Dirac quantisation procedure that will be employed
2The terminology of primary and secondary constraints is confusingly similar to that of first and second class

constraints. These divisions are independent: both first and second class constraints can be either primary or
secondary, so this gives altogether four different classes of constraints.

3It can be prooved that if det(Mαβ) ≈ 0, there exists at least one first-class constraint among the Ca’s [95].
4Actually, (P,Ω) is the full phase space in which the constraint surface CI = 0 is embedded. The classical

states of the theory are restricted to living on the constraint surface.
5Two excellent books on the quantisation of gauge systems are [95] and [94]. For a brief and comprehensive

review of the Dirac algorithm, we refer the reader to chapter 24 of [1].
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in chapter 7 where we wish to derive the quantum theory of U(1)3 model introduced in Part II.
In section 1.3, we apply the Dirac quantisation procedure to GR and achieve the kinematical
Hilbert space. This is essential to discuss ambiguities existing in the dynamics of LQG which is
the main motivation to study the U(1)3 model.

1.2. Dirac Quantisation Procedure
What follows in this section is an adaptation of the Dirac quantisation fully described in [1], to
which the reader is referred for further information.

1.2.1. Classical *-Algebra
In order to quantise a constrained system, the initial step is to introduce an appropriate set E of
elementary variables using which the phase space P is coordinatised, such that E separates the
points of P 6. By appropriate elementary variables for quantisation, we mean those forming a
closed Poisson subalgebra of the full Poisson algebra C∞(P) and closed under complex conju-
gation. The former is required as in canonical quantisation Poisson brackets are to be replaced
by iℏ times the corresponding commutator relation, and the latter is necessary since quantising
complex conjugates are supposed to result in adjoints of operators. In mathematics, these require-
ments are satisfied by an object called *-algebra. A *-algebra is an algebra with an involution,
that is a map ∗ : A → A where x 7→ x∗ has the following properties (λx + µy)∗ = λ̄x∗ + µ̄y∗,
(xy)∗ = y∗x∗ and (x∗)∗ = x for all x, y ∈ A and λ, µ ∈ C. Sometimes the procedure of choosing
E is called the choice of polarisation. There are some simplicity principles guiding us to choosing
a suitable polarisation. For instance, since only gauge invariant functions (observables) are phys-
ically relevant, we seek elementary variables whose gauge transformation behaviours obey some
relatively simple rules in order to simplify the quantisation of observables. Moreover, as one of
the main challenges is usually finding a representation for the Poisson algebra, any complexity
here may become an obstacle to completing the quantisation programme. On the other hand,
since constraints need to be implemented to obtain the physical Hilbert space, their expressions’
simplicity can be considered another guideline to finding the appropriate E .

As explained in [1], if the phase space P can be viewed as a cotangent bundle T ∗Q over
a configuration space Q, then a natural candidate for E is Fun(Q) × V (Q), where Fun(Q) is
a suitable algebra of smeared functions over Q and V (Q) the space of vector fields over Q
preserving Fun(Q). The product space Fun(Q)× V (Q) carries a Lie algebra structure according
to {(f, v), (f ′, v′)} := (v[f ′] − v′[f ], [v, v′]) where v[f ] is the action of vector fields on functions
and [v, v′] is the Lie bracket of vector fields.

1.2.2. Quantum *-Algebra
Now one can promote the classical *-algebra E to a quantum *-algebra in such a way that the
Poisson brackets are replaced by commutation relations and complex conjugation by involution.
In order to construct the quantum *-algebra A out of E we, first of all, consider the tensor algebra7

6A set of functions S from a set D to a set C is said to separate the points of D if for any two distinct elements
x, y ∈ D, there exists a function f ∈ S so that f(x) ̸= f(y).

7Suppose V is a vector space over a field F . For any integer k ≥ 0, the kth tensor power of V is defined to
be the tensor product of V with itself k times: T kV = V ⊗k and T 0V := F . Then, one defines T (V ) as the direct
sum of T kV for k = 0, 1, 2, · · · , i.e. T (V ) :=

⊕∞
k=0 T

kV , and the canonical isomorphism T kV ⊗ T ℓV → T k+ℓ

determines the multiplication in T (V ).
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T (E) over E . Consider the two sided ideal8 I of T (E) generated by elements of the form

a⊗ b− b⊗ a− iℏ{a, b}, a∗ − ā (1.1)

where a, b ∈ E . Then, the desired algebra is defined as the quotient space A := T (E)/I.
When it comes to introducing a physically interesting representation theory (see next subsec-

tion) of A, for an unbounded element a ∈ E the corresponding operator â become unbounded.
Since the domain of an unbounded operator can only be a dense subset of a given Hilbert space,
it is not guaranteed that two different such operators can be defined on a common and invariant
domain and so their commutator might be ill-defined. Thus, domain questions naturally arise
which make the situation more difficult. To circumvent this issue, instead of using a ∈ E itself,
it is convenient to employ a bounded function of it. As long as it is ensured that such functions
also separate the points in P, this substitution is permissible. To define a bounded function of
an unbounded element a ∈ E , we consider the one parameter family of unitary operators, called
Weyl elements, t 7→ Wt := exp(ita) for t ∈ R. These operators approximate 1 + ita for small
t and do separate the points of P. In this case, the ideal required to define the algebra A is
generated by the following elements rather than (1.1)

Ws(a)Wt(b)W−s(a) := Wt

( ∞∑
n=0

(isℏ)n

n! {a, b}(n)

)
(1.2)

(Ws(a))∗ := W−s(a) = (Ws(a))−1 (1.3)

where {a, b}(0) = b, {a, b}(n+1) := {a, {a, b}(n)} is the iterated Poisson bracket.

1.2.3. Representation of the Quantum *-Algebra
The next task is to find a representation of the quantum *-algebra A. By representation we mean
a pair (H, π) in which H is a Hilbert space and π : A→ L(H) is a morphism from the *-algebra
A into the algebra of linear operators defined on H, with a common and invariant dense domain
such that

π(µa+ λa′) = µπ(a) + λπ(a′), π(aa′) = π(a)π(a′), π(a∗) = π(a)† (1.4)
where a, a′ ∈ A and µ, λ ∈ C. If ker(π) = 0, then the representation is said to be faithful.
Moreover, an irreducible representation (ρ, V ) or irrep of an algebraic structure A is a non-zero
representation that has no proper non-trivial sub-representation (ρ|W ,W ), with W ⊂ V invariant
under the action of {ρ(a) : a ∈ A}.

Generally, for a given *-algebra A there will be infinitely many representations. Any of these
representations can in principle define a different quantum theory unless they are unitary equiv-
alent. Two representations π1 : A→ L(H1) and π2 : A→ L(H2) is said to be equivalent if there
exists a unitary map U : H1 → H2 such that π2(a) = Uπ1(a)U−1 for all a ∈ A. So, what is
usually done to reduce the number of possible representations is introducing further physically
motivated assumptions on the representation. For example, in the context of quantum mechanics
(QM), the Stone-von-Neumann uniqueness theorem says: making very mild assumptions that the
representation is irreducible and weakly continuous, one concludes that the Schrödinger repre-
sentation is the unique representation for QM, up to unitary equivalence. Here, a representation
is said to be weakly continuous if

lim
t→0
⟨ψ, π(Wt(a))ψ′⟩ = ⟨ψ,ψ′⟩ (1.5)

8Given a subalgebra I of an algebra A, we say I is a right (left) ideal of A iff ba ∈ I (ab ∈ I) for all a ∈ A, b ∈ I.
A two sided ideal is both a left and right ideal.
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for all ψ,ψ′ ∈ H. In quantum field theory where we have an infinite number of degrees of freedom
the situation is worse, so that in general for a given physical theory many inequivalent represen-
tations are possible and it is a priori not clear which is the physical relevant one. In this case,
one has to look for stronger physical assumptions which hopefully lead to a similar uniqueness
result. Furthermore, we are only interested in those representations in which it is possible to
implement the generators of the dynamics as operators. In the case of QM, the Hamiltonian
generating dynamics is usually a simple function on the phase space. Hence, in the Schrödinger
representation, it can be promoted to an operator [101]. In the case of constrained field theories,
we have to find a representation for which the classical constraints can be implemented on the
so-called kinematical Hilbert space Hkin.

1.2.4. Solving the Constraints
Having obtained Hkin, we must solve the constraint operators since the physical states are those
annihilated by quantum constraints. However, there is a glaring obstacle in proceeding with
this step. If zero lies in the continuous part of the constraint operators’ spectrum, then the
functions in their kernels do not lie in the kinematical Hilbert space9; such functions are called
generalised eigenfunctions [102]. Two constructive procedures are available to overcome such a
problem: Refined Algebraic Quantisation (RAQ) and Direct Integral Decomposition (DID) that
is a generalisation of RAQ. Here, we only discuss the former as it will be used in the succeeding
sections. For a detailed introduction to the latter, we refer the interested reader to [103] or to
section 30.2 of [1].

1.2.4.1. Refined Algebraic Quantisation (RAQ)

Let (ĈI)I∈I denote the constraint operators defined on the kinematical Hilbert space, for an
index set I labelling them. Since Hkin is too “small” to contain all the solutions to the constraints
(ĈI)I∈I, one could seek solutions in the space D∗kin of linear functionals on Dkin where Dkin ⊂ Hkin
is an invariant dense domain on which all the constraint operators and their adjoints are defined.
The topology on Dkin is the topology induced by the norm topology on Hkin. Moreover, D∗kin is
equipped with the weak *-topology of point-wise convergence which is coarser than the topology
on Hkin. Therefore, we gain the following topological inclusion10

Dkin ↪−→ Hkin ↪−→ D∗kin (1.6)

Now one is looking for a subspace D∗phys ⊂ D∗kin of generalised eigenfunctions ℓ ∈ D∗phys satisfying

[(ĈI)′ℓ](f) := ℓ(Ĉ†If) = 0, ∀f ∈ Dkin, ∀I (1.7)

where the prime denotes a dual, anti-linear representation of the constraints on D∗kin
11.

9If zero lies in the discrete spectrum of the constraint operators, the eigenvectors associated with the eigenvalue
λ = 0 are the physical states that do belong to Hkin.

10In abuse of terminology we can call it a Gel’fand triple or Rigged Hilbert Space, as these names is usually
employed for the case where Dkin is equipped with a nuclear topology and that D∗

kin is its topological dual, not the
algebraic one.

11Note that if ℓ was an element of Hkin then the equation (1.7) would be

[Ĉ′
Iℓ](f) := ⟨ĈIℓ, f⟩kin = ⟨ℓ, Ĉ†

If⟩kin =: ℓ(Ĉ†
If) ∀f ∈ Dkin, ∀I (1.8)

where ⟨·, ·⟩kin is the inner product of Hkin. Thus, (1.8) is viewed as the natural extension of (1.7) [104].
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The sought-after physical Hilbert space Hphys has not achieved yet, since if one considered
D∗phys as the desired Hphys all observables would be defined on the whole of D∗phys and hence
would be understood as bounded operators, while the physical interesting operators are normally
unbounded. This motivates us to consider a subset of D∗phys as the physical Hilbert space Hphys.
We choose a subspace Dphys ⊂ Hphys on which the algebra of observables is densely defined and
based on which the following rigged Hilbert space is obtained

Dphys ↪−→ Hphys ↪−→ D∗phys (1.9)

The task left to accomplish is to construct an inner product for Hphys. A natural require-
ment the physical inner product is expected to fulfil is that adjoints with respect to ⟨·, ·⟩phys
denoted by ‡ represents the corresponding adjoints with respect to ⟨·, ·⟩kin, i.e. ⟨(Ô′)‡ψ,ψ′⟩phys =
⟨(Ô†)′ψ,ψ′⟩phys for all observables O and all ψ,ψ′ ∈ Hphys. One can readily verify that such an
inner product can be provided by an anti-linear map η : Dkin → D∗phys; f 7→ η(f), called a rigging
map. As we require the space of solutions to be preserved by the dual action of any observable
operator Ô, the rigging map has to satisfy Ô′η(f) = η(Ôf) for any f ∈ Dkin. Furthermore, η
as a map from Dkin × Dkin into C with (f, f ′) 7→ [η(f)](f ′) needs to be a positive sesquilinear
form12. Then, the physical inner product is simply defined as

⟨η(f), η(f ′)⟩phys := [η(f)](f ′), ∀ f, f ′ ∈ Dkin (1.10)

As we have just seen, if such a rigging map exists, constructing the physical inner product is
its direct consequence. Thus, the task is reduced to introduce an appropriate η and can be
accomplished by a proposal known as group averaging [105, 106].

Suppose that the first-class constraints (ĈI)I∈I we started with are self-adjoint and form an
“honest Lie algebra”, i.e. the commutators of the constraints is again a combination of constraints
via structure constants and not functions. Using the constraints that are generators of the Lie
algebra, one defines a group of unitary operators Û(g) := exp

(
itICI

)
with tI ∈ R and g ∈ G.

According to (1.7), it turns out that Û(g) acts trivially on any physical state ℓ ∈ D∗phys because
[Û(g)′ℓ](f) := ℓ(Û †(g)f) = ℓ(f) for all f ∈ Dkin. If G is a finite compact Lie group, then the
existence of the unique Haar measure µH on G that is invariant under translations and inversions
empowers us to define the rigging map as

η : Dkin → D∗phys, f 7→ η(f) :=
∫

G
dµH(g)⟨Û(g)f, ·⟩kin (1.11)

It is worth recalling that RAQ can be employed to solve the first-class and self-adjoint con-
straints of a constrained system only when they form an “honest” Lie algebra and the corre-
sponding Lie group is locally compact. As in the presence of structure functions rather than
structure constants, the RAQ process cannot guide us to the physical inner product, one has to
work with DID strategy constructed to deal with such cases [103, 1].

1.3. Dirac Quantisation of Loop Quantum Gravity
To see how the quantisation programme introduced in the previous section works in detail for
gravity, we apply it to GR and arrive at LQG. The classical Poisson algebra that canonical LQG
is based on is formulated in terms of Ashtekar-Barbero variables, which in turn require a brief
overview of ADM formalism for better understanding.

12For a complex vector space V , a map η : V ×V → C is sesquilinear if it is linear in one argument and antilinear
in the other one.
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1.3.1. ADM Formalism
In Einstein’s formulation of GR, the spacetime metric field gµν(x, t) plays the role of Lagrangian
variables. Afterwards, Arnowit, Deser and Misner [23] changed these variables to ADM variables

qab = gab, N = 1√
−gtt

Na = qabgbt (1.12)

where a, b = x, y, z used for spatial indices and qab is the inverse of the three-dimensional metric
qab by which the spatial indices are raised and lowered. The geometrical interpretation of ADM
variables is as follows. Consider a family of spacelike hypersurfaces Σt defined by t = constant.
Then qab is the 3-metric induced on the hypersurface. Let na be a unit normal vector field to
the hypersurface Σt. The lapse function N measures the rate of flow of proper time with respect
to coordinate time as one moves normally to Σt along the normal vector na. The shift vector
measures how much the spatial coordinate system shifts tangential to Σ1 when moving from Σ1
to Σ2 along na (for detailed construction see e.g. [1, 107] ). The invariant interval can be written
in the form

ds2 = −N2dt2 + qab(dxa +Nadt)(dxb +N bdt) (1.13)

The action of GR in terms of ADM variables takes the form

S =
∫
d4x
√
qN

(
R+KabK

ab −K2
)

(1.14)

where q and R are the determinant and the Ricci scalar of the metric qab, respectively,

Kab = 1
2N (∂tqab −DaNb −DbNa) (1.15)

is the extrinsic curvature of the hypersurface, and Da is the covariant derivative of qab. Since the
action (1.14) is independent of the time derivatives of N and Na, the corresponding conjugate
momenta, denoted by π and πa respectively, are primary constraints and the pairs (N, π) and
(Na, πa) can be taken out of the phase space. Therefore, the 3-metric and its conjugate momen-
tum, i.e. (qab, p

ab) can be considered as the canonical variables of GR. The relation between the
momentum and the velocity ∂tqab is determined through

pab = √q(Kab −Kqab) (1.16)

where K = Kabq
ab. To have a consistent theory the primary constraints π = 0, πa = 0 should be

stable under the time evolution. Demanding this, the following secondary constraints arise

Ca = −2qacDb p
bc (1.17)

C = 1
√
q

(
pabp

ab − 1
2p

2
)
−√qR (1.18)

where p = pabq
ab. The constraints (1.17) and (1.18) are called the diffeomorphism and Hamilto-

nian constraints, respectively. It turns out that they are preserved by time, hence fortunately no
tertiary constraints are generated and the canonical Hamiltonian is

H =
∫
d3x (NC +NaCa) (1.19)

with arbitrary functions N , Na that now serve as Lagrange multipliers.
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1.3.2. Ashtekar-Barbero Formalism
Ashtekar-Barbero formalism relies on the tetrad variables in which the gravitational field is rep-
resented by four covariant fields eI

µ(x) where I, J, · · · = 0, 1, 2, 3 are flat Lorentz indices moved by
the metric ηIJ = diag[−1,+1,+1,+1]. The metric variable can be expressed in terms of tetrad
variables through gµν = ηIJe

I
µe

J
ν . In this formulation, GR has an extra SO(3, 1) gauge invari-

ance. The corresponding canonical formalism is usually defined in the temporal gauge ei
t = 0,

where i, j, · · · = 1, 2, 3 are flat three-dimensional indices moved by δij . In this gauge, the Lorentz
group is reduced to SO(3), and the ADM variables are qab = ei

ae
i
b, N = e0

t , e
i
t = ei

aN
a. Then the

invariant interval (1.13) is equivalent to

ds2 = −N2dt2 + (eaidx
a + eaiN

adt)(ei
bdx

b + ei
aN

adt) (1.20)

Then, the triad field of the ADM hypersurface, ei
a, and its conjugate momentum, pa

i := pabebi,
are the reduced canonical variables. The diffeomorphism and Hamiltonian constraints are the
same as in the ADM formulation, with qab and pab expressed in terms of the triad variables. In
addition, there is an extra constraint generating the internal rotations

Gi = ϵijke
j
ap

ak (1.21)

When it comes to Ashtekar-Barbero formalism, the form of the constraints are simplified and the
phase space of GR is cast exactly in the form of that of Yang-Mills. For this reason, it is widely
used in non-perturbative quantum gravity; in particular LQG.
Ashtekar’s original variables are

Ai
a := 1

2ϵ
i
jkω

jk
a + iKi

a (1.22)

Ea
i := det(e) ea

i (1.23)

where ωij = ωij
a dx

a is the (torsion-free) spin connection of the triad 1-form field ei = ei
adx

a,
determined by the Cartan equation dei + ωj

k ∧ ek = 0 and

Ki
a := eibKab = 2

det(e)(pi
a −

1
2e

i
ap) (1.24)

where p = ei
ap

a
i . Note that while the electric field E in (1.23) is real, the Ashtekar connection A

introduced in (1.22) is complex, and hence it is supposed to fulfil the reality condition

Ai
a + Āi

a = 2Γi
a[E] (1.25)

where Γi
a[E] is the Levi-Civita connection that functionally depends on E. In terms of Ashtekar

variables (1.22) and (1.23), the constraints of the theory can be re-expressed in the form

Gi = DaE
a
i = 0 (1.26)

Ca = F i
abE

b
i = 0 (1.27)

C = 1√
det(q)

ϵijkF
i
abE

a
jE

b
k = 0 (1.28)

that are Gauß, diffeomorphism and Hamiltonian constraints, respectively. Here, F i
ab is the cur-

vature associated with the connection A. Notice that Gi, Ca and
√

det(q)C are polynomial in
the canonical variables. As explained in the introduction, the problem with these variables is
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that although the constraints are very simple, in addition to them, the “non-polynomial” reality
condition must be satisfied. This again makes the situation complicated.

Barbero slightly generalised Ashtekar’s original variables by replacing (1.22) with

Ai
a := 1

2ϵ
i
jkω

jk
a + γKi

a (1.29)

where γ is an arbitrary complex number known as Barbero-Immirzi parameter. We refer to the
canonical variables (1.29) and (1.23) as Ashtekar-Barbero variables. In principle, these variables
form a canonically conjugate pair whose non-vanishing Poisson bracket is

{Ea
i (x), Aj

b(y)} = δa
b δ

j
i δ(x, y) (1.30)

For γ = 1, the equations (1.26)-(1.28) are the constraints of the Euclidean gravity. We will
repeatedly return to these constraints in parts II, III. In the Lorentzian case, if one derives the
constraints in terms of the Ashtekar-Barbero variables, the Gauß and diffeomorphism constraints
remain untouched but the Hamiltonian constraint (1.28) is replaced by

H = C − 1√
det(q)

(1 + γ2)Ea
jE

b
kK

j
[aK

k
b] (1.31)

that is very complicated to deal with. The non-vanishing Poisson brackets of the classical con-
straint algebra turn out to be

{G(Λ), G(λ′)} = G([Λ,Λ′]), (1.32)
{C⃗(N⃗), C⃗(N⃗ ′)} = C⃗(LN⃗ N⃗

′}, (1.33)
{C⃗(N⃗), C(N)} = C(LN⃗N}, (1.34)
{C(N), C(N ′)} = C⃗(N⃗(q,N,N ′)) (1.35)

where N⃗(q,N,N ′) := qab[N∂bN
′−N ′∂bN ] and if we replace C by H, the algebra is the same up

to signs. In the literature, this algebra is also known as Dirac algebra or hypersurface deformation
algebra.

1.3.3. Holonomy-Flux Algebra as the Classical *-Algebra
Now, it is time to introduce classical algebra. Inspired from lattice gauge theory [108], we can
work with SU(2) holonomies and fluxes, rather than the Ashtekar-Barbero variables. Some
physical and mathematical reasons behind this choice will be provided in section 1.3.3.1. We
initiate with the precise definition of holonomy.

Definition 1.3.1. The holonomy he(A) is the SU(2)-valued parallel transport of the SU(2) con-
nection Ai

a along a piecewise analytic curve e : [0, 1] → σ; t → e(t). In other words, if ht(e) is
the unique solution of the parallel transport equation

d

dt
ht(e) = ht(e)Ae(t) (1.36)

where ht=0(e) = I and Ae(t) := ėa(t)Ai
a(e(t))τi, then he(A) := ht(e)|t=1. Here, τi denote the

anti-Hermitian generators of SU(2) which is normalized according to Tr(τiτj) = −1
2δij.
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Integrating both sides of (1.36) from 0 to t gives rise to he(t)(A) = I +
∫ t

0 dt
′ he(t′)(A)Ae(t).

By repeatedly iterating this equation and evaluating the solution at s = 1, we find the explicit
expression

he(A) = I +
∞∑

n=1

∫ t

0
ds1

∫ s1

0
ds2 · · ·

∫ sn−1

0
dsn Ae(sn) · · ·Ae(s1)

= P exp
(∫ t

0
dt′ Ae(t′)

)
(1.37)

One can easily check that (1.36) is invariant under any reparametrisation of e, hence the holonomy
depends only on the path13 of e and not on the parametrisation one chooses to label its points.
The set of all paths P has a special structure as follows. It is naturally equipped with composition
and inverse operations. If e and e′ are two paths such that the endpoint of e coincides with the
beginning point of e′, then the composition of them e ◦ e′ is defined to be the path composed of
e followed by e′. The inverse of a path e is simply given by reversing its direction and denoted
by e−1. The composition of paths is associative, i.e. (e1 ◦ e2) ◦ e3 = e1 ◦ (e2 ◦ e3) 14 and the path
e ◦ e−1 is equal to the beginning point of the path b(e) 15. Lack of two properties prevents P
from being a group: 1) the composition of any two arbitrary paths cannot be defined in P, only
those in which the beginning point of the one coincides with the final point of the other can be
composed and 2) there is no identity element in P. In the language of category theory, a set with
these properties is called a groupoid.

From the differential equation (1.36), we immediately see that the holonomy satisfies the prop-
erties he−1(A) = h−1

e (A) and he(A)he′(A) = he◦e′(A). It means that for any connection A, its
holonomy he(A) defines a groupoid homomorphism from P into the gauge group G. In other
words, there is a map

F : A → Hom(P, G) A 7→ F (A) s.t (F (A))(e) := he(A) (1.38)

where A is the set of all smooth connections and Hom(P,G) is the set of all, not necessarily
continuous groupoid homomorphism from P into G. Thus, we conclude that A is a subset of
Hom(P, G) that, as we will see, play a notable role in the construction of quantum theory.

Under a gauge transformation by g : Σ→ SU(2), the holonomy is transformed as

hg
e(A) = g(b(e))he(A)g(f(e))−1 (1.39)

where b(e) is the beginning point and f(e) the final point of e. To prove (1.39), one can
easily show that hg

e(t)(A) = g(b(e))he(t)(A)g(e(t))−1 satisfies the parallel transport equation
d
dth

g
e(t)(A) = hg

e(t)(A)Ag
e(t). Then, employing the uniqueness theorem of ordinary differential

equations for the initial data hg
b(e)(A) = I simply gives the claim by putting t = 1.

The role of momentum variable in this formulation is played by the electric flux, which is precisely
defined as follows:

13If one identifies all the curves with the same range but different parametrizations, then any equivalence class
is called a path. Here, in abuse of notation, we denote a path and its representative curve both by e.

14This would not be true if one used curves instead of paths, because in that case (e1 ◦ e2) ◦ e3 and e1 ◦ (e2 ◦ e3)
differ by a reparameterisation.

15This again would not be true if one used curves instead of paths.

19



Dirac Quantisation Section 1.3

Definition 1.3.2. Let S be an orientable embedded submanifold that is a finite union of con-
nected, analytic 2-dimensional surfaces Si of Σ which are distinct up to their boundaries. Suppose
that (s1, s2) are the coordinates on S and the locus of S in Σ is given by xa(s1, s2). Moreover,
let na(s) = ϵabc(∂xb

∂s1 )(∂xc

∂s2 ) be the normal one-form on S. The conjugate variable to the holonomy
is defined by the flux of Ea

i across a surface S in Σ

Ei(S) =
∫

S
d2s na(s)Ea

i (x(s)) (1.40)

and its smeared version using an su(2)-valued function f = f iτi is

Ef (S) =
∫

S
d2s f i(x(s))na(s)Ea

i (x(s)) (1.41)

All information about Ashtekar-Barbero variables is encoded in holonomy and flux, as one
can recover the connection Ai

a from its holonomy and the electric field Ea
i from its flux in the

following way. It follows that the holonomies and electric fluxes separate the points of M and
thus they can be considered as the fundamental variables.
Given a curve e we define a short curve eϵ(t) := e(ϵt) for 0 < ϵ < 1. Expanding the exponential in
the definition of the holonomy in terms of ϵ, we obtain hcϵ(A) = IG+ϵ(τi/2)Ai

a(cϵ(0))ċa
ϵ (0)+O(ϵ2)

from which we infer

lim
ϵ→0

1
ϵ

(hcϵ(A)− IG) = (τi/2)Ai
a(cϵ(0))ċa

ϵ (0) = Ae(t = 0) (1.42)

Consequently, by diversifying the length and positions of the curve c, one recovers all of A’s.
To show that the densitised triad Ea

i is recovered from the electric fluxes, we need to consider a
very small surface Sϵ embedded in Σ by the embedding map

XS : Mϵ → Σ; (s1, s2) 7→ XS(s1, s2) (1.43)

where M = [−ϵ/2, ϵ/2]2 is very small square. The electric flux through this surface is∫
Mϵ

ds2 nS
a (X(s1, s2))Ea

i (X(s1, s2)) ≈ ϵ2nS
a (X(0, 0))Ea

i (X(0, 0)) (1.44)

Again by varying the surfaces S, we can recover Ea
i (x) for all x ∈ Σ.

Having (1.42) in hand, it is an excellent point to express the curvature in terms of holonomies
required in promoting the Hamiltonian constraint to an operator. The appearance of the con-
nection through its curvature Fab in the Hamiltonian constraint leads us to express curvature in
terms of holonomies, because only holonomy operators are well-defined. In the classical theory,
we can derive different components of F i

ab by first computing holonomies around suitable loops,
then dividing them by the area of the surfaces surrounded by these loops, and finally taking the
limit as the area approaches zero. For instance, to find Fxy we consider a loop based at point x
and of infinitesimal coordinate area ϵ2 which lies in the x− y plane. The connection around x0
takes the expansion Aa(α(t)) = Aa(x0) + (α(t)−x0)b∂bAa(x0) +O(ϵ2) from which the holonomy
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around the loop is found

hα(A) =1 +
∫ 1

0
dt α̇a(t)Aa(α(t)) +

∫ 1

0
dt

∫ t

0
dt′ α̇a(t)Aa(α(t))α̇b(t′)Ab(α(t′)) +O(ϵ3)

=1 +Aa(x0)
∫ 1

0
dt α̇a(t) + ∂bAa(x0)

∫ 1

0
dt α̇a(t)(αb(t)− xb

0)

+Aa(x0)Ab(x0)
∫ 1

0
dt

∫ t

0
dt′ α̇a(t)α̇b(t′) +O(ϵ3)

=1 + (∂bAa(x0) +Aa(x0)Ab(x0))
∫ 1

0
dt α̇a(t)(αb(t)− xb

0) +O(ϵ3)

=1 + Fxy

∫ 1

0
dt α̇x(t)(αy(t)− xy

0) +O(ϵ3)

=1 + ϵ2Fxy(x0) +O(ϵ3) (1.45)

where we have used α(0) = α(1) = x0 and the fact that
∫ 1

0 dt α̇
x(t)(αy(t) − xy

0) is the quantity
of area enclosed by the loop. Moreover, appearance of the curvature is rooted in antisymmetric
property of

∫ 1
0 dt α̇

a(t)(αb(t)−xb
0) in a, b. In general, for a loop αab lying in xa-xb plane, we have

Fab(x) = lim
ϵ→0

1
ϵ2

(hαab
(A)− IG) (1.46)

Construction of the quantum theory necessitates computing the Poisson brackets of holonomies
and fluxes. This in turn requires a regularisation procedure and a discussion of the intersection
features of the curves and the surfaces on which we integrate E and A to get the involved
holonomies and fluxes, respectively. We will not do this in detail here, but only display the most
important Poisson bracket in the simplest non-trivial intersection. For a thorough discussion
consult [1].
If the surface S intersects the curve e exactly once, then the Poisson bracket of the corresponding
holonomy and flux is

{Ef (S), he(A)} = σ(S, e)
2 h(e1)τih(e2)f i(S ∩ e) (1.47)

where σ(S, e) = +1 if the tangent of e points upwards with respect to the conormal of the surface
at the intersection point and −1 otherwise.

1.3.3.1. Why Holonomy-Flux Variables?!

The question arising here is why the Ashtekar-Barbero variables were not employed to introduce
the classical algebra and what is the need to use the holonomy-flux algebra? The answer has
several physical and mathematical aspects that are listed below:

Non-locality
In a quantum field theory with a fixed background, it is usually assumed that any arbitrary
small distances can be probed by the quanta of a field. However, in the presence of a
dynamical background, the field will create a horizon that acts as a shield and prevents
probing arbitrary small regions. It means when quantum gravity is involved, there exists a
natural cut-off. Therefore, one cannot describe the gravitational field at the quantum level
using local variables (i.e. fields). Instead, it is necessary to introduce non-local ones such
as the aforementioned holonomy and flux variables.
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Background independence
The fact that the theory is invariant under diffeomorphisms is usually called the background
independence of GR. There is a drastic difference between the diffeomorphism group and
the coordinate transformations that is vastly explained in [109, 110]. In principle, a diffeo-
morphism (usually called active diffeomorphism) is a transformation changing the position
of a point, and invariance under which means by moving smoothly the fields over the man-
ifold, solutions of the equations of motion are mapped to themselves; whereas a coordinate
transformation (or passive diffeomorphism) is merely a change in the coordinate chart, and
invariance under which means by changing the coordinate the form of equations of motion
does not change. Moreover, the former generates a dynamical symmetry which constrains
the equations of motion, contrary to the latter which is a non dynamical symmetry [111].
With this explanation, it is clear that if a theory is invariant under the group of (active)
difeomorphisms, it is independent of background. Therefore, in order to respect this fun-
damental symmetry, the Poisson algebra has to be built from objects which do not refer to
any background, like the holonomy and flux variables.

Simple behaviour under gauge transformations
Further desirable properties of the chosen variables would be simple behaviour under spatial
diffeomorphisms and internal gauge transformations. As all physical pertinent information
is encoded in gauge-invariant objects, if one chooses to work with fundamental variables
not behaving nicely under gauge transformations it might be very hard to even construct
such objects, let alone to work with them. Although the behaviour of the connection has
the complicated form A 7→ dgg−1 + gAg−1, passing to the exponential form brings up some
interesting group properties that ensure a nice behaviour under gauge transformations, as
already shown in (1.39).

Non-distributional Poisson bracket
Note that since the Poisson bracket (1.30) is distributional, to define a physically relevant
algebra, one has to seek suitable smearing versions of the elementary variables. Notice
that holonomy and flux are integrated respectively against one-dimensional curves and
two-dimensional surfaces. Hence the total degree of smearing is just enough to absorb
the delta function present in the Poisson bracket, making the Poisson bracket between the
holonomy and the flux non-singular, see (1.47). One may ask what would have happened if
one had chosen 3-dimensional smearing versions of the fundamental variables. The answer
is that doing so would spoil the closure property of the Poisson algebra that has been
properly achieved in (1.47). In fact, three-dimensional smearing of the densitised triad
would preclude the Poisson bracket to depend on a “finite” number of the elementary
variables [1].

Uniqueness theorem
The uniqueness theorem [53, 54], known also as the LOST theorem, is the next reason
convincing us to work with the holonomy-flux algebra. Recalling the Stone-von Neu-
mann theorem of QM that ensures the uniqueness of the Schrödinger representation, the
LOST theorem can be considered as its counterpart in the context of diffeomorphism in-
variant systems. Essentially, this theorem shows that applying the GNS construction to
the holonomy-flux algebra together with the requirement that the representation admits
a unitary action of the diffeomorphism group singles out uniquely the representation, up
to unitary equivalence. The LOST theorem reveals that the diffeomorphism group and
being background-independent are highly restrictive properties at the quantum level. Fur-
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thermore, the unitary implementation of the diffeomorphism group on the Hilbert space
forces us to allow non-continuous scalar products. Accordingly, the loop quantisation is
not equivalent to the usual Fock representation and this difference emerging exactly from
background independence of GR is the cornerstone feature of quantising the gravitational
field [112, 113].

1.3.3.2. Cylindrical Functions and Holonomy-Flux Algebra

As the classical configuration space A is the space of smooth connections, it seems reasonable
to study the space of continuous functions of the connection f(A) ∈ C0(A) but as spelt out in
section 1.3.3.1, the well-adapted variables to work with are not connections (as they are local
quantities) but holonomies that are non-local and background-independent. Therefore, we will
work only with functions of the holonomies. In other words, we are restricted to work with those
functions which depend on the connection A only through its holonomies. These functions are
called cylindrical functions. To be precise, consider a graph γ living on Σ whose edges are in a
finite set of paths E(γ) := {e1, · · · , en} and the vertices denoted by V (γ) are the beginning and
final points of the paths. We associate to each edge ei ∈ E(γ) the holonomy of the connection
A along ei, i.e. hei(A) ∈ G = SU(2) and introduce a map Hγ : A → SU(2)n such that
Hγ(A) = (he1(A), · · · , hen(A)). Therefore, a cylindrical function on a graph can be defined as
follows. Given a function f : SU(2)n → C, the functional

fγ : A → C; fγ(A) := f ◦Hγ(A) = f(he1(A), · · · , hen(A)) (1.48)

is called a cylindrical function over γ and Cly∞(γ) is the space of all smooth cylindrical functions
on γ. A given cylindrical function is cylindrical on many graphs. Consider the example [114] of a
function fγ(he(A)), which is cylindrical with respect to γ with E(γ) = {e}. Then one can easily
observe that f is also cylindrical with respect to another graph γ′ with E(γ′) = {e1, e2, e3} where
e = e1 ◦ e2 and e3 independent of e. This is the case because f can be written purely in terms of
holonomies along edges in γ′, i.e. fγ(he) = fγ′(he1he2). Since we would like to identify the same
cylindrical functions on different graphs, the following structure is required. Let’s denote by l(γ)
the subgroupoid of P generated by E(γ), i.e. the set of paths in l(γ) consist of all members of
E(γ) together with their finite compositions and inverses. Now, we define Xγ := Hom(l(γ), G).
Based on subgroupoid relation ⊆ between all subgroupoids of P, the set of all graphs on Σ
denoted by Γ is naturally equipped with a partial order relation ⪯ in the way that we say γ ⪯ γ′
if l(γ) ⊆ l(γ′). Having this relation in hand, for γ ⪯ γ′ one can define a surjective projection
pγ′γ : Xγ′ → Xγ satisfying pγ′γpγ′′γ′ = pγ′′γ for all γ ⪯ γ′ ⪯ γ′′. The family (Xγ , pγγ′) is called
a projective family. The projective limit X̄ of this projective family is the subset of the direct
product X∞ := ∏

γ∈ΓXγ defined by

X̄ := {(xγ)γ∈Γ; pγ′γxγ′ = xγ ∀γ ⪯ γ′} (1.49)

Now, consider two cylindrical functions on different graphs, i.e. fγ , f
′
γ ∈

⋃
γ∈Γ Cly∞(γ) we define

an equivalence relation

fγ ∼ f ′γ if ∃γ′′ ∈ Γ s.t. p∗γ′′γfγ = p∗γ′′γ′fγ′ (1.50)

The space of cylindrical functions on the projective limit X̄ is defined to be the space of equiva-
lence classes

Cly∞ :=

⋃
γ∈Γ

Cly∞(γ)

 / ∼ (1.51)
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For later purposes, we want to show that one can identify Hom(P, G) with the projective limit
X̄. Indeed, the map

Φ : Hom(P, G)→ X̄

φ 7→ (φ|ℓ(γ))γ∈Γ (1.52)

where φ|ℓ(γ) ∈ Xγ , is a bijection. The proof is as follows.

Well-definedness of Φ
It is obvious by definition that if φ = φ′, then Φ(φ) = Φ(φ′). In fact, when two homo-
morphisms φ and φ′ are equal, their restrictions to subgroupoid ℓ(γ) are also the same, i.e.
φ|ℓ(γ) = φ′|ℓ(γ) which means Φ(φ) = Φ(φ′).

Injectivity of Φ
Suppose for two homomorphisms φ and φ′ we have Φ(φ) = (φ|ℓ(γ))γ∈Γ = (φ′|ℓ(γ))γ∈Γ =
Φ(φ′) that implies for all γ ∈ Γ, the equality φ|ℓ(γ) = φ′|ℓ(γ) holds. Thus, for all e ∈ E(γ)
we have φ(e) = φ′(e) because the homomorphisms are determined by their action on the
edges. Now, since an arbitrary path p is composition of edges, we conclude φ(p) = φ′(p)
for any p ∈ P. This means φ = φ′.

Surjectivity of Φ
Take (xγ)γ∈Γ ∈ X̄. In order to show that Φ is surjective we must find one φx ∈ Hom(P, G)
such that Φ(φx) = (xγ)γ∈Γ. For an arbitrary path p ∈ P, we can always find a graph γp

such that p ∈ l(γp). Then, we define φx(p) := xγp(p) ∈ Hom(ℓ(γp), G). This definition
is independent of the graph we choose because considering another graph γ′ for which
p ∈ ℓ(γ′), one can find a third graph γ′′ such that γ, γ′ ⪯ γ′′ and hence

xγ(p) = [pγ′′γ(xγ′′)(p)] = (xγ′′)|ℓ(γ)(p) = (xγ′′)(p) = (xγ′′)|ℓ(γ′)(p) = xγ′(p) (1.53)

It follows from this definition that Φ(φx) = (φ|ℓ(γ))γ∈Γ = (xγ)γ∈Γ. The only task left is to
show that φx is actually a homomorphism. Suppose two paths p, p′ belong to ℓ(γ) such that
f(p) = b(p′) which implies p◦p′ ∈ ℓ(γ) and also p−1 ∈ ℓ(γ). Then, since xγ ∈ Hom(ℓ(γ), G)
we get

φx(p ◦ p′) = xγ(p ◦ p′) = xγ(p)xγ(p′) = φx(p)φx(p′) (1.54)
φx(p−1) = xγ(p−1) = (xγ(p))−1 = (φx(p))−1 (1.55)

Since a cylindrical function, by definition, is a function of a finite number of holonomies, by con-
sidering the action of the flux vector field Yf (S) := {Ef (S), ·} on one single holonomy displayed
in the equation (1.47), one can readily obtain the action of the flux vector field on an arbitrary
smooth cylindrical function. Thus, Yf (S) can be understood as vector fields on Cyl∞. Based on
this, the precise definition of the holonomy-flux algebra is [1]

Definition 1.3.3. The classical Poisson algebra is the Lie *-subalgebra of Cly∞(A) × V∞(A)
generated by the smooth cylindrical functions Cly∞(A) and the flux vector fields Yf (S) ∈ V∞(A)
on Cly∞(A). The involution on this algebra is just complex conjugation, in particular A(e)∗ =
A(e−1)T and Yf (S)∗ = Yf (S). The algebra is called the holonomy-flux algebra.
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1.3.4. Kinematical Hilbert Space Hkin

In order to reach the quantum theory, firstly, one has to find a distributional extension of the
classical configuration space, i.e. the space of smooth connections A over Σ, and then the
kinematical Hilbert space Hkin is built on the distributional configuration space denoted by Ā.
The strategy is similar to what is done in quantum field theories16 with this difference that here
everything has to be constructed in a background-independent manner. This construction was
achieved mathematical rigorously in a series of papers [41, 42, 115, 46, 48] by using abstract
Gelfand–Naimark–Segal (GNS) theory. An essential feature of this structure is that it is not
limited to quantum gravity but can be applied to any background independent quantum field
theory (see for example [116, 117, 118]). As we will see, since the U(1)3 model, the leading
theory discussed in this dissertation, is also a background independent field theory, the same
construction will be employed in chapter 7.

As explained around (1.38), A is a subset of Hom(P, G) and it can be shown that it is in
fact a proper subset and Hom(P, G) can be understood as the distributional extension of A, i.e.
Ā = Hom(P, G). It turns out that A is topologically densely embedded into Ā [119].

Now that the quantum configuration space has been recognised, it must be equipped with
a measure to get a well-defined inner product based on which the kinematical Hilbert space
is introduced. Let us consider two cylindrical functions defined on γ with |E(γ)| = n, i.e.
fγ , f

′
γ ∈ Cyl∞(γ). Since the arguments of fγ , f

′
γ are the holonomies along each edge of γ, they

are elements of the group G = SU(2). Moreover, it is well-known that the natural invariant
measure on a Lie group is given by the Haar measure µH . Accordingly, the inner product of the
cylindrical functions fγ and f ′γ , that depend on n copies of the group SU(2), is defined in the
form, therefore:

⟨fγ , f
′
γ⟩ =

∫
SU(2)n

dµH(g1) · · · dµH(gn) fγ(g1, · · · , gn)f ′γ(g1, · · · , gn)

=
∫

SU(2)n
(dµγ)AL fγ(g1, · · · , gn)f ′γ(g1, · · · , gn) (1.56)

where (dµγ)AL is called the Ashtekar-Lewandowski measure [47]. In order to determine the
scalar product between two functions fγ and f ′γ′ , cylindrical on two different graphs γ and γ′,
one takes any graph γ′′ such that γ, γ′ ⪯ γ′′, and views fγ′′ and f ′γ′′ as cylindrical functions on
γ′′. The desired scalar product can then be defined as ⟨fγ , f

′
γ′⟩ := ⟨fγ′′ , f ′γ′′⟩ that is independent

of the chosen graph γ′′. This independence is encoded in the measure dµAL which is said to be a
cylindrically consistent measure. To be precise, associating a measure dµγ to every graph γ, we
say the family of measures {dµγ}γ∈Γ is consistent if for any γ ⪯ γ′∫

SU(2)n
dµγ fγ =

∫
SU(2)n

dµγ′ (pγ′γ)∗fγ (1.57)

It can be shown that every consistent family of measures on Xγ defines a unique measure on X̄
and, conversely, every measure on X̄ can be obtained from a consistent family of measures on Xγ

[43]. Choosing the Haar measure on Xγ , one gets a consistent family of measures which in turn
defines a measure on X̄ = Hom(P, G) (recall the map (1.52)) known as the Ashtekar-Lewandowski
measure.

Moreover, the laws sending the holonomy he(A) to g(b(e))he(A)g−1(f(e)) and hϕ(e)(A) under
the gauge transformation g and the diffeomorphism ϕ, respectively, together with the left and

16In general, the measure that is essential to build the scalar product of the theory is supported on a distribu-
tional extension of the classical configuration space.
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right invariance of the Haar measure, imply that the inner product introduced here is gauge
and diffeomorphism invariant. The desired kinematical Hilbert space is then defined as the
Cauchy completion of Cyl with respect to the norm following from the inner product (1.56), i.e,
Hkin = Cyl. This Hilbert space is in fact isomorphic to the space of square integrable functions
on Ā, i.e.

Hkin = L2(Ā, dµAL) (1.58)

Now, we want to introduce an orthonormal basis forHkin, that henceforth is called spin network
basis. Based on the Peter-Weyl theorem17 [120] , we can find a basis for He = L2(SU(2); dgH) as√

dj [πj ]mn(he), where dj is the dimension of the representation space of the unitary representation
πj of the group SU(2) and the indices m,n label the matrix elements of πj . Since the space
Hγ := L2(Gn, dµγ) is essentially a tensor product of the spaces He := L2(G, dµ) over the edges
of γ, it follows that an orthonormal basis on Hγ := L2(Gn, dµγ) is formed by products of the
functions

Tγ,π⃗,m⃗,n⃗ : Ā → C; A 7→
∏

e∈E(γ)

√
dje [πje(he(A))]mene (1.61)

whereby, the vectors m⃗ := {me}e∈E(γ) and n⃗ := {ne}e∈E(γ) denote a certain collection of matrix
element labels of the representations, that is me, ne ∈ {1, · · · , 2je + 1}. We call the above spin
network functions gauge variant, because they are in general not invariant under SU(2) gauge
transformations. In order to define also gauge invariant spin network functions (SNFs) which are
the ones being physically relevant, we will rewrite the SNFs with the help of so called intertwiners.

Note that according to the Peter-Weyl theorem, spin network functions can be defined for any
compact lie group G, but in what follows we focus on the group G = SU(2), because this is
the one required for Loop quantum gravity. In chapter 7 we will specialise our discussion to the
compact group U(1)3 leading to functions so-called charge network functions.

1.3.4.1. Some Useful Quantum Operators

The holonomy operator acts on a cylindrical function fγ by multiplication:

ĥe |fγ⟩(A) = (he(A))fγ

(
he1(A), · · · , heN (A)

)
(1.62)

where N = |E(γ)|. Note that the relative position of the edge e and the graph γ determines the
character of the resulting expression:

• If e ∈ ℓ(γ), then (1.62) is an element of Hγ .

• If e /∈ ℓ(γ), then (1.62) is an element of Hγ∪e.

In principle, in the former case, the action of the holonomy operator modifies the spin quantum
number associated to the edge e of γ, and in the latter case, it adds a new edge to the underlying

17The Peter-Weyl theorem says that for any compact group G, the space L2(G, dµH) of square-integrable
functions, with inner product ⟨k, h⟩ =

∫
G
kh̄dµH (dµH denotes the normalised Haar measure), has an orthonormal

basis
{
√

dim(π)πij |π ∈ Π(G), 1 ≤ i, j ≤ dim(π)} (1.59)
where Π(G) is the set of all equivalence classes of irreducible representations of G and πij denotes the ij matrix
element of π. Here, the orthonormality means

⟨
√

dim(π)πij ,
√

dim(π′)π′
kl⟩ = δππ′δikδjl (1.60)
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graph on which the cylindrical function is defined. Therefore, in both cases, the action of the
holonomy operator changes the cylindrical function in such a way that the resulting cylindrical
function ĥe |fγ⟩ is typically orthogonal to the original function |fγ⟩ with respect to the inner
product (1.56). This crucial observation prevents the connection A to have a well-defined quan-
tum operator. Indeed, we know from (1.42) that one should define a connection operator through
the following limit

lim
ϵ→0

1
ϵ

(ĥeϵ − I)|fγ⟩ (1.63)

where eϵ is a path of coordinate length ϵ. Because of the aforementioned orthogonality property,
in general, the limit (1.63) fails to exist.

To obtain the flux operator rigorously, one first must regularise the classical flux as Eϵ
i (S) =∫+ϵ

−ϵ dtδ(t, 0)
∫

St
Ea

i n
S
a and then the action of the flux operator is defined as the action of the reg-

ularised one when the regularisation parameter ϵ is removed, i.e. Êi(S) := iℏ limϵ→0{Eϵ
i (S), · }.

In what follows, we will not go through the regularisation procedures and just refer the reader
to [1], but instead, we derive the desired operator in a heuristic manner.

In order to define the flux operator, first, we need to introduce the left and right invariant
vector fields on the group G

(Lif)(g) = i
d

dt

∣∣
t=0f(getτi), (Rif)(g) = i

d

dt

∣∣
t=0f(e−tτig) (1.64)

One easily generalises (1.64) to operators L(e)
i , R(e)

i acting cylindrical functions. Let fγ be a
cylindrical function such that e is among the edges of the underlying graph γ, then

(L(e)
i fγ)(A) := i

d

dt

∣∣
t=0fγ

(
he1(A), · · · , he(A) etτi , · · · , hen(A)

)
, (1.65)

(R(e)
i fγ)(A) := i

d

dt

∣∣
t=0fγ

(
he1(A), · · · , e−tτi he(A), · · · , hen(A)

)
(1.66)

in the case e /∈ E(γ), we define (L(e)
i fγ)(A) = (R(e)

i fγ)(A) = 0. Using these operators, we can
construct the following practical operators on Hkin

(J (e,v)
i fγ)(A) :=


(L(e)

i fγ)(A), if e ∈ E(γ), b(e) = v

(R(e)
i fγ)(A), if e ∈ E(γ), f(e) = v

0, if e /∈ E(γ)
(1.67)

Now, following the canonical quantisation rule Ea
i → −iℏ δ

δAi
a
, we can derive the action of the

quantum counterpart of the classical flux (1.40) on a single holonomy

Êi(S)|he⟩(A) = −iℏ
∫

S
d2s na(s) δ

δAi
a(x(s))he(A)

=


+ iℏ

σ(S, e)
2 he(A)τi, S ∩ e = b(e)

− iℏσ(S, e)
2 τihe(A), S ∩ e = f(e)

= ℏ
2 σ(S, e) J (e,v)

i he(A) (1.68)
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where in the second equality we have used (1.47) and in the last step we simply used the definition
of the operators J (e,v)

i . If the edge e does not intersect the surface S, or intersects it tangentially,
the result vanishes. Since any fγ ∈ Hkin is a function of finite holonomies, the action of the flux
operator Êi(S) can be readily defined on whole Hkin

Êi(S)|fγ⟩(A) = ℏ
2
∑
v∈S

∑
v∩e̸=∅

σ(S, e) J (e,v)
i fγ(A) (1.69)

We end this section by introducing the volume operator. This is important for our purposes
in the succeeding chapters because this operator enters crucially into the construction of the
dynamics of LQG and also the U(1)3 model through Thiemann’s identities (see chapter 4). In
order to quantise the three-dimensional volume V (R) =

∫
R d

3x
√
|det(Ea

i )| for a given region R,
first one needs to regularise Ea

i suitably and then express it in terms of the flux operator. In the
literature there exist two different volume operators: Rovelli-Smolin (RS) [121] and Ashtekar-
Lewandowski (AL) [122] volume operators developed using different regularisation techniques.
Both volume operators act non-trivially only on vertices where at least three edges intersect. At
a given vertex the operators have the following form

V̂RS(R)|fγ⟩ = CRS
∑

v∈V (γ)∩R

∑
eI∩ej∩eK=v

√
|Q̂(v)

IJK ||fγ⟩ (1.70)

V̂AL(R)|fγ⟩ = CAL
∑

v∈V (γ)∩R

√
|

∑
eI∩ej∩eK=v

ϵ(eI , eJ , eK)Q̂(v)
IJK ||fγ⟩ (1.71)

where
Q̂

(v)
IJK := ϵijkJ (eI ,v)

i J (eJ ,v)
j J (eK ,v)

k (1.72)

and CRS, CAL are regularisation constants. Moreover, the second sum in both volume operators
runs over all ordered triples of edges incident at v and the factor ϵ(eI , eJ , eK) is defined to equal
+1 if the ordered tangents to the edges are positively oriented, −1 if it is negatively oriented, and
0 if the tangents are not independent. In contrast to (1.70), the presence of the orientation factor
tells us that if one works with (1.71), planar triples of edges will not contribute and that is the
main difference between the two operators. It is also worth mentioning that, in a gauge-invariant
spin network function, it is a “four-valent vertex” (not a three-valent one) that is the simplest
one on which the AL-volume operator acts non-trivially. This is again a direct consequence of
the presence of the factor orientation.

1.3.5. Solving the Constraints
Implementation of the constraints is the next task one should accomplish after constructing the
kinematical Hilbert space Hkin. Recalling the Poisson algebra (1.32)-(1.35) of the constraints, one
sees that the subalgebra generated by the Gauß constraints forms a 2-sided ideal. Thus, we can
solve the Gauß constraints independently of the other constraints and arrive at a Hilbert space
whose constituents are gauge-invariant quantum states. Then, although the subalgebra generated
by the diffeomorphism constraints is not an ideal, for the technical convenience, we still solve them
independently of the Hamiltonian constraints. The incorporation of the Hamiltonian constraints
will be postponed to chapter 4.
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1.3.5.1. Gauß Constraint

In this section, we want to derive the solutions of the quantum Gauß constraint. They are
characterised by SU(2)-gauge-invariant states in Hkin. These states form a Hilbert space spanned
by gauge-invariant spin network functions that are a very important tool in LQG. Having these
few words as an introduction, let’s dive in.

Paying attention to the Dirac algebra (1.32)-(1.35), one observes that the Gauß constraints form
an honest Lie algebra. Thus, one can solve them using the procedure of RAQ discussed in section
1.2.4.1. In this method, we construct solutions of the Gauß constraint by averaging arbitrary
cylindrical functions with respect to the action of the SU(2) gauge transformations. Consider the
formal projection operator P̂G :=

∫
G dµ(g)Û(g) where Û(g) is the unitary operator corresponding

to the SU(2) gauge transformations on cylindrical functions, and dµ(g) is an appropriate measure
related to the SU(2) Haar measure. Using group properties and the features of the Haar measure,
we show that the operator P̂G satisfies Û(g)P̂G = P̂G, in fact

Û(g)P̂Gfγ = Û(g)
∫

G
dµH(g′)Û(g′)fγ =

∫
G
dµH(g′)Û(g)Û(g′)fγ =

∫
G
dµH(g′)Û(gg′)fγ

=
∫

G
dµH(g−1g′′)Û(g′′)fγ =

∫
G
dµH(g′′)Û(g′′)fγ = P̂Gfγ (1.73)

where g′′ := gg′ and we have used that Û is a representation of G and the left-invariance feature
of the Haar measure. Therefore, starting with an arbitrary cylindrical function fγ , we expect the
function P̂Gfγ to be SU(2)-gauge invariant.

The gauge transformation of a cylindrical function on a graph γ is completely determined by
the values of the gauge function g(x) at the vertices of γ. Therefore, we can explicitly define the
projection operator P̂G on Hγ

P̂G|γ =
∫

SU(2)m

(
m∏

i=1
dµH(gi)

)
Û(g) (1.74)

where µH is the unique Haar measure on SU(2). Using the gauge transformation (1.39), one can
compute Û(g)fγ(A) and conclude that

P̂Gfγ(A) =
∫

SU(2)M

(
M∏

i=1
dµH(gi)

)
fγ

(
g(b(e1))he1(A)g(f(e1))−1, · · · , g(b(eN ))heN (A)g(f(eN ))−1

)
(1.75)

is a gauge-invariant function. To derive the form of this function, let us expand the function
fγ(A) in the basis (1.61) as

fγ(A) =
∑

j⃗,m⃗,n⃗

cj⃗,m⃗,n⃗ Tγ,⃗j,m⃗,n⃗(A) (1.76)

Plugging (1.76) into (1.75), one finds

P̂Gfγ(A) =
∑
j⃗,I⃗

cj⃗,I⃗

 ∏
v∈V (γ)

Iv

 ·
 ∏

e∈E(γ)

√
djeπ

(je)me
ne
he(A)

 (1.77)

where we have used the following identity∫
G
dµH(g)

(
N∏

i=1
π(ji)mi

ni
(g)
)(

N∏
i=1

π
(j′

i)m
′
i

n′
i
(g−1)

)
=
∑

I

Im1···mN

m′
1···m

′
N
In1···nN

n′
1···n

′
N

(1.78)

29



Dirac Quantisation Section 1.3

Figure 1.1.: A Gauge-invariant spin network

in which the sum over I runs through an orthonormal basis of the space Inv
(⊗N

i=1Hji ⊗
⊗N

i=1H∗ji

)
.

According to (1.77), the following states

Tγ,⃗j,I⃗(A) =

 ∏
v∈V (γ)

Iv

 ·
 ∏

e∈E(γ)

√
djeπ

(je)me
ne
he(A)

 (1.79)

span the gauge-invariant Hilbert spaceHG
kin and are called gauge-invariant spin network functions.

Notice that as HG
kin is a proper subspace of Hkin, the inner product on HG

kin is immediately
inherited from ⟨·, ·⟩kin. With respect to this inner product, gauge-invariant spin network functions
form an orthonormal basis for HG

kin, provided that appropriate considerations are taken into
account. Given a graph γ, we identify γ with any graph differing from it only by 1) different
orientations of some of their edges, 2) a number of trivial bivalent vertices and 3) edges carrying
zero spin. Denoting the equivalence class by [γ], we obtain the orthogonal decomposition

HG
kin =

⊕
[γ]
Hγ (1.80)

1.3.5.2. Diffeomorphism Constraint

We now turn to solve the diffeomorphism constraint. The action of the finite diffeomorphism is
defined on the spin network function Ts based on a multi-label s = (γ, j⃗, m⃗, n⃗) as

Û(φ)Ts := Tφ(s), with φ(s) := (φ(γ), j⃗, m⃗, n⃗) (1.81)

for all φ ∈ Diffω
sa(Σ)18, meaning that Û(φ) maps the graph simply to its image under the dif-

feomorphism without changing the colours of its edges and vertices. Let φt be a one-parameter
family of diffeomorphisms generated by the non-zero vector field V . We choose γ in the support
of V , then there exists ϵ > 0 such that φV

t (γ) ̸= γ for all 0 < t < ϵ. Then we have

lim
t→0
⟨Ts, Û(φt)Ts⟩kin = lim

t→0
⟨Ts, Tφt(s)⟩kin = 0 ̸= 1 = ⟨Ts, Ts⟩kin (1.82)

where the second equality comes from the fact that φt(γ) ̸= γ. (1.82) shows that the action of
Û(φ) is not weakly continuous. Thus, according to the Stone’s theorem [123] the infinitesimal
generators of Diffω

sa(Σ) cannot be defined onHkin. Recalling that only those representations of the

18Diffω
sa(Σ) denotes the group of semianalytic diffeomorphisms of Σ.
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quantum algebra A are interesting on which the constraints can be implemented as operators, one
might be worried that no operator corresponds to the diffeomorphism constraint Ha. However,
since the finite diffeomorphism has a well-defined action, there are no problems in applying Dirac’s
quantisation procedure. Now, one is supposed to find solutions of the finite diffeomorphism
constraint using the RAQ method discussed in section (1.2.4.1). A remarkable virtue of this
method is that group averaging may be employed even if a well-defined constraint operator is
not available. We are looking for generalised eigenfunctions ℓ ∈ D∗ with D = C∞(Ā) satisfying

ℓ(Û †(φ)Ts) = ℓ(Û(φ−1)Ts) = ℓ(Ts) (1.83)

for all labels s and all φ ∈ Diffω
sa(Σ). Note that the validity of (1.83) for Ts, instead of an

arbitrary f ∈ D, is sufficient because the spin network functions lie dense in D. Since every
ℓ ∈ D∗ is completely specified by its action on the spin network functions, we can express it
as ℓ = ∑

s ℓs⟨Ts, ·⟩kin where ℓs := ℓ(Ts) ∈ C. Using this expression in (1.83) says that we are
actually looking for ℓ satisfying ℓs = ℓφ(s). Defining the orbit of s by [s] := {φ(s), φ ∈ Diffω

sa(Σ)}
and ℓ[s] := ∑

s′∈[s]⟨Ts′ , ·⟩kin, one can verify that ℓ = ∑
[s] c[s]ℓ[s] is a general solution of the

diffeomorphism constraint, because

ℓ
(
Û(φ−1)Ts′

)
=
∑
[s]
c[s]ℓ[s]Û(φ−1)Ts′ =

∑
[s]
c[s]

∑
s′′∈[s]

⟨Ts′′ , Û(φ−1)Ts′⟩

=
∑
[s]
c[s]

∑
s′′∈[s]

⟨Û(φ)Ts′′ , Ts′⟩ =
∑
[s]
c[s]

∑
s′′∈[s]

⟨Tφ(s′′), Ts′⟩

= ℓ(Ts′) (1.84)

The space of solutions to the diffeomorphism constraint will be denoted byHDiff on which we need
to construct an inner product to get a Hilbert space. A suitable rigging map through which the
inner product of HDiff can be constructed is η(Ts) := η[s]ℓ[s] = η[s]

∑
s′∈[s]⟨Ts′ , ·⟩ with 0 < η[s] ∈ R.

Consequently, we define the desired inner product as

⟨η(Ts), η(Ts′)⟩Diff := η(Ts′)[Ts] = η[s′]
∑

s′′∈[s′]
⟨Ts′′ , Ts⟩ = η[s′]

∑
s′′∈[s′]

δs′′s = η[s′]χ[s′](s) (1.85)

where χ denotes the characteristic function that is either one or zero. It is easy to check that the
inner product (1.85) is well-defined.

Summarising, we identified all graphs that can be mapped to the graph γ by applying a
diffeomorphism and defined the equivalence class [γ]. The graphs in another equivalence class
can not be related to γ through a diffeomorphism. These diffeomorphism equivalence classes are
called knots. Asking for diffeomorphism invariant quantum states, one obtains a gauge-invariant
spin network based on a knot. Such a diff- and SU(2)- invariant state is called an s-knot and two
s-knots are orthogonal with respect to the inner product (1.85) if their knots are not the same,
i.e. their underlying graphs do not belong to the same diffeomorphism equivalence class.

There is still a delicacy about the HDiff’s structure arising from the question of the separability
of the space. Since the diffeomorphism invariant states keep in memory the differential structure
at the vertices of the graph, those states in HDiff having vertices of sufficiently high valence carry
continuous, diffeomorphism invariant information that is called moduli, leading to an uncountable
basis for HDiff, i.e. HDiff is non-separable (see e.g. [124]). However, as is pointed out in [125, 57],
the known operators in LQG are insensitive to the values of the moduli. As a result, in practice,
one can arbitrarily fix the values of the moduli and work with a separable subspace of HDiff. It
means that despite the non-separability of the entire space HDiff, any set of practically pertinent
operators always select a separable subspace called the superselection sector of HDiff.
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1.3.5.3. Hamiltonian Constraint

We have defined the kinematical Hilbert space and implemented the Gauß and diffeomorphism
constraints and eventually reach the last step of the quantisation. It is left to implement the
Hamiltonian constraint and then to build up the physical Hilbert space. Since the Gauß and
spatial diffeomorphism constraints generate gauge transformations at a fixed time, they cannot
be considered as a generator of dynamics and rather they are often referred to as the kinematical
constraints. On the other hand, from the spacetime point of view, the Hamiltonian constraint
generates the time evolution and so any question about the quantum dynamics dwells in proper
incorporation of the Hamiltonian constraint and finding its kernel to construct the physical
Hilbert space. As the Hamiltonian constraints do not form an honest Lie algebra, according to
the Dirac algebra (1.35), we are precluded from employing RAQ techniques to implement and
solve them. Therefore, it is thrust upon one to derive a well–defined operator from the classical
form of the constraint by using a precise regularisation process, then trying to find its kernel and
finally promoting the solution space to Hilbert space.

The first concrete implementation of the Hamiltonian constraint was proposed by Thiemann in
[55, 56, 57]. Although it was great progress toward completing the quantisation, some ambiguities
[126] in the construction prevents us to call it the final result. Up to now, incorporation of the
dynamics remains a difficult task that has generated a lot of work both in the canonical (e.g.
[127, 128]) and the covariant (see e.g. [65] and references therein) approach. In chapter 4, we
will elaborately discuss this issue which is our main motivation to work on the U(1)3 model.
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CHAPTER 2.

Reduced Phase Space Quantisation

2.1. Preliminaries
2.1.1. What the Reduced Phase Space Is
The physical relevant quantities are those which are invariant under gauge transformation. As
explained in section 1.1.2, generators of the gauge transformations are first-class constraints whose
orbits on the constraint surface is called the gauge orbits. In order to obtain a space free of any
gauge variable one must identify the phase-space points in the same gauge orbit. The resulting
space, which is also equipped with a symplectic structure, is called reduced phase space.

We can remove the first-class constraints utilising gauge conditions Ga = 0, which are some
conditions on the phase-space variables, intersecting each gauge orbit “once and only once”. This
requirement is (locally) equivalent to

{Ga, Cb}λb ≈ 0⇒ λb ≈ 0 (2.1)

because the gauge transformations are generated by the first-class constraints Cb. Note that
(2.1) is equivalent to det ({Ga, Cb}) ̸= 0, hence according to the third footnote of section 1.1.2,
the constraints Ga, Cb together produce a second-class system. In other words, when the gauge
conditions Ga are included, no first-class constraint is left. Then, by introducing the corresponding
Dirac bracket, we can remove all the constraints and gauge conditions.

For gauge-invariant functions, the resulting Dirac bracket agrees with the original Poisson
bracket. Therefore, the reduced phase space is the space achieved after this “reduction”. It is
free of any constraint and is of dimension 2n− 2n1−n2, where n is the dimension of the original
configuration space, n1 is the number of first-class constraints, and n2 is the number of second-
class constraints. The first-class constraints strike twice because they require gauge conditions.
From this perspective, the observables can be considered as the reduced phase-space functions
that form a Poisson algebra.

2.1.2. Problem of Time
The formulation of quantum theory is imbued with the idea of measuring quantities at a particular
instant of time. According to the conventional Copenhagen interpretation, time is considered an
external parameter to the system relating to the classical world, and the lack of a time operator in
the quantum theory reflects the fact that time is not a physical observable [129]. This particular
characteristic of time pertains to non-relativistic quantum theory, relativistic particle dynamics,
and quantum field theory. On the other hand, when GR is taken into account, the invariance of
the theory under the action of active diffeomorphisms intimates that one cannot assign intrinsic
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physical significance to the individual points of both space and time. In other words, the action of
spacetime diffeomorphisms is comprehended as a transformation between two different reference
frames. The invariance under such a transformation implies that physics is the same for all
observers, independent of their chosen reference frame. Consequently, two quantities that relate
only by a spacetime diffeomorphism are, indeed, physically identified, and in this sense, GR can
be understood as a gauge theory with the gauge group of all spacetime diffeomorphisms. In
general, observables of any constrained theory must be unchanged along the gauge orbits and
hence Poisson commute with all the constraints. For a fully constrained theory, such as GR, the
canonical Hamiltonian Hcan is a linear combination of the constraints and therefore vanishes on
the constraint surface. Thus, if we interpret Hcan as the generator of physical evolution, then we
immediately run into the trouble that observables do not evolve dynamically and we get a frozen
picture which is sometimes referred to as the problem of time [129, 130, 131]. This is of course in
conflict with reality where for instance in cosmology we can observe the gravitational interaction
as a dynamical process.

As discussed in the previous chapter, the quantum theory of GR can be thought of as an
impeccable theory, only when one can specify the dynamics of the quantum states. Apart from
technical difficulties one may encounter in order to define the dynamics, the problem of time
makes the situation also conceptually intricate. The resolution to this problem, which occurs in
any generally covariant theory, stems from the fact that Hcan describes evolution with respect
to the “coordinate” time, which is meaningless because the invariance under general coordinate
transformations deprives the coordinates of any physical meaning. What we observe in reality is,
in fact, evolution with respect to other fields and not the coordinate time. This idea first discussed
by Bergmann [130, 132], Komar [133] and Kuchar [131] and further refined by Anishetty and
Vytheeswaran [134], Mitra and Rajaraman [135], and Rovelli [136, 137, 138, 139, 140]. This idea
is known as relational formalism whose mathematical description developed by Dittrich [141, 142]
and Thiemann [143] will be presented in the following.

2.1.3. Purpose of This Chapter
Dirac’s main impetus in cultivating the Hamiltonian theory of a constrained system and its
quantisation was to find a technique for quantising gravity. However, the application of his
scheme turned out to be problematic on both technical and conceptual levels, as, for instance,
the Hamiltonian constraint is perplexing, and the above-mentioned problem of time arises.

As we have already seen in chapter 1, the underlying idea of the Dirac quantisation method
is comprised of imposing the first-class constraints as quantum operator conditions on states for
picking out the physical ones. It means that in the Dirac method, the reduction is imposed
after the quantisation. Hoping to overcome Dirac’s quantisation problems, one may consider a
method working the other way round, called the reduced phase space quantisation: factoring out
the constraint surface with respect to the action of the gauge group, generated by the first-class
constraints, one first identifies the physical degrees of freedom at the classical level and then
quantises the resulting reduced phase space as a usual unconstrained system (see figure (2.1)).

In this chapter, after introducing the reduced phase space quantisation, we study its application
in the context of loop quantum gravity and finally compare it with Dirac quantisation [144, 145].
The contents of this chapter will be used extensively in chapter 8.
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Figure 2.1.: Dirac quantisation (DG) versus reduced phase space quantisation (RPSQ)

2.2. Reduced Phase Space Quantisation Procedure
2.2.1. Relational Formalism and Constructing Observables
Giving serious consideration to the fact that the Einstein equations cannot be described as phys-
ical evolution equations, Rovelli introduced relational formalism to bypass the above-mentioned
problem of time. In fact, one should interpret the Einstein equations as the evolution of quantities
under a gauge flow generated by the diffeomorphism and the Hamiltonian constraint. The under-
lying idea of relational formalism is to establish so-called clocks using which a physical meaning
can be attributed to spacetime points and with respect to which one describes the evolution of
observables.

Take two arbitrary gauge variant functions f and T defined on the phase space. Under the
action of the constraints, these two functions just move along the gauge orbits parametrised
by t. Being equivalent up to a gauge transformation, all points on a gauge orbit are physically
identified. We choose one of the functions, say T , as a clock. Now, instead of stating the evolution
of f with respect to t, we can construct a gauge-invariant expression for f , denoted by Of,T , with
respect to the values that T takes while evolving along the gauge orbit. In other words, the
physically important quantity Of,T is actually defined as the value of f at those values of t where
T takes a certain value τ . In this way, the function Of,T can be expressed as a function of τ . For
instance, a scalar field φ coupled to gravity can be considered as a clock and thus the values of
the spatial metric qab at those values of t where φ(t) = τ construct the gauge invariant quantity
Oqab,φ.

The philosophy behind this construction of Dirac observables is as follows. In our daily life,
we parametrise the motion of any object by time. But time itself is parametrised by the arm of
a clock, meaning that we actually parametrise the motion of any object by the arm of a clock.
Thus, the motion of an object is always parametrised using the motion of another object. For
example, as we will see in the next section, we can parametrise the motion of the gravitational
field by using the motion of a dust field. In fact, there, the dust field behaves like a reference
field.

Mathematically speaking, one can explicitly expressOf,T as a power series in the clock variables
with coefficients including iterated Poisson brackets between f and the constraints. As a simple
case, consider a system with only one constraint C in which an arbitrary phase space function T
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Figure 2.2.: Reduced phase space

is chosen as a clock. Under the flow generated by C the clock T is transformed to

αt(T ) :=
∞∑

n=0

tn

n!{C, T}(n) (2.2)

where we define the iterated Poisson bracket inductively by {C, T}(n+1) = {C, {C, T}(n)} with
the base case {C, T}(0) = T . Now, in order to delineate the evolution of an arbitrary function f
with respect to the clock T , first we have to solve the equation αt(T ) = τ for the gauge parameter
t. One can find such a solution, denoted by tT (τ), if the map t 7→ αt(T ) is assumed to be locally
invertible. Therefore the gauge invariant extension of f with respect to T is simply

Of,T (τ) := [αt(f)]t=tT (τ) (2.3)

It is straightforward to see that (2.3) is a Dirac observable

{C,Of,T (τ)} =
∞∑

n=0

1
n!{C, [t

n]t=tT (τ){C, f}(n)}

=
∞∑

n=1

1
n!{C, [t

n]t=tT (τ)}{C, f}(n) +
∞∑

n=0

[tn]t=tT (τ)
n! {C, {C, f}(n)}

=
∞∑

n=1

[tn−1]t=tT (τ)
(n− 1)! {C, tT (τ)}{C, f}(n) +

∞∑
n=1

[tn−1]t=tT (τ)
(n− 1)! {C, f}(n)

=
∞∑

n=1

[tn−1]t=tT (τ)
(n− 1)! {C, f}(n) ({C, tT (τ)}+ 1)

=
[
d

dt
αt(f)

]
t=tT (τ)

({C, tT (τ)}+ 1) (2.4)

As f is assumed to be gauge variant, one concludes
[

d
dtαt(f)

]
t=tT (τ)

̸= 0 and thus Of,T is an
observable if and only if {C, tT (τ)}+ 1 = 0 that holds because τ is a constant, i.e.

0 = {C, τ} = {C, [αt(T )]t=tT (τ)} =
[
d

dt
αt(T )

]
t=tT (τ)

({C, tT (τ)}+ 1) (2.5)
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Again, since the clock T is gauge variant,
[

d
dtαt(T )

]
t=tT (τ)

̸= 0 that immediately results in
{C, tT (τ)}+ 1 = 0. So Of,T is a Dirac observable, that is {C,Of,T } = 0.

Having found the observables of a system with a single constraint, we are ready to examine a
system possessing several constraints CI with {CI , CJ} = fK

IJCK where I, J,K are labels of some
index set I. It is required to choose as many clocks TI as there are constraints. If αCI

tI
denotes

the gauge flow generated by CI , the following Dirac observable can be constructed from a gauge
variant phase-space function f

Of,{T}({τ}) :=
[(
◦I∈I αCI

tI

)
(f)
]

αtI =tTI
(τI )

(2.6)

where tTI
(τI) is the solution of the equation αCI

tI
(TI) = τI for tI . Now, if the constraints mutually

commute, i.e. {CI , CJ} = 0 for all I, J ∈ I, the actual order in applying the gauge flows αCI
tI

(TI)
on the function f is beside the point. In this case, the observable (2.6) is simply the gauge
invariant extension of f giving the value of f when the clocks TI take the values τI .

If the system under consideration has several non-commuting constraints CI , the order of the
gauge flows in (2.6) gains importance and thus constructing observables will be more complicated.
This is what we are dealing with in GR where the algebra of the constraints, that is (1.32)-
(1.35), is not Abelian. However, it can be shown that for a general system with only first-class
constraints, we are able to replace non-commuting constraints CI by a set of equivalent ones
C ′I whose corresponding Hamiltonian vector fields XI := {CI , ·} weakly mutually commute. By
this method that is known as weak Abelianisation, any general system can be reduced back to
the case of Abelian constraints we have just discussed [141, 142, 143]. To see how it is possible,
consider the constraint surface C := {p ∈ P : CI(p) = 0 ∀I ∈ I} embedded in the phase space
P. The gauge flow of an arbitrary phase space function f is given by αβ(f) := exp(χβ) ·f where
Cβ := βICI and χβ := {Cβ, ·}. We choose as many clocks TI as there are constraints CI . Moving
along their gauge orbits, these clocks TI take the values τI when the following equation holds

[αβ(TI)](p) = TI(αβ(p)) = τI (2.7)

We can invert (2.7) for β and get the solution β
{τ}
{T}(p) depending on the phase space point p.

Such a solution can be found at least locally provided that the matrix AIJ := {CI , TJ} is locally
invertible. The gauge invariant extension of f denoted by Oτ

f,T is then defined as

Oτ
f,T (p) := [αβ(f)](p)[αβ(TI)](p)=τI

= [f(αβ(p))]
β=β

{τ}
{T }(p) (2.8)

We introduce the gauge fixing surface Cτ := {p ∈ C : TI(p) = τI} on which β{τ}{T}(p) = 0 and hence
Oτ

f,T (p) = f(p). Away from Cτ we can expand Oτ
f,T as a Taylor series in powers of the clock

variables. We make the following Ansatz

Oτ
f,T =

∞∑
{kI}=0

∏
I∈I

(τI − TI)kI

kI ! f{kI}I∈I
(2.9)

with f{kI}={0} = f . By requiring that Oτ
f,T has to weakly commute with the constraints, that is

{CI ,Oτ
f,T } ≈ 0, it is possible to derive a formal solution for f{kI} given by

f{kI} =
∏
I∈I

(X ′I)kI · f (2.10)
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where X ′I := ∑
J∈I(A−1)IJ{CJ , ·} and (A−1)IJ is the inverse of the matrix AIJ . Note that we

have not specified the order of applying the vector fields in (2.10) yet. As already mentioned,
this is important because in general the vector fields X ′I do not mutually commute. The weak
Abelianisation method introduces a set of equivalent constraints defined by

C ′I :=
∑
J∈I

(A−1)IJCJ (2.11)

whose corresponding Hamiltonian vector fields XI := {C ′I , ·} are weakly equivalent to the vector
fields X ′I , because for an arbitrary phase space function f we have

XIf =
∑
J∈I
{(A−1)IJCJ , f} =

∑
J∈I

(
(A−1)IJ{CJ , f}+ {(A−1)IJ , f}CJ

)
≈
∑
J∈I

(A−1)IJ{CJ , f} = X ′If (2.12)

Furthuemore,

XJXIf ={
∑
L∈I

(A−1)JLCL, {
∑
K∈I

(A−1)IKCK , f}}

=
∑

K,L∈I

(
CL{(A−1)JL, (A−1)IK}{CK , f}+ CL{(A−1)JL, {CK , f}(A−1)IK

+ (A−1)JL{CL, (A−1)IK}{CK , f}+ (A−1)JL(A−1)IK{CL, {CK , f}}
+ CL{(A−1)JL, CK}{(A−1)IK , f}+ CL{(A−1)JL, {(A−1)IK , f}}

+ (A−1)JL{CL, {(A−1)IK , f}}CK + (A−1)JL{CL, CK}{(A−1)IK , f}
)

≈
∑

K,L∈I

(
(A−1)JL{CL, (A−1)IK}{CK , f}+ (A−1)JL(A−1)IK{CL, {CK , f}}

)
= X ′JX

′
If (2.13)

where we took advantage of the assumption that the constraints are first-class to conclude
{CL, CK} ≈ 0. The conclusion of (2.13) can be inductively generalised for more than two vector
fields, i.e. ∏n

i=1XIi ≈
∏n

i=1X
′
Ii

for Ii ∈ I. The advantage of using XI over X ′I is this crucial
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observation that the former are mutually commuting.

[XJ , XI ]f =
∑

K,L∈I

(
{(A−1)JLCL, {(A−1)IKCK , f}} − {(A−1)ILCL, {(A−1)JKCK , f}}

)
≈

∑
K,L∈I

(A−1)JL

(
{CL, (A−1)IK}{CK , f}+ (A−1)IK{CL, {CK , f}}

)
+

∑
K,L∈I

(A−1)IL

(
{CL, (A−1)JK}{CK , f}+ (A−1)JK{CL, {CK , f}}

)

=2
∑

K,L∈I
(A−1)JL

(A−1)JK{C[L, {CK], f}} −
∑
M,N

(A−1)IM (A−1)NK{CK , f}{C[L, {CM ], TN}}


=

∑
K,L∈I

(A−1)JL

∑
M,N

(A−1)IM (A−1)NK{CK , f}{TN , {CL, CM}} − (A−1)JK{f, {CL, CK}}


=

∑
K,L∈I

(A−1)JL

− ∑
M,N,P

(A−1)IM (A−1)NK{CK , f}fP
LMAP N +

∑
P

(A−1)JKf
P
LK{CP , f}


=

∑
K,L∈I

(A−1)JL

−∑
M,P

(A−1)IM{CP , f}fP
LM +

∑
P

(A−1)JKf
P
LK{CP , f}


= 0 (2.14)

Consequently, as far as weak equalities are concerned, the order of applying the vector fields in
(2.10) is irrelevant and hence the gauge-invariant extension of f can be expressed as

Oτ
f,T =

∞∑
{kI}=0

∏
I∈I

(τI − TI)kI

kI !
∏
I∈I

(XI)kI · f (2.15)

It is worth mentioning that although (2.15) is greatly simple, its exact expression, and even the
inverse A−1, will be hard to calculate especially in quantum field theory.

To summarise the above observation, constructing observables is founded on the fact that they
are constant along gauge orbits. Accordingly, if we know the values of a function f in a specific
gauge determined by a clock T , we can extend f off that gauge in a gauge-invariant way, yielding
the function Oτ

f,T defined in (2.15). In fact, the observable map

Oτ
T : C∞(P)→ C∞(P); f 7→ Oτ

f,T (2.16)

sends an arbitrary function to an observable. Note that the relation between f and Oτ
f,T depends

on the gauge-fixing conditions unless f happens to be gauge invariant, in which case f ≈ Oτ
f,T .

A significant property of the observable map is that it can be sighted as homomorphisms for two
different mathematical structures.

Ring Homomorphism [141]
The map Oτ

T is a ring1 homomorphism2 from the ring of smooth functions (C∞(P),+, ·)
1A ring is a set R equipped with two binary operations + (addition) and · (multiplication) such that (R,+) is

an Abelian group, (R, ·) is a semigroup and the multiplication · is distributive with respect to the addition +.
2A ring homomorphism from a ring (R,+, ·) to a ring (S, ‡, ∗) is a function φ : R → S preserving the ring

operations, i.e. for all r, r′ ∈ R

φ(r + r′) = φ(r) ‡ φ(r′), φ(r · r′) = φ(r) ∗ φ(r′)

39



Reduced Phase Space Quantisation Section 2.2

to the ring of observables with addition and multiplication as its binary operations, i.e,
Oτ

f+f ′,T = Oτ
f,T +Oτ

f ′,T and Oτ
ff ′,T = Oτ

f,T · Oτ
f ′,T . Consequently, for an arbitrary analytic

function g of the phase-space functions f1, · · · , fn, we have

Oτ
g(f1,··· ,fn),T = g(Oτ

f1,T , · · · ,Oτ
fn,T ) (2.17)

Symplectic Homomorphism [143]
The map Oτ

T is a symplectic homomorphism3 from the symplectic manifold of smooth func-
tions (C∞(P), {·, ·}∗) to the symplectic manifold of observables with the Poisson bracket
{·, ·}. More precisely, the Poisson bracket of two observables coincides weakly with the
observable of the Dirac bracket of the two phase-space functions, i.e. for two phase-space
functions f and f ′ it holds

{Oτ
f,T ,Oτ

f ′,T } ≈ Oτ
{f,f ′}∗,T (2.18)

The above Dirac bracket is defined by introducing the gauge conditions GI := TI − τI and
considering the system of second-class constraints Cµ containing {CI}I∈I and {G}I∈I as

{f, f ′}∗ := {f, f ′} − {f, Cµ}Kµν{Cν , f
′} (2.19)

where Kµν is the inverse of Kµν := {Cµ, Cν}, i.e. KµρKρν = δµ
ν .

2.2.2. Time Evolution of Observables: Physical Hamiltonian
Suppose α′τ is the flow generated by the Hamiltonian vector field X̃ := {∑I τIC

′
I , ·}, where C ′I

are the abelianised constraints (2.11). Using the multinomial theorem, we have

α′τ (f) =
∞∑

n=0

1
n!

(∑
I

τIXI

)n

f =
∞∑

n=0

1
n!
∑
{kI}

n!∏
I kI !

∏
I

τkI
I

∏
I

XkI
I f =

∑
{kI}

∏
I

τkI
I

kI !
∏
I

XkI
I f

(2.20)

where in the second equality ∑I kI = n. We are interested in seeing how a given observable
evolves while the hands of the clock TI move from τ̄I to τ̄I + τI .

Oτ̄+τ
f,T =

∞∑
{kI}=0

∏
I

(τI + τ̄I − TI)kI

kI !
∏
I

(XI)kI · f

≈
∑
{kI}

∏
I

(τ̄I − TI)
kI !

∏
I

XkI
I ·

∑
{ℓI}

∏
I

τ ℓI
I

ℓI !
∏
I

XℓI
I

 · f
︸ ︷︷ ︸

α′
τ (f)

= Oτ̄
α′

τ (f),T (2.21)

Thus, it is a gauge transformation on f that induces the time evolution on the observables
[143]. In other words, there is a map ατ describing the physical evolution on the space of
observables by ατ (Oτ̄

f,T ) = Oτ̄+τ
f,T . Using (2.18), one can easily see that {ατ (Oτ̄

f,T ), ατ (Oτ̄
f ′,T )} ≈

3A symplectic homomorphism from a symplectic manifold (P, {·, ·}∗) to a ring (Q, {·, ·}) is a function φ : P → Q
preserving the Poisson bracket, i.e. for all f, f ′ ∈ P

φ({f, f ′}∗) = {φ(f), φ(f ′)}
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ατ ({Oτ̄
f,T ,Oτ̄

f ′,T }). Here, τ is called the multi-fingered time and the evolution with respect to it
is known as multi-fingered time evolution [143]. Now, we choose the value τ0 of the clock T0 as
physical time and if there exists a function hphys generating evolution with respect to the physical
time on the space of observables, we call it the physical Hamiltonian, i.e,

d

dτ0
Oτ

f,T ≈ {hphys,Oτ
f,T } (2.22)

Implementation of the multi-fingered time evolution can be done by complying with the gauge-
fixing formalism steps:

• Take as many clocks T I as there are constraints CI and consider gauge fixing conditions
GI = T I − τ I , where τ I is assumed to be phase-space independent.

• Solve the constraints for the momenta PI conjugate to T I .

• Consider the equivalent constraints

C̃I = PI + hI(qa, pa, T
J) (2.23)

where (qa, pa) are the “true” degrees of freedom. The constraints C̃I are strongly Abelian.
To see this, first note that the first-class property of the original constraints tells us that
C̃I also must satisfy this property for some new structure functions, i.e., {C̃J , C̃K} =
f̃ I

JK C̃I . Because the left-hand side is independent of PI while the right-hand side is not,
one concluded that f̃ I

JK = 0.

• Fix some of the Lagrange multipliers so that the gauge fixing conditions are conserved under
the action of the canonical Hamiltonian Hcan = λICI , i.e., one has to solve the equations

0 = d

dt
GJ = ∂

∂t
GJ + {Hcan,GJ} = ∂

∂t
GJ + λI{CI ,GJ} =: ∂

∂t
GJ + λIAJ

I (2.24)

for λI . If AIJ is invertible, the fixed Lagrange multipliers are λI
0 = −∂GJ

∂t (A−1)I
J .

• Try to find the Physical Hamiltonian Hphys satisfying

{Hphys, f(q, p)} = {Hcan, f(q, p)}C=G=λ−λ0=0 (2.25)

for any function f depending on the true degrees of freedom. Note that (2.25) must be
fulfilled because, when the constraints and the gauge fixing conditions are satisfied and the
Lagrange multipliers assumed to be their fixed values, Hphys is supposed to generate the
same equations of motion for (q, p) as the canonical Hamiltonian does.

The question arises whether different gauge-fixing conditions can give rise to inequivalent quan-
tum theories from the same classical theory. To answer it first note that concerning the relation
between gauge-fixing and gauge-invariant formalism, there is a one-to-one correspondence be-
tween a choice of gauge fixing and a preferred set of gauge invariant functions which generate
the full algebra of gauge-invariant functions [146]. The two formalisms are therefore equivalent
at generic points of the reduced phase space at which the Dirac matrix (which is a non-trivial
function on phase space in every interacting theory) is non-singular. In the same sense, different
gauge fixing conditions are generically (i.e., locally in phase space) equivalent. As usual, global
differences may have an effect on the quantisation in different gauge choices. However, our atti-
tude is that in quantum gravity global non-equivalence of gauge fixed theories is a second-order
concern, one would be happy to have at least one working quantisation at one’s proposal to start
with which then can be further improved.
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2.2.2.1. Deparametrisation

The construction of the observables and derivation of the physical Hamiltonian will be simplified
if the constraints can be expressed in the following deparametrised form. In this special case, we
can always find canonical coordinates consisting of two sets (T I , PI) and (qa, pa) such that all
constraints CI can be expressed as

CI = PI + hI(qa, pa) (2.26)

In practice, in most constrained systems only part of the constraints, if at all, can be de-
parametrised. However, in this section, we consider a fully deparametrised system. As in this
case AJ

I = {CI , T
J} = δJ

I , the task of inverting the complicated matrix AI
J appearing in (2.8)

and (2.24) for construction of observables and derivation of the physical Hamiltonian, respec-
tively, is not a challenge anymore. Comparing (2.23) and (2.26), one finds that the virtue of
deparametrisation is that the constraints do not depend on T I . Putting this property next to
the above-proven fact that if all constraints are linear in the momenta PI , then the constraint
algebra is Abelian (see the argument after (2.23)), we find that

0 = {CI , CJ} = {PI + hI(qa, pa), PJ + hJ(qa, pa)} = {hI , hJ} (2.27)

from which one immediately observes that hI are already Dirac observables, as they commute
with all the constraints

{CI , hJ} = {PI + hI(qa, pa), hJ(qa, pa)} = {hI , hJ} = 0 (2.28)

Following the steps presented in (2.2.1), we can construct an observable from any function f
depending only on (qa, pa). Note that

1. Since qa and pa both commute with all momenta PI , the action of the Hamiltonian vector
field associated with CI , that is X ′I = {CI , ·}, on f(qa, pa) equals to the action of the
Hamiltonian vector field of hI , i.e. XI = {hI , ·}, on it. Thus, X ′I · f = XI · f .

2. Since qa and pa both commute with all reference fields T I , when the action ofXβ = {βICI , ·}
on f(qa, pa) is concerned, one can replace βI by the corresponding gauge T I − τ I and work
with Xτ := {(T I − τ I)hI , ·}.

Hence, the observable corresponding to the function f(qa, pa) is

Of (τ) =
∞∑

n=0

1
n!X

n
τ · f (2.29)

The observables associated with the elementary variables qa and pa are denoted by Qa := Oqa(τ)
and Pa = Opa(τ), respectively. Note that since hI are already observables OhI(qa,pa)(τ) =
hI(Qa, Pa) = hI . Now, we are seeking a function driving the evolution of the observables (2.29).
Recall that the dynamics cannot be generated by the canonical Hamiltonian since Of (τ) Poisson
commutes with all the constraints. Because Of (τ) gives us the value of f when the clocks T I

take the values τ I , one of the chosen clocks, say T 0, can be associated with the physical time
denoted by τ0. How Of (τ) changes with respect to τ0 is then interpreted as its time evolution.
Considering the constraint C0 := P0 +h0 associated with the reference field T 0, one immediately
observes that Hphys = h0 [143], i.e.

∂

∂τ0Of,T (τ) = {h0,Of,T (τ)} (2.30)
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Due to the complicated form of the constraints in General Relativity with/without standard
matter, its reduced phase space is hard to construct explicitly. However, in section (2.3) we will
see that when general relativity is coupled to very special matter fields, it falls into the class of
deparameterizable constrained systems and one can employ the findings of this section to build
the reduced phase space. For more information, we refer the reader to [147] where a general
discussion about matter fields leading to deparameterised constrained systems is provided.

2.2.3. Poisson Algebra of the Observables and its Quantisation
The next step is to quantise the classical algebra of the constructed observables completely
determined in (2.18). It is assumed that we choose a canonical coordinate system consisting of
canonical pairs (qa, pa) and (TI , P

I) so that the only non-vanishing brackets are {pa, q
b} = δb

a,
{P J , TI} = δJ

I . Now, if we restrict to functions depending only on (qa, pa) the Dirac bracket (2.19)
reduces to the Poisson bracket because according to the above assumption on the canonical pairs
f(qa, pa) commute with all reference fields T I . In particular, for the algebra of the observables
of elementary variables Qa := Oqa,T (τ) and Pa := Opa,T (τ), we have

{Pa(τ), Qb(τ)} = {Opa,T (τ),Oqb,T (τ)} = O{pa,qb}∗,T (τ) = O{pa,qb},T (τ) = Oδb
a,T (τ) = δb

a (2.31)

where we have used (2.18). As is transparent from (2.31), the symplectic structure of the reduced
phase space in terms of the coordinates (Qa, Pa) is very simple and manageable for quantisa-
tion. This a direct consequence of the assumption on the chosen canonical variables, because if
{pa, q

b}∗ ̸= {pa, q
b} the calculations (2.31) would stop after the second equality and we would

only have {Pa(τ), Qb(τ)} = O{pa,qb}∗,T (τ). Hence, due to the presence of Dirac bracket on the
right-hand side, the algebra among the Qa, Pa would be too complicated to have hope for its
quantisation.

Let D be the Poisson algebra generated by Qa, Pa. Now, we should seek a representation
π : D → L(H) where L(H) denotes the linear operators defined on a Hilbert space H such that
[π(Pa), π(Qb)] = iℏδb

a. It seems that the reduced phase space quantisation is a trivial task since
there are no constraints to be implemented anymore and therefore one can choose any of the
standard kinematical representations. However, the reduced phase space quantisation is not that
simple because the crucial remaining question is whether the chosen representation allows us to
define the quantised version of the physical Hamiltonian. As the physical Hamiltonian usually
have a complicated form, finding a representation supporting its quantum counterpart is difficult.

2.3. Reduced Phase Space Quantisation of Loop Quantum Gravity
Although it is difficult to construct the reduced phase space of GR explicitly, it is shown in [147]
that adding a scalar field to the theory provides suitable circumstances for building the algebra
of classical observables. In [146, 148], the pressure-free dust of Brown and Kuchar [149] was
employed as a specific scalar field to improve further the framework introduced in [147] and to
define a physical Hamiltonian generating physical time evolution. While the obtained physical
Hamiltonian density is rather complicated, the authors of [63] could find a representation of the
algebra of observables that supports the quantised version of the physical Hamiltonian. In these
works, one considers the dust as a material “clock” coupled dynamically as fields rather than test
observers. One can examine various matter fields in this regard. In [150], different reference fields
were compared and it turned out that the physical Hamiltonian corresponding to the Gaussian
dust [151] has a very simple expression and the physical Hilbert space is accessible [150]. On the
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other hand, it is not always the case that one has to define all the clocks as additional matter
fields. Suppose the geometric constraints are simple enough to solve for some momenta. In that
case, we can choose all the clocks from the geometric degrees of freedom without introducing an
additional matter field. This is exactly what we will do in the case of U(1)3 model in chapter
8. Another option is to define the clocks as a combination of geometric and matter degrees of
freedom. This is exemplified in the work undertaken in [152, 153, 154] in which matter and
inflaton perturbations are used as clocks to construct observables in cosmology on the non-linear
level. Therefore, it is obvious that the choice of clocks in relational formalism is entirely arbitrary.
However, this choice has a great influence on the form of the observable algebra and also on the
form of the physical Hamiltonian. Since our ultimate goal is the quantisation of the reduced
theory, we wish to choose the reference fields leading to a simple observable algebra and also to
a physical Hamiltonian which can be promoted to an operator in the physical Hilbert space. In
this section, we will present the principal findings of [146, 148, 63] as an excellent example of the
reduced phase space quantisation.

2.3.1. Brown-Kuchar Model: Classical Part
The main idea of the Brown-Kuchar Model [149] is to consider additional matter dust fields
as a reference system for GR. In principle, we require one reference field for each constraint
that is going to be reduced at the classical level. The dust action that has to be added to the
Einstein-Hilbert action is

Sdust = −1
2

∫
M
d4x

√
|det(g)|ρ(gµνUµUν + 1) (2.32)

where g is the metric of the spacetime M , ρ is the dust energy density and Uµ = −T,µ +WjS
j
,µ

is the dust four velocity that in turn consists of the scalar fields T, Sj ,Wj where j ∈ {1, 2, 3}.
Therefore, the action (2.32) depends on the tensor field g and also the scalar field ρ, T, Sj ,Wj .
Looking at the Euler-Lagrange equations for the scalar fields, one concludes that Uµ = gµνUν is a
geodesic congruence with proper time T that the fields Wj , S

j are constant along. The canonical
analysis of this system reveals that second-class constraints arise. Thus, one is supposed to define
the appropriate Dirac bracket and solve the second-class constraints. It turns out that the scalar
fields ρ and Wj are not independent phase space variables; instead, they can be expressed in
terms of the other degrees of freedom. Writing all geometric quantities in terms of Ashtekar
variables (A,E), we see that for the variables T, Sj , A and their associated conjugate momenta
P, Pj , E the Dirac bracket reduces to the Poisson bracket. A natural choice for the reference
fields associated with time and space are T and Sj , respectively. This choice justifies since the
former is the proper time and the latter are constant along the congruence of geodesics. In other
words, the field T serves as a clock to construct observables with respect to the Hamiltonian
constraint and the three fields Sj serve as rulers (in the language of the previous section clocks)
for the diffeomorphism constraints. As mentioned before, these are not the only choices for the
clocks but, as we will see, they are appropriate choices to complete the quantisation program.
The first-class constraints of this system consisting of gravity plus dust are of the following form

Ctot = C + Cdust, Cdust = −
√
P 2 + qab(PT,a + PiSi

,a)(PT,b + PjS
j
,b) (2.33)

Ctot
a = Ca + Cdust

a , Cdust
a = PT,a + PjS

j
a (2.34)

where C,Ca denote the gravitational parts of the Hamiltonian and diffeomorphism constraints
and the Gauß constraint remains unchanged. Two essential properties of the Brown-Kuchar
model are that

44



Reduced Phase Space Quantisation Section 2.3

1. One can solve the constraints Ctot and Ctot
a for P and Pj respectively,

2. Exactly the same combination of P and T that makes up Cdust
a appears in Ctot.

Consequently, the equivalent abelianised constraints are

C̃tot = P + h, h(A,E) :=
√
C2 − qabCaCb (2.35)

C̃tot
j = Pj + hj , hj(T, Sj , A,E) := Sa

j (Ca − hT,a) (2.36)

where in (2.35) we have used the constraint Cdust
a = −Ca together with the second property

listed above and to solve the diffeomorphism constraint as (2.36) we assumed that the inverse of
Sj

,a exists and is denoted by Sa
j . Invertibility assumption on Sj

,a says implicitly that Sj : Σ→ S
defines a diffeomorphism, where S := {Sj(x); x ∈ Σ} is the dust space. Note that the function h
in (2.35) is independent of the dust degrees of freedom, hence according to the section 2.2.2.1 the
abelianised constraint C̃tot is deparametrised. In contrast, this is not the case for C̃tot

j because
hj still depends on T, Sj . Deparametrisation of the Hamiltonian constraint not only technically
simplifies the construction of observables but also ensures that the physical Hamiltonian will be
independent of time.

Following the general strategy discussed in section 2.2.1 and introducing the fields T 0 := T
and T j := Sj as the clocks, we can construct observables Oτ

f,T = [αβ(f)]αβ(T )=τ , where αβ

is the flow corresponding to the Hamiltonian vector field of Cβ =
∫

Σ d
3x (β0C̃tot + βjC̃tot

j ).
Since Sj Poisson commutes with C̃tot, we can first construct spatial diffeomorphism invariant
functions and then reduce them with respect to the Hamiltonian constraint, i.e. we can write
Oτ

f,T = [αβ0([α
β⃗
(f)]α

β⃗
(Sj)=σj )]αβ0 (T )=τ .

We start constructing observables first by reducing with respect to the diffeomorphism con-
straint. The diffeomorphism-invariant functions corresponding to the main canonical variables
A,E, T , giving the value of the fields while the reference fields Sj take the values σj , can be
derived as [146]

[α
β⃗
(AI

a)]α
β⃗

(S⃗)=σ⃗ = [AI
a(x)]S⃗(x)=σ⃗ = AI

aS
a
i =: AI

i (σ) (2.37)

[α
β⃗
(Ea

I )]α
β⃗

(S⃗)=σ⃗ = [Ea
I (x)]S⃗(x)=σ⃗ = 1

J
Ea

IS
i
,a =: Ei

I(σ) (2.38)

[α
β⃗
(T )]α

β⃗
(S⃗)=σ⃗ = [T (x)]S⃗(x)=σ⃗ =: T (σ) (2.39)

respectively, where J := | det(Sj
,a)| and I is used for the su(2) index. As the clocks used here

are chosen to be Sj , the abstract points x ∈ Σ are labelled by the dust fields Sj . Although in
[149] analogous diffeomorphism-invariant functions for the ADM variables have been constructed,
instead of reducing with respect to Ctot a “formal” Dirac quantisation was performed in the
sense that no representation has been found for GR written in terms of ADM variables in which
the constraints can be implemented. Inserting (2.37) and (2.38) into the standard formula for
observables using the clock T , we explicitly obtain [63]

OAI
i ,T (σ⃗, τ) =

∞∑
n=0

1
n!{h(τ), AI

i (σ⃗)}(n) =: AI
i (σ⃗, τ) (2.40)

OEi
I ,T (σ⃗, τ) =

∞∑
n=0

1
n!{h(τ), Ei

I(σ⃗)}(n) =: Ei
I(σ⃗, τ) (2.41)
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with
h(τ) :=

∫
S
d3σ (τ − T (σ))h(σ) (2.42)

One can explicitly verify that AI
i (σ⃗, τ) and Ei

I(σ⃗, τ) indeed Poisson commute with Ctot(σ⃗) and
Ctot

j (σ⃗). The quantities (2.40) and (2.41) are interpreted in the way that they give the values of
AI

a and Ea
I respectively when the reference fields T and Sj takes the values τ and σj , respectively4.

The remaining Gauß constraint will be solved in the quantum theory through Dirac quantisa-
tion. Now, we are interested in finding the physical Hamiltonian generating the dynamics of the
observables constructed above. It turns out that the observable constructed out of the function
h in (2.35) is the Hamiltonian density generating the physical dynamics. We can derive this
observable by simply substituting A and E with their associated observables, according to the
homomorphism property (2.17) of the observable map. Then, the result is5

hphys(σ) =
√

C(σ)2 − qij(σ)Ci(σ)Cj(σ) (2.45)

where C(σ) := C/J , Cj(σ) := CaS
a
j /J , qij = δIJEi

IEj
J/det(q) and the physical Hamiltonian is

then given by
Hphys =

∫
S
d3σ hphys (2.46)

from which the equation of motion for the observables follows

d

dτ
Of,T (σ, τ) = {Hphys,Of,T (σ, τ)} (2.47)

As all constituents of (2.47) are manifestly gauge invariant, it can be thought of as the gauge-
invariant counterpart of Einstein’s equations. It is also worth emphasising that the dynamics
defined here is free of the Hamiltonian and diffeomorphism constraints, in contrast to what we
had while working with the canonical Hamiltonian.

Furthermore, the group Diff(S) is a symmetry of Hphys, because a density of weight one is
integrated over S. Note that since S is a label space for geodesics, not a coordinate manifold,
Diff(S) is the group of “active” diffeomorphisms [63].

2.3.2. Brown-Kuchar Model: Quantum Part
After constructing observables, one is to quantise their algebra. The algebra of the elementary
observables, following (2.18), is of the form

{OA,T ,OE,T } ≈ O{A,E}∗,T (2.48)

4τ and σj can be understood as the physical time and space parameter, respectively.
5If one employs Gaußian dust [150] as reference fields, instead of Brown-Kuchar dust, the physical Hamiltonian

turns out to be
hphys = C (2.43)

and using four Klein-Gordon fields [155] as reference fields, leads to the following physical Hamiltonian

hphys =
√

−2√
q C + 2√

q
∑

i

√
qiiCiCi (2.44)
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that, in general, can be complicated because of the Dirac bracket appearing on the right hand
side. However, a significant property of parametrised models is that the algebra of the elementary
observables is isomorphic to the kinematical one, i.e.

{AI
i (σ), Ej

J(σ′)} = δj
i δ

I
Jδ(σ, σ′) (2.49)

Note that in the unconstrained phase space the canonical conjugate pairs are (AI
a, E

a
I ), (T, P ) and

(Sj , Pj), where (AI
a, E

a
I ) are for the gravitational field and the others for the dust field. On the

constraint surface again we have (AI
a, E

a
I ) among our degrees of freedom but from dust degrees

of freedom, we should count only T, Sj , because we get rid of P, Pj by solving the constraints for
them. When it comes to the reduced phase space, we can get rid of another four degrees of freedom
which are gauge freedoms by fixing the values of T and Sj . Hence, we get (AI

i , E
i
I) parametrised

by τ and σ as our degrees of freedom. So, the reduced phase space is just coordinated by the
gravitational field satisfying the same Poisson bracket as before (see (2.49)). One can easily see
that it is important to couple “four” scalar fields to gravity, one corresponding to time and the
others to space so that at the end we are only left with the gravitational fields on the reduced
phase space and the dust fields become parameters to parametrise the gravitational fields. Note
that on the reduced phase space there is no constraint anymore and its structure is the same as
the phase space of unconstrained pure gravity.

Since there is no constraint left, the quantisation of the reduced phase space seems to be a
trivial task. Looking at the algebra, one might even think that a Fock quantisation would be
viable. However, this is not the case because only those representations in which the physical
Hamiltonian Hphys can be promoted to a well-defined operator are desirable. On the other hand,
the expression of Hphys involves the gravitational contribution of the constraints, hence Fock
quantisation is excluded.

The kinematical Hilbert space in LQG, i.e., Hphys = L2(Ā, dµAL), when it is restricted to its
gauge-invariant subspace, would be a possible representation. Note that here the Hilbert space
Hphys is physical since we are quantising the reduced phase space. Exactly similar to what we
did in the previous chapter, we introduce a graph γ in the dust space S. Then, the connection
AI

i is discretised on the graph and gives us the holonomy he(A) like before and when we quantise
we get the holonomy operator ĥe(A).

Now, the next task is to quantise the physical Hamiltonian Hphys. First, the classical expression
needs to be regularised: we partitionise the spatial dust manifold S by means of a triangulation
T consisting of 3-dimensional cells ∆. Hence, Hphys can be written as

Hphys =
∑
∆

∫
∆
d3σ

√
|C2 − qijCiCj | (2.50)

If we denote the volume of the cells by V (∆) and a point inside ∆ by σ∆ denote, then using a
Riemann sum we can write Hphys in the continuum limit T→ S as

Hphys = lim
T→S

∑
∆
V (∆)

√
|C2 − qijCiCj |(σ∆) (2.51)

Now, we should reformulate the expression under the square root so that it can be manageable
to quantise. Here we want to use the techniques employed in [55] successfully to promote the
Hamiltonian constraint to a well-defined operator (See also section 4.2). Here we quantise only the
Euclidean part of C since afterwards quantisation of the remaining part would be straightforward.
Let us work with magnetic field given by Bi

I := 1
2ϵijkFI

jk and its contraction with a co-triad, where
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FI
jk is the curvature associated to the connection AI

i . Using Tr(τJτK) = −1
2δJK , we get

Tr(B) := Tr
(√

det(q) Bi
IτIEJ

i τJ

)
=
√

det(q) Bi
IEJ

i Tr(τIτJ) =
√

det(q) Bi
IEJ

i (−2δIJ)

= −2
√

det(q) Bi
IEI

i = −
√

det(q) ϵijkFI
jkEI

i = −
√

det(q) FI
jk

ϵIJKEj
JEk

K

det(E)

= −sgn(det(E))
FI

jkϵ
IJKEj

JEk
K√

det(q)
= −sgn(det(E)) C (2.52)

Consequently, we have Tr(B)2 = C2 that is the first term under the square root in (2.51).
To find a similar expression for the second term under the square root appearing in the physical

Hamiltonian (2.51), we have

1
2Tr(BτK) = 1

2Tr
(√

det(q) Bi
IτIEJ

i τJτK

)
= 1

2

√
det(q) Bi

IEJ
i Tr (τIτJτK)

= 1
2

√
det(q) Bi

IEJ
i (−2ϵIJK) = −1

2

√
det(q) ϵIJKϵ

ijkFI
jkEJ

i

= −1
2

√
det(q) ϵIJKFI

jk

ϵJLM Ej
LEk

M

det(E) = −1
2

√
det(q)

(
δM

I δL
K − δL

I δ
M
K

) FI
jkEj

LEk
M

det(E)

= −sgn(det(E))
FI

jkEk
I Ej

K√
det(q)

= −sgn(det(E)) CjEj
K√

det(q)
=: −sgn(det(E)) CK (2.53)

that immediately leads to

δJKCJCK = δJK CjEj
JCkEk

K

det(q) = qjkCjCk (2.54)

As a consequence, by defining Cµ(∆) :=
∫

∆ d
3σ Cµ(σ) in which µ = 0, · · · , 3 and C0 := C, in

the refinement limit, one can re-express the physical Hamiltonian as

Hphys = lim
T→S

∑
∆

√
|C2(∆)− δIJCI(∆)CJ(∆)| (2.55)

Hence, if we can quantise Cµ(∆), then the quantum physical Hamiltonian will define as

Ĥphys = lim
T→S

∑
∆

√
|Ĉ†(∆)Ĉ(∆)− δIJ Ĉ†I ĈJ(∆)| (2.56)

provided that the limit exists. To find the quantum correspondence of Cµ(∆) first note that

Cµ(∆) :=
∫

∆
d3σ Cµ(σ) = −sgn(det(E))

2

∫
∆
d3σ Tr(Bτ̄µ)

=− sgn(det(E))
∫

∆
d3σ ϵijkTr

(
Fjk

(√
det(q)

2 Ei

)
τ̄µ

)

=− sgn(det(E))
∫

∆
d3σ ϵijkTr (Fjk{Ai, V(∆)}τ̄µ) (2.57)
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where V(∆) :=
∫

∆ d
3σ
√

det(q) is the physical volume of ∆ and in the last step we have used the
following relation

{AL
l (σ), V(∆)} =

∫
d3σ′ {AL

l (σ),
√
|det(E)|(σ′)}

=
∫
d3σ′

1
2
√
|det(E)|

{AL
l (σ), | det(E)|(σ′)}

=
∫
d3σ′

sgn(det(E))
4
√
| det(E)|

ϵIJKEi
IEj

J{A
L
l (σ), Ek

K(σ′)}ϵijk

=
∫
d3σ′

sgn(det(E))
4
√
| det(E)|

ϵIJKEi
IEj

Jϵijkδ
L
Kδ

k
l δ(σ, σ′)

= sgn(det(E))
4
√
|det(E)|

ϵIJLEi
IEj

Jϵijl

= 1
2

√
|det(E)| EL

l (σ)

= 1
2

√
det(q) EL

l (σ) (2.58)

The sign of det(E) involved in (2.57) is not of any importance because it will be cancelled in
(2.55). Since the physical volume V(∆) can be quantised on the LQG Hilbert space and the
Poisson bracket is replaced by the commutator divided by iℏ, hence only quantisation of the
connection A and its curvature F remain on the agenda. But, as discussed in the previous chapter,
A, F cannot be promoted to well-defined operators (see (1.63) and its following explanation) and
one only can approximate them by holonomies along paths and loops respectively. This in turn
causes a lot of ambiguities because these approximations can be made in infinitely many ways
and while classically all of them yield to the same continuum limit, in the quantum theory they
lead to different regularised operators [55]. This will be discussed in more detail in chapter 4.
As previously mentioned, the classical physical Hamiltonian (2.51) enjoys from the symmetry
of being invariant under (active) diffeomorphisms on S that we wish to be preserved also in
the quantum theory. Consequently, Ĥphys requires to be a spatially diffeomorphism invariant
operator. Note that in Dirac Quantisation of LQG, we also expected the Hamiltonian constraint
to be invariant under the action of this group, but the discrepancy manifests in the fact that in
the unreduced LQG spatial diffeomorphism group is a gauge group, but in reduced LQG it is a
symmetry group of the dynamics. It was revealed in [48] that for the representation L2(Ā, µAL),
spatially diffeomorphism invariant functions has to be quantised in a graph preserving way which
means that the underlying graph of a spin network function must not be modified by the action
of the corresponding quantum operators. However, in the usual quantisation proposed in [55],
the function C0 is quantised in a graph changing way where for approximating the curvature at a
vertex v, one adds an additional edge to the underlying graph connecting two edges starting at
v. Therefore, one needs to generalise the strategy and call for AQG [60, 61, 62] where the idea is
to use already existing edges of the graph instead of adding new edges.

It is required to introduce minimal loops as follows. Given a graph γ, consider a vertex v ∈ V (γ)
and a pair of edges e1, e2 ∈ E(γ) of edges starting at the vertex v. A loop αγ,e1,e2 = e1 ◦ · · · ◦ e−1

2
in γ is said to be minimal provided that there exist no other loop starting with e1 and ending
with e−1

2 in γ along which fewer edges traversed. The set of such minimal loops is denoted by
Lγ,v,e1,e2 . For instance, in the figure (2.3), the green loops e1 ◦ e3 ◦ e−1

2 , e1 ◦ e7 ◦ e−1
2 belong to

Lγ,v1,e1,e2 , but the loop e1 ◦ e4 ◦ e−1
5 ◦ e−1

2 is not minimal. Furthermore, let Tv(γ) be the set
of ordered triples of distinct edges at v. Then, for each graph, one can define an operator at
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Figure 2.3.: Minimal loop

v ∈ V (γ)

Ĉµ,γ,v = 1
ℓ2p|Tv(γ)|

∑
(e1,e2,e3)∈Tv(γ)

ϵIJK 1
|Lγ,v,eI ,eJ |

∑
α∈Lγ,v,eI ,eJ

Tr
(
τ̄µĥαĥeK [ĥ−1

eK
, V̂γ,v]

)
(2.59)

Here, V̂γ,v is the Ashtekar-Lewandowski volume operator (1.71). Now, we can correspond to
the physical Hamiltonian of each graph γ a well-defined operator. The only subtlety remains
to be care of is to ensure that the operator is graph-preserving for which we need to utilise the
orthogonal projection operator Pγ : H → Hγ similar to the orthogonal decomposition (1.80).
Accordingly, we get

Ĥphys,γ :=
∑

v∈V (γ)

√
|Pγ

(
Ĉ†γ,vĈγ,v − δIJ Ĉ†I,γ,vĈJ,γ,v

)
Pγ | (2.60)

and the conclusive physical Hamiltonian operator is introduced as

Ĥphys =
⊕

γ

Ĥphys,γ (2.61)

This ends the procedure of reduced phase space quantisation. Let us state some features of this
approach:

• As there is no constraint to be solved, the difficulties and ambiguities one usually confronts
to solve the constraints operators and to obtain the physical Hilbert space are absent.

• The problem of time is resolved.

• The physical Hamiltonian Ĥphys is self-adjoint and thus the dynamics is manifestly unitary.

• We obtained an unconstrained physical Hilbert space and a Hamiltonian operator. Thus,
the situation of the reduced phase space of LQG is similar to lattice gauge theory [156,
157, 158, 159], despite the fact that here we have a more complicated Hamiltonian. Still
the quantum dynamics can be studied (see e.g. [160, 161]).

• The physical Hamiltonian operator is defined in the continuum, i.e. no continuum limit
has to be taken in contrast to lattice gauge theory.

50



Reduced Phase Space Quantisation Section 2.4

2.4. Comparison Between Dirac and Reduced Phase Space
Quantisation

The difference between the Dirac quantisation and the reduced phase space quantisation is rooted
in how they manage the constraints in the path from the classical to the quantum theory. Let us
summarise the steps one has to take for both quantisations. In the Dirac quantisation, the entire
kinematical phase space is quantised and the kinematical Hilbert space Hkin is obtained that
in addition to the physical degrees of freedom involves also the gauge degrees of freedom. The
reduction of the system to the physical degrees of freedom is transferred to the quantum level
where one implements the first-class constraints as well-defined operators on Hkin. Then physical
states are those annihilated by all constraint operators. If one can define an inner product on the
set of all physical states, the desired physical Hilbert space Hphys will be attained. On the other
hand, in the reduced phase space quantisation, the reduction of the constraints is performed at
the classical level. By this, the algebra of observables is obtained that encodes exclusively the
physical degrees of freedom. Then, finding a representation for the observable algebra provides
direct access to the physical Hilbert space Hphys. The dynamics of the observables on the reduced
phase space is driven by the physical Hamiltonian, that in contrast to the canonical Hamiltonian,
does not vanish on the physical sector of the theory. Both procedures have their advantages
and disadvantages. For instance, the advantage of the Dirac approach is that the algebra of
canonical variables that coordinate the full phase space is sufficiently simple and representations
thereof are easy to construct, while in the reduced phase space quantisation the induced algebra
of observables is so difficult that representations thereof are hard to find. The disadvantage of
Dirac quantisation is that one has to deal with spurious degrees of freedom which is the possible
source of ambiguities and anomalies in the gauge symmetry algebra. However, in the reduced
phase space approach, one never has to care about kinematical Hilbert space representations.

An important question arises whether two quantum theories achieved from an identical clas-
sical constrained system by applying Dirac quantisation and reduced phase space quantisation
coincide. In other words, one is interested to investigate whether the quantisation commutes
with the reduction (see figure (2.1)). For certain classes of constrained systems, it can be proved
[162, 163, 164, 165] that the Dirac route is equivalent to the reduced phase space method, but in
general, this is not the case. For instance in the systems studied in [166, 167, 168, 169] there exist
substantial differences between the two quantum theories, as the spectra of physical operators
do not match. In [143], the origin of this conflict is stated as follows:

By reviewing the quantisation steps, we find that in the reduced phase space quantisation
the clock variables T I are replaced by real numbers τ I through the gauge fixing conditions
GI = T I − τ I and the momenta PI by the functions −hI(Qa, Pa, τ

I) through (2.23), while in
the Dirac quantisation all variables are treated in the same way, meaning that even the clock
variables and their momenta (T I , PI) have to be quantised. Based on this discrepancy, quantum
fluctuations of T I are suppressed in reduced phase space quantisation while they are involved in
the Dirac quantisation.
Hence one might think that:
Although, as explained at the end of the previous section, the reduced phase space quantisation
bypasses various difficulties of the Dirac quantisation, the latter should be regarded as more funda-
mental than the former. Therefore, the reduced phase space quantisation is not suitable in extreme
regimes such as the big bang, where the clocks T I cannot be assumed to behave classically, thus
in those situations, access to the Dirac quantisation of the system is essential. Subsequently, as
in the reduced phase space route the clock variables are basically considered classical all the way
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down to the deep quantum regime, one has to be careful about the predictions for extreme regions,
obtained using the techniques of the reduced phase space quantisation. Moreover, when the reduced
phase space quantisation is performed with respect to different reference fields T ̸= T ′, different
quantum fluctuations will be suppressed and hence, in extreme regimes, we will in general get
different predictions from the two quantum theories obtained. Keeping these problems in mind,
one might doubt the fundamental validity of the models quantised by this technique.
However, one should think of this more carefully. In fact, Dirac quantisation has the advantage
of bypassing gauge fixing conditions and thus global problems such as Gribov copies and in that
sense is superior to reduced phase space quantisation. But, it is not at all clear whether the ex-
istence of fluctuations in the clock variables in the Dirac quantisation method have any physical
significance because the clock field is not an observable and the physical Hilbert space therefore
simply does not carry a representation of it, hence also not its fluctuations. This is easy to see
in the deparametrised case but needs independent study in the non-deparametrised case. Even
if it turns out that clock fluctuations are physically important, note that if quantum gravity can
be experimentally tested in the future, it will be the semi-classical regime that is of first interest.
Since by applying this method of quantisation, valuable insights can be gained about the quan-
tum dynamics of a system in the semi-classical regime, reduced phase space quantisation always
remains an interesting ground to study.
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CHAPTER 3.

Path Integral Quantisation: Spin Foam Models

3.1. Preliminaries
3.1.1. Feynman’s Path Integral for Unconstrained Systems
According to Feynman’s original exposition [170] of path integral, the quantum transition am-
plitude for a particle propagating from the spacetime point (qi, ti) to another one (qf , tf ) can be
reckoned as a generalisation of double-slit experimental configuration by envisaging an infinite
number of screens each of which has an infinite number of slits. The sum of all the probability
amplitudes is now tantamount to a sum over all possible paths connecting (qi, ti) and (qf , tf ). If
U(tf − ti) denotes the evolution operator generated by the Hamiltonian H, then the amplitude
is

K(qf , tf ; qi, ti) := ⟨qf |U(tf − ti)|qi⟩, U(tf − ti) = exp (−iH(tf − ti)) (3.1)
Hence, the wave function ψ(qf , tf ) can be computed from ψ(qi, ti) as

ψ(qf , tf ) =
∫
dqi K(qf , tf ; qi, ti) ψ(qi, ti) (3.2)

By decomposing the identity with tn = ti + n
N+1(tf − ti) for n ∈ {0, · · · , N}, the evolution

operator turns to U(tf , ti) = ∏N
n=1 exp (−iH(tn − tn−1)) by means of which we get

K(qf , tf ; qi, ti) =
∫ N∏

n=1
dqn

N∏
m=1

K(qm+1, tm+1; qm, tm) (3.3)

In the momentum representation K is of the form

K(qm+1, tm+1; qm, tm) =
∫

dpn

(2π)α/2 e
ipnqn+1⟨pn|U( tf − ti

N + 1 )|qn⟩

≈
∫

dpn

(2π)α/2 e
ipnqn+1⟨pn|I− i

tf − ti
N + 1H|qn⟩

=
∫

dpn

(2π)α
eipnqn+1e

i

[
pnqn−

tf −ti
N+1 H(pn,qn)

]

=
∫

dpn

(2π)α
e

i

[
pn(qn+1−qn)−

tf −ti
N+1 H(pn,qn)

]
(3.4)

where α is the number of degrees of freedom. Plugging (3.4) into (3.3), in the limit N →∞, we
obtain

K(qf , tf ; qi, ti) = lim
N→∞

∫ ( N∏
n=1

dqndpn

(2π)α

)
dp0
2π e

i
∑N

n=0

[
pn(qn+1−qn)−

tf −ti
N+1 H(pn,qn)

]
(3.5)
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Now, one can define an skeletonised path (q(t), p(t)) in phase space such that q(tn) := qn and
p( tn+1−tn

2 ) := pn. Let us consider the quantities
∫ tn+1

tn
dtp(t)q(t) and

∫ tn+1
tn

dtH(p(t), q(t)). The
former can be approximated by pn(qn+1 − qn) and the latter by tf−ti

N+1H(pn, qn). Subsequently,
(3.5) can be rewritten symbolically as a sum over phase space paths

K(qf , tf ; qi, ti) =
∫
DqDp eiS(p,q), S(p, q) =

∫ tf

ti

(pq̇ −H)dt (3.6)

where the measure in a sympolical notation is DqDp = ∏
t

dq(t)dp(t)
2π and S is the action of the

theory, that is extremized when q(t) is a solution to the classical equation. This observation can
be easily generalised to field theories. It is worth noting that the expression (3.6) that provides
the transition amplitude from (qi, ti) to (qf , tf ) involves only a sum over classical paths q(t)
starting at qi and ending at qf , and the classical action S depending on the path [171]. It seems
that the classical theory is the only data that enters in (3.6), but the quantum theory is also
involved in only one way: the spectrum of q̂ is also determined by (3.6). At this point, one should
be careful that it is the quantum theory that determines the spectrum of the position operator q̂,
and hence the allowed positions over which one sums. This observation is not relevant in the case
of the free particle we discussed above because the position spectrum includes all real numbers
and hence the sum is equivalent to a sum over all classical histories. However, in other theories,
this is not necessarily the case [171].
It should be noted that the derivation of path integral is, in fact, “mathematical non-sence”,
because 1) there exists no infinite dimensional Lebesgue measure DqDq, 2) the phase space
integral is not only on classical paths but arbitrarily discontinuous ones such that the action is
not a measurable function. However, in this section we just wanted to review the heuristic idea
and not the concrete mathematical structure involving derivation of Wightman functions from
Schwinger functions using analytic continuation in time.

3.1.2. Palatini and Holst Actions of Gravity
Although working with Einstein-Hilbert action is the standard approach to GR, there exist many
alternatives but equivalent formulations of gravity, that differ in the choice of the relevant math-
ematical objects describing the world. In principle, it is not in vain to find different formulations
of a theory because equivalent classical theories may lead to inequivalent quantum theories. For
instance, the action

SP [e,A] = 1
2

∫
M
d4x det(e)eµ

I e
ν
JF

IJ
µν (3.7)

known as Palatini action is the “first order” formulation of gravity1. Here, eµ
I denotes the tetrad

introduced in section 1.3.2, det(e) is the determinant of its inverse, and

F IJ
µν := 2∂[µA

IJ
ν] + 2AI

[µ|K|A
KJ
ν] (3.8)

is the curvature associated to the SO(1; 3) or SO(4) connection AIJ
µ for Lorentzian and Eu-

clidean signature respectively. In (3.7), the frame fields e and the connection A are considered
as independent variables2. Varying the action with respect to e and A, one readily observes
that Einstein’s vacuum field equations are reproduced. From the Hamiltonian point of view,

1In the first and second order formulations of gravity the actions are of first and second order in the derivatives
of the fields, respectively.

2Although the action (3.7) is called Palatini action in the literature, according to [172], in Palatini’s paper
[173] the connection was not considered independently and Einstein was the first one who did so in [174].
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the emergence of second class constraints makes the Hamiltonian analysis of (3.7) very intricate.
However, it was revealed in [29] that after solving all second class constraints, one reverts back
to the ADM formulation for arbitrary spacetime dimensions > 2 3.

Adding a term to the action (3.7), one arrives at the Holst action

SH [e,A] = 1
2

∫
M
d4x det(e)eµ

I e
ν
J

(
F IJ

µν + γ

2 ϵ
IJ

KLF
KL
µν

)
(3.9)

where γ is the Barbero-Immirzi parameter. As the second term, the Holst term, does not affect
the equations of motion at the classical level the actions (3.7) and (3.9) are equivalent. In contrast
to the Palatini action that gives rise to GR in any arbitrary dimension, the Holst term only exists
for 4 dimensional spacetime. It was shown in [177] (using time gauge) and in [178] (without any
gauge fixing) that by passing to the canonical theory, the Holst action yields Ashtekar-Barbero
variables [35, 36, 38, 40]. More precisely, similar to the Palatini case, the conjugate momentum
corresponding to the connection AIJ

a , i.e. πa
IJ = ϵabc

IJKLe
K
b e

L
c , are not independent and are subject

to fulfil the simplicity constraints
ϵIJKLπa

IJπ
b
KL = 0 (3.10)

whose solutions fall into the following sectors [179]

(I±) πa
IJ = ±ϵabceI

be
J
c ; (II±) πa

IJ = ±1
2ϵ

abcϵIJKLe
K
b e

L
c ; (deg) πa

IJ = 0 (3.11)

The non-trivial part of the canonical analysis stems from the presence of the constraints (3.10)
whose stabilisation lead to new secondary constraints that are second class. The analysis con-
siderably simplifies in the time gauge eI

µn
µ = δI

0 , because the simplicity constraints (3.10) do not
appear, and one can easily see that the Ashtekar-Barbero variables are recovered.

3.1.3. Purpose of This Chapter
In the previous two chapters, we mentioned the important issue that, what prevents LQG from
being considered as a complete theory is the problem of dynamics and its pertinent ambiguities.
One approach to attack this problem is spin foam models that avoid defining the Hamiltonian
constraint operator by working within the path integral approach to quantization. To apply
the path integral approach to GR, two considerations must be taken into account: 1) GR is a
constrained system, 2) path integral must be a sum over histories of geometry. For the former, one
has to find a way to deal with the constraints to avoid getting divergent path integral. Regarding
the latter, as one of the seminal results of LQG is that geometry is quantised one should not
sum over all histories of classical geometries, but rather over histories of the permissible quantum
geometries predicted by LQG [171]. The spin foam program is based on these two considerations.
In this chapter, after discussing path integral for constrained systems, we will show that GR can
be viewed as a constrained topological theory. Since the path integral of the unconstrained
topological theory (i.e. BF theory) is well-understood, the task is confined to implement the
constraint that, of course, is not an easy task!

Since the main goal of delving into the U(1)3 model is to improve our insights about the
dynamics of LQG, it is quite natural to study also the path integral approach of this model. As
shown in section 3.1.1, one of the prime ingredients of the path integral is the action, we are first
supposed to find the covariant origin of the Hamiltonian U(1)3 model. This is what we are going
to address in chapter 9, based on the information in this chapter.

3For 3, 4-dimensional spacetimes the Hamiltonian analysis was derived in [175]. Moreover, using a gauge fixing
that simplifies the analysis, the authors of [176] completed the Hamiltonian analysis for arbitrary dimensions > 2,
while in [29] no gauge fixing has been used.
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3.2. Path Integral Quantisation of Constrained Systems
Recall the relation between gauge theories and constrained systems explained in section 1.1.1. If
one naively uses (3.6) to obtain the transition amplitude for a constrained system, one confronts
the problem of divergence because of the integration over the pure gauge degrees of freedom [95].
In this section, we make a brief review of two ideas always on the table to study constrained
systems, i.e. reducing before quantising and vice versa.

3.2.1. Reduction Before Quantisation
In [180, 181] an approach was formulated to deal with constraints in the path integral formalism of
a theory with first-class constraints and a generalization to systems with second-class constraints
was given in [182, 183]. In this approach the constraints are imposed at the classical level, i.e.
the idea is to make reduction before quantisation.

The formal path integral for a system with first-class constraints CI is of the form

Z =
∫
Dp Dq Dλ ei

∫ tf
ti

dt (paq̇a−H(p,q)+λICI)

=
∫
Dp Dq δ(C, 0)ei

∫ tf
ti

dt (paq̇a−H(p,q)) (3.12)

where δ(C, 0) := ∏
I δ(CI , 0). Still the integral (3.12) may encounter divergences. In order to

cure this issue, subsidiary conditions GI(q, p) = 0 should be imposed to single out (ideally) one
point per gauge orbit. Furthermore, to formally preserve canonical covariance, one adds a factor
of a determinant form to the resulting expression (see below). Recall from section 2.1.1 that, in
addition to the fact that we should impose as many gauge-fixing conditions as there are first-class
constraints, they all together form a second-class system, that is

det({CI ,GJ}) ̸= 0 (3.13)

Taking into account these considerations, we obtain the ensuing path integral in the form

Z =
∫
DpDq δ(C, 0) det({GJ , CI})δ(G, 0)︸ ︷︷ ︸

∗

e
i
∫ tf

ti
dt (paq̇a−H(p,q)) (3.14)

where δ(G, 0) := ∏
J δ(GJ , 0) and we wish to simplify the starred term in subsequent. Let us

denote the physical canonical variables of the theory by qa, pa using which the reduced phase
space GI = CI = 0 is parametrised. Then, the complete set of canonical (both physical and
non-physical) variables can be appointed as

q = (GI , qa), p = (PI , pa) (3.15)

where PI are the momenta canonically conjugated to GI . The condition (3.13) is now equivalent
to

det
(
∂CI

∂PJ

)
̸= 0 (3.16)

so that one is allowed to express the momenta PI in terms of other variables via the constraints
CI = 0. Thus, the reduced phase space can be characterised by the equations

QI := GI = 0, PI = PI(qa, pa) (3.17)
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The starred term in (3.14) is then simplified as

δ(C, 0) det({GJ , CI})δ(G, 0) = δ(C, 0) det
(
∂CI

∂PJ

)
δ(G, 0) = δ(Q, 0) δ(P − P (qa, pa), 0) (3.18)

Finally, plugging (3.18) into (3.14) yields

Z =
∫ ∏

a

DqaDpa exp
(
i

∫
dτ [q̇bpb −Hphys]

)
(3.19)

Notice that the resultant (3.19) is an unconstrained path integral (3.19) for the reduced phase
space. Indeed, the δ-functionals in the starred terms have been used to eliminate 2n1 integra-
tion variables, for n1 = the number of first-class constraints. It should be pointed out that
since the path integral (3.19) generally includes curvilinear coordinates, it is typically ill-defined.
Moreover, the determinant factor in the starred term often suffers from ambiguities related to
impermissible gauge-fixing conditions [184, 185, 186]. Subsequently, this extensively used pre-
scription for path integral quantisation of a constrained system is often associated with difficulties
and obstacles. In our discussion, second-class constraints were not involved but including them
is quite straightforward. For more information, we refer the reader to [187, 188, 189, 190, 191].

3.2.2. Quantisation Before Reduction
Due to the difficulties one usually faces to obtain the reduced phase space and the physical
Hamiltonian (see chapter 2), one may prefer to write the path integral in terms of the original
canonical variables (qi, pi) and carry over the imposition of the constraints to the quantum level,
i.e. the idea is to make reduction after quantisation.

This strategy can be sketched in the following steps:

1. Writing the path integral for the unconstrained system;

2. Discretising the classical theory by a cellular decomposition;

3. Quantising the unconstrained part of the discretised theory;

4. Trying to discretise the constraints;

5. Imposing the constraints at the quantum level.

Since this prescription is used in spin foam models, we spend the rest of this chapter explaining
it in sufficient detail.

3.3. Path Integral Quantisation of Loop Quantum Gravity: Spin
Foam Models

Here, we provide a structural overview of spin foam models by deliberating the main ideas and
applying the steps listed in section 3.2.2 to GR. In practice, we first quantise a general BF theory
and then discuss that GR can be written as a “constrained” BF theory to which one can apply
the prescription of section 3.2.2.
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3.3.1. BF Theory
BF theory is a field theory whose action is of the form

SBF [A,B] =
∫

M
Tr(B ∧ F ) (3.20)

To understand the constituents of the action (3.20), recall that if P is a principal G-bundle4

over a smooth n dimensional manifold M , a connection A is a g-valued5 one-form on a local
trivialisation of P . Now, F appearing in (3.20) is the curvature two-form associated with the
connection A, i.e., F = dAA = dA+ [A ∧ A] where [·, ·] is the Lie bracket and dA is the exterior
covariant derivative, and when F = 0 the connection is said to be flat. A gauge transformation by
g ∈ G changes these quantities as A 7→ g−1Ag − g−1dg and F 7→ g−1Fg. Another constituent of
(3.20) is B that refers to an additional g-valued (n−2)-form field. Under a gauge transformation
B 7→ g−1Bg in a local trivialisation. Notice that the semblance of the action (3.20) justifies the
name of the “BF” theory.

This theory, in addition to the gauge transformations just mentioned, has another sort of
symmetry. Suppose we define a transformation of the A and B fields by A 7→ A, B 7→ B + dAη
for some (n− 3)-form η. The action (3.20) remains unchanged under this transformation:∫

M
Tr([B + dAη] ∧ F ) =

∫
M

Tr(B ∧ F + (−1)nη ∧ dAF ) =
∫

M
Tr(B ∧ F ) (3.21)

in which integration by parts and the Bianchi identity dAF = 0 have been used. In other words,
this is a gauge symmetry and any two solutions differing by it are indeed physically equivalent.

Varying the action, we can readily obtain the field equations. Putting the variation equal to
zero is equivalent to

0 = δSBF [A,B] =
∫

M
Tr(δB ∧ F +B ∧ dAδA) =

∫
M

Tr(δB ∧ F + (−1)ndAB ∧ δA) (3.22)

where again we have used an integration by parts. The equation (3.22) holds for all δB and δA
if and only if the field equations

F = 0, dAB = 0 (3.23)

are satisfied. The property of being “topological field theory” is propounded by the field equations
(3.23) of the BF theory, because they don’t admit “locally” different solutions and hence there
are no “local” degrees of freedom. To check this claim, first, note that according to the former
of 3.23 the connection A is flat and, up to gauge transformations, all flat connections are locally
equal. Furthermore, when A is flat, any B satisfying dAB = 0 can be expressed locally as dAη
for some η, because all closed forms are locally exact. Therefore, all solutions of (3.23) are locally
equivalent modulo gauge transformations.

For n = 3, GR coincides with the 3-dimensional BF theory [192, 193, 194]. This enriches
its quantisation procedure with a variety of methods from topological quantum field theory
(TQFT) that ultimately leads to the final quantised theory [195]. Considering the Hamiltonian
formulation of 3-dimensional (3d) GR gives insight into the nature of this theory [196]. As usual,
the Hamiltonian formulation starts with splitting the spacetime into a foliation of spacelike
hypersurfaces, e.g. the manifold has the form Σ × R. The configuration space is then the
space of all spatial metrics, say hab defined on Σ. Note that hab, where a, b = 1, 2, has only 3

4A principal G bundle is a fibre bundle whose typical fibre and structure group coincide with G.
5We denote the Lie algebra of the gauge group G by g.
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independent components. Just the same as what we had in section 1.3.1, na denotes the unit
normal to the hypersurface and the lapse N and the shift Na account the steps between abutting
hypersurfaces. The covariant derivative of na gives us the extrinsic curvature, i.e. Kab = hc

a∇cn
b

by means of which one can write the momentum conjugate to the elementary variable hab as
pab = det(h)1/2(Khab −Kab) where K = Kabhab. The Hamiltonian can be expressed in terms of
these canonical variables and one figures out that N and Na play the role of Lagrange multipliers
(their corresponding conjugate momenta vanish) for the 3 constraints H = 0 and Ha = 0,
respectively6. We can now describe the unreduced phase space of 3d GR with 6 variables hab, p

ab

and it turns out that the constraints are first class. Recall from section 2.1.1 that in this case
that the reduced phase space is of dimension 2n−2n1 = 6−6 = 0, i.e. we are left with zero local
degrees of freedom. Even once one adds matter to the theory, spacetime outside the matter is still
flat and hence there are no gravitational waves in 3d GR. Even though matter cannot have any
local effect, it can still cause global ones, and this is why one says that 3d GR is a “topological”
theory. In contrast, the spatial metric in 4-dimensional GR has 6 components, and the unreduced
phase space is 12 dimensional. As we have 4 constraints H,Ha (since now a = 1, 2, 3), in this
case the reduced phase space is of dimension 2n− 2n1 = 12− 8 = 4, i.e. 4-dimensional GR has 2
local degrees of freedom. In order to construct the spin foam sum for 3d GR, there are basically
two different approaches. The first one comes from the canonical quantisation: it is imposition of
the Hamiltonian constraints that leads to the sum over spin foams [197]. The second one departs
from the covariant quantisation: one starts from the n = 3 BF-formulation and arrives at the
spin foam as we will discuss in the succeeding section.

Let us return to the action (3.20) where for n = 3 a “two-form” field B acts as one of the
basic objects. Plebanski [198] was the first who considered two-forms as fundamental variables
in 4 dimensional GR, rather than the metric or tetrad. He found conditions, known as simplicity
constraints, required to recover the tetrad from the two-forms. Remarkably, he revealed that
4-dimensional GR is “almost” a BF theory, precisely speaking, GR can be formulated as a BF
theory subject to the simplicity constraints (see section 3.3.3).

3.3.2. Path Integral Quantisation of BF Theory
The path integral associated with the action (3.20) is given by

ZBF =
∫

M
DADB ei

∫
M

Tr(B∧F ) =
∫

M
DA δ(F, 0) (3.24)

where δ(X,Y ) is Dirac delta and in the second equality the integral over the B field has been
formally performed. The delta distribution δ(F, 0) says only the flat connections contribute.
Now, we wish to give a physical meaning to the above formal expression.

Note that since BF theory is topological and without any local degrees of freedom, we do not
lose any information if we replace M with a simplicial manifold T, with identical topology. To be
more precise, we can think of T as a triangulation fabricated from glueing n-simplexes together
(e.g. 3-simplex=tetrahedron) along their respective triangles and edges. We use the following
notations for referring to different elements of T:

6The constraints are of the form

H = 2 det(h)−1/2 (pabpab − p2)− 1
2h

−1/2 (2)R = 0,

Ha = (2)∇bp
b
a = 0

where (2)R is the Ricci scalar for the spatial metric and (2)∇b is the covariant derivative compatible with the spatial
metric.
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Figure 3.1.: Elements of a 4-dimensional triangulation (above) and the corresponding elements
of its complex dual (below)

n-simplex: ∆n, tetrahedron: ∆3, triangle: ∆, edge: ∆1, vertex: ∆0

We also need to construct a 2-skeleton7 of a complex dual to T and equip it with an orientation.
The resulting object is called a foam and denoted by F. In fact, this is a combinatorial object
consisting of a set of vertices v ∈ F (dual to ∆n), edges e ∈ F (dual to ∆n−1) and faces f ∈ F
(dual to ∆n−2). We denote the set of all vertices, edges and faces of F by C0(F), C1(F) and
C2(F), respectively. In figure (3.1), elements of a 4 dimensional triangulation and their corre-
sponding duals have been illustrated. To gain more information and see the precise definitions
of triangulation and its dual complex consult [199, 200].

As usual, we discretise the connection by attributing a group element ge ∈ G to each edge
e of the foam. Accordingly, a connection is flat if the holonomy around each (oriented) face is
trivial, i.e, ∏Nf

i=1 g
f
ei

= IG where gf
e = ge if the orientation of e agrees with the orientation of f

and gf
e = g−1

e if it does not. The discrete version of (3.24) is

Z(F) =
∫ ∏

e∈C1(F)
dµH(ge)

∏
f∈C2(F)

δ(
Nf∏
i=1

gf
ei
, IG) (3.25)

where µH denotes the Haar measure. We want to find an alternative for the delta distribu-
tion involved in (3.25). Using the Peter-Weyl theorem, the δ distribution can be expressed as
δ(g, IG) = ∑

π∈Π(G) dπ Tr(π(g))8, where Π(G) is the set of unitary irreducible representations of
G and dπ denotes the dimension of the representation space of π. Utilising this formula in (3.25)

7The n-skeleton of a topological space X refers to the the union of the simplices of X of dimensions m ≤ n.
8Recall the Peter-Weyl theorem stated in footnote 17 in the first chapter, according to which any f ∈

L2(G, dµH) can be decomposed as

f(h) =
∑

π∈Π(G)

dim(π)∑
i,j=1

⟨f,
√

dim(π)πij⟩
√

dim(π)πij(h) =
∑

π∈Π(G)

dim(π)
dim(π)∑
i,j=1

(∫
G

f(g)πij(g)dµH(g)
)
πij(h)

=
∑

π∈Π(G)

dim(π)
dim(π)∑

i=1

(∫
G

f(g)πii(hg−1)dµH(g)
)

=
∑

π∈Π(G)

dim(π)
dim(π)∑

i=1

(∫
G

f(g−1h)πii(g)dµH(g)
)

This expansion can be put formally in the form δ(g, IG) =
∑

π∈Π(G) dim(π) Tr(π(g)).
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yields

Z(F) =
∫ ∏

e∈C1(F)
dµH(ge)

∏
f∈C2(F)

∑
πf∈Π(G)

dπf
Tr

πf (
Nf∏
i=1

gf
ei

)

 (3.26)

We divide the faces including an edge e into the faces whose orientations coincide with the
orientation of e, denoted by −→F (e) and the faces having opposite orientations, denoted by ←−F (e).
In order to carry out the integral over ge in (3.26), we should simplify the expressions

Pe({πf}) :=
∫
dµH(ge)

⊗
f∈
−→
F (e)

πf (ge)⊗
⊗

f∈
←−
F (e)

πf (g−1
e ) (3.27)

which are projectors on the G-invariant subspace of the tensor product of representation due to
the group averaging. in other words,

Pe({πf}) :
⊗

f∈
−→
F (e)

Hf ⊗
⊗

f∈
←−
F (e)

H∗f →
⊗

f∈
−→
F (e)

Hf ⊗
⊗

f∈
←−
F (e)

H∗f (3.28)

is orthogonal projection onto the space of invariants of the representation⊗
f∈
−→
F (e) πf⊗

⊗
f ′∈
←−
F (e) π

∗
f ′

denoted by Inv
(⊗

f∈
−→
F (e)Hf ⊗

⊗
f∈
←−
F (e)H

∗
f

)
whose orthogonal basis makes up of the intertwin-

ers ıe ⊗ ı†e.

Using (3.28) one can simplify (3.26) to

Z(F) =
∑

πf∈Π(G)

∏
f∈C2(F)

dπf
Trπf

∏
e∈C1(F)

Pe({πf}) (3.29)

Now, the expansion of the projectors in the intertwiner basis results in Pe = ∑
ıe
ıe ⊗ ı†e. Notice

that to each vertex v a tensor Tv := ⊗
e∈−→v ıe ⊗

⊗
e∈←−v ı

†
e is assigned, where −→v and ←−v denote the

edges ingoing and outgoing at v, respectively. For every face f intersecting v, contains exactly
two edges incident at v. Therefore, in Tv there are two indices corresponding to the representation
πf and π∗f , respectively, that should be contracted in order to get an equivalent expression for
(3.29). The result of this contraction procedure is symbolically denoted by Tr(Tv). Applying this
observation to (3.29), we arrive at

Z(F) =
∑

πf∈Π(G)

∑
ıe

∏
f∈C2(F)

dπf

∏
v∈C̄0(F)

Tr(Tv) (3.30)

The numbers dπf
and Tr(Tv) are called face and vertex amplitudes, respectively.

For instance, for 3 dimensional BF theory which is equivalent to 3d GR, the vertex amplitude
turns out to be the Wigner 6j-symbol. Hence, in this case, the expression (3.30) becomes

ZSU(2)(F) =
∑
jf

∏
f

(−1)2jf (2jf + 1)
∏
v

{6j}v (3.31)

that is exactly the partition function of the Ponzano-Regge model [201].
Before ending this section, it is worth noting that while the partition function (3.30) depends

on the global topology, it is independent of the way of triangulating M . Hence, a refinement of
the triangulation does not affect the final expression (3.30) of BF theories, e.g. that of 3d GR.
In contrast, there is no triangulation invariance in the context of 4 dimensional GR having local
degrees of freedom.
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3.3.3. GR as a Constrained BF Theory
In this section, we briefly introduce the Plebanski action that formulates GR as a BF theory with
constraints. Although there are attempts to derive spin-foam models without reference to BF
theory [202], the Plebanski formulation serves as the starting point of most spin foam models.
The action is given by

SP l[A,B] =
∫

M
BIJ ∧ FIJ + λIJKLB

IJ ∧BKL (3.32)

In his paper [198], Plebanski worked in 4 dimensional spacetime, but it was shown in [203]
that the formulation exists for all dimensions > 2. The Hamiltonian analysis of this theory
has been studied thoroughly in [204]. Here, just like BF theory, the relevant fields are the
connection 1-form A inducing the curvature form F (A), and the 2-form B. Additionally, λIJKL

serves as a Lagrange multiplier satisfying the properties λIJKL = λKLIJ and ϵIJKLλIJKL = 0.
The Lagrange multiplier enforces the constraints CIJKL := BIJ ∧ BKL restricting B in such a
way that one recovers GR described by (3.7). The equations of motion for A and B lead to
DBIJ = dBIJ + [A,B]IJ = 0 and FIJ = −λIJKLB

KL, respectively. Varying the action with
respect to λ, one finds

BIJ ∧BKL = ϵIJKL
( 1

4!ϵMNP QB
MN ∧BP Q

)
=: ϵIJKLe (3.33)

where e ∈ Λ4T ∗M . The equations (3.33) are called the simplicity constraints whose solutions fall
into the following sectors [205]:

(I±) BIJ = ±eI ∧ eJ ; (II±) BIJ = ± ⋆ eI ∧ eJ ; (deg) B is degenerate (3.34)

for some real tetrad field eI = eI
µdx

µ. Here ⋆ is the Hodge operator. Only the action corresponding
to the sector (II±) turns out to be the Palatini action (3.7). If one wanted to retrieve the
Ashtekar-Barbero variables from the resulting action, the Barbero-Immirzi parameter would have
to be γ =∞. As γ is an important parameter appearing in the canonical quantisation introduced
in chapter 1, one is interested to introduce it also in the covariant approach. In order to include
a finite parameter γ we have to work with a slightly generalised action instead of starting from
(3.32) [206]

SP l[A,B] =
∫

M

(
BIJ + 1

γ
⋆ BIJ

)
∧ FIJ + λIJKLB

IJ ∧BKL (3.35)

If one takes the boundary into account, it turns the unconstrained part of (3.35) would be of the
form

S[A,B] =
∫

M

(
BIJ + 1

γ
⋆ BIJ

)
∧ FIJ +

∫
∂M

(
BIJ + 1

γ
⋆ BIJ

)
∧ FIJ (3.36)

It is transparent that again the constraint is (3.33) whose solutions are displayed in (3.34). To
put it succinctly, the BF action with constraints (3.35) reduces to the Holst action (3.9), meaning
that GR is recovered as a constrained BF theory. The essence of the above observation is that
the simplicity constraints break the topological invariance of BF theory and give rise to the local
degrees of freedom of gravity.

3.3.4. Path Integral Quantisation of GR
3.3.4.1. Discretising the Constraints

Now, the question to answer is how to restrict the quantum states of the BF model such that they
satisfy the constraints (3.33). To do so, we derive from the constraints (3.33) some conditions
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on the Lie algebra elements and then apply them in the context of a discretisation of the action.
First, we should paraphrase the constraint into a discrete setting. The 2-forms B naturally
correspond to triangles ∆ of each 4-simplex of the chosen triangulation T, i.e.

BIJ
∆ =

∫
∆
BIJ

µνdx
µ ∧ dxν (3.37)

Hence, one can smear the constraint ϵIJKLB
IJ
µνB

KL
ρσ = eϵµνρσ over two triangles of the discreti-

sation belonging to the same 4-simplex ∆4 as

ϵIJKLB
IJ
∆ BIJ

∆′ =
∫

∆,∆′
d2σ ∧ d2σ′ = V (∆,∆′); ∀∆,∆′ ⊂ ∆4 (3.38)

where V (∆,∆′) is the 4-volume spanned by the two triangles. Depending on the relative position
of ∆ and ∆′ we get the following three types of constraints

Diagonal simplicity: If ∆ = ∆′, then ϵIJKLB
IJ
∆ BKL

∆ = 0, (3.39)
Cross simplicity: If ∆ ̸= ∆′, ∆ ∩∆′ is an edge, then ϵIJKLB

IJ
∆ BKL

∆′ = 0, (3.40)
Volume simplicity: If ∆ ̸= ∆′, ∆ ∩∆′ is a vertex, then ϵIJKLB

IJ
∆ BKL

∆′ = V (∆,∆′) (3.41)

In fact, in the first two cases ∆,∆′ span a lower dimension than the volume form to be integrated,
so the result vanishes. Moreover, BIJ must also fulfil the so called closure constraint

0 =
∫

∆3
dBIJ(x) =

∫
∂∆3

BIJ(x) =
∑

∆⊂∂∆3

∫
∆
BIJ(x) =

∑
∆⊂∂∆3

BIJ
∆ (3.42)

that ensures the set of 4 triangles really builds a tetrahedron. The volume constraint is not to
be implemented since (3.39), (3.40) and (3.42) already imply (3.41). The implementation of the
constraints (3.39) and (3.40) can be simplified by the geometrical interpretations provided in
[207]

The diagonal simplicity constraint (3.39) says that the bivector BIJ
∆ is simple9, i.e. there exist

eI such that each bivector can be expressed as exterior product of these vectors BIJ
∆ = eI∧eJ

or its Hodge dual BIJ
∆ = ⋆(eI ∧ eJ). Besides that a bivector BIJ

∆ in R4 is simple if and only
if there exists a vector nI such that BIJ

∆ nJ = 0 which holds if and only if (⋆B∆)IJnJ = 0
[207].

The cross simplicity constraint (3.40) implies that the planes defined by the bivectors B∆ and
B∆′ with a common edge span a 3-dimensional space. Two simple bivectors B∆ and B∆′

span a 3-dimensional subspace of R4 if and only if there exists a vector nJ such that
BIJ

∆ nJ = 0 and BIJ
∆′nJ = 0 that holds if and only if (⋆B∆)IJnJ = 0 and (⋆B∆′)IJnJ = 0

[207].

These conditions together with (3.42) are sufficient to construct a non-singular tetrahedron.
Accordingly, from the geometrical point of view, if we consider nI as the 4-vector normal to
a hypersurface, the simplicity constraints say that all the faces of a given ∆3 lay in the same
hypersurface. The above observations lead to very simple constraints on BIJ

∆ that are called the
linear simplicity constraints

(I±) BIJ
∆ nJ = 0 ∀∆ ⊂ ∂∆4, (II±) (⋆B∆)IJnJ = 0 ∀∆ ⊂ ∂∆4 (3.43)

9A bivector that can be expressed as the exterior product of two vectors is simple.
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Many spin foam models [208, 207, 209, 210, 211, 212, 213] are constructed based on the linear
simplicity constraints, while [214, 215] used the original quadratic simplicity constraints. For
example, in the EPRL model [208] instead of the quadratic form of the cross simplicity constraint
(3.40), its linearised version (3.43) is to be implemented10, and in the FK model [207] both
diagonal and cross simplicity constraints are linearised. In what follows, we will briefly review
the EPRL approach.

3.3.4.2. The EPRL Model

The unconstrained part of the action (3.35) is discretised in the same manner as BF-theory.
Taking a triangulation T, one smears the B fields on the triangles ∆ and approximates the
curvature by a product of group elements assigned to edges of the loop enclosing the dual faces
f . If we associate an inertial frame to each tetrahedron ∆3, then two bivectors B∆(∆3), B∆(∆′3),
smearing on the same triangle ∆ represented in two different frames of two distinct tetrahedra
∆3 and ∆′3, can be related using an element of G denoted by U∆(∆3,∆′3) ∈ G, i.e.

B∆(∆′3) = U∆(∆3,∆′3)−1B∆(∆′3)U∆(∆3,∆′3) (3.44)

According to [210, 216], this yields the following discretised action corresponding to (3.36)

S =−
∑

∆⊂∆4

Tr
[
B∆(∆3)U∆(∆3) + 1

γ
⋆ B∆(∆3)U∆(∆3)

]

−
∑

∆⊂∂∆4

Tr
[
B∆(∆3)U∆(∆3,∆′3) + 1

γ
⋆ B∆(∆3)U∆(∆3,∆′3)

]
(3.45)

where U∆(∆3) := U∆(∆3,∆3). This action together with the simplicity constraints (3.43) and
closure constraint (3.42) defines a discretisation of GR. The next task is to translate the con-
straints into restrictions on the states of the theory. Note that the variable conjugate to A in
(3.35) is associated to the bivector JIJ

∆ :=
(
1 + 1

γ ⋆
)
BIJ

∆ . This can be inverted as

BIJ
∆ = γ2

γ2 − s

(
1− 1

γ
⋆

)
JIJ

∆ (3.46)

where for the Euclidean case s = 1 and G = Spin(4) whereas for the Lorentzian case s = −1
and G = SL(2;C). Moreover, we have assumed γ ̸= 0, 1,∞. As we will see in what follows,
the generators of g are considered as the quantum counterparts of JIJ

∆ , by means of which the
constraints are imposed at the quantum level.

Let us begin this procedure by expressing the linear simplicity constraints (3.43) in terms of
the bivectors JIJ

∆

0 = Cj
∆ = nI ⋆

(
1− 1

γ
⋆

)
JIJ

∆ = δ0
I

(
ϵIJ

KLJ
KL
∆ − s

γ
JIJ

∆

)
= 1

2ϵjklJ
kl
∆ −

s

γ
J0j

∆ =: Lj
∆ −

s

γ
Kj

∆ (3.47)

where we employed the gauge nI = δ0
I . Utilising the commutators between the generators of g,

it turns out that the commutator of the constraints (3.47) is [65][
Ci

∆, C
j
∆′

]
= δ∆∆′ϵij k

(
Ck

∆ −
1− γ2

γ2 Lk
∆

)
(3.48)

10As discussed above, the constraints (3.43) encode both diagonal and cross simplicity constraints but, as we
will see, in the EPRL model the former is treated on its own.
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from which one concludes that the algebra of the constraints (3.47) does not close. Therefore,
as is well known for any second class constraints, one cannot impose them in a strong sense,
because otherwise, it would lead to extra conditions that are not present in the classical theory.
In other words, instead of looking for a Hilbert space Hs on which the equations Cj

∆|ψ⟩ = 0
(strong imposition of the constraints) hold simultaneously, we only require that the conditions
⟨ψ′|Cj

∆|ψ⟩ = 0 (weak imposition of the constraints) are fulfilled on Hs [217].

For the diagonal simplicity constraint (3.39), we obtain

0 = ϵIJKL

(
1− 1

γ
⋆

)
JIJ

∆

(
1− 1

γ
⋆

)
JKL

∆ =
(

1 + s

γ2

)
JIJ

∆ (⋆J∆)IJ −
2s
γ
JIJ

∆ (J∆)IJ (3.49)

This construction associates a Hilbert space H∆3 to each tetrahedron ∆3 of the boundary tri-
angulation ∂T in such way that we attach an irreducible representation, Iα(∆3), of G to each
triangle of the tetrahedron and denote the carrier space of this representation by HIα . Since the
tetrahedron contains 4 triangles, the index α runs from 1 to 4 and we get H∆3 = ⊗4

α=1HIα . Now,
for the quantisation step we replace the bivectors JIJ

∆ by the generators of the algebra g denoted
by ĴIα in the representation Iα. Therefore, the quantum version of the constraint equation (3.49)
turns out to be

0 = 1
2

(
1 + s

γ2

)
ϵIJKLĴ

IJ
Iα
ĴKL

Iα
− 2s

γ
ĴIJ

Iα
(ĴIα)IJ = 4

(
1 + s

γ2

)
LjKj −

4s
γ

(L2 + sK2) (3.50)

from which it follows that
γ2 + s

sγ
L∆ ·K∆ = L2

∆ + sK2
∆ (3.51)

Let s = 1 and recall that since Spin(4) = SU(2) × SU(2), the irreducible representations of
Spin(4) are labelled by a couple of half-integers (jℓ, jr). In [206], it was noticed that the con-
straint (3.51) does not admit any non-trivial solution. However, in [218] by choosing a different
ordering than the one usually employed to define Casimirs operators, one observes (up to ordering
ambiguity) that a solution arises and the resulting restriction on representations is

jℓ
∆ =

∣∣∣∣γ + 1
γ − 1

∣∣∣∣ jr
∆ (3.52)

which implies that when γ > 0 (γ < 0) the relation jℓ
∆ > jr

∆ (jℓ
∆ < jr

∆) holds. The equation
(3.52) yields this noticeable result that the Immirzi parameter γ has to be rational, i.e. γ is also
quantised in this approach! [219]
In order to implement the quantum version of (3.47), we need to find Hilbert space Hs ⊂ H∆3

such that all matrix elements of the constraint (3.47) on Hs equals zero. Inspired by the master
constraint programme proposed in [58, 59], the idea of [210] is to replace the constraints (3.47)
by the corresponding master constraint

C∆ :=
(
Lj

∆ −
s

γ
Kj

∆

)(
L∆

j −
s

γ
K∆

j

)
= L2

∆ −
2s
γ
L∆ ·K∆ + 1

γ2K
2
∆ = 0 (3.53)

Using (3.51) in (3.53), we get
L∆ ·K∆ = γL2

∆ (3.54)
Now for the case γ > 0, inserting (3.52) into (3.54) results in a restriction on the quantum number
j corresponding to the SU(2) Casimir L2 as

j2 =
(

2jℓ

1 + γ

)2

=
( 2jr

1− γ

)2
(3.55)
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that specifies the desired Hilbert space Hs

j :=
{
jℓ + jr, 0 < γ < 1,
jℓ − jr, 1 < γ

=⇒ Hs :=



4⊗
α=1
Hjℓ+jr , 0 < γ < 1,

4⊗
α=1
Hjℓ−jr , 1 < γ

(3.56)

in which the cross simplicity constraint (3.47) is satisfied weakly [220]. Finally, implementa-
tion of the closure condition (3.42) gives us the intertwiner space as Ks = InvSU(2)(Hs). We do
not display the ultimate spin foam amplitude here and refer the reader to the original paper [210].

In summary, first, we saw that the discrete quantum BF models are topological. Then we
recovered GR using constraints on the B field at the continuum level. We went on to impose
the simplicity constraints at the quantum level as a selection of the unitary irreducible represen-
tations that are admissible. Finally, the amplitude is constructed from the topological Spin(4)
BF spin foam vertex amplitude by weakly imposing the simplicity constraints resulting in a
restriction of representation labels. In this way, the space of histories of the BF theory path
integral is constrained to that of (Euclidean) gravity. For the more involved Lorentzian case,
similar calculations lead to amplitude describing the covariant dynamics of LQG. For more detail
on this matter, we refer to [65, 221]. The semi-classical limit has been discussed in [222]. The
phenomenological applications of spin foam models to quantum cosmology are investigated in
[223, 224, 225, 226, 227, 228, 229, 230]. Furthermore, interesting studies on the application of
these models to quantum black holes are provided in [231, 232, 233, 234]. Moreover, in an inter-
esting work[235] the relation between Dirac, reduced phase space and path integral quantisation
is studied.

Although this type of quantisation for LQG has gained structural and physical successes to
describe the dynamics of LQG, it still suffers from some kind of shortcomings [236] that we will
discuss in chapter 4.
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CHAPTER 4.

Dynamics of LQG

4.1. Preliminaries
4.1.1. Kinematics of LQG
In section 1.3, we discussed how the kinematics of LQG has been derived. Briefly, this construc-
tion consists of the following steps:

1. The space of all smooth connections A was chosen as the classical configuration space.
These variables together with their conjugate momenta, i.e. the electric fields, formed the
classical phase space.

2. We considered the space of all cylindrical functions on A, i.e. those functions that depend
on the connection only through a finite number of holonomies, as the functions on the
configuration space we are interested in working with.

3. The space of all generalised connections Ā = Hom(P, G) was introduced as the quantum
configuration space. The cylindrical functions defined on Ā was equipped naturally with a
measure induced by the Haar measure on SU(2) and consequently, a natural inner product
was defined on Cyl. The kinematical Hilbert space Hkin was then defined as the completion
of Cyl with respect to this inner product.

4. The holonomies and fluxes could be represented as multiplicative and derivative operators,
respectively, on Hkin.

5. The Gauß and diffeomorphism constraints were solved using the group averaging method
and we arrived at a Hilbert space free of the kinematical constraints.

In this construction, the dynamics of LQG generated by the Hamiltonian constraint was not
imposed. The first step in this regard is to promote the Hamiltonian constraint to a well-defined
operator on Hkin: it was a task that due to the intricate expression of the Hamiltonian constraint
remained unsolved for many years.

4.1.2. Purpose of This Chapter
Using the key classical identities involving Poisson brackets and with appropriate choices of in-
termediate regularisations, Thomas Thiemann, in his remarkable series of papers [55, 56, 57, 237,
238, 239], made significant progress in quantising the Hamiltonian constraint by implementing
it as an operator well defined on Hkin. Then, it turned out that the quantisation of the Hamil-
tonian constraint proposed generates a quantum Dirac algebra without anomaly in the sense
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that the commutator of two Hamiltonian constraints when acting on spatially diffeomorphism-
invariant distributions, is annihilated as it should be according to the classical algebra. However,
the scheme of construction exhibits a great deal of freedom in choosing the regulators, thus
the Hamiltonian constraint operators suffer from a considerable amount of ambiguities. In this
section, we take a brief look at Thiemann’s construction of quantum Hamiltonian constraint
[55, 56]. Focusing on the underlying idea and avoiding the details, we articulate its shortcomings
that highlight the need to examine toy models.

4.2. Thiemann’s Construction of Quantum Hamiltonian Constraint
As already mentioned in the section 1.3.2, the classical Hamiltonian constraint of GR is given by

H = C − (1 + γ2)√
det(q)

Ea
jE

b
kK

j
[aK

k
b] (4.1)

where
C := 1√

det(q)
F j

abϵjklE
a
kE

b
l (4.2)

is the classical Euclidean Hamiltonian constraint. Evidently, the tremendous non-linearity of H
(and C) as a function of the phase space variables is a difficult barrier to quantisation, since
ordering issues arise. The next difficulty presents itself as the volume element appears at the
denominator. Quantising the volume element, one finds that it has a large kernel which makes
its inverse ill-defined. On the other hand, for F j

ab (the curvature of Aj
a) and Kj

a (the extrinsic
curvature) appearing in the Hamiltonian constraint, there are no simple operators in quantum
theory. An interesting question is now whether one can get rid of the problematic term det(q)−1/2

by rescaling the Hamiltonian constraint such that one is left with a polynomial expression. It can
be shown intuitively and technically that this assumption that a function should be polynomial
to be quantised is not only a false premise but the non-polynomiality feature of the Hamilto-
nian constraint is vital, since only integrals of density weight one scalars can be promoted into
a well-defined operator without creating UV singularities. In fact, [240] revealed that UV diver-
gences won’t be displayed in any background independent quantum field theory provided that
the Hamiltonian has density weight one1 which means that det(q)−1/2 is a blessing in disguise!
Therefore, det(q)−1/2 cannot be swept under the carpet, rather one has to find a way to deal with
it. Considering all these difficulties, one can see how non-trivial and challenging it is to propose
an explicitly formulated and mathematically well-defined Hamiltonian constraint operator.

4.2.1. The Main Idea and Regularised Hamiltonian Constraint
Thiemann’s construction of the Hamiltonian operator is based on two main ideas that should be
accomplished before quantization
1) parts of the Hamiltonian constraint are written in terms of Poisson brackets in order to
eliminate the troublesome inverse volume element and deal with the extrinsic curvature,
2) the connection Aj

a and the curvature F j
ab are expressed in terms of holonomies whose quantum

operator can be used to deal with the curvature.

1In the standard model in flat spacetime, the Hamiltonian is of density weight 2.
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For the former, one discovers the following two crucial identities [1]

ϵabc

ϵjklEa
jE

b
k√

q
(x) = {V (R), Al

c(x)} (4.3)

Kj
a = {K,Aj

a} (4.4)

which can be used to write

C[N ] = 8
κ

∫
d3x Nϵabctr (Fab{Ac, V (R)}) (4.5)

H[N ]− C[N ] =16
κ3

∫
d3x Nϵabctr ({Aa,K}{Ab,K}{Ac, V (R)}) (4.6)

where

V (R) :=
∫

R
d3x

√
det q (4.7)

K :=
∫

Σ
d3x Kj

aE
a
j (4.8)

are the volume of an open region R of Σ and The integrated trace of the extrinsic curvature,
respectively. The idea of expressing parts of the Hamiltonian constraint in terms of the Poisson
brackets untangles the process because in the canonical quantisation, the Poisson bracket {·, ·}
is replaced by 1

iℏ [·, ·] and hence the quantisation is greatly simplified, if there exist quantum
counterpart operators corresponding to V (R) and K. As discussed in section 1.3.4.1, there are
two volume operators: AL volume operator (1.71) and RS volume operator (1.70). In Thiemann’s
regularisation scheme, we are restricted to work with AL volume operator because it is only this
operator that leads to a densely defined Hamiltonian constraint operator [1]. One can easily
verify that K can be expressed by a Poisson bracket as

K = {C[1], Vσ} (4.9)

Thus, in order to define the operator for K, we are supposed to first quantise C and then compute
the commutator with the volume operator.

For the latter, as the canonical variables in the theory are holonomies along edges and fluxes
along surfaces, it is required to employ the information encoded in the holonomies about Aj

a

and F j
ab and write the Hamiltonian constraint in terms of holonomies. In other words, the local

fields have to be expressed in terms of non-local holonomies. In order to do so, one can expand
the holonomy for an edge e of coordinate length ϵ as heϵ = 1 + ϵėa(0)Aj

a(e(0))τj/2 + O(ϵ2) and
approximate {

∫
e ė

aAa, V (R)} ≈ h−1
e {he, V (R)} and {

∫
e ė

aAa,K} ≈ h−1
e {he,K}, where ėa is the

tangent to e in a chosen parametrisation e(t). Similarly, the holonomy expansion for a loop
αab of coordinate area size ϵ2 is hαab

= 1 + ϵ2F j
abτj + O(ϵ3) and therefore the approximation∫

S Fab ≈ 1
2(hαab

−h−1
αab

) holds for an oriented surface S whose boundary is αab (see figure (4.1)).

Now, consider a triangulation T(ϵ) of the spatial manifold Σ by tetraherda, where the epsilon
is a parameter showing how fine T(ϵ) is and ϵ→ 0 describes a situation in which the triangulation
fills out the entire space. In fact, ϵ→ 0 is the signature of “continuum limit”. For each tetrahedron
∆ ∈ T(ϵ), we fix a vertex v(∆) and denote by si(∆)i=1,2,3 the three outgoing edges in ∆ whose
beginning points are v(∆) and whose tangents span the tangent space at v(∆). We also denote
by aij(∆) the arc connecting the end points of si(∆) and sj(∆). Then, one can form several
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Figure 4.1.: Intuition of holonomy and curvature when one thinks of a connection as a horizontal
lift in a fibre bundle.

loops by αij(∆) := si(∆) ◦ aij(∆) ◦ sj(∆)−1. Each choice of {T(ϵ), v(∆), {si(∆)}, {αij(∆)}} is
called a regulator.

Employing all the information above and using a regulator, one obtains a Riemann sum ap-
proximation of (4.5) as [55]

Cϵ[N ] = 2
3κ2

∑
∆∈T(ϵ)

N(v(∆))ϵijktr
(
h−1

αij(∆)h
−1
sk(∆){hsk(∆), VRv(∆)}

)
(4.10)

such that limϵ→0C
ϵ[N ] = C[N ] for any choice of regulator.

4.2.2. Continuum Limit and the Difficulties in Achieving It
Now, the regulated Hamiltonian constraint (4.10) is made up of constituents all of which have
quantum counterparts, thus by replacing them by the corresponding operators, we would first
arrive at Ĉϵ[N ] and then it is expected to obtain the quantum counterpart of the Hamiltonian
constraint simply by removing the regulator, i.e. taking the refinement limit ϵ→ 0, with respect
to a suitable operator topology. But the situation is more complicated than it seems at first glance
as, in practice, the program faces difficulties that require individual delicacy and mathematical
precision. We discuss these difficulties in the succeeding paragraphs.

• One always needs to ensure that the operator to be defined is cylindrically consistent.

Since any operator directly defined on a basis is automatically consistent, a solution to surmount
this problem is to explicitly define the operator on the spin networks.

• As the volume operator existing in the quantum counterpart of (4.10) acts only on the
vertices of the graph γ underlying Ts, one is in danger of getting a trivial continuum limit.

To overcome this problem, one is to work with a triangulation which is adapted to the graph
γ. Obviously, this is permissible because classically any choice of refinements is as good as the
other and all give rise to the same limit. A triangulation adapted to a given graph γ is the one
in which each cell ∆ contains at most one vertex v of γ and the outgoing edges si(∆) are proper
segments of the edges of γ incident at v. The loops αij are the triangular loops spanned by si,
sj and the connecting arc aij whose orientation is defined to be from si to sj . There is no other
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Figure 4.2.: The construction of a triangulation used in the regularisation of the Hamiltonian
constraint acting on a vertex v.

points of γ contained in the loops except the edges si and sj (see figure 4.2). One constructs a
tetrahedron spanned by a triple (si, sj , sk) and seven additional “virtual” tetrahedra so that a
neighbourhood of the vertex can be triangulated by the eight tetrahedra together. The detailed
description of this triangulation can be found in [55]. With this regulator, the sum ∑

∆ in (4.10)
effectively converts to the sum ∑

v∈V (γ), and the action of the regularised Hamiltonian constraint
on a spin network Ts based on a graph γ is given by

Ĉϵ[N ]|Ts⟩ = 16i
3ℏκ2

∑
v∈γ

N(v)
E(v)

∑
∆(v)

ϵijkTr
(
ĥ−1

αij(∆)ĥ
−1
sk(∆)[ĥsk(∆), Vv]

)
|Ts⟩ (4.11)

where the appearance of E(v) :=
(n(v)

3
)

in the denominator stems from the fact that for each
triple of edges an independent triangulation is constructed and this has to be compensated.

• Since holonomies and the volume element do not commute, ordering ambiguities arise. On
the other hand, one troubling consequence of this quandary can be seen in the refinement
limit where the operator may create infinitely many edges and loops that may preclude the
limit from being well-defined.

This quandary can be sorted out by choosing a suitable ordering. Since the volume operator
acts only on the vertices, by ordering the commutator to the rightmost, the final operator of
the Hamiltonian constraint acts only on spin network vertices, as well. Note that this forces the
“exceptional”2 edges that are newly created to be appended to the vertices of the spin network
only. Consequently, in this case, only finitely many new edges are created.
Having been ordered in this way, the Hamiltonian constraint operator changes the graph of the
spin network by two operators hsk

and hαij . The former overlay segments of coordinate size ϵ on
edges of γ, and the latter adds the triangular loops at the vertices, as is depicted in figure (4.3),
i.e. its action is “graph-changing”. It is worth noting that it creates also new vertices but they
are planar3 and hence carry no volume thanks to using the AL volume operator in (4.11)4. It

2Exceptional edges are those edges created by the quantum constraint.
3a vertex v is called planar if the tangent space spanned by the tangents of the edges incident at v is at most

two-dimensional.
4Recall that, unlike the RS volume operator, planar vertices are annihilated by the AL volume operator [241].

Moreover, a mathematical consistency analysis [242, 243] shows that the RS operator [121] could be ruled out. It
is noteworthy that if one wants to define the continuum limit on some subspace of Cly∗, instead of Hkin, then RS
volume operator is a feasible option [244].
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Figure 4.3.: Action of the Hamiltonian constraint adds an extra edge (in blue) to the original
graph (in red) and sums up the contributions.

can be shown that the factor ordering just described is unique and any other ordering leads to
an operator which is not densely defined [55], thus there is no factor ordering ambiguity left.

• So far, in the choice of regulators, there is a huge amount of ambiguities. This itself is not
an issue if various regularisations lead to the same continuum limit. However, there is no
guarantee that this happens, if different families of regulators converge at all.

Diffeomorphism covariance of the classical constraint (4.2) motivates Thiemann to confine the
choice of triangulations. In fact, the need to make sure that the final quantum operator is
also covariant under diffeomorphisms will impose restriction on how a regularisation should be
implemented in the following way. Given two diffeomorphic graphs γ and γ′ together with
their adapted regulators {T(ϵ), v(∆), {si(∆)}, {αij(∆)}} and

{
T(ϵ′), v′(∆), {s′i(∆)}, {α′ij(∆)}

}
respectively, then one requires that for any choice of ϵ and ϵ′ the regulators to be related
by a diffeomorphism. This property is called “regulator covariance” [245]. If Cϵ[N ]|Ts⟩ =∑

v∈V (γ)N(v)Ĉϵ(v)|Ts⟩, then
Ĉϵ(v)|Ts⟩ = Û(ϕ)Ĉϵ′(v)|Ts⟩ (4.12)

The existence of such a family of well-defined covariant regulators in the kinematical Hilbert
space has been proven in [55, 57]. Note that this is the only “physical” requirement imposed on
regularisations. Although this requirement reduces many of the ambiguities in the attachment of
the loops and edges, there are still infinitely many of them left in the construction, as explained
in [246].

• As the operators (4.11) are graph-changing, one is confronted with the problem that
Ĉϵ[N ]|Ts⟩ is typically orthogonal to Ĉϵ′ [N ]|Ts⟩ for ϵ ̸= ϵ′ and so generically Ĉϵ[N ] fails
to converge in Hkin with respect to the weak operator topology5.

How small ϵ should be in order for the action of Ĉϵ[N ] to be defined seems to depend on the
underlying graph of the spin network. But at the diffeomorphism invariant level, the background-
independent feature of the theory makes the coordinate size ϵ lose its physical importance. Hence,
it can be verified that there exists ϵ̃ > 0 such that for all ϵ < ϵ̃ the action of Ĉϵ[N ] on any spin
network is well defined [55]. This property is called “uniform regulator covariance” [245] and

5We say that a net of operators Oi defined on H converges to an operator O in weak operator topology if for
all y ∈ H∗ and x ∈ H, the net y(Oix) converges to y(Ox).

73



Dynamics of LQG Section 4.2

was pointed out in [247] for the first time. Consequently, if ψ ∈ Hdiff is any diffeomorphism
invariant state, the value of ψ(Ĉϵ[N ]|fγ⟩) is actually independent of ϵ. Thus, Ĉϵ0 [N ] can simply
be defined as the limit operator for an arbitrary but fixed value of ϵ0, since the sequence of
numbers ψ(Ĉϵ[N ]|fγ⟩) obviously converge. This convergence holds with respect to the so-called
URS topology6 in which a sequence of operators Ôϵ is said to converge to Ô if for a given δ > 0,
there exist an ϵ′ such that

∣∣∣ψ ((Ôϵ′ − Ô)|fγ⟩
)∣∣∣ < δ for all fγ ∈ Hkin and ψ ∈ Hdiff. It has to

be noted here that the use of Hdiff is merely a means of setting up a suitable topology for the
operators defined on Hkin [1], and it should not be mistaken to assume that the limit operator is
dually defined on Hdiff, as is misunderstood in [244, 248, 249].

4.2.3. The Quantum Constraint Algebra
In the quantisation of constrained theories, the closure of the quantum constraint algebra is
an essential consistency requirement that must be met. Preferably one desires the quantum
constraint algebra to mirror that of the classical constraints but, if not feasible, at least it is
expected that the commutator between any two constraints is again a linear combination of
them. Even if this also is not the case, at the lowest level of expectation, it is required for the
consistency that the commutator annihilates physical states. In fact, if the commutator produces
an independent constraint, then the physical Hilbert space can not be consistently determined by
the solutions of the original constraints. It follows that the quantum theory loses some degrees
of freedom whence it does not have the proper limit. The new quantum constraint that might
be produced in the process of quantisation is called “anomaly” and a consistent quantum theory
is supposed to be “anomaly-free”.

In what follows, we discuss the quantum algebra between the diffeomorphism and Hamiltonian
constraints and we do not bother with the commutators involving the Gauss constraint as they
are straightforward to check.

4.2.3.1. The Commutators Involving Diffeomorphism Constraints

Because the infinitesimal generator of diffeomorphisms does not exist onHkin (see section 1.3.5.2),
only the finite and exponentiated versions of (1.33) and (1.34) can be tested in LQG. Using the
unitary representation of ϕ on the Hilbert space, that is (1.81), it is easy to verify that the formal
exponentiated forms of (1.33) and (1.34) are

Û(ϕ1)Û(ϕ2)Û(ϕ−1
1 )Û(ϕ−1

2 ) = Û(ϕ1 ◦ ϕ2 ◦ ϕ−1
1 ◦ ϕ

−1
2 ) (4.13)

Û(ϕ)−1Ĉ[N ]Û(ϕ) = Ĉ[ϕ∗N ] (4.14)

respectively. Needless to say, (4.13) is simply satisfied by construction, and hence the quantum
diffeomorphism constraint subalgebra is anomaly-free. To verify the validity of (4.14), following
[1], we calculate its both sides separately and compare them to one another. On one hand, the
l.h.s. gives us[

Û(ϕ)−1Ĉ[N ]Û(ϕ)
]
fϕ−1(γ) = Û(ϕ)−1Ĉ[N ]fγ =

∑
v∈V (γ)

N(v)Ĉϕ−1(ϵ(γ))(ϕ−1(v))fϕ−1(γ)

=
∑

v∈V (γ)
(ϕ∗N)(ϕ−1(v))Ĉϕ−1(ϵ(γ))(ϕ−1(v))fϕ−1(γ) (4.15)

6It stands for Uniform Rovelli-Smolin topology [1].
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and on the other hand, the r.h.s. results in

Ĉ[ϕ∗N ]fϕ−1(γ) =
∑

v∈V (ϕ−1(γ))
(ϕ∗N)(v)Ĉϵ(ϕ−1(γ))(v)fϕ−1(γ)

=
∑

v∈V (γ)
(ϕ∗N)(ϕ−1(v))Ĉϵ(ϕ−1(γ))(ϕ−1(v))fϕ−1(γ) (4.16)

The discrepancy between (4.15) and (4.16) is rooted in the fact that action of C(N) on fγ is
defined through a triangulation denoted by ϵ(γ) which is adapted to the graph γ, and in general
this triangulation is not mapped under ϕ−1 into the adapted triangulation ϵ(ϕ−1(γ)) by which
C(N) is supposed to act on a cylindrical function whose underlying graph is ϕ−1(γ). Succinctly,
ϕ−1(ϵ(γ)) = ϵ(ϕ−1(γ)) is not necessarily the case. However, one undoubtedly can map ϕ−1(ϵ(γ))
into ϵ(ϕ−1(γ)) by applying another diffeomorphism denoted by ϕ′ϕ−1(γ) and get[

Û(ϕ)−1Ĉ[N ]Û(ϕ)
]
fϕ−1(γ) =

(
Û(ϕ′ϕ−1(γ))Ĉ[ϕ∗N ]Û(ϕ′ϕ−1(γ))

−1)
fϕ−1(γ) (4.17)

Thus, although (4.14) is not fulfilled, there is no anomaly because the r.h.s. of (4.17) is a
constraint operator again. Put another way, as it is shown in [57], when the dual of the relation
(4.14) is realised to act on ψ ∈ Hdiff, one can rewrite it as [Û(ϕ), Ĉ[N ]] = Ĉ[ϕ∗N −N ], which is
obviously free of anomaly.

4.2.3.2. The Commutator Between Two Hamiltonian Constraints

The remaining and crucial commutator between two Hamiltonian constraints whose classical
version reads (1.35) is readily computed

[Ĉ(N),Ĉ(M)]fγ

=
∑

v∈V (γ)

(
M(v)Ĉ(N)−N(v)Ĉ(M)

)
Ĉϵ(γ)(v)fγ

=
∑

v∈V (γ)

∑
v′∈V (γ′)

(
M(v)N(v′)−N(v)M(v′)

)
Ĉϵ′(γ′)(v′)Ĉϵ(γ)(v)fγ

= 1
2

∑
v,v′∈V (γ)

(
M(v)N(v′)−N(v)M(v′)

) (
Ĉϵ′(γ′)(v′)Ĉϵ(γ)(v)− Ĉϵ′(γ′)(v)Ĉϵ(γ)(v′)

)
fγ

= 1
2

∑
v,v′∈V (γ)

(
M(v)N(v′)−N(v)M(v′)

) (
Û(ϕv′,v)− Û(ϕv,v′)

)
Ĉϵ(γ)(v)Ĉϵ(γ)(v′)fγ (4.18)

where ϵ(γ) is the triangulation adapted to γ and ϵ′(γ′) is the triangulation adapted to the graph
γ′ which is created by the action of Ĉ[N ] or Ĉ[N ] on a state fγ based on γ and we have used
the fact that, due to (4.12), there exists a diffeomorphism ϕv′,v such that Ĉϵ′(γ′)(v′)Ĉϵ(γ)(v) =
Û(ϕv′,v)Ĉϵ(γ)(v′)Ĉϵ(γ)(v). Note that the vertices added by the successive actions of Ĉ(v) will
remain untouched, since they are planar and so annihilated by AL volume operator in the heart
of Ĉ(v).

Thanks to the presence of
(
Û(ϕv′,v)− Û(ϕv,v′)

)
in (4.18), this pivotal result emerges that Hdiff

is annihilated by the dual of the commutator and so Thiemann’s quantisation of the Hamiltonian
constraint is mathematically consistent and anomaly-free 7.

7It can be seen that the operator would be anomalous if it acted at the vertices newly created by its action.
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4.2.4. Perfections and Imperfections
Having overviewed the construction of Thiemann’s quantum Hamiltonian constraint, we are
ready to list its perfections and imperfections. This is important for a better understanding of
the need to work on the U(1)3 model because it is finding a way to address the worrisome aspects
of Thiemann’s construction that actuates us to study toy models in order to get insights for
improvements in the full theory.

Perfections

1. There is no factor ordering ambiguity.
It turns out that any other ordering rather than what is chosen in (4.11) prevents Ĉ[N ]
from being densely defined [55, 250].

2. The Hamiltonian constraint operator is free of UV singularities.
As discussed in [240], if one leaves the Hamiltonian constraint as it appears in the classical
analysis, i.e. with its density weight one character, it is naturally devoid of any UV sin-
gularities. This is a direct consequence of the background independence property, which
holds not only for GR but also for any background-independent field theory.

3. Ĉ(N) has a non-trivial kernel.
The solutions of the Hamiltonian constraint are the states ψ ∈ Hdiff satisfying ψ(C̄(N)f) =
0 for all f ∈ Hkin and all N . The simplest solution is the LQG vacuum which is a state in
Hdiff and more complicated solutions have been constructed in [55, 56, 57]. Furthermore,
its matrix elements have widely been studied in [251, 252, 253, 254].

4. The quantum algebra of the constraints is anomaly-free
In the sense that the commutator of two constraints vanishes on ψ ∈ Hdiff. The final
Hamiltonian constraint is well defined on the kinematical Hilbert space and generates a
quantum Dirac algebra that is anomaly-free, in the sense that the action of the commutator
of two Hamiltonian constraints on an arbitrary spin network state results in a null state,
by averaging over spatial diffeomorphisms.

5. Ĉ[N ] is diffeomorphism covariant.
Since the classical constraint is diffeomorphism covariant, one expects that this feature will
be retained in its quantum version as well. The operator Ĉ(N) fulfils this requirement
decreasing a large amount of ambiguities.

Perfections in the disguise of imperfections

1. Habitat ambiguities
It was shown in [244, 248] that the commutator of two Hamiltonian constraint operator
annihilates elements of a space larger than Hdiff, called the habitat space (see section 7.1.1).
These papers are based on the idea of taking the refinement limit ϵ → 0 by means of the
elements of such a habitat. However, there may be a huge number of habitats on which the
limit can be carried out. This issue is called the habitat ambiguity [250] and have extensively
been discussed and addressed in [250, 1] in this way: since the habitats are not in the kernel
of the diffeomorphism constraint, they are unphysical and the habitat ambiguity is absent.
For more information consult [1].
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2. Ultra-locality
We have seen that the Hamiltonian constraint acts only on the vertices of a spin network
and its action on a given vertex is rather independent of its action on another one. Ul-
timately, it is the individual contributions of each vertex that add up to obtain the final
result. Based on this observation, criticism was made [255] claiming dynamical correla-
tions between distinct vertices would be missing by considering such an ultra-local action
for the Hamiltonian constraint. In contrast to LQG, this issue does not occur in lattice
gauge theory. The answer lies in the fundamental difference between the former and the
latter: Background independence feature because locality in the former strongly depends
on the fixed background. Furthermore, as explained in [250, 1], the contributions from two
different vertices do not commute which means they do influence each other.

3. On-shell closure
The constraint algebra, with Thiemann’s Hamiltonian constraint, closes off-shell, i.e. it
closes on the kinematical Hilbert space Hkin. It is a misnomer to say the algebra closes on-
shell just because URS topology was used to take the regulator limit (This has incorrectly
been used in many papers e.g. [256, 244, 245, 257]). In fact, the Hamiltonian constraint
densely defined on Hkin and not on the diffeomorphism invariant Hilbert space Hdiff. In
particular, the operator cannot be defined on the latter, as it does not even preserve Hdiff.

Imperfections

1. Loop attachment ambiguities
As we have a large amount of freedom in choosing the loops that have to be attached to
the graph under consideration, there are an infinite number of different allowed regulators
to construct the Hamiltonian constraint operator. Every two distinct regulators which are
not diffeomorphically related to each other leads to different regulated operators whose
continuum limits are not the same in the URS topology.

2. Loop representation ambiguities
The representation that is usually assigned to the exceptional edges is j = 1/2. In [1] it is
argued that spin 1/2 is a rather natural choice, but in fact, a complete semi-classical regime
is needed to provide a selection principle of the proper spin on the edges.

3. Faithful representation of the constraint algebra
Although the quantum Dirac algebra is free of anomaly, i.e. the algebra closes, one ex-
pects a more satisfactory situation in which the quantum structure functions are precisely
quantisations of the classical ones provided in [57]. The main reason for this is the lack of
quantum infinitesimal generators for spatial diffeomorphisms.

4. Semi-classical limit
Because of the intricate form of the Hamiltonian constraint operator (4.11), it is technically
difficult to understand the connection between classical and quantum dynamics. In other
words, there is no sufficient control on the classical limit of this theory, but in the context
of effective Hamiltonian constraint, the semi-classical analysis has been performed in [258,
259].

5. Physical Hilbert space
As already mentioned, although there exist systematical procedures to generate solutions
to the quantum constraint, a sufficient control on the general form of the solutions could
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not be provided. Note that since the Hamiltonian constraints do not generate an “honest”
Lie algebra, one cannot use RAQ techniques to find the solutions. As a result, explicit
expressions of the physical states are still in uncharted waters and construction of the
physical Hilbert space is out of reach.

4.2.4.1. An Attempt to Reduce Imperfections: Master Constraint Programme

Some difficulties in dealing with the aforementioned imperfections are due to the peculiarities of
the Dirac algebra:

1. The constraint algebra is not a true Lie algebra;

2. The Hamiltonian constraint cannot be defined directly on Hdiff, because the algebra does
not preserve Hdiff (Recall (1.34));

3. the implementation of (1.35) is not straightforward since there is no infinitesimal generator
for spatial diffeomorphisms.

These observations motivate the so-called Master constraint programme introduced in [58, 59]
and tested in [103, 260, 261, 262, 263]. The main idea is to replace the Dirac algebra by an
alternative classical constraint algebra which has the same constraint surface as before but is a
true Lie algebra so that the procedure of finding the solutions of the constraints becomes more
manageable.

The so-called master constraint proposed in [58, 59] is

M :=
∫

Σ
d3x

C(x)2√
det(q)

(4.19)

It turns out that the master constraint M = 0 is equivalent to the Hamiltonian constraints
C(x) = 0. In addition, the Gauß, diffeomorphism and master constraints together form the
following constraint algebra

{M, G(Λ)} = 0
{M, C⃗(N⃗)} = 0
{M,M} = 0 (4.20)

that obviously is an honest Lie algebra. The master constraint can be quantised following the
same prescription employed in quantising the Hamiltonian constraint C. In the context of the
master constraint programme, the quantisation is without anomaly and the faithfulness of the
constraint algebra representation cancels because the operator M is directly defined on the space
Hdiff. Importantly, in the context of this programme the “existence” of the physical Hilbert
space of LQG was proven in [58]. However, the other issues stated in section 4.2.4 could not be
addressed thoroughly and hence the programme has remained formal. For an interesting review
see e.g. [264, 265].

The difficulties one faces to define a quantum counterpart for the Hamiltonian constraint led
to the development of the spin foam models discussed in chapter 3. These models [214, 207, 208]
give rise to a concrete realisation of the sum over histories representing the path integral version
of LQG. However, they suffer from difficulties and ambiguities that prevents them from being
considered as a final answer to the dynamics in LQG. In the next section, we briefly discuss these
issues.
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4.3. Shortcomings of the Dynamics From Covariant Approach
One may wonder why one does not use the dynamics of the covariant approach when the dynamics
of the canonical approach has ambiguities that are difficult to resolve. Indeed, the dynamics in
the former is also a thorny problem and suffers from many ambiguities:

1. Imposing second-class constraints at the quantum level
In the quantisation procedure studied in section 3.3, we followed the strategy of “constrain-
ing before quantising” (see section 3.2.2) that has been seriously criticised in [219]. In fact,
the construction of the spin foam models in 4 dimensions is not based on systemic quantisa-
tion procedures, rather is established on new methods in which “second-class” constraints
are imposed at the quantum level. These methods still need to be tested adequately in
known physical systems. It was shown in [266] that application of these new methods to a
simple system leads to inconsistency. Thus, the question arising is whether the spin foam
models can be used beyond purely topological systems. One of our motivations to derive
the spin foam for the U(1)3 model will be to check these strategies.

2. Imposing the constraints at the classical level
An alternative approach would be the other way round, i.e. “quantising before constraining”
(see section 3.2.1) in which one discretises the simplicity constraints and include them at the
classical level in a discrete BF action (see for example [267]). Although the second method
seems more comprehensive, it gives rise to much more complicated and even non-local spin
foam amplitudes.

3. choice of cellular decomposition
Spin foam models suffer from some ambiguities. For instance, as 4 dimensional GR does
have local degrees of freedom, it depends on the choice of cellular decomposition of the
manifold. Indeed, the parameter space underlying allowed choices of discretisations includes
a very large number of decompositions among which we have to pick up one. In order to
achieve a quantum theory of continuous GR, this dependence must be eliminated somehow.
A candidate for recovering continuous GR is suggested by group field theory (GFT) [11, 268]
where the sum over the relevant complexes is automatically provided.

4. Using finite cell complex
Spin foam models use a finite cell complex and thus are not defined in the continuum in
contrast to the canonical theory. GFT brings in another huge ambiguity because they sum
over more than cell complexes.

5. Lack an honest derivation from the full theory
Spin foam models lack an honest derivation from the full theory: As is well known (see
e.g. [95]), a rigorous derivation of a path integral starts from the Hamiltonian formulation
using the Dirac matrix corresponding to a choice of gauge fixing conditions (see e.g. [235]
for a review and a concrete implementation for LQG). However, this has never been done.

6. Connection with the canonical approach
There is no connection between the canonical and covariant framework yet, although they
should be equivalent as the path integral should define the rigging map.

7. Representation cut-off
Spin foam models are divergent unless one cuts the representations by hand (e.g. using
quantum groups) even in Euclidean and even worse in Lorentzian signature.
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All these ambiguities in the dynamics of LQG, arising in both canonical and covariant ap-
proaches, encourage us to comprehensively analyse a theory that is simpler than gravity but yet
includes important and troublesome features of GR in the hope that there are lessons, hidden
in studying the simpler model, that are applicable to GR and can make progress toward solving
the problem of dynamics. Such a theory is the U(1)3 model that will be introduced in the next
chapter.
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CHAPTER 5.

The Weak Coupling Limit of Euclidean Gravity
(The U(1)3 Model)

5.1. Preliminaries
5.1.1. An Example of a Toy Model: Parametrised Field Theory
Parametrized Field Theories (PFT) [71, 72] are just free field theories on flat spacetime written
in generally covariant way by adding pure gauge degrees of freedom. The simplest PFT is the
two dimensional one with a massless scalar field on a cylinder that is briefly described here.
Consider the following canonical field theory on a Lorentzian Cylinder (M = S1 × R, η). The
spatial hypersurfaces are circles coordinated by the angular coordinate x ∈ [0, 2π]. In this theory
two fields, denoted by T , X determining the way of embedding the spatial slices in the Cylinder
in addition to a matter scalar field ϕ play the role of configuration variables that together with
their conjugate momenta PT , PX and Π, respectively, form the unconstrained phase space. One
immediately concludes that T,X are gauge degrees of freedom and have to satisfy the periodic
conditions. It is quite straightforward to derive the canonical formulation and see that the theory
is subject to the following constraints [85, 256]

D :=PTT
′ + PXX

′ + Πϕ′ (5.1)

C :=PTX
′ + PXT

′ + 1
2
(
Π2 + [ϕ′]2

)
(5.2)

where by prime sign we mean a derivation with respect to x. The constraints (5.1) and (5.2) are
the diffeomorphism and Hamiltonian constraints, respectively. Then, the Hypersurface Deforma-
tion Algebra can be easily computed

{D(f), D(g)} = D([f, g]), {D(f), D(g)} = C([f, g]), {C(f), C(g)} = D([f, g]) (5.3)

in which f, g are test functions we used for smearing the constraints and [f, g] := f ′g − fg′.
The canonical transformation X± := T ±X, P± := 1

2 (PT ± PX) and Y± := Π ± ϕ′ leads to the
constraints D± := 1

2(D+C) whose corresponding constraint algebra is much simpler than (5.3),
i.e.

{D±(f), D±(g)} = D±([f, g]), {D±(f), D∓(g)} = 0 (5.4)

that is the well-known Witt algebra (diff(S1) ⊕ diff(S1)). Hence, the gauge group is Diff(S1) ×
Diff(S1) that is a very appealing result because in LQG it is known how to deal with the spatial
diffeomorphisms using the RAQ method outlined in section 1.2.4.1. Therefore, on one hand
we have the Dirac algebra (5.3) consisting of the Hamiltonian and diffeomorphism constraints
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similar to that of canonical GR, and on the other hand we could complete the entire quantisation
program through the Witt algebra (5.4) and obtain physical Hilbert space Hphys of the theory.
It means that one could quantise the Hamiltonian and diffeomorphism constraints by means of
LQG techniques and see if there is a choice of their regularisations leading to Hphys obtained
through group averaging techniques. The complete analysis of this idea has been performed in
[81, 82, 83, 84, 85].

5.1.2. An Example of a Toy Model: Husain-Kuchar Model
The Husain-Kuchar theory [73] is a background independent theory sharing relevant symmetries
used in the quantum regime of GR as for instance the diffeomorphisms covariance, however, it
lacks the Hamiltonian constraint. The action depending on tetrad fields e and connections A is
of the form

S[e,A] = 1
4

∫
M
d4x ϵµνρσei

µe
j
νF

k
ρσϵijk (5.5)

where µ, ν · · · = 0, 1, 2, 3 are spacetime indices and i, j, · · · = 1, 2, 3 are su(2) indices. The action
(5.5) is invariant under spacetime diffeomorphisms and the gauge group SU(2). Defining ẽa

i :=
det(ei

a)ea
i and performing Legandre transformation, one can derive the constraints

Ca = F i
abẽ

b
i −Ai

aGi, Gi = −Daẽ
a
i = −∂aẽ

a
i − ϵijkA

j
aẽ

a
k (5.6)

that are diffeomorphism and Gauß constraint, respectively. The important feature of this theory
is the absence of the Hamiltonian constraint. It turns out that the constraints are first-class
saying that the theory has 3 local degrees of freedom. Notice that in this model, apart from
the Gauß constraint, the only constraint is the spatial diffeomorphism one whose algebra is
isomorphic to the Lie algebra (1.33). In other words, the Husain-Kuchar model is gravity without
the Hamiltonian constraint and this is exactly the system whose quantisation was completely
analysed in [86].

5.1.3. Purpose of This Chapter
Recall from section 4.2.4, in order to implement the dynamics of LQG, it is important to reduce
the ambiguities arising in the quantisation procedure. This should be done not by imposing some
criteria, but by specific physical conditions. The only physical condition used in construction of
Thiemann’s Hamiltonian constraint was general covariance that reduced a great deal of ambigui-
ties. Another essential physical condition would be to demand a faithful representation for Dirac
algebra of GR. While studying the aforementioned toy models turned out to be very useful, note
that the constraint algebra of either of them is a true Lie algebra and this is a major simplification!
Thus, they are not appropriate to gain insight for checking the correctness of the quantisation of
the structure functions appearing in the Dirac algebra within the LQG framework.

In this thesis, we treat another toy model: Weak coupling limit of Euclidean gravity introduced
by Smolin [2]. The gauge group of this model is the Abelian group U(1)3 that simplifies the
situation while it does not change the structure of the Dirac algebra; i.e. the constraint algebra
of the U(1)3 model is not a true Lie algebra and involves structure functions. This observation
makes the U(1)3 model an appealing test ground for LQG. The main aim of this thesis is to gain
additional insights and experience from this model, that will be introduced in this chapter, to
tackle the dynamics issue of the full LQG. The succeeding sections of this chapter are written
from parts of [90] and [91], respectively.
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5.2. Introduction of the U(1)3 Model
In [2] Smolin introduced the weak coupling limit of Euclidean gravity, that is GN → 0 where GN

is Newton’s gravitational constant, by expanding the canonical variables (A,E) as

E = E0 +GNE1 +G2
NE2 + ...

A = A0 +GNA1 +G2
NA2 + ...,

(5.7)

at the level of action. The consequential theory should not be confused with the usual perturba-
tion theory. To be precise, consider the canonical Hamiltonian of the Euclidean GR

Hcan[E,A] = 1
GN

∫
d3x

(
NaHa +NH + ΛiGi

)
(5.8)

If one rescales the dimensionful quantities in (5.8) by GN , i.e. Ai
a → GNA

i
a and Λi → GN Λi, the

Gauß constraint (1.26) and the curvature F i
ab change to

Gi =DaE
a
i = ∂aE

a
i + ϵij

kGNA
j
aE

a
k (5.9)

F i
ab =∂aA

i
b − ∂bA

i
a + ϵijkGNA

j
aA

k
b (5.10)

respectively. Note that SU(2) is still the internal gauge symmetry. However, in the limit GN → 0,
the ϵ terms in (5.9) and (5.10) which bring in the self-interaction are eliminated. Accordingly, in
this limit, a pair of Gauß constraints are Poisson commuting because

{G(Λ), G(Λ′)} ∝ GN , (5.11)

and the gauge group SU(2) contracts to three independent copy of U(1), namely U(1)3, each of
which is associated to one of the gauge fields Ai (i = 1, 2, 3). Consequently, the constraints that
are still first-class take the simpler forms

Cj [λj ] =
∫
d3x Λj∂aE

a
j

Ca[Na] =
∫
d3x Na

(
F j

abE
b
j −Aj

a∂bE
b
j

)
C[N ] =

∫
d3x NF j

abE
a
kE

b
l ϵjkl

(5.12)

where Cj , Ca and C are the Gauß, diffeomorphism and Hamiltonian constraints for the U(1)3

model respectively and F j
ab = ∂aA

j
b − ∂bA

j
a is the Abelian curvature. The canonical Hamiltonian

then becomes
Hcan[E,A] = 1

GN

∫
d3x

(
NaCa +NC + ΛiCi

)
(5.13)

and the only non-vanishing elements of the constraint algebra are

{Ca[Na], Cb[M b]} = Ca[L−→
N
Ma] (5.14)

{Ca[Na], C[N ]} = C[L−→
N
N ] (5.15)

{C[N ], C[M ]} = Ca[EiaEb
i (N∂bM −M∂bN)]. (5.16)

that is isomorphic to the Dirac algebra of GR, except for the vanishing Poisson bracket of a pair
of Gauß constraints Ci’s, as it can be readily compared with (1.32)-(1.35).
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As we will see for our analysis in chapter 8, it is beneficial to work with the density one valued
quadratic combinations

Hj
a = 1

2ϵabc ϵ
jklEb

kE
c
l = det(E) (E−1)j

a (5.17)

in terms of which the vector and scalar constraint can be written in an equivalent but unified
density two valued form

C̃j = ϵjklδ
kmBa

mH
l
a, C̃0 = Ba

jH
j
a (5.18)

where
Ba

j = ϵabc∂bA
k
cδkj (5.19)

defines the magnetic field1 of A. As usual, we have implicitly assumed that the triad E is nowhere
degenerate. Following [269, 270], we can now solve the constraints algebraically: Let

Ba
j = cjkδklE

a
l (5.20)

then the spacetime diffeomorphism constraints are simply equivalent to c = cT , Tr(c) = 0.
However, this is not the case because the Bianchi identity and the Gauß constraint additionally
implies

Ea
j ∂ac

kj = 0 (5.21)

which exhibits a system of three coupled first order PDE’s which is not solvable algebraically
anymore. Therefore, in order to proceed the gauge fixing analysis of chapter 8 is inevitable.

The virtue of the linearity property of the constraints in A is that the gauge transformations
generated by the constraints on Ea

j have a genuinely geometric interpretation: Evidently, Ea
j

is Gauß invariant and transforms as a vector density under spatial diffeomorphisms. A gauge
transformation generated by the scalar constraint has the effect (using the density one version)

δfE
a
j := {C(f), Ea

j } = −ϵabc∂b[fej
c] (5.22)

where ej
c is the density zero co-triad. It means that the scalar constraint shifts the divergence-free

part of the electric field which is in turn consistent with the Gauß constraint.
This guides us to perform the canonical transformation (A,E) 7→ (E,−A) and to view −A as

the momentum conjugate to E. We call this the (A,E) formulation. We can also consider a dual
(f,B) formulation as follows: It is consistent with the asymptotically flat boundary conditions
(see chapter 6) to solve the Gauß constraint in the form Ea

j = δa
j + ϵabc∂bf

j
c . When plugging this

into the symplectic potential and employing integration by parts, we obtain

θ =
∫

d3x Ea
j δA

j
a = δ[

∫
d3x Ea

jA
j
a]−

∫
d3x Aj

aδ[Ea
j − δa

j ] = δ[
∫

d3x Ea
jA

j
a]−

∫
d3x Ba

j δf
j
a

(5.23)
which presents −Ba

j as conjugate to f j
a . Notice that the roles of (f,−B) have changed compared

to (A,E): While the Gauß constraint depends only on E and hence transforms only A, we
do not have a Gauß constraint anymore but instead the Bianchi identity ∂aB

a
j = 0 which,

when considering B as a fundamental rather than a derived field, plays the role of a “dual Gauß
constraint”. Besides, the Bianchi identity depends only on B and just transforms f j

a and shifts its
curl-free part. Thus, the (B, f) formulation has the advantage that all constraints, i.e. spacetime
constraints together with the dual Gauß constraint, are linear in B and the former depend on
the momentum B conjugate to f only algebraically. This characteristic simplifies the study of
the reduced phase space of the U(1)3 model, as we will see in chapter 8.

1Throughout this thesis, the magnetic field is defined as the dual of the derivative of the spin connection.
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5.3. Hamiltonian Analysis of the Action of [2]
In [2], it is claimed that the action

S = 1
2

∫
d4x ϵµναβei

µe
j
νF

ij
αβ (5.24)

would be the covariant origin of the U(1)3 model, without any proof. Here, µ, ν, · · · ∈ {0, 1, 2, 3}
are spacetime indices and i, j, · · · ∈ 1, 2, 3 are Lie algebra indices. In this section, we discuss the
Hamiltonian analysis of this action and show the assertion is indeed invalid!

We begin with the 3+1 decomposition of (5.24), that is

S =
∫
dt

∫
d3x ϵabc

(
ei

te
j
aF

ij
bc + ei

ae
j
bF

ij
tc

)
(5.25)

Then, one can easily compute the conjugate momenta corresponding to the configuration variables
as

Pi := δS

δėi
t

= 0, P a
i := δS

δėi
a

= 0, πij := δS

δȦij
t

= 0, πa
ij := δS

δȦij
a

= ϵabcei
be

j
c (5.26)

leading to the primary constraints

Pi = 0, P a
i = 0, πij = 0, T a

ij := πa
ij − ϵabcei

be
j
c = 0 (5.27)

The Legendre transform of (5.27) gives rise to

H =
∫
d3x {viPi + vi

aP
a
i + vijπij + vij

a π
a
ij − L} (5.28)

=
∫
d3x {viPi + vi

aP
a
i + vijπij + vij

a T
a
ij − ϵabcei

te
j
aF

ij
bc + ϵabcei

ae
j
bA

ij
t,c} (5.29)

where vi, vi
a, v

ij , vij
a are the Lagrange multipliers and L is the Lagrangian of the action (5.25).

Stability of πij = 0 results in the Gauß secondary constraint

Gij = ϵabc∂c(ei
ae

j
b) (5.30)

Stability of Pi = 0 leads to three secondary constraints

Ci = ϵabcej
aF

ij
bc (5.31)

Stability of P a
i = 0 is acquired if and only if the following 9 equations are fulfilled

0 = 2(Aij
t,c − vij

c )ϵcabej
b − ϵ

abcej
tF

ji
bc

:= f ij
c ϵ

cabej
b − ϵ

abcej
tF

ji
bc

= f ij
k e

k
c ϵ

cabej
b − ϵ

abcej
tF

ji
bc

= fijkϵ
kljea

l det(e)− ϵabcej
tF

ji
bc (5.32)

that are equivalent to
fijkϵ

klj = ϵabcem
t F

mi
bc e

l
a det(e)−1 =: M l

i (5.33)

Noticing that fijk = 2(Aij
t,c − vij

c )ec
k is antisymmetric in i, j, one may express it as fijk = ϵijmg

m
k

for some matrix gm
k . Therefore, (5.33) can be rewritten as

gm
mδ

l
i − gl

i = M l
i (5.34)
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whose trace is given by 2gm
m = Mm

m . Plugging this into (5.34), we obtain

gl
i = 1

2M
m
m δ

l
i −M l

i (5.35)

showing that all fijk’s are fixed such that P a
i = 0 is stabilised.

Stability of T a
ij = 0 is achieved if and only of the following equation is satisfied

ϵcba∂b

(
e

[i
t e

j]
c

)
+ ϵabcv

[i
b e

j]
c = 0 (5.36)

Introducing vb
a := vi

ae
b
i , one observes

ϵabcvd
b e

[i
de

j]
c = −ϵcba∂b

(
e

[i
t e

j]
c

)
=: Ma

ij (5.37)

We mow multiply both sides in ee
[ie

f
j] and get

ϵab[fv
e]
b = Ma

ije
e
[ie

f
j] (5.38)

and again by multiplying it in ϵacd, we arrive at

2δ[f
d v

e]
c = ϵacdM

a
ije

e
[ie

f
j] (5.39)

from which the solution follows as

vd
b = 1

2M
a
ijϵabce

d
[ie

c
j] (5.40)

Hence, the stability of T a
ij = 0 is obtained by fixing all the vi

a.
Therefore, all the primary constraints are stabilised. Now, it is time to examine the stability of
the secondary ones.

Stabilisation of Gij is already obtained, since T a
ij and πc

ij,c are stable. Modulo T a
ij = 0 the

Gauß constraint is equivalent to Ĝij = πc
ij,c generating U(1)3 gauge transformations.

To verify the stability of Ci, we note that it is equivalent to Ca := ei
aCi = ϵdbcej

de
i
aF

ij
bc =

ϵdbcej
[de

i
a]F

ij
bc . According to (5.27), it is immediately concluded that, modulo T a

ij = 0, the equa-
tion ϵabcπ

a
ij = 2ei

[be
j
c] holds. Thus, modulo T a

ij = 0, we have

Ca = ϵdbcej
[de

i
a]F

ij
bc = 1

2ϵ
dbcϵedaπ

e
ijF

ij
bc = −1

2(δb
eδ

c
a − δb

aδ
c
e)πe

ijF
ij
bc = F ij

abπ
b
ij (5.41)

In addition, modulo T a
ij = Gij = 0 we have Ca = F ij

abπ
b
ij − Aij

a Ĝij that generates spatial diffeo-
morphisms on (Aij

a , π
a
ij). Since P̂ i

a, Pi is already stabilised, some terms linear in P̂ a
i , Pi can be

added to Ca such that the resulting constraint Ĉa generates spatial diffeomorphisms also on the
variables ei

a, P
a
i , e

i, Pi. As all the constraints are tensor densities, the constraint Ĉa and thus Ca

is already stabilised.

Classification of the constraints:

Note that all constraints are independent of Aij
t , e

i
t, hence both πij , Pi are first-class constraints.

86



The Weak Coupling Limit of Euclidean Gravity (The U(1)3 Model) Section 5.3

On the other hand, since all constraints either are invariant or covariant under Gauß transfor-
mations and spatial diffeomorphisms, both Ĝij and Ĉa turn out to be first-class.
The second-class constraints are P a

i , T
a
ij . To see this, it is required to show that the matrix

∆ab
ij := {P a

i , T
b
j } = −ϵabcϵijke

k
c (5.42)

is invertible as a symmetric (under (a, i)↔ (b, j)) 9× 9 matrix, where T b
j := T b

klϵjkl/2. One can
easily check that

∆ij
ab = −3

4ϵ
ijkϵabce

c
k + 1

2 det(e)−1e(i
a e

j)
b (5.43)

is the inverse of (5.42), i.e., ∆ab
ij ∆jk

bc = δa
c δ

k
i and thus P a

i , T
a
ij form a second-class pair. Therefore,

since we have 18 second-class and 12 first-class constraints, the number of our degrees of freedom
is 48 − (2 · 12 + 18) = 6. This observation proves that the action of [2] cannot be a Lagrangian
origin of the Hamiltonian U(1)3 theory that has only four propagating degrees of freedom. Note
that in the above analysis, the Hamiltonian constraint C = F j

abϵjklE
a
kE

b
l does not emerge as a

secondary constraint, just as in the Husain-Kuchar model [73] (see section 5.1.2).
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CHAPTER 6.

Asymptotically Flat Boundary Conditions

6.1. Preliminaries
6.1.1. Review of Asymptotically Flat boundary Conditions for the SU(2) Case
In general, consistent boundary conditions are supposed to render finite integrable charges asso-
ciated with the asymptotic symmetries and simultaneously preclude any divergence in symplectic
structure. Here, by integrability, we mean the variation of the surface charge is an exact one-form.
In the ADM formulation of asymptotically flat spacetimes, asymptotic spheres are described by
the asymptotically cartesian coordinates xa at spatial infinity; i.e. r → ∞ where r2 = xaxa.
Using these coordinates, one seek appropriate boundary conditions and observes that on any
hypersurface, the decay behaviours of the spatial metric qab and its conjugate momentum πab

have to be

qab =δab + hab

r
+O(r−2)

πab =pab

r2 +O(r−3)
(6.1)

where hab and pab are smooth tensor fields on the asymptotic 2-sphere. In (6.1), the former is
directly inherited from the form of the spacetime metric of the asymptotically flat case. On the
other hand, the latter is a outcome of demanding a non-vanishing ADM momentum. In order
to remove the logarithmic singularity existing in the symplectic structure, the leading terms in
(6.1) require to be restricted by extra certain parity conditions as

hab

(
−x
r

)
= hab

(
x

r

)
, pab

(
−x
r

)
= −pab

(
x

r

)
(6.2)

Indeed, since the coefficient of the singularity is the integral of pabḣab over the sphere, (6.2)
make it vanish and eliminate the singularity. The parity conditions also yield the finite and
integrable Poincaré or ISO(4) charges.

Moreover, intending to preserve the boundary conditions (6.1) invariant under the hypersurface
deformations,

δqab =−2sN
√
q

(πab −
1
2πqab) + LN⃗qab

δπab =−N√q((3)R
ab − 1

2q
ab(3)R)− sN

2√q (πcdπ
cd − 1

2π
2)qab

+ 2sN
√
q

(πacπc
b − 1

2π
abπ) +√q(DaDbN − qabDaD

bN) + LN⃗π
ab,

(6.3)
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one also needs to restrict the dacay behaviours of the lapse function, N , and the shift vector,
Na. In (6.3), q := det(qab), (3)Rab is the Ricci tensor of the spatial hypersurface, Da is the
torsion free, metric compatible connection with respect to qab and s denotes the signature of
spacetime mertic, i.e. s = +1 and s = −1 for Euclidean and Lorentzian spacetimes, respectively.
It transpires that the most general behaviour of them including the generators of the asymptotic
Poincaré and ISO(4) groups are

N = βax
a + α+ S +O(r−1)

Na = βa
bx

b + αa + Sa +O(r−1),
(6.4)

where βa and βab(= −βba) are arbitrary constants displaying boosts and rotations. Here, if va

denotes the velocity, then the boost parameter is βa = va
√

1+sv2 =: γva satisfying the identity
γ2 + sγ2v2 = 1. This identity shows that for a Euclidean boost, when s = 1, the sine and
cosine appear in the transformation matrix, indicating that the Euclidean boost is nothing but
a rotation in the x0, x⃗ plane. Furthermore, the arbitrary function α, and arbitrary vector αa

represent temporal and spatial translations respectively and S, Sa which are odd functions on
the asymptotic S2 are associated with supertranslations.

On the other hand, since in vacuum GR, the smeared versions of the constraints (1.17) and
(1.18), i.e.

Ha[Na] := −2
∫
d3x NaDbπ

b
a,

H[N ] :=
∫
d3x N

(
−s
√
q

[
(qacqbd −

1
2qabqcd)πabπcd

]
−√q (3)R

) (6.5)

respectively, are the generators of gauge transformations, they need to be finite and function-
ally differentiable so that their Poisson bracket with any phase-space function can be derived.
According to (6.1) and (6.4), we can easily see that the constraints (6.5) are neither finite nor
differentiable. To circumvent this problem, a surface integral destroying differentiability is sup-
posed to be subtracted from the variation of the constraint functionals. As mentioned before,
appropriate boundary conditions give rise to an exact surface term and, thus we can introduce
new expressions for the constraints that now are functionally differentiable. The last step is to
check the convergence of the resulting expressions. Having done this procedure, the authors of
[271] derived the following well-defined generators

J [N ] := H[N ] + 2
∮
dSd
√
qqa[bqc]d[N∂bqca − ∂bN(qca − δca)]

Ja[Na] := Ha[Na] + 2
∮
dSa Nbπ

ab
(6.6)

where
∮

is the integration over the asymptotic 2-sphere.

The above analysis in terms of ADM variables language can be translated to the Ashtekar-
Barbero variables (Ai

a, E
a
i ). Remember from section 1.3.2 that the connection, Ai

a, is an su(2)-
valued one-form and its momentum conjugate, Ea

i , is a densitised triad. However, it is challenging
because in Ashtekar-Barbero formalism there is an additional internal su(2) frame whose asymp-
totic behaviour has to be determined.
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Subsequently, the boundary conditions (6.1) and (6.2) in terms of the Ashtekar-Barbero vari-
ables can be expressed as

Ea
i = δa

i + fa
i

r
+O(r−2)

Ai
a = gi

a

r2 +O(r−3)
(6.7)

where

δa
i =

{
1 if (a, i) = (x, 1), (y, 2), (z, 3),
0 otherwise.

and fa
i and gi

a are tensor fields defined on the asymptotic 2-sphere admitting the definite parity
conditions

fa
i

(
−x
r

)
= fa

i

(
x

r

)
, gi

a

(
−x
r

)
= −gi

a

(
x

r

)
. (6.8)

The fall-off conditions (6.7) and (6.8) ensure that the symplectic structure is well-defined.
Recall from section 1.3.2 that the smeared versions of the constraints of Euclidean GR in the

(A,E)-phase space are given by

Gi[Λi] =
∫
d3x Λi

(
∂aE

a
i + ϵijkA

j
aE

a
k

)
Ha[Na] =

∫
d3x Na

(
F j

abE
b
j −Aj

aGj

)
H[N ] =

∫
d3x NϵijkF

i
abE

a
jE

b
k

(6.9)

that are Gauß, diffeomorphism and Hamiltonian constraints, respectively.
Here,

F i
ab = ∂aA

i
b − ∂bA

i
a + ϵijkA

j
aA

k
b , (6.10)

and Λi is the Lagrange multiplier corresponding to Gi and as usual, Na is the shift vector and N
is the densitised lapse function with weight −1. We want to obtain well-defined forms of these
functionals when smearing functions include the ISO(4) generators (6.4). For this goal, first, one
has to determine an appropriate fall-off behaviour for Λi. Since the leading term of Gi is O(r−2)
odd, convergence of Gi[Λi] requires the decay condition

Λi = λi

r
+O(r−2) (6.11)

where λi are even functions defined on the asymptotic S2. It is straightforward to examine
that the differentiability of Gi[Λi] is also assured by (6.11). Concerning the diffeomorphism and
Hamiltonian constraints in (6.9), one finds that even after subtracting the surface integral spoil-
ing differentiability, the constraints are convergent only for translations and not for boosts and
rotations. This situation should be modified in such a way that 1) the generators remain function-
ally differentiable and 2) the well-defined generator for translations that is already available stay
untouched up to a pure gauge. It is revealed in [272, 273] that the final well-defined symmetry
generators are

J [N ] = H[N ]−
∮
dSa NϵijkA

i
bE

a
jE

b
k −Gi[Λi

B] +
∮
dSa E

a
i Λ̄i

B

Ja[Na] = Ha[Na]−
∮
dSa N

aAi
bE

b
i −Gi[Λi

R] +
∮
dSa E

a
i Λ̄i

R

(6.12)
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where Λi
R = Λi +Λ̄i

R = Λi− 1
2ϵijkδ

j
aδ

b
kβ

a
b and Λi

B = Λi +Λ̄i
B = Λi +δa

i βa. The second term existing
in either expressions in (6.12) is the surface term subtracted to make the original functionals
(6.9) differentiable. Moreover, we have subtracted the third term to get rid of the source of
divergence for boosts and rotations. But this term puts the functionals again in the status of
non-differentiability which is cured by adding the last term. Note that as we expected, the volume
terms added to the constraints are proportional to the Gauß constraint and thus the translation
generator does not change on the constraint surface of the Gauß constraint.

6.1.2. Purpose of This Chapter
As explained before, the canonical quantisation bifurcates into two different approaches Dirac
quantisation (see chapter 1) and reduced phase space quantisation (see chapter 2). In the case of
the U(1)3 model, much recent development has been made in the former [87, 88, 274, 275] and
working on the latter has started in [89] where the study is confined to the spatial topology of
R3 together with asymptotically flat boundary conditions. As asymptotically flat spacetimes are
of prominent importance in GR, this chapter whose content is mainly from [90, 89] is devoted
to investigating their properties in the U(1)3 model. The results of this chapter have extensively
been used in [89] which was in fact the main motivation for the present study.

To reach asymptotic symmetry generators1, we find boundary terms for the constraints that
produce well-defined phase-space functionals and Poisson brackets, while lapse function and shift
vector obey fall-off conditions associated with asymptotic symmetry transformations. In the case
of Lorentzian or Euclidean GR, we expect these well-defined functions to generate the Poincaré or
ISO(4) group respectively depending on the signature. Regarding the U(1)3 theory, one examines
to what extent ISO(4) transformations can be recovered. In fact, the question is whether there
are well-defined generators for all transformations of ISO(4) in this model or not, and where the
possible discrepancies with the full GR come from.

6.2. Generators of Asymptotic Symmetries for the U(1)3 Model in
the (A, E) Description

As the U(1)3 model is a testing ground for GR, we are interested to know whether the boundary
conditions and asymptotic symmetries of these two theories are identical. In particular, we wish
to answer the question of whether the ISO(4) group can be regarded as the asymptotic symmetries
of the model. In other words, is it possible to build well-defined functionals out of the constraints
(5.12) while the lapse and shift include the ISO(4) generators? Since the model being pursued is
not Euclidean GR, we don’t presume to have the whole ISO(4) group as its asymptotic symmetry.
However, it is intriguing to study to what extent the model admits a subgroup of the ISO(4)
group. In the following, we analyse the constraints (5.12) and try to make them well-defined in
the presence of boundary terms.

6.2.1. Gauß Constraint
The Gauß constraint acts on the phase-space variables as

δΛA
j
a = {Ci[Λi], Aj

a} = −∂aΛj

δΛE
a
j = {Ci[Λi], Ea

j } = 0
(6.13)

1There are lots of papers working on asymptotic symmetries, to get more information see e.g. [276, 277, 278,
279, 280, 281, 282, 283, 284, 285, 286, 92]
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Thus we see that

δCj [Λj ] =
∫
d3x Λj∂aδE

a
j =

∮
dSa ΛjδEa

j −
∫
d3x (∂aΛj)δEa

j = −
∫
d3x (∂aΛj)δEa

j

=
∫
d3x

[
(δΛA

j
a)δEa

j − (δΛE
a
j )δAj

a

] (6.14)

is functionally differentiable. We have dropped the surface term since δEa
j = O(r−1) even and

Λj = O(r−1) even. Furthermore, the constraint is also finite because ∂aE
a
j = O(r−2) odd and

consequently the integrand of Cj [Λj ] is O(r−3) odd.

6.2.2. Vector Constraint
The action of the vector constraint on the canonical variables is

δN⃗A
i
c(x) ={Ca[Na], Ai

c(x)} = −LN⃗A
i
c

δN⃗E
c
i (x) ={Ca[Na], Ec

i (x)} = −LN⃗E
c
i

(6.15)

Hence, its variation is derived as

δCa[Na] =
∫
d3x Na

(
δF j

abE
b
j + F j

abδE
b
j − δAj

a∂bE
b
j −Aj

a∂bδE
b
j

)
=
∫
d3x Na

(
∂aδA

j
bE

b
j − ∂bδA

j
aE

b
j + ∂aA

j
bδE

b
j − ∂bA

j
aδE

b
j − δAj

a∂bE
b
j −Aj

a∂bδE
b
j

)
=
∫
d3x

(
δAj

a∂b(NaEb
j )− δAj

b∂a(NaEb
j ) +Na∂aA

j
bδE

b
j −Na∂bA

j
aδE

b
j

−NaδAj
a∂bE

b
j + ∂b(NaAj

a)δEb
j

)
+
∮
dSa (NaEb

jδA
j
b −N

bEa
j δA

j
b −N

bAj
bδE

a
j )

=
∫
d3x

(
δAj

a

[
Eb

j∂bN
a − ∂b(N bEa

j )
]

+ δEb
j

[
Na∂aA

j
b +Aj

a∂bN
a
])

+
∮
dSa (NaEb

jδA
j
b −N

bEa
j δA

j
b)

=
∫
d3x

(
δAj

a

[
−LN⃗E

a
j

]
+ δEb

j

[
LN⃗A

j
b

])
+
∮
dSa (NaEb

jδA
b
j −N bEa

j δA
j
b)

=
∫
d3x

(
δAj

a

[
δN⃗E

a
j

]
− δEb

j

[
δN⃗A

j
b

])
+ δ

∮
dSa (NaEb

jA
j
b −N

bEa
jA

j
b) (6.16)

Here the third term of the surface integral in the fourth line can be put away because it is O(1)
odd for a rotation and O(r−1) even for a translation. Furthermore, in the last step we have pulled
the variation out of the surface integral as the correction terms are O(r−1) even for a translation
and O(1) odd for a rotation.

Based on this observation, the new generator should be defined as

C ′a[Na] := Ca[Na]−
∮
dSa

(
NaEb

j −N bEa
j

)
Aj

b (6.17)

that is functionally differentiable. To check its finiteness, we re-express (6.17) as a volume integral
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C ′a[Na] =
∫
d3x

[
NaF j

abE
b
j −NaAj

a∂bE
b
j − ∂a(NaEb

jA
j
b −N

bEa
jA

j
b)
]

=
∫
d3x

[
NaF j

abE
b
j −NaAj

a∂bE
b
j −NaEb

jF
j
ab − ∂a(NaEb

j −N bEa
j )Aj

b

]
=−

∫
d3x

[
NaAj

a∂bE
b
j + ∂a(NaEb

j −N bEa
j )Aj

b

]
=−

∫
d3x Aj

b

[
Eb

j∂aN
a +Na∂aE

b
j − Ea

j ∂aN
b
]

= −
∫
d3x Aj

bLN⃗E
b
j (6.18)

In the last line of (6.18), the term AN∂E is convergent, because it is O(r−4) even for a trans-
lation and O(r−3) odd for a rotation. Since αa is a constant and βa

b is antisymmetric, the term
Aj

bE
b
j∂aN

a vanishes for both translation and rotation. Moreover, the other term of the form
AE∂N is O(r−2) odd for a rotation and vanishes for a translation. Putting all information to-
gether, one concludes C ′a[Na] is well-defined for a translation and the source of its divergence for
a rotation is ∫

d3x Aj
bE

a
j β

b
a =

∫
d3x βb

aA
j
b

(
δa

j +
fa

j

r
+ . . .

)

=
∫
d3x βb

aA
j
bδ

a
j +

∫
d3x βb

aA
j
b

fa
j

r
+ finite

=
∫
d3x βb

aA
j
bδ

a
j + finite

(6.19)

where the integrand of the second integral in the second line is O(r−3) odd and so the convergence
is ensured. Again, since (6.19) cannot be expressed in terms of the constraints, it is not admissible
to subtract the volume integral from (6.17). Consequently, while spatial translations have a well-
defined generator (6.17), rotations do not!

6.2.3. Scalar Constraint
It is straightforward to obtain the action of the scalar constraint in Ashtekar-Barbero variables
as

δNA
i
c(x) = {C[N ], Ai

c(x)} = −2NϵijkF
j
acE

a
k

δNE
c
i (x) = {C[N ], Ec

i (x)} = 2ϵikl∂b(NEc
kE

b
l )

(6.20)

Immediately it follows that the variation of this constraint is

δC[N ] =
∫
d3x ϵjklN

(
δF j

abE
a
kE

b
l + 2F j

abE
b
l δE

a
k

)
=
∫
d3x ϵjklN

(
(∂aδA

j
b − ∂bδA

j
a)Ea

kE
b
l + 2F j

abE
b
l δE

a
k

)
= 2

∫
d3x ϵjkl

(
∂a(NEa

kE
b
l δA

j
b)− δAj

b∂a(NEa
kE

b
l ) +NF j

abE
b
l δE

a
k

)
=
∫
d3x 2ϵjkl

(
NF j

abE
b
l δE

a
k − δA

j
b∂a(NEa

kE
b
l )
)

+ 2
∫
dSa(NEa

kE
b
l δA

j
b)

=
∫
d3x

(
δAj

b(δNE
b
j )− (δNA

k
a)δEa

k

)
+ 2δ

∮
dSa ϵjkl(NEa

kE
b
lA

j
b) (6.21)
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The variation have been pulled out of the surface integral in (6.21) as the correction terms are
O(r−1) even for a translation and O(1) odd for a boost. Now we introduce the new generator as

C ′[N ] := C[N ]− 2
∮
dSa NϵjklA

j
bE

a
kE

b
l (6.22)

which is functionally differentiable. At this step, the finiteness has to be checked.

C ′[N ] =
∫
d3x ϵjkl

(
F j

abE
a
kE

b
lN − 2∂a(Aj

bE
a
kE

b
lN)

)
=2
∫
d3x ϵjkl

(1
2F

j
abE

a
kE

b
lN − Ea

kE
b
lN∂aA

j
b −A

j
bE

b
lN∂aE

a
k −A

j
bE

a
kN∂aE

b
l −A

j
bE

a
kE

b
l ∂aN

)
=− 2

∫
d3x ϵjkl

(
Aj

bE
b
lN∂aE

a
k +Aj

bE
a
kN∂aE

b
l +Aj

bE
a
kE

b
l ∂aN

)
(6.23)

Here terms of the form AEN∂E are convergent because they are O(r−4) even for a translation
and O(r−3) odd for a boost. The last term which is of the form AEE∂N vanishes for a translation
but is divergent for a boost. Therefore, C ′[N ] is well-defined for a translation and the source of
its divergence for a boost is

−2
∫
d3x ϵjkl(Aj

bE
a
kE

b
l βa) = −

∫
d3x

1
r2 (βaϵjklg

j
bδ

a
kδ

b
l )−

∫
d3x βaϵjklA

j
bδ

a
kE

b
l + finite

= −
∫
d3x βaϵjklA

j
bδ

a
kE

b
l + finite (6.24)

where we have used the parity of gj
b to drop the linear singularity in going from the first line to

the second one and so we are left with the logarithmic singularity. To get rid of the divergence,
we have to subtract (6.24) from (6.22) but this would not be done as it has an undesirable effect
on the constraint surface since (6.24) is proportional neither to the constraints nor to a part of
them. Consequently, time translations admit a well-defined generator (6.22), but boosts do not!
A more detailed argument is given in section 6.3.

6.3. Comparison with the SU(2) Case
In this section, we aim to put the setting under scrutiny and see what causes the SU(2) and
U(1)3 cases so different that the latter does admit generators for boosts and rotations, but
the former does not. First, we split F i

ab and Gi into its Abelian and non-Abelian pieces, i.e.
F i

ab = F i+
ab + F i−

ab and Gi = G+
i + G−i where F i+

ab = ∂aA
i
b − ∂bA

i
a, F i−

ab = ϵijkA
j
aA

k
b , G+

i = ∂aE
a
i

and G−i = ϵijkA
j
aE

a
k ; accordingly the Hamiltonian and diffeomorphism constraints have also two

pieces associated with the plus and minus parts of F i
ab and Gi, namely H[N ] = H+[N ] +H−[N ]

and Ha[Na] = H+
a [Na] +H−a [Na], where

H+[N ] =
∫
d3x NϵjklF

j+
ab E

a
kE

b
l , H−[N ] =

∫
d3x NϵjklF

j−
ab E

a
kE

b
l (6.25)

H+
a [N ] =

∫
d3x Na(F j+

ab E
b
j −Aj

aG
+
j ), H−a [N ] =

∫
d3x Na(F j−

ab E
b
j −Aj

aG
−
j ) = 0. (6.26)

Due to the boundary conditions, F i−
ab = O(r−4) even and G−i = O(r−2) odd. Thus, the

integrand of H−[N ] is O(r−4) even for a translation and O(r−3) odd for a boost. It means that
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the minus pieces of these constraints are already finite. Moreover, H−[N ] is also functionally
differentiable since its action on the canonical variables is

δN−Al
c := {H−[N ], Al

c(x)} = −2NϵilkϵimnA
m
c A

n
bE

b
k

δN−Ec
l := {H−[N ], Ec

l (x)} = 2NϵijkϵilnE
c
jE

b
kA

n
b

(6.27)

using which one observes

δH−[N ] =
∫
d3x Nϵjkl(δF j−

ab E
a
kE

b
l + F j−

ab δE
a
kE

b
l + F j−

ab E
a
kδE

b
l )

=
∫
d3x (δAl

c(2NϵijkϵilnE
c
jE

b
kA

n
b ) + δEc

l (2NϵilkϵimnA
m
c A

n
bE

b
k))

=
∫
d3x (δAl

c(δN−Ec
l )− δEc

l (δN−Al
c))

(6.28)

showing that H−[N ] is differentiable. Consequently, what need to be modified are H+[N ] = C[N ]
and H+

a [Na] = Ca[Na], thus all failure to be well-defined is rooted in the U(1)3 part of the
Hamiltonian and diffeomorphism constraints existing in the SU(2) case. So, as long as finding
the source of divergence and non-differentiability is concerned calculations are the same in both
cases. This brings us back to (6.24) and (6.19) for boosts and rotations respectively.

The source of divergence for boosts is

−
∫
d3x βaϵjklA

j
bδ

a
kE

b
l =

∫
d3x (βaδ

a
k)G−k =

∫
d3x Λ̄k

B(Gk −G+
k )

= Gk[Λ̄k
B]−

∫
d3x ∂b(Λ̄k

BE
b
k)

= Gk[Λ̄k
B]−

∮
dSbΛ̄k

BE
b
k (6.29)

where we used ∂bΛ̄k
B = 0. As expected, the volume term is proportional to Gk and does not affect

the constraint surface. One can check that J [N ] in (6.12) is the final well-defined generator. This
is precisely the crux of the matter: in the U(1)3 model, the absence of G−k is responsible for the
exclusion of a well-defined boost generator.

Let’s move on to (6.19) and try to get rid of it. We see∫
d3x Aj

bβ
b
aδ

a
j =

∫
d3x Aj

b(ϵijkδ
b
kΛ̄i

R)

=
∫
d3x Aj

b(ϵijkE
b
kΛ̄i

R)−
∫
d3x Aj

b(ϵijk
f b

k

r
Λ̄i

R) + finite

=
∫
d3x Λ̄i

RG
−
i + finite

=
∫
d3x Λ̄i

R(Gi −G+
i ) + finite

= Gi[Λ̄i
R]−

∮
dSa Λ̄i

RE
a
i + finite (6.30)

where we used ∂aΛ̄i
R = 0 and omitted the second integral in the second line because it is O(r−3)

odd. As desired, again, the volume term is proportional to the Gauß constraint. It is straightfor-
ward to see that Ja[Na] is the well-defined generator for the spatial translations and rotations.
As in (6.29), the presence of G−i (which is absent in the case of U(1)3) plays a crucial role in
obtaining the generator.
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To the technical argument we may add another intuitive one:
The SU(2) Gauß constraint generates rotations on the internal tangent space corresponding to the
internal indices j, k, l, . . . , while asymptotic rotations act on the spatial tangent space associated
with the indices a, b, c, . . . . Due to the boundary conditions Ea

j ∝ δa
j , these tangent spaces are

identified in leading order, so it is not surprising that one can “undo” an unwanted asymptotic
rotation by an internal one. In the case of U(1)3, this cannot work because the Gauß constraint
does not generate internal rotations.

6.4. Generators of Asymptotic Symmetries for the U(1)3 Model in
the (B, f) Description

In this section, we consider two boundary conditions. The first is simply a transcription of the
boundary conditions (6.7) and (6.8), while for the other we use the reverse parity conditions. We
will see in chapter 8 that the latter is beneficial to achieve a simple physical Hamiltonian in the
process of reduced phase space quantisation in the (B, f) description [89].

6.4.1. Standard Parity Conditions
Since Ea

i = δa
i + ϵabc∂bf

i
c and Ba

i = ϵabc∂bA
i
c, transcription of the boundary conditions (6.7) and

(6.8) applicable to (A,E) to the (B, f) variables yields

f i
a = ci

a + F̄ i
a +O(r−1)

Ba
i = Ḡa

i

r3 +O(r−4) (6.31)

where ci
a are constants and F̄ i

a and Ḡa
i are tensor fields defined on the asymptotic 2-sphere with

the following certain parity conditions.

F̄ i
a

(
−x
r

)
= −F̄ i

a

(
x

r

)
, Ḡa

i

(
−x
r

)
= Ḡa

i

(
x

r

)
. (6.32)

which are a direct consequence of the definite parities of the leading terms of A and E (recall
that the former is odd and the latter is even). By the fall-off conditions (6.31) and (6.32), we
ensure that the symplectic structure is well-defined.

6.4.1.1. Bianchi Constraint

Recall that the smeared version of the Bianchi constraint reads

Ci[Λi] =
∫
d3x Λi∂aB

a
i (6.33)

Since ∂aB
a
i decays as O(r−4) odd, the minimal condition for the multiplier Λi that ensures the

convergence of the integral is
Λi = λir +O(1) (6.34)

where λi are even functions defined on the asymptotic S2, i.e.

λi
(
−x
r

)
= λi

(
x

r

)
(6.35)
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The Bianchi constraint acts on the phase-space variables as

δΛf
j
a = {Ci[Λi], f j

a} = −∂aΛj

δΛB
a
j = {Ci[Λi], Ba

j } = 0
(6.36)

Thus, the Bianchi constraint is functionally differentiable, because

δCj [Λj ] =
∫
d3x Λj∂aδB

a
j =

∮
dSa ΛjδBa

j −
∫
d3x (∂aΛj)δBa

j = −
∫
d3x (∂aΛj)δBa

j

=
∫
d3x

[
(δΛf

j
a)δBa

j − (δΛB
a
j )δf j

a

]
(6.37)

Here we dropped the surface term since δBa
j = O(r−3) even and Λj = O(r) even.

6.4.1.2. Vector Constraint

The action of the vector constraint the canonical variables is

δN⃗f
i
c(x) ={Ca[Na], f i

c(x)} = ϵabcN
a(δb

i + ϵbde∂df
i
e)

δN⃗B
c
i (x) ={Ca[Na], Bc

i (x)} = ϵabcϵ
bde∂d(NaBc

i )
(6.38)

So, its variation reads

δCa[Na] =
∫
d3x Na

(
ϵabcδB

c
j (δb

j + ϵbde∂df
j
e ) + ϵabcϵ

bdeBc
j∂dδf

j
e

)
=
∫
d3x

(
ϵabcN

aδBc
j (δb

j + ϵbde∂df
j
e )− ϵabcϵ

bde∂d(NaBc
j )δf j

e

)
+
∮
dSd ϵabcϵ

bdeNaBc
jδf

j
e

=
∫
d3x

(
δBa

j

[
δN⃗f

j
a

]
− δf j

a

[
δN⃗B

a
j

])
(6.39)

Here we put away the surface integral since it is O(1) odd for a rotation and O(r−1) even for a
translation. Therefore, the vector constraint

Ca[Na] =
∫
d3x ϵabcN

aBc
j (δb

j + ϵbde∂df
j
e ) (6.40)

is functionally differentiable but not convergent because it is O(r−1) even for a translation and
O(1) odd for a rotation. Consequently, Ca[Na] is not a well-defined generator for translations,
nor for rotations!

6.4.1.3. Scalar Constraint

It is easy to see that

δNf
i
c(x) = {C[N ], f i

c(x)} = ϵiklϵabcN(δa
k + ϵade∂df

k
e )(δb

l + ϵbfg∂ff
l
g)

δNB
c
i (x) = {C[N ], Bc

i (x)} = 2ϵjilϵabeϵ
adcδf i

c∂d

(
NBe

j [δb
l + ϵbfg∂ff

l
g]
) (6.41)
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Thus the variation of this constraint is

δC[N ] =
∫
d3x ϵjklN

(
ϵabcδB

c
j (δa

k + ϵade∂df
k
e )(δb

l + ϵbfg∂ff
l
g) + 2ϵabcB

c
j (δb

l + ϵbfg∂ff
l
g)(ϵade∂dδf

k
e )
)

=
∫
d3x ϵjkl

(
ϵabcNδB

c
j (δa

k + ϵade∂df
k
e )(δb

l + ϵbfg∂ff
l
g)− 2ϵabcϵ

adeδfk
e ∂d

(
NBc

j [δb
l + ϵbfg∂ff

l
g]
))

+ 2
∮
dSd ϵabcϵ

adeNBc
j (δb

l + ϵbfg∂ff
l
g)δfk

e

=
∫
d3x

(
δBa

j (δNf
j
a)− (δNB

a
j )δf j

a

)
(6.42)

where the surface integral vanishes because it is O(r−1) even for a translation and O(1) odd
for a boost. Thus, the scalar constraint is functionally differentiable without requiring any
modification, and now we need to check its finiteness. The Hamiltonian constraint in terms of
(B, f) is

C[N ] =
∫
d3x ϵjklN

(
ϵabcB

c
j (δa

k + ϵade∂df
k
e )(δb

l + ϵbfg∂ff
l
g)
)

(6.43)

that is O(r−1) even for a translation and O(1) odd for a boost, both of which are divergent.
Therefore, neither boosts nor translations have well-defined generators!

It is worth noting that one cannot express the source of the divergences in (6.40) and (6.43)
in terms of constraints, so the problem is not cured.

6.4.2. Boundary Conditions with Opposite Parities
Now consider the opposite parity conditions

F̄ i
a

(
−x
r

)
= F̄ i

a

(
x

r

)
, Ḡa

i

(
−x
r

)
= −Ḡa

i

(
x

r

)
. (6.44)

It is obvious that with these new parity conditions, the symplectic structure is still well-defined.
The Bianchi constraint is

Ci[Λi] =
∫
d3x Λi∂aB

a
i (6.45)

According to the new boundary conditions ∂aB
a
i fall off as O(r−4) even, thus the minimal con-

dition on the multiplier Λi that ensures the convergence of the Bianchi constraint is the same as
(8.31), except that λi must be an odd function, i.e.

λi
(
−x
r

)
= −λi

(
x

r

)
(6.46)

Also in this case Cj [Λ] is functionally differentiable because the surface term in (6.37) vanishes
(recall δBa

j = O(r−3) odd and Λj = O(r) odd).

In this case Ca[Na] is functionally differentiable since the surface term in (6.39) is O(1) odd
for a rotation and O(r−1) even for a translation and thus vanishes. It is also convergent for a
translation but not for a rotation, since (6.40) is O(r−1) odd for a translation and O(1) even for a
rotation. Therefore Ca[Na] is a well-defined generator only for translations, but not for rotations.

Again, C[N ] is functionally differentiable since the surface integral appearing in (6.42) simply
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vanishes because it is again O(r−1) even for a translation and O(1) odd for a boost. But in
contrast to what we observed in the previous case, by looking at (6.43) we find that it is O(r−1)
odd for a translation and O(1) even for a boost. Consequently, translations have a well-defined
generator C[N ], but boosts do not!

The question that arises here is why, even though the boundary conditions carry over exactly
into the (B, f) description, the use of standard parity conditions leads to well-defined generators
in the (A,E) description but not in the (B, f) description. To identify the source of this dis-
crepancy, we first consider a general situation where we have canonical variables (A,E) and a
functional F(A,E) that depends on A only via ∂aA. For simplicity, we have omitted all indices
of the fields.
The variation of F [λ], where λ is a test function, would have the form

δF [λ] =
∫
d3x (A∂aδA+ BδE) =

∫
d3x (−(∂aA)δA+ BδE) +

∮
dSaAδA (6.47)

where A and B are simply understood as the coefficients of ∂aδA and δE in the variation of F [λ],
respectively. If one wants to change the canonical variables (A,E) to (B, f), where B = ∂aA and
E = c+ ∂af (c is constant), then the variation of F would become

δF [λ] =
∫
d3x (AδB + B∂aδf) =

∫
d3x (AδB − (∂aB)δf) +

∮
dSaBδf (6.48)

here A,B are written in terms of (B, f).
From (6.47) and (6.48), it is evident that F would be functionally differentiable in terms of both
canonical variables if we were working with compact space. But if we want to consider boundary
conditions, things look quite different! Looking at the surface terms in (6.47) and (6.48), we
find that they have nothing in common! So it is very likely that taking into account boundary
conditions that make (6.47) functionally differentiable will cause (6.48) to stay ill-defined and
vice versa.

This is exactly what occurs during the analysis of the differentiability of the Hamiltonian and
diffeomorphism constraints in the U(1)3 theory. Note that the Hamiltonian constraint, i.e.
C = 2ϵjkl(∂aA

j
b)Ea

kE
b
l , depends on A only via ∂aA. Hence,

δC[N ] =
∫
d3x

(
2Nϵjkl(∂aδA

j
b)Ea

kE
b
l + 4Nϵjkl(∂aA

j
b)Ea

kδE
b
l

)
=:

∫
d3x

(
Aab

j (∂aδA
j
b) + Bl

bδE
b
l

)
(6.49)

=
∫
d3x

(
−(∂aAab

j )δAj
b + Bl

bδE
b
l

)
+
∮
dSaAab

j δA
j
b (6.50)

where Aab
j := 2NϵjklE

a
kE

b
l and Bl

b := 4Nϵjkl(∂aA
j
b)Ea

k .
Now let us express δC[N ] in terms of (B, f) where Ba

i = ϵabc∂bA
i
c and Ea

i = δa
i + ϵabc∂bf

i
c. We

initiate from (6.49) and write everything in terms of (B, f)

δC[N ] =
∫
d3x

(
Aab

j (∂aδA
j
b) + Bl

bδE
b
l

)
=
∫
d3x

(1
2A

ab
j ϵcabδB

c
j + Bl

bϵ
bac(∂aδf

l
c)
)

=
∫
d3x

(1
2A

ab
j ϵcabδB

c
j − (∂aBl

b)ϵbacδf l
c

)
+
∮
dSa Bl

bϵ
bacδf l

c (6.51)
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Using the standard boundary conditions where Ea
i − δa

i = O(r−1)even, Ai
a = O(r−2)odd and

consequently Ba
i = O(r−3)even, f i

a = O(1)odd, one concludes that for translations Aab
j =

constant +O(r−1)even and Bl
b = O(r−3)even.

Therefore, the surface terms in (6.50) and (6.51) are∮
dSaAab

j δA
j
b =

∮
dSa O(r−2)odd = divergent (6.52)∮

dSa Bl
bϵ

bacδf l
c =

∮
dSa O(r−3)odd = 0 (6.53)

Thus, C[N ] is functionally differentiable in the (B, f) description but not in the (A,E) descrip-
tion!
Thus, to obtain a well-defined generator for the asymptotic temporal translations, we need to add
to the Hamiltonian constraint a term that eliminates the divergence that occurs in its variation.
In this way, we obtain a functionally differentiable expression which, if we are lucky, is already
finite. In the (B, f) description, on the other hand, the variation of C[N ] is already functionally
differentiable, since there is no such divergence, and the only factor that makes the Hamilto-
nian constraint ill-defined is its own divergence. Because the source of the divergence cannot be
expressed in terms of the constraints, we are not allowed to subtract it from the Hamiltonian
constraint, therefore C[N ] remains ill-defined in the (B, f) description. The same happens for
the diffeomorphism constraint.
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CHAPTER 7.

Dirac Quantisation of the U(1)3 model

7.1. Preliminaries
7.1.1. Lewandowski-Marolf Habitat
As we have seen in section 4.2.3, employing the URS operator topology defined by the space of
diffeomorphism-invariant distributions, Thiemann’s Hamiltonian constraint that is densely de-
fined on the kinematical Hilbert spaceHkin, closes off-shell but with the wrong structure functions.
The source of this lies in the fact that the diffeomorphism constraint on the r.h.s. of the quantum
version of (1.35) annihilates Hdiff, and hence as soon as the Hamiltonian constraints commute
among each other, the constraints algebra is satisfied. Consequently, verification of the precise re-
lation (1.35) is not really feasible since the r.h.s. always vanishes on the diffeomorphism-invariant
distributions. Hoping to overcome this problem, in [248, 244], a totally different construction was
suggested. There the Hamiltonian operator is defined on a subspace, known as a habitat, of the
algebraic dual of Hkin including Hdiff and the limit is taken differently. However, this yields
vanishing (and thus also wrong) structure functions.
To see how it is defined, first recall from section 1.3.5.2 that the construction of Hdiff begins
with applying the group averaging method on a (gauge-invariant) spin network to obtain a
diffeomorphism-invariant state. From (1.84), it turned out that a general diffeomorphism invari-
ant state is a linear combination of the states ℓ[s] = ∑

s′∈[s]⟨Ts′ , ·⟩kin. Now, lets dive into the
generalisation of this construction. Consider any complex valued function f on n copies of the
spatial hypersurface Σ i.e. f : Σn → C. Let {v1(s), · · · , vn(s)} which is a point belonging to Σn

be the vertices of [s]. Then, the habitat state ℓ[s],f is defined as

ℓ[s],f :=
∑

s′∈[s]
⟨Ts′ |f(v1(s′), · · · , vn(s′))| · ⟩ (7.1)

If the weight function f , which is called a vertex function, is constant we recover (up to a factor)
the previous construction of a diffeomorphism-invariant state. But, since a non-constant f is
sensitive to diffeomorphisms, with a suitable set of functions, we enlarge Hdiff into a habitat that
can yield non-trivial things. Otherwise stated, habitat states are deformations of diffeomorphism
invariant ones by the vertex function f [245]. The finite span of all states ℓ[s],f is called the
Lewandowski-Marolf habitat.

Let φt : σ → σ, t ∈ R be a one-parameter family of diffeomorphisms generated by a vector
field ξa. Using the dual action of Û(φt), we have
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[
lim
t→0

1
t

(
Û(φt)− 1

)
ℓ[s],f

]
Ts̄

= lim
t→0

1
t

[
ℓ[s],f

(
Û(φ−t)Ts̄

)
− ℓ[s],f (Ts̄)

]
= lim

t→0

1
t

∑
s′∈[s]

(
⟨Tφt(s′)|f(φt(v1), · · · , φt(vn))|Ts̄⟩ − ⟨Ts′ |f(v1, · · · , vn)|Ts̄⟩

)
= lim

t→0

1
t

∑
s′∈[s]

(⟨Ts′ |f(φt(v1), · · · , φt(vn))|Ts̄⟩ − ⟨Ts′ |f(v1, · · · , vn)|Ts̄⟩)

=
∑

s′∈[s]
⟨Ts′ |

(
lim
t→0

1
t

[f(φt(v1), · · · , φt(vn))− f(v1, · · · , vn)]
)
|Ts̄⟩

=
∑

s′∈[s]
⟨Ts′ |Lξf(v1, · · · , vn)|Ts̄⟩

= ℓ[s],Lξf (Ts̄) (7.2)

where Lξ is the Lie derivative with respect to ξ. As ℓ[s],Lξf is still a habitat state with the new
vertex function Lξf , (7.2) reveals that the generator of spatial diffeomorphisms, i.e. Da[ξa] :=
limt→0

1
t

(
Û(φt)− 1

)
, does exist in the habitat. It is obvious from (7.2) that the kernel of Da[ξa],

as expected, consists of those habitat states whose vertex functions are constant, that are the
diffeomorphism invariant states.

7.1.2. Changing the Density Weight
In [57] the r.h.s. of (1.35) with density weight one Hamiltonian constraints was quantised. This
was done by replacing partial derivatives by discrete differences and infinitesimal diffeomorphisms
by finite ones and taking the limit by the URS topology. The same technique was followed in
[85] where even the structure constants came out correctly, also with density weight one. In
fact, density weight one is the whole beauty of gravity as it regulates infinities and makes all
constructions “automatically” diffeomorphism covariant.

However, there is another proposal, working with different density weights, that has been intro-
duced with the aim of achieving the precise realisation of (1.35). Its main idea can be readily ex-
plained as follows. The smeared Hamiltonian constraint, that is C[N ] =

∫
Σ d

3x N [1−k](x)C [k](x),
consists of the smearing function N that is a scalar density of weight (1−k) and the local Hamil-
tonian constraint C [k](x) = q(k−2)/2FEE(x) with density weight k, where q := det(q). Here,
density weights are denoted by superscripts in square brackets. Recall from section 4.2 that the
“fineness” of the triangulation is determined by a parameter ϵ and the quantisation of Hamilto-
nian constraint H[N ] proceeds by first approximating the integral by a Riemann sum and then
approximating local fields involved in it by holonomies and fluxes, see (4.10). Recalling chapter
4, one immediately convinces oneself that F ∼ O(ϵ−2), E ∼ O(ϵ−2), A ∼ O(ϵ−1), √q ∼ O(ϵ−3)
and d3x ∼ O(ϵ3) by means of which the expansion of C[N ] in powers of the regulating parameter
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ϵ can be derived as [287]

C[N ] =
∫

Σ
d3x N [1−k](x)C [k](x)

=
∫

Σ
d3x N [1−k](x)√q(k−2)FEE(x)(x)

∼
∑

∆∈T(ϵ)
(ϵ−1)3(k−1) N [1−k](v(∆))C̄∆(v(∆)) (7.3)

The equation (7.3) says that for density weight one Hamiltonian constraint, i.e. when k = 1,
there is no dependence on ϵ in the expression of Ĉϵ[N ]. Therefore, the commutator [Ĉϵ[N ], Ĉϵ[M ]]
does not depend on ϵ either, meaning that the quantised version of the r.h.s of (1.35) can never
be obtained because

∫
d3x F i

abE
b
i [qac(N∂cM −M∂cN)] ∼ O(ϵ). In fact, in the continuum limit

ϵ → 0, the r.h.s of (1.35) vanishes irrespective of its finer structure. As the vanishing of the
r.h.s of (1.35) is a direct consequence of setting k = 1, this observation suggests that working
with higher density constraints might provide an appropriate ground to get the precise quantum
version of (1.35).

7.1.3. Purpose of This Chapter
In [57], it was shown that the quantum operator corresponding to the r.h.s of (1.35) is of the
form [Û(φϵ)− 1]Ô, where Ô is a finite operator. The presence of Û(φϵ)− 1 in this combination
guarantees that the quantum version of the r.h.s of (1.35) annihilates all diffeomorphism-invariant
states, just like as its l.h.s. Although this is the essential property of anomaly freeness, one still
desires to be able to check the correctness of the exact algebraic form of (1.35). If this can
be done, it may lead to some restrictions reducing quantisation ambiguities discussed in section
4.2.4.

The purpose of this chapter is to present the strategy of changing the density weight in the
context of the U(1)3 theory and discuss its shortcomings. The main idea of this strategy is as
follows. Comparing (7.2) with [Û(φϵ)− 1]Ô and noting that the latter is of O(ϵ) brings to mind
the idea that if the r.h.s of (1.35) is rescaled by the factor ϵ−2, then the r.h.s can be saved from
trivially being zero in the continuum limit ϵ→ 0. It turns out that working with a density weight
4
3 Hamiltonian constraint results in the desired additional factor ϵ−2. A quick calculation shows
that by setting k = 4/3 the Hamiltonian constraint C [4/3][N ] =

∫
d3x N [−1/3]q−1/3FEE(x) is

of O(ϵ−1) that blows up in the refinement limit. This seems to be a new trouble one has to
deal with, but again by considering (7.2) one can envisage that if the action of the Hamiltonian
constraint can be written as an expression proportional to Û(φϵ) − 1, then, on an appropriate
habitat, the “seeming divergence” of the Hamiltonian constraint will be disappeared by changing
the vertex function.

In order to test this strategy, one employs toy models. In this chapter, we mainly review the
work [87] on the closure of the U(1)3 constraint algebra, which was just meant as a “first” attack on
the problem. In fact, the construction of the Hamiltonian constraint in [87] has some shortcomings
such as lack of manifest gauge invariance. Those shortcomings were partially overcome in [88]
where the construction is improved but is much more complex. For reasons of space, here we
just review the simpler pioneering paper, i.e. we construct the quantum Hamiltonian constraint
of density weight 4/3 for the U(1)3 model and verify the precise realisation of (1.35). For more
information on this perspective, we refer the interested reader to [287, 288, 289, 290].
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7.2. Constraints in the Classical Theory
Recall that the constraints of the U(1)3 model with C [4/3] are

G[Λ] =
∫
d3x Λi∂aE

a
i , Ca[Na] =

∫
d3x Ea

i LN⃗A
i
a, C[N ] = 1

2

∫
d3x ϵijkF k

abE
b
jN

a
i (7.4)

where Na
i := det(q)−1/3NEa

i , for each i, is a vector field depending on the electric fields and we
refer to it as the electric shift vector field. The structure function involved in the Poisson bracket
between two Hamiltonian constraints turns out to be rescaled by q−2/3, i.e.

{C[N ], C[M ]} = Ca[Na(q,N,M)], Na(q,N,M) := q1/3qab(M∂bN −N∂bM) (7.5)

C[N ] = 1
2

∫
d3x ϵijkF k

abE
b
jN

a
i

= 1
2

∫
d3x ϵijk(∂aA

k
b − ∂bA

k
a)Eb

jN
a
i

= 1
2

∫
d3x ϵijk[Na

i (∂aA
k
b ) +Ak

a(∂bN
a
i )− (∂bN

a
i A

k
a)]Eb

j

= 1
2

∫
d3x ϵijk[Eb

j (LN⃗i
Ak

b ) +Na
i A

k
aGj − ∂b(Na

i A
k
aE

b
j )]

≈ 1
2

∫
d3x ϵijk(LN⃗i

Ak
b )Eb

j (7.6)

where we have used integration by parts and dropped the boundary term. As we will see later, the
presence of the Lie derivative in the above relation causes a slight replacement in the direction of
the flow generated by Na

i on the vertices of the underlying graph of a quantum state , when Ĉ[N ]
is acting on it. As we want the second Hamiltonian acts on the replaced vertices, it will turn out
that we should add a vanishing term to (7.6) as follows. Noting that F i

ab is antisymmetric while
Na

i E
b
i = det(q)−1/3NEa

i E
b
i is symmetric in a, b, one immediately observes that ∑iN

a
i F

i
abE

b
i = 0.

Therefore,

0 =
∫
d3x

∑
i

Na
i F

i
abE

b
i =

∫
d3x

∑
i

Na
i (∂aA

i
b − ∂bA

i
a)Eb

i

=
∫
d3x

∑
i

(
Eb

iN
a
i ∂aA

i
b +Ai

a∂b(Na
i E

b
i )
)

=
∫
d3x

∑
i

(
Eb

iN
a
i ∂aA

i
b + Eb

iA
i
a∂b(Na

i ) +Ai
aN

a
i Gi

)
≈
∫
d3x

∑
i

Eb
iLN⃗i

Ai
b (7.7)

where again we integrated by parts and dropped the boundary term. What we are going to
construct its quantum counterpart in section 7.4 is

C ′[N ] := 1
2

∫
d3x

(
ϵijk(LN⃗i

Ak
b )Eb

j +
∑

i

Eb
iLN⃗i

Ai
b

)
(7.8)

that is classically equivalent to C[N ] but in quantum theory the classically vanishing term (7.7)
certifies that, when the commutator between two Hamiltonian constraint operators is being com-
puted, the second Hamiltonian constraint acts on a vertex moved by the first one [87]. It should
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be noted that one of the criticisms of the approach used in [87] emanates from this point. In
fact the triple sum over i in (7.7) would have no gauge-invariant generalisation to non-Abelian
groups, and adding such zeros to the constraints introduces another infinite source of ambiguity.
Smearing the diffeomorphism constraint with the electric shift vector fields results in

Ca[Na
j ] =

∫
d3x Ea

i LN⃗j
Ai

a (7.9)

that helps us to manage the quantum version of the r.h.s. of (7.5). In fact, a remarkable
observation of [87] indicates that the r.h.s. of (7.5) is proportional to the trace of the 3 × 3
matrix formed by Ca[Na

j ], i.e., Mij := {Ca[Na
i ], Cb[M b

j ]}. The verification of this proposition is
quite straightforward: (notice that in {Ca[Na

i ], Cb[M b
i ]} there is a sum over i due to the Einstein

summation convention)

{Ca[Na
i ], Cb[M b

i ]} =
∫
d3x

∫
d3y N(x)M(y){q−1/3Ea

i E
c
jF

j
ac(x), q−1/3Eb

iE
d
kF

k
bd(y)}

=
∫
d3x

∫
d3y (N(x)M(y)−N(y)M(x))×[

(Ea
i E

c
jF

j
ac)(x){q−1/3(x), F k

bd(y)}(q−1/3Eb
iE

d
k)(y)

+ (q−1/3Ec
jF

j
ac)(x){Ea

i (x), F k
bd(y)}(q−1/3Eb

iE
d
k)(y)

+(q−1/3Ea
i F

j
ac)(x){Ec

j (x), F k
bd(y)}(q−1/3Eb

iE
d
k)(y)

]
=
∫
d3x

∫
d3y (N(x)M(y)−N(y)M(x))×[

(Ea
i E

c
jF

j
ac)(x)

(2
3q
−1/3Ek

[d∂b]δ(x, y)
)

(q−1/3Eb
iE

d
k)(y)

+ (q−1/3Ec
jF

j
c[d)(x)

(
2∂b]δ(x, y)

)
(q−1/3Eb

iE
d
i )(y)

+(q−1/3Ea
i F

j
a[d)(x)

(
−2∂b]δ(x, y)

)
(q−1/3Eb

iE
d
j )(y)

]
=
∫
d3x [ − 2

3qq
abq−2/3Ec

jF
j
acE

d
kE

k
[d(N∂b]M −M∂b]N)

+ 2qqabq−2/3Ed
jF

j
a[d(N∂b]M −M∂b]N) ]

=
∫
d3x

[1
3q

1/3qabEc
jF

j
ac(N∂bM −M∂bN)

]
= −1

3Ca[Na(q,N,M)] (7.10)

It means that the Poisson bracket between two Hamiltonian constraints (7.5) can equivalently
be written as

{C[N ], C[M ]} = −3{Ca[Na
i ], Cb[M b

i ]} (7.11)

A quick review on the steps of the calculation (7.10) shows that if we worked with Na
i = Nq−1/2Ea

i

(i.e., if we worked with density weight 1 Hamiltonian constraint as usual) the commutator
{Ca[Na

i ], Cb[M b
i ]} would vanish and so it would not be equal to the r.h.s. of (7.5). As trivi-

alisation of this commutator only occurs for density weight one Hamiltonian constraint, working
with higher densities is backed up again.
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7.3. Kinematical Hilbert Space
7.3.1. The Holonomy-Flux Algebra
Here we intend to introduce the kinematical Hilbert space of the U(1)3 model. It is in complete
analogy with the SU(2) case whose detailed Dirac quantisation was presented in section 1.3.
Hence, we do not repeat the details of similar structures and proofs, but merely refer to the same
structure in section 1.3.

To begin with, for the same reasons mentioned in section 1.3.3.1, here again U(1)3-holonomies
along edges and electric fluxes through surfaces, i.e.

he(A) = exp

i 3∑
j=1

∫
e
Aj

adx
a

 , Ei(S) =
∫

S
ϵabcE

a
i dx

b ∧ dxc (7.12)

respectively, are the basic variables of our interest and the only non-trivial Poisson bracket among
them is

{he(A), Ei(S)} = σ(S, e)
2 he(Ai) (7.13)

where σ(S, e) = ±1, 0 is the relative position of S and e like what we had in (1.47). The notions
of a graph and cylindrical functions already presented in section 1.3 are used in the same way
here. Going forward and employing the Haar measure of U(1)3, we construct the inner product
between the cylindrical functions as (1.56). As is obvious from (1.56), the Ashtekar-Lewandowski
measure µAL is built from the U(1)3 Haar measure, with respect to which the desired kinematical
Hilbert space Hkin = L2(Ā, dµAL) is set up.

7.3.2. Charge Network Functions
Following the Peter-Weyl theorem1, in order to introduce an orthonormal basis for Hkin, we need
to delve into the representation theory of the group U(1)3. Recall that as U(1) is a commutative
group, all irreducible representations are one dimensional2 and they are given by

πk :U(1)→ GL(1,C) ≃ C∗

eiθ 7→ πk(eiθ) := eikθ (7.14)

for k ∈ Z. Therefore, representations of the U(1)-holonomy along the edge e are simply given by

he,q(A) := πq(he(A)) = eiq
∫

e
Aadxa

(7.15)

and the product of three copies of them is considered as a representation of the U(1)3-holonomy
along the edge, i.e.

he,q⃗(A) :=
3∏

j=1
he,qj (Aj) = eiqj

∫
e

Aj
adxa

(7.16)

In principle, the holonomy in (7.12) has been stated in the fundamental representation. Since
here the gauge group is U(1)3 and not SU(2), instead of spin networks we have charge networks

1See the footnote (17) in Chapter 1.
2For G commutative, g ∈ G, any representation will satisfy π(h)π(g) = π(g)π(h) for all h ∈ G. If π is

irreducible, Schur’s lemma implies that, since they commute with all the π(g), the matrices π(h) are all scalar
matrices, i.e., π(h) = λhIG for some λh ∈ C. π is then irreducible when it is the one-dimensional representation
given by π(h) = λh.
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that are defined as colored graphs labelled by representations of U(1)3, i.e. by a triplet of integer
valued charges q⃗I := (q1

I , q
2
I , q

3
I ) for the edge eI .

Given an oriented graph γ, a charge network function (CNF) that form an orthogonal basis for
the kinematical Hilbert space is defined, in the same way we had already introduced in (1.61), as

Tγ,{q⃗} : Ā → C; A 7→
∏

e∈E(γ)
[πq⃗(he(A))] = e

i
∑|E(γ)|

I=1 qI
j

∫
eI

Aj
adxa

= e

∫
d3x

(∑|E(γ)|
I=1 iqI

j

∫ 1
0 dtIδ(3)(eI(tI),x)ėa

I (tI)
)

Aj
a(x)

=: e
∫

d3x

(∑|E(γ)|
I=1 caI

j (x)
)

Aj
a(x)

=: e
∫

d3x ca
j (x)Aj

a(x) (7.17)

where eI is parametrised by tI and as is obvious from its definition, ca
j depends on the edges {eI}

and the charges {qI
j }. To find charge network functions which are invariant under U(1)3 gauge

transformations, note that Tγ,q⃗ will be U(1)3-gauge-invariant if only if it is U(1)i-gauge-invariant
for each i separately. We recall that under a transformation specified by the gauge function g(x) ∈
U(1)i, the holonomy transforms as he(Ai(g)) = g(f(e))he(Ai)g(b(e))−1 =3g(f(e))g(b(e))−1he(Ai)
using which we can consider how a gauge transformation affects a generic CNF (7.17). Let us focus
on a specific vertex v of γ. From the gauge transformation law of a holonomy, we observe that
each edge ending at v contributes a πqj (g(v)) = πqj (eiθv ) = eiqjθv , while each edge starting from
v contributes a πqj (g(v))−1 = πqj (eiθv )−1 = e−iqjθv , where g(v) := eiθv is the value of the gauge
function at the vertex. Taking this observation into account, one concludes that in the gauge
transformation of Tγ,qj the contribution coming from the vertex v is (Tγ,qj )(g)

v := e
i
∑

eIv
τ(eIv )qj

eIv ,
where eIv denotes the edges incident at v and τ(eIv ) is +1 for outgoing edges and −1 ingoing
ones. Thus, (Tγ,qj )(g)

v = 1 is equivalent to being invariant under the U(1)j-gauge transformation.
Consequently, the CNF (7.17) is invariant under U(1)3 gauge transformations if and only if∑

Iv

τ(eIv )qIv
j = 0, ∀v ∈ V (γ), ∀j ∈ {1, 2, 3} (7.18)

From now on, we denote a gauge invariant CNF by Tc, similar to Ts for SNFs in chapter 1, in
which c is a charge network label consisting of the graph γ and the triplets (qI

j )j=1,2,3 assigned
to each eI ∈ E(γ). c is sometimes called a colored graph, meaning a graph colored by (qI

j )j=1,2,3
(see Figure 7.1).

Two CNFs Tc and Tc′ are orthogonal with respect to the inner product of Hkin if their charge
network labels differ, i.e. either their underlying graphs or the labels on their edges differ. The
inner product between these CNFs is denoted by ⟨Tc, Tc′⟩ = δcc′ where δcc′ is 1 only when c is
identical to c′, otherwise it vanishes. In fact, Hkin is the Cauchy completion of the finite span of
the CNFs with respect to the just mentioned inner product ⟨·, ·⟩.

7.3.3. Quantum Operators
The quantum operator corresponding to the holonomy he,q⃗(A) acts on a CNF, say Tc, as

ĥeJ ,q⃗0(A)|Tc⟩ = |Tc̃⟩ (7.19)

3Note that the gauge group is Abelian
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Figure 7.1.: An example of charge network label; All qI
j ’s are integer, in which I ∈ {1, · · · , |E(γ)|}

and j ∈ {1, 2, 3}.

where Tc̃ is defined as:
If eJ ∈ E(γ), where γ is the underlying graph of c =

{
γ,
(
(qj

I)j∈{1,2,3}

)
I∈{1,··· ,|E(γ)|}

}
, then

c̃ :=
{
γ,

(
(qj

1)j∈{1,2,3}, · · · , (q
j
J + qj

0)j∈{1,2,3}, · · · , (q
j
|E(γ)|)j∈{1,2,3}

)}
(7.20)

If eJ is not contained in γ, then the action of the holonomy operator adds the new edge eJ to γ,
i.e. the underlying graph of Tc̃ is γ ∪ {eJ} (recall section 1.3.4.1).

Considering (7.13) and using the Leibniz rule, one finds that the action of the quantum operator
corresponding to the electric flux Ei(S) on Tc is

Êi(S)|Tc⟩ =
∑

eI∈E(γ)

σ(S, eI)
2 qi

I |Tc⟩ (7.21)

showing also that the flux operator Êi(S) is diagonal in the charge network basis Tc. In fact,
the operators (7.19) and (7.21) equip Hkin with a representation of the holonomy-flux Poisson
bracket algebra. As expected, it is obvious from their forms that the holonomy operator acts on
a CNF by multiplication and electric field by differentiation, Êa

i ∼ −iℏ δ
δAi

a
.

Êa
i (x)|Tc⟩ = −iℏ δ

δAi
a(x)e

∫
d3y cb

j(y)Aj
b
(y) = −iℏca

i (x) |Tc⟩ (7.22)

Since the action of Êa
i on a CNF is distributional (see the definition of ci

a in (7.1)), one is
supposed to regularise it. Once and for all, we need to fix an ϵ-neighbourhood Uϵ(γ, v) at each
vertex v ∈ V (γ) which is coordinated by a coordinate chart {xv} in which the subscript v means
that the origin is located at v. We denote the coordinate ball of radius ϵ centered at v by
Bϵ(v) ⊂ Uϵ(γ, v) (see figure 7.2). If we regularise the Dirac Delta function using normalised
characteristic functions of coordinate balls with radius ϵ, i.e.,

δϵ(x, y) = 1
V (Bϵ(x))χBϵ(x)(y) =

(
4πϵ3

3

)−1

χBϵ(x)(y) (7.23)
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Figure 7.2.: Neighbourhoods around vertices and the unit vector êa
I tangent to the edge eI at v.

then the regularised version of (7.22) is

Êa
i,ϵ(v)|Tc⟩ = −iℏca

i,ϵ(v) |Tc⟩ = −3iℏ
4πϵ3

|E(γ)|∑
I=1

iqI
i

∫ 1

0
dtIχBϵ(v)(eI(tI))ėa

I (tI) |Tc⟩

= 3ℏ
4πϵ3

∑
eI∩{v}≠∅

qI
i

∫
Bϵ(v)∩eI

dtI ė
a
I (tI) |Tc⟩

= 3ℏ
4πϵ3

∑
eI∩{v}≠∅

qI
i (ϵêa

I +O(ϵ2)) |Tc⟩

= 3ℏ
4πϵ2

∑
eI∩{v}≠∅

qI
i ê

a
I |Tc⟩+O(ϵ−1) (7.24)

where êa
I is a unit vector tangent to eI at v (see figure 7.2). With (7.24) in hand, we can move

towards acquiring the operator corresponding to the electric shift. For this purpose, we need
also the regularised operator associated to q−1/3, which has been computed in detail in [87], and
the final result is q̂−1/3

ϵ |Tc⟩ = ϵ2

ℏ ν
−2/3|Tc⟩ where ν is a number made up of the charge labels of

the edges of the graph γ incident at v. We suffice with this little information about ν because
its finer structure will not be required for the following discussion; for more details, we refer the
interested reader to appendix A of [87]. Subsequently, the regularised electric shift turns out to
be

N̂a
i,ϵ(v) |Tc⟩ = N(x(v))q̂−1/3

ϵ Êa
i,ϵ(v) |Tc⟩ = 3

4πN(x(v))ν−2/3 ∑
eI∩{v}≠∅

qI
i ê

a
I |Tc⟩+O(ϵ) (7.25)

Removing the regulator, the electric shift operator takes the form

N̂a
i (v) |Tc⟩ = lim

ϵ→0
N̂a

i,ϵ(v) |Tc⟩ =
∑

eI∩{v}≠∅

( 3
4πN(x(v))ν−2/3qI

i ê
a
I

)
︸ ︷︷ ︸

=:Na
i (v)

|Tc⟩ =:
∑

eI∩{v}≠∅
NaI

i (v) |Tc⟩

(7.26)
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The critical point to note is that because4 the regularised operator q̂ϵ acts non-trivially only at
vertices, N̂a

i (x)|Tc⟩ can give us a non-vanishing quantity only when x lies on a vertex v of the
charge network under consideration. We will return to the importance of this point in the next
section.

7.4. Constraint Operators and Precise Realisation of the Algebra
Now that quantum operators corresponding to holonomy, electric field, and electric shift are
available, it seems that by substituting them in the constraints, we can easily promote the
constraints to quantum operators. However, the situation is more complicated than it seems at
first glance. Four important challenges ahead on achieving the desired are

1) As we saw in the previous section, because the electric shift depends on the electric field, it
becomes an operator in quantum theory. Hence the first question coming up is about the
meaning of Lie derivative along an operator, in other words, how should L ˆ⃗

Nj
be interpreted?

The answer to this question lies in the fact that luckily the electric shift is diagonal in the charge
network basis which is obvious from (7.26). Thus, one simply replaces the operator N̂a

j by its
eigenvalue, i.e. the quantum shift.

2) As we saw in chapter 1, the kinematics of LQG does not support infinitesimal diffeomor-
phism generator. On the other hand, Lie derivative along a vector field V is defined by
infinitesimal diffeomorphisms, i.e. LV f := limϵ→0 ϵ

−1(φV
ϵ − 1)f where φV

ϵ is the one pa-
rameter family of diffeomorphisms generated by V . In the absence of this infinitesimal
diffeomorphisms at the quantum level, how should one define the Lie derivative?

To deal with this issue, we have to approximate the Lie derivative by small finite diffeomorphisms
rather than the infinitesimal ones. Since the operator of finite diffeomorphisms (recall Û(φ) in
(1.81)) is well-known in LQG, one approximates the Lie derivative as

LV⃗ Tc ≈
1
ϵ

[Û(φV
ϵ )− 1︸ ︷︷ ︸
O(ϵ)

]Tc (7.27)

Emphasizing that the expression inside the square bracket is of O(ϵ) is due to the fact that in
what follows we need to approximate such expressions with its exponentiated form minus one.

3) As we saw in the previous section, the quantum shift is non-vanishing only at the vertices
of a graph. Thus, it is not a smooth vector field like its classical counterpart; how does φN⃗j

ϵ

make sense?

This is precisely where we have to resort to intuition by first choosing an appropriate ϵ sized
finite triangulation and then visualising the deformation generated by ˆ⃗eI as pulling the vertex v
and its immediate neighbourhood in the direction ˆ⃗eI (see figure (7.3) or (7.4)). In what follows,
the one parameter family of triangulations T(ϵ) are adapted to the charge network on which the
finite triangulation approximants act. Specifically, we require that T(ϵ) (for sufficiently small ϵ)
be such that every vertex v of the coarsest graph underlying the charge network is contained in

4Similar to what we saw in chapter 1 about the AL volume operator.

111



Dirac Quantisation of the U(1)3 model Section 7.4

the interior of a cell ∆ϵ(v) ∈ T(ϵ), and every cell of T(ϵ) contains at most one such vertex. The
size of ∆ϵ(v) is restricted to be of O(ϵ3) as measured in the coordinate system {x}v.∫

d3x Ai
aLN⃗j

ca
i =

∑
v∈V (γ)

∫
∆ϵ(v)

d3x Ai
aLN⃗j

ca
i

= 3
4π

∑
v∈V (γ)

N(x(v))ν−2/3∑
Iv

qIv
j

∫
∆ϵ(v)

d3x Ai
aLˆ⃗eIv

ca
i

≈ 3
4πϵ

∑
v∈V (γ)

N(x(v))ν−2/3∑
Iv

qIv
j

∫
∆ϵ(v)

d3x Ai
a

(
Û(φ

ˆ⃗eIv
ϵ )− 1

)
ca

i

≈ 3
4πϵ

∑
v∈V (γ)

N(x(v))ν−2/3∑
Iv

qIv
j

(
exp

[∫
∆ϵ(v)

d3x Ai
a

(
c̃aIv

iϵ − c
a
i

)]
− 1

)

= 3
4πϵ

∑
v∈V (γ)

N(x(v))ν−2/3∑
Iv

qIv
j exp

[∫
d3x Ai

a

(
c̃aIv

iϵ − c
a
i

)]

= 3
4πϵ

∑
v∈V (γ)

N(x(v))ν−2/3∑
Iv

qIv
j Tc̃Iv

ϵ
Tc̄ (7.28)

where in the first line we employed the triangulation, in the second line (7.26) has been applied,
in the third line the Lie derivative has been approximated by (7.27), in the fourth line we defined
c̃aIv

iϵ := Û(φ
ˆ⃗eIv
ϵ )ca

i and used the order of the integrand, that is of O(ϵ), to approximate it by its
exponentiated version minus one, in the fifth line, first the gauge invariance condition (7.18),
with this assumption that all the edges incident at v are outgoing, has been used to drop −1 and
then to expand the integral on ∆ϵ(v) to the integral on whole space we invoked the fact that φ

ˆ⃗eIv
ϵ

moved only a small neighbourhood of the vertex v while keeping the rest of space untouched, i.e.
∀x /∈ ∆ϵ(v) we have c̃aIv

iϵ (x) = ca
i (x). In other words∫

∆ϵ(v)
d3x Ai

a

(
c̃aIv

iϵ − c
a
i

)
=
∫

∆ϵ(v)
d3x Ai

a

(
c̃aIv

iϵ − c
a
i

)
+
∑
u̸=v

∫
∆ϵ(u)

d3x Ai
a

(
c̃aIv

iϵ − c
a
i

)
=
∫
d3x Ai

a

(
c̃aIv

iϵ − c
a
i

)
(7.29)

Finally in the last line of (7.28) we used the definition of CNF (7.1) for the following charge
network labels

c̄ =
(
γ, (−qIv

1 ,−q
Iv
2 ,−q

Iv
3 )v∈V (γ)

)
(7.30)

c̃Iv
ϵ =

(
γIv

ϵ , (qIv
1 , q

Iv
2 , q

Iv
3 )

v∈V (γIv
ϵ )

)
(7.31)

in which γIv
ϵ is the graph obtained by starting with γ and moving the vertex v and its immediate

neighbourhood as much as ϵ along the tangent vector of the edge eIv .

4) After fixing all above issues and obtaining regularised constraint operators, one confronts
the problem of how to take the continuum limit. Which topology should be chosen to define
the refinement limit? In particular, we wish to find a topology by means of which precise
realisation of the commutator between the Hamiltonian constraints can be achieved.

Recall from chapter 4 that in Thiemann’s construction of the Hamiltonian constraint, the USR
topology was taken to define the continuum limit [55]. This was a topology on the space of
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operators on Hkin which was defined using diffeomorphism-invariant distributions lying in the
algebraic dual of Hkin. In this chapter the strategy of providing a suitable topology is the same
as that of chapter 4, except that the topology employed here is defined by a different subspace of
the dual of Hkin which is in analogy with the Lewandowski-Marolf habitat introduced in section
(7.1.1). The states of this subspace are called vertex smooth algebraic states (VSA states) and
the operator topology defined by them is called the VSA topology [87]. Precisely speaking, a VSA
state is a weighted sum over states which belong to a certain subset of the dual of Hkin. This
subset denoted by BV SA is supposed to satisfy some particular assumptions that are essential to
achieve the desired precise realisation of (7.11). These assumptions and the proof of the existence
of a set BV SA fulfilling them are presented in great detail in [87]. In the following, we will state
the assumptions where necessary, but the proof of the existence is beyond the scope of this
chapter. Suppose that all states ⟨Tc| ∈ BV SA have n non-degenerate vertices and the evaluation
of f : Σn → C on the non-degenerate vertices of the graph underlying ⟨Tc| is considered as the
weight of ⟨Tc|. Moreover, we assume that ⟨Tc| ∈ BV SA is based on a graph that does not have any
symmetry on interchanging its non-degenerate vertices. If we denote the set of charge networks
c underlying the states ⟨Tc| ∈ BV SA by {c}, then a VSA state is defined as

ℓ{c},f :=
∑

c′∈{c}
κc′⟨Tc′ |f(v1, · · · , vn)| · ⟩ (7.32)

where κc′ is a real number that depends on c′. Notice the similarity of (7.32) with (7.1).

7.4.1. Regularised Electric Diffeomorphism Constraint Operator
Now, if in (7.9) we replace the electric field Ea

i with the operator −iℏ δ
δAi

a
and use the quantum

shift instead of the electric shift, the heuristic form of the diffeomorphism constraint is obtained
as

Ĉa[Na
j ] = −iℏ

∫
d3x (LN⃗j

Ai
a) δ

δAi
a

(7.33)

Considering all the above-mentioned remarks and using a triangulation T(ϵ) adapted to Tc, one
can see how the quantum operator of diffeomorphism constraint acts on the CNF Tc.

Ĉϵ
b [N b

j ]|Tc⟩ = Ĉb[N b
j ]
(
e
∫

d3x ca
i Ai

a

)
=
(∫

d3x ca
i Ĉb[N b

j ]Ai
a

)(
e
∫

d3x cc
kAk

c

)
= −iℏ

(∫
d3x ca

i LN⃗j
Ai

a

)
Tc

= iℏ
(∫

d3x Ai
a LN⃗j

ca
i

)
Tc

= iℏ

 3
4πϵ

∑
v∈V (γ)

N(x(v))ν−2/3∑
Iv

qIv
j Tc̃Iv

ϵ
Tc̄

Tc

= 3iℏ
4πϵ

∑
v∈V (γ)

N(x(v))ν−2/3
v

∑
Iv

qIv
j Tc̃Iv

ϵ
(7.34)

where in the fourth step we have dropped the boundary term, in the fifth one (7.28) has been
used, and in the last one we have simplified the expression by Tc̄Tc = 1. See figure (7.3) to
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Figure 7.3.: Action of diffeomorphism constraint on a vertex of a CNF; the vertex is displaced
but the labels are untouched.

visualise the action of Ĉb[N b
j ] on a given vertex of a CNF (In the right picture, we deliberately

did not completely erase the original graph to make the comparison easier). Note that the vertex
is displaced and the edges are dragged along êa

I with this extra assumption that(
d

dtJ
(ėJ)|v′

)a

= −
(
d

dtI
(ėI)|v′

)a

= −êa
I , ∀J ̸= I (7.35)

where e′ denotes the dragged edges. Note that the labels remain untouched. For more detail
consult the original paper [87].

7.4.1.1. Continuum limit of the Commutator Between Two Regularised Electric
Diffeomorphism Constraints

In the following calculations v′Iv ,ϵ denotes the point obtained by moving the vertex v ∈ V (γ) as
much as ϵ along the unit vector êa

Iv
tangent to the edge eIv . Likewise, if we displace v′Iv ,ϵ as

much as ϵ′ in the direction of êa
Jv

tangent to the edge eJv we arrive at the v′′(Iv ,ϵ),(Jv ,ϵ′). Suppose
the underlying graph of the charge network c has n+ 1 vertices, i.e. V (γ) = {v1, · · · , v, · · · , vn}.
Then the vertices of the underlying graph of c̃Iv

ϵ are V (γϵ
Iv

) = {v1, · · · , v′Iv ,ϵ, · · · , vn} and those
of c̃Iv ,Jv

ϵ,ϵ′ are V (γIv ,Jv

ϵ,ϵ′ ) = {v1, · · · , v′′(Iv ,ϵ),(Jv ,ϵ′), · · · , vn}. In order to compute the continuum limit
of the commutator between two operators of the form (7.34), we need to specify the conditions
that the set BV SA has to satisfy (recall item 4 in section 7.4). Given a point v ∈ Σ and a charge
network c, either,

1. there exists ϵ0(c) := ϵ0 such that ∀ϵ ≤ ϵ0 there exists ϵ′0(ϵ) such that ∀δ′ ≤ δ′0(δ) we have

∀Iv, Jv ⟨T
c̃Iv,Jv

ϵ,ϵ′
| ∈ BV SA, and κ

c̃Iv,Jv
ϵ,ϵ′

= − 1
12; (7.36)

2. OR ∀ϵ, ϵ′ for which c̃Iv ,Jv

ϵ,ϵ′ is defined, we have ⟨T
c̃Iv,Jv

ϵ,ϵ′
| /∈ BV SA, ∀Iv, Jv.
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Now, we compute the continuum limit using VSA states (7.32): (We have enumerated the fol-
lowing equalities because the reason for each step is mentioned afterwards.)

lim
ϵ′→0

lim
ϵ→0

ℓ{c},f
[
Ĉϵ′

a [Ma
i ], Ĉϵ

b [N b
i ]
]
|Tc⟩

1= lim
ϵ′→0

lim
ϵ→0

ℓ{c},f

 3iℏ
4πϵ

∑
v∈V (γ)

N(x(v))ν−2/3
v

∑
Iv

qIv
i Ĉa[Ma

i ]|T
c̃Iv

ϵ
⟩ − (N ↔M)


2= lim

ϵ′→0
lim
ϵ→0

ℓ{c},f

 3iℏ
4πϵ

∑
v∈V (γ)

N(x(v))ν−2/3
v

∑
Iv

qIv
i

3iℏ
4πϵ′M(x′(v′Iv ,ϵ))ν

−2/3
v′

Iv

∑
Jv

qJv
i T

c̃Iv,Jv
ϵ,ϵ′

− (N ↔M)


3=
(3iℏ

4π

)2
lim
ϵ′→0

lim
ϵ→01

ϵ

∑
v∈V (γ)

N(x(v))ν−2/3
v

∑
Iv

qIv
i

1
ϵ′
J −

1
3

Iv ,ϵ [M(x(v)) + ϵêa
Iv
∂aM(x(v))]ν−2/3

v′
Iv

∑
Jv

qJv
i ℓ{c},f (T

c̃Iv,Jv
ϵ,ϵ′

)− (N ↔M)


4=− 1

12

(3iℏ
4π

)2
lim
ϵ→0 ∑

v∈V (γ)
N(x(v))ν−2/3

v

∑
Iv

qIv
i J

− 1
3

Iv ,ϵ ê
a
Iv
∂aM(x(v))ν−2/3

v′
Iv

∑
Jv

qJv
i lim

ϵ′→0

f(v′′(Iv ,ϵ),(Jv ,ϵ′))
ϵ′

− (N ↔M)


5=− 3

(
iℏ
8π

)2
lim
ϵ→0

 ∑
v∈V (γ)

N(x(v))ν−2/3
v

∑
Iv

qIv
i J

− 1
3

Iv ,ϵ ê
a
Iv
∂aM(x(v))ν−2/3

v′
Iv

∑
Jv

qJv
i ê

′b
Jv
∂bf − (N ↔M)


6= − 6

(
iℏ
8π

)2 ∑
v∈V (γ)

∑
Iv

(qIv )2ν−2/3
v ν−2/3

vIv
êa

Iv
êb

Iv
[N(x(v))∂aM(x(v))−M(x(v))∂aN(x(v))] ∂bf(v)

(7.37)

1: We have just used (7.34) for the first electric diffeomorphism operator and the second one acts
only on |T

c̃Iv
ϵ
⟩.

2: In this step, again we used (7.34) and paid attention to the fact that those terms in which
the vertices are not replaced by the first constraint would cancel each other due to the
antisymmetrisation of N and M .

3: Given that M is a scalar density of weight −1/3, its coordinate transformation obeys the rule

M(x′(v′Iv ,ϵ)) = det
(
∂x

∂x′
|v′

Iv,ϵ

)− 1
3
M(x(v′Iv ,ϵ)) =: J −

1
3

Iv ,ϵ M(x(v′Iv ,ϵ))

= J −
1
3

Iv ,ϵ [M(x(v)) + ϵêa
Iv
∂aM(x(v)) +O(ϵ2)] (7.38)

where in the last equality we simply used the Taylor expansion. The terms hidden in O(ϵ2)
have not been displayed in (7.37) because they would vanish in the refinement limit.

4: First note that due to the antisymmetrisation ofN andM the contribution fromN(x(v))M(x(v))
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vanishes. The action of the VSA state ℓ{c},f on the charge network T
c̃Iv,Jv

ϵ,ϵ′
results in

ℓ{c},f (T
c̃Iv,Jv

ϵ,ϵ′
) = − 1

12
∑

c′∈{c}
⟨Tc′ |f(v1, · · · , vn)| T

c̃Iv,Jv
ϵ,ϵ′

⟩ = − 1
12 f(v1, · · · , v′′(Iv ,ϵ),(Jv ,ϵ′), · · · , vn)

=: − 1
12 f(v′′(Iv ,ϵ),(Jv ,ϵ′)) (7.39)

where the condition (7.36) has been used and for convenience we have dropped those ele-
ments of f that do not change.

5: Because of the gauge invariance condition (7.18) the vanishing term −∑Jv
qJv

i f(v′Iv ,ϵ) can be
appended to ∑Jv

qJv
i f(v′′(Iv ,ϵ),(Jv ,ϵ′)) such that the directional derivative of f arises in the

refinement limit ϵ′ → 0. In other words,

∑
Jv

qJv
i lim

ϵ′→0

f(v′′(Iv ,ϵ),(Jv ,ϵ′))
ϵ′

=
∑
Jv

qJv
i lim

ϵ′→0

f(v′′(Iv ,ϵ),(Jv ,ϵ′))− f(v′Iv ,ϵ)
ϵ′

=
∑
Jv

qJv
i ê

′b
Jv
∂bf (7.40)

6: The Jacobian JIv ,ϵ has disappeared because in the limit ϵ→ 0 it is equals to identity. Using
the assumption (7.35) and the gauge invariance condition (7.18), we conclude∑

Jv

qJv
i ê

′b
Jv

= qIv
i ê

′b
Iv

+
∑

Jv ̸=Iv

qJv
i ê

′b
Jv

= qIv
i ê

b
Iv
− êb

Iv

∑
Jv ̸=Iv

qJv
i = qIv

i ê
b
Iv
− êb

Iv
(−qIv

i ) = 2 qIv
i ê

b
Iv

(7.41)

We have also used the notation (qIv )2 := qIv
i q

Iv
i .

7.4.2. Regularised Hamiltonian Constraint Operator
Similar to (7.33), the heuristic form of the Hamiltonian constraint operator, which corresponds
to (7.8), is

Ĉ ′[N ] := 1
2

∫
d3x

(
ϵijk(LN⃗i

Ak
b ) δ

δAj
b

+
∑

i

(LN⃗i
Ai

b)
δ

δAi
b

)
(7.42)

To see how it acts on a generic CNF, we need to define the following charge networks

ic̃Iv
ϵ :=

(
γIv

ϵ ,
(

iq̃Iv
j := (δijk − ϵijk)qIv

k

)
v∈V (γIv

ϵ )

)
ic̄ :=

(
γ,
(

iq̄j := −(δijk − ϵijk)qk

)
v∈V (γ)

)
iĉ :=

(
γ,
(

iq̂:
j = (ϵijk + δ̂ijk)qk

)
v∈V (γ)

)
(7.43)

where
δijk :=

{
1, i = j = k,

0, otherwise
, δ̂ijk :=

{
1, i ̸= j = k,

0, otherwise

In (7.43), the left superscript i determines which N⃗i is involved to define the charge networks
(see the calculation below).
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Now, by employing a triangulation T(ϵ) adapted to Tc, a calculation similar to what we did
in (7.28) and (7.34) reveals

Ĉ ′ϵ[N ]|Tc⟩ = Ĉ ′ϵ[N ]
(
e
∫

d3x ca
i Ai

a

)
=
(∫

d3x ca
i Ĉ
′
ϵ[N ]Ai

a

)(
e
∫

d3x ca
j Aj

a

)
= −iℏ2

(∫
d3x ca

i (ϵijkLN⃗j
Ak

a + LN⃗i
Ai

a)
)
Tc

= iℏ
2

∑
v∈V (γ)

∫
∆ϵ(v)

d3x
(
Ai

a (ϵijkLN⃗j
ca

k + LN⃗i
ca

i )
)
Tc

= iℏ
2

∑
v∈V (γ)

∫
∆ϵ(v)

d3x
(
A1

a LN⃗1
ca

1 −A2
a LN⃗1

ca
3 +A3

a LN⃗1
ca

2

+A1
a LN⃗2

ca
3 +A2

a LN⃗2
ca

2 −A3
a LN⃗2

ca
1

−A1
a LN⃗3

ca
2 +A2

a LN⃗3
ca

1 +A3
a LN⃗3

ca
3

)
Tc

= 3iℏ
8πϵ

∑
v∈V (γ)

N(x(v))ν−2/3∑
Iv

{
qIv

1 exp
(∫

d3x
[
A1

a(c̃aIv
1ϵ − c

a
1)−A2

a(c̃aIv
3ϵ − c

a
3) +A3

a(c̃aIv
2ϵ − c

a
2)
])

+ qIv
2 exp

(∫
d3x

[
A1

a(c̃aIv
3ϵ − c

a
3) +A2

a(c̃aIv
2ϵ − c

a
2)−A3

a(c̃aIv
1ϵ − c

a
1)
])

+ qIv
3 exp

(∫
d3x

[
−A1

a(c̃aIv
2ϵ − c

a
2) +A2

a(c̃aIv
1ϵ − c

a
1) +A3

a(c̃aIv
3ϵ − c

a
2)
]) }

Tc

= 3iℏ
8πϵ

∑
v∈V (γ)

N(x(v))ν−2/3∑
Iv

[
qIv

1 e
∫

d3x Aj
a

1c̃aIv
jϵ e

∫
d3x Aj

a
1c̄a

j

+ qIv
2 e

∫
d3x Aj

a
2c̃aIv

jϵ e
∫

d3x Aj
a

2c̄a
j

+ qIv
3 e

∫
d3x Aj

a
3c̃aIv

jϵ e
∫

d3x Aj
a

3c̄a
j

]
Tc

= 3iℏ
8πϵ

∑
v∈V (γ)

N(x(v))ν−2/3∑
Iv ,i

qIv
i Tic̃Iv

ϵ
Tic̄ Tc

= 3iℏ
8πϵ

∑
v∈V (γ)

N(x(v))ν−2/3
v

∑
Iv ,i

qIv
i Tic̃Iv

ϵ
Tiĉ (7.44)

Here we do not repeat the reasons we had already explained for the previous calculations, just note
that in the sixth equality we rearranged the terms so that they can be expressed as holonomies in
the next equality. Furthermore, in the last step we defined Tiĉ := Tic̄ Tc. Figure (7.4) visualises
the action of the Hamiltonian constraint operator on a given vertex of a CNF. Note that in this
case in addition to the replacement of the vertex, the labels are also flipped! The undeformed
piece of the charge network has charges obeying iĉ in (7.43) (In the right picture, we deliberately
did not completely erase the original graph to make the comparison easier).

7.4.2.1. Commutator Between Two Hamiltonian Constraints

Here, in an abuse of notation we write Ĉϵ[N ] instead of Ĉ ′ϵ[N ]. We intend to compute the
continuum limit of the commutator between two operators of the form (7.44), again it is required
to specify the conditions that the set BV SA has to satisfy (recall item 4 in section 7.4). Given a
point v ∈ Σ and a charge network c, either,
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Figure 7.4.: The action of the Hamiltonian constraint on a vertex of a CNF; the vertex is replaced
and the charges are flipped!

1. there exists ϵ0(c) := ϵ0 such that ∀ϵ ≤ ϵ0 there exists ϵ′0(ϵ) such that ∀ϵ′ ≤ ϵ′0(ϵ) we have

∀i, j ∀Iv, Jv ⟨Tj,ic̃Iv,Jv
ϵ,ϵ′
| ∈ BV SA, and κj,ic̃Iv,Jv

ϵ,ϵ′
= 1; (7.45)

or

2. ∀ϵ, ϵ′ for which j,ic̃Iv ,Jv

ϵ,ϵ′ is defined, we have ⟨Tj,ic̃Iv,Jv
ϵ,ϵ′
| /∈ BV SA, ∀i, j ∀Iv, Jv.

where Tj,ic̃Iv,Jv
ϵ,ϵ′

is the CNF produced by acting two Hamiltonian constraint operators on Tc.
Moreover, we assume that ⟨Tj,ic̃Iv,Jv

ϵ,ϵ′
| ∈ BV SA holds if and only if ⟨T

c̃Iv,Jv
ϵ,ϵ′
| ∈ BV SA holds and

⟨Tj,ic̃Iv,Jv
ϵ,ϵ′
| /∈ BV SA holds if and only if ⟨T

c̃Iv,Jv
ϵ,ϵ′
| /∈ BV SA holds.

Note that Now, we can compute the continuum limit using VSA states (7.32): (Again we have
enumerated the following equalities because the reason for each step is mentioned afterwards.)
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lim
ϵ′→0

lim
ϵ→0

ℓ{c},f
[
Ĉϵ′ [M ], Ĉϵ[N ]

]
|Tc⟩

1= lim
ϵ′→0

lim
ϵ→0

ℓ{c},f

 3iℏ
8πϵ

∑
v∈V (γ)

N(x(v))ν−2/3
v

∑
Iv ,i

qIv
i Ĉϵ′ [M ]|Tic̃Iv

ϵ
⟩ − (N ↔M)


2= lim

ϵ′→0
lim
ϵ→0

ℓ{c},f

 3iℏ
8πϵ

∑
v∈V (γ)

N(x(v))ν−2/3
v

∑
Iv

qIv ,i
i

3iℏ
8πϵ′M(x′(v′Iv ,ϵ))ν

−2/3
v′

Iv

∑
Jv ,j

iq̃Jv
j Tj,ic̃Iv,Jv

ϵ,ϵ′
− (N ↔M)


3=
(3iℏ

8π

)2
lim
ϵ′→0

lim
ϵ→0 ∑

v∈V (γ)
N(x(v))ν−2/3

v

∑
Iv ,i

qIv
i

1
ϵ′
J −

1
3

Iv ,ϵ ê
a
Iv
∂aM(x(v))ν−2/3

v′
Iv

∑
Jv ,j

iq̃Jv
j ℓ{c},f (Tj,ic̃Iv,Jv

ϵ,ϵ′
)− (N ↔M)


4=
(3iℏ

8π

)2
lim
ϵ→0 ∑

v∈V (γ)
N(x(v))ν−2/3

v

∑
Iv ,i

qIv
i J

− 1
3

Iv ,ϵ ê
a
Iv
∂aM(x(v))ν−2/3

v′
Iv

∑
Jv ,j

iq̃Jv
j lim

ϵ′→0

f(v′′(Iv ,ϵ),(Jv ,ϵ′))
ϵ′

− (N ↔M)


5=
(3iℏ

4π

)2
lim
ϵ→0

 ∑
v∈V (γ)

N(x(v))ν−2/3
v

∑
Iv ,i

qIv
i J

− 1
3

Iv ,ϵ ê
a
Iv
∂aM(x(v))ν−2/3

v′
Iv

∑
Jv ,j

iq̃Jv
j ê

′b
Jv
∂bf − (N ↔M)


6= 2

(3iℏ
8π

)2
lim
ϵ→0

 ∑
v∈V (γ)

N(x(v))ν−2/3
v

∑
Iv ,i,j

qIv
i J

− 1
3

Iv ,ϵ ê
a
Iv
∂aM(x(v))ν−2/3

v′
Iv

(iq̃Iv
j ê

′b
Iv

)∂bf − (N ↔M)


7= 18

(
iℏ
8π

)2 ∑
v∈V (γ)

∑
Iv

(qIv )2ν−2/3
v ν−2/3

vIv
êa

Iv
êb

Iv
[N(x(v))∂aM(x(v))−M(x(v))∂aN(x(v))] ∂bf(v)

(7.46)

1: We have just used (7.44) for the first Hamiltonian operator and the second one acts only on
|Tic̃Iv

ϵ
⟩. Note that since the CNF Tiĉ existing (7.44) in is associated to the undeformed piece

of the charge network it does not affect the final result of the commutator.

2: In this step, again we used (7.44). Note that those terms in which the vertices are not replaced
by the first constraint would cancel each other due to the antisymmetrisation of N and M .

3: Again we used (7.38).

4: We used the antisymmetrisation ofN andM to eliminate the contribution fromN(x(v))M(x(v)).
The action of the VSA state ℓ{c},f on the charge network Tj,ic̃Iv,Jv

ϵ,ϵ′
results in

ℓ{c},f (Tj,ic̃Iv,Jv
ϵ,ϵ′

) =
∑

c′∈{c}
⟨Tc′ |f(v1, · · · , vn)| Tj,ic̃Iv,Jv

ϵ,ϵ′
⟩ = f(v′′(Iv ,ϵ),(Jv ,ϵ′)) (7.47)

where the condition (7.45) has been used.

5: We have used the same reasoning as (7.40) to write the partial derivative.

6: The relation (7.41) has been used to eliminate the sum over Jv.

119



Dirac Quantisation of the U(1)3 model Section 7.4

7: The Jacobian JIv ,ϵ has disappeared because in the limit ϵ→ 0 it is equals to identity and we
have also used the relation∑

i,j

qIv
i

iq̃Iv
j =

∑
i,j

qIv
i ([δijk − ϵijk]qIv

k ) = (qIv )2 (7.48)

7.4.3. Conclusion
Comparing two equations (7.37) and (7.46), one easily reads

[Ĉ[N ], Ĉ[M ]] = −3[Ĉa[Na
i ], Ĉb[M b

i ]] (7.49)

which is the precise realisation of (7.11)! Thus, with this method we could verify the precise
realisation of the equation (5.16). Still the verifications of (5.14) and (5.15) are left to perform.
By a simple reasoning it turns out that the former is valid [88], but the latter is challenging
because what must be hold is indeed the equation (4.14), that is diffeomorphism covariance of
the Hamiltonian constraint. The problem is that since the lapse function we employed in this
chapter is a scalar “density” its evaluation is coordinate dependant and hence the equation (4.14)
is obviously violated. However, Varadarajan in [88] could suggest a way to deal with this problem
which is behind the scope of this dissertation. We just refer the interested reader to the original
paper.

A critical assessment of the electric shift perspective

Although the above structure seems to work perfectly, it is subjected to considerable criticism:

1. What is really shown in this chapter is that the classical identity (7.11), with certain density
weight, can be represented in the quantum theory on some subspace of the algebraic dual.
Classically both sides of (7.11) are equal to C⃗(M,N) := C⃗(q−1(MdN −NdM)) for certain
density weight. Note that by quantum hypersurface deformation algebra, we mean faithful
implementation of {C(M), C(N)} = C⃗(M,N). But if ∑j{C⃗(MEj), C⃗(NEj)} has nothing
to do with the direct quantisation of C⃗(M,N) (see [57]) then nothing has been gained, i.e.
again we have wrong structure functions.

2. If one adds a cosmological constant term and works with density weight different from 1 then
the cosmological constant term either diverges or becomes trivial which sheds considerable
doubt on the whole procedure. The same is true for various matter terms while in [238] it
was shown that weight 1 has a finite limit in URS topology for all matter terms universally.

3. If one considers Lorentzian signature, the additional KKEE term (see (1.31)) blows up
with density weight different from one.

4. It is unclear whether electric shift perspective can be generalised to non-Abelian theory
because electric field operator is no longer diagonal and this does not provide an electric
eigenvector field.
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CHAPTER 8.

Toward the Reduced Phase Space Quantisation
of the U(1)3 Model

8.1. Preliminaries
8.1.1. A Sneak Peek at the Constraints in the (A, E) and (B, f) Descriptions
Recall from section 5.2 that the constraints of the U(1)3 model in terms of the canonical variables
(A,E) are of the form

Cj = ∂aE
a
j , Ca = F j

abE
b
j , C = F j

abϵjklE
a
kE

b
l | det(E)|−1/2 (8.1)

that are Gauß, diffeomorphism and Hamiltonian constraints, respectively. Here, F j
ab = ∂aA

j
b −

∂bA
j
a. The significant property of (8.1) is that the Gauß constraint is linear in E and the other

ones are linear in A.
The canonical transformation (5.23) introduced the canonical variables (B, f). The constraints

of the U(1)3 model in terms of this new variables are given by

Ĉj = ∂aE
a
j , C̃j = ϵjklB

a
kH

l
a, C̃0 = Ba

jH
j
a (8.2)

that are Bianchi, diffeomorphism and Hamiltonian constraints, respectively, and Hj
a has already

been defined in (5.17). The considerable feature of (8.2) is linearity of all constraints in B.

8.1.2. Purpose of This Chapter
In this chapter, we propose quantisation of the U(1)3 model using the reduced phase space ap-
proach (see chapter 2), rather than operator constraint methods (see chapter 1). The advantage
of the former is that one can work directly with the physical Hilbert space, the physical observ-
ables, and the physical dynamics, which in the latter must be determined after implementing the
constraints on an unphysical, kinematical Hilbert space [89]. On the other hand, the disadvantage
of the latter is that it generally involves implicit functions, inversions of phase space-dependent
differential operators and square roots, which are difficult to quantise in practice [291]. Although
this problem can be bypassed in the presence of suitable matter [149, 292, 151], it is generic in
vacuum [89] (recall reduced phase space quantisation of the Brown-Kuchar model in section 2.3).

What makes the reduced phase space approach a practical feasibility for the vacuum U(1)3

model is the feature that its constraints are “at most linear” in one of the canonical variables,
while in the SU(2) case the connection dependence is “quadratic” [89] (Compare (8.1) with
(6.9) where the curvature is given in (6.10)). If one considers the connections as momentum
variables after a trivial canonical transformation, then there are no square roots that need to
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be taken to solve the constraints [89]. In this chapter, we follow [89], based on the procedure
presented in chapter 2 (in particular, the steps outlined in section 2.2.2 for obtaining the physical
Hamiltonian), to derive the reduced phase space and some rather simple physical Hamiltonians.
We will defer the task of quantisation to our future work.

8.2. Physical Hamiltonian for First Class Constrained Systems with
Certain Linearity Properties

In this section, we state and prove two simple results on the reduced dynamics of constrained
systems that have a certain linear structure in their constraints with respect to the momenta.
This linear structure is acclimatised to the appearance of the constraints of the U(1)3 model
presented in the previous section. Hence the succeeding results are applicable to the U(1)3

model in both (A,E) and (B, f) descriptions. In what follows we distinguish, as usual, between
constraint surface (constraints vanish) and reduced phase space (constraint surface modulo gauge
transformation) or (locally) equivalently the gauge cut (constraints and gauge conditions vanish).

8.2.1. The (A, E) Description
In section 8.1.1, we have seen that the U(1)3 model has seven first-class constraints for each
spatial point x : Three Gauß constraints Cj(x), j = 1, 2, 3 which do not depend on the connection
Aj

a, three density weight two diffeomorphism constraints C̃j(x) linear in the connection and one
density weight two Hamiltonian constraint C̃(x) also linear in the connection. With respect
to a smooth orthonormal basis of test functions bα on L2(d3x, Σ) for α taking values in an
appropriate index set, one integrates the constraints yielding Cα

j =
∫
d3x Cj(x) bα(x) etc. The

Cα
j is collectively denoted by CA and the C̃α

µ , µ = 0, .., 3 by CI for suitable ranges of the indices
A, I. With respect to the same test functions, we integrate the canonical pairs (Aj

a, E
a
j ) and

subdivide them as w = (uA, vA), z = (xI , yI), r = (qa, pa). These are still conjugate pairs and
in particular, all variables from w Poisson commute with all variables from z, r and all variables
from z Poisson commute with the variables from r. Then the completeness relation for the basis
bα is used to express the constraints in the form

CA = CA(u, x, q), CI = MI
J(u, x, q) yJ +NI

A(u, x, q) vA + hI(u, x, q, p) (8.3)

In our case, CA depends linearly on u, x, q and hI depends linearly on p but we will not require
to utilise this. Furthermore, MI

J , NI
A, hI are homogeneous and quadratic in u, x, q but we

will not need to utilise this either. What will be needed is that the subdivision of the canonical
pairs into groups is performed in such a way that the “matrices” σAB := {CA, vB} and MI

J

are non-singular and this leads to the above subdivision of canonical pairs. This indicates that
GA := vA = 0 is a suitable gauge fixing condition for CA and GI := F I(x) − τ I for CI where
τ I are constants on the phase space but possibly functions of physical time τ (see section 2.2.2
for the definition of physical time) and ∆J

I := {yJ , F
I} is non-singular. Indeed, recall [94] that

depending on whether the spatial manifold Σ has a boundary or not, the time dependence of τ is
not necessary or necessary respectively in order to get the non-trivial physical dynamics due to
the different boundary conditions on the canonical variables in these two cases. By the implicit
function theorem, our assumptions indicates that CA = 0 can locally be solved for uA = gA(x, q)
and GI = 0 for xI = kI(τ) for suitable functions gA, kI .

So we declare r as our physical degrees of freedom. Note that in field theory, the statement
that infinite-dimensional matrices are non-singular must be taken with caution: for example,
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if we are dealing with differential operators, then an inverse of, say MI
J , exists only if one

specifies a suitable function space, possibly with boundary conditions on them such that otherwise
unspecified integration constants are uniquely determined.

The first-class Hamiltonian reads

H(λ,Λ) = λA CA + ΛI CI (8.4)

where λA are the Lagrange multipliers of the Gauß constraint integrated against the basis, and
similarly ΛI are the density weight minus one lapse function and shift vector integrated against
that basis, in particular, they are phase space independent. They are collectively denoted by
l = (λ,Λ). The stability of the gauge conditions under gauge transformations determines the
Lagrange multipliers

ĠA = {H,GA} = λB σBA + ΛI{CI , GA} = 0; ĠI = {H,GI} = ΛJ MJ
K ∆K

I = τ̇ I (8.5)

which has the explicit solution

λA
0 = −ΛI

0 {CI , GB} (σ−1)BA + κA, ΛJ
0MJ

I = (∆−1)I
J τ̇

J + κI =: δI (8.6)

where
ΛI

0 = (M−1)J
I δJ + κ̂I (8.7)

Here we have presumed that both σ,∆ have an unambiguous inverse σ−1,∆−1 on an appropriate
space of functions and we allow the space of Lagrange multiplier functions to be larger and contain
the kernel of σ,∆ yielding the “integration constants” κA, κI . By construction, κA can only
depend on u, x, q and κI only on x. In the U(1)3 model, κA is indeed phase space independent.
As far as M,M−1 are concerned, we allow for a similar kernel function κ̂I which in general may
depend on u, x, q.

The ambiguities κA, κI , κ̂I are to be fixed by the boundary conditions (see chapter 6), and we
suppose that they imply in particular κA = 0. We emphasise that l0 = (λ0,Λ0) are phase space
dependent and defined by (8.6) and (8.7) on the whole phase space and not only on the constraint
surface CA = CI = 0 or the reduced phase space CA = GA = CI = GI = 0. Note, however, that
Λ0 does not depend on the momenta v, y, p and ΛI

0MJ
I = δI depends only on x.

Suppose F = F(r) is a function on the reduced phase space. Its evolution is then the gauge
motion generated by H restricted to the reduced phase space, i.e.

Ḟ = {H,F}C=0,G=0,l=l0 (8.8)

Now, the physical Hamiltonian h, if it exists, is a function h = h(r, τ, τ̇) satisfying Ḟ = {h,F}.
Abstracting from the concrete U(1)3 model, we can now assert the following general theorem

[89]:

Theorem 8.2.1. Let CA, CI , GA, G
I be as above. Then

h = (ΛI
0hI)CA=0,GI=0 (8.9)

This implies that we do not have to solve CI = 0 for yI , we only require to solve for ΛI as in
(8.7) and not λA and only at CA = GI = 0 which is merely a restriction on the configuration
degrees of freedom. Given the flexibility in the choice of the gauge condition GI , it is thus con-
ceivable that one arrives at an explicit expression for h.
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Proof. Due to the imposition of CI = CA = 0, we have

ḟ = (λA{CA, f}+ ΛI{CI , f})C=0,G=0,l=l0

= λA
0 {CA, f}C=0,G=0 + ΛI

0{CI , f}C=0,G=0

= ({λA
0 CA + ΛI

0CI , f})C=0,G=0 (8.10)

Now by (8.7)
ΛI

0CI = δI yI + ΛI
0 [NI

AvA + hI ]] (8.11)

The first term depends only on z = (x, y), the second one only on u, x, q, v and is linear in
vA = GA. The first term hence has Poisson commute with both f and vA, the second term has
a non-vanishing Poisson bracket with both f and vA, that is linear in GB. It hence follows from
(8.6) and our assumption κA = 0

{λA
0 CA, f}C=0,G=0

= −(ΛI
0 {CI , GB} (σ−1)BA {CA, f})C=0,G=0

= −({ΛI
0 CI , GB} (σ−1)BA {CA, f})C=0,G=0

= −({h̃, GB} (σ−1)BA {CA, f})C=0,G=0 (8.12)

where
h̃ = ΛI

0hI (8.13)

For the same reason
{ΛI

0CI , f}C=0,G=0 = {h̃, f}C=0,G=0 (8.14)

Therefore both terms (8.12) and (8.14) are independent of v, y so that GA, CI do not have to be
imposed anymore, we only must impose CA, G

I . Now it follows explicitly from (8.9)

h = h̃CA=0,GI=0 = h̃(u = g(x, q), x, q, p)x=k(τ) (8.15)

so that

{h, f} = {h̃, f}CA=0,GI=0 −
(

∂h̃
∂uA

∂gA

∂qa
∂f
∂pa

)
CA=0,GI=0

= {h̃, f}CA=0,GI=0 − ({h̃, vA} {gA, f})CA=0,GI=0 (8.16)

As CA(u = g(q, x), x, q) ≡ 0 by taking the qa derivative of this identity, we have

({CA, f} − {CA, vB} {gB, f})CA=0,GI=0 = ({CA, f} − σAB {gB, f})CA=0,GI=0 = 0 (8.17)

Hence comparing (8.12) with the second term in (8.16), we reach the desired result.

8.2.2. The (B, f) Description
As stated in section 8.1.1, in the (B, f) description, the U(1)3 model has seven first-class con-
straints: Three “Bianchi” constraints Ĉj , which are linear in B with phase space independent
coefficients together with the already discussed constraints C̃µ, which are also linear in B. This
feature makes the analysis even simpler. Employing the basis bα introduced in the previous
section, we now subdivide the canonical pairs (Ba

j , f
j
a) into only two groups z = (xI , yI) and

r = (qa, pa) and express the constraints in the form

CI = MI
J(x, q) yJ + hI(x, q, p) (8.18)
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where again MI
J , hI depend on x, q at most quadratic and the hI on p at most linear, however,

this is not required in the following discussion. As discussed earlier, we presume that the subdi-
vision is such that MI

J is invertible on a sufficiently large space of functions. We will impose
gauge fixings of the form GI(x) = F I(x)− τ I = whose stability under H = ΛICI determines Λ

ΛJ
0MJ

I = (σ−1)J
I τ̇J + κI =: δI , ΛI

0 = (M−1)J
I δJ + κ̂I (8.19)

where σI
J = {yI , G

J} depends only on x, is invertible on a suitable space of functions, and κI

belongs to its kernel, so depends only on x. In particular, δI also depends only on x. Similarly,
κ̂ belongs to the kernel of M and can in general depend on x, q.

Abstracting from the U(1)3 model, we arrive at the general theorem [89]:
Theorem 8.2.2. Let CI , G

I be as above. Then the physical Hamiltonian reads
h = (ΛI

0hI)G=0 (8.20)
This signifies that, as far as the dynamics of the physical degrees of freedom r on the reduced

phase space C = G = 0 is concerned we can completely forget about the constraints. It is only
needed to solve G = 0 and derive Λ0 as in (8.19). which is also practically conceivable depending
on the choice of G.

Proof. Using that
ΛI

0CI = δIyI + h̃, h̃ = ΛI
0hI (8.21)

we have by steps familiar from the previous subsection for f = f(r)
ḟ = {Λ0CI , f}C=G=0 = {h̃, f}G=0 (8.22)

Since the solution of GI = 0 is of the form xI = gI(τ) and does not depend on r, we can also put
G = 0 before calculating the Poisson bracket.

8.3. Reduced Phase Dynamics in Specific Gauges
We build the reduced phase and its physical Hamiltonian in various gauges which we propose in
section 8.3.1. To keep the technicalities at a minimum, we restrict attention to linear gauges. In
section 8.3.2, we then apply the theorems (8.2.1) and (8.2.2) to derive the corresponding physical
Hamiltonian.

8.3.1. Gauge Fixing Choices
The discussion is divided into the (A,E) and (B, f) descriptions, respectively.

8.3.1.1. (A,E) Description

Since the Gauß constraint only depends on E, we have to use a gauge fixing condition that
involves A. In the literature on Abelian gauge theories, the Coulomb gauge or axial gauge is
popular. Here we work with an extension of these two to fix also spacetime diffeomorphism
gauge symmetry. In what follows, we arbitrarily choose the z-coordinate as the longitudinal
direction and the x, y coordinates as the transversal directions. The transversal spatial indices
are now I, J, · · · ∈ {x, y} while the longitudinal index is denoted by a = z. We also consider
“transversal” u(1)3 indices α, β, · · · ∈ {1, 2} and denote the longitudinal one by 3. The indices
α, β, . . . such as j, k, . . . are raised and lowered by the Kronecker δαβ, so the index position of
α, β, . . . is also irrelevant.
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A. transversally magnetic Coulomb - transversally electric anti-Coulomb - longitudinally
electric axial gauge (TMC-TEaC-LEA)

The gauge conditions are

Gj = δIJ∂IA
j
J , G̃j = ϵIJδ

IK∂KE
J
j , G̃0 = Ez

3 − f (8.23)

where f is a function that depends on coordinates and possibly also on physical time. Here
ϵIJ = ϵIJ is the fully skew symbol in two dimensions, and δI

J is the Kronecker symbol in two
dimensions. We set

∂I := δIJ∂J , ∂̂I := ϵIJ∂J , ∂̂I := ϵIJ∂
J (8.24)

to simplify the notation in what follows. It is clear that these structures break the (spatial)
diffeomorphism covariance, as they should in order to be suitable gauge fixings, especially for
spatial diffeomorphism gauge symmetry.

We see that the three sets of gauges (8.23) affect three different sets of canonical pairs that mu-
tually Poisson commute among each other, specifically the transversal Coulomb pair (∂IAj

I ,∆−1∂IE
I
j ),

the transversal anti-Coulomb pair (∂̂IAj
I ,−∆−1∂̂IE

I
j ) and the longitudinal axial pair (A3

z, E
z
3).

Here we have used the two-dimensional Laplacian

∆ := ∂I∂I (8.25)

and ∆−1 is a Green function, namely ∆−1(x1, x2) = (2π)−1 ln(||x1 − x2||), where the flat two-
dimensional metric has been used. Note that the transformation to these canonical coordinates
is canonical, although ∆ has a kernel. When inverting this transformation, one must take into
account the kernel employing the boundary conditions discussed in chapter 6.

We perceive that the Gauß constraint Cj = ∂aE
a
j = 0, together with the electric gauge con-

ditions, implies that the “transversal curl” ∂̂IE
I
j vanishes and that the “transversal divergence”

∂IE
I
j = −∂zE

z
j is determined in terms of Ez

j . In particular, if we choose the coordinate function
f to be independent of z, as we will, then ∂IE

I
3 = ∂̂IE

I
3 = 0. Since Σ = R3 is simply connected,

∂̂IE
I
3 = 0 indicates that δIJE

J
3 is an exact 1-form, that is, EI

3 = δIJ∂Jg for a certain 0-form g
and thus ∂IE

I
3 = ∆g = 0, so the g is a harmonic function with respect to the x, y dependence.

By our boundary conditions (see section 6.2), EI
3 , which is harmonic itself, must approach zero

at infinity. As is well known, in R3, the only smooth harmonic function decaying at infinity is
the trivial function. Therefore, our gauge conditions signify EI

3 = 0. Using the same argument
from ∂̂IE

I
α = 0, we conclude that EI

α = ∂Igα. Plugging this into the Gauß constraint gives
∆gα = −∂zE

z
α that is equivalent to gα = hα −∆−1∂zE

z
α where hα is harmonic and thus EI

α =
∂I [hα −∆−1∂zE

z
α]. The second term vanishes at infinity because Ez

α does, hence the first term
must approach δI

α at infinity. It follows that ∂Igα−δI
α is a harmonic function decaying at infinity,

hence must vanish itself. Accordingly, EI
α = δI

α − ∂I∆−1∂zE
z
α is fully expressed in terms of

Ez
α. This shows that the physical degrees of freedom, in this gauge, correspond to (Aα

z , E
z
α).

Indeed, the condition ∂IAj
I = 0 together with the boundary conditions, implies that Aj

I is a
two-dimensional curl Aj

I = ∂̂Ig
j for certain gj and one would solve the constraints for both gj

and A3
z such that Aα

z remains unconstrained.
It is essential to remark that the gauge conditions (8.23) do not contradict the requirement

that the density weight two inverse spatial metric Qab = Ea
jE

b
kδ

jk is not degenerate.

B. Magnetic longitudinal axial - electric tranverse transverse axial (MLA-ETTA) gauge

The gauge conditions are
Gj := Aj

z, GI
α := EI

α − f I
α (8.26)
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for certain functions f I
α dependent of coordinate and possibly also of physical time, e.g. f I

α = fδI
α.

This gauge is somewhat simpler because it does not involve derivatives. We assume that f I
α do

not depend on x, y. Hence, the Gauß constraint gives ∂zE
z
α = 0, which means that Ez

α is
independent of z. This implies Ez

α = 0 because if one moves to infinity along the z−axis at fixed
finite values of x, y, Ez

α can only decay when it vanishes identically. The third Gauß constraint
∂zE

z
3 + ∂IE

I
3 = 0 is solved by Ez

3 = k − ∂−1
z ∂IE

I
3 where the Green function ∂−1

z is chosen to
be (∂−1

z )(z1, z2) = 1
2sgn(z1 − z2) which makes it an antisymmetric translation-invariant kernel

and k is a function independent of z. Since the second term in Ez
3 decays at infinity, k has to

approach unity at infinity and k − 1 must vanish. However, since it is independent of z this is
only possible if k = 1 identically. Thus, the true degrees of freedom, in this gauge, are (A3

I , E
I
3)

since one would solve the spacetime diffeomorphism constraints for Aα
I .

Note that this gauge is complementary to the previous one as it has disjoint sets of canonical
pairs as physical degrees of freedom. Again it is easy to check that the gauge conditions (8.26)
are not in conflict with the requirement that the density weight two inverse spatial metric Qab =
Ea

jE
b
kδ

jk should not be degenerate.

8.3.1.2. (B, f) Description

First of all, we need to determine the asymptotic behaviours of the canonical variables (B, f).
Recall from chapter 6 that by transcribing the boundary conditions of the (A,E) variables, i.e.
(6.7), to (B, f), we get

ϵabc∂bf
j
c → F a

j (n)/r +O(1/r2), (8.27)
Bj

a → Ḡj
a(n)/r3 +O(1/r4) (8.28)

where Ḡj
a are even functions on the asymptotic 2-sphere and Ḡa

j = ϵabc(δd
b − nbn

d)∂Gj
c

∂nd . Using
(8.28) and also taking into account the requirement od having a well-defined symplectic structure,
the asymptotic behaviour of fa

j is determined

f j
a → cj

a + F̄ j
a (n) +O(1/r) (8.29)

where F̄ j
a (n) are odd functions on the asymptotic S2 such that F a

j (n) = ϵabc
(
δd

b − nbn
d
)

∂F̄ j
c

∂nd

and cj
a are constants. As shown in detail in section 6.4.1, utilising these boundary conditions

one cannot find well-defined generators for asymptotic symmetries in the (B, f) description. As
a result, the use of them is not admissible. In section 6.4.2, an alternative is considered, which
ultimately leads to the conclusion that Hamiltonian and diffeomorphism constraints are well-
defined generators of asymptotic temporal and spatial translations, respectively. Since here we
just deal with the spacetime translations, the lack of generators for boosts and rotations does not
affect the following computations. The lack of well-defined generators for boosts and rotations
transpires not only in the (B, f) description but also in that of (A,E). The latter has been
studied in detail in [90] (see section 6.2). Recall that since the U(1)3 model is not GR, we do
not expect to have full Poincaré group as its asymptotic symmetries. The appropriate boundary
conditions have the decay behaviours just the same as (8.28) and (8.29) but with opossite parity
conditions

F̄ i
a (−n) = F̄ i

a (n) , Ḡa
i (−n) = −Ḡa

i (n) . (8.30)

Although the chosen boundary conditions do not match those that one would choose in GR,
because the U(1)3 theory is just a toy model for a generally covariant theory with non-trivial
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dynamics and an infinite number of degrees of freedom, we are allowed to exploit the freedom we
have in defining the theory (the choice of boundary condition and choice of polarisation of the
phase space is such an element of freedom) in order to learn as much as possible about the actual
theory. Note that in the case of topologies without boundary, the choice of boundary conditions
is irrelevant and the (A,E) description and the (B, f) description are totally equivalent (see
chapter 6).

Recall from section 6.4.1.1 that the minimal condition on the Lagrange multiplier Λi associ-
ated with the Bianchi constraint, that ensures differentiability and convergence of the smeared
constraint Ci[λi] =

∫
d3x Λi∂aB

a
i , is

Λi = λir +O(1) (8.31)

where λi are odd functions defined on the asymptotic S2, i.e.

λi (−n) = −λi (n) (8.32)

In what follows, the decay conditions imposed on Λi plays an important role. It is essential to
note that the gauge fixings we discuss below are consistent with the above boundary conditions.
We need also to express Hj

a in terms of f j
a which can be easily obtained from combining (5.17)

and Ea
j = δa

j + ϵabc∂bf
j
c ,

Hj
a = δj

a + ϵjkl(∂af
l
b − ∂bf

l
a)[δb

k + 1
2ϵ

bde(∂df
k
e )] (8.33)

As in the (A,E) description, here we view z-coordinate as the longitudinal direction and I, J, · · · ∈
{x, y} as the transversal ones. Likewise, in the internal indices, we consider 3 as the longitudinal
and α, β, · · · ∈ {1, 2} as the transversal directions.
In what follows, when we write an operator X as a polynomial of derivative and multiplication
operators, its action on a function u is to be understood as the corresponding linear combination
of consecutive applications of derivative and multiplication operators, for instance when X :=
∂xg∂

−1
y f + h in which f, g, h are functions, then Xu = ∂x(g∂−1

y (fu)) + hu.

A. Electric transverse axial - longitudinally electric axial (ETA-LEA) gauge

The gauge conditions are

Gj
I = f j

I − σ
j
I , G = f3

z − σ (8.34)

in which σj
I and σ are phase space independent functions which may depend only on the physical

time, τ . We assume that σj
I and σ are independent of the spatial coordinates, then not only

will the calculations be more convenient, but also it ensures that (8.34) is consistent with the
boundary conditions (8.29) and (8.30). Applying the gauge fixing (8.34) on Hj

a leads to

Hj
x =δj

x + ϵjkl(∂xf
l
b − ∂bf

l
x)[δb

k + 1
2ϵ

bde(∂df
k
e )] = δj

x + ϵj3l(∂xf
l
z)

Hj
y =δj

y + ϵjkl(∂yf
l
b − ∂bf

l
y)[δb

k + 1
2ϵ

bde(∂df
k
e )] = δj

y + ϵj3l(∂yf
l
z)

Hj
z =δj

z + ϵjkl(∂zf
l
b − ∂bf

l
z)[δb

k + 1
2ϵ

bde(∂df
k
e )] = δj

z − ϵj1l(∂xf
l
z)− ϵj2l(∂yf

l
z) + ϵjkl(∂yf

l
z)(∂xf

k
z )

(8.35)
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Thus, H3
I = Hα

z = 0 and the non-vanishing ones are

H1
x = 1− ∂xf

2
z , H2

x = ∂xf
1
z ,

H1
y = − ∂yf

2
z , H2

y = 1 + ∂yf
1
z ,

H3
z = 1− ∂xf

2
z + ∂yf

1
z − (∂xf

2
z )(∂yf

1
z ) + (∂xf

1
z )(∂yf

2
z )

= H1
xH

2
y −H2

xH
1
y (8.36)

With the Ha
j evaluated at the gauge cut, the constraints are much easier to solve for BI

i and Bz
3 .

Indeed, the matrix representation of (8.18) in this gauge is

∂x 0 0 ∂y 0 0 0
0 ∂x 0 0 ∂y 0 0
0 0 ∂x 0 0 ∂y ∂z

0 0 −H2
x 0 0 −H2

y 0
0 0 H1

x 0 0 H1
y 0

H2
x −H1

x 0 H2
y −H1

y 0 0
H1

x H2
x 0 H1

y H2
y 0 H3

z





Bx
1

Bx
2

Bx
3

By
1

By
2

By
3

Bz
3


+



∂zB
z
1

∂zB
z
2

0
Bz

2H
3
z

−Bz
1H

3
z

0
0


= 0 (8.37)

Note that the existence of the solutions for this system of equations essentially depends on the
non-vanishing requirement of H3

z which is indeed guaranteed in the MTA-MLA gauge (see Ap-
pendix A). According to (5.17) and the fact that in this gauge H1

z = H2
z = 0, vanishing of H3

z

would lead to a degenerate E, conflicting with the necessity of a non-degenerate spatial metric.
Therefore, H3

z ̸= 0 everywhere.
As one can see in detail in Appendix A, solving the system (8.37) with the above-mentioned
boundary conditions completely determines (BI

i , B
z
3) in terms of Bz

α. Thus, the physical degrees
of freedom, in this gauge, are (Bz

α, f
α
z ).

In this gauge, one can easily check that

Ea
i =

 H2
y −H1

y 0
−H2

x H1
x 0

0 0 1

 (8.38)

Hence, the gauge conditions do not contradict the requirement that the density weight two inverse
spatial metric Qab = Ea

jE
b
kδ

jk should be non-degenerate.

B. Electric transverse transverse axial- electric longitudinal axial (ETTA-ELA) gauge

The gauge conditions are
Gα

I = fα
I − σα

I , Gj = f j
z − σj (8.39)

where σα
I and σj are phase space independent functions which may depend only on the physical

time, τ . We assume that σα
I and σj are independent of the spatial coordinates to make the

following calculations simpler. Note that (8.39) is compatible with the boundary conditions
(8.29) and (8.30). A straightforward calculation attests that, in this gauge, Hj

a has a pretty
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simple form, that is

H1
x = H2

y = 1 + ∂xf
3
y − ∂yf

3
x

H1
z = ∂zf

3
y − ∂yf

3
z = ∂zf

3
y

H2
z = ∂xf

3
z − ∂zf

3
x = −∂zf

3
x

H2
x = H3

x = H1
y = H3

y = 0, H3
z = 1 (8.40)

With these H’s, we can observe that the system of equations to be solved here is even simpler
than that of the previous gauge, i.e. (8.37). Indeed, in this gauge, the matrix representation of
(8.18) is

∂x 0 ∂y 0 ∂z 0 0
0 ∂x 0 ∂y 0 ∂z 0
0 0 0 0 0 0 ∂z

0 0 0 0 0 1 −H2
z

0 0 0 0 −1 0 H1
z

0 −H1
x H1

x 0 H2
z −H1

z 0
H1

x 0 0 H1
x H1

z H2
z 1





Bx
1

Bx
2

By
1

By
2

Bz
1

Bz
2

Bz
3


+



0
0

∂xB
x
3 + ∂yB

y
3

−H1
xB

y
3

H1
xB

x
3

0
0


= 0 (8.41)

Note that the existence of the solutions for (8.41) essentially depends on the non-vanishing ne-
cessity of H1

x that is assured in the ETTA-ELA gauge (see Appendix A). According to (5.17) and
the fact that in this gauge H3

I = H2
x = H1

y = 0, vanishing of H1
x would lead to a degenerate E,

which is in conflict with the requirement that the spatial metric must be non-degenerate. Thus,
H1

x ̸= 0 everywhere.
In Appendix A, we have explicitly shown that by solving the system (8.41) using the boundary
conditions, (BI

α, B
z
j ) can be completely expressed in terms of BI

3 . Consequently, the true degrees
of freedom, in this gauge, are (BI

3 , f
3
I ).

In this gauge, the electric field is given by

Ea
i =

 1 0 −H1
z

0 1 −H2
z

0 0 H1
x

 (8.42)

Accordingly, again, the gauge conditions do not contradict the requirement that the density
weight two inverse spatial metric Qab = Ea

jE
b
kδ

jk should be non-degenerate.

8.3.2. Reduced Phase Space Dynamics in Various Gauges
In this section, we discuss the dynamics of the reduced phase space in various gauges introduced
in section 8.3.1 and using different pairs of canonical variables.

8.3.2.1. MLA-ETTA Gauge in (A,E) Description

We verify that the assumptions of theorem 8.2.1 apply:
Recall first that in this gauge we have w = (Ez

j , A
j
z), z = (EI

α, A
α
I ) and r = (Ez

α, A
α
z ). We consider

(minus) the Aj
z as the momenta vA and (minus) the Aα

I as the momenta yI . Likewise, the Gauß
constraints are denoted by CA and the spacetime constraints by CI .
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We have
{C(λ), Gj} = {C(λ), Aj

z} = −κ∂zλ
j (8.43)

which has as a kernel the space of z-independent functions. If we consider as space of functions
λj those decaying at infinity at least as 1/r2 this implies that the kernel vanishes and the matrix
σAB regarded as the integral kernel {Cj(x), Gj(y)} is regular.

Next we have

C̃(U,F ) =
∫

d3x Ba
j (FHj

a + ϵjklHk
aU

l) =:
∫

d3x Ba
j u

j
a =:

∫
d3x Aj

av
a
j (8.44)

with
va

j = ϵabc∂bu
j
c, u

j
a = FHj

a + ϵjklHk
aU

l (8.45)
Geometrically, the relation between the density weight minus smearing functions F,U j one and
the density weight zero lapse and shift functions N,Na is that

F = N | det(E)|−1/2, U jEa
j = Na (8.46)

i.e. Na is an “electric shift” [87] if U,F are assumed to be phase space independent1.
Obviously

{C̃(U,F ), Ea
j } = −κva

j (8.47)
and we need to confirm that, given asymptotically flat boundary conditions, −κvα

I = τ̇α
I signifies

unique values for F,U , so that the gauge fixing be admissible. It is enough to verify this at
the gauge cut Cj = ∂aE

j = 0, EI
α = τ I

α, because then by continuity and using the usual
argumentation of the implicit function theorem, it holds in a neighbourhood of the gauge cut (to
make this more precise, one should give the phase space a suitable (Banach) manifold topology).

Specifically, we work with τ I
α = fδI

α, where f depends at most on the physical time. Indeed,
this is consistent with asymptotic flatness if we further specify f ≡ 1, but for the moment, let
us be more general. As mentioned earlier, it follows from the Gauß constraint that ∂zE

z
α = 0,

which implies Ez
α = 0 if we use the boundary conditions. Moreover, ∂aE

a
3 = 0 is uniquely solved

by Ez
3 = 1− ∂−1

z ∂IE
I
3 , so Ez

3 is completely determined by EI
3 . Evaluation of the Hj

a at the gauge
cut results in

H3
z = det({EI

α}) = f2

H3
I = ϵαβϵIJE

I
βE

z
β = 0

Hα
z = ϵIJϵ

αβEI
βE

J
3 = −fδα

I E
I
3

Hα
I = ϵIJϵ

αβ[EJ
βE

z
3 − EJ

3E
z
β] = fδα

I E
z
3 (8.48)

and find with Ûα = ϵαβU
β, Ûα = ϵαβUβ

u3
z = FH3

z + ϵαβH
α
z U

β = FH3
z +Hα

z Ûα

uα
z = FHα

z + ϵαβ(Hβ
z U

3 −H3
zU

β) = [Fδα
β + U3ϵαβ]Hβ

z −H3
z Û

α

=: Σα
βH

β
z −H3

z Û
α

u3
I = FH3

I + ϵαβHα
I U

β = Hα
I Ûα

uα
I = FHα

I + ϵαβ(Hβ
I U

3 −H3
IU

β) = Σα
βH

β
I (8.49)

1Recall from section 1.3.1 that the lapse function N and shift vector Na can be viewed as Lagrange multipliers
of the Hamiltonian and diffeomorphism constraints, respectively. Alternatively, we can consider the density weight
minus one versions of them as the smearing functions of the constraints, i.e., N | det(E)|−1/2 and NaEj

a, respectively.
This is the geometric origin of (8.46).

131



Toward the Reduced Phase Space Quantisation of the U(1)3 Model Section 8.3

The stability condition emanating from (8.47) is

− ḟ/κδI
α = vI

α = ϵIJ [∂Ju
α
z − ∂zu

α
J ] (8.50)

This can be transformed into
∂Iu

α
z = ḟ

κ
ϵIJδ

J
α + ∂zu

α
I (8.51)

Let us define
a := fEz

3F, b := fEz
3U

3 (8.52)

then employing (8.48), (8.49)
uα

I = aδα
I + bϵαβδ

β
I (8.53)

and one can disentangle the four equations (8.51)

∂xu
1
z = ∂yu

2
z = ∂za; ∂yu

1
z = −∂xu

2
z = ∂zb−

ḟ

κ
(8.54)

So we note that (u1
z, u

2
z) forms a Cauchy-Riemann pair, i.e. w = u1

z + iu2
z is a holomorphic

function in x + iy. On the other hand, it follows from (8.48) and (8.49) that uα
z is a bounded

function if U j , F, EI
3 are or that it decays at least as r−1 if we let N,Na and hence F,U j (recall

(8.46)) asymptotically approach at most a constant and zero, respectively. In the former case,
we conclude from Liouville’s theorem that uα

z =const. In the latter case, we immediately obtain
uα

z = 0 since a holomorphic function decays at most in x2 + y2 but not in r2.
In either case

∂za = 0 = ∂zb−
ḟ

κ
(8.55)

that is solved by

a = a0(x, y), b = b0(x, y) + ḟ

κ
z (8.56)

Comparing with (8.52), we infer that, up to O(1/r) corrections, a approaches a constant asymp-
totically and that b falls off at least as 1/r. Indeed, since a function of x, y cannot decay in z as
r does, we must have a0 =const. and b0 = ḟ = 0. Moreover, by comparing the asymptotic values
we find a0 = f and f = 1 follows from Ea

j = δa
j +O(1/r). Accordingly

F = 1
Ez

3
, U3 = 0 (8.57)

and thus
uα

z = FHα
z −H3

z Û
α = cα (8.58)

However, because H3
z = 1, a non-vanishing constant is conflicting with a decaying Uα, so that

indeed uα
z = 0 and

Ûα = Hα
z

Ez
3

= −δα
I

EI
3

Ez
3

(8.59)

We deduce that the gauge fixing has led to a unique solution for F,U j and is therefore admissible.

We now employ the theorem 8.2.1 to derive the physical Hamiltonian h, which depends only
on true degrees of freedom. To do this, first, we decompose

C̃(F,U) =
∫

d3x [vI
αA

α
I + vz

jA
j
z + vI

3A
3
I ] (8.60)
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and identify the first term with ΛIMI
JyI , the second term with ΛINI

AvA and the third term
with ΛIhI , where ΛI corresponds to (F,U). Integrating by parts, we obtain

ΛIhI =
∫

d3x ϵIJ(∂Ju
3
z − ∂zu

3
J)A3

I

=
∫

d3x [u3
z(ϵIJ∂IA

3
J) + u3

I(−ϵIJ∂zA
3
J)]

=
∫

d3x [u3
zB

z
3 + u3

IB
I
3 ]

=
∫

d3x [F (H3
zB

z
3 +H3

IB
I
3) + Ûα(Hα

z B
z
3 +Hα

I B
I
3)]

=
∫

d3x [FH3
aB

a
3 + ÛαH

α
aB

a
3 ] (8.61)

where BI
3 is to be evaluated in the magnetic longitudinal axial gauge A3

z = 0. Notice that (8.61) in
fact is independent of U3 even before applying the constraints, gauge conditions and gauge-fixed
Lagrange multipliers.

According to the theorem 8.2.1, we need only impose the gauge EI
α = δI

α and use the solution
Ez

α = 0, Ez
3 = 1 − ∂−1

z ∂IE
I
3 of the Gauß constraint as well as the solution for ΛI

0 = (F0, U0) at
these values, which can be found in (8.57), (8.59), and then plug them into (8.61). This gives
the final expression

h =
∫

d3x [Bz
3(F +Hα

z Ûα) +BI
3H

α
I Ûα]

=
∫

d3x [Bz
3( 1
Ez

3
+ δIJ

EI
3E

J
3

Ez
3

)−BI
3δIJE

J
3 ]

=
∫

d3x A3
I ϵ

IJ [∂J(1 + δIJE
I
3E

J
3

Ez
3

)− ∂zδJKE
K
3 ] (8.62)

As expected, the physical Hamiltonian (8.62) has the following features:

(i) Linearity in momentum A3
I .

(ii) Non-polynomiality in the configuration variable EI
3 .

(iii) Spatial non-locality.

The latter two attributes are due to the appearance of 1/Ez
3 with Ez

3 = 1− ∂−1
z ∂IE

I
3 . Note that

the term 1 + δIJE
I
eE

J
3 makes sense from a dimensional point of view since Ea

j is dimensionless
and Aj

a has dimension cm−1. Thus the Hamiltonian density has dimension cm−2 and to turn
it into a quantity with dimension of energy, we have to divide h by κ (when time is multiplied
by the speed of light). Actually, we should have been working with constraints rescaled by 1/κ
all along, as would naturally arise from an action [91]. The fact that the three individual terms
in the Hamiltonian have different density weights is due to the gauge fixing condition EI

α = δI
α,

which breaks the density weight of EI
α.

We can now acquire the physical equations of motion and show strategies for solving them
despite the complexity of the Hamiltonian (8.62). Using {EI

3(x), A3
J(y)} = κδI

Jδ(x, y), for EI
3 we

get

ĖI
3 = {h

κ
,EI

3} = −ϵIJ [∂J(1 + δIJE
I
3E

J
3

Ez
3

)− ∂zδJKE
K
3 ] (8.63)
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As expected, due to the linearity of h in A, the equation of motion for EI
3 is first-order in time

and self-closing, i.e., its time derivative no longer involves A3
I and we can study (8.63) completely

independently of the equation of motion for A3
I . Next we have

Ȧ3
I(x) = {h

κ
,A3

I(x)} = (−BI
3 + 2Bz

3
EI

3
E3

z

)(x)−
∫

d3y (Bz
3

1 + δJKE
J
3E

K
3

(Ez
3)2 )(y) δE

z
3(y)

δEI
3(x)

(8.64)

Employing Ez
3 = −∂−1

z ∂JE
J
3 , integrations by parts and the antisymmetry of the integral kernel

of ∂−1
z as well as [∂−1

z , ∂I ] = 0, for any smearing function s we obtain∫
d3y s(y)δE

z
3(y)

δEI
3(x)

=
∫

d3y (∂−1
z ∂Js)(y)δE

J
3 (y)

δEI
3(x)

= (∂−1
z ∂Js)(x) (8.65)

whence
Ȧ3

I(x) = {h
κ
,A3

I(x)} = −BI
3 + 2Bz

3
EI

3
E3

z

− ∂−1
z ∂I(Bz

3
1 + δJKE

J
3E

K
3

(Ez
3)2 ) (8.66)

Note the abbreviations BI
3 := −ϵIJ∂zA

3
J , B

z
3 := ϵIJ∂IA

3
J .

Equations (8.63), (8.66) suggest the following solution strategy: First solve (8.63), which does
not depend on A. Then put this solution into (8.66), which is then a first-order linear integro-
differential equation system in all derivatives and the anti-derivative ∂−1

z . For the first task, we
introduce the “divergence” and the “curl” of EI

3

D := ∂IE
I
3 , C := ϵIJ∂I(δJKE

K
3 ) (8.67)

and decompose
EI

3 = ∆−1[δIJ∂JD − ϵIJ∂JC] (8.68)

where ∆ is the transversal Laplacian and we used the boundary conditions (EI
3 must decay as

1/r) to exclude a non-vanishing kernel of ∆. Taking the divergence and curl of (8.63), one finds

− Ḋ = −∂zC, −Ċ = −∆[1 + δIJE
I
3E

J
3

Ez
3

] + ∂zD (8.69)

Note that if we were to omit the nonlinear interaction term in the second equation of (8.69) and
would iterate it, we would get

D̈ + ∂2
zD = C̈ + ∂2

zC = 0 (8.70)

which is a “Euclidean” wave operator confined to the z-direction. We interpret this to display the
closeness of the model to Euclidean gravity. Continuing with (8.69), we recall that D = −∂zE

z
3 ,

so the first equation in (8.69) implies (again, possible integration constants have to vanish)

C = −Ėz
3 (8.71)

This means that one can express all of EI
3 just in terms of F := Ez

3

EI
3 = −∆−1[δIJ∂J∂z − ϵIJ∂J∂t]F (8.72)

which allows writing the second equation in (8.69) just in terms of F

F̈ + ∂2
zF = −∆[1 + δIJE

I
3E

J
3

F
] (8.73)
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where (8.72) is to be applied to the r.h.s.. The equation (8.73) has the undesirable property
of being non-polynomial (due to 1/F ) and spatially non-local (owing to ∆−1 in (8.72)). We
can get rid of the first property by multiplying (8.73) by F 3 because the Laplacian on the
r.h.s. produces factors at most of 1/F 3. We can get rid of the second property by introducing
G = ∆−1F, F = ∆G. Consequently, we write

EI
3 = −[δIJ∂J∂z − ϵIJ∂J∂t]G (8.74)

and
(∆G)3[∂2

t + ∂2
z ](∆G) = −(∆G)3[∆[1 + δIJE

I
3E

J
3

∆G ] (8.75)

where we must substitute (8.74). Hence, (8.75) is a polynomial in G of degree four and involves
temporal derivatives up to second-order and spatial derivatives up to fourth-order. To see this,
we write with K := δIKE

I
3E

J
3

F 3∆(1 +K

F
) = F 3(∆K

F
− 2∂IK

F 2 (∂IF ) + (1 +K)[−∆F
F 2 + 2(∂IF )(∂IF )

F 3 ])

= F 2(∆K)− 2F (∂IK)(∂IF ) + (1 +K)[−F (∆F ) + 2(∂IF )(∂IF )] (8.76)

We leave the further analysis of (8.75) to future work. Remarkably, half of the equations of
motion can be encoded with only a “single” PDE! The fact that the theory is self-interacting is
expressed by the fact that this PDE is far from being linear and has a spatial degree higher than
two (namely four) but still has a temporal degree of at most two. In particular, it is a quasi-linear
equation in terms of the highest temporal derivatives.

As for Hilbert space representations supporting (some ordering of) h as a densely defined opera-
tor as well as the corresponding spectral problem, we consider the possibility of a representation
in which EI

3 acts as a multiplication operator, i.e. H = L2(Ê , dµ), where Ê is a suitable distribu-
tional extension of the set E of the classical fields EI

3 and µ is a probability measure on it. Then
A3

I = iℓ2P δ/δE
I
3 +DI(E), where DI is taken so that A3

I is a symmetric, operator-valued distribu-
tion, and ℓ2P = ℏκ is the Planck area. Then for any symmetric ordering of h, after reordering in
such a way that the functional derivatives act directly on the Hilbert space vector ψ ∈ H, we see
that h acts as

(hψ)[E] = iℓ2P

∫
d3x V I

3 (E(x)) δψ

δEI
3(x)

+ U [E]ψ[E] (8.77)

where the potential term U [E] acts as a multiplication operator and emanates from reordering h
into the form presented as well as from the contribution V IDI where

V I
3 (E(x)) = ϵIJ [∂J(1 +K

F
)− ∂zE

J
3 ] (8.78)

Reordering h in the form exhibited generally generates singularities in the form of (derivatives of)
δ-distributions evaluated at zero, which must be regularised and which guide the choice of µ and
hence DI to cancel them. Also, the form of V I , U may bring up non-trivial domain questions.

We can now recast the spectral problem for h into the form

iℓ2P < V I ,
δ

δEI
3
> ψ = (λ− U) ψ (8.79)
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where < ., . > denotes the inner product on L2(d3x,R3) or equivalently with the WKB Ansatz
ψ = exp(−i S

ℓ2
P

)

< V I ,
δS

δEI
3
>= (λ− U) (8.80)

Equation (8.80) has the form of a “first-order linear functional partial differential equation”, that
is, the infinite-dimensional analogue of the familiar case of a first-order linear partial differential
equation. This is the simplest kind of first-order FPDE (functional PDE) imaginable. It is not
even quasi-linear (which would let V I , U depend on S) or even non-linear (which would let V I , U
depend on S, δS/δEI

3). Note also that, unlike Hamiltonians with at least quadratic dependence
on the momenta, the WKB Ansatz leads to a Hamilton-Jacobi equation (8.80) which is “exact”
in this case.

One can then try to solve (8.80) by a functional version of the method of characteristics [293]
which brings out the closeness of the spectral problem (8.80) to the solution of the classical
equations of motion (8.63) in this case. For this purpose, we solve the equations of motion (8.63),
i.e., we determine the integral curves of the vector field V I . Suppose that we have found the
maximal unique solution XI(t, x;G) given initial data XI(0, x) = GI(x), where G ranges in some
submanifold Σ ⊂ E of co-dimension one, which is everywhere transversal to the vector field V
[89]. We also solve

ṡ(t) = λ− U [E = X(t, .;G)] (8.81)

with initial condition s(0) = s0[G] giving rise to a unique maximal solution s(t;G). The transver-
sality of Σ to the flow lines of V implies that at least for small t i.e. close to Σ we can invert the
equation EI

3(x) = XI(t, x;G) for

t = τ [E], GI(x) = σI(x;E) (8.82)

and then
S[E] := s(t, G)t=τ,G=σ (8.83)

solves (8.80) with boundary condition S[G] = s0[G] i.e. S|Σ = s0.
The exact technical implementation of these steps may be quite involved, but it is remarkably

much less intricate than one might have worried. We leave the details of this programme to
future work.

8.3.2.2. TMC-TEaC-LEA Gauge in (A,E) Description

We verify that the assumptions of the theorem 8.2.1 apply:
We consider (minus) the vj := ∂IAj

I as the momenta vA and (minus) the yj := ∂̂IAj
I , A

3
z as the

momenta yI . The configuration variables corresponding to these momenta are uj := ∆−1∂IE
I
j ,

xj := ∆−1∂̂IE
I
j and Ez

3 , respectively. Similarly, the Gauß constraints is denoted by CA and
the spacetime constraints by CI . In what follows, the canonical variables are w = (uj , v

j), z =
{(xj , y

j), (Ez
3 , A

3
z)} and r = (Ez

α, A
α
z ), where the latter plays the role of our true degrees of

freedom. Thus, we need to express EI
j and Aj

I in terms of uj , xj and vj , yj , respectively

EI
j = δI

j + ∂Iuj + ∂̂Ixj (8.84)

Aj
I = ∆−1

(
∂Iv

j + ∂̂Iy
j
)

(8.85)
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And the constraints written in terms of the canonical variables are

C̃j = ϵjkl(BI
kH

l
I +Bz

kH
l
z)

= ϵjkl

(
ϵIJH l

I(∂JA
k
z − ∂z(∂Jv

k + ∂̂Jy
k)) +H l

z∆yk
)

= ϵj3lϵ
IJH l

I∂JA
3
z + ϵjkl

(
H l

z∆− ϵIJH l
I∂z∂̂J

)
yk − ϵjklϵ

IJH l
I∂z∂Jv

k + ϵjαlϵ
IJH l

I∂JA
α
z (8.86)

and

C̃0 = BI
jH

j
I +Bz

jH
j
z

= ϵIJHj
I

(
∂JA

j
z − ∂z(∂Jv

j + ∂̂Jy
j)
)

+Hj
z ∆yj

= ϵIJH3
I ∂JA

3
z +

(
Hj

z ∆− ϵIJHj
I∂z∂̂J

)
yj − ϵIJHj

I∂z∂Jv
j + ϵIJHα

I ∂JA
α
z (8.87)

where we have used BI
j = ϵIJ

(
∂JA

j
z − ∂z(∂Jv

j + ∂̂Jy
j)
)

and Bz
j = ∆yj . It can be seen from

(8.86) and (8.87) that hI introduced in (8.3) is (ϵjαlϵ
IJH l

I∂JA
α
z , ϵ

IJHα
I ∂JA

α
z ). On the other hand,

translating the gauge conditions (8.23) to these canonical variables results in

Gj = vj , G̃j = xj , G̃0 = Ez
3 − f (8.88)

Recall that f has been assumed to be independent of z. The non-zero H’s evaluated at the gauge
cut are

H1
x = f(1 + ∂yu

2)− Ez
2(∂yu

3)
H2

x = Ez
1(∂yu

3)− f(∂yu
1)

H3
x = Ez

2(∂yu
1)− Ez

1(1 + ∂yu
2)

H1
y = Ez

2(∂xu
3)− f(∂xu

2)
H2

y = f(1 + ∂xu
1)− Ez

1(∂xu
3)

H3
y = Ez

1(∂xu
2)− Ez

2(1 + ∂xu
1)

H3
z = (1 + ∂xu

1)(1 + ∂yu
2)− (∂xu

2)(∂yu
1)

and Hα
z = 0. The stability conditions for G̃j and G̃0 at the gauge cut are

0 = {H,x1} = ∂I
[
−∂I(λ2H3

z )− ∂z(λ3H2
I − λ2H3

I + λH1
I )
]

(8.89)

0 = {H,x2} = ∂I
[
∂I(λ1H3

z )− ∂z(λ1H3
I − λ3H1

I + λH2
I )
]

(8.90)

0 = {H,x3} = ∂I
[
∂I(λH3

z )− ∂z(λ2H1
I − λ1H2

I + λH3
I )
]

(8.91)

0 = {H,Ez
3} = ∂̂I

[
λ2H1

I − λ1H2
I + λH3

I

]
(8.92)

respectively, which are supposed to be solved for λi and λ. From (8.91) and (8.92), one concludes

∂I(λH3
z )− ∂z(λ2H1

I − λ1H2
I + λH3

I ) = ∂̂Ig1 (8.93)
λ2H1

I − λ1H2
I + λH3

I = ∂Ig2 (8.94)

respectively, where g1 and g2 are certain 0-forms. Substituting (8.94) into (8.93) and applying
∂̂I to both sides leads to ∆g1 = 0. Since g1 is harmonic and also decays at infinity due to the
boundary conditions, we get g1 = 0. Consequently, (8.93) becomes

λ2H1
I − λ1H2

I = ∂I∂
−1
z (λH3

z ) + λH3
I + gI(x, y) (8.95)
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in which gI are functions that depend only on x, y. Going to infinity along the z-axis while x, y
are finite and fixed, it turns out that gI = ϵIJδ

J
αλ

α
0 , where λα

0 are the leading terms of λα (recall
that λi are of O(1) and the leading terms are constants). Now (8.95) are two algebraic equations
that can be solved for λα as

λα = 1
H3

z

[
ϵIJHα

I

(
∂J∂

−1
z (λH3

z )−H3
J

)
+ λα

0

]
(8.96)

Note that substituting (8.96) into (8.89) and (8.90) yields a system of two integro-differential
equations that is too complicated to solve. Even if one could solve the system for λ3 and λ,
the resulting physical Hamiltonian would be very complicated to quantize. Therefore, we refrain
from further analysis of this gauge and continue the quantisation process in the description of
(A,E) with the MLA-ETTA gauge which led to a relatively simple physical Hamiltonian (8.62).

8.3.2.3. ETA-LEA Gauge in (B, f) Description

Recall first that in this gauge condition we have z = {(f i
I , B

I
i ), (f3

z , B
z
3)} and r = (fα

z , B
z
α). The

equations for the stability of the gauge conditions are

σ̇i
I = {H, f i

I(y)} =
∫
d3x [λk∂a + λ̃jϵjklH

l
a + λ̄Hk

a ]{Ba
k(x), f i

I(y)}

=− ∂Iλ
i + λ̃jϵjilH

l
I + λ̄H i

I

σ̇ = {H, f3
z (y)} =

∫
d3x [λk∂a + λ̃jϵjklH

l
a + λ̄Hk

a ]{Ba
k(x), f3

z (y)}

=− ∂zλ
3 + λ̃jϵj3lH

l
z + λ̄H3

z (8.97)

Which should be solved uniquely for the Lagrange multipliers. As already mentioned, it is
sufficient to solve them at the gauge cut where the system of equations (8.97) can be represented
as 

−∂x 0 0 0 0 H2
x H1

x

0 −∂x 0 0 0 −H1
x H2

x

0 0 −∂x −H2
x H1

x 0 0
−∂y 0 0 0 0 H2

y H1
y

0 −∂y 0 0 0 −H1
y H2

y

0 0 −∂y −H2
y H1

y 0 0
0 0 −∂z 0 0 0 H3

z





λ1

λ2

λ3

λ̃1

λ̃2

λ̃3

λ̄


=



σ̇1
x

σ̇2
x

σ̇3
x

σ̇1
y

σ̇2
y

σ̇3
y

σ̇


=: Σ̇I (8.98)

First, we need to determine the space of functions such that all integral constants are fixed when
solving the system of equations. For this goal, we work only with the functions that have the
following form

λi = λi
0δijδ

j
ax

a +O(r−1)
λ̃i = λ̃i

0 +O(r−1)
λ̄ = λ̄0 +O(r−2) (8.99)

where λi
0, λ̃

i
0, λ̄0 are arbitrary constants. Note that the first equation of (8.99) is completely

consistent with (8.31) and (8.32) and in the second and third equations rotations and boosts are
excluded, respectively, since there are no well-defined generators for them [90] (see chapter 6).
The reason for the absence of the term r−1 in the lapse function is that the use of anti-derivatives
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in the following calculations would lead to a logarithmic divergence, which prevents us from
specifying some integration constants. For this very reason, we also use

f j
a → cj

a +O(1/r) (8.100)

instead of (8.29) in what follows.

Here we want to work with Σ̇I = 0. Solving the first equation of (8.98) for λ1 gives λ1 =
λ̄0x+ ∂−1

x

(
H1

xλ̄+H2
xλ̃

3
)

+ g1(y, z), where we have used H1
x = 1 +O(r−2) and λ̄ = λ̄0 +O(r−2)

and the fact that all constants lie in the kernel of ∂−1
a . Considering that according to (8.99)

λ1− λ̄0x→ 0 asymptotically and moving to infinity along the x-axis at fixed finite values of y, z,
one observes g1 = 0. It follows that

λ1 = λ̄0x+ ∂−1
x

(
H1

xλ̄+H2
xλ̃

3
)

(8.101)

By the same argument, the fifth equation of (8.98) can be solved for λ2 as λ2 = λ̄0y+∂−1
x

(
H2

y λ̄−H1
y λ̃

3
)
+

g2(x, z). Going to infinity along the y-axis at fixed finite values of x, z gives rise to g2 = 0, because
λ2 − λ̄0y → 0. Therefore,

λ2 = λ̄0y + ∂−1
x

(
H2

y λ̄−H1
y λ̃

3
)

(8.102)

The last equation can be solved for λ3 as λ3 = λ̄0z + ∂−1
z

(
H3

z λ̄
)

+ g3(x, y), where we have used
H3

z = 1 +O(r−2). If we go to infinity along the z-axis while x, y are fixed and finite, we derive
g3 = 0. Consequently,

λ3 = λ̄0z + ∂−1
z

(
H3

z λ̄
)

(8.103)

If we plug λ1 and λ2 into the second and fourth equations, we get a system of two integro-
differential equations for λ̃3, λ̄

(−∂x∂
−1
y H2

y +H2
x)λ̄− (−∂x∂

−1
y H1

y +H1
x)λ̃3 = 0 (8.104)

(−∂y∂
−1
x H1

x +H1
y )λ̄+ (−∂y∂

−1
x H2

x +H2
y )λ̃3 = 0 (8.105)

Looking at (8.36), one can easily verify that all constants belong to the kernel of the two operators
Y2 := −∂x∂

−1
y H2

y +H2
x and X1 := −∂y∂

−1
x H1

x +H1
y . In fact, if u is a constant

Y2u =− ∂x∂
−1
y (H2

yu) +H2
xu

= u
(
−∂x∂

−1
y H2

y +H2
x

)
= u

(
−∂x∂

−1
y (1 + ∂yf

1
z ) + ∂xf

1
z

)
= 0

and by a similar reasoningX1u = 0 as well. On the other hand, both operators Y1 := −∂x∂
−1
y H1

y +
H1

x and X2 := −∂y∂
−1
x H2

x +H2
y act on constants like identity, in the sense that Y1u = X2u = u

and the ground would be

Y1u =− ∂x∂
−1
y (H1

yu) +H1
xu

= u
(
−∂x∂

−1
y H1

y +H1
x

)
= u

(
−∂x∂

−1
y (−∂yf

2
z ) + (1− ∂xf

2
z )
)

= u
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and by the same argument X2u = u, for all u =const. Thus, two integro-differential equations
(8.104) and (8.105) are equivalent to

Y2(λ̄− λ̄0)− Y1(λ̃3 − λ̃3
0)− λ̃3

0 = 0 (8.106)
X1(λ̄− λ̄0) +X2(λ̃3 − λ̃3

0) + λ̃3
0 = 0 (8.107)

Since λ̄− λ̄0 and λ̃3− λ̃3
0 are of O(r−1), the highest order term of both (8.106) and (8.107) is λ̃3

0,
which must vanish separately. Therefore λ̃3 = ∑∞

n=1 λ̃
3
nr
−n and (8.106) and (8.107) reduce to

Y2(λ̄− λ̄0)− Y1λ̃
3 = 0 (8.108)

X1(λ̄− λ̄0) +X2λ̃
3 = 0 (8.109)

From (8.108) it follows that λ̃3 = Y −1
1 Y2(λ̄ − λ̄0) + κ̃, where κ̃ is in the kernel of Y1. Since

λ̃3 = O(r−1), κ̃ must be of the form κ̃ = ∑∞
n=1 κ̃nr

−n, where κ̃n are functions on the asymptotic
sphere. We have

0 = Y1κ̃ = H1
xκ̃− ∂y∂

−1
x (H1

y κ̃) (8.110)

Since H1
I = δ1

I +O(r−2) and κ̃ = O(r−1), the first and the second terms of (8.110) are of O(r−1)
and O(r−3), respectively. Thus κ̃1/r is the highest order term in (8.110) which must vanish
separately, i.e. κ̃1 = 0 and consequently κ̃ = O(r−2). Now the highest order term in (8.110) is
κ̃2/r

2, which must vanish by the same reasoning. By induction, one infers κ̃n = 0 for all n > 0,
which implies κ̃ = 0. Hence,

λ̃3 = Y −1
1 Y2(λ̄− λ̄0) (8.111)

Inserting (8.111) into (8.109), we have

0 = (X2Y
−1

1 Y2 +X1)(λ̄− λ̄0) = −∂−1
x ∂y[Y1 + Y2Y

−1
1 Y2](λ̄− λ̄0) (8.112)

where we used Xα = −∂−1
x ∂yYα when writing the second equation. (8.112) tells us that ∂y[Y1 +

Y2Y
−1

1 Y2](λ̄ − λ̄0) = g(y, x), where g is an arbitrary function that depends only on y, z. Since
λ̄ − λ̄0 = O(r−1), moving to infinity along the x-axis for fixed finite values of y, z shows that
g(y, x) = 0. Therefore, [Y1 + Y2Y

−1
1 Y2](λ̄ − λ̄0) = h(x, z), where h is an arbitrary function

independent of y. Again, going to infinity along the y-axis while x, z have fixed finite values gives
rise to h(x, z) = 0. Thus (8.112) is equivalent to

[Y1 + Y2Y
−1

1 Y2](λ̄− λ̄0) = 0 (8.113)

In general, it is straightforward to show that (S + P )−1 = S−1 − S−1P (S + P )−1 for any two
operators S, P . By repeatedly inserting this relation into its r.h.s. one obtains

(S + P )−1 = S−1
∞∑

n=0
(−PS−1)n (8.114)

Based on this relation, we have

Y −1
1 = (H1

x − ∂y∂
−1
x H1

y )−1 = 1
H1

x

∞∑
n=0

(∂y∂
−1
x

H1
y

H1
x

)n (8.115)

Since Hα
I = δα

I + O(r−2), Y −1
1 is expanded as Y −1

1 = 1 + O(r−2) and Y2 = −∂x∂
−1
y + O(r−2).

Assuming λ̄ − λ̄0 = ∑∞
n=1 λ̄nr

−n, where λ̄n = λ̄n(θ, φ) in the spherical coordinates, we can
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extract the highest order term of (8.113) as
(
∂2

x∂
−2
y + 1

)
λ̄1
r = 0. Applying ∂2

y to both sides of
this equation, we see that λ̄1/r must satisfy the 2-dimensional Laplace equation, i.e.

(∂2
x + ∂2

y) λ̃1
r

= 0 (8.116)

If one introduces R =
√
x2 + y2, it is easy to rewrite the Laplace equation in the polar coordinate

system in x− y plane (
∂2

∂R2 + 1
R

∂

∂R
+ 1
R2

∂2

∂φ2

)
λ̄1(θ, φ)√
R2 + z2

= 0 (8.117)

where z = r cos θ and r =
√
R2 + z2. Carrying out the derivatives, we see that (8.117) is reduced

to
− λ̄1

(
2z2 −R2

(R2 + z2)2

)
+ 1
R2∂

2
φλ̄1 = 0 (8.118)

Moving to infinity along the z-axis at fixed finite values of x, y results in ∂2
φλ̄1 = 0. Substituting

this into (8.118), we see that λ̄1 has to vanish. Thus λ̄−λ̄0 = ∑∞
n=2 λ̄nr

−n. Now the highest order
term of (8.113) is

(
∂2

y∂
−2
x + 1

)
λ̄2
r2 = 0 and by a similar reasoning it is easily concluded that λ̄2 = 0

and finally by induction λ̄n = 0 for all n > 0. As a final result of this part, we have λ̄ − λ̄0 = 0
and consequently λ̃3 = 0 (recall (8.111)). From (8.103) it follows that λ3 = λ̄0z + λ̄0∂

−1
z H3

z .
Consequently, the third and sixth equations of (8.98) are a system of two algebraic equations
that simply leads to

λ̃α = λ̄0
H3

z

(Hα
y ∂x −Hα

x ∂y)∂−1
z H3

z (8.119)

for α = 1, 2 because H1
xH

2
y −H2

xH
1
y = H3

z ̸= 0. Finally, (8.101) and (8.102) give rise to

λ1 = λ̄0x+ λ̄0∂
−1
x H1

x = λ̄0x− λ̄0f
2
z

λ2 = λ̄0y + λ̄0∂
−1
x H2

y = λ̄0y + λ̄0f
1
z (8.120)

respectively.
Thus it is proved that the solution of the system of PDEs (8.98) with Σ̇I = 0 is of the form

ΛI
0 = λ̄0

(
x− f2

z , y + f1
z , z + ∂−1

z H3
z ,

1
H3

z

(H1
y∂x −H1

x∂y)∂−1
z H3

z ,
1
H3

z

(H2
y∂x −H2

x∂y)∂−1
z H3

z , 0, 1
)T

(8.121)

where λ̄0 is an arbitrary constant. In order to have a unique solution, it is necessary to spec-
ify the asymptotic behaviour of λ̄. For simplicity, we consider λ̄0 = 1, which means that
from the scratch one should work only with those lapse functions in (8.99) which are of the
form λ̄ = 1 + O(r−2). Based on the theorem 8.2.2 it suffices to multiply ΛI

0 by (hI)G=0 =
(∂zB

z
1 , ∂zB

z
2 , 0, Bz

2H
3
z ,−Bz

1H
3
z , 0, 0) to obtain the corresponding physical Hamiltonian for this

gauge fixing. Consequently, for this particular gauge fixing, we arrive at

hΣI=0 =
∫
d3x [(δβ

I x
I + ϵαβfα

z )(∂zB
z
β) + ϵαβϵIJBz

αH
β
I ∂J∂

−1
z H3

z ]

=
∫
d3x ϵαβ[fα

z (∂zB
z
β) + ϵIJBz

αH
β
I ∂J∂

−1
z H3

z ] +
∮
dSa δ

β
I x

Iδa
zB

z
β

=
∫
d3x ϵαβ[fα

z (∂zB
z
β) + ϵIJBz

αH
β
I ∂J∂

−1
z H3

z ] (8.122)
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where the surface term has been omitted because Bz
β is O(r−3) odd.

Two other suitable choices for fixing the gauge are ΣI = (0, 0, τ, 0, 0, 0, 0)T and ΣI = (0, 0, 0, 0, 0, τ, 0)T ,
which lead to

ΛI
0 =(
x− f2

z , y + f1
z , z + ∂−1

z H3
z ,
H1

y

H3
z

+ 1
H3

z

(H1
y∂x −H1

x∂y)∂−1
z H3

z ,
H2

y

H3
z

+ 1
H3

z

(H2
y∂x −H2

x∂y)∂−1
z H3

z , 0, 1
)
,

(8.123)
ΛI

0 =(
x− f2

z , y + f1
z , z + ∂−1

z H3
z ,

1
H3

z

(H1
y∂x −H1

x∂y)∂−1
z H3

z −
H1

x

H3
z

,
1
H3

z

(H2
y∂x −H2

x∂y)∂−1
z H3

z −
H2

x

H3
z

, 0, 1
)

(8.124)

respectively. And the associated physical Hamiltonians are obtained as

hΣI=(0,0,τ,0,0,0,0)T =
∫
d3x ϵαβ[fα

z (∂zB
z
β) + ϵIJBz

αH
β
I ∂J∂

−1
z H3

z +Hα
y B

z
β] (8.125)

and

hΣI=(0,0,0,0,0,τ,0)T =
∫
d3x ϵαβ[fα

z (∂zB
z
β) + ϵIJBz

αH
β
I ∂J∂

−1
z H3

z −Hα
xB

z
β] (8.126)

respectively, where the expressions of Hα
I and H3

z in terms of fα
z have been displayed in (8.36).

The Physical Hamiltonians (8.122), (8.125) and (8.126) have the following features:

(i) Linearity in momentum Bz
α.

(ii) Polynomiality in the configuration variable fα
z .

(iii) Spatial non-locality.

As the three physical Hamiltonians here obtained are very similar, we shall in what follows deal
only with (8.122).

Before ending this section, we derive the equations of motion driven by the physical Hamiltonian
(8.122) and {Bz

α(x), fβ
z (y)} = δα

β δ(x, y). For fα
z , one can effortlessly see that

ḟα
z (x) = {h, fα

z (x)} = ϵαβ[∂zf
β
z + ϵIJHβ

I ∂J∂
−1
z H3

z ] (8.127)

where

Hα
I = δα

I − ϵαβ∂If
β
z (8.128)

H3
z = 1 + ϵαβδI

β∂If
α
z + 1

2ϵ
αβϵIJ(∂If

α
z )(∂Jf

β
z ) (8.129)

Not surprisingly, the equation of motion for fα
z closes on itself thanks to the linearity property

of the physical Hamiltonian in Bz
α. Therefore, (8.127) can be solved separately without the

need to refer to the equation of motion of Ba
i . To obtain the time evolution of Ba

i , one needs
to know the variations of Hβ

I and H3
z with respect to fα

z , which can be directly derived from
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δHβ
I (x)

δfα
z (y) = ϵαβ∂Iδ(x, y) and δH3

z (x)
δfα

z (y) = ϵαβ
[
δI

β + ϵIJ(∂Jf
β
z )
]
∂Iδ(x, y). This gives

Ḃz
α(x) ={h,Bz

α(x)} = −ϵαβ(∂zB
z
β)

−
∫
d3x ϵγβ

{
ϵIJBz

γ(∂J∂
−1
z H3

z )ϵαβ∂Iδ(x, y) + ϵKJBz
γH

β
K∂J∂

−1
z

(
ϵαλ

[
δI

λ + ϵIL(∂Lf
λ
z )
]
∂Iδ(x, y)

)}
= − ϵαβ(∂zB

z
β) + ϵIJ(∂IB

z
α)(∂J∂

−1
z H3

z )−
∫
d3x ϵγβϵKJϵαλ

(
δI

λ + ϵIL(∂Lf
λ
z )
)
∂J∂

−1
z (Bz

γH
β
K)∂Iδ(x, y)

= − ϵαβ(∂zB
z
β) + ϵIJ(∂IB

z
α)(∂J∂

−1
z H3

z ) + ϵγβϵKJϵαλ
(
δI

λ + ϵIL(∂Lf
λ
z )
)
∂I∂J∂

−1
z (Bz

γH
β
K)

(8.130)

where in the last step we used ∂I

[
δI

λ + ϵIL(∂Lf
λ
z )
]

= 0. Since the equations (8.127) and (8.130)
are complicated to solve, we leave further analysis of these equations to future work.

8.3.2.4. ETA-LEA Gauge in (B, f) Description

Recall first that in this gauge condition we have z = {(fα
I , B

I
α), (f j

z , B
z
j )} and r = (f3

I , B
I
3). The

equations for the stability of the gauge conditions are

σ̇α
I = {H, fα

I (y)} =
∫
d3x [λk∂a + λ̃jϵjklH

l
a + λ̄Hk

a ]{Ba
k(x), fα

I (y)}

=− ∂Iλ
α + λ̃jϵjαlH

l
I + λ̄Hα

I

σ̇i = {H, f i
z(y)} =

∫
d3x [λk∂a + λ̃jϵjklH

l
a + λ̄Hk

a ]{Ba
k(x), f i

z(y)}

=− ∂zλ
i + λ̃jϵjilH

l
z + λ̄H i

z (8.131)

which should be solved uniquely for the Lagrange multipliers. The system of equations (8.131)
can be represented at the gauge cut as

−∂x 0 0 0 0 0 H1
x

0 −∂x 0 0 0 −H1
x 0

−∂y 0 0 0 0 H1
x 0

0 −∂y 0 0 0 0 H1
x

−∂z 0 0 0 −1 H2
z H1

z

0 −∂z 0 1 0 −H1
z H2

z

0 0 −∂z −H2
z H1

z 0 1





λ1

λ2

λ3

λ̃1

λ̃2

λ̃3

λ̄


=



σ̇1
x

σ̇2
x

σ̇3
x

σ̇1
y

σ̇2
y

σ̇3
y

σ̇


=: Σ̇I (8.132)

Again, we will work with the space of functions introduced in (8.99). And we consider (8.100),
(8.28) and (6.44) as boundary conditions imposed on the canonical variables.

Now we can solve (8.132) under the assumption Σ̇I = 0. It follows immediately from the first
and fourth equations of (8.132) that λα = λ0δ

α
I x

I + δI
α∂
−1
I (λ̄H1

x) + gα(y, z). Since it is assumed
that H1

x = 1 +O(r−2), the asymptotic behaviours of (8.99) implies that g1 = 0. Consequently,

λα = λ0δ
α
I x

I + δI
α∂
−1
I (λ̄H1

x) (8.133)

Plugging (8.133) into the second and third equations of (8.132) results in

−∂x∂
−1
y (λ̄H1

x)−H1
xλ̃

3 = 0
−∂y∂

−1
x (λ̄H1

x) +H1
xλ̃

3 = 0 (8.134)
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respectively. We can readily solve the first equation of (8.134) for λ̃3 and get

λ̃3 = − 1
H1

x

∂x∂
−1
y (λ̄H1

x) (8.135)

Substituting (8.135) into the second equation of (8.134) gives (∂y∂
−1
x + ∂x∂

−1
y )u = 0 where

u := λ̄H1
x = λ̄0 +O(r−2). Applying the operator ∂x∂y to both sides of this equation, we see that

u has to satisfy the 2-dimensional Laplace equation 0 = (∂2
x + ∂2

y)u = (∂2
x + ∂2

y)(u − λ̄0), where
u− λ̄0 is of O(r−2) and hence can be written as u− λ̄0 = ∑∞

n=2 unr
−n. The highest order term

of the Laplace equation under consideration is (∂2
x + ∂2

y)(u2r
−2), which can be rewritten in the

polar coordinate system in the x− y plane as(
∂2

∂R2 + 1
R

∂

∂R
+ 1
R2

∂2

∂φ2

)
u2(θ, φ)
R2 + z2 = 0 (8.136)

where R =
√
x2 + y2, z = r cos θ and r =

√
R2 + z2. Carrying out the derivatives, we see that

(8.117) is reduced to

2u2

(
R2 − z2

(R2 + z2)2

)
+ 1
R2∂

2
φu2 = 0 (8.137)

Moving to infinity along the z-axis at fixed finite values of x, y leads to ∂2
φu2 = 0. Substituting

this into (8.137), we see that u2 must vanish. Thus u − λ̄0 = ∑∞
n=3 λ̃nr

−n. Repeating the same
argument for the lowest order term of Laplace equation, that is now (∂2

x + ∂2
y)(u3r

−3), we see
u3 = 0. Finally by induction one arrives at un = 0 for all n > 1, which implies λ̄H1

x = u = λ̄0.
Consequently, it follows from (8.133) and (8.135) that

λα = λ0δ
α
I x

I , λ̃3 = 0 (8.138)

respectively. Plugging (8.138) and λ̄ = λ̄0
H1

x
into the fifth and sixth equations of (8.132), we get

λ̃α = − λ̄0
H1

x

ϵαβHβ
z (8.139)

and ultimately putting all these results in the last equation of (8.132), one gets

λ3 = λ̄0z + λ̄0∂
−1
z

(
1 + (H1

z )2 + (H2
z )2

H1
x

)
(8.140)

Note that in the expression of λ3 an integration constant should appear which depends only on
x and y, but due to the asymptotic behaviour of λ3 introduced in (8.99), it must vanish.
This ends showing that the solutions of the PDE system (8.132) have the following form

ΛI
0 = λ̄0

(
x, y, z + ∂−1

z

(
1 + (H1

z )2 + (H2
z )2

H1
x

)
,−H

2
z

H1
x

,
H1

z

H1
x

, 0, 1
H1

x

)T

(8.141)

where λ̄0 is an arbitrary constant.
As explained in the paragraph following (8.121), it is necessary to specify λ̄0 = 1. Based on the
theorem (8.2.2), ΛI

0 should be multiplied by (hI)G=0 = (0, 0, ∂IB
I
3 ,−H1

xB
y
3 , H

1
xB

x
3 , 0, 0) to obtain
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the corresponding physical Hamiltonian for this gauge. Consequently, for this particular gauge
fixing, one obtains

h =
∫
d3x

[(
z + ∂−1

z

(
1 + (H1

z )2 + (H2
z )2

H1
x

))
∂IB

I
3 + δα

I H
α
z B

I
3

]

=
∫
d3x

[
∂−1

z

(
1 + (H1

z )2 + (H2
z )2

H1
x

)
∂IB

I
3 + ϵIJBI

3(∂zf
3
J )
]

+
∮
dSa(zδa

IB
I
3)

=
∫
d3x

[
∂−1

z

(
1 + (H1

z )2 + (H2
z )2

H1
x

)
∂IB

I
3 + ϵIJBI

3(∂zf
3
J )
]

(8.142)

Here the surface term has been omitted since according to the boundary conditions (8.28) and
(8.30), it is O(1) odd.

The Physical Hamiltonians (8.142) has the following features:

(i) Linearity in momentum Bz
α.

(ii) Non-polynomiality in the configuration variable fα
z .

(iii) Spatial non-locality.

For the (B, f) description, the comparison of (8.142) and (8.122) shows us that the latter has
simpler properties, being polynomial in the configuration variables. Therefore, we will proceed
with (8.122) in further analysis in future work.

8.3.2.5. Remark on Polynomial Degree of the Physical Hamiltonian

One may wonder why, on some gauges the physical Hamiltonian is polynomial, while in others it is
not. The answer lies in the choice of the different polarisations (separation between configuration
and momentum degrees of freedom) of the phase space and the polynomial degree in which they
enter the constraints: In the (A,E) polarisation, the Gauß constraint is indeed independent of
the momentum A while in the (B, f) polarisation all constraints are linear in the momentum B.
This makes it inaccessible to impose gauge fixings just in terms of configuration coordinates E
in the (A,E) polarisation, while it is possible to do so for all configuration coordinates f in the
(B, f) polarisation. While (B, f) is a linear canonical transformation of (A,E), it is not true that
the Gauß constraint divE = 0 in the polarisation (A,E) and the Bianchi constraint divB = 0
in the (B, f) polarisation are simply rewritings of each other, in fact, they are not at all: since
B := ∗dA in the (A,E) polarisation is a derived quantity, the relation divB ≡ 0 is regarded
as an identity and not a constraint. Conversely, since E := ∗df in the (B, f) polarisation is a
derived quantity, the relation divE ≡ 0 is viewed as an identity and not a constraint. On the
other hand, E and B are counted as independent quantities in the (A,E) and (B, f) polarisation,
respectively, before imposing the respective Gauß constraints divE = 0 and divB = 0. Therefore,
the Gauß and Bianchi constraints act respectively on disjoint sets of canonical coordinates.

It turns out that this critical difference has a significant impact on the available gauge choices
and the entries of the associated gauge fixing matrix, as far as the polynomial degree with respect
to E respectively f is concerned.
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CHAPTER 9.

Toward the Path Integral Quantisation of the
U(1)3 Model

9.1. Preliminaries
9.1.1. Review: SO(4) Holst action
As we saw in chapter 3, the non-Abelian SU(2) formulation can be obtained from the Palatini
action or the Holst action for the gauge group SO(4). The two actions differ by a topological term
multiplied by the Immirzi-Barbero parameter [178]. The way this works is that the momentum
conjugate to the SO(4) connection must come from a tetrad, which we call tetrad constraint
T ab, a, b = 1, 2, 3, T [ab] ≡ 0. From the tetrad constraint, one derives the simplicity constraint Sab

which has the advantage that it can be formulated purely in terms of the momentum conjugate
to the connection. Unfortunately, the tetrad constraint and the simplicity constraint are inequiv-
alent: the simplicity constraint admits a solution that is not equivalent to the tetrad constraint
solution and is usually neglected by hand (recall section 3.3). Therefore, to avoid any dubious
reasoning, we steer clear of the simplicity constraint and instead work with the proper tetrad
constraint [91].

However, the requirement of dynamical stability of the primary simplicity constraint yields
among others a secondary constraint which we call dynamical constraint Dab. In the non-Abelian
theory, the Dirac algorithm ends here (there are no tertiary constraints), the constraints Sab, Dab

form a second-class pair, and the Lagrange multiplier of Sab within the primary Hamiltonian
is therefore completely determined by the stability condition. To arrive at the Hamiltonian
formulation in terms of SU(2), one uses the Lie algebra isomorphism so(4) ∼= su(2)⊕ su(2), and
gauge fixes a copy of the decoupled su(2) Gauß constraints using the time gauge et

j = 0 (eA
I is the

tetrad with tensorial indices A = t, a; a = 1, 2, 3, and Lie algebra indices I = 0, j; j = 1, 2, 3).
The Hamiltonian formulation is then obtained by solving the second-class constraints, half of the
Gauß constraints and the time gauge, and passing to the corresponding Dirac bracket [91].

9.1.2. Purpose of This Chapter
In the previous chapter, we concentrated on the Hamiltonian formulation of the theory, which
works well as a starting point for a canonical quantisation of the reduced theory. In this chapter,
we study the Lagrangian formulation of the U(1)3 theory with a view to the subsequent path
integral quantisation Note that the U(1)3 theory is usually introduced as a manual truncation
of the Hamiltonian formulation of Euclidean GR and is not derived from an action principle. So
the question is whether there are such actions and how they look [91].
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The answer is not a priori obvious: how should the Lagrangian gauge group be determined? For
the Euclidean GR, one can start with the SO(4) Palatini-Holst action [178] and after a lengthy
analysis of the constraints involving second-class constraints1 and using the time gauge to fix the
“boost” part of SO(4) (rather one of the two copies of SU(2) into which it factorises modulo
sign issues), one obtains the usual Hamiltonian SU(2) formulation. One might thus suppose
that a suitable covariant action starts from a proper “abelianised” version of the SO(4) Palatini
Holst action, perhaps SU(2)×U(1)3 or U(1)6. In [2], U(1)3 itself was used to propose an action
that should serve as a covariant origin of the Hamiltonian U(1)3 model. We could not find any
proof in the literature that this action indeed serves this purpose. In section 5.3, we revealed
that the action of [2] has too many degrees of freedom (it has 6 instead of 4 propagating degrees
of freedom). This is perhaps not too surprising, since except for the substitution of SU(2) by
U(1)3, the action of [2] is the same as that of [73], for which an explicit analysis also showed
6 propagating degrees of freedom (see section 5.1.2). So we need to look for another covariant
action. The motivation for considering U(1)6 was that it is the natural compact Abelian group
of the same dimension as the compact SO(4), analogous as U(1)3 is the natural Abelian group of
the same dimension as the compact SO(3) or SU(2). Then the boiling down of U(1)6 to U(1)3 is
to occur in time gauge [91]. The contents of this section are taken from [91]. The path integral
quantisation of the action proposed here will be the subject of our future work.

9.2. Covariant U(1)6 Theory
In this section, we consider an Abelian analogue of the Palatini or Holst action as a potential
Lagrangian formulation of the U(1)3 theory. For this purpose, first, in section 9.2.1, we summon
the procedure that one follows in the non-Abelian case. Then, we utilise it as a guideline to
perform the corresponding analysis in the Abelian case in section 9.2.2.

9.2.1. The U(1)6 Model
As we have just seen, in the non-Abelian case, one obtains the Hamiltonian su(2) formulation
from the Lagrangian so(4) formulation by gauge fixing one of the su(2) copies. In the Abelian
case, this suggests working with the Lie algebra g = u(1)⊕u(1)⊕u(1)⊕h where h is a Lie algebra
such that g admits a four-dimensional representation (in which the tetrad transforms while the
connection transforms in the adjoint). Wishing to stay as close as possible to the non-Abelian
theory, one should start from six-dimensional g. Since the gauge group corresponding to g is
supposed to be compact, the one corresponding to h turns out to be also compact. Finally, the
requirement that g is to be Abelian determines g as a direct sum of six u(1) copies.

Therefore, the Lagrangian variables are a U(1)6 connection AIJ
B , A

(IJ)
B = 0 and a tetrad eA

I

transforming into the trivial representation of U(1)6. One then expects that, similar to the non-
Abelian case, three copies of U(1) get gauge fixed in the Dirac algorithm, either by hand as
in the non-Abelian case or as a consequence of the stability conditions. In the former case, it
is transparent that the time gauge cannot work as a gauge fixing condition since the tetrad is
Gauß-invariant. In the latter case, the time gauge could emerge as a second-class constraint.

1It is worth mentioning that in [294] the second-class constraints of the Holst action are solved in a manifestly
Lorentz-covariant way and in [295] the authors performed the canonical analysis of the Holst action using a suitable
parametrisation of the tetrad and the connection. Finally, they reached the Hamiltonian formulation of the Holst
action which, after integrating some auxiliary fields, contains only first-class constraints. Their procedure avoids
the introduction of second-class constraints.
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Surprisingly, the U(1)6 model turns out to be topological, although it is consistent. As in
the non-Abelian case, the Dirac analysis ceases at the secondary level, i.e., there are no tertiary
constraints. The secondary constraints involve the Abelian analogue of the dynamical constraint
Dab. However, exactly due to the Abelian nature of the model, the constraint pair (T ab, Dab) is
now first-class rather than second-class. By the customary naive counting method, this gives rise
to a reduction by 24, instead of 12, degrees of freedom. Since the non-Abelian theory has only 4
propagating degrees of freedom, this proves that the resulting theory is topological.

In the following, we present the details of the analysis. We begin with the action

S = 1
2

∫
dt d3x F IJ

AB σ̂AB
IJ , σ̂AB

IJ = Σ̂AB
IJ + 1

2γϵIJ
KLΣ̂AB

KL, Σ̂AB
IJ = êA

[I ê
B
J ] (9.1)

where Lie algebra indices are moved with the Kronecker delta. Here we work with half density
valued tetrads

êA
I = det({eJ

B})1/2 eA
I (9.2)

in terms of which the action is polynomial. We assume that the tetrad is nowhere degenerate
so that w.l.g. its determinant is everywhere positive. Here γ is the Immirzi-Barbero parameter.
In this section, it is assumed that γ ̸= ±1, since otherwise the connection is projected onto its
(anti-)self-dual part. The values γ = ±1 will be studied as a special case in section 9.2.2. The
analysis for γ ̸= ±1 is analogous to the case γ = 0, so we set γ = 0 for the rest of this section.

The 3+1 decomposition exhibits

S =
∫

dt d3x [F IJ
ta Σ̂ta

IJ + 1
2 F IJ

ab Σ̂ab
IJ ] (9.3)

Computing the momenta πB
IJ , P̂

I
A conjugate to AIJ

B , êA
I , we find the primary constraints

πt
IJ = 0, T a

IJ := πa
IJ − Σ̂ta

IJ = 0, P̂ I
A = 0 (9.4)

If vIJ
a , v̂A

I denote the velocities that one cannot solve for, the Legendre transform of (9.3) yields
the primary Hamiltonian

H =
∫

d3x {vIJ
A πA

IJ + v̂A
I P̂

I
A − L}

=
∫

d3x {vIJ
a T a

IJ + v̂A
I P̂

I
A + vIJ

t πt
IJ +AIJ

t,a Σ̂ta
IJ −

1
2F

IJ
ab Σ̂ab

IJ} (9.5)

Stability of πt
IJ = 0 leads to the U(1)6 Gauß secondary constraint

GIJ = ∂a Σ̂ta
IJ (9.6)

With the Lagrange multiplier f IJ
a := vIJ

a − ∂aA
IJ
t , the stability of P̂ I

A = 0 leads to the 16
equations

f IJ
a êa

J = F IJ
ab êb

J − f IJ
a êt

J = 0 (9.7)

We solve them by decomposing f IJ
a = fBC

a Σ̂IJ
BC where Σ̂IJ

AB = ê
[I
A ê

J ]
B , ê

A
I êI

B = δA
B, ê

A
I êJ

A = δJ
I

and employing the relations

Σ̂AB
IJ Σ̂IJ

CD = δA
[C δB

D], Σ̂AB
IJ Σ̂KL

AB = δK
[I δ

L
J ] (9.8)
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We attain the succeeding restrictions on the Lagrange multipliers

f bt
a = F IJ

ac Σ̂bc
IJ , f bc

a = ϵbcdsad, s[ad] = 0 (9.9)

and the 4 secondary constraints

Ca := F IJ
ab Σ̂tb

IJ , C := F IJ
ab Σ̂ab

IJ (9.10)

It means that we have fixed 12 out of 18 Lagrange multipliers, while the 6 degrees of freedom
encoded by the symmetric tensor sab remain free. The 16 relations (9.9) and (9.10) ensure the
stability of P̂ I

A.
Stability of T a

IJ yields
∂bΣ̂ab

IJ + v̂t
[I ê

a
J ] + êt

[I v̂
a
J ] = 0 (9.11)

We decompose v̂A
I = v̂A

B êB
I and find the following restrictions on the Lagrange multipliers

v̂a
b = −[2Σ̂IJ

tb Σ̂ca
IJ,c + v̂t

tδ
a
b ], v̂t

a = −Σ̂IJ
ab Σ̂cb

IJ,c (9.12)

and the 6 secondary constraints
Dab = ϵcd(a Σ̂b)e

IJ,e Σ̂IJ
cd (9.13)

That is, 12 out of 16 Lagrange multipliers have been fixed while the 4 multipliers v̂A
t remain free.

In total, the 18 equations (9.12), (9.13) ensure stability of T a
IJ = 0.

We must now stabilise GIJ , Ca, C,D
ab. The easiest way to do this is as follows. Modulo

T a
IJ = 0, we have GIJ = ∂aπ

a
IJ . As T a

IJ is already stabilised, we can equivalently stabilise the
constraint in the form ĜIJ := πa

IJ,a = 0, which generates U(1)6 gauge transformations. Since H
depends on AIJ

a only through its curvature F IJ
ab = 2∂[aA

IJ
b] , the Gauß constraint ĜIJ is already

stabilised. Next, modulo T a
IJ = GIJ = 0, we have Ca = F IJ

ab π
b
IJ − AIJ

a ĜIJ , in which form it
generates spatial diffeomorphisms on (AIJ

a , πa
IJ). Since P̂ I

A has already been stabilised, we add to
Ca linear terms in P̂ I

A so that the resulting constraint Ĉa generates spatial diffeomorphisms also
on the variables êA

I , P̂
I
A (note the density weight ±1/2). Since the primary Hamiltonian depends

only on constraints that are tensor densities, the constraint Ĉa and hence Ca is stabilised.
Unfortunately, these abstract reasoning are not available for C,Dab. We display some steps of

the surprisingly lengthy calculation

{H,C(f)} =
∫

d3x {vIJ
a πa

IJ + v̂A
I P̂ I

A, C(f)}

= 2
∫

d3x f [Σ̂bc
IJ ∂[bv

IJ
c] + v̂b

K êc
L F

KL
bc ]

= 2
∫

d3x f [Σ̂bc
IJ ∂[bf

IJ
c] + v̂b

K êc
L F

KL
bc ]

= 2
∫

d3x f [(fab
b ),a − Σ̂ab

IJ,a f
IJ
b + v̂b

t Cb + v̂b
a f

at
b ]

= 2
∫

d3x f [−Σ̂ab
IJ,a Σ̂IJ

AB fAB
b + v̂b

a f
at
b ]

= 2
∫

d3x f [−sab D
ab + f tc

b (v̂b
c − δb

c v̂
t
t) + v̂b

a f
at
b ]

= 2
∫

d3x f v̂t
t C (9.14)

where in the first step, the contributing part of H was isolated, in the second step, we performed
the Poisson brackets and used integration by parts, in the third step, we found that the r.h.s.

149



Toward the Path Integral Quantisation of the U(1)3 Model Section 9.2

depends on vIJ
a only via f IJ

a , in the fourth step, (9.9) and (9.12) were inserted, in the fifth step
we dropped Cb and exploited fab

b = 0 and decomposed f IJ
b , in the sixth step we used (9.9) and

(9.12) again, and in the last step we have cancelled terms, dropped Dab and applied C = fat
a .

Therefore, C is stable, where the explicit form of f IJ
a , v̂A

I and the secondary constraints Ca, C,D
ab

had to be used crucially.
In order to perform the analysis for Dab it is helpful to rewrite it in the more manageable form

Dab = ϵcd(a wc
b)

d, wc
b

d = êI
c ê

b
I,d (9.15)

If one also uses the abbreviation σa
b := wt

a
b = êI

t ê
a
I,b it is not difficult to verify that

v̂a
b = σa

b − [vt
t + σc

c]δa
b , v̂t

a = −w(a
b

b) (9.16)

With this machinery, we calculate

{H,Dab(gab)} = {
∫

d3x v̂A
I P̂ I

A, D
ab(gab)}

= −
∫

d3x gab ϵ
acd [v̂t

c σ
b
d + v̂e

c we
b

d + v̂b
t [êt

I ê
I
c,d]− v̂b

c,d + σb
e wc

e
d]

= −
∫

d3x gab ϵ
acd [w(c

e
e) σ

b
d + σe

c we
b

d + v̂b
t [êt

I ê
I
c,d]− σb

c,d + σb
e wc

e
d] (9.17)

where, in the first step, the contributing part of H was isolated, in the second step, we performed
the Poisson bracket and used integration by parts and the above abbreviations, in the last step,
we found that the part ∝ δa

b in v̂a
b is omitted owing to the symmetry of gab. It is easy to check

ϵacd σb
c,d = −ϵacd[êI

t ê
t
I,dσ

b
c + σe

d we
b

c] (9.18)

and with (9.15) and decomposing into the symmetric and antisymmetric part with respect to
indices a, e

ϵacdwc
e

d = Dae + ϵaed w[c
c

d] (9.19)

If one drops the term ∝ Dae, the Poisson bracket (9.17) is simplified

{H,Dab(gab)} =
∫

d3x gab [σb
c ϵ

acd wd − v̂b
t u

a] (9.20)

where
wa := wa

b
b + êI

t ê
t
I,a, ua := ϵacdêt

I ê
I
c,d (9.21)

The last step is to check

ua = −1
2ϵ

abc Σ̂IJ
bc GIJ , wa = 2Σ̂IJ

ta GIJ (9.22)

which indicates that Dab is stable modulo Dab, GIJ .

Consequently, no tertiary constraints arise. Nevertheless, the reason for the absence of ter-
tiary constraints is quite different from the non-Abelian theory. There, the absence was ensured
by the specification of Lagrange multipliers in the primary Hamiltonian, whereas in the Abelian
theory no Lagrange multipliers are specified, but stability is already ensured by the secondary
constraints.
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This difference also leads to a crucial discrepancy in the counting of the degrees of freedom2

between the Abelian and non-Abelian theories: In the U(1)6 theory we have a total of 2 · (4 · 6 +
4 · 4) = 80 degrees of freedom in phase space. We have 6 + 18 + 16 = 40 primary constraints
πt

IJ , T
a
IJ , P̂

I
A and 6 + 4 + 6 = 16 secondary constraints GIJ , Ca, C,D

ab. In total, 12 of the 18 vIJ
a

and 12 of the 16 v̂A
I were fixed during the stability analysis, while 6 of the vIJ

a (coded by sab) and
4 of the v̂I

A (encoded by v̂A
t ) are still non-restricted. Performing the same analysis as above, one

can verify that Ĉ is a first-class constraint, where Ĉ is the integrand of H. This implies that C
is also first class. Moreover, the fact that sab, v̂

A
t remain free implies that the 6 + 4 constraints

Sab, P̂A multiplying them are also first class. Explicitly

Sab = π
(a
IJ ϵ

b)cdΣ̂IJ
cd , P̂t = P̂ I

t ê
t
I − P̂ I

a ê
a
I , P̂a = P̂ I

a ê
t
I (9.23)

Lastly, Dab has weakly Poisson commute with all constraints except P̂ I
A. However, one can add

a term ∝ T a
IJ to Dab such that the resulting D̂ab has exactly vanishing Poisson brackets with all

constraints.

D̂ab(gab) = Dab(gab) + T a
IJ(Σ̂IJ

ABh
AB
a (g)),

hca
a (g) = −gabϵ

acdêI
t ê

b
I,d, htc

e (g) = 2ϵad[c we
b]
d gab + ϵacdgae,d (9.24)

To sum up: We have 12 pairs of second-class constraints, consisting of 12 out of 18 T a
IJ and 12

of 16 P̂A
I and 6 + 6 + 4 + 6 + 4 + 6 = 32 first-class constraints πt

IJ , S
ab, P̂A, GIJ , C, Ca, D̂

ab. In
total, these are 2 · 12 + 32 = 56 = 40 + 16 constraints, which reduce 24 + 2 · 32 = 88 degrees of
freedom. In the non-Abelian theory, the analogues of Sab, Dab form a second-class pair. Thus we
have 56 constraints there too, but now we have 36 second-class constraints and only 20 first-class
constraints, reducing only 2 · 20 + 36 = 76 degrees of freedom and 4 propagating ones remain.
Accordingly, the U(1)6 theory is consistent in the sense that the Dirac analysis does not lead to a
contradiction, but it is topological in the sense that the reduction of the constraints leaves no local
degrees of freedom. Therefore, the U(1)6 theory is not a Lagrangian origin of the Hamiltonian
U(1)3 theory, which has 4 propagating degrees of freedom.

9.2.2. The Twisted Self-Dual Model
Surprisingly, the following analysis works for both U(1)6 and SO(4) simultaneously. We scrutinise
the action

S = 1
2

∫
dt d3x F IJ

AB Σ̂AB
IJ , Σ̂AB

IJ = êA
[I ê

B
J ] (9.25)

but F IJ
AB is not a U(1)6 or SO(4) curvature but instead a twisted self-dual U(1)6 or SO(4)

curvature, that is,
F 0j = F j = 1

2γ ϵjkl F
kl (9.26)

with F j = 2dAj and F j = 2dAj + ϵjklA
k ∧ Al respectively a U(1)3 and SU(2) curvature. Here

γ ̸= 0 is similar to, but different from, the Immirzi-Barbero parameter: Note that the condition
(9.26) defines the (anti-)self-dual model only for γ = ±1. Assuming the Holst action (9.1) with
topological term and γ = ±1, one reaches (9.25), since then the standard curvature of SO(4) or

2Note that a safe way to count the degrees of freedom is to use Dirac’s algorithm, which in particular ensures
that the encountered constraints are algebraically independent. Counting at the Lagrangian level can be tricky:
for example, the action [73] reveals 24 configuration degrees of freedom, 4 diffeomorphism gauges, and 3 Yang-Mills
type gauges. From the Lagrangian, one cannot readily deduce that this theory has 3 propagating canonical pairs.
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U(1)6 is projected into the curvature of the (anti-)self-dual (i.e. SU(2) or U(1)3 respectively)
connection. However, if γ ̸= ±1, in the usual Holst action the connection stays a genuine SO(4)
or U(1)6 connection and one does not reaches (9.25). So for γ ̸= ±1 the action is new. In
this action the connection is only SU(2) or U(1)3 connection, by definition, which can anyway
act on tetrads by imposing that the curvature be constrained by self-duality. Still, as we will
show below, it turns out to be equivalent to the Euclidean GR or its U(1)3 shortening. The
fact that the action includes a complete co-tetrad eI

A rather than merely three frame one-forms
ej

A distinguishes it from the SU(2) model introduced by Husain and Kuchar [73], which has
no Hamiltonian constraint, although we also have only an SU(2) (or U(1)3) connection. It is
perhaps puzzling how an SU(2) or U(1)3 connection acts on R4, but this happens by the same
mechanism as a self-dual connection would act. Notice it is crucial that γ ̸= 0,∞, otherwise we
would arrive at the action of [2] which have too many degrees of freedom (recall section 5.3).

The subsequent analysis turns out to be much simpler than in section 9.2.1. To apprehend
the main result for readers who are not interested in the details, we sketch the outcome of the
analysis: this time we get among the primary constraints 9 tetrad constraints T a

j = πa
j − σta

j , 3
momentum constraints πt

j and the 16 momentum constraints P̂ I
A as before. The stability of πt

j

enforces the Gauß constraint Gj for the corresponding gauge group as a secondary constraint.
The stability of P̂ I

A results in 7 secondary constraints Ca, C,Dj where Ca is the spatial diffeomor-
phism constraint, C is the Hamiltonian constraint, and Dj = êt

j is the time gauge constraint. This
means that the time gauge in this model is not just a convenient gauge choice but is “dynamically
enforced”. Moreover, all 9 Lagrange multipliers vj

a of T a
j get specified in this process. Finally,

the stabilisation of T a
j fixes 9 out of 16 Lagrange multipliers v̂A

I of P̂ I
A. Then the constraints

Gj , C, Ca are already stable, while the stabilisation of Dj specifies another 3 out of 16 of v̂A
I .

This completes the stabilisation process.
All Lagrange multipliers except 4 = 16 − 9 − 3 of the v̂A

I and all 9 of the vj
a have been fixed.

This means that 4 of the P̂ I
A, let us call them P̂A are first-lass (they are linear combinations of

the momenta conjugate to the lapse and shift functions). Moreover, πt
j , Gj , C, Ca are first-class,

while 3 of the P̂ I
A, let us call them P̂ j , form second-class pairs with Dj , while 9 of the P̂ I

A, let us
call them P̂ j

a , form second class pairs with T a
j . Accordingly, we have 2 · (3 + 9) = 24 second-class

constraints Dj , P̂
j , T a

j , P̂
j
a and 3 + 3 + 4 + 4 = 14 first-class constraints πt

j , Gj , Ca, C, P̂A. These
subtract 24 + 2 · 14 = 52 of the 2 · (12 + 16) = 56 degrees of freedom Aj

B, π
B
j , ê

A
I , P̂

I
A leaving the

4 propagating degrees of freedom of the Hamiltonian U(1)3 or SU(2) theory respectively.

We now sketch the details:
Plugging (9.26) into (9.25) leads to the 3+1 decomposition

S =
∫

dt d3x [F j
ta σ̂

ta
j + 1

2 F j
ab σ̂

ab
j ], σ̂AB

j := 2Σ̂AB
0j + γϵjklΣ̂AB

kl (9.27)

The computation of the conjugate momenta results in the primary constraints

πt
j = 0, T a

j = πa
j − σ̂ta

j = 0, P̂ I
A = 0 (9.28)

and thus the primary Hamiltonian reads with the velocities vj
A, v̂

A
I

H =
∫

d3x [vj
Aπ

A
j + v̂A

I P̂ I
A − L]

=
∫

d3x [vj
tπ

t
j + vj

a T
a
j + v̂A

I P̂ I
A −A

j
t (∇a σ

ta
j )− 1

2 F j
ab σ

ab
j ] (9.29)
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where ∇ denotes the U(1)3 or SU(2) covariant derivative acting on Lie algebra indices only, i.e.
∇aTj = ∂aTj and ∇aTj = ∂aTj + ϵjklA

k
aTl respectively.

Stabilisation of πt
j gives the Gauß constraint

Gj = ∇aσ
ta
j (9.30)

Stabilisation of P̂ I
A yields the condition

{H, P̂ I
A(fA

I )} =
∫

d3x {P̂ I
A(fA

I ), vj
aσ

ta
j + 1

2F
j
abσ̂

ab
j } = 0 (9.31)

for all fA
I . Isolating i. A = t, I = 0, ii. A = t, I = i, iii. A = c, I = 0, iv. A = c, I = i

coefficients gives the following set of 1 + 3 + 3 + 9 = 16 conditions

0 = vj
aê

a
j

0 = vi
a ê

a
0 + γ ϵikl vk

a ê
a
l

0 = −êt
j v

j
c + F j

cb ê
b
j

0 = vi
c ê

t
0 + γ ϵikl vk

c ê
t
l − [F i

cb ê
b
0 + γ ϵikl F k

cb ê
b
l ] (9.32)

The general solution of the system (9.32) requires a detailed case by case analysis which is
provided in the appendix B.
However, a physically motivated solution consists of 7 secondary constraints

Dj := êt
j , Ca := F j

ab ê
b
j , C := ϵjklF

j
ab ê

a
k ê

b
l (9.33)

and a restriction on vj
a

vj
a = 1

êt
0

[F j
ab ê

b
0 + γ ϵjkl F k

ab ê
b
l ] (9.34)

where êt
0 ̸= 0 has been assumed. The use of Dj = 0 in the fourth equation of (9.32) gives (9.34).

Using Dj = 0 in the third equation of (9.32) leads to Ca = 0. Substituting (9.34) into êt
0 times

the first equation of (9.32) results in êa
0Ca + γ C = 0, i.e. C = 0. Finally, substituting (9.34) into

êt
0 times the second equation in (9.32), we obtain

0 = γ2 ϵikl ϵkmn Fm
ab ê

b
n ê

a
l = γ2(−Ca ê

a
i − F i

ab q̂
ab) = −γ2 Ci (9.35)

and is hence already satisfied. Here we have exploited the symmetry of q̂ab = δjkêa
j ê

b
k.

Stabilisation of T a
j gives rise to

(∇bσ̂
ab
j ) + v̂t

0ê
a
j − v̂t

j ê
a
0 + êt

0 v̂
a
j + ϵjkl v̂t

k ê
a
l = 0 (9.36)

which can be solved for v̂a
j .

Before we do this, let us consider the stabilisation of the secondary constraints. Clearly, the
stabilisation of Dj enforces

v̂t
j = 0 (9.37)

so that (9.36) simplifies to
(∇bσ̂

ab
j ) + v̂t

0ê
a
j + êt

0 v̂
a
j = 0 (9.38)

The Gauß constraint can be replaced by Ĝj = ∇aπ
a
j modulo T a

j , which is already stabilised. In
this form it generates Gauß gauge transformations on the sector (Aj

a, π
a
j ). Since

F j
abσ

ab
j = 2êa

0Ca + C (9.39)
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depends only on gauge invariants, it has a vanishing Poisson bracket with this part of H. In
the Abelian case, it has also vanishing Poisson brackets with all other parts of H but in the
non-Abelian case, it does not Poisson commute with T a

j . In the non-Abelian case, we attach
terms to Ĝj linear in P̂ I

A, which is already stabilised

Ĝj = ∇aπ
a
j − ϵjkl P̂

A
k êA

l (9.40)

and now Ĝj also generates SU(2) rotations in the sector (êA
j , P̂

j
A) while leaving the sector (êA

0 , P̂
0
A)

invariant. In particular, under its action, T a
j is rotated into itself. As a result, Ĝj is stabilised

and hence Gj is also stabilised in the non-Abelian theory.
Next, modulo T a

j , Gj , which are already stabilised, we can replace Ca by Ĉa = F j
ab π

b
j−Aj

a∇bπ
b
j ,

in whose form it generates spatial diffeomorphisms on the variables Aj
a, π

a
j . We add terms linear in

the already stabilised P̂ I
A such that it generates spatial diffeomorphisms on all variables (taking

into account the half-density weight such that êt
I and êa

I are scalar and vector half-densities,
respectively)

Ĉa = F j
ab π

b
j −Aj

a∇bπ
b
j + 1

2(P̂ I
t ê

t
I,a − P̂ I

t,aê
t
I + 2(P̂ I

a ê
b
I),b − P̂ I

b,aê
b
I + P̂ I

b ê
b
I,a) (9.41)

It reflects that Ĉa and hence Ca is already stabilised because all constraints are tensor densities
and H is a linear combination of constraints. As for C, we instead consider Ĉ, which is the
integrand of H with the fixed vj

a, v̂
A
j . Then, we calculate

{Ĉ(f), Ĉ(g)} = 1
2

∫
d3x d3y [f(x) g(y)− f(y) g(x)] {Ĉ(x), Ĉ(y)} (9.42)

Modulo constraints, only the contributions to the Poisson bracket which give rise to derivatives
of the δ-distribution do not vanish in (9.42). The only derivatives within constraints in Ĉ come
from the term −1

2F
j
ab σ̂

ab
j which has non-vanishing Poisson brackets, resulting in derivatives of

δ-distributions only with the term vj
aT

a
j . It follows

{Ĉ(f), Ĉ(g)} = −1
2

∫
d3x d3y [f(x) g(y)− f(y) g(x)] vj

a(x){πa
j (x), F k

bc(y)} σbc
k (y)

= −
∫

d3x d3y [f(x) g(y)− f(y) g(x)] vj
a(x){πa

j (x), ∂[b A
k
c](y)} σbc

k (y)

=
∫

d3x [f g,b − f,b g] vj
c σ

bc
j k(y)

=
∫

d3x ωb (F j
cd + γϵjklF k

cd ê
d
l ) (2êb

[0 ê
c
j] + ϵjmn êb

m êc
n)

=
∫

d3x ωb {−Cd ê
d
0ê

b
0 − (F j

cdê
c
0ê

d
0)êb

j − γ êb
0 C

+γ [êd
0 F

j
cdϵ

jmnêb
mê

c
n − êc

0 F
k
cdϵ

jklêd
l ê

b
j ] + γ2 F k

cd ϵ
jmnϵjklêd

l ê
b
mê

c
n}

= γ

∫
d3x ωb {F k

cd ê
b
m [êd

0 ϵ
kmn êc

n − êc
0 ϵ

mknêd
n] + γ F k

cd (êb
k q̂

cd − êc
k q̂

bd)

= γ

∫
d3x ωb {F k

cd ê
b
m [êd

0 ϵ
kmn êc

n − êc
0 ϵ

mknêd
n] + γ F k

cd (êb
k q̂

cd − êc
k q̂

bd)

= γ

∫
d3x ωb {F k

cd ê
b
m ϵkmn [êd

0 êc
n + êc

0 ê
d
n] + γ q̂bd Cd}

= γ2
∫

d3x ωb q̂
bd Cd (9.43)
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where, in the first step, we isolated the relevant terms, in the second step, we omitted the term
in F j

ab which is quadratic in the connection since its Poisson bracket is ultralocal (this step is
avoided in the Abelian case), in the third step, the Poisson bracket is carried out and integration
by parts is used, in the fourth step, ωb := 1

êt
0
(f g,b − f,b g) is introduced to simplify the notation

and the definition of σ̂ab
j and (9.34) are utilised, in the fifth step, we have explicitly written out

the six terms resulting from the multiplication of the round brackets in the previous step, in the
sixth step, we have put away the terms proportional to C,Cd and the term in round brackets
which is eliminated because of antisymmetry, and in addition we have relabelled indices in the
square bracket term and used the summation identities, in the seventh step we wrote out the
square bracket term such that it is manifestly symmetric in c, d and applied the definition of
Cd and F k

cdq̂
cd = 0 and in the last step, we used the antisymmetry of F k

cd. Thus, the identity
(9.44) is a manifestation of the hypersurface deformation algebra. Selecting f = 1 reveals that
{H, Ĉ(g)} is weakly vanishing for all g and thus Ĉ is stabilised. Since Ĉ = C plus already
stabilised constraints, it results that C itself is also stabilised.

Consequently, no tertiary constraints arise and all secondary constraints are stabilised. All vj
a

and all v̂A
j have been fixed, while v̂A

t remain free. We arrive at the classification of the primary
constraints πt

j , T
a
j , P̂

I
A and the secondary constraints Gj , C, Ca, Dj .

i. πt
j

Since all constraints are independent of Aj
t , obviously πt

j is first-class.
ii. Ĝj

This constraint generates Gauß gauge transformations on πa
j , A

j
a, ê

A
j , P̂

j
A. Since all constraints

are either invariant or covariant under Gauß transformations, Ĝj is first-class.
iii. Ĉa

This constraint generates spatial diffeomorphisms on all variables. Since all constraints are tensor
densities, Ĉa is first-class.
iv. Ĉ
Since Ĉ is the integrand of H which stabilises all constraints, it follows that Ĉ has weakly
vanishing Poisson brackets with all constraints except possibly those whose Poisson brackets
involve derivatives of δ-distributions, since H = Ĉ(f = 1) and not the general Ĉ(f). These are
the brackets with Ĉ(g) and with T a

j (ga
j ). The first bracket was verified in (9.42) and the second

gives the same result as with H, except that the integral of the resulting Poisson bracket also
involves f as an underived factor. Thus, Ĉ is first-class.
v. P̂ 0

A:
We only need to check its Poisson brackets with P̂ I

B, T
a
j , Dj . It is clear that the brackets with

P̂ I
B, Dj vanish exactly, while

{P̂ 0
A(fA), T j

a (ga
j )} = −

∫
d3x fA ga

j

∂σ̂ta
j

∂êA
0

= −
∫

d3x ga
j (f0êa

j − faDj) (9.44)

It results that P̂ 0
a is first-class. We replace P̂ 0

t by P̂ ′0t = P̂ 0
t −

êa
j

êt
0
P̂ j

a . Note that as this quantity is
Gauß invariant and a tensor density we only need to check its Poisson brackets with P̂B

I , Dj , T
a
I .

With Dj they vanish exactly and with P̂B
I weakly, while

{P̂ ′0t (f), T j
a (ga

j )} = γ

∫
d3x f

êa
j

êt
0
ga

k ϵjklDl (9.45)

Thus P̂ ′0t is also first-class.
vi. P̂ j

t , Dk:
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These clearly form a second-class pair

{P̂ j
t (x), Dk(y)} = δjkδ(x, y) (9.46)

vii. T a
j , P̂

k
b :

These also form a second class-pair

{T̂ j
a (x), P̂ k

b (y)} = {P̂ k
b (y), σta

j (x)} = êt
0δ(x, y)δa

b δ
k
j (9.47)

modulo a term ∝ Dl.

Accordingly, we get exactly the constraint structure that we expected. It remains to solve the
second-class constraints and compute the Dirac bracket. Solving Dj = 0, P j

A = 0 is trivial. Note
that for Dj = 0 we have σta

j = êt
0ê

a
j thus solving T a

j = 0 is equivalent to πa
j = êt

0 ê
a
j . Consequently,

we turn our attention to the remaining variables Aj
a, π

a
j , P̂

0
A, ê

A
0 and the spatial diffeomorphism

and the Hamiltonian constraint can be equivalently formulated as

Ca = F j
ab π

b
j , C = F j

ab ϵjklπ
a
k π

b
l (9.48)

Because of (9.46) and (9.47) the Dirac bracket between phase space functions U, V is

{U, V }∗ = {U, V } ± (
∫
d3x {U, πj

t (x)} {Dj(x), V } − U ↔ V )
±(
∫
d3x 1

êt
0(x) {U, T

a
j (x)} {P̂ j

a (x), V } − U ↔ V ) (9.49)

Restricting U, V to be functions of Aj
a, π

a
j , P̂

0
A, ê

A
0 , we get certainly {U,P j

A} = {V, P j
A} = 0. Hence

on those functions, the Dirac bracket coincides with the Poisson bracket. Finally, since we put
the second-class constraints strongly to zero we obtain

Ĝj = Gj = ∇aπ
a
j , P̂ 0′

t = P̂ 0
t (9.50)

and H is a linear combination of P̂ 0
A, Ca, C,Gj . Note that when Dj = 0, in terms of lapse and

shift functions, one gets
et

0 = 1
N
, ea

0 = −N
a

N
(9.51)

and ea
j is invertible. Then det(eI

A) = N det(ei
a) and P̂ 0

A are actually the momenta conjugate
to lapse and shift (modulo a canonical transformation). In this way, we obtain exactly the
Hamiltonian formulation of the U(1)3 or SU(2) model (Euclidean GR) respectively, regardless
of the value of γ ̸= 0.

9.3. Pure Connection Formulation
As is known in tandem with the Ashtekar-Barbero variables, there exist (almost) pure connection
formulations for Lorentzian GR in vacuum. Without the cosmological constant, it is feasible to
construct a polynomial action in terms of a self-dual SL(2,C) connection and a density-weighted
volume form [269, 270]. With the cosmological constant, it is possible to eliminate the volume
form and obtain a non-polynomial pure connection formulation [175, 296]. In this section, we
revisit these considerations for the Euclidean signature and arbitrary γ parameter (twisted self-
duality) simultaneously for both U(1)3 and SU(2). We closely follow [175, 296], but can go one
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step further in the following sense: In [175, 296] it was explained that imposition of the Hamil-
tonian constraint as a primary constraint, rather than a secondary constraint, into the resulting
action, can be employed “in principle” to get a pure connection formulation. However, not only
was the equation to be solved not written out in detail, but it was not explicitly shown that
one can solve it algebraically (it could be a polynomial equation in the Lagrange multiplier of
higher than fourth-order). In this section, we demonstrate that, luckily, the equation to be solved
is only a quartic equation. We write it out explicitly in the form that can be solved using the
Cardano – Ferrari set of formulae [297, 298]. The consequential Lagrangian is then a “spacetime
diffeomorphism covariant and pure connection Lagrangian” for an SU(2) (or the U(1)3) gauge
theory that is equivalent to Euclidean GR (or its U(1)3 truncation) with a cosmological con-
stant. This is quite remarkable, as GR becomes linguistically much closer to Yang-Mills theory
and opens up new possibilities for path integral formulations. In contrast to Yang-Mills theory,
the Lagrangian of GR is not polynomial in the connection. Note that all the observations in this
section work also for the Lorentzian signature, with the difference that the curvatures appearing,
are genuinely complex-valued. It should be emphasised that some recent and in-depth analysis
of pure connection formulations after Peldan was developed in [299, 300, 301, 302, 303]. Nev-
ertheless, our intention here is not to derive the most general action for the U(1)3 model, but
to provide a concrete example in which a non-polynomial pure connection Lagrangian can be
obtained explicitly.

To avoid confusion about the involved calculations that follow, it is useful to state at the outset
that the main result of this section is the attainment of the Lagrangian (9.90). As we will see
in detail, the function D̂ in the expression of (9.90) depends only on the connection A and ω̂ is
the real solution of the equation (9.89) whose coefficients all depend only on A, so does ω̂ itself.
Accordingly, as a final result, the Lagrangian (9.90) renders the pure connection formulation of
the theory.

We start with the Hamiltonian of the previous section, which contains a cosmological constant

H =
∫

d3x h, h := −Aj
t ∇aE

a
j +NaCa −

γ

2 N C̄ −N Λ [det(E)]1/2,

Ca = F j
ab E

b
j , C̄ = ϵjklF

j
ab E

a
k E

b
l [det(E)]−1/2 (9.52)

where we expressed êA
0 in terms of lapse and shift functions. To obtain an action purely in terms

of Aj
A, we first perform the Legendre transform of (9.52) with respect to the momentum Ea

j

conjugate to Aj
a. This still leaves us with an expression that depends on N,Na. We remove these

by extremising the action with respect to N,Na and substituting the corresponding solution
back into the action. As explained in [175, 296], this leads to an action from which Ca = 0 and
C := γ

2 C̄ + Λ[det(E)]1/2 = 0 follow as primary constraints when we go back to the Hamiltonian
formulation, rather than as secondary constraints as we concluded in the previous section.

The Legendre transform determines the velocity

∂tA
j
a = δH

δEa
j

= ∇aA
j
t +N b F j

ba − Ñ γϵjklF
k
ba E

b
l − Ñ

Λ
2 ϵjkl ϵabc E

b
k E

c
l (9.53)

where we have defined the lapse Ñ = N [det(E)]−1/2 with density weight −1 as an independent
variable. By a misuse of notation, we denote C[det(E)]1/2 as C again. Equation (9.53) can be
re-expressed as

F j
ta −N bF j

ba = N F j
na = −Ñ ϵjkl[γF k

ba E
b
l + Λ

2 ϵabc E
b
k E

c
l ] (9.54)
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with the spacetime curvature F j
AB and the normal nt = 1

N , n
a = −Na

N . Assuming the magnetic
field Ba

j := ϵabcF j
bc/2 is nondegenerate, one can decompose Ea

j = Ba
k ψk

j for a matrix ψ and
express (9.54) in the equivalent form (assuming the spatial metric is nondegenerate, one also has
det(ψ) ̸= 0)

− N F j
na B

a
k

Ñ det(B)
= γ[Tr(ψ) δj

k − ψ
j
k] + Λ [[ψ−1]T ]jk det(ψ) (9.55)

To recognise which restrictions are imposed on ψ when Ca = C = 0 hold, one computes

Ca = ϵabcB
c
lB

b
kψ

k
j δ

lj = 0, C = det(B) {γ2
(
[Tr(ψ)]2 − Tr(ψ2)

)
+ Λ det(ψ)} = 0 (9.56)

Thus, moving the internal indices with the Kronecker δ one infers that ψ = ψT and that
Tr(ψ−1) = −Λγ−1. We can utilise the antisymmetric part of ψjk to remove the antisymmet-
ric piece of the r.h.s. of (9.55). Therefore, in what follows, we take ψ to be symmetric and hence
(9.55) becomes

− N F
(j
na Ba

l δ
k)l

Ñ det(B)
= γ[Tr(ψ) δj

k − ψ
j
k] + Λ [ψ−1]jk det(ψ) (9.57)

The l.h.s. is associated a symmetric, covariant spacetime scalar density one weighted matrix

κjk := 1
4ϵ

ABCD F j
AB F k

CD = F
(j
taB

a
l δ

k)l = N F (j
naB

a
l δ

k)l (9.58)

and the scalar density of weight −1

w := − 1
Ñ det(B)

(9.59)

so that we gain the density weight zero matrix identity

Ω := wκ = γ[Tr(ψ) 13 − ψ] + Λ det(ψ)ψ−1 (9.60)

and the Lagrangian becomes

L = Ea
j ∂tA

j
a − h

= Ñ det(B){−Tr(Ωψ) + γ

2 [[Tr(ψ)]2 − Tr(ψ2)] + Λ det(ψ)}

= w−1{γ2 [[Tr(ψ)]2 − Tr(ψ2)] + 2Λ det(ψ)]} (9.61)

where in the second step we computed Tr(Ωψ) from (9.60). We have not yet used C = 0, since
we want to compare with the method in [175, 296], so we defer this to a later stage.

To organise the following straightforward but tedious calculations, we introduce the scalars

T := Tr(Ω), S := T 2 − Tr(Ω2), D := det(Ω),
τ := Tr(ψ), σ := τ2 − Tr(ψ2), δ := det(ψ) (9.62)

We will also require the Caley-Hamilton identity in three-dimensions

ψ3 = δ 13 −
σ

2 ψ + τ ψ2 (9.63)

which, in the present symmetric case, can also be checked by elementary means, by passage to
the diagonal form.

The strategy of [175, 296] is to
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(i) derive three relations between T, S,D, τ, σ, δ from the master equation (9.60) by taking
traces of its powers,

(ii) solve σ, δ in terms of T,D, S,

(iii) insert the solution into the Lagrangian (9.61),

(iv) ask that the Lagrangian is stationary under variation of w, which determines w in terms of
κ,

(v) insert this solution into (9.61).

It is quite amazing that one can get even to stage (iii), as in stage (ii) we obtain coupled algebraic
equations of order three which, when decoupled, can easily lead to polynomial equations of
degree five or higher for which no algebraic solution can be attained. Nevertheless, it is possible
to provide an expression for L in terms of S, T,D in closed form. However, in stage (iv) we
encounter a “quartic” equation. While we still can find a closed (Ferrari) formula for its solution
(which, however, involves solving a cubic equation), its introduction in L, which itself does not
depend polynomially or even rationally on w, would consume several pages.

Thus, having done all the steps up to (iv), to illustrate the algebraic complexity that arises,
and because a derivation was not given in [175, 296], we return to stage (i) and solve C = 0
already at this level. Now one finds three relations between T, S,D and the two parameters τ, δ,
since according to (9.56) the constraint C = 0 is equivalent to σ = 2

γ Λδ. It follows that there is
a constraint among S, T,D that gives rise to a polynomial in w with coefficients depending on
κ, that is a depressed quartic equation. In this case, the Lagrangian depends rationally on w, so
the ultimate solution is of lower complexity.

Stage (i)
The subsequent computations are extremely simplified by re-expressing (9.60) in terms of the
eigenvalues λj , µj of Ω, ψ respectively

λj = γ [τ − µj ] + Λ δ

µj
(9.64)

where
T = λ1 + λ2 + λ3, S = 2(λ1λ2 + λ2λ3 + λ3λ1), D = λ1λ2λ3 (9.65)

and similar for τ, σ, δ.
Taking the trace of (9.60) results in

T = 2γτ + Λ
2 σ (9.66)

Next, multiplying out the r.h.s. of S given in (9.65) after regrouping terms, we get

S

2 = γ2[τ2 + σ

2 ] + Λγ[6δ − στ + τ3 − Tr(ψ3)] + Λ2δτ (9.67)

Taking the trace of (9.63), one writes the r.h.s. just in terms of τ, σ, δ

S

2 = γ2[τ2 + σ

2 ] + Λγ[3δ + 1
2στ ] + Λ2δτ (9.68)
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Note that the r.h.s. is only quadratic. If this were not the case, we could not complete even step
(ii).

Next, again multiplying out the r.h.s. of D given in (9.65) after regrouping terms, we get

D = γ3[−δ + 1
2τσ] + γΛ2δσ + Λ3δ2 + γ2Λ[3τδ + 1

2{[Tr(ψ2)]2 − Tr(ψ4)}] (9.69)

Multiplying (9.63) with ψ and taking the trace yields

[Tr(ψ2)]2 − Tr(ψ4) = 1
2σ

2 − 4δτ (9.70)

so that (9.69) can again be written just in terms of τ, σ, δ

D = γ3[−δ + 1
2τσ] + γΛ2δσ + Λ3δ2 + γ2Λ[δτ + 1

4σ
2] (9.71)

Again, it is noteworthy that the r.h.s. of (9.72) is only a quadratic.
The equations (9.66), (9.68) and (9.71) allow in principle to express τ, σ, δ in terms of T, S,D.

Still, the fact that these form a coupled system of one linear and two quadratic polynomials might
prevent a simple algebraic solution. To see this, assume writing τ in terms of T, σ, using (9.66)
in (9.68) and (9.71). Then we get a coupled system of two quadratic equations in terms of σ, δ.
One can solve (9.68) (which contains δ linearly) for δ in terms of S, σ, which is a fraction with a
quadratic and linear polynomial in σ in the numerator and denominator, respectively. Plugging
this solution into (9.71), which contains the square of δ, and multiplying it by the square of the
denominator, we arrive at a quartic polynomial in σ, which is in general very intricate to solve.

Fortunately, these complications can be avoided, since we are only interested in the combination
of τ, σ that occurs in L. First, let y := Λδ + 1

2γσ, then

S

2 = γ2(τ2 − σ) + 3γy + Λτy, D = −γ3δ + Λy2 + γ2τy (9.72)

Next, with z = Λy + γ2τ

S

2 = τ z + 3γ y − γ2σ, D = −γ3δ + y z (9.73)

whence
ΛD + γ2

2 S = γ3 l + z2, l = 1
2γσ + 2Λδ (9.74)

Recalling (9.61) and (9.66), we can now observe that

L = w−1 l, z = 1
2[Λ l + γT ] (9.75)

Consequently, we reach the quadratic equation

ΛD + γ2

4 [2S − T 2] = [γ3 + 1
2γΛT ] l + Λ2

4 l2 (9.76)

with the two solutions

l = −a±
√
b+ a2, a = 2γ3 + γΛT

Λ2 , b = 4
Λ2 {ΛD + γ2

4 [2S − T 2]} (9.77)
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If we insist on a well-defined Λ → 0 limit, only the positive sign before the square root is
admissible.

Equation (9.77) is as far as [175, 296] went (modulo the fact that there γ = ±i for Lorentzian
(anti-)self-dual GR). The possibility of removing the implicit occurrence of w in L = w−1 l(w, κ)
was mentioned in [175, 296], but not carried out because of the great complexity of the resulting
equations. To observe what would be required, we proceed a little further and introduce the
dimensionless quantities (F/Λ is dimensionless like N,E)

κ̂ = κ

Λ2 , w̃ = Λ3w, Ω̂ = ΛΩ = w̃ κ̂ (9.78)

and the corresponding dimension-free and w independent quantities

Λ T = T̂ w̃, Λ2 S = Ŝ [w̃]2, Λ3 D = D̂ [w̃]3 (9.79)

Then, we can rewrite the Lagrangian as

L = w−1 l = [w̃]−1 Λ3 l = Λ γl̂, l̂ = −â±
√
b̂+ â2,

â = 2 ŵ−1 + T̂ b̂ = 4D̂ŵ + 2Ŝ − T̂ 2, ŵ = w̃
γ2 (9.80)

The action (9.80) is stationary with respect to ŵ when

L′ = γΛ[−â′ ± b̂′ + 2ââ′

2Ŵ
] = 0, Ŵ =

√
b̂+ â2 (9.81)

where the prime denotes a derivative with respect to ŵ. One can write this as

2â′[Ŵ ∓ â] = ±b̂′ = 2â′ b̂

Ŵ ± â
(9.82)

Solving for Ŵ , we find

± Ŵ = â+ b̂′

2â′ = 2 â
′b̂

b̂′
− â (9.83)

i.e.
â′(â′b̂− âb̂′) = [ b̂

′

2 ]2 (9.84)

Denoting α = 4D̂, β = 2Ŝ − T̂ 2, we finally obtain

2
ŵ2 [ 2

ŵ2 [αŵ + β] + α[2ŵ − 1 + T̂ ]] = [α2 ]2 (9.85)

After multiplication by ŵ4, this turns to a quartic equation in depressed form (with no cubic
term), which can be solved using the Ferrari formula. Nonetheless, since this necessitates implic-
itly solving a non-depressed (the quadratic term is non-vanishing) cubic equation, the explicit
formula for the four roots is not only very tedious but also its insertion into (9.80) would be
extremely complicated due to the occurrence of the square root term.

The above procedure imposes the Hamiltonian constraint as a secondary constraint by extrem-
ising with respect to the Lagrange multiplier w. We naturally obtain an equivalent result by
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imposing C = 0, i.e. γσ
2 + Λδ = 0, already in (9.66), (9.68) and (9.71), making the equation to

be solved more transparent. First, we find the simplified system

D = −γ3 δ
S

2 = γ2τ2 + 2γΛδ

T = 2γτ − Λ2

2γ δ (9.86)

Eliminating τ, δ imposes the constraint on T, S,D given by

S

2 + 2 Λ
γ2 D = 1

4 [Λ
2

γ4 D − T ]2 (9.87)

which is equivalent to imposing C = 0 i.e. choosing σ appropriately. In terms of the dimension-
free quantities

ŵ = Λ3 w γ−2, T̂ = T Λ−2 w−1, Ŝ = S Λ−4 w−2, D̂ = D Λ−6 w−3, (9.88)

we find
Ŝ

2 + 2ŵ D̂ = 1
4 [ŵ2 D̂ − T̂ ]2 (9.89)

which is again a quartic equation in depressed form for ŵ. Note that the Lagrangian for C = 0
is simply

L = −w−1 Λ γ−3 D = −w2 Λ7 γ−3 D̂ = −ŵ2 Λγ D̂ (9.90)

which looks deceptively simple, but of course the challenge is to solve the quartic equation (9.89)
for ŵ in terms of T̂ , Ŝ, D̂, which are traces of polynomials in the matrix κ̂ = κΛ−2. We can
acquire the general solution of (9.89) using the Cardano-Ferrari theory. We do not display it
explicitly here since the formulas are quite lengthy. We want to know, however, whether there
are real roots among the four, and in the case of an affirmative answer, under what conditions
for κ the real solution is guaranteed. Examining its discriminants, we conclude that the equation
(9.89) always has a real solution unless Ŝ < 0 and

T̂ < 0, 0 < D̂ <
1
54 T̂ (9Ŝ − 4T̂ 2) +

√
(2T̂ 2 − 3Ŝ)3

27
√

2
OR

T̂ > 0, 1
54 T̂ (9Ŝ − 4T̂ 2)−

√
(2T̂ 2 − 3Ŝ)3

27
√

2
< D̂ < 0. (9.91)

9.3.1. Consistency Check: Hamiltonian Analysis of the Pure Connection Action
The next task is to verify that the Legendre transform of (9.90) renders Ca = C = 0 as primary
constraints. To make arrangements for the following computations that are rather tedious, we
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define

A := − γω̂

Λ(2 + ω̂(T̂ − D̂ω̂2))
,

B := γ

6(2 + ω̂(T̂ − D̂ω̂2))
,

Mij := κij − ω̂D̂(κ−1)ij ,

N := T̂ + D̂ω̂2,

Ñ := 6 + 4T̂ ω̂ − 2D̂ω̂3 (9.92)

Some of the quantities associated with the matrix Mij needed below can be expressed in terms
of Ŝ, T̂ , D̂, ω̂

Tr(M) = T̂ − Ŝω̂

2

Tr(M2) = T̂ 2 − Ŝ − 6D̂ω̂ + Ŝ2ω̂2

4 − 2T̂ D̂ω̂2

[Tr(M)]2 − Tr(M2) = Ŝ + (6D̂ − ŜT̂ )ω̂ + 2T̂ D̂ω̂2

det(M) = D̂ − 1
2( Ŝ

2

2 − 4T̂ D̂)ω̂ + D̂(T̂ 2 − Ŝ)ω̂2 − D̂2ω̂3 (9.93)

where in order to derive the second equation, we used Tr(κ̂−2) = 1
2D̂2

(
Ŝ2

2 − 4T̂ D̂
)

and for the
last equation, we took advantage of the relation

det(A+B) = det(A) + det(B) + det(B)Tr(AB−1) + det(A)Tr(BA−1) (9.94)

which is valid for all 3× 3 invertible matrices A,B.

Starting from the Lagrangian L = −γΛD̂ω̂2, we must first compute the momentum conjugate to
Aj

a. Since the Lagrangian depends on ω̂, the conjugate momentum depends on the variation of
ω̂ with respect to Ȧj

a. Taking the variation of both sides of (9.89) and isolating δω̂, one obtains

δω̂ =(T̂ − D̂ω̂2)(δT̂ − ω̂2δD̂)− 4ω̂δD̂ − δŜ
2D̂(2 + ω̂(T̂ − D̂ω̂2))

= T̂ − D̂ω̂2

2D̂(2 + ω̂(T̂ − D̂ω̂2))
δT̂ + −1

2D̂(2 + ω̂(T̂ − D̂ω̂2))
δŜ + −ω̂

2(T̂ − D̂ω̂2)− 4ω̂
2D̂(2 + ω̂(T̂ − D̂ω̂2))

δD̂ (9.95)
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Thus, the momentum is obtained as

Πa
j := δL

δȦj
a

= −γΛδ(ω̂
2D̂)

δȦj
a

= −γΛ
(

2D̂ω̂ δω̂

δȦj
a

+ ω̂2 δD̂

δȦj
a

)

=− γΛ
2D̂(2 + ω̂(T̂ − D̂ω̂2))

[
2D̂ω̂(T̂ − D̂ω̂2) δT̂

δȦj
a

− 2D̂ω̂ δŜ

δȦj
a

− 4D̂ω̂2 δD̂

δȦj
a

]

=− γΛω̂
(2 + ω̂(T̂ − D̂ω̂2))

[
(T̂ − D̂ω̂2) δT̂

δȦj
a

− δŜ

δȦj
a

− 2ω̂ δD̂
δȦj

a

]

=− γω̂

Λ(2 + ω̂(T̂ − D̂ω̂2))

[
(T̂ − D̂ω̂2)Ba

j − (2T̂Ba
j − 2κijBa

i )− 2ω̂D̂(κ−1)jiB
a
i

]
=− γω̂

Λ(2 + ω̂(T̂ − D̂ω̂2))

[
2
(
κij − ω̂D̂(κ−1)ji

)
Ba

i − (T̂ + D̂ω̂2)Ba
j

]
=A

[
2MijBa

i −NBa
j

]
(9.96)

where from the third to the fourth line, we have used the following variations(
δκ̂

δȦl
c

)ij

= Λ−2δ
(i
l B

j)c,

δT̂

δȦl
c

= Λ−2Bc
l ,

δŜ

δȦl
c

= 2T̂ δT̂

δȦl
c

− 2κ̂ij

(
δκ̂

δȦl
c

)
ij

= Λ−2(2T̂Bc
l − 2κ̂ilBc

i )

δD̂

δȦl
c

= D̂(κ̂−1)ij

(
δκ̂

δȦl
c

)ij

= Λ−2D̂(κ̂−1)ijδ
(i
l B

j)c = Λ−2D̂(κ̂−1)ljB
c
j (9.97)

In the last line of (9.97), the Jacobi’s formula d(det(M)) = det(M)Tr(M−1dM) has been utilised,
that is valid for every invertible matrix M .

As F i
ab = ϵcabB

c
i , from (9.96), one immediately infer that

Ca = F i
abΠb

i = AϵcabB
c
i

[
2MjiBb

j −NBb
i

]
= 0 (9.98)

because the matrix M is symmetric. This simply unveils that the vector constraint is a primary
constraint.
To obtain a similar result for the Hamiltonian constraint more computation is required.

C = γ

2 ϵijkF
i
abΠa

j Πb
k + Λ det(Π)

= γ

2 ϵijkϵcabB
c
i Πa

j Πb
k + Λ

6 ϵijkϵcabΠc
iΠa

j Πb
k

=
(
γ

2B
c
i + Λ

6 Πc
i

)
ϵijkϵcabΠa

j Πb
k

= γ

2

(
Bc

i −
ω̂

3(2 + ω̂(T̂ − D̂ω̂2))

[
2
(
κli − ω̂D̂(κ−1)il

)
Bc

l − (T̂ + D̂ω̂2)Bc
i

])
ϵijkϵcabΠa

j Πb
k

= γ

6(2 + ω̂(T̂ − D̂ω̂2))

(
(6 + 4T̂ ω̂ − 2D̂ω̂3)Bc

i − 2ω̂
(
κli − ω̂D̂(κ−1)il

)
Bc

l

)
ϵijkϵcabΠa

j Πb
k

= B
(
ÑBc

i − 2ω̂MilBc
l

)
ϵijkϵcabΠa

j Πb
k (9.99)
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Using (9.96), we calculate ϵijkϵcabΠa
j Πb

k part of C as

ϵijkϵcabΠa
j Πb

k = ϵijkϵcabA
2
[
2MmjBa

m −NBa
j

] [
2MnkBb

n −NBb
k

]
= ϵijkϵcabA

2
[
4MmjMnkBb

nB
a
m − 4MmjNBb

kB
a
m + N2Ba

jB
b
k

]
= ϵijkA

2 det(B)(B−1)l
c

[
4MmjMnkϵlmn − 4MmjNϵlmk + N2ϵljk

]
= A2 det(B)(B−1)l

c

[
4MmjMnkϵijkϵlmn − 4MmjN(δi

lδ
j
m − δi

mδ
j
l ) + 2N2δi

l

]
= A2 det(B)(B−1)l

c

[
4MmjMnkϵijkϵlmn + 4MilN + (2N2 − 4Mj

jN)δi
l

]
(9.100)

Finally, inserting (9.100) into (9.99) and simplifying, we get

C =BA2 det(B)(B−1)l
c

(
ÑBc

i − 2ω̂MirBc
r

) [
4MmjMnkϵijkϵlmn + 4MilN + (2N2 − 4Mj

jN)δi
l

]
=BA2 det(B)

(
Ñδl

i − 2ω̂Mil
) [

4MmjMnkϵijkϵlmn + 4MilN + (2N2 − 4Mj
jN)δi

l

]
=BA2 det(B)(

Ñ
[
4MmjMnkϵijkϵimn + 4Mi

iN + 3(2N2 − 4Mj
jN)

]
−2ω̂

[
4MilMmjMnkϵijkϵlmn + 4MilMilN + (2N2 − 4Mj

jN)Mi
i

])
=BA2 det(B)(

Ñ
[
4([Tr(M)]2 − Tr(M2))− 8NTr(M) + 6N2

]
−2ω̂

[
24 det(M) + 4(Tr(M2)− [Tr(M)]2)N + 2N2Tr(M)

])
=BA2 det(B)

(
4([Tr(M)]2 − Tr(M2))(Ñ + 2ω̂N)− (8NÑ + 4ω̂N2)Tr(M) + 6ÑN2 − 48ω̂ det(M)

)

Now we can use the relations (9.93) and express the Hamiltonian constraint as a polynomial of
ω̂

C = BA2 det(B)
[
−12D̂3ω̂7 − 6D̂2Ŝω̂6 + 12D̂2T̂ ω̂5 + 6(14D̂2 + 2D̂ŜT̂ )ω̂4 + 6(12D̂Ŝ + 2D̂T̂ 2)ω̂3

+6(2Ŝ2 + 20D̂T̂ − ŜT̂ 2)ω̂2 + 6(16D̂ + 4ŜT̂ − 2T̂ 3)ω̂ + 24Ŝ − 12T̂ 2
]

(9.101)

One can deduce that C arises as a primary constraint only when equations (9.101) and (9.89) have
a common real solution. Although (9.101) seems too complicated to solve, it is not surprising
that one can factorise it into two polynomials

C = −6BA2 det(B)
(
2D̂ω̂3 + Ŝω̂2 + 2T̂ ω̂ + 2

) (
D̂2ω̂4 − 2D̂T̂ ω̂2 − 8D̂ω̂ + T̂ 2 − 2Ŝ

)
= 0
(9.102)

which vanishes since D̂2ω̂4− 2D̂T̂ ω̂2− 8D̂ω̂+ T̂ 2− 2Ŝ = 0 due to the equation (9.89). This ends
the verification that C = Ca = 0 emerge as primary constraints.
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CHAPTER 10.

Summary, Conclusion and Outlook

The main subject of this thesis is to analyse the U(1)3 model of Euclidean quantum gravity as
a toy model in order to gain a deeper understanding of the dynamics of loop quantum gravity. It
aims at comparing different quantisation approaches of the theory with the hope that an inkling,
applicable to the full GR, can be found to shed new light on the path toward an impeccable
theory for quantum gravity. It should be emphasised that, in our work, the reduced phase space
formulation and correct underlying actions of the U(1)3 model were arrived at for the first time.

10.1. Summary of the Main Results and Conclusions
We have taken the first steps toward the reduced phase space [89] and path integral [91] quanti-
sations of the U(1)3 model whose Dirac quantisation has already been derived to some extent in
[87, 88]. In fact, at the outset, one must ensure that an “appropriate” classical infrastructure is
employed as a jumping platform to dive into the quantisation stage! In the context of these two
types of quantisation, the word “appropriate” entails:

In the reduced phase space quantisation:
Finding gauge conditions whose associated reduced phase space admits a fairly simple phys-
ical Hamiltonian manageable to be quantised.

In view of this, in [89] (chapter 8) we provided several lines of evidence for the hope that
the U(1)3 truncation model for Euclidean vacuum quantum gravity might have a reduced
phase space quantisation with an unexpected level of analytic control. We worked with
two different sets of canonical variables, namely (A,E) and (B, f). The key feature of the
model, making the reduced quantisation possible, is that the constraints are at most linear
in momentum. Indeed, in the (A,E) description the spacetime constraints are linear in
the Abelian connection and the Gauß constraint in E, while in the (B, f) description all
constraints are linear in B. This subtle discrepancy between the two descriptions makes
working with the latter even more convenient. We studied various gauges in which the
reduced Hamiltonian takes a manageable algebraic form for the respective physical degrees
of freedom. In the (A,E) description, we only outlined the quantisation of the resulting
physical degrees of freedom and the physical Hamiltonian, but we could already argue that
the key feature of the model extremely simplifies the spectral problem.
In this work, a complete analysis of the asymptotic properties of the theory was required,
since we had to use the decay behaviour of the phase space variables to select appropriate
gauges and Green functions. We performed this task in a separate work [90] (chapter 6),
whose main outcome is summarised as
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Asymptotically flat boundary conditions:
We studied the asymptotically flat boundary conditions yielding well-defined sym-
plectic structure and finite and integrable charges associated with the asymptotic
symmetries. We showed that in the U(1)3 model, the boundary terms that spoil the
functional differentiability of the constraints are exact one-forms and therefore all con-
straints can be improved to differentiable functionals. However, these functionals are
not finite for boosts and rotations and we showed that the reason for this is the ab-
sence of the non-Abelian term, i.e. ϵijkA

j
aE

a
k , in the Gauß constraint of this model

compared to that of GR. Therefore, in the U(1)3 model, only asymptotic spacetime
translations have well-defined generators. Fortunately, this result turned out to be
sufficient for our purposes in [89] (chapter 8), where we were concerned only with
spacetime translations.

It is worth noting that concerning the relation between gauge-fixing and gauge-invariant
formalisms, there is a one-to-one correspondence between a choice of gauge fixing and a
preferred set of gauge-invariant functions that generate the full algebra of gauge-invariant
functions [146]. The two formalisms are therefore equivalent at generic points of the reduced
phase space where the Dirac matrix (which in any interacting theory is a nontrivial phase-
space function) is nonsingular. In the same sense, different gauge fixing conditions are,
in general, (locally in phase space) equivalent. As usual, global differences may affect the
quantisation in different gauge choices. However, our attitude is that, in quantum gravity,
the global non-equivalence of gauge-fixed theories is a second-order concern, one would be
pleased to have at least a working quantisation at one’s proposal to start with, which can
then be further improved. In this sense, the paper [89] (chapter 8) provides the ground for
the reduced phase space quantisation of the U(1)3 toy model of LQG.

In the path integral quantisation:
Finding a covariant origin for the theory under consideration.

Note first that the simplification of SU(2) to U(1)3 within the Hamiltonian formulation
can be easily done by hand by deleting all non-Abelian terms from the Gauss, spatial dif-
feomorphism, and Hamiltonian constraints respectively. However, the question arises as to
which Lagrangian formulation this theory derives from. For the SU(2) theory it is known
that one can choose the Palatini action, the Holst action, or the (anti-)self-dual action
(Euclidean signature) as a starting point, all of which lead to equivalent Hamiltonian for-
mulations. Although a Lagrangian for the U(1)3 theory was proposed in [2], we showed
in [91] (section 5.2) that it has too many degrees of freedom and cannot be a suitable La-
grangian. We, therefore, had to look for another covariant action.
In [91] (chapter 9) we systematically analysed this question directly for the U(1)3 theory.
Surprisingly, it turned out that the Abelian analogue of the Palatini or Holst formulation is
a consistent but topological theory without propagating degrees of freedom. On the other
hand, a twisted Abelian analogue of the (anti-)self-dual formulation does lead to the desired
Hamiltonian formulation.
A new aspect of our derivation is that we worked 1. with semi-density-valued tetrads, which
simplifies the analysis, 2. without the simplicity constraint (which admits an undesirable so-
lution that is usually neglected by hand), and 3. without imposing the time gauge from the
beginning. As a by-product, we showed that the non-Abelian theory also admits a twisted
(anti-)self-dual formulation. Finally, we also derived a pure connection formulation of the
Euclidean GR with a cosmological constant by extending earlier work by Capovilla, Dell,
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Jacobson, and Peldan. This could prepare an interesting foundation for path integral stud-
ies and display (Euclidean) GR as a Yang-Mills theory with non-polynomial Lagrangian.
Both Lagrangians can serve as a possible starting point for a path integral quantisation
and can be translated into the language of spin foams (see chapter 3).

10.2. Outlook
In the continuation of [89]:

Note that, in contrast to GR, because of the simplicity of the constraints in the U(1)3

model, one does not have to add matter (e.g. dust) to the theory in order to perform the
reduced phase space quantisation. It means that if one can derive the quantum theory
of the reduced phase space, it will be directly comparable to that obtained by operator
quantisation. In future work, we intend to complete the reduced phase space quantisation
of the U(1)3 model. Afterwards, we compare the outcome with the results obtained from
the Dirac approach [87, 88] (chapter 7). This may extend our technical arsenal to examine
the dynamics of the theory. Especially we want to find some clues reducing the ambiguities
represented in chapter 4. In the end, by getting some lessons from this toy model, we hope
that applying them to the SU(2) case, i.e. full GR, leads to less ambiguous dynamics.

In the continuation of [90]:
We are interested in performing asymptotic quantisation, especially after having access to
the BMS group. We wish to find the BMS group of the Euclidean GR written in terms
of Ashtekar-Barbero variables, in analogy to what is done in [286] using ADM variables.
This is challenging because of the presence of internal gauge freedoms whose asymptotic
behaviours have to be determined. This may lead to some interesting results in connection
with other approaches to quantum gravity in which asymptotic behaviours are of great
importance.

In the continuation of [91]:
As the starting point of covariant quantisation is a Lagrangian, we are now able to apply
the techniques of spin foam models (see chapter 3) to the U(1)3 theory. We would call
the resulting models charge foams in analogy with the charge networks we introduced in
chapter 7. The procedure behind this is twofold:

1. Since we have a satisfactory control on the reduced phase space of the U(1)3 model
(from chapter 8), one can proceed using the method of section 3.2.1.

2. One can still follow the strategy of the spin foam models sketched in section 3.2.2.
This would be an interesting laboratory to test the method of imposing second-class
constraints that we explained in section 3.3.4.2.

As the gauge group is Abelian, we expect that the resulting charge foam model from
our current work can be much better controlled than their non-Abelian versions, which
thus could serve as an interesting test laboratory for the spin foam approach to LQG.
Interestingly, our results immediately generalise from U(1)3 to SU(2) so that one can also
write a spin foam model for Euclidean General Relativity but with gauge group SU(2)
rather than SO(4). This may also lead to major simplifications even in the non-Abelian
context.
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APPENDIX A.

Solutions of the Constraints in the (B,f)
Description

Due to the aforementioned reason in the theorem 8.2.2, the solutions of the constraints are not
required to obtain the physical Hamiltonian. However, to ensure that the model is consistent,
we need to answer the question of whether the system of equations under consideration admits
solutions that satisfy the specified asymptotic behaviour. To this end, in this appendix, we show
that by considering the boundary conditions (8.28), (8.29), and (8.30), there exist solutions for
the systems of equations (8.37) and (8.41).

A.1. Solutions for the System of Equations (8.37)
We can solve the first and second equations of the system of equations (8.37) for Bx

α as Bx
α =

−∂−1
x (∂yB

y
α +∂zB

z
α) + gα(y, z), where gα are arbitrary functions depending only on y, z. Because

Bx
α falls off at infinity due to (8.28), so gα must vanish. Hence,

Bx
α = −∂−1

x (∂yB
y
α + ∂zB

z
α). (A.1)

The third equation of (8.37) is solved for Bz
3 as Bz

3 = −∂−1
z ∂IB

I
3 + g(x, y) where g is an arbitrary

function in the kernel of ∂z. Again, exploiting the asymptotic behaviour of Bz
3 , one deduces

g = 0. Hence,
Bz

3 = −∂−1
z ∂IB

I
3 (A.2)

As H3
z = det(Hα

I ) ̸= 0, we can simply solve the fourth and fifth equations of (8.37) forming an
algebraic system of two equations with two unknowns BI

3

BI
3 = ϵIJϵαβBz

αH
β
J (A.3)

Plugging (A.1)-(A.3) into the sixth and seventh equations of (8.37), one gets

− Y2B
y
1 + Y1B

y
2 = ϵαβHβ

x ∂
−1
x ∂zB

z
α (A.4)

− Y1B
y
1 − Y2B

y
2 = Hα

x ∂
−1
x ∂zB

z
α + ϵIJϵαβH3

z∂
−1
z ∂I(Hβ

JB
z
α) (A.5)

where Yα := Hα
x ∂
−1
x ∂y −Hα

y . The inverse of the operator Y2 can be used to solve (A.4) for By
1

as By
1 = Y −1

2 Y1B
y
2 − Y

−1
2

(
ϵαβHβ

x ∂
−1
x ∂zB

z
α

)
+ κ where κ is in the kernel of Y2 and of the form

κ = ∑∞
n=3 κnr

−n, because By
1 = O(r−3). Since Hα

I = δα
I + O(r−1), the highest order term of

the defining equation for κ, that is 0 = Y2κ = H2
x∂
−1
x ∂yκ − H2

yκ, is κ3/r
3 which has to vanish
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individually. Therefore, κ3 = 0 and κ = O(r−4). Repeating the same reasoning, one infers that
κ = 0. Thus,

By
1 = Y −1

2 Y1B
y
2 − Y

−1
2

(
ϵαβHβ

x ∂
−1
x ∂zB

z
α

)
(A.6)

Inserting (A.6) in (A.5) results in

XBy
2 = Y1Y

−1
2

(
ϵαβHβ

x ∂
−1
x ∂zB

z
α

)
−Hα

x ∂
−1
x ∂zB

z
α − ϵIJϵαβH3

z∂
−1
z ∂I(Hβ

JB
z
α) (A.7)

where X := Y1Y
−1

2 Y1 + Y2. The inverse of X is used to solve (A.7) for By
2 as

By
2 = X−1Y1Y

−1
2

(
ϵαβHβ

x ∂
−1
x ∂zB

z
α

)
−X−1

(
Hα

x ∂
−1
x ∂zB

z
α

)
− ϵIJϵαβX−1

(
H3

z∂
−1
z ∂I(Hβ

JB
z
α)
)

+ κ̄

, where κ̄ is a member of the kernel of X and decays at infinity as O(r−3), since By
2 = O(r−3).

In the following, we employ the same method as described in full detail in section 8.3.2.3 in order
to specify κ̄. We note that the fall-off behaviour of Hα

I implies Y1 = ∂−1
x ∂y +O(r−1). Moreover,

if one uses (8.114), it is readily deduced that Y −1
2 = −1 +O(r−1). Hence, the highest order term

of the r.h.s. of the defining equation for κ̄, i.e. 0 = Xκ̄ = (Y1Y
−1

2 Y1 + Y2)κ̄, is −(∂−2
x ∂2

y + 1) κ̄3
r3

that must vanish separately. Applying ∂2
x, one observes that the highest order term of κ̄ has to

satisfy the 2-dimensional Laplace equation ∆(κ̄3/r
3) = 0, meaning that κ̄3 = 0, as in R3 the only

harmonic function vanishing at infinity is the trivial function. Thus, κ̄ = O(r−4). Iterating the
reasoning leads to κ̄ = 0. Accordingly,

By
2 = X−1Y1Y

−1
2

(
ϵαβHβ

x ∂
−1
x ∂zB

z
α

)
−X−1

(
Hα

x ∂
−1
x ∂zB

z
α

)
− ϵIJϵαβX−1

(
H3

z∂
−1
z ∂I(Hβ

JB
z
α)
)

(A.8)
This shows that by solving the constraints, BI

i and Bz
3 can be written in terms of our degrees of

freedom, i.e, Bz
α.

A.2. Solutions for the System of Equations (8.41)
We can solve the first and second equations of the system of equations (8.41) for Bx

α as Bx
α =

−∂−1
x (∂yB

y
α + ∂zB

z
α) + gα(y, z) in which gα are arbitrary functions in the kernel of ∂x. Due to

the fall-off behaviour (8.28), gα must vanish. Hence,

Bx
α = −∂−1

x (∂yB
y
α + ∂zB

z
α). (A.9)

The third equation of (8.41) can be solved for Bz
3 as Bz

3 = −∂−1
z ∂IB

I
3 + g(x, y) where g is an

arbitrary function that depends only on x, y. Again, g = 0 is concluded from the asymptotic
behaviour of Bz

3 . Therefore,
Bz

3 = −∂−1
z ∂IB

I
3 (A.10)

Solving the fourth and fifth equations of (8.41) for Bz
α simply results in

Bz
α = H1

xδ
α
I B

I
3 −Hα

z ∂
−1
z ∂IB

I
3 (A.11)

Because H1
x ̸= 0, the last two equations of (8.41) can be re-expressed as

By
1 = Bx

2 −
1
H1

x

ϵαβBz
αH

β
z (A.12)

Bx
1 +By

2 = − 1
H1

x

(Hα
z B

z
α +Bz

3) (A.13)
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If we exploit (A.9)-(A.12) in (A.13) and simplify, the following integro-differential equation
emerges

∂−2
x ∆By

2 = − 1
H1

x

(Hα
z B

z
α +Bz

3)− ∂−1
x ∂y

( 1
H1

x

ϵαβBz
αH

β
z

)
+ ∂−1

x ∂zB
z
1 − ∂−2

x ∂y∂zB
z
2 (A.14)

that can be solved for By
2 employing the inverse of ∂−2

x ∆. We denote the r.h.s. of (A.14)
depending only on BI

3 by R(BI
3) and observe that By

2 = ∆−1∂2
xR + κ in which ∂−2

x ∆κ = 0 and
κ = O(r−3) due to (8.28). The asymptotic behaviour of κ indicates that ∆κ must vanish and
since in R3 the only harmonic function decaying at infinity is the trivial function, κ = 0. Thus,

By
2 = ∆−1

[
−∂2

x

( 1
H1

x

(Hα
z B

z
α +Bz

3)
)
− ∂x∂y

( 1
H1

x

ϵαβBz
αH

β
z

)
+ ∂x∂zB

z
1 − ∂y∂zB

z
2

]
(A.15)

Accordingly, it has been exhibited that by solving the constraints, BI
α and Bz

i can be written in
terms of our degrees of freedom, i.e, BI

3 .
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APPENDIX B.

The General Solution of the System (9.32)

This appendix is devoted to find general solution of the system (9.32). It needs a detailed
case-by-case analysis as described below.

Case 1 : êt
0 ̸= 0

First, we extract vi
a from the last equation of (9.32). As êt

0 ̸= 0, we can use its inverse to
get

vi
a = 1

êt
0
(F i

abê
b
0 + γϵiklF k

abê
b
l − γϵiklvk

a ê
t
l) (B.1)

Note that the r.h.s. still depends on vk
a and hence this is not the desired solution. To get rid of

it, we simply put (B.1) into itself and simplify the result

vi
a = 1

êt
0

(
F i

abê
b
0 + γϵiklF k

abê
b
l −

γϵikl

êt
0

(F k
abê

b
0 + γϵkmnFm

ab ê
b
n − γϵkmnvm

a ê
t
n)êt

l

)

= 1
êt

0

(
F i

abê
b
0 + γϵiklF k

abê
b
l −

γϵikl

êt
0

(F k
abê

b
0 + γϵkmnFm

ab ê
b
n)êt

l + γ2

êt
0

(δi
nδ

l
m − δi

mδ
l
n)vm

a ê
t
nê

t
l

)

= 1
êt

0

(
F i

abê
b
0 + γϵiklF k

abê
b
l −

γϵikl

êt
0

(F k
abê

b
0 + γϵkmnFm

ab ê
b
n)êt

l + γ2

êt
0

([vl
aê

t
l ]êt

i − vi
aê

t
l ê

t
l)
)

= 1
êt

0

(
F i

abê
b
0 + γϵiklF k

abê
b
l −

γϵikl

êt
0

(F k
abê

b
0 + γϵkmnFm

ab ê
b
n)êt

l + γ2

êt
0

(F l
abê

b
l ê

t
i − vi

aê
t
l ê

t
l)
)

where in the last step, the third equation of (9.32) has been used. Now one can move the last
term of the r.h.s. to the l.h.s. and isolate vi

a to obtain

vi
a = êt

0
(êt

0ê
t
0 + γ2êt

l ê
t
l)

(
F i

abê
b
0 + γϵiklF k

abê
b
l −

γϵikl

êt
0

(F k
abê

b
0 + γϵkmnFm

ab ê
b
n)êt

l + γ2

êt
0
F l

abê
b
l ê

t
i

)

= êt
0

(êt
0ê

t
0 + γ2êt

l ê
t
l)

(
F i

abê
b
0 + γϵiklF k

abê
b
l −

γϵikl

êt
0
F k

abê
b
0ê

t
l + γ2

êt
0

(F i
abê

b
j ê

t
j − 2F j

abê
b
[iê

t
j])
)

(B.2)
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Assuming et
j = 0, (B.2) reduces to (9.34). Now, substituting (B.2) into the second, third and

first equations of (9.32), respectively, yields the following constraints

C̃a :=
(

1− γ2êt
iê

t
i

êt
0ê

t
0 + γ2êt

kê
t
k

)
F l

abê
b
l −

êt
iê

t
0

êt
0ê

t
0 + γ2êt

kê
t
k

(F i
abê

b
0 + γϵiklF k

abê
b
l )

C̃i := γ2êt
0

(êt
0ê

t
0 + γ2êt

l ê
t
l)

(
êa

0
êt

0
F l

ab(2êb
l ê

t
i − êb

i ê
t
l) + F l

abê
a
l ê

b
i + γ

êt
0
ϵiklêa

l (F k
abê

b
j ê

t
j − 2F j

abê
b
[kê

t
j])
)

C̃ := êt
0

(êt
0ê

t
0 + γ2êt

l ê
t
l)

(
F i

abê
b
0ê

a
i + γϵiklF k

abê
b
l ê

a
i −

γϵikl

êt
0
F k

abê
b
0ê

t
l ê

a
i

)
(B.3)

We want to verify that, assuming êt
j = 0, the above constraints (B.3) reduce to (9.33). We start

with C̃a = 0. It is obvious that substituting êt
j = 0 into this equation leads to F l

abê
b
l = 0 which is

the second constraint of (9.33), i.e. Ca = 0.
Since most terms in C̃i are proportional to êt

j , when the latter is zero the constraint C̃i = 0
reduces to the simple equation 0 = F l

abê
a
l ê

b
i = −Cbê

b
i that is not an independent constraint since

we already have Ca = 0. Note that if we assume êt
j = 0, we actually substitute three constraints

Dj = 0 for the above constraint C̃j = 0 and therefore in this case C̃j = 0 does not provide us
with any new independent constraints.
Finally, If we substitute êt

j = 0 into the equation C̃ = 0, we conclude that 0 = F i
abê

b
0ê

a
i +

γϵiklF k
abê

b
l ê

a
i = −Cb ê

b
0 + γϵiklF k

abê
b
l ê

a
i , whose first term already vanishes. Thus, ϵiklF k

abê
b
l ê

a
i = 0

serves as an independent constraint which is the third constraint in (9.33), i.e. C = 0.

Case 2 : êt
0 = 0

In this case, to prevent degeneracy, at least one of the variables êt
i has to be non-zero. Without

loss of generality, one can assume that êt
1 ̸= 0. A consequence of this choice is the separation of

quantities with index i = 1 and those with i = α ∈ {2, 3}. The Greek alphabet is employed to
denote the indices i ̸= 1.
The last equation of (9.32) is used to get vα

a as

vα
a = 1

γêt
1
(γv1

aê
t
α − ϵαβ[F β

abê
b
0 + γϵβklF k

abê
b
l ]) (B.4)

and the third equation is solved for v1
a

v1
a = 1

êt
1
(F j

abê
b
j − êt

αv
α
a ) (B.5)

Now plugging (B.4) into (B.5) renders v1
a completely in terms of the canonical variables

v1
a = êt

1
êt

iê
t
i

(
F j

abê
b
j + êt

α

1
γêt

1
ϵαβ[F β
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0 + γϵβklF k
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b
l ]
)

(B.6)

and inserting (B.6) in (B.4) terminates the restrictions on Lagrange multipliers vi
a, as

vα
a = êt

α

êt
iê

t
i

(
F j

abê
b
j + êt
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ϵδβ
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b
l ]) (B.7)
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The remaining task is just substitution of vi
a into the rest of the equation of (9.32) to obtain the

constraints. These equations are of the form

0 =v1
aê

a
0 + γϵαβvα

a ê
a
β

0 =vα
a ê

a
0 − γϵαβv1

aê
a
β + γϵαβvβ

a ê
a
1

0 =êa
1v

1
a + êa

αv
α
a (B.8)

where the first one is just the component i = 1 of the last equation of (9.32). After simplification,
the constraints take the following forms
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b
l ]
)
êa
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l ] (B.9)

To summarise, solving 16 equations (9.32), ensuring the stabilisation of P̂ I
A, yields fixing 9 La-

grange multipliers v1
a and vα

a via (B.6) and (B.7), respectively, in addition to 7 secondary con-
straints C̃a, C̃1, C̃α, C̃. This ends the case-by-case analysis.
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