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Abstract

Squeezed states of light exhibit a reduction of quantum noise in one of their phase-

space quadratures. They can be generated via a nonlinear interaction between a laser

and a nonlinear dielectric material. Multimode squeezed states of light contain en-

tanglement in the form of correlations between the quadratures of the modes in the

state. Scattering loss in the dielectric material used to generate the squeezed state

reduces the amount of squeezing and the strength of the correlations between the

modes in the state. In this thesis, I consider the nonlinear generation of multimode

squeezed states in resonant structures. The modes of these structures are inherently

lossy due to scattering and coupling loss and also form a nonorthogonal basis in

general. The central result of this thesis is that I show the analytic solution of the

Lindblad master equation for the density operator of the generated light in the mul-

tiple lossy nonorthogonal modes of a structure has the form of a multimode squeezed

thermal state. I show that using the analytic solution makes it fast to calculate the

amount of quadrature squeezing and the strength of the correlations between modes

in the state as a function of time. I apply this theory to the nonlinear generation of

a single-mode and two-mode squeezed thermal state in a microring resonator, and I

optimize the coupling parameters of the ring to maximize the squeezing in the pres-

ence of loss or to obtain a two-mode squeezed thermal state in which the two modes
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are highly-correlated despite the loss. In addition, I derive a squeezing criterion that

if the multimode squeezed thermal state obeys it can be considered as a cluster state

and be used for continuous-variable quantum computing. Therefore, the multimode

squeezed thermal state is the natural state to describe the nonlinearly generated light

in systems of coupled-cavities and it provides a simply way to incorporate loss into

a practical theory of entangled squeezed light generation, which opens a path to

optimize this light for applications in quantum technologies.
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Glossary of Abbreviations

CROW Coupled-resonator optical waveguide.

CV Continuous-variable.

LME Gorini–Kossakowski–Sudarshan–Lindblad master equation.

MRR Microring resonator.

MSTS M -mode (multimode) squeezed thermal state.

MSVS M -mode (multimode) squeezed vacuum state.

OPO Optical parametric oscillator.

SFWM Spontaneous four-wave mixing.

SPDC Spontaneous parametric down-conversion.
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Chapter 1

Introduction

Quantum optics is a branch of research that combines the subjects of quantum

mechanics and electromagnetism. One of the first insights that these two subjects

could be combined was in 1905 with Einstein’s explanation of the photoelectric effect,

a phenomenon whereby electrons are emitted from a material when hit with light,

and the energy of the emitted electrons increases with the frequency of the incident

light. At the time, the dominant theory of light was Maxwell’s theory that describes

light as an electromagnetic wave. However, his theory incorrectly predicted that, in

the photoelectric effect experiments, the energy of the emitted electrons should in-

crease with the intensity of the incident light. Einstein solved this problem by using

Planck’s postulate from quantum theory that states the energy of the electromag-

netic wave is carried by quantized packets of energy proportional to frequency, called

photons. Thus, he showed that the electrons were being emitted from the material

because photons were colliding with the surface and imparting their energy. This gave

way to the idea of the dual nature of light since it exhibits both wave and particle

characteristics.

The quantization of the electromagnetic field led to quantum states of light that
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have no classical counterpart, such as states of light made from individual photons.

One of the consequences of the quantization of the electromagnetic field is that there

exists a vacuum state of the field, which has no photons but still exhibits fluctuations

in the intensity of the field. Remarkably, the intensity fluctuations of the vacuum

state create a measurable attractive force between parallel metal plates, placed close

enough together in the vacuum, called the Casimir force [1]. Vacuum fluctuations have

a negative effect on the sensitivity of measurements made with laser interferometers

because the noise causes a dark count on the photon detector. However, researchers

discovered a nonclassical state of light called a squeezed state that could improve

the sensitivity of the interferometer [2]. Squeezed states exhibit a reduction of the

vacuum fluctuations in a certain quadrature. Therefore, if a squeezed state is injected

into the port of the interferometer instead of the vacuum, then the dark count of the

photon detector can be reduced and the contrast between the bright and dark fringes

increases.

One way to generate nonclassical states of light is with a nonlinear interaction,

such as spontaneous parametric down-conversion (SPDC) [3], between a laser (called

the pump) and a crystal with a second-order nonlinearity. In SPDC, pump photons

from the laser are absorbed by the crystal and pairs of signal and idler photons are

emitted (see Fig. 1.1). The frequency of the signal and idler photons add up to the

frequency of the pump photons so that energy is conserved (ωp = ωs + ωi), and the

wavevectors of the signal and idler photons add up to the wavevector of the pump

photons so that momentum is conserved (kp = ks + ki). Not only is this a source of

individual photons, but the emitted signal and idler photons have polarizations that

are highly correlated.
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Figure 1.1: Illustration of SPDC using a nonlinear crystal (left), as well as illustrations
of energy conservation (center) and momentum conservation (right).

One approach to enhance the generation of photons via SPDC is to place the

nonlinear material inside an optical cavity. The wavelengths of light that are reso-

nant with the cavity will buildup their intensity due to coherent interference. In Fig.

1.2(a) an illustration of an optical parametric oscillator (OPO) is shown. It consists

of a nonlinear crystal inside of a cavity created with mirrors, that is resonant with

the signal (blue) and transparent to the idler (red) and pump (purple). This OPO

generates signal and idler photons via SPDC and enhances the generated signal light

through coherent interference. Variations of this design include a cavity that is reso-

nant with two of the fields (e.g. signal and idler) or all three fields. Another approach

similar to this is to use a microring resonator (MRR), as shown in Fig. 1.2(b). It

consists of a ring waveguide side-coupled to a channel, where both are made from

the same nonlinear material. The pump (blue) resonantly couples from the channel

into the ring, where it builds up intensity relative to the channel. This causes an

enhancement in the generation rate of signal and idler photons (both shown as red)

via SPDC. The signal and idler wavelengths are both resonant with the ring and they

can couple out of the ring into the channel. The benefit of an MRR is that it is a

compact source of nonclassical light that can be integrated into a chip.
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Figure 1.2: Schematics of platforms used to generate photon pairs via a nonlinear
interaction with a nonlinear crystal; (a) an OPO [4], (b) a MRR [5], (c) a line-defect
waveguide in a photonic crystal slab [6], and (d) a defect-cavity side-coupled to a
line-defect waveguide [7].

Another platform used to generate nonclassical light is a photonic crystal slab,

which can be created by drilling a lattice of airholes into a nonlinear material (see

Figs. 1.2(c) and 1.2(d)). In Fig. 1.2(c) a line-defect waveguide is created in the

photonic crystal by removing a row of airholes. The pump (blue) propagates in the

waveguide and creates signal (green) and idler (purple) photons. For the system in

Fig. 1.2(c) the group velocity for the pump pulse is small, causing its amplitude

to increase and allowing for a longer interaction time for SPDC. These two factors

enhance the generation rate of signal and idler photons [8]. Alternatively, a photonic

crystal can be constructed where a defect-cavity is side-coupled to the waveguide.

The cavity can be made to be resonant with the pump, signal, and idler light and

used to enhance SPDC. In Fig. 1.2(d) the intensity of the electric field in a single

mode of the structure consisting of a defect-cavity side-coupled to a waveguide is
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shown. The intensity of the field is larger in the cavity relative to the waveguide,

similar to a MRR.

In all these structures there is photon loss due to scattering, which causes the

modes of the electromagnetic field in these structures to be lossy [9, 10]. The lossy

modes are eigenstates of a non-Hermitian Hamiltonian and are nonorthogonal in gen-

eral. This is because the standard arguments used to prove the modes are orthogonal

rely on the modes being lossless and being eigenstates of a Hermitian Hamiltonian [11].

Therefore, any realistic model of the generation of quantum states of light in these

structures must take into account the effects of photon loss due to scattering and the

mode nonorthogonality.

Nonclassical light also exhibits the property of entanglement, which is one of

the central concepts that distinguishes quantum mechanics from classical mechanics.

In 1935 Einstein, Podolsky, and Rosen (EPR) using quantum theory theoretically

showed that two distant particles that share an inseparable wave function had mo-

menta that were correlated [12]. These are known as an EPR pair. This violated the

classical principle of locality, where particles can only be influenced by local interac-

tions. For this reason, it was argued that quantum mechanics was not a complete

theory and additional variables should be included to restore local reality. In 1964,

Bell derived an inequality, consisting of statistical correlation measurements of the

momenta of the two particles, that would be obeyed if local hidden variables were

included in quantum mechanics [13]. Bell’s inequality was tested experimentally in

1982, by Aspect, Grangier, and Roger [14]. In their experiment, they created EPR

pairs with photons. The photon pairs were created simultaneously and sent in op-

posite directions where polarization measurements were done on them individually.
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They found that the polarization measurements exhibited correlations that violated

Bell’s inequality, demonstrating experimentally that local hidden variables is not con-

sistent with quantum theory.

Since the pioneering theory of entanglement and its experimental evidence, entan-

gled photons have found applications in quantum teleportation [15], secure quantum

key distribution [16], and quantum computing [17]. It is also possible now to create

multipartite entangled photon states where the entangled state is shared between

multiple parties rather than just two [18]. Examples of multipartite entangled pho-

ton states include GHZ states, W states, and cluster states [19, 20]. GHZ states are

maximally entangled, meaning that each photon pair in the cluster can be projected

into an EPR pair. However, the entanglement is very sensitive to photon measure-

ment. If the polarization of a single photon in the GHZ state is measured, then all the

entanglement in the state is destroyed. On the other hand, W states are resilient to

photon measurement, because many photons in the W state can be measured before

all the entanglement is destroyed. However, the W state is not maximally entangled.

Cluster states are another multipartite entangled state that contain the best qualities

from GHZ and W states. Cluster states are maximally entangled and have a high

persistency of entanglement. The cluster state has gained a lot of attention from

researchers because it is a resource for measurement-based quantum computing.

Fully programmable quantum computers on the order of 100 qubits are currently

accessible to anyone over the cloud. In 2021, IBM announced they created a pro-

grammable quantum computer with 127 superconducting qubits, that they claim

cannot be simulated by any classical computer. By the end of 2023, IBM predicts

they will have a quantum processor with over 1000 qubits. Alternatively, quantum
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computers can be made using photons. In 2022, a company based in Toronto, Ontario

called Xanadu created the first programmable photonic quantum computer, with over

216 squeezed-state qubits, that is capable of quantum computational advantage [21].

Relative to superconducting qubits, photonic qubits have the advantage that they

do not require cryogenic temperatures to operate. With the progress being made by

companies such as IBM and Xanadu, the future looks bright for quantum computers

and their applications.

The objective of thesis is to characterize the quantum state of light that is pro-

duced via nonlinear optical processes in the multiple nonorthogonal modes of systems

of coupled, lossy cavities, like the ones in Fig. 1.2. As I will show, this opens a prac-

tical path to generate optimized sources of multimode entangled light that can be

used as an entanglement source for applications in quantum technologies. In the re-

mainder of this introduction, I discuss several quantum states of light important to

this thesis, quantum entanglement and some ways to characterize the entanglement

in nonclassical states, and finally I introduce continuous-variable (CV) cluster states.

1.1 Quantum states of light

In quantum optics, the Heisenberg picture electric field operator for a multimode

system, Ê(r, t), can be written as

Ê(r, t) = i
∑
ν

√
~ων
2ε0

(
âνfν(r)e−iωνt − â†νf ∗ν (r)eiωνt

)
, (1.1)

where âν and â†ν are the annihilation and creation operator for a single mode of the

field, ν, with the frequency ων , and mode function fν(r). Here the label ν serves as an
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index to label the mode and it may be discrete or it may be continuous, depending on

the boundary conditions imposed on the mode functions. The mode functions, fν(r),

are a solution to the Maxwell equations with outgoing wave boundary conditions and

they form a complete orthonormal basis. The annihilation and creation operators

satisfy the standard bosonic commutation relation

[
âν , â

†
ν′

]
= δνν′ . (1.2)

It is common to write the electric field operator in terms of the orthogonal quadrature

operators X̂ν and Ŷν , since these are obervables that can be measured experimentally.

They can be defined as

X̂ν ≡ âνe
−iθν + â†νe

iθν , (1.3)

Ŷν ≡ −iâνe−iθν + iâ†νe
iθν , (1.4)

which have the same form as dimensionless position and momentum operators, where

θν is an angle in phase-space. They are orthogonal quadratures since Ŷν is equal to

X̂ν rotated by π/2 counter-clockwise in phase-space. Putting Eqs. (1.3) and (1.4)

into Eq. (1.1), the electric field operator can be written in terms of the quadrature

operators as

Ê(r, t) = −
∑
ν

√
~ων
2ε0

(
Im
[
fν(r)e−i(ωνt−θν)

]
X̂ν + Re

[
fν(r)e−i(ωνt−θν)

]
Ŷν

)
. (1.5)

This form is convenient since it can be used to relate the quantum uncertainty in the

electric field operator to the variances of two orthogonal quadrature operators. Using



1.1. QUANTUM STATES OF LIGHT 9

Eq. (1.2), the quadrature operators satisfy the commutation relation

[
X̂ν , Ŷν′

]
= 2iδνν′ . (1.6)

The commutation relation in Eq. (1.6) implies that the orthogonal quadrature oper-

ators obey the uncertainty relation

∆Xν∆Yν ≥ 1, (1.7)

where

∆Xν ≡
√
〈X̂2

ν 〉 − 〈X̂ν〉2, (1.8)

∆Yν ≡
√
〈Ŷ 2

ν 〉 − 〈Ŷν〉2, (1.9)

are the standard deviations of the quadrature operators X̂ν and Ŷν , respectively. The

angle brackets, 〈〉, indicate that an average is to be taken with a particular state of

light. I refer to (∆Xν)
2 or (∆Yν)

2 as the quadrature noise. The quadrature noise can

be measured directly with homodyne detection, where the electric field signal is mixed

with a strong local oscillator at the input ports of a beamsplitter and the noise that is

detected in the output port of the beamsplitter is proportional to the quadrature noise

of the input signal. The quadrature of the electric field that is measured is determined

by the phase of the local oscillator. For a quantum state of light, the product of its

quadrature uncertainties, ∆Xν∆Yν , is always greater than or equal to one, as stated

in Eq. (1.7). The minimum value of the uncertainty relation quantifies the vacuum

fluctuations, which in terms of a photon number measurement they correspond to
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the dark count of the photon detector. For the quadrature operators defined in Eqs.

(1.3) and (1.4), the quadrature noise for a vacuum state is equal to one.

Quantum states of light can be visualized in a phase space, that has orthogonal

axes defined by X and Y (see Fig. 1.3). In classical phase space there exists a

probability distribution function, f(X, Y ), that gives the simultaneous probability

of finding the state at the point (X, Y ) in phase space. In quantum optics, the

uncertainty product (Eq. (1.7)) forbids this type of probability distribution in phase

space that gives the simultaneous probability of finding the state at a point (X, Y ).

However, there exists a useful function to visualize quantum states of light called the

Wigner function, which is generally considered a quasiprobability distribution because

it can in general have negative values, unlike conventional probability distributions.

The Wigner function for a quantum state of light given by the density operator ρ̂ is

defined as

W (X, Y ) =
1

(2π)2

∫∫
dX ′dY ′Tr

(
ρ̂e−i(X

′Ŷ+Y ′X̂)
)

ei(X
′Y+Y ′X), (1.10)

where Tr is the trace operation. The Wigner function is normalized according to

∫∫
dXdYW (X, Y ) = 1. (1.11)

If the Wigner function for a particular quantum state of light has a negative value

anywhere in phase space, then it has no classical analogue and it is called a non-

classical state of light. Examples of the Wigner function for various quantum states

are shown in the subsections below.

Now the following three quantum states of light are introduced: 1) Fock states,
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which are eigenstates of the harmonic oscillator Hamiltonian and are the natural

states used to describe light as a collection of individual photons; 2) coherent states,

which are eigenstates of the annihilation operator and are the closest quantum state

to a classical field; and 3) squeezed states, which exhibit a reduction of the vacuum

noise in one of the quadratures of the electric field, contain the uniquely quantum

property of entanglement, and are widely used in applications ranging from increased

inference fringe visibility in an interferometer to quantum computing and quantum

information processing.

1.1.1 Fock states

Consider a system of M modes and in each mode, labelled by ν, there are nν

photons. The state of this system, |n〉, is given by a tensor product of the Fock states

in each mode:

|n〉 = |n1〉 |n2〉 . . . |nM〉 , (1.12)

where |nν〉 (for ν = 1, 2, . . . ,M) is the Fock state for the mode ν. The Fock states

are orthonormal, such that

〈nν |nν′〉 = δνν′ . (1.13)

The annihilation and creation operators âν and â†ν act on the mode ν only in the full

state of the system, |n〉, and they lower or raise the photon number in that mode by
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one:

âν |n1〉 |n2〉 . . . |nν〉 . . . |nM〉 =
√
nν |n1〉 |n2〉 . . . |nν − 1〉 . . . |nM〉 , (1.14)

â†ν |n1〉 |n2〉 . . . |nν〉 . . . |nM〉 =
√
nν + 1 |n1〉 |n2〉 . . . |nν + 1〉 . . . |nM〉 . (1.15)

The vacuum state is defined as a Fock state with zero photons, nν = 0. It can be

written as |0〉. From Eq. (1.14) is can be seen that when the annihilation operator

acts on the vacuum the result is zero, âν |0〉 = 0. A single-mode Fock state with

nν photons can be created by repeatedly acting on the vacuum nν times with the

creation operator,

|nν〉 =

(
â†ν
)nν

√
nν !
|0〉 . (1.16)

The number operator is defined as â†ν âν , since when it acts on the system ket |n〉 it

gives the photon number for the mode ν (which follows from Eqs. (1.14) and (1.15)).

Therefore, the Fock state |nν〉 in Eq. (1.16) is an eigenstate of the number operator

with eigenvalue nν ,

â†ν âν |nν〉 = nν |nν〉 . (1.17)

Now I will calculate the quadrature noise in a single mode ν using the Fock state

in Eq. (1.16). It can be shown, using Eqs. (1.8) and (1.9), that the uncertainty in

both quadratures are equal and given by

∆Xν = ∆Yν =
√

2nν + 1. (1.18)
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The quadrature noises, (∆Xν)
2 and (∆Yν)

2, increase linearly with the number of

photons in the mode. When the photon number is zero, nν = 0, the quadrature noise

is minimized, with (∆Xν)
2 = (∆Yν)

2 = 1, which is the vacuum noise. Therefore the

uncertainty product for Fock states (Eq. (1.7)) is at its minimum for nν = 0. The

Wigner function of the Fock state |1〉 is shown in Fig. 1.3(a). Putting ρ̂ = |1〉 〈1| into

Eq. (1.10), we obtain

W (X, Y ) =
2

π

(
4(X2 + Y 2)− 1

)
exp
(
−2(X2 + Y 2)

)
. (1.19)

The Wigner function is centred on the point (X, Y ) = (0, 0) since 〈1| X̂ν |1〉 =

〈1| Ŷν |1〉 = 0. The spread of the Wigner function around the point (0, 0) is pro-

portional to the uncertainty product in Eq. (1.18) and thus it will increase when

the photon number increases. Since the Wigner function has negative values, it is a

quasiprobability distribution and the Fock state has no classical analogue.

1.1.2 Coherent states

A single-mode coherent state |αν〉 is the eigenstate of the annihilation operator âν

with eigenvalue αν ,

âν |αν〉 = αν |αν〉 . (1.20)

Using Eq. (1.20), it can be shown that the expected photon number for the coherent

state is given by nν = |αν |2. An M -mode coherent state, |α〉, can be defined as a
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Figure 1.3: Phase-space Wigner functions for (a) the Fock state |1〉, (b) a single-mode
coherent state, |αν〉, with complex amplitude αν =

√
2 exp(iπ/4), (c) the vacuum state

|0〉, and (d) a single-mode squeezed vacuum state with squeezing amplitude uν = 1/2,
that is squeezed along the X-axis.

tensor product of M single-mode coherent states as

|α〉 = |α1〉 |α2〉 . . . |αM〉 . (1.21)

The eigenvalue equation for for the M -mode coherent state is

âν |α〉 = αν |α〉 . (1.22)
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The coherent state can be constructed from the vacuum state using a unitary dis-

placement operator D̂(αν) as

|αν〉 = D̂(αν) |0〉 , (1.23)

where

D̂(αν) = exp
(
αν â

†
ν − α∗ν âν

)
. (1.24)

The M -mode coherent state is obtained by acting on the vacuum state with M

displacement operators,

|α〉 = D̂(α1)D̂(α2) . . . D̂(αM) |0〉 . (1.25)

The displacement operator transforms the annihilation operator âν by displacing it

by the amplitude αν ,

D̂†(αν)âνD̂(αν) = âν + αν . (1.26)

The expectation value the electric field operator (Eq. (1.1)) using |α〉 is

〈α| Ê(r, t) |α〉 = i
∑
ν

√
~ων
2ε0

(
ανfν(r)e−iωνt − α∗νf ∗ν (r)eiωνt

)
, (1.27)

which looks like a classical field. Furthermore, it can be shown (using Eqs. (1.8) and
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(1.9)) that the quadrature uncertainties of the electric field operator are given by

∆Xν = ∆Yν = 1, (1.28)

which is the vacuum noise. The coherent state is the quantum state of light that is the

closest to a classical state because it reproduces the classical field expectation value

and it only contains the vacuum noise, thus minimizing the uncertainty product. The

Wigner function of the single-mode coherent state |αν〉 is shown in Fig. 1.3(b). The

Wigner function is a vacuum state (αν = 0) (see Fig. 1.3(c)) that is displaced with a

displacement operator with the amplitude αν =
√

2 exp(iπ/4). This causes the center

of the distribution to be at the point (〈αν | X̂ν |αν〉 , 〈αν | Ŷν |αν〉) = (1, 1). The spread

of the Wigner function around the point (1, 1) is a circle with radius ∆Xν equal to

the vacuum noise, ∆Xν = 1. Increasing the photon number displaces the center of

the Wigner function out to a larger radius, but its spread will always equal the spread

of the vacuum state. Putting ρ̂ = |αν〉 〈αν | into Eq. (1.10), we obtain for the Wigner

function

W (X, Y ) =
2

π
exp
(
−2
(
(X − 1)2 + (Y − 1)2

))
, (1.29)

where we used αν =
√

2 exp(iπ/4).

1.1.3 Squeezed states

In this subsection I introduce the last quantum state that will be discussed, and

the most important state for this thesis. In the previous subsection, it was demon-

strated that coherent states have quadrature noise equal to the noise due to vacuum
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fluctuations. Squeezed states of light exhibit a reduction of the noise in a particu-

lar quadrature below the vacuum noise. However, to obey the uncertainty relation,

the noise in the orthogonal quadrature to the squeezed one is anti-squeezed, with a

noise level above the vacuum noise. The more squeezed the noise is in a particular

quadrature, the more stretched it becomes in the orthogonal quadrature, such that

the product of the uncertainties is always greater than or equal to one. Squeezed

states have applications in any experiments that suffer from noise due to vacuum

fluctuations. Incorporating a squeezed state into the experiment, instead of vacuum,

can reduce the noise in the experiment and provide more precise measurements. They

have found use in a wide range of applications, such as in interferometers used for

gravitational wave detection, quantum imaging systems, and quantum cryptography.

Moreover, as I will show, multimode squeezed states are a source of entanglement,

and they have applications in quantum computing, quantum communication, and

highly entangled many-body states such as cluster states. Squeezed states can be

generated experimentally by a nonlinear interaction between a coherent laser beam

and a nonlinear material with a second or third order nonlinearity. The main types

of nonlinear interactions to generate squeeze states that are considered in this thesis

are SPDC and spontaneous four-wave mixing (SFWM).

The single-mode squeezed vacuum state, |zν〉 is obtained by acting on the vacuum

with the unitary squeezing operator, Ŝ(zν),

|zν〉 = Ŝ(zν) |0〉 , (1.30)
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where zν is the complex squeezing parameter for the mode ν, and where

Ŝ(zν) = exp

(
1

2
zν â
†2
ν −

1

2
z∗ν â

2
ν

)
. (1.31)

The single-mode squeezed state is formed by Ŝ(zν) creating pairs of photons out of

the vacuum, where each photon pair is created in the same mode ν. The squeezing

operator transformation of the annihilation operator âν is

Ŝ†(zν)âνŜ(zν) = cosh(uν)âν + sinh(uν)e
iζν â†ν , (1.32)

where uν is the squeezing amplitude and ζν is the squeezing phase, such that the

complex squeezing parameter can be written as

zν = uνe
iζν . (1.33)

The quadrature noises in the mode ν using the single-mode squeezed vacuum state

|zν〉 in Eq. (1.30) can be calculated using Eqs. (1.8), (1.9), and (1.32). They are

(∆Xν)
2 = e2uν sin2

(
ζν
2
− θν

)
+ e−2uν cos2

(
ζν
2
− θν

)
, (1.34)

(∆Yν)
2 = e2uν sin2

(
ζν
2
− θν

)
− e−2uν cos2

(
ζν
2
− θν

)
. (1.35)

To demonstrate quadrature squeezing below the vacuum noise, I let the phase-space
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angle θν be θν = ζν/2. Putting this angle into Eqs. (1.34) and (1.35) results in

∆Xν = e−uν , (1.36)

∆Yν = euν , (1.37)

which clearly demonstrates that the noise in the X̂ν quadrature is exponentially

squeezed below the vacuum noise (∆Xν = 1) when the squeezing amplitude is greater

than zero, uν > 0. Consequently, the noise in the Ŷν quadrature is exponentially in-

creased, so that the uncertainty relation is obeyed. The Wigner function for the

single-mode squeezed vacuum state |zν〉 is shown in Fig. 1.3(d). For this plot the

squeezing amplitude is uν = 1/2 and θν = ζν/2 so that the noise is squeezed along the

X-axis. The Wigner function shows that there is a large uncertainty in the Y value

for the squeezed state, but that the state is localized near the line X = 0. Putting

ρ̂ = |zν〉 〈zν | into Eq. (1.10), we obtain for the Wigner function

W (X, Y ) =
2

π
exp

(
−1

2
X2e−2uν − 1

2
Y 2e2uν

)
. (1.38)

Other types of quadrature squeezing can be achieved by changing the phase-space

angle θν . For example, if θν = ζν/2 + π/2, then the Wigner function would be

similar to the one in Fig. 1.3(d) but rotated by the angle π/2, such that the Ŷν

quadrature would be squeezed and the X̂ν quadrature would be anti-squeezed. As

another example, squeezing in a mixture of the quadratures can be demonstrated by

letting θν = ζν/2+π/4. Putting this phase-angle into the Eqs. (1.8) and (1.9) results

in ((∆Xν)
2−(∆Yν)

2)/2 = exp(−2uν), where now the distribution of noise is squeezed

along an axis parallel to the direction in phase space defined by the angle π/4, i.e.,



1.2. QUANTUM ENTANGLEMENT 20

along the line Y = X.

1.2 Quantum entanglement

It has been shown so far that single-mode squeezed vacuum states are useful be-

cause they reduce the vacuum fluctuations in a particular quadrature. However, they

do not exhibit the quantum property of entanglement. To show that squeezed states

contain entanglement the concept of multimode squeezed states must be introduced.

In these states, the photon pairs are generated into multiple modes and correlations

exist between the various quadratures of the modes. Entanglement is commonly first

introduced as being encoded in discrete variables such as the polarization of a photon

(e.g., horizontal or vertical) or the spin of an electron (e.g., up or down). These

are examples of two-level quantum states. However, the entanglement in multimode

squeezed states is encoded in the CVs X and Y , therefore this kind of entanglement

is called CV entanglement. First I discuss entangled photon pairs, then I move on to

CV entanglement in two-mode squeezed states, and finally generalize these results to

M -mode squeezed states.

A common way to generate entangled photon pairs is with SPDC with type-II

phase matching, as illustrated in Fig. 1.4. It is a process where a nonlinear crystal

is pumped with a laser and photons are emitted into two cones, one horizontally

polarized and the other vertically polarized. The cones intersect along two paths

labelled “1” and “2”, where it is uncertain if the light is horizontally or vertically

polarized. The light along these paths can be described by the entangled state

|ψ〉 =
1√
2

(|H〉1 |V 〉2 + |V 〉1 |H〉2) , (1.39)
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where H and V indicate horizontal and vertical polarization, respectively. The state

in Eq. (1.39) is one of the maximally entangled Bell states. If one measures path 1

with 〈H|1 ( 〈V |1), then path 2 is guaranteed to be in the state |V 〉2 (〈H|2). This is an

Figure 1.4: Creation of polarization-entangled photon pairs via SPDC with a nonlin-
ear crystal.

example of entanglement between the discrete polarization degrees of freedom of the

photon pairs. The notion of entanglement can be extended to CVs using a two-mode

squeezed state.

A two-mode squeezed state can be obtained by acting on the vacuum state with

a two-mode squeezing operator, defined by

Ŝ(z) ≡ exp

(
1

2
zâ†1â

†
2 −

1

2
z∗â1â2

)
, (1.40)

where I have defined it such that the photon pairs are created only in the two distinct

modes and I have neglected the creation of photon pairs in the same mode, i.e., terms

in Ŝ(z) such as â†21 and â†22 are excluded, since for these processes it is assumed that

the squeezing parameter is negligible. Since the squeezing operator is symmetric with

respect to the interchange of the two indices, 1↔ 2, there is only a single squeezing

parameter, z = u exp(iζ), for both modes, with squeezing amplitude u and squeezing

phase ζ. The two-mode squeezing transformations of the annihilation operators â1
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and â2 are

Ŝ†(z)â1Ŝ(z) = cosh(u)â1 + eiζ sinh(u)â†2, (1.41)

Ŝ†(z)â2Ŝ(z) = cosh(u)â2 + eiζ sinh(u)â†1. (1.42)

The two-mode squeezing operator couples the two modes.

The quadrature uncertainties in both modes can be calculated using Eqs. (1.8)

using the two-mode squeezed vacuum state Ŝ(z) |0〉, (1.9), (1.41), and (1.42). Doing

this, the uncertainty is equal in both quadratures and both modes and given by

∆X1 = ∆Y1 = ∆X2 = ∆Y2 =
√

cosh(2u). (1.43)

The result in Eq. (1.43) shows that for either mode individually the quadrature

noise is never squeezed, and furthermore since the expression does not depend on the

phase-angle, the quadrature noise forms a circle in phase space. It turns out that the

noise is squeezed in linear combinations of the quadratures from each mode. Consider

the following operators that are formed from linear combinations of the quadrature

operators:

X̂12 ≡
1√
2

(
X̂1 − X̂2

)
, (1.44)

Ŷ12 ≡
1√
2

(
Ŷ1 + Ŷ2

)
. (1.45)

Using the two-mode squeezed vacuum state, the noise in X̂12 is equal to the noise in
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Ŷ12 and is given by

(∆X12)2 = (∆Y12)2 = e2u sin2

(
ζ − (θ1 + θ2)

2

)
+ e−2u cos2

(
ζ − (θ1 + θ2)

2

)
, (1.46)

where θ1 is the phase-space angle for the first mode and θ2 is the phase-space angle

for the second mode. To show that the noise in these operators is squeezed below the

vacuum noise, let θ1 + θ2 = ζ in Eq. (1.46) to obtain

∆X12 = ∆Y12 = e−u, (1.47)

which clearly shows the noise is squeezed below the vacuum noise for u > 0. Also, the

phase-space uncertainty in X̂1 − X̂2 and Ŷ1 + Ŷ2 is reduced, meaning that there are

correlations between the quadratures X̂1 and X̂2 and the quadratures Ŷ1 and Ŷ2, such

that a homodyne measurement of X̂1 (Ŷ1) will reduce the set of possible results from a

homodyne measurement of X̂2 (Ŷ2). As a result, the two-mode squeezed state cannot

be written as a separable tensor product of single-mode squeezed states in each mode

and thus it is an entangled state. L. Duan et. al. [22] and R. Simon [23] derived a

necessary and sufficient condition for the separability of a two-mode Gaussian state

(e.g., a state that has a Gaussian Wigner function). For the operators in Eqs. (1.44)

and (1.45) the criterion for the two-mode squeezed state can be written as

(∆X12)2 + (∆Y12)2 ≥ 2. (1.48)

As long as this inequality is obeyed, then the two-mode squeezed state is separable.

Putting the noises in Eq. (1.47) into the left-hand side of the inequality (Eq. (1.48))



1.2. QUANTUM ENTANGLEMENT 24

results in

(∆X12)2 + (∆Y12)2 = 2e−2u. (1.49)

Therefore the inequality is violated ((∆X12)2 + (∆Y12)2 < 2) when the noise is

squeezed below the vacuum noise, that is exp(−u) < 1. As an example, in Sec.

3 a two-mode squeezed state is generated in the ring modes of a MRR and it is

shown that it violates the Duan-Simon inequality, demonstrating the presence of CV

entanglement in the two ring modes.

Now I introduce the M -mode squeezed vacuum state (MSVS). It can be obtained

by acting on the vacuum state with an M -mode squeezing operator defined by

Ŝ(z) ≡ exp

(
1

2

M∑
ν=1

M∑
ν′=1

zνν′ â
†
ν â
†
ν′ − H.c.

)
, (1.50)

where z is the complex symmetric squeezing matrix, where the matrix element zνν′

gives the squeezing parameter that couples the modes ν and ν ′. The two-mode

squeezing operator (Eq. (1.40)) is recovered by letting M = 2 and z11 = z22 = 0 in

Eq. (1.50), and defining z ≡ z12 + z21. The M -mode squeezing transformation of the

annihilation operator âν can be written in a similar form to the single-mode case (Eq.

(1.32)). It is given by [24]

Ŝ†(z)âνŜ(z) =
M∑
ν′=1

(
[cosh(|z|)]νν′ âν′ +

[
sinh(|z|)|z|−1z

]
νν′
â†ν′
)
, (1.51)

where |z|−1 is the inverse of the matrix |z| =
√
z∗z, such that |z|−1|z| = 1, where 1

is the M ×M identity matrix. The M -mode squeezing operator causes every pair of
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modes to couple, as long as the squeezing parameter that connects them is non-zero.

I have assumed that the matrix z has an inverse and therefore is non-singular (i.e.,

det(z) 6= 0). If z does not have an inverse, then the second sum in Eq. (1.51) is

infinite. In this case, one can perform a polar decomposition on the matrix, z = ueiζ,

where u and ζ are Hermitian. Now the squeezing transformation can be written

as [25]

Ŝ†(z)âνŜ(z) =
M∑
ν′=1

(
[cosh(u)]νν′ âν′ +

[
sinh(u)eiζ

]
νν′
â†ν′
)
. (1.52)

The Duan-Simon inequality in Eq. (1.48) can be extended to M -mode Gaussian

states to determine if a particular pair of modes, (ν, ν ′), in the M -mode squeezed

state are entangled. The pair of modes are separable if the following inequality is

satisfied [26]:

(∆Xνν′)
2 + (∆Yνν′)

2 ≥ 2, (1.53)

where X̂νν′ and Ŷνν′ are defined similar to Eqs. (1.44) and (1.45), but here the indices

can take on any value from 1 to M , that is ν = 1, 2, . . . ,M and ν ′ = 1, 2, . . . ,M .

The noises in Eq. (1.53) can be calculated with Eqs. (1.8) and (1.9), using the

MSVS given by Ŝ(z) |0〉. In Sec. 4 it is shown how to calculate the noise using a

multimode squeezed state. The pair of modes (ν, ν ′) are entangled if the inequality in

Eq. (1.53) is violated. This means that the pair of modes (ν, ν ′) cannot be separated.

However, this does not exclude other modes from being separable modes. Thus,

violating a single inequality such as in Eq. (1.53) does not show that the MSVS is

fully inseparable, it only shows that the pair (ν, ν ′) are inseparable.
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One way to determine if the MSVS is fully inseparable is to check if it can be

separated into a single-mode state in mode 1 and an (M − 1)-mode state including

the modes 2, 3, . . . ,M . A graphical representation of a fully inseparable 4-mode state

is shown in Fig. 1.5(a) and a representation of a 4-mode state where mode 1 is separate

from the other modes is shown in Fig. 1.5(b). To test if the state is separable in this

way the following operators are defined:

X̂ ≡ 1√
2

(
X̂1 −

(
X̂2 + X̂3 + . . .+ X̂M√

M − 1

))
, (1.54)

Ŷ ≡ 1√
2

(
Ŷ1 +

(
Ŷ2 + Ŷ3 + . . .+ ŶM√

M − 1

))
, (1.55)

where the noise in X̂ measures the correlation between X̂1 and X̂2 + X̂3 + . . .+ X̂M ,

and the noise in Ŷ measures the correlation between Ŷ1 and Ŷ2 + Ŷ3 + . . . + ŶM ,

respectively. Clearly, if the noise in X̂ and Ŷ approaches zero, then the quadratures

of mode 1 are correlated with the sum of the quadratures of modes 2, 3, . . . ,M . Thus,

the MSVS is not separable into these two groups of modes. It was shown by P. van

Loock and A. Furusawa [26] that the violation of a single condition,

(∆X)2 + (∆Y )2 ≥ 2

M − 1
, (1.56)

is sufficient to demonstrate M -partite entanglement. Therefore, if the sum of the

noises in X̂ and Ŷ are less than 2/(M − 1), then the MSVS is fully inseparable.

When M = 2, the bipartite inequality in Eq. (1.53) is recovered.
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Figure 1.5: Graphical representations of two different 4-mode states. The state in (a)
is fully inseparable since each mode is maximally connected, as indicated by the black
lines. However, the state in (b) is partially separable since mode 1 can be separated
from the other modes (2, 3, 4).

1.3 Continuous-variable cluster states

Cluster states are a specific type of entangled state consisting of a large number of

qubits [20]. Quantum logic gates such as the controlled-not gate, the Pauli gates, and

the Hadamard gate can be encoded in the cluster and an arbitray computation using

any combination of these can be executed by performing single qubit measurements

in a particular basis and in a particular order [19, 27]. Thus, the cluster serves as a

universal source for any quantum computation. Cluster states can be extended to

CVs [28–32]. The CV cluster state can be made from a large number of entangled

single-mode squeezed states. Thus, it is an application of a multimode entangled

squeezed state.

Cluster states were originally introduced as a class of M -qubit quantum states

that are generated in arrays of qubits (two-level quantum states) with an Ising-type

interaction [20]. The procedure for creating an M qubit cluster state starts by placing

each qubit at a unique lattice site on a d-dimensional lattice (d = 1, 2, 3). This defines

the initial state of the qubits to be a separable tensor product state. The cluster

state is created by entangling nearest-neighbours on the lattice with an interaction

Hamiltonian equivalent to the quantum Ising model, or alternatively with controlled
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phase gates. The cluster state is maximally entangled, meaning that any pair of qubits

in the cluster can be projected into a pure Bell state by doing local measurements on

the other qubits. This property allows quantum information to propagate through the

cluster since it means that a qubit can be teleported from one site of the cluster to any

other site. Also, the cluster has a high persistency of entanglement, meaning that the

entanglement persists even after many local measurements. For an M qubit cluster

state it takes M/2 measurements to completely destroy all the entanglement. Since

each measurement performed in a quantum computation reduces the entanglement in

the cluster, having a high persistency of entanglement means that the cluster contains

all the entanglement required for any quantum computation, provided that the cluster

is large enough [19].

CV cluster states can be prepared in a similar way to qubit cluster states. To

start, a collection of M eigenstates of the Ŷ quadrature, |Y 〉, are prepared in a

separable product state, where the states |Y 〉 satisfy Ŷ |Y 〉 = Y |Y 〉. The states can

be organized on a graph, where each state is assigned to a node of the graph and

a real symmetric adjacency matrix A is defined for the graph [33, 34]. The initial

separable state is defined as |0〉1 |0〉2 . . . |0〉M . To generate the cluster state, the initial

state is acted upon with collection of CV controlled-phase operators, Ĉz(A), given

by

Ĉz(A) =
M∏

j,j′=1

exp

(
i

4
Ajj′X̂jX̂j′

)
, (1.57)

where Ajj′ is equal to the weight of the edge connecting node j to node j′ and the

factor of 1/4 in the argument of the exponential is included for convenience. The

elements of the adjacency matrix A determine which two nodes the operators Ĉz(A)
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are applied to and the strength of the interaction. In Fig. 1.6(a) an example of

a quantum circuit for preparing a 4-mode CV cluster state is shown that uses the

controlled-phase operation to entangle the states. The CV cluster state for the graph

defined by A is then

|φ〉 = Ĉz(A) |0〉1 |0〉2 . . . |0〉M . (1.58)

In Fig. 1.6(b) an example graph for a 4-mode CV cluster state, with a weighted

adjacency matrix, is shown.

I now derive an eigenvalue equation that the state must satisfy in order for it to

be a cluster state [31]. The initial state is a stabilizer state of the eigenvalue equation

M∏
j=1

exp
(
−iŶj

)
|0〉1 |0〉2 . . . |0〉M = |0〉1 |0〉2 . . . |0〉M . (1.59)

Putting Eq. (1.59) into Eq. (1.58) and using the fact that Ĉ†z(A)Ĉz(A) = 1, results

in

|φ〉 = K̂ |φ〉 , (1.60)

where it can be shown (using the well known Baker-Campbell-Hausdorff formula and

the commutator in Eq. (1.6) ) that [32]

K̂ ≡ exp

(
−i

M∑
j=1

Ŷj + i

M∑
j,j′=1

Ajj′X̂j′

)
. (1.61)

Therefore K̂ stabilizes the cluster state |φ〉 (via Eq. (1.60)). This means that the
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argument of the exponential in K̂ satisfies the nullifier equation for each node j

(
Ŷj −

M∑
j′=1

Ajj′X̂j′

)
|φ〉 = 0. (1.62)

The nullifier equation (Eq. (1.62)) is the defining equation for the cluster state. It

uniquely determines |φ〉 up to a phase factor. Each node j of the cluster must satisfy

Eq. (1.62), where the sum over j′ includes all the nodes connected to node j, by an

edge with weight equal to Ajj′ .

Figure 1.6: (a) Quantum circuit to generate a 4-mode cluster state, where controlled-

phase Ĉz(A) operations (represented with vertical black lines) are applied between the
states, and (b) the equivalent representation using the graph defined by the adjacency
matrix A, that determines the weight (orange numbers) of every edge connecting a
pair nodes in the cluster.

The eigenstates |Y 〉 are unphysical because they represent a state that has a

definite eigenvalue Y in the Ŷ quadrature. Thus requires infinite squeezing in the Ŷ

quadrature (see the uncertainty relation in Eq. (1.7)). For this reason, the cluster

state made from them represents an ideal CV cluster state. In practice, the initial

state of the graph is taken to be a collection of finite-squeezed states instead, which

are entangled using the controlled-phase gates according to A. The resulting cluster

state does not satisfy the nullifier equation (Eq. (1.62)) due to the presence of finite

squeezing. However, P. van Loock et. al. [31] and N. C. Meniccuci et. al. [34] define
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an approximate CV cluster state as one that is made from entangled finite-squeezed

states and exhibits correlations in combinations of the quadratures of the modes. The

multimode squeezed state |φ〉 is an approximate CV cluster state if the covariance of

the nullifier operator in Eq. (1.62) is sufficiently close to zero,

cov

(
Ŷj −

M∑
j′=1

Ajj′X̂j′

)
→ 0, (1.63)

where the arrow → indicates that the noise in the nullifier operator goes to zero as

the squeezing amplitude increases. Thus for an infinitely squeezed state the noise

is exactly equal to zero. In Sec. 6 the covariance in Eq. (1.63) using a multimode

squeezed state is evaluated, and a condition for the squeezing parameters is derived

such that the covariance will go to zero in the limit of infinite squeezing. Therefore

under the right conditions the multimode squeezed state is an approximate CV cluster

state, meaning it can be used a source of entanglement for CV quantum computing.

1.4 Thesis overview

The overview of this thesis is as follows. Chapters 2, 3, and 4 constitute the

three published manuscripts that I co-wrote with my supervisor Marc M. Dignam

and Chapter 5 consists of an unpublished manuscript, that we submitted and is cur-

rently being reviewed. The outline for Chapters 2 - 5 is as follows. In Chapter 2,

an MRR is optimized to generate a maximally-squeezed single-mode squeezed ther-

mal state in the ring. In Chapter 3, the theory of the nonlinear generation of an

entangled two-mode squeezed thermal state is developed, and it is applied to an

MRR to generate CV entanglement between the quadratures of two ring-modes. In
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Chapter 4, the two-mode theory of Chapter 3 is generalized to the nonlinear genera-

tion of an M -mode squeezed thermal state (MSTS) in M orthogonal quasimodes of a

coupled-cavity structure. In Chapter 5, the MSTS solution is extended to incorporate

the nonorthogonal quasimodes of a coupled-cavity structure. Chapter 6 is a regular

chapter, in which I derive a condition on the squeezing parameters of the MSTS in

order for it to be classified as an approximate CV cluster state. Finally, in Chapter

7 I conclude and discuss future directions for the work presented in this thesis.



Chapter 2

Optimization of a Lossy Microring Resonator

System for the Generation of

Quadrature-Squeezed States

In this work, we model and optimize the generation of a squeezed thermal state

via SPDC in a single ring-mode of an MRR. The theory for generating the squeezed

thermal state was originally derived by John Sipe [35]. We applied his theory to the

generation of the state in the MRR, optimized the parameters of the ring to maximize

the squeezing, and derived an analytic expression for the pump pulse inside the ring.

This work is published as a regular article in Physical Review A [36].

Abstract – The intensity buildup of light inside a lossy microring resonator can

be used to enhance the generation of squeezed states via SPDC. In this work, we

model the generation of squeezed light in a microring resonator that is pumped with

a Gaussian pulse via a side-coupled channel waveguide. We theoretically determine

the optimum pump pulse duration and ring-to-channel coupling constant to minimize

the quadrature noise (maximize the squeezing) in the ring for a fixed input pump en-

ergy. We derive approximate analytic expressions for the optimal coupling and pump

33
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pulse duration as a function of scattering loss in the ring. These results will enable

researchers to easily determine the optimal design of microring resonator systems for

the generation of quadrature-squeezed states.

2.1 Introduction

Squeezed states are a type of nonclassical light that are characterized by squeezing

of the quantum uncertainty in a given quadrature below the level of vacuum noise.

They can be used in a variety of contexts, including in applications where quadrature

noise is a major concern, such as optical communications [37] and interferometers

[2, 38, 39]. Squeezed states can also be used as the starting point to create entangled

states of light. Weakly-squeezed states can be used as a source of entangled photons,

which can be used for quantum teleportation [40] and quantum cryptography [16].

Single-mode squeezed states can be combined using waveguide couplers to create

quadrature-entangled states [41]. In addition, two-mode quadrature-squeezed states

are a source of CV entanglement, which can also be used for quantum computation [42]

and quantum information [43]; such states are important as they are generally more

robust to loss than two-photon entangled states [44].

One way to generate squeezed states of light is via SPDC, where a strong coherent

pump field interacts with a material that has a χ(2) nonlinearity [45]. The conversion

efficiency of pump photons into signal and idler pairs can be enhanced by enclosing

the nonlinear interaction within a cavity that is resonant with the pump. In this case,

if it is a multimode cavity, where a second mode is resonant at the signal and idler

frequencies, then it can play a dual role, by ensuring that essentially all generated

pairs end up in a single cavity mode.
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MRRs have been shown to enhance SPDC efficiency [46]. Thus, they are promis-

ing structures for on-chip applications such as entangled photon pair generation for

quantum communication [47] and generating squeezed light for discrete and CV en-

tanglement [48–51]. The schematic diagram of an MRR is shown in Fig. 2.1. The

ring waveguide has a radius chosen such that it has resonant modes at the frequencies

of the pump and the squeezed light. The straight waveguide (channel) and ring are

in proximity to each other, such that pump and squeezed light can be evanescently

coupled in and out of the resonator.

Considerable theoretical work has been done on a Hamiltonian treatment of SPDC

and SFWM in lossy MRRs [52–55]. The general approach is to solve the Heisenberg

equations of motion for the mode operators in the ring and channel. This procedure

is applicable to both the weak pumping limit for generating entangled photon pairs

and the strong pumping limit for generating quadrature squeezing. For example

single-mode quadrature squeezing of -10dB in the channel of a lossy SiN MRR was

recently shown to be theoretically achievable [48], using a 100pJ Gaussian input pulse

of duration 30ps. Experimentally, about 4dB [49] to 5dB [56] of squeezing has been

inferred on-chip with SiN MRR s. Both the theory and experimental demonstration of

quadrature squeezing in lossy MRR s provides a promising path forward for creating

a practical CV entangled states for quantum computing applications.

Recent experimental work has demonstrated that one can tune the squeezing

level generated in coupled MRRs; by increasing the coupling efficiency, Dutt et al.

[57] demonstrated experimentally an increase of the on-chip squeezing level in a SiN

resonator from −0.9dB to −3.9dB. Although this and other work demonstrate the

promise of MRRs for generating squeezed light, it appears that very little has been
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done on the optimization of the MRR to obtain maximum squeezing.

In this paper, we theoretically study the quadrature squeezing inside a lossy MRR

pumped by a Gaussian input pulse. We focus on the optimization of the pump pulse

duration and ring-channel coupling, in order to achieve the conditions that maximize

the squeezing in the presence of scattering loss.

We consider the case of squeezed-state generation via SPDC in a single mode of the

ring. To allow us to compare the squeezing achieved for different pump durations, in

all that follows, the energy of the input pulse is held constant when the pulse duration

is changed. We model the dynamics of the density operator for the state in the ring

in the presence of loss using the Lindblad master equation (LME) for a cavity with

a single lossy mode. It has recently been shown that the general solution to this

LME is a single-mode squeezed thermal state [35] characterized by a time-dependent

squeezing amplitude, squeezing phase, and a thermal photon number. Using this

solution, we model the squeezed thermal state in the MRR as a function of time, and

derive an approximate analytic expression for the maximum squeezing in the presence

of loss.

Our theoretical approach is somewhat different from what is commonly done in

the literature. The strength of our method is that, because we know that the density

operator inside the ring is always a squeezed thermal state, the time-dependent prop-

erties of the state in the ring, such as the variance of the quadrature operator and

expectation value of the number operator, can be easily determined by simply solving

for the time dependence of the thermal photon number and squeezing parameter of

the state. Of course, our study is restricted to a single-mode squeezed state in the

ring, but this condition is easily satisfied by limiting the bandwidth of the input pulse,
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and carefully phase-matching the desired pump mode and squeezed light mode in the

ring.

Using our exact solution for the time evolution of the state, we derive approximate

but accurate analytic expressions for the optimum coupling value and optimum pump

pulse duration for a fixed pump energy. We show that they are in excellent agreement

with full numerical simulations when the pump and ring configuration is relatively

close to the optimal. We find that the optimum pulse duration depends on the loss

in the ring and is in the range of of 10 to 60 times the ring round-trip time. We also

show that the optimum coupling is slightly below critical coupling (undercoupling).

The paper is organized as follows. In section 2.2.1 we review the theory of the

coupling of a pulsed classical pump field from a channel waveguide into the ring,

discuss practical limitations on the pump pulse duration for generation in a single-

mode, and determine the exact and approximate expressions for the time-dependent

pump field inside the lossy ring. In section 2.2.2 we present the theory behind the

generation of a squeezed thermal state in a single leaky mode for a pulsed pump. In

section 2.3 we model the system and develop approximate analytic expressions for

the optimal pulse duration, coupling constant and quadrature noise for a given ring

loss. Finally, in section 2.4 we present our conclusions.

2.2 Theory

In this section we present the theory behind the generation of squeezed light inside

an MRR. The system consists of a ring resonator waveguide of radius R side-coupled

to a straight waveguide (the channel) (see Fig. 2.1). Both waveguides are made from

a material with a nonlinear χ(2) response. We treat the ring resonator as an optical
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cavity that generates squeezed light in a single leaky mode. The mode is leaky due

both to scattering loss and coupling to the channel. The input field to the system

is a classical pump pulse (E1(t)) propagating in the channel. The bandwidth of the

input pulse is limited such that it only couples appreciably into a single mode inside

the ring, with frequency, ωP . Once inside the ring, the pump will produce squeezed

light in a separate mode with frequency, ωS, that is half the frequency of the pump,

i.e. ωS = ωP/2. In section 2.2.1 we study the frequency response of the ring using a

transfer matrix approach in the presence of loss, and derive exact and approximate

expressions for the time-dependent pump field inside the ring. In section 2.2.2 we

give the solution to the LME for the quantum state of light generated inside the ring.

2.2.1 Time-Dependent Pump Field Inside the Ring Resonator

In this section we present the theory to obtain the time dependence of the pump

field inside the ring resonator and examine the dependence of the field build-up in

the ring on the pump pulse duration, the scattering loss in the ring, and the coupling

between the channel and ring waveguides.

The classical pump pulse field, E1(t), incident on the ring resonator is taken to

be a classical Gaussian pulse of the form

E1(t) = E
(+)
1 (t) + E

(−)
1 (t),

where

E
(+)
1 (t) = E0

√
TR
τ

exp

(
−2 ln (2)

t2

τ 2

)
exp(−iωP t), (2.1)
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and E(−)(t) =
[
E(+)(t)

]∗
. Here τ is the duration of the pulse (FWHM of the in-

tensity), ωP is the pulse carrier frequency, TR is the ring round-trip time (discussed

in more detail below), and E0 is the amplitude of the pulse. The factor of 1/
√
τ is

included so that the energy of the pulse is independent of the pulse duration. We do

this so that we can study the squeezing level in the ring for many different pumping

durations, with a constant amount of energy going into the system. In the following,

only the positive frequency part of the input field is needed, because we are using the

rotating wave approximation.

In calculating the coupling of the field in and out of the ring, it is easier to work

in the frequency domain. We define the Fourier transform of the time-dependent field

as

Ẽ(ω) =

∫ ∞
−∞

E(+)(t) exp(iωt)dt, (2.2)

and the inverse Fourier transform as

E(+)(t) =
1

2π

∫ ∞
−∞

Ẽ(ω) exp(−iωt)dω. (2.3)

The Fourier transform of the input pulse of Eq. (2.1) is

Ẽ1(ω) = Ẽ0

√
τ

TR
exp

(
−(ω − ωP )2τ 2

8 ln 2

)
, (2.4)

where Ẽ0 ≡ E0TR
√
π/(2 ln (2)). The bandwidth ∆ω (FWHM in frequency) of the

input pulse is related to the pulse duration τ by ∆ω = 4 ln (2)/τ .

The fields in the ring and channel are assumed to couple at a point, as indicated
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Figure 2.1: Schematic of the ring resonator coupled to a channel waveguide. The field
components incident to the coupling point are Ẽ1 in the channel and Ẽ3 in the ring. The
field components leaving the coupling point are Ẽ2 in the channel and Ẽ4 in the ring. The
cross-coupling coefficient is κ, and the attenuation in the ring is a.

in Fig. 2.1. The fields incident on the coupling point are Ẽ1(ω) in the channel and

Ẽ3(ω) in the ring. The fields leaving the coupling point are Ẽ2(ω) in the channel and

Ẽ4(ω) in the ring. The input and output field components are defined at locations

just to the left and right of the coupling point, respectively. The input and output

fields are related by a transfer matrix as

Ẽ4(ω)

Ẽ2(ω)

 =

σ iκ

iκ σ


Ẽ3(ω)

Ẽ1(ω)

 , (2.5)

where σ and κ are real numbers called the self- and cross- coupling coefficients, re-

spectively. This is the form of the transfer matrix that is commonly used [58]. The

coupling is assumed to occur at a single point, so the field components that pass

through the coupling point and stay in the same waveguide do not acquire a phase.

However, the field components that cross-over into the other waveguide at the cou-

pling point do acquire the phase i. This phase is needed in order to conserve power

across the coupling point (i.e., the transfer matrix must be unitary). Additionally,
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the coupling is assumed to be lossless, so we obtain the relation |σ|2 + |κ|2 = 1. The

fields Ẽ4(ω) and Ẽ3(ω) are related by,

Ẽ3(ω) = a exp(iΘ)Ẽ4(ω). (2.6)

Here, a, is the field attenuation after one circuit of the ring (excluding any coupling

to the straight waveguide); this is related to the scattering power-loss coefficient, αsc,

in the ring by a = exp(−αsc2πR/2). In what follows, we assume that a is frequency

independent, and also that a and κ are independent of each other. The single-circuit

phase shift Θ in the ring is given by Θ = 2πRk, where k = 2πneff/λ, where neff is

the effective index of refraction for the pump mode in the ring and λ is the free space

wavelength. The phase shift can also be expressed as,

Θ = ωTR, (2.7)

where TR = neff2πR/c is the ring round-trip time. For light that is on resonance with

a mode in the ring, the phase shift is Θ = 2πm, where m is a positive integer (the

mode number). Thus, in order to ensure that the pump frequency is on resonance

with the ring, it is chosen to be ωP = 2πmP/TR, where mP is the pump mode number.

In all that follows, we will scale the time, the pump duration, and the pump pulse

amplitude by the round-trip time TR; consequently, all of the results that follow are

independent of the ring radius and mode number.

We choose the frequency of the generated photons to be ωS = ωP/2 (where S

stands for “squeezed light”), such that the mode number for the squeezed light is

mS = mP/2. The coupling coefficients are assumed to be frequency independent.
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This is a good approximation as long as the pump pulse is in a single mode. We

assume that the ring waveguide dimensions have been chosen such that the squeezed

light mode has the same neff as the pump mode (i.e., they are phase matched). This

has been demonstrated in an AlN ring resonator [51] for a waveguide with a height

of 1µm and a width of 1.10µm, and in AlGaAs nanowaveguides [59].

Using Eqs. (2.5) and (2.6), we find that the field inside the ring is given by

Ẽ3(ω) =
i
√

1− σ2 a exp(iωTR)

1− σa exp(iωTR)
Ẽ1(ω). (2.8)

The ratio of intensity inside the ring to the incident intensity in the channel is defined

as the buildup factor,

B(ω) ≡

∣∣∣∣∣Ẽ3(ω)

Ẽ1(ω)

∣∣∣∣∣
2

=
(1− σ2)a2

1− 2σa cos(ωTR) + σ2a2
. (2.9)

It is maximized for light that is on resonance with the ring, i.e. cos(ωTR) = 1. Using

ω = ωP in Eq. (2.9) gives the maximum value of the buildup factor,

B(ωP ) =
(1− σ2) a2

(1− σa)2 . (2.10)

The value of a that maximizes Eq. (2.10) is a = σ. This is known as critical coupling.

To ensure that the squeezed light will be generated mostly in a single mode with

frequency ωS we require that the pump pulse almost exclusively couples into a single

mode in the ring with frequency ωP . In Fig. 2.2(a) we demonstrate that with an

incident pulse with duration τ = 2TR (thick line), virtually all of the pulse intensity

couples into a single ring resonance (thin red line). In contrast, in Fig. 2.2(b) we
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show that by reducing the pulse duration to τ = TR/4, the broadening of the pulse in

frequency causes some of its intensity to couple into adjacent modes. Thus, in all that

follows, we restrict ourselves to pulses with duration τ ≥ TR to ensure the squeezed

light is generated almost entirely in a single mode. Although two-mode squeezed

light could also be generated in a number of different mode pairs that satisfy energy

conservation, we assume that generation in those other modes is suppressed because

they are not well phase matched.

Figure 2.2: The intensity buildup (in three ring modes) of the pump pulse with a duration
of (a) τ = 2TR and (b) τ = TR/4. The normalized intensity of the input pulse in the channel
is |Ẽ1|2/Ẽ2

0 (thick curve), and the normalized intensity of the pulse in the ring, after its
intensity has built up, is |Ẽ3|2/Ẽ2

0 (thin red curve). The buildup factor (dashed line) and
intensity are calculated with σ = 0.6 and a = 1.

The intensity decay rate Γ of light in the ring cavity is given by,

Γ ≡ αtot2πR

TR
=

1

TR

[
ln

(
1

σ2

)
+ ln

(
1

a2

)]
, (2.11)

where αtot is the total loss coefficient for the ring. It is given by αtot = αsc+αcpl, where

αsc is given above, and αcpl is defined by the equation σ = exp (−αcpl2πR/2) [60] and

is the power-loss coefficient due to light coupling out of the ring into the channel.
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To obtain strong squeezing in the ring, the intensity decay rate multiplied by the

round-trip time must be small, i.e., ΓTR � 1. If the loss is small enough such that

(1− σa)� 1 then from Eq. (2.11), we obtain,

Γ ≈ 2(1− σa)

TR
. (2.12)

The decay rate Γ gives an estimate of the width of the peaks in the the buildup factor.

The time-dependent pump field, E3(t), inside the ring just to the left of the

coupling point (see Fig. 2.1) is calculated by taking the inverse Fourier transform of

Eq. (2.8), giving:

E3

(
t̃
)

=
iκaE0√

π
exp

(
−i2πmP t̃

)√ τ̃

8 ln 2

∫ ∞
−∞

dΩ
exp

(
−Ω2τ̃ 2/(8 ln 2)− iΩt̃

)
exp(−iΩ)− σa

,

(2.13)

where Ω ≡ (ω − ωP )TR, t̃ ≡ t/TR, and τ̃ ≡ τ/TR. The integral is real because

we integrate Ω from −∞ to ∞. This is the general expression that we use in our

simulations. In the low-loss limit, where (1 − σa) � 1, the integral in Eq. (2.13)

can be evaluated using Voigt functions [61] (see Appendix A.1), and we obtain the

approximate expression

|E3

(
t̃
)
| =
√
πκaτ̃ ey(t̃ )

2

erfc
[
y
(
t̃
)]

√
8 ln 2

∣∣E(+)
1

(
t̃
) ∣∣, (2.14)

where

y
(
t̃
)
≡ (1− σa)τ̃√

8 ln(2)
−
√

8 ln(2)t̃

2τ̃
, (2.15)

and erfc (y) = 1 − erf (y), where erf (y) is the error function. In the following
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sections, we shall use this expression to optimize the incident pump pulse duration

to achieve the greatest nonlinear response in the ring. We note parenthetically that

Eq. (2.14) would also be useful for calculating classical nonlinear processes such as

second harmonic generation or SPDC in a ring resonator, using the undepleted pump

approximation.

In this section, we have derived an expression for the time-dependent pump field

inside the ring, which we shall use in the following section to calculate the generation

of the squeezed state.

2.2.2 Quadrature Squeezing Inside a Lossy Ring Cavity

In this section we present the main theory behind quadrature squeezing inside the

ring.

The Hamiltonian for light inside the ring, using the undepleted pump approxima-

tion, is given by [62]

Ĥ = Ĥ0 + γE3(t)̂b†2 + γ∗E∗3(t)̂b2, (2.16)

where the interaction-free part of the Hamiltonian is Ĥ0 = ~ωS b̂†b̂, and the last two

terms account for the SPDC process. The operator b̂ is the annihilation operator for

the squeezed light photons in the ring. The nonlinear coupling coefficient between

the pump, E3(t), and squeezed light is γ = ~ωPχ(2)
eff /n

2
eff , where χ

(2)
eff is an effective

nonlinear susceptibility that depends on the intrinsic nonlinear susceptibility of the

ring material and spatial mode profiles in the ring [63]. Note that we neglect any

nonlinear interactions in the channel waveguide, because the pump intensity is much

smaller there. The pump field is given in Eq. (2.13), where only the positive frequency
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part is used, as we are using the rotating wave approximation.

The effects of scattering and coupling losses on the dynamics of the generated

light in the ring can be modelled using the LME for the density operator ρ̂ [64]:

dρ̂

dt
= − i

~

[
Ĥ, ρ̂

]
+ Γ

(
b̂ρ̂b̂† − 1

2
b̂†b̂ρ̂− 1

2
ρ̂b̂†b̂

)
, (2.17)

where Γ is the decay rate for the squeezed light generated in the cavity. It is given in

Eq. (2.11), where now σ and a correspond to the coupling and loss parameter for the

squeezed light. For simplicity, we have assumed that the squeezed light and the pump

have the same coupling and loss parameters, but it is straightforward to generalize

this within our theory. The effects of thermal photon populations are negligible at

room temperature for the optical frequencies of interest, and so they are not included.

It was recently shown [35] that the exact solution to Eq. (2.17) for the Hamiltonian

given in Eq. (2.16) is a squeezed thermal state, which can be written as,

ρ̂(t) = Ŝ(z(t))ρ̂th(β(t))Ŝ†(z(t)), (2.18)

where

ρ̂th(β(t)) =
(
1− e−β(t)~ωP /2

)−1
e−β(t)Ĥ0 (2.19)

is the density operator for a thermal state at an effective time-dependent temperature

T (t) = (kBβ(t))−1, where kB is the Boltzmann constant. In what follows, rather

than use the effective temperature, we characterize this thermal state by the average

thermal photon number, which is given by

nth(t) =
(
eβ(t)~ωP /2 − 1

)−1
. (2.20)
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The operator Ŝ is a unitary squeezing operator, given by

Ŝ(z(t)) = exp
1

2

(
z∗(t)̂b2 − z(t)̂b†2

)
, (2.21)

with a complex squeezing parameter z(t) = r(t) exp(iφ(t)). The form of the state

given in Eq. (2.18) is only a solution to the LME if the squeezing amplitude u,

squeezing phase φ, and average thermal photon number nth obey the following three

nonlinear coupled first order differential equations:

1

Γ

dr(t)

dt
=

g(t)

2
− cosh r(t) sinh r(t)

2nth(t) + 1
, (2.22)

dφ(t)

dt
= −ωP , (2.23)

1

Γ

dnth(t)

dt
= sinh2 r(t)− nth(t). (2.24)

Here,

g(t) ≡ 4|γ||E3(t)|
~Γ

(2.25)

is a dimensionless function of time that we will refer to as the pumping strength [35];

it is the ratio of the pumping rate to the total decay rate of the squeezed light in the

cavity. It is constructed such that when g(t) = 1, the rate of signal generation in the

ring equals the signal loss out of the ring. Using the approximate expression for the

field in Eq. (2.14), we can write the pumping strength as,

g
(
t̃
)

= g0
κa

Γ̃

√
τ̃

8 ln 2
exp

(
−2 ln(2)t̃2

τ̃ 2

)√
πey(t̃ )

2

erfc
[
y
(
t̃
)]
, (2.26)

where Γ̃ ≡ ΓTR and g0 ≡ 4|γ|E0TR/~ is a dimensionless parameter. The pumping



2.2. THEORY 48

strength is the function that drives the squeezing processes, and directly affects the

amount of squeezing in the ring. A large peak value in the pumping strength will

generate substantial quadrature squeezing. In Fig. 2.3, the pumping strength in

the ring is plotted as a function of time for a = σ = 0.99 (critical coupling) and

g0 = .413. Initially (t = −∞), the pumping strength in the ring is zero. As the input

pulse starts coupling into the ring the pumping strength begins to build up. At t = 0,

the input pulse takes on its peak value at the coupling point in the channel. Some

time later the pumping strength reaches its peak value. As can be seen, this time

and the maximum value that the pumping strength reaches depend on the duration

of the input pulse τ in the channel. For a short input pulse duration of τ̃ = 1, the

pumping strength very quickly builds up to its peak value. The longer the input pulse

becomes, the more time it takes for this to occur. For very long input pulses, the

peak pumping strength will scale as 1/
√
τ , but the dependence on the pump duration

is more complicated for shorter pulses and as can be seen, the maximum pumping

strength is in fact achieved for intermediate pulse durations. We denote the input

pulse duration that maximizes the peak pumping strength by τg. In Appendix A.2,

we derive the following approximate but accurate expression for τg in the low-loss

limit (1− σa)� 1:

τ̃g ≈ 0.342

√
8 ln 2

1− σa
. (2.27)

Also in Appendix A.2, we show that a pulse duration of τg given in Eq. (2.27) causes

the pumping strength to peak at the time

t̃peak =
1

2(1− σa)
, (2.28)
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which is 1/Γ̃, assuming that (1− σa)� 1.

Before proceeding, we note that we could have used the field E4(t) rather than

E3(t) and produced similar results. They are related by E3(t) = aE4(t−TR). However,

the field E3(t) is a more conservative representation of the field inside the ring, because

it has been reduced by the attenuation loss of one additional round trip relative to

E4(t).

Figure 2.3: The pumping strength g
(
t̃
)

in the ring for σ = a = 0.99 (critical coupling)
generated with a short input pulse (τ̃ = 1) (solid thin line), a pulse τ = τg that gives the
highest peak in g (solid bold line), and a long pulse (τ̃ = 300) (dashed line).

The initial conditions for equations (2.22) to (2.24) are evaluated at an early time,

ti (< 0), when the incident pump pulse amplitude is negligible. The initial state of

the system is the vacuum state, which means that r(ti) = 0 and nth(ti) = 0. We set

the initial squeezing phase, φ(ti), to be φ(ti) = 0, so that the time-dependent phase

is given by φ(t) = −ωP (t − ti). In numerical calculations, the absolute value of the

initial time must be chosen such that |ti| � τ .

The numerical solution of the coupled equations (2.22) to (2.24) enable us to

determine the time-dependent level of quadrature squeezing in the ring. To this end,
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quadrature operators X̂ and Ŷ are defined as,

X̂ = b̂†e−iθ(t) + b̂eiθ(t), (2.29)

Ŷ = −i
(
b̂†e−iθ(t) − b̂eiθ(t)

)
. (2.30)

Here the quadrature phase θ(t) is defined as θ(t) ≡ ωS(t− ti). We include this phase

so that the expectation value of the quadrature does not contain fast oscillations in

time, because this choice cancels with the phase φ(t) of the squeezed state. The noise

in the X̂ and Ŷ quadratures is defined as the square root of the variance, and written

as ∆X and ∆Y . Using Eq. (2.18) they can be shown to be given by, [65]

∆X(t) =
√

2nth(t) + 1 e−r(t), (2.31)

∆Y (t) =
√

2nth(t) + 1 er(t). (2.32)

Multiplying Eqs. (2.31) and (2.32) together gives,

∆X(t)∆Y (t) = 2nth(t) + 1. (2.33)

If nth = 0, then ∆X∆Y = 1 and a squeezed vacuum state is recovered, with ∆X =

exp(−r) and ∆Y = exp(r). With our choice of quadrature operators, the noise

in either quadrature for a vacuum state (r = 0) is simply ∆X = 1 and ∆Y =

1. Therefore, squeezing below the vacuum noise in the X̂ quadrature occurs when

∆X < 1 in Eq. (2.31). The expectation value of the photon number for the squeezed
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thermal state can be shown to be given by [65]

〈n̂〉 ≡
〈
b̂†b̂
〉

= nth(t) cosh (2r(t)) + sinh2 (r(t)) . (2.34)

When nth = 0, the expectation value of the photon number is sinh2(r), which is the

result obtained for a squeezed vacuum state.

2.3 Results and Discussion

In this section, we present our numerical solutions to the set of equations (2.22)

to (2.24). We solve them using a fourth-order Runge-Kutta method; the total run

time for a given configuration is on the order of a few seconds on a standard PC. We

also derive an approximate analytic expression for the minimum quadrature noise in

terms of the peak pumping strength, and an expression for the optimum choice of σ

(or alternatively, κ) that produces the global minimum in the quadrature noise. In

addition, we numerically determine the pulse duration that produces the minimum

quadrature noise for a given κ and show that it is close to τg, as given in Eq. (2.27).

We discuss the effects of scattering loss a on the quadrature noise, and the opti-

mum coupling coefficient and pulse duration. Finally, we study the sensitivity of the

minimum quadrature noise to a phase offset due to imperfect homodyne detection.

In the remainder of this paper, we use the following values for our pump and ring

parameters. We take the ring material to be AlGaAs with χ
(2)
eff = 100 pm/V [52],

neff = 2.85, and ωP = 2π × 135.73 THz (λP = 775 nm). The amplitude of the input
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pulse E0 can be written in terms of the total pump pulse energy U as,

E0 =

(
4 ln 2

π

)1/4√
2U

Ac neffε0TR
, (2.35)

where A = 0.71µm2 is the cross-sectional area of the ring waveguide, ε0 is the per-

mittivity of free space, and c is the speed of light. The energy of the incident pulse

is chosen to be U = 0.188 pJ (independent of the pulse duration). This value of U

produces a substantial amount of squeezing, but generally does not lead to significant

pump depletion, even for low-loss cavities.

The radius of the ring required to give a resonance at the pump frequency is R =

mP c/(ωPneff), where we have used Eq. (2.7) with ω = ωP and Θ = 2πmP . We choose

the pump mode number to be mP = 200, which makes the ring radius approximately

equal to R ≈ 25µm. The ring round trip time is given by TR = 2πRneff/c, and in this

case is TR ≈ 1.47 ps. We present our results in terms of the dimensionless parameters;

t̃ ≡ t/TR and τ̃ ≡ τ/TR. Once this is done, the only place where R enters our model

is in the amplitude of the pumping strength in Eq. (2.26). Thus in order to make our

results independent of R we require E0TR be constant. We collect all the dimensional

parameters above into the single dimensionless constant, g0, which was introduced in

Eq. (2.26). For the above choice of parameters, g0 = 0.413.

2.3.1 Dynamics of the squeezing process

We begin by examining the time-dependent quadrature noise ∆X in the ring in

Fig. 2.4a for σ = a = 0.99 (critical coupling), for an input pulse duration of τ̃ = 300.

Initially the pumping strength is zero and the quadrature noise is equal to the vacuum

noise ∆X = 1. As the pumping strength builds up, the quadrature noise gets squeezed
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below the vacuum noise ∆X < 1. We find that the quadrature noise is a minimum at

approximately (but not exactly) the time at which the pumping strength is at its peak,

that is, at t̃min ≈ 40 (indicated by the vertical line). Finally, when the pump pulse

couples out of the ring, the quadrature noise returns to the vacuum noise. The time-

dependent squeezing amplitude r and thermal photon number nth are shown in Fig.

2.4b for the same parameters. As the squeezing amplitude increases, the quadrature

noise is squeezed by the factor exp(−r). However, the trade off is that the thermal

photon number also increases, which results in an increase in the quadrature noise

by the factor
√

2nth + 1. Thus the minimum quadrature noise does not happen when

the squeezing amplitude is maximum, but instead at an earlier time closer to when

the pumping strength is maximum and the thermal photon number is much less than

its peak value.

(a) (b)

Figure 2.4: (a) The quadrature squeezing ∆X (thick line) and pumping strength g (thin
line) as a function of time, and (b) the squeezing amplitude r (thick line) and thermal
photon number nth (thin line) as a function of time for an input pulse duration of τ̃ = 300
and coupling constant σ = a = 0.99. The time at which ∆X is minimum is t̃min ≈ 40 is
indicated by the vertical line.

In Fig. 2.5a, we examine a similar setup as above, except our input pump pulse
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has a much shorter duration of τ̃ = 1. Here, the pumping strength quickly reaches its

peak value and does not spend much time building up in the ring. The quadrature

noise is not as squeezed as it was with the long pulse. Additionally, with the short

pulse, the minimum quadrature noise does not occur at the same time as when the

pumping strength is at its peak. In this case the peak pumping strength occurs at

approximately t̃ ≈ 2 and the minimum quadrature noise occurs at approximately

t̃min ≈ 26. The time-dependent squeezing amplitude and thermal photon number

are shown in Fig. 2.5b for the same short pulse. The thermal photon number is

significantly smaller now, so the factor
√

2nth + 1 is less detrimental to the squeezing.

As a result we find that the minimum quadrature noise now occurs closer to the time

when the squeezing amplitude is at its peak value.

(a) (b)

Figure 2.5: The same plots as in Fig. 2.4 but for an input pulse duration of τ̃ = 1. Note
that now the time at which ∆X is minimum is t̃min ≈ 26.

Having examined the two extreme cases of a long pulse and short pulse, we now

consider the most interesting case for quadrature squeezing. We pump the ring with

an input pulse duration τg (given by Eq. (2.27)) that gives the greatest peak value of

the pumping strength. For σ = a = 0.99, τ̃g ≈ 40. In Fig. 2.6a the time-dependent
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quadrature noise is shown for this pulse. When compared to the short and long

pulse, we find that this duration produces the greatest quadrature squeezing. The

minimum quadrature noise occurs at roughly the same time as the peak value of the

pumping strength; using Eq. (2.28) the peak pumping strength occurs at t̃peak ≈ 25,

while the quadrature noise is a minimum, at t̃min ≈ 29. The time-dependent squeezing

amplitude and thermal photon number for this pulse duration are shown in Fig. 2.6b.

The peak squeezing amplitude is reduced by a factor of approximately 2 compared

to the long pulse. However, the depletion of the squeezing amplitude is counteracted

by the thermal photon number being reduced by a factor of roughly 105. This shows

that the thermal noise is much more sensitive to the duration of the input pulse than

the squeezing amplitude is, and therefore it is better to err on the side of using a

relatively shorter pulse in a lossy MRR .

(a) (b)

Figure 2.6: The same plots as in Fig. 2.4 but for an input pulse duration of τ̃ = τ̃g ≈ 40.
Note that now the time at which ∆X is minimum is t̃min ≈ 29.
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Minimum in the quadrature noise

We have demonstrated how the minimum in ∆X depends on the pulse duration

τ . Here we derive an analytic expression for the minimum quadrature noise ∆Xmin.

Setting the derivative of ∆X(t) in Eq. (2.31) equal to zero at the time tmin and

simplifying gives,

dnth (t)

dt

∣∣∣∣
t=tmin

− (2nth (tmin) + 1)
dr (t)

dt

∣∣∣∣
t=tmin

= 0. (2.36)

Replacing the derivatives in Eq. (2.36) with Eq. (2.22) and Eq. (2.24) and using Eq.

(2.31) to simplify gives,

∆Xmin (τ) =
1√

1 + g(tmin, τ)
, (2.37)

where g(tmin, τ) is the pumping strength evaluated at the time when the quadrature

noise is at its minimum. In general, we evaluate g(tmin, τ) numerically in order to

calculate the minimum quadrature noise for a given σ, a, and τ . If the input pulse

duration is close to or larger than τg, then the value of the pumping strength at the

time when the quadrature noise is minimum is roughly the same as the peak value of

the pumping strength (see Figs. 2.4a and 2.6a). Thus, we can neglect the difference

between g(tmin) and the peak value of the pumping strength. That is, if the pulse

duration is considerably longer than TR, then the pumping strength does not vary

appreciably over a time scale of a few round-trips of the ring. This approximation

improves the longer the pulse. Conversely, this approximation is not valid for the

setup in Fig. 2.5a for the short pulse, as we discussed earlier. Let gmax(τ) denote the

peak pumping strength as a function of τ . Then, since for pulses durations τ � TR
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gmax(τ) ≈ g(tmin, τ), we obtain the following approximate expression for the minimum

quadrature noise:

∆Xmin(τ) ≈ 1√
1 + gmax(τ)

, (τ & τg). (2.38)

Therefore the minimum quadrature noise is expressed in terms of the peak pumping

strength, for which we have an expression in Eq. (2.26). The advantage of Eq. (2.38)

is that it gives the minimum quadrature noise as a function of τ and σ; without

having to solve the coupled differential equations numerically. Additionally, letting

τ = τg in Eq. (2.38), and using Eq. (2.27) and Eq. (2.28), gives the following result,

∆Xmin(τg) ≈

[
1 + 0.653

g0a

Γ̃

√
1− σ2

1− σa

]− 1
2

. (2.39)

This is the minimum quadrature noise in the ring for the pulse duration of τg, as a

function of σ and a. For a given σ and a, we will show in the next section that this

expression approximately gives the best quadrature squeezing. We will assess the

accuracy of the expression given in Eqs. (2.38) and (2.39) below.

2.3.2 Dependence of the minimum quadrature noise on pulse duration

and coupling

The minimum quadrature noise depends on the pulse duration τ , coupling σ, and

scattering loss a. Thus far, the numerical results that we have presented have been

only for the case of very low scattering loss at critical coupling (σ = a = 0.99), and

for only three pulses. We have shown that, compared to a short and long pulse, τg

generates the best quadrature squeezing for a given σ and a. In this section, we

present numerical results for the maximum quadrature squeezing as a function of the
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coupling constant and pump duration for different scattering loss in the ring. We will

show that the choice of critical coupling, although an obvious starting point, is not

the optimal choice in order to achieve the global minimum in the quadrature noise

for a given a. In fact, we find the global minimum in the quadrature noise is in the

undercoupled (σ > a) regime and derive an approximation analytic expression for the

optimal coupling.

Our analysis is done by computing the minimum quadrature noise ∆Xmin(τ, κ) as

a function of pulse duration and coupling for different attenuation constants a. Then

we numerically determine the optimal choices for the pulse duration and coupling,

and finally compare them to approximate analytic expressions that we derive.

In Fig. 2.7 we plot the minimum quadrature as a function of the coupling coeffi-

cient and pulse duration for four different loss parameters a. First, in Fig. 2.7a, we

consider the case where there is no scattering loss (a = 1). In this case, the minimum

quadrature noise decreases as the cross-coupling constant κ goes to zero (or σ goes

to one). Consequently, we find no optimum value of κ that gives a global minimum

in the quadrature noise. This is expected, because as κ goes to zero, the buildup

factor continues to increase without bound. In the figure, there are two hatched ar-

eas. The darker hatching (around κ = 0.1) is where the expectation value of the

number of generated photons is at least 1% of the average number of pump photons

(〈npump〉 ∼ 2 × 106); thus, our undepleted pump approximation is becoming less ac-

curate. The second, lighter hatching (where κ < 0.1) indicates when our simulations

break down, because the decay rate Γ̃ goes to zero as κ goes to zero. The blue dotted

line in the figure indicates the computed pulse duration that gives the best quadrature

squeezing for a given κ. The red curve is the input pulse duration τg(κ) given by Eq.
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(2.27). The fact that τg fits agrees well with the computed optimal pulse duration

means that the minimum in the quadrature noise is approximately where the peak

pumping strength is the greatest. For short pulses, or pulses larger than τg, the peak

pumping strength is too small in the ring and we see that the squeezing gets worse.

We now consider how introducing scattering loss into the ring affects the squeezing.

When there is loss, the buildup factor has a peak value at critical coupling κ =
√

1− a2 (or σ = a). In Fig. 2.7b the scattering loss is a = 0.99. Consequently,

there is substantial squeezing at the peak in the buildup factor at critical coupling

(indicated by the vertical line), and the squeezing gets worse away from the peak, as

κ goes to zero (undercoupling) or one (overcoupling). We observe excessive photon

generation, at least as much as 1% of the average number of photons in the pump

pulse (hatched area), for pulses longer than τg near critical coupling. The optimum

squeezing point (indicated by the red circle) is at a κ that is lower than critical

coupling in the undercoupled regime, where the buildup of pump intensity is less,

but the cavity decay rate is smaller. This shows that in order to achieve the largest

squeezing it is preferable to have a lower cavity decay rate than that obtained at

critical coupling.

In Figs. 2.7c and 2.7d we increase the attenuation loss in the ring to a = 0.98

and a = 0.95, respectively. As the scattering loss in the ring is increased, critical

coupling shifts to higher κ and so does the optimum point (indicated by a red circle);

however, it still remains in the undercoupled regime. In addition, the optimum point

shifts to shorter pulses, which is expected, because the longer the pulse is, the more

thermal photons are generated. Our approximate expression τg(κ) is still in quite

good agreement with the numerical results, but is not as accurate as when the loss
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was very low (a = 0.99). This is because it is an approximate expression that is valid

only when (1 − σa) � 1 (see Appendix A.1). Interestingly, it still fits quite well at

the optimum coupling point, with a difference of less than 2.3TR or a relative error of

18% when a = 0.95. Using the approximate value for the pulse duration in this case

only leads to a 1% increase in the quadrature noise relative to the optimal value.

An approximate expression for the optimum coupling value σopt (or κopt) is given

by minimizing ∆Xmin(τg) in Eq. (2.39) with respect to σ for a fixed a. Doing this we

obtain,

σopt(a) ≈ −1 +
√

3a2 + 1

a
. (2.40)

This is a good approximation as long as (1 − σa) � 1 and τ & τg. In Fig. 2.8

we compare the σopt given by Eq. (2.40) (curve) to the numerically-computed value

(circles). We find the analytic result fits well for a ≥ 0.9. Note that as the scat-

tering loss increases, the difference between critical coupling (dashed line) and σopt

increases. Thus, for lossy systems the optimum coupling value σopt shifts closer to

one (undercoupling) as compared to critical coupling. This compensates for the de-

crease in a and makes the decay rate smaller. We note that the difference between

the quadrature noise at critical coupling and optimum coupling is generally small; for

a = 0.95, the quadrature noise is reduced by only ∼ 0.3 dB, and for a = 0.99 by only

∼ 0.2 dB (see Figs. 2.7d and 2.7b). However, it is useful to know that one should err

on the side of undercoupling if possible.
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(a) (b)

(c) (d)

Figure 2.7: The minimum quadrature noise ∆Xmin as a function of the input pulse duration
τ̃ and cross-coupling constant κ for an attenuation constant of (a) a = 1, (b) a = 0.99, (c)
a = 0.98, and (d) a = 0.95. The blue dots indicate the computed pulse duration needed to
minimize ∆Xmin for a given κ. The solid red line is the pulse duration τ̃g(κ) as a function
of κ given by Eq. (2.27). The red circles in (b)-(d) mark the point at which the quadrature
noise is at a global minimum for the given value of a. The vertical black line in (b)-(d)
indicates critical coupling (σ = a, i.e., κ =

√
1− a2). The light hatched area in (a) marks

the parameter space where our simulation does not converge. The dark hatched areas in
(a) and (b) indicate regions where the number of generated photons is in excess of 1% of
the of photons in the incident pump.
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Figure 2.8: The computed optimum self-coupling constant (circles) and the approximate
optimum coupling constant given by Eq. (2.40) (solid line), as a function of attenuation
loss a. The dashed line indicates critical coupling.

2.3.3 Comparing the analytic expression for the minimum quadrature

noise to the numerical results

Generating the 3D plots in Fig. 2.7 is a relatively time-consuming process. To

solve Eqs. (2.22) - (2.24) for each τ and κ, and at each time-step, we have do the

integral in Eq. (2.13) to obtain the pumping strength. To greatly speed-up this

process we can instead use the approximate expression for ∆Xmin(τ) given by Eq.

(2.38), which gives the minimum quadrature noise as a function of the peak pumping

strength, gmax(τ). The maximum value of gmax(τ) can then be determined using

the analytic expression for g(τ) given in Eq. (2.26). The relative error between the

approximate expression for the minimum quadrature noise in Eq. (2.38) and the

numerical result is defined as,

Error ≡

∣∣∣∣∣ 1−
√

1 + g(tmin)

1 + gmax

∣∣∣∣∣, (2.41)
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so that when gmax = g(tmin) the error is zero. In Figs. 2.9a and 2.9b we plot the

relative error as a function of τ and κ for (a) a = 0.99 and (b) a = 0.95, respectively.

As expected, the relative error approaches zero for long pulses. For a = 0.99, at

the optimum point (indicated by a red circle in Fig. 2.9a), the relative error is

approximately 0.02%. This reinforces our assumption that gmax ≈ g(tmin) when τ & τg

and a ≈ 1. The relative error increases when the scattering loss increases. However,

for a = 0.95, the relative error is still only ≈ 1%, indicating that the approximation

can still be used confidently when a ≥ 0.95.

(a) (b)

Figure 2.9: The absolute value of the relative error (see Eq. (2.41)) between the approxi-
mate expression for the minimum quadrature noise and the numerically computed result, as
a function of the coupling coefficient and pulse duration for (a) a = 0.99 and (b) a = 0.95.
The red circles in (a) and (b) mark the point at which the quadrature noise is at a global
minimum for the given value of a.

Letting σ = σopt in Eq. (2.39), we obtain the following approximate expression for

the global minimum in the quadrature noise ∆Xopt ≡ ∆Xmin(τopt, σopt) as a function
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of the loss parameter a:

∆Xopt ≈

1 +
0.653g0

Γ̃(σopt)

√
a2 −

(
1−
√

3a2 + 1
)2

2−
√

3a2 + 1

−
1
2

, (2.42)

where the cavity decay rate at the optimum coupling is given by,

Γ̃(σopt) = −2 ln
(
−1 +

√
3a2 + 1

)
. (2.43)

The optimum pulse duration τopt is approximately given by τg(σopt) ≡ τopt,

τ̃opt(a) ≈ 0.342

√
8 ln 2

2−
√

3a2 + 1
. (2.44)

The expression in Eq. (2.42) can be used to determine the approximate optimum

squeezing level in the ring as a function of a. In Fig. 2.10 (a) we compare the

computed optimum squeezing level (in dB) (circle) to the value obtained with the

expression in Eq. (2.42) (curve). As can be seen, the agreement is excellent, with a

maximum relative error of 3% (that is an absolute difference of 0.06dB) when a = 0.9.

The globally-optimal squeezing level (for the range of a considered) is approximately

−9.15dB for a = 0.99 and σ = 0.995. In Fig. 2.10 (b), we also show the computed

anti-squeezing level (i.e., ∆Y ) (circles), when the squeezing is optimal. We see that

for the global optimum in the squeezing, the anti-squeezing level is approximately

44dB. Such a high level of anti-squeezing might be of concern if there is some jitter in

the homodyne detection, such that one is not measuring the light at the time when it

is maximally-squeezed. In the same figure, we show that by cutting the pulse duration

in half (i.e. τopt/2 (stars)), the anti-squeezing level reduces to approximately 26dB,
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while the squeezing level is only modestly affected (see the stars in Fig. 2.10 (a)) (a

change of less than 3%, or ∼ 0.3 dB for a = 0.99). This result is useful for applications

trying to achieve fault-tolerant quantum computing in noisy environments [42,66,67].

Figure 2.10: (a) The computed squeezing and (b) anti-squeezing level versus scattering
loss a, for the optimum coupling constant κopt when τ = τopt (circles) and when τ = τopt/2
(stars). The curve in (a) is our analytic expression for the squeezing, given by Eq. (2.42).

2.3.4 Sensitivity of the minimum quadrature noise to a phase offset

Thus far we have assumed that the measurement of ∆X is perfect; that is, the

phase of the local oscillator in a homodyne measurement is exactly matched to the

phase of the squeezed light signal. We now allow for a small phase offset, δθ, between

the phase of the signal and local oscillator, and study the effect it has on the measured

quadrature noise. Letting θ(t) = −φ(t)/2 + δθ in the original definition for the

quadrature operator in Eq. (2.29), the quadrature variance now is,

(∆Xδθ)
2 = (2nth(t) + 1) (cosh 2r(t)− cos (2δθ) sinh 2r(t)) . (2.45)
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We interpret δθ as the angular deviation from the X̂ quadrature in phase-space. If

δθ = 0 then the squeezing ∆X is measured; and if δθ = π/2, then the anti-squeezing

∆Y is measured. In Fig. 2.11, we plot the minimum quadrature noise that is measured

if the phase offset is δθ = 5 mrad and the attenuation loss in the ring is a = 0.99.

We chose this value of phase offset, because it is close to what was found in a recent

experiment [68]. The hatched region shows where the measured quadrature noise

is greater than the vacuum noise (∆X > 1). We find that the quadrature noise has

increased at the previous optimum point that we found for an offset of zero (indicated

by the red circle) to ∆X ≈ 0.8. One can correct for the increase in noise caused by

the phase offset by reducing the pulse duration to approximately τ̃opt/2 ≈ 26. Doing

so reduces the squeezing level to approximately ∆X ≈ 0.37, which is close to the

optimum level for an offset of zero (∆X ≈ 0.35). Note that the new optimal point

(when there is phase offset) occurs for essentially the same coupling constant and

only the pulse duration needs to be adjusted. Note also that there are a number of

combinations of τ and κ that achieve a squeezing level of ∆X < 0.4 where one could

work. The results are most sensitive to a phase offset when the scattering loss is small

(a close to 1). For a ≤ 0.98, a phase offset of 5 mrad did not significantly perturb the

minimum squeezing level at τopt and κopt.

2.4 Conclusion

In this work we have studied the time-dependent squeezing process in a lossy MRR

pumped by a Gaussian pulse. We derived approximate analytic expressions for the

optimum pulse duration (Eq. (2.27)) and optimum ring-channel coupling constant

(Eq. (2.40)) for a fixed pump energy. Using these optimal parameters, we derived
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Figure 2.11: The minimum quadrature noise ∆Xδθ(tmin, τ, κ) for a phase deviation of
δθ = 5 mrad as a function of the coupling constant and the pulse duration. The blue star
indicates the optimal operating point, while the red circle gives the optimum point found
when δθ = 0. The hatched area indicates where the noise is greater than the vacuum noise
(∆Xδθ > 1).

an analytic expression for the maximum squeezing level achievable for a ring with

a given loss a (Eq. (2.42)). We found that for the chosen pump energy of 0.188 pJ

and a scattering loss of a = 0.99, the optimal coupling constant and pulse duration

are σopt = 0.995 and τopt = 56TR, while for a scattering loss of a = 0.95 we find

optimal values of σopt = 0.974 and τopt = 13TR. Under these optimal conditions,

we demonstrated a maximum squeezing level of −9.15dB and −3.67dB for a = 0.99

and a = 0.95, respectively. Furthermore, we demonstrated that by reducing the pulse

duration at optimal coupling, the anti-squeezing level can be drastically reduced, while

the squeezing level is only modestly affected. Moreover, we showed that our model

shows how one can reduce the impact of homodyning phase noise on the squeezing

simply by reducing the pump pulse duration from the nominally optimal value. We

believe that the analytic expressions that we have developed for this system will help

researchers looking to optimize the design of ring resonator systems for the generation
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of squeezed light.



Chapter 3

Continuous-variable entanglement in a two-mode

lossy cavity: An analytic solution

In the previous chapter, a numerical method was developed to model the nonlinear

generation of a squeezed thermal state in an MRR. However, the theory is only capable

of modelling a degenerate squeezing process, where the photons are generated at a

single frequency, and this means that it cannot be used to study the important case

where the quadratures of the signal and idler fields are correlated. In this work, we

derive a numerical method to model a non-degenerate squeezing process and study

the CV entanglement between the quadratures of two ring-modes in an MRR. This

work is published as a regular article in Physical Review A [69].

Abstract – Continuous-variable (CV) entanglement is a valuable resource in the

field of quantum information. One source of CV entanglement is the correlations

between the X̂ and Ŷ quadratures of photons in a two-mode squeezed state of light. In

this paper, we theoretically study the generation of squeezed states, via spontaneous

parametric downconversion (SPDC), inside a two-mode lossy cavity that is pumped

with a classical optical pulse. The dynamics of the density operator in the cavity is

69
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modelled using the Lindblad master equation, and we show that the solution to this

model is the density operator for a two-mode squeezed thermal state, with a time-

dependent squeezing amplitude and average thermal photon number for each mode.

We derive an expression for the minimum correlation variance inside the cavity that

depends crucially on the difference in the losses between the two modes. We apply

our analytic solution to the important example of an MRR that is pumped with a

Gaussian pulse. The expressions that we derive will help researchers optimize CV

entanglement in lossy cavities.

3.1 Introduction

Entanglement serves as a basis for many applications in the field of quantum

information [43], such as quantum teleportation [40,70] and quantum key distribution

[16, 71]. Entanglement can occur as correlations between discrete variables of two

particles, such as the polarization of two photons, or as the correlations between

CVs, such as the quadratures of photons. In quantum-optical approaches to quantum

computing, those that use discrete-variable entanglement can achieve high-fidelity

operations, but are currently limited by imperfect generation and detection of single

photons [41]. The use of CV entanglement has the advantage that the entanglement is

shared between many photons, but it is not able to achieve as high fidelity operations

[41]. To remedy this trade-off and attempt to achieve large-scale quantum computing,

hybrid approaches that utilize both CV and discrete-variable have been demonstrated

[72].

In the context of quantum optics, two-mode squeezed states are routinely used

as a source of CV entanglement. They can be generated by mixing two single-mode
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squeezed states on a beam-splitter [41], or via a nonlinear interaction [73] such as

SPDC (SPDC), where a strong coherent pump field interacts with a material that

has a χ(2) nonlinearity. The resulting two beams of squeezed light are entangled by

the correlations between the quadratures of the photons in each beam.

The amount of CV entanglement in the squeezed state increases with the amount

of squeezing, so in the limit of infinite squeezing the two-mode squeezed state resem-

bles a maximally-entangled EPR state [74]. To enhance the amount of squeezing, and

thus entanglement, it is beneficial for the SPDC interaction to occur in a cavity that

is resonant with the pump field, as well as the generated signal and idler fields.

In this work, we model the evolution of a squeezed state inside a lossy multi-

mode cavity. We model the evolution with the LME. We show that the solution to

this model is a two-mode squeezed thermal state for all time, with time-dependent

squeezing amplitude, and thermal photon number for each mode.

In previous work [35] we studied single-mode squeezed states in a lossy cavity. We

modelled the dynamics of the generated squeezed light using the LME for a single-

mode lossy cavity and derived the solution for the state in the cavity to be a squeezed

thermal state. This present work builds on our previous work by including two modes

that have different frequencies and loss rates. As one of the main results in this paper,

we derive an analytic expression for the minimum correlation variance in the cavity

as a function of the time-dependent squeezing and mode thermal photon numbers.

This expression includes an explicit dependence on the mode losses and shows that

the correlation variance is minimized when the losses of the two modes are equal.

An important structure for generating CV entanglement is an MRR side-coupled

to a waveguide. It enhances the nonlinear interaction that produces squeezed light
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and can be integrated on a chip [46, 51, 75, 76]. In the second part of the paper, we

apply our model to a side-coupled ring resonator that is pumped with a Gaussian

pulse that is coupled in from the linear waveguide. We derive an analytic expression

for the minimum correlation variance in the ring that depends on the pump duration,

coupling and scattering loss in the ring.

The paper is organized as follows. In Sec. 3.2 we derive the two-mode squeezed

thermal state solution, and give a set of coupled first-order differential equations

for the squeezing amplitude and thermal photon numbers of each mode. Using our

solution for the state in the cavity, in Sec. 3.3 we derive an expression for the insep-

arability of the state, the minimum correlation variance in the cavity, that depends

on the pump pulse, and we derive analytic results for the steady-state solution for a

continuous pump. In Sec. 3.4 we apply our theory to the example of generating CV

entanglement in a side-coupled MRR pumped with a Gaussian input pulse. Finally

in Sec. 3.5 we present our conclusions.

3.2 The Lindblad master equation for a two-mode lossy cavity

In this section we derive the solution to the LME for the generation of a two-mode

squeezed state in a lossy cavity. The cavity is pumped with a strong pump field, and

signal and idler photon pairs are generated via SPDC (SPDC) with frequencies ω1

and ω2, respectively. We assume that the cavity is resonant at the frequencies of the

signal and idler. Treating the pump as a strong classical field and neglecting depletion

of the pump due to the nonlinear interaction, the Hamiltonian for the signal and idler
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photons in the cavity is given by [62]

Ĥ = ~ω1b̂
†
1b̂1 + ~ω2b̂

†
2b̂2 + γ∗E∗P (t)̂b1b̂2 + γEP (t)̂b†1b̂

†
2, (3.1)

where, b̂1 (̂b†1) and b̂2 (̂b†2) destroy (create) photons in the cavity in the mode 1 and 2

with frequency ω1 and ω2, respectively. The last two terms in Eq. (3.1) account for

the nonlinear SPDC interaction that generates the two-mode squeezed light, where

the second-order nonlinear coefficient is γ = −i~χ(2)√ω1ω2, where χ(2) is an effective

second-order nonlinear susceptibility. Here EP (t) is the positive frequency part of the

time-dependent classical electric field, EP (t), where EP (t) = EP (t) + E∗P (t). In all

that follows, only the positive frequency part of the electric field is used, because

counter-rotating terms can be neglected.

To gain some insight into the state of the light inside the cavity, first consider

the case that the cavity is lossless and the pump is a continuous wave with EP (t) =

E0 exp(−i(ω1 + ω2)t). Then the state evolves in time with a unitary two-mode squeez-

ing operator [62] given by

Ŝ(z) = ez
∗b̂1b̂2−zb̂†1b̂

†
2 , (3.2)

with a time-dependent complex squeezing parameter z = r exp(iφ), related to the

pump amplitude by z = itγE0/~.

Now we consider the general case where the cavity has loss and there is a pulsed

pump. In this case, the dynamics of the density operator ρ̂ in the cavity are modelled

using the LME [64]:

dρ̂

dt
= − i

~

[
Ĥ, ρ̂

]
+

1

2

2∑
j=1

Γj

(
2b̂j ρ̂b̂

†
j − b̂

†
j b̂j ρ̂− ρ̂b̂

†
j b̂j

)
, (3.3)
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where the loss of the cavity is captured by intensity decay rates Γ1 and Γ2 for modes

1 and 2, respectively. With the inclusion of loss, the state does not simply evolve in

time by operating with a squeezing operator.

The main result of this paper is the derivation of the solution to the system of

Eqs. (3.1) and (3.3). First, however, we consider a simpler situation where there is

no pump in the cavity (EP (t) = 0), so that the last two terms in the Hamiltonian

in Eq. (3.1) are zero. In this case, we assume that the initial state is a two-mode

thermal state, which is formed by the product of single-mode thermal states:

ρ̂th =
2∏
j=1

(1− xj) (xj)
n̂j , (3.4)

where

xj = exp

(
− ~ωj
kBTj

)
(3.5)

and n̂j is the photon number operator for the mode j. Here, kB is the Boltzmann

constant and Tj is the effective temperature of mode j. The average number of

photons in the thermal state in each mode nj is given by

nj =
xj

1− xj
. (3.6)

We now prove that the state in the cavity remains a two-mode thermal state for all

time, with an average thermal photon number that decays exponentially over time.

This means that the solution to Eq. (3.3) when there is no interaction term in the

Hamiltonian in Eq. (3.1) can be written as

ρ̂(t) = ρ̂th(t), (3.7)
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where ρ̂th(t) is given in Eq. (3.4), except now the variable xj is time-dependent due

to the dynamical thermal photon number. Rearranging Eq. (3.7) we obtain

1 = [ρ̂th(t)]−1/2 ρ̂(t) [ρ̂th(t)]−1/2 , (3.8)

where we have used the fact that the thermal state operator is Hermitian. Taking

the time derivative of both sides of Eq. (3.8) yields

0 =
d

dt

(
ρ̂
−1/2
th ρ̂ρ̂

−1/2
th

)
. (3.9)

Applying the chain rule, we obtain

0 =
dρ̂
−1/2
th

dt
ρ̂ρ̂
−1/2
th + ρ̂

−1/2
th

dρ̂

dt
ρ̂
−1/2
th + ρ̂

−1/2
th ρ̂

dρ̂
−1/2
th

dt
.

(3.10)

Simplifying Eq. (3.10) using the derivative of ρ̂ in Eq. (3.3) and the identity in Eq.

(3.8), we eliminate ρ̂ from all the terms in Eq. (3.10), and are left with terms that

only contain ρ̂th and its derivative. Then, using the thermal state in Eq. (3.4), we

obtain

0 =
2∑
j=1

(
n̂j +

xj
xj − 1

)
Dj, (3.11)

where

Dj = − 1

xj

dxj
dt

+ Γj (xj − 1) . (3.12)

In order for Eq. (3.11) to be true for all times we must have that Dj = 0, which has
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the solution

xj(t) =
1

1 + CeΓjt
, (3.13)

where C is a constant determined by the initial conditions. Using Eqs. (3.5) and

(3.6), we can rewrite Eq. (3.13) as

nj(t) = nj(0)e−Γjt, (3.14)

which says that the average photon number in each mode decays from an initial value

nj(0) at the rate Γj. Thus, if we start with a thermal state, it will remain a thermal

state for all times, but with different time-dependent temperatures for the two modes.

Our focus now is to include the pump, so that the last two terms in the Hamil-

tonian in Eq. (3.1) are not zero. In this case, as we shall see, the two-mode thermal

state will be squeezed with the two-mode squeezing operator Ŝ in Eq. (3.2). There-

fore, we propose that the solution to Eq. (3.3) is the squeezed two-mode thermal

state

ρ̂(t) = Ŝ(z(t))ρ̂th(t)Ŝ†(z(t)), (3.15)

where now the thermal photon number and squeezing parameter are time-dependent.

Rearranging Eq. (3.15) we obtain

1 = [ρ̂th(t)]−1/2 Ŝ†(z(t))ρ̂Ŝ(z(t)) [ρ̂th(t)]−1/2 . (3.16)
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Taking the time derivative of both sides, we obtain

0 =
d

dt

(
ρ̂
−1/2
th Ŝ†ρ̂Ŝρ̂

−1/2
th

)
. (3.17)

Applying the chain rule gives

0 =
dρ̂
−1/2
th

dt
Ŝ†ρ̂Ŝρ̂

−1/2
th + ρ̂

−1/2
th Ŝ†ρ̂Ŝ

dρ̂
−1/2
th

dt
+ ρ̂

−1/2
th

dŜ†

dt
ρ̂Ŝρ̂

−1/2
th + ρ̂

−1/2
th Ŝ†ρ̂

dŜ

dt
ρ̂
−1/2
th

+ ρ̂
−1/2
th Ŝ†

dρ̂

dt
Ŝρ̂
−1/2
th . (3.18)

Following a process similar to the one above in the case of no pump, we simplify the

terms in Eq. (3.18) and show (see Appendix B.1) that for the equality to be satisfied

for all times, the thermal photon numbers (n1(t) and n2(t)), squeezing amplitude

(r(t)), and squeezing phase (φ(t)) must be solutions of the following first-order coupled

differential equations:

dn1

dt
= n1

(
Γ2 sinh2 r − Γ1 cosh2 r

)
+ Γ2 sinh2 r, (3.19)

dn2

dt
= n2

(
Γ1 sinh2 r − Γ2 cosh2 r

)
+ Γ1 sinh2 r, (3.20)

dr

dt
=

i

2~
(
EPγe−iφ − E∗Pγ∗eiφ

)
− cosh(r) sinh(r)

n1 + n2 + 1

(
Γ1 + Γ2

2
+

Γ1 − Γ2

2
(n2 − n1)

)
,

(3.21)

dφ

dt
= − (ω1 + ω2) +

(
EPγe−iφ + E∗Pγ∗eiφ

)
~ tanh(2r)

, (3.22)

where we have omitted the time-dependencies in all variables and EP (t) for simplicity.

Eqs. (3.19) to (3.22) describe the dynamics of the squeezing of the state in the

cavity. If we let the decay rates of the two modes be identical, i.e.Γ1 = Γ2, this

set of equations reduces to the single mode squeezing equations from our previous
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work [36]. Note that Eq. (3.22) only depends on the sum-frequency frequency ωs =

ω1 +ω2. Thus, the dynamics of the squeezed state does not depend on the individual

frequencies of the signal and idler photons, except implicitly through the effective

nonlinearity, γ.

In order to obtain a specific solution to this set of first-order differential equations,

an initial state in the cavity must be specified. In all that follows, we take the initial

state in the cavity to be the vacuum. We define an initial time ti when the state in

the cavity is vacuum, that is r(ti) = 0, and nj(ti) = 0, respectively. This causes the

denominator of the second term in Eq. (3.22) to be zero, because tanh(2r(ti)) = 0.

In order to eliminate the singularity, we choose the initial squeezing phase such that

the numerator of the second term is zero

EP (ti)γe−iφ(ti) + E∗P (ti)γ
∗eiφ(ti) = 0, (3.23)

where the initial pump in the cavity EP (ti) is arbitrarily small but not zero. If we

let the pump and nonlinear parameter be written as a general complex number as

EP (ti)γ = |EP (ti)||γ|eiθ−iωsti , then the solution to Eq. (3.23) for the initial squeezing

phase is φ(ti) = −π/2− θ + ωsti [77]. Requiring that the first derivative of φ(t) at ti

and the next time-step ti + ∆t are equal, it can be shown that the squeezing phase

for all future times is given by

φ(t) = −ωst+ φ(ti) (3.24)

Therefore if the initial state is vacuum, then the squeezing phase does not depend on

the thermal photon numbers or squeezing amplitude, and simply rotates around the
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origin of phase space with the sum-frequency ωs.

Using the expression in Eq. (3.24) for φ(t) in Eq. (3.21), the equation for the

squeezing amplitude becomes,

dr

dt
=
|EP (t)||γ|

~
− cosh(r) sinh(r)

n1 + n2 + 1

(
Γ1 + Γ2

2
+

Γ1 − Γ2

2
(n2 − n1)

)
. (3.25)

It is convenient to write Eqs. (3.19), (3.20), and (3.25) in terms of the dimensionless

parameter t̃ = Γ+t, where Γ± = (Γ1 ± Γ2)/2. Doing this, we obtain

dr

dt̃
=
g(t̃)

2
− cosh(r) sinh(r)

n1 + n2 + 1
(1 + ζ (n2 − n1)) , (3.26)

dn1

dt̃
= n1

(
(1− ζ) sinh2 r − (1 + ζ) cosh2 r

)
+ (1− ζ) sinh2 r, (3.27)

dn2

dt̃
= n2

(
(1 + ζ) sinh2 r − (1− ζ) cosh2 r

)
+ (1 + ζ) sinh2 r, (3.28)

where ζ is defined as

ζ ≡ Γ−
Γ+

=
Γ1 − Γ2

Γ1 + Γ2

, (3.29)

and is proportional to the difference of the two decay rates, and g(t) is the pumping

strength in the ring; it is defined as the rate of light generation in the cavity divided

by the average decay rate of light out of the cavity

g(t) ≡ 2|EP (t)||γ|
~Γ+

. (3.30)

Because the decay rates must be positive, it follows that |ζ| < 1. When ζ = 0, the

decay rates of the modes are equal, the thermal photon numbers are the same, and
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consequently the coupled equations reduce to the single-mode squeezing case.

In summary, we have shown that the solution to the LME for the generation of a

two-mode squeezed state in a lossy cavity is a two-mode squeezed thermal state and

we have derived a set of coupled first-order differential equations that describe the

dynamics of the state as a function of the pumping strength and cavity decay rates

for each mode. We now use the two-mode squeezed thermal state to give a condition

for the CV entanglement in the cavity, and derive an expression for the minimum

correlation variance.

3.3 Continuous-variable entanglement in a two-mode squeezed thermal

state

In this section we give the entanglement condition for the light in the cavity and

derive a semi-analytic expression for the minimum correlation variance as a function

of the pump and the thermal photon number difference between the two modes.

We define the quadrature operators X̂12 and Ŷ12, that are linear combinations of

the quadrature operators for mode 1 and 2,

X̂12 ≡
b̂1e−iθ1 + b̂†1eiθ1

2
− b̂2e−iθ2 + b̂†2eiθ2

2
, (3.31)

Ŷ12 ≡
b̂1e−iθ1 − b̂†1eiθ1

2i
+
b̂2e−iθ2 − b̂†2eiθ2

2i
. (3.32)

The quadrature noises in X̂12 and Ŷ12 are equal and using the two-mode squeezed
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thermal state are given by

〈
(∆X12)2

〉
=
〈
(∆Y12)2

〉
=

1

2
(1 + n1 + n2) (cosh(2r)− cos (φ− θ1 − θ2) sinh(2r)) ,

(3.33)

where φ is the time-dependent squeezing phase in Eq. (3.24). For certain phase re-

lationships between θ1(t), θ2(t), and φ(t), the quadrature noise is reduced below vac-

uum. Choosing the relationship between the quadrature phases be θ1(t)+θ2(t) = φ(t),

the fast oscillations are removed and the quadrature noise is exponentially squeezed

to give

〈
(∆X12)2

〉
=

1

2
[1 + n1(t) + n2(t)] e−2r(t). (3.34)

In the limit of infinite squeezing, r → ∞, the uncertainty in the relative quadrature

operator goes to zero, 〈(∆X12)2〉 → 0. Thus, a measurement on X̂1 would reduce the

uncertainity of a measurement on X̂2 to zero, such that the two modes are perfectly

correlated. However, for finite squeezing the two modes will not be perfectly corre-

lated. To determine when there is entanglement between the two modes and to obtain

a measure of how robust the entanglement is, we define the correlation variance as

the sum of the quadrature noises in the relative position and momentum operators

∆2
1,2 =

〈
(∆X12)2

〉
+
〈
(∆Y12)2

〉
, (3.35)

and using Eq. (3.34) we obtain

∆2
1,2(t) = [1 + n1(t) + n2(t)] e−2r(t). (3.36)
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It has been proved by Duan et al. [22] and Simon [23] that the two-mode squeezed

state is inseparable when the correlation variance is less than 1,

∆2
1,2(t) < 1. (3.37)

This condition is achieved when the exponential squeezing factor (exp(−2r)) over-

comes the thermal noise factor in front.

The correlation variance in Eq. (3.36) is time dependent because the squeezing

amplitude and thermal photon numbers are time dependent. If we assume that

the pump is pulsed, then there should be a time when the correlation variance is

minimized. In order to find an expression for the minimum of the correlation variance

we find the extreme point of Eq. (3.36), i.e. we solve the following equation:

d∆2
1,2

dt

∣∣∣∣
t=tmin

= 0. (3.38)

Simplifying this equation by using Eq. (3.26) to Eq. (3.28) we obtain,

(
∆2

1,2

)
min

=
1 + ζ [n2(tmin)− n1(tmin)]

1 + g(tmin)
. (3.39)

Thus, even a small difference in the decay rates of the two modes can cause an increase

in the minimum value of the correlation variance. In situations where we can treat

|ζ| as a small perturbation, we can neglect the second term in the numerator of Eq.

(3.39) and write, (
∆2

1,2

)
min
≈ 1

1 + g(tmin)
. (3.40)

This represents an ideal case, when the two decay rates for the modes are the same
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and we can drop the ζ dependence. In this case, the correlation variance is always

decreased by increasing the pumping strength. We do not have an expression for the

time when the correlation variance is minimum, tmin, so Eq. (3.39) and Eq. (3.40)

must still be evaluated numerically. However, when the pump field is pulsed then, as

we show in the example below, it is often a good approximation to replace g(tmin)

with the peak value of the pump in the cavity, gmax.

3.3.1 Steady-state solution

Before considering the specific case of the response of a ring resonator system to a

pulsed pump, we briefly discuss the steady-state solution for the correlation variance

of a two-mode squeezed thermal state generated in a cavity that is pumped with a

continuous-wave pump field. The squeezing amplitude and thermal photon numbers

for each mode of the generated squeezed state are modelled using Eq. (3.26) to Eq.

(3.28) with a constant pumping strength g. The steady-state solution is found by

setting the time derivatives of the squeezing amplitude and thermal photon numbers

to zero. This results in the steady-state solutions

r =
1

2
tanh−1(g), (3.41)

1 + n1 + n2 =
(1− ζ2)

√
1− g2

1− g2 − ζ2
. (3.42)

Note that the steady-state squeezing amplitude is infinite at g = 1, and in Eq. (3.42)

the right-hand side is infinite at g =
√

1− ζ2. In fact, steady-state solutions do not

exist unless

g <
√

1− ζ2. (3.43)
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Putting Eqs. (3.41) and (3.42) into Eq. (3.36), we obtain for the steady-state corre-

lation variance

∆2
1,2 =

(1− ζ2)(1− g)

1− g2 − ζ2
. (3.44)

When ζ = 0, the steady-state correlation variance is ∆2
1,2 = 1/(1 + g), which is the

same as Eq. (3.40), with tmin being interpreted as the time that the steady-state

occurs. Furthermore, for a fixed ζ, the value of g that minimizes the correlation

variance in Eq. (3.44) is g = 1−|ζ|. Putting this g in Eq. (3.44), the minimum value

of the correlation variance in the steady-state is simply

(
∆2

1,2

)
min

=
1 + |ζ|

2
. (3.45)

This result shows that in the steady-state one can never achieve a correlation variance

less than 1/2 (that is the 3dB limit). Additionally, it shows that even if the individual

cavity losses are large, one can still achieve the minimum correlation variance by

making the difference between the losses of the two modes the same. In the next

section, we will discuss the results of the correlation variance for a two-mode squeezed

thermal state generated in a side-coupled ring resonator using a pulsed pump.

3.4 Example: generating continuous-variable entanglement in a ring res-

onator

In this section we apply our formalism to a ring resonator, which is optimized

to produce a highly entangled state, and we study the dynamics of the correlation

variance. In previous work [36], we treated the same problem but for degenerate

squeezing, where the signal and idler have the same frequency. In this example,
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we will generalize our previous results to the case where the signal and idler are

distinguishable by their frequency and loss.

MRR s can be fabricated using electron-beam lithography in a variety of semicon-

ducting materials with third order nonlinearities, such as GaAs, LN, SiN, and AlN.

Because they have multiple resonances, they can result in the intense pump fields

needed for nonlinear interactions, such as SPDC. Thus, they have been employed by

several groups to generate squeezed light [56, 57, 78–80]. Moreover, they can be en-

gineered such that one mode is resonant with the pump field, while other modes are

resonant with the signal and idler modes that contain the generated squeezed light.

Due to the micrometer scale of MRR s, they can be integrated into a chip platform

that reduces the overall size of optical experiments. MRR s have been shown to be

capable of generating single-mode squeezed light with squeezing levels that are large

enough to meet the requirements for CV quantum computation [80]. For example,

these devices are being used to generate CV-entangled light for quantum information

processing on a scalable chip platform [81].

The ring resonator system we consider, shown in Fig. 3.1, consists of a straight

waveguide (channel) side-coupled to a ring waveguide with radius R. Both the ring

and channel are made from the same material that has a nonlinear χ(2) response,

but we ignore the nonlinear interaction in the channel, since the pump field is much

weaker there than in the ring. The classical pump field incident on the ring is taken

to be a classical Gaussian pulse. The positive frequency part of the pump field in the

channel takes the form

ECH(t) = E0

√
TR
τ

exp

(
−2 ln(2)

t2

τ 2

)
exp(−iωP t), (3.46)
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Figure 3.1: Schematic of the ring resonator side-coupled to a channel waveguide. The
thick arrows represent the components of the pump field (blue) with frequency ωP ,
incident from the left, and the signal and idler fields (both red) with frequencies ω1

and ω2, respectively. The cross-coupling coefficients and scattering loss parameters for
the pump, signal, and idler fields are κP , κ1, and κ2 and aP , a1, and a2, respectively.

where E0 is the amplitude, τ is the FWHM of the intensity of the Gaussian, ωP is

the central frequency, and TR = 2πRneff/c is the ring round-trip time, where neff is

the effective index for the pump. We scale the amplitude by 1/
√
τ so that the pulse

energy is a constant that is independent of its duration. The coupling of the pulse

into the ring happens at a single coupling point, as indicated in Fig. 3.1. The pump

field in the ring, ER(ω), is calculated using a transfer matrix approach [36,60], and is

related to the field in the channel by

ER(ω) =
iκPaP eiωTR

1− σPaP eiωTR
ECH(ω), (3.47)

where E(ω) is the Fourier transform of E(t) defined as

E(ω) =

∫ ∞
−∞
E(t) eiωtdt, (3.48)
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and the inverse Fourier transform as

E(t) =
1

2π

∫ ∞
−∞
E(ω) e−iωtdω. (3.49)

In Eq. (3.47), the constant κP is the frequency-independent cross-coupling constant

between the ring and channel, and is related to the self-coupling constant σP through

the lossless coupling relation: κ2
P + σ2

P = 1. The parameter aP is the amplitude

attenuation for the pump in the ring after a single round-trip. It is related to the

power attenuation coefficient αP by a2
P = exp(−αP2πR). This is the power lost due

to scattering only and not coupling. When aP = 1, there is no scattering loss.

The buildup factor is defined as the ratio of the intensity in the ring to the channel

and is given by

B(ω) ≡ |ER(ω)|2

|ECH(ω)|2
=

κ2
Pa

2
P

1− 2σPaP cos(ωTR) + σ2
Pa

2
P

. (3.50)

It contains resonant peaks when the incident light is on resonance with the ring, i.e.

cos(ωTR) = 1, and the buildup is maximized. We choose the central frequency of the

pump pulse to be on resonance with the ring, ωP = 2πmP/TR, where mP is a positive

integer defining the pump mode number. Inside the ring, the pump field generates

signal and idler photons at the frequencies ω1 and ω2, via SPDC, such that energy is

conserved: ωP = ω1 + ω2. The signal and idler fields are also resonant with the ring,

ω1TR = 2πm1 and ω2TR = 2πm2, where m1 and m2 are the mode numbers for the

signal and idler fields, respectively. For simplicity we assume perfect phase matching

between the three fields, and that the effective index of refraction is the same for the

pump, signal, and idler modes. The latter assumption is experimentally realized in
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an AlN MRR with a waveguide width of 1.10µm [51], and makes the ring round-trip

time the same for each field. Using these assumptions the mode numbers are related

by mP = m1 +m2.

Generally, signal and idler photons will be generated in a number of different pairs

of ring modes, as long as they satisfy energy conservation and phase matching. To

simply our theory however, we assume that only the two ring modes m1 and m2

are perfectly phased matched, and squeezed light generation in all other modes is

neglected.

Since the pump is pulsed, in general it will couple into multiple ring modes de-

pending on how wide its bandwidth is. To ensure that most of the pump light couples

into a single mode mP we require that its duration is longer than the ring round-trip

time (τ > TR). Doing so makes the pulse bandwidth overlap a single resonance peak

of the buildup factor and thus the adjacent peaks in the buildup factor do not sig-

nificantly couple any light into the ring. The buildup factor for the central pump

frequency ωP becomes,

B(ωP ) =
κ2
Pa

2
P

(1− σPaP )2
. (3.51)

In all that follows we are only interested in the limit that the buildup factor is large,

which only occurs when (1− σPaP )� 1, such that the denominator of Eq. (3.51) is

small. This limit produces the smallest correlation variance in the ring.

Now we need to find an expression for the time-dependent pump field in the ring

that we can use to solve for the dynamics of the squeezed state. This is done by

taking the inverse Fourier transform of the field component in the ring. As we have

shown in our previous work [36], in the limit when (1 − σPaP ) � 1 the integral can
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be approximated very well by

ER(t) =
τκPaP

√
πey(t)2erfc[y(t)]√
8 ln(2)TR

ECH(t), (3.52)

where

y(t) ≡ (1− σPaP )τ√
8 ln(2)TR

−
√

8 ln(2) t

2τ
. (3.53)

Now to model the evolution of the state in the ring we use the pump field in Eq.

(3.52) in the coupled Eqs. (3.26) to (3.28). The pumping strength in the ring defined

in Eq. (3.30) becomes

g(t̃ ) = g0
κPaP

√
πey(t̃ )2erfc[y(t̃ )]√

8 ln(2)

√
τ̃

TRΓ+

exp

(
−2 ln(2)

t̃2

τ̃ 2

)
, (3.54)

where we define the dimensionless parameter

g0 ≡
2|γ|E0

~Γ+

, (3.55)

which is proportional to the input pump pulse amplitude E0 divided by the average

decay rate of the signal and idler mode Γ+, where we have used the same parameters

defined above, t̃ = Γ+t and τ̃ = Γ+τ . At this point we could simply solve the dynamic

Eqs. (3.26) to (3.28) numerically for any desired loss and pump parameters. However,

as we shall show, a key parameter that affects the correlation variance is the difference

in the loss in the signal and idler modes, ζ. Therefore, to simplify the discussion of

our results and to make the pumping strength in Eq. (3.54) dependent only on the

pump coupling and loss parameters, we assume that the average of the decay rate

of the signal and idler is equal to the pump decay rate, ΓP , i.e., Γ+ ≡ ΓP . When
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(1− σPaP )� 1, the pump decay rate is

ΓP =
2(1− σPaP )

TR
. (3.56)

Then using Eq. (3.56) in Eq. (3.54), the pumping strength in the ring can be written

as

g(t̃ ) =
g0

2

κPaP√
1− σPaP

√
τ̃

8 ln(2)
exp

(
−2 ln(2) t̃2

τ̃ 2

)√
πey(t̃ )2erfc[y(t̃ )]. (3.57)

This completes the parameterization of our model.

Our focus now is to examine the numerical results for the correlation variance in

Eq. (3.36) found by solving the dynamic equations with the pump field given by the

expression in Eq. (3.57). To do this, we use a 4th-order Runge-Kutta method which

has a run-time of about 1 millisecond on a standard PC. Our model depends on the

parameters g0, κP , σP , and aP , and the difference in the loss rates ζ. Thus, our results

are effectively independent of the ring radius, pump amplitude, and the nonlinear

parameter. However, to make connection to a specific, realistic system, we choose a

ring of radius R = 20µm made from AlGaAs, with an effective second-order nonlinear

susceptibility of χ(2) = 11 pm/V [46]. Additionally, we let the central frequency

and amplitude of the pump pulse be ωP = 2π × 128.9 THz (λP = 775 nm) and

E0 = 1 MV/cm. The frequencies of the signal and idler fields are ω1 = 2π×64.68 THz

(λ1 = 1545 nm) and ω2 = 2π × 64.27 THz (λ2 = 1555 nm), respectively. With these

parameter choices, g0 = 4.

In our previous work [36], we derived the optimum value for the pulse duration

τ̃opt by taking the derivative of the pumping strength in Eq. (3.57) with respect to
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τ , at the peak value, and set it equal to zero. This results in the following accurate

estimate of the optimum pulse duration of

τ̃opt = 0.684
√

8 ln(2). (3.58)

The prefactor of 0.684 in this expression arises from the solution of a transcendental

equation, and this can be evaluated to arbitrary accuracy. The optimum value for σP

can be obtained [36] by taking the derivative of the pumping strength with respect

to σP , at the peak value and τ̃ = τ̃opt, and set it equal to zero. For a loss parameter

of aP = 0.99, this results in an optimum value of σP = 0.868.

In Fig. 3.2a we plot the correlation variance when the decay rates of the two

modes are set to be the same by letting ζ = 0. Since the photons in modes 1 and 2

are scattered from the ring at the same rate, the photon pairs are not separated due

to scattering and the state in the ring remains an entangled state with ∆2
1,2 < 1.

In Fig. 3.2b we again plot the correlation variance, but let ζ = 1/3, which gives

Γ1 = 2Γ2 and Γ2 = 2ΓP/3. The discrepancy between the two decay rates means that

photons are being scattered from mode 1 twice the rate as from mode 2. Effectively,

this means that half of the generated entangled state is being traced-out by the

scattering; i.e., photon 1 escapes the ring while photon 2 stays inside the ring. Thus,

the state in the ring evolves into a thermal state. This is why the correlation variance

in Fig. 3.2b goes above 1 after t̃ ≈ 2. After this time, the correlation variance

becomes as large as 60 (not shown in plot) and the state in the ring is essentially a

separable two-mode thermal state.

In Fig. 3.3 the minimum of the correlation variance, ∆2
1,2(tmin), is shown as a

function of τ̃ and ζ. The first thing to notice is that it is symmetric about ζ = 0.
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(a) (b)

Figure 3.2: The time-dependent correlation variance for (a) ζ = 0, and (b) ζ = 1/3,
pumping strength g0 = 4, using a pulsed pump of duration τ̃opt, a pump scattering loss
of aP = 0.99, and optimum self-coupling constant σP = 0.868. Also shown is the time-
dependent pumping strength.

This is because the product ζ(n2 − n1) in Eq. (3.39) is always positive. Next we

observe that for a given τ , the smallest ∆2
1,2 is always where ζ = 0, because this

makes the numerator of Eq. (3.39) as small as possible (i.e., equal to 1). The global

minimum in ∆2
1,2(tmin) (indicated by the white cross) occurs with the τ that makes

g(tmin) as large as possible (see Eq. (3.40)), which occurs approximately at τ̃opt (black

line) given in Eq. (3.58). When we increase or decrease the pulse duration from the

optimum value, it causes ∆2
1,2(tmin) to increase. This is because the energy of our

pulse is independent of its duration, so for long pulses its amplitude scales as 1/
√
τ

and for short pulses the energy is injected over too short a time interval for the

intensity to buildup. In both cases, for a long or short pulse, the pumping strength

decreases and ∆2
1,2 increases. When |ζ| > 0, the entangled state is degraded by the

unequal scattering of its photon pairs, and by increasing τ we observe a rapid increase

of ∆2
1,2. Conversely, when ζ = 0 and τ is increased, then the increase of ∆2

1,2 is less

rapid, because both photons are scattered at the same rate. However, when the pulse
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Figure 3.3: The minimum value of the correlation variance (∆2
1,2)min as a function of

the difference between the losses of the two-modes ζ and the pump pulse duration τ̃ .
The optimum pulse duration τ̃opt given by Eq. (3.58) is shown with the black line,
and the global minimum is indicated by the white cross. All other parameters are
the same as in Fig. (3.2).

duration is shorter than the optimum, ∆2
1,2 is not very sensitive to |ζ|.

The thermal photon number in mode 1, evaluated at tmin, is shown in Fig. 3.4 as a

function τ̃ and ζ for the same parameters as above. A relatively large thermal photon

number implies that there is more generation of squeezed light, but if the thermal

photon number becomes too large, it destroys the entanglement (see Eq. (3.36)).

There is an average thermal photon number of approximately 2 for each mode at

the global minimum of the correlation variance. Where the average thermal photon

number is 10 there is more generation of squeezed light, but ∆2
1,2 is larger due to the

increased thermal noise. The thermal photon number in mode 2 is a mirror reflection,

about ζ = 0, of mode 1, which can be shown by letting ζ → −ζ in Eqs. (3.27) and

(3.28).

In both Fig. 3.2a and Fig. 3.2b, the minimum value of the correlation variance
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Figure 3.4: The average number of thermal photons in mode 1, evaluated at the time when
the correlation variance is minimum, n1(tmin), as a function of ζ and τ̃ . All parameters are
the same as in Fig. (3.3)

occurs very close to the time when the pumping strength is maximum in the ring

(gmax). Thus, in Eq. (3.40), which gives the approximate minimum value of the

correlation variance, we can let g(tmin) = gmax. In our previous work [36] we showed

that this is a valid approximation when the input pulse duration is longer than TR.

Using Eq. (3.57) it can be shown that the pumping strength peaks at t̃ = 1 for the

optimum pulse duration. Putting t̃ = 1 and τ̃opt into the pumping strength in Eq.

(3.57) gives the following expression for gmax:

gmax = 0.653g0
κPaP√

1− σPaP
. (3.59)

Therefore, we can use Eq. (3.59) in Eq. (3.40) in place of g(tmin) to obtain an

expression for the minimum of the correlation variance when |ζ| � 1 in terms of the
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pump parameters g0, κP , σP , and aP only,

(
∆2

1,2

)
min

=

[
1 + 0.653g0

κPaP√
1− σPaP

]−1

. (3.60)

The optimum coupling constant σP that minimizes Eq. (3.60) for a fixed g0 and aP

is,

σP =
1−

√
1− a2

P

aP
. (3.61)

Putting this optimum coupling constant into Eq. (3.60) gives a good approximation

to the global minimum in the correlation variance for a given g0 and loss aP . In Fig.

3.5, the global minimum in the correlation variance is shown as a function of g0 for

aP = 0.99 (circle) and aP = 0.75 (cross). The solid lines are the expression in Eq.

(3.60), and they show excellent agreement with the full numerical simulations across

a wide range of g0 values for the two scattering losses. Also shown is the sum of the

thermal photon numbers in the two modes. This shows that the cost associated with

decreasing the correlation variance is an increase in the overall thermal noise in the

ring. By increasing the scattering loss we observe an increase in ∆2
1,2 and the total

thermal photon number. In order to recover the variance we can increase g0, but this

causes an increase in the thermal noise. For example, when aP = 0.99 and g0 = 4,

the minimum of the correlation variance is about 0.25 and there are a total of about 4

thermal photons. If we increase the scattering loss to aP = 0.75 and keep g0 = 4, then

the variance jumps to about 0.35 and the total thermal photon number decreases to

about 2. In order to recover the variance, we would need to increase to g0 = 7, and

as a result we would increase the total thermal photon number to about 20.

The expression for the correlation variance in Eq. (3.36) is what one would infer



3.4. EXAMPLE: GENERATING CONTINUOUS-VARIABLE ENTANGLEMENT
IN A RING RESONATOR 96

Figure 3.5: The global minimum in the correlation variance as a function of g0 for
pump scattering loss and optimum self-coupling constant of aP = 0.99 and σP = 0.868
(circle) and aP = 0.75 and σP = 0.451 (cross), respectively. Also shown is the total
number of thermal photons evaluated at the global minimum for each of these losses.

from measurements in a homodyne detection experiment, if the local oscillators are

perfectly phase matched to the squeezing phase φ(t). It what follows, we will allow

for a small angle deviation δθ from perfect phase matching and see how this affects

the correlation variance. The correlation variance when there is an angular deviation

becomes

∆2
1,2 = (1 + n1 + n2) [cosh(2r)− cos(δθ) sinh(2r)] . (3.62)

If δθ = 0 we recover the perfect case in Eq. (3.36). In Fig. 3.6a we show the

minimum of the correlation variance for an angular deviation of 5 mrad, with aP =

0.99, σP = 0.868, and g0 = 4. This angular deviation was measured in a recent

experiment [68]. Overall, the correlation variance is not changed significantly from the

ideal case (when there is no offset), but there is a small increase in the global minimum

from approximately 0.228 when there is no offset to approximately 0.229. In Fig.

3.6b and Fig. 3.6c the angle offset is increased to δθ = 20 mrad and δθ = 100 mrad,



3.5. CONCLUSION 97

(a) (b) (c)

Figure 3.6: The minimum in the correlation variance as a function of τ̃ and ζ for
homodyning angles of (a) 5 mrad, (b) 20 mrad, and (c) 100 mrad. All other parameters
are the same as in Fig. (3.3).

respectively, while keeping all other parameters the same. For these two offsets,

the global minimum increases to approximately 0.235 and 0.282, respectively. The

general trend created by increasing the angle offset is that the global minimum of the

correlation variance shifts to shorter pulse durations and the optimal region flattens

out; becoming more sensitive to pulse duration and less sensitive to ζ. Thus, the

discrepancy between the two decay rates does not destroy the correlation variance

as much when there is an angle offset. Instead, the pulse duration is much more

destructive to the correlation variance. When there is an angle offset, it is always

better to shorten the optimum pulse duration to decrease the correlation variance.

3.5 Conclusion

In conclusion, we have shown that the solution to the LME for a two-mode cavity

pumped with a classical optical pulse is a two-mode squeezed thermal state for all

time. We derived a semi-analytic solution for the time-dependent squeezing ampli-

tude, and thermal photon numbers for the two modes, which we then used to derive

an expression for the minimum correlation variance in the cavity (see Eq. (3.39)).



3.5. CONCLUSION 98

The main parameter that affects the correlation variance is the difference in the cav-

ity losses between the two modes ζ. In the ideal case, the losses for the two modes

are the same ζ = 0 and the correlation variance just scales inversely proportional to

the peak pumping strength in the cavity (see Eq. (3.40)). However, the trade-off is

that when the pumping strength is increased the total thermal noise also increases.

We also showed that for a continuous pump the steady-state correlation variance can

never be less than 1/2.

We applied our theory to the important example of generating CV entanglement

in a ring resonator with different losses for each mode. We derived a semi-analytic

expression for the minimum correlation variance in the ring (see Eq. (3.60)) that

depends only on the pump scattering loss and coupling parameters. If the two modes

have unequal losses we demonstrated that it is always better to decrease the pulse

duration from the optimum in order to achieve a smaller correlation variance. We

considered the case of a phase offset in a homodyne detection experiment, which would

cause a degradation of the measured entanglement, and we showed that the minimum

of the correlation variance could be recovered to a high degree by reducing the pulse

duration from the optimum. Additionally, when the phase offset is increased, it was

shown that the correlation variance is less sensitive to the unequal losses of the two

modes.

These results will be of use to researchers that are trying to optimize CV entangle-

ment in lossy cavities when the losses of each mode are different. In future work, we

will apply this theory to the generation of two-mode squeezed light in a slab photonic

crystal, where a three-mode cavity is side-coupled to a defect waveguide.



Chapter 4

Simple way to incorporate loss when modelling

multimode entangled state generation

In this chapter, a numerical method is developed to model the nonlinear generation

of light in the modes of multiple lossy coupled nanocavities. In this work, we prove

that the density operator for the generated light has the analytic form of an MSTS.

Therefore we extend our numerical method for two modes from the previous chapter

to systems of multiple modes. We also derive expressions that can be used to test

for entanglement in the quadratures of the multimode squeezed state. This work is

published as a regular article in Physical Review A [82].

Abstract – We show that the light generated via spontaneous four-wave mix-

ing or parametric down conversion in multiple, coupled, lossy cavities is a multi-

mode squeezed thermal state. Requiring this state to be the solution of the Lindblad

master equation results in a set of coupled first-order differential equations for the

time-dependent squeezing parameters and thermal photon numbers of the state. The

benefit of this semi-analytic approach is that the number of coupled equations scales

99
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linearly with the number of modes and is independent of the number of photons gener-

ated. With this analytic form of the state, correlation variances are easily expressed

as analytic functions of the time-dependent mode parameters. Thus, our solution

makes it computationally tractable and relatively straight forward to calculate the

generation and evolution of multimode entangled states in multiple coupled, lossy

cavities, even when there are a large number of modes and/or photons.

4.1 Introduction

Multimode squeezed states can be generated via a nonlinear interaction in resonant

structures, such as MRRs (see Fig. 4.1a) or coupled-resonator optical waveguides

(CROWs) in a photonic crystal (see Fig. 4.1c). They are a source of CV entanglement,

since the quadratures of the photons in different modes in the state can be correlated.

CV entanglement has applications in boson sampling [83, 84], quantum computing

[43,72,85], and CV cluster states [34,81,86].

The theoretical generation of multimode squeezed states via SFWM or SPDC has

been studied extensively for MRRs [54], nonlinear waveguides [87, 88], and CROWs

[89, 90]. Photon loss is an important problem in these systems, since it can reduce

the squeezing and inseparability of the state.

Loss in MRRs and waveguides due to photon scattering can be handled by in-

troducing reservoir modes that photons can couple in to [54, 91]. The waveguide-

reservoir coupling parameters can be estimated with phenomenological values taken

from experiment. In contrast, loss in CROWs or coupled-cavities (see Fig. 4.1d) can

be handled intrinsically by calculating the complex frequencies of the CROW Bloch

modes or cavity modes [89,90]. In this approach, the evolution in these lossy systems



4.1. INTRODUCTION 101

is expressed as the non-unitary evolution of the reduced density operator of the gen-

erated light, obtained from the solution of the LME. This is the approach that we

use in this work.

(a) (b) (c) (d)

Figure 4.1: Schematics of structures of potential interest. The thick arrow indicates
where the pump field is injected. The first structure (a) is an MRR coupled to a
waveguide. The second (b) are a series of coupled MRRs coupled to an input and
output waveguide. The thin black arrows in (a) and (b) indicate the direction of the
field components at the coupling points. The third (c) is a CROW made by
periodically removing air holes (shown as white circles) along a row in the crystal.
And the fourth (d) is three high-Q cavities that are coupled to a waveguide.

Before discussing our approach, we present in Fig. 4.1, four different lossy coupled-

cavity structures in which our theoretical method can be used to determine the quan-

tum state of light generated via SFWM or SPDC. In Fig. 4.1a, an MRR coupled to a

waveguide is shown. The pump pulse is injected into the straight waveguide; it then

couples into the ring, where it generates multimode entangled light via SFWM or

SPDC in the multiple, lossy modes of the ring. In Fig. 4.1b a series of three coupled

rings is shown. This structure allows for the generation and propagation of the mul-

timode state in the coupled-rings. Fig. 4.1c shows a CROW in a photonic crystal.

The pump pulse propagates in a set of Bloch modes of the CROW and generates sig-

nal and idler photons as it propagates. Lastly, Fig. 4.1d shows a three-mode cavity

coupled to a waveguide in a photonic crystal. The state is predominantly generated

inside the cavity and couples out into the waveguide.
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In this work, we prove that the density operator for entangled light generated in

multiple lossy modes via SFWM or SPDC takes the form of a multimode squeezed

thermal state (MSTS), where the thermal part of the state captures the effects of

photon loss. The loss can be handled either phenomenologically or intrinsically, de-

pending on the structure. For M modes, we derive a set of 3M coupled first-order

differential equations that provide the complete evolution of the squeezing parameters

and thermal photon numbers in the density operator. The number of equations is

independent of the number of generated photons which is generally many fewer equa-

tions than must be solved when using numerical methods that rely on Fock states [92],

since in those methods the number of equations can be as large as (M+N)![M !N !]−1,

where N is the total photon number.

Our solution of the LME applies to the discrete modes of a structure; for example,

the modes of the rings in Figs. 4.1a and 4.1b, and the Bloch modes of the CROW in

Fig. 4.1c. Our solution can also be applied to the structure in Fig. 4.1d as long as

the modes are discretized (e.g. by using periodic boundary conditions).

In the limit that the modes are lossless, our formalism reproduces the results for

a MSVS given by N. Quesada et al. [93]. Also, in the case of only one or two lossy

modes, our multimode formalism reproduces the results of previous work [35,65,69].

The rest of the paper is organized as follows. In Sec. 4.2 we define the lossy modes

of a structure, called quasimodes. In Sec. 4.3 we present the nonlinear Hamiltonian

for SFWM, and the LME in the basis of quasimodes. In Sec. 4.4 we show that the

analytic solution to the LME is the density operator for a MSTS, and obtain a set

of coupled first-order differential equations for the squeezing amplitudes, squeezing
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phases, and thermal photons numbers. In Sec. 4.5 we give expressions for the corre-

lation variance and the expectation value of the photon number operator. In Sec. 4.6

we show that in the limit when the modes are lossless our coupled equations describe

a squeezed vacuum state that agrees with other work, and that they produce results

that are consistent with previous work on single- and two- mode squeezed states. In

Sec. 4.7 we present our results from solving the coupled differential equations for a

squeezing process in the Bloch modes of a four-cavity CROW. Finally, in Sec. 4.8 we

conclude.

4.2 Quasimodes

We consider an open dielectric structure with a discrete set of quasimodes that

are defined within a computational volume, Vc [9]. The positive frequency part of the

electric field in Vc in a quasimode m takes the form

E(+)
m (r, t) = Nm(r)e−iω̃mt, (4.1)

where Nm(r) is the spatial profile of the quasimode and we define ω̃m = ωm − iγm

the complex frequency with real part ωm, and the imaginary part γm quantifies the

energy leakage. The quasimode is a solution to the Helmholtz equation

∇×∇×Nm(r)− ω̃2
m

c2
ε(r)Nm(r) = 0, (4.2)

with outgoing wave boundary conditions, and ε(r) is the relative dielectric function

of the structure. The quasimodes are defined in a computational volume Vc that is

bounded by perfectly-matched layers to simulate the open boundary conditions. We
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assume the quasimodes are orthonormal inside Vc in the following sense

∫
Vc

d3rε(r)N ∗m(r) ·Nl(r) = δml, (4.3)

where the integral is over Vc only. The orthogonality of the modes is strictly obeyed

if there is symmetry in the structure (e.g. rotational or translational). For example,

the Bloch modes of the CROW in Fig. 4.1c are orthogonal due to the translational

symmetry of the CROW, and the modes of the MRR are orthogonal due to the

rotational symmetry of the ring. In structures that lack symmetry, such as the cavity

coupled to a waveguide in Fig. 4.1d, the orthonormality in Eq. (4.3) is not generally

strictly obeyed. However, modes that are separated in frequency by more than their

linewidths will be very nearly orthogonal [94]. Therefore, in what follows, we will

assume mode orthogonality.

In the next section we present a quantized theory of SFWM and the LME in the

basis of these quasimodes.

4.3 The Lindblad master equation for a multimode lossy structure

Before discussing the solution to the LME for multiple lossy modes, we present

the system Hamiltonian in the undepleted pump approximation and the LME that

we reference throughout the paper.

In a lossy dielectric structure, a discrete basis of orthogonal quasimodes can be

used to construct the system Hamiltonian

Ĥ = ĤL + ĤNL, (4.4)
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where linear Hamiltonian in the basis of the quasimodes is

ĤL =
∑
m

~ω̃mb̂†mb̂m, (4.5)

where b̂†m and b̂m are the creation and annihilation operators for photons in the mth

quasimode satisfying the standard commutation relation

[
b̂m, b̂

†
l

]
= δml. (4.6)

Now we include the SFWM nonlinear interaction where two pump photons p1 and

p2 are annihilated to create a pair of signal and idler photons m and l. The nonlinear

Hamiltonian in the basis of the quasimodes is [95]

ĤNL =
∑

m,l,p1,p2

Gmlp1p2 b̂
†
mb̂
†
l b̂p1 b̂p2 + H.c., (4.7)

where

Gmlp1p2 ≡
9~2

16ε0

√
ωmωlωp1ωp2

∑
i,j,k,h

∫
d3rχ

(3)
ijkh(r)N∗mi(r)N∗lj(r)Np1k(r)Np2h(r) (4.8)

is the effective nonlinear parameter that depends on the spatial overlap of the quasi-

modes Nm(r). The subscripts i, j, k, and h label the Cartesian components of the

electric field and the medium nonlinear tensor χ(3). In deriving this result we have

assumed that the imaginary part of the frequencies are small, such that we can ne-

glect them under the square root, so that
√
ω̃m ≈

√
ωm. This is valid for modes that
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have a quality factor on the order of 103 or higher. For a CROW studied in previ-

ous work [96], it was shown that the quality factors of the Bloch modes varied from

approximately 104 to 103. The relative dielectric function does not appear in ĤNL,

because we have constructed it using the electric fields. If we used the displacement

fields, then the relative dielectric function would appear in the nonlinear parameter

in Eq. (4.8).

The dynamics of the density operator ρ̂ for the pump, signal, and idler light can

be modeled using the LME [64]

dρ̂

dt
= − i

~

[
Ĥ, ρ̂

]
+
∑
m

γm

(
2b̂mρ̂b̂

†
m − b̂†mb̂mρ̂− ρ̂b̂†mb̂m

)
, (4.9)

where Ĥ is the Hermitian part of the Hamiltonian in Eq. (4.4), given by

Ĥ =
∑
m

~ωmb̂†mb̂m +
∑

m,l,p1,p2

Gmlp1p2 b̂
†
mb̂
†
l b̂p1 b̂p2 + H.c.. (4.10)

General expressions for the Hamiltonian and LME, that are applicable to any lossy

structure, can be derived using a set of non-orthogonal quasimodes [97]. The extension

from the orthogonal to the non-orthogonal case is not straightforward. All derivations,

however, in this paper are done assuming the quasimodes are orthogonal according

to Eq. (4.3).

4.3.1 Restrictions on the pump field and nonlinear parameter

The Hamiltonian presented in Eq. (4.10) is valid for a general pump field with

a quantum description. However, since we are concerned with generating squeezed
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states, we let the pump be a classical field and make the undepleted pump approx-

imation. Furthermore, we restrict our analysis to pump fields that can be factored

into a function of space multiplied by a function of time. These two restrictions on

the pump are shown in Sec. 4.4 to be necessary in order to derive our solution to the

LME.

To make the undepleted pump approximation, we let the classical pump field

be represented by a lossy multimode coherent state |α(t)〉, defined as a product of

single-mode coherent states |αp(t)〉

|α(t)〉 ≡
∏
p

|αp(t)〉 , (4.11)

where the single-mode coherent states are defined as

|αp(t)〉 = exp
(
αpe

−iω̃ptb̂†p − H.c.
)
|vac〉 . (4.12)

For a mode p with a frequency in the pump bandwidth we have

b̂p |α(t)〉 = αpe
−iω̃pt |α(t)〉 , (4.13)

where αp is the pump amplitude in the pth mode. The average total photon number

for the pump is

〈α(t)|
∑
p

b̂†pb̂p |α(t)〉 =
∑
p

|αp|2e−2γpt. (4.14)

To obtain the dynamics of the generated light only, the coherent state of the pump
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is traced-out from the LME in Eq. (4.9). This amounts to replacing the total den-

sity operator with the reduced density operator 〈α(t)| ρ̂(t) |α(t)〉 and replacing the

nonlinear Hamiltonian in Eq. (4.7) with its form in the undepleted pump approxi-

mation [62], given by

ĤNL =
∑

m,l,p1,p2

Gmlp1p2αp1αp2e
−i(ω̃p1+ω̃p2 )tb̂†mb̂

†
l + H.c., (4.15)

where the pump operators b̂p1 and b̂p2 were replaced with their the expectation value

using the coherent state. We now make the crucial assumption that the pump is in a

single mode P . Putting p1 = p2 ≡ P into Eq. (4.15), we obtain

ĤNL = α2(t)
∑
m,l

GmlPP b̂
†
mb̂
†
l + H.c., (4.16)

where

α(t) = αP e−iω̃P t, (4.17)

is the time-dependent pump amplitude. For example in the CROW in Fig. 4.1c,

this assumption corresponds to the pump being in a single Bloch mode. For some

systems, however, this assumption can be relaxed. If, for example, one were to

take a Gaussian pump pulse that was normal to the surface of the CROW (as was

done in Ref. [89]), then the pump would be in a continuum of free-space modes.

However, if the transverse profile of the pump inside the crystal slab does not depend

on frequency, then only a single pump mode is important to the nonlinear interaction.

Another example is where one considers a pulsed pump in the continuum of modes of
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the channel waveguide in Fig. 4.1a. If the duration of the pump pulse in the channel

is much longer than the ring round-trip time, then the pump fits mostly into a single

mode of the ring (as we have shown in Ref. [36]). Since we neglect the nonlinear

interaction in the channel and only consider generation in the ring, then only a single

pump mode is crucial to the nonlinear interaction in the ring. In both of the last

two examples we can replace the constant pump amplitude αP in Eq. (4.17) with

a slowly-varying temporal envelope αP (t). The crucial point is that the nonlinear

Hamiltonian must take the form in Eq. (4.16) in order to derive our solution to the

LME.

Note that, although we are using the undepleted pump approximation, this for-

malism does include linear pump loss, through the imaginary parts of the pump mode

frequencies. Note also that one can easily adapt this formalism for SPDC, and all the

results below will follow, by just replacing α2(t) with a single pump amplitude α(t)

and using the nonlinear parameter χ(2) for a second-order nonlinear process [89] in

Eq. (4.16) instead.

In the next section we derive a semi-analytic solution to the LME for the Hamil-

tonian given by Eqs. (4.4) and (4.16) .

4.4 Analytic solution to the Lindblad master equation

In previous work we studied squeezed light generation in two-mode lossy cavities.

We showed that the density operator for the generated light in the cavity is a two-

mode squeezed thermal state for all time [69]. In this work we show that for a

structure with many lossy quasimodes, the density operator for the generated light is
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the MSTS,

ρ̂(t) = Ŝ (t) ρ̂th(t)Ŝ† (t) . (4.18)

Here, S(t) is the unitary multimode squeezing operator given by [25]

Ŝ(t) = exp

(
1

2

∑
m,l

zml(t)̂b
†
mb̂
†
l − H.c.

)
, (4.19)

where zml(t) are the elements of the complex symmetric squeezing matrix z(t). The

multimode thermal state ρ̂th(t) is a product of single-mode thermal states in each

mode [65], such that

ρ̂th(t) =
∏
m

1

1 + nm(t)

(
nm(t)

1 + nm(t)

)b̂†mb̂m
, (4.20)

where nm(t) is defined as the average thermal photon number for the mth mode. We

stress that the thermal photons are not related to actual thermal effects, but rather

capture the process of photon loss. The presence of nm(t) is due to a scattering

process that breaks the entanglement between the generated signal and idler photon

pairs. At this point the matrix z(t) and functions nm(t) are unknown functions of

time; in Sec. 4.4.1 and Sec. 4.4.3 we will derive equations of motion for them.

To show that the MSTS in Eq. (4.18) is the solution to the LME in Eq. (4.9), we

require that the equality

1 = ρ̂
−1/2
th (t)Ŝ†(t)ρ̂(t)Ŝ(t)ρ̂

−1/2
th (t) (4.21)
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is satisfied for all time. Taking the time derivative of Eq. (4.21), it can be shown that

0 = −ρ̂−1/2
th Ŝ†

dŜ

dt
ρ̂

1/2
th + ρ̂

1/2
th Ŝ

†dŜ

dt
ρ̂
−1/2
th + ρ̂

−1/2
th Ŝ†

dρ̂

dt
Ŝρ̂
−1/2
th + 2

dρ̂
−1/2
th

dt
ρ̂

1/2
th , (4.22)

where we drop the time-dependence for convenience.

The majority of the rest of this section is devoted to simplifying the four terms

on the right-hand side of Eq. (4.22).

Let the argument of the exponential squeezing operator be

σ̂ ≡ 1

2

∑
m,l

zmlb̂
†
mb̂
†
l − H.c., (4.23)

such that Ŝ = exp(σ̂) and Ŝ† = exp(−σ̂). In order to simplify Eq. (4.22) we need

to know the time derivative of the squeezing operator of Eq. (4.19). This is not

straightforward since σ̂ does not commute with its time derivative. The derivative of

the squeezing operator can be written as

dŜ

dt
=

d

dt

(
1 + σ̂ +

σ̂2

2!
+
σ̂3

3!
+ . . .

)
=
∞∑
n=0

∞∑
k=0

σ̂n ˙̂σσ̂k

(n+ k + 1)!
, (4.24)

where ˙̂σ ≡ dσ̂/dt. The sum in the last line of Eq. (4.24) has the integral representation

∞∑
n=0

∞∑
k=0

σ̂n ˙̂σσ̂k

(n+ k + 1)!
=

∫ 1

0

dye(1−y)σ̂ ˙̂σeyσ̂. (4.25)
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To prove this, we expand the exponentials in the integral in a series

∫ 1

0

dye(1−y)σ̂ ˙̂σeyσ̂ =
∞∑
n=0

∞∑
k=0

σ̂n ˙̂σσ̂k

n!k!

∫ 1

0

dy(1− y)nyk

=
∞∑
n=0

∞∑
k=0

σ̂n ˙̂σσ̂k

(n+ k + 1)!
, (4.26)

where the last line follows from the Euler integral of the first kind,

∫ 1

0

dy(1− y)nyk =
n!k!

(n+ k + 1)!
. (4.27)

Thus, putting Eq. (4.25) into Eq. (4.24) we obtain

dŜ

dt
=

∫ 1

0

dye(1−y)σ̂ ˙̂σeyσ̂. (4.28)

Using the well-known Baker-Campbell-Hausdorff formula [98] on the integrand in Eq.

(4.28) and multiplying the equation by Ŝ† = exp(−σ̂) from the left, we obtain

Ŝ†
dŜ

dt
=
∞∑
k=0

(−1)k

(k + 1)!
Ŝk, (4.29)

where the terms Ŝk can be obtained recursively from

Ŝk+1 = [σ̂, Ŝk], (4.30)

for k = 0, 1, . . ., where

Ŝ0 ≡ ˙̂σ. (4.31)
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Each σ̂ or ˙̂σ that appears in Eqs. (4.30) or (4.31) involves a double sum over the

quasimodes (see Eq. (4.23)). Thus, calculating the k > 0 terms of Ŝk becomes

intractable for multiple modes since each term has 2(k + 1) sums. However, by

introducing a new Schmidt basis via a Takagi factorization of ĤNL, in which the

squeezing operator is diagonal, we are able to calculate the terms Ŝk and show that

the sum in Eq. (4.29) converges even for the case of a multimode squeezing operator

(see Eq. (4.48)). In the next subsection we introduce this new Schmidt basis.

4.4.1 The Schmidt basis and the diagonal multimode squeezing operator

In this subsection we diagonalize the nonlinear Hamiltonian in Eq. (4.16) and the

multimode squeezing operator in Eq. (4.19) so that we can simplify the four terms

in Eq. (4.22) and prove that the MSTS is the solution to the LME.

We start by performing a Takagi factorization of the nonlinear parameter G in

ĤNL. The Takagi factorization decomposes the complex symmetric square matrix G

into the form

G = UΛUT, (4.32)

where Λ = diag(λ1, λ2, . . .) is a diagonal matrix with complex entries, U is a unitary

matrix with U †U = 1 and UT is the transpose of U . The Takagi factorization is

a special case of symmetric singular value decomposition (SVD) [99]. The diagonal

matrix Λ from the Takagi factorization is just a scaled version of the matrix of singular

values obtained from the symmetric SVD (see Appendix C.1).
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Putting Eq. (4.32) into Eq. (4.16) we obtain the diagonalized nonlinear Hamilto-

nian

ĤNL = α2(t)
∑
µ

λµB̂
†2
µ + H.c., (4.33)

where λµ (µ = 1, 2, . . .) are the diagonal entries of Λ, and we define the new creation

and annihilation Schmidt operators

B̂†µ ≡
∑
m

Uµmb̂
†
m, (4.34)

that have the standard commutation relation

[
B̂µ, B̂

†
ν

]
= δµν (4.35)

due to the orthogonality of the basis (
∑

m U
∗
µmUνm = δµν). We call the B̂µ Schmidt

operators, since when there is no loss they give the Schmidt decomposition of the

multimode squeezed state.

It is clear now why we have to assume the pump is separable into a spatial and

temporal part (see ĤNL in Eq. (4.16)). This makes the Schmidt mode basis indepen-

dent of time. Otherwise, a new Takagi factorization would have to be done at each

time and the operators B̂µ would become time-dependent. In practice one calculates

the nonlinear parameter G for a given structure by first calculating the quasimodes

of the structure using a method such as finite-difference time-domain (FDTD) and

then calculating the spatial overlap given in Eq. (4.8). Then one performs the Takagi

factorization of G to obtain the matrices U and Λ.
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We now make the ansatz for the squeezing parameter matrix z(t),

z(t) = Ur(t)eiφ(t)UT, (4.36)

where r(t) and φ(t) are real diagonal matrices containing the squeezing amplitudes

and squeezing phases of the Schmidt modes, that is r(t) = diag(r1(t), r2(t), . . .) and

φ(t) = diag(φ1(t), φ2(t), . . .). Putting Eq. (4.36) into Eq. (4.19), we obtain the

diagonal multimode squeezing operator

Ŝ(t) =
∏
µ

Ŝµ(t), (4.37)

where Ŝµ(t) is the single mode squeezing operator for the µth Schmidt mode, given

by

Ŝµ(t) ≡ exp

(
1

2
rµ(t)eiφµ(t)B̂†2µ − H.c.

)
. (4.38)

We show in Sec. 4.4.3 that this is the correct form of the multimode squeezing

operator, because when we impose this form, we can derive equations for the rµ(t)

and φµ(t) (see Eqs. (4.69) and (5.10)) that describe an MSTS that is a solution to the

LME. Note, one can obtain the squeezing matrix in the quasimode basis z(t), after

solving the equations for the rµ(t) and φµ(t) and putting them into Eq. (4.36).

Before moving to the next subsection, where we take the time derivative of Ŝ(t),

we present the squeezing transformation for the B̂µ and b̂m operators. These transfor-

mations are necessary when squeezing the terms in Eq. (4.22). Using the squeezing
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operator in Eq. (4.37), we obtain

Ŝ†B̂µŜ = Ŝ†µB̂µŜµ

= cosh(rµ)B̂µ + eiφµ sinh(rµ)B̂†µ, (4.39)

where the time-dependence is dropped for convenience. All other squeezing transfor-

mations involving products of Schmidt operators (such as B̂µB̂ν) can be derived from

Eq. (4.39) and the fact that different Schmidt operators commute. The squeezing

transformation of the b̂m operators is

Ŝ†b̂mŜ =
∑
µ

UµmŜ
†
µB̂µŜµ. (4.40)

4.4.2 The time derivative of the multimode squeezing operator

In this subsection we simplify the first two terms in Eq. (4.22) that involve the

derivative of the squeezing operator. We show that using the diagonal squeezing

operator in Eq. (4.37), we can calculate the sum in Eq. (4.29).

Using Eq. (4.37), along with the fact that the Ŝµ commute and that Ŝ†µŜµ = 1,

the left-hand side of Eq. (4.29) can be written as

Ŝ†
dŜ

dt
=
∑
µ

Ŝ†µ
dŜµ
dt

. (4.41)

Each term in the sum in Eq. (4.41) can be expanded using the right-hand side of Eq.
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(4.29)

Ŝ†µ
dŜµ
dt

=
∞∑
k=0

(−1)k

(k + 1)!
Ŝkµ. (4.42)

Putting Eq. (4.42) into Eq. (4.41), we obtain

Ŝ†
dŜ

dt
=
∑
µ

∞∑
k=0

(−1)k

(k + 1)!
Ŝkµ, (4.43)

where the terms Ŝkµ in Eq. (4.43) can be obtained recursively from

Ŝk+1µ = [σ̂µ, Ŝkµ] (4.44)

for k = 0, 1, . . ., where the k = 0 term is defined as

Ŝ0µ ≡ ˙̂σµ, (4.45)

where

σ̂µ ≡
1

2
rµ exp(iφµ)B̂†2µ − H.c.. (4.46)

Since the definition of σ̂µ does not contain sums over Schmidt modes, the problem

is reduced to just evaluating a series of commutators involving only single mode

operators. This is straightforward to do using the commutation relation for the B̂µ
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operators. The odd k and even k terms of the sum are

Ŝkµ =


− i

4
(2rµ)k+1φ̇µ

(
2B̂†µB̂µ + 1

)
, odd k ≥ 1

i
4
(2rµ)k+1φ̇µ

(
eiφµB̂†2µ + H.c.

)
, even k ≥ 2.

(4.47)

Putting ˙̂σµ and the terms in Eq. (4.47) into Eq. (4.43) and summing over k, we

obtain

Ŝ†
dŜ

dt
=
∑
µ

(
i

2
sinh2(rµ)

dφµ
dt

(
2B̂†µB̂µ + 1

)
+

(
1

2

drµ
dt

+
i

4
sinh(2rµ)

dφµ
dt

)
eiφµB̂†2µ

−
(

1

2

drµ
dt
− i

4
sinh(2rµ)

dφµ
dt

)
e−iφµB̂2

µ

)
. (4.48)

In order to derive Eq. (4.48) it is necessary that the Schmidt operators are time-

independent and have the standard commutator. In the next subsection we put Eq.

(4.48) into Eq. (4.22) and derive the set of coupled first-order differential equations for

the squeezing amplitudes (rµ), squeezing phases (φµ), and thermal photon numbers

(nm).
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4.4.3 Differential equations for the squeezing parameters and thermal

photon numbers

We are now in a position to simplify the four terms in Eq. (4.22).To make the

derivation clearer we redefine the terms in Eq. (4.22) to obtain

0 = T1 + T2 + T3, (4.49)

where

T1 ≡ −ρ̂−1/2
th Ŝ†

dŜ

dt
ρ̂

1/2
th + ρ̂

1/2
th Ŝ

†dŜ

dt
ρ̂
−1/2
th , (4.50)

T2 ≡ ρ̂
−1/2
th Ŝ†

dρ̂

dt
Ŝρ̂
−1/2
th , (4.51)

T3 ≡ 2
dρ̂
−1/2
th

dt
ρ̂

1/2
th . (4.52)

The transformations involving ρ̂
±1/2
th in T1 and T2 are performed using the identity

ρ̂
±1/2
th B̂µρ̂

∓1/2
th =

∑
m

U∗µmb̂mx
∓1/2
m , (4.53)

where

xm ≡
nm

1 + nm
. (4.54)

It is simple to generalize this identity to transformations involving the product of

operators, such as ρ̂
±1/2
th B̂µB̂ν ρ̂

∓1/2
th .

Our strategy is to reduce T1, T2, and T3 to expressions that are a sum of

Schrödinger operators multiplied by time-dependent coefficients that depend on the
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squeezing amplitudes rµ(t), squeezing phases φµ(t), and thermal photon numbers

nm(t), respectively as well as their first derivatives. Then we force these coefficients

to be zero, such that Eq. (4.49) is satisfied. The result is a set of coupled first-order

differential equations for ṙµ(t), φ̇µ(t), and ṅm(t).

Putting Eq. (4.48) in T1 and using Eq. (4.53), we obtain

T1 =
∑
m,l

(
Dmlb̂

†
mb̂
†
l +D∗mlb̂mb̂l + Fmlb̂

†
mb̂l

)
, (4.55)

where the time-dependent coefficients Dml and Fml are

Dml =
xmxl − 1

2
√
xmxl

∑
µ

UmµUlµ

(
ṙµ +

i

2
sinh(2rµ)φ̇µ

)
eiφµ , (4.56)

and

Fml = i
xm − xl√
xmxl

∑
µ

UmµU
∗
lµφ̇µ sinh2(rµ). (4.57)

Obtaining these coefficients requires many lines of algebra but it is a straightforward

exercise.

In order to derive the equations for ṙµ and φ̇µ, we define new Schrödinger operators

V̂ml ≡ b̂mb̂l + b̂†mb̂
†
l , (4.58)

Ŵml ≡ −îbmb̂l + îb†mb̂
†
l , (4.59)
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such that Eq. (4.55) can be written as

T1 =
∑
m,l

(
Re{Dml}V̂ml + Im{Dml}Ŵml + Fmlb̂

†
mb̂l

)
, (4.60)

where Re{Dml} and Im{Dml} are the real and imaginary parts of Dml.

Next we write T2 in terms of the operators V̂ml and Ŵml. The main calculation

in T2 is the squeezing transformation of dρ̂/dt. This is the LME in Eq. (4.9). The

nonlinear Hamiltonian in the master equation is replaced with its diagonal form in

Eq. (4.33). The squeezing transformations are performed using Eq. (4.40). Then by

using Eq. (4.53), it can be shown that Eq. (4.51) simplifies to

T2 =
∑
m,l

(
Re{Eml}V̂ml + Im{Eml}Ŵml +Kmlb̂

†
mb̂l

)
+
∑
µ,ν

Γµν cosh(rµ) cosh(rν)
∑
m

UmµU
∗
mνxm

−
∑
µ

Γµµ sinh2(rµ), (4.61)

where

Γµν ≡ 2
∑
m

γmU
∗
mµUmν , (4.62)

and the time-dependent coefficients Eml and Kml are
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Eml =
∑
µ,ν

UmµUlνe
iφν cosh(rµ) sinh(rν)

(
−iΩµν

xmxl − 1
√
xmxl

+
1

2
Γµν

1 + xmxl − 2xm√
xmxl

)
+
i

~
xmxl − 1
√
xmxl

∑
µ

UmµUlµeiφµ
(
α2λµe−iφµ cosh2(rµ) + α∗2λ∗µeiφµ sinh2(rµ)

)
,

(4.63)

Kml =
∑
µ,ν

UmµU
∗
lν cosh(rµ) cosh(rν)

(
iΩµν

xm − xl√
xmxl

+
1

2
Γµν

2xmxl − xm − xl√
xmxl

)
+
∑
µ,ν

UmµU
∗
lνe

i(φµ−φν) sinh(rµ) sinh(rν)

(
iΩ∗µν

xm − xl√
xmxl

+
1

2
Γ∗µν

2− xm − xl√
xmxl

)
− 2

~
xm − xl√
xmxl

∑
µ

UmµU
∗
lµ cosh(rµ) sinh(rµ)

(
α2λµe−iφµ + α∗2λ∗µeiφµ

)
, (4.64)

where

Ωµν ≡
∑
m

ωmU
∗
mµUmν . (4.65)

Since the derivative of the thermal state ρ̂th in Eq. (4.20) is easy, T3 requires no

special treatment in order to simplify. Putting Eq. (4.20) into Eq. (4.52) we obtain

T3 =
∑
m

(
− ẋm
xm

b̂†mb̂m +
ẋm

1− xm

)
. (4.66)

To form the differential equations for ṙµ and φ̇µ, we set the sum of the coefficients

in front of V̂ml and Ŵml in Eqs. (4.60) and (4.61) to zero. This gives

Re{Dml} = −Re{Eml}, (4.67)

Im{Dml} = − Im{Eml}. (4.68)



4.4. ANALYTIC SOLUTION TO THE LINDBLAD MASTER EQUATION 123

In Appendix C.2.1, we show that Eq. (4.67) leads to an equation for ṙµ and Eq.

(4.68) for φ̇µ. The resulting differential equations are:

ṙµ =
1

i~
(
α2λµe−iφµ − c.c.

)
− 1

2

∑
ν,σ

cosh(rν) sinh(rσ)

×

(
Γνσei(φσ−φµ)

∑
m,l

−nm + nl + 1

nm + nl + 1
UmνUlσU

∗
mµU

∗
lµ + c.c.

)
, (4.69)

φ̇µ = −2Ωµµ −
2

~ tanh(2rµ)

(
α2λµe−iφµ + c.c.

)
+
i

2

∑
ν,σ

cosh(rν) sinh(rσ)

cosh(rµ) sinh(rµ)

(
Γνσei(φσ−φµ)

∑
m,l

−nm + nl + 1

nm + nl + 1
UmνUlσU

∗
mµU

∗
lµ − c.c.

)
.

(4.70)

In order to obtain an equation for ṅm, the operators b̂†mb̂l in T1, T2, and b̂†mb̂m in

T3 are expanded in terms of the Schmidt operator B̂†µB̂ν using Eq. (4.34). This is

necessary since it creates a common operator B̂†µB̂ν that is shared between T1, T2,

and T3. Then setting the sum of the coefficients in front B̂†µB̂ν equal to zero, we show

in Appendix C.2.2 that this leads to the following equation for ṅm,

ṅm = (1 + nm)
∑
ν,σ

UmνU
∗
mσΓ∗νσei(φν−φσ) sinh(rν) sinh(rσ)

− nm
∑
ν,σ

UmνU
∗
mσΓνσ cosh(rν) cosh(rσ). (4.71)

In order to complete the derivation, we have to show that the sum of the coeffi-

cients in front of the identity operator in T2 (Eq. (4.61)) and T3 (Eq. (4.66)) is zero.
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Collecting the appropriate terms from Eq. (4.61) and Eq. (4.66), we obtain

0 =
∑
m

ṅm
1 + nm

−
∑
µ

Γµµ sinh2(rµ)

+
∑
µ,ν

Γµν cosh(rµ) cosh(rν)
∑
m

UmµU
∗
mν

nm
1 + nm

. (4.72)

Putting Eq. (4.71) into Eq. (4.72) and summing over m, it is easily shown that the

right-hand side is equal to zero, where we use the fact that
∑

m UmνU
∗
mσ = δνσ, and

Γ∗µµ = Γµµ. This completes the derivation since we have shown that the coefficients

in front of the operators V̂ml, Ŵml, B̂
†
µB̂ν , and the identity operator sum to zero.

The key result of this work are Eqs. (4.69) - (4.71), which describe the time-

dependence of the squeezing amplitudes, squeezing phases, and thermal photon num-

bers of the MSTS. For a system of M quasimodes, they form a set of 3M coupled

first-order differential equations, which can be easily solved on a standard PC. The

benefit of having these equations is that once they are solved, we have the time-

dependent density operator of the MSTS and with it we can calculate any observ-

ables such as the correlation variance and photon number. Note that the number of

equations does not depend on the number of photons at all. In contrast, numerical

techniques for calculating the density operator often require solving a large number

of coupled equations that depend on the photon number [92]. Therefore our approach

can greatly reduce the number of coupled equations, making it more feasible to study

large, multimode, lossy structures.

We note that the coupled equations as formulated apply only to a set of dis-

crete modes. If one has a continuum of modes, such as for the Bloch modes of a

CROW, one needs to simply discritize the modes by applying the appropriate (e.g.
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periodic) boundary conditions. Otherwise, the equations become a set of coupled

integro-differential equations, which become difficult to solve computationally with-

out discretization. In Sec. 4.7 we solve these equations for a CROW with four cavities,

where we use periodic boundary conditions to quantize the allowed Bloch vectors. In

Appendix C.3 we discuss how to solve Eqs. (4.69) - (4.71) when the initial state is

the vacuum state.

In the next section we derive expressions for the expectation value of the photon

number operator and the same-time correlation variance between different quasimodes

using the MSTS.

4.5 Expectation values and the correlation variance

In this section we use the MSTS to evaluate the expectation value of the quasimode

number operator and to calculate the same-time correlation variance between pairs

of quasimodes. Let X̂ml and Ŷml be linear combinations of the quasimode quadrature

operators

X̂ml =
b̂me−iθm + b̂†meiθm

2
− b̂le

−iθl + b̂†l e
iθl

2
, (4.73)

Ŷml =
b̂me−iθm − b̂†meiθm

2i
+
b̂le
−iθl − b̂†l eiθl

2
, (4.74)

where θm and θl are angles in phase space. In order to quantify the inseparability of

the MSTS, the correlation variance [41] between two quasimodes m and l is defined

as

∆2
ml(t) =

〈(
∆X̂ml

)2
〉

+

〈(
∆Ŷml

)2
〉
, (4.75)



4.5. EXPECTATION VALUES AND THE CORRELATION VARIANCE 126

where

〈(
∆X̂ml

)2
〉
≡ Tr

(
ρ̂(t)X̂2

ml

)
, (4.76)〈(

∆Ŷml

)2
〉
≡ Tr

(
ρ̂(t)Ŷ 2

ml

)
, (4.77)

is defined as the variance of the operator and ρ̂(t) is the density operator for the MSTS.

Here we have used the fact that
〈
X̂ml

〉
=
〈
Ŷml

〉
= 0. It can be proved [22, 23] that

the MSTS is inseparable, and thus contains entanglement, iff ∆2
ml < 1.

In order to calculate the correlation variances one needs to know the expectation

values
〈
b̂†mb̂l

〉
and

〈
b̂mb̂l

〉
. Using the Schmidt operators, we obtain

〈
b̂†mb̂l

〉
=
∑
µ,ν

U∗µmUνl

〈
B̂†µB̂ν

〉
, (4.78)

〈
b̂mb̂l

〉
=
∑
µ,ν

UµmUνl

〈
B̂µB̂ν

〉
, (4.79)

where the expectation values of the Schmidt operators are

〈
B̂†µB̂ν

〉
= Tr

[
ρ̂th(t)Ŝ†(t)B̂†µB̂νŜ(t)

]
, (4.80)〈

B̂µB̂ν

〉
= Tr

[
ρ̂th(t)Ŝ†(t)B̂µB̂νŜ(t)

]
. (4.81)

These can be simplified using the squeezing transformation in Eq. (4.39) followed by

the thermal state transformation in Eq. (4.53). Doing this, Eq. (4.78) and Eq. (4.79)
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become

〈
b̂†mb̂l

〉
=
∑
µ,ν

(
U∗µmUνl cosh(rµ) cosh(rν) + U∗νmUµl sinh(rµ) sinh(rν)e

i(φµ−φν)
)
ηµν

+
∑
µ

U∗µmUµl sinh2(rµ), (4.82)

〈
b̂mb̂l

〉
=
∑
µ,ν

(UµmUνl + UνmUµl) sinh(rµ) cosh(rν)e
iφµηµν

+
∑
µ

UµmUνl cosh(rµ) sinh(rµ)eiφµ , (4.83)

where

ηµν(t) ≡
∑
m

UµmU
∗
νmnm(t). (4.84)

The time-dependent expectation value of the photon number operator for the mth

quasimode
〈
b̂†mb̂m

〉
can be obtained by letting m = l in Eq. (4.82). Also, putting

Eq. (4.82) and Eq. (4.83) into Eq. (4.75) one can calculate the time-dependent

correlation variance between any two modes and quantify the inseparability of the

MSTS.

4.6 Limiting cases and comparison to other work

In this section we discuss three limiting cases to our multimode theory presented

above and compare the results to other work. The first limit is when the modes are all

lossless, such that the imaginary part of every quasimode is equal to zero (γm = 0).

In this limit we show that our theory gives a MSVS, and show that the squeezing

parameter and squeezing phase we obtain agree with other work [93]. The second
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limit we consider is when there is only a single lossy mode that holds the squeezed

light. We show that in this limit our multimode theory gives a single-mode squeezed

state in agreement with previous work [35]. In the third limit we allow two lossy

modes for the squeezed light and show that our theory gives a two-mode squeezed

thermal state in agreement with our previous work [69].

4.6.1 Lossless modes

If the modes are lossless, then the thermal photon number nm of each mode is

equal to zero and the thermal state in Eq. (4.18) gets replaced with the vacuum state

|0〉 〈0|. Furthermore, the terms proportional to γm are dropped in the LME, so it

becomes the quantum Liouville equation. Therefore the density operator becomes

ρ̂(t) = Ŝ(t) |0〉 〈0| Ŝ†(t), (4.85)

which is the density operator for a MSVS. One can determine the squeezing parameter

rµ and squeezing phase φµ for this state by letting γm = 0 in Eq. (4.69) and Eq. (5.10).

Doing this we obtain

ṙµ =
1

i~
(
α2λµe−iφµ − c.c.

)
, (4.86)

φ̇µ = −2Ωµµ −
2
(
α2λµe−iφµ + c.c.

)
~ tanh(2rµ)

. (4.87)

Assuming that the system starts initially in vacuum at t = ti with rµ(ti) = 0, the

second term in Eq. (4.87) goes to infinity. To prevent this we force the numerator to
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be zero initially and also at all later times. Thus to obtain our final solution we put

Re
{
α2λµe−iφµ

}
= 0. (4.88)

Writing α2(t) = |α(t)|2 exp(−iχ(t)) and λµ = |λµ| exp(iθµ), where χ(t) is a time-

dependent phase and θµ is a time-independent phase, we obtain from Eq. (4.88) the

phase condition

−χ(t) + θµ − φµ(t) = π/2. (4.89)

Putting Eq. (4.89) into Eq. (4.86) and Eq. (4.87) and integrating gives

rµ(t) =
2|λµ|
~

∫ t

ti

dt′|α(t′)|2, (4.90)

φµ(t) = −2(t− ti)Ωµµ + φµ(ti). (4.91)

Therefore the multimode squeezing operator can be written as

Ŝ(t) =
∏
µ

exp

(
|λµ|
~
rµ(t)e−2iΩµµtB̂†2µ − H.c.

)
, (4.92)

where we let φµ(ti) = 2Ωµµti. The MSVS we obtain is given by Ŝ(t) |0〉. This is the

same state obtained by Quesada N. et al., following a similar procedure that uses the

Takagi factorization (see Eq. (204) and Eqs. (237) - (238) in Ref. [93]). We note that

this state has the same form one obtains in the weak pump limit (i.e. α � 1) by

keeping only the first-order terms in the Dyson or Magnus expansion of the evolution

operator, a result that is also noted by Quesada N. et al. [93]. For lossless modes the
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expectation values of Eq. (4.82) and Eq. (4.83) become

〈
b̂†mb̂l

〉
=
∑
µ

U∗µmUµl sinh2(rµ), (4.93)

〈
b̂mb̂l

〉
=
∑
µ

UµmUµl cosh(rµ) sinh(rµ)eiφµ . (4.94)

These are the same results that were derived by Quesada N. et al. (see Eqs. (234) -

(235) in Ref. [93]).

4.6.2 Lossy single-mode squeezed states

In this subsection we show that for a single lossy mode the coupled differential

equations Eqs. (4.69) - (5.11) give a squeezing amplitude, squeezing phase, and

thermal photon number that agrees with previous work on single-mode squeezed

thermal states [35]. In this case, the Takagi factorization of the nonlinear parameter

is trivial since there is only one mode. The matrix U has only a single entry U11 = 1.

The single-mode squeezing operator can be written as

Ŝ(z(t)) = exp

(
1

2
z11(t)̂b†21 − H.c.

)
, (4.95)

where the single squeezing parameter z11(t) is given simply by

z11(t) = r1(t)eiφ1(t). (4.96)

Thus, using Eq. (4.39) the quasimode and Schmidt operators are identical b̂ = B̂.

Only keeping the m = l = µ = ν = 1 terms in Eqs. (4.69) - (5.11) and putting
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U11 = 1 we obtain

ṙ1 =
2|α|2|λ|

~
− 2γ1

2n1 + 1
cosh(r1) sinh(r1), (4.97)

φ̇1 = −2ω1, (4.98)

ṅ1 = 2γ1

(
sinh2(r1)− n1

)
, (4.99)

where we have used the phase condition in Eq. (4.89) again to simplify the equations.

These equations are derived for SFWM, but they can be easily adapted for SPDC.

The only things that need to change are in Eq. (4.97), |λ| has to be redefined for

SPDC, and |α|2 becomes |α|. Therefore, the structure of the equations is unchanged

for SPDC. In light of this, these equations are seen to agree with previous work for

single-mode squeezed states in a lossy cavity [35].

For a single lossy mode, the expectation values in Eq. (4.82) and Eq. (4.83)

become

〈
b̂†1b̂1

〉
= n1 cosh(2r1) + sinh2(r1), (4.100)〈

b̂1b̂1

〉
= (2n1 + 1) cosh(r1) sinh(r1). (4.101)

These are the same equations that were derived in previous work [65].

4.6.3 Lossy two-mode squeezed states

In this subsection, we show that for two lossy modes the coupled equations give re-

sults that agree with our previous work on two-mode squeezed states. For two modes,
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the nonlinear parameter is a 2× 2 symmetric matrix and its Takagi factorization is

 0 G12

G12 0

 = U

G12 0

0 G12

UT, (4.102)

where we neglect generation of squeezed light in single modes by letting G11 = G22 =

0. The unitary matrix U is given by

U =
1

2

1− i 1 + i

1 + i 1− i

 . (4.103)

Using Eq. (4.36), the squeezing parameter is given by

 0 z12(t)

z12(t) 0

 = U

r(t)eiφ(t) 0

0 r(t)eiφ(t)

UT, (4.104)

where z12 ≡ r exp(iφ). There is a single squeezing amplitude (r(t)) and squeezing

phase (φ(t)), but the thermal photon number for the two modes, n1(t) and n2(t), are

allowed to be different. This means that the photon loss rates are different for each

mode. Putting this U into Eqs. (4.69) - (5.11) and letting λ = G12, we obtain

ṙ =
2|α|2|λ|

~
− cosh(r) sinh(r)

1 + n1 + n2

[γ1 + γ2 + (γ1 − γ2) (n2 − n1)] , (4.105)

φ̇ = − (ω1 + ω2) , (4.106)

ṅ1 = 2n1

[
γ2 sinh2(r)− γ1 cosh2(r)

]
+ 2γ2 sinh2(r), (4.107)

ṅ2 = 2n2

[
γ1 sinh2(r)− γ2 cosh2(r)

]
+ 2γ1 sinh2(r). (4.108)
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These equations have the same form as those that were derived in our previous work

on two-mode squeezed states (see Eqs. (19) - (22) in Ref. [69]) generated via SPDC.

As mentioned in the previous subsection, we can adapt Eqs. (4.105) - (4.108) for

SPDC by replacing |α|2 and λ with |α| and the nonlinear parameter for SPDC.

4.7 Results for a four-cavity CROW

In this section we present our results from solving the coupled equations Eqs.

(4.69) - (4.71) for SFWM in a system of four coupled-cavities. The structure is

the CROW in Fig. 4.1c, but we take the structure to have only four cavities and we

enforce periodic boundary conditions at the two ends of the four-cavity system. Thus,

the quasimodes are Bloch modes, but the allowed Bloch vectors, k, are quantized,

such that there are only four allowed values. Although such boundary conditions

are not physically realizable, we choose this system because it is simple and gives

analytic expressions for the complex mode frequencies and the effective nonlinear

parameters. This toy-model is intended to demonstrate how to go about solving the

system of equations when there are more than the two modes that have been modeled

in previous work [69].

To obtain our results we use parameters from a CROW studied in previous work.

The photonic crystal slab that contains the coupled-cavities has a refractive index of

n = 3.4 and a second-order refractive index of n(2) = 4.5×10−18 m2/W, corresponding

to Si at telecom wavelengths [100]. The photonic crystal is a square lattice with

lattice constant, d. The slab thickness is 0.8d and the air-hole radius is 0.4d. Using

these parameters, with find from finite-difference time domain calculations that each

individual cavity contains a single mode at the frequency ω̃0 = (0.305 − i7.71 ×
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10−6)2πc/d, resulting in a quality factor Q0 = 19800 [96]. The Bloch modes and

their frequencies are obtained using a nearest-neighbour tight-binding model, where

the individual cavity modes form a basis [90]. The computed frequencies of the 4

Bloch modes at kD = {−π/2, 0, π/2, π} are shown in Tab. 4.1a, where D ≡ 2d is the

periodicity of the CROW. Since the CROW is effectively a one-dimensional system,

we do not consider transverse wavevector components. The expression for the CROW

dispersion is approximately given by [89]

ω̃k ≈ ω̃0

(
1− β̃1 cos(kD)

)
, (4.109)

where β̃1 = 9.87×10−3−i1.97×10−5 is the complex coupling parameter between indi-

vidual nearest-neighbour cavity modes [96]. This expression gives the loss dispersion

of the CROW as well, it can be obtained by −2 Im{ω̃k}.

We let the pump be a continuous-wave with frequency ωP , modelled by a coherent

state with amplitude

α(t) = |α| e−iωP t, (4.110)

where |α|2 is the average pump photon number. The pump is in the single Bloch mode

with wavevector kP = π/(2D) and frequency ωP = 0.305(2πc/d). Signal and idler

photons are generated via SFWM into modes with wavevectors k1 and k2, respectively.

The effective nonlinear parameter for this process (see Eq. (4.8)) has been shown to

be approximately given by [90]

Gk1k2kP kP ≈ G0e−i∆kD/2
sinc (M∆kD/2)

sinc (∆kD/2)
, (4.111)
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Table 4.1: (a) Bloch mode wavevectors k and their complex frequencies ω̃k for a
CROW with 4 cavities. Here D ≡ 2d is twice the lattice spacing d. (b) Diagonal
values λµ and Schmidt frequencies Ωµµ for the µth Schmidt mode. The four
Schmidt modes are obtained by taking the Takagi factorization of the nonlinear
parameter in Eq. (4.111).

(a)

kD ω̃kd/(2πc)

π 0.308010− i1.38× 10−5

±π/2 0.305000− i7.71× 10−6

0 0.301990− i1.63× 10−6

(b)

µ λµ Ωµµd/(2πc)

1 1.21 0.304877

2 1.16 0.304999

3 0.742 0.304953

4 0.665 0.305170

where ∆k ≡ k1 + k2− 2kP is the phase mismatch between the different Bloch modes,

M is the total number of cavities, and

G0 ≡
~2ω2

0χ
(3)
eff

16ε0MVeff

, (4.112)

where χ
(3)
eff is the effective nonlinear coefficient, and Veff is the effective mode volume

of the individual cavity mode.

Now we perform a Takagi factorization of the nonlinear parameter in Eq. (4.111).

The resulting diagonal values λµ and Schmidt mode frequencies Ωµµ (see Eq. (4.65))

are shown in Tab. 4.1b. We note that the λµ do not add to one, since these are not

the eigenvalues of the density operator. The frequencies Ωµµ are all within 0.06% of

the pump frequency ωP . This is due to the dispersion of the Bloch mode frequencies

having a small bandwidth and choosing the pump to be at the center of the band.

This will not be the case for a general structure. As we show below, however, the

Schmidt modes with frequencies that are nearly on resonance with the pump have
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larger squeezing amplitudes than those that are off resonance.

To obtain a particular solution, we initially let the system be in the vacuum state

by setting all the squeezing amplitudes and thermal photon numbers equal to zero.

In Appendix C.3 we discuss how to solve the coupled equations starting from the

vacuum (see Eqs. (C.22) and (C.23)), particularly how to choose the initial squeezing

phase. At time t = 0 the pump is put into the Bloch mode kP = π/(2D) and then it

generates signal and idler photons in the Bloch modes k1 and k2, respectively. Using

these initial conditions, we solve Eqs. (4.69) - (5.11) numerically using a Runge-Kutta

method (such as the ode45 function in MATLAB). For 4 modes it takes on the order

of 10 seconds to solve the equations using a standard PC.

In what follows, we use tc as our unit of time, where tc is defined as the time it

takes a pulse of light with group velocity v to propagate the total distance, L, of the

coupled-cavity structure:

tc ≡
L

v
. (4.113)

For 4 cavities with a lattice constant of d = 480nm, the length of the structure is

L = 2.9µm. If the pulse is centered at kD = π/2, and assuming linear dispersion

in Eq. (4.109), then the group velocity of the pulse is approximately v = c/26.6.

Therefore, we obtain tc = 0.25ps. Additionally, we define the pumping strength

dimensionless parameter,

g ≡ 4G0 |α|2 tc
~

, (4.114)

which scales the squeezing amplitude in all the Schmidt modes. In all that follows,



4.7. RESULTS FOR A FOUR-CAVITY CROW 137

we set g = 1/12. This value of g can be achieved with an average pump photon

number of |α|2 = 4.6 × 107 and an effective mode volume of Veff = 3(µm)3 for the

cavity mode with frequency ω̃0. It gives squeezing amplitudes in the Schmidt modes

that are on the order of one, while keeping the thermal photon number many orders

of magnitude below the number of photons in the pump.

We start by considering the Schmidt mode squeezing amplitudes in Fig. 4.2a. At

t = 0 the pump is turned on and the rµ initially increase linearly with time, where it

can be shown using Eq. (4.69) that the slope is approximately given by ṙµ ≈ g|λµ|/2

(see also Eq. (D.79)). This is because for short times the thermal noise and detuning

|Ωµµ − ωP | can be neglected. The Schmidt modes that are detuned from the pump

will have oscillations in their rµ and an rµ that is smaller than that of the modes that

are on resonance with the pump. The oscillations exist for Schmidt modes that have a

detuning from the pump frequency that satisfies |Ωµµ− ωP |tc > g|λµ|/2. Thus, these

oscillations will disappear if we increase the pumping strength g. If, however, g is

small, then the period of the oscillations are approximately given by π(|Ωµµ−ωP |tc)−1.

For example, using this expression, the squeezing amplitude in the µ = 1 and µ = 4

Schmidt modes have periods of approximately 26tc and 19tc, respectively. As time

increases, the amplitude of the oscillations are dampened due to the intrinsic losses

of the Bloch modes.

Next, we consider the derivative of the Schmidt mode squeezing phases, φ̇µ, in

Fig. 4.2b. Initially the derivative is approximately constant, corresponding to the

phases increasing linearly with time. In Appendix C.3 we show that for short times

φ̇µ(t) ≈ Ωµµ + ωP . The modes µ = 2 and µ = 3 that are close to resonance with

the pump have an approximately constant phase derivative approaching 2ωP . The
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detuned modes µ = 1 and µ = 4 have peaks in their phase derivatives whenever

the squeezing amplitude is close to zero. This is because in Eq. (5.10) the term

proportional to 1/ tanh(2rµ) is large when rµ � 1, which causes φ̇µ to increase.

(a) (b)

Figure 4.2: (a) Squeezing amplitudes rµ and (b) derivatives of the squeezing phases
φ̇µ in the four Schmidt modes of four coupled-cavities. Here tc = 0.25ps is the time
for a light pulse to cross the length of the structure.

(a) (b)

Figure 4.3: (a) Thermal photon number nk and (b) average total photon number in
the Bloch modes of four coupled-cavities.

Now, we present the average thermal photon numbers in the Bloch modes, nk, in
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Fig. 4.3a. At short times t < 10tc the nk are negligible. The nk do not go above

approximately 10 for the pumping strength g = 1/12. The majority of the thermal

noise is generated in the Bloch modes with positive wavevectors. The nk in the Bloch

mode with kD = −π/2 is only approximately 0.01.

In Fig. 4.3b we calculate the average total photon number using Eq. (4.79).

There are on the order of approximately 103 total photons generated by the nonlinear

process. The majority are generated in the forward-propagating Bloch mode, kD =

π/2 and kD = π and k = 0. Only approximately 0.1 photons, on average, are

generated in the backward-propagating Bloch mode, kD = −π/2.

4.8 Conclusion

The key finding in this paper is that the solution to the LME for a set of lossy

quasimodes is the density operator for a MSTS (see Eq. (4.18)). In order to prove this

we introduce an orthogonal Schmidt basis via the Takagi factorization in Sec. 4.4.1

to diagonalize the nonlinear Hamiltonian and squeezing operator. The main result

is a set of coupled first-order differential equations that the squeezing amplitude,

squeezing phase, and thermal photon numbers must obey in order for the MSTS to

be a solution (see Eqs. (4.69) - (4.71)).

In order to derive the solution, we make the undepleted pump approximation on

the nonlinear Hamiltonian and assume that the nonlinear parameter is essentially the

same for all pump modes in the pump bandwidth and neglect its dependence on the

pump frequencies (see Sec. 4.3.1). The latter assumption is valid for a pump pulse

in a waveguide or free space as long as the pulse is long in duration.

Our theory is applicable to the orthogonal set of discrete lossy modes in structures,
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such as MRRs, coupled-MRRs, CROWs, and high-Q cavities coupled to a waveguide

in a photonic crystal (see Fig. 4.1).

Our results are consistent with previous work done on single-mode and two-mode

squeezed thermal states (see Refs. [35] and [69]) as presented in Sec. 4.6. Also in

the limit where the quasimodes become lossless, our solution reduces to a MSVS,

and it agrees with other work [93] that used a similar approach also using a Takagi

factorization.

To our knowledge, this is the first time the analytic solution for the quantum state

of light generated via nonlinear processes in M > 2 lossy modes has been derived.

Not only is the solution of theoretical importance, it can greatly reduce the number

of coupled differential equations required to solve for the density operator. One

alternative way to determine the density operator numerically, is by calculating its

matrix elements using Fock states. The number of possible states for N photons in M

quasimodes is
∑N

j=0

(
j+M−1

j

)
= (M +N)!/(M !N !) [92], where

(
n
k

)
= n!/[k!(n− k)!] is

the binomial coefficient. In order to find the matrix elements, the number of coupled

equations one has to solve is the square of this. However, using our results one can

determine the density operator by solving only 3M coupled first-order differential

equations that are independent of N . For example if N = 20 and M = 4 there are

10626 basis states and thus (10626)2 coupled equations. But our theory would only

require solving 12 coupled equations.

The expressions we derive for the correlation variances (see Sec. 4.5) only contain

double sums over the Schmidt modes and do not require one to solve any additional

coupled equations. Thus, the differential equations only need to be solved once and

then any same-time correlation variances of interest can be quickly calculated.
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We believe that our new solution to this important problem will make it more

feasible to study large multimode lossy structures and to optimize them for a wide

variety of quantum information applications. In future work, we will apply our theory

to more physically realistic structures, such as many-cavity CROWs and MRRs. We

then hope to show that the generated MSTS is an approximate Gaussian cluster state

[34,101]. To do this, one needs to determine under what conditions on the nonlinear

parameter and/or the squeezing matrix, does the state satisfy nullifier equations. If

it is possible to determine these conditions for the MSTS we derived, then it can be

used as a cluster state resource for quantum computations [81].



Chapter 5

Nonlinear optical generation of entangled squeezed

states in lossy nonorthogonal quasimodes: an

analytic solution

In the previous chapter, we proved that the nonlinearly-generated light in the

lossy modes of resonant cavities has the density operator of an MSTS. However, we

assumed that the lossy modes were orthogonal in order to derive the solution. This

assumption means that our solution could only be applied to idealized structures that

have high-symmetry. In this chapter, we remove this assumption and consider the

general case of nonorthogonal lossy mode, and prove that the density operator still

has the analytic form of an MSTS in this most general case. This manuscript was

submitted to Physical Review Letters on the 13th of October, 2022.

Abstract – We prove that the density operator for the nonlinearly-generated

quantum state of light in the M lossy nonorthogonal quasimodes of a nanocavity

system has the analytic form of a multimode squeezed thermal state, where the time-

dependence of the squeezing and thermal photon parameters are given by a set of 3M

coupled differential equations. We apply our approach to a system with two highly

142
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nonorthogonal quasimodes and obtain good agreement with simulations using a basis

of Fock states. Our approach provides an efficient way to model and optimize the

generation of mixed Gaussian cluster states.

5.1 Introduction

Squeezed states of light are the fundamental states used to generate multimode

entangled states for CV quantum computing [102]. Multimode entangled states can

be made by propagating a series of squeezed states through an array of linear optical

elements, which together entangle the modes in both frequency and time [86,103–105].

Alternatively, they can be generated directly in multimode nanocavity systems using

the nonlinear optical processes of SFWM or SPDC [106]. Using the first approach, it

has been demonstrated experimentally that three-dimensional cluster states can be

generated, which can be used to make a universal quantum computer [81]. Using the

second approach, universal CV cluster states have been created using an OPO, where

the quantum information is encoded in the quadratures of the optical frequency comb

of the OPO [107,108]. Also, cluster states have been generated using an MRR [109],

where the squeezed modes are simultaneously entangled in frequency and time. In

this paper, we use the second approach and theoretically study the generation of

multimode entangled states via SFWM in general lossy multimode structures.

Theoretical studies on CV cluster states have largely focused on the generation

of an MSVS, a pure Gaussian state, where the scattering losses are neglected during

its generation [34, 86, 106]. However, the nonlinear nanophotonic structures used to

generate the light have lossy modes that leak energy into the surrounding environ-

ment. Therefore, the generated light in the lossy modes cannot be in a pure state.
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We refer to the lossy modes of a structure as quasimodes, which are eigenstates of the

non-Hermitian linear Hamiltonian, with complex frequencies, ω̃m = ωm − iγm, that

have a real part, ωm, as well as an imaginary part, γm, that quantifies the energy

leakage.

Figure 5.1: Schematics of two different square lattice photonic crystal slab structures of
interest (the white circles are air-holes). The first structure (a) consists of two coupled
cavities side-coupled to a defect-waveguide. The second structure (b) consists of three
coupled high-Q cavities, side-coupled to a coupled-resonator optical waveguide.

Theoretical work including the effects of scattering loss has been done on the

generation of entangled states and squeezed states via SFWM or SPDC in MRRs

[36, 53, 69], nonlinear waveguides [110], and coupled-cavities in a photonic crystal

slab [89, 90]. Recently, it was proven that the generated light in the quasimodes in

such systems takes the form of a MSTS [82], where the thermal part of the state

captures the photon loss. It was demonstrated that the amount of squeezing in the

MSTS is less than it is in a MSVS with the same squeezing parameter, due to an

increase in quadrature noise arising from scattering loss during the generation and

propagation processes. Although these studies have not focused on generating cluster

states, the MSTS solution opens up a path to study cluster states generated by SFWM

in lossy structures.
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The MSTS solution has thus far only been proven for the case when the quasi-

modes are orthogonal, which will only occur for the modes in structures that have

high symmetry, such as the ring modes of an MRR or the Bloch modes of a defect

waveguide in a photonic crystal slab. In these structures, the quasimodes are eigen-

modes of symmetry operators (e.g. rotational or translational) that make quasimodes

of different frequency orthogonal. As a result, their spatial overlap integral is zero.

The quasimodes of general lossy structures are not orthogonal and thus the MSTS so-

lution has only been shown to be valid for a restricted set of idealized high-symmetry

structures.

There are many structures of interest that have quasimodes that are highly nonorthog-

onal; two examples are shown in Fig. 5.1. In Fig. 5.1(a), pairs of signal and idler

photons can be generated in the quasimodes of the two coupled cavities by pumping

them from above with a Gaussian beam. The defect CROW couples the generated

light out the of cavities, but it also breaks the symmetry of the lattice, causing the

modes to be nonorthogonal. The structure in Fig. 5.1(b) incorporates a CROW

for the pump, which resonantly couples to side-coupled nonlinear resonant cavities,

where it generates pairs of signal and idler photons. There are three modes in the

side-coupled cavities, one for the pump and one each for the generated signal and

idler photons. We have calculated the quasimodes for the structure in Fig. 5.1 (b)

and found that the overlap between some of the modes can be as high as 10%. This

system is of particular interest as it incorporates the pump, signal, and idler channel

as well as the nonlinear resonant structure all in one integrated system. Therefore, it

is important to find an efficient and accurate way to model the nonlinear generation

in such systems.
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In this work, we prove that the density operator for the generated light in a lossy

system with a set of quasimodes takes the form of a MSTS, even when the quasimodes

are nonorthogonal, but the thermal portion of the density operator is not diagonal

in the quasimode basis, but in a new orthogonalized basis. We apply our theory to

a simplified version of the structure in Fig. 5.1(a) to generate a two-mode squeezed

thermal state in the two nonorthogonal quasimodes of the resonant structure which

have an overlap of about 80%, and demonstrate agreement with numerical approaches

as well as the strong effect of the nonorthogonality.

The nonorthogonality of the quasimodes prevent the usual quantization procedure,

but there are two approaches to quantizing them. The first approach is based on a

Green’s function quantization method, and is applicable to general absorptive and

lossy media [111]. The second approach is to quantize the electric field in the standard

way using the lossless normal modes, and then to project onto the lossy quasimodes by

a non-Hermitian projection operator [9]. The projection approach is an approximate

approach that is applicable to non-absorptive media with scattering losses through

the open boundaries, and is the one that we use in this paper. In Appendix D.2 we

show that for the case of SFWM or SPDC in a non-absorptive medium with scattering

loss, both approaches give the exact same form for the LME for the density operator,

ρ̂(t), of the generated light:

dρ̂

dt
=
−i
~

[
Ĥ, ρ̂

]
+
∑
m,l

χ
(−)
ml

(
2âlρ̂â

†
m − ρ̂â†mâl − â†mâlρ̂

)
. (5.1)

Therefore the form of ρ̂(t) is independent of the quantization approach used. Here Ĥ

is the Hermitian Hamiltonian, which includes the linear Hamiltonian as well as the

nonlinear interaction, and âm and â†m are the annihilation and creation operator for
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photons in the symmetrized mode m, with [âm, â
†
l ] = δml. The symmetrized modes

are linear combinations of the nonorthogonal quasimodes, chosen so that the sym-

metrized modes are orthogonal, but are no longer eigenstates of the non-Hermitian

linear Hamiltonian (see Appendix D.2). We define χ(−) ≡ i
2

(
χ− χ†

)
, where χ is

the quasimode coupling matrix. The off-diagonal coupling terms in χ come from

the quasimode nonorthogonality, and have been shown to contribute to the spon-

taneous emission rate of a quantum dot in a cavity [94, 112]. In our approach, the

quasimode coupling matrix is related to the quasimode overlap and the quasimode

frequencies with χ ≡ O1/2ω̃O−1/2, where O is a matrix of the mode overlaps and

ω̃ ≡ diag(ω̃1, . . .) is a diagonal matrix of the quasimode frequencies.

The generation of the light in the cavity system can be modelled with Eq. (5.1).

Numerical solutions to Eq. (5.1) for the density operator can be obtained by expand-

ing the operators in a basis of Fock states and then integrating the resulting set of

coupled differential equations [113]. The number of equations is the square of the di-

mension of the basis. For example, for a state with M modes and a maximum photon

number of N , the number of possible Fock states is at least (M + N)!/(M !N !) [92],

and the number of equations is the square of this. Thus, for multimode states with

many photons there can be an impractical number of equations to solve in order to

obtain accurate results for the density matrix, unless dimension reduction techniques

are used. Alternatively, instead of solving for the time-dependent density operator,

one might be able to calculate the time-dependent expectation value of any mode

operators, with only the initial state, using a Heisenberg – Langevin approach gener-

alized to nonorthogonal modes. If one knows beforehand that the state is Gaussian
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at all times, then it is fully determined by its covariance matrix. Calculating the co-

variance matrix using this approach only requires solving on the order of M2 coupled

differential equations. However, as we shall show, our method only requires one to

solve the 3M coupled first-order differential equations for the MSTS parameters. We

now present the derivation of our analytic solution to the LME.

5.2 Analytic solution to the Lindblad master equation

We consider a general lossy resonant structure that has a set of discrete nonorthog-

onal quasimodes, and we let the initial state of the system to be the vacuum state.

The squeezed light is generated in the quasimodes by a SFWM interaction, where

pairs of signal and idler photons are generated by the annihilation of pairs of pump

photons. We take the pump to be a classical electric field that is modelled as a

coherent state. Our analytic solution requires that the signal and idler modes are

effectively coupled to a single pump mode, such that we can factorize the nonlinear

parameter, for the SFWM interaction, into a part that only depends on the pump and

a separate part that only depends on the signal and idler modes. One way to achieve

this is to require the pump be in a coherent state, |α(t)〉, in a single quasimode, P ,

with a time-dependent coherent state parameter given by α(t) = αP (t) exp(−iωP t),

where αP (t) is slowly-varying complex temporal envelope and ωP is the pump fre-

quency. Alternatively, this can be achieved in a setup where the structure is pumped

from above, e.g. with a Gaussian beam in the free-space continuous modes, but the

pump beam modes all have essentially the same nonlinear overlap with a given pair

of signal and idler modes (see Ref. [89] and Appendix D.5). Using the undepleted
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pump approximation, the nonlinear Hamiltonian for the interaction takes the form

ĤNL = ~α2(t)
∑
m,l

Smlâ
†
mâ
†
l + H.c., (5.2)

where the matrix S is the nonlinear parameter for SFWM (see Appendix D.2).

The generated light satisfies the LME (Eq. (5.1)), where the system Hamiltonian

is defined as, Ĥ ≡ ĤL + ĤNL, where the linear Hamiltonian is given by

ĤL = ~
∑
m,l

χ
(+)
ml â

†
mâl, (5.3)

with χ(+) ≡ 1
2

(
χ+ χ†

)
. The main result of this work is that the analytic solution to

Eq. (5.1) can be written in the form of an MSTS, defined as

ρ̂(t) = Ŝ(t)ρ̂th(t)Ŝ†(t), (5.4)

where Ŝ(t) is a unitary multimode squeezing operator and ρ̂th(t) is a density operator

describing a multimode thermal state. As we will show, with the right basis choice,

Ŝ(t) can be expressed as a product of single-mode squeezing operators, and ρ̂th(t) can

be expressed as a product of single-mode thermal density operators, but the basis

required for thermal-state factorization is different than that used to factorize the

squeezing operator. Expressing them in this way allows us to derive a set of coupled

differential equations that the squeezing parameters and thermal photon numbers

for the state must obey in order for ρ̂(t) to be the solution. To express Ŝ(t) as a

product of single-mode squeezing operators, we perform a symmetric singular value

decomposition of the nonlinear parameter in Eq. (5.2), S = UλUT, where UU † = 1
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and λ ≡ diag(λ1, . . .) is a diagonal matrix of the singular values. Putting this into

Eq. (5.2), we obtain

ĤNL = ~α2(t)
∑
µ

λµB̂
†2
µ + H.c., (5.5)

where we define the Schmidt mode creation operators as B̂†µ ≡
∑

m Uµmâ
†
m, with

[B̂µ, B̂
†
ν ] = δµν . In order to write ρ̂th(t) as a product of single-mode thermal density

operators, we perform a singular value decomposition of χ(+) (see Eq. (5.3)), χ(+) =

M (+)ωsM (+)†, where M (+)M (+)† = 1 and ωs ≡ diag(ωs
1, . . .) is a diagonal matrix of

the singular values. Putting this into Eq. (5.3), we obtain

ĤL = ~
∑
κ

ωs
κĈ
†
κĈκ, (5.6)

where we define the thermal mode creation operators as Ĉ†κ ≡
∑

mM
(+)
κm â†m, with

[Ĉκ, Ĉ
†
κ′ ] = δκκ′ .

Now in the Schmidt mode basis, Ŝ(t) can be written simply as [82]

Ŝ(t) =
∏
µ

exp

(
1

2
rµ(t)eiφµ(t)B̂†2µ − H.c.

)
, (5.7)

where rµ(t) and φµ(t) are the squeezing amplitude and the squeezing phase of the

µth Schmidt mode. In the thermal mode basis, ρ̂th(t) can be written simply as

ρ̂th(t) =
∏
κ

1

1 + nκ(t)

(
nκ(t)

1 + nκ(t)

)Ĉ†κĈκ
, (5.8)

where nκ(t) ≡ Tr
[
ρ̂th(t)Ĉ†κĈκ

]
is the average thermal photon number of the thermal
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mode, κ. The average thermal photon number is not related to thermal effects, but

rather captures the process of photon loss due to scattering.

We show in Appendix D.3 that requiring that Eq. (5.4) is the solution to the

LME leads to the following coupled differential equations for rµ(t), φµ(t), and nκ(t):

drµ
dt

=
2

~
Im
[
α2(t)λµe−iφµ

]
− 2

∑
ν,σ

cosh (rν) sinh (rσ) Re [Nµνσ] , (5.9)

dφµ
dt

= −2Ωµµ −
4

~ tanh(2rµ)
Re
[
α2(t)λµe−iφµ

]
− 2

∑
ν,σ

cosh (rν) sinh (rσ)

cosh (rµ) sinh (rµ)
Im [Nµνσ] ,

(5.10)

dnκ
dt

= −2nκ
∑
ν,σ

YκνY
∗
κσΓσν cosh(rν) cosh(rσ)

+ 2(1 + nκ)
∑
ν,σ

YκνY
∗
κσΓνσ sinh(rν) sinh(rσ)ei(φν−φσ), (5.11)

where Ωµµ is the µth Schmidt mode frequency, where Ω ≡ Y †ωsY , with Y ≡

M (+)†U , and Γ ≡ V †γsV , where V ≡ M (−)†U . Here M (−) is obtained from

a singular value decomposition of χ(−) (found in the LME, Eq. (5.1)), χ(−) =

M (−)γsM (−)†, where M (−)M (−)† = 1 and γs ≡ diag(γs
1, . . .) is a diagonal matrix of

the singular values. For convenience we have also defined

Nµνσ ≡ Γσνe
i(φσ−φµ)

∑
κ,κ′

YκσYκ′νY
∗
κµY

∗
κ′µ

nκ − nκ′ + 1

nκ + nκ′ + 1
. (5.12)

The coupled equations Eqs. (5.9) - (5.11) can be solved numerically for the pa-

rameters rµ(t), φµ(t), and nκ(t) using a Runge Kutta method. For M modes, there

are only 3M coupled equations that need to be solved. Using these parameters in

Eqs. (5.4), (5.7), and (5.8), the density operator of the MSTS is obtained for all times
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5.3 Quadrature squeezing of the Schmidt modes

With the MSTS one can derive simple analytic expressions for the expectation

value of observables written in terms of the Schmidt mode operators. As an example,

we derive an analytic expression for the quadrature squeezing of the Schmidt modes.

We define the quadrature operator

Q̂µ ≡ ei(ωP t+βµ)B̂µ + e−i(ωP t+βµ)B̂†µ, (5.13)

where βµ is the initial phase at t = 0. The quantum noise in the quadrature is defined

as the variance of the quadrature operator, 〈Q̂2
µ〉 ≡ Tr(Q̂2

µρ̂(t)). Using the MSTS in

Eq. (5.4) it can be shown that the quadrature noise is simply given by

〈Q̂2
µ〉 = (1 + 2ηµµ) sin2 (φµ/2 + ωP t+ βµ) e2rµ

+ (1 + 2ηµµ) cos2 (φµ/2 + ωP t+ βµ) e−2rµ , (5.14)

where we define ηµν(t) ≡
∑

κ Yµκnκ(t)Y
∗
νκ. It can be shown that for the Schmidt mode

frequencies, Ωµµ, that are on resonance with twice the pump frequency, the squeezing

phase solution is approximately given by, φµ(t) ' −2ωP t − 2βµ, and the amplitude

of the oscillations in Eq. (5.14) are greatly diminished. Thus, close to resonance we

obtain the approximate expression, 〈Q̂2
µ〉 ' (1 + 2ηµµ) e−2rµ , which only contains the

exponential squeezing factor. The quadrature noise is squeezed below the vacuum

noise whenever 〈Q̂2
µ〉 < 1. The thermal factor (1 + 2ηµµ) increases the noise, and

thus the squeezing level is less than it is in a pure MSVS with the same squeezing

parameter.
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5.4 Two-mode squeezed thermal state generated in two coupled-cavities

in a finite photonic crystal slab

We now apply our theory to study the generation of a two-mode squeezed thermal

state in two coupled defect cavities, that are embedded asymmetrically in a finite

square lattice photonic crystal slab with the period d (see Fig. 5.2(a)). This structure

has been studied in Refs. [9] and [97] in a different context, and we use the same

parameters for the photonic crystal slab here (see Appendix D.5). We have chosen

the system to be asymmetric so that (as we shall see) the two confined quasimodes of

the system are nonorthogonal. The individual cavity modes and their frequencies are

obtained from finite-difference time-domain (FDTD) calculations using Lumerical.

The two confined quasimodes are obtained with a tight-binding model [9], where the

individual cavity modes form the basis.

Figure 5.2: (a) Schematic of the structure we model to obtain our results. This is a
simplified version of Fig. 5.1 (b). It consists of two coupled-cavities in a finite photonic
crystal slab that are embedded asymmetrically in a square lattice. The cavities are pumped
from above with a Gaussian pulse. Its transverse profile is shown as the large shaded circle
(where the solid line circle is its full width at half maximum). (b) Quadrature noise,

〈
Q2

1

〉
,

calculated using the two-mode squeezed thermal state (solid black line), and using QuTiP
with 10, 20, and 40 Fock basis states in each mode. Also, we plot the quadrature noise
when the overlap is excluded (O12 = O21 = 0) (crosses).
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The overlap matrix (see Appendix D.1) for the two quasimodes for the structure

in Fig. 5.2(a) is

O =

 1 0.76− i0.44

0.76 + i0.44 1

 , (5.15)

which shows that the quasimodes of different frequency are highly nonorthogonal

with a large overlap, |O12| = |O21| = 0.88. The theoretical upper limit of the overlap

is 0.90 (see Appendix D.1). Thus, our calculation shows that the nonorthogonality

between the two modes is nearly at its maximum.

To generate the squeezed state in the coupled-cavities, we take the system to be

pumped from above with a 0.43mW Gaussian beam polarized in the y direction that is

continuous-wave in time, with frequency ωPd/(2πc) = 0.3027 (its profile is illustrated

by the large shaded circle in Fig. 5.2(a)). We let its full width at half maximum be

5d (solid line circle). The details of the derivation of the nonlinear parameter S using

this Gaussian pump pulse are given in Appendix D.5.

We solve the coupled-equations Eqs. (5.9) - (5.11) using a fourth-order Runge-

Kutta method. For t < 0 the state is the vacuum state, and then at t = 0 the

continuous-wave pump is turned on and the generation process begins. For the two-

mode system, it takes about 0.5 seconds on a standard PC to solve the coupled-

equations.

In order to demonstrate the validity and efficiency of our results, we compare them

with numerical calculations done using QuTiP [114], which is a software package that

can solve the LME numerically (even for nonorthogonal quasimodes) by expanding

operators in a Fock basis. In Fig. 5.2(b) we plot the quadrature noise in the first
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quasimode, 〈Q2
1〉, calculated using Eq. (5.14) and QuTiP. The quadrature noise is

squeezed below the vacuum noise, 〈Q2
1〉 < 1, for all times. In the plot, the oscillations

in the noise shown in Eq. (5.14) are not evident, because the pump is resonant,

such that the squeezing phase is approximately given by φ1(t) ' −2ωP t − π. The

Fock basis results converge to the MSTS result when the number of Fock basis states

in each quasimode is increased sufficiently. For our system, we see convergence for

t < 70d/(2πc) using 40 Fock states in each mode. With this number of states, the

density operator is represented as a 1600 × 1600 matrix in the Fock basis, and thus

one needs to solve as many as 2.56 million coupled equations (i.e., one for each

element of the density matrix). However, with our approach we only need to solve 6

equations. At t = 70d/(2πc) there are about 3 total photons generated on average,

and at t = 100d/(2πc) there are 9.

Finally, we demonstrate that the non-zero overlap between the quasimodes in Eq.

(5.15) has a significant effect on the quadrature squeezing. We do this by excluding

the overlap between the two quasimodes, i.e. O12 = O21 = 0, while keeping all other

values the same. This quantifies the effect that the overlap has on the results, but it

is not intended to represent a physical situation for the structure. In Fig. 5.2(b) we

plot 〈Q2
1〉 without the overlap (crosses); as can be seen, for t = 100d/(2πc) there is

an increase in the noise of 6.3 dB above the correct value.

In this section we have shown that 1) the numerical results using our method agree

with those using a Fock basis, as long as enough states are included; 2) when the

photon number becomes large, the simulations using a Fock basis take a prohibitively

long time to run; and 3) our approach remains accurate and fast even when the effects

of the mode nonorthogonality is large.
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5.5 Conclusion

We have proven that the analytic solution to the LME for light generated by a

nonlinearity in the quasimodes of a general multimode structure is the density oper-

ator for an MSTS, even when the mode nonorthogonality is included. Our approach

can make it more feasible to study the important problem of nonlinear optical gener-

ation of entangled squeezed states in multimode lossy nanocavities, since the number

of equations to solve depends only linearly on the total number of system modes.

Our analytic solution opens up a path to investigate and optimize the generation and

evolution of cluster states made from a general mixed Gaussian state.



Chapter 6

Squeezing criterion to generate any mixed

Gaussian continuous-variable cluster state

In the previous chapters, I showed that the MSTS is the state produced by non-

linear optics in lossy coupled-cavities. In this chapter, I show that the MSTS is an

approximate CV cluster state, provided squeezing criterion (that I will derive) are

obeyed. Recent work has showed that any squeezed vacuum state (a pure Gaussian

state) can be considered a cluster state [101], however I believe this is the first time

that a condition has been derived for a mixed Gaussian state to be considered a clus-

ter state. This work is unpublished and is intended to be a regular chapter of this

thesis.

6.1 Introduction

The cluster state was originally introduced as a maximally entangled state of

qubits with a high persistency of entanglement [20]. It was shown that the cluster

state contains all the entanglement necessary for any quantum computation, such

that any quantum circuit can be imprinted on the cluster state by measuring the

157
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qubits in a particular basis and a particular order. Thus, a scheme of one-way,

measurement-based quantum computation was presented consisting of doing single

qubit measurements on the cluster state [19] and it was experimentally verified using

a four-qubit cluster state [115].

S. Lloyd and S. L. Braunstein [102] extended quantum computation from qubits

to CVs. They proved that for universal quantum computation with CVs, one only

needs linear operations and a single nonlinear operation (such as photon counting). It

was then shown that cluster states can be extended to CVs, where instead of the state

being made from qubits, it is made from eigenstates of the quadrature operator [28].

Eigenstates of the quadrature operator are not physical, however an approximation

to them are squeezed states that have a large but finite squeezing amplitude. Due

to finite squeezing, the practical CV cluster states are only approximations of the

ideal ones made with infinitely squeezed states. CV cluster states have the advan-

tage that they are simple to create since they only require linear operations and

photon counting, making them an experimentally viable option for quantum com-

puting [102]. Although, one of the challenges with CV cluster states is the presence

of finite squeezing and photon scattering noise, which leads to imperfect quantum

computation [116]. However, a theoretical finite squeezing threshold of about 17dB

has been established that the CV cluster state must obey in order for fault-tolerant

quantum computation [42,117].

An approximate CV cluster state can be written as a pure Gaussian state that has

the form of an MSVS. Experimentally, there are mainly two methods to generate CV

cluster states. The first method consists of generating a series of single-mode squeezed

states (e.g. with an MRR), then entangling the modes with beamsplitters and phase
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shifters [105,118]. Collectively, these operations perform a multimode squeezing trans-

formation on the vacuum that results in the MSVS. The second method generates

the MSVS all at once using a nonlinear process in a resonant structure [106]. One

method to nonlinearly generate the MSVS is to generate signal and idler photons

with spontaneous four-wave mixing in the frequency comb of an MRR, where the

quadratures of the ring-modes are entangled [109,119,120]. However, as I have shown

in Chapters 4 and 5, nonlinear optics produces a MSTS, not an MSVS. Therefore, the

theory of generating cluster states should incorporate mixed Gaussian states rather

than pure Gaussian states.

Theoretically, it was recently shown that any multimode squeezing transformation

on the vacuum creates a pure Gaussian cluster state [101]. These are approximate CV

cluster states since they satisfy a nullifier equation in the limit of infinite squeezing.

Using the nullifier equation it is possible to mathematically relate the squeezing pa-

rameters of the MSVS to the adjacency matrix of the cluster state [106]. This opens

up the possibility of engineering the squeezing parameters of the MSVS to generate

any cluster state.

There has been some preliminary work in the literature on how to generalize pure

Gaussian cluster states to mixed Gaussian cluster states [34]. The idea is to replace

the vacuum state with a thermal state, such that instead of the MSVS, one works

with a MSTS. The MSTS also must satisfy a nullifier equation in the limit of infinite

squeezing in order for it to be an approximate cluster state. However, it has not been

proved yet if the MSTS does satisfy the nullifier equation for perfect squeezing, nor

has a mathematical connection been derived between the parameters of the MSTS

and the adjacency matrix of the cluster state. This is an important generalization,



6.2. M -MODE SQUEEZED THERMAL STATE 160

since the resonant structures that are used to generated the squeezed states that

make the cluster state, are inherently lossy. Thus, the cluster state cannot be a pure

state and it must be a mixed state. Also, when the scattering loss is included, the

quadrature noise is increased and the amount of squeezing in the state is reduced. As

we will show, the loss can prevent the state from satisfying the nullifier equation and

thus prevent it from being characterized as a cluster state. Therefore, the loss should

not be neglected when considered the practical use of CV cluster states.

In this chapter, I derive squeezing criterion that the MSTS must satisfy in order

for it to be considered an approximate CV cluster state, I demonstrate that the MSTS

can be generated with a linear optics circuit, and I derive the adjacency matrix for

the cluster state, written in terms of the linear operations of the circuit.

6.2 M-mode squeezed thermal state

We consider a mixed Gaussian state with M modes. Let â† and â be M × 1

column vectors

â† ≡
(
â†1, . . . , â

†
M

)T

, (6.1)

â ≡ (â1, . . . , âM)T , (6.2)

where â†m and âm are the creation and annihilation operator for the mth mode, and

(â†)T denotes the transpose of the vector. We assume that the modes are orthogonal,

such that these operators satisfy the commutation relation [â, (â†)T] = 1, where 1

is the M ×M identity matrix. For example, if the system that generates the MSTS

has nonorthogonal quasimodes (as was the case in Chapter 5), then here â†m are the
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operators for the orthogonal symmetrized modes, that are linear combinations of the

nonorthgonal quasimodes (see Eq. (D.24)). On the other hand, if the system has

orthogonal quasimodes, then â†m are quasimode operators. The vector of quadrature

operators are defined as Ŷ ≡
(
Ŷ1, . . . , ŶM

)T

and X̂ ≡
(
X̂1, . . . , X̂M

)T

, where

Ŷm = −i(âmeiθm − â†me−iθm), (6.3)

and

X̂m = âmeiθm + â†me−iθm , (6.4)

are conjugate quadrature operators for the mth mode, where the phase θm is a real

number parameter, and they satisfy the commutation relation [X̂, Ŷ T] = 2i1. We

let the density operator for the mixed Gaussian state take the form of a squeezed,

thermal state

ρ̂ = Ŝ(z)ρ̂th(β)Ŝ†(z), (6.5)

where Ŝ(z) is an M -mode squeezing operator defined by

Ŝ(z) = exp
(z

2

(
â†
)T
zâ† − z

2
(â)T z†â

)
, (6.6)

where z is an M ×M symmetric matrix (zT = z) of complex squeezing parameters,

z is a real positive number that sets the squeezing strength, and ρ̂th(β) is the density
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operator for a thermal state, defined by

ρ̂th(β) =
1

Tr
(

exp
(
− (â†)T βâ

)) exp
(
−
(
â†
)T
βâ
)
, (6.7)

where β is an M ×M Hermitian matrix.

It is convenient to decompose the squeezing parameter matrix, z, using the polar

decomposition

z = ueiζ, (6.8)

where u is an M ×M Hermitian matrix (uT = u∗) of squeezing amplitudes, and ζ

is an M ×M real symmetric matrix (ζ∗ = ζ and ζT = ζ) of squeezing phases.

In the next subsection we derive the conditions that the squeezed thermal state

in Eq. (6.5) must obey in order for it to be a Gaussian cluster state.

6.3 Conditions for the mixed Gaussian state to be a Gaussian cluster

state

A cluster state can be related to a weighted graph. Each node of the graph is

assigned to a mode of the state. A real symmetric adjacency matrix, A, gives the

weights between the nodes of the graph, whose (m,n)th element is defined as the

interaction strength between the modes m and n in the cluster state. For a given

A, the state with density operator ρ̂, that is parameterized by an overall squeezing

strength z, is a cluster state only if its covariance matrix of the nullifier operator



6.3. CONDITIONS FOR THE MIXED GAUSSIAN STATE TO BE A GAUSSIAN
CLUSTER STATE 163

(Ŷ −AX̂) goes to zero, in the limit of infinite z [34],

lim
z→∞

cov
(
Ŷ −AX̂

)
= 0. (6.9)

The covariance of a vector operator Ô is defined as [34]

cov
(
Ô
)
≡ 1

2

〈
ÔÔT +

(
ÔÔT

)T
〉
. (6.10)

The central result of this chapter is that the squeezed thermal state in Eq. (6.5) obeys

the nullifier equation (Eq. (6.9)) and can be classified as an approximate CV cluster

state, with adjacency matrix A. As I will show, the nullifier equation (Eq. (6.9)) is

satisfied only if the squeezing phases ζ of the squeezing operator satisfy the equation

e−iζ = eiθ (i1−A)−1 (i1 +A) eiθ, (6.11)

where θ = diag(θ1, . . . , θM), and if the following squeezing criterion are met

lim
z→∞

e−zu
√

2ηT + 1 = 0, (6.12)

where

ηT ≡ Tr
(
(â†âT)Tρ̂th(β)

)
, (6.13)

is an M × M Hermitian matrix with thermal photon numbers along the diagonal

(that quantify photon scattering loss) and the nonzero off-diagonal elements are due

to coupling between the modes. The limit in Eq. (6.12) is not trivial to evaluate,
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because both u and η have nontrivial dependence on z. As z → ∞, the noise is

squeezed by the factor e−zu and simultaneously increased by the thermal noise factor

(2ηT+1). Thus, the noise will approach zero only if the squeezing factor can overcome

the thermal noise.

Now I will prove the central result in Eq. (6.11). It is useful to express the nullifier

operator in terms of the mode operators instead. Let

v̂ ≡

 â
â†

 , (6.14)

such that the nullifier operator can be written as

Ŷ −AX̂ = Qv̂, (6.15)

where the matrix Q is defined by

Q ≡
(
−ieiθ −Aeiθ, ie−iθ −Ae−iθ

)
. (6.16)

Taking the covariance of Eq. (6.15) with ρ̂ in Eq. (6.5), we obtain [34]

cov(Ŷ −AX̂) = QTr

(
Ŝ†(z)

v̂v̂T + (v̂v̂T)T

2
Ŝ(z)ρ̂th(β)

)
QT. (6.17)

The squeezing transformation of the v̂ operators is [25]

Ŝ†(z)v̂Ŝ(z) = Bv̂, (6.18)
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where

B ≡

 cosh(zu) sinh(zu)eiζ

sinh(zu∗)e−iζ cosh(zu∗)

 . (6.19)

Putting Eq. (6.18) into Eq. (6.17), we obtain

cov(Ŷ −AX̂) =
1

2
QBKBTQT, (6.20)

where K is a symmetric matrix related to the photon scattering loss, given by

K =

 0 2ηT + 1

2η + 1 0

 . (6.21)

To show that the covariance given in Eq. (6.20) goes to zero as z→∞, define

QB ≡ (F ,F ∗) , (6.22)

where

F ≡ −(i1 +A)eiθ cosh(zu) + (i1−A)e−iθ sinh(zu∗)e−iζ

= −(i1 +A)eiθ cosh(zu) + (i1−A)e−iθe−iζ sinh(zu), (6.23)

where to get the last line we used the fact that u∗ exp(−iζ) = exp(−iζ)u [25], which

follows from z being symmetric, and u and and ζ being Hermitian. Expanding

the hyperbolic functions as, cosh(zu) = (exp(zu) + exp(−zu))/2 and sinh(zu) =
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(exp(zu)− exp(−zu))/2, and putting these into Eq. (6.23), we obtain

F = −1

2
(i1 +A)eiθ(ezu + e−zu) +

1

2
(i1−A)e−iθe−iζ(ezu − e−zu)

=
1

2

(
(i1−A)e−iθe−iζ − (i1 +A)eiθ

)
ezu − 1

2

(
(i1−A)e−iθe−iζ + (i1 +A)eiθ

)
e−zu.

(6.24)

Therefore, Eq. (6.20) can be written as

cov(Ŷ −AX̂) =
1

2
F (2ηT + 1)F † +

1

2

(
F (2ηT + 1)F †

)T

=
1

2
F
√

2ηT + 1
(
F
√

2ηT + 1
)†

+ (transpose), (6.25)

where we used the fact that (ηT)† = ηT. Therefore, the equivalent requirement of

Eq. (6.9) for ρ̂ to be a cluster state is

lim
z→∞

F
√

2ηT + 1 = 0. (6.26)

Putting Eq. (6.24) into Eq. (6.26), there are two terms in Eq. (6.26) that both need

to approach zero. The first term is

(
(i1−A)e−iθe−iζ − (i1 +A)eiθ

)
lim
z→∞

ezu
√

2ηT + 1 = 0, (6.27)

which does not approach zero as z → ∞ because of the exponential factor ezu.

Thus, we force Eq. (6.27) to be zero by making the matrix multiplying the limit(
(i1−A)e−iθe−iζ − (i1 +A)eiθ

)
be equal to the null matrix 0, which is achieved by
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requiring that ζ satisfies Eq. (6.11). The second term in Eq. (6.26) is

(
(i1−A)e−iθe−iζ + (i1 +A)eiθ

)
lim
z→∞

e−zu
√

2ηT + 1 = 0, (6.28)

which approaches zero only if the squeezing criterion in Eq. (6.12) are satisfied.

Therefore, we have proven that ρ̂ is a Gaussian cluster state only if it satisfies Eqs.

(6.11) and (6.12).

6.4 Cluster state for a given multimode squeezed thermal state

For a given multimode squeezed thermal state (Eq. (6.5)), Eq. (6.11) can be

inverted to solve for the adjacency matrix A for the cluster state in terms of the

squeezing phases ζ and phases θ

A = −i
(
1− e−iθe−iζe−iθ

) (
1 + e−iθe−iζe−iθ

)−1
. (6.29)

Since exp(−iθ) exp(−iζ) exp(−iθ) is a unitary matrix, it can be written as exp(iκ),

where κ is a real symmetric matrix. Putting this into Eq. (6.29), results in

A = −i
(
1− eiκ

) (
1 + eiκ

)−1

= sin(κ/2) (cos(κ/2))−1 , (6.30)

which shows that the adjacency matrix is real.

In Chapter 4, we showed that the multimode squeezed thermal state can be pro-

duced via nonlinear optics, and we derived coupled-equations for the squeezing ampli-

tudes, squeezing phases, and thermal photon numbers for the state (see Eqs. (4.69)
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- (4.71)). From the solution of these equations, the squeezing phases of the state can

be obtained, and putting them into Eq. (6.29) the adjacency matrix for the resulting

cluster state is obtained. Therefore, the cluster state can be generated all at once with

a nonlinear interaction, and its adjacency matrix (given in Eq. (6.29)) can be calcu-

lated using the MSTS squeezing phases obtained from solving Eqs. (4.69) - (4.71).

In the next section, I show that the cluster state can be alternatively generated using

a linear optics circuit.

6.5 Generating a cluster state with a linear optics circuit

In this section, I consider the generation of an M -mode cluster state using a linear

optics circuit. Typically, the theoretical input state to the circuit is a set of uncoupled

single-mode squeezed vacuum states. However, I consider the input state to be M

uncoupled single-mode squeezed thermal states. Using a circuit consisting of linear

operations such as beam splitters and phase shifters the single-mode squeezed thermal

states are subsequently mixed and the output state of the circuit contains correlations

between the quadratures of the modes. There are a set of M uncoupled input ports

to the circuit and in each input port a single-mode squeezed thermal state is injected.

The separable input state can be written as a product of M single-mode squeezed

thermal states, defined as

ρ̂in =
M∏
µ=1

exp
(z

2
rµ

(
eiφµB̂†2µ − e−iφµB̂2

µ

)) 1

Z
exp
(
−β̃µB̂†µB̂µ

)
exp
(
−z

2
rµ

(
eiφµB̂†2µ − e−iφµB̂2

µ

))
= exp

(z

2

(
(B̂†)TreiφB̂† − B̂Tre−iφB̂

)) 1

Z
exp
(
−B̂†Tβ̃B̂

)
× exp

(
−z

2

(
(B̂†)TreiφB̂† − B̂Tre−iφB̂

))
, (6.31)
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where B̂µ destroys a photon in the port µ, rµ and φµ are the squeezing amplitude and

squeezing phase for the port µ, Z is a normalization constant (partition function) for

the thermal state density operator, and β̃µ is real parameter that is related to the

thermal photon number for the input port µ, nµ, given by

nµ =
(

exp
(
β̃µ

)
− 1
)−1

. (6.32)

In Eq. (6.31), r = diag(r1, . . . , rM) and φ = diag(φ1, . . . , φM) are real diagonal

matrices. There are M output ports at the output of the circuit. It is assumed that

the destruction operators for each output port, âm, are related to the input operators

B̂µ by the unitary transformation, U , that is enacted by the circuit. Thus, the vector

of output operators â can be written as

â = UB̂, (6.33)

where U †U = 1. In Fig. 6.1 we show an illustration of the linear optics circuit. The

horizontal black lines represent the input and output modes to the circuit, B̂ and â,

respectively. The rectangle represents a sequence of beamsplitters and phase shifters

that perform a unitary transformation U on the input modes.

Putting Eq. (6.33) into Eq. (6.31), the output density operator is given by

ρ̂out = exp
(z

2

(
â†
)T
zâ† − z

2
(â)T z†â

) 1

Z
exp
(
−â†Tβâ

)
exp
(
−z

2

(
â†
)T
zâ† − z

2
(â)T z†â

)
,

(6.34)
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Figure 6.1: Illustration of a linear optics circuit, U , that transforms the M input
modes B̂µ to the M output modes âm.

where

z = UreiφUT. (6.35)

and

β = Uβ̃U † (6.36)

Since z and β are nondiagonal matrices the output state ρ̂out is inseparable to some

degree and it will contain correlations between the quadratures of the different output

ports. The output state ρ̂out has the same form as the density operator in Eq. (6.5)

and thus the same squeezing criterion that we derived in Eq. (6.12) can be used on

ρ̂out to test if it is a cluster state. Therefore if ρ̂out satisfies the squeezing criterion in

Eq. (6.12) then it is a cluster state.

The squeezing criterion is written in terms of the squeezing amplitudes u and

squeezing phases ζ, that were obtained from the polar decomposition of z (i.e., z =

u exp(iζ)). We can relate u to the input squeezing amplitudes r, and ζ to the input
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squeezing phases φ using

u = UrU †, (6.37)

and

eiζ = UeiφUT, (6.38)

such that with these choices, the polar decomposition of z and its symmetric singu-

lar value decomposition in Eq. (6.35) are equivalent. Putting Eq. (6.37) into the

squeezing criterion in Eq. (6.12) results in

lim
z→∞

e−zUrU†
√

2ηT + 1 = 0. (6.39)

The exponential in Eq. (6.39) can be written as

e−zUrU† =
∞∑
n=0

(−1)n

n!

(
UzrU †

)n
= U

∞∑
n=0

(−zr)n

n!
U †

= Ue−zrU †, (6.40)

where I have used the fact that UU † = 1. Putting Eq. (6.40) into Eq. (6.39) results

in

U lim
z→∞

e−zrU †
√

2ηT + 1 = 0, (6.41)
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where the matrix U was put in front of the limit, since it does not depend on z.

Multiplying Eq. (6.41) from the left with U † and from the right with U results in

lim
z→∞

e−zrU †
√

2ηT + 1U = 0, (6.42)

where I have used the fact that UU † = 1. To simplify the square-root factor in Eq.

(6.42), consider its square

(
U †
√

2ηT + 1U
)2

= U †
(
2ηT + 1

)
U

= 2U †ηTU + 1, (6.43)

Putting Eq. (6.43) into Eq. (6.42) results in

lim
z→∞

e−zr
√

2n+ 1 = 0, (6.44)

where n is simply a diagonal matrix of the thermal photon numbers for the input

ports, defined by

n ≡ U †ηTU

=
1

Z
Tr
(

(B̂†B̂T)T exp
(
−B̂†Tβ̃B̂

))
. (6.45)

Note that Eq. (6.45) is a diagonal matrix because the off-diagonal elements, such as

Tr
(
B̂†1B̂2 exp

(
−B̂†Tβ̃B̂

))
, are zero.

The squeezing criterion in Eq. (6.44) is the the same as requiring that the quadra-

ture noise in each input port µ is sufficiently squeezed. To show this connection, I
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define the quadrature operator for the input port µ as

X̂µ ≡ B̂µe−iφµ/2 + B̂†µeiφµ/2. (6.46)

It can be shown using Eq. (1.8), that the quadrature noise in X̂µ using ρ̂in in Eq.

(6.31) is given by

(∆Xµ)2 = e−2rµ (2nµ + 1) . (6.47)

Taking the limit of Eq. (6.47) as rµ goes to infinity, for all µ, gives the same criterion

as Eq. (6.44). That is, if the quadrature noise in the input port µ satisfies the

condition

lim
rµ→∞

∆Xµ = 0 for all µ, (6.48)

then the output state ρ̂out is a cluster state. Remarkably, one only needs to check

that the quadrature noise is sufficiently squeezed at each input port in order to show

that the output state is a valid cluster state. There is no measurement of the output

state required at the output ports to determine if it is a cluster state.

Assuming that the criterion in Eq. (6.48) are satisfied, the adjacency matrix, A,

for the cluster state at the output can be written in terms of U and φ. Putting Eq.

(6.38) into Eq. (6.29) we obtain

A = −i
(
1− e−iθU ∗e−iφU †e−iθ

) (
1 + e−iθU ∗e−iφU †e−iθ

)−1
. (6.49)

Any linear optics circuit U can be put into Eq. (6.49) to obtain the resulting A for
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the cluster state at the output of the circuit. There can be many different circuits

U that produce the same A. It was proved by M. Reck and A. Zeillinger [121] that

any M × M unitary transformation U can be constructed experimentally with a

sequence of at most M(M − 1)/2 general beamsplitter transformations. It is difficult

to work out analytically what the phase and reflectivity of each beamsplitter in the

sequence should be in order to produce a particular U . However, the decomposition

of U into the correct sequence of operations can be guessed for simple circuits or

obtained algorithmically in more complex circuits. In the following subsections, we

give examples of the adjacency matrix obtained with Eq. (6.49) for 2- and 4-mode

cluster states that are made using simple circuits of 50/50 beamsplitters and phase

shifters.

6.5.1 2-mode cluster state

In this subsection, I show that the adjacency matrix of a 2-mode cluster state can

be created with a circuit consisting of a beamsplitter and two phase shifters on the

second mode. An illustration of the circuit is shown in Fig. 6.2(a) and the resulting

cluster state graph representation in Fig. 6.2(b).

Figure 6.2: ]
(a) Illustration of a linear optics circuit consisting of two π/2 phase shifters F (π/2)
that act on the second mode and a 50/50 beamsplitter B(1/

√
2), and (b) a graph

that illustrates the adjacency matrix for the output 2-mode cluster state made by
the circuit, with a single edge of weight 1 connecting the two nodes of the graph.
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The input state to the circuit, ρ̂in, is a product of two single-mode squeezed thermal

states (one for each of the two input ports), which is obtained by letting M = 2 in

Eq. (6.31). For simplicity we assume that the squeezing amplitudes and squeezing

phases of both squeezing operators are equal, r1 = r2 = r and φ1 = φ2 = φ. The

thermal photon numbers for the two input ports are n1 and n2, respectively.

The circuit U(2) can be decomposed as

U(2) = F2

(π
2

)
B12

(
1√
2

)
F2

(π
2

)
, (6.50)

where the π/2 phase shifter transformation of the second mode is given by

F2

(π
2

)
=

1 0

0 i

 , (6.51)

and the beam splitter transformation is given by

B12

(
1√
2

)
=

1√
2

1 1

1 −1

 . (6.52)

The beamsplitter mixes the two single-mode squeezed thermal states, effectively cre-

ating correlations between their quadratures. Putting Eqs. (6.51) and (6.52) into Eq.

(6.50), U(2) can be written as

U(2) =
1√
2

1 i

i 1

 . (6.53)

Now I put Eq. (6.53) into Eq. (6.49) to obtain the adjacency matrix A for the circuit
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U(2). Doing this, we obtain

A =

0 1

1 0

 . (6.54)

In Fig. 6.2(b) we show a graph representation of the cluster state created by U(2).

The weight of the edge connecting node 1 and node 2 is given by the element A12 in

the adjacency matrix in Eq. (6.54). The phases θ1 and θ2 are applied to the output

modes â1 and â2, repsectively, and they are parameters that can be freely chosen. To

obtain the adjacency matrix in Eq. (6.54) we chose θ1 = θ2 = −φ, such that all the

phases in Eq. (6.49) cancel.

The output state of the circuit, ρ̂out, is given by letting M = 2 in Eq. (6.34).

The squeezing parameter matrix z for the squeezing operator in ρ̂out is obtained by

putting Eq. (6.53) into Eq. (6.35). Doing this, I obtain

z = ireiφA, (6.55)

which gives the two-mode squeezing operator exp
(
i(r/2)eiφâ†1â

†
2 − H.c.

)
. Both di-

agonal elements of A are zero, which means that there is no self-coupling in the

squeezing operator. For this simple circuit, the squeezing amplitude for the output

state is simply proportional to the adjacency matrix. The thermal photon matrix, η

in Eq. (6.13), for the output state is obtained by putting Eq. (6.53) into Eq. (6.45)

η =
1

2

 n1 + n2 i(n1 − n2)

−i(n1 − n2) n1 + n2

 . (6.56)
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The diagonal elements in Eq. (6.56) are the thermal photon numbers for each output

port, which shows that the number of thermal photons at both output ports is the

average of the thermal photon numbers for the input ports. The off-diagonal elements

are proportional to the difference of the input photon numbers and they capture the

coupling between the thermal noise of each output port. When the thermal photon

numbers at the input are equal n1 = n2, then the thermal noises at the two output

ports are not coupled.

6.5.2 4-mode cluster state

In this subsection, I show that the adjacency matrix of a 4-mode cluster state can

be created using the circuit shown in Fig. 6.2(a). The resulting graph representation

of the cluster state is shown in Fig. 6.2(b).

The input state to the circuit, ρ̂in, is a product of four single-mode squeezed

thermal states (one for each of the four input ports), which is obtained by letting

M = 4 in Eq. (6.31). For simplicity we assume that the squeezing amplitudes and

squeezing phases of all four squeezing operators are equal and each of them are given

by r and φ, respectively (r = r1 and φ = φ1). The thermal photon numbers for the

four input ports are allowed to be different.

The circuit U(4) can be decomposed as

U(4) =

[
F4

(π
2

)
B24

(
1√
2

)
F4

(π
2

)] [
F3

(π
2

)
B23

(
1√
2

)
F3

(π
2

)]
×
[
F2

(π
2

)
B12

(
1√
2

)
F2

(π
2

)]
, (6.57)

where Fµ(π/2) is the 4×4 identity matrix except the element (µ, µ) is replaced with i,
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Figure 6.3: (a) Illustration of a linear optics circuit that generates a 4-mode cluster
state with similar operations to those in Fig. 6.2, and (b) a graph that illustrates the
adjacency matrix for the cluster state, with weighted edges shown.

that is [Fµ(π/2)]µµ = i, and where Bµν

(
1/
√

2
)

is the 4×4 identity matrix except the

elements (µ, µ), (µ, ν), (ν, µ), and (ν, ν) are replaced with the corresponding elements

from the 2 × 2 beamsplitter in Eq. (6.52). The first beamsplitter operation in Eq.

(6.57) mixes the input modes 1 and 2, creating a two-mode cluster state (as shown

above). The second beamsplitter mixes the modes 2 and 3, creating a one-dimensional

chain cluster state of the modes 1−3. The third beamsplitter mixes the modes 4 and

2, linking mode 4 to mode 2 in the chain. Putting these definitions into Eq. (6.57),
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U(4) can be written as

U(4) =
1√
2



1 i 0 0

i/2 1/2 i/
√

2 i

−1/
√

2 i/
√

2 1 0

−1/2 i/2 −1/
√

2 1


. (6.58)

Now I put Eq. (6.53) into Eq. (6.49) to obtain the adjacency matrix A for the circuit

U . Doing this, I obtain

A =



0 2 0 0

2 0
√

2 1

0
√

2 0 0

0 1 0 0


. (6.59)

This cluster state is represented as a graph in Fig. 6.3(b), where the weights of the

edges connecting pairs of nodes are given by the adjacency matrix in Eq. (6.59).

Similar to the previous subsection, we also let θ = θ1 and θ = −φ in Eq. (6.49) to

obtain the A in Eq. (6.59).

The output state of the circuit, ρ̂out, is obtained by putting M = 4 in Eq. (6.34).

The squeezing parameter matrix z for the squeezing operator in ρ̂out is obtained by

putting Eq. (6.58) into Eq. (6.35). The result of this is not a simple expression where

z is proportional to A, such as the one we derived in the case for 2-modes (see Eq.

(6.55)). However, for this case z can be written in terms of A as

z = reiφ (i1 +A)−1 (i1−A) . (6.60)
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6.6 Conclusion

In conclusion, I showed that the multimode squeezed thermal state can be clas-

sified as an approximate CV cluster state, as long as certain squeezing criterion are

obeyed, that take into account the noise due to scattered photons. I derived an ex-

pression for the adjacency matrix of the cluster state that is written in terms of the

squeezing phases of the squeezed thermal state and the phase-space angles of the

quadrature operators, as well as calculated the adjacency matrix for 2- and 4-mode

cluster states made from simple linear optics circuits. The cluster state can also be

generated all at once with a nonlinear interaction, and the adjacency matrix can be

calculated using the coupled-equations for the multimode squeezed thermal state that

we derived in Chapter 4. In the future, it would be interesting to develop more com-

plex linear optics circuits to generate larger cluster states, that incorporate squeezed

thermal states.



Chapter 7

Conclusion

In this thesis, I ultimately showed that the density operator for an MSTS is the

solution to the LME for the nonlinearly generated light in M coupled, lossy cavities.

I showed this for a general system with lossy nonorthogonal quasimodes, under the

assumptions that the dielectric function of the system is real, such that the dielectric

material is non-absorptive but can still scatter photons and the pump is classical field

in a single mode. I derived a set of 3M coupled first-order differential equations for the

squeezing amplitudes, squeezing phases, and thermal photon numbers of the MSTS.

These equations can make it much faster to numerically calculate the density operator

of the MSTS, since the number of equations to solve increases proportionally to M ;

compared to other numerical techniques that use a basis of Fock states to calculate

the density operator, where the dimension of the problem can grow exponentially

with the size of the system. Therefore, the MSTS solution makes it more feasible

to study the nonlinear generation and propagation of nonclassical light in systems

with multiple, coupled lossy cavities. Using the simple expressions that were derived

for the variances and covariances of the quadrature operators using the MSTS, the

generated state of light in the cavities can be characterized, allowing one to detemine
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the amount of squeezing in its modes and/or its inseparability.

In Chapters 2 and 3, the MSTS solution was applied to a MRR to study the non-

linear optical generation of squeezed states in the ring. Using the MSTS, an analytic

expression was derived for the minimum quadrature noise (maximum squeezing) in

the ring, which was written in terms of the ring-coupling parameter and scattering loss

(see Eq. (2.39)). Also, an analytic expression for the minimum correlation variance

in a two-mode squeezed state in the ring was derived (see Eq. (3.60)). These simple

equations can be used to inform researchers as to what is the optimal ring-coupling

parameter in the presence of scattering loss, in order to generate highly inseparable

two-mode squeezed states in the ring, or to generate squeezed states in the ring that

are maximally squeezed.

In the coupled-cavity structures that were studied in this thesis, scattering loss

causes the quasimodes to be nonorthogonal, unless the structure has high-symmetry

and the modes are eigenstates of symmetry operators. In Chapter 5, I showed that the

MSTS solution to the Lindblad master equation is valid, even when the nonorthog-

onality of the quasimodes is included. This extends the applicability of the theory

to a general system of lossy coupled-cavities, including systems that have no symme-

try. I showed that in one of the simplest systems for squeezed light generation, just

two coupled defect-cavities that are asymmetrically placed in a photonic crystal slab,

the spatial overlap of the two nonorthogonal quasimodes is over 80% and it led to a

non-negligible detrimental effect on the squeezing level in the cavities.

Another application of the MSTS is for the generation of CV cluster states via

nonlinear optics. Theoretical studies of CV cluster states have largely focussed on

pure Gaussian states generated by a multimode squeezing transformation on the
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vacuum. However, this approach does not take into account the photon loss due

to scattering during the generation process. This loss can prevent the generated

squeezed state from being classified as a cluster state and thus it should be included.

The MSTS solution provides a simple way to incorporate loss during the generation

of the cluster state and it opens a path to extend the theory of pure Gaussian cluster

states to mixed Gaussian cluster states. In Chapter 6, I showed that the MSTS can

be classified as an approximate CV cluster state, provided squeezing criterion are

obeyed by the state that take into account the noise due to photon scattering. Also,

I derived the adjacency matrix for the cluster state in terms of the squeezing phase

parameters of the MSTS. Additionally, using the coupled-equations that were derived

for the parameters of the MSTS, one can easily calculate the adjacency matrix of the

nonlinearly generated cluster state.

There is ongoing work in the group that I will be apart of, at least for the next

few months, that is investigating the nonlinear generation of multimode squeezed

states in large systems of nonorthogonal quasimodes, such as a photonic crystal slab

with a three-mode defect-cavity side-coupled to a defect-waveguide. This system is

of interest since it can incorporate the generation and propagation of the MSTS on a

chip, and using the coupled-equations we derived we are able to characterize the state

at all times and at any point in the crystal. This work will help make it practical to

study nonclassical light in integrated circuits made from coupled-cavities in photonic

crystals.

Systems of coupled-cavities in a photonic crystal slab may also be of interest for

cluster state generation. In general, an MSTS can be generated in the coupled-cavities



184

by pumping the slab from above with a laser beam, where each individual cavity sup-

ports a single mode of the MSTS. The squeezing parameters in the MSTS will depend

on the coupling strength between the modes of the individual cavities (via the mode

overlaps in the nonlinear parameter), and thus the adjacency matrix for the corre-

sponding cluster state will have elements that also depend on the coupling strengths.

Theoretically, it may be possible to engineer the coupling strengths to obtain any

cluster state. One of the challenges with this approach is that the generated MSTS

can have many modes that do not contain a sufficient enough squeezing level to obey

the squeezing criterion that we derived, and thus is will not be considered a valid

cluster state. It will take some effort to engineer the nonlinear interaction in large

systems of lossy coupled-cavities to create sufficiently squeezed light in all the modes.

However, I remain optimistic that if the appropriate structure were to be discovered,

then one can nonlinearly generate large cluster states all at once. I hope that this

line of work will continue in the group and that the theory I developed in Chapters

5 and 6 will serve as a valuable foundation for this future work.

MRRs are a platform that have proven to be useful for cluster state generation.

They offer an opportunity to engineer the interaction between the resonant modes of

the ring, and it is easy to show using our theory that there is sufficiently squeezed

light in each ring mode (even after photon loss is included), such that the squeezing

criterion are obeyed. Using the theory in Chapter 4, one could model a system where

a MRR is pumped in a single mode of the ring and it generates pairs of entangled

signal and idler photons in pairs of ring-modes that conserve energy and momentum

with respect to the pump mode. This should result in the generation of a sequence of

uncoupled, two-mode cluster states. The sequence of two-mode cluster states would
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then couple out of the ring and into a channel waveguide, where from there they can

become the input to a linear optics circuit that mixes the two-mode cluster states

with beamsplitters and phase shifters to form a larger cluster state (similar to what I

showed in Chapter 6). This hybrid approach uses the theory developed in Chapters 4

and 6 to nonlinearly generate sequences of smaller cluster states that are subsequently

mixed using a linear optics circuit to produce a larger cluster sate.

The future of the applications of nonlinear optics to generate CV cluster states is

very bright. The work presented in this thesis opens a path to investigate CV cluster

states that are generated in lossy systems by a combination of nonlinear and linear

optics, and will help researchers optimize CV quantum computation in the presence

of photon scattering loss.
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[61] S. Biasi, P. Guillemé, A. Volpini, G. Fontana, and L. Pavesi. Time response of

a microring resonator to a rectangular pulse in different coupling regimes. J.

Light Technol., 37:5091–5099, 2019.

[62] J. C. Garrison and R. Y. Chiao. Quantum Optics. Oxford University Press,

2008.

[63] Hossein Seifoory, Lukas G Helt, and Marc M Dignam. Counterpropagating

continuous variable entangled states in lossy coupled-cavity optical waveguides.

Phys. Rev. A, 100:033839, 2019.

[64] H. P. Breuer and F. Petruccione. The Theoy of Open Quantum Systems. Oxford

University Press, 2002.

[65] M. S. Kim, F. A. M. de Oliveira, and P. L. Knight. Properties of squeezed

number states and squeezed thermal states. Phys. Rev. A, 40:2494–2503, 1989.

[66] Henning Vahlbruch, Moritz Mehmet, Karsten Danzmann, and Roman Schnabel.

Detection of 15 db squeezed states of light and their application for the absolute



BIBLIOGRAPHY 194

calibration of photoelectric quantum efficiency. Phys. Rev. Lett., 117:110801,

2016.

[67] E Knill. Quantum computing with realistically noisy devices. Nature, 434:39–

44, 2005.

[68] Shaoping Shi, Yajun Wang, Wenhai Yang, et al. Detection and perfect fitting

of 13.2db squeezed vacuum states by considering green-light-induced infrared

absorption. Opt. Lett., 43:5411–5414, 2018.

[69] C Vendromin and M M Dignam. Continuous-variable entanglement in a two-

mode lossy cavity: An analytic solution. Phys. Rev. A, 103:022418, 2021.

[70] Charles H Bennett, Gilles Brassard, Claude Crepeau, Richard Jozsa, Asher

Peres, and William K Wootters. Teleporting an unknown quantum state via

dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett., 70:1895,

1993.

[71] Mark Hillery. Quantum cryptography with squeezed states. Phys. Rev. A,

61:022309, 2000.

[72] S. Takeda and A. Furusawa. Toward large-scale fault-tolerant universal photonic

quantum computing. APL Photonics, 4:060902, 2019.

[73] A. S. Villar, L. S. Cruz, K. N. Cassemiro, M. Martinelli, and P. Nussenzveig.

Generation of bright two-color continuous variable entanglement. Phys. Rev.

Lett., 95:243603, 2005.

[74] M D Reid. Demonstration of the Einstein-Podolsky-Rosen paradox using non-

degenerate parametric amplification. Phys. Rev. A, 40:913, 1989.



BIBLIOGRAPHY 195

[75] Xianwen Liu, Alexander W. Bruch, Zheng Gong, Juanjuan Lu, Joshua B. Surya,

Liang Zhang, Junxi Wang, Jianchang Yan, and Hong X. Tang. Ultra-high-Q

UV microring resonators based on a single-crystalline AlN platform. Optica,

5:1279, 2018.

[76] J. W. Silverstone, R. Santagati, D. Bonneau, M. J. Strain, M. Sorel, J. L.

O’Brien, and M. G. Thompson. Qubit entanglement between ring-resonator

photon-pair sources on a silicon chip. Nat. Commun., 6:7948, 2015.

[77] Although the phase with a positive sign in front of the π/2 term is also a

solution, that solution gives du(ti)/dt < 0, which results in a negative u, which

is not allowed, since by definition u is a positive amplitude.

[78] Y Zhao, Y Okawachi, J K Jang, X Ji, M Lipson, and A L Gaeta. Near-

degenerate quadrature-squeezed vacuum generation on a silicon-nitride chip.

Phys. Rev. Lett., 124:193601, 2020.

[79] F Mondain, T Lunghi, A Zavatta, E Gouzien, F Doutre, M De Micheli,

S Tanzilli, and V D’Auria. Chip-based squeezing at a telecom wavelength.

Photonics res., 7:A37, 2019.

[80] Z Vernon, N Quesada, M Liscidini, B Morrison, M Menotti, K Tan, and J E

Sipe. Scalable squeezed-light source for continuous-variable quantum sampling.

Phys. Rev. Appl., 12:064024, 2019.

[81] B H Wu, R N Alexander, S Liu, and Z Zhang. Quantum computing with multi-

dimensional continuous-variable cluster states in a scalable photonic platform.

Phys. Rev. Res., 2:023138, 2020.



BIBLIOGRAPHY 196

[82] C Vendromin and M M Dignam. Simple way to incorporate loss when modeling

multimode-entangled-state generation. Phys. Rev. A, 105:063707, 2022.

[83] C S Hamilton, R Kruse, L Sansoni, S Barkhofen, C Silberhorn, and I Jex.

Gaussian boson sampling. Phys. Rev. Lett., 119:170501, 2017.

[84] R Kruse, C S Hamilton, L Sansoni, S Barkhofen, C Silberhorn, and I Jex.

Detailed study of Gaussian boson sampling. Phys. Rev. A, 100:032326, 2019.

[85] O. Pfister. Continuous-variable quantum computing in the quantum optical

frequency comb. J. Phys. B: At. Mol. Opt. Phys., 53:012001, 2020.

[86] J Zhang and S L Braunstein. Continuous-variable Gaussian analog of cluster

states. Phys. Rev. A, 73:032318, 2006.

[87] Z Yang, M Liscidini, and J E Sipe. Spontaneous parametric down-conversion in

waveguides: A backward Heisenberg picture approach. Phys. Rev. A, 77:033808,

2008.

[88] P R Sharapova, G Frascella, M Riabinin, A M Pérez, O V Tikhonova,
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Appendix A

Supplemental material for Chapter 2

A.1 Derivation of the time-dependent pump pulse in the ring

In this section we derive an approximate expression for the pump field in the ring,

E3

(
t̃
)
. We start with Eq. (2.13). To simplify this, we define

χ(Ω) ≡ 1

exp(−iΩ)− σa
. (A.1)

We expand this in a Taylor series about Ω = 0,

χ(Ω) =
∞∑
n=0

Ωnχ(n)(0)

n!
, (A.2)

where

χ(n)(0) ≡ dnχ(Ω)

dΩn

∣∣∣∣
Ω=0

(A.3)

is the nth order derivative of χ evaluated at Ω = 0. In the high squeezing limit

(1 − σa) � 1 it can be shown that for n ≥ 2, the nth and (n − 2)th derivatives are
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related by,

χ(n)(0)

n!
= − 1

ε2
χ(n−2)(0)

(n− 2)!
, (A.4)

where ε ≡ 1 − σa. Using Eq. (A.4) in Eq. (A.2) and after simplifying we find that

we can write χ(Ω) as

χ(Ω) =
1

ε

(
1 + iΩ/ε

1 + Ω2/ε2

)
. (A.5)

The modulus-squared of this is a good approximation to the buildup factor around

the peak at Ω = 0. Now we define the integral in Eq. (2.13) as A
(
t̃
)
. It is given by,

A
(
t̃
)

= exp

(
−2 ln(2)t̃2

τ̃ 2

)∫ ∞
−∞

dΩχ(Ω) exp

−( Ωτ̃√
8 ln 2

+ i

√
8 ln 2 t̃

2τ̃

)2
 , (A.6)

where we have completed the square in the argument of the exponential in Eq. (2.13)

to get this form. Using Eq. (A.5) in Eq. (A.6), we obtain

A
(
t̃
)

=
1

ε
exp

(
−2 ln(2)t̃2

τ̃ 2

)∫ ∞
−∞

dΩ
1 + iΩ/ε

1 + Ω2/ε2
exp

−( Ωτ̃√
8 ln 2

+ i

√
8 ln 2 t̃

2τ̃

)2
 .

(A.7)

Now we make the following substitutions in Eq. (A.7): y = Ω/ε, s = 2 ln(2)/(ε2τ̃ 2),

and x = −it̃4 ln(2)/(ετ̃ 2) . Doing this we obtain,

A
(
t̃
)

= exp

(
−2 ln(2)t̃2

τ̃ 2

)∫ ∞
−∞

dy

[
e−(x−y)2/(4s)

1 + y2
+ i

ye−(x−y)2/(4s)

1 + y2

]
. (A.8)
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The integral in Eq. (A.8) can be expressed in terms of Voigt functions U(x, s) and

V (x, s) [122]:

U(x, s) =
1√
4πs

∫ ∞
−∞

dy
e−(x−y)2/(4s)

1 + y2
, (A.9)

and

V (x, s) =
1√
4πs

∫ ∞
−∞

dy
ye−(x−y)2/(4s)

1 + y2
. (A.10)

It can be shown that

U(x, s) + iV (x, s) =

√
π

4s
ez

2

erfc z (A.11)

with z = (1− ix)/(2
√
s). The Eqs. (A.9) - (A.11) allow us to write Eq. (A.8) as,

A
(
t̃
)

= exp

(
−2 ln(2)t̃2

τ̃ 2

)
πez(t̃ )

2

erfc z
(
t̃
)
. (A.12)

Transforming back to our original variables τ̃ and t̃ we obtain z
(
t̃
)

= (1−σa)τ̃ /
√

8 ln(2)−√
8 ln(2)t̃/(2τ̃). Replacing the integral in Eq. (2.13) with the expression in Eq. (A.12)

gives Eq. (2.14) in the text.

A.2 Derivation of τg

In this section we derive an approximate expression, Eq. (2.27) for the pulse

duration τg that gives the peak in the pumping strength (see Fig. 2.3). In order to

do this, we first hold τ constant and then find the time tpeak when the pump is at

its peak value. Then we determine the pulse duration that causes the greatest peak
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value. We solve the following two equations simultaneously;

∂g(t, τ)

∂t

∣∣∣∣
t=tpeak

= 0, (A.13)

and,

∂g(tpeak, τ)

∂τ

∣∣∣∣
τ=τg

= 0. (A.14)

Re-writing Eq. (2.14) in terms of z(t) alone and ignoring the factors that do not

depend on t or τ , we find

g(t̃) ∝
√
τ̃ exp

(
− ε2τ̃ 2

8 ln 2
+

2ετ̃z(t̃)√
8 ln 2

)
erfc z(t̃), (A.15)

where ε ≡ 1 − σa, τ̃ = τ/TR, and t̃ = t/TR. Also TR∂/∂t = ∂/∂t̃ and ∂/∂t̃ =

−(
√

2 ln 2/τ̃)∂/∂z. Using Eq. (A.15) in Eq. (A.13) and switching the derivatives to

z, we obtain the following implicit equation for z(t̃peak);

ez
2
peakerfc zpeak =

1√
π

√
8 ln 2

ετ̃
, (A.16)

where zpeak ≡ z(t̃peak). Now, using Eq. (A.15) in Eq. (A.14) and noting that

TR∂/∂τ = ∂/∂τ̃ , we obtain

0 =
1

2τ̃g
− τ̃gε

2

4 ln 2
+

2εzpeak√
8 ln 2

+

+

(
2τ̃gε√
8 ln 2

− 2√
π

[
ez

2
peakerfc zpeak

]−1
)
∂zpeak
∂τ̃

∣∣∣∣
τ̃g

,

0 =
1

2τ̃g
− τ̃gε

2

4 ln 2
+

2εzpeak√
8 ln 2

, (A.17)
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where the second equation is obtained from the first by using Eq. (A.16). Solving

Eq. (A.17) for zpeak gives,

z(t̃peak) =
ετ̃g√
8 ln 2

−
√

8 ln 2

4ετ̃g
. (A.18)

Transforming Eq. (A.18) back to time t and using Eq. (2.15) we find that

t̃peak(τ̃g) =
1

2(1− σa)
(A.19)

is the time when g(τg) is at its peak value. The time t̃peak is the inverse of the decay

rate 1/Γ̃ in the low-loss limit (1−σa)� 1. We can determine τ̃g by using Eq. (A.18)

in Eq. (A.16). Doing this gives the following transcendental equation:

exp

(
x− 1

4x

)2

erfc

(
x− 1

4x

)
=

1√
πx
, (A.20)

where x ≡ ετ̃g/(8 ln 2)1/2. We have numerically determined that the solution of Eq.

(A.20) is x ≈ 0.34189. Thus, τ̃g is approximately given by

τ̃g ≈ 0.342

√
8 ln 2

1− σa
, (A.21)

which is the expression given in Eq. (2.27).



Appendix B

Supplemental material for Chapter 3

B.1 Deriving the coupled equations for 2 orthogonal modes

In this section we simplify the RHS of Eq. (3.18) in order to find a condition for

when the equality is true. We define the first two terms on the RHS of (3.18) to be

T1 =
dρ̂
−1/2
th

dt
Ŝ†ρ̂Ŝρ̂

−1/2
th + ρ̂

−1/2
th Ŝ†ρ̂Ŝ

dρ̂
−1/2
th

dt
, (B.1)

and then using Eq. (3.16) to simplify, we obtain

T1 = 2
dρ̂
−1/2
th

dt
ρ̂

1/2
th

=
2∑
j=1

(
−n̂j

ẋj
xj

+
ẋj

1− xj

)
. (B.2)

We used the two-mode thermal state in Eq. (3.4) to get the last line.

We define the middle two terms on the RHS of (3.18) to be

T2 = ρ̂
−1/2
th

dŜ†

dt
ρ̂Ŝρ̂

−1/2
th + ρ̂

−1/2
th Ŝ†ρ̂

dŜ

dt
ρ̂
−1/2
th , (B.3)
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and then using Eq. (3.16) to simplify, we obtain

T2 = ρ̂
−1/2
th

dŜ†

dt
Ŝρ̂

1/2
th − ρ̂

1/2
th

dŜ†

dt
Ŝρ̂
−1/2
th . (B.4)

To simplify this expression we will need to take the time derivative of the two-mode

squeezing operator in Eq. (3.2), which is not straightforward, and thus requires us to

be careful. We let Ŝ = exp(σ), where σ = ξ∗(t)b̂1b̂2 − h.c. and Ŝ† = exp(−σ), then

dŜ†

dt
=

d

dt

(
1− σ +

σ2

2!
− σ3

3!
+ ...

)
=
∞∑
n=0

∞∑
k=0

(−1)n+k+1 σnσ̇σk

(n+ k + 1)!

= −
∫ 1

0

dλ exp(−λσ)σ̇ exp(λσ) exp(−σ), (B.5)

where the integral in the last line can be shown to be equivalent to the sum on the

previous line by expanding the exponential operators in a power series in σ and doing

the integration over λ from 0 to 1. Multiplying Eq. (B.5) by Ŝ from the right, we

obtain

dŜ†

dt
Ŝ = −

∫ 1

0

dλ exp(−λσ)σ̇ exp(λσ). (B.6)

Using the well-known Baker-Campbell-Hausdorff formulae on the integrand of Eq.

(B.6), and then integrating over λ in each term in the series, we obtain

dŜ†

dt
Ŝ = −σ̇ +

1

2!
[σ, σ̇]− 1

3!
[σ, [σ, σ̇]] + ...

=
∞∑
n=1

(−1)n
L(n)

n!
, (B.7)

where the first three terms in L(n) are defined as L(1) ≡ σ̇, L(2) ≡ [σ, σ̇], and L(3) ≡
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[σ, [σ, σ̇]]. In general, we can write L(n) = [σ, L(n−1)] for n ≥ 2. It is straightforward

to show that,

L(1) = u̇
(

e−iφb̂1b̂2 − eiφb̂†1b̂
†
2

)
− iuφ̇

(
e−iφb̂1b̂2 + eiφb̂†1b̂

†
2

)
(B.8)

L(n) = −iφ̇
2

(n̂1 + n̂2 + 1) (2u)n, evenn ≥ 2 (B.9)

L(n) = −iφ̇
2

(
e−iφb̂1b̂2 + eiφb̂†1b̂

†
2

)
(2u)n, oddn ≥ 3. (B.10)

We then use Eqs. (B.8) to (B.10) in Eq. (B.7) to simplify the derivative. The

sum over even n converges to cosh(2u) − 1 and the sum over odd n converges to

sinh(2u)− 2u. Using these results, we put this simplified form of Eq. (B.7) into Eq.

(B.4), along with the two-mode thermal state, to obtain

T2 =
1− x1x2√
x1x2

(
u̇Û +

1

2
sinh(2u)φ̇V̂

)
, (B.11)

where Û = b̂1b̂2 exp(−iφ) + h.c. and V̂ = −ib̂1b̂2 exp(−iφ) + h.c.. We define the last

term of Eq. (3.18) to be

T3 = ρ̂
−1/2
th Ŝ†

dρ̂

dt
Ŝρ̂
−1/2
th . (B.12)

Using Eq. (3.3) in Eq. (B.12) and simplifying by using Eq. (3.16) gives

T3 = − i
~

(
ρ̂
−1/2
th Ŝ†ĤŜρ̂

1/2
th − ρ̂

1/2
th Ŝ

†ĤŜρ̂
−1/2
th

)
+

2∑
j=1

Γj ρ̂
−1/2
th Ŝ†b̂jŜρ̂

1/2
th ρ̂

1/2
th Ŝ

†b̂†jŜρ̂
−1/2
th

− 1

2

2∑
j=1

Γj

(
ρ̂
−1/2
th Ŝ†n̂jŜρ̂

1/2
th + ρ̂

1/2
th Ŝ

†n̂jŜρ̂
−1/2
th

)
(B.13)
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which can be simplified using the well-known Baker-Campbell-Hausdorff formulae to

obtain

T3 =
1− x1x2√
x1x2

[
ω1 + ω2

2
sinh(2u)V̂ +

(
i

~
(
EPγe−iφ cosh2 uE∗Pγ∗eiφ sinh2 u

) Û + iV̂

2
+ h.c.

)]
+

+

[(
1 + x1x2

2
√
x1x2

−
√
x1

x2

)
Γ1 +

(
1 + x1x2

2
√
x1x2

−
√
x2

x1

)
Γ2

]
1

2
sinh(2u)Û

+
[
Γ1(x1 − 1) cosh2 u+

(
x−1

1 − 1
)

Γ2 sinh2 u
]
n̂1

+
[
Γ2(x2 − 1) cosh2 u+

(
x−1

2 − 1
)

Γ1 sinh2 u
]
n̂2+

+
[
Γ1

(
x1 cosh2 u− sinh2 u

)
+ Γ2

(
x2 cosh2 u− sinh2 u

)]
. (B.14)

Using expressions for T1, T2, and T3 (see Eqs. (B.2), (B.11), and (B.14)) in Eq.

(3.18), formally we can write

0 = T1 + T2 + T3. (B.15)

In order for the equality in Eq. (B.15) to be true for all times we must have that

the coefficients in front of the operators, 1, n̂1, n̂2, Û , and V̂ are equal to zero for

all times. Setting these equal to zero and solving, we obtain the coupled differential

equations Eqs. (3.19) to (3.22).



Appendix C

Supplemental material for Chapter 4

C.1 Connection between SVD and the Takagi factorization

As mentioned in the text, the Takagi factorization is a special case of the sym-

metric SVD, where the diagonal matrix from the Takagi factorization is just a scaled

version of the singular values from the SVD. In this section we derive the Takagi

factorization from the SVD, and show how the diagonal values are related to the

singular values.

The SVD of the nonlinear parameter G is

G = UΣW †, (C.1)

where Σ is a diagonal matrix of real and positive singular values, and U †U = 1

and W †W = 1. To obtain the Takagi factorization we define the diagonal complex

matrix

Λ = ΣW †U ∗, (C.2)
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where U ∗ denotes the complex conjugate of U . Therefore the Takagi factorization is

G = UΛUT, (C.3)

where the SVD can be recovered by putting Eq. (C.2) into Eq. (C.3), since U ∗UT =

1. Therefore, to obtain the Takagi factorization of G, one can perform the SVD to

get the matrix U , and multiply the singular value matrix Σ by the diagonal matrix

W †U ∗.

Now we prove that W †U ∗ in Eq. (C.2) is diagonal. If it is diagonal, then it

must be equal to its transpose, such that W †U ∗ = U †W ∗. Taking the Hermitian

conjugate of both sides, we obtain

W TU = UTW . (C.4)

Moreover, since G is a symmetric matrix we have GT = G. Taking the transpose of

Eq. (C.1) we obtain

W ∗ΣUT = UΣW †,

ΣUTW = W TUΣ,

ΣUTWΣ−1 = UTW , (C.5)

where to go from the second line to the third line we used Eq. (C.4). Eq. (C.5) implies

that if the singular values Σ are distinct and nonzero, thenUTW is a diagonal matrix.

Therefore, its Hermitian conjugate W †U ∗ is also diagonal, and we have proved that

Λ is diagonal.
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C.2 Deriving the coupled equations for M orthogonal modes

In this section we provide the details on the derivation of the coupled differential

equations Eqs. (4.69) -(4.71).

C.2.1 Equations for ṙµ and φ̇µ

To start, we add Eqs. (4.67) and (4.68), to obtain

Dml = −Eml. (C.6)

Putting the expression for Dml in Eq. (4.56) into Eq. (C.6), we obtain

xmxl − 1

2
√
xmxl

∑
µ

UmµUlµ

(
ṙµ +

iφ̇µ
2

sinh(2rµ)

)
eiφµ = −Eml. (C.7)

Multiplying both sides by
∑

m,l U
∗
µmU

∗
µl and using the orthogonality relation

∑
m U

∗
νmUmµ =

δνµ, we obtain

ṙµ +
iφ̇µ
2

sinh(2rµ) =
∑
m,l

2
√
xmxlEmlU

∗
µmU

∗
µle
−iφµ

1− xmxl
. (C.8)

Equating the real and imaginary parts of both sides of Eq. (C.8) gives the following

equations for ṙµ and φ̇µ

ṙµ =
∑
m,l

√
xmxl

(
EmlU

∗
µmU

∗
µle
−iφµ + E∗mlUmµUlµeiφµ

)
1− xmxl

, (C.9)

φ̇µ =
∑
m,l

2
√
xmxl

(
EmlU

∗
µmU

∗
µle
−iφµ − E∗mlUmµUlµeiφµ

)
i(1− xmxl) sinh(2rµ)

. (C.10)
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Now, to simplify Eq. (C.9) and Eq. (C.10), we focus on the first term of the sum.

Using the expression for Eml in Eq. (4.63), we obtain

∑
m,l

√
xmxlEmlU

∗
µmU

∗
µle
−iφµ

1− xmxl
=
∑
σ,ν

∑
m,l

UmσUlνU
∗
µmU

∗
µle

i(φν−φµ) cosh(rσ) sinh(rν)

×
(
iΩσν +

1

2
Γσν

1 + xmxl − 2xm
1− xmxl

)
− i

~
∑
ν

∑
m,l

UmνUlνU
∗
µmU

∗
µle

i(φν−φµ)

×
(
α2λνe

−iφν cosh2(rν) + α∗2λ∗νe
iφν sinh2(rν)

)
= iΩµµ cosh(rµ) sinh(rµ)

− i

~
(
α2λµe−iφµ cosh2(rµ) + α∗2λ∗µeiφµ sinh2(rµ)

)
+

1

2

∑
σ,ν

ei(φν−φµ)Γσν cosh(rσ) sinh(rν)

×
∑
m,l

UmσUlνU
∗
µmU

∗
µl

1 + xmxl − 2xm
1− xmxl

. (C.11)

Using Eq. (4.54) we can write Eq. (C.11) in terms of the thermal photon numbers as

∑
m,l

√
xmxlEmlU

∗
µmU

∗
µle
−iφµ

1− xmxl
= iΩµµ cosh(rµ) sinh(rµ)

− i

~
(
α2λµe−iφµ cosh2(rµ) + α∗2λ∗µeiφµ sinh2(rµ)

)
− 1

2

∑
σ,ν

ei(φν−φµ)Γσν cosh(rσ) sinh(rν)

×
∑
m,l

UmσUlνU
∗
µmU

∗
µl

−nm + nl + 1

nm + nl + 1
. (C.12)
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The complex conjugate of Eq. (C.12) is

∑
m,l

√
xmxlE

∗
mlUµmUµle

iφµ

1− xmxl
= −iΩµµ cosh(rµ) sinh(rµ)

+
i

~
(
α2λµe−iφµ sinh2(rµ) + α∗2λ∗µeiφµ cosh2(rµ)

)
− 1

2

∑
σ,ν

e−i(φν−φµ)Γ∗σν cosh(rσ) sinh(rν)

×
∑
m,l

U∗mσU
∗
lνUµmUµl

−nm + nl + 1

nm + nl + 1
, (C.13)

where we have used the fact that Ω∗µµ = Ωµµ. Adding Eq. (C.12) and Eq. (C.13)

together gives the equation for ṙµ in Eq. (4.69) in the main text. Subtracting Eq.

(C.13) from Eq. (C.12) and dividing by i
2

sinh(2rµ) (see Eq. (C.10)) gives the equation

for φ̇µ in Eq. (4.70) in the main text.

C.2.2 Equation for ṅm

As mentioned in Sec. 4.4.3 we obtain an equation for ṅm by writing the operators

b̂†mb̂m and b̂†mb̂l found in the expressions T1, T2, and T3 in terms of the Schmidt

operator B̂†µB̂ν , and then force the sum of the coefficients in front of B̂†µB̂ν equal to

zero. The appropriate term in T3 (i.e. Eq. (4.52)) becomes

−
∑
m

b̂†mb̂m
ẋm
xm

= −
∑
µ,ν

∑
m

U∗mµUmν
ẋm
xm

B̂†µB̂ν , (C.14)
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where we have used Eq. (4.34). The appropriate terms in T1 and T2 (i.e. Eq. (4.60)

and Eq. (4.61)) become

∑
m,l

Fmlb̂
†
mb̂l =

∑
µ,ν

∑
m,l

FmlU
∗
mµUlνB̂

†
µB̂ν , (C.15)

and

∑
m,l

Kmlb̂
†
mb̂l =

∑
µ,ν

∑
m,l

KmlU
∗
mµUlνB̂

†
µB̂ν . (C.16)

Since we require that 0 = T1 + T2 + T3 (see Eq. (4.49)), the sum of the coefficients

multiplying B̂†µB̂ν in Eqs. (C.14) - (C.16) must be equal to zero

∑
m,l

U∗mµUlν

(
Fml +Kml −

ẋm
xm

)
= 0. (C.17)

Multiplying Eq. (C.17) by
∑

µ,ν U
∗
mνUmµ and using the orthogonality relation

∑
µ U
∗
mµUlµ =

δml, we obtain

Fmm +Kmm −
ẋm
xm

= 0, (C.18)

but from Eq. (4.57) we have that Fmm = 0. Therefore

ẋm
xm

= Kmm. (C.19)
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Using Eq. (4.64) in Eq. (C.19), we obtain

ẋm
1− xm

=
∑
µ,ν

UmµU
∗
mν

(
− xmΓµν cosh(rµ) cosh(rν) + Γ∗µνe

i(φµ−φν) sinh(rµ) sinh(rν)

)
.

(C.20)

Expressing Eq. (C.20) in terms of nm gives

ṅm
1 + nm

=
∑
µ,ν

UmµU
∗
mν

(
− nm

1 + nm
Γµν cosh(rµ) cosh(rν) + Γ∗µνe

i(φµ−φν) sinh(rµ) sinh(rν)

)
,

(C.21)

which is Eq. (4.71) in the text.

C.3 Solving the coupled equations from an initial vacuum state

In this section we discuss how to solve Eqs. (4.69) - (4.71) for a system that

initially starts in the vacuum state. At time t = 0 the vacuum state is defined by

rµ(0) = 0, (C.22)

nm(0) = 0, (C.23)

for all µ and m. Putting these initial conditions into Eq. (4.69) we obtain

ṙµ(0) =
2 |α(0)|2 |λµ|

~
sin (−φµ(0) + θµ) , (C.24)
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where we define

α(t)2 = |α(t)|2 exp(−2iωP t), (C.25)

and

λµ = |λµ| exp(iθµ), (C.26)

where θµ is a real number. We choose the initial squeezing phase, φµ(0), to be

φµ(0) = θµ −
π

2
, (C.27)

such that is maximizes the squeezing amplitude at the next time-step, rµ(∆t):

rµ(∆t) =
2 |α(0)|2 |λµ|

~
∆t+O

(
(∆t)2) . (C.28)

Now, let us move on to the equation for the squeezing phase, Eq. (4.70). It is easily

shown that using Eqs. (C.22), (C.23), and (C.27) will result in the second and third

terms in Eq. (4.70) being indeterminate (0/0). Thus, at t = 0, we write this equation

as

φ̇µ(0) = −2Ωµµ − ζµ, (C.29)

where we let ζµ be the indeterminate form. We are unable to solve these equations

unless we define ζµ. We define ζµ by requiring that the derivatives of the squeezing
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phase at t = ∆t and t = 0 are the same,

φ̇µ(∆t) = φ̇µ(0), (C.30)

such that initially the squeezing phase is a linear function of time. Putting Eqs.

(C.22), (C.23), (C.27), and (C.28) into Eq. (4.70) and using the fact that nm(∆t) = 0

(which can be proven by writing Eq. (4.71) as a difference equation and using the

initial conditions) it can be shown that

φ̇µ(∆t) = −2ωP + ζµ. (C.31)

Using Eq. (C.31) in Eq. (C.30), the indeterminate form ζµ is defined as

ζµ = −Ωµµ + ωP . (C.32)

To solve Eqs. (4.69) - (4.71) we use MATLAB’s ode45 function, that is based on a

Runge-Kutta method. The initial conditions that we use for the squeezing amplitudes,

thermal photon numbers, and squeezing phases are in Eqs. (C.22), (C.23), and (C.27).

We have to write an additional condition in the code that imposes the condition that

at t = 0 the derivatives of the squeezing phases are equal to φ̇µ(0) = −Ωµµ − ωP ,

otherwise the program will return a division-by-zero error (as discussed above). The

solution is sensitive to the initial squeezing phases φµ(0). It is crucial that they are set

to precisely the values given in Eq. (C.27) in order to obtain the results we present in

Sec. 4.7. We find, however, that the initial value of the derivative of the phase φ̇µ(0)

has little impact on the final solution, since it quickly settles to the correct value,
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given by −Ωµµ − ωP .



Appendix D

Supplemental material for Chapter 5

D.1 Nonorthogonal quasimodes

In this section, we define the lossy nonorthogonal quasimodes of a resonant struc-

ture and their spatial overlap. We also derive an expression for the upper bound on

the overlap.

We consider an open dielectric system with out-going boundary conditions. The

positive frequency part of the electric field in a lossy quasimode m takes the form [9]

E(+)(r, t) = Nm(r)e−iω̃mt, (D.1)

where Nm(r) is the spatial profile of the quasimode, and its complex frequency is

ω̃m ≡ ωm − iγm. Each quasimode is a solution to the Helmholtz equation:

∇×∇×Nm(r)− ω̃2
m

c2
ε(r)Nm(r) = 0, (D.2)

where ε(r) is the real, relative dielectric function for the structure. We define the

221
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inner product between two quasimodes of different frequency ω̃m and ω̃l as

〈Nm|Nl〉 ≡
∫
d3rε(r)N ∗m(r) ·Nl(r). (D.3)

The quasimodes are calculated within a computational volume that is bounded by

perfectly-matched layers (PMLs) in order to simulate open boundary conditions. The

integral in Eq. (D.3) is done over the computational volume only, that excludes the

PMLs. Throughout this work, the fields in the PMLs are excluded from all integrals.

The normalized quasimode overlap is

Oml ≡
〈Nm|Nl〉√

〈Nm|Nm〉 〈Nl|Nl〉
. (D.4)

Note that O is a Hermitian matrix. For a general system of coupled-cavities, the

off-diagonal elements of the overlap are non-zero. Therefore, the quasimodes form a

nonorthogonal basis.

As we shall show below, the upper bound on the overlap in Eq. (D.4) is derived

by requiring that the quasimodes satisfy outgoing-wave boundary conditions at edge

of the computational volume. We will show it is given by

|Oml|2 ≤
4γmγl

(ωm − ωl)2 + (γm + γl)2
. (D.5)

Using this result one can get some idea if the overlap between two quasimodes is

negligible or not. For example, if the difference between the real parts of the frequen-

cies is much larger than the sum of the imaginary parts (i.e. |ωm − ωl| � γm + γl),

then the overlap is approximately given by |Oml|2 ≈ 4γmγl/(ωm − ωl)
2, and this
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will approach zero the larger the frequency difference is. Therefore, quasimodes that

are separated in frequency by much more than their line-widths will have a negligi-

ble overlap and will be approximately orthogonal. Alternatively, if two quasimodes

are close in frequency (i.e. ωm ≈ ωl), then the overlap is approximately given by

|Oml|2 ≈ 4γmγl/(γm+γl)
2, which will be close to one. Therefore, quasimodes that are

close in frequency can generally have a large overlap, unless some symmetry forbids

it. We find that this overlap can be very large in systems of coupled-cavities in a

photonic crystal slab, such as the two-defect structure discussed in the paper.

Now we derive Eq. (D.5). First, we combine Eqs. (D.2) and (D.3) to obtain

1

c2

(
ω̃∗2m − ω̃2

l

)
〈Nm|Nl〉 = Aml −A∗lm, (D.6)

where

Aml ≡
∫
d3r [∇×∇×N ∗m(r)] ·Nl(r). (D.7)

Immediately, we see that if A is a Hermitian matrix, then Oml must be zero and the

quasimodes are orthogonal. However, we show that A is not Hermitian due to the

lossy nature of the quasimodes. Using the vector calculus identity ∇ · (P × Q) =

(∇×P ) ·Q− (∇×Q) ·P , with P ≡ ∇×N ∗m and Q ≡Nl, Eq. (D.7) can be written

as

Aml =

∫
d3r [∇×Nl(r)] · [∇×N ∗m(r)] +

∫
∂V

[(∇×N ∗m(r))×Nl(r)] · dA, (D.8)

where we have used the divergence theorem to obtain the last term in Eq. (D.8),
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with ∂V defined as the surface boundary of the computational volume V and dA is

an infinitesimal area element on and normal to the surface boundary. The first term

in Eq. (D.8) is clearly Hermitian, however the surface integral in the second term is

not. It is this integral of the quasimodes on the surface boundary that causes the

problem to be non Hermitian and the quasimodes to be nonorthogonal. Using Eq.

(D.8), the right-hand side of Eq. (D.6) can be written as

Aml −A∗lm =

∫
∂V

[
(∇×N ∗m(r))×Nl(r)− (∇×Nl(r))×N ∗m(r)

]
· dA. (D.9)

The surface boundary is taken to be the edge of the computational volume (but

excluding the PMLs), and it must be far from any sources, such that the modes are

given by out-going waves. In the standard treatment of electric and magnetic field

normal modes, the surface integrals in Eq. (D.9) are zero because the normal modes

decay to zero at infinity. This is the origin of the orthogonality of the normal modes.

However, due to the lossy nature of the quasimodes, mathematically they do not decay

to zero at the surface boundary. This is because at the surface the quasimodes are

out-going waves, with a complex wavevector that causes them to diverge. Therefore,

the surface integral in Eq. (D.6) quantifies the nonorthogonality of the quasimodes.

To evaluate Eq. (D.9) we take the surface boundary to be a sphere of radius r,

and we let r → ∞. We assume that at infinity there is a homogeneous background

dielectric material of a constant index of refraction. We let the quasimodes be given

by spherical outgoing waves as r →∞, that are polarized tangentially to the surface

of the sphere. They have the form

Nm(r, θ, φ) = [hmθ(θ, φ)ε̂θ + hmφ(θ, φ)ε̂φ]
eik̃mr

r
, (D.10)
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where k̃m = (ωm− iγm)n/c is the complex wavevector, where n is the index of refrac-

tion of the homogeneous background dielectric. The components of the quasimodes

in the ε̂θ and ε̂φ directions are hmθ(θ, φ) and hmφ(θ, φ), respectively, and they do not

depend on r. There is no component of the quasimodes in the ε̂r direction. Note

that the combination of ik̃m in Eq. (D.10) causes the quasimodes to exponentially in-

crease as r →∞. This is because the exponential increases faster than 1/r decreases.

Putting Eq. (D.10) into Eq. (D.9), defining dA ≡ r2 sin(θ)dθdφε̂r, and doing the

cross-products in spherical coordinates, we obtain

Aml −A∗lm =
i

n2
〈hm|hl〉

(
k̃∗m + k̃l

)
e−i(k̃

∗
m−k̃l)r, (D.11)

where 〈hm|hl〉 is the inner product on the surface boundary, defined by

〈hm|hl〉 ≡ n2

∫∫
h∗m(θ, φ) · hl(θ, φ) sin(θ)dθdφ. (D.12)

Putting Eq. (D.11) into Eq. (D.6), the quasimode inner product can be written as

〈Nm|Nl〉 = i 〈hm|hl〉
e−i(k̃

∗
m−k̃l)r

k̃∗m − k̃l
, (D.13)

where we used the fact that ω̃∗2m −ω̃2
l = (c/n)2(k̃∗m+ k̃l)(k̃

∗
m− k̃l). Therefore if the inner

product on the boundary is zero, 〈hm|hl〉 = 0, then the quasimodes are orthogonal.

Putting Eq. (D.13) into Eq. (D.4), it can be shown that the absolute square of the

overlap is given by

|Oml|2 =
|〈hm|hl〉|2

〈hm|hm〉 〈hl|hl〉
4γmγl

(ωm − ωl)2 + (γm + γl)2
. (D.14)
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Now using the Cauchy-Schwarz inequality, |〈hm|hl〉|2 ≤ 〈hm|hm〉 〈hl|hl〉, the upper

bound of the overlap in Eq. (D.14) is

|Oml|2 =
4γmγl

(ωm − ωl)2 + (γm + γl)2
. (D.15)

Therefore, |Oml|2 is always less than this upper bound, and we obtain the inequality

in Eq. (D.5).

D.2 The Lindblad master equation

In this section, we present the Lindblad master equation, that was derived using

the quasimode projection technique [9], written in terms of the quasimode operators.

We show that we obtain the exact same form for the Lindblad master equation that

was derived using a different quantization approach using quasi-normal modes [111].

The system Hamiltonian can be written as

Ĥ = ĤL + ĤNL. (D.16)

In the basis of the discrete quasimodes, it can be shown that the linear part is given

by [9]

ĤL = ~
∑
m,l

ω̃lOmlĉ
†
mĉl, (D.17)

where ĉ†m and ĉm are the creation and annihilation operators for photons in the mth
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quasimode. They satisfy the commutation relation

[
ĉm, ĉ

†
l

]
= O−1

ml , (D.18)

where O−1 is the inverse of the overlap matrix of Eq. (D.4), satisfying

1 = O−1O. (D.19)

We let the nonlinear Hamiltonian account for the SFWM interaction that gener-

ates the squeezed light. We take the pump to be a classical field in a single quasimode,

P . Using the undepleted pump approximation, the nonlinear Hamiltonian is given

by

ĤNL = ~α2(t)
∑
m,l

Gmlĉ
†
mĉ
†
l + H.c., (D.20)

where α(t) = |αP |e−iωP t is the pump amplitude with frequency ωP , and Gml is the

nonlinear parameter for SFWM given by

Gml ≡
9~ωP
16ε0

∑
i,j,k,h

√
ω̃∗mω̃

∗
l

∫
d3rχ

(3)
ijkh(r)N∗mi(r)N∗lj(r)NPk(r)NPh(r), (D.21)

where i, j, k, and h are the Cartesian components of the spatially-dependent third-

order nonlinear susceptibility tensor χ
(3)
ijkh(r).

The Lindblad master equation for the density operator ρ̂(t) was derived in previous

work, using the quasimode projection approach, for nonorthogonal quasimodes. It is
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given by [97]

dρ̂

dt
=
−i
~

[
Ĥ

(+)
L + ĤNL, ρ̂

]
+
i

2

∑
m,l

(ω̃l − ω̃∗m)Oml

(
2ĉlρ̂ĉ

†
m − ρ̂ĉ†mĉl − ĉ†mĉlρ̂

)
, (D.22)

where Ĥ
(+)
L is the Hermitian part of the linear Hamiltonian and is defined as

Ĥ
(+)
L ≡ ~

2

∑
m,l

(ω̃l + ω̃∗m)Omlĉ
†
mĉl. (D.23)

The expressions for the quantized Hamiltonian and the Lindblad master equation

are written in terms of the quasimode annihilation and creation operators, which

do not obey the standard commutation relation for bosons. This is a result of the

quantization approach used. In a different quantization approach that uses quasi-

normal modes [111], the Hamiltonian and Lindblad master equation are written in

terms of photon operators that do obey the standard commutator. Now we show that

we can connect the two approaches by doing a symmetrization transformation of the

quasimode operators (similar to Ref. [111])

âm ≡
∑
l

O
1/2
ml ĉl, (D.24)

such that these operators have the standard commutation relation

[âm, â
†
l ] = δml, (D.25)

which can be derived using Eqs. (D.18) and (D.19). Writing Ĥ
(+)
L in Eq. (D.23) in
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terms of these operators, we obtain

Ĥ
(+)
L = ~

∑
m,l

χ
(+)
ml â

†
mâl, (D.26)

and for the Lindblad master equation in Eq. (D.22), we obtain

dρ̂

dt
=
−i
~

[
Ĥ

(+)
L + ĤNL, ρ̂

]
+
∑
m,l

χ
(−)
ml

(
2âlρ̂â

†
m − ρ̂â†mâl − â†mâlρ̂

)
. (D.27)

Here χ(−) and χ(+) are Hermitian matrices defined as

χ(−) ≡ i

2

(
χ− χ†

)
, (D.28)

χ(+) ≡ 1

2

(
χ+ χ†

)
, (D.29)

where,

χ ≡ O1/2ω̃O−1/2, (D.30)

where ω̃ ≡ diag(ω̃1, . . .). The matrices χ
(+)
ml and χ

(−)
ml give the coupling between dif-

ferent quasimodes in the Hamiltonian and Lindblad dissipator. The coupling will be

strong for quasimodes that have a large overlap. Note that if the quasimodes are or-

thogonal to each other, withO = 1, then χ(−) = diag(γ1, . . .) and χ(+) = diag(ω1, . . .)

are just proportional to the imaginary and real parts of the complex frequency ω̃m.

This will give the usual form of the Hamiltonian and Lindblad dissipator for orthog-

onal modes.
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The nonlinear Hamiltonian in Eq. (D.20) can be written using âm and â†m as

ĤNL = ~α2(t)
∑
m,l

Smlâ
†
mâ
†
l + H.c., (D.31)

where S is the nonlinear parameter defined by

S ≡ O−1/2G
[
O−1/2

]T
. (D.32)

Note that S is also a complex symmetric matrix, with ST = S.

Equations (D.26) and (D.27), that were derived using the quasimode projection

approach, have the exact same form as those that were derived using a different quan-

tization approach using the quasi-normal mode formalism (see Eqs. (28a) and (30)

in Ref. [112]). Therefore, the form of the density operator solution to the Lindblad

master equation does not depend on the quasimode quantization approach used, and

so our analytic solution is applicable to both approaches, provided that the dielectric

function for the material is real.

D.2.1 The diagonalized form of the Lindblad master equation

In this subsection we write the Lindblad master equation in Eq. (D.27) in its

diagonal form. It is important to do this, because it will help us derive the analytic

solution to the Lindblad master equation in the next section. The diagonalization can

be achieved by decomposing the quasimode coupling matrix χ(−) with the singular

value decomposition

χ(−) = M (−)γsM (−)†, (D.33)
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where M (−)M (−)† = 1 and γs ≡ diag(γs
1, . . .) is a diagonal matrix of the singular

values. Putting Eq. (D.33) into Eq. (D.27), we obtain

dρ̂

dt
=
−i
~

[
Ĥ

(+)
L + ĤNL, ρ̂

]
+
∑
σ

γs
σ

(
2Âσρ̂Â

†
σ − ρ̂Â†σÂσ − Â†σÂσρ̂

)
, (D.34)

which is the diagonal form of the Lindblad master equation. We define the creation

operator

Â†σ ≡
∑
m

M (−)
mσ â

†
m, (D.35)

that statisfies the commutator [Âσ, Â
†
σ′ ] = δσσ′ .

D.3 Deriving the coupled equations for M nonorthogonal modes

In this section, we show that the analytic solution to the Lindblad master equation

for SFWM is the density operator, ρ̂(t), for an MSTS, given by

ρ̂(t) = Ŝ(t)ρ̂th(t)Ŝ†(t), (D.36)

where Ŝ(t) is given in Eq. (5.7) and ρ̂th(t) is given in Eq. (5.8). To prove that this is

the solution, we require that ρ̂(t) to be a solution of

1 = ρ̂
−1/2
th (t)Ŝ†(t)ρ̂(t)Ŝ(t)ρ̂

−1/2
th (t), (D.37)
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where we used the fact that Ŝ†(t)Ŝ(t) = 1. Since Eq. (D.37) is true for all times, if

we take the time derivative of both sides, we obtain

0 = ρ̂
1/2
th Ŝ

†dŜ

dt
ρ̂
−1/2
th − ρ̂−1/2

th Ŝ†
dŜ

dt
ρ̂

1/2
th

+ 2
dρ̂
−1/2
th

dt
ρ̂

1/2
th + ρ̂

−1/2
th Ŝ†

dρ̂

dt
Ŝρ̂
−1/2
th , (D.38)

where we dropped the time-dependence of the operators for convenience. We obtain

the coupled-equations Eqs. (5.9) - (5.11) by simplifying the four terms on the right-

hand side of Eq. (D.38). Our strategy is to put the expressions for Ŝ(t), ρ̂th(t), and

dρ̂(t)/dt into Eq. (D.38). As we will show, the right-hand side can be written in terms

of three Schrödinger operators: Â†σÂν , Q̂σν (Eq. (D.48)), and P̂σν (Eq. (D.49)), that

are common to each term, and are multiplied by time-dependent coefficients that

depend on rµ(t), φµ(t), and nµ(t) and their first time-derivatives. To satisfy Eq.

(D.38), and obtain the coupled-equations, we let the coefficients in front of the three

operators equal zero.

We define the following terms that help in the derivation:

T1 ≡ 2
dρ̂
−1/2
th

dt
ρ̂

1/2
th , (D.39)

T2 ≡ ρ̂
1/2
th Ŝ

†dŜ

dt
ρ̂
−1/2
th − ρ̂−1/2

th Ŝ†
dŜ

dt
ρ̂

1/2
th , (D.40)

T3 ≡ ρ̂
−1/2
th Ŝ†

dρ̂

dt
Ŝρ̂
−1/2
th . (D.41)
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Using the definition of ρ̂th(t) in Eq. (5.8), it can be shown that T1 simplifies to

T1 = −
∑
κ

1

nκ(1 + nκ)

dnκ
dt

∑
σ,ν

W ∗
κσWκνÂ

†
σÂν

+
∑
κ

1

1 + nκ

dnκ
dt

. (D.42)

Moving on to T2, we first simplify the time-derivative of the squeezing operator. It

can be shown that [82]

Ŝ†
dŜ

dt
=
∑
µ

(
i

2
sinh2(rµ)

dφµ
dt

(
2B̂†µB̂µ + 1

)
+

(
1

2

drµ
dt

+
i

4
sinh(2rµ)

dφµ
dt

)
eiφµB̂†2µ

−
(

1

2

drµ
dt
− i

4
sinh(2rµ)

dφµ
dt

)
e−iφµB̂2

µ

)
. (D.43)

Now to simplify T2 we need to perform the thermal transformations on Eq. (D.43).

These can be done with

ρ̂
±1/2
th B̂µρ̂

∓1/2
th =

∑
κ,σ

Y ∗κµx
∓1/2
κ WκσÂσ, (D.44)

ρ̂
±1/2
th B̂†µρ̂

∓1/2
th =

∑
κ,σ

Yκµx
±1/2
κ W ∗

κσÂ
†
σ, (D.45)

where W ≡ Y V † and we define

xµ ≡
nµ

1 + nµ
. (D.46)
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Using Eqs. (D.44) and (D.43), it can be shown that T2 simplifies to

T2 =
∑
σ,ν

(
FσνÂ

†
σÂν + Re[Dσν ]Q̂σν + Im[Dσν ]P̂σν

)
, (D.47)

where we define two Schrödinger operators

Q̂σν ≡ ÂσÂν + Â†σÂ
†
ν , (D.48)

P̂σν ≡ −iÂσÂν + iÂ†σÂ
†
ν , (D.49)

and the time-dependent coefficients

Fσν ≡
∑
µ,κ,κ′

i sinh2(rµ)
dφµ
dt

YκµY
∗
κ′µWκσW

∗
κ′ν

[
x1/2
κ x

−1/2
κ′ − x−1/2

κ x
1/2
κ′

]
, (D.50)

Dσν ≡
∑
µ,κ,κ′

(
1

2

drµ
dt

+
i

4
sinh(2rµ)

dφµ
dt

)
eiφµYκµYκ′µW

∗
κσW

∗
κ′ν

[
x1/2
κ x

1/2
κ′ − x

−1/2
κ x

−1/2
κ′

]
,

(D.51)

where Re[Dσν ] and Im[Dσν ] are the real and imaginary parts of Dσν .

Moving on to T3, the squeezing transformation of the Lindblad master equation

in Eq. (D.34) can be done using

Ŝ†ÂσŜ =
∑
µ

VσµŜ
†B̂µŜ, (D.52)

Ŝ†ĈκŜ =
∑
µ

YκµŜ
†B̂µŜ, (D.53)
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where the squeezing transformation of the B̂µ operators is

Ŝ†B̂µŜ = cosh(rµ)B̂µ + eiφµ sinh(rµ)B̂†µ. (D.54)

After performing the squeezing transformation in T3, the remaining thermal transfor-

mation can be done using Eq. (D.44). Doing this we obtain

T3 =
∑
σ,ν

(
KσνÂ

†
σÂν + Re[Eσν ]Q̂σν + Im[Eσν ]P̂σν

)
+ 2

∑
ν,σ,ν′

Γσν cosh(rσ) cosh(rν)Y
∗
σν′Yνν′xν′

− 2
∑
ν

Γνν sinh2(rν), (D.55)
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where

Eσν =
∑

µ,µ′,κ′,κ

eiφµ′ cosh(rµ) sinh(rµ′)Yκ′µYκµ′W
∗
κ′σW

∗
κν (D.56)

×
(
iΩµµ′

[
x

1/2
κ′ x

1/2
κ − x

−1/2
κ′ x−1/2

κ

]
− Γµ′µ

[
x

1/2
κ′ x

1/2
κ + x

−1/2
κ′ x−1/2

κ − 2x−1/2
κ x

1/2
κ′

])
+ i

∑
µ,κ′,κ

(
α2(t)λµ cosh2(rµ) + α∗2(t)λ∗µ sinh2(rµ)e2iφµ

)
× Yκ′µYκµW ∗

κ′σW
∗
κν

[
x

1/2
κ′ x

1/2
κ − x

−1/2
κ′ x−1/2

κ

]
Kσν =

∑
µ,µ′,κ′,κ

Yκ′µY
∗
κµ′W

∗
κ′σWκν cosh(rµ′) cosh(rµ) (D.57)

×
(
iΩµµ′

[
x

1/2
κ′ x

−1/2
κ − x−1/2

κ′ x1/2
κ

]
− Γµ′µ

[
x

1/2
κ′ x

−1/2
κ + x

−1/2
κ′ x1/2

κ − 2x
1/2
κ′ x

1/2
κ

])
+

∑
µ,µ′,κ′,κ

Yκ′µY
∗
κµ′W

∗
κ′σWκν sinh(rµ′) sinh(rµ)ei(φµ−φµ′ )

×
(
iΩµ′µ

[
x

1/2
κ′ x

−1/2
κ − x−1/2

κ′ x1/2
κ

]
− Γµµ′

[
x

1/2
κ′ x

−1/2
κ + x

−1/2
κ′ x1/2

κ − 2x
−1/2
κ′ x−1/2

κ

])
− 2i

∑
µ,κ′,κ

cosh(rµ) sinh(rµ)
(
α2(t)λµeiφµ + α∗2(t)λ∗µe−iφµ

)
× Yκ′µY ∗κµW ∗

κ′σWκν

[
x
−1/2
κ′ x1/2

κ − x
1/2
κ′ x

−1/2
κ

]
(D.58)

Now in order for Eq. (D.38) to be satisfied, the three terms must add to zero,

T1+T2+T3 = 0. We achieve this by making the time-dependent coefficients in front of

each operator Â†σÂν , Q̂σν , and P̂σν equal zero. First, we let the sum of the coefficients

in front of Q̂σν and P̂σν in T2 and T3 equal zero

0 = Re[Dσν ] + Re[Eσν ], (D.59)

0 = Im[Dσν ] + Im[Eσν ]. (D.60)
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These are satisfied if we let

Dσν = −Eσν . (D.61)

As we shall see, solving Eq. (D.61) gives the differential equations for drµ/dt and

dφµ/dt. To start, we multiply both sides of Eq. (D.61) by
∑

σ,νWκσWκ′ν and use

Eq.(D.51) to obtain

[
x1/2
κ x

1/2
κ′ − x

−1/2
κ x

−1/2
κ′

]∑
µ

(
1

2

drµ
dt

+
i

4
sinh(2rµ)

dφµ
dt

)
eiφµYκµYκ′µ = −

∑
σ,ν

WκσWκ′νEσν ,

(D.62)

where we used the fact that W †W = 1. Multiplying Eq. (D.62) by
∑

κ,κ′ Y
∗
κµ′Y

∗
κ′µ′

and using the orthogonality relation Y †Y = 1, we obtain

1

2

drµ
dt

+
i

4
sinh(2rµ)

dφµ
dt

= −e−iφµ
∑
κ,κ′

Y ∗κµY
∗
κ′µ

x
1/2
κ x

1/2
κ′ − x

−1/2
κ x

−1/2
κ′

∑
σ,ν

WκσWκ′νEσν .

(D.63)

Equating the real and imaginary parts of both sides of Eq. (D.63) gives the following

equations for drµ/dt and dφµ/dt:

drµ
dt

= −
∑

κ,κ′,σ,ν

e−iφµY ∗κµY
∗
κ′µWκσWκ′νEσν + eiφµYκµYκ′µW

∗
κσW

∗
κ′νE

∗
σν

x
1/2
κ x

1/2
κ′ − x

−1/2
κ x

−1/2
κ′

, (D.64)

dφµ
dt

=
2i

sinh(2rµ)

∑
κ,κ′,σ,ν

e−iφµY ∗κµY
∗
κ′µWκσWκ′νEσν − eiφµYκµYκ′µW

∗
κσW

∗
κ′νE

∗
σν

x
1/2
κ x

1/2
κ′ − x

−1/2
κ x

−1/2
κ′

. (D.65)

Now to simplify Eqs. (D.64) and (D.65) we focus on the first term in the sum. Using
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the expression for Eσν in Eq. (D.56), we obtain

∑
κ,κ′,σ,ν

e−iφµY ∗κµY
∗
κ′µWκσWκ′νEσν

x
1/2
κ x

1/2
κ′ − x

−1/2
κ x

−1/2
κ′

=

=
∑

κ,κ′,µ′,σ′

ei(φσ′−φµ) cosh(rµ′) sinh(rσ′)Yκσ′Yκ′µ′Y
∗
κµY

∗
κ′µ

×

(
iΩµ′σ′ − Γσ′µ′

x
−1/2
κ′ x

−1/2
κ + x

1/2
κ′ x

1/2
κ − 2x

−1/2
κ x

1/2
κ′

x
1/2
κ x

1/2
κ′ − x

−1/2
κ x

−1/2
κ′

)

+ ie−iφµ
∑
κ,κ′,µ′

(
α2(t)λµ′ cosh2(rµ′) + α∗2(t)λ∗µ′ sinh2(rµ′)e

2iφµ′
)
Yκµ′Yκ′µ′Y

∗
κµY

∗
κ′µ

= i
(
α2(t)λµ cosh2(rµ)e−iφµ + α∗2(t)λ∗µ sinh2(rµ)eiφµ

)
+ iΩµµ cosh(rµ) sinh(rµ)

−
∑

κ,κ′,µ′,σ′

ei(φσ′−φµ) cosh(rµ′) sinh(rσ′)Yκσ′Yκ′µ′Y
∗
κµY

∗
κ′µΓσ′µ′

× x
−1/2
κ′ x

−1/2
κ + x

1/2
κ′ x

1/2
κ − 2x

−1/2
κ x

1/2
κ′

x
1/2
κ x

1/2
κ′ − x

−1/2
κ x

−1/2
κ′

. (D.66)

Using Eq. (D.46) we can write Eq. (D.66) in terms of the thermal photon numbers

as

∑
κ,κ′,σ,ν

e−iφµY ∗κµY
∗
κ′µW

∗
σκW

∗
νκ′Eσν

x
1/2
κ x

1/2
κ′ − x

−1/2
κ x

−1/2
κ′

=

= i
(
α2(t)λµ cosh2(rµ)e−iφµ + α∗2(t)λ∗µ sinh2(rµ)eiφµ

)
+ iΩµµ cosh(rµ) sinh(rµ)

+
∑

κ,κ′,µ′,σ′

ei(φσ′−φµ) cosh(rµ′) sinh(rσ′)Yκσ′Yκ′µ′Y
∗
κµY

∗
κ′µΓσ′µ′

nκ − nκ′ + 1

nκ′ + nκ + 1
(D.67)
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The complex conjugate of Eq. (D.67) is

∑
κ,κ′,σ,ν

eiφµYκµYκ′µWσκWνκ′E
∗
σν

x
1/2
κ x

1/2
κ′ − x

−1/2
κ x

−1/2
κ′

=

= −i
(
α2(t)λµ sinh2(rµ)e−iφµ + α∗2(t)λ∗µ cosh2(rµ)eiφµ

)
− iΩµµ cosh(rµ) sinh(rµ)

+
∑

κ,κ′,µ′,σ′

e−i(φσ′−φµ) cosh(rµ′) sinh(rσ′)Y
∗
κσ′Y

∗
κ′µ′YκµYκ′µΓσ′µ′

nκ − nκ′ + 1

nκ′ + nκ + 1
, (D.68)

where we used the fact that Ω∗µµ = Ωµµ. Putting Eqs. (D.67) and (D.68) into Eqs.

(D.64) and (D.65) give the equations for drµ/dt and dφµ/dt in the text, Eqs. (5.9)

and Eq. (5.10).

Now we derive the equation for dnµ/dt. To do this, we let the sum of the coeffi-

cients in front of the operators Â†σÂν in T1, T2, and T3 be zero. Doing this, we obtain

the equation

0 = −
∑
κ

1

nκ(1 + nκ)

dnκ
dt

W ∗
κσWκν + Fσν +Kσν . (D.69)

Multiplying Eq. (D.69) by
∑

σνWκ′σW
∗
κ′ν and using W †W = 1, we obtain

1

nκ(1 + nκ)

dnκ
dt

=
∑
σν

WκσW
∗
κνFσν +

∑
σν

WκσW
∗
κνKσν . (D.70)

The first term on the right-hand side of Eq. (D.70) is zero, which can be proved by

using Eq. (D.50) and W †W = 1. For the second term, it can be shown that by

putting Eq. (D.57) into Eq. (D.70) we obtain
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1

1 + nκ

dnκ
dt

= − 2nκ
1 + nκ

∑
ν,σ

YκνY
∗
κσΓσν cosh(rν) cosh(rσ)

+ 2
∑
ν,σ

YκνY
∗
κσΓνσ sinh(rν) sinh(rσ)ei(φν−φσ), (D.71)

which is Eq. (5.11) in the main text.

Finally we have to show that the sum of the coefficients in front of the identity

operator in T1 and T3 is zero. Collecting the appropriate coefficients from T1 and T3,

we obtain

0 =
∑
κ

1

1 + nκ

dnκ
dt

+ 2
∑
ν,σ,κ

Γσν cosh(rσ) cosh(rν)Y
∗
κσYκν

nκ
1 + nκ

− 2
∑
ν

Γνν sinh2(rν).

(D.72)

Putting Eq. (D.71) into Eq. (D.72) and using the fact that Y †Y = 1, it can be

shown that Eq. (D.72) is satisfied.

Therefore we have proven that the MSTS is the solution to the Lindblad mas-

ter equation, and we derived three coupled-equations for the squeezing amplitude,

squeezing phase, and thermal photon numbers.

D.4 Solving the coupled equations from an initial vacuum state

In this section, we discuss how to solve the coupled-equations (see Eqs. (5.9) -

(5.11) in the main text) for a system that initially starts in the vacuum state. At
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time t = 0 the vacuum state is defined by

rµ(0) = 0, (D.73)

nκ(0) = 0, (D.74)

for all µ and κ. Putting these initial conditions into Eq. (5.9), we obtain

ṙµ(0) =
2 |α(0)|2 |λµ|

~
sin (−φµ(0) + θµ) , (D.75)

where we define

α(t) = αP (t) exp(−iωP t), (D.76)

and

λµ = |λµ| exp(iθµ), (D.77)

where θµ is a real number. We choose the initial squeezing phase, φµ(0), to be

φµ(0) = θµ −
π

2
, (D.78)

such that is maximizes the squeezing amplitude at the next time-step, rµ(∆t):

rµ(∆t) =
2 |α(0)|2 |λµ|

~
∆t+O

(
(∆t)2) . (D.79)



D.4. SOLVING THE COUPLED EQUATIONS FROM AN INITIAL VACUUM
STATE 242

Now, let us move on to the equation for the squeezing phase, Eq. (5.10). It is easily

shown that using Eqs. (D.73), (D.74), and (D.78) will result in the second and third

terms in Eq. (10) being indeterminate (0/0). Thus, at t = 0, we write this equation

as

φ̇µ(0) = −2Ωµµ − ζµ, (D.80)

where we let ζµ be the indeterminate form. We are unable to solve these equations

unless we define ζµ. We define ζµ by requiring that the derivatives of the squeezing

phase at t = ∆t and t = 0 are the same,

φ̇µ(∆t) = φ̇µ(0), (D.81)

such that initially the squeezing phase is a linear function of time. Putting Eqs.

(D.73), (D.74), (D.78), and (D.79) into Eq. (5.10) and using the fact that nκ(∆t) = 0

(which can be proven by writing Eq. (5.11) as a difference equation and using the

initial conditions) it can be shown that

φ̇µ(∆t) = −2ωP + ζµ. (D.82)

Using Eq. (D.82) in Eq. (D.81), the indeterminate form ζµ is defined as

ζµ = −Ωµµ + ωP . (D.83)

To solve the coupled-equations Eqs. (5.9) - (5.11) we use Matlab’s ode45 function,

that is based on a Runge-Kutta method. The initial conditions that we use for the
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squeezing amplitudes, thermal photon numbers, and squeezing phases are in Eqs.

(D.73), (D.74), and (D.78). We have to write an additional condition in the code

that imposes the condition that at t = 0 the derivatives of the squeezing phases are

equal to φ̇µ(0) = −Ωµµ − ωP , otherwise the program will return a division-by-zero

error (as discussed above). The solution is sensitive to the initial squeezing phases

φµ(0). It is crucial that they are set to precisely the values given in Eq. (D.78).

However, we find that the initial value of the derivative of the phase φ̇µ(0) has little

impact on the final solution, since it quickly settles to the correct value, given by

−Ωµµ − ωP .

D.5 Details for the two-cavity system results

In this section, we give the details on how we obtain our results for the two-cavity

system in the paper. Specifically, we give the physical dimensions of the photonic

crystal slab and its material properties, and we derive the nonlinear parameter for

SFWM using a Gaussian pump.

We start by giving the details of the structure in Fig. 5.2(a). The structure is

placed in a computational volume of 13d× 14d× 3d, where d = 480nm is the lattice

period. The dielectric slab is parallel to the xy plane and centered at z = 0. It is

made from silicon with an index of n = 3.4 and has a thickness of 0.6d. The photonic

crystal is created by periodically drilling airholes (shown as white circles) of radius

0.35d into the silicon slab. The photonic crystal is finite in the x-y plane, with 10

periods in the x direction and 9 periods in the y direction. The individual cavities

are formed by removing an airhole.

We apply perfectly-matched layers (PMLs) to the boundary of the computational
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volume to simulate the transmission of energy into a continuum of modes. For the top

(T) and bottom (B) individual cavity modes, we obtain the frequencies Ω̃Td/(2πc) =

0.3027 − i5.62 × 10−5 (QT = 2691) and Ω̃Bd/(2πc) = 0.3028 − i9.54 × 10−4 (QB =

159). Note that QB is less than QT , since the bottom cavity mode leaks into the

dielectric slab more. The quasimode frequencies that are obtained from tight-binding

[9], where the individual cavity modes form the basis, are ω̃1d/(2πc) = 0.3026 −

i3.12× 10−4 (Q1 = 485) and ω̃2d/(2πc) = 0.3029− i6.93× 10−4 (Q2 = 218).

Following the presentation of H. Seifoory et. al. in Ref. [89] we now give the details

on the Gaussian pump that is used to generate the squeezed light in the quasimodes.

As shown in Fig. 5.2(a), the two cavities are pumped from above with a Gaussian

beam polarized in the y direction. The beam is focused between the two cavities at

z = 0 and has a Gaussian transverse profile given by

f(x, y) ≡ 1√
πW0

exp

[
−2π2

W 2
0

(
(x− x0)2 + y2

)]
, (D.84)

where W0 is the spot size at z = 0 and x0 is the position on the x axis where the

pulse is at its maximum. The full width at half maximum (FWHM) is related to the

spot size with FWHM =
√

ln(2)W0/π.

Next we derive the nonlinear parameter for SFWM for the Gaussian beam. We

assume the slab thickness is much smaller than the curvature of the optical wavefront,

such that it does not have a significant effect on the pump. We can thus take the

pump modes to be plane waves in free space, polarized in the y direction

Nqy(r) = eiq·r, (D.85)
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where q is a continuous index that labels the different modes in three dimensions.

We make the undepleted pump approximation, and let the pump quasimode annihi-

lation operators, ĉq, be replaced by their expectation value using the coherent state

amplitude for the Gaussian beam

〈α(t)| ĉq |α(t)〉 ≡ |αP |α(qx, qy)β(qz) exp
(
−iω|q|t

)
, (D.86)

where the frequency ω|q| is real since the pump is in free-space modes and |q|2 ≡

q2
x + q2

y + q2
z . The function

α(qx, qy) =

∫∫
dxdyf(x, y)e−i(qxx+qyy), (D.87)

is the Fourier transform of the transverse profile f(x, y), given in Eq. (D.84). It

is normalized according to
∫∫

dqxdqy|α(qx, qy)|2 = 1. The function β(qz) is sharply

peaked at the value qP

β(qz) ≡

√
L√
π

exp

(
−L

2

2
(qz − qP )2

)
, (D.88)

where L ≡ 3d is the height of the computational volume. It is chosen, such that

∫
dqz|β(qz)|2 = 1. (D.89)
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The average photon number for the pump is

NP ≡
∫
d3q 〈α(t)| ĉ†q ĉq |α(t)〉 (D.90)

= |αP |2, (D.91)

which follows from the normalization of α(qx, qy) and β(qz).

In order to write ĤNL in the form in Eq. (D.20) where the nonlinear parameter,

Gml is independent of time, we assume that near the surface of the slab the pump is

propagating dominantly in the z direction, by letting |q| ' qz. Thus we replace the

frequency ω|q| in Eq. (D.86) with ωqz . Then ĤNL (Eq. (D.20)) can be written

ĤNL = ~|αP |2
∑
m,l

ĉ†mĉ
†
l

∫∫
d3qd3q′Gmlqq′α(qx, qy)β(qz)α(q′x, q

′
y)β(q′z) exp

(
−i[ωqz + ωq′z ]t

)
+ H.c.,

(D.92)

where

Gmlqq′ =
9~

16ε0

∑
i,j

√
ω̃∗mω̃

∗
l ωqzωq′z

∫
d3rχ

(3)
ijyy(r)N∗mi(r)N∗lj(r)ei(q+q′)·r. (D.93)

We assume that the interaction is strongest within the slab, and the interaction

strength does not vary significantly within the slab, such that we can set z = 0 in

Eq. (D.93), to obtain exp(iqzz) = 1.

The integral in Eq. (D.92) can be factored into an integral over qz only and a

separate integral over qx and qy only. Doing the integral over qz we obtain an overall
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function of time, α(t), for the coherent state, defined as

α(t) ≡ |αP |

√
L

2
√
πωP

∫
dqz
√
ωqzβ(qz) exp (−iωqzt) , (D.94)

where ωP ≡ ωqP . Since β(qz) is sharply peaked at qP , the integral in Eq. (D.94)

is dominated by a narrow band of qz centered on qP . Thus we can pull out from

the integral the fast oscillating exponential term, exp(−iωP t), and what is left is a

slowly-varying function of time. Taking the limit as the height of the computational

volume goes to infinity, L → ∞, the function α(t) approaches a continuous-wave,

with α(t) ' |αP | exp(−iωP t). Doing the integrals over qx and qy in Eq. (D.92), we

obtain the approximate expression

Gml '
9~ωP

16ε0Veff

√
ω̃∗mω̃

∗
l

∫
d3rχ(3)

yyyy(r)N∗my(r)N∗ly(r) [f(x, y)]2 , (D.95)

where we define the effective volume Veff ≡ πW 2
0L/(2

√
π(2π)4). To obtain this result

we assume that only the diagonal components, χ
(3)
yyyy(r), of the third-order nonlinear

tensor for silicon are non-zero [123]. The quasimode profiles Nmy(r) and Nly(r) are

obtained from the tight-binding model used in Ref. [9]. Therefore, considering Eqs.

(D.94) and (D.93), we have shown that Eq. (D.92) is equivalent to Eq. (D.20), as we

require.

To obtain our results, we let

9~ωPχ(3)
yyyy

16ε0Veff

|αP |2 = 1, (D.96)

where χ
(3)
yyyy = 2.45×10−19m2V−2 is the third-order nonlinear susceptibility for silicon
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[123]. Eq. (D.96) is satisfied for a spot size of W0 = 20d, and an average number of

photons in the pump of |αP |2 = 3.87×107. We choose this combination of parameters

because it produces significant squeezing of the vacuum noise without generating too

many photons. Using the nonlinear parameter in Eq. (D.95), we can construct the

S matrix in Eq. (D.32), and then perform the Takagi factorization on it to get the

matrix U and the singular values λ.
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