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Abstract A new method is applied for deriving simulta-
neously the redshift and shadow of a Schwarzschild black
hole moving freely in the de Sitter expanding universe as
recorded by a remote co-moving observer. This method is
mainly algebraic, focusing on the transformation of the con-
served quantities under the de Sitter isometry relating the
black hole co-moving frame to observer’s one. Hereby one
extracts the general expressions of the redshifts and shadows
of the black holes having peculiar velocities but their expres-
sions are too extended to be written down here. Therefore,
only some particular cases and intuitive expansions are pre-
sented while the complete results are given in an algebraic
code (Cotăescu in Maple code BH01, https://physics.uvt.ro/
~cota/CCFT/codes, 2020).

1 Introduction

The light emitted by cosmic objects is one of the princi-
pal sources of empirical data in astrophysics. An impor-
tant accessible observable is the redshift which encapsulates
information about the cosmic expansion and possible pecu-
liar velocity of the observed object. For separating these two
contributions one combined so far the Lemaître rule [2,3] of
Hubble’s law [4], governing the cosmological effect, [5–7]
with the usual theory of the Doppler effect of special rela-
tivity [8] even though there is evidence that our universe is
expanding.

Recently, we proposed an improvement of this approach
replacing special relativity with our de Sitter relativity [9,10]
where local charts of the same type, playing the role of iner-
tial frames, are related among themselves through de Sitter
isometries. In the case of the longitudinal Doppler effect,
when a point-like source is moving along the axis observer-
source, we obtained a redshift formula having a new term
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combining the cosmological and kinetic contributions in a
non-trivial manner [11].

The next step is to extend this method to the black holes
which, in general, are no point-like sources. The light emitted
by a black hole comes from an apparent source situated on
a sphere, surrounding the black hole, which is observed as
the black hole shadow. When this is not negligible, as in the
case of the object M87 [12,13], and the black hole may have a
peculiar velocity, the Doppler effect is no longer longitudinal
such that the transverse contributions due to the black hole
shadow must be evaluated. This can be done only by studying
simultaneously the Doppler effect and black hole shadow in
the same theoretical framework.

The black hole shadow was extensively studied by many
authors with the help of a geometric method which exploits
the tangent to the null geodesic in the point where this
meets the observer. Thus the shadows of the Schwarzschild
black holes were studied in Minkowski space-time [14] or
in expanding universes [15–20], while for the rotating black
holes the Kerr [21,22] or Kerr–de Sitter [23–26] metrics were
considered. Other recent studies focused on more complex
models which were studied with the same geometric method
[27–43] but which is not suitable for studying the Doppler
effect.

As in this paper we would like to study the relation
between the redshifts and shadows of the Schwarzschild
black holes having peculiar velocities in de Sitter expand-
ing universe we must abandon the geometric method adopt-
ing the algebraic approach of Ref. [11] which is suitable for
deriving the redshift. This is based on the de Sitter relativity
where we may relate the moving black hole proper frames to
those of remote co-moving observers freely falling in the de
Sitter expanding universe.

We start supposing that our expanding universe is satis-
factory described by the expanding portion of a (1 + 3)-
dimensional de Sitter manifold. As the actual observations
show with reasonable accuracy that this universe is spatially
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flat, we consider only local charts with Painlevé coordinates
[44] since these have flat space sections. These local charts
are de Sitter co-moving frames [45] where the coordinates
are the cosmic time and Cartesian or spherical space coor-
dinates. These frames may carry observers related among
themselves through the de Sitter isometries which transform
simultaneously the coordinates and the conserved quantities
[9,10].

The Schwarzschild–de Sitter black holes are usually con-
sidered in proper frames with static coordinates and Kottler
metric [46]. However, here we prefer the corresponding co-
moving frames with Painlevé coordinates whose metrics have
the same asymptotic behavior as the metric of the observer
co-moving frame. Then for a remote observer the black hole
co-moving frame appears as an empty de Sitter one which
can be related to observer’s co-moving frame through a de
Sitter isometry, in accordance with the relative motion of the
black hole with respect to observer.

We assume that at the initial moment when the black hole
emits the photon this is translated and has a relative veloc-
ity with respect to the remote observer known as peculiar
velocity. For avoiding extremely complicated calculations we
assume that this velocity is longitudinal, in the black hole–
observer direction. Thus we start with precise initial condi-
tions determining the suitable isometry relating the black
hole and observer proper frames. This will give the con-
served quantities measured in the observer’s frame we need
for extracting physical results without resorting to geodesics
or other geometric objects. For this reason we say that our
method is algebraic, observing that there are some advan-
tages among them the principal one is of a coherent frame-
work offered by the de Sitter relativity which prevent us of
using supplemental hypotheses.

In this approach we derive the related redshift and shadow
of a Schwarzschild black hole freely moving in the de Sitter
expanding universe. Our principal new results are a closed
formula of the black hole shadow depending on its pecu-
liar velocity and the corrections to our new redshift formula
derived in Ref. [11] due to the dimension of the black hole
shadow. These corrections are too complicated to be written
down here but can be derived with the help of an algebraic
code on computer [1].

We start in the second section with a brief review of the
metrics of the black hole and observer co-moving frames
with Cartesian or spherical coordinates, revisiting the equa-
tion giving the geodesic shapes in the black hole co-moving
frames. In the next section we present the solutions of this
equation representing the null geodesics around the black
hole. These are the circular geodesics on the photon sphere
and the Darwin [47,48] spiral geodesics which determine the
black hole shadow. The fourth section is devoted to the de Sit-
ter isometries relating the conserved quantities measured in
different co-moving frames. In the next section we obtain our

new results assuming that a remote observer sees that the light
is emitted by an apparent source on a null de Sitter geodesic
whose conserved quantities can be determined. Furthermore,
by using an isometry formed by a translation followed by
a Lorentzian isometry we obtain the conserved quantities
in the observer’s co-moving frame from which we extract
the observed redshift and shadow of the moving black hole.
More specific, the redshift results from the observed energy
while the angular radius of the black hole shadow is derived
by using the components of the photon momentum in the
observer’s origin, where the photon angular momentum must
vanish. These results are elementary but with a large number
of terms that cannot be written here in the general case of
a moving black hole. Consequently, we restrict ourselves to
presenting here only their series expansions with respect to
a common small parameter, the particular case when the rel-
ative velocity vanishes and the flat limit. As mentioned, the
complete results which cannot be written here are given in
an algebraic code on computer [1]. In order to convince one-
self that the flat limit is correct we derive in Appendix B the
results that can be obtained by applying our algebraic method
to a Schwarzschild black hole in Minkowski flat space-time.
Finally we present some concluding remarks.

As our approach may be applied even in quantum theory

we introduce a special notation denoting by ωH =
√

�
3 c the

de Sitter Hubble constant (frequency) since H is reserved for
the Hamiltonian operator [49]. Moreover, the Hubble time
tH = 1

ωH
and the Hubble length lH = c

ωH
will have the same

form in the natural Planck units with c = h̄ = G = 1 we use
here.

2 Co-moving frames

The frames of the spherically symmetric static systems in a
(1+3)-dimensional isotropic pseudo-Riemannian manifold,
(M, g), are static local charts {x} with spherical symmetry
whose coordinates xμ (α,μ, ν, . . . = 0, 1, 2, 3) can be cho-
sen in different manners. In what follows we consider either
Cartesian space coordinates x = (x1, x2, x3) or associated
spherical ones (r, θ, φ) with r = |x|. The traditional static
frames, {ts, x} or {ts, r, θ, φ}, depend on the static time ts
having the line elements

ds2 = f (|x|)dt2
s +

(
x · dx
|x|

)2 (
1 − 1

f (|x|)
)

− dx · dx

(1)

= f (r) dt2
s − dr2

f (r)
− r2d�2, (2)

where d�2 = dθ2 + sin2 θ dφ2. These line elements can be
put at any time in Painlevé forms [44],
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ds2 = f (|x|)dt2 + 2

|x|
√

1 − f (|x|) x · dx dt − dx · dx (3)

= f (r)dt2 + 2
√

1 − f (r) dtdr − dr2 − r2d�2, (4)

substituting in Eqs. (1) and (2)

ts = t +
∫

dr

√
1 − f (r)

f (r)
, (5)

where t represents the cosmic time of the frames having flat
space sections with Cartesian, {t, x}, or spherical, {t, r, θ, φ},
coordinates.

Here we focus on a Schwarzschild black hole of mass
M embedded in the de Sitter expanding universe for which
the metric (2) of its static frame has the Kottler [46] (or
Schwarzschild–de Sitter) form with

f (r) = 1 − 2M

r
− ω2

Hr
2. (6)

where, as mentioned before, ωH is the de Sitter Hubble con-
stant in our notation. The corresponding frames with Painlevé
coordinates have the asymptotic behavior of the de Sitter co-
moving frames with f (r) → f0(r) = 1 − ω2

Hr
2. For this

reason we say that the black hole frames with Painlevé coor-
dinates, denoted by {t, x}BH and {t, r, θ, φ}BH, are the co-
moving frames of the Schwarzschild black hole in de Sitter
expanding universe.

The frames of the remote observers, {t, x} and {t, r, θ, φ},
located in the asymptotic zone, are genuine de Sitter co-
moving frames where the astronomical observations are per-
formed and recorded. The observers stay at rest in the ori-
gins of their own frames evolving along the unique time-like
Killing vector field of the de Sitter geometry which is not
time-like everywhere but has this property just in the null
cone where the observations are allowed [49].

Here we use simultaneously Cartesian and spherical coor-
dinates since the Cartesian coordinates are suitable for study-
ing the conserved quantities and the transformation rules
under isometries while the spherical coordinates help one
to integrate the geodesic equations. For example, the spheri-
cal symmetry is obvious in Cartesian coordinates where the
metrics (1) and (3) are invariant under the global rotations
xi → Ri

j x
j such that we can use the vector notation. On the

other hand, only in spherical coordinates one can integrate
the geodesics equations in the black hole co-moving frame
we revisit briefly in the next.

In the frame {t, r, θ, φ}BH with the line element (4) the
conserved quantities along geodesics are the energy E and
angular momentum L. These give rise to the prime integrals
of a geodesic of a particle of massm moving in the equatorial
plane of the black hole (with fixed θ = π

2 ) as

E = f (r)ṫ + √
1 − f (r) ṙ , (7)

L = r2φ̇, (8)

where ‘dot’ denotes the derivatives with respect to the affine
parameter λ which satisfies ds = m dλ. The third prime
integral comes from the line element in the equatorial plane,
which reads

f (r)ṫ2 + 2
√

1 − f (r) ṫ ṙ − ṙ2 − r2φ̇2 = m2. (9)

as it results from Eq. (4). Hereby one may derive the function
r(φ) substituting

r → r(φ), ṙ → dr(φ)

dφ
φ̇ = L

r(φ)2

dr(φ)

dφ
. (10)

After a little calculation, combining the above prime inte-
grals, one obtains the well-known equation

(
dr(φ)

dφ

)2

−r(φ)4 E
2

L2 +r(φ)2 f [r(φ)]
(

1 + r(φ)2 m
2

L2

)
= 0,

(11)

giving the geodesic shapes but which is not enough for find-
ing the time behavior of the functionsφ(t) and r(t) = r [φ(t)]
for which one must apply special methods [50].

Note that Eq. (11) derived in the co-moving frame is the
same as that of the static frame since this equation is static giv-
ing only the shape of trajectory in the same space coordinates.
In fact, the time evolution on geodesics is quite different in
the static and co-moving frames.

3 Light around black holes

The problem of the gravitational lensing which has a long
history [51] was studied in general relativity first by Einstein
and Eddington [52] but was solved by Darwin [47,48] which
derived the null geodesics around the photon sphere of a
Schwarzschild black hole in the flat Minkowski space-time.
Applying the same commonly used method [53–58] we may
inspect briefly the null geodesics in the co-moving frame
{t, r, θ, φ}BH of the Schwarzschild–de Sitter system.

The shapes of the photon geodesics are given by the func-
tions r(φ) which satisfy Eq. (11) with m = 0 that now reads

(
dr(φ)

dφ

)2

− r(φ)4
E2
ph

L2
ph

+ r(φ)2 f [r(φ)] = 0. (12)

This equation has two types of solutions, namely circu-
lar geodesics on the photon sphere and associated spiral
geodesics [47]. The circular geodesics satisfy simultaneously
the conditions
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Fig. 1 The functions r(±)(φ) of the spiral photon geodesics closest to
the photon sphere of radius 3M

dr(φ)

dφ
= d2r(φ)

dφ2 = 0, (13)

giving the radius of the photon sphere rph = 3M and the
mandatory condition

L ph = ± 3
√

3MEph√
1 − 27ω2

HM2
, (14)

derived in Ref. [15]. Thus the photons with circular geodesics
are trapped on the photon sphere without escaping outside.
Furthermore, by substituting the condition (14) in Eq. (12)
we obtain the equation

27M2
(

dr(φ)

dφ

)2

− 54M3r(φ) + 27M2r(φ)2 − r(φ)4 = 0,

(15)

which is independent on the Hubble de Sitter constant ωH.
Apart from the circular geodesics, this equation allows the
solutions

r(±)(φ) = 3M

(
6Me∓φ + 1

)2

(
6Me∓φ + 1

)2 − 36Me∓φ
, (16)

known as the spiral geodesics [47]. These are determined up
to a rotation, φ → φ − φ0, fixing the origin of this angular
coordinate. For example, if we translate the arguments of the
functions r(±) as φ → φ± = φ ± ln 6M then we recover the
elegant Darwin form [47]

1

r(±)(φ±)
= − 1

6M
+ 1

2M
tanh2

(
φ±

2

)
, (17)

of the spiral geodesics. Thus we may conclude that the pres-
ence of de Sitter gravity is encapsulated only in Eq. (14),
while the photon sphere and the shapes of the spiral geodesics
remain the same as in Minkowski flat space-time (when
ωH = 0).

Fig. 2 The functions r(±)(φ) of the spiral photon geodesics rolling out
and escaping from the photon sphere of radius 3M

The spiral geodesics are symmetric, r(±)(φ) = r(∓)(−φ),
having vertical asymptotes at

φ(+) 1,2 = − ln
2 ∓ √

3

6M
, φ(−) 1,2 = ln

2 ∓ √
3

6M
. (18)

In Fig. 1 we see that the functions r(±)(φ) are defined on the
domains (−∞, φ(±) 1) ∪ (φ(±) 2,∞), since between the ver-
tical asymptotes their values are negative having no physical
meaning. It is interesting that this opaque window is inde-
pendent on the black hole mass,

|φ(±) 2 − φ(±) 1| = ln
2 + √

3

2 − √
3

� 0.8384 π. (19)

On the physical domain these trajectories remain outside the
photon sphere, r(±)(φ) > 3M , but approaching to this for
large |φ| since

lim|φ|→∞ r(±)(φ) = 3M. (20)

This gives us the image of the spiral geodesics rolled out
around the photon sphere (as in Fig. 2) escaping outside only
when φ is approaching to the values (18) where the functions
r(±) can take larger values near singularities.

The geodesics r(±)(φ) are the closest trajectories to the
photon sphere of the first photons that can be observed at the
limit of the black hole shadow. Therefore, for studying this
shadow and the associated redshift we have to consider only
these photons.

4 de Sitter isometries

The de Sitter co-moving frames play the role of inertial
frames being related among themselves through de Sitter
isometries as in our de Sitter relativity [9,10]. Moreover,
the black hole frames have the asymptotic de Sitter sym-
metry which governs the relative motion of the black hole
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with respect to remote observers such that we may use these
isometries for relating the observer co-moving frames to the
black hole one.

The de Sitter isometries can be studied easily since this
manifold is a hyperboloid of radius 1/ωH embedded in the
five-dimensional flat space-time (M5, η5) of coordinates zA

(labelled by the indices A, B, . . . = 0, 1, 2, 3, 4) and met-
ric η5 = diag(1,−1,−1,−1,−1). The local charts can be
introduced giving the set of functions zA(x) which solve the
hyperboloid equation,

η5
ABz

A(x)zB(x) = − 1

ω2
H

, (21)

giving the line element

ds2 = η5
ABdzA(x)dzB(x) = gμνdxμdxν . (22)

The functions that introduce our Painlevé coordinates are

z0(x) = 1

2ωH

[
eωHt − e−ωHt (1 − ω2

Hx
2)

]
,

zi (x) = xi ,

z4(x) = 1

2ωH

[
eωHt + e−ωHt (1 − ω2

Hx
2)

]
. (23)

The de Sitter isometry group is just the stable group
SO(1, 4) of the embedding manifold (M5, η5) that leave
invariant its metric and implicitly Eq. (21). Therefore, given
a system of coordinates defined by the functions z = z(x),
each transformation g ∈ SO(1, 4) gives rise to the isometry
x ′ → x = φg(x ′) derived from the system

z[φg(x
′)] = gz(x ′). (24)

The local charts related through these isometries play the
same role as the inertial frames of special relativity.

The classical conserved quantities under de Sitter isome-
tries are given by the Killing vectors k(AB) of the de Sitter
manifold [49] that are related to those of (M5, η5) as

K (AB)
C dzC = zAdzB − zBdzA = k(AB)

μ dxμ, (25)

allowing us to derive the covariant components of the Killing
vectors in an arbitrary chart {x} of the de Sitter space-time
as

k(AB) μ = η5
ACη5

BDk
(CD)
μ = zA∂μzB − zB∂μzA, (26)

where zA = ηABzB . The conserved quantities along the time-
like geodesic of a particle of mass m have the general form
K(AB)(x,P) = ωHk(AB) μ ẋμ. The conserved quantities with
physical meaning are the energy E , momentum P, angular
momentum L and a specific vector Q that we call the adjoint

momentum [49]. A geodesic in the co-moving frame {t, x}
[59],

x(t) = x0e
ωH(t−t0) + P

P2

(√
m2 + P2 eωH(t−t0)

−
√
m2e2ωH(t−t0) + P2

)
, (27)

depends only on the momentum P (P = |P|) and the initial
condition x(t0) = x0 fixed at the time t0. The conserved
quantities in an arbitrary point (t, x(t)) of this geodesic read
[9,59]

E = ωH x(t) · P e−ωH(t−t0) +
√
m2 + P2e−2ωH(t−t0), (28)

L = x(t) ∧ P, (29)

Q = 2ωH x(t)Ee−ωH(t−t0) + Pe−2ωH(t−t0)[1 − ω2
Hx(t)

2],
(30)

satisfying the obvious identity

E2 − ω2
HL

2 − P · Q = m2, (31)

corresponding to the first Casimir invariant of the SO(1, 4)

algebra [49]. In the flat limit, when ωH → 0, we have Q →
P such that this identity becomes just the usual mass-shell
condition, E2 − P2 = m2, of special relativity.

The conserved quantities E , P and the new ones,

K = − 1

2ωH
(P − Q) , R = − 1

2ωH
(P + Q) , (32)

form a skew-symmetric tensor on M5,

K(x,P) =

⎛
⎜⎜⎜⎜⎝

0 ωHK1 ωHK2 ωHK3 E
−ωHK1 0 ωHL3 −ωHL2 ωHR1

−ωHK2 −ωHL3 0 ωHL1 ωHR2

−ωHK3 ωHL2 −ωHL1 0 ωHR3

−E −ωHR1 −ωHR2 −ωHR3 0

⎞
⎟⎟⎟⎟⎠

,

(33)

whose components transform under the isometries x ′ → x =
φg(x ′) defined by Eq. (24) as

K(t, x,P) = gK′(t ′, x′,P′)gT , (34)

where g = η5 g η5 [9].
Summarizing, we can say that the de Sitter isometries are

generated globally by the SO(1, 4) transformations which
determine the transformations of the coordinates and con-
served quantities. We have thus a specific relativity on the
de Sitter space-time allowing us to study different relativis-
tic effects in the presence of the de Sitter gravity. In what
follows we use the Lorentzian isometries defined in Ref. [9]
and the translations presented in the Appendix A.
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Fig. 3 The geodesic r(+)(φ) observed as a rectilinear de Sitter one of
a photon of momentum k emitted by the apparent source S situated on
the sphere of radius rS > 3

√
3M

5 Observing light from black holes

Le us consider now a mobile black hole in its proper co-
moving frame {t ′, x′}BH with the origin in OBH and a fixed
remote observer in his own co-moving frame {t, x} having
the origin in O . We consider that the space Cartesian axes
of these frames remain parallel with the basis of unit vectors
(e1, e2, e3) such that the geodesic of the emitted photon is
in the plane (e1, e2). In this geometry we assume that the
photon is emitted at the initial moment t = t ′ = 0 when the
origin OBH is translated with d and has the relative velocity
V = e1V with respect to O . Note that the velocity V = P

M is
conserved depending on the conserved momentum P of the
black hole geodesic observed by O .

5.1 Related conserved quantities

A remote observer sees the photon of momentum k = nkk,
energy Eph = |k| and angular momentum (14), as emitted
from an apparent source S of position vector nSrS on the
sphere of radius

rS = |L|
k

= 3
√

3M√
1 − 27ω2

HM2
, (35)

which is just the apparent radius of the black hole shadow.
Therefore, rS is the radius of the sphere hosting different
photon sources S that can be observed nearest to the black
hole shadow (as in Fig. 3). When ωH → 0 this becomes just
the shadow radius 3

√
3M derived in special relativity [47].

The apparent trajectory of the emitted photon is a de Sitter
null geodesic of momentum k that, according to Eq. (27),
reads

xph(t) = nSrS eωHt + nk
(
eωHt − 1

)
, (36)

complying with the initial condition xph(0) = nSrS . This
geodesic depends on the orthogonal unit vectors, which can
be represented as

nk = −e1 cos α − e2 sin α, (37)

nS = −e1 sin α + e2 cos α, (38)

where the angle α, giving the apparent direction of the
photon, will depend on observer’s position. We have thus
the opportunity of defining the de Sitter conserved quanti-
ties on this geodesic as in an apparent de Sitter empty co-
moving frame {t ′, x′} associated to {t ′, x′}BH . Here one vec-
tor is missing, namely the adjoint momentum Q′ that can be
derived simply at the time t = 0 according to Eq. (30). We
complete thus the set of conserved quantities,

E ′ = k, (39)

P′ = nk k, (40)

L′ = e3 rSk, (41)

Q′ = nS 2ωHrSk + nk k
(

1 − ω2
Hr

2
S

)
, (42)

which satisfy the condition (31).
Now we can deduce how these conserved quantities are

measured by the fixed observer O since the observer frame
{t, x} and the apparent black hole one, {t ′, x′}, are related
through an isometry, x = φg(x ′), of the de Sitter relativity
[9]. According to our hypotheses, this is generated by the
SO(1,4) transformation,

g = g(V)g(a), (43)

formed by a translation (A.1) of parameter a = e1d =
(d, 0, 0), having the form [9,60]

g(a) =

⎛
⎜⎜⎜⎜⎝

1 + 1
2 ω2

Hd
2 ωHd 0 0 1

2 ω2
Hd

2

ωHd 1 0 0 ωHd
0 0 1 0 0
0 0 0 1 0

− 1
2 ω2

Hd
2 −ωHd 0 0 1 − 1

2 ω2
Hd

2

⎞
⎟⎟⎟⎟⎠

, (44)

followed by the Lorentz boost

V = (V, 0, 0) → g(V) =

⎛
⎜⎜⎜⎜⎜⎝

1√
1−V 2

V√
1−V 2 0 0 0

V√
1−V 2

1√
1−V 2 0 0 0

0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

(45)

of the particular Lorentzian isometry we need here [9].
Applying then the transformation (34) with g given by

Eq. (43) we obtain the conserved quantities observed by O .
This calculation is elementary but complicated, involving
many terms that can be manipulated only by using suitable
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algebraic codes on computer. For presenting the final result
it is convenient to introduce the notation

δ = ωHd = d

lH
, ξ = rS

d
, (46)

which allows us to write down the conserved quantities in
the observer’s frame as

E = k√
1 − V 2

[1 − V cos α + δ(V − cos α − ξV sin α)

−δ2

2
(1 − ξ2)V cos α

]
, (47)

P1 = k

(
1√

1 − V 2
− 1

)

×
[
δ(1 − ξ sin α) − δ2

2
(1 − ξ2) cos α

]

+ k√
1 − V 2

[V (1 − δ cos α) − cos α] , (48)

P2 = k

(
1√

1 − V 2
− 1

)

×
[
δξ(δ − cos α) − δ2

2
(1 + ξ2) sin α

]

−k sin α + kδV√
1 − V 2

(ξ − sin α), (49)

Q1 = k

(
1√

1 − V 2
+ 1

)

×
[
δ(1 − ξ sin α) − δ2

2
(1 − ξ2) cos α

]

+ k√
1 − V 2

[V (1 − δ cos α) − cos α] , (50)

Q2 = k

(
1√

1 − V 2
+ 1

)

×
[
−δξ(δ − cos α) + δ2

2
(1 + ξ2) sin α

]

−k sin α − kδV√
1 − V 2

(ξ − sin α), (51)

L3 = kδ

ωH
√

1 − V 2
[ξ(1 − V cos α) − sin α + δξV

−δV

2
(1 + ξ2) sin α

]
, (52)

while L1 = L2 = P3 = Q3 = 0. As expected, these quan-
tities satisfy the invariant identity (31).

In other respects, we observe that all the vector compo-
nents we derived above can take any real values in contrast
with the energy which must remain positive definite. This
condition is fulfilled only if

V < Vlim = 2(1 − δ cos α)

δ2(1 − ξ2) cos α − 2δ(1 − ξ sin α) + 2 cos α
.

(53)

This is in fact the mandatory condition for observing the pho-
ton in O at finite time. When the relative velocity V exceeds
this limit then the photon cannot arrive in O at finite time
because of the background expansion. Thus Vlim defines a
new velocity horizon restricting the velocities such that for
very far sources with α = 0 and δ = ωHd ∼ 1 this limit
vanishes.

5.2 Shadow and redshift

The angle α, which depends on the relative position between
black hole and observer, can be found simply imposing the
condition L3 = 0 when the photon is passing through the
point O . Solving this equation for L3 given by Eq. (52) we
find

tan
α

2
= δV (1 + ξ2) + 2 −

√[
V δ(1 − ξ2) + 2

]2 + 4ξ2(V 2 − 1)

2ξ(V δ + V + 1)
.

(54)

Substituting then this angle in Eqs. (47)–(53) we obtain all
the conserved quantities measured by O and the maximal
velocity Vlim.

Hereby we can extract the quantities of general interest,
namely sin α, measured in the black hole proper frame, the
angular radius

sin αobs = |P2|
P

, P =
√
P12 + P22 (55)

of the shadow, measured in the observer’s frame, and the
redshift z defined as

1 + z = E ′

E
= k

E
. (56)

Unfortunately, the exact expressions of these quantities have
a huge number of terms that cannot be written here but can
be manipulated on computer [1] for extracting significant
particular cases or intuitive approximations.

The simplest particular case is when the black hole does
not have a initial relative velocity with respect to O . Then by
setting V = 0 we obtain the simple formulas

sin αobs = sin α = ξ = rS
d

, (57)

1

1 + z
= 1 − ωHd cos α = 1 − ωHd

√
1 − ξ2, (58)

showing how the observations of the shadow and redshift are
related each other.
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In the general case of V �= 0, we observe that the expan-
sions around ξ = 0 are useful since this is the only parameter
which remains very small in astronomical observations as
long as the other ones have larger ranges, 0 < δ = ωHd < 1
and 0 < V < Vlim . Computing these series we write down
here only the lowest terms

sin α = 2(1 + ωHdV − V )

2 + ωHdV
ξ + O(ξ3), (59)

sin αobs = 2
√

1 − V 2

2 + ωHdV (1 − ξ2)
ξ

= 2
√

1 − V 2

2 + ωHdV
ξ + O(ξ3), (60)

1

1 + z
=

√
1 − V

1 + V

(
1 − ωHd − ω2

Hd
2

2

V

1 − V

)
+ O(ξ2),

(61)

which are still comprehensible and can be interpreted. Sim-
ilarly, for the velocity limit we have

Vlim = 2(1 − ωHd)

1 + (1 − ωHd)2 + O(ξ2). (62)

The principal novelty here is that sin αobs depends on the
relative velocity V as in Eq. (60) just from the first order of
the expansion which may be observationally accessible. In
contrast, the expansion (61) has a first term independent on ξ

recovering just the redshift formula we derived recently for
a point-like source moving along the e1 axis [11]. Therefore,
the influence of the black hole dimensions could be observed
only when the second term of the order O(ξ2) could be mea-
sured with a satisfactory accuracy.

5.3 Flat limit

The limit of the de Sitter relativity when the de Sitter–Hubble
constant ωH vanishes is just the usual version of special rela-
tivity. Then all the co-moving frames of the de Sitter relativ-
ity become inertial frames in Minkowski space-time without
affecting the black hole geometry in its proper frame. Now
a remote observer sees a photon emitted in S as having an
apparent rectilinear trajectory with momentum k and energy
Eph = k. Then all the measured quantities can be obtained
from the de Sitter ones in the limit ωH → 0. In this limit our
principal parameters becomes

rS → r̂S = 3
√

3M, ξ → ξ̂ = 3
√

3M

d
, (63)

while the other quantities have the limits

sin α̂ = lim
ωH→0

sin α = (1 − V ) ξ̂ Δ, (64)

sin α̂obs = lim
ωH→0

sin αobs =
√

1 − V 2 ξ̂ , (65)

1

1 + ẑ
= lim

ωH→0

1

1 + z
=

√
1 − V

1 + V
Δ, (66)

where

Δ = 1 + V

1 + V cos α̂obs
= 1 + V

1 + V
√

1 − ξ̂2(1 − V 2)

= 1 + V (1 − V )
ξ̂2

2
+ O(ξ̂4) . (67)

As expected, hereby we recover the usual aberration formulas

sin α̂ =
√

1 − V 2 sin α̂obs

1 + V cos α̂obs
⇔ sin α̂obs =

√
1 − V 2 sin α̂

1 − V cos α̂
.

(68)

In addition, we obtain the limit velocity

V̂lim = lim
ωH→0

Vlim = 1

cos α̂
≥ 1, (69)

which does not make sense since this can exceed the speed
of light. Thus the limitation of velocities disappears together
with the de Sitter event horizon.

For interpreting these results a good choice is Δ � 1 as
the parameter ξ remains very small. Then Eq. (66) is just the
redshift due to the Doppler effect in special relativity. More-
over, we may convince ourselves that all the limits derived
above are just the results that may be obtained by apply-
ing our method in special relativity, as presented briefly in
Appendix B.

6 Concluding remarks

We studied how a co-moving observer measures simultane-
ously the shadow and redshift of a Scwarzschild black hole
freely falling in the de Sitter expanding universe. For this pur-
pose we used a new algebraic method offered by our de Sitter
relativity that provides us with suitable isometries transform-
ing the conserved quantities of the emitted photon into those
recorded by a remote co-moving observer. In this manner we
obtained the closed formula (60) of the shadow depending on
the peculiar velocity and the corrections to the new redshift
formula (61) that can be calculated on computer by using the
code [1].

Another advantage of our method is that this is somewhat
independent on the coordinates which are involved only in
imposing the initial conditions. For example, the choice of
the co-moving frames with Painlevé coordinates simplifies
the calculations since then we use the translation (2) which
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does not affect the time. In contrast, in static coordinates,
defined by Eq. (4), the same translation gives the transfor-
mation (6) which affects the time such that it is more difficult
to synchronise the clocks by setting common initial condi-
tions when V �= 0. However, this is not a real impediment
as long as we know how the coordinates transform among
themselves.

This relative independence on coordinates can be tested in
the case of V = 0 applying our method to a static black hole.
Our preliminary calculations indicate that the shadow of the
static black hole is given by Eq. (57) just as in the case of
the co-moving frames with Painlevé coordinates. This sta-
bility comes from the fact that in both cases we start with
the same conserved quantities (39)–(42) transformed by the
same translation (44) whose parameter d is the physical dis-
tance between black hole and observer.

Under such circumstances we may compare how the alge-
braic and geometric methods work in determining the black
hole shadow at least in the case of V = 0. The shadow for-
mula derived in Ref. [15] by using the geometric method can
be written in our notation as sin αobs = rS

d ′
√

f (d ′) where d ′
is now the radial coordinate of the fixed observer. Thus we
see that in our approach the factor

√
f (d ′) is missing. This

means that between these two methods there are some minor
differences that may come from the approximation of remote
observers on which the algebraic method is based and from
the fact that in the static frame the radial coordinate d ′ does
not coincide with the physical distance d. However, now it
is premature to say more about this relationship before ana-
lyzing many examples in de Sitter relativity.

In other respects, we must specify that the study of the
conserved quantities is not enough for understanding the
entire information carried out by the light emitted by mov-
ing black holes. There are important observable quantities
resulted from the coordinate transformations under isome-
tries as, for example, the photon propagation time or the real
distance between observer and black hole at the time when
the photon is measured. In Ref. [11] we derived such quan-
tities in the longitudinal case of a point-like source moving
along the observer–black hole direction. Therefore, when we
apply the algebraic method the coordinate transformations
under isometries or other geometric tools may complete our
investigation.

We hope that the algebraic method proposed here will
improve the general geometric approach for getting over the
difficulties in analyzing the light emitted by various cosmic
objects moving in the de Sitter expanding universe.
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Appendix A: Translations

The space translations of the SO(1, 4) group are less used
in applications such that it is worth reviewing briefly their
action in different coordinates. A space translation of param-
eters a = (a1, a2, a3) is the isometry x ′ → x = φg(a)(x ′)
generated by the SO(1, 4) transformation [9,60],

g(a) =

⎛
⎜⎜⎜⎜⎝

1 + 1
2 ω2

Ha
2 ωHa

1 ωHa
2 ωHa

3 1
2 ω2

Ha
2

ωHa
1 1 0 0 ωHa

1

ωHa
2 0 1 0 ωHa

2

ωHa
3 0 0 1 ωHa

3

− 1
2 ω2

Ha
2 −ωHa

1 −ωHa
2 −ωHa

3 1 − 1
2 ω2

Ha
2

⎞
⎟⎟⎟⎟⎠

(A.1)

according to Eq. (24) where now g = g(a). Solving this
equation in the co-moving frames with Painlevé coordinates
where the z-functions have the form (23) we find the trans-
formation

t = t ′,
x = x′ + a eωHt ,

(2)

which does not affect the time but is not static. The only gen-
uine static translations transform the conformal coordinates

tc = − 1
ωH

e−ωHt ,

xc = xe−ωHt ,
→ tc = t ′c,

xc = x′
c + a.

(3)

The the static coordinates (ts, x) where

ts = t − 1

ωH
ln χ(r), χ(r) =

√
1 − ω2

Hr
2, (4)

with r = |x|, as defined by Eq. (5), can be introduced by the
functions

z0(ts, x) = 1

ωH
χ(r) sinh ωHts,

zi (ts, x) = xi ,

z4(ts, x) = 1

ωH
χ(r) cosh ωHts . (5)
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Solving again Eq. (24) for these functions and the transforma-
tion (A.1) we find the transformation rules under translations,

ts = 1

2ωH
ln

(
χ(r ′)

χ(r ′)e−2ωHt ′s − 2ω2
H a · x′e−ωHt ′s − ω2

Ha
2χ(r ′)

)
,

x = x′ + aχ(r ′) eωHt ′s , (6)

which we present here for the first time.

Appendix B: Moving black holes in special relativity

Let us consider now a Schwarzschild black hole embedded in
the flat space-time where the remote observers stay in inertial
frames. We apply our algebraic method assuming that at the
initial time t = 0 the black hole origin OBH is translated
with d and moves with the relative velocity V = (V, 0, 0)

with respect to O . At the same time, the apparent source S
of coordinates

x ′ = (0,−r̂S sin α̂,−r̂S cos α̂, 0)T , (B.1)

emits a photon of energy-momentum

p′ = (k,−k cos α̂,−k sin α̂, 0)T , (B.2)

which has to be observed in the fixed origin O .
The black hole and observer frames, OBH and O , are

related through the isometry � = L(V)T (d) formed by
the translation T (d) : x ′1 → x1 = x ′1 + d followed
by a Lorentz transformation L(V), which is just the four-
dimensional restriction of the matrix (45). Performing this
isometry we obtain the four-vectors x = �x ′ and p = �p′
whose components give the energy and angular momentum
observed in O as

E = p0 = k(1 − V cos α̂)√
1 − V 2

, (B.3)

L3 = x1 p2 − x2 p1 = kd
[
ξ(1 − V cos α̂) − sin α̂

]
√

1 − V 2
. (B.4)

The condition L3 = 0 of the photon passing through O gives

tan
α̂

2
= 1 −

√
1 − ξ̂2(1 − V 2)

ξ̂ (1 + V )
. (B.5)

In observer’s frame the black hole shadow is seen under the
angle α̂obs defined as

sin α̂obs = |p2|
p

, p =
√
p12 + p22

. (B.6)

Finally, calculating sin α̂ and cos α̂ and substituting these
values in Eqs. (B.3) and (B.6) we verify that the limits (64)–
(69) are correct.
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