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Abstract
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and the causal propagator for the wave equation. Consequently, the resulting
quantum channel, and hence the quantum capacity, are by construction mani-
festly covariant, respect the causal structure of spacetime, and are independent
of the details of the background geometry, topology, and the choice of Hilbert
space (quasifree) representations of the field.
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1. Introduction

In the spirit of it-from-(qu)bit, quantum information theory has been extensively used to under-
stand generic physical phenomena from quantum many-body physics to high-energy physics,
from applied to foundational physics. Relativistic quantum information (RQI) is one of the
many attempts to realize this spirit, which thus far focuses on the role of relativity in quantum
information-processing tasks, as well as a deeper understanding of fundamental theories such
as relativistic quantumfield theories (QFTs). The role of quantum information theory in relativ-
istic QFTs cannot be understated: a non-exhaustive list includes rigorous study of the entangle-
ment structure, complexity, and measurement theory for QFTs [1–16]; operational approach
to particle production due to non-inertial motion and gravitational fields [17–26]; connections
between relativistic causality, information-theoretic causality and reference frames [27–31];
quantum information protocols mediated by the relativistic quantum field [32–54]; etc.

This work is motivated by a somewhat vague, ambitious, and fundamental question:

Problem: What is the information-carrying capacity of quantum fields?

One can think of several ways to answer this question by making the problem statement more
precise. For our purposes, we will adopt an operational approach, namely, whether two parties
Alice and Bob, each in possession of some quantum-mechanical probes (atoms, qudits, oscil-
lators, etc) are able to transmit (quantum) information using the relativistic quantum field as
a medium—that is, as a relativistic quantum channel mediating the communication between
Alice and Bob. A simple model for of such a communication channel is through the Unruh–
DeWitt (UDW) particle detector model and its generalizations or variants [19, 20, 55–59] (see,
e.g. [60] for one different approach). Indeed, transmission of classical information has been
analyzed by many authors both perturbatively and non-perturbatively and in flat and curved
spacetimes using the UDW model [41–43, 49–51, 54, 61]. Transmission of quantum inform-
ation in the non-perturbative regime has been studied only in flat spacetimes in very specific
examples [52, 53]. Note that in all these cases, the communication is encoded through the
field amplitude and not, say, through the polarization degrees of freedom of the electromag-
netic field, since on its own the polarization is blind to the relativistic features and constraints.

Here we present the most general formulation for the transmission of quantum informa-
tion between Alice and Bob, each in possession of a two-level system (a ‘qubit detector’), by
suitable coupling to a relativistic scalar field in arbitrary curved spacetime. Clearly, our work
constitutes a natural extension of the flat spacetime result in [49–53]. However, we will do so
by exploiting techniques from algebraic QFT (AQFT) [62–65]. Crucially, what we gain from
this will not be a simple rewriting of all the formulae in the literature: we will see that the
quality of the relativistic quantum channel mediated by the quantum scalar field can be formu-
lated purely in terms of smeared correlation functions of the field and the detector parameters.
Our results make clear what features of the field-mediated communication channel are neces-
sary for perfect transmission of quantum information, and they are by construction manifestly
covariant, respect the causal structure of spacetime, and are independent of the details of the
background geometry, topology, and (to some extent) the Hilbert space representations of the
field. In particular, it automatically works for all quasifree representations that give rise to
Fock representations [62–65]).
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This paper is organized as follows. In section 2 we briefly review the scalar field theory in
curved spacetimes using the AQFT framework. In section 3 we describe our UDW detector
setup and review the quantum capacity of a quantum channel. In section 4 we give the protocol
that allows the transmission of quantum information through the quantum field. In section 5
we discuss the validity of the channel and study the regimes in which it fails. In section 6
we conclude with some discussions of our results and outlook. We set c= ℏ= 1 and adopt
mostly-plus signature for the metric.

2. Scalar field theory in curved spacetime

In this section we review the scalar field theory in curved spacetimes within the AQFT frame-
work to establish notation and convention, adapting the convention given in [58, 66] (for more
details and reviews, see also [58, 62–64]). Readers who are familiar with the framework can
skip to section 3.

2.1. AQFT for scalar field

Consider a Klein–Gordon (KG) scalar field ϕ in an (n+ 1)-dimensional globally hyperbolic
Lorentzian spacetimeMwith metric tensor gab, whose equation of motion is given by the KG
equation: (

−∇a∇a +m2 + ξR
)
ϕ = 0 , (1)

where∇a is the covariant derivative with respect to the Levi–Civita connection, m is the mass
parameter, R is the Ricci scalar curvature, and ξ ⩾ 0 controls the non-minimal coupling of ϕ
to R. Global hyperbolicity implies that we have a foliation of spacetime R×Σ and the KG
equation is well-posed with initial data given on Cauchy surfaces.

The KG operator P̂ :=−∇a∇a +m2 + ξR admits a unique advanced and retarded Green’s
functions GA(x,y),GR(x,y) = GA(y,x) which satisfies

P̂xGR/A (x,y) = δn+1 (x− y) , (2)

where the subscript on P̂x means the KG operator is w.r.t. the variable x. We can use these
Green’s functions to construct the antisymmetric causal propagator (also known as the Pauli–
Jordan distribution)

E(x,y) := GR (x,y)−GA (x,y) . (3)

Canonical quantization of the field ϕ gives rise to a field operator ϕ̂ obeying the canonical
commutation relations (CCRs)[

ϕ̂(x) , ϕ̂(y)
]
= iE(x,y)1 . (4)

As ϕ̂ is an operator-valued distribution, in the algebraic approach to QFT we consider smeared
field operators, i.e. by viewing the field operator as an R-linear map from the test space
of smooth compactly supported functions C∞

0 (M) to a ∗-algebra A(M), i.e. as a map
ϕ̂ : C∞

0 (M)→A(M) with

ϕ̂( f) :=
ˆ

dVf(x) ϕ̂(x) . (5)
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The algebra of observables A(M) is defined to be the collection of sums of products of ϕ̂( f)
over all functions in C∞

0 (M) obeying the smeared CCR relation (4), i.e. a CCR algebra [67].
The KG equation is encoded in the fact that we identify ϕ̂( f)≡ 0 if f = P̂h for some h ∈
C∞

0 (M).
The dynamical content of the field theory is reflected in terms of the solution space of

the KG equation. The solution space SolR(M) can be equipped with a symplectic form σ :
SolR(M)×SolR(M)→ R, defined as

σ (ϕ1,ϕ2) :=

ˆ
Σt

dΣa [ϕ1∇aϕ2 −ϕ2∇aϕ1] , (6)

where dΣa =−tadΣ, −ta is the inward-directed unit normal to the Cauchy surface Σt, and
dΣ=

√
hdnx is the induced volume form on Σt [68, 69]. As is well-known, this definition

is independent of the choice of Cauchy surface. Writing Ef :=
´
dV ′E(x,x ′)f(x ′), the field

operator ϕ̂( f) can be expressed as symplectically smeared field operator [62]

ϕ̂( f)≡ σ
(
Ef, ϕ̂

)
, (7)

and the CCR algebra can be written as[
σ
(
Ef, ϕ̂

)
,σ

(
Eg, ϕ̂

)]
= iσ (Ef,Eg)1= iE( f,g)1 , (8)

where σ(Ef,Eg) = E( f,g) in the second equality follows from equations (5) and (7).
Since the smeared field operators are unbounded operators, for free fields it is more con-

venient technically to work the Weyl algebra W(M), whose elements are bounded operators
constructed by ‘exponentiating’ the field operators. The Weyl algebra W(M) is a unital C∗-
algebra generated by elements that formally take the form

W(Ef)≡ eiϕ̂( f) , f ∈ C∞
0 (M) . (9)

These elements satisfy Weyl relations:

W(Ef)† =W(−Ef) ,

W
(
E
(
P̂f
))

= 1 ,

W(Ef)W(Eg) = e−
i
2E( f,g)W(E( f+ g))

where f,g ∈ C∞
0 (M). The third relation enforces relativistic causality (or microcausality).

In AQFT, a quantum state is defined as aC-linear functional ω :W(M)→ C (similarly for
A(M)) such that

ω (1) = 1 , ω
(
A†A

)
⩾ 0 ∀A ∈W (M) . (10)

The state ω is pure if it cannot be written as ω = αω1 +(1−α)ω2 for any α ∈ (0,1) and any
two algebraic states ω1,ω2; otherwise we say that the state is mixed.

The way to pass from AQFT to the Hilbert space approach is through Gelfand–Naimark–
Segal (GNS) reconstruction theorem [62–64]. TheGNS theorem gives us, for a given algebra of
observablesW(M) and a state ω, aGNS triple (Hω,πω, |Ωω〉), where πω :W(M)→B(Hω)
is a Hilbert space representation with respect to state ω. In its GNS representation, any state ω
is realized as a vector state |Ωω〉 ∈ Hω and A ∈W(M) are represented as bounded operators
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Â := πω(A) ∈ B(Hω), and we write ω(A) = 〈Ωω|Â|Ωω〉. Since there exists infinitely many
unitarily inequivalent representations of the CCR algebra, the algebraic approach allows us
work with all representations at once and only pick the physically relevant representation at
the very end.

For a fixed state ω, we can construct the Wightman n-point functions, defined by

W( f1, . . ., fn) := ω
(
ϕ̂( f1) . . .ϕ̂( fn)

)
(11)

where fj ∈ C∞
0 (M) and the RHS is computed within some GNS representation of A(M).

The GNS representation of the Weyl algebra W(M) allows us to calculate equation (11) by
differentiation3: for example, the smeared Wightman two-point function reads

W( f,g)≡− ∂2

∂s∂t

∣∣∣∣∣
s,t=0

ω
(
eiϕ̂(sf)eiϕ̂(tg)

)
(12)

where the RHS is calculated in the GNS representation of W(M) [63].
The consensus within the AQFT community is that physically reasonable states should be

Hadamard states [65, 71]. Very roughly speaking, these states respect local flatness and the
expectation values of all observables (in particular, the renormalized stress-energy tensor) are
finite [65]. A particularly nice subclass of Hadamard states is the family of quasifree states:
for these states, all odd-point functions in the sense of (11) vanish and all higher even-point
functions can be written as in terms of just two-point functions. In modern terminology, the
term quasifree state is synonymous with Gaussian state, where the one-point functions need
not vanish and higher-point functions only depend on one- and two-point functions [70].

The relevance of quasifree states lies in the fact that they are completely specified once
we know the Wightman two-point functions. More precisely, any given quasifree state ω is
associatedwith a real-bilinear inner product µ : SolR(M)×SolR(M)→ R that satisfies [65]

|σ (Ef,Eg) |2 ⩽ µ(Ef,Ef)µ(Eg,Eg) , (13)

where we recall that Ef,Eg ∈ SolR(M) for all f,g ∈ C∞
0 (M). The inequality is saturated if

ωµ is a pure quasifree state. Any quasifree state can then defined by those that satisfy

ω (W(Ef)) := e−µ(Ef,Ef)/2 . (14)

However, this definition is not useful unless we can compute the induced norm ||Ef|| :=√
µ(Ef,Ef).
It turns out that ||Ef|| is related to the Wightman two-point function as follows [65]: we

complexifySolR(M) into the space of complex solutionsSolC(M) and define theKGbilinear
product by

〈φ1,φ2〉KG := iσ (φ∗
1 ,φ2) (15)

for φ1,φ2 ∈ SolC(M). It can be shown that for any quasifree state, there exists a subspace
H⊂ SolC(M) such that (H,〈·, ·〉KG) is a Hilbert space and an R-linear map K : SolR(M)→
H such that for all φ1,φ2 ∈ SolR(M)

3 Strictly speaking, the state on A(M) and on W(M) are different, but they are in one-to-one correspondence
whenever they are related by equation (12) (see [70] for good exposition on this).
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(a) KSolR(M)+ iKSolR(M) is dense in H;
(b) µ(φ1,φ2) = Re〈Kφ1,Kφ2〉KG;
(c) σ(φ1,φ2) = 2Im〈Kφ1,Kφ2〉KG;
(d) SolC(M)∼=H⊕H, whereH is the complex-conjugate Hilbert space ofH and 〈u,v〉KG =

0 for all u ∈H and v ∈H.

In a more familiar language of canonical quantization, the map K projects to the ‘positive-
frequency part’ of a real solution to the KG equation. The Wightman two-point function is
then given by [65]

W( f,g) = 〈KEf,KEg〉KG

= µ(Ef,Eg)+
i
2
E( f,g) , (16)

where we have used the fact that σ(Ef,Eg) = E( f,g). Since E( f,g) is antisymmetric, it follows
that ||Ef||2 = µ(Ef,Ef)≡W( f, f) and hence

ω (W(Ef)) = e−
1
2W( f,f) . (17)

Indeed, we may very well take equation (17) as the definition of quasifree states.
The most important example of a quasifree state is the ‘vacuum state’ ω, where we can

write the (unsmeared) vacuum Wightman function as

ω
(
ϕ̂(x) ϕ̂(y)

)
≡W(x,y) =

ˆ
dnkuk (x)u

∗
k (y) , (18)

where uk(x) are called the positive-frequency modes of KG operator with respect to the KG
inner product

(ϕ1,ϕ2)KG := iσ (ϕ∗1 ,ϕ2) , (19)

where ϕj ∈ SolC(M) are complexified solutions to equation (1). The vacuum state ω is not
unique and there is a sense in which every GNS vector is a ‘vacuum state’ in that particular
representation. However, once a particular basis of modes {uk} are chosen, it fixes the vacuum
state as one whose Wightman function satisfies (18). In flat spacetime, the standard plane-
wave basis in the inertial coordinates defines the Minkowski vacuum, which is the only state
that respects the full Poincaré symmetry and minimizes the expectation value of the (renor-
malized) stress-energy tensor [63]. In curved spacetimes, there are multiple inequivalent states
that qualify as a vacuum state [62].

2.2. Relationship with canonical quantization

The usual Fock space in canonical quantization arises from the GNS reconstruction applied
to A(M) with respect to some vacuum state ω. Technically speaking, any pure quasifree
(Hadamard) state qualifies as a vacuum state, as their GNS representation gives rise to the
Fock vacuum in the standard sense [65] (see also [63] for a different definition in Minkowski
spacetime). This is the best one can do in generic curved spacetimes as there is no preferred
vacua without further assumptions such as time translation symmetry.
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In more detail, the GNS Hilbert space Hω for the pure quasifree representation is the Fock
space over the one-particle Hilbert space H

Hω ≡ F(H) =
∞⊕
n=0

H⊙n , (20)

where H⊙0 ∼= C and H⊙n means symmetrized direct sum (the n-particle sector of the Fock
space). In this representation, we can write

πω

(
ϕ̂( f)

)
= â

(
(KEf)∗

)
+ â† (KEf) . (21)

In what follows we drop πω if it is clear from the context that we are using a Fock represent-
ation. Note that if we consider complex smearing functions f :M→ C, we can write

ϕ̂( f)≡ ϕ̂(Ref)+ i ϕ̂(Imf) . (22)

The operators â(u∗), â†(v) are smeared ladder operators4 obeying the CCR[
â(u∗) , â† (v)

]
= 〈u,v〉KG1 (23)

on a suitable dense domain of the Fock space.
The standard canonical approach is recovered by working with the unsmeared field operator

ϕ̂(x) and considering the Fourier mode decomposition

ϕ̂(x) =
ˆ

dnk âkuk (x)+ â†ku
∗
k (x) , (24)

where uk(x) and u∗k(x) are positive- and negative-frequency modes normalized to Dirac delta
functions via the KG inner product:

〈uk,uk ′〉KG = δn
(
k− k ′) , (25a)

〈u∗k ,u∗k ′〉KG =−δn
(
k− k ′) , (25b)

〈uk,u∗k ′〉KG = 0 . (25c)

These modes are not proper elements of the one-particle Hilbert space but they are con-
venient to work with. In particular, we see that âk ≡ â(u∗k) and â†k ≡ â†(uk). If we were to
pick any other quasifree state, the resulting one-particle structure will differ and this can give
rise to Hilbert space representations that are unitarily inequivalent, e.g. by considering Kubo–
Martin–Schwinger (KMS) thermal states [63, 65, 72, 73].

Using these modes, we can decompose the solution Ef in the ‘eigenmode basis’ {uk,u∗k}

Ef ≡
ˆ

dnk〈uk,Ef〉KGuk+ 〈u∗k ,Ef〉KGu∗k . (26)

4 There are various conventions on how to label the smeared ladder operators (see [42]). We follow [62] in that it
views â, â† as being linear in their arguments. The convention in [63] does not include complex conjugation in the
argument for â(·) and views â as an anti-linear map while â† is linear.
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From the CCR and the definition of the Wightman function, we see that

iE(x,x ′) =

ˆ
dnkuk (x)u∗k (x

′)− u∗k (x)uk (x
′) , (27)

the positive-frequency part KEf of Ef reads

KEf =
ˆ

dnk〈uk,Ef〉KGuk ≡−i
ˆ

dnk fkuk (28)

where

fk :=
ˆ

dVf(x)u∗k (x) . (29)

Furthermore, since KEf lies in H, it is convenient to use the notation |KEf〉 ∈ H and |uk〉 for
the (improper) basis uk. In this notation, we write

|KEf〉=−i
ˆ

dnk fk|uk〉 , (30)

where the global phase−i is a matter of convention. This suggests that we can label the ladder
operators using the ‘momentum space smearing function’ fk rather than the ‘real space positive-
frequency solution’ KEf, i.e. we can write

ϕ̂( f) = â(f∗k)+ â† (fk)≡
ˆ

dnk
(
âkf

∗
k + â†kfk

)
. (31)

Essentially, we are using the elements of the one-particle Hilbert space H to label the field
observables rather than using the spacetime smearing functions C∞

0 (M). This notation is par-
ticularly convenient if the focus is more about which modes of the field that the detectors are
coupled to [59, 74–76].

3. Setup

In this section, we introduce the UDW detector model that we will use to couple Alice’s and
Bob’s qubits to the field and briefly review the notion of quantum capacity for a quantum chan-
nel and coherent information. These are relevant measures of how much quantum information
can be transmitted (on average) through the quantum channel between Alice and Bob.

3.1. UDW detector model

In the UDW framework, Alice and Bob carry their own qubit (‘detector’) with a free
Hamiltonian Ĥν = 1

2Ων σ̂z, where ν ∈ {A,B}, Ων the energy gap and σ̂z the Pauli-Z operator.
We denote the eigenstates of σ̂s by |±s〉 with s ∈ {x,y,z}, where we do not label the Pauli
matrices with ν to reduce notational clutter and the context will make it clear. The excited
and ground states of the free Hamiltonian Ĥν are given by |±z〉 with eigenvalues ±Ων/2
respectively.

The UDW interaction between Alice’s and Bob’s detectors and the field is assumed to be
linear in the field as it represents a simplified model of dipole interaction d̂ · Ê in quantum

8
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optics, i.e. as a spin-boson type interaction [59]. The general form of such an interaction is
given by a linear combination of the form5

ĥI,ν (x) :=
∑
i

λν,ifν,i (x) m̂ν,i (τ (x))⊗ ϕ̂(x) , (32)

where λν,i is the coupling strength, m̂ν,i(τ) is a Hermitian operator acting on the qubit, and
fν,i(x) is a spacetime smearing function defining the duration of the interaction and the spa-
tial profile of the detector. The most commonly used UDW model involves only one term in
ĥI,ν(x) = λν fν(x)m̂ν(τ(x))⊗ ϕ̂(x) [55], but we will need the more general version in (32) for
our purposes. We drop the tensor product symbol if the context is clear.

In the interaction picture, the time evolution operator generated by the interaction
Hamiltonian (32) reads [55]

Û= T exp

[
−i
ˆ
M

dV
∑
ν

ĥI,ν

]
(33)

where dV := dnx
√
−g is the invariant volume element and T is the time-ordering prescrip-

tion6. In general, it is not possible to solve the time evolution analytically due to the time-
dependence of the interaction, thus many analyzes involving the UDW detectors consider per-
turbative methods in the weak coupling regimes. However, our goal in this paper is to establish
a perfect quantum channel between Alice and Bob and as was explained in [53], this requires
our model to be in the non-perturbative regime.

In order to construct the perfect quantum channel that can transmit quantum information
perfectly, we need to be able to calculate the interaction unitary Û non-perturbatively (in the
sense of not truncating the Dyson series in the weak coupling regime). For this purpose, we
will need to use the so-called delta-coupling regime [58], where the interaction timescale is
assumed to be much faster than all the relevant timescales of the problem so that the interaction
can be taken to occur at a single instant in time. Delta-coupled detectors have been used in
many contexts such as entanglement extraction, relativistic communication, work extraction,
and many others (see, e.g. [41–43, 53, 78–82]). As each detector has its own rest frame, we
need to consider the Fermi normal coordinates (FNC) associated with each observer [83],
whose center-of-mass (COM) trajectory is parametrized by their respective proper times [55].

The physically reasonable assumption wemake is that in the FNC, x≡ (τ,x), the spacetime
smearing functions can be decomposed as

f(x(x)) = χ(τ)F(x) , (34)

where (τ,x= 0) labels the COM trajectory. In other words, Alice (and Bob) can in their rest
frames distinguish the spatial profile (which is assumed to satisfy ‘Born rigidity’, i.e. time-
independent with respect to τ ) from the switching function that controls the duration and
strength of the interactions. The Hamiltonian density in this case reads

ĥI,ν (x) :=
∑
i

λν,iχν,i (τ)Fν,i (x) m̂ν,i (τ) ϕ̂(x(x)) (35)

5 This is a slight modification of the usual spin-boson model since typically spin-boson models are assumed to have
time-independent interactions [59] and to account for the covariant formulation of the UDW model [55].
6 The time-ordering is assumed to be given by some global time function using some spacetime foliation, see [77] for
discussions about some subtleties of time-ordering for the spatially smeared UDW model.
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and the delta coupling interaction corresponds to the case when

χν,i (τ) = δ (τ − τν,i) (36)

for some constants τν,i ∈ R.
For our purposes, we consider the scenario where Alice and Bob each interact with the

field via delta coupling twice, so that we need to consider multiple interaction times τν,i with
τν,1 < τν,2. More generally, if Alice (or Bob) performs a sequence of N delta interactions with
τν,i < τν,i+1, the corresponding unitary time evolution Ûν can be decomposed into a sequence
of simple-generated unitaries [58, 78] (see also [82])

Ûν =
N∏

j=1

Ûν,j , Ûj = exp
[
−iλνm̂ν (τν,j) ϕ̂(Fν,j)

]
. (37)

The time-ordering T is taken care of since the unitaries Ûi are written in time-increasing order.
When two or more observers are involved, we can use the global time coordinates to order ÛA

and ÛB: for example, if Alice and Bob are spacelike separated then the ordering does not
matter, while Alice unitary acts before Bob ÛB if supp( fB) is in the causal future of supp( fA).
The unitary Ûν can be computed non-perturbatively since Ûj is a controlled unitary: for any
two Hermitian operators Â, B̂ such that Â=

∑r
i=1 aj|aj〉〈aj| is finite-dimensional operator in

its spectral decomposition, we can write

exp
[
i Â⊗ B̂

]
=

r∑
j=1

|aj〉〈aj| ⊗ exp
[
iajB̂

]
. (38)

As wewill see, for our setup the full unitary time evolution Ûwill consist of products of Alice’s
two simple-generated unitaries and also Bob’s two simple-generated unitaries.

Last but not least, let us recall the unitaries found in [53] for Minkowski spacetime. There
Alice performs two simple-generated unitaries, but one of them involves coupling to a con-
jugate momentum

ÛA = eiσ̂xπ̂(FA)eiσ̂zϕ̂(FA) , (39)

where the spatially smeared operators are

ϕ̂(FA) = λ1

ˆ
d3xFA (x) ϕ̂(tA,x) , (40a)

π̂ (FA) = λ2

ˆ
d3xFA (x)∂tϕ̂(tA,x) . (40b)

Note that here they take tA := tA,1 and tA,2 = tA + ϵ and consider the limit as ϵ→ 0+ so that
the unitary generated by the conjugate momentum acts later. Bob’s unitary is then constructed
as a ‘suitable inverse’ of Alice’s unitary to faithfully extract Alice’s qubit.

Our construction requires us to make two modifications to the above unitaries. First, we can
generalize the conjugate momentum operator in curved spacetime, i.e.

π̂ (x) := ∂tϕ̂(x)≡
√
hta∇aϕ̂(x) , (41)

10
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where ta is the forward pointing unit normal, orthogonal to Σt with an induced metric h.
Second, it is straightforward to see from integration by parts that

π̂ ( f) =
ˆ

dVf(x)∂tϕ̂(x) = ϕ̂(−∂tf) . (42)

Thus we can always view the smeared conjugate momentum operator as a smeared field oper-
ator with a different smearing function (namely, its time derivative). In Minkowski spacetime,
using the spacetime smearing notation we can thus write

π̂ (FA)≡ π̂ (δ ·FA) = ϕ̂(−δ ′ ·FA) , (43)

where δ ′(t) is the distributional derivative of the Dirac delta function δ(t). This second step
might appear unconventional since π̂ is not usually regarded as a spacetime-smeared oper-
ator, but this provides a simple way to recast all basic observables in terms of a single
field operator ϕ̂. The connection between the modern AQFT approach based on spacetime-
smeared operators (see section 2) and the ‘old’ (non-covariant) AQFT formulations based on
two spatially smeared operators {ϕ̂|Σ, π̂|Σ} at a fixed Cauchy slice Σ with equal-time CCR
[ϕ̂(t,x), π̂(t,y)] = iδ(n)(x− y) can be made more precise and rigorous (see, e.g. [84, 85], and
also [62, 66] for details).

The two modifications above suggest that what we really need for the generalization to
curved spacetime is that Alice couples to two smeared field operators ϕ̂( f1), ϕ̂( f2) that do
not commute, i.e. E( f1, f2) 6= 0, and not necessarily to the field and its conjugate momentum.
Indeed, in the modern AQFT framework the coupling to momentum is somewhat awkward
because the perfect quantum channel in [53] requires that Alice couples to ϕ̂(FA)more strongly
than π̂(FA), but the coupling strengths λ1,λ2 would need to have different units, so one needs
an additional length scale to compare their strengths. By considering different smeared field
operators ϕ̂( fi), we can have λi with the same units and we could use other length scales (e.g.
from the effective size of the spatial smearing) if we insist on interpreting one of them as
conjugate momentum. In what follows we assume that fi (and hence λi) have the same units
for simplicity.

3.2. Quantum capacity and coherent information

Here we briefly review the notion of quantum capacity of a quantum channel and quantum
coherent information, following closely the exposition in [41, 53] (see [86–89] for more
in-depth details). We denote by D(H) the space of density operators associated with some
Hilbert space H. Let Φ : D(HA)→ D(HB) be a quantum channel—a completely-positive
trace-preserving (CPTP) map—between Alice’s and Bob’s density operators.

An ideal quantum communication channel is one that is able to send any quantum state from
Alice to Bob, or equivalently, one that preserves entanglement reliably since Alice’s state can
always be viewed as an entangled state with some environment that purifies it. Schematically
the idea is the following. First, Alice prepares a purification of the state ρA ∈ D(HA), namely,
ρEB := |ψEB〉〈ψEB| ∈ HE ⊗HA with HA

∼=HE. Then Alice applies an encoding channel E :
D(HE ⊗HA)→ D(HE ⊗H⊗N

A ) to map her share of pure state into N quantum systems, i.e.

ρEA,N := (1E ⊗E)(ρEA) . (44)

11
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After encoding, Alice sends each quantum system through N independent uses of the commu-
nication channel Φ, i.e.

ρEB,N := Φ⊗N (ρEA,N) ∈ D
(
HE ⊗H⊗N

B

)
. (45)

Bob’s task is to use a decoding channel D : D(HE ⊗H⊗N
B )→ D(HE ⊗HB), such that

ρEB := (1E ⊗D)(ρEB,N) . (46)

This is a good encoding-decoding procedure if for a given ϵ we can have

||ρ̃EB − ρEB||1 ⩽ ϵ (47)

where || · ||1 is the trace norm, ρ̃EB is the state obtained ifΦ is replaced with a noiseless channel
1A→B : (ρ ∈ D(HA)) 7→ (ρ ∈ D(HB)).

The rate of the communication channel is the number of qubits transmitted per use of the
channel [87], i.e.

R :=
1
n
log2 (dimHA) (48)

where log2(dimHA) is the number of qubits in HA and n is the (possibly infinite) number of
channel uses. This rate is said to be achievable if for any δ,ϵ > 0, there exists an (n,R− δ,ϵ) for
sufficiently large n. The quantum capacityQ[Φ] of the channel Φ is defined by the supremum
of all achievable rates (see [86, 87] for more details).

For practical calculations that we need, we consider a useful form of the quantum capacity
in terms of an information-theoretic measure called coherent information. Given a quantum
channel Φ : D(HA)→ D(HB), let |ψEB〉 be a purification of Alice’s input state ρA and define

ρEB := (1⊗Φ)(|ψEA〉〈ψEA|) . (49)

Using ρB := TrE(ρEB) = Φ(ρA), the coherent information Ic(ρA,Φ) is defined to be [90, 91]

Ic (ρA,Φ) := S(Φ(ρA))− S(ρEB) . (50)

Wemay sometimes write Ic(ψEB,Φ) to make clear the joint state on EA. The coherent informa-
tion depends on the input state ρA and the channelΦ but is independent of its purification. From
this, we can then define the coherent information of a quantum channel Ic(Φ) by maximizing
over all input states:

Ic (Φ) :=max
ρA

Ic (ρA,Φ) . (51)

Note that for qubit channels we have that −1⩽ Ic(ρ,Φ)⩽ 1 and 0⩽ Ic(Φ)⩽ 1 [87]. We can
then rewrite the quantum capacity using the Lloyd–Shor–Devetak (LSD) formula [91–93],
given by [86–89]

Q [Φ] := lim
n→∞

1
n
Ic
(
Φ⊗n

)
, (52)

where the RHS is also known as regularized coherent information.

12
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Despite the somewhat physically intuitive expression for Q[Φ], the asymptotic nature of
equation (52) makes quantum capacity very difficult to compute in most cases unless the
quantum channel has very specific properties (e.g. when the quantum channel is additive,
namely Ic[Φ⊗n] = nIc[Φ], which is false in general [86, 87]). However, for us we do not actually
need this: we follow the strategy adopted in [53], which is to construct a quantum channel for
qubits that has Ic(Φ)→ 1 by appropriately adjusting the setup parameters. This works because
the quantum coherent information is superadditive [94, 95]:

Ic
(
Φ⊗N

)
⩾ NIc (Φ) (53)

which immediately implies that

Q [Φ]⩾ Ic (Φ)⩾ Ic (ρA,Φ) . (54)

For qubit channels, we have 0⩽Q[Φ]⩽ 1, thus we can construct an essentially perfect
quantum channel if we can show that Ic[Φ] can be made arbitrarily close to 1.

The interpretation of the above analysis is that in the limit where Q[Φ]→ 1, the quantum
channel can effectively transmit quantum information (qubits) reliably in one use of the chan-
nel. It is perhaps not surprising that this is possible if and only if the whole procedure is essen-
tially a ‘swapping operation’, i.e. Alice swaps her qubit ‘into the field’, and then Bob swaps
out the (approximate) embedded qubit in the field state to recover Alice’s state. In effect, this
suggests that the core of the protocol comprises of two components: (1) Bob being positioned
correctly in spacetime in order to recover Alice’s qubit, and (2) Alice and Bob being able to
implement as high quality ‘SWAP gates’ as possible7.

As a final remark, we would like to point out that the existence of many superadditive
quantum channels are in some sense a ‘curse’ to finding a good characterization of quantum
capacity—we refer the readers to [96] for one of the more recent summary and progress on
this front. From equation (54) we see that we need 0< Ic(Φ)⩽ 1 for the channel to be able to
transmit some quantum information and our construction capitalizes on this. However, the case
for Ic(Φ) = 0 is much more subtle, as many quantum channels exhibit strict superadditivity in
both weak and strong sense [96]. Weak superadditivity means that there exists N such that
Ic(Φ⊗N)> NIc(Φ), and strong superadditivity means Ic(Φ1 ⊗Φ2)> Ic(Φ1)+ Ic(Φ2) for two
channels Φ1,Φ2. In both cases, the ‘single-letter’ formula for coherent information Ic(Φ) is
not sufficient to calculate the quantum capacity, although some exceptions are known. For
instance, all degradable channels (such as some regimes of the dephasing channels) are known
to be weakly additive, in which case Q[Φ] = Ic(Φ) and hence non-positive channel coherent
information would imply zero quantum capacity [86, 87, 97]. All anti-degradable channels
(such as all entanglement-breaking channels and certain regimes of quantum erasure channels)
are known to have zero quantum capacity, though the argument does not rely on additivity
and more towards no-cloning type arguments [97, 98]. Our construction (similarly for [53])
exploits the structure of the detector-field coupling to make the channel coherent information
tractable.

7 In [53], Alice’s unitary is called ENCODING gate, and Bob’s unitary is called DECODING gate. While the termin-
ology has physical justification, it does not coincide with the encoding and decoding channels E,D even in the case
of a single use of the communication channel Φ (N= 1), as they are not part of Φ whose capacity is being computed.
The ENCODING and DECODING gates were part of the definition of the communication channel.
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Figure 1. A perfect quantum channel from Alice to Bob through a quantum field ϕ̂
consists of two unitary operators: Alice encoding her state into the field and then Bob
decoding the state. The time in ∆t between the two gates is a general t that foliates the
spacetime.

4. Protocol for the perfect relativistic quantum channel

In this section, we present the protocol for Alice and Bob to implement a perfect quantum chan-
nel through the field. While our protocol closely follows [53], our approach naturally extends
to arbitrary background spacetimes and choices of vacuum states of the field by recasting the
protocol in the AQFT framework.

A brief visual of the quantum channel is depicted in figure 1. Mathematically, the quantum
channel from Alice to Bob generically takes the form

Φ(ρA) = TrA,ϕ
[
ÛBÛA (ρA ⊗ |0〉〈0| ⊗ ρB) Û

†
AÛ

†
B

]
, (55)

where |0〉 is the field vacuum8, ρB is Bob’s initial state, and ÛA and ÛB are the unitaries imple-
mented by Alice and Bob through the UDW interaction with the field. The task is to con-
struct a perfect quantum channel that can faithfully transmit quantum information to arbitrary
accuracy.

Essentially, the basic idea is for Alice to (approximately) perform a ‘SWAP’ gate9 on her
qubit state to the field, effectively encoding it into some superposition of approximately ortho-
gonal coherent states, so that Bob can extract the qubit state by performing another swap oper-
ation. The entire problem thus reduces to analyzing under what circumstances the UDW inter-
action allows for nearly perfect ‘SWAP’ operations on both parties which will depend on both
the coupling strengths and the supports of the interactions. In particular, we will see that Bob
can only perform a perfect ‘SWAP’ gate if he is causally connected to Alice and the details of
the interactions determine the quality of the swap operation.

More precisely, Alice starts with an arbitrary state |ψA〉 := c1|+z〉+ c2|−z〉, equivalently
ρA = |ψA〉〈ψA|, and encodes that state into the field using a ‘SWAP’ gate. Bob should then
be able to decode the state from the quantum field into his own Hilbert space. If the ‘SWAP’
gates ÛA and ÛB are implemented correctly, then in the idealized limit we should have a per-
fect quantum channel Φ(ρA) = 1A→B(ρA)≡ ρA ∈HB, noting that this channel is not trivial

8 The state |0⟩ can be replaced with any GNS vector state |Ωω⟩ associated with any of the quasifree representations,
which accounts for the existence of many unitarily inequivalent ground states in QFT [62–65, 70].
9 Technically speaking, the qubit and the quantum field have different Hilbert space dimensions but we will call them
‘SWAP’ gates anyway since it would be the usual SWAP gate if we were to replace the quantum field with a third
qubit. The fact that we are ‘embedding’ the qubit state into the (much higher-dimensional) field can be viewed as
a form of encoding operation, which justifies calling Alice’s unitary ENCODING gate in [53], and similarly Bob’s
unitary can be viewed as decoding operation from the field to his qubit system.
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because it corresponds to sending the same state ρA fromAlice’s Hilbert space to Bob’s Hilbert
space. We start by discussing how Alice encodes her state into the field:

Proposition 1. Let |ψA〉= c1|+z〉+ c2|−z〉 be Alice’s initial state and let |0〉 be the initial
vacuum state of the field. Consider Alice’s unitary operation at time t= tA given by10

ÛA = ei σ̂xϕ̂( f2)ei σ̂zϕ̂( f1) . (56)

Then Alice can approximately swap the state |ψA〉 into the field provided the following condi-
tions are satisfied

E( f1, f2) =
π

4
mod 2π , (57a)

E( f1, f2)
2 �W( f2, f2) . (57b)

The resulting state after Alice’s operation reads

ÛA (c1|+z〉+ c2|−z〉) |0〉= |+y〉(c1|+α〉− i c2| −α〉) , (58)

where | ±α〉 are coherent states of the quantum field defined by

| ±α〉 := e±i ϕ̂( f1)|0〉. (59)

Proof. In order to prove this statement, we will explicitly apply equation (56) to Alice’s qubit
and the field and show that the qubit state is encoded under the conditions in equations (57a)
and (57b).

The first unitary in equation (56) gives

ei σ̂zϕ̂( f1)|ψA〉|0〉= c1|+z〉|+α〉+ c2|−z〉|−α〉. (60)

Next, we need to apply the second unitary ei σ̂xϕ̂( f2) but we first note that

ϕ̂( f2) | ±α〉=±E( f1, f2) | ±α〉+ e±i ϕ̂( f1)ϕ̂( f2) |0〉 , (61)

which follows directly from the Baker-Campbell-Haussdorff (BCH) formula and the CCR.
Now we see that if

E( f1, f2)
2 � 〈0|ϕ̂( f2) ϕ̂( f2)|0〉=W( f2, f2) (62)

then | ±α〉 become approximate eigenvectors of ϕ̂( f2)

ϕ̂( f2) | ±α〉 ≈ ±E( f1, f2) | ±α〉. (63)

If we pick the eigenvalues to be E( f1, f2) =
π
4 mod 2π, then the action of Alice’s full unitary

ÛA gives

10 The usual convention would be ÛA = e−i σ̂xϕ̂( f2)e−i σ̂zϕ̂( f1), but we opt for the positive sign for the exponent for
convenience as many expressions appear more symmetric (this was also implicitly done in [53]). This amounts to the
replacement ĥI →−ĥI, or equivalently fi →−fi.
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ÛA (c1|+z〉+ c2|−z〉) |0〉

= ei σ̂xϕ̂( f2) (c1|+z〉|+α〉+ c2|−z〉|−α〉)
≈ c1e

i π
4 σ̂x |+z〉|+α〉+ c2e

−i π
4 σ̂x |−z〉|−α〉

= |+y〉(c1|+α〉− i c2| −α〉) , (64)

where we used ei
π
4 σ̂x |+z〉= |+y〉 and e−i σ̂x

π
4 |−z〉=−i|+y〉 in the last equality.

The second of Alice’s conditions in equation (57b) can be interpreted as a ‘strong coupling
condition’ that requires Alice’s coupling through the field via the interaction profile f 1 bemuch
stronger than through f 2. In [53], this corresponds to choosing f 2 such that ϕ̂2 corresponds to
conjugate momentum π̂(FA) and the condition translates to Alice coupling to the field ϕ̂(FA)
much more strongly than to π̂(FA) (see equation (39)). More intuitively, the two coherent
states | ±α〉 are never orthogonal, 〈+α|−α〉 6= 0, but condition (57b) ensures that the overlap
is sufficiently small that the two states are close to orthogonal. We can interpret equation (57a)
as a ‘fine-tuning condition’ that performs near exact π

4 rotations in the Bloch sphere so that
Alice’s second unitary decouples her detector from the quantum field. E( f1, f2) =

π
4 mod 2π

are the unique values such that eiE( f1,f2)σ̂x |+z〉 ∝ e−iE( f1,f2)σ̂x |−z〉 and the qubit decouples from
the field 11

We remark that our procedure can be viewed as a minimal, simple example where the inter-
action unitary can be computed non-perturbatively without truncating any Dyson series expan-
sion, as is usually the case for generic choice of switching functions. It is known that if we
resort to leading-order weak coupling regime, then the quantum capacity is at most O(λAλB)
[53], thus any attempt in obtaining close-to-perfect quantum channel capacity requires us to
go beyond perturbation theory.

We emphasize the fact that Alice can encode her qubit into the field using any spatial pro-
files FA as long as conditions (57) are satisfied. Therefore, in principle there is a fair amount
of freedom in specifying the details of the interactions and coupling strengths provided they
satisfy (57). However, as will be discussed in section 5.3, it very difficult to analyze the capa-
city of quantum channels in the 0< Ic(Φ)< 1 regime, thus in section 5 we will provide some
analytic studies on certain limiting regimes, in particular the limit where Ic → 1 where we have
a perfect noiseless communication channel.

Now we move on to discussing how at a later time, Bob can decode Alice’s state from the
quantum field into his own qubit detector. Even in the idealized limit where Alice effectively
implements a ‘SWAP’ gate through unitary ÛA, Bob cannot simply perform the inverse unit-
ary Û−1

A for two reasons. First, Bob is in the causal future of Alice, so the smearing functions
of Bob’s interactions cannot be at the same time slice as fi of Alice. More importantly, Û−1

A
will simply undo what Alice does resulting in the trivial identity channel 1A(ρA) = ρA ∈HA

which corresponds no interactions with the field at all, instead of a noiseless communication
channel 1A→B(ρA) = ρA ∈HB through the field. In other words, we want that Alice’s opera-
tions defined through ϕ̂( fi) be defined at time t= tA, while we want Bob to decode from the
field using only field operators ϕ̂(gi) localized at time t= tB. Bob’s unitary will thus take the
form

ÛB := e−i σ̂B
z ϕ̂(g1)e−i σ̂B

x ϕ̂(g2) , (65)

11 Alternative values of E( f1, f2) could be used for other protocols, such at E( f1, f2) = 0or π
2

leaving Alice’s qubit
entangled with the coherent states of the field.
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where the superscript ‘B’ emphasizes that Bob acts on HB and gi are chosen such that ÛB

implements a ‘SWAP’ gate to decode the qubit from the field at time tB. For this, we need a
way to write the operators ϕ̂( fi) using different spacetime smearing functions gi defined at a
different Cauchy slice. To achieve this we use the following theorem:

Proposition 2. Suppose we have two smeared field operators ϕ̂( f) and ϕ̂(g), then the two
operators are equal ϕ̂( f) = ϕ̂(g) if the smearing functions satisfy

Ef = Eg. (66)

Proof. The proof is almost immediate from the symplectic definition of smeared operators in
equation (7). If we assume Ef =Eg12, then

ϕ̂( f) = σ
(
Ef, ϕ̂

)
= σ

(
Eg, ϕ̂

)
= ϕ̂(g) . (67)

Given that Alice and Bob’s smearing functions fi and gi are related by equation (66) and given
that Bob’s qubit starts in the |+y〉 state (the state that Alice’s qubits is left as after ÛA), we
have achieved our goal of creating a perfect quantum channel from Alice to Bob.

Some remarks are in order in view of the above Proposition 2. First, intuitively Alice’s
state is encoded into the field amplitude that propagates into the causal future of Alice’s
interaction region J +(suppfi), where J +(supp( fi)) is the causal future of supp( fi); for
Bob to decode that state, his qubit has to be coupled everywhere where the initial data has
propagated at a given time t= tB, which in turn forces Bob’s detector to interact with the
field with the correct support and coupling strengths. In particular, supp(gi) should essen-
tially be ΣtB ∩ supp(Efi), where supp(Efi)⊆ J +(suppfi). For simplicity, we assume that
supp( f1) = supp( f2) and hence supp(g1) = supp(g2), which in the delta-coupling scenario is
easily enforced as we are fixing the spatial profile of the interaction on Alice’s side—this, in
turn, fixes the needed spatial profile for Bob’s coupling.

Second, despite its simplicity and simple interpretation, equation (66) is largely imprac-
tical to use for actually calculating Bob’s spatial smearing functions Gi(x) for a given time
t= tB. Using the eigenmode basis provided in equation (26) and the momentum space smear-
ing functions in equation (29), the condition in equation (66) can be equivalently written in
‘momentum space’ as

fk = gk. (68)

These equations in momentum space are often easier to work with since in many simple cases
(such as all FRW spacetimes) the spatial part of the mode function uk(x)∝ eik·x and we can
use Fourier transforms, which is similar to what was originally done in [53] where Bob’s
spatial smearing functions were related to Alice’s in momentum space. More generally, in
generic curved spacetimes, we do not have a simple plane-wave basis, so it is essential that
all the conditions we demand for the perfect quantum channel are given only in terms of the
correlation functions of the field without reference to Fourier transforms.

Last but not least, note that there is an asymmetry in how we quantify the quality of Alice’s
and Bob’s respective ‘SWAP’ gates, i.e. how close their unitaries are in achieving the ideal
‘SWAP’ operation. On the one hand, Alice needs two smearing functions f 1 and f 2 that satisfy
the conditions in Proposition 1 to approximate the ideal ‘SWAP’. On the other hand, Bob needs

12 The converse statement is false. From the axioms of AQFT, we also have that ϕ̂(P̂f) = 0 which is the KG equation.
Thus ϕ̂(g) is only unique up to homogeneous solution of the KG equation, i.e. g∼ g+ P̂f.
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two smearing functions g1 and g2 that are related to Alice’s via Proposition 2 and hence auto-
matically satisfy the conditions in Proposition 1. However, Proposition 1 alone is not enough
for the perfect quantum channel: if Efi 6= Egi, Bob will not be able to decode Alice’s state even
though by construction Bob’s smearing functions g1 and g2 satisfy equations (57a) and (57b).
In a sense, to decode the state using the ‘SWAP’ operation with the field Bob needs an extra
condition, namely that Bob needs to interact ‘at the correct spacetime regions’. The reason for
this asymmetry is that the Hilbert space dimension of the field ϕ̂ is (much) larger than that of
the detectors: it is much simpler for Alice to encode her state in a larger system but Bob will
need additional information to decode it.

In summary, we have constructed a perfect relativistic quantum channel that allows Alice
to send her qubit state to Bob through the quantum field. The quantum channel consists of two
steps:

(1) At time τ = τA, Alice encodes her qubit into the field using the unitary ÛA such that the
conditions in proposition 1 are satisfied.

(2) At a later time τ = τB, Bob decodes the state from the field using the unitary ÛB defined
in equation (65). However, to implement this protocol, Bob’s detector must interact across
a spacetime region that satisfies the conditions specified in proposition 2.

As the proper times are not the same in both trajectories, in practice one can use the ambient
global coordinate systems and foliation to help with the time-ordering of these operations.
Once times τA and τB are specified, we demand that Alice’s spatial smearing functions Fi(x)
fulfill conditions (57a) and (57b), and Bob’s functions Gi(x) fulfill the condition (66)13.

In order to simplify our subsequent discussions, we make a physically reasonable assump-
tion that Alice’s interaction profiles fi are completely fixed except their coupling constants,
i.e. in FNC we have

fi = λiχi (τ)F(x) (69)

where χi are either the Dirac delta function δ or its distributional derivative δ ′ and the spatial
profile is the same for both f1, f2 (hence they have the same supports supp( fi) = supp(F)⊆M).
In other words, Alice only varies her interaction profile fi by tuning the coupling strengths λi
without changing the ‘shape’ of the interaction profile, and this is sufficient to satisfy the
perfect ‘SWAP’ conditions (57b)-(57a) in proposition 1.

5. Analytic tests of the quantum channel

In this section, we will prove that the protocol given in section 4 produces a perfect quantum
channel in the correct limit without any approximations like equation (63). This proves that
entanglement can always be perfectly transmitted between two localized qubits through a
quantum field regardless of the background spacetime geometry. We also discuss the case
when Alice and Bob can in principle perfectly implement the SWAP gates with the field but
are spacelike separated from each other. For this channel, the quantum and classical channel
capacity are both zero, as we expect with relativistic causality.

13 In principle, Alice or Bob could each need up to four spatial smearing functions since fi or gi could include both
δ(t) and δ ′(t) terms. For example, in flat spacetime, we can have f1 = δ(t)F11(x)+ δ ′(t)F12(x) (similarly for f 2),
but for simplicity these can be chosen to be equal. Both g1 and g2 are fixed by f 1 and f 2 in the ideal case.
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5.1. Ideal case: perfect quantum channel

Recall that our task is to show that the channel coherent information Ic(Φ) can be made arbit-
rarily close to 1, thus proving that the (relativistic) quantum channel can transmit quantum
information perfectly. This means computing the coherent information Ic(ρA,0,Φ) and max-
imizing over all possible input states on Alice’s side. Using the definition of coherent inform-
ation (51), it turns out that it is sufficient to consider the case when Alice’s initial state is the
maximally mixed state ρA,0 = 1

21 and Bob initial state is |+y〉 state in order to show that we
can attain maximum channel coherent information Ic(Φ)→ 1 and hence maximal quantum
capacity. We stress that this does not mean Alice should send a maximally mixed state to
Bob, which is ‘garbage’ as a message and is even classical, since in practice Alice wants to
be able to send pure states properly. Also, in general, it is not true that Ic(Φ) is maximized by
the maximally mixed state: for example, the completely depolarizing channelΦ(ρ) = 1/2 has
Ic(1/2,Φ) =−1 but the channel coherent information Ic(Φ) = 0 is attained by any pure state.

In order to show that Ic(Φ)→ 1 is attainable, we need to introduce a qubit of the environ-
ment E that purifies Alice’s maximally mixed state 1/2, such that the joint state of Alice and
the environment is the maximally entangled state |ψEA〉= 1√

2
(|−z〉|+z〉+ |+z〉|−z〉)EA. As

discussed in section 3, a perfect quantum channel will preserve all the entanglement between
Alice and the environment EA to Bob and the same environment EB. To compute Ic(1/2,Φ),
we must evaluate the state ρEB in equation (49).

Writing out the expression for ρEB in terms of the unitaries ÛA and ÛB, we obtain:

ρEB=TrAϕ
[
ÛBÛA (|ψEA〉〈ψEA|⊗|0〉〈0|⊗|+y〉〈+y|) Û†

AÛ
†
B

]
. (70)

The simplest way of continuing is to decompose the unitaries using projections onto the eigen-
vectors of the qubit operators. That is, for ÛA we write

ÛA =
∑

x,z∈{±}

P̂xP̂z ⊗ eixϕ̂( f2)ei zϕ̂( f1)

=
∑

x,z∈{±}

P̂xP̂z ⊗W(xEf2)W(zEf1) (71)

where P̂i are the projectors onto the eigenstates of σ̂i and in the last line we used the Weyl
algebra notation introduced in equation (9). For Bob’s unitary, we write

ÛB =
∑

x,z∈{±}

P̂zP̂x ⊗W(−zEf1)W(−xEf2) (72)

where the projection operators are understood to act on Bob’s system. We have written Bob’s
unitary as in equation (65), the imperfect case is discussed in the following sections. We also
expand the Bell state as |ψEA〉= 1√

2

∑
j | − jz〉|jz〉 with j ∈ {±} to get the expression

ρEB =
1
2

∑
j,k,xi,zi

ω
(
Ô
)
〈kz|P̂z1 P̂x1 P̂x4 P̂z4 |jz〉

× |− jz〉E〈−kz| ⊗ P̂z3 P̂x3 |+y〉B〈+y|P̂x2 P̂z2 (73)

where we write ω(Ô)≡ 〈0|Ô|0〉 and

Ô=W(−z1Ef1)W(−x1Ef2)W(x2Ef2)W(z2Ef1)

×W(−z3Ef1)W(−x3Ef2)W(x4Ef2)W(z4Ef1) , (74)
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xi stands for x1,x2,x3,x4, similarly for zi, and all sums are taken over the set {±}. Provided that
we can obtain an expression for ω(Ô), a computer algebra system can straightforwardly sum
over the 210 terms in the sum. We start by redefining summation indices x1 7→ −x1, z1 7→ −z1,
x3 7→ −x3, and z3 7→ −z3 such that

ρEB =
1
2

∑
j,k,xi,zi

ω
(
Ô
)
〈kz|P̂−z1 P̂−x1 P̂x4 P̂z4 |jz〉

× |− jz〉E〈−kz| ⊗ P̂−z3 P̂−x3 |+y〉B〈+y|P̂x2 P̂z2 (75)

and Ô only contains terms without minus signs

Ô=W(z1Ef1)W(x1Ef2)W(x2Ef2)W(z2Ef1)

×W(z3Ef1)W(x3Ef2)W(x4Ef2)W(z4Ef1) . (76)

In [53], 〈0|Ô|0〉 is evaluated using the Baker–Campbell–Hausdorff (BCH) formula andWick’s
theorem. In this paper, we adopt a much simpler approach using the AQFT framework. It is
straightforward (albeit somewhat tedious) to apply the third Weyl condition W(Ef)W(Eg) =
e−

i
2E( f,g)W(E( f+ g)) seven times to obtain

Ô=W(E((z1+z2+z3+z4) f1 +(x1+x2+x3+x4) f2))

× e−
i
2 (x1+x2)(z1−z2−z3−z4)E( f1,f2)

× e−
i
2 (x3+x4)(z1+z2+z3−z4)E( f1,f2) (77)

where only one Weyl operator remains multiplied by a phase factor.
Before we evaluate the expectation value of the remainingWeyl operator, it will be conveni-

ent to consider the decomposition of a Wightman two-point function into its real (symmetric)
and imaginary (anti-symmetric) parts, i.e.

W( f,g) =
1
2
ω
({
ϕ̂( f) , ϕ̂(g)

})
+

1
2
ω
([
ϕ̂( f) , ϕ̂(g)

])
=

1
2
H( f,g)+

i
2
E( f,g) , (78)

where we used the CCR to obtain the second term and H( f,g) := ω({ϕ̂( f), ϕ̂(g)})≡
1
2µ(Ef,Eg) is the smeared Hadamard two-point distribution of the field (see equation (13)).
This decomposition is important because only the symmetric part H( f,g) is state-dependent,
while E( f,g) is independent of the state. This is useful as it tells us which parts of our ana-
lysis depend on the field state. Furthermore, while we have assumed that the field starts in some
vacuum state for simplicity, but the protocol in section 4 automatically extends to all quasi-free
states such as thermal states [65], squeezed vacuum state [58], and with slight modifications
to more general Gaussian states such as coherent states (see, e.g. [70]).

We can now use the definition of quasifree state ω in equation (17) for the vacuum state to
evaluate the expectation value ω(Ô) in terms of Wightman and Hadamard functions giving us
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ω
(
Ô
)
= e−

1
2 (z1+z2+z3+z4)

2W( f1,f1)− 1
2 (x1+x2+x3+x4)

2W( f2,f2)

× e−
1
2 (x1+x2+x3+x4)(z1+z2+z3+z4)H( f1,f2)

× e−
i
2 (x1+x2)(z1−z2−z3−z4)E( f1,f2)

× e−
i
2 (x3+x4)(z1+z2+z3−z4)E( f1,f2) . (79)

Note that this expression is valid automatically for any quasifree states such as squeezed
vacuum states and (squeezed) thermal states [58]. The density matrix ρEB in the ordered basis
{|+z +z〉BE, |+z −z〉BE, | −z +z〉BE, | −z −z〉BE} now reads

ρEB =


P− 0 A C
0 P+ X B
A∗ X∗ P+ 0
C∗ B∗ 0 P−

 (80)

where

P± =
1
4

(
1± e−2W( f1,f1) sin(2E( f1, f2))

)
X=

1
4
sin(2E( f1, f2))

(
e−2W( f2,f2) + sin(2E( f1, f2))

)
A=− i

4
e−2W( f1,f1) cos(2E( f1, f2))

×
(
sin(2E( f1, f2))− e−2W( f2,f2) sinh(4W( f2, f1))

)
B=− i

4
e−2W( f1,f1) cos(2E( f1, f2))

×
(
sin(2E( f1, f2))+ e−2W( f2,f2) cosh(4W( f1, f2))

)
C=

1
4
e−8W( f1,f1) sin(2E( f1, f2))

×
(
sin(2E( f1, f2))− e−2W( f2,f2) cosh(4H( f1, f2))

)
.

Now that we have an analytic expression for ρEB, we can use our two conditions in
proposition 1 and verify that the coherent information can be made arbitrarily close to 1. First
we use the fine-tuning condition E( f1, f2) =

π
4 which simplifies ρEB considerably to

ρEB =


P̃− 0 0 C̃
0 P̃+ P̃+ 0
0 P̃+ P̃+ 0
C̃ 0 0 P̃−

 (81)

where

P̃± =
1
4

(
1± e−2W( f2,f2)

)
C̃=

1
4
e−8W( f1,f1)

(
e−2W( f2,f2) cosh(4H( f1, f2))+ 1

)
.

Next, we use the strong coupling conditionE( f1, f2)
2 �W( f2, f2). Recall that we are assum-

ing for simplicity that on Alice’s side, her interaction profile will be kept fixed except for the
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coupling strengths, thus only λ1,λ2 are adjustable parameters. In this case, the strong-coupling
condition essentially means that λ1 � λ2 and hence we have the hierarchy of scales

W( f1, f1)∼O
(
λ2
1

)
� E( f1, f2)

2 ∼O
(
λ2
1λ

2
2

)
(82a)

E( f1, f2)
2 ∼O

(
λ2
1λ

2
2

)
�W( f2, f2)∼O

(
λ2
2

)
(82b)

W( f1, f1)∼O
(
λ2
1

)
� H( f1, f2)∼O (λ1λ2) (82c)

With this hierarchy, we can express λ1 in units of λ2 so that λ1 := cλ2 for some c⩾ 0, which
is also convenient since in general λi has physical units14. We can thus write

W( f1, f1) = c2λ2
2w1 , W( f2, f2) = λ2

2w2 , (83a)

E( f1, f2) = cλ2
2e , H( f1, f2) = cλ2

2h , (83b)

where w1,w2,e,h are fixed by the spacetime smearings. Proposition 1 then translates to

λ2
2

(
c2e2

)
� w2 , λ2

2 (ce) =
π

4
mod 2π . (84)

Note that the fine-tuning condition can still be satisfied: for example, for a fixed coupling λ2

we find c such that

λ2
2 (ce) =

π

4
mod 2π , (85)

and we can always ensure that c is sufficiently large so that

λ2
2

(
c2e2

)
= c ·e

(π
4
+ 2πn

)
� w2 (86)

in order to satisfy both conditions in (84).
In terms of the rescaled coupling constants, the strong-coupling condition implies that for

fixed λ2 and c� 1, we get

ρEB
c≫1−−→


P̃− 0 0 0
0 P̃+ P̃+ 0
0 P̃+ P̃+ 0
0 0 0 P̃−

 . (87)

Using negativity N as an entanglement measure [99],

N [ρEB] =
||ρΓE

EB||1 − 1
2

=
1
2
e−2λ2

2w2 (88)

where ρΓE
EB is the partial transpose of ρEB and || · ||1 is the trace norm. This means that ρEB is

always an entangled state for any finite coupling λ2 � λ1 and the channel is able to preserve
some quantum entanglement.

14 The unit of λi is [Length]
n−3

2 , and we have assumed for simplicity that λi have the same units since fi are chosen
to be (see the end of section 3.1).
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Finally, we obtain the perfect quantum channel in the idealized limit where c→∞ and
λ2 → 0 such that λ1 is finite and still satisfies (84), i.e.

ρEB =
1
2


0 0 0 0
0 1 1 0
0 1 1 0
0 0 0 0

 , (89)

i.e. a Bell state with maximum negativity N [ρEB] = 1/2. Therefore, in this limit the coherent
information Ic(Φ)→ 1, which corresponds to a perfect quantum channel that can transmit a
maximally entangled state perfectly.

5.2. Alice and Bob are spacelike separated

The preceding analysis shows that the ability to implement the approximate ‘SWAP’ gate
depends on how closely one is able to satisfy the fine-tuning and strong-coupling conditions
in proposition 1. While this is straightforward for Alice, proposition 2 tells us that for Bob
to emulate ϕ̂( fi) defined at some (global coordinate) time t(τA), Bob’s spacetime smearing
functions gi at time t(τB) has to be somewhat delocalized over some region of spacetime to
catch all the signals from Alice. Since the quantum channel Φ is built out of a relativistic
quantum field, we ought to be able to show that there can be no transmission of both classical
and quantum information through Φ.

Formally, we start from the CCR which tells us that

E( fi,gj) = 0 ∀i, j = 1,2 (90)

when Alice and Bob are spacelike-separated, i.e. supp(gi)∩J ±(supp( fi)) = ∅. Note that
the Hadamard function H( fi,gj) is generically nonzero for spacelike-separated regions due
to entanglement contained in the field state [5, 6, 38]. The calculations proceeds similarly as
in the previous section, except that Bob will have his own arbitrary smearing functions and
their respective UDW interaction unitaries are

ÛA =
∑

x,z∈{±}

P̂xP̂z ⊗W(xEf2)W(zEf1) (91a)

ÛB =
∑

x,z∈{±}

P̂zP̂x ⊗W(−zEg1)W(−xEg2) . (91b)

The condition for spacelike separation in equation (90) will be enforced later in the calculation
once everything is written in terms of two-point functions.

We can analyze this scenario very generally by allowing Alice and the environment to start
in any arbitrary state ρEA instead of a maximally entangled state or purifications of any initial
state ρA,0. The expression for the density matrix ρEB now reads

ρEB =
∑
xi,zi

ω
(
Ô
)
TrA

[
P̂x4 P̂z4ρAEP̂−z1 P̂−x1

]
⊗ P̂−z3 P̂−x3 |+y〉〈+y|BP̂x2 P̂z2 (92)
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where the projection operators act on Alice or Bob and Ô is now defined to be

Ô=W(z1Ef1)W(x1Ef2)W(x2Eg2)W(z2Eg1)

×W(z3Eg1)W(x3Eg2)W(x4Ef2)W(z4Ef1) . (93)

Applying the third Weyl relation and using equation (17), this evaluates to

ω
(
Ô
)
= e−

i
2 (z1−z4)(x1+x4)E( f1,f2)e−

i
2 (z2+z3)(x3−x2)E(g1,g2)e−

i
2 (z2+z3)(z1−z4)E( f1,g1)

× e−
i
2 (z1−z4)(x2+x3)E( f1,g2)e−

i
2 (z2+z3)(x1−x4)E( f2,g1)e−

i
2 (x2+x3)(x1−x4)E( f2,g2)

× e−
1
2 ((z1+z4)(z1+z4)W( f1,f1)+(x1+x4)(x1+x4)W( f2,f2)+(z2+z3)(z2+z3)W(g1,g1)+(x2+x3)(x2+x3)W(g2,g2))

× e−
1
2 ((x1+x4)(z1+z4)H( f1,f2)+(z2+z3)(z1+z4)H( f1,g1)+(x2+x3)(z1+z4)H( f1,g2))

× e−
1
2 ((z2+z3)(x1+x4)H( f2,g1)+(x2+x3)(x1+x4)H( f2,g2)+(x2+x3)(z2+z3)H(g1,g2)) . (94)

This is the most general form that ω(Ô) can take in terms of Alice and Bob’s two-point
functions. We now enforce spacelike-separation using equation (90), giving us

ω
(
Ô
)
= e−

i
2
(z1−z4)(x1+x4)E( f1,f2)e−

i
2
(z2+z3)(x3−x2)E(g1,g2)

× e−
1
2 ((z1+z4)(z1+z4)W( f1,f1)+(x1+x4)(x1+x4)W( f2,f2)+(z2+z3)(z2+z3)W(g1,g1)+(x2+x3)(x2+x3)W(g2,g2))

× e−
1
2 ((x1+x4)(z1+z4)H( f1,f2)+(z2+z3)(z1+z4)H( f1,g1)+(x2+x3)(z1+z4)H( f1,g2))

× e−
1
2 ((z2+z3)(x1+x4)H( f2,g1)+(x2+x3)(x1+x4)H( f2,g2)+(x2+x3)(z2+z3)H(g1,g2)) . (95)

The density matrix ρEB can now be calculated

ρEB = ρE ⊗
(

1
2 X
X∗ 1

2

)
(96)

with ρE = TrA[ρEB] and

X=− i
2
e−2W(g1,g1)

[
e−2W(g2,g2) cosh(2H(g1,g2))+ sin(2E(g1,g2))

]
.

Observe that the density matrix ρEB depends only on the initial condition of the environment
and Bob’s local two-point functions, i.e. not involving Alice’s smearing functions at all, and
is clearly separable across B and E. Consequently, the quantum channel preserves no entan-
glement at all from the joint system EA (viewing it as 1⊗Φ). In fact, since we start from
any arbitrary state ρEA, we have effectively shown that Φ is a PPT channel [100, 101], and
hence also an entanglement-breaking channel (because PPT is equivalent to separability for
two qubits), and these are known to fall under the class of anti-degradable channels with zero
quantum capacity Q[Φ] = 0 [98].

From an information-theoretic viewpoint, zero quantum capacity says nothing about the
ability of the quantum channel to transmit classical information, since the classical channel
capacity C[Φ] is an upper bound for quantum capacity, i.e. C[Φ]⩾Q[Φ]. Quantum channels
can also transmit classical bits by, for instance, considering only diagonal density matrix

ρA,0 =

(
α 0
0 1−α

)
, α ∈ [0,1] . (97)
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and indeed it has been shown that for certain delta-coupled UDW models, the classical capa-
city C[Φ] can be computed exactly and is zero if Alice and Bob are spacelike [41, 42]. Our
quantum channel is more complicated as Alice and Bob each perform a sequence of two
simple-generated unitaries, but it is not necessary for us to find the explicit formula for C[Φ] to
show that it is zero. This follows directly from the fact that the density matrix in equation (96)
does not depend on ρA,0 at all, therefore the quantum channel carries no information whatso-
ever about Alice’s initial state, hence C[Φ] = 0.

We stress that one of the main features of a relativistic quantum channel is precisely that
one should be able to show that it respects the causal structure of spacetime by construction.
This requires one to be able to show, for instance, that no information transmission is allowed
at spacelike separation, or more generally between causally disconnected observers. In fact we
can say more: our formalism does not require us to specify anything about the (violation of)
strong Huygens’ principle [38, 102–106], since everything is encoded in the causal propagator.
For example, in (3+ 1)-dimensional Minkowski spacetime, Bob can be timelike-separated
from Alice but for a massless scalar field, the causal propagator has zero support in the interior
of the light cone (see, e.g. [38, 105]). In this case, if Bob’s spacetime smearing functions to the
field gi are strictly in the timelike interior and supp(gi)∩J +(suppfj) = ∅ for any i, j = 1,2,
then Q[Φ] = C[Φ] = 0.

5.3. Intermediate scenarios

In the two preceding subsections, we have analyzed two opposite regimes: the ideal case with
Efi = Egi and the worst case with Alice and Bob spacelike-separated. Let us make some com-
ments on intermediate regimes.

When the coherent information of a quantum channel is not close to 1, e.g. when 0⩽
Ic(Φ)� 1, it is in general very difficult to make quantitative claims about the quantum channel
capacity for the reasons like superadditivity described in section 3. In fact, even for quantum
channels with Ic(Φ) = 0, only small subsets of these are known to have zero quantum capa-
city, namely the anti-degradable channels [86, 98, 107] and the PPT channels [100] (see also
[101]). For intermediate scenarios, such as when Bob is only partially covering J ±(supp( fi))
or implementing faulty SWAP gates we are not able to give generic quantitative statements
about Q[Φ], as is the case for generic quantum communication channels.

However, in some situations we may try to use no-cloning type argument to conclude that
Q[Φ] = 0 in some scenarios as was done in [52, 53] (see also [100, 108, 109]). Suppose Bob
is allowed to couple only to at most half of Alice’s signal at some future time t that defines
the Cauchy slice for Bob’s interaction. Consider another observer Charlie who now chooses
to couple to the other half of the region at the same time slice so that jointly the interaction
support is the full region needed for the perfect quantum channel. Since Charlie’s interaction
is by construction spacelike separated from Bob, Charlie’s interaction is invisible to Bob (and
vice versa). If Bob and Charlie were able to individually decode Alice’s qubit, this would
violate the no-cloning theorem, so we can conclude that the quantum capacity must be zero if
the UDW interactions are set up this way15.

15 It is worth emphasizing that the protocol we have (and also in [53]) are generically not ideal, since for any finite
interaction strengths the ‘SWAP’ gates are never perfect and the ‘logical qubit’ in the field is only approximate—
consequently one has to be careful about using exact cloning argument. In practice, it would be better to think of the
scenario in terms of approximate cloning. Indeed, in figure 8 of [53] the coherent information vanishes smoothly as
one varies Bob’s interaction support when analyzing the cloning-type argument.
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The above discussion is not necessarily the only (or natural) way to view this. One way to
think about this from the perspective of the quantum field is this: if Bob manages to decode
Alice’s state at time t, the ‘logical qubit’ state c1|+α〉− ic2| −α〉 in equation (64) would have
been taken out by Bob, and the field would now change into a new state that has no logical
qubit in it (essentially because Bob swapped out the state into his physical detector). Charlie,
who couples to the field at any time t+ ϵ for any arbitrary ϵ> 0, would no longer have any
logical qubit to extract from the field, so Charlie cannot extract another qubit for free. Yet
another way to see this is that Bob’s interaction requires one to find gi in J +(supp( fj)) that
can ‘undo’ Alice’s operation. Therefore, if we choose to pick gi that does not cover the full
region needed for the decoding, then Bob fails to implement his ideal ÛB and instead performs
a different unitary operation. In this interpretation, we would say that Bob is unable to perform
the required ‘SWAP’ gate to decode Alice’s state. Showing that Bob has zero quantum capacity
wouldmean showing that Bob’s operations somehow completely depolarize the qubit state and
lose all the quantum information in it—we will not pursue this further in this paper and leave
this for future work.

6. Discussion and outlook

We motivated our work through the question: What is the information-carrying capacity of
quantum fields? The UDW framework allows us to formulate a precise statement of this ques-
tion, in terms of quantum capacity of the relativistic quantum channel between Alice and Bob
who try to transmit quantum information between their qubit detectors through the quantum
field. In this work, we have successfully generalized the results of [49–53], in particular [53],
where we construct a quantum channel that can transmit quantum information arbitrarily well
through a relativistic quantum scalar field in arbitrary curved spacetimes.

The features of our construction is that the resulting quantum channel, and hence the
quantum capacity, are manifestly covariant, respect the causal structure of spacetime, and are
independent of the details of the background geometry, topology, and the choice of Hilbert
space (quasifree) representations of the CCR algebra. Furthermore, in this generalization we
no longer need to deal with (violation of) the strong Huygens’ principle that may occur in
curved spacetimes for non-conformally invariant fields (see, e.g. [49, 50, 102–104]), since
this is fully encoded in the causal propagator. We also showed explicitly that the quantum
and classical capacity is zero for spacelike separated observers, as we expect from quantum
communication channel built from a relativistic quantum field.

Crucially, in this generalized formulation it becomes clear that there are two essential fea-
tures of a near-perfect quantum channel that can transmit quantum information arbitrarily well:
(1) Alice and Bob’s interactions need to satisfy the so-called fine-tuning and strong coupling
conditions in proposition 1 in order to approximate an ideal ‘SWAP’ gates; (2) Bob needs
to couple to the field at appropriate spacetime regions, fixed by proposition 2, so that he
could execute the approximately ideal ‘SWAP’ gates. Indeed, where Bob should be is fixed
by the causal propagator that determines where Alice’s information propagates in spacetime.
The asymmetry between Alice and Bob can be viewed as the consequence of the asymmetry
between encoding the qubit state into the field, with the logical basis being the coherent states
| ±α〉, and decoding the state while taking into account relativistic causality. In this sense, our
construction constitutes the most general relativistic qubit channel within the UDW frame-
work that can transmit quantum information arbitrarily well in appropriate regimes and we
also provided analyzes when the quantum channel is sub-optimal.
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There are several future directions that merit investigation, at least from amore fundamental
standpoint:

• Is it possible to construct a perfect relativistic quantum channel using higher-dimensional
detector models (using qudit detector models [56, 110] rather than qubits)? A priori it is
not obvious how to construct logical qudits in the field using only controlled displacement
operators and what kind of interaction Hamiltonians are needed to do this, if it exists at all.
It is also natural to consider several emitters and receivers, exploiting the fact that one can
interpret displacement operations can be viewed as Weyl generators with respect to some
spacetime smearing functions [58].

• As mentioned in [53], one may be interested in more directional coupling, which can be
envisaged in (1+1)D models (see, e.g. [37, 52]). Our protocol works automatically simply
because only the two-point functions change to reflect that the left- and right- movers of
the field modes are independent. A more interesting setup would be to study how realistic
settings involving waveguides and non-trivial dispersion relations can be adapted for this
purpose.

• Is the information-carrying capacity different between different fields with different spins
and statistics? For example, how does one compare the scalar field with a fermionic field?
The issue one has to deal with is that we have to separate the effects coming from the model
dependence of the coupling (e.g. we cannot couple σ̂x ⊗ ψ̂ where ψ is the fermionic field)
from truly field-theoretic physics that contribute to the quantum capacity, if we wish to do it
in the same way as we have done in this paper (see, e.g. some proposed fermionic couplings
in RQI literature [111, 112]).

• Our construction relies on the fact that the quantum field is non-interacting (Gaussian). There
are very few studies involving the UDWmodel with interacting QFTs such as the ϕ4 theory,
even perturbatively and for a single qubit (see, e.g. [24] for one example). The effects of
interactions are unclear for (long-distance) quantum communication, both perturbatively
and non-perturbatively. A possibly relevant testbed would be to consider known rigorous
constructions in (1+1)D interacting QFTs (see, e.g. [113–117]).

• Is it possible to systematically study quantum capacity in the non-relativistic quantummany-
body settings? Somewhat related studies to our setup are, for example, [118–120]. It would
be interesting to see the similarities and differences when they are compared with setups
involving relativistic quantum fields.

We leave these problems open for the future.
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