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Chapter 1

Introduction

Calculation of scattering amplitudes is required to understand the di�erent kinds of scattering pro-

cesses of elementary particles that can happen according to the rules of an underlying Quantum

Field Theory (QFT), as well as to determine the overall probabilities for these processes to occur.

It is of interest to calculate these probabilities in order to learn more about fundamental behavior

of elementary particles in nature.

Conventionally, scattering amplitudes are constructed by Feynman rules derived from a local

Lagrangian of the QFT in question. However, the sum over all contributing Feynman diagrams

quickly becomes combinatorially intractable as we consider higher number of participating particles

in a scattering process. Amazingly, oftentimes scattering amplitudes exhibit dramatic simpli�cations

once all Feynman diagrams have been taken into account, a prime example being the famous Parke-

Taylor formula for maximally helicity violating scattering of any number of gluons [1]. This suggests

that computing Feynman diagrams is not the most convenient approach and other techniques are

likely to exist that make the hidden simplicity more manifest during the calculation. The following

are a few theoretical tools that make some progress in this direction.

In four spacetime dimensions the so called spinor-helicity formalism allows for the simplest for-

mulation of massless scattering, since it removes gauge redundancies and encodes physical degrees

of freedom only (see [2] for a review).

Another powerful tool is the so called Britto-Cachazo-Feng-Witten (BCFW) recursion [3, 4], that

allows to �nd higher point amplitudes in terms of a sum over known lower point amplitudes that

are completely �xed by scaling and dimensional analysis arguments. In this sense BCFW recursion

circumvents Feynman diagram calculation all together, directly providing the �nal result in relatively

1



simple form.

Recently, amplitudes in Cachazo-He-Yuan (CHY) representation [5] have emerged, which com-

pactly describe scattering amplitudes of an arbitrary number of particles in an arbitrary number

of spacetime dimensions and in various theories, at the expense of requiring an integration over a

moduli space to be performed localizing so called scattering equation constraints.

In the next sections of this introduction we will introduce relevant notions and describe the tools

and techniques mentioned above in more detail.

1.1 Why amplitudes?

From classical physics, we are familiar with the concept of scattering cross-section σ, which in essence

is the cross-sectional area of an extended object as perceived by a beam of smaller particles that are

scattered o� it. Naturally, in a setup where the target is at rest the cross-section is then given by

σ =
number of scattered particles

time×velocity of the beam×number density of the beam
, (1.1.1)

which in other words is simply the number of scattered particles N per incoming �ux Φ and per

time T . In quantum mechanics incident particles only have a probability to interact with the target,

which leads us to generalize the notion of cross-section to more abstractly refer to the strength of

interaction between scattered particles. With this the di�erential cross-section for a two particle

collision becomes

dσ =
V

T ∣v⃗1 − v⃗2∣
dP, (1.1.2)

where we used that the �ux is the di�erence of velocities of the two particles per volume V , and dP

is the di�erential quantum mechanical probability of scattering. The quantity dP can be formally

expressed by introducing the notion of quantum mechanical states describing the initial ∣i⟩ and the

�nal ∣f⟩ particle con�gurations in the system before and after the scattering takes place respectively.

As explained in any introductory text on Quantum Field Theory (see for instance [6]), dP is given

by

dP =
∣⟨f ∣S∣i⟩∣2

⟨f ∣f⟩⟨i∣i⟩
dΠ and dΠ =∏

j

V

(2π)3
d3pj , (1.1.3)

2



with the region of �nal state momenta dΠ integrating to one. Here S is the so called scattering

matrix which encodes all intermediate processes that can connect the initial and �nal states:

S = 1 + i(2π)4δ4
(∑p)A. (1.1.4)

The non-trivial part of the scattering matrix contains momentum conservation delta functions and

the amplitude matrix A. Finally, after a bit of algebra and making use of ⟨s∣s⟩ = ∏j(2EjV ) and

δ4(0) = TL3

(2π)4 in a �nite volume V = L3, we can send the scattering volume and time period to

in�nity and �nd in the non-trivial case ∣f⟩ ≠ ∣i⟩:

dσ =
∣⟨f ∣A∣i⟩∣2

4E1E2∣v⃗1 − v⃗2∣
dΠLIPS , (1.1.5)

where Ei are particle energies and dΠLIPS is the Lorentz-invariant phase space

dΠLIPS = ∏
particles j∈∣f⟩

d3pj

(2π)3

(2π)4δ4(∑p)

2Ej
. (1.1.6)

This demonstrates that in order to calculate the di�erential cross-section of two scattering particles,

which provides an intuitive measure for the interaction strength between them and can shed light

on their properties such as mass, spin and internal quantum numbers, we �rst have to obtain the so

called scattering amplitude

A ≡ ⟨f ∣A∣i⟩. (1.1.7)

It will be the subject of this thesis to investigate soft factorization properties of amplitudes in a select

group of Quantum Field Theories, and to develop a general evaluation technique for amplitudes based

on scattering equations in the so called Cachazo-He-Yuan (CHY) formulation.

1.2 Scattering equations based amplitudes

Conventionally, Feynman rules1 are used to compute scattering amplitudes from a graph theoretic

point of view. In this approach expressions for propagators and interactions are extracted from a local

Lagrangian of a QFT, and play the role of edges and vertices respectively. To obtain the scattering

amplitude, Feynman rules prescribe to sum all possible diagrams that can be composed out of the

1This thesis assumes familiarity of the reader with standard textbook Quantum Field Theory material, such as
Feynman rules. Thus technical details on this are omitted.

3



given edge and vertex expressions leading to appropriate external states. Further complications

appear when edges form closed loops, with extra minus signs to keep track of for each fermionic

loop, and loop momenta integrations over the entire phase space. But even for tree-level graphs,

where no loops appear, the number of Feynman diagrams grows exponentially with the number

of particles participating in the scattering process, such that an explicit summation becomes a

practically impossible task. For this reason, any combinatorially tractable formulation of amplitudes

is a valuable tool. One such formulation is described below.

At the heart of the Cachazo-He-Yuan representation of scattering amplitudes are the so called

scattering equations, which map con�gurations of momenta kµi of scattering particles i = 1,2, ..., n

to an auxiliary moduli σi space on a Riemann sphere by demanding the following equality for all a

fa ≡
n

∑
b=1
b≠a

ka ⋅ kb
σab

= 0. (1.2.1)

The CHY formulation ([7, 5, 8], and later [9, 10]) produces tree level n-point scattering amplitudes

for massless particles in arbitrary dimension by means of (n − 3) moduli integrations localizing the

scattering equations (1.2.1):2

A = ∫ dµI with dµ =
dnσ

vol SL(2,C)
σijσjkσki ∏

a≠i,j,k
δ (fa) , (1.2.2)

where σij = σi−σj , and I is determined by the particular Quantum Field Theory (we will encounter

a few explicit examples of I in what follows), while dµ is a universal purely kinematic integration

measure. Since all σi live on a Riemann sphere, any valid I has to cancel the SL(2,C) transformation

weight of dµ such that overall the amplitude is SL(2,C) invariant on the moduli space.

The scattering equations could also be reformulated in a polynomial form by Dolan and Goddard

[11, 12]. This transforms the CHY measure dµ as

dµ =
dnσ

vol SL(2,C)

⎛

⎝
∏

1≤i<j≤n
σij

⎞

⎠
(
n−2

∏
a=2

δ (h̃a)) , (1.2.3)

where the polynomial scattering equations now read

h̃i ≡ ∑
{q1,...,qi}⊂{1,2,...,n}

sq1,...,qi

i

∏
j=1

σqj = 0 with sq1,...,qi =
1

2

⎛

⎝

i

∑
j=1

kqj
⎞

⎠

2

. (1.2.4)

2Note that the usual gauge �xing e.g. dnσ
volSL(2,C) = (∏

n
c=4 dσc)σ12σ23σ31 reduces the number of integrations to

n − 3.
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Here the summation is over all unordered subsets of i elements out of the sequence of numbers from

1 to n. Despite a non-trivial transformation having been applied to achieve the polynomial form,

the h̃i = 0 have exactly the same set of solutions as fa = 0, which makes the particular choice a

matter of convenience. We will prefer the polynomial form of scattering equations when we develop

our evaluation procedure for CHY amplitudes in a later chapter.

Since each chapter of this thesis aims to be as self-contained as possible, we will recall and repeat

the CHY formulation on several occasions throughout this thesis, with emphasis on speci�c features

and theories that are relevant within the respective chapter.

1.3 Spinor-helicity formalism

Physicists are most used to parametrizing physical processes of particles using Minkowski space

momenta pµ and polarization vectors εµ familiar from special relativity and electro-dynamics. Nat-

urally, scattering amplitudes are often written as functions of these variables A(pµi , ε
µ
i ). However,

these familiar variables are not always the best choice to describe the physics most concisely. For

instance, when talking about scattering of massless photons, we know that only two transversal

polarizations are possible: plus or minus helicity states. Since a generic polarization vector εµ has

enough components to encode transversal as well as longitudinal polarizations, it has more struc-

ture than is required to describe massless photons. Additionally, momenta pµ appear as variables

seemingly independent from εµ polarizations. We can perform a change of variables that removes

the unnecessary degrees of freedom in our description and therefore provides a much more useful

description (see e.g. [2]).

Start with a momentum four-vector pµ and consider multiplying it with a vector composed of

the usual Pauli matrices σµ:

pαα̇ = σµαα̇pµ where σµαα̇ = (1, σ⃗)αα̇. (1.3.1)

The resulting quantity pαα̇ for α, α̇ ∈ {1,2} is a 2 × 2 matrix. The massless condition pµp
µ = 0

translates into detpαα̇ = 0, which means that the matrix pαα̇ has reduced rank. Any 2× 2 matrix of

reduced rank can be written as a dyadic product of two vectors

pαα̇ = λαλ̃α̇. (1.3.2)

5



The vectors λα and λα are also called Weyl spinors. For real momenta pµ the two Weyl spinors are

complex conjugates of each other. Considering that the Pauli matrices are SU(2) generators, we

can contract the α and α̇ indices with the completely anti-symmetric tensor εαβ , for which we can

de�ne a bracket notation:

⟨ij⟩ = εαβλiαλjβ and [ij] = εα̇β̇λ̃iα̇λ̃j β̇ , (1.3.3)

such that the product of two four-momenta is given by 2pµi pjµ = ⟨ij⟩[ij].

Polarization vectors can similarly be expressed in this SU(2) notation

εiαα̇ =
λiαr̃iα̇
[i r̃i]

, ε̃iαα̇ =
riαλ̃iα̇
⟨ri i⟩

, (1.3.4)

where ri and r̃i explicitly encode the usual gauge degrees of freedom and are called reference spinors.

They can be chosen arbitrarily so long as the resulting εiαα̇ and ε̃iαα̇ are �nite.

Thus, with the above choice of parametrization the amplitude can be written as a function of

spinors A(λi, λ̃i) alone. Since λi = (λ̃i)
∗ has only two independent components, the spinors encode

the two helicity states in a minimal fashion and automatically include the kinematic information

about the motion of a particle. This compact spinor-helicity language oftentimes yields huge simpli-

�cations for expressions that are rather unwieldy in the original momentum and polarization vector

language.

1.4 BCFW recursion

Another powerful tool in the amplitudes toolbox is Britto-Cachazo-Feng-Witten (BCFW) recursion

[3, 4]. To set up BCFW recursion, we introduce complex deformations of amplitudes A(λi, λ̃i). In

particular, consider deforming two of the spinor-helicity variables i, j by a complex parameter z as

follows

λ̃α̇i → λ̃α̇i + zλ̃
α̇
j ≡

ˆ̃
λα̇i , λ̃β̇j → λ̃β̇j , (1.4.1)

λαj → λαj − zλ
α
i ≡ λ̂αj , λβi → λβi . (1.4.2)

This implies that the deformed spinors are not complex conjugates of each other for z ≠ 0. After

this deformation, we can trivially recover the original amplitude A(λi, λ̃i) from the deformed one
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A(λ̂i,
ˆ̃
λi) by performing the following contour integral

A(λi, λ̃i) = ∮ z=∣ε∣

ε→0+

dz

2πi

A(λ̂i,
ˆ̃
λi)

z
, (1.4.3)

and collecting a residue from a simple pole at z = 0. However, we also can consider deforming the

integration contour away from the initial locus around zero all the way out to in�nity. As the contour

is deformed, it encounters and wraps around other poles in the integrand. This is where our general

knowledge about constructing amplitudes from Feynman diagrams comes into play. Even though we

do not attempt to write down all possible diagrams contributing to a particular amplitude, we still

know that at tree level all poles within an amplitude must be due to denominators of propagators

that are present in the diagrams. As the contour in z localizes these denominators, the propagators

go on-shell producing a divergence and a corresponding residue. Whenever we have propagators

that are on-shell, we can think of the propagating intermediate particle as an external particle and

the amplitude factorizes into two sub-amplitudes connected by this on-shell bridge. If we denote

such factorization locations by zI , we can therefore write

A(λi, λ̃i) = −∑
zI

Resz=zI
A(λ̂i,

ˆ̃
λi)

z
= ∑
zI

AL(zI)
1

P 2
I

AR(zI), (1.4.4)

where AL and AR are lower point amplitudes and P 2
I is the square of the sum of unshifted external

momenta entering either the left or the right lower point amplitude.3

Since AL and AR have a lower number of e�ectively external legs compared to the original

amplitude A, with BCFW recursion we therefore have obtained a way to systematically construct

higher point amplitudes from lower point amplitudes iteratively without having to write down all

Feynman diagrams from scratch. This is a very powerful tool, which we will employ to study soft

factorization properties of amplitudes in the following.

3Note that zI = ∞ also could be a valid contributing pole in cases where numerators of Feynman diagrams feature
non-trivial momentum dependence. However, in practice such poles at in�nity can be circumvented in many cases of
interest.
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1.5 What are soft theorems?

Soft theorems refer to analytic properties of scattering amplitudes under soft kinematics, meaning

the Minkowski momentum of one or more particles involved in the scattering process tends to zero

kµi → εkµi , ε→ 0+ , i = 1,2, ...,m , (1.5.1)

whereby the scattering amplitude reduces to an amplitude with a lower number of scattering particles

times a so called soft factor that is uniquely determined by the nature of the particles with soft

momenta

An → (S(0)
m εq + S(1)

m εq+1
+ S(2)

m εq+2
+ ...)An−m. (1.5.2)

where the initial power q is such that the �rst few terms tend to be divergent. Thanks to this

divergence, the soft structure is factorized from the remaining amplitude and becomes universal.

Universality in this context means that S
(i)
m is independent of the remaining lower point amplitude

An−m, such that S
(i)
m is always the same whenever the same types of m external particles are taken

soft within any original amplitude An. Due to this universality, soft theorems are a powerful tool

to verify the validity of di�erent representations of scattering amplitudes, since all of them must

reproduce exactly the same soft factors. Soft theorems also can help elucidate the group structure

of the moduli space of vacua in some appropriate QFTs [13].

While the leading soft term S
(0)
m is just an overall factor depending on polarizations and momenta,

the following S
(1)
m , S

(2)
m , ... are operator valued and feature the angular momentum operator.

In this thesis we will verify the sub-sub-leading soft graviton theorem in arbitrary dimension and

derive a general expression for leading m-soft factors in various QFTs from the CHY formulation of

scattering amplitudes.

1.6 Example theories

The polynomial reduction procedure for evaluating CHY amplitudes, which we will introduce in

this thesis, works in general independently of any particular CHY integrand. In contrast to that,

scattering amplitudes in di�erent Quantum Field Theories feature di�erent soft factors. Therefore,

we will not be able to keep the discussion completely generic and will have to introduce some example

QFTs in order to investigate the di�erent soft theorems which arise in them. The following is our
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arbitrary but �xed choice of examples.

Bi-adjoint scalar φ3 theory

The bi-adjoint scalar theory is a slightly more involved variant of physicists farourite and simplest

looking QFT toy model. Its Lagrangian density is given by [14]

L =
1

2
∂µΦaa

′

∂µΦaa
′

+
g

3
fabcf̃a

′b′c′Φaa
′

Φbb
′

Φcc
′

. (1.6.1)

The g is a coupling constant and Φaa
′

are components of a matrix valued �eld Φ = Φaa
′

TaT̃a′ , where

Ta and T̃a′ are generators of possibly distinct Lie algebras

[Ta,Tb
] = ifabcTc , [T̃a, T̃b

] = if̃abcT̃c (1.6.2)

with structure constants fabc and f̃abc. Note that if the two Lie algebras are decoupled Φaa
′

≡ φaφ̃a
′

,

then the interaction term in the Lagrangian density vanishes identically. Therefore, we will consider

the case where the two Lie algebras are the same and fully coupled.

While the presence of the Lie algebra generators introduces some amount of clutter and provides

each component �eld Φaa
′

with a separate "color" which we have to keep track of, this actually

works in our favor when we consider scattering amplitudes in this theory. Using relations like

fabcfa
′bc = tr[TaTa′] we can rewrite combinations of structure constants in the amplitudes in terms

of traces of generator products, and then consider each trace contribution separately. Since the

positions of generators in the trace directly correspond to the ordering of �elds that enter the

remaining amplitude expression, we can therefore concentrate on calculating so called color ordered

partial amplitudes and later obtain the full amplitude as their sum multiplied with the respective

traces of generator products. It turns out that the color ordered partial amplitudes in bi-adjoint

scalar theory can be written in the CHY formulation (1.2.2) by use of the simple integrand factor

I =
1

(σ12σ23...σn1)
2
, (1.6.3)

with moduli di�erences abbreviated as σij = σi − σj . We say the integrand factor consists of a

Parke-Taylor like factor squared. The particular sequence of moduli indices that appears in these

di�erences determines the particular color ordering.
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Yang-Mills theory

Yang-Mills theory describes gauge bosons like gluons. The Lagrangian density of Yang-Mills is given

by [6]

L = −tr(
1

4
FµνFµν) , (1.6.4)

where Fµν is the non-abelian �eld strength, composed of vector �elds with matrix-valued components

Fµν =
i

g
[Dµ,Dν] = (∂µAν − ∂νAµ) − ig[Aµ,Aν] , Aµ = A

A
µTA, (1.6.5)

with coupling constant g. As in the previous example, TA is a Lie algebra generator. The trace

in the Lagrangian makes sure that gauge invariance is satis�ed in the non-abelian case. The gauge

covariant derivative is de�ned to be Dµ = ∂µ − igAµ.

The resulting partial amplitudes are color ordered and are written in the CHY formalism by

(1.2.2) with the integrand factor, involving the so called Pfa�an of an anti-symmetric matrix

I =
2 (−1)p+q

σpq
Pf(Ψpq

pq)

σ12σ23...σn1
. (1.6.6)

Moduli di�erences are abbreviated as σab ≡ σa − σb and the matrix Ψ is given by

Ψ = (
A

C

−CT

B
) , A = {

ka⋅kb
σab

0

;

;

a ≠ b

a = b
, B = {

εa⋅εb
σab

0

;

;

a ≠ b

a = b
, C =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

εa⋅kb
σab

; a ≠ b

−∑
n
c=1
c≠a

εa⋅kc
σac

; a = b
, (1.6.7)

with a, b ∈ {1,2, ..., n}. The kµ are momenta of scattering particles and εµ contain the corresponding

polarization data. The indices 1 ≤ i < j < k ≤ n as well as 1 ≤ p < q ≤ n in (4.1.2) are chosen arbitrarily

but �xed. Upper and lower indices on matrix Ψ denote removed columns and rows respectively.

Yang-Mills-Scalar theory

The so called Yang-Mills-Scalar (YMS) theory we will be interested in is a generalization of the

usual Yang-Mills theory. The Lagrangian density of YMS is given by [10]

L = −tr(
1

4
FµνFµν +

1

2
DµφIDµφ

I
−
g2

4
∑
I≠J

[φI , φJ]2) , (1.6.8)

where Fµν is the non-abelian �eld strength, Dµ is the gauge covariant derivative and the scalar

�elds φI carry a �avor SO(M) index I.
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The resulting partial amplitudes are again color ordered and can be described in the CHY

formalism by (1.2.2) with the following integrand factor

In =
2

σ12σ23...σn1
Pf(χ)

(−1)i+j

σij
Pf(Ψi,j,n+1,n+2,...,n+q

i,j,n+1,n+2,...,n+q). (1.6.9)

As before, 1 ≤ i < j ≤ n can be selected arbitrarily. Matrix χ is q × q dimensional

χ =

⎧⎪⎪
⎨
⎪⎪⎩

δIa,Ib

σab

0

;

;

a ≠ b

a = b
, (1.6.10)

and Ia, Ib are �avor indices for scalar �elds involved in the scattering process. This corresponds to

the �rst q of the scattering particles being scalars and the remaining n − q being gluons.

Gravity

To consider graviton scattering, one can start with the usual Einstein-Hilbert Lagrangian [6]

L =M2
Pl

√
−det(g)R, (1.6.11)

with Ricci scalar R and the determinant of the metric tensor gµν denoted by det(g). We then express

the metric tensor in terms of a deviation from a �at Minkowski space metric

gµν = ηµν +
1

MPl
hµν , (1.6.12)

whereMPl is the Planck mass. For plain wave solutions, hµν can be considered as a dynamical �eld,

called the graviton �eld, living in the �at Minkowski space background. Expanding the Einstein-

Hilbert Lagrangian for small �uctuations yields the following kinetic Lagrangian for the graviton

�eld

Lkin =
1

2
hµν∂

2hµν − hµν∂µ∂αhνα + h∂µ∂νhµν −
1

2
h∂2h, (1.6.13)

with h = ηµνhµν . The interaction part of the Lagrangian is even more involved. Luckily, we will

not be considering Feynman diagrams and therefore will not require an explicit Lagrangian of the

theory.

In CHY representation, a scattering amplitude involving n gravitons at tree level is simply
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described by (1.2.2) with the integrand factor [5]

I =
4

(σmw)2
det (Ψm,w

m,w) . (1.6.14)

As before, upper indices on the matrix Ψ denote removed columns and lower indices denote removed

rows. Values of indices m,w can be chosen arbitrarily without changing the result. The 2(n + 1)

dimensional matrix Ψ is the same as in the Yang-Mills case. There is no gauge group for gravity,

and the amplitudes are not color ordered.

Non-Linear Sigma Model

The last example theory in which we will consider soft theorems is the so called Non-Linear Sigma

Model (NLSM). While scalar, vector and graviton �elds are rather intuitive objects, the �elds in

NLSM are a bit more involved. Group theoretically, NLSM describes what happens when a chiral Lie

group GL ×GR with two identical product groups GL,R = G is spontaneously broken to its diagonal

subgroup GV = G [15]. This means that original group elements (gL, gR) ∈ GL ×GR are restricted

to gL = gR. We can describe the diagonal subgroup GV by the symmetric group GL ×GR/GV which

is isomorphic to it. This isomorphism can be realised by restricting the following combination of

original group elements

gRg
−1
L ≡ U (1.6.15)

to GL × GR/GV . Considering that the vacuum little group GV we are interested in describing is

invariant under (gL, gR) ↔ (gR, gL), we just made a choice to induce the action of the chiral group

GL × GR on GL × GR/GV through left multiplication. The resulting element transforms linearly

under the action of elements (VL, VR) of the original chiral group

U → VRUV
−1
L . (1.6.16)

Promoting U to a �eld, which then corresponds to the collection of Goldstone bosons [6] resulting

from the spontaneous symmetry breaking GL×GR → GV , we can write down an e�ective Lagrangian

to leading order in the decay constant F of the Goldstone bosons

L =
F 2

4
tr (∂µU∂

µU−1) . (1.6.17)
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A very convenient parametrization to of the �eld is the so called Cayley parametrization

U =
1 + i√

2F
φ

1 − i√
2F
φ

(1.6.18)

which facilitates the expansion of scattering amplitudes in NLSM by means of a current algebra

obtained from usual Feynman rules. While this iterative process is fairly straightforward, it is still

rather involved. Luckily, we will not have to consider that, since as it turns out an n-point NLSM

amplitude can be written in CHY representation by means of (1.2.2) with the following integrand

factor

I
NLSM
n =

1

σ12σ23...σn1

4

(σij)2
Pf(Ai,ji,j)

2, (1.6.19)

where Ai,ji,j is the same matrix A as in the gluons case, with rows and columns i, j removed, and

1 ≤ i < j ≤ n can be selected arbitrarily [10]. As we expect, the presence of the Parke-Taylor like

factor con�rms that the amplitudes are color ordered.
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Chapter 2

Sub-sub-leading soft-graviton

theorem in arbitrary dimension

This chapter is based on the publication [16].

A lot of work has been done on soft theorems in the past, based on local on-shell gauge invariance

[17, 18, 19, 20, 21, 22, 23, 24, 25]. The leading soft-graviton behavior was found by Weinberg in

1965 [22], and the sub-leading soft-graviton theorem was �rst investigated by Gross and Jackiw in

1968 [26]. Recently, active interest in soft theorems has been reawakened in [27, 28, 29, 30], as

Strominger and collaborators discovered that soft-graviton behavior can be extracted from extended

BMS symmetry [31, 32, 33, 34, 35]. For four dimensions, Cachazo and Strominger provided a proof

for the universality of tree level sub-leading and sub-sub-leading corrections [30] to Weinbergs soft-

graviton factor [22], making use of spinor helicity formalism and BCFW recursion [3, 4]. The soft-

graviton factor refers to the factorization property of an (n+1)-point tree level scattering amplitude

when the momentum of one external particle, conventionally the (n+1)th particle, is going to zero1

Mn+1(k1, k2, ..., εkn+1) = (
1

ε
S(0)

+ S(1)
+ εS(2)

+O(ε2
))Mn(k1, k2, ..., kn). (2.0.1)

1Substitute kn+1 → εkn+1 and expand around ε = 0.
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In case of gravity, these soft factors read [30]

S(0)
=

n

∑
a=1

εn+1µνk
µ
ak

ν
a

kn+1 ⋅ ka
(2.0.2a)

S(1)
=

n

∑
a=1

εn+1µνk
µ
a (kn+1λJ

λν
a )

kn+1 ⋅ ka
(2.0.2b)

S(2)
=

1

2

n

∑
a=1

εn+1µν(kn+1ρJ
ρµ
a )(kn+1λJ

λν
a )

kn+1 ⋅ ka
, (2.0.2c)

where εn+1µν is the polarization tensor of the (n + 1)th particle, kµa are momenta and Jµνa are

angular momentum operators. Subsequently, these soft-graviton theorems are being investigated

with the restriction to four dimensions lifted. In arbitrary number of dimensions, the leading factor

(2.0.2a) was addressed in [5] and the sub-leading factor (2.0.2b) was explicitly con�rmed in [36, 37].

Considering Poincaré and gauge invariance in arbitrary number of dimensions, as well as expected

formal structure, Broedel, de Leeuw, Plefka and Rosso �xed the orbital part of the sub-leading

and sub-sub-leading factors completely and constrained their polarization parts up to one numerical

constant for every order of expansion and each hard leg [38], in agreement with (2.0.2). Following

Low's example [20], Bern, Davies, Di Vecchia and Nohle used on-shell gauge invariance to fully

determine and con�rm the �rst two sub-leading soft-graviton behaviors in D dimensions [39].

Further work on soft factors in general was, for instance, done for Yang-Mills amplitudes in

[40],[41]. Several advances in gauge and gravity theories at loop level appeared in [42, 43].2 Cachazo

and Yuan proposed a modi�cation of the usual soft limit procedure to cope with corrections appearing

at loop level [44]. For a comment on this procedure, see [39]. Sub-leading soft theorems in gauge

and gravity theory were con�rmed from a diagrammatic approach in [45, 46]. Soft theorem in QED

was revisited in [47, 48]. Stringy soft theorems appeared in [49, 50], and a more general investigation

of soft theorems in a broader set of theories was conducted in [51].

In this note we will contribute an additional proof of the validity of the sub-sub-leading tree level

soft factor (2.0.2c) by explicit computation in arbitrary dimension, making use of the CHY formula

[5]. This note is structured as follows. Section 2.1 recalls the CHY formula. In section 2.2 we outline

the computational steps for the higher point expansion in the soft limit. Section 2.3 contains the

computation of lower point construction and comparison of the two results. Appendices 2.4, 2.5 and

2.6 contain all terms resulting from higher point expansion, which are compared with and are found

to be equal to the result of lower point construction.

2Nontrivial corrections are expected at loop level.
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2.1 The CHY formula

In order to explicitly prove the sub-sub-leading factor in the soft-graviton expansion, we will make

use of the CHY formula for tree level gravity scattering amplitudes with (n+1) external legs, which

is valid in any number of dimensions [5]

Mn+1 = ∫

⎡
⎢
⎢
⎢
⎢
⎢
⎣

n+1

∏
c=1

c≠p,q,r

dσc

⎤
⎥
⎥
⎥
⎥
⎥
⎦

4(σpqσqrσrp)(σijσjkσki)

(σmw)2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

n+1

∏
a=1

a≠i,j,k

δ
⎛
⎜
⎝

n+1

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

det (Ψm,w
m,w) .

Here we use the abbreviation σij ≡ (σi − σj). Upper indices on the matrix Ψ denote removed

columns and lower indices denote removed rows. Values of indices p, q, r, i, j, k,m and w can be

chosen arbitrarily without changing the result. The 2(n + 1) dimensional matrix Ψ is given by

Ψ = (
A

C

−CT

B
) ,

where the (n + 1) dimensional sub-matrices are given by

Aab = {

ka⋅kb
σab

0

, a ≠ b

, a = b
, Bab = {

εa⋅εb
σab

0

, a ≠ b

, a = b
, Cab =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

εa⋅kb
σab

−∑
n+1
c=1
c≠a

εa⋅kc
σac

, a ≠ b

, a = b
.

Here kµa is the momentum of the ath particle, and εµa is part of its polarization tensor. The values

for all σi in the integration are �xed by the product of delta functions which enforce the scattering

equations. The momentum of the (n + 1)th leg will be sent to zero in the soft-graviton expansion.

2.2 Higher point expansion

In the higher point expansion we start with the momentum conservation stripped tree level amplitude

for n+1 external gravitons, substitute kµn+1 → εkµn+1 and expand around ε = 0. In the sub-sub-leading

case we are interested in the order O(ε1) terms of this expansion. Subsequently, we integrate out

the σn+1 dependance to obtain the result which we expect to recover from lower point construction

by acting with the corresponding soft factor on an amplitude with one fewer external leg in section

2.3. All solutions for σn+1 are �xed by the scattering equations. However, since we are dealing with

tree level amplitudes, the functional dependance does not feature any branch cuts such that we will

be able to deform the integration contour and pick up a di�erent set of residues in σn+1 as in [36, 37]

in order to obtain the same result, e�ectively avoiding having to solve the scattering equations.
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For convenience we set i = 1, j = n, m = 2 and w = 3 so that the momentum conservation stripped

tree level amplitude for n + 1 external gravitons is given by

Mn+1 = ∫

⎡
⎢
⎢
⎢
⎢
⎢
⎣

n+1

∏
c=1

c≠p,q,r

dσc

⎤
⎥
⎥
⎥
⎥
⎥
⎦

4(σpqσqrσrp)(σ1nσnkσk1)

(σ2,3)
2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

n+1

∏
a=2
a≠k,n

δ
⎛
⎜
⎝

n+1

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

det (Ψ2,3
2,3) .

Since tree level amplitudes do not feature branch cuts, a delta distribution can be mapped to a

single pole term

δ
⎛
⎜
⎝

n+1

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠
→

1

∑
n+1
b=1
b≠a

ka⋅kb
σab

while the integration contour is deformed to pick up the residue associated with this pole as in

[36, 37]. This naturally yields the same result for the amplitude. Therefore, we can substitute one

delta function that has index a = (n + 1) by a simple pole, take kn+1 → εkn+1 and expand around

ε = 0 as follows:

n+1

∏
a=2
a≠k,n

δ
⎛
⎜
⎝

n+1

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠
= (2.2.1)

=
1

∑
n
c=1

kn+1⋅kc
σn+1,c

⎡
⎢
⎢
⎢
⎢
⎢
⎣

1

ε

n−1

∏
a=2
a≠k

δ
⎛
⎜
⎝

n

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠
+
n−1

∑
r=2
r≠k

kn+1 ⋅ kr
σn+1,r

δ(1)
⎛
⎜
⎝

n

∑
q=1
q≠r

kr ⋅ kq

σrq

⎞
⎟
⎠

n−1

∏
a=2
a≠k,r

δ
⎛
⎜
⎝

n

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠

+
ε

2

n−1

∑
r=2
r≠k

kn+1 ⋅ kr
σn+1,r

δ(1)
⎛
⎜
⎝

n

∑
q=1
q≠r

kr ⋅ kq

σrq

⎞
⎟
⎠

n−1

∑
s=2
s≠k,r

kn+1 ⋅ ks
σn+1,s

δ(1)
⎛
⎜
⎝

n

∑
t=1
t≠s

ks ⋅ kt
σst

⎞
⎟
⎠

n−1

∏
a=2

a≠k,r,s

δ
⎛
⎜
⎝

n

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠

+
ε

2

n−1

∑
r=2
r≠k

(
kn+1 ⋅ kr
σn+1,r

)

2

δ(2)
⎛
⎜
⎝

n

∑
q=1
q≠r

kr ⋅ kq

σrq

⎞
⎟
⎠

n−1

∏
a=2
a≠k,r

δ
⎛
⎜
⎝

n

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠
+O(ε2

)

⎤
⎥
⎥
⎥
⎥
⎥
⎦

≡
1

ε
δ0
+ δ1

+ εδ2
+O(ε2

).

Here we have introduced abbreviations δi to denote the expansion coe�cients of order εi−1. Similarly,

we can expand the determinant det(Ψ2,3
2,3) to make its ε dependance explicit. For that end we employ

the usual recursive formula3

det(A) =

2(n+1)
∑
i=1

(−1)i+kaki det(Aik), (2.2.2)

where aki are elements of matrix A and the choice of row k is arbitrary.4 If certain rows and columns

3In this case we are dealing with a 2(n + 1) × 2(n + 1) matrix.
4Naturally, an analogous expansion can also be done along a column instead of a row.
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are initially missing from the matrix A such that it is less than 2(n+1)×2(n+1) dimensional before

the expansion (2.2.2) is applied, those corresponding values of missing rows and columns have to

be skipped in the summation over the expansion index i. Additionally, a jump by ±1 has to be

introduced in the exponent of (−1)i+k whenever such a missing row or column is crossed. This will

be accomplished with help of the Heaviside step function θ(a, b) ≡ θ(a− b). More explicitly, when an

additional row i (or column k) is removed from matrix A, one step function has to be introduced

for each of the rows u (or columns v) that were already missing, so that we add5 ∑u θ(i, u) (or

∑v θ(k, v)) to the exponent of (−1)i+k. This ensures that each summand in the expansion (2.2.2)

appears with the correct sign.

As in [36], we make use of the gauge condition (kn+1 ⋅ εi) = 0 for all i to conveniently reduce the

number of appearing terms. We realize that with this all the ε dependance is located along the

(n + 1)th row and column of Ψ2,3
2,3. Therefore, we apply the expansion to the (n + 1)th row and

column in succession:

det (Ψ2,3
2,3) =(

n

∑
c=1

εn+1 ⋅ kc
σn+1,c

)

2

det (Ψ
2,3,n+1,2(n+1)
2,3,n+1,2(n+1)) (2.2.3)

+ 2ε
n

∑
i=1
i≠2,3

n

∑
c=1

(−1)i
εn+1 ⋅ kc
σn+1,c

kn+1 ⋅ ki
σn+1,i

det (Ψ2,3,n+1,i
2,3,n+1,2(n+1))

+ ε2
n

∑
i=1
i≠2,3

n

∑
j=1
j≠2,3

(−1)i+j
kn+1 ⋅ ki
σn+1,i

kj ⋅ kn+1

σn+1,j
det (Ψ2,3,n+1,i

2,3,n+1,j) .

Here and in later equations the Heaviside step functions involving arguments 2, 3, n+1 and 2(n+1)

are suppressed. However, to keep track of the signs we should agree to always order the argument

of each step function according to the order in which removed rows or columns appear in the

determinant. In particular,

(−1)...+θ(a,b)+...+θ(c,d)+... det(Ψ...,b,a,...
...,d,c,...) = −(−1)...+θ(b,a)+...+θ(c,d)+... det(Ψ...,a,b,...

...,d,c,...) (2.2.4)

= (−1)...+θ(b,a)+...+θ(d,c)+... det(Ψ...,a,b,...
...,c,d,...).

In cases where more than two rows (columns) are removed from Ψ, there will be one step function

for each way an unordered pair of removed rows (columns) can be selected. Therefore, with our

agreement (2.2.4) we can think of the step functions as being attached to the determinant, facilitating

the property of making the exchange of two neighboring indices of removed rows (or columns)

5Note that the newly removed index i (or k) is in the �rst argument of each respective step function and is
attached to the determinant at the far right. This introduces a natural initial index-ordering and will be relevant in
the following.
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antisymmetric. Furthermore, this ensures that the order of arguments of all step functions is in one

to one correspondence to the order of removed row (column) indices in the determinant, allowing us

to ignore the step functions and concentrate on comparing determinants. This convenient property

yields a slight simpli�cation to the algebraic steps that later will be required in order to show the

equality of the higher point expansion and lower point construction results.6

Note that the order in which the indices of removed rows and columns appear in the determinants in

(2.2.3) is di�erent from the straightforward order which emerges from the expansion. We reordered

these indices according to (2.2.4) to ensure proper sign in comparison to the terms of lower point

construction computed in the next section. For later convenience we de�ne the abbreviation:

det (Ψ′
) ≡ det (Ψ

2,3,n+1,2(n+1)
2,3,n+1,2(n+1)) . (2.2.5)

We wish to make the entire σn+1 dependance explicit to be able to integrate it out. Only (n +

1)th and 2(n + 1)th rows and columns in the matrix Ψ depend on σn+1. Therefore, we expand

det(Ψ2,3,n+1,i
2,3,n+1,2(n+1)) along the 2(n + 1)th column, as well as det(Ψ2,3,n+1,i

2,3,n+1,j) along the 2(n + 1)th row

and column in succession. Again, here and in all further steps we make use of the gauge condition

(kn+1 ⋅ εi) = 0 for all i, such that:

det (Ψ2,3
2,3) =(

n

∑
c=1

εn+1 ⋅ kc
σn+1,c

)

2

det (Ψ′
) + 2ε

n

∑
i=1
i≠2,3

n

∑
c=1

(−1)i
εn+1 ⋅ kc
σn+1,c

kn+1 ⋅ ki
σn+1,i

× (2.2.6)

×
⎛
⎜
⎝

n

∑
j=1
j≠2,3

(−1)j
εn+1 ⋅ kj

σn+1,j
det (Ψ′i

j ) −
n

∑
j=1

(−1)j+n+1 εn+1 ⋅ εj

σn+1,j
det (Ψ′i

j+n+1)
⎞
⎟
⎠

+ ε2
n

∑
i=1
i≠2,3

n

∑
j=1
j≠2,3

(−1)i+j
kn+1 ⋅ ki
σn+1,i

kj ⋅ kn+1

σn+1,j
×

×
⎛
⎜
⎝

n

∑
u=1

u≠2,3,i

n

∑
p=1

p≠2,3,j

(−1)u+p+θ(u,i)+θ(p,j)
εn+1 ⋅ ku
σn+1,u

εn+1 ⋅ kp

σn+1,p
det (Ψ′i,u

j,p )

− 2
n

∑
u=1

u≠2,3,i

n

∑
p=1

(−1)u+p+n+1+θ(u,i)+θ(p+n+1,j) εn+1 ⋅ ku
σn+1,u

εn+1 ⋅ εp

σn+1,p
det (Ψ′i,u

j,p+n+1)

+
n

∑
u=1

n

∑
p=1

(−1)u+p+θ(u+n+1,i)+θ(p+n+1,j) εn+1 ⋅ εu
σn+1,u

εn+1 ⋅ εp

σn+1,p
det (Ψ′i,u+n+1

j,p+n+1 )
⎞

⎠

≡ det0 + εdet1 + ε
2 det2.

6Some of the appearing step functions can never yield a change of sign and it might be tempting to evaluate
them right away and get rid of them. However, this would break the agreement (2.2.4) and the convenient general
antisymmetry property of the determinant under exchange of two neighboring removed row (column) indices, thus
making a more tedious case by case distinction for index-ordering necessary.
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Here, again we de�ned abbreviations deti to denote the coe�cients of εi. The ordering of the indices

of removed rows and columns in the determinants was again done in accordance with (2.2.4) to

ensure proper signs. In the sub-sub-leading case at hand only terms of overall order O(ε1) are of

interest. Therefore, we restrict our attention to:

n+1

∏
a=2
a≠k,n

δ
⎛
⎜
⎝

n+1

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠

det (Ψ2,3
2,3) =(

1

ε
δ0
+ δ1

+ εδ2
+O(ε2

)) (det0 + εdet1 + ε
2 det2)

= ε (δ2det0 + δ
1det1 + δ

0det2) + ... , (2.2.7)

where ... denotes other terms of di�erent order in ε. In fact, the terms given explicitly in (2.2.7) are

the only terms of order O(ε1) in the amplitude which depend on σn+1. Other multiplicative terms

and integrals are merely spectators and can be suppressed when we integrate out σn+1 and compare

the result to the lower point construction.

As in [36, 37], it is trivial to see that there is no pole and therefore no residue at in�nity in σn+1.

Therefore, the integration contour can be reversed to pick up the residues at σn+1 = σi for all i ≠ n+1

instead. Poles of higher order will occur in the computation, so that we will use Cauchy's integral

formula to obtain the respective residues:

Res(
f(z)

(z − z0)
n
, z = z0) =

1

(n − 1)!
f (n−1)

(z0), (2.2.8)

where f (n−1)(z) is the (n − 1)th derivative of f(z).

The technical steps necessary to obtain the residues from all the terms of order O(ε1) appearing in

(2.2.7) are identical. Let us illustrate the procedure on one expression from δ2det0:

1

2

(∑
n
b=1

εn+1⋅kb
σn+1,b

)
2

∑
n
c=1

kn+1⋅kc
σn+1,c

n−1

∑
r=2
r≠k

(
kn+1 ⋅ kr
σn+1,r

)

2

δ(2)
⎛
⎜
⎝

n

∑
t=1
t≠r

kr ⋅ kt
σr,t

⎞
⎟
⎠

n−1

∏
a=2
a≠k,r

δ
⎛
⎜
⎝

n

∑
p=1
p≠a

ka ⋅ kp

σa,p

⎞
⎟
⎠

det (Ψ′
) . (2.2.9)

First, we suppress the product of delta functions and the determinant since they are just spectators

independent of σn+1, and we abbreviate δ
(2)
r ≡ δ(2)(∑

n
t=1
t≠r

kr ⋅kt
σr,t

) for convenience. To investigate the

residues at σn+1 = σi for all i ≠ n + 1, it is natural to distinguish between two cases of σn+1 = σq

where σq ∈ {σ1, σk, σn} and σq ∉ {σ1, σk, σn}. In the �rst case, where σq ∈ {σ1, σk, σn} we �nd only
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�rst order poles in (2.2.9):

1

σn+1,q

⎛
⎜
⎜
⎜
⎝

1

2

(εn+1 ⋅ kq + σn+1,q∑
n
b=1
b≠q

εn+1⋅kb
σn+1,b

)
2

kn+1 ⋅ kq + σn+1,q∑
n
c=1
c≠q

kn+1⋅kc
σn+1,c

n−1

∑
r=2
r≠k

(
kn+1 ⋅ kr
σn+1,r

)

2

δ(2)r

⎞
⎟
⎟
⎟
⎠

,

so that the sum of corresponding residues is trivially given by using the Cauchy integral formula

(2.2.8) with n = 1 and summing over q:

1

2
∑

q=1,k,n

(εn+1 ⋅ kq)
2

kn+1 ⋅ kq

n−1

∑
r=2
r≠k

(
kn+1 ⋅ kr
σq,r

)

2

δ(2)r .

In the second case σq ∉ {σ1, σk, σn} we �nd �rst, second and third order poles in (2.2.9):

1

σn+1,q

⎛
⎜
⎜
⎜
⎝

1

2

(∑
n
b=1
b≠q

εn+1⋅kc
σn+1,c

)
2

(kq ⋅ kn+1)
2δ

(2)
q

kn+1 ⋅ kq + σn+1,q∑
n
c=1
c≠q

kn+1⋅kc
σn+1,c

+
1

2

(εn+1 ⋅ kq)
2
∑
n−1
r=2
r≠k,q

(
kr ⋅kn+1
σn+1,r

)
2
δ
(2)
r

kn+1 ⋅ kq + σn+1,q∑
n
c=1
c≠q

kn+1⋅kc
σn+1,c

⎞
⎟
⎟
⎟
⎠

+
1

(σn+1,q)
2

⎛
⎜
⎝

(εn+1 ⋅ kq)(kq ⋅ kn+1)
2δ

(2)
q ∑

n
b=1
b≠q

εn+1⋅kb
σn+1,b

kn+1 ⋅ kq + σn+1,q∑
n
c=1
c≠q

kn+1⋅kc
σn+1,c

⎞
⎟
⎠

+
1

(σn+1,q)
3

⎛
⎜
⎝

1

2

(εn+1 ⋅ kq)
2(kq ⋅ kn+1)

2δ
(2)
q

kn+1 ⋅ kq + σn+1,q∑
n
c=1
c≠q

kn+1⋅kc
σn+1,c

⎞
⎟
⎠
.

The sum of all simple pole residues again is trivially obtained by using the Cauchy integral formula

(2.2.8) with n = 1 and summing over q:

1

2

n−1

∑
q=2
q≠k

⎛
⎜
⎜
⎝

(kq ⋅ kn+1)
⎛
⎜
⎝

n

∑
b=1
b≠q

εn+1 ⋅ kc
σq,c

⎞
⎟
⎠

2

δ(2)q +
(εn+1 ⋅ kq)

2

kn+1 ⋅ kq

n−1

∑
r=2
r≠k,q

(
kr ⋅ kn+1

σq,r
)

2

δ(2)r

⎞
⎟
⎟
⎠

.

To obtain the sum over second order pole residues we make use of the Cauchy integral formula

(2.2.8) with n = 2. This yields:

−
n−1

∑
q=2
q≠k

(εn+1 ⋅ kq)
⎛
⎜
⎝
(kq ⋅ kn+1)

n

∑
b=1
b≠q

εn+1 ⋅ kb
(σq,b)2

δ(2)q +
n

∑
b=1
b≠q

εn+1 ⋅ kb
σq,b

n

∑
c=1
c≠q

kn+1 ⋅ kc
σq,c

δ(2)q

⎞
⎟
⎠
.

Finally, to obtain the sum over the third order pole residues we use the Cauchy integral formula
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(2.2.8) with n = 3:

1

2

n−1

∑
q=2
q≠k

(εn+1 ⋅ kq)
2
⎛
⎜
⎜
⎝

1

kn+1 ⋅ kq

⎛
⎜
⎝

n

∑
b=1
b≠q

kn+1 ⋅ kb
σq,b

⎞
⎟
⎠

2

δ(2)q +
n

∑
b=1
b≠q

kn+1 ⋅ kb
(σq,b)2

δ(2)q

⎞
⎟
⎟
⎠

.

The residues of all further terms appearing in (2.2.7) are computed in exactly the same way. Without

showing every single step explicitly, we will give a list of pole orders appearing in the respective terms.

Additionally, the results for all residues will be gathered in appendices.

Apart from the computation presented above, the term δ2det0 contains one additional expression.

It has only �rst order poles for σq ∈ {σ1, σk, σn}, and it has �rst and second order poles for σq ∉

{σ1, σk, σn}. All residues associated with the term δ2det0 are presented in appendix 2.4.

The residues of the term δ1det1 are obtained from three di�erent cases. In the case of σq ∉

{σ1, σ2, σ3, σk, σn} there are �rst, second and third order poles. In the case of σq ∈ {σ1, σk, σn} there

are �rst and second order poles. And in the case of σq ∈ {σ2, σ3} there are �rst and second order

poles. All residues associated with the term δ1det1 are presented in appendix 2.5.

The residues of the term δ0det2 are obtained from two di�erent cases. In the case of σq ∉ {σ2, σ3}

there are �rst, second and third order poles. And in the case of σq ∈ {σ2, σ3} there are only �rst

order poles. All residues associated with the term δ0det2 are presented in appendix 2.6.

With this, all relevant terms from higher point expansion are obtained and we can proceed with

the computation of lower point construction.

2.3 Lower point construction

In the lower point construction we start with the momentum conservation stripped tree level ampli-

tude for n external particles. We set i = 1, j = n, m = 2 and w = 3 and invoke the gauge condition

(kn+1 ⋅ εu) = 0 for all u ∈ {1,2, ..., n + 1}, such that7:

Mn = ∫

⎡
⎢
⎢
⎢
⎢
⎢
⎣

n

∏
c=1

c≠p,q,r

dσc

⎤
⎥
⎥
⎥
⎥
⎥
⎦

4(σpqσqrσrp)(σ1nσnkσk1)

(σ2,3)
2

⎡
⎢
⎢
⎢
⎢
⎢
⎣

n−1

∏
a=2
a≠k

δ
⎛
⎜
⎝

n

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

det (Ψ′
) , (2.3.1)

where we used the abbreviation de�ned in (2.2.5). First we notice that only the product of delta

functions and the determinant are relevant for our considerations, and all remaining multiplicative

factors and integrals are exactly the same spectators which we suppressed in the higher point ex-

pansion case. Therefore, here we again suppress these spectator terms, such that the expression we

7The gauge condition ensures that there is no remaining kn+1 and σn+1 dependance in det(Ψ′).
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should compare to the higher point expansion is given by:

S(2)
⎡
⎢
⎢
⎢
⎢
⎢
⎣

n−1

∏
c=2
c≠k

δ
⎛
⎜
⎝

n

∑
b=1
b≠c

kc ⋅ kb
σcb

⎞
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

det (Ψ′
) . (2.3.2)

As already stated in the introduction, the sub-sub-leading factor S(2) is expected to be given by:

S(2)
=

1

2

n

∑
a=1

εn+1µν(kn+1ρJ
ρµ
a )(kn+1λJ

λν
a )

kn+1 ⋅ ka
, (2.3.3)

where the action of the angular momentum operators by their orbital or spin part on momenta or

polarization vectors is given by [36]

Jµνa kβb = (kµa
∂

∂kaν
− kνa

∂

∂kaµ
)kβb (2.3.4a)

Jµνa εβb = (ηνβδµσ − η
µβδνσ) ε

σ
b . (2.3.4b)

Naively, the two angular momentum operators in the sub-sub-leading factor (2.3.3) could act on

each other. However, it is trivial to show that the interaction vanishes due to the (n + 1)th particle

being massless k2
n+1 = 0, therefore having only transverse polarization modes kn+1 ⋅ εn+1 = 0, and

the polarization being light-like such that ε2n+1 = 0. With this we can conclude that we will have to

match the resulting terms to the higher point expansion in the following way

1

2

n

∑
a=1

εµενqρqλ

q ⋅ ka

⎛
⎜
⎝
Jρµa Jλνa

n−1

∏
c=2
c≠k

δ
⎛
⎜
⎝

n

∑
b=1
b≠c

kc ⋅ kb
σcb

⎞
⎟
⎠

⎞
⎟
⎠

det (Ψ′
) ⇔ ∑

i

Resi(δ
2det0) (2.3.5a)

n

∑
a=1

εµενqρqλ

q ⋅ ka

⎛
⎜
⎝
Jρµa

n−1

∏
c=2
c≠k

δ
⎛
⎜
⎝

n

∑
b=1
b≠c

kc ⋅ kb
σcb

⎞
⎟
⎠

⎞
⎟
⎠
(Jλνa det (Ψ′

)) ⇔ ∑
i

Resi(δ
1det1) (2.3.5b)

1

2

n

∑
a=1

εµενqρqλ

q ⋅ ka

n−1

∏
c=2
c≠k

δ
⎛
⎜
⎝

n

∑
b=1
b≠c

kc ⋅ kb
σcb

⎞
⎟
⎠
(Jρµa Jλνa det (Ψ′

)) ⇔ ∑
i

Resi(δ
0det2), (2.3.5c)

where we used the abbreviations

εµ ≡ εn+1µ and qµ ≡ kn+1µ, (2.3.6)

and the sum in i is over all residues picked up when integrating out σn+1.

To compute the lower point construction for (2.3.5a), only the orbital part of the angular momen-

tum operator (2.3.4a) is involved, since the scattering equation delta functions depend on momenta
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only. Therefore, the object of interest is

1

2

n

∑
a=1

((q ⋅ ka)ε
µεν

∂

∂kµa

∂

∂kνa
− 2(ε ⋅ ka)ε

µqλ
∂

∂kµa

∂

∂kλa
+

(ε ⋅ ka)
2

q ⋅ ka
qρqλ

∂

∂kρa

∂

∂kλa
)
n−1

∏
c=2
c≠k

δ
⎛
⎜
⎝

n

∑
b=1
b≠c

kc ⋅ kb
σcb

⎞
⎟
⎠
.

Carrying out the partial derivatives as usual, then suppressing the remaining product of delta func-

tions and abbreviating the derivatives of delta functions in the same way as after (2.2.9), we obtain

the same result as from the higher point expansion given in appendix 2.4. The only type of reshap-

ing needed to recover the exact same set of terms (apart from trivial cancellation and (2.2.4)), is

to combine expressions which have a similar structure up to σij 's appearing in denominators, such

that a simpli�cation occurs as in:

1

σjkσij
−

1

σjkσik
=

1

σijσik
. (2.3.7)

These steps eventually demonstrate the equality of both sides in (2.3.5a).

To compute the lower point construction for (2.3.5b), both parts of the angular momentum

operator (2.3.4a) and (2.3.4b) are needed. Furthermore, to obtain the derivative of a determinant,

we use the chain rule and straightforwardly obtain:

d

dx
det(A) =

2(n+1)
∑
q=1

2(n+1)
∑
i=1

(−1)q+i (
daqi

dx
)det(Aiq). (2.3.8)

First, we compute the action of a single angular momentum operator on the product of scattering

equation delta functions:

εn+1µkn+1ρ

kn+1 ⋅ ka
Jρµa

n−1

∏
c=2
c≠k

δ
⎛
⎜
⎝

n

∑
b=1
b≠c

kc ⋅ kb
σcb

⎞
⎟
⎠
=
n−1

∑
c=2
c≠k

n

∑
b=1
b≠c

δc,a
εn+1 ⋅ kb
σcb

δ(1)c +
n−1

∑
c=2
c≠k

n

∑
b=1
b≠c

δb,a
εn+1 ⋅ kc
σcb

δ(1)c

−
(εn+1 ⋅ ka)

kn+1 ⋅ ka

n−1

∑
c=2
c≠k

n

∑
b=1
b≠c

δc,a
kn+1 ⋅ kb
σcb

δ(1)c (2.3.9)

−
(εn+1 ⋅ ka)

kn+1 ⋅ ka

n−1

∑
c=2
c≠k

n

∑
b=1
b≠c

δb,a
kn+1 ⋅ kc
σcb

δ(1)c ,

where δi,j is the Kronecker delta, and where on the right hand side we suppressed the remaining

product of delta functions and abbreviated the derivative of the delta function in the same way

as after (2.2.9). Next, we compute the action of a single angular momentum operator on the
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determinant:

εn+1νkn+1λJ
λν
a det (Ψ′

) =
n

∑
j=1
j≠2,3

n

∑
i=1

i≠2,3,j

(−1)i+j (εn+1νkn+1λJ
λν
a

kj ⋅ ki

σji
)det (Ψ′i

j ) (2.3.10)

+
n

∑
j=1

n

∑
i=1
i≠j

(−1)i+j (εn+1νkn+1λJ
λν
a

εj ⋅ εi

σji
)det (Ψ′i+n+1

j+n+1 )

− 2
n

∑
j=1
j≠2,3

n

∑
i=1
i≠j

(−1)i+j+n+1
(εn+1νkn+1λJ

λν
a

kj ⋅ εi

σji
)det (Ψ′i+n+1

j )

− 2
n

∑
j=1
j≠2,3

n

∑
c=1
c≠j

(−1)n+1
(εn+1νkn+1λJ

λν
a

kc ⋅ εj

σjc
)det (Ψ′j+n+1

j ) .

To make the terms more explicit, we invoke the usual gauge from before kn+1 ⋅ εi = 0 for all i and

obtain:

εn+1νkn+1λJ
λν
a

kj ⋅ ki

σji
=(δa,j − δa,i)

(kn+1 ⋅ kj)(εn+1 ⋅ ki) − (kn+1 ⋅ ki)(εn+1 ⋅ kj)

σji
(2.3.11a)

εn+1νkn+1λJ
λν
a

kj ⋅ εi

σji
=(δa,j − δa,i)

(kn+1 ⋅ kj)(εn+1 ⋅ εi)

σji
(2.3.11b)

εn+1νkn+1λJ
λν
a

εj ⋅ εi

σji
=0. (2.3.11c)

Plugging (2.3.11) into (2.3.10), multiplying with (2.3.9) and summing over a = 1, ..., n gives the same

result as from higher point expansion in appendix 2.5. To recover the exact same set of terms in

order to prove the equality, we use simpli�cations like (2.2.4) and (2.3.7). Additionally, we realize

that for an antisymmetric 2(n + 1) × 2(n + 1) matrix A we have:

det (Aa1,a2,...,amb1,b2,...,bm
) = (−1)m det (Ab1,b2,...,bma1,a2,...,am

) . (2.3.12)

Making use of these steps, the demonstration of the equality of both sides in (2.3.5b) becomes

straightforward.

Finally, to compute the lower point construction for (2.3.5c), again both parts of the angular

momentum operator (2.3.4a) and (2.3.4b) are needed. We start with (2.3.10) and act with the

angular momentum operator a second time. The case where both angular momentum operators hit

the expansion coe�cient in each line vanishes due to the same arguments as the vanishing of the

self-interaction of the two angular momentum operators. Therefore, only the case remains where

the second angular momentum operator acts on the determinant in each line. Combining (2.3.10)
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with (2.3.11) and using the abbreviations (2.3.6), this results in:

1

2

n

∑
a=1

εµενqρqλ

q ⋅ ka
Jρµa Jλνa det (Ψ′

) =
n

∑
m=1
m≠2,3

n

∑
i=1

i≠2,3,m

(−1)i+m
(ε ⋅ ki)

σmi
(qρεµJ

ρµ
m det (Ψ′i

m)) (2.3.13)

−
n

∑
m=1
m≠2,3

n

∑
i=1

i≠2,3,m

(−1)i+m
(ε ⋅ km)(q ⋅ ki)

(q ⋅ km)σmi
(qρεµJ

ρµ
m det (Ψ′i

m))

+
n

∑
m=1
m≠2,3

n

∑
i=1
i≠m

(−1)i+m+n+1 (ε ⋅ εi)(q ⋅ km)

(q ⋅ ki)σmi
(qρεµJ

ρµ
i det (Ψ′i+n+1

m ))

−
n

∑
m=1
m≠2,3

n

∑
i=1
i≠m

(−1)i+m+n+1 (ε ⋅ εi)

σmi
(qρεµJ

ρµ
m det (Ψ′i+n+1

m ))

+
n

∑
m=1
m≠2,3

n

∑
i=1
i≠m

(−1)n+1 (ε ⋅ εm)(q ⋅ ki)

(q ⋅ km)σmi
(qρεµJ

ρµ
m det (Ψ′m+n+1

m ))

−
n

∑
m=1
m≠2,3

n

∑
i=1
i≠m

(−1)n+1 (ε ⋅ εm)

σmi
(qρεµJ

ρµ
i det (Ψ′m+n+1

m )) .

The action of the angular momentum operator on the determinants in each of these six lines is then

expanded further analogously to (2.3.10). The only di�erence is, that now the expansion summations

have to omit one removed row and column more in each case, and we have to explicitly display the

corresponding step functions in the exponent of (-1). Since the product of scattering equation delta

functions is untouched by the operators in this case, it can be suppressed as a spectator completely,

so that the terms resulting from a further expansion of (2.3.13) correspond to the higher point

expansion result given in appendix 2.6. Again, making use of simpli�cations (2.2.4), (2.3.7) and

(2.3.12), it is then straightforward to reshape the �nding to obtain the exact same set of terms listed

in appendix 2.6, which proves the equality of both sides in (2.3.5c).

This concludes the computation of the lower point construction and its comparison with the

higher point expansion. Both yield the same result, which con�rms that the sub-sub-leading factor

(2.0.2c) in the soft-graviton expansion of tree level scattering amplitudes is indeed valid in arbitrary

dimension.
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2.4 Residues of δ2det0

The following are all residues obtained from δ2det0 in (2.2.7) by integrating out the σn+1 depen-

dance. Multiplicative spectator terms and integrals which are trivially the same in the lower point

construction are suppressed.8 Additionally, the product of scattering equation delta functions is

suppressed and the derivative of delta function is abbreviated as

δ
(i)
j ≡ δ(i)

⎛
⎜
⎝

n

∑
a=1
a≠j

ka ⋅ kj

σaj

⎞
⎟
⎠
. (2.4.1)

With this the residues are:

2
n−1

∑
q=2
q≠k

(εn+1 ⋅ kq)δ
(1)
q

n−1

∑
r=2
r≠k,q

kr ⋅ kn+1

σqr
δ(1)r

n

∑
b=1
b≠q

εn+1 ⋅ kb
σqb

+
1

2

n−1

∑
r=2
r≠k

(kr ⋅ kn+1)δ
(1)
r

n

∑
q=1
q≠r

1

kn+1 ⋅ kq

(εn+1 ⋅ kq)
2

σqr

n−1

∑
t=2

t≠k,r,q

kt ⋅ kn+1

σqt
δ
(1)
t

−
n−1

∑
q=2
q≠k

(εn+1 ⋅ kq)
2δ(1)q

⎛
⎜
⎝

n−1

∑
r=2
r≠k,q

kr ⋅ kn+1

(σqr)2
δ(1)r +

1

kn+1 ⋅ kq

n−1

∑
r=2
r≠k,q

kr ⋅ kn+1

σqr
δ(1)r

n

∑
b=1
b≠q

kn+1 ⋅ kb
σqb

⎞
⎟
⎠

+
1

2

n−1

∑
q=2
q≠k

(kq ⋅ kn+1)
⎛
⎜
⎝

n

∑
b=1
b≠q

εn+1 ⋅ kc
σq,c

⎞
⎟
⎠

2

δ(2)q +
1

2

n

∑
q=1

(εn+1 ⋅ kq)
2

kn+1 ⋅ kq

n−1

∑
r=2
r≠k,q

(
kr ⋅ kn+1

σq,r
)

2

δ(2)r

−
n−1

∑
q=2
q≠k

(εn+1 ⋅ kq)
⎛
⎜
⎝
(kq ⋅ kn+1)

n

∑
b=1
b≠q

εn+1 ⋅ kb
(σq,b)2

δ(2)q +
n

∑
b=1
b≠q

εn+1 ⋅ kb
σq,b

n

∑
c=1
c≠q

kn+1 ⋅ kc
σq,c

δ(2)q

⎞
⎟
⎠

+
1

2

n−1

∑
q=2
q≠k

(εn+1 ⋅ kq)
2
⎛
⎜
⎜
⎝

1

kn+1 ⋅ kq

⎛
⎜
⎝

n

∑
b=1
b≠q

kn+1 ⋅ kb
σq,b

⎞
⎟
⎠

2

δ(2)q +
n

∑
b=1
b≠q

kn+1 ⋅ kb
(σq,b)2

δ(2)q

⎞
⎟
⎟
⎠

.

2.5 Residues of δ1det1

The following are all residues obtained from δ1det1 in (2.2.7) by integrating out the σn+1 dependance.

Multiplicative spectator terms and integrals which are trivially the same in the lower point construc-

tion are suppressed. Additionally, the product of scattering equation delta functions is suppressed

8In this particular case the determinant det(Ψ′) is also suppressed, since it is also a multiplicative spectator term
in δ2det0.
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and the derivative of delta function is abbreviated as (2.4.1). With this the residues are:

− 2
n−1

∑
q=2
q≠k

(εn+1 ⋅ kq)δ
(1)
q

n

∑
i=1

i≠2,3,q

kn+1 ⋅ ki
σqi

n

∑
j=1

j≠2,3,q

(−1)i+j
εn+1 ⋅ kj

σqj
det (Ψ′i

j )

− 2
n−1

∑
q=4
q≠k

(kn+1 ⋅ kq)δ
(1)
q

n

∑
c=1
c≠q

εn+1 ⋅ kc
σqc

n

∑
j=1

j≠2,3,q

(−1)q+j
εn+1 ⋅ kj

σqj
det (Ψ′q

j )

− 2
n−1

∑
q=4
q≠k

(εn+1 ⋅ kq)δ
(1)
q

n

∑
c=1
c≠q

εn+1 ⋅ kc
σqc

n

∑
i=1

i≠2,3,q

(−1)i+q
kn+1 ⋅ ki
σqi

det (Ψ′i
q )

+ 2
n−1

∑
q=4
q≠k

(εn+1 ⋅ kq)δ
(1)
q

n

∑
b=1
b≠q

kn+1 ⋅ kb
σqb

n

∑
j=1

j≠2,3,q

(−1)q+j
εn+1 ⋅ kj

σqj
det (Ψ′q

j )

+ 2
n−1

∑
q=4
q≠k

(εn+1 ⋅ kq)
2

kn+1 ⋅ kq
δ(1)q

n

∑
b=1
b≠q

kn+1 ⋅ kb
σqb

n

∑
i=1

i≠2,3,q

(−1)i+q
kn+1 ⋅ ki
σqi

det (Ψ′i
q )

− 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ kq)
n−1

∑
r=2
r≠k,q

kn+1 ⋅ kr
σqr

δ(1)r

n

∑
j=1

j≠2,3,q

(−1)q+j
εn+1 ⋅ kj

σqj
det (Ψ′q

j )

− 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ kq)
2

(kn+1 ⋅ kq)

n−1

∑
r=2
r≠k,q

kn+1 ⋅ kr
σqr

δ(1)r

n

∑
i=1

i≠2,3,q

(−1)i+q
kn+1 ⋅ ki
σqi

det (Ψ′i
q )

+ 2
n−1

∑
q=4
q≠k

(εn+1 ⋅ kq)(kn+1 ⋅ kq)δ
(1)
q

n

∑
j=1

j≠2,3,q

(−1)q+j
εn+1 ⋅ kj

(σqj)2
det (Ψ′q

j )

+ 2
n−1

∑
q=4
q≠k

(εn+1 ⋅ k)
2δ(1)q

n

∑
i=1

i≠2,3,q

(−1)i+q
kn+1 ⋅ ki
(σqi)2

det (Ψ′i
q )

+ 2
n−1

∑
q=2
q≠k

(εn+1 ⋅ kq)δ
(1)
q

n

∑
i=1

i≠2,3,q

kn+1 ⋅ ki
σqi

n

∑
j=1
j≠q

(−1)i+j+n+1 εn+1 ⋅ εj

σqj
det (Ψ′i

j+n+1)

+ 2
n−1

∑
q=4
q≠k

kn+1 ⋅ kqδ
(1)
q

n

∑
c=1
c≠q

εn+1 ⋅ kc
σqc

n

∑
j=1
j≠q

(−1)q+j+n+1 εn+1 ⋅ εj

σqj
det (Ψ′q

j+n+1)

+ 2
n−1

∑
q=2
q≠k

(εn+1 ⋅ εq)δ
(1)
q

n

∑
c=1
c≠q

εn+1 ⋅ kc
σqc

n

∑
i=1

i≠2,3,q

(−1)i+q+n+1 kn+1 ⋅ ki
σqi

det (Ψ′i
q+n+1)

− 2
n−1

∑
q=4
q≠k

(εn+1 ⋅ kq)δ
(1)
q

n

∑
b=1
b≠q

kn+1 ⋅ kb
σqb

n

∑
j=1
j≠q

(−1)q+j+n+1 εn+1 ⋅ εj

σqj
det (Ψ′q

j+n+1)

− 2
n−1

∑
q=2
q≠k

(εn+1 ⋅ kq)(εn+1 ⋅ εq)

(kn+1 ⋅ kq)
δ(1)q

n

∑
b=1
b≠q

kn+1 ⋅ kb
σqb

n

∑
i=1

i≠2,3,q

(−1)i+q+n+1 kn+1 ⋅ ki
σqi

det (Ψ′i
q+n+1)
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+ 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ kq)
n−1

∑
r=2
r≠k,q

kn+1 ⋅ kr
σqr

δ(1)r

n

∑
j=1
j≠q

(−1)q+j+n+1 εn+1 ⋅ εj

σqj
det (Ψ′q

j+n+1)

+ 2
n

∑
q=1

(εn+1 ⋅ kq)(εn+1 ⋅ εq)

(kn+1 ⋅ kq)

n−1

∑
r=2
r≠k,q

kn+1 ⋅ kr
σqr

δ(1)r

n

∑
i=1

i≠2,3,q

(−1)i+q+n+1 kn+1 ⋅ ki
σqi

det (Ψ′i
q+n+1)

− 2
n−1

∑
q=4
q≠k

(εn+1 ⋅ kq)(kn+1 ⋅ kq)δ
(1)
q

n

∑
j=1
j≠q

(−1)q+j+n+1 εn+1 ⋅ εj

(σqj)2
det (Ψ′q

j+n+1)

− 2
n−1

∑
q=2
q≠k

(εn+1 ⋅ kq)(εn+1 ⋅ εq)δ
(1)
q

n

∑
i=1

i≠2,3,q

(−1)i+q+n+1 kn+1 ⋅ ki
(σqi)2

det (Ψ′i
q+n+1)

− 2
n−1

∑
q=4
q≠k

(εn+1 ⋅ εq)(kn+1 ⋅ kq)δ
(1)
q

n

∑
c=1
c≠q

(−1)n+1 εn+1 ⋅ kc
(σqc)2

det (Ψ′q
q+n+1)

− 2
n−1

∑
q=4
q≠k

(εn+1 ⋅ εq)δ
(1)
q

n

∑
c=1
c≠q

εn+1 ⋅ kc
σqc

n

∑
b=1
b≠q

(−1)n+1 kn+1 ⋅ kb
σqb

det (Ψ′q
q+n+1)

+ 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ εq)
n

∑
c=1
c≠q

εn+1 ⋅ kc
σqc

n−1

∑
r=2
r≠k,q

(−1)n+1 kn+1 ⋅ kr
σqr

δ(1)r det (Ψ′q
q+n+1)

+ 2
n−1

∑
q=4
q≠k

(εn+1 ⋅ kq)(εn+1 ⋅ εq)

(kn+1 ⋅ kq)
δ(1)q

⎛
⎜
⎝

n

∑
b=1
b≠q

kn+1 ⋅ kb
σqb

⎞
⎟
⎠

2

(−1)n+1 det (Ψ′q
q+n+1)

+ 2
n−1

∑
q=4
q≠k

(εn+1 ⋅ kq)(εn+1 ⋅ εq)δ
(1)
q

n

∑
b=1
b≠q

(−1)n+1 kn+1 ⋅ kb
(σqb)2

det (Ψ′q
q+n+1)

− 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ kq)(εn+1 ⋅ εq)

(kn+1 ⋅ kq)

n

∑
b=1
b≠q

kn+1 ⋅ kb
σqb

n−1

∑
r=2
r≠k,q

(−1)n+1 kn+1 ⋅ kr
σqr

δ(1)r det (Ψ′q
q+n+1)

− 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ kq)(εn+1 ⋅ εq)
n−1

∑
r=2
r≠k,q

(−1)n+1 kn+1 ⋅ kr
(σqr)2

δ(1)r det (Ψ′q
q+n+1)

2.6 Residues of δ0det2

The following are all residues obtained from δ0det2 in (2.2.7) by integrating out the σn+1 dependance.

Multiplicative spectator terms and integrals which are trivially the same in the lower point construc-

tion are suppressed. Additionally, the product of scattering equation delta functions is suppressed.
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With this the residues are:

n

∑
q=1
q≠2,3

(kn+1 ⋅ kq)
n

∑
u=1

u≠2,3,q

n

∑
j=1

j≠2,3,q

(−1)u+j+θ(u,q)+θ(j,q)
εn+1 ⋅ ku
σqu

εn+1 ⋅ kj

σqj
det (Ψ′q,u

q,j )

+ 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ kq)
n

∑
j=1

j≠2,3,q

n

∑
u=1

u≠2,3,q

(−1)j+u+θ(u,q)+θ(q,j)
kn+1 ⋅ kj

σqj

εn+1 ⋅ ku
σqu

det (Ψ′q,u
j,q )

+
n

∑
q=1
q≠2,3

(εn+1 ⋅ εq)
2

(kn+1 ⋅ kq)

n

∑
i=1

i≠2,3,q

n

∑
j=1

j≠2,3,q

(−1)i+j+θ(q,i)+θ(q,j)
kn+1 ⋅ ki
σqi

kn+1 ⋅ kj

σqj
det (Ψ′i,q

j,q )

− 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ εq)
n

∑
j=1

j≠2,3,q

n

∑
u=1

u≠2,3,q

(−1)j+u+n+1+θ(u,q)+θ(q+n+1,j) kn+1 ⋅ kj

σqj

εn+1 ⋅ ku
σqu

det (Ψ′q,u
j,q+n+1)

− 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ εq)
n

∑
i=1

i≠2,3,q

n

∑
u=1

u≠2,3,q,i

(−1)i+u+n+1+θ(u,i)+θ(q+n+1,q) kn+1 ⋅ ki
σqi

εn+1 ⋅ ku
σqu

det (Ψ′i,u
q,q+n+1)

+ 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ εq)
n

∑
b=1
b≠q

kn+1 ⋅ kb
σqb

n

∑
u=1

u≠2,3,q

(−1)q+u+n+1+θ(u,q)+θ(q+n+1,q) εn+1 ⋅ ku
σqu

det (Ψ′q,u
q,q+n+1)

− 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ kq)(εn+1 ⋅ εq)

(kn+1 ⋅ kq)

n

∑
i=1

i≠2,3,q

n

∑
j=1

j≠2,3,q

(−1)i+j+n+1+θ(q,i)+θ(q+n+1,j) kn+1 ⋅ ki
σqi

kn+1 ⋅ kj

σqj
det (Ψ′i,q

j,q+n+1)

− 2
n

∑
q=1
q≠2,3

(kn+1 ⋅ kq)
n

∑
u=1

u≠2,3,q

n

∑
j=1
j≠q

(−1)u+j+n+1+θ(u,q)+θ(j+n+1,q) εn+1 ⋅ ku
σqu

εn+1 ⋅ εj

σqj
det (Ψ′q,u

q,j+n+1)

− 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ kq)
n

∑
i=1

i≠2,3,q

n

∑
j=1
j≠q

(−1)i+j+n+1+θ(q,i)+θ(j+n+1,q) kn+1 ⋅ ki
σqi

εn+1 ⋅ εj

σqj
det (Ψ′i,q

q,j+n+1)

+ 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ kq)(εn+1 ⋅ εq)

(kn+1 ⋅ kq)

n

∑
b=1
b≠q

kn+1 ⋅ kb
σqb

n

∑
i=1

i≠2,3,q

(−1)i+q+n+1+θ(q,i)+θ(q+n+1,q) kn+1 ⋅ ki
σqi

det (Ψ′i,q
q,q+n+1)

+ 2
n

∑
q=1
q≠2,3

(kn+1 ⋅ kq)(εn+1 ⋅ εq)
n

∑
u=1

u≠2,3,q

(−1)q+u+n+1+θ(u,q)+θ(q+n+1,q) εn+1 ⋅ ku
(σqu)2

det (Ψ′q,u
q,q+n+1)

+ 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ εq)(εn+1 ⋅ kq)
n

∑
i=1

i≠2,3,q

(−1)i+q+n+1+θ(q,i)+θ(q+n+1,q) kn+1 ⋅ ki
σqi

det (Ψ′i,q
q,q+n+1)

+
n

∑
q=1
q≠2,3

(εn+1 ⋅ εq)
2
n

∑
b=1
b≠q

kn+1 ⋅ kb
(σqb)2

(−1)θ(q+n+1,q)+θ(q+n+1,q) det (Ψ′q,q+n+1
q,q+n+1 )

+
n

∑
q=1
q≠2,3

(εn+1 ⋅ εq)
2

(kn+1 ⋅ kq)

⎛
⎜
⎝

n

∑
b=1
b≠q

kn+1 ⋅ kb
σqb

⎞
⎟
⎠

2

(−1)θ(q+n+1,q)+θ(q+n+1,q) det (Ψ′q,q+n+1
q,q+n+1 )
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− 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ εq)
2

(kn+1 ⋅ kq)

n

∑
b=1
b≠q

n

∑
i=1

i≠2,3,q

(−1)i+q+θ(q+n+1,i)+θ(q+n+1,q) kn+1 ⋅ ki
σqi

det (Ψ′i,q+n+1
q,q+n+1 )

− 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ εq)
n

∑
b=1
b≠q

kn+1 ⋅ kb
σqb

n

∑
u=1
u≠q

(−1)u+q+θ(u+n+1,q)+θ(q+n+1,q) εn+1 ⋅ εu
σqu

det (Ψ′q,u+n+1
q,q+n+1 )

− 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ εq)
2

n

∑
i=1

i≠2,3,q

(−1)i+q+θ(q+n+1,i)+θ(q+n+1,q) kn+1 ⋅ ki
(σqi)2

det (Ψ′i,q+n+1
q,q+n+1 )

− 2
n

∑
q=1
q≠2,3

(kn+1 ⋅ kq)(εn+1 ⋅ εq)
n

∑
u=1
u≠q

(−1)u+q+θ(u+n+1,q)+θ(q+n+1,q) εn+1 ⋅ εu
(σqu)2

det (Ψ′q,u+n+1
q,q+n+1 )

+ 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ εq)
n

∑
i=1

i≠2,3,q

n

∑
u=1
u≠q

(−1)i+u+θ(u+n+1,i)+θ(q+n+1,q) kn+1 ⋅ ki
σqi

εn+1 ⋅ εu
σqu

det (Ψ′q,q+n+1
i,u+n+1 )

+ 2
n

∑
q=1
q≠2,3

(εn+1 ⋅ εq)
n

∑
i=1

i≠2,3,q

n

∑
u=1
u≠q

(−1)i+u+θ(u+n+1,i)+θ(q+n+1,q) kn+1 ⋅ ki
σqi

εn+1 ⋅ εu
σqu

det (Ψ′i,q+n+1
q,u+n+1)

+
n

∑
q=1
q≠2,3

(kn+1 ⋅ kq)
n

∑
u=1
u≠q

n

∑
j=1
j≠q

(−1)u+j+θ(u+n+1,q)+θ(j+n+1,q) εn+1 ⋅ εu
σqu

εn+1 ⋅ εj

σqj
det (Ψ′q,u+n+1

q,j+n+1 )

+
n

∑
q=1

(εn+1 ⋅ εq)
2

(kn+1 ⋅ kq)

n

∑
i=1

i≠2,3,q

n

∑
j=1

j≠2,3,q

(−1)i+j+θ(q+n+1,i)+θ(q+n+1,j) kn+1 ⋅ ki
σqi

kn+1 ⋅ kj

σqj
det (Ψ′i,q+n+1

j,q+n+1 )

Note

C. Kalousios and F. Rojas published similar results in [52].
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Chapter 3

Double Soft Theorems in Gauge and

String Theories

This chapter is based on the publication [53].

Recently there has been a resurrection of interest in studying various low energy limits of scat-

tering amplitudes. Of particular interest are situations which exhibit universal behavior; that

is, when the limiting behavior of an amplitude factors into a product of a universal �soft fac-

tor� times a lower-point amplitude independent of the soft particles. Such cases are called �soft

theorems�, the most famous of which may be Weinberg's classic soft (photon, gluon, or gravi-

ton) theorems [22]. Other theorems include [20, 23, 26, 54, 24, 25] as well as, much more re-

cently, the subleading and sub-subleading graviton theorems of Cachazo and Strominger [30] (see

[40, 41, 38, 44, 50, 39, 46, 55, 56, 57, 58, 59, 57, 60, 61]for further developments and applications).

Strominger and collaborators [62, 63, 64, 65, 48, 47, 29, 28, 27] have argued that all of the known

soft and subleading soft theorems may be understood as consequences of large gauge transforma-

tions. That is, transformations which fall o� su�ciently rapidly at in�nity such that they must be

considered consistent with the asymptotic boundary conditions de�ning the theory, while su�ciently

slowly that they act nontrivially on asymptotic scattering states. In the case of gravity, the rele-

vant �gauge transformations� are of course di�eomorphisms, and the relevant asymptotic symmetry

group (in four-dimensional Minkoswki space) is the Bondi, van der Burg, Metzner, Sachs group

[31, 32, 33, 66, 34]. It has been shown using the CHY scattering equations [5] that the subleading

and sub-subleading graviton soft theorems hold for tree-level graviton amplitudes in any number of

space-time dimensions, suggesting that an analog of the BMS symmetry should be relevant more
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generally [37, 36, 16, 52, 62, 63, 64, 65, 48, 47, 29, 28, 27]. Perturbative theories at null in�nity

realizing these symmetries have been proposed in [67, 49, 68, 69]. The issues regarding possible loop

corrections to the subleading soft theorems were studied in [42, 43, 44, 51].

Double-soft limits (where two particles are taken to have very low energy) have also received a

lot of attention in the literature, both in the earlier works [70, 71] and more recently. For example,

Arkani-Hamed et. al. [36] have shown that the double soft limit of scalars in N = 8 supergravity

exhibit the expected E7(7) symmetry of the scalar moduli space, in a manner analogous to the

classic soft-pion theorem of [72, 71]. This result was recently extended to the four-dimensional

supergravity theories with N < 8 supersymmetry, and the N = 16 supergravity in three dimensions

in [73]. Furthermore, supergravity amplitudes in both four and three dimensions with two soft

fermions were studied in [74], and new soft theorems were proposed. New double-soft leading and

subleading theorems for scalars (and leading for photons) were also studied in various theories such

as DBI, Einstein-Maxwell-scalar, NLSM, and Yang-Mills-scalar in [75]. Kac-Moody structure has

been found for the four dimensional Yang-Mills at null in�nity [62], where double soft limits play

another important role.

In this chapter we derive several new soft theorems for tree-level scattering amplitudes in gauge

and string theories with more than one soft particle. We derive the universal behavior of amplitudes

with two or three soft gluons. It is known that when the soft gluons have identical helicities, the

result can be obtained simply by setting the gluons to be soft one by one, thus we focus on the

non-trivial cases when the soft gluons have di�erent helicities. Indeed we �nd that for these cases

the soft factors are a product of the individual soft-gluon factors with certain non-trivial corrections.

We �rst derive theorems from the BCFW formula in four dimensions [4, 3], and further extend our

results with double-soft gluons for gauge theories in any number of dimensions by using CHY formula

[5]. We check that our results are consistent with the fact that if the soft limit is taken in order

then the soft factors reduce to a product of the single-soft factors given by Weinberg. We also note

that, in contrast to the gluon case, amplitudes with multiple soft gravitons can always be obtained

by simply taking the gravitons to be soft one by one.

We then proceed to study amplitudes in N = 4 and pure N = 2 Super Yang-Mills theory (SYM)

with two soft scalars or two soft fermions. We �nd that the double soft behavior is governed by

R-symmetry generators acting on a lower-point amplitude, resembling the results of supergravity

theories found in [36, 73, 74], although the vacuum structure of SYM is quite di�erent from that of

supergravity theories. Finally, we consider double-soft scalars in the open superstring theory. Unlike

the double-soft-scalar theorem in N = 8 supergravity, which would receive α′ corrections if one tried
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to extend it to closed superstring theory, we �nd that open superstring amplitudes satisfy exactly the

same double-soft-scalar theorem of SYM at α′ = 0. Given the similarity of the double-soft theorems

of SYM and those of supergravity theories, it would be very interesting to understand if any of these

theorems could have an interpretation as hidden symmetries.

This chapter is organized as follows: In section 3.1 we derive the double-soft-gluon theorem

for tree-level amplitudes in gauge theories using the BCFW recursion relations formula (3.1.10),

which may be recast into a di�erent form (3.1.12), and we further extend the results to arbitrary

dimensions resulting in formula (3.1.28). Then, in section 3.2 amplitudes with three soft gluons

are considered. In the following section 3.3 we comment on multi-soft gravitons. Subsequently, in

section 3.4, we explore the universal behavior of amplitudes with two soft scalars or two soft fermions

in supersymmetric gauge theories, including N = 4 SYM as well as pure N = 2 SYM, with main

results given by (3.4.13) and (3.4.28). Finally, in section 3.5, we prove that the newly discovered

double-soft-scalar theorem in SYM can be extended to the open superstring theory without any α′

corrections.

Note added: After �nishing this work, we became aware of a related work by Klose, McLoughlin,

Nandan, Plefka and Travaglini, which has some overlap with this chapter [76].

3.1 Double-soft gluons

3.1.1 Double-soft gluons from BCFW recursions

We start by considering color-stripped amplitudes in gauge theories with two adjacent gluons taken

to be soft. It is straightforward to see that if the two gluons have the same helicity, then the two

gluons may be taken soft one at a time. Moreover it is evident from

lim
p2→0

lim
p1→0

A(1+,2+,3, . . . , n) →
⟨n2⟩

⟨n1⟩⟨12⟩

⟨n3⟩

⟨n2⟩⟨23⟩
A(3, . . . , n)

lim
p1→0

lim
p2→0

A(1+,2+,3, . . . , n) →
⟨13⟩

⟨12⟩⟨23⟩

⟨n3⟩

⟨n1⟩⟨13⟩
A(3, . . . , n) (3.1.1)

that the result is independent of the order in which the two gluons are taken soft.

A similar simple calculation shows that if the two gluons have di�erent helicities, then the result

cannot be given by a product of two single soft factors obtained by taking the gluons to be soft one

by one. Therefore this is the non-trivial case we are interested in, namely we would like to study
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the amplitude A(1+,2−,3, . . . , n) in the double-soft limit

p1,2 → τp1,2 with τ → 0. (3.1.2)

We will use the standard spinor-helicity formalism for the four-dimensional massless particles through-

out this chapter:

pα,α̇ = λαλ̃α̇, ⟨ij⟩ = εαβλ
α
i λ

β
j , [ij] = εα̇β̇λ̃

α̇
i λ̃

β̇
j (3.1.3)

and realize the soft limit by taking

λ1,2 →
√
τλ1,2 and λ̃1,2 →

√
τ λ̃1,2. (3.1.4)

Using the BCFW recursion relations [4, 3], it is straightforward to see that the two dominant

diagrams that contribute in the limit at hand are

n̄1̂+

2−

3

n̄1̂+

2− 3

P̂P̂

(b)(a)

(3.1.5)

with the following BCFW shifts

λ1̂ = λ1 + zλn , λ̃n̄ = λ̃n − zλ̃1 . (3.1.6)

Let us now analyse the two contributions separately. First for diagram (a) we have

A(a) =
[13]4

[12][23][3P̂ ][P̂1]s123

An−2 →
[13]3⟨n3⟩

[12][23]⟨n∣1 + 2∣3]s123
An−2 , (3.1.7)

where we have used the fact that P̂ → p3 in the limit; hence this result is independent of whether

particle 3 has positive or negative helicity (in the above calculation we have chosen it to be positive).

Now, the second diagram (b) gives

A(b) =
[P̂1]3

[12][2P̂ ]s12

An−1(P̂ ,3, . . . , n̄) →
[P̂1]3

[12][2P̂ ]s12

[n3]

[nP̂ ][P̂3]
An−2(3, . . . , n) , (3.1.8)

where in the second expression we have used the fact that pn̄ = pn in the limit, and we also applied
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the single-soft theorem for the soft leg P̂ . After some simpli�cation, we �nd

A(b) →
⟨n2⟩3[n3]

⟨n1⟩⟨12⟩⟨n∣1 + 2∣3]sn12
An−2 . (3.1.9)

Adding the contributions from the two diagrams together, we obtain the �nal result for two soft

gluons having di�erent helicities,

lim
p1∼p2→0

A(1+,2−,3, . . . , n) →
1

⟨n∣1 + 2∣3]
(

[13]3⟨n3⟩

[12][23]s123
+

⟨n2⟩3[n3]

⟨n1⟩⟨12⟩sn12
)An−2 . (3.1.10)

As typical for amplitudes computed from the BCFW recursion relations, the result contains a spuri-

ous pole 1
⟨n∣1+2∣3] . We will show that it indeed cancels out between the two terms at leading order of

the soft limit, as should be the case. Now, if on the other hand we take the soft limit in succession,

namely say take p1 to be soft �rst, then the �rst term in the soft factor is subleading, and the second

term simpli�es to

1

⟨n∣1 + 2∣3]
(

[13]3⟨n3⟩

[12][23]s123
+

⟨n2⟩3[n3]

⟨n1⟩⟨12⟩sn12
) → 0 +

⟨n2⟩

⟨n1⟩⟨12⟩

[n3]

[32][2n]
, (3.1.11)

which is precisely the product of two soft factors of a positive gluon and a negative gluon, with the

positive gluon p1 being taken soft �rst.

Although the above result (3.1.10) is very compact and nicely reduces to a product of two soft

factors, if we take the soft limits in succession, it is speci�c to four dimensions and as a natural

property of using the BCFW recursion it contains a spurious pole. In the next section we will use

the CHY formula for pure Yang-Mills tree level scattering amplitudes [5] to derive a further formula

for the universal double-soft-gluon factor. This result will be valid in any dimension, for any helicity

combination of the soft gluons, and it will be manifestly free of unphysical poles. When the two

soft gluons have opposite helicity, the comparison of the result obtained from the CHY formula and

(3.1.10) will yield agreement and provide us with the intuition to recast the above into the following

equivalent form

lim
p1∼p2→0

A(1+,2−,3, . . . , n) →
⟨n2⟩

⟨n1⟩⟨12⟩

[13]

[12][23]
(1 +

⟨n1⟩[13]⟨32⟩

s123⟨n2⟩
+

[1n]⟨n2⟩[23]

sn12[13]
)An−2 . (3.1.12)

Therefore, we see that the alternating helicity double soft gluon factor is composed of the product

of two single soft gluon factors plus a non-trivial correction.
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3.1.2 Double-soft gluons from CHY

As we mentioned earlier, in this section we will reconsider the double-soft-gluon limit making use of

the CHY formula for tree-level scattering amplitudes in pure Yang-Mills, valid in arbitrary dimen-

sions [5]. The CHY formula for an n-point gluon scattering amplitude is given by

An = ∫

⎛
⎜
⎝

n

∏
c=1

c≠p,q,r

dσc
⎞
⎟
⎠

(σpqσqrσrp)(σijσjkσki)

σ12σ23...σn,1

⎛
⎜
⎝

n

∏
a=1

a≠i,j,k

δ (fa)
⎞
⎟
⎠

2(−1)m+w

σmw
Pf (Ψm,w

m,w) ,

where σij ≡ (σi − σj) and fa = ∑b≠a
ka⋅kb
σab

. Upper and lower indices on the matrix Ψ denote removed

columns and rows respectively. The indices p, q, r, i, j, k,m and w can be �xed arbitrarily without

changing the result. The 2n × 2n dimensional matrix Ψ is given by

Ψ = (
A

C

−CT

B
) ,

where the n × n dimensional sub-matrices are

Aab = {

ka⋅kb
σab

0

, a ≠ b

, a = b
, Bab = {

εa⋅εb
σab

0

, a ≠ b

, a = b
, Cab =

⎧⎪⎪⎪
⎨
⎪⎪⎪⎩

εa⋅kb
σab

−∑
n
c=1
c≠a

εa⋅kc
σac

, a ≠ b

, a = b
.

Here kµa are external leg momenta, and the εµa are corresponding polarization vectors. The product of

delta functions enforces the scattering equations and saturates all integrals. With this the integration

reduces to a sum over all solutions to the scattering equations.

We want to make the external gluon momenta kµ1 and kν2 soft by substituting kµ1 → τkµ1 and

kν2 → τkν2 and considering τ → 0. It is essential to send both momenta to zero simultaneously in

order to capture the double soft factor structure. We choose not to erase indices (1) and (2). With

this we have to isolate the extra terms in An as compared to An−2 and integrate out σ1 and σ2.

While doing so we will only keep the leading contribution in the τ → 0 limit, to obtain the leading

double soft gluon factor.

First we notice that at leading order in τ the entire σ1 and σ2 dependence in An apart from the

pfa�an Pf (Ψm,w
m,w) is contained in

∫ dσ1dσ2
σn,3

σn,1σ1,2σ2,3
δ(f1)δ(f2). (3.1.13)

Another σn,3 term in the denominator is suppressed, which will help restore the proper Parke-

Taylor factor for the (n − 2)-point amplitude case. As in [75], we can make the convenient variable
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transformation

σ1 = ρ − ξ/2, σ2 = ρ + ξ/2,

dσ1dσ2δ(f1)δ(f2) = −2dρdξδ(f1 + f2)δ(f1 − f2), (3.1.14)

and immediately integrate out δ(f1 −f2) using the variable ξ. This will introduce a summation over

all solutions ξ for the equation f1 − f2 = 0, and an overall factor of 1/F (ξ), where

F (ξ) =
d

dξ
(f1 − f2) (3.1.15)

=
1

2

1

k1 ⋅ k2

⎛

⎝

n

∑
b=3

⎛

⎝

k1 ⋅ kb

ρ − ξ
2
− σb

−
k2 ⋅ kb

ρ + ξ
2
− σb

⎞

⎠

⎞

⎠

2

+
1

2

n

∑
c=3

⎛
⎜
⎝

τk1 ⋅ kc

(ρ − ξ
2
− σc)

2
+

τk2 ⋅ kc

(ρ + ξ
2
− σc)

2

⎞
⎟
⎠
.

Here we used that on the support of f1 − f2 = 0 we can always substitute

ξ = τ
2k1 ⋅ k2

∑
n
b=3 (

k1⋅kb
ρ− ξ2−σb

−
k2⋅kb
ρ+ ξ2−σb

)

. (3.1.16)

Making use of this, (3.1.13) becomes

∑
solutions ξ

∫ dρ
δ(f1 + f2)

τ(k1 ⋅ k2)F (ξ)

n

∑
b=3

⎛

⎝

k1 ⋅ kb

ρ − ξ
2
− σb

−
k2 ⋅ kb

ρ + ξ
2
− σb

⎞

⎠

σn,3

σn,1σ2,3
. (3.1.17)

Before we rewrite ∫ dρδ(f1 + f2) as a contour integral over poles and deform the contour as usual,

we should also extract the extra terms depending on ρ and ξ from the pfa�an factor Pf (Ψm,w
m,w) in

order to reduce it to the (n−2)-point amplitude case. To do that, we will use the recursive de�nition

of a pfa�an for an anti-symmetric 2n × 2n matrix A:

Pf (A) =
2n

∑
j=1
j≠i

(−1)i+j+1+θ(i−j)aijPf (Aijij) , (3.1.18)

where aij is an element of matrix A, θ(x) is the Heaviside step function, and index i can be chosen

arbitrarily. If rows and/or columns are missing from matrix A before the expansion is applied, the

respective indices have to be skipped in the summation. Since we are ultimately interested in the

leading double soft gluon factor, for convenience we will only keep the leading in τ terms in the

expansion of Pf (Ψm,w
m,w). In order to isolate the leading terms, we recall that the summation over the

solutions ξ in (3.1.17) features two types of solutions: non-degenerate solutions for which ξ = O(1),
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and a unique degenerate solution for which ξ = O(τ) [75].

Let us �rst consider the non-degenerate (nd) solutions. The (nd) case is non-trivial, since equation

(3.1.16) seemingly has to be solved in ξ for the full non-linear constraint imposed by the scattering

equations involved, yet polynomial roots can be obtained in closed form for low degree polynomials

only. It is possible to derive non-degenerate solution contributions in this case employing a somewhat

cumbersome procedure. However, this will not be required in the following and will be addressed

in more generality in a future work. Instead, investigation of the soft factor integrand reveals that

the necessity of non-degenerate solutions computation can be avoided here at the expense of �xing

a particular polarization gauge for the two gluons going soft.1 This argument works as follows.

In the (nd) case it is straightforward to see that the only leading term in the pfa�an expansion is

given by

Pf (Ψm,w
m,w)(nd) = −C1,1C2,2Pf (Ψm,w,1,2,n+1,n+2

m,w,1,2,n+1,n+2) +O(τ)

= −
n

∑
b=3

ε1 ⋅ kb

ρ − ξ
2
− σb

n

∑
c=3

ε2 ⋅ kc

ρ + ξ
2
− σc

Pf (Ψ′m,w
m,w ) +O(τ), (3.1.19)

where for convenience we de�ne the abbreviation

Pf (Ψ′m,w
m,w ) ≡ Pf (Ψm,w,1,2,n+1,n+2

m,w,1,2,n+1,n+2) . (3.1.20)

Combining (3.1.17) with (3.1.19), writing ∫ dρδ(f1 + f2) as a contour integral

∫ dρδ(f1 + f2) → ∮
dρ

2πi

1

f1 + f2
, (3.1.21)

and deforming the contour to wrap around all other poles in ρ instead, immediately reveals that

there is no pole at in�nity and the only residues come from poles at (ρ + ξ/2 − σ3) → 0 and/or

(ρ− ξ/2−σn) → 0 due to the term σn,3/(σn,1σ2,3) remaining from the Parke-Taylor factor. Keeping

(3.1.19) in mind, this tells us that for any of the non-degenerate solutions ξ(nd), at leading order in τ

these residues will always be proportional to ε2 ⋅ k3 and/or ε1 ⋅ kn. Therefore, we select the following

polarization gauge for the external legs going soft

ε2 ⋅ k3 = 0 , ε1 ⋅ kn = 0. (3.1.22)

In this gauge all the non-degenerate solution contributions to the leading double soft gluon factor

1The lost gauge invariance in the �nal result is recovered once we convert it to spinor helicity formalism.
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vanish, such that we can concentrate on the degenerate solution only.

Now we compute the degenerate (d) solution contribution. Using (3.1.16) we can straightfor-

wardly expand the degenerate solution ξ(d) to leading order

ξ(d) = τ
2k1 ⋅ k2

∑
n
b=3

(k1−k2)⋅kb
ρ−σb

+O(τ2
). (3.1.23)

All the terms appearing in (3.1.17) are expanded to leading order in τ analogously. The expansion

of the pfa�an features three leading terms in this case:

Pf (Ψm,w
m,w)(d) = (B1,2A1,2 +C1,2C2,1 −C1,1C2,2)Pf (Ψ′m,w

m,w ) +O(τ)

=
1

4
[(
ε1 ⋅ ε2
k1 ⋅ k2

−
(ε2 ⋅ k1)(ε1 ⋅ k2)

(k1 ⋅ k2)
2

)S2
+ (3.1.24)

+(
ε1 ⋅ k2

k1 ⋅ k2
S − 2

n

∑
i=3

ε1 ⋅ ki
ρ − σi

)
⎛

⎝

ε2 ⋅ k1

k1 ⋅ k2
S + 2

n

∑
j=3

ε2 ⋅ kj

ρ − σj

⎞

⎠

⎤
⎥
⎥
⎥
⎥
⎦

Pf (Ψ′m,w
m,w )+

+O(τ),

where S = ∑
n
b=3

(k1−k2)⋅kb
ρ−σb , and we used the abbreviation (3.1.20). Again, we combine (3.1.17) with

(3.1.24), write ∫ dρδ(f1 + f2) as a contour integral (3.1.21) and deform the contour to wrap around

all other poles in ρ instead. Analogously to the non-degenerate case we see that there is no pole

at in�nity, and the only two contributing residues come from poles at ρ − σ3 → 0 and ρ − σn → 0.

Dropping Pf (Ψ′m,w
m,w ), which is part of the (n − 2)-point amplitude and not the double soft gluon

factor, both these residues are of the following type at leading order in τ :

Rqi,i+1 =
1

2

(ki − ki+1) ⋅ kq

(ki + ki+1) ⋅ kq
[
εi ⋅ εi+1

ki ⋅ ki+1
−

(εi+1 ⋅ ki)(εi ⋅ ki+1)

(ki ⋅ ki+1)
2

+ (3.1.25)

+(
εi ⋅ ki+1

ki ⋅ ki+1
−

2εi ⋅ kq

(ki − ki+1) ⋅ kq
)(

εi+1 ⋅ ki
ki ⋅ ki+1

+
2εi+1 ⋅ kq

(ki − ki+1) ⋅ kq
)] .

With this we conclude that the leading double soft gluon factor for legs i and i+1 going soft is given

by

S
(0)
i,i+1 =(R

i+2
i,i+1 −R

i−1
i,i+1) (3.1.26)

=
1

(ki + ki+1) ⋅ ki+2
(

1

2

εi ⋅ εi+1

ki ⋅ ki+1
(ki − ki+1) ⋅ ki+2 −

εi+1 ⋅ ki
ki ⋅ ki+1

εi ⋅ ki+2)

−
1

(ki + ki+1) ⋅ ki−1
(

1

2

εi ⋅ εi+1

ki ⋅ ki+1
(ki − ki+1) ⋅ ki−1 +

εi ⋅ ki+1

ki ⋅ ki+1
εi+1 ⋅ ki−1) ,
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valid in the polarization gauge

εi ⋅ ki−1 = 0 , εi+1 ⋅ ki+2 = 0. (3.1.27)

Despite its �rst glance appearance, the double-soft factor (3.1.26) is not manifestly anti-symmetric

under i + 2 ↔ i − 1, since this symmetry is broken by the gauge choice (3.1.27). This is consistent

with the results of the previous section.

Therefore, the particular computation above for legs 1 and 2 going soft in an n-point amplitude

gives the following factorization in the double soft gluon limit

lim
p1∼p2→0

An →S
(0)
1,2An−2 (3.1.28)

=[
1

(k1 + k2) ⋅ k3
(

1

2

ε1 ⋅ ε2
k1 ⋅ k2

(k1 − k2) ⋅ k3 −
ε2 ⋅ k1

k1 ⋅ k2
ε1 ⋅ k3)

−
1

(k1 + k2) ⋅ kn
(

1

2

ε1 ⋅ ε2
k1 ⋅ k2

(k1 − k2) ⋅ kn +
ε1 ⋅ k2

k1 ⋅ k2
ε2 ⋅ kn)]An−2,

valid in the gauge (3.1.22). Here we emphasize again that since the above result is obtained from

the CHY formula, it features only physical poles, it holds in arbitrary dimension and for all helicity

combinations of the two soft gluons.

Let us now compare (3.1.28) to the result (3.1.10) obtained from BCFW. Specifying to four di-

mensions and selecting (1+,2−) helicities for the soft gluons, we use the following standard dictionary

to translate R3
1,2 and Rn1,2 into spinor helicity formalism:

ki ⋅ kj =
1

2
⟨ij⟩[ji] , ε+1 ⋅ ki =

[1i]⟨in⟩
√

2⟨n1⟩
, ε−2 ⋅ ki =

⟨2i⟩[i3]
√

2[23]
, ε+1 ⋅ ε

−
2 =

⟨2n⟩[13]

[23]⟨n1⟩
. (3.1.29)

Here we have selected proper reference spinors to account for the gauge (3.1.22).2 Anticipating that

R3
1,2 and R

n
1,2 roughly correspond to the two terms that are summed in (3.1.10), we notice that R3

1,2

already features an s123 ≈ 2k3 ⋅ (k1 + k2) and Rn1,2 an sn12 ≈ 2kn ⋅ (k1 + k2) in the denominator. So

in both cases we introduce an extra factor of ⟨n∣1+ 2∣3] in numerator and denominator, and expand

the numerators. The Schouten identity then yields a slight simpli�cation such that the terms in the

numerators separate into an expected part and a part proportional to s123 or sn12 in the two cases

respectively. Finally, subtracting the resulting Rn1,2 from R3
1,2 displays some cancellation and we are

2Note that the speci�c choice of reference spinors merely facilitates the proper conversion of the result (3.1.28) to
spinor helicity formalism. Once the conversion is done, full gauge invariance is recovered for the �nal result in spinor
helicity language i.e. (3.1.12).
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left with exactly the terms appearing in (3.1.10).3

Similarly, we can show that selecting the soft gluons to be of the same helicity, i.e. (1+,2+), the

double soft gluon factor (3.1.28) reduces to the product of two single soft factors. Here we also use:

ε+2 ⋅ ki =
[2i]⟨i3⟩
√

2⟨32⟩
, ε+1 ⋅ ε

+
2 =

⟨n3⟩[21]

⟨n1⟩⟨32⟩
. (3.1.30)

In this case no strategic term manipulations are needed. R3
1,2 directly reduces to half of the expected

result and Rn1,2 to minus half of it, so that (R3
1,2 −R

n
1,2) properly gives what we expect.

3.2 Triple-soft gluons

With results of the double-soft limit at hand, we can go on to study the universal behavior of

scattering amplitudes with multiple gluons being soft. Here we will take a look at the triple-soft

limit, which is a natural next step beyond the double-soft limit. Again the non-trivial cases occur

when all soft gluons are adjacent. Beside the straightforward case of all soft gluons having the same

helicity, there are two helicity con�gurations of interest: A(1+,2−,3−, . . .) and A(1+,2−,3+, . . .),

where 1,2 and 3 are the soft legs.

Let us begin with the �rst case, A(1+,2−,3−, . . .). It is easy to see that the following BCFW

diagrams are dominant in the soft limit

n̄1̂+

3− 4

2−

n̄1̂+

2− 3−

n̄1̂+

4 5

2−

3−

(a) (b) (c)

(3.2.1)

Since the calculation is similar to that of the double-soft limit, we will be brief here. The contribution

from diagram (a) to the soft factor gives

S
+−−
(a) =

[P̂1]3

[12][2P̂ ]s12

[n̄3]

[n̄P̂ ][P̂3]

[n̄4]

[n̄3][34]
, (3.2.2)

where we have used the fact that P̂ is soft, as well as the result of the double-soft limit with two

3One should keep in mind that in spinor helicity formalism factors of
√

2 from the amplitude are absorbed into the
coupling constant in front. In case of the double soft gluon factor this amounts to an overall extra factor of 2 which
is suppressed in (3.1.10).
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negative-helicity gluons. Specifying P̂ in terms of external momenta, the soft factor simpli�es to

S
+−−
(a) =

⟨n2⟩3[n4]

⟨n1⟩⟨12⟩[34]⟨n∣K12∣3]sn12
, (3.2.3)

where Ki...j = ki + . . . + kj . Similarly, diagram (b) gives

S
+−−
(b) =

[P̂1]3

[12][23][3P̂ ]s123

[n̄4]

[n̄P̂ ][P̂4]
=

[4n]⟨n∣K23∣1]
3

[12][23]⟨n∣K12∣3]⟨n∣K123∣4]s123sn123
. (3.2.4)

Finally, for diagram (c) a couple of remarks are in order. First we note that if gluon 4 has positive

helicity, there are two allowed cases for the helicity of the internal line in the BCFW diagram.

However, it is clear that the one diagram with an NMHV �ve-point amplitude on the left-hand

side is dominant in the soft limit. Second, just as in the case of the double-soft limit, the result is

independent of the helicity of gluon 4. Therefore, we can choose it to be negative and conclude

S
+−−
(c) =

[P̂1]3

[12][23][34][4P̂ ]s1234

=
[14]3⟨n4⟩

[12][23][34]⟨n∣K123∣4]s1234
. (3.2.5)

Summing over the three contributions, we obtain the universal behavior of amplitudes with three

adjacent soft gluons

A(1+,2−,3−,4, . . . , n)∣
p1∼p2∼p3→0

→ (S
+−−
(a) + S

+−−
(b) + S

+−−
(c) )An−3 . (3.2.6)

Now we go on to consider the second case of interest, A(1+,2−,3+, . . .). The result is given by the

same set of BCFW diagrams, but now with the helicity of gluon 3 changed

n̄1̂+

3+ 4

2−

n̄1̂+

2− 3+

n̄1̂+

4 5

2−

3+

(a) (b) (c)

(3.2.7)

From diagram (a) we have

S
+−+
(a) =

[P̂1]3

[12][2P̂ ]s12

1

⟨4∣P̂ + 3∣n̄]

⎛

⎝

⟨P̂4⟩3[n̄4]

⟨P̂3⟩⟨34⟩sP̂34

+
[n̄3]3⟨n4⟩

[n̄P̂ ][P̂3]sn̄P̂3

⎞

⎠
, (3.2.8)

where we have applied the alternating helicity double-soft gluon theorem (3.1.10) to the right sub-

amplitude in the BCFW diagram. After some further simpli�cations taking the soft limit into
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account, we obtain

S
+−+
(a) =

⟨2n⟩3

⟨n1⟩⟨12⟩⟨2∣Kn1Kn123∣4⟩

× (
⟨24⟩3[n4]

⟨23⟩⟨34⟩⟨2∣K34K1234∣n⟩
+

⟨n2⟩⟨n4⟩[n3]3

⟨n∣K12∣3]sn12sn123
) . (3.2.9)

Note that it is not allowed to discard the soft momenta k1, k2 and k3 in ⟨2∣Kn1Kn123∣4⟩ and

⟨2∣K34K1234∣4⟩ to further simplify the above expressions in the soft limit. For the diagram (b)

we �nd

S
+−+
(b) =

[13]4

[12][23][3P̂ ][P̂1]s123

⟨n4⟩

⟨nP̂ ⟩⟨P̂4⟩
=

[13]4⟨n4⟩

[12][23]⟨n∣K12∣3]⟨4∣K23∣1]s123
. (3.2.10)

Finally, diagram (c) gives

S
+−+
(c) =

⟨24⟩4

⟨1̂2⟩⟨23⟩⟨34⟩⟨4P̂ ⟩⟨P̂ 1̂⟩s1234

=
⟨24⟩4[41]3⟨n4⟩

⟨23⟩⟨34⟩⟨4∣K23∣1]⟨n∣K1234K34∣2⟩s234s1234
. (3.2.11)

In conclusion, we obtain the following soft theorem for three adjacent soft gluons with alternating

helicities

A(1+,2−,3+,4, . . . , n)∣
p1∼p2∼p3→0

→ (S
+−+
(a) + S

+−+
(b) + S

+−+
(c) )An−3 . (3.2.12)

Before we close this section, we would like to remark that both soft factors ∑i=(a),(b),(c) S
+−−
i and

∑i=(a),(b),(c) S
+−+
i nicely reduce to a product of a single-soft factor and a double-soft factor if we

take any one of the three soft gluons to be soft �rst. Finally, we note that all the unphysical poles

appear in pairs, and we have checked numerically that they all precisely cancel at leading order in

the soft limit.

3.3 Multi-soft gravitons

In this section we comment that, unlike in the case of two soft gluons, the double-soft-graviton limit is

simply given by the product of two single-soft gravitons, independent of their helicity con�guration.

For instance, let us consider soft gravitons of opposite helicity g++1 and g−−2 . Similar to the case of

44



double-soft gluons from BCFW recursion, one needs to consider the following three diagrams:

n̄1̂+

i 2−

n̄1̂+

2− i

n̄1̂+

i 3

2−

P̂ P̂ P̂

(a) (b) (c)

(3.3.1)

In fact, a simple analysis of three- and four-point amplitudes reveals that only the diagram (a) will

contribute at leading order in the double-soft limit. A simple way to obtain the result for diagram

(a) is to view it as an �inverse-soft" diagram [77, 78], where leg 1+ is considered as being added to

an (n−1)-point amplitude making use of

M (a)
n = ∑

i≠2

S1+(i)Mn−1(i
′, . . . ,2−, . . . , n′). (3.3.2)

Here the soft factor S1+ is de�ned as

S1+(i) =
⟨ni⟩2[i1]

⟨n1⟩2⟨i1⟩
. (3.3.3)

In this diagram the shifted legs are pi′ and pn′ , which are given by

λ̃i′ = λ̃i +
⟨1n⟩

⟨in⟩
λ̃1 , λ̃n′ = λ̃n +

⟨1i⟩

⟨ni⟩
λ̃1 . (3.3.4)

In the soft limit we simply have pi′ → pi and pn′ → pn. Since p2 is soft as well, it follows from the

single-soft graviton theorem that the above expression reduces to

Mn → ∑
i≠2

S1+(i)∑
j≠1

S2−(j)M(3, . . . , n) (3.3.5)

with

S2−(j) =
[xj][yj]⟨j2⟩

[x2][y2][j2]
(3.3.6)

for any choices of x and y. Considering that M
(a)
n is the dominant diagram at leading order, we

have replaced it by the full tree-level amplitude Mn. Finally, we note that the terms S1+(2) and

S2−(1), which are missing in the summation in (3.3.5), are subleading in the limit. Thus the result
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can be alternatively written as

Mn → ∑
i

S1+(i)∑
j≠1

S2−(j)M(3, . . . , n)

∼ ∑
j

S2−(j)∑
i≠2

S1+(i)M(3, . . . , n)

∼ ∑
i, j

S1+(i)S2−(j)M(3, . . . , n) , (3.3.7)

being simply the product of two single-soft factors. As mentioned earlier, this con�rms that the

leading double-soft-graviton limit can be obtained by taking the gravitons to be soft in succession,

in either order, unlike the case of double-soft gluons. Given the result of double-soft gravitons, it is

straightforward to see that it can be extended to the case of multiple soft gravitons, such that the

soft factor of multiple-soft gravitons should be given by the product of multiple single-soft-graviton

factors for any number of soft gravitons.

3.4 Double-soft limits in supersymmetric gauge theories

In this section, we move on to study the universal behavior of scattering amplitudes in supersymmet-

ric gauge theories (in particular N = 4 SYM and pure N = 2 SYM) in the limit with the momenta

of two scalars or two fermions being soft. The double-soft-scalar limit was �rst studied in N = 8

supergravity in [36], where the 70 scalar �elds in the theory parametrize the coset space E7(7)/SU(8).

Thus these scalar �elds behave as �pions". As pointed out in [36], amplitudes in this theory vanish

in the single-soft-scalar limit consistent with the famous �Adler's zero" [72], and behave universally

in the double-soft-scalar limit in a manner analogous to the soft-pion theorem

lim
τ→0

Mn (φII1I2I3(τp1), φJI1I2I3(τp2),3,⋯, n) →
1

2

n

∑
i=3

pi ⋅ (p1 − p2)

pi ⋅ (p1 + p2)
(Ri)

I
JMn−2 , (3.4.1)

where (Ri)
I
J is the generator for SU(8) rotations on particle i

(Ri)
I
J = η

I
i ∂ηJi . (3.4.2)

Recently, this result was extended to more general supersymmetric gravity theories [73], including

4 ≤ N < 8 supergravity theories in four dimensions as well asN = 16 supergravity in three dimensions.

Soft-scalar theorems have been very useful in determining the UV counter terms in supergravity

theories [79, 80, 73]. It is known that for supersymmetric gauge theories (in particular N = 4 SYM),

a generic vacuum has mostly massive particles, and the massless S-matrix only exists at the origin
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of moduli space. Thus one should not expect that the scalars would behave as �pions". Indeed it

is easy to see that the amplitudes in N = 4 SYM do not vanish in the single-soft-scalar limit, in

contrast to supergravity theories. However, as in [74], one can still ask whether the amplitudes in

SYM exhibit some universal behavior in certain soft limits. This is what we will explore in this

section.

3.4.1 Double-soft scalars in N = 4 SYM

The on-shell �elds in N = 4 SYM can be nicely packaged into a super�eld [81],

A(η) = g+ + ηAψA +
1

2!
ηAηBφAB +

1

3!
ηAηBηCψABC + (η1η2η3η4

)g− , (3.4.3)

where g+ is the positive-helicity gluon, ψA is the spin +1/2 gluino, and so on. In this section, we

will consider the limit with two scalars φAB becoming soft. First of all, as we mentioned previously,

it is easy to see that amplitudes in N = 4 SYM behave as O(τ0) in the single-soft-scalar limit.

Let us now consider the double-soft-scalar limit. First we note that when the two soft scalars

are not adjacent, the amplitude is not singular, and thus it cannot behave universally under the soft

limit. So we will only consider the case where the two soft scalars are adjacent, which is singular and

therefore universal. To be precise, we take p1 and p2 to be soft. Furthermore, if two scalars have no

common SU(4) index, they form a singlet and the leading singular result should simply be given by

the single-soft gluon limit. However, as pointed out in [73] for supergravity theories, one can extract

interesting information about this case by introducing suitably anti-symmetrised amplitudes. This

is particularly relevant to pure N = 2 SYM where two scalars can only form a singlet, which will

be discussed in the next section. Here we will focus on the case where two scalars do not form a

singlet, as was considered in [36] for N = 8 supergravity. For this con�guration it is easy to see that

the leading contribution arises when two soft scalars have one and only one common SU(4) index.

In terms of the BCFW representation of the amplitude, there are two leading contributions in the

double-soft limit:

n̄1̂

2

3

n̄1̂

2 3

P̂P̂

(b)(a)

(3.4.4)
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After integrating out ηP̂ , the contribution (a) is given by

A(a) = ∫ d4η1d
4η2η

A
1 η

B
1 η

B
2 η

C
2

⟨1̂P̂ ⟩4δ(4)(η1 +
⟨P̂2⟩
⟨P̂ 1̂⟩η2 +

⟨P̂3⟩
⟨P̂ 1̂⟩η3)

⟨1̂2⟩⟨23⟩⟨3P̂ ⟩⟨P̂ 1̂⟩s123

exp(−
⟨1̂2⟩

⟨1̂P̂ ⟩
η2

∂

∂η3
)

× exp(zP η1
∂

∂ηn
)An−2 (3.4.5)

where the integration over η's selects the soft legs 1 and 2 to be scalars. Note that, as mentioned

above, we are interested in the case where two scalars have one common SU(4) index. We have

applied the super BCFW recursion relations [36, 82], with shifts chosen as

λ1̂ = λ1 − zλn , λ̃n̄ = λ̃n + zλ̃1 , ηn̄ = ηn + zη1 . (3.4.6)

Finally, we have written the shifts in An−2 in an exponentiated form and only kept the leading

terms. There are two possible ways to get a leading contribution above, one is by expanding η2 from

exp (−
⟨1̂2⟩
⟨1̂P̂ ⟩η2

∂
∂η3

), and another one is by expanding η1 from exp (zP η1
∂
∂ηn

). In the �rst case we get

one η2 from the exponent, thus from the fermionic delta-function δ(4) we have one η2, two η1's and

one η3. Thus we obtain,

A(a),1 =
⟨1̂P̂ ⟩4

⟨1̂2⟩⟨23⟩⟨3P̂ ⟩⟨P̂ 1̂⟩s123

⟨1̂2⟩

⟨1̂P̂ ⟩

⟨P̂2⟩

⟨P̂ 1̂⟩

⟨P̂3⟩

⟨P̂ 1̂⟩
ηB3

∂

∂ηD3
An−2 , (3.4.7)

where an extra minus due to the fermionic integral has been included. In the soft limit the above

expression simpli�es to

A(a),1 →
1

2p3 ⋅ (p1 + p2)
ηB3

∂

∂ηD3
An−2 . (3.4.8)

Analogously, we obtain the second contribution, which is given by

A(a),2 =
⟨1̂P̂ ⟩4

⟨1̂2⟩⟨23⟩⟨3P̂ ⟩⟨P̂ 1̂⟩s123

zP (
⟨P̂2⟩

⟨P̂ 1̂⟩
)

2
⟨P̂3⟩

⟨P̂ 1̂⟩
ηB3

∂

∂ηDn
An−2

→
1

⟨n∣1 + 2∣3]
ηB3

∂

∂ηDn
An−2 , (3.4.9)

where we used the on-shell solution zP = − s123
⟨n∣3+2∣1] ∼ −

s123
⟨n3⟩[31] .

Let us now consider the diagram (b), for which a similar consideration leads to

A(b) =
δ(4) ([12]ηP + [2P̂ ]η1 + [P̂1]η2)

[12][2P̂ ][P̂1]s12

exp(zP η1
∂

∂ηn
)An−1(P̂ , . . . , n) . (3.4.10)
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Now, using the fact that P̂ is also soft, one can apply the supersymmetric single-soft theorem to

An−1(P̂ , . . . , n). Thus we have

An−1(P̂ ,3, . . . , n)∣P̂→0
→

[n3]

[P̂3][nP̂ ]
δ(4) (ηP +

[nP̂ ]

[3n]
η3 +

[P̂3]

[3n]
ηn)An−2 . (3.4.11)

Substituting this result into eq. (3.4.10), integrating out ηP , and selecting the scalar components we

�nd

A(b) = −
[2P̂ ][P̂1]2zP

[12][2P̂ ][P̂1]s12

[n3]

[P̂3][nP̂ ]
(
[12][nP̂ ]

[3n]
ηB3 +

[12][P̂3]

[3n]
ηBn )

∂

∂ηDn
An−2

→ −(
1

⟨n∣1 + 2∣3]
ηB3 +

1

2pn ⋅ (p1 + p2)
ηBn )

∂

∂ηDn
An−2 . (3.4.12)

We observe that the unphysical pole cancels out. In particular, the �rst term in A(b) cancels A(a),2,

and we obtain the double soft-scalar theorem in N = 4 SYM

An((φ1)CD, (φ2)
BC , . . .) → (

1

2p3 ⋅ (p1 + p2)
ηB3 ∂ηD3 −

1

2pn ⋅ (p1 + p2)
ηBn ∂ηDn )An−2 , (3.4.13)

where φBC = εABCDφDA. Note the appearance of the R-symmetry generators ηB∂ηD . As mentioned

earlier, although scalars in SYM are not Goldstone bosons, we �nd that our result very much

resembles what has been found in N = 8 supergravity. Furthermore, as we will see, the double-soft-

scalar theorem is exact even when we consider amplitudes in open superstring theory, meaning that

it does not receive any α′ corrections from string theory. Finally, we remark that the subleading

order of this limit will be �nite and thus not universal, since general BCFW diagrams start to

contribute. This is the same for the double-soft limit of scalars in N = 8 supergravity.

3.4.2 Double-soft scalars in pure N = 2 SYM

In this section we consider the double-soft-scalar limit for pure N = 2 SYM. Due to the fact that

it is not a maximally supersymmetric theory, the on-shell �elds in N = 2 SYM are separated into

two distinct mulitplets. These multiplets can be nicely obtained from N = 4 SYM by SUSY trunca-

tion [83],

A
N=2

(η) = AN=4
(η)∣

η3,η4→0
, Ā

N=2
(η) = ∫ dη3dη4

A
N=4

(η) , (3.4.14)

where AN=4(η) is the super�eld in N = 4 SYM that we de�ned in the previous section. Therefore,

we see that the scalar in AN=2(η) corresponds to φ12 in N = 4 SYM, while the scalar in ĀN=2(η)

corresponds to φ34 in N = 4 SYM. Thus they form a singlet.
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Since the scattering amplitudes in pure N = 2 SYM can be obtained from amplitudes in N = 4

SYM via SUSY reduction, we will use the same strategy as in [73]: instead of studying the amplitudes

in N = 2 SYM directly we will study the relevant amplitude in N = 4 SYM �rst, and then reduce it

to N = 2 SYM via the SUSY reduction. Now, in contrast with the case we studied in the previous

section, here we are interested in precisely the amplitudes with the two soft scalars forming a singlet

A((φ1)12, (φ2)34, . . .), and with the following anti-symmetrization as introduced in [73]:

A((φ1)12, (φ2)34, . . .) −A((φ1)34, (φ2)12, . . .) . (3.4.15)

Let us focus on A((φ1)12, (φ2)34, . . .). As before, in the soft limit the dominant contributions are

given by the diagrams shown in Fig.(3.4.4). The diagram (a) is given by a similar expression to that

used above, but now we select di�erent species of scalars

A(a) = ∫ d4η1d
4η2η

1
1η

2
1η

3
2η

4
2

⟨1̂P̂ ⟩4δ(4)(η1 +
⟨P̂2⟩
⟨P̂ 1̂⟩η2 +

⟨P̂3⟩
⟨P̂ 1̂⟩η3)

⟨1̂2⟩⟨23⟩⟨3P̂ ⟩⟨P̂ 1̂⟩s123

exp(−
⟨1̂2⟩

⟨1̂P̂ ⟩
η2

∂

∂η3
)

× exp(zP η1
∂

∂ηn
)An−2(3̂, . . . , n̂) , (3.4.16)

here we keep BCFW shifted legs (shifting the momenta p3 and pn) in An−2, since we select di�erent

scalars, the leading term now comes from taking two η1's as well as two η2's from the fermionic delta-

function, these shifted legs contribute in the subleading orders. However, all these contributions

vanish after the anti-symmetrization (3.4.15). In fact, all the terms with all η1's and η2's from the

fermionic delta-function vanish after the anti-symmetrization. Thus we will focus on terms with

one η1 or η2 from the exponent, and the calculation proceeds as outlined in the previous section.

Therefore, we only quote the results

A(a) =
2

∑
A=1

⎛

⎝

1

2p3 ⋅ (p1 + p2)
ηA3

∂

∂ηA3
+

1

⟨n∣1 + 2∣3]
ηA3

∂

∂ηAn

⎞

⎠
An−2 . (3.4.17)

Similarly from diagram (b), we �nd

A(b) = −
2

∑
A=1

(
1

⟨n∣1 + 2∣3]
ηA3 +

1

2pn ⋅ (p1 + p2)
ηAn )

∂

∂ηAn
An−2 . (3.4.18)

Summing over all contributions, we �nd that after the anti-symmetrization we end up with

AN=4
n ((φ1)12, (φ2)34, . . .) −A

N=4
n ((φ1)34, (φ2)12, . . .)∣p1∼p2→0
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= (S
N=4
12;3 − S

N=4
12;n − S

N=4
34;3 + S

N=4
34;n )An−2 , (3.4.19)

where the double-soft factor SN=4
ij;k is de�ned as

S
N=4
ij;k = ∑

A=i,j

1

2pk ⋅ (p1 + p2)
ηAk ∂ηA

k
. (3.4.20)

Now we have to project this to N = 2 SUSY. The soft factor SN=4
12;k is unchanged, while SN=4

34;k depends

on whether particles 3 and n are in the AN=2(η) or the ĀN=2(η) multiplet. If they are in AN=2(η),

then the contribution from SN=4
34;k should be discarded, since we set η3 and η4 to 0. If they are in

AN=2(η), then integrating out η3 and η4 the contribution from SN=4
34;k simply reduces to 2. The result

can be summarized as

AN=2
n (φ1, φ̄2, . . .) −A

N=2
n (φ̄1, φ2, . . .)∣p1∼p2→0

= (RN=2
3 −RN=2

n )An−2 , (3.4.21)

where the U(1) generator RN=2
i is de�ned as

RN=2
i =

2

∑
I=1

ηIi
∂

∂ηIi
− 2 , (for i ∈ AN=2

) , RN=2
i =

2

∑
I=1

ηIi
∂

∂ηIi
, (for i ∈ ĀN=2

) , (3.4.22)

which precisely correspond to the U(1) part of the R-symmetry generators in pure N = 2 SYM.

3.4.3 Double-soft fermions in N = 4 and pure N = 2 SYM

In a similar fashion one can study the limit with two soft fermions in N = 4 SYM as well as pure

N = 2 SYM. As before, the interesting case occurs when the two fermions are adjacent. Because the

(anti)-symmetrization procedure does not work for the double-soft fermions since they have di�erent

helicities [74], we will only consider the case when two fermions do not form a singlet. Thus the

leading singular terms arise from adjacent fermions having one and only one common SU(4) index.

To be precise we take soft particles as (ψ1)D and (ψ2)BCD. The calculation in terms of BCFW

recursion relations is very similar to the case of double-soft scalars, and again the relevant BCFW
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diagrams are shown in Fig.(3.4.4). Let us quote them here for convenience

n̄1̂

2

3

n̄1̂

2 3

P̂P̂

(b)(a)

(3.4.23)

As before, any other generic BCFW diagrams are subleading, since they are diagrams with a single-

soft fermion and behave as 1/
√
τ in our soft limit. In contrast, the dominant diagrams above behave

as 1/τ . The contribution from diagram (a) is given by

A(a) = ∫ d4η1d
4η2η

A
1 η

B
1 η

C
1 η

A
2

⟨1̂P̂ ⟩4δ(4)(η1 +
⟨P̂2⟩
⟨P̂ 1̂⟩η2 +

⟨P̂3⟩
⟨P̂ 1̂⟩η3)

⟨1̂2⟩⟨23⟩⟨3P̂ ⟩⟨P̂ 1̂⟩s123

exp(−
⟨1̂2⟩

⟨1̂P̂ ⟩
η2

∂

∂η3
)

× exp(zP η1
∂

∂ηn
)An−2 . (3.4.24)

Now the integration on η's is such that the soft legs 1 and 2 are the soft fermions of interest.

Following the analysis of double-soft scalars, we �nd two kinds of contributions from diagram (a).

One of them is given by

A(a),1 =
⟨1̂P̂ ⟩4

⟨1̂2⟩⟨23⟩⟨3P̂ ⟩⟨P̂ 1̂⟩s123

⟨1̂2⟩

⟨1̂P̂ ⟩

⟨P̂3⟩

⟨P̂ 1̂⟩
(
⟨P̂2⟩

⟨P̂ 1̂⟩
)

2

ηA3
∂

∂ηD3
An−2

= −
1

2p3 ⋅ (p1 + p2)

[31]

[32]
ηA3

∂

∂ηD3
An−2 , (3.4.25)

and the other contribution is

A(a),2 =
⟨1̂P̂ ⟩4

⟨1̂2⟩⟨23⟩⟨3P̂ ⟩⟨P̂ 1̂⟩s123

zP (
⟨P̂2⟩

⟨P̂ 1̂⟩
)

3
⟨P̂3⟩

⟨P̂ 1̂⟩
ηA3

∂

∂ηDn
An−2

= −
1

⟨n∣1 + 2∣3]

[31]

[32]
ηA3

∂

∂ηDn
An−2 . (3.4.26)

Similarly, from diagram (b) we �nd

A(b) = −
[P̂1]3zP

[12][2P̂ ][P̂1]s12

[n3]

[P̂3][nP̂ ]
(
[12][nP̂ ]

[3n]
ηA3 +

[12][P̂3]

[3n]
ηAn )

∂

∂ηDn
An−2

→ −
⟨n2⟩

⟨n1⟩
(

1

⟨n∣1 + 2∣3]
ηA3 +

1

2pn ⋅ (p1 + p2)
ηAn )

∂

∂ηDn
An−2 . (3.4.27)
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Adding the results of the two diagrams together, we �nally obtain the double soft-fermion theorem

in N = 4 SYM,

An((ψ1)D, (ψ2)
A, . . .) → −

1

[23]⟨n1⟩
(

⟨n2⟩[23]

2pn ⋅ (p1 + p2)
ηAn ∂ηDn +

⟨n1⟩[13]

2p3 ⋅ (p1 + p2)
ηA3 ∂ηD3 + ηA3

∂

∂ηDn
)An−2 ,

(3.4.28)

Unlike the case of double-soft scalars, the cross term ηA3
∂

∂ηDn
does not cancel anymore. However, all

the unphysical poles cancel out manifestly. Note that the fermions in N = 2 SYM are not required

to form a singlet like the scalars. The extension to the fermions in N = 2 SYM is straightforward

via SUSY truncation as we discussed in the previous section.

3.5 Double-soft limit in open superstring theory

It is known that the soft-scalar theorems in N = 8 supergravity are violated in the closed superstring

theory if α′ corrections are included [79, 80]. It is then natural to ask whether the newly established

double-soft-scalar theorems in SYM would receive any α′ corrections for scattering amplitudes in

open superstring theory. We �nd remarkably that amplitudes in open superstring theory satisfy

exactly the same double-soft-scalar theorems as in SYM theory.

A general n-point color-ordered open string superamplitude of SYM vector multiplet at tree level

can be very nicely expressed in terms of a basis of (n−3)! SYM amplitudes [84, 85],

A(1,2, . . . , n) = ∑
σ∈Sn−3

F (2σ,...,(n−2)σ)ASYM(1,2σ, . . . , (n−2)σ, n−1, n) (3.5.1)

where ASYM(1,2σ, . . . , (n−2)σ, n−1, n) is the color-ordered tree-level amplitude of SYM, and the

multiple hypergeometric functions are given as

F (2,...,n−2)
= (−1)n−3

∫

1

0<zi<zi+1

n−2

∏
j=2

dzj (∏
i<l

∣zil∣
sil)

⎛

⎝

[n/2]
∏
k=2

k−1

∑
m=1

smk
zmk

⎞

⎠

⎛

⎝

n−2

∏
k=[n/2]+1

n−1

∑
m=k+1

skm
zkm

⎞

⎠
.

(3.5.2)

The Mandelstam variables are de�ned as sij ≡ α
′(ki+kj)

2. Here we have �xed the SL(2,C) symmetry

by choosing z1 = 0, zn−1 = 1 and zn = ∞. Explicit expressions for the multiple hypergeometric
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functions in terms of α′ expansion may be found in [85, 84]. For instance, at four points we have,

F (2)
= −∫

1

0
dz2 z

s12
2 (1 − z2)

s23 s12

z12
=

Γ(1 + s12)Γ(1 + s23)

Γ(1 + s12 + s23)

= 1 − ζ2s12s23 + ζ3s12s13s23 +⋯ . (3.5.3)

Let us start with the six-point amplitude as a simple example, the string amplitude is given as

A(1,2, . . . ,6) = ∑
σ∈S3

F (2σ,3σ,4σ)ASYM(1,2σ,3σ,4σ,5,6) . (3.5.4)

It turns out to be convenient to take the soft limit on legs 3 and 4, more generally for a n-point

amplitude, we take pn−3 and pn−2 to be soft. From the de�nition of F (2,...,n−2) (for n = 6, the explicit

expressions for F (2σ,3σ,4σ) in α′ expansion can be found in eq.(2.29) in [84]), it is easy to see that

for six points only F (2,3,4) contributes in the limit, and it simply becomes F (2). Thus we have

A(1,2, . . . ,6) → F (2)
SijASYM(1,2,5,6) = SijA(1,2,5,6) , (3.5.5)

where for the convenience of following discussion we de�ned the soft factor Sij

Sij =
1

2pi ⋅ (p + q)
ηIi ∂ηJi −

1

2pj ⋅ (p + q)
ηIj ∂ηJj , (3.5.6)

with p and q being the soft legs. In the above case these are p3 and p4. The amplitude with a

general multiplicity can be considered similarly by following a proof of single-soft-gluon theorem

in [84]. First of all, we note that only those permutations σ ∈ Sn−3 where indices (n−3) and (n−2)

are adjacent may contribute, since otherwise the amplitudes in SYM would be �nite and therefore

subleading. By the property of hypergeometric functions F , the position (n−4) should always be

on the left of (n−3) and (n−2). Furthermore, (n−3) and (n−2) should be in the canonical order,

meaning that (n−3) should be on the left of (n−2). Otherwise, for all the above cases the multiple

hypergeometric function F is vanishing. For such σ's we �nd the following con�gurations:

� σ ∈ Sn−5 with (n − 4)σ = n − 4, we have

F (σ)
n ASYM(1,2σ, . . . , (n − 4), (n − 3), (n − 2), (n − 1), n)

→ Sn−4,n−1F
(σ)
n−2ASYM(1,2σ, . . . , (n − 4), (n − 1), n) (3.5.7)

In the following, we then consider the cases with (n − 4)σ ≠ n − 4.
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� σ ∈ Sn−5 with (n − 4)σ ≠ n − 4, we have

F (σ)
n ASYM(1,2σ, . . . , (n − 4)σ, (n − 3), (n − 2), (n − 1), n)

→ S(n−4)σ,n−1F
(σ)
n−2ASYM(1,2σ, . . . , (n − 4)σ, (n − 1), n) (3.5.8)

� Finally, we have the non-vanishing contribution with σ ∈ Sn−5 with (n − 4)σ ∈ {2σ, . . . , iσ},

F (σ)
n ASYM(1,2σ, . . . , iσ, (n − 3), (n − 2), (i + 1)σ, . . . , (n − 4)σ, (n − 1), n)

→ Siσ,(i+1)σF
(σ)
n−2ASYM(1,2σ, . . . , (n − 4)σ, (n − 1), n) (3.5.9)

Using the de�nition of the soft factor Sij (in particular its antisymmetric property), we �nd that

the results of the second the third cases combine nicely,

eq.(3.5.8) + eq.(3.5.9) = Sn−4,n−1F
σ
n−2ASYM(1,2σ, . . . , (n − 4)σ, (n − 1), n) . (3.5.10)

Combining with the result of (3.5.7), this concludes the proof that the amplitudes in open superstring

theory satisfy the same double-soft-scalar theorem as in SYM theory.
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Chapter 4

Leading multi-soft limits from

scattering equations

This chapter is based on the publication [86].

Investigation of soft factors has a rich history, reaching back to the contributions of Low, Weinberg

and others [17, 18, 19, 20, 21, 22, 23, 26, 24, 25]. Soft factorization is a universal property of

scattering amplitudes. An n-point scattering amplitude An depends on external momenta kµi of the

i = 1,2, ..., n ingoing and outgoing scattering particles. If a subset of adjacent external momenta kµj

for ∀j = 1,2, ...,m with m < n− 3 is taken to zero, for example parametrized as kµj → τkµj and τ → 0,

the amplitude is expected to factorize at leading order in τ into a soft factor Sm times a lower point

amplitude An−m:

An → SmAn−m + sub-leading in τ. (4.0.1)

Universality in this context means that Sm is independent of the remaining lower point amplitude

An−m, such that Sm is always the same whenever the same types of m external particles are taken

soft within any original amplitude An.

More recently, interest in investigation of soft theorems was refueled [27, 28, 29, 30] as Strominger

et al. showed that soft-graviton theorems can be understood from the point of view of BMS symmetry

[31, 32, 33, 34, 35]. Further study of leading and sub-leading soft theorems in Yang-Mills, gravity,

string and supersymmetric theories ensued [5, 37, 36, 42, 43, 38, 39, 40, 41, 46, 16, 52, 56, 68, 87,

88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, 99, 100, 101, 102, 103], partly based on the amplitude
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formulation due to Cachazo, He and Yuan (CHY) [5]. Double soft theorems have been considered in

[71, 70, 72], and more recently [13, 73, 74, 75, 53, 76, 104, 105, 106, 107, 61, 50, 51, 58, 108, 109, 110,

111, 112, 110, 113]. Construction rules for soft factors with multiple soft particles in N = 4 SYM

theory appeared in [114]. Work on related topics was also done, like sub-leading collinear limits

[115] and investigation of the current algebra at null in�nity induced by soft gluon limits [116].

In this note we use the CHY formulation of scattering amplitudes [5, 10] to derive the leading

m-soft factor Sm for gluons, bi-adjoint scalar φ3, Yang-Mills-scalar and non-linear sigma model.

We �nd the m-soft gluon factor in the case when external legs 1,2, ...,m are soft to be given by

the CHY type formula (4.2.19, 4.2.20, 4.2.21, 4.2.22). We then consider explicit examples, obtain

analytic results in cases m = 1,2,3 , and check the cases m = 2,3,4 numerically via amplitude ratios

in four dimensions obtained from the GGT package [117]. Based on these explicit examples, we infer

and conjecture a general pattern for the m-soft gluon factor:

Sgluonm =
m+1

∑
r=1

(−1)r+1P
(m+1−r)
r,r+1,...,m,m+1P

(r−1)
r−1,r−2,...,1,n , (4.0.2)

where P
(0)
m+1 = P

(0)
n ≡ 1, and P

(i)
1,2,...,i,i+1, with dν1 and ψ

(i+1)
[1,i] de�ned in (4.2.20) and (4.2.22), is1

P
(i)
1,2,...,i,i+1 =∫ dν1

1

∏
i+1
c=2 σ̄c−1,c

Pf (ψ
(i+1)
[1,i] ) . (4.0.3)

If all P
(i)
1,2,...,i,i+1 with i < m are known from calculations of lower soft factors, then P

(m)
1,2,...,m,m+1 is

the only new contribution that has to be computed to construct Sm at a given m.

The leading m-soft factor in bi-adjoint scalar φ3, Yang-Mills-scalar and non-linear sigma model

theories involves the same integration measure dνr as in (4.2.19), while the integrands are di�erent:

(4.4.4), (4.4.9) and (4.4.12).

As an alternative in four dimensions, we also develop a CSW type [118] automated recursive

procedure that gives the leading m-soft gluon factor (compare with construction rules in [114]).

Finally, we use BCFW recursion [3] to obtain all leading four-soft gluon factors with analytically

distinct helicity combinations in four dimensions.

This work is organized as follows. In section 4.1 we recall the CHY formalism and introduce the

soft limit. In section 4.2 we demonstrate the soft factorization of gluons at any m and obtain our

general result. Explicit examples are worked out in section 4.3 and a simpler evaluation formula

is conjectured. Multi-soft factors in scalar φ3, Yang-Mills-scalar and non-linear sigma model are

1The cases P
(m+1−r)
r,r+1,...,m,m+1 and P

(i)
i,i−1,...,2,1,n are obtained by simple index exchange after integration.
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discussed in section 4.4. Appendix 4.5 contains a CSW type recursive procedure for m-soft factors in

four dimensions. Appendix 4.6 contains BCFW results for four-soft gluon factors in four dimensions.

4.1 The CHY formulation of Yang-Mills and the soft limit

We start with the usual n-point formula for the tree-level gluon amplitude [5]:

An =∫ dµn I
YM
n , (4.1.1)

where the CHY integration measure dµn and the Yang-Mills CHY integrand IYMn are

dµn =∫ dnσ
σijσjkσki

vol (SL(2,C))

n

∏
a=1

a≠i,j,k

δ

⎛
⎜
⎜
⎝

n

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎟
⎠

, I
YM
n =

2 (−1)p+q
σpq

Pf(Ψpq
pq)

σ12σ23...σn1
. (4.1.2)

Moduli di�erences are abbreviated as σab ≡ σa − σb and the matrix Ψ is given by

Ψ = (
A

C

−CT

B
) , A = {

ka⋅kb
σab

0

;

;

a ≠ b

a = b
, B = {

εa⋅εb
σab

0

;

;

a ≠ b

a = b
, C =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

εa⋅kb
σab

; a ≠ b

−∑
n
c=1
c≠a

εa⋅kc
σac

; a = b
, (4.1.3)

with a, b ∈ {1,2, ..., n}. The kµ are momenta of scattering particles and εµ contain the corresponding

polarization data. The indices 1 ≤ i < j < k ≤ n as well as 1 ≤ p < q ≤ n in (4.1.2) are chosen arbitrarily

but �xed. Upper and lower indices on matrix Ψ denote removed columns and rows respectively. We

would like to consider the case where m external legs with m < n − 3 are going soft simultaneously:

kµq → τkµq , τ → 0, for q ∈ {1,2, ...,m}. (4.1.4)

As we take τ → 0, it is clear from the structure of matrix Ψ that at leading order in τ the Pfa�an

factorizes as:2

Pf(Ψpq
pq) → Pf(ψ)Pf(Ψp,q,1,2,...,m,n+1,n+2,...,n+m

p,q,1,2,...,m,n+1,n+2,...,n+m∣τ=0) + subleading in τ, (4.1.5)

possibly up to an overall sign. The 2m × 2m matrix ψ in the �rst Pfa�an on the right hand side

of (4.1.5) is de�ned the same way as Ψ, except the indices a, b in the sub-matrices A,B,C are

2To see this, make the substitution (4.1.4) and expand the Pfa�an along rows and/or columns 1,2, ...,m,n+1, n+
2, ..., n+m. Retain only leading summands under τ → 0, keeping in mind that solutions with σab = O(τ) or σab = O(1)
for a, b ∈ {1,2, ...,m} are possible. Finally, reassemble the remaining coe�cients into Pf(ψ).
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restricted to the subset a, b ∈ {1,2, ...,m}. Here, to do the expansion along rows we employed the

usual recursive formula for the Pfa�an of an anti-symmetric 2n × 2n matrix M :

Pf (M) =
2n

∑
j=1
j≠i

(−1)i+j+1+θi−jmijPf (M ij
ij ) , (4.1.6)

where mij are elements of matrix M , θx ≡ θ(x) is the Heaviside step function, and index i can be

freely chosen.

Alternatively, we could have noticed that τ → 0 reduces matrix Ψpq
pq at leading order to a block

matrix structure, with several blocks equal to zero. Factorization (4.1.5) then directly follows from

trivial Pfa�an factorization identities for block matrices.

Note that Pf(ψ) contains terms leading and/or sub-leading in τ , depending on whether it is

evaluated on degenerate (σab = O(τ) for some a, b) or non-degenerate (σab = O(1) for all a, b)

solutions to the scattering equations. However, for our purposes it is only important that for all

types of solutions Pf(ψ) contains all leading contributions.

The second Pfa�an on the right hand side of (4.1.5) is the one we expect in an (n −m)-point

amplitude as we take τ → 0. Furthermore, we can trivially rewrite

1

σ12σ23...σn1
=

σn,m+1

σn1σ12...σm,m+1
⋅

1

σn,m+1σm+1,m+2...σn−1,n
, (4.1.7)

and observe the following behavior in scattering equation delta functions

n

∏
a=1

δ
⎛
⎜
⎝

n

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠
=

m

∏
a=1

δ
⎛
⎜
⎝

n

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠

n

∏
c=m+1

δ
⎛
⎜
⎝

n

∑
b=m+1
b≠c

kc ⋅ kb
σcb

+O(τ)
⎞
⎟
⎠
. (4.1.8)

The last equation holds since we necessarily have σcb = O(1) form+1 ≤ c ≤ n due to the kinematics in

all kµc being generic and therefore producing non-degenerate con�gurations of σc, while all kb = O(τ)

for the soft particles 1 ≤ b ≤ m tend to zero. The behavior of the �rst 1 ≤ a ≤ m delta functions in

(4.1.8) is more subtle, since we can have σab = O(1) or σab = O(τ) in this case. It will be investigated

in detail in the next section.

Considering the above, we can structurally rewrite (4.1.1) at leading order in τ → 0 as

An →∫ dµn−m Sm I
YM
n−m + sub-leading in τ, (4.1.9)

Sm =∫ dmσ
m

∏
a=1

δ
⎛
⎜
⎝

n

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠

σn,m+1

σn1σ12...σm,m+1
Pf(ψ), (4.1.10)
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where dµn−m and IYMn−m are based on objects with indices in the range {m + 1,m + 2, ..., n}.

Of course this alone does not provide a factorization yet, since Sm still depends on σn and σm+1,

and the delta functions within still depend on all n momenta and σ-moduli. In the following we

show that for any m the σm+1, ..., σn dependence in Sm drops out at leading order in τ and the

amplitude indeed factorizes as An → SmAn−m+ sub-leading in τ . Furthermore, we �nd that Sm only

depends on polarizations εµ1 , ε
µ
2 , ..., ε

µ
m as well as momenta kµn, k

µ
1 , k

µ
2 , ..., k

µ
m+1, and establish a CHY

type formula for evaluating Sm independently of the remaining factored amplitude An−m.

4.2 Factorization of Sm for Yang-Mills and the general result

Starting with Sm in (4.1.10) we apply several transformations in order to more conveniently work

with this expression. First we rewrite the delta functions making use of the general identity

∫ dmx
m

∏
i=1

δ (fi(x⃗)) ● = ∫ dmxdet(M)
m

∏
i=1

δ
⎛

⎝

m

∑
j=1

Mijfj(x⃗)
⎞

⎠
● , (4.2.1)

where ● is a placeholder for some test function and we employ the speci�c m ×m matrix

M =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 1 1 ... 1 1 1

1 −1 0 ... 0 0 0

0 1 −1 ... 0 0 0

⋱ ⋱ ⋱ ⋱ ⋱ ⋱ ⋱

0 0 0 ... 1 −1 0

0 0 0 ... 0 1 −1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

, det(M) = (−1)m+1m, (4.2.2)

which for our particular variables and functions of interest yields the e�ective relation

m

∏
a=1

δ
⎛
⎜
⎝

n

∑
b=1
b≠a

ka ⋅ kb
σab

⎞
⎟
⎠
=(−1)m+1mδ (

m

∑
a=1

n

∑
b=m+1

ka ⋅ kb
σab

)
m−1

∏
q=1

δ (hq) , (4.2.3)

hq =
n

∑
a=1
a≠q

kq ⋅ ka

σqa
−

n

∑
b=1
b≠q+1

kq+1 ⋅ kb

σq+1,b
. (4.2.4)

Furthermore, we transform the moduli σa into a new set of variables ρ and ξi:

σq = ρ −
q−1

∑
a=1

ξa
2
+
m−1

∑
b=q

ξb
2
, (4.2.5)
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which leads to a change of the integration measure as

dσ1 ∧ dσ2 ∧ ... ∧ dσm = (−1)m+1dρ ∧ dξ1 ∧ dξ2 ∧ ... ∧ dξm−1. (4.2.6)

The transformation (4.2.5) is convenient, since σa,a+1 = ξa allows for more direct access to degenerate

solutions σa,a+1 = O(τ) in the new ξa variables. To keep expressions short, we will maintain the σa

notation while implying the substitution (4.2.5). With the above changes, Sm becomes

Sm = ∫ dρdm−1ξ mδ (
m

∑
a=1

n

∑
b=m+1

ka ⋅ kb
σab

)
m−1

∏
q=1

δ (hq)
σn,m+1

σn1σ12...σm,m+1
Pf(ψ). (4.2.7)

Now consider keeping ρ �xed and integrating out the q = 1,2, ...,m − 1 constraints hq = 0 (which

we will denote as {h} = 0) in the ξ variables. This introduces a Jacobian det(H)−1 with derivative

matrix Hij = ∂ξihj and a summation over all solutions to the set of m− 1 equations {h} = 0 in the ξ

variables:

Sm = ∑
{h}=0

solutions

∫ dρ
m

det(H)
δ (

m

∑
a=1

n

∑
b=m+1

ka ⋅ kb
σab

)
σn,m+1

σn1σ12...σm,m+1
Pf(ψ). (4.2.8)

Clearly, here all expressions in the integrand can be e�ectively thought of as functions of the single

variable ρ, since σa = σa (ρ,{ξ(ρ)}) for a ∈ {1,2, ...,m} for each solution of {h} = 0 in ξ variables.

Therefore, we can now map the single remaining delta function to a simple pole

Sm = ∑
{h}=0

solutions

∮
dρ

2πi

m

det(H)

1

∑
m
a=1∑

n
b=m+1

ka⋅kb
σab

σn,m+1

σn1σ12...σm,m+1
Pf(ψ), (4.2.9)

and consider contour deformations away from the initial locus ∑
m
a=1∑

n
b=m+1

ka⋅kb
σab

= 0 in ρ.

By simple power counting of poles we see that there is no pole and therefore no residue at in�nity

in ρ. As we deform the contour in ρ, the expressions {h} change dynamically since they depend

on ρ directly and through ξ(ρ) variables. When we localize ρ at a pole contained in the integrand,

the {h} = 0 constraints can get rescaled and simpli�ed. However, since we are summing over the

solutions, the set of constraints {h} = 0 has to stay analytic to leading order at the poles in ρ at

all times. This implies i.e. that the Jacobian det(H)−1 can get rescaled and simpli�ed due to the

contour deformation, but may never diverge. This is a powerful constraint that allows us to �nd all

integrand poles in ρ as follows.

Structurally, the only type of poles that exists in the integrand is of the shape 1/σab. As one such
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pole becomes localized, corresponding terms in the set of expressions {h} start to diverge. Maintain-

ing analyticity at leading order of the divergence in one of the {h} = 0 constraints then demands that

at least one di�erent independent 1/σcd pole must become localized as well simultaneously and at

the same rate.3 This second pole then threatens the analyticity in another {h} = 0 constraint which

is a�ected only by this new divergence, etc. In this fashion a chain of relations occurs demanding

that more and more poles must be localized at the same rate simultaneously until it is ensured that

analyticity in all {h} = 0 constraints at leading order in the poles is preserved. Overall we realize that

whenever a 1/σab pole is localized due to the d.o.f. in ρ, the ρ dependence in contributing {ξ(ρ)}

solutions must be such that other (m−1) independent poles become localized as well simultaneously

to maintain analyticity in all the {h} = 0 constraints at leading order of divergence.

Equipped with the above observations, we must consider simultaneously localizing subsets of m

independent 1/σab poles in the integrand, with a ≠ b pairs a, b ∈ {n,1,2, ...,m,m + 1}. Regardless of

which m independend poles we choose to localize, the scattering equation expressions {h} as well as

the pfa�an pf(ψ) develop poles in ρ→ 0 of a certain power completely homogeneously (independent

of indices chosen). The only part of the integrand which can diverge more or less dependent on

the choice of localized poles is the Parke-Talor like factor. In the following we consider the case

of highest divergence, where combinations of m poles in the Parke-Taylor like factor are localized.4

There are (
m+1
m

) =m + 1 such pole combinations.

In the ρ and ξi variables the Parke-Taylor-like factor reads:

σn,m+1

σn1σ12...σm,m+1
=

σn,m+1

(σn − ρ −∑
m−1
i=1

ξi
2
) ξ1ξ2...ξm−1 (ρ −∑

m−1
i=1

ξi
2
− σm+1)

. (4.2.10)

Structurally, there are three di�erent classes of m-poles combinations that can occur, namely where

all appearing poles are localized except for:

1.) the pole
1

σn − ρ −∑
m−1
i=1

ξi
2

,

2.) xor a single pole
1

ξi
out of i ∈ {1,2, ...,m − 1}, (4.2.11)

3.) xor the pole
1

ρ −∑
m−1
i=1

ξi
2
− σm+1

.

3This is the case since
ka ⋅kb
σ̄ab

= 0 for generic momenta only has the solution ∣σ̄ab∣ = ∞, which is non-analytic, while

in the case of at least two summands
ka ⋅kb
σ̄ab

+
kc ⋅kd
σ̄cd

= 0 �nite solutions for the σ̄i exist such that analyticity is preserved.
4We will see that this leads to a simple pole overall, such that any lower polynomial degree would not develop a

divergence or residue and thus does not contribute. Therefore, localizing m pole combinations in the Parke-Taylor
like factor gives the only non-vanishing contributions.
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We choose to parametrize the m localized poles in the above three cases by a parameter ρ̄ → 0 as

follows:

1.) ρ = ρ̄ + σm+1, ξj = ρ̄ ξ̄j for all j ∈ {1,2, ...,m − 1},

2.) ρ = ρ̄ +
1

2
(σm+1 + σn), ξi = σn − σm+1 + ρ̄ ξ̄i, and ξj = ρ̄ ξ̄j for all j ≠ i, (4.2.12)

3.) ρ = ρ̄ + σn, ξj = ρ̄ ξ̄j for all j ∈ {1,2, ...,m − 1}.

The new variables ξ̄i account for the original degrees of freedom of ξi variables at leading order

after localizing ρ̄ → 0. Note that in all three cases we have dρ = dρ̄, and the one pole that is not

localized always directly reduces to 1/σn,m+1 under ρ̄ → 0, which cancels the numerator in (4.2.10).

In general, if we de�ne 5

σ̄n = σ̄0 = σ̄m+1 ≡ 0 and σ̄q = 1 −
q−1

∑
a=1

ξ̄a
2
+
m−1

∑
b=q

ξ̄b
2

for q ∈ {1,2, ...,m}, (4.2.13)

dξ̄1 ∧ dξ̄2 ∧ ... ∧ dξ̄m−1 = 2dσ̄1 ∧ dσ̄2 ∧ ... ∧ dσ̄m−1 (4.2.14)

then, for all possible pole combinations, the behavior of (4.2.10) for ρ̄→ 0 is parametrized as

σn,m+1

σn1σ12...σm,m+1
=

1

ρ̄m∏
m+1
a=1
a≠r

σ̄a−1,a

+O (
1

ρ̄m−1
) , (4.2.15)

where index r ∈ {1,2, ...,m+ 1} labels which one of the m+ 1 poles in the denominator of (4.2.10) is

not being localized. Similarly, for all m + 1 possible pole combinations we obtain

1

∑
m
a=1∑

n
b=m+1

ka⋅kb
σab

=
1

ρ̄ (∑
r−1
a=1

ka⋅kn
σ̄a

+∑
m
b=r

kb⋅km+1

σ̄b
)
+O(ρ̄0

), (4.2.16)

with the same index r. Depending on the particular value of r we also get6

1

det(H)
=

ρ̄2m−2

det(Hr)
+O (ρ̄2m−1) and Pf(ψ) =

1

ρ̄m
Pf(ψr) +O (

1

ρ̄m−1
) , (4.2.17)

where now Hr and ψr only contain terms supported on the localized poles appearing in the Parke-

Taylor-like factor (4.2.10) for each r. It is only at this point that the scattering equations {hr} = 0,

5Note that only m − 1 of the σ̄q are now linearly independent since we have σ̄m = 2 − σ̄1.
6Recall that H is the derivative matrix of scattering equations. This means it is composed of elements ki ⋅ kj/σ

2
ij

and their sums. While i, j ∈ {1,2, ..., n} initially, localizing the poles from the Parke-Taylor-like factor (4.2.10) as
described above removes all dependence on σm+1, ..., σn. This factorizes the scattering equations and their Jacobian
from the remaining (n −m)-point amplitude.
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their Jacobian 1/det(Hr) and all other terms become completely factorized from the remaining

(n−m)-point amplitude An−m. This means Hr and ψr only depend on momenta kµn, k
µ
1 , k

µ
2 , ..., k

µ
m+1

and polarizations εµ1 , ε
µ
2 , ..., ε

µ
m, as expected.

Plugging the above �ndings into (4.2.9) and collecting the overall power of ρ̄ we observe

Sm =
m+1

∑
r=1

∑
{hr}=0
solutions

∮
dρ̄

2πi

⎛
⎜
⎝

1

ρ̄

m

det(Hr)

1

∑
r−1
a=1

ka⋅kn
σ̄a

+∑
m
b=r

kb⋅km+1

σ̄b

1

∏
m+1
c=1
c≠r

σ̄c−1,c

Pf(ψr) +O(ρ̄0
)
⎞
⎟
⎠
,

so that it is now trivial to compute the residues in ρ̄, since for all r we just have a single simple pole

at ρ̄ = 0. The result is

Sm =
m+1

∑
r=1

∑
{hr}=0
solutions

m

det(Hr)

1

∑
r−1
a=1

ka⋅kn
σ̄a

+∑
m
b=r

kb⋅km+1

σ̄b

1

∏
m+1
c=1
c≠r

σ̄c−1,c

Pf(ψr). (4.2.18)

Under closer inspection we note that the Pfa�an factorizes as Pf(ψr) = Pf (ψ
(n)
[1,r−1])Pf (ψ

(m+1)
[r,m] )

with de�nitions (4.2.22), again due to trivial factorization properties of Pfa�ans of block matrices

with some zero blocks.

In principle, (4.2.18) is already the �nal completely factorized result. For convenience, we can

rewrite it by reassembling the Jacobian and the sum over solutions back into a shape of delta function

integrations. This leads to our �nal general formula:7

Sm =
m+1

∑
r=1
∫ dνr

1

∏
m+1
c=1
c≠r

σ̄c−1,c

Pf (ψ
(n)
[1,r−1])Pf (ψ

(m+1)
[r,m] ) , (4.2.19)

dνr ≡
m−1

∏
i=1

dσ̄i
m−1

∏
q=1

δ(hq,r)
2m

∑
r−1
a=1

ka⋅kn
σ̄a

+∑
m
b=r

kb⋅km+1

σ̄b

, (4.2.20)

where, identifying kµ0 ≡ kµn and keeping σ̄0 ≡ σ̄n = σ̄m+1 = 0 and σ̄m = 2 − σ̄1 in mind, we have

hq,r =
q+1

∑
a=q

m+1

∑
b=0
b≠a

(−1)a−q
ka ⋅ kb
σ̄ab

θ(r−a− 1
2 )(r−b−

1
2 ), (4.2.21)

with θx ≡ θ(x) being the Heaviside step function. We call the constraints hq,r = 0 the soft scattering

7Note the convention Pf (ψ
(w)

[i,j]
) ≡ 1 when i > j.
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equations. The 2(j − i + 1) × 2(j − i + 1) matrix ψ
(w)
[i,j] can be written explicitly as

ψ
(w)
[i,j] =

⎛
⎜
⎝

A[i,j]

C
(w)
[i,j]

−(C
(w)
[i,j])

T

B[i,j]

⎞
⎟
⎠
, with (j − i + 1) × (j − i + 1) sub-matrices (4.2.22)

A[i,j] ={

ka⋅kb
σ̄ab

0

;

;

a ≠ b

a = b
, B[i,j] = {

εa⋅εb
σ̄ab

0

;

;

a ≠ b

a = b
, C

(w)
[i,j] =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

εa⋅kb
σ̄ab

; a ≠ b

− εa⋅kw
σ̄a

−∑
n
q=1
q≠a

εa⋅kq
σ̄aq

; a = b
,

and with indices in the range a, b ∈ {i, i+1, ..., j}. This is the �nal result for the m-soft gluon theorem

in CHY formulation. We emphasize that the result is correct to leading order in τ → 0. However,

since (4.2.21) admits di�erent solutions of types σ̄a,b = O(1) and σ̄a,b = O(τ), the integrations in

(4.2.19) have to be evaluated before the result can be systematically expanded to leading order in τ .

4.3 Explicit examples and general pattern

In this section we work out examples for the �rst few soft factors Sm. The factors S1, S2 and S3

are obtained analytically. The factor S4 (and higher) involves solutions to soft scattering equations

that cannot be solved in terms of radicals, therefore we verify the validity of S4 numerically. Based

on the considered examples, we infer a non-trivial structural pattern for the m-soft factors which we

conjecture to hold for any m.

4.3.1 One-soft gluon factor S1

For m = 1 there are no soft scattering equations (4.2.21) and no delta functions to integrate. The

result is just directly given by the sum over r in (4.2.19):8

S1 = 2
ε1 ⋅ k2

s12
− 2

ε1 ⋅ kn
s1n

, (4.3.1)

which clearly is the correct Weinberg soft factor.9 We see that the soft factor is composed out of

two pieces such as:

P
(1)
1,2 ≡ 2

ε1 ⋅ k2

s12
. (4.3.2)

8Recall that we imply σ̄m = 2 − σ̄1, which for m = 1 reduces to σ̄1 = 1.
9The sij = (ki + kj)

2 is the usual Mandelstam variable.
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Anticipating the structure of higher m-soft factors, we also de�ne

P
(0)
m+1 = P

(0)
n ≡ 1. (4.3.3)

Using (4.3.3) and (4.3.2) we can structurally write the Weinberg soft factor (4.3.1) as

S1 = P
(1)
1,2 P

(0)
n − P

(0)
2 P

(1)
1,n . (4.3.4)

Based on this and further explicit results of this section, we propose in (4.3.21) that this structure

generalizes and persists for all higher m-soft factors.

Restricting to four dimensions, we can convert the soft factor S1 to spinor helicity formalism.

We use the following standard dictionary to convert expressions of given helicity:

ki ⋅ kj =
1

2
⟨ij⟩[ji], ε+i ⋅ kj =

[ij]⟨jri⟩
√

2⟨rii⟩
, ε−i ⋅ kj =

⟨ij⟩[jri]
√

2[iri]
, (4.3.5)

ε+i ⋅ ε
−
j =

⟨jri⟩[irj]

[jrj]⟨rii⟩
, ε+i ⋅ ε

+
j =

⟨rirj⟩[ji]

⟨rii⟩⟨rjj⟩
, ε−i ⋅ ε

−
j =

⟨ij⟩[rjri]

[iri][jrj]
, (4.3.6)

where ri and rj label reference spinors assigned to spinor i and j respectively. With an appropriate

choice of reference spinor, we see in four dimensions:

S+1 =
⟨n2⟩

⟨n1⟩⟨12⟩
, (4.3.7)

which is the expected familiar single soft factor in spinor helicity formalism. For real momenta, S−1

is given by complex conjugation of S+1 . Here we have suppressed an overall factor of
√

2 in S+1 per

usual spinor helicity convention.

4.3.2 Two-soft gluons factor S2

For m = 2, there is one soft scattering equation (4.2.21) for each r, and the number of solutions

organizes as follows for the di�erent solution types and di�erent values of r:

solution type r = 1 r = 2 r = 3

ξ̄1 ∼ O(1) 1 1 1

ξ̄1 ∼ O(τ) 1 0 1

. (4.3.8)
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Adding up the contributions of all 5 solutions and expanding to leading order in τ , we obtain the

following expression for S2:

S2 = P
(2)
1,2,3P

(0)
n − P

(1)
2,3 P

(1)
1,n + P

(0)
3 P

(2)
2,1,n. (4.3.9)

This agrees with the generalization (4.3.21) for m = 2. The quantities P
(0)
i and P

(1)
i,j are given by

(4.3.3), (4.3.2), and the new contribution of type P
(2)
i,j,l reads:

10

P
(2)
1,2,3 =

s13ε1 ⋅ ε2
s123s12

−
s23ε1 ⋅ ε2
s123s12

−
4ε1 ⋅ k3ε2 ⋅ k1

s123s12
+

4ε1 ⋅ k2ε2 ⋅ k3

s123s12
+

4ε1 ⋅ k3ε2 ⋅ k3

s123s23
. (4.3.10)

Counting the powers of k1 and k2 we see that this expression diverges as τ−2, as we expect for the

two-soft gluon factor. The result (4.3.9) is gauge independent and reduces to the gauge �xed result

found in [53] when we select the gauge ε2 ⋅ k3 = 0, ε1 ⋅ kn = 0.

Restricting to four dimensions, converting to spinor helicity formalism by use of (4.3.5) and

(4.3.6), and choosing appropriate reference spinors we get the following expression for the non-trivial

helicity combination (+−) after some simpli�cation via Schouten identities:

S+−2 =
⟨n2⟩

⟨n1⟩⟨12⟩

[13]

[12][23]
(1 +

⟨n1⟩[13]⟨32⟩

s123⟨n2⟩
+

[1n]⟨n2⟩[23]

sn12[13]
) , (4.3.11)

which naturally agrees with the result found in [53]. The trivial helicity combination (++) reduces

to the product of single soft factors S++2 = ⟨n3⟩
⟨n1⟩⟨12⟩⟨23⟩

as expected. Again, an overall factor of (
√

2)2 is

suppressed in the above expressions per spinor helicity convention and the other helicity combinations

can be obtained by complex conjugation.

We can additionally numerically test the above result in four dimensions. Making use of the

GGT package provided in [117] to generate explicit lower point amplitudes, we can form amplitude

ratios that correspond to the soft factor in appropriate soft kinematics.11 Keeping in mind the

overall powers of
√

2 that are suppressed in spinor helicity, we expect to �nd the following relation

at leading order in τ :

∣Sm∣ = ∣
(
√

2)mAn(1,2, ..., n)

An−m(m + 1,m + 2, ..., n)
∣. (4.3.12)

Indeed, if we generate a numeric kinematic point where kµ1 , k
µ
2 have soft entries of order 10−10 while

10Here, for brevity we use that 2(k1 + k2) ⋅ k3 ≈ s123 at leading order in τ .
11Note that there is a Chop command in one of the routines of the GGT package, which does not work well with

soft limit numerics and therefore needs to be removed.
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the rest of the momenta have hard entries of order 100, we can check that i.e.

∣S++2 ∣ = ∣
2A6(1

+,2+,3+,4+,5−,6−)

A4(3+,4+,5−,6−)
∣, or ∣S+−2 ∣ = ∣

2A6(1
+,2−,3+,4+,5−,6−)

A4(3+,4+,5−,6−)
∣, (4.3.13)

hold at least to �rst 10 digits, re�ecting that the leading soft factor receives a �rst correction at the

next polynomially sub-leading power in τ .12 Naturally, ratios of more complicated amplitudes yield

the same agreement.

4.3.3 Three-soft gluons factor S3

For m = 3, there are two soft scattering equations (4.2.21) for each r, and the number of solutions

organizes as follows for the di�erent solution types and di�erent values of r:

solution type r = 1 r = 2 r = 3 r = 4

ξ̄1 ∼ ξ̄2 ∼ O(1) 2 1 1 2

ξ̄i ∼ O(1), ξ̄j ∼ O(τ) 2 1 1 2

ξ̄1 ∼ ξ̄2 ∼ O(τ) 2 0 0 2

, (4.3.14)

where we imply i ≠ j and i, j ∈ {1,2}. Adding up the contributions of all 16 solutions and expanding

to leading order in τ , we obtain the following expression for S3:

S3 = P
(3)
1,2,3,4P

(0)
n − P

(2)
2,3,4P

(1)
1,n + P

(1)
3,4 P

(2)
2,1,n − P

(0)
4 P

(3)
3,2,1,n. (4.3.15)

This agrees with the generalization (4.3.21) for m = 3. As before, expressions of type P
(0)
i , P

(1)
i,j and

P
(2)
i,j,l are given by (4.3.3), (4.3.2) and (4.3.10), while the new contribution of type P

(3)
i,j,l,t can still be

analytically computed to be:13

P
(3)
1,2,3,4 =

1

s12
(w312 − u312 − u213 − v312 − v213) +

1

s23
(w231 − u231 − u132 − v231 − v132)+

+ (
1

s12
+

1

s23
) (u123 + u321 + v123 + v321 −w123) +

8ε1 ⋅ k4ε2 ⋅ k4ε3 ⋅ k4

s34s234s1234
+ (4.3.16)

+
8ε1 ⋅ k4 (ε2 ⋅ k3ε3 ⋅ k4 − ε3 ⋅ k2ε2 ⋅ k4)

s23s234s1234
+

8 (ε1 ⋅ k2ε2 ⋅ k4 − ε2 ⋅ k1ε1 ⋅ k4) ε3 ⋅ k4

s12s34s1234
+

+
2ε1 ⋅ ε2ε3 ⋅ k4

s12s1234
(

2s13

s123
+

2s14

s34
−
s1234

s34
) +

4ε2 ⋅ ε3ε1 ⋅ k4

s23s1234
(
s13

s123
−
s34

s234
) +

4ε3 ⋅ ε1ε2 ⋅ k4

s123s1234
,

12To make sure that the comparison works properly, we use the same spinor conventions as the GGT package:

λ1
i =

√
k0
i + k

3
i , λ

2
i = (k1

i + ik
2
i )/

√
k0
i + k

3
i and λ̃i = (λi)

∗.
13Again, we use that 2(k1 + k2 + k3) ⋅ k4 ≈ s1234 and similar at leading order in τ to keep notation short.
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where we used the abbreviations

uijl ≡
4εi ⋅ kjεj ⋅ εl

sijl
(

1

3
−
sl4
sijl4

) , vijl ≡
8εi ⋅ kjεj ⋅ klεl ⋅ k4

sijlsijl4
, wijl ≡

8εi ⋅ kjεj ⋅ k4εl ⋅ kj

sijlsijl4
.

Counting the powers of k1, k2 and k3 we see that this expression diverges as τ−3, as we expect for

the three-soft gluon factor.

Again, we can use (4.3.5) and (4.3.6) to pass to spinor helicity formalism if we restrict to four

dimensions. In particular, the two non-trivial independent polarization combinations are (− + −)

and (+ − −). For the case (− + −) we obtain, with appropriate choice of reference spinors and after

some simpli�cation via Schouten identities:

S−+−3 =
[n2]

[n1][12]

⟨13⟩

⟨12⟩⟨23⟩

[24]

[23][34]
(1 − [

⟨1n⟩[n2]⟨23⟩

sn123⟨13⟩
+

[2n]⟨n∣k1 + k3∣2]⟨23⟩[34]

s123sn123[24]
(4.3.17)

+
[n1]⟨13⟩[32]

s123[n2]
+

⟨1n⟩[n2]⟨23⟩ [23]⟨3n⟩[n4]

⟨13⟩sn12sn123[24]
+ {

n ↔ 4

1 ↔ 3
}]) .

Similarly, the case (+−−) with an appropriate choice of reference spinors and after some simpli�cation

via Schouten identities yields

S+−−3 =
⟨n2⟩

⟨n1⟩⟨12⟩

[14]

[12][23][34]
(1 −

⟨n1⟩[14]⟨42⟩

s1234⟨n2⟩
−

[1n]⟨n∣k2 + k3∣4]

sn123[14]
−

[1n]⟨n2⟩[23]⟨3n⟩[n4]

sn12sn123[14]

−
⟨n1⟩[1∣k2 + k3∣4⟩[43]⟨32⟩

s123s1234⟨n2⟩
−
sn1[12]⟨23⟩[34]

s123sn123[14]
+

⟨n1⟩[13]⟨32⟩ [1n]⟨n3⟩[34]

⟨n2⟩s123sn123[14]
) . (4.3.18)

The trivial helicity con�guration (+ + +) as expected reduces to S+++3 = ⟨n4⟩
⟨n1⟩⟨12⟩⟨23⟩⟨34⟩

, and all other

helicity con�gurations are obtained from the above by symmetry and complex conjugation. An

overall factor of 23/2 is suppressed in the above expressions per spinor helicity convention.

As before, (4.3.12) is expected to hold. Making use of the GGT package [117] to generate

explicit lower point amplitudes we can form ratios that correspond to the soft factor in appropriate

soft kinematics. Generating a numeric kinematic point such that kµ1 , k
µ
2 and kµ3 have soft entries of

order 10−10 while the rest of the momenta have hard entries of order 100, we observe that i.e.

∣S−++3 ∣ = ∣
23/2A7(1

−,2+,3+,4+,5+,6−,7−)

A4(4+,5+,6−,7−)
∣, ∣S+−+3 ∣ = ∣

23/2A7(1
+,2−,3+,4+,5+,6−,7−)

A4(4+,5+,6−,7−)
∣, etc.

hold to at least the �rst 10 digits, after which the �rst sub-leading correction in τ becomes important.

Again, ratios of more complicated amplitudes yield the same agreement.
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4.3.4 Four-soft gluons factor S4 and beyond

For m = 4, there are three soft scattering equations (4.2.21) for each r, and the number of solutions

organizes as follows for the di�erent solution types and di�erent values of r:

solution type r = 1 r = 2 r = 3 r = 4 r = 5

ξ̄1 ∼ ξ̄2 ∼ ξ̄3 ∼ O(1) 5 2 1 2 5

ξ̄i ∼ ξ̄j ∼ O(1), ξ̄l ∼ O(τ) 8 2 2 2 8

ξ̄i ∼ O(1), ξ̄j ∼ ξ̄l ∼ O(τ) 5 2 1 2 5

ξ̄1 ∼ ξ̄2 ∼ ξ̄3 ∼ O(τ) 6 0 0 0 6

, (4.3.19)

where we imply i ≠ j, i ≠ l, j ≠ l and i, j, l ∈ {1,2,3}. With the generalization (4.3.21) in mind,

we expect that the contributions for cases r = 2,3,4 can be constructed from previously determined

quantities (4.3.2), (4.3.10) and (4.3.16). That is easily veri�ed numerically by obtaining and sum-

ming over explicit approximate solutions to the soft scattering equations (4.2.21) in some example

kinematics. This con�rms that the structure

S4 = P
(4)
1,2,3,4,5P

(0)
n − P

(3)
2,3,4,5P

(1)
1,n + P

(2)
3,4,5P

(2)
2,1,n − P

(1)
4,5 P

(3)
3,2,1,n + P

(0)
5 P

(4)
4,3,2,1,n (4.3.20)

continues to hold. Trying to obtain P
(4)
1,2,3,4,5 for r = 1 (and r = 5) we discover that �nding the 12

solutions of the type ξ̄1 ∼ ξ̄2 ∼ ξ̄3 ∼ O(τ) is equivalent to solving for the roots of two 6th degree

polynomials. Therefore, an analytic solution cannot be obtained in this direct fashion.

Based on the knowledge of previous analytic results found so far, we could try to infer the pole

structure of all the di�erent terms appearing in P
(4)
1,2,3,4,5, e�ectively constructing the result without

solving the soft scattering equations. This works reasonably well for some of the appearing terms

such as ε1 ⋅ k2ε2 ⋅ k3ε3 ⋅ k4ε4 ⋅ k5, for which the correct contribution can be guessed (and numerically

checked) to be given by:

16
ε1 ⋅ k2ε2 ⋅ k3ε3 ⋅ k4ε4 ⋅ k5

s1234s12345
((

1

s12
+

1

s23
)

1

s123
+

1

s12s34
+ (

1

s23
+

1

s34
)

1

s234
) ,

or terms like ε1 ⋅ k2ε2 ⋅ k3ε3 ⋅ ε4 with the correct guess for the contribution being:

8
ε1 ⋅ k2ε2 ⋅ k3ε3 ⋅ ε4

s1234
(

1

4
−

s45

s12345
)((

1

s12
+

1

s23
)

1

s123
+

1

s12s34
+ (

1

s23
+

1

s34
)

1

s234
) .

However, P
(4)
1,2,3,4,5 also contains terms such as ε3 ⋅ ε4ε1 ⋅ k2ε2 ⋅ k5 or ε1 ⋅ ε2ε3 ⋅ ε4 for which the pole
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structure is unclear since these patterns did not appear before. Even though an analytic solution is

thus not available, we can still check numerically that (4.2.19) is correct.

Using (4.3.5) and (4.3.6) to pass to spinor helicity formalism in four dimensions, (4.3.12) is again

expected to hold. Therefore, we generate a numeric kinematic point such that kµ1 , k
µ
2 , k

µ
3 and kµ4

have soft entries of order 10−10 while the rest of the momenta have hard entries of order 100. Now we

can solve (4.2.21) numerically and obtain the numeric soft factor S4 as a sum over all 64 solutions.

Subsequently, making use of the GGT package [117], we can generate explicit amplitude ratios and

observe that e.g.

∣S−+++4 ∣ = ∣
4A8(1

−,2+,3+,4+,5+,6+,7−,8−)

A4(5+,6+,7−,8−)
∣, ∣S−+−+4 ∣ = ∣

4A8(1
−,2+,3−,4+,5+,6+,7−,8−)

A4(5+,6+,7−,8−)
∣, etc.

hold to at least the �rst 10 digits, after which the �rst sub-leading correction in τ becomes important.

As before, ratios of more complicated amplitudes yield the same agreement.

For even higher m, the soft scattering equations (4.2.21) become more and more complicated,

so that even numeric evaluation becomes increasingly harder to do. However, in principle the m-

soft gluon factor is always given by the CHY type expression summarized by (4.2.19), (4.2.21) and

(4.2.22), valid to leading order in τ .

4.3.5 Conclusion and general structural pattern

The above �ndings are of interest since they prove the existence of a universal soft factor for any

number of soft adjacent gluons and in principle provide a way to calculate these soft factors in

arbitrary dimension. As a byproduct we obtained an explicit analytic result for the three-soft gluon

factor for arbitrary polarizations and in arbitrary dimension, which to our knowledge is a new result.

Considering the particular results for m = 1,2,3,4 discussed above, we can infer a generalization

for the structural pattern at arbitrary m to be given by:

Sm =
m+1

∑
r=1

(−1)r+1P
(m+1−r)
r,r+1,...,m,m+1P

(r−1)
r−1,r−2,...,1,n. (4.3.21)

In essence, if all soft factors Sa with a < m for a �xed m are known, then all contributions to Sm

with 1 < r < m + 1 are constructed from the lower point results, while the summand14 r = 1 equals

14Or alternatively the summand r =m + 1, which is related by simple index exchange.
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the only previously unknown contribution P
(m)
1,2,...,m,m+1. In general we de�ne P

(0)
m+1 = P

(0)
n ≡ 1 and

P
(i)
1,2,...,i,i+1 =∫ dν1

1

∏
i+1
c=2 σ̄c−1,c

Pf (ψ
(i+1)
[1,i] ) . (4.3.22)

In this sense, it su�ces to evaluate only the r = 1 summand of (4.2.19) to obtain all new information

at a given m.15

The above conjecture is inferred empirically, and it seems to be highly non-trivial to demonstrate

the factorization of each summand of (4.2.19) into (4.3.21) analytically. While the structure of the

Pfa�an admits such a factorization, the Parke-Taylor like factor as well as the multiplicative term

remaining from the contour deformation in ρ are not convenient. This implies the necessity of a

transformation along the lines of (4.2.1) with a non-trivial Jacobian, which is not easily guessed. We

leave a general proof of the conjecture (4.3.21), (4.3.22) to future work.

4.4 Multi-soft factors in other theories

It is possible to directly apply the procedure described above to several other theories in CHY

formulation. An important feature that largely governs the computations is the presence of at least

one Parke-Taylor factor

C ≡
1

σ12σ23...σn1
(4.4.1)

in the CHY integrand of the amplitude, such that the amplitude in question is color ordered. The

theories considered in this section have this same feature. As further building blocks we will require

the sub-matrix A de�ned in (4.1.3), the matrix Ψn+1,n+2,...,n+q
n+1,n+2,...,n+q which is (4.1.3) with rows and columns

n + 1, n + 2, ..., n + q dropped, and the matrix

χ =

⎧⎪⎪
⎨
⎪⎪⎩

δIa,Ib

σab

0

;

;

a ≠ b

a = b
, (4.4.2)

where Ia, Ib are some internal space indices for scalar �elds involved in the scattering process [10].

Since these indices have no non-trivial e�ect on the momentum dependence of soft factors, we will

consider the simplest case where Ia = Ib for all particle labels a, b , such that δIa,Ib = 1.

15There seems to be no obstruction to assuming that a similar pattern should appear for soft theorems e.g. in the
other theories discussed below as well, where appropriate.
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4.4.1 Multi-soft factors in bi-adjoint scalar φ3 theory

The CHY formula for tree level scattering in bi-adjoint scalar φ3 theory can be written as (4.1.1) [5]

with IYMn replaced by

I
φ3

n = C
2. (4.4.3)

Starting with this integrand, the considerations in sections 4.1 and 4.2 go through in the same

manner, such that we are left with the following general expression for the m-soft scalar factor with

particles 1,2, ...,m going soft:

Sφ
3

m =
m+1

∑
r=1
∫ dνr

1

∏
m+1
c=1
c≠r

(σ̄c−1,c)
2
, (4.4.4)

with dνr given in (4.2.20), and the identi�cation σ0 ≡ σn. As in the gluon case, the soft scattering

equations contained in dνr can be explicitly solved for the cases m = 1,2,3, with exactly the same

solutions. At leading order in the soft limit this leads to

Sφ
3

1 =
1

kn ⋅ k1
+

1

k1 ⋅ k2
, (4.4.5)

Sφ
3

2 =
1

k1 ⋅ k2
(

1

kn ⋅ (k1 + k2)
+

1

(k1 + k2) ⋅ k3
) , (4.4.6)

Sφ
3

3 =
2

s123
(

1

k1 ⋅ k2
+

1

k2 ⋅ k3
)(

1

kn ⋅ (k1 + k2 + k3)
+

1

(k1 + k2 + k3) ⋅ k4
) . (4.4.7)

It is worth noticing that all contributions to the soft factors at leading order in the soft limit are

due to the two summands r = 1 and r = m + 1 only, while the intermediate summands are sub-

leading. As before, the general expression Sφ
3

m can be used to evaluate Sφ
3

4 and higher soft factors

numerically. We tested the results numerically against amplitude ratios in CHY formulation and

found agreement.

4.4.2 Multi-soft factors in Yang-Mills-scalar theory

The CHY formula for tree level scattering in Yang-Mills-scalar theory is (4.1.1) with IYMn replaced

by

I
YMS
n = 2C Pf(χ)

(−1)i+j

σij
Pf(Ψi,j,n+1,n+2,...,n+q

i,j,n+1,n+2,...,n+q), (4.4.8)
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where matrix χ is q × q dimensional (4.4.2), and 1 ≤ i < j ≤ n can be selected arbitrarily [10]. This

corresponds to the �rst q of the scattering particles being scalars and the remaining n − q being

gluons.

Starting with this integrand, the considerations in sections 4.1 and 4.2 go through in the same

manner. Soft gluon factors in this theory are exactly the same as in pure Yang-Mills. The general

expression for the m-soft scalar factor with particles 1,2, ...,m going soft amounts to:16

SYMS
m =

m+1

∑
r=1
∫ dνr

1

∏
m+1
c=1
c≠r

σ̄c−1,c

Pf(χ[1,r−1])Pf(χ[r,m])Pf(A[1,r−1])Pf(A[r,m]), (4.4.9)

with dνr given in (4.2.20), and the identi�cation σ0 ≡ σn. The matrix A[i,j] was de�ned in (4.2.22),

and the matrix χ[i,j] relates to χ in (4.4.2) the same as A[i,j] relates to A in (4.1.3). As in the gluon

case, the soft scattering equations contained in dνr can be explicitly solved for the cases m = 1,2,3,

with exactly the same solutions. However, since Pf(χ[i,j]) vanishes when χ[i,j] is of odd dimension,

only soft factors with an even number m of soft scalars are non-zero and only summands of odd r

contribute. At leading order in the soft limit this leads to

SYMS
2 =

1

2k1 ⋅ k2
(
kn ⋅ (k2 − k1)

kn ⋅ (k1 + k2)
+

(k1 − k2) ⋅ k3

(k1 + k2) ⋅ k3
) . (4.4.10)

This agrees with the result in [75]. As before, the general expression SYMS
m can be used to evaluate

SYMS
4 and higher soft factors numerically. We tested the results numerically against amplitude

ratios in CHY formulation and found agreement.

4.4.3 Multi-soft factors in non-linear sigma model

The CHY formula for tree level scattering in non-linear sigma model is (4.1.1) with IYMn replaced

by

I
NLSM
n = C

4

(σij)2
Pf(Ai,ji,j)

2, (4.4.11)

where Ai,ji,j is the matrix A de�ned in (4.1.3) with rows and columns i, j removed, and 1 ≤ i < j ≤ n

can be selected arbitrarily [10].

Starting with this integrand, the considerations in sections 4.1 and 4.2 go through in the same

16Again, we introduce the convention Pf(χ
[i,j]) = Pf(A[i,j]) ≡ 1 when i > j.
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manner. The general expression for the m-soft factor with particles 1,2, ...,m going soft amounts to:

SNLSMm =
m+1

∑
r=1
∫ dνr

1

∏
m+1
c=1
c≠r

σ̄c−1,c

Pf(A[1,r−1])
2Pf(A[r,m])

2, (4.4.12)

with dνr given in (4.2.20), and the identi�cation σ0 ≡ σn. The matrix A[i,j] was de�ned in (4.2.22).

As in the gluon case, the soft scattering equations contained in dνr can be explicitly solved for the

cases m = 1,2,3, with exactly the same solutions. However, since Pf(A[i,j]) vanishes when A[i,j] is

of odd dimension, only soft factors with an even number m of soft particles are non-zero and only

summands of odd r contribute. At leading order in the soft limit this leads to

SNLSM2 =
1

2
(
kn ⋅ (k2 − k1)

kn ⋅ (k1 + k2)
+

(k1 − k2) ⋅ k3

(k1 + k2) ⋅ k3
) . (4.4.13)

This agrees with the result in [75]. As before, the general expression SNLSMm can be used to evaluate

SNLSM4 and higher soft factors numerically. We tested the results numerically against amplitude

ratios in CHY formulation and found agreement. Additionally, our SNLSM4 numerically agrees with

the result found in [119].17

4.5 CSW recursion for multi-gluon soft-factors in four dimen-

sions

As an alternative to the construction rules presented in [114], we can set up a CSW type re-

cursion [118] for the m-soft factors in four dimensions as follows. We start with the amplitude

A(m)(k+1
n , k

h1

1 , ..., khmm , k+1
m+1), where k

hi
i denotes the external momentum of the i-th particle with

helicity hi ∈ {+1,−1}. Here we have cyclically rotated the n-th position to be the �rst, and sup-

pressed all entries k
hj
j with m + 1 < j < n since they do not enter the soft factor that we want to

extract from this amplitude. Since the helicities of particle n and m+ 1 do not enter the soft factor,

we can choose these helicities to be + without loss of generality. The superscript (m) keeps track of

the number of adjacent external momenta that are taken soft.

In order to obtain the soft factor from CSW recursion, we have to generate all possible diagrams

17Note a typo in eq. (4.10) of [119]: The numerator of last expression on the �rst line should involve q5 ⋅ k1 instead
of q4 ⋅ k1.
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in MHV expansion. To do this recursively, we introduce the following two functions:

S (A(m)
(k
hq1
q1 , k

hq2
q2 , ..., k

hql
ql )) = (4.5.1)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∑
ν=±1

l−1

∑
i=1

l

∑
j=i+1
j−i<l−1

H(Aj−i+2(k
hqi
qi , ..., k

hqj
qj , k−νp(qi,...,qj)))

1

P 2
qi,...,qj

×

×S(A(m)
(k
hq1
q1 , ..., k

hqi−1
qi−1 , k+νp(qi,...,qj), k

hqj+1
qj+1 , ..., k

hql
ql ))

; if
l

∑
a=1

hqa < l,

A(m)
(k
hq1
q1 , k

hq2
q2 , ..., k

hql
ql ) ; otherwise,

as well as, making use of µ(x) ≡mod(x − 1, l) + 1, the function:

H (Al(k
hq1
q1 , k

hq2
q2 , ..., k

hql
ql )) = (4.5.2)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

l

∑
i=1

i+l−3

∑
j=i+1

H(Aj−i+2(k
hqµ(i)
qµ(i) , ..., k

hqµ(j)
qµ(j) , k−1

p(qµ(i),...,qµ(j))))
1

P 2
qµ(i),...,qµ(j)

×

×H(Al+i−j(k
hqµ(j+1)
qµ(j+1) , ..., k

hqµ(l+i−1)
qµ(l+i−1) , k+1

p(qµ(j+1),...,qµ(l+i−1))))

; if
l

∑
a=1

hqa < l − 4,

Al(k
hq1
q1 , k

hq2
q2 , ..., k

hql
ql ) ; otherwise.

We supplement the above functions with the following resolution properties:

p(i, ..., j, p(a, ..., b), u, ..., v) =p(i, ..., j, a, ..., b, u, ..., v), (4.5.3)

p(i, ..., j, r, a, ..., b, r, u, ..., v) =p(i, ..., j, a, ..., b, u, ..., v), (4.5.4)

P 2
i,...,j,p(a,...,b),u,...,v =P

2
i,...,j,a,...,b,u,...,v, (4.5.5)

P 2
i,...,j,r,a,...,b,r,u,...,v =P

2
i,...,j,a,...,b,u,...,v, (4.5.6)

which ensure that the explicit propagator momenta always are properly resolved in terms of external

momenta. Naturally, the order of indices i, ..., j appearing in p(i, ..., j) and P 2
i,...,j is irrelevant and

can be assumed to be sorted to make it easier to identify and group together identical expressions.

It is important to note that the sums in the functions (4.5.1) and (4.5.2) may contain summands

that immediately vanish due to trivial helicity con�gurations of sub-amplitudes involved that enter

the H function.18 Setting such summands to zero directly without allowing for any recursion depth

in such terms greatly speeds up the calculation.

18By trivial helicity con�guration we mean amplitudes with none, or only one negative helicity gluon, as well as
amplitudes with none, or only one positive helicity gluon (special care is required for 3-point amplitudes due to special
kinematics).
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Recursion by means of (4.5.1) and (4.5.2) with the above supplements will generate all possible

diagrams in MHV expansion that contribute to leading order in the soft limit. However, the simple

summation employed here comes at the expense of multiple counting for some of the resulting

diagrams. The easiest way to remove the over-counting is to simply set the integer coe�cient in

front of each overall summand to 1 after the recursion has been completed and all terms have been

properly grouped together:

S′ ≡ S with multiplicity of each overall summand set to 1, (4.5.7)

which implies that invariance of amplitudes under cyclic permutation of external legs is used to

identify and group together equivalent terms in the expansion. This, as well as the entire recursive

procedure, can be easily automated i.e. in Mathematica, such that the m-soft factor Sm for any

helicity con�guration is automatically generated by the input:

Sm = S′ (A(m)
(k+1
n , k

h1

1 , ..., khmm , k+1
qm+1

)) . (4.5.8)

Finally, to evaluate the soft factor we use the substitutions

A(m)
(k+1
q1 , k

+1
q2 , ..., k

+1
ql

) →
⟨n − 1, n⟩⟨n,m + 1⟩⟨m + 1,m + 2⟩

⟨n − 1, q1⟩ (∏
l−1
i=1⟨qi, qi+1⟩) ⟨ql,m + 2⟩

, (4.5.9)

Al(k
+1
q1 , ..., k

+1
qi−1 , k

−1
qi , k

+1
qi+1 , ..., k

+1
qj−1 , k

−1
qj , k

+1
qj+1 , ..., k

+1
ql

) →
⟨qi, qj⟩

4

⟨ql, q1⟩∏
l−1
i=1⟨qi, qi+1⟩

, (4.5.10)

where entries like ∣p(i, ..., j)⟩ are evaluated by the usual CSW replacement Pi,...,j ∣X] with reference

spinor ∣X]. Super�cially, due to (4.5.9) it might seem that the soft factor depends on (n− 1)-st and

(m + 2)-nd external momentum as well. However, just as in [114], this dependence always cancels

out upon the CSW replacement of the shifted spinors at leading order in τ .

We have tested the above recursive procedure for soft factors S1, S2, ..., S7 with various helicity

con�gurations against appropriate amplitude ratios obtained from the GGT package [117], and found

numerical agreement at leading order in τ . For example, our recursion takes about two minutes to

generate the 2277 di�erent analytic terms in the S−−−−−−+7 soft factor. If required, a trivial further

expansion in τ can be used to isolate leading terms only.
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4.6 Four-soft gluons from BCFW

Naturally, it is also possible to apply BCFW recursion relations [3] to compute higher soft factors.

Here we demonstrate the four-soft gluon calculation. We pick gluons 1,2,3,4 to be soft and perform

a [23⟩ BCFW shift, so that 2→ 2̂ and 3→ 3̂ with

∣2̂⟩ = ∣2⟩ , ∣2̂] = ∣2] + z∣3] , ∣3̂⟩ = ∣3⟩ − z∣2⟩ , ∣3̂] = ∣3]. (4.6.1)

It is trivial to see that under this shift only the following four diagrams could possibly contribute to

the leading soft factor with any helicity con�guration:

S4,A =A4(n,1, 2̂,−P̂n12)
1

sn12
S2(P̂n12, 3̂,4,5), (4.6.2)

S4,B =A3(1, 2̂,−P̂12)
1

s12
S3(n, P̂12, 3̂,4,5), (4.6.3)

S4,C =A4(−P̂345, 3̂,4,5)
1

s345
S2(n,1, 2̂, P̂345), (4.6.4)

S4,D =A3(−P̂34, 3̂,4)
1

s34
S3(n,1, 2̂, P̂34,5), (4.6.5)

while the complete four-soft gluon factor is given by

S4 = S4,A + S4,B + S4,C + S4,D (4.6.6)

in each case. Here, A3,A4 are mostly-soft-leg sub-amplitudes factored by BCFW, and S2, S3 are two-

and three-soft gluon factors that are extracted from the mostly-hard-leg sub-amplitudes factored by

BCFW. The usual on-shell constraints P̂ 2
⋯ = 0 provide the following z values to leading order in the

soft limit:19

zA =
−sn12

⟨2n⟩[n3]
, zB = −

[12]

[13]
, zC =

s345

⟨25⟩[53]
, zD =

⟨34⟩

⟨24⟩
. (4.6.7)

In case when all four soft gluons have the same helicity, the four-soft factor trivially reduces to a

product of consecutive soft factors. In the following, we specify explicit helicity con�gurations and

obtain the results for all analytically distinct non-trivial helicity con�gurations.

19We use the convention sij = ⟨ij⟩[ji], which with our spinor contraction conventions (⟨ij⟩ = λ1
i λ

2
j − λ

2
i λ

1
j and

[ij] = λ̃2
i λ̃

1
j − λ̃

1
i λ̃

2
j ) corresponds to (+,−,−,−) Minkowski metric signature.
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Helicity con�guration (− + ++):

For the helicity con�guration of soft gluons (1−,2+,3+,4+) we �nd:

S−+++4,A =
[3n]3⟨1n⟩3⟨5n⟩

sn12sn123⟨1 2⟩⟨4 5⟩⟨n∣k12∣3]⟨4∣kn123kn1∣2⟩
, (4.6.8)

S−+++4,B =
[2 3]3⟨n5⟩

s123[1 2]⟨4 5⟩⟨4∣k23∣1]⟨n∣k12∣3]
, (4.6.9)

S−+++4,C = 0, (4.6.10)

S−+++4,D =
⟨n5⟩⟨4∣k23∣n]

3

⟨2 3⟩⟨3 4⟩⟨4 5⟩[n1]⟨4∣k23∣1]⟨4∣k123∣n]⟨2∣kn1kn123∣4⟩
+ (4.6.11)

+
⟨1 5⟩3[n5]

s12345⟨1 2⟩⟨2 3⟩⟨3 4⟩⟨4 5⟩⟨5∣k1234∣n]
+

⟨n5⟩⟨1∣k234∣n]
3

s1234sn1234⟨1 2⟩⟨2 3⟩⟨3 4⟩⟨4∣k123∣n]⟨5∣k1234∣n]
.

To see that the diagram C is zero, we use the fact that the soft factor is independent of the helicity

of particle 5, thus we can choose it to be 5+ which leads to no non-vanishing helicity con�gurations

for A4. In all other diagrams only one helicity con�guration is non-vanishing. We tested the above

result numerically against amplitude ratios and found agreement.

Helicity con�guration (+ − ++):

For the helicity con�guration of soft gluons (1+,2−,3+,4+) we �nd:

S+−++4,A =
[3n]3⟨2n⟩4⟨5n⟩

sn12sn123⟨1 2⟩⟨4 5⟩⟨1n⟩⟨n∣k12∣3]⟨4∣kn123kn1∣2⟩
, (4.6.12)

S+−++4,B =
[1 3]4⟨n5⟩

s123[1 2][2 3]⟨4 5⟩⟨4∣k23∣1]⟨n∣k12∣3]
, (4.6.13)

S+−++4,C = 0, (4.6.14)

S+−++4,D =
⟨5n⟩

⟨2 3⟩⟨3 4⟩⟨5∣k234∣1]
(

[1 5]3⟨2 5⟩4

s12345s2345⟨4 5⟩⟨2∣k345k12345∣n⟩
+

⟨2∣k34∣1]
4

s1234s234⟨4∣k23∣1]⟨2∣k34k1234∣n⟩
)

+
⟨2n⟩3

⟨1 2⟩⟨2 3⟩⟨3 4⟩⟨1n⟩⟨2∣kn1kn1234∣5⟩
(

⟨2 5⟩3[n5]

⟨4 5⟩⟨2∣k345k12345∣n⟩
+

⟨2n⟩⟨5n⟩⟨2∣k34∣n]
3

sn1234⟨2∣kn1kn123∣4⟩⟨n∣k1234k34∣2⟩
) .

(4.6.15)

Diagram C vanishes the same way as described above. In all other diagrams again only one helicity

con�guration is non-vanishing. We tested the above result numerically against amplitude ratios and

found agreement.
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Helicity con�guration (+ − −+):

For the helicity con�guration of soft gluons (1+,2−,3−,4+) we �nd:

S+−−+4,A =
⟨2n⟩3

sn12⟨1 2⟩⟨1n⟩⟨n∣k12∣3]⟨2∣kn1kn1234∣5⟩
(
[4n]3⟨2n⟩⟨5n⟩

sn1234[3 4]
+ (4.6.16)

+
[5n]⟨2∣kn1kn123∣5⟩

3

⟨4 5⟩⟨2∣kn1kn123∣4⟩ (s345[3n]⟨2n⟩ + sn12[3 5]⟨2 5⟩)
)

S+−−+4,B =
⟨n∣k23∣1]

3

s123[1 2][2 3]⟨n∣k12∣3] (⟨5∣k1234∣n]⟨n∣k23∣1] − ⟨5n⟩[1∣k23k123∣n])
× (4.6.17)

× (
[4n]3⟨5n⟩⟨n∣k23∣1]

sn123sn1234⟨n∣k123∣4]
+

[5n]⟨5∣k23∣1]
3

⟨4 5⟩⟨4∣k23∣1] ([4 5]⟨5n⟩⟨4∣k23∣1] + ⟨5∣k23∣1]⟨n∣k1234∣5])
)

+
1

[1 2][2 3]⟨5∣k234∣1]
(

[1 4]4⟨5n⟩

s1234[3 4]⟨n∣k123∣4]
+

+
[1 5]3⟨n5⟩⟨5∣k23∣1]

4

s12345⟨4 5⟩⟨4∣k23∣1][1∣k2345k45∣3] ([4 5]⟨5n⟩⟨4∣k23∣1] + ⟨5∣k23∣1]⟨n∣k1234∣5])
) ,

S+−−+4,C =
[4 5]3⟨2 5⟩3

s345[3 4]⟨2∣k34∣5]⟨2∣k345k12345∣n⟩
(

[1 5]3⟨2 5⟩⟨n5⟩

s12345s2345[1∣k2345k45∣3]
+ (4.6.18)

+
[n5]⟨2n⟩3

⟨1 2⟩⟨1n⟩ (s345[3n]⟨2n⟩ + sn12[3 5]⟨2 5⟩)
) ,

S+−−+4,D =
⟨2 3⟩3

s234⟨3 4⟩⟨4∣k23∣1]⟨n∣k1234∣5]
(

[n5]⟨n∣k234∣1]
3

s1234sn1234⟨2∣k34k1234∣n⟩
+

[1 5]3⟨n5⟩

s12345⟨2∣k34∣5]
) (4.6.19)

+
⟨2 3⟩3[n5]⟨2n⟩3

⟨1 2⟩⟨3 4⟩⟨1n⟩⟨2∣k34∣5]⟨4∣kn123kn1∣2⟩⟨2∣k34k1234∣n⟩
.

In all diagrams again only one helicity con�guration is non-vanishing. We tested the above result

numerically against amplitude ratios and found agreement.

Helicity con�guration (− − ++):

For the helicity con�guration of soft gluons (1−,2−,3+,4+) we �nd:

S−−++4,A =
⟨1 2⟩3[3n]3⟨5n⟩

sn12sn123⟨4 5⟩⟨1n⟩⟨n∣k12∣3]⟨4∣kn123kn1∣2⟩
, (4.6.20)

S−−++4,B =
1

s123[1 2][2 3]⟨4∣k23∣1]⟨5∣k1234∣n]
(

⟨n5⟩[n∣k1234k12∣3]
3

s1234sn1234⟨4∣k123∣n]
+

[5n]⟨5∣k12∣3]
3

s12345⟨4 5⟩
) (4.6.21)

+
[3n]3⟨5n⟩

sn123[1 2][2 3]⟨4 5⟩[1n]⟨4∣k123∣n]
,

S−−++4,C = 0, (4.6.22)

S−−++4,D =
[n5]

⟨2 3⟩⟨3 4⟩⟨5∣k234∣1]
(

⟨2 5⟩3

s2345⟨4 5⟩[1n]
+

⟨2∣k34k1234∣5⟩
3

s1234s12345s234⟨4∣k23∣1]⟨5∣k1234∣n]
) (4.6.23)

+
⟨n5⟩⟨2∣k34∣n]

3

s234sn1234⟨2 3⟩⟨3 4⟩[1n]⟨4∣k23∣1]⟨5∣k1234∣n]
.
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Diagram C vanishes the same way as described above. In all other diagrams again only one helicity

con�guration is non-vanishing. We tested the above result numerically against amplitude ratios and

found agreement.

Helicity con�guration (+ − +−):

For the helicity con�guration of soft gluons (1+,2−,3+,4−) we �nd:

S+−+−4,A =
[3n]3⟨2n⟩4

sn12⟨1 2⟩⟨1n⟩[5∣kn1234kn12∣3]⟨n∣k12∣3]
× (4.6.24)

× (
[3n][5n]⟨4n⟩3

sn123sn1234⟨4∣kn123kn1∣2⟩
+

[3 5]3⟨n5⟩

[3 4][4 5] (s345[3n]⟨2n⟩ + sn12[3 5]⟨2 5⟩)
) ,

S+−+−4,B =
[1 3]4[3 5]3⟨n5⟩

[1 2][2 3][3 4][4 5][3∣k12k1234∣5][1∣k2345k45∣3]⟨n∣k12∣3]
+ (4.6.25)

+
[1 3]4

s123[1 2][2 3]⟨4∣k23∣1]⟨n∣k1234∣5]
(

⟨5n⟩⟨4∣k123∣5]
3

s1234s12345[3∣k12k1234∣5]
+

[5n]⟨4n⟩3

sn1234⟨n∣k12∣3]
) ,

S+−+−4,C =
[3 5]4⟨2 5⟩3

s345[3 4][4 5]⟨2∣k34∣5]⟨n∣k12345k345∣2⟩
× (4.6.26)

× (
[1 5]3⟨2 5⟩⟨5n⟩

s12345s2345[1∣k2345k45∣3]
+

[5n]⟨2n⟩3

⟨1 2⟩⟨1n⟩ (s345[3n]⟨2n⟩ + sn12[3 5]⟨2 5⟩)
) ,

S+−+−4,D =
⟨2 4⟩4[n5]⟨2n⟩3

⟨1 2⟩⟨2 3⟩⟨3 4⟩⟨1n⟩⟨2∣k34∣5]⟨2∣kn1kn123∣4⟩⟨n∣k1234k34∣2⟩
+ (4.6.27)

+
⟨2 4⟩4

s234⟨2 3⟩⟨3 4⟩⟨4∣k23∣1]⟨n∣k1234∣5]
(

[n5]⟨n∣k234∣1]
3

s1234sn1234⟨2∣k34k1234∣n⟩
+

[1 5]3⟨n5⟩

s12345⟨2∣k34∣5]
) .

In all diagrams again only one helicity con�guration is non-vanishing. We tested the above result

numerically against amplitude ratios and found agreement.
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Chapter 5

Polynomial Reduction and Evaluation

of Tree- and Loop-Level CHY

Amplitudes

This chapter is based on the publication [120].

After the amazing discovery of the relation between perturbative gauge theory and twistor string

theory by Witten [121], there have been several developments on computing scattering matrices in

various theories from a moduli space on a punctured sphere [122, 123, 124, 125, 126]. Cachazo, He

and Yuan (CHY) proposed the equations governing the map from the space of kinematic invariants

to the moduli space to be the same in each case and independent of the particular spacetime di-

mension. This led them to search for a more general formulation of scattering matrices in arbitrary

dimension. Deriving some inspiration from a formula for MHV gravity amplitudes due to Hodges

[127, 128, 129], CHY went on to discover their new formulation for amplitudes in a range of theories

in [7, 5, 8], and later [9, 10]. This so called CHY formulation produces tree level n-point scattering

amplitudes for massless particles in arbitrary dimension by means of (n − 3) moduli integrations

localizing so called scattering equations. The scattering equations �rst appeared in the work of

Fairlie and Roberts [130, 131], and later Gross and Mende [132], as well as more recently Witten

[133], and from the string theory classical worldsheet perspective in1 [134, 135]. Soon after the CHY

equations made their appearance, the scalar and gluon cases were proven directly [136] by means of

BCFW recursion relations [3, 4]. Subsequently generalizations appeared, extending the formulation

1The author thanks P. Caputa for pointing out this last point.
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in terms of scattering equations to involve i.e. massive particles [136, 137, 138, 139], fermions [140],

supersymmetric theory [141, 142], one-loop amplitudes [143, 144, 145], QCD related amplitudes

[146], o�-shell amplitudes [147], or comparison to a string theory setting [148, 149, 150].

The most direct approach to evaluate amplitudes in CHY formulation was to try and �nd solutions

to the scattering equations in general [151, 152], or solve at special kinematics [153, 154]. The

scattering equations could also be reformulated in a polynomial form [11, 12]. However, it became

clear that solving scattering equations is very non-trivial and is not the most convenient way of

evaluating amplitudes. Subsequently, techniques that avoid explicit solving of scattering equations

started to emerge [155]. Contour deformations in the moduli integrals led to diagrammatic prescrip-

tions that can be used to evaluate separate amplitude building blocks [156, 157, 158, 159, 160]. An

algebraic approach to evaluating scattering amplitudes in CHY formulation involving so-called com-

panion matrices was suggested in [161]. For a comparison of this method with an elimination theory

based technique see [162]. One further algebraic technique involving polynomial inversion of moduli

di�erences on the support of the ideal spanned by scattering equations, as well as the Bezoutian

matrix to evaluate amplitudes was presented in [163]. Elimination theory was applied to scattering

equations in polynomial form to obtain single variable polynomials [164, 165]. Loop level integrands

have been shown to follow from higher dimensional massless tree-level amplitudes [166, 167]. Some

further progress on evaluating CHY amplitudes was made in [168], diagrammatic techniques were

generalized to compute higher order poles [169], and a double cover deformation of the moduli space

led to evaluation of more general amplitude types as well [170]. Finally, monodromy relations were

applied to Yang-Mills amplitudes in CHY representation to facilitate evaluation [171].

In this work we start by developing a polynomial degree reduction procedure for multivariate poly-

nomials in σ-moduli on the support of gauge �xed scattering equations for any n. As a consequence

we realize that the most general multivariate polynomial in σ-moduli can be reduced to contain what

we call ladder type monomials only, with multivariate degree of at most (n−3)(n−4)
2

and coe�cients

rational in kinematic data. We say such a fully reduced polynomial is of standard form. Application

of Hilbert's strong Nullstellensatz as well as our degree reduction procedure conceptually allows us

to �nd a standard form polynomial expression for rational functions in the σ-moduli. Making use of

the above �ndings, a CHY amplitude integrand of any theory at any n can be converted to a corre-

sponding standard form polynomial. This general structural constraint is one of the main �ndings of

the current work. After the polynomial reduction is carried out, we use the global residue theorem

to derive a prescription to evaluate CHY amplitudes by collecting simple residues at in�nity only.

We note that only highest degree ladder type monomials contribute to any such amplitude integral,
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and since we �nd only simple poles the evaluation step is trivial. The di�culty is shifted towards

�nding standard form polynomial integrands for CHY amplitudes. We demonstrate the prescription

on explicit examples of amplitude integrands at tree and one-loop level.

This chapter is organized as follows. In section 5.1 we review the CHY formulation of tree-level

scattering amplitudes for massless φ3 scalar theory as an example. As a warm up, section 5.2 shows

a �ve point amplitude calculation to motivate our further investigation in section 5.3. Section 5.3.1

describes the degree reduction of multivariate polynomials to the standard form, and section 5.3.2

extends the reduction procedure to rational functions, on the support of gauge �xed scattering equa-

tions. Subsequently, section 5.3.3 describes the global residue theorem based proof for our amplitude

evaluation prescription after polynomial reduction is applied to the integrands. In section 5.3.4 we

give explicit examples on how amplitudes are evaluated making use of our new method. We go

on to consider 1-loop amplitudes in section 5.4, where we determine gauge �xed polynomial scat-

tering equations that are free of singular solutions in the forward limit. Section 5.4.1 contains a

few amplitude evaluation examples at 1-loop. We conclude in section 5.5. Appendix 5.6 suggests

a simple method to generate real rational on-shell momenta based on Euclid's Pythagorean triple

parametrization.

Note

J. Bosma, M. Søgaard and Y. Zhang published a paper with similar results in [172].

5.1 CHY formulation of tree level scattering amplitudes

The Cachazo-He-Yuan (CHY) formulation of tree-level scattering amplitudes for massless particles

in arbitrary dimension was introduced in [7, 5]. In CHY representation, the map of kinematic data

to the moduli space is governed by the rational scattering equations

fa =
n

∑
b=1,b≠a

ka ⋅ kb
σa − σb

∀a ∈ {1,2, ..., n}. (5.1.1)

Dolan and Goddard transformed the original amplitude expression to involve polynomial scattering

equations [11]. In what follows, it will be more convenient for us to work with polynomial scattering

equations, therefore we will use the latter form for i.e. an n-point scalar φ3 amplitude in the examples
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to follow:

An = ∫
⎛
⎜
⎝

n

∏
c=1

c≠q,p,w

dσc
⎞
⎟
⎠
(σqpσpwσwq)

⎛

⎝
∏

1≤i<j≤n
σij

⎞

⎠
(
n−2

∏
a=2

δ (h̃a))
1

(σ12σ23...σn1)
2
. (5.1.2)

Here the indices 1 ≤ q < p < w ≤ n are �xed and can be chosen arbitrarily without changing the

result. Minkowski momenta of scattering external particles are denoted ki, and the di�erence of

moduli is abbreviated as σij = σi − σj . There are n − 3 moduli integrations and the same amount

of delta functions, such that the integral reduces to a sum over the solutions to the system of the

scattering equations in the delta function arguments

h̃i ≡ ∑
{q1,...,qi}⊂{1,2,...,n}

sq1,...,qi

i

∏
j=1

σqj = 0. (5.1.3)

In this formula the summation is over all possible unordered subsets of i di�erent numbers {q1, ..., qi}

out of the integer sequence from 1 to n. Due to momentum conservation and massless on-shell

conditions, the kinematic variables

sq1,...,qi =
1

2

⎛

⎝

i

∑
j=1

kqj
⎞

⎠

2

(5.1.4)

are only non-zero when at least 2 or at most n − 2 indices are provided. Therefore, exactly n − 3

scattering equations (5.1.3) from h̃2 through h̃n−2 are nontrivial.

In the following we will be working with the particular gauge choice σ1 = ∞, σ2 = 0 and σ3 = 1 for

convenience. For this purpose we de�ne the gauge �xed polynomial scattering equations:

hi ≡ ( lim
σ1→∞

1

σ1
h̃i+1) ∣σ2=0

σ3=1
= 0 , ∀i ∈ {1,2, ..., n − 3}. (5.1.5)

Correspondingly, we will �x the free indices in (5.1.2) as q = 1, p = 2,w = 3.

5.2 Warm up: �ve point tree level scalar amplitude

At �ve points we have two scattering equations:

h1 =σ4s1,4 + σ5s1,5 + s1,3 = 0,

h2 =σ4σ5s2,3 + σ5s2,4 + σ4s2,5 = 0.
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The gauge �xed scattering amplitude for scalars becomes

Aφ
3

5 = ∮
dσ4dσ5

h1h2

σ4σ5 (1 − σ5)

(1 − σ4) (σ4 − σ5)
, (5.2.1)

where the delta functions have been mapped to simple poles as usual, and the integration contour is

such that both poles are localized. We would like to transform the integrand such that an evaluation

via contour deformation becomes simpler. For that end, consider the following equality

σ4σ5 (1 − σ5) ≙ (1 − σ4) (σ4 − σ5)N
φ3

5 (5.2.2)

where ≙ shall denote equivalence on the support of scattering equations. Here Nφ3

5 clearly corre-

sponds to the explicit integrand part of (5.2.1). We claim that (5.2.2) can be realized i.e. by the

following Ansatz

Nφ3

5 = c1σ4 + c2σ5. (5.2.3)

To show that this is indeed the case, we can �rst solve h1 = 0 for either σ4 or σ5, and solve h2 = 0

for σ4σ5:

σ4 = −
s1,5

s1,4
σ5 −

s1,3

s1,4
, σ5 = −

s1,4

s1,5
σ4 −

s1,3

s1,5
, (5.2.4)

σ4σ5 = −
s2,4

s2,3
σ5 −

s2,5

s2,3
σ4. (5.2.5)

Then we start with (5.2.2) making use of (5.2.3), expand both sides of the equation, and iterate the

following substitution rules:

1. Whenever we encounter a monomial featuring both σ4 and σ5, we isolate the highest power

of σ4σ5, substitute in the right hand side of (5.2.5) and expand - this leads to an overall

multivariate degree reduction in monomials.

2. Whenever we encounter a monomial featuring σ4 xor σ5 to a power higher than one, we isolate

a single power of σ4 xor σ5 respectively, substitute it by the right hand side of the respective

equation in (5.2.4) and expand - this leads either to an overall degree reduction in monomials,

or to creation of new σ4σ5 terms.
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Iterating the above two steps a few times reduces both sides of (5.2.2) to only the two monomials

σ4 and σ5 with some constant coe�cients.2 Collecting all terms on one side of the equation and

demanding that the overall coe�cients of monomials σ4 and σ5 vanish identically, we obtain a set of

two linear equations in two unknowns c1 and c2. Solving these equations yields one possible solution

for the Ansatz Nφ3

5 , i.e.

c1 =
s1,4s2,5 ((s1,3 + s1,5) s2,4 + s1,4 (s2,3 + 2s2,4 + s2,5))

((s1,3 + s1,4) (s2,3 + s2,4) − s1,5s2,5) (s1,3s2,3 − (s1,4 + s1,5) (s2,4 + s2,5))
,

c2 =
s2,4(s1,3 + s1,4)

s1,5s2,5 − (s1,3 + s1,4) (s2,3 + s2,4)
+

s1,5s2,4

(s1,4 + s1,5) (s2,4 + s2,5) − s1,3s2,3
.

Deforming the integration contours to in�nity consecutively, we �nd only simple poles and get 3

Aφ
3

5 =∮ dσ4dσ5
Nφ3

5

h1h2
=

c1
s1,4s2,3

−
c2

s1,5s2,3
. (5.2.6)

Using momentum conservation and the fact that all external particles are massless, we can re-express

the above in the following familiar form

Aφ
3

5 =
1

s1,2s3,4
+

1

s5,1s2,3
+

1

s4,5s1,2
+

1

s3,4s5,1
+

1

s2,3s4,5
, (5.2.7)

con�rming that the result we found is indeed the correct �ve point massless scalar amplitude in φ3

theory. In the following section we will generalize the above technique to all n.

5.3 Amplitude structure and evaluation prescription

Our plan is to show that any multivariate polynomial on the support of scattering equations can

be written in a speci�c monomial structure we call the standard form. Subsequently, we show that

any rational function that is �nite and non-vanishing on the support of scattering equations can be

written as a standard form polynomial. Lastly, we apply these �ndings to amplitude integrands,

convert them to standard form polynomials and evaluate the amplitude by means of the global

residue theorem while collecting simple pole residues at in�nity only.

2The exact coe�cients are not necessarily unique and might depend on the order of substitutions during the
reduction.

3In what follows, we give more details on this, from the point of view of global residue theorem.
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5.3.1 Degree reduction of polynomials to a standard form

In this section we start with an arbitrary multivariate polynomial N in the n− 3 di�erent σ-moduli

that are not gauge �xed (substitute n → n + 2 everywhere for 1-loop), and show that any such

polynomial can be degree reduced to a very speci�c form.

Conventions: Consider a generic monomial M within polynomial N separately:

M = Cσp1q1 σ
p2
q2 ...σ

pmmax
qmmax . (5.3.1)

C is an overall constant, q1 ≠ q2 ≠ ... ≠ qmmax label the di�erent σ-moduli appearing in the monomial

M , while p1, p2, ..., pmmax are the corresponding powers of each σ-modulus. We choose to always

order all σ-moduli within each monomial such that p1 ≤ p2 ≤ ... ≤ pmmax . For convenience we

de�ne p0 ≡ 0 for all M . Since there are at most n − 3 di�erent non-gauge �xed σ-moduli, we have

0 ≤mmax ≤ n − 3 in general.4

De�nition 1: We de�ne a monomial M as introduced in the conventions above to be of ladder

type if its moduli powers satisfy 0 ≤ pj − pj−1 ≤ 1 for all j ∈ {1,2, ...,mmax} when mmax > 0, and i�

additionally the property 0 ≤mmax ≤ n − 4 is satis�ed.

De�nition 2: We de�ne a multivariate polynomial in the non-gauge �xed σ-moduli to be of

standard form if it consists of ladder type monomials only, with coe�cients rational in kinematic

data. See Table 5.1 for some examples of ladder type monomials.

n = 4 n = 5 n = 6
1 1, σ4, σ5 1, σ4, σ5, σ6, σ4σ5, σ4σ6, σ5σ6, σ5σ

2
4 , σ6σ

2
4 , σ6σ

2
5 , σ4σ

2
5 , σ4σ

2
6 , σ5σ

2
6

Table 5.1: Examples of all ladder type monomials for the �rst few n. (σ1, σ2, σ3 gauge �xed.)

Theorem 1: On the support of the ideal spanned by scattering equations, an arbitrary regular

multivariate polynomial N in the n−3 non-gauge �xed moduli, with coe�cients rational in kinematic

data, is equivalent to at least one standard form polynomial N ′ that consists of ladder type monomials

only, with coe�cients rational in kinematic data.

Proof: To prove this we use �ow arguments induced by scattering equation based transformations

in the space of moduli powers within monomials. The arguments consist of the following two steps.

4The case mmax = 0 corresponds to only C being present in (5.3.1).
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Step 1: Reduction of monomials to 0 ≤ pj − pj−1 ≤ 1 for all j ∈ {1,2, ...,mmax}

Consider a generic monomial of an arbitrary polynomial

C σp1q1 σ
p2
q2 ...σ

pj−1
qj−1

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w1 terms

σpjqj ...σ
pmmax
qmmax

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w2 terms

, (5.3.2)

for some �xed 1 ≤ j ≤mmax, ordered as p1 ≤ p2 ≤ ... ≤ pmmax and such that pj − pj−1 > 1, so that the

monomial is non-ladder type. Also note that 0 ≤ (w1 +w2 =mmax) ≤ n − 3. If we want to transform

this monomial into a sum over ladder type monomials, we �rst have to reduce the discrepancy

pj − pj−1 > 1 to 0 ≤ pj − pj−1 ≤ 1. We employ the scattering equations to do that as follows.

The general structure of gauge �xed polynomial scattering equations ha = 0 for a = 1, ..., n−3 is such

that ha features all possible multilinear monomials of degree a and a− 1 respectively. Therefore, we

can solve the scattering equation hw2 = 0 for the monomial σqj ...σqmmax
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
w2 terms

:

σqj ...σqmmax = σqj ...σqmmax −
hw2

(∂σqj ...∂σqmmax hw2)
. (5.3.3)

The derivatives in the denominator isolate the coe�cient of monomial σqj ...σqmmax within hw2 . This

coe�cient is canceled for the corresponding summand in the numerator and the pure monomial is

subtracted. Therefore, the right hand side of (5.3.3) features all possible multilinear monomials of

degree w2 − 1 and all multilinear monomials of degree w2 except for σqj ...σqmmax .

We can now isolate (σqj ...σqmmax )
⌊ pj−pj−12 ⌋ moduli from the w2 terms in (5.3.2), substitute them by

the right hand side of (5.3.3) to the power ⌊
pj−pj−1

2
⌋ and expand.5 Since each multilinear monomial

of a certain degree is unique up to a constant factor, this has the e�ect that in each of the resulting

terms

� the power of at least one modulus in the w2 terms is reduced by at least one,

� the power of at least one modulus in the w1 terms is increased by at least one6, or the overall

degree is reduced.

Since the above guarantees a non-zero �ow in the distribution of σ-moduli powers away from w2

terms either into the w1 terms or into overall degree reduction, iteration of the substitution rule for

all j and each monomial in the resulting terms is bound to reach a �xed point. This �xed point is

straightforwardly given by the state where all monomials obey 0 ≤ pj − pj−1 ≤ 1 for all j ∈ {1,2, ...}

5The notation ⌊x⌋ means the �oor function, returning the biggest integer ≤ x.
6Note that the power of this modulus could have been zero initially.
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within each respective monomial, since then ⌊
pj−pj−1

2
⌋ = 0 for all j and no substitutions can be carried

out any more.

Step 2: Reduction of monomials to mmax ≤ n − 4

After step 1 is applied to all monomials in a polynomial N , it can still contain monomials with the

maximal number of di�erent moduli mmax = n − 3:

Cσp1q1 σ
p2
q2 ...σ

pn−3
qn−3 , (5.3.4)

with p1 = 1 and 0 ≤ pj − pj−1 ≤ 1 for all j ∈ {2,3, ..., n − 3}. Similar to (5.3.3), we can solve the gauge

�xed polynomial scattering equation hn−3 = 0 for the single highest degree multilinear monomial

σq1σq2 ...σqn−3 . Since that yields only multilinear terms of degree n − 4, this necessarily leads to a

degree reduction. We isolate the highest power of σq1σq2 ...σqn−3 from monomials such as (5.3.4),

make the substitution obtained from hn−3 = 0 and expand. Due to the guaranteed degree reduction

in this step, we are again bound to iteratively reach a �xed point. This �xed point is trivially given

by the conditionmmax ≤ n−4 for all resulting monomialsM , since then no highest degree multilinear

monomial can be isolated within the monomials, and therefore no substitutions can be carried out

any more.

Conclusion

Step 1 and 2 above can be applied consecutively and iteratively to an arbitrary multivariate poly-

nomial N . Due to the guaranteed degree reduction in step 2, both �xed points are bound to be

reached simultaneously eventually. Therefore, we have shown that any polynomial N on the support

of scattering equations can be cast into a standard form N ′ containing only ladder type monomials.7

Note that the degrees of the ladder type monomials Mlt are 0 ≤ deg(Mlt) ≤
(n−3)(n−4)

2
at n points.

The full set of pure ladder type monomials at any n is symmetric in all moduli. This homogeneity

follows from the homogeneity of scattering equations that are used to achieve this form.

5.3.2 Polynomial reduction of rational expressions

Theorem 2: On the support of the ideal spanned by the scattering equations, any regular8 mul-

tivariate rational function P
Q

in the n − 3 non-gauge �xed moduli, where P and Q are polynomials

7The coe�cients stay rational in kinematic data since we only used a �nite number of additions and multiplications,
and the coe�cients in the scattering equations are rational as well.

8By regular we mean non-in�nite and non-zero on all solutions to the scattering equations.
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with rational coe�cients in kinematic data, is equivalent to at least one standard form polynomial

N ′ that consists of ladder type monomials only, with rational coe�cients in kinematic data.

Proof: Similar to some ideas of [163], we will make use of Hilbert's Nullstellensatz. Consider

the following equation involving the set of gauge �xed polynomial scattering equations hm and

multivariate polynomials in the σ-moduli P,Q, a and am for m ∈ {1,2, ..., n − 3}

aQ +
n−3

∑
m=1

amhm = P. (5.3.5)

The strong version of the Nullstellensatz guarantees that we can always �nd polynomials a and am

for given polynomials P and Q such that (5.3.5) is satis�ed, as long as the a, am, P and Q do not

share common roots among themselves and with the set of scattering equation polynomials hm.

Considering the situation at the locus of solutions to the scattering equations, this simpli�es to

aQ ≙ P, (5.3.6)

where we use the symbol ≙ to denote equivalence modulo the ideal spanned by the scattering equa-

tions. Thus, a ≙ P
Q
is a polynomial expression for a rational function.9 Due to Theorem 1, a standard

form polynomial N ′ ≙ a must exist, which concludes the proof.

Construction: In the above proof we used the fact that a standard form polynomial N ′ ≙ a must

exist, however the proof was not constructive. To construct an explicit N ′ corresponding to a given

rational function P
Q

we have to work harder. In principle, this step could be realized by various

techniques. Here we will make use of an ad hoc procedure as follows.

Since the ladder type monomials span a complete polynomial basis with rational coe�cients on the

support of scattering equations, we can make an ansatz Ñ ′ containing all ladder type monomials

with un�xed coe�cients to parametrize our ignorance of what N ′ actually is: Ñ ′Q−P ≙ 0. Making

use of an implementation of the degree reduction procedure for Theorem 1, we can �nd a standard

form polynomial H ′ such that H ′ ≙ Ñ ′Q − P ≙ 0. Demanding that the overall coe�cient of each

monomial in H ′ vanishes separately, sets up a number of linear equations in (at least) the same

number of unknown coe�cients of Ñ ′.10 Solving this set of equations �xes the coe�cients and yields

an N ′.

9Dividing by Q is allowed since it is per assumption non-zero at the locus of solutions to the scattering equations.
10Since there is a �nite number of ladder type monomials at any n, the number of un�xed coe�cients in Ñ ′ is at least

equal to the number of monomials in a most general resulting standard form H′. If H′ has fewer than the maximum
number of monomials, then the amount of un�xed coe�cients is greater than the number of linear equations.
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In practice, in many cases of interest the ansatz for Ñ ′ does not require all ladder type monomials to

be present to �nd a valid standard form polynomial N ′. This reduces the dimension and complexity

of the linear set of equations one has to solve. Additionally, we will see in the next section that only

the coe�cients of the highest degree ladder type monomials have a non-vanishing contribution to

an amplitude integral.

5.3.3 Collecting residues

In this section we concentrate on tree level amplitudes for concreteness. However, at every step in

the following it should be clear that essentially the same logic applies to the loop level integrands.

Therefore, the result we �nd is valid in general.

Theorem 3: Any amplitude integral of the general shape11

An = ∮
N(σ4, σ5, ..., σn)

∏
n−3
j=1 hj

n

∏
i=4

dσi, (5.3.7)

where hj for j = 1, ..., n − 3 are gauge �xed scattering equation polynomials, N(σ4, σ5, ..., σn) is

a standard form polynomial in the n − 3 non-gauge �xed moduli and the integration contour is

initially localized at the locus of scattering equation solutions, can be evaluated by the following

anti-symmetrized sum over the (n − 3)! di�erent orders of consecutive in�nity residues12

An = (−1)n−3
(n − 3)! Resσ[n=∞, ..., σ5=∞, σ4]=∞

⎡
⎢
⎢
⎢
⎣

N

∏
n−3
j=1 hj

⎤
⎥
⎥
⎥
⎦
. (5.3.8)

Note: Instead of calculating the (n−3)! residues to evaluate the amplitude integral, it is possible to

employ an integrand deformation in which the hi's are replaced by their leading homogeneous parts

lt(hi). With this, the sum over residues equals one single residue at the origin by the transformation

law of multivariate residues. This is an e�cient alternative approach [173].13

Proof of Theorem 3: Starting with (5.3.7), it is straightforward to realize that any contour

deformation away from the locus de�ned by the solutions to the scattering equations can possibly

yield other residues only at in�nity.

11Here, again, we consider the formulation where the delta functions have been mapped to simple poles with
appropriate integration contours. Factors of 2πi are suppressed.

12The square brackets in σ
[n = ∞, ..., σ4] = ∞ denote anti-symmetrization with respect to the moduli indices, so

that i.e. Resσ
[5=∞, σ4]=∞ = 1

2!
(Resσ5=∞Resσ4=∞ −Resσ4=∞Resσ5=∞). The right most residue operation always acts

�rst.
13The author thanks the JHEP referee of the original paper for pointing this out.
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Decompose the numerator polynomial of the integrand into monomials N = ∑iNi. By additivity of

integrals, consider the contour integral in pieces involving just one monomial Nq = M ∝ ∏
n
r=4 σ

ar
r

at a time, where the integer powers ar ≥ 0 are such that M is a ladder type monomial. Planning

to investigate residues at in�nity, we perform the substitution σi → 1/σi and dσi → −dσi/σ
2
i for

i ∈ {4,5, ..., n}, to focus on residues at zero instead, so that

∮
∏
n
r=4 σ

ar
r

∏
n−3
j=1 hj

n

∏
i=4

dσi → ∮
(−1)n−3

(∏
n−3
j=1 ĥj) (∏

n
r=4 σ

a′r
r )

n

∏
i=4

dσi, (5.3.9)

where a′r = (ar −n+ 5) is an abbreviation for the new integer exponents, and ĥj can be conveniently

obtained from the gauge �xed scattering equations in the slightly di�erent gauge σ1 = 0, σ2 = ∞, σ3 =

1.14

Next we apply the global residue theorem (GRT), as for instance described in detail in [174]. Consider

a contour integral in n − 3 variables over an integrand 1/f1f2...fn−3, such that the contours localize

all possible poles in the integrand fi = 0,∀i. Since all possible residues are collected in this way, it

follows from the GRT that the result must be zero:

Res{f1,f2,...,fn−4,fn−3} = 0. (5.3.10)

Using the above in our integrand of interest in (5.3.9), assign fi = ĥi for i = {1,2, ..., n − 4} and

fn−3 = ĥn−3∏
n
r=4 σr

a′r . This clearly takes all possible poles into consideration, so that eq. (5.3.10) is

satis�ed. Expand the global residue as a sum over the poles in fn−3:

Res{f1,f2,...,fn−4,fn−3} = Res{f1,f2,...,fn−4,ĥn−3} +
n

∑
t=4

Res{f1,f2,...,fn−4,σta
′

t} = 0. (5.3.11)

The �rst summand corresponds to (5.3.9), so that we can re-express it in terms of the other n − 3

residues Res{f1,f2,...,fn−4,ĥn−3} = −∑
n
t=4 Res{f1,f2,...,fn−4,σta

′

t}. Whenever partial poles in a multivariate

residue calculation depend on one variable only, single variable complex analysis can be used to

integrate out the corresponding residue separately. In our case each Res{f1,f2,...,fn−4,σta
′

t}, among

other poles, involves a pole 1/σt
a′t dependent on a single variable σt, which we will now integrate

out separately.

Considering that a′t = (at − n + 5) for each t, only highest degree ladder type monomials have a

14The set of scattering equations is invariant under simultaneous inversion σ → 1/σ of all σ-moduli (up to overall
σ-moduli factors that here are accounted for by the powers a′r), as long as we also invert the values of the gauge �xed
moduli.
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non-vanishing contribution to the integral, since exactly one of their at satis�es at = n − 4 which

produces a simple pole as 1/σt
a′t . For all other ladder type monomials we have 0 ≤ at < n − 4 such

that a′t ≤ 0 and 1/σt
a′t ceases to be a pole and thus no residue is present.

To keep track of the correct contour orientation in the remaining variables, we anti-commute dσt to

one side in the integration measure dσ4 ∧ dσ5 ∧ ... ∧ dσn = (±)tdσt∏
n
i=4,i≠t(∧dσi). This produces an

overall plus or minus (±)t dependent on the initial position t. Thus, we have

∮
∏
n
i=4 dσi

(∏
n−3
j=1 ĥj) (∏

n
r=4 σ

a′r
r )

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−∮ ∑
n
t=4(±)t

⎛
⎜
⎝

∏ni=4
i≠t

dσi

(∏n−3j=1 ĥj)(∏nr=4
r≠t

σ
a′r
r )

⎞
⎟
⎠
σt=0

for a′t = 1

0 for a′t < 1

, (5.3.12)

with the saturation a′t = 1 occurring for exactly one of the moduli in each highest degree ladder type

monomial (nevertheless, we sum over all ∑
n
t=4 since it is not known a priori which label t is going to

yield the contribution).15

As σt = 0 in (5.3.12) is set, we �nd that ĥn−3 reduces to a single monomial ĥn−3∣σt=0 ∝ ∏
n
j=4
j≠t

σj by

general structure of scattering equations. Therefore, the non-vanishing contribution schematically

becomes

∮

n

∑
t=4

(±)t

⎛
⎜
⎝

∏
n
i=4
i≠t

dσi

(∏
n−3
j=1 ĥj) (∏

n
r=4
r≠t

σ
a′r
r )

⎞
⎟
⎠
σt=0

= ∮

n

∑
t=4

(±)t

Ct∏
n
i=4
i≠t

dσi

(∏
n−4
j=1 (ĥj ∣σt=0)) (∏

n
r=4
r≠t

σ
a′′r,t
r )

. (5.3.14)

Here Ct is one over the constant coe�cient of the single monomial that survives as we take ĥn−3∣σt=0 ∝

∏
n
j=4,j≠t σj , while the moduli of this monomial are accounted for by the new powers a′′r,t. The

remaining n− 4 scattering equation denominators ĥj ∣σt=0 now have the same monomial structure as

scattering equation polynomials at n − 1 points. Therefore, we can treat each summand in the sum

over t in (5.3.14) the same way as the initial expression (5.3.9), except now there is one fewer contour

to integrate in each case. Thus, we can iterate. Noticing that by general structure of polynomial

15 In terms of the expression in original variables on the left hand side of (5.3.9), this structurally means

∮
∏
n
r=4 σ

ar
r

∏
n−3
j=1 hj

n

∏
i=4

dσi = − ∮

n

∑
u=4

(±)uResσu=∞

⎡
⎢
⎢
⎢
⎢
⎣

∏
n
r=4 σ

ar
r

∏
n−3
j=1 hj

⎤
⎥
⎥
⎥
⎥
⎦

n

∏
i=4
i≠u

dσi, (5.3.13)

where we imply that there are at most �rst order poles at in�nity.
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scattering equations we always get single monomials as more and more σi are set to zero:

ĥn−3∣σt=0 ∝
n

∏
j=4
j≠t

σj , ĥn−4∣σt=0, σl=0 ∝
n

∏
j=4
j≠t,l

σj , ĥn−5∣σt=0, σl=0, σc=0 ∝
n

∏
j=4

j≠t,l,c

σj , etc.

ensures that each time a residue in a σ-modulus is collected, the remaining set of non-trivial scattering

equation polynomials in the denominators is e�ectively reduced by one, as one of the scattering

equation polynomials reduces to a single monomial and produces simple poles for the next iteration.

With this, the above steps may be iterated from (5.3.9) to (5.3.14) n−3 times, while always expanding

the resulting terms and summing over the process applied to one term at a time. Formally, each

iteration adds one more level of signed in�nity residue operations to (5.3.13). At the end of the day,

when all contours have been treated, we are left with an anti-symmetrized sum over consecutive

residue operations

∮
∏
n
r=4 σ

ar
r

∏
n−3
j=1 hj

n

∏
i=4

dσi = (−1)n−3
(n − 3)! Resσ[n=∞, ..., σ5=∞, σ4]=∞

⎡
⎢
⎢
⎢
⎣

∏
n
r=4 σ

ar
r

∏
n−3
j=1 hj

⎤
⎥
⎥
⎥
⎦
. (5.3.15)

This straightforwardly yields the full amplitude as we sum over all numerator monomials in the

integrand, so that our �nal result for the amplitude is (5.3.8). This concludes the proof.

Due to the structure of standard form polynomials on the support of scattering equations we could

rely on the fact that all residues we collect come from simple poles only. However, a straightforward

generalization of the above steps yields the same result (5.3.8) even for cases where N is not a

standard form polynomial and higher order residues are present.

It is interesting to note that the above procedure replaces a summation over (n − 3)! scattering

equation solutions by a summation over the (n−3)! di�erent (n−3)-fold consecutive in�nity residues

in the σ-moduli. When N is a standard form polynomial, all residues come from simple poles, such

that the map from the integrand to the �nal result is trivial. With this the di�culty of the problem

is shifted towards �nding a standard form polynomial numerator N . Applying the degree reduction

procedure described in the previous section this corresponds to solving a linear set on the order of

(n − 3)! equations.

5.3.4 Tree level amplitude examples

In the following we demonstrate the evaluation prescription (5.3.8) on φ3 scalar amplitudes at tree

level. We also consider speci�c examples that otherwise require the more advanced evaluation

techniques in order to be solved.
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5.3.4.1 Six point tree level scalar example

At six points the three scattering equations are given by:

h1 = σ4s1,4 + σ5s1,5 + σ6s1,6 + s1,3 = 0,

h2 = σ4s1,3,4 + σ5s1,3,5 + σ6s1,3,6 + σ4σ5s1,4,5 + σ4σ6s1,4,6 + σ5σ6s1,5,6 = 0,

h3 = σ4σ5σ6s2,3 + σ5σ6s2,4 + σ4σ6s2,5 + σ4σ5s2,6 = 0.

The gauge �xed scattering amplitude for scalars is given by

Aφ
3

6 = ∮
dσ4dσ5dσ6

h1h2h3

σ4 (1 − σ5)σ5 (1 − σ6) (σ4 − σ6)σ6

(1 − σ4) (σ4 − σ5) (σ5 − σ6)
. (5.3.16)

Applying partial fraction decomposition as well as transformations by rational scattering equations

(5.1.1), we can rewrite the integrand of (5.3.16) as

σ4 (1 − σ5)σ5 (1 − σ6) (σ4 − σ6)σ6

(1 − σ4) (σ4 − σ5) (σ5 − σ6)
≙

P1

σ4 − σ5
+ P2 (5.3.17)

where P1 and P2 are polynomials. To reduce the rational part to a polynomial, we take

P1 ≙ (σ4 − σ5)P3 (5.3.18)

with the following standard form Ansatz:16

P3 = c1σ5σ
2
4 + c2σ4σ

2
5 + c3σ6σ

2
4 + c4σ4σ

2
6 + c5σ6σ

2
5 + c6σ5σ

2
6 + c7σ5σ4 + c8σ6σ4 + c9σ5σ6.

There are nine constants ci with i = 1,2, ...,9 we have to �x. We apply the reduction procedure

of section 5.3.1 to both sides of (5.3.18), collect all terms on one side of the equation and demand

that the overall coe�cient in front of each monomial vanishes. This produces a set of nine linear

equations in nine unknowns. Solving the set of linear equations �xes the nine unknown coe�cients

and thus yields a polynomial P3. With this, also reducing P2 to contain ladder type monomials only,

a standard form numerator polynomial Nφ3

6 ≙ P2 +P3 is obtained. It takes a direct implementation

of the polynomial reduction algorithm in Mathematica and a linear solver just a few seconds to

�nd a valid analytic Nφ3

6 result, without much e�ort spent on optimization.17 We can evaluate the

16Ladder type monomials with base length mmax = n − 4 appear to be a su�cient monomial basis.
17If we start with the left hand side of eq. (5.3.17) instead, as in σ4 (1 − σ5)σ5 (1 − σ6) (σ4 − σ6)σ6 ≙

(1 − σ4) (σ4 − σ5) (σ5 − σ6)N
φ3

6 , it takes the polynomial reduction algorithm and linear solver, with a few tweaks,
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amplitude making use of prescription (5.3.8):

Aφ
3

6 = (−1)33! Resσ[6=∞, σ5=∞, σ4]=∞

⎡
⎢
⎢
⎢
⎢
⎣

Nφ3

6

∏
n−3
j=1 hj

⎤
⎥
⎥
⎥
⎥
⎦

. (5.3.19)

The result is completely analytic and about one page long. It can be simpli�ed making use of

momentum conservation and on-shell conditions by hand, which is somewhat tedious. Instead we

set up a basis of physical poles and �x the coe�cients by multiple evaluation on di�erent kinematic

points as follows.

As in [161], the physical poles are given by s1,2, s2,3, s3,4, s4,5, s5,6, s6,1, s1,2,3, s2,3,4 and s3,4,5. By

dimensional analysis we see that each term in the amplitude should have three di�erent poles. This

means the complete basis is given by (
9
3
) = 84 di�erent triple pole combinations with unknown

coe�cients. Making use of the procedure described in appendix 5.6, we can generate 84 di�erent

rational kinematic points and evaluate the amplitude and the basis 84 times. This sets up a linear set

of 84 equations in the same number of unknowns. Solving this set of equations �xes the coe�cients

(which turn out to be exactly 1 or 0) and yields the simpli�ed 6-point scalar tree level amplitude in

terms of physical poles

Aφ
3

6 = −(
1

s1,2s3,4s5,6
+

1

s1,2s5,6s1,2,3
+

1

s2,3s5,6s1,2,3
+

1

s1,6s2,3s2,3,4
+

1

s1,6s3,4s2,3,4
(5.3.20)

+
1

s2,3s5,6s2,3,4
+

1

s3,4s5,6s2,3,4
+

1

s1,2s3,4s3,4,5
+

1

s1,6s3,4s3,4,5
+

1

s1,6s2,3s4,5

+
1

s1,2s1,2,3s4,5
+

1

s2,3s1,2,3s4,5
+

1

s1,2s3,4,5s4,5
+

1

s1,6s3,4,5s4,5
) ,

which is equivalent to summing Feynman diagrams in φ3 theory and agrees with the result found in

[161].

5.3.4.2 Six point tree level - �rst special example

Here we will give an example that is very hard to do with less advanced versions of diagrammatic

integration rule techniques.18 It involves integrating the following terms over the CHY measure

1

σ4
2,3σ

4
4,5σ

4
6,1

. (5.3.21)

about a minute to obtain a di�erent more complicated analytic version of Nφ3

6 .
18The author thanks J. Bourjaily for pointing this out and suggesting this test integrand.
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Multiplying with the CHY measure and applying our gauge we get

U1 = ∮
dσ4dσ5dσ6

h1h2h3

(1 − σ4)σ4 (1 − σ5)σ5 (1 − σ6) (σ4 − σ6) (σ5 − σ6)σ6

(σ4 − σ5)
3

. (5.3.22)

In order to polynomially reduce the e�ective rational integrand, we write

(1 − σ4)σ4 (1 − σ5)σ5 (1 − σ6) (σ4 − σ6) (σ5 − σ6)σ6 ≙ (σ4 − σ5)
3
N (5.3.23)

where we use the following standard form polynomial Ansatz

N = c1σ5σ
2
4 + c2σ4σ

2
5 + c3σ6σ

2
4 + c4σ4σ

2
6 + c5σ6σ

2
5 + c6σ5σ

2
6 + c7σ5σ4 + c8σ6σ4 + c9σ5σ6.

We have to �nd nine constants c1, c2, ..., c9. A completely analytic result is directly accessible apply-

ing our procedure, yet not very readable.19 We do not expect the result to be given by pure physical

poles either. Therefore, we will instead demonstrate an explicit exact evaluation of the integral

on the following kinematic point, which was generated making use of the procedure described in

appendix 5.6:

kµ1 = (20, 20, 0, 0), kµ4 = ( 60,−48, 0,−36),

kµ2 = (25,−20, 15, 0), kµ5 = (−80, 48, 64, 0), (5.3.24)

kµ3 = (39, 0,−15, 36), kµ6 = (−64, 0,−64, 0).

First we apply the degree reduction procedure of section 5.3.1 to both sides of equation (5.3.23)

and collect all monomials on one side. The vanishing of the overall coe�cient of each monomial

separately produces a set of linear equations. Solving this set of equations yields

c5= 7059649218217401322274
3974168469797996315755 , c6=− 5529649875686983344959

15896673879191985263020 , c2= 12838684423
1662217245 , c4= 354818034905

57180273228

c7=− 5774994253402805042003591
2146050973690918010507700 , c8=− 466431129022169341083793

343368155790546881681232 , c9=− 70384223902707859416469
158966738791919852630200 , c1=c3=0.

19Here an analytic N can be obtained from the polynomial reduction algorithm and a linear solver within 1 to 2
minutes. This timing probably could be substantially improved by optimization.
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Using this in the Ansatz for N above, we obtain a standard form numerator polynomial and can

apply (5.3.8) to evaluate the integral:

U1 = (−1)33! Resσ[6=∞, σ5=∞, σ4]=∞
⎡
⎢
⎢
⎢
⎣

N

∏
n−3
j=1 hj

⎤
⎥
⎥
⎥
⎦

= −
c2

s1,5s2,3s1,4,5
+

c4
s1,6s2,3s1,4,6

+
c5

s1,5s2,3s1,5,6
−

c6
s1,6s2,3s1,5,6

=
14174374134763

40854136935339786240000
. (5.3.25)

Note that indeed properly only the coe�cients of highest degree ladder type monomials appear in

the �nal result.

Alternatively, we can solve the scattering equations numerically and obtain a numerical approxima-

tion for U1, which agrees with (5.3.25).

5.3.4.3 Six point tree level - second special example

Another example that is impossible to do with less advanced diagrammatic integration rule tech-

niques involves integrating the following terms over the CHY measure20

1

σ2
2,3σ

2
3,4σ

2
4,2σ

2
1,5σ

2
5,6σ

2
6,1

. (5.3.26)

Combining this with the CHY measure and applying our usual gauge we have

U2 = ∮
dσ4dσ5dσ6

h1h2h3

(1 − σ5) (σ4 − σ5)σ5 (1 − σ6) (σ4 − σ6)σ6

(1 − σ4)σ4 (σ5 − σ6)
. (5.3.27)

In order to polynomially reduce the e�ective rational integrand, we write the equation

(1 − σ5) (σ4 − σ5)σ5 (1 − σ6) (σ4 − σ6)σ6 ≙ (1 − σ4)σ4 (σ5 − σ6)N (5.3.28)

where we use the following standard form polynomial Ansatz

N = c1σ5σ
2
4 + c2σ4σ

2
5 + c3σ6σ

2
4 + c4σ4σ

2
6 + c5σ6σ

2
5 + c6σ5σ

2
6 + c7σ5σ4 + c8σ6σ4 + c9σ5σ6.

So that again there are nine constants c1, c2, ..., c9 to be �xed. Just as before, we can proceed

completely analytically, yet the result would be too large to report.21 Therefore, we will illustrate

20Again, the author thanks J. Bourjaily for pointing this out and suggesting this test integrand.
21Here, again, an analytic N can be obtained from the polynomial reduction algorithm and a linear solver within

1 to 2 minutes. This timing probably could be substantially improved by optimization.
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the procedure by evaluating the integral on the kinematic point (5.3.24) instead.

First we apply the degree reduction procedure of section 5.3.1 to both sides of equation (5.3.28) and

collect all monomials on one side of the equation. Demanding that the overall coe�cient of each

monomial vanishes separately provides us with a set of linear equations. Solving the set of equations

we obtain

c5 =
162215379551

1221259549104
, c6 =

5662761717335

17097633687456
, c4 = −

92500

133623
, c2 =

39458

133623
,

c7 = −
23433636506339

34195267374912
, c8 =

329688097714075

273562138999296
, c9 = −

3664568494697

3256692130944
, c1 = c3 = 0.

Plugging this into the Ansatz for N above, we therefore have obtained a standard form numerator

polynomial and can use (5.3.8) to evaluate the integral:

U2 = (−1)33! Resσ[6=∞, σ5=∞, σ4]=∞
⎡
⎢
⎢
⎢
⎣

N

∏
n−3
j=1 hj

⎤
⎥
⎥
⎥
⎦
,

= −
c2

s1,5s2,3s1,4,5
+

c4
s1,6s2,3s1,4,6

+
c5

s1,5s2,3s1,5,6
−

c6
s1,6s2,3s1,5,6

= −
2407

15692753534976
. (5.3.29)

Note that again properly only the coe�cients of the highest degree ladder type monomials enter the

�nal result. Additionally, it is clear that the calculation for this example structurally follows exactly

the same steps and has the same level of complexity as the previous two examples, which would

have been di�erent from the point of view of applying diagrammatic integration rules to evaluate

the integral.

Alternatively, we can solve the scattering equations numerically and obtain a numerical approxima-

tion for U2, which agrees with (5.3.29).

5.3.4.4 Eight point tree level scalar amplitude

At eight points there are �ve scattering equations. The gauge �xed scattering amplitude for scalars

reads22

Aφ
3

8 = ∮
∏

8
i=4 dσi

∏
5
j=1 hj

σ4σ5σ6σ7σ8σ3,5σ3,6σ3,7σ3,8σ4,6σ4,7σ4,8σ5,7σ5,8σ6,8

σ3,4σ4,5σ5,6σ6,7σ7,8
. (5.3.30)

22Where σ3 = 1 is implied.
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We will demonstrate an explicit evaluation of the amplitude. Making use of the procedure described

in appendix 5.6, we generate some on-shell kinematic data

kµ1 = ( −54, −54, 0, 0), kµ5 = (−85, 0, 75, 40),

kµ2 = (−246, 54,−240, 0), kµ6 = ( 50, 0,−30,−40), (5.3.31)

kµ3 = ( 260, 100, 240, 0), kµ7 = (−34, 0, 30,−16),

kµ4 = ( 125,−100, −75, 0), kµ8 = (−16, 0, 0, 16).

We want to �nd an e�ective integral expression

Aφ
3

8 = ∮
∏

8
i=4 dσi

∏
5
j=1 hj

Nφ3

8 , (5.3.32)

where Nφ3

8 is a standard form polynomial satisfying

σ4σ5σ6σ7σ8σ3,5σ3,6σ3,7σ3,8σ4,6σ4,7σ4,8σ5,7σ5,8σ6,8 ≙ σ3,4σ4,5σ5,6σ6,7σ7,8N
φ3

8 (5.3.33)

on the support of the ideal spanned by the scattering equations. As an Ansatz for Nφ3

8 we take the

375 di�erent ladder type monomials with mmax = n − 4 = 4. At eight points, polynomially reduc-

ing the complete right hand side of (5.3.33) proves to be time consuming. Therefore, we instead

perform a much simpler polynomial reduction of the expression σiNσi → N ′
σi for i = 4, ...,8 with

the same Ansatz for Nσi .
23 These results can now be straightforwardly linearly combined as in

(σi −σj)N → N ′
σi −N

′
σj ≡ N

′
σij . Additionally, we can nest them by computing the reduction in steps

of one degree at a time (σi − σj)(σa − σb)N → (σi − σj)N
′
σab
→ N ′′

σijσab
, where in the second step we

treat the complete monomial coe�cients of N ′
σab

as simple unknowns and substitute their structure

back in once the reduction has been performed. Clearly, we can apply the nesting as many times

as required. Therefore, the polynomial reduction of σiNσi is the only building block we need to

construct the complete e�ective numerator polynomial Nφ3

8 .

Furthermore, it is more convenient to fractionally decompose the integrand in (5.3.30). The numer-

ators and denominators of each of the resulting fractions have smaller polynomial degree, so that

the complexity of �nding a polynomial reduction for each of these fractions separately is reduced

compared to the original expression.

Once the polynomial reduction is complete, we collect all terms in (5.3.33) on one side of the equation

23The resulting polynomial N ′

σi
features the same monomials as Nσi , but with the coe�cients mixed by the

reduction procedure.
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and demand the vanishing of all overall monomial coe�cients separately. This gives us 375 linear

equations in the same number of unknowns. Solving these equations, we �x the unknown coe�cients

and obtain the e�ective standard form numerator polynomial Nφ3

8 . With this, prescription (5.3.8)

is easily evaluated:

Aφ
3

8 =(−1)55! Resσ[8=∞, σ7=∞, σ6=∞, σ5=∞, σ4]=∞

⎡
⎢
⎢
⎢
⎢
⎣

Nφ3

8

∏
n−3
j=1 hj

⎤
⎥
⎥
⎥
⎥
⎦

=
1360947997721

22293435818142720000000000000
.

This is an exact result since we did not invoke any �oating point calculations at any step. Alter-

natively, we can approximately solve the scattering equations numerically and evaluate Aφ
3

8 on the

solutions, which yields agreement.

5.4 CHY formulation of 1-loop level scattering amplitudes

At one loop, n-point scattering equations have been shown to follow from (n + 2)-point tree level

scattering equations with two massive particles by taking the forward limit of the two massive

momenta [175]. The tree level scattering equations with two massive particles are given by [137, 138]:

Ea =
n+2

∑
b=1
b≠a

pa,b

σab
for a ∈ {1,2, ..., n}, (5.4.1)

En+1 =
n

∑
b=1

pn+1,b

σn+1,b
+
pn+1,n+2 +m

2

σn+1,n+2
, En+2 =

n

∑
b=1

pn+2,b

σn+2,b
−
pn+1,n+2 +m

2

σn+1,n+2
,

where two particles are massive with the same mass k2
n+1 = k2

n+2 = m2. Here we have introduced a

shorthand notation24

pα(1),α(2),...,α(q) ≡ ∑
{β(1),β(2)}⊂{α(1),α(2),...,α(q)}

kβ(1) ⋅ kβ(2) for integer q > 1. (5.4.2)

The sum is over all unordered subsets of two numbers out of a set of q numbers. In the context

of 1-loop CHY amplitudes, equations (5.4.1) and (5.4.2) also naturally arise from the formalism

described in [176], without the need to impose them.25

In the following we will require the scattering equations in polynomial form. To obtain them, we can

for instance apply an appropriate transformation to (5.4.1). However, we should proceed carefully,

24When all momenta are massless and on-shell, we have pα(1),α(2),...,α(q) = sα(1),α(2),...,α(q) from (5.1.4).
25The author thanks C. Cardona and H. Gomez for pointing this out.
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since in the forward limit

kµn+1 → −lµ , kµn+2 → lµ (5.4.3)

the set of equations (5.4.1) admits singular solutions with σij → 0 for some i ≠ j, if En+1 and En+2

are taken into consideration. Such singular solutions have no physical contribution to the amplitudes

of relevant theories [175, 166]. Therefore, we will use (n − 1) independent equations Ea with a ≤ n

in order to exclude the singular solutions. It is straightforward to check that the transformation we

are looking for is given by

h̃p,q,va =
n+2

∑
i=1

i≠p,q,v

σipσiqσivY
a−2
p,q,v,iEi for a ∈ {2,3, ..., n}, (5.4.4)

where

Y xp,q,v,i =

⎧⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∑{α(1),...,α(x)}⊂{1,...,n+2}/{p,q,v,i}∏
x
j=1 σα(j) for 0 < x ≤ n − 2,

1 for x = 0,

0 for x < 0 and x > n − 2.

(5.4.5)

The range in the index a is set to correspond to (5.1.3). Indices p, q, v label the three di�erent

massive scattering equations (5.4.1) that are dropped. As we expect, h̃p,n+1,n+2
a yields the same

results regardless of the choice of p, so in the following we can consider h̃1,n+1,n+2
a for convenience.

We can compactly write this result as

h̃1,n+1,n+2
a = ∑

{α(1),...,α(a)}⊂{1,2,...,n+2}
(pα(1),...,α(a) +m

2δα,{n+1,n+2})
a

∏
j=1

σα(j) = 0, (5.4.6)

for integer 2 ≤ a ≤ n. Here we used a generalized Kronecker delta

δα,{n+1,n+2} = {
1 if {n + 1, n + 2} ⊂ {α(1), ..., α(a)}

0 if {n + 1, n + 2} ⊄ {α(1), ..., α(a)}
. (5.4.7)

As long as we consider h̃1,n+1,n+2
a in the massive case before taking the forward limit, the scattering

equations have the full set of (n−1)! solutions. Knowing that the forward limit is singular in nature,

we should check whether any singular solutions resurge in (5.4.6) due to the transformation (5.4.4)

having been applied. Indeed, if we choose to gauge �x σ1, σn+1 and σn+2, it is straightforward to see
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that the trivial solution σi = σ1 for i = 2,3, ..., n is now present in the forward limit,26 additionally

to the (n− 1)!− 2(n− 2)! expected regular solutions. Luckily, we can remove this trivial solution by

�xing the gauge σ1 = ∞.27 For convenience we will also �x σn+1 = 0, σn+2 = 1. Thus, we will work

with the following representation of gauge �xed polynomial scattering equations with two massive

particles

hi ≡ ( lim
σ1→∞

1

σ1
h̃1,n+1,n+2
i+1 ) ∣σn+1=0

σn+2=1
= 0 , ∀i ∈ {1,2, ..., n − 1}, (5.4.8)

which has a smooth forward limit containing only regular solutions of interest.28 It will be convenient

to treat the forward limit as a regulator whenever the kinematics in the limit becomes singular.

For h̃1,n+1,n+2
a the transformation Jacobian is (−1)n+1[∏

n
i=2 σ1i][∏

j≤n
1<j<q≤n+2 σjq]. Therefore, possibly

up to a minus sign we have the usual CHY measure for polynomial scattering equations

dµ =
⎛
⎜
⎝

n+2

∏
c=1

c≠q,p,w

dσc
⎞
⎟
⎠
(σqpσpwσwq)

⎛

⎝
∏

1≤i<j≤n+2

σij
⎞

⎠
(
n

∏
a=2

δ (h̃1,n+1,n+2
a )) . (5.4.9)

Recall that we gauge �xed the moduli q = 1, p = n + 1, w = n + 2. To test our evaluation procedure

at one-loop level, we will consider the bi-adjoint scalar φ3 theory as proposed in [175], which can be

written as

A1−loop,φ3

n = ∫
dDl

(2π)D
1

l2
lim

kn+1→−l

kn+2→ l

∫ dµ
⎛

⎝
∑

γ∈cyclic{1,2,...,n}
PT (n + 2, γ, n + 1)

⎞

⎠

2

, (5.4.10)

where

PT (n + 2, γ, n + 1) =
1

σn+2,γ(1)σγ(1),γ(2)...σγ(n),n+1σn+1,n+2
. (5.4.11)

However, our evaluation method applies more generally to any integrand that is rational in σ-moduli

and is being integrated over the measure dµ.

26Setting σi = σ1 for i = 2,3, ..., n causes all scattering equations to be proportional to p1,2,...,n, which vanishes in
the forward limit.

27The fact that the trivial solution can be projected out by a gauge choice indicates that its contribution is not
physical.

28We use the same symbol h as for tree level scattering equations here, since it is always clear from context which
scattering equations are in use.
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5.4.1 One-loop amplitude examples

5.4.1.1 Two point 1-loop scalar amplitude

At two points and 1-loop there is one scattering equation, given by29

h1 = σ2p1,2 + p2,3 = 0. (5.4.12)

The gauge �xed amplitude amounts to

A1−loop,φ3

2 = ∫
dDl

(2π)D
1

l2
lim
k3→−l
k4→ l

∮
dσ2

h1

1

(1 − σ2)σ2
. (5.4.13)

We require a standard form numerator polynomial N2,φ3

1−loop such that 1 ≙ (1 − σ2)σ2N
2,φ3

1−loop with the

standard form Ansatz N2,φ3

1−loop = c1. Making use of the scattering equation, we polynomially reduce

the right hand side, collect all terms on one side of the equation and in doing so obtain one linear

equation in one unknown. Solving this equation and applying momentum conservation yields:

N2,φ3

1−loop =
p2

1,2

p2,3p2,4
. (5.4.14)

Prescription (5.3.8) suggests the calculation

(−1)1
(1!)Resσ2=∞ [

1

h1

p2
1,2

p2,3p2,4
] =

p1,2

p2,3p2,4
. (5.4.15)

If we solve the scattering equation instead σ2 = −
p2,3

p1,2
, we get exactly the same result

∑
h=0

solutions

1

det ([∂ihj])

1

(1 − σ2)σ2
=

p1,2

p2,3p2,4
. (5.4.16)

In the forward limit we have p1,2 → 0 while p2,3 and p2,4 stay �nite. Therefore, the 1-loop integrand

vanishes.

29Since the forward limit makes the kinematics singular, we use it as a parametrization.
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5.4.1.2 Three point 1-loop scalar amplitude

At three points and 1-loop there are two scattering equations, given by

h1 = σ2p1,2 + σ3p1,3 + p1,5 = 0,

h2 = σ3p2,4 + σ2p3,4 + σ2σ3p4,5 = 0.

The gauge �xed amplitude can be written as

A1−loop,φ3

3 = ∫
dDl

(2π)D
1

l2
lim
k4→−l
k5→ l

∮
dσ2dσ3

h1h2

−(σ2
2 + σ

2
3 − (σ2 + 1)σ3)

2

(1 − σ2)σ2 (1 − σ3) (σ2 − σ3)σ3
.

Therefore, we consider the following equality in order to �nd a standard form e�ective numerator

polynomial N3,φ3

1−loop

−(σ2
2 + σ

2
3 − (σ2 + 1)σ3)

2
≙ (1 − σ2)σ2 (1 − σ3) (σ2 − σ3)σ3N

3,φ3

1−loop,

with the standard form Ansatz N3,φ3

1−loop = c1σ2 + c2σ3. We apply the reduction procedure of section

5.3.1 to both sides of this equation, collect all terms on one side and demand that the overall

coe�cient in front of each monomial vanishes separately. This sets up two linear equations in

two unknowns c1, c2. Solving for the unknowns yields a numerator polynomial N3,φ3

1−loop. Using

prescription (5.3.8) and simplifying via �ve-point momentum conservation and on-shell conditions

with two massive particles we get the result

(−1)22!Resσ[3=∞, σ2]=∞

⎡
⎢
⎢
⎢
⎢
⎣

N3,φ3

1−loop
h1h2

⎤
⎥
⎥
⎥
⎥
⎦

= (5.4.17)

= −
1

p1,2
(

1

p3,5
+

1

p3,4
) −

1

p2,3
(

1

p1,5
+

1

p1,4
) −

1

p1,3
(

1

p2,5
+

1

p2,4
) −

1

p1,5p2,4
−

1

p2,5p3,4
−

1

p1,4p3,5
.

Alternatively, we can solve the scattering equations and obtain the two solutions (σ2,+, σ3,+) and

(σ2,−, σ3,−) with

σ2,± =
p1,3p3,4 − p1,5p4,5

2p1,2p4,5
−

p2,4

2p4,5
±

√
(p1,2p2,4 − p1,3p3,4 + p1,5p4,5)

2 − 4p1,2p1,5p2,4p4,5

2p1,2p4,5
,

σ3,± =
p1,2p2,4 − p1,5p4,5

2p1,3p4,5
−

p3,4

2p4,5
∓

√
(p1,2p2,4 − p1,3p3,4 + p1,5p4,5)

2 − 4p1,2p1,5p2,4p4,5

2p1,3p4,5
.
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Evaluating the integral on these solutions, summing the contributions and simplifying by means of

momentum conservation and on-shell conditions directly leads to exactly the same result (5.4.17).

In the forward limit, terms pi,4,pi,5 with i ∈ 1,2,3 stay �nite while pi,j with i, j ∈ {1,2,3} tend to zero.

Therefore, we �rst rewrite each of the three di�erent terms in parenthesis in (5.4.17) analogously to

the following

−
1

p1,2
(

1

p3,5
+

1

p3,4
) = −

1

p3,4p3,5
(

p3,4 + p3,5

p3,4 + p3,5 +
1
2
(k4 + k5)

2
) . (5.4.18)

We may parametrize the forward limit as kµ4 = −(lµ + τqµ4 ) and k
µ
5 = (lµ + τqµ5 ) with τ → 0 and �nite

qµ4 ≠ qµ5 . With this, at leading order we �nd

1

p3,l+τq4p3,l+τq5
(

τp3,q5 − τp3,q4

τp3,q5 − τp3,q4 + τ
2 1

2
(q5 − q4)

2
) =

1

(p3,l)
2
+O(τ). (5.4.19)

Therefore, the one-loop integrand at three points in bi-adjoint scalar φ3 theory is given by

A1−loop,φ3

3 = ∫
dDl

(2π)D
1

l2
⎛

⎝

1

p1,lp2,l
+

1

p1,lp3,l
+

1

p2,lp3,l
+

1

p2
1,l

+
1

p2
2,l

+
1

p2
3,l

⎞

⎠
(5.4.20)

= ∫
dDl

(2π)D
1

l2
⎛

⎝

1

p2
1,l

+
1

p2
2,l

+
1

p2
3,l

⎞

⎠
, (5.4.21)

since the �rst three terms vanish by three-point momentum conservation. Since we might be inter-

ested in the 1-loop 3-point amplitude as a vertex correction, it would make sense to consider the

momenta k1, k2, k3 to be o�-shell − then the above result is non-trivial. In case when k1, k2, k3 are

on-shell, all appearing integrals are scaleless.

5.5 Conclusion and outlook

In this work we started with the CHY formulation of scattering amplitudes in arbitrary dimension.

We then developed the degree reduction procedure of section 5.3.1 and applied it alongside the strong

Nullstellensatz to show that any rational function can be written as a standard form polynomial on

the support of scattering equations. Making use of this conversion for CHY amplitude integrands, we

derived an evaluation prescription that allows to �nd an amplitude purely from collecting consecutive

simple residues at in�nity only.

Summing over all possible ladder type shapes and taking into account the multiplicity due to available

subsets of non-gauge �xed moduli that are used to compose the shapes, we realize that the total
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number of di�erent ladder type monomials at any n is given by N ladd
n = s(n−3), where the function

s(x) is

s(0) = 1, s(x) =
x−1

∑
i=0

(
x

i
)s(i).

Upon inspection, the s(x) turn out to be equivalent to so called ordered Bell numbers, or Fubini

numbers. For large x these numbers asymptote to xs(x − 1) ≈ ln(2)s(x), so that the number of

ladder type monomials grows quicker than factorially with n.

In all explicit amplitude examples we studied above, it was su�cient to consider the subset of

ladder type monomials with highest base length mmax = n − 4 to �nd standard form polynomials

corresponding to relevant rational functions. By the counting above, at any n there are N ladd
mmax=n−4 =

(n − 3)s(n − 4) such ladder type monomials.

It is well known that gauge �xed scattering equations have (n − 3)! di�erent solutions at tree level

[7, 5]. In [164, 165] it was shown that gauge �xed polynomial scattering equations can be transformed

to a di�erent form such that σi−Pi(σn) = 0 for i ∈ {4,5, ..., n−1} and Pn(σn) = 0, where the Pi(σn) are

univariate polynomials in σn. The polynomial Pn(σn) is of highest degree (n− 3)! and accomodates

the (n − 3)! di�erent solutions. Reducing multivariate polynomials over this transformed system

of equations trivially leaves (n − 3)! univariate monomials (i.e. 1, σn, σ
2
n, ..., σ

(n−3)!−1
n ) as a minimal

basis for the quotient ring of multivariate polynomials over the ideal spanned by scattering equations

Q = R/⟨h1, h2, ..., hn−3⟩. Therefore, the dimension of the quotient ring is dimR(Q) = (n − 3)! and

thus, in the present case, we can similarly expect only (n − 3)! of ladder type monomials to be

linearly independent on the support of the ideal spanned by scattering equations ⟨h1, h2, ..., hn−3⟩.

Here, a natural candidate for such a minimal basis would be the (n − 3)! highest degree ladder

type monomials. At �rst glance it might seem that restricting to this minimal basis could increase

computational e�ciency, since this sets up a minimal linear system of equations in the polynomial

construction of rational terms and makes the resulting coe�cients unique. However, on a second

thought it becomes apparent that modifying the polynomial reduction algorithm such as to eliminate

the tail of lower degree ladder type monomials is highly non-trivial and would introduce a large

computational overhead before the linear system of equations is set up. Therefore, employing more

than the minimal amount of ladder type monomials to keep polynomial reduction simple appears to

be more convenient.

One nice feature of the above procedure is that it works in exactly the same fashion at any n and

for amplitudes of any theory in CHY formulation due to the inherent structure of CHY integrands:
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While the complexity of the kinematic part of a CHY amplitude integrand in a theory like i.e. pure

Yang-Mills or gravity is greater compared to massless scalars, the integrand still always is a rational

function in the σ-moduli, such that the conceptual steps towards �nding the amplitude described in

previous sections still remain exactly the same, making the procedure universal. Furthermore, since

all relevant residues for any amplitude or partial term in consideration are always collected from

simple poles at in�nity only, each generic evaluation step is of low complexity and the di�culty is

shifted towards �nding standard form polynomial expressions for the originally rational amplitude

integrands. The polynomial reduction procedure that addresses this problem can be implemented

algorithmically in general, so that the amplitude evaluation becomes automated for general input,

which is one further strength of the current approach.

One problem that is bound to appear as we choose higher values for n, is the question of e�ciency.

The number of linear equations and corresponding number of unknowns increases as (n− 3)s(n− 4)

if we apply the construction step of section 5.3.2. Even though other techniques to �nd the reduced

form might exist, this kind of limitation is bound to appear whenever a solution is formulated

algorithmically involving a sequence of structural steps leading from a certain input to an output

of a di�erent structure. Therefore, as a possible direction for further investigation it might be

interesting to search for general n-point integrands of standard polynomial form in various theories

of interest directly, eliminating the necessity for the polynomial reduction procedure. Additionally,

knowing that only the highest degree ladder type monomials contribute to any integral, �nding

just the coe�cients for the minimal basis of highest degree ladder type monomials based on some

general physical arguments would be equivalent to obtaining a direct closed form expression for the

amplitude, since the remaining contour integration is trivial.

5.6 Generating real rational on-shell momenta

Pythagorean triples are integers a, b, c such that the relation c2 = a2 + b2 is satis�ed. The following

well known parametrization of all such triples due to Euclid is convenient

a = h(u2
− v2

) , b = 2huv , c = h(u2
+ v2

), (5.6.1)

where h,u, v are arbitrary integers. Thinking of an n-point amplitude, we can consider n−2 separate

copies of these integers ai, bi, ci, hi, ui, vi with i ∈ {1,2, ..., n − 2}. We would like to use the above

to parametrize n massless external momenta obeying momentum conservation. For that end, we
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distribute the integers ai, bi, ci into Minkowski momenta components in a fashion similar to the

following.

1) Fill a1 into k0
1 (with a random overall sign ± in front) and k1

1 components, such that:

kµ1 = (±a1, a1,0, ...,0)

2) Fill ai, bi into spatial components and ±ci (random sign) into the zero component

of vectors kµj for j ∈ {2,3, ..., n − 1} so that aq and bq+1 always appear in consecutive

vectors and in the same spatial component but with opposite sign, such that i.e.:

kµ2 = (±c1,−a1, b1, 0, 0, ...,0)

kµ3 = (±c2, 0,−a2, b2, 0, ...,0)

kµ4 = (±c3, 0, 0,−a3, b3, ...,0)

⋮

kµn−2 = (±cn−3,0, ...,−an−3, bn−3, 0)

kµn−1 = (±cn−2,0, ..., 0,−an−2, bn−2)

3) Fill bn−2 into k0
n and kin components, pairing the spatial component of kin−1, i.e.:

kµn = (±bn−2,0, ...,0,0,−bn−2)

Since each set of ai, bi, ci integers is internally parametrized by (5.6.1), all momenta de�ned above

are automatically light-like ki ⋅ ki = 0 for i ∈ {1,2, ..., n}. Furthermore, if we ensure that bq = aq+1 for

all q ∈ {1,2, ..., n− 3}, then all spatial components will sum up to zero, providing spatial momentum

conservation. The set of constraints bq = aq+1 can be solved using n − 3 of the hi of (5.6.1) and

promoting them to variables. Finally, to ensure momentum conservation in the zero-th component,

we can solve the equation ∑
n
i=1 k

0
i = 0 in u1 of (5.6.1) while promoting it to a variable. The solutions

to the constraints above are rational in the un�xed parameters, so that we are guaranteed to obtain

rational momenta if we seed integers to the un�xed hn−2 and ui, vi. However, we should seed the

integers carefully since singular con�gurations exist. In order to avoid most singular results we

could for instance �x ui = 1 for all remaining i, while randomly selecting hn−2, vi > 1. Finally,

it is clear that the position of the spatial components within a vector can be assigned �exibly as
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long as the canceling entries, such as bq and −aq+1, always are properly paired. Therefore, we can

randomly create real rational on-shell momenta in any spacetime dimension D > 2 using the above.

Even though this only provides access to a very speci�c subset of all possible real and rational

on-shell momenta, they are nevertheless su�ciently generic for testing purposes. Straightforward

slight modi�cations can also be made to obtain su�ciently generic results even for the four point

con�guration, or cases involving massive particles.
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Chapter 6

Tree-level gluon amplitudes on the

celestial sphere

This chapter is based on the publication [177].

The holographic description of bulk physics in terms of a theory living on the boundary has been

concretely realised by the AdS/CFT correspondence for spacetimes with global negative curvature.

It remains an important outstanding problem to understand suitable formulations of holography for

�at spacetime, a goal that has elicited a considerable amount of work from several complementary

approaches [178, 179, 180, 181, 182, 29, 30, 183].

Recently, Pasterski, Shao and Strominger [184] studied the scattering of particles in four-dimensional

Minkowski space and formulated a prescription that maps these amplitudes to the celestial sphere

at in�nity. The Lorentz symmetry of four-dimensional Minkowski space acts as the conformal group

SL(2,C) on the celestial sphere. It has been shown explicitly that the near-extremal three-point am-

plitude in massive cubic scalar �eld theory has the correct structure to be identi�ed as a three-point

correlation function of a conformal �eld theory living on the celestial sphere [184]. The factorization

singularities of more general scattering amplitudes in this CFT perspective have been further studied

in [185]. The map uses conformal primary wave functions which have been constructed for various

�elds in arbitrary dimensions in [186]. In [187] it was shown that the change of basis from plane

waves to the conformal primary wave functions is implemented by a Mellin transform, which was

computed explicitly for three and four-point tree-level gluon amplitudes. The optical theorem in the

conformal basis and scattering in three dimensions were studied in [188]. One-loop and two-loop

four-point amplitudes have also been considered in [189].
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In this note we use the prescription [187] to investigate the structure of CFT correlators corre-

sponding to arbitrary n-point gluon tree-level scattering amplitudes, thus generalizing their three-

and four-point MHV results. Gluon amplitudes can be represented in many di�erent ways that

exhibit di�erent, complementary aspects of their rich mathematical structure. It is natural to sus-

pect that they may also take a particularly interesting form when written as correlators on the

celestial sphere. We �nd that Mellin transforms of n-point MHV gluon amplitudes are given by

Aomoto-Gelfand generalized hypergeometric functions on the Grassmannian Gr(4, n) (6.2.19). For

non-MHV amplitudes the analytic structure of the resulting functions is more complicated, and they

are given by Gelfand A-hypergeometric functions (6.3.6) and its generalizations. It will be very in-

teresting to explore further the structure of these functions, and possibly make connections to other

representations of tree-level amplitudes [5, 174, 122, 190, 191] which we leave for future work.

6.1 Gluon amplitudes on the celestial sphere

We work with tree-level n-point scattering amplitudes of massless particles A`1⋯`n(k
µ
j ) which are

functions of external momenta kµj and helicities `j = ±1, where j = 1, . . . , n. We want to map these

scattering amplitudes to the celestial sphere. To that end we can parametrize the massless external

momenta kµj as

kµj = εjωjq
µ
j ≡ εjωj(1 + ∣zj ∣

2, zj + z̄j ,−i(zj − z̄j),1 − ∣zj ∣
2
), (6.1.1)

where zj , z̄j are the usual complex cordinates on the celestial sphere, εj encodes a particle as incoming

(εj = −1) or outgoing (εj = +1), and ωj is the angular frequency associated with the energy of the

particle [187]. Therefore, the amplitude A`1⋯`n(ωj , zj , z̄j) is a function of ωj , zj and z̄j under the

parametrization (6.1.1).

Usually, we write any massless scattering amplitude in terms of spinor-helicity angle- and square-

brackets representing Weyl-spinors (see [2] for a review). The spinor-helicity variables are related

to external momenta kµj , so that in turn we can express them in terms of variables on the celestial

sphere via [187]:

[ij] = 2
√
ωiωj z̄ij , ⟨ij⟩ = −2εiεj

√
ωiωjzij , (6.1.2)

where zij = zi − zj and z̄ij = z̄i − z̄j .
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In [186, 187] it was proposed that any massless scattering amplitude is mapped to the celestial

sphere via a Mellin transform:

ÃJ1⋯Jn(λj , zj , z̄j) =
n

∏
j=1
∫

∞

0
dωj ω

iλj
j A`1⋯`n(ωj , zj , z̄j) . (6.1.3)

The Mellin transform maps a plane wave solution for a helicity `j �eld in momentum space to a

corresponding conformal primary wave function on the boundary with spin Jj , where helicity `j

and spin Jj are mapped onto each other, and the operator dimension takes values in the principal

continuous series representation ∆j = 1 + iλj [186]. Therefore, ÃJ1⋯Jn(λj , zj , z̄j) has the structure

of a conformal correlator on the celestial sphere, where the symmetry group of di�eomorphisms is

the conformal group SL(2,C).

Explicitly, under conformal transformations, we have the following behavior:

ωj → ω′j = ∣czj + d∣
2ωj , zj → z′j =

azj + b

czj + d
, z̄j → z̄′j =

āz̄j + b̄

c̄z̄j + d̄
, (6.1.4)

where a, b, c, d ∈ C and ad − bc = 1. The transformation for zj , z̄j is familiar from the usual action

of SL(2,C) on the complex coordinates on a sphere. Concerning ωj , recall that q
µ
j transforms as

qµj → ∣czj+d∣
−2Λµνq

ν
j [186], where Λµν is a Lorentz transformation in Minkowski space corresponding

to the celestial sphere conformal transformation. Thus, ωj must transform as in (6.1.4) to ensure

that kµj transforms as a Lorentz vector: kµj → Λµνk
ν
j .

The conformal covariance of ÃJ1⋯Jn(λj , zj , z̄j) on the celestial sphere demands:

ÃJ1⋯Jn (λj ,
azj + b

czj + d
,
āz̄j + b̄

c̄z̄j + d̄
) =

n

∏
j=1

[(czj + d)
∆j+Jj(c̄z̄j + d̄)

∆j−Jj ] ÃJ1⋯Jn(λj , zj , z̄j) , (6.1.5)

as expected for a correlator of operators with weights ∆j and spins Jj .

6.2 n-point MHV

The cases of 3- and 4-point gluon amplitudes have been considered in [187]. Here we will map

n ≥ 5-point MHV gluon amplitudes to the celestial sphere.
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6.2.1 Integrating out one ωi

Starting from (6.1.3), we can anchor the integration to one of our variables ωi by making a change

of variables for all l ≠ i

ωl →
ωi
si
ωl, (6.2.1)

where si is a constant factor that cancels the conformal scaling of ωi in (6.1.4), so that the ratio ωi
si

is conformally invariant. One choice which is always possible in Minkowski signature is

si =
∣zi−1 i+1∣

∣zi−1 i∣ ∣zi i+1∣
. (6.2.2)

Since gluon scattering amplitudes scale homogeneously under uniform rescalings, collecting all

the factors in front, we have

ÃJ1⋯Jn(λj , zj , z̄j) = ∫
∞

0

dωi
ωi

(
ωi
si

)
∑nj=1 iλj

s1+iλi
i

⎛
⎜
⎝

n

∏
a=1
a≠i

∫

∞

0
dωa ω

iλa
a

⎞
⎟
⎠
A`1⋯`n(si, ωl, zj , z̄j) , (6.2.3)

where we used that the scaling power of dressed gluon amplitudes is An(Λωi) → Λ−nAn(ωi). We

recognize that the integral over ωi is the Mellin transform of 1, which is given by

∫

∞

0

dωi
ωi

(
ωi
si

)
iz

= 2πδ(z). (6.2.4)

With this we simplify the transformation prescription (6.1.3) to

ÃJ1⋯Jn(λj , zj , z̄j) = 2πδ
⎛

⎝

n

∑
j=1

λj
⎞

⎠
s1+iλi
i

⎛
⎜
⎝

n

∏
a=1
a≠i

∫

∞

0
dωa ω

iλa
a

⎞
⎟
⎠
A`1⋯`n(si, ωl, zj z̄j) . (6.2.5)

6.2.2 Integrating out momentum conservation δ-functions

For simplicity, we choose the anchor variable above to be ω1 and use ωn−3, . . . , ωn to localize the

momentum conservation δ-functions in the amplitude. These δ-functions can then be equivalently

rewritten as follows, compensating the transformation by a Jacobian:

δ4
(ε1s1q1 +

n

∑
i=2

εiωiqi) =
4

U

n

∏
j=n−3

sjδ (ωj − ω
∗
j )1>0(ω

∗
j ), (6.2.6)
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where ω∗j are solutions to the initial set of linear equations:

ω⋆j = −sj (
U1,j

U
+
n−4

∑
i=2

ωi
si

Ui,j

U
) . (6.2.7)

The Uij and U are minor determinants by Cramer's rule:

Ui,j = det(M{n−3,...,j→i,...,n}
), U = det(M{n−3,...,n}

), (6.2.8)

where j → i means that index j is replaced by index i. M{a,b,c,d} denotes the 4 × 4 matrix

M{a,b,c,d}
= (pa pb pc pd). (6.2.9)

For the purpose of determinant calculation, the column vectors pµi = εisiq
µ
i can be written in a

manifestly conformally invariant form:

pµ1 (z, z̄) = ε1(1,0,0,−1) , pµ2 (z, z̄) = ε2(1,0,0,1) , pµ3 (z, z̄) = ε3(2,2,0,0) ,

pµi (z, z̄) = εi
1

∣ui∣
(1 + ∣ui∣

2, ui + ūi,−i(ui − ūi),1 − ∣ui∣
2
) for i = 4,5, ..., n ,

(6.2.10)

in terms of conformal invariant cross-ratios

ui =
z31zi2
z32zi1

and ūi =
z̄31z̄i2
z̄32z̄i1

for i = 4,5, ..., n , (6.2.11)

but if, and only if, we also specify the explicit choice

s1 =
∣z3,2∣

∣z3,1∣ ∣z1,2∣
, s2 =

∣z3,1∣

∣z3,2∣ ∣z2,1∣
, and si =

∣z1,2∣

∣z1,i∣ ∣zi,2∣
for i = 3, ..., n. (6.2.12)

The indicator functions ∏
n
i=n−3 1>0(ω

∗
i ) appear due to the integration range in all ω being along the

positive real line, such that the δ-functions can only be localized in this region.

Furthermore, in order for all the remaining integration variables ωj with j = 2, ..., n − 4 to be

de�ned on the whole integration range, the indicator functions ∏
n
i=n−3 1>0(ω

∗
i ) have to demand

Ui,j
U

< 0 for all i = 1, . . . , n − 4 and j = n − 3, ..., n, so that we can write them as ∏i,j 1<0(
Ui,j
U

).
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6.2.3 Integrating the remaining ωi

In this section we apply (6.2.5) to the usual n-point MHV Parke-Taylor amplitude [1] in spinor-

helicity formalism for n ≥ 5 rewritten via (6.1.2):

A−−+...+(s1, ωj , zj , z̄j) =
z3

12s1ω2δ
4(ε1s1q1 +∑

n
i=2 εiωiqi)

(−2)n−4z23z34...zn1ω3ω4...ωn
. (6.2.13)

Making use of the solutions (6.2.6) and performing four of the integrations in (6.2.5), we have:

Ã−−+...+(λi, zi, z̄i) = 2π
δ(∑

n
j=1 λj)z

3
12 s

iλ1+2
1

(−2)n−4Uz23z34...zn1

n−4

∏
a=2
∫

∞

0
dωa ω

iλa
a

ω2∏
n
b=n−3 sbω

∗
b
iλb

ω3ω4...ω∗n
∏
i,j

1<0(
Ui,j

U
).

(6.2.14)

For convenience, we transform the remaining integration variables as:

ωi = si
U1,n

Ui,n

ui−1

1 −∑
n−5
j=1 uj

, i = 2,3, ..., n − 4 , (6.2.15)

which leads to

Ã−−+...+(λi, zi, z̄i) ∼
z3

12s
iλ1+2
1 siλ2+2

2 siλ3

3 ...siλnn
z23z34...zn1U1,n

δ(
n

∑
j=1

λj) ϕ̂({α}, x) ∏
i,j

1<0(
Ui,j

U
). (6.2.16)

Note that the overall factor in (6.2.16) accounts for proper transformation weight of the resulting

correlator under conformal transformations (6.1.5).

Here we recognize a hypergeometric function ϕ̂({α}, x) of type (n − 4, n), as de�ned in section

3.8.1 of [192] and described in appendix 6.5. In particular, here we have:

ϕ̂({α}, x) ≡∫u1≥0,...,un−5≥0
1−∑a ua≥0

n

∏
j=1

Pj(u)
αjdϕ , dϕ =

dP2

P2
∧ ... ∧

dPn−4

Pn−4
,

Pj(u) =x0j + x1ju1 + ... + xn−5 jun−5 , 1 ≤ j ≤ n .

(6.2.17)

The parameters in (6.2.17) corresponding to (6.2.16) read:1

α1 =1 , α2 = 2 + iλ2 , α3 = iλ3 , ... , αn−4 = iλn−4 , αn−3 = iλn−3 − 1 , ... , αn−1 = iλn−1 − 1,

αn =1 + iλ1 , x0 i =
U1,i

U1,n
, xj−1 i =

Uj,i

Uj,n
−
U1,i

U1,n
, x0n = −

U

U1,n
, xj−1n =

U

U1,n
, x01 = 1 , xj−1 j = −

U

Uj,n
,

(6.2.18)

1For n = 5, the normally di�erent cases α2 = 2 + iλ2 and αn−3 = iλn−3 − 1 are reduced to a single α2 = 1 + iλ2. In
this case there also are no integrations so that the result becomes a simple product of factors.
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for i = n − 3, n − 2, n − 1 and j = 2,3, ..., n − 4, and all other xab = 0.

These kinds of functions are also known as Aomoto-Gelfand hypergeometric functions on the

Grassmannian Gr(n − 4, n).

Making use of eq. (3.24) and (3.25) from [192], we can write down a dual representation of the

same function, which yields a hypergeometric function of type (4, n):

ϕ̂({α}, x) ≡
c2
c1
∫u1≥0,...,u3≥0

1−∑a ua≥0

n

∏
j=1

Pj(u)
αjdϕ , dϕ =

dPn−3

Pn−3
∧ ... ∧

dPn−1

Pn−1
,

Pj(u) =x0j + x1ju1 + x2ju2 + x3ju3 , 1 ≤ j ≤ n .

(6.2.19)

In this case, the parameters of (6.2.19) corresponding to (6.2.16) read:

α1 =1 , α2 = −2 − iλ2 , α3 = −iλ3 , ... , αn−4 = −iλn−4 , αn−3 = 1 − iλn−3 , ... , αn−1 = 1 − iλn−1,

αn = − iλn , x0j =
Uj,n

U1,n
, xij =

Uj,n−4+i
U1,n−4+i

−
Uj,n

U1,n
, x0n = −

U

U1,n
, xin =

U

U1,n
, x01 = 1 ,

x1n−3 =
−U

U1,n−3
, x2n−2 =

−U

U1,n−2
, x3n−1 =

−U

U1,n−1
,
c2
c1

=
Γ(2 + iλ1)Γ(2 + iλ2)∏

n−4
j=3 Γ(iλj)

Γ(1 − iλ1)∏
3
i=1 Γ(1 − iλn−i)

. (6.2.20)

for i = 1,2,3 and j = 2,3, ..., n − 4, and all other xab = 0.

The hypergeometric functions ϕ̂({α}, x) form a basis of solutions to a Pfa�an form equation

which de�nes a Gauss-Manin connection as described in section 3.8 of [192]. This Pfa�an form

equation can be interpreted as a generalized Knizhnik-Zamolodchikov equation satis�ed by our

correlators [193, 194]. Similar generalized hypergeometric functions appeared in [195] in the context

of N = 4 Yang-Mills scattering amplitudes and the deformed Grassmannian.

6.2.4 6-point MHV

In the special case of six gluons there is only one integral in (6.2.17), such that the function reduces

to the simpler case of Lauricella function ϕ̂D:

ϕ̂D({α}, x) =(
−U

U2,6
)

iλ1+1

(
−U

U1,6
)

iλ2+2

(
U2,3

U2,6
)

iλ3−1

(
U2,4

U2,6
)

iλ4−1

(
U2,5

U2,6
)

iλ5−1

×

× ∫

1

0
dt tα−1

(1 − t)γ−α−1
3

∏
i=1

(1 − xit)
−βi ,

(6.2.21)

with parameters and arguments given by

α = 2 + iλ2, γ = 4 + iλ1 + iλ2, βi = 1 − iλi+2, xi = 1 −
U1,i+2U2,6

U1,6U2,i+2
for i = 1,2,3. (6.2.22)
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Note that x0j arguments have been factored out of the integrand to achieve this form.

6.3 n-point NMHV

In this section we will map the n-point NMHV split helicity amplitude A−−−++⋯+ to the celestial

sphere via (6.2.5). The spinor-helicity expression for A−−−++⋯+ can be found e.g. in [196]

A−−−++⋯+ =
1

F3,1

n−1

∑
j=4

⟨1∣P2,jPj+1,2∣3⟩
3

P 2
2,jP

2
j+1,2

⟨j + 1 j⟩

[2∣P2,j ∣j + 1⟩⟨j∣Pj+1,2∣2]
≡
n−1

∑
j=4

{Mj} (6.3.1)

where Fi,j ≡ ⟨i i + 1⟩⟨i + 1 i + 2⟩⋯⟨j − 1 j⟩ and Px,y ≡ ∑
y
k=x ∣k⟩[k∣ where x < y cyclically.

We will work with {M4} for the purpose of our calculations. Using momentum conservation and

writing {M4} in terms of spinor-helicity variables, we �nd

{M4} =
1

⟨34⟩⟨45⟩⋯⟨n − 1 n⟩⟨n1⟩

(⟨12⟩[24]⟨43⟩ + ⟨13⟩[34]⟨43⟩)3

(⟨23⟩[23] + ⟨24⟩[24] + ⟨34⟩[34])⟨34⟩[34]
×

×
⟨54⟩

([23]⟨35⟩ + [24]⟨45⟩)(⟨43⟩[32])
. (6.3.2)

Writing this in terms of celestial sphere variables via (6.1.2), we �nd

{M4} =

ω1ω4(ε2z12z̄24ω2+ε3z13z̄34ω3)3
2n−4z56z67⋯zn−1,nzn1z̄23z̄34∏nj=2,j≠4 ωj

(ε3z35z̄23ω3 + ε4z45z̄24ω4) (ε2ω2 (ε3∣z23∣
2ω3 + ε4∣z24∣

2ω4) + ε3ε4∣z34∣
2ω3ω4)

. (6.3.3)

The following map of the above formula to the celestial sphere will only be strictly valid for n ≥ 8.

We will comment on changes at 6- and 7-points in the next section. We use the map (6.2.5), anchor

the calculation about ω1, make use of solutions (6.2.6) and perform a change of variables

ωi = si
ui−1

1 −∑
n−5
j=1 uj

, i = 2, . . . , n − 4, (6.3.4)

to �nd the resulting term in the n-point NMHV correlator

{M̃4} ∼ δ
⎛

⎝

n

∑
j=1

λj
⎞

⎠

∏
n
i=1 s

iλi
i

z̄12z̄23z̄13z45z56⋯zn−1,nz4,n

z̄12z̄13z45z4,ns
2
1s

2
4

z̄34zn1U
F̂(α,x)∏

i,j

1<0(
Ui,j

U
), (6.3.5)

with the function F̂(α,x) being a Gelfand A-hypergeometric function as de�ned in Appendix 6.5.
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In this case it explicitly reads:

F̂({α}, x) = ∫ u1≥0,...un−5≥0
1−u1−⋯−un−5≥0

n−5

∏
a=1

dua
ua

n−5

∏
j=1

u
iλj+1
j u2

3(u1u2x10 + u1u3x20 + u2u3x30)
−1

×
7

∏
i=1

(x0i + u1x1i +⋯ + un−5xn−5,i)
αi ,

(6.3.6)

where parameters are given by

α1 = 3, α2 = −1, α3 = iλ1 + 1, α4 = iλn−3 − 1, α5 = iλn−2 − 1, α6 = iλn−1 − 1, α7 = iλn − 1, (6.3.7)

and function arguments are given by

x10 = ε2ε3∣z23∣
2s2s3, x20 = ε2ε4∣z24∣

2s2s4, x30 = ε3ε4∣z34∣
2s3s4,

x11 = ε2z12z̄24s2, x21 = ε3z13z̄34s3, x22 = ε3z35z̄23s3, x32 = ε4z45z̄24s4,

x03 = 1, xj3 = −1, j = 1, . . . , n − 5, x04 =
U1,n−3

U
, xj4 =

Uj,n−3 −U1,n−3

U
, j = 1, . . . , n − 5,

x05 =
U1,n−2

U
, xj5 =

Uj,n−2 −U1,n−2

U
, j = 1, . . . , n − 5, (6.3.8)

x06 =
U1,n−1

U
, xj6 =

Uj,n−1 −U1,n−1

U
, j = 1, . . . , n − 5,

x07 =
U1,n

U
, xj7 =

Uj,n −U1,n

U
, j = 1, . . . , n − 5.

Note that the �rst fraction in (6.3.5) accounts for the correct transformaton weight of the correlator

under conformal tranformation (6.1.5).

6- and 7-point NMHV

In the cases of 6- and 7-point the results in the previous section change somewhat, due to the presence

of ω3 and ω4 in the denominator of (6.3.3). These variables are �xed by momentum conservation δ-

functions in the lower point cases, such that the parameters and function arguments of the resulting

Gelfand A-hypergeometric functions change.

For the 6-point case, we �nd that the resulting correlator part {M̃4} is proportional to a Gelfand

A-hypergeometric function as de�ned in Appendix 6.5:

F̂({α}, x) = ∫ u1≥0
1−u1≥0

du1

u1
uiλ2

1 (x00 + u1x10 + u
2
1x20)

−1
(1 − u1)

iλ1+1
7

∏
i=2

(x0i + u1x1i)
αi (6.3.9)
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where parameters are given by

α2 = iλ3 − 1, α3 = iλ4 + 1, α4 = iλ5 − 1, α5 = iλ6 − 1, α6 = 3, α7 = −1, (6.3.10)

and function arguments xij depend on εi, zi, z̄i and Uij . Performing a partial fraction decomposition

on the quadratic denominator in (6.3.9), we can reduce the result to a sum of two Lauricella functions.

In the 7-point case, we �nd that the resulting correlator part {M̃4} is proportional to a Gelfand

A-hypergeometric function as de�ned in Appendix 6.5:

F̂({α}, x) = ∫ u1≥0,u2≥0
1−u1−u2≥0

du1

u1

du2

u2
uiλ2

1 uiλ3

2 (u1x10 + u2x20 + u1u2x30 + u
2
1x40 + u

2
2x50)

−1

×
7

∏
i=1

(x0i + u1x1i + u2x2i)
αi ,

(6.3.11)

where parameters are given by

α1 = iλ1 + 1, α2 = iλ4 + 1, α3 = iλ5 − 1, α4 = iλ6 − 1, α5 = iλ7 − 1, α6 = 3, α7 = −1, (6.3.12)

and function arguments xij again depend on εi, zi, z̄i and Uij .

6.4 n-point NkMHV

In this section we discuss the schematic structure of NkMHV amplitudes with higher k under the

Mellin transform (6.2.5).

N2MHV amplitude

In the 8-point N2MHV split helicity case, A−−−−++++, we consider one of the six terms of the ampli-

tude found in e.g. [196] on page 6 as an example:

1

F4,1F̄2,3

⟨1∣P2,6P7,2P3,5P6,3∣4⟩
3

P 2
2,6P

2
7,2P

2
3,5P

2
6,3

⟨76⟩[23]⟨65⟩

[2∣P2,6∣7⟩⟨6∣P7,2∣2][3∣P3,5∣6⟩⟨5∣P6,3∣3]
, (6.4.1)
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where F̄i,j is the complex conjugate of Fi,j . Performing the same sequence of steps as in the previous

sections, we �nd a resulting Gelfand A-hypergeometric function of the form

F̂({α}, x) = ∫u1≥0,u2≥0,u3≥0
1−u1−u2−u3≥0

du1

u1

du2

u2

du3

u3
uα1

1 uα2

2 uα3

3 P
3
{4}

13

∏
i=4

(x0i + u1x1i + u2x2i + u3x3i)
αi (6.4.2)

×
17

∏
j=14

(x0j + u1x1j + u2x2j + u3x3j + u1u2x4j + u1u3x5j + u2u3x6j + u
2
1x7j + u

2
2x8j + u

2
3x9j)

αj ,

for some parameters αi, where P{4} is a degree four polynomial in ui, and function arguments xij

again depend on εi, zi, z̄i and Uij .

NkMHV amplitude

More generally a split helicity NkMHV amplitude A−⋯−+⋯+ involves a sum over the terms described

in eq. (3.1), (3.2) of [196]. Terms corresponding in complexity to {M̃4} discussed in the previous

section are always present, with constant Laurent polynomial powers at any k. However, for higher

k, the most complicated contributing summands result in hypergeometric integrals schematically

given by

F̂({α}, x) =∫ u1,...,un−4≥0
1−u2−⋯−un−4≥0

n−4

∏
l=2

dul
ul
uαll

⎛

⎝
1 −

n−4

∑
j=2

uj
⎞

⎠

α1

P
3
{2k} (∏

i

(P
i
{1})

αi)
⎛

⎝
∏
j

(P
j
{2})

αj
⎞

⎠
(6.4.3)

where αi are parameters and P{d} is a degree d polynomial in ua. Here we explicitly see an increase

in power of the Laurent polynomials with increasing k in NkMHV. The examples above feature the

Gelfand A-hypergeometric function F̂ . The increase in Laurent polynomial degree is traced back

to the presence of Mandelstam invariants P 2
i,j for degree two polynomials, as well as the factors

⟨a∣Pi,jPk,l...Pr,t∣b⟩ for higher degree polynomials. The length of chains of the Pi,j depends on n and

k, such that multivariate Laurent polynomials of any positive degree are present at su�ciently high

n, k.

Similar generalized hypergeometric functions, or, equivalently, generalized Euler integrals are

found in the case of string scattering amplitudes [197, 84]. It will be interesting to explore this

connection further.
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6.5 Generalized hypergeometric functions

The Aomoto-Gelfand hypergeometric functions of type (n + 1,m + 1) relevant in this work can be

de�ned as in section 3.5.1 of [192]:

ϕ̂({α}, x) ≡∫u1≥0,...,un≥0
1−∑a ua≥0

m

∏
j=0

Pj(u)
αjdϕ , (6.5.1)

dϕ =
dPj1
Pj1

∧ ... ∧
dPjn
Pjn

, 0 ≤ j1 < ... < jn ≤m, (6.5.2)

Pj(u) =x0j + x1ju1 + ... + xnjun , 1 ≤ j ≤m, (6.5.3)

where here the parameters αi collectively describe all the powers for the factors in the integrand.

When all αi are zero, the function reduces to the Aomoto polylogarithm.

The arguments xij of the hypergeometric function of type (m+1, n+1) in (6.5.3) can be arranged

in a matrix:

X̄ =

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x00 . . . x0m

x10 . . . x1m

⋮ ⋱ ⋮

xn0 . . . xnm

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6.5.4)

Each column in this matrix de�nes a hyperplane in Cn that appears in the hypergeometric

integral as (x0j + ∑
n
i=1 xijui)

αi . Furthermore, (n + 1) × (n + 1) minor determinants of the matrix

can be regarded as Plücker coordinates on the Grassmannian Gr(n + 1,m + 1) over the space of

arguments xij .

Sometimes it is convenient to transform the argument arrangement (6.5.4) to the following gauge

�xed form

⎛
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

1 0 . . . 0 1 1 . . . 1

0 1 . . . 0 −1 −x11 . . . −x1m−n−1

⋮ ⋱ −1 ⋮ ⋮ ⋮

0 0 . . . 1 −1 −xn1 . . . −xnm−n−1

⎞
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

. (6.5.5)

In this case the hypergeometric function can then be written in the following two equivalent ways,
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eq. (3.24) of [192]:

F ((αi), (βj), γ;x) =c1 ∫u1≥0,...,un≥0
1−∑a ua≥0

dnu
n

∏
i=1

uαi−1
i ⋅ (1 −

n

∑
l=1

ul)
γ−∑i αi−1

m−n−1

∏
j=1

(1 −
n

∑
i=1

xijui)
−βj ,

c1 =Γ(γ)/Γ(γ −
n

∑
i=1

αi) ⋅
n

∏
i=1

Γ(αi), (6.5.6)

and the dual representation in eq. (3.25) of [192]:

F ((αi), (βj), γ;x) =c2 ∫u1≥0,...,um−n−1≥0
1−∑a ua≥0

dm−n−1u
m−n−1

∏
i=1

uβi−1
i ⋅ (1 −

m−n−1

∑
l=1

ul)
γ−∑i βi−1

n

∏
j=1

(1 −
m−n−1

∑
i=1

xjiui)
−αj ,

c2 =Γ(γ)/Γ(γ −
m−n−1

∑
i=1

βi) ⋅
m−n−1

∏
i=1

Γ(βi), (6.5.7)

where the parameters are assumed to satisfy the conditions

αi ∉ Z, 1 ≤ i ≤ n, βj ∉ Z, 1 ≤ j ≤m − n − 1,

γ −
n

∑
i=1

αi ∉ Z, γ −
m−n−1

∑
j=1

βj ∉ Z.
(6.5.8)

The hypergeometric functions (6.5.1) comprise a basis of solutions to the de�ning set of di�er-

ential equations

(1)
n

∑
i=0

xij
∂ϕ̂

∂xij
= αjϕ̂ , 0 ≤ j ≤m,

(2)
m

∑
j=0

xij
∂ϕ̂

∂xij
= −(1 + αi)ϕ̂ , 0 ≤ i ≤ n, (6.5.9)

(3)
∂2ϕ̂

∂xij∂xpq
=

∂2ϕ̂

∂xiq∂xpj
, 0 ≤ i, p ≤ n, 0 ≤ j, q ≤m.

In cases where factors of the integrand are non-linear in the integration variables, the functions

can be generalized further to Gelfand A-hypergeometric functions [198, 199] de�ned as:

F̂({α}, x) = ∫u1≥0,...,uk≥0
1−∑a ua≥0

∏
i

Pi(u1, ..., uk)
αiuα1

1 ...uαkk du1...duk, (6.5.10)

where αi are complex parameters and Pi now are Laurent polynomials in u1, ..., uk.
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