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Chapter 1

Introduction

Calculation of scattering amplitudes is required to understand the different kinds of scattering pro-
cesses of elementary particles that can happen according to the rules of an underlying Quantum
Field Theory (QFT), as well as to determine the overall probabilities for these processes to occur.
It is of interest to calculate these probabilities in order to learn more about fundamental behavior
of elementary particles in nature.

Conventionally, scattering amplitudes are constructed by Feynman rules derived from a local
Lagrangian of the QFT in question. However, the sum over all contributing Feynman diagrams
quickly becomes combinatorially intractable as we consider higher number of participating particles
in a scattering process. Amazingly, oftentimes scattering amplitudes exhibit dramatic simplifications
once all Feynman diagrams have been taken into account, a prime example being the famous Parke-
Taylor formula for maximally helicity violating scattering of any number of gluons [I]. This suggests
that computing Feynman diagrams is not the most convenient approach and other techniques are
likely to exist that make the hidden simplicity more manifest during the calculation. The following
are a few theoretical tools that make some progress in this direction.

In four spacetime dimensions the so called spinor-helicity formalism allows for the simplest for-
mulation of massless scattering, since it removes gauge redundancies and encodes physical degrees
of freedom only (see [2] for a review).

Another powerful tool is the so called Britto-Cachazo-Feng-Witten (BCFW) recursion [3, 4], that
allows to find higher point amplitudes in terms of a sum over known lower point amplitudes that
are completely fixed by scaling and dimensional analysis arguments. In this sense BCFW recursion

circumvents Feynman diagram calculation all together, directly providing the final result in relatively



simple form.

Recently, amplitudes in Cachazo-He-Yuan (CHY) representation [5] have emerged, which com-
pactly describe scattering amplitudes of an arbitrary number of particles in an arbitrary number
of spacetime dimensions and in various theories, at the expense of requiring an integration over a
moduli space to be performed localizing so called scattering equation constraints.

In the next sections of this introduction we will introduce relevant notions and describe the tools

and techniques mentioned above in more detail.

1.1 Why amplitudes?

From classical physics, we are familiar with the concept of scattering cross-section o, which in essence
is the cross-sectional area of an extended object as perceived by a beam of smaller particles that are

scattered off it. Naturally, in a setup where the target is at rest the cross-section is then given by

number of scattered particles

= , 1.1.1
timexvelocity of the beamxnumber density of the beam ( )

which in other words is simply the number of scattered particles N per incoming flux ® and per
time 7'. In quantum mechanics incident particles only have a probability to interact with the target,
which leads us to generalize the notion of cross-section to more abstractly refer to the strength of
interaction between scattered particles. With this the differential cross-section for a two particle

collision becomes

v

do = ———
T|U1 —Ugl

dP, (1.1.2)

where we used that the flux is the difference of velocities of the two particles per volume V', and dP
is the differential quantum mechanical probability of scattering. The quantity dP can be formally
expressed by introducing the notion of quantum mechanical states describing the initial |i) and the
final |f) particle configurations in the system before and after the scattering takes place respectively.
As explained in any introductory text on Quantum Field Theory (see for instance [6]), dP is given

by

-\ (2
ap = WSO g dH:H(;;)Sdgpj, (1.1.3)

(F11)Gl2) i



with the region of final state momenta dII integrating to one. Here S is the so called scattering

matrix which encodes all intermediate processes that can connect the initial and final states:
S=1+i(2m)** (> p)A. (1.1.4)

The non-trivial part of the scattering matrix contains momentum conservation delta functions and
the amplitude matrix A. Finally, after a bit of algebra and making use of (s|s) = [1;(2E;V) and
§4(0) = % in a finite volume V = L3, we can send the scattering volume and time period to

infinity and find in the non-trivial case |f) # |i):

(AL
do=—"——"——dII 1.1.5
o 1B Ba[oy — ) LIPS, ( )

where F; are particle energies and dll;;pg is the Lorentz-invariant phase space

d’p, (2m)'6'(Sp)

dlprps =
H ) (271’)3 2Ej

particles je|f

(1.1.6)

This demonstrates that in order to calculate the differential cross-section of two scattering particles,
which provides an intuitive measure for the interaction strength between them and can shed light
on their properties such as mass, spin and internal quantum numbers, we first have to obtain the so

called scattering amplitude
A = (f|Al3). (1.1.7)

It will be the subject of this thesis to investigate soft factorization properties of amplitudes in a select
group of Quantum Field Theories, and to develop a general evaluation technique for amplitudes based

on scattering equations in the so called Cachazo-He-Yuan (CHY) formulation.

1.2 Scattering equations based amplitudes

Conventionally, Feynman rulesﬂ are used to compute scattering amplitudes from a graph theoretic
point of view. In this approach expressions for propagators and interactions are extracted from a local
Lagrangian of a QFT, and play the role of edges and vertices respectively. To obtain the scattering

amplitude, Feynman rules prescribe to sum all possible diagrams that can be composed out of the

IThis thesis assumes familiarity of the reader with standard textbook Quantum Field Theory material, such as
Feynman rules. Thus technical details on this are omitted.



given edge and vertex expressions leading to appropriate external states. Further complications
appear when edges form closed loops, with extra minus signs to keep track of for each fermionic
loop, and loop momenta integrations over the entire phase space. But even for tree-level graphs,
where no loops appear, the number of Feynman diagrams grows exponentially with the number
of particles participating in the scattering process, such that an explicit summation becomes a
practically impossible task. For this reason, any combinatorially tractable formulation of amplitudes
is a valuable tool. One such formulation is described below.

At the heart of the Cachazo-He-Yuan representation of scattering amplitudes are the so called
scattering equations, which map configurations of momenta k!' of scattering particles ¢ = 1,2,...,n

to an auxiliary moduli o; space on a Riemann sphere by demanding the following equality for all a

fa= == 0. (1.2.1)

The CHY formulation ([7, 5l [§], and later [9, 10]) produces tree level n-point scattering amplitudes

for massless particles in arbitrary dimension by means of (n — 3) moduli integrations localizing the

scattering equations E|

d"o
A:/dI ith  dy=——— G0k 5 (1), 1.2.2
/‘l’ w1 /‘l’ VOI SL(Q)@)O—JO—]kO-k a¢1ijj’k (f ) ( )

where 0;; = 0, -0, and Z is determined by the particular Quantum Field Theory (we will encounter
a few explicit examples of Z in what follows), while du is a universal purely kinematic integration
measure. Since all 0; live on a Riemann sphere, any valid Z has to cancel the SL(2, C) transformation
weight of du such that overall the amplitude is SL(2,C) invariant on the moduli space.

The scattering equations could also be reformulated in a polynomial form by Dolan and Goddard

[I1, 12]. This transforms the CHY measure du as

it L) (o) a2

1<i<j<n a=2

where the polynomial scattering equations now read

; , 2
7 . 1 i
hi= Z Sq1,....qi H oq; =0 with Sqr.g = 3 (Z kqj) ) (1.2.4)

{q1,---,q:}c{1,2,...,n} j=1 fos

2Note that the usual gauge fixing e.g. = (T1}_, do¢) 012023031 reduces the number of integrations to

d"o
VoI SL(2,C)
n—3.



Here the summation is over all unordered subsets of 7 elements out of the sequence of numbers from
1 to n. Despite a non-trivial transformation having been applied to achieve the polynomial form,
the h; = 0 have exactly the same set of solutions as f, = 0, which makes the particular choice a
matter of convenience. We will prefer the polynomial form of scattering equations when we develop
our evaluation procedure for CHY amplitudes in a later chapter.

Since each chapter of this thesis aims to be as self-contained as possible, we will recall and repeat
the CHY formulation on several occasions throughout this thesis, with emphasis on specific features

and theories that are relevant within the respective chapter.

1.3 Spinor-helicity formalism

Physicists are most used to parametrizing physical processes of particles using Minkowski space
momenta p* and polarization vectors ¢ familiar from special relativity and electro-dynamics. Nat-
urally, scattering amplitudes are often written as functions of these variables A(p!',¢!")

i € ). However,
these familiar variables are not always the best choice to describe the physics most concisely. For
instance, when talking about scattering of massless photons, we know that only two transversal
polarizations are possible: plus or minus helicity states. Since a generic polarization vector € has
enough components to encode transversal as well as longitudinal polarizations, it has more struc-
ture than is required to describe massless photons. Additionally, momenta p* appear as variables
seemingly independent from e polarizations. We can perform a change of variables that removes
the unnecessary degrees of freedom in our description and therefore provides a much more useful
description (see e.g. [2]).

Start with a momentum four-vector p* and consider multiplying it with a vector composed of

the usual Pauli matrices o*:
Pai = ThgPp where o, =(1,5)aq. (1.3.1)

The resulting quantity p.s for a,d € {1,2} is a 2 x 2 matrix. The massless condition p,p" = 0
translates into det pog = 0, which means that the matrix p.s has reduced rank. Any 2 x 2 matrix of

reduced rank can be written as a dyadic product of two vectors

Pad = AaNd. (1.3.2)



The vectors A\, and A, are also called Weyl spinors. For real momenta p* the two Weyl spinors are
complex conjugates of each other. Considering that the Pauli matrices are SU(2) generators, we
can contract the o and ¢ indices with the completely anti-symmetric tensor €*?, for which we can

define a bracket notation:
(ij) =P hiadjs and  [ij]= P Niady (1.3.3)

such that the product of two four-momenta is given by 2p'p;,, = (ij)[ij].

Polarization vectors can similarly be expressed in this SU(2) notation
Ciag = 201 (1.3.4)

where r; and 7; explicitly encode the usual gauge degrees of freedom and are called reference spinors.
They can be chosen arbitrarily so long as the resulting €;,4 and &;,4 are finite.

Thus, with the above choice of parametrization the amplitude can be written as a function of
spinors A(A;, 5\1) alone. Since \; = (5\1)* has only two independent components, the spinors encode
the two helicity states in a minimal fashion and automatically include the kinematic information
about the motion of a particle. This compact spinor-helicity language oftentimes yields huge simpli-
fications for expressions that are rather unwieldy in the original momentum and polarization vector

language.

1.4 BCFW recursion

Another powerful tool in the amplitudes toolbox is Britto-Cachazo-Feng-Witten (BCFW) recursion
[3L ). To set up BCFW recursion, we introduce complex deformations of amplitudes A()\i,j\i). In
particular, consider deforming two of the spinor-helicity variables i,j by a complex parameter z as

follows

P R IED VD (v (1.4.1)
AY S AT —2AF =AY A S (1.4.2)

K3

This implies that the deformed spinors are not complex conjugates of each other for z # 0. After

this deformation, we can trivially recover the original amplitude A(\;, \;) from the deformed one



A(\i, Ai) by performing the following contour integral

A, &) = ﬁ ﬁm, (1.4.3)

2w oz
and collecting a residue from a simple pole at z = 0. However, we also can consider deforming the
integration contour away from the initial locus around zero all the way out to infinity. As the contour
is deformed, it encounters and wraps around other poles in the integrand. This is where our general
knowledge about constructing amplitudes from Feynman diagrams comes into play. Even though we
do not attempt to write down all possible diagrams contributing to a particular amplitude, we still
know that at tree level all poles within an amplitude must be due to denominators of propagators
that are present in the diagrams. As the contour in z localizes these denominators, the propagators
go on-shell producing a divergence and a corresponding residue. Whenever we have propagators
that are on-shell, we can think of the propagating intermediate particle as an external particle and
the amplitude factorizes into two sub-amplitudes connected by this on-shell bridge. If we denote

such factorization locations by z;, we can therefore write

>0

A\,

A(/\ia;\i) :_ZReSz:zlii) :ZAL(ZI)%AR(ZI), (1.4.4)
z1 I

zZr z

where Ay, and Ag are lower point amplitudes and P12 is the square of the sum of unshifted external
momenta entering either the left or the right lower point amplitudeﬂ

Since Az, and Ar have a lower number of effectively external legs compared to the original
amplitude A, with BCFW recursion we therefore have obtained a way to systematically construct
higher point amplitudes from lower point amplitudes iteratively without having to write down all
Feynman diagrams from scratch. This is a very powerful tool, which we will employ to study soft

factorization properties of amplitudes in the following.

3Note that z; = oo also could be a valid contributing pole in cases where numerators of Feynman diagrams feature
non-trivial momentum dependence. However, in practice such poles at infinity can be circumvented in many cases of
interest.



1.5 What are soft theorems?

Soft theorems refer to analytic properties of scattering amplitudes under soft kinematics, meaning

the Minkowski momentum of one or more particles involved in the scattering process tends to zero
k' — ekl , e— 0" , i=1,2,...m, (1.5.1)

whereby the scattering amplitude reduces to an amplitude with a lower number of scattering particles
times a so called soft factor that is uniquely determined by the nature of the particles with soft

momenta
Ay > (806t + 8W ettt 4§D e 4 ) A,y (1.5.2)

where the initial power ¢ is such that the first few terms tend to be divergent. Thanks to this
divergence, the soft structure is factorized from the remaining amplitude and becomes universal.
Universality in this context means that S,(,? is independent of the remaining lower point amplitude
Ap_m, such that Sg) is always the same whenever the same types of m external particles are taken
soft within any original amplitude A,,. Due to this universality, soft theorems are a powerful tool
to verify the validity of different representations of scattering amplitudes, since all of them must
reproduce exactly the same soft factors. Soft theorems also can help elucidate the group structure
of the moduli space of vacua in some appropriate QFTs [13].

While the leading soft term S,(,? ) is just an overall factor depending on polarizations and momenta,
the following 57(711 ), Sff ), ... are operator valued and feature the angular momentum operator.

In this thesis we will verify the sub-sub-leading soft graviton theorem in arbitrary dimension and
derive a general expression for leading m-soft factors in various QFTs from the CHY formulation of

scattering amplitudes.

1.6 Example theories

The polynomial reduction procedure for evaluating CHY amplitudes, which we will introduce in
this thesis, works in general independently of any particular CHY integrand. In contrast to that,
scattering amplitudes in different Quantum Field Theories feature different soft factors. Therefore,
we will not be able to keep the discussion completely generic and will have to introduce some example

QFTs in order to investigate the different soft theorems which arise in them. The following is our



arbitrary but fixed choice of examples.

Bi-adjoint scalar ¢> theory
The bi-adjoint scalar theory is a slightly more involved variant of physicists farourite and simplest

looking QFT toy model. Its Lagrangian density is given by [14]

1 ’ ’ ~ Iyl T ’ ’ ’
L= §a,u<baa au(paa + gfabc]ca b'c Ppoo (I)bb dec (].6].)

w

The g is a coupling constant and @’ are components of a matrix valued field ® = @ T*T | where

T* and T are generators of possibly distinct Lie algebras
[T%, T =if*T* |, [T%T°]=df*T° (1.6.2)

with structure constants f%°¢ and f“bc. Note that if the two Lie algebras are decoupled o’ = d)“(;g“',
then the interaction term in the Lagrangian density vanishes identically. Therefore, we will consider
the case where the two Lie algebras are the same and fully coupled.

While the presence of the Lie algebra generators introduces some amount of clutter and provides
each component field % with a separate "color" which we have to keep track of, this actually
works in our favor when we consider scattering amplitudes in this theory. Using relations like
f“bcfa’bc = tr[T“Ta'] we can rewrite combinations of structure constants in the amplitudes in terms
of traces of generator products, and then consider each trace contribution separately. Since the
positions of generators in the trace directly correspond to the ordering of fields that enter the
remaining amplitude expression, we can therefore concentrate on calculating so called color ordered
partial amplitudes and later obtain the full amplitude as their sum multiplied with the respective
traces of generator products. It turns out that the color ordered partial amplitudes in bi-adjoint

scalar theory can be written in the CHY formulation ([1.2.2]) by use of the simple integrand factor

1

_ : 1.6.3
(0'120'23-"0%1)2 ( )

with moduli differences abbreviated as o;; = 0; — ;. We say the integrand factor consists of a
Parke-Taylor like factor squared. The particular sequence of moduli indices that appears in these

differences determines the particular color ordering.



Yang-Mills theory

Yang-Mills theory describes gauge bosons like gluons. The Lagrangian density of Yang-Mills is given

by [6]
Lo
L- —tr(zF FW) , (1.6.4)
where F'*¥ is the non-abelian field strength, composed of vector fields with matrix-valued components

i
Fo=Z
=y

[D;u Du] = (8,LLAV - &/Au) - ig[Aua AV] ) Au = AﬁTAv (165)
with coupling constant g. As in the previous example, T4 is a Lie algebra generator. The trace
in the Lagrangian makes sure that gauge invariance is satisfied in the non-abelian case. The gauge
covariant derivative is defined to be D, =0, —igA,.

The resulting partial amplitudes are color ordered and are written in the CHY formalism by

(1.2.2) with the integrand factor, involving the so called Pfaffian of an anti-symmetric matrix

(1P
2Cpi(u)

7= (1.6.6)
012023...0n1
Moduli differences are abbreviated as o4, = 0, — 03 and the matrix ¥ is given by
eak
A _cT M . €a'€h . 0“_717 ;a * b
U= S T v LT vt L e ab . (167
C B 0 ;a=0 0 ;a=0b _yn ke ooy

Tac
cta

with a,b€{1,2,...,n}. The k* are momenta of scattering particles and €* contain the corresponding
polarization data. The indices 1<i<j<k<naswellas1<p<q<nin (4.1.2) are chosen arbitrarily

but fixed. Upper and lower indices on matrix ¥ denote removed columns and rows respectively.

Yang-Mills-Scalar theory
The so called Yang-Mills-Scalar (YMS) theory we will be interested in is a generalization of the

usual Yang-Mills theory. The Lagrangian density of YMS is given by [10]

2
L= —tr EF’“’FW + 1DH¢1D#¢’ L5667, (1.6.8)
4 2 4 I+J

where F'* is the non-abelian field strength, D* is the gauge covariant derivative and the scalar

fields ¢! carry a flavor SO(M) index 1.
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The resulting partial amplitudes are again color ordered and can be described in the CHY

formalism by (|1.2.2)) with the following integrand factor

_1\t+7 L.
7 - 2 Pf(X)( 1) Pf(\Il?,],n+1,n+2 ..... n+q (]_69)

012093...0n1 i i,7,n+1,n+2,...,n+q

As before, 1 <i < j <n can be selected arbitrarily. Matrix y is ¢ x ¢ dimensional

e kb
ia
X:{ ”Sb ach’ (1.6.10)

and I, I, are flavor indices for scalar fields involved in the scattering process. This corresponds to

the first ¢ of the scattering particles being scalars and the remaining n — ¢ being gluons.

Gravity

To consider graviton scattering, one can start with the usual Einstein-Hilbert Lagrangian [6]
L =Mz\/-det(g)R, (1.6.11)

with Ricci scalar R and the determinant of the metric tensor g,,, denoted by det(g). We then express

the metric tensor in terms of a deviation from a flat Minkowski space metric

1
Guv = Nuv + MiPthV’ (1.6.12)

where Mp; is the Planck mass. For plain wave solutions, h,, can be considered as a dynamical field,
called the graviton field, living in the flat Minkowski space background. Expanding the Einstein-
Hilbert Lagrangian for small fluctuations yields the following kinetic Lagrangian for the graviton

field
1 2 1. 9
Liin = ihm,@ Ry = w00 hye + R0, O by — §h3 h, (1.6.13)

with h = n*"h,,. The interaction part of the Lagrangian is even more involved. Luckily, we will
not be considering Feynman diagrams and therefore will not require an explicit Lagrangian of the
theory.

In CHY representation, a scattering amplitude involving n gravitons at tree level is simply

11



described by (|1.2.2) with the integrand factor [5]

4

= (Omw)?

det (W) (1.6.14)
As before, upper indices on the matrix ¥ denote removed columns and lower indices denote removed
rows. Values of indices m,w can be chosen arbitrarily without changing the result. The 2(n + 1)
dimensional matrix ¥ is the same as in the Yang-Mills case. There is no gauge group for gravity,

and the amplitudes are not color ordered.

Non-Linear Sigma Model

The last example theory in which we will consider soft theorems is the so called Non-Linear Sigma
Model (NLSM). While scalar, vector and graviton fields are rather intuitive objects, the fields in
NLSM are a bit more involved. Group theoretically, NLSM describes what happens when a chiral Lie
group G, x Gg with two identical product groups G, g = G is spontaneously broken to its diagonal
subgroup Gy = G [15]. This means that original group elements (gr,9r) € G x Gg are restricted
to gr, = gr- We can describe the diagonal subgroup Gy by the symmetric group G x Gr/Gy which
is isomorphic to it. This isomorphism can be realised by restricting the following combination of

original group elements
grg; = U (1.6.15)

to G x Ggr/Gy. Considering that the vacuum little group Gy we are interested in describing is
invariant under (gr,,9r) < (gr,9r), we just made a choice to induce the action of the chiral group
G x Gr on G x Gr/Gy through left multiplication. The resulting element transforms linearly

under the action of elements (V1,Vg) of the original chiral group
U-VpUVLL (1.6.16)

Promoting U to a field, which then corresponds to the collection of Goldstone bosons [6] resulting
from the spontaneous symmetry breaking G xGr — Gy, we can write down an effective Lagrangian

to leading order in the decay constant F' of the Goldstone bosons

F2
L= Ttr(a#Ua“U*l). (1.6.17)

12



A very convenient parametrization to of the field is the so called Cayley parametrization

1+ —2=¢
S LA (1.6.18)
- o

which facilitates the expansion of scattering amplitudes in NLSM by means of a current algebra
obtained from usual Feynman rules. While this iterative process is fairly straightforward, it is still
rather involved. Luckily, we will not have to consider that, since as it turns out an n-point NLSM
amplitude can be written in CHY representation by means of with the following integrand

factor

1 4 »
TNESM Pf(AY7)?, (1.6.19)
0120923...0n1 (Uij)2 b

where AZ; is the same matrix A as in the gluons case, with rows and columns 4, removed, and
1 <i<j<n can be selected arbitrarily [10]. As we expect, the presence of the Parke-Taylor like

factor confirms that the amplitudes are color ordered.
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Chapter 2

Sub-sub-leading soft-graviton

theorem in arbitrary dimension

This chapter is based on the publication [16].

A lot of work has been done on soft theorems in the past, based on local on-shell gauge invariance
[17, A8, 19, 20, 2], 22, 23, 24, 25]. The leading soft-graviton behavior was found by Weinberg in
1965 [22], and the sub-leading soft-graviton theorem was first investigated by Gross and Jackiw in
1968 [26]. Recently, active interest in soft theorems has been reawakened in [27, 28 29| B0], as
Strominger and collaborators discovered that soft-graviton behavior can be extracted from extended
BMS symmetry [31], 32] [33], B4 85]. For four dimensions, Cachazo and Strominger provided a proof
for the universality of tree level sub-leading and sub-sub-leading corrections [30] to Weinbergs soft-
graviton factor [22], making use of spinor helicity formalism and BCFW recursion [3] [4]. The soft-
graviton factor refers to the factorization property of an (n+1)-point tree level scattering amplitude

when the momentum of one external particle, conventionally the (n+1)*" particle, is going to Zer

1
Mopor (k1 g, oo ehinsr) = (75<0> £ 8 25 (9(52))Mn(k1,k2, ). (2.0.1)
€

ISubstitute ky4+1 — ekni1 and expand around e = 0.
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In case of gravity, these soft factors read [30]

O ent1 kil ke

50 = 3 Entlpvalia (2.0.2a)
a=1 kn+1 ‘ ka
m it Kt (o1 3 T2

S(l) _ Z En+lpy ka(l ."];'1)\ a ) (202b)
a=1 n+ a
1 & nit o (ke p J07) (B 0 T2

5(2) 25 Z En+lpy ( +k1p : ]z( +1) )’ (2‘0.20)

a=1 n+ a

where €1, is the polarization tensor of the (n + 1)th

particle, k% are momenta and JV are
angular momentum operators. Subsequently, these soft-graviton theorems are being investigated
with the restriction to four dimensions lifted. In arbitrary number of dimensions, the leading factor
was addressed in [5] and the sub-leading factor was explicitly confirmed in [36], [37].
Considering Poincaré and gauge invariance in arbitrary number of dimensions, as well as expected
formal structure, Broedel, de Leeuw, Plefka and Rosso fixed the orbital part of the sub-leading
and sub-sub-leading factors completely and constrained their polarization parts up to one numerical
constant for every order of expansion and each hard leg [38], in agreement with (2.0.2). Following
Low’s example [20], Bern, Davies, Di Vecchia and Nohle used on-shell gauge invariance to fully
determine and confirm the first two sub-leading soft-graviton behaviors in D dimensions [39].

Further work on soft factors in general was, for instance, done for Yang-Mills amplitudes in
[40],[41]. Several advances in gauge and gravity theories at loop level appeared in [42], Mﬂ Cachazo
and Yuan proposed a modification of the usual soft limit procedure to cope with corrections appearing
at loop level [44]. For a comment on this procedure, see [39]. Sub-leading soft theorems in gauge
and gravity theory were confirmed from a diagrammatic approach in [45], 46]. Soft theorem in QED
was revisited in [47] 48]. Stringy soft theorems appeared in [49, [50], and a more general investigation
of soft theorems in a broader set of theories was conducted in [51].

In this note we will contribute an additional proof of the validity of the sub-sub-leading tree level
soft factor by explicit computation in arbitrary dimension, making use of the CHY formula
[5]. This note is structured as follows. Section [2.1]recalls the CHY formula. In section [2.2] we outline
the computational steps for the higher point expansion in the soft limit. Section contains the
computation of lower point construction and comparison of the two results. Appendices and
contain all terms resulting from higher point expansion, which are compared with and are found

to be equal to the result of lower point construction.

2Nontrivial corrections are expected at loop level.
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2.1 The CHY formula

In order to explicitly prove the sub-sub-leading factor in the soft-graviton expansion, we will make
use of the CHY formula for tree level gravity scattering amplitudes with (n+ 1) external legs, which

is valid in any number of dimensions [5]

n+1 Mo, OO Oii Ot Ol n+1 n+1 k .k

Mn+1:f H do, (0pgTqromp)( 21] kOki) 1—[ 5 Z a % | qet (‘Ifﬁjﬁ)
c=1 (Umw) a=1 =1 Oab
C#Ep,q,T a*i,j,k b*a

Here we use the abbreviation o;; = (0; — 0;). Upper indices on the matrix ¥ denote removed
columns and lower indices denote removed rows. Values of indices p,q,7,7,j,k,m and w can be

chosen arbitrarily without changing the result. The 2(n + 1) dimensional matrix ¥ is given by
A - T
U= ¢ ,
C B

where the (n + 1) dimensional sub-matrices are given by

kq-kp €a€h €akp
IS ol a*b [ Bt b o= o ,a+b
ab ab ) ab n+l e -k
0 ,a=b 0 ,a=b — Skl carke =b
Oac

Here k* is the momentum of the a'® particle, and €” is part of its polarization tensor. The values
for all o; in the integration are fixed by the product of delta functions which enforce the scattering
yth

equations. The momentum of the (n + 1)"™ leg will be sent to zero in the soft-graviton expansion.

2.2 Higher point expansion

In the higher point expansion we start with the momentum conservation stripped tree level amplitude
for n+1 external gravitons, substitute k', ; - ¢kl | and expand around ¢ = 0. In the sub-sub-leading
case we are interested in the order O(e!) terms of this expansion. Subsequently, we integrate out
the 0,11 dependance to obtain the result which we expect to recover from lower point construction
by acting with the corresponding soft factor on an amplitude with one fewer external leg in section
All solutions for o, are fixed by the scattering equations. However, since we are dealing with
tree level amplitudes, the functional dependance does not feature any branch cuts such that we will
be able to deform the integration contour and pick up a different set of residues in 0,47 as in [36} [37]

in order to obtain the same result, effectively avoiding having to solve the scattering equations.
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For convenience we set ¢ = 1, j =n, m = 2 and w = 3 so that the momentum conservation stripped

tree level amplitude for n + 1 external gravitons is given by

n+1 4(0 OO )(0'1 o kakl) n+1 n+l k 'kb
M., =f do. pa—ar-rp non 1) 22 det (w22)).
+ Q 7 (02,3)2 g z; Oab ¢ ( 2’3)

cEp,q,T axk,n b*xa

Since tree level amplitudes do not feature branch cuts, a delta distribution can be mapped to a

single pole term

+1
5 ke Ky N 1
1 k.-
b=1 Oab s Baky
b+a b*a Tab

while the integration contour is deformed to pick up the residue associated with this pole as in
[36, B7]. This naturally yields the same result for the amplitude. Therefore, we can substitute one
delta function that has index a = (n + 1) by a simple pole, take k.1 — €k,+1 and expand around

€ =0 as follows:

n+l n+l k'a . kb

146> - (2.2.1)

a=2 =1 Oabd
axk,n b*a
n—-1 n . n—-1 ) n . n-1 n )

- s | L R R |y B | B T 5 35 e
Zil knsike | g 035 -1 Oab =2 On4l,r =1 Orq a=2 =1 Oab
On+l,c azk b+a rk q*r axk,r bxa

-1 - -1
+ En kn+1 kr 6(1) i k?" kq kn+1 ks 5(1) i ks kt Th 5 i ka kb
2= Onpiir =1 Orq s=2  On+l,s t=1  Ost a=2 =1 Oab
r+k q#r s*k,r t#s axk,r,s b*a

n—1 . 2 n . n-1 n .
" (kn+1 kr) 5(2) Zkr kq 5 Zka kb +O(€2)

On+1,r

= 150 +6t + 202 + O(2).
5

Here we have introduced abbreviations 6° to denote the expansion coefficients of order =1, Similarly,
we can expand the determinant det(\Ilgzg) to make its € dependance explicit. For that end we employ

the usual recursive formulafl

2(n+1) } )
det(A) = " (-1)"*ay; det(AL), (2.2.2)

i=1

where ay; are elements of matrix A and the choice of row k is arbitraryﬂ If certain rows and columns

31n this case we are dealing with a 2(n + 1) x 2(n + 1) matrix.
4Naturally, an analogous expansion can also be done along a column instead of a row.
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are initially missing from the matrix A such that it is less than 2(n+1) x2(n+1) dimensional before
the expansion is applied, those corresponding values of missing rows and columns have to
be skipped in the summation over the expansion index 7. Additionally, a jump by +1 has to be
introduced in the exponent of (-1)*** whenever such a missing row or column is crossed. This will
be accomplished with help of the Heaviside step function 6(a,b) = (a—0b). More explicitly, when an
additional row i (or column k) is removed from matrix A, one step function has to be introduced
for each of the rows u (or columns v) that were already missing, so that we addﬂ >, 0(i,u) (or
¥, 0(k,v)) to the exponent of (~1)***. This ensures that each summand in the expansion
appears with the correct sign.

As in [36], we make use of the gauge condition (kn+1-€;) = 0 for all ¢ to conveniently reduce the

number of appearing terms. We realize that with this all the ¢ dependance is located along the

(n +1)™ row and column of \Ilgg Therefore, we apply the expansion to the (n + 1) row and
column in succession:
2,3 N €ntl K ? 2,3,n+1,2(n+1)
s _ n c ,3,n+1,2(n
det (\I/2,3) = (Z ) det (‘1’2,3,n+1.2(n+1)) (2.2.3)
c=1 Un+1,c :

19 Z Z(_l)z €n+l " kc kn+1 . kz det (\112,3,n+1,i )

2,3,n+1,2(n+1
=1 =1 On+l,c On+li 3yt l,2(n+1)

1#2,3
zn: (_1)i+j
i= j=1

i£2,3 j#2,3

[V

knot-ki by ko

On+1,i On+1,j

det (\Ij2,3,n+1,i ) )

2,3,n+1,j

+
()
[\
i

+#

Here and in later equations the Heaviside step functions involving arguments 2, 3, n+1 and 2(n+1)
are suppressed. However, to keep track of the signs we should agree to always order the argument
of each step function according to the order in which removed rows or columns appear in the
determinant. In particular,

(_1)...+0(a,b)+‘..+9(c,d)+... det(\I/:::’b’a’:::) _ _(_1),..+9(b,a)+...+9(c,d)+‘., det(\I!:;”lc’:) (2.2‘4)

yd,c,

_ (_1)...+9(b,a)+...+0(d,c)+.., det(\Il:Z:Z:)

In cases where more than two rows (columns) are removed from W, there will be one step function
for each way an unordered pair of removed rows (columns) can be selected. Therefore, with our
agreement (|2.2.4]) we can think of the step functions as being attached to the determinant, facilitating

the property of making the exchange of two neighboring indices of removed rows (or columns)

5Note that the newly removed index i (or k) is in the first argument of each respective step function and is
attached to the determinant at the far right. This introduces a natural initial index-ordering and will be relevant in
the following.
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antisymmetric. Furthermore, this ensures that the order of arguments of all step functions is in one
to one correspondence to the order of removed row (column) indices in the determinant, allowing us
to ignore the step functions and concentrate on comparing determinants. This convenient property
yields a slight simplification to the algebraic steps that later will be required in order to show the
equality of the higher point expansion and lower point construction resultsﬁ

Note that the order in which the indices of removed rows and columns appear in the determinants in
is different from the straightforward order which emerges from the expansion. We reordered
these indices according to to ensure proper sign in comparison to the terms of lower point
construction computed in the next section. For later convenience we define the abbreviation:

det (W) = det (w5530 ). (2.2.5)

2,3,n+1,2(n+1)

We wish to make the entire o,,1 dependance explicit to be able to integrate it out. Only (n +
)™ and 2(n + 1)*™® rows and columns in the matrix ¥ depend on ,.;. Therefore, we expand
det(\Ilg g e 2(n+1)) along the 2(n + 1)t column, as well as det(¥2 g b ;) along the 2(n + 1) row

and column in succession. Again, here and in all further steps we make use of the gauge condition

(kn+1-€) =0 for all 4, such that:

n . n o n
det(qlg’g):(z 6"‘flkc) det (U') +2¢ Z( 1)Z€n+1 ke kps - ki k (2.2.6)
’ c=1 On+l,c 112130 On+l,c On+l,i
J6n+1 k] < ]+n+16nJr1 €j
x Z( 1) det (U7 - Z -1) = det (U] 41)
J On+1,j j=1 On+1,5

2 s

LA kikj-k
2 i+j n+1 n+1
s DI v
i=1  j=1 On+l,i  On+lj
1#2,3 j#2,3

En+l " Bp R det (\11'1“)

2,P

% Zn: Zn: ( 1)u+p+0(u ,i)+0(p,j) En+l " Fu ky

On+l,u On+l,p

L ky € €
_ u+p+n+1+0(u,i)+0(p+n+1,5) En+l n+l " Cp i,
2 Z Z( ) de t(\Ij p+71+1)
p=1 On+l,u On+l,p

n n
. . . 6 . 6 .
1 u+p+0(utn+1,i)+0(p+n+1,5) En+l " €u Entl “ €p ( /z,u+n+1)
+3, (-1 ’ —— ————det (TG0
u=1p=1 On+l,u On+l,p

= detg + edety + g2 dets.

6Some of the appearing step functions can never yield a change of sign and it might be tempting to evaluate
them right away and get rid of them. However, this would break the agreement and the convenient general
antisymmetry property of the determinant under exchange of two neighboring removed row (column) indices, thus
making a more tedious case by case distinction for index-ordering necessary.
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Here, again we defined abbreviations det; to denote the coefficients of €’. The ordering of the indices
of removed rows and columns in the determinants was again done in accordance with (2.2.4]) to
ensure proper signs. In the sub-sub-leading case at hand only terms of overall order O(e!) are of

interest. Therefore, we restrict our attention to:

n+1 n+l ka . kb

1)
g ; Oab

a*k,n b*a

det (\Ilgg) = (ééo +0t +e0? + (9(62)) (deto +edety + <% deto)
= e (6%deto + 6" dety +0°deta) + ..., (2.2.7)

where ... denotes other terms of different order in €. In fact, the terms given explicitly in are
the only terms of order O(e!) in the amplitude which depend on ,,;. Other multiplicative terms
and integrals are merely spectators and can be suppressed when we integrate out 0,,,1 and compare
the result to the lower point construction.

As in [36 B7], it is trivial to see that there is no pole and therefore no residue at infinity in o,,41.
Therefore, the integration contour can be reversed to pick up the residues at o,,41 = o; for all i #+ n+1
instead. Poles of higher order will occur in the computation, so that we will use Cauchy’s integral

formula to obtain the respective residues:

f(Z) 1 n-1
Res((z—zO)" T 20) ey AN GO (2.2.8)

where f(""1(z) is the (n — 1) derivative of f(2).
The technical steps necessary to obtain the residues from all the terms of order O(e!) appearing in

(2.2.7) are identical. Let us illustrate the procedure on one expression from §%detq:
p p

2
n €n+1'kb 2
(X1 Tty) (ks -k Dok ke | B & ko k
7( — Zn+112) (n+1 T 5(2) Z T t H 5 Z a vp det(\I/'). (2.2'9)
2 ZC=1% r=)2c On+l,r t=1 Ort 022 p=1 a,p
n+l,c T t#r a*k,r p*a

First, we suppress the product of delta functions and the determinant since they are just spectators

k-

Tr

independent of o,,,1, and we abbreviate 63 = s (T, :) for convenience. To investigate the
t#r ’
residues at 0,41 = 0; for all ¢ # n + 1, it is natural to distinguish between two cases of 0,1 = 04

where o, € {01,0%,0,} and o4 ¢ {01,0k,0,}. In the first case, where o, € {o1,0%,0,} we find only
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first order poles in (2.2.9):

2
n €n+1'k'
1 1 (€n+1'k +Un+1qzb=1 ?lbb) n_l(k’n+l.kr)2 (5(2) )

k
On+l,q 2 kn+1 k +0n+1qzc- Enxake r=2

On+l,r
ctq On+l,c r+k

so that the sum of corresponding residues is trivially given by using the Cauchy integral formula

(2.2.8) with n =1 and summing over g:

2
} Z (€ns1- kq)2 nz_:l (k'm-l ) kr) 52)
2 =1,k kn+1 : kq r=2 r

r#k

Og,r

In the second case o, ¢ {01, 0,0, } we find first, second and third order poles in ([2.2.9):

2
ens1ke . 25(2) n=1 ( kpkni (2)
| (Z - a) (ho 057 (enn k)" 20 (G250) O
ke kg
On+1,q 2 kni1 kg +Un+1q2f—q % 2 kni1 - kg +Un+1qz°‘q ai:jlc

(€n+1 . kq)(qu . kn+1)25(g2) Z:Ll En+1-kp

1 q On+1,b
(On+1,9)? Tt - kg + Opat g Yooy Knstke
q n+1 q n+1,q i;q Ontl.c
1 1 (enrt - kg)? (kg knar)205
3 kni1ke
(O'n+1,q) 2 kn+1 k +tO0n+1,q ZC (11 an++11 -

The sum of all simple pole residues again is trivially obtained by using the Cauchy integral formula
(2.2.8) with n =1 and summing over g¢:

2

2
= 0ok (€+1.k)2 =l ke ke
2 kq - kn Enil Fe | s@) , (Entl"Fg) -] 53
Z ( +1) bZ:; Tqc q kn+1 . kq 722 Oq,r
(I*k bes r+k,q

To obtain the sum over second order pole residues we make use of the Cauchy integral formula

(2.2.8) with n =2. This yields:

n €n+l kb (2) €n+l” kb w kn+1 : kc (2)
- ntl - k kg kn — Q4 1)
Z (Enar ko) | ( ) Z (gp)* * ?; Oq,b ; Oge

Finally, to obtain the sum over the third order pole residues we use the Cauchy integral formula
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(2.2.8)) with n = 3:

2

1l 2 1 " kne1 - kp LN SRR 78
z P n §52) 4§ Intl "™ £(2)
5 ;3( 1 kq) kst - K S o q Z; (0g0)? 9

The residues of all further terms appearing in are computed in exactly the same way. Without
showing every single step explicitly, we will give a list of pole orders appearing in the respective terms.
Additionally, the results for all residues will be gathered in appendices.

Apart from the computation presented above, the term 62det contains one additional expression.
It has only first order poles for o4 € {01,0%,0,}, and it has first and second order poles for o, ¢
{o1,0%,0,}. All residues associated with the term §2det, are presented in appendix

The residues of the term §'det; are obtained from three different cases. In the case of oq ¢
{01,09,03,0k,0,} there are first, second and third order poles. In the case of o4 € {01,0%,0,} there
are first and second order poles. And in the case of o, € {02,03} there are first and second order
poles. All residues associated with the term é'det; are presented in appendix

The residues of the term §%dets are obtained from two different cases. In the case of o4 ¢ {02,053}
there are first, second and third order poles. And in the case of o, € {02,03} there are only first
order poles. All residues associated with the term §°dety are presented in appendix

With this, all relevant terms from higher point expansion are obtained and we can proceed with

the computation of lower point construction.

2.3 Lower point construction

In the lower point construction we start with the momentum conservation stripped tree level ampli-
tude for n external particles. We set i =1, j =n, m = 2 and w = 3 and invoke the gauge condition

(kp+1-€4) =0for all we{1,2,....n+1}, such thatﬂ

L 4 rYr nv¥n nol n ka * k
M, = f [] do. | Xm0 ”)(U; 2uk ) |7 5{ 5 Kok | | et (0, (2.3.1)
e=1 (0'2,3) a=z b=1 Oab
c#p,q,T a#* ba

where we used the abbreviation defined in (2.2.5)). First we notice that only the product of delta
functions and the determinant are relevant for our considerations, and all remaining multiplicative
factors and integrals are exactly the same spectators which we suppressed in the higher point ex-

pansion case. Therefore, here we again suppress these spectator terms, such that the expression we

"The gauge condition ensures that there is no remaining ky+1 and o,+1 dependance in det(¥’).
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should compare to the higher point expansion is given by:

n—1 n
SARIE) Z i det (0'). (2.3.2)
c*k Zzl

As already stated in the introduction, the sub-sub-leading factor S is expected to be given by:

1 & €nsa u(kn 1 Jflm)(kn 1AJ£\V)
R e e T , (2.3.3)
2 a=1 kn+1 ka

where the action of the angular momentum operators by their orbital or spin part on momenta or

polarization vectors is given by [36]

B o
e Vs - kY " 2.3.4
T kL (k P K )kb (2.3.4a)
Jied = (Pt —nBor) e (2.3.4b)

Naively, the two angular momentum operators in the sub-sub-leading factor (2.3.3) could act on
each other. However, it is trivial to show that the interaction vanishes due to the (n + 1) particle
being massless kal = 0, therefore having only transverse polarization modes k1 - €,41 = 0, and

the polarization being light-like such that €2,, = 0. With this we can conclude that we will have to

n+l —

match the resulting terms to the higher point expansion in the following way

1 & €u6 ~ -
1 Z n€ qu)\ Jp#JAV H 5 Z ke det (\Il’) = ZResi(52det0) (235&)
2 a=1 =k Z= b ‘
iy moke-k v
5, crevtitn .wm SEEN @) < TRes(lden) (233
a=1 o\ 7 "
1 & v n kck v
§ 3 | R e (1) e SRes (e, (2850
2 a=1 94 cz 1;_ Och i
where we used the abbreviations
€ = €ny1y and gy = ki1, (2.3.6)

and the sum in i is over all residues picked up when integrating out ;1.
To compute the lower point construction for (2.3.5a)), only the orbital part of the angular momen-

tum operator ([2.3.4al) is involved, since the scattering equation delta functions depend on momenta
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only. Therefore, the object of interest is

1 o 0 9 0 (ck)? o\ [ ke ky

- kg )€€’ —2(e- ko) Y Pt —— ) <

2;((‘1 T T L TV s e o) 1o\ 2 o
c+k bxc

Carrying out the partial derivatives as usual, then suppressing the remaining product of delta func-
tions and abbreviating the derivatives of delta functions in the same way as after , we obtain
the same result as from the higher point expansion given in appendix The only type of reshap-
ing needed to recover the exact same set of terms (apart from trivial cancellation and ), is
to combine expressions which have a similar structure up to o;;’s appearing in denominators, such

that a simplification occurs as in:

1 1 1
- = . (2.3.7)
O0jk0ij Ojk0ik 00k

These steps eventually demonstrate the equality of both sides in (2.3.5a)).

To compute the lower point construction for (2.3.5bf), both parts of the angular momentum

operator (2.3.4a)) and (2.3.4b)) are needed. Furthermore, to obtain the derivative of a determinant,

we use the chain rule and straightforwardly obtain:

2(n+1) 2(n+1)
—det(A)— Z > - 1)q+l(

)d 6(AD). (2.3.8)

First, we compute the action of a single angular momentum operator on the product of scattering

equation delta functions:

n—1 n kc‘kb n-1

€n+1y‘k’n+1pjpu H s[> _ z": 5o q St Kb €n+1 - kb 5 4 Z ié €n+1 - ke 5

kn+1 - ka c=2 b=1 Ocb =2 b=1 Och =2 b=1 Och
c+k b#c ctk b#c c+k bzc
(€n+1 : ka) ni: i n+1 kb (1)
R ad a1 A= L (2.3.9)
k'n+1 : ka
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where §; ; is the Kronecker delta, and where on the right hand side we suppressed the remaining
product of delta functions and abbreviated the derivative of the delta function in the same way

as after (2.2.9). Next, we compute the action of a single angular momentum operator on the
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determinant:
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To make the terms more explicit, we invoke the usual gauge from before k.1 -¢; = 0 for all + and

obtain:
ki ks Kot k) (enst - ki) = (kner - ki) (ensr - b
€n+lykn+l)\Jé\V ( a,j — az)( +l ])(6 +l ) ( + )(6 s J) (2311&)
Oji Oji
€n+1ykn+1)\J2V it _( a,j — az)( i J)(G +l 6) (2311b)
Oji Oji
ens1ykinsinJ L 2. (2.3.11c)

Ji

Plugging (2.3.11) into (2.3.10), multiplying with (2.3.9) and summing over a =1, ..., n gives the same

result as from higher point expansion in appendix To recover the exact same set of terms in

order to prove the equality, we use simplifications like (2.2.4) and (2.3.7). Additionally, we realize

that for an antisymmetric 2(n + 1) x 2(n + 1) matrix A we have:

..... a1,a2,...,am

det (Agp i) = (<1)™ det (Alybzb ). (2.3.12)

Making use of these steps, the demonstration of the equality of both sides in becomes
straightforward.

Finally, to compute the lower point construction for , again both parts of the angular
momentum operator and are needed. We start with and act with the
angular momentum operator a second time. The case where both angular momentum operators hit
the expansion coefficient in each line vanishes due to the same arguments as the vanishing of the
self-interaction of the two angular momentum operators. Therefore, only the case remains where

the second angular momentum operator acts on the determinant in each line. Combining (|2.3.10)
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with (2.3.11) and using the abbreviations (2.3.6)), this results in:

M=
M=

n » . . k1 .
L 97 SO e 2 e (0 - (e ) (g e o aen (7)) (2313
2 a=1 4 ka i Omi

I

—
+#
[
Pl
@

M=

i+m (€km)(qk‘l) o yi
~ (-1) m (qpequ det (\I’m))

1#2,3,m

y - i+m+n+1M PR ri+n+1
) o (i et (377°))

=

e

3 3, ©
silMs EilMs o
> :

3
#
¥
w
¥
3

i (_1)z‘+m+n+1 (€-€i) (pru«]f# det (\I/;:’:-nﬂ))
.y

i=1 mi
iEm

3 (I (gt et (7))

w

w

iEm

iyt ) (o g et (W)
im1 Omi

iEm

+
33 3
M= 1M LI

3
&
51

The action of the angular momentum operator on the determinants in each of these six lines is then
expanded further analogously to . The only difference is, that now the expansion summations
have to omit one removed row and column more in each case, and we have to explicitly display the
corresponding step functions in the exponent of (-1). Since the product of scattering equation delta
functions is untouched by the operators in this case, it can be suppressed as a spectator completely,
so that the terms resulting from a further expansion of correspond to the higher point
expansion result given in appendix Again, making use of simplifications , and
, it is then straightforward to reshape the finding to obtain the exact same set of terms listed
in appendix which proves the equality of both sides in (2.3.5c).

This concludes the computation of the lower point construction and its comparison with the
higher point expansion. Both yield the same result, which confirms that the sub-sub-leading factor
in the soft-graviton expansion of tree level scattering amplitudes is indeed valid in arbitrary

dimension.
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2.4 Residues of d2det

The following are all residues obtained from d62detq in (2.2.7) by integrating out the 0,1 depen-
dance. Multiplicative spectator terms and integrals which are trivially the same in the lower point
construction are suppressedﬁ Additionally, the product of scattering equation delta functions is

suppressed and the derivative of delta function is abbreviated as

n

(@) _ 5(0)
50 =5 (2.4.1)

a=1
a#j

With this the residues are:
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-1 2 -1
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+5 2 (ke k) Z 2, :
2 = a1 kn1 kg Ogr t=2 Oqt
rek qr trk,r.q

n-1 n-1 n-1 n
S e ka0 | 5 B Betge LS R K e by

=2 (Uqr)2 kpa+1 - kq r=2 Ogr b=1 Ogb
q*k r+k,q r+k,q b#q
2
1 n-l e +1° k (6 +1° k ) - k -k 1
+= 3 (kg - ke L n nr 5(2>
2 ;( akn1) ; Oqe a Z Eps1 - kg Z Ogr
qzk bxq k:
n-1 n n
€n+1 - Ky €n+1 - Ky kn+1 - ke
_ Z (ens1 -k ) (k K1) Z + ~ 52) " Z ; Z + 5(2)
= v=1 \Ogq,b b=1 gb =1 Ogpc
q*k bxq b#q ctq
2
- €ntl -
2 a=2 T kg -1 Ogb ! b1 (Uq7 )2 !

2.5 Residues of dldet;

The following are all residues obtained from 5tdety in 1) by integrating out the 0,1 dependance.
Multiplicative spectator terms and integrals which are trivially the same in the lower point construc-

tion are suppressed. Additionally, the product of scattering equation delta functions is suppressed

8Tn this particular case the determinant det(¥’) is also suppressed, since it is also a multiplicative spectator term
in 62deto.
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and the derivative of delta function is abbreviated as . With this the residues are:
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2.6 Residues of §'dets

The following are all residues obtained from §°dets in ([2.2.7) by integrating out the o,,,; dependance.
Multiplicative spectator terms and integrals which are trivially the same in the lower point construc-

tion are suppressed. Additionally, the product of scattering equation delta functions is suppressed.
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With this the residues are:
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Note

C. Kalousios and F. Rojas published similar results in [52].
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Chapter 3

Double Soft Theorems in Gauge and

String Theories

This chapter is based on the publication [53].

Recently there has been a resurrection of interest in studying various low energy limits of scat-
tering amplitudes. Of particular interest are situations which exhibit universal behavior; that
is, when the limiting behavior of an amplitude factors into a product of a universal “soft fac-
tor” times a lower-point amplitude independent of the soft particles. Such cases are called “soft
theorems”, the most famous of which may be Weinberg’s classic soft (photon, gluon, or gravi-
ton) theorems [22]. Other theorems include [20] 23] 26], 54, 24] 25] as well as, much more re-
cently, the subleading and sub-subleading graviton theorems of Cachazo and Strominger [30] (see
[40], 411, [38], 441, 50, [39], 46], [55], [56], 57, B8], [59) 57, [60], 61]for further developments and applications).

Strominger and collaborators [62] [63], (64, [65] 48], 47, 29, 28, 27] have argued that all of the known
soft and subleading soft theorems may be understood as consequences of large gauge transforma-
tions. That is, transformations which fall off sufficiently rapidly at infinity such that they must be
considered consistent with the asymptotic boundary conditions defining the theory, while sufficiently
slowly that they act nontrivially on asymptotic scattering states. In the case of gravity, the rele-
vant “gauge transformations” are of course diffeomorphisms, and the relevant asymptotic symmetry
group (in four-dimensional Minkoswki space) is the Bondi, van der Burg, Metzner, Sachs group
[31), 132] B3] [66l, [34]. It has been shown using the CHY scattering equations [3] that the subleading
and sub-subleading graviton soft theorems hold for tree-level graviton amplitudes in any number of

space-time dimensions, suggesting that an analog of the BMS symmetry should be relevant more
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generally [37] [36], 16, 52] 62| 63, [64], [65], 48], [47, 29] 28], 27]. Perturbative theories at null infinity
realizing these symmetries have been proposed in [67, 49, 68, [69]. The issues regarding possible loop
corrections to the subleading soft theorems were studied in [42] [43], [44] [51].

Double-soft limits (where two particles are taken to have very low energy) have also received a
lot of attention in the literature, both in the earlier works [70, [71] and more recently. For example,
Arkani-Hamed et. al. [36] have shown that the double soft limit of scalars in N = 8 supergravity
exhibit the expected E;(7y symmetry of the scalar moduli space, in a manner analogous to the
classic soft-pion theorem of [72, [7I]. This result was recently extended to the four-dimensional
supergravity theories with A/ < 8 supersymmetry, and the N = 16 supergravity in three dimensions
in [73]. Furthermore, supergravity amplitudes in both four and three dimensions with two soft
fermions were studied in [74], and new soft theorems were proposed. New double-soft leading and
subleading theorems for scalars (and leading for photons) were also studied in various theories such
as DBI, Einstein-Maxwell-scalar, NLSM, and Yang-Mills-scalar in [75]. Kac-Moody structure has
been found for the four dimensional Yang-Mills at null infinity [62], where double soft limits play
another important role.

In this chapter we derive several new soft theorems for tree-level scattering amplitudes in gauge
and string theories with more than one soft particle. We derive the universal behavior of amplitudes
with two or three soft gluons. It is known that when the soft gluons have identical helicities, the
result can be obtained simply by setting the gluons to be soft one by one, thus we focus on the
non-trivial cases when the soft gluons have different helicities. Indeed we find that for these cases
the soft factors are a product of the individual soft-gluon factors with certain non-trivial corrections.
We first derive theorems from the BCFW formula in four dimensions [4] 3], and further extend our
results with double-soft gluons for gauge theories in any number of dimensions by using CHY formula
[5]. We check that our results are consistent with the fact that if the soft limit is taken in order
then the soft factors reduce to a product of the single-soft factors given by Weinberg. We also note
that, in contrast to the gluon case, amplitudes with multiple soft gravitons can always be obtained
by simply taking the gravitons to be soft one by one.

We then proceed to study amplitudes in A/ = 4 and pure A = 2 Super Yang-Mills theory (SYM)
with two soft scalars or two soft fermions. We find that the double soft behavior is governed by
R-symmetry generators acting on a lower-point amplitude, resembling the results of supergravity
theories found in [36] 73] [74], although the vacuum structure of SYM is quite different from that of
supergravity theories. Finally, we consider double-soft scalars in the open superstring theory. Unlike

the double-soft-scalar theorem in A = 8 supergravity, which would receive o’ corrections if one tried
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to extend it to closed superstring theory, we find that open superstring amplitudes satisfy exactly the
same double-soft-scalar theorem of SYM at o’ = 0. Given the similarity of the double-soft theorems
of SYM and those of supergravity theories, it would be very interesting to understand if any of these
theorems could have an interpretation as hidden symmetries.

This chapter is organized as follows: In section [3.I] we derive the double-soft-gluon theorem
for tree-level amplitudes in gauge theories using the BCFW recursion relations formula ,
which may be recast into a different form (3.1.12), and we further extend the results to arbitrary
dimensions resulting in formula . Then, in section amplitudes with three soft gluons
are considered. In the following section [3.3] we comment on multi-soft gravitons. Subsequently, in
section [3.4] we explore the universal behavior of amplitudes with two soft scalars or two soft fermions
in supersymmetric gauge theories, including A' = 4 SYM as well as pure N' = 2 SYM, with main
results given by and . Finally, in section we prove that the newly discovered
double-soft-scalar theorem in SYM can be extended to the open superstring theory without any o’

corrections.

Note added: After finishing this work, we became aware of a related work by Klose, McLoughlin,

Nandan, Plefka and Travaglini, which has some overlap with this chapter [76].

3.1 Double-soft gluons

3.1.1 Double-soft gluons from BCFW recursions

We start by considering color-stripped amplitudes in gauge theories with two adjacent gluons taken
to be soft. It is straightforward to see that if the two gluons have the same helicity, then the two

gluons may be taken soft one at a time. Moreover it is evident from

N ot (n2)  (n3)

pliinoplllgloA(l ,27.3,...,n) - 1) (12) (n2>(23)A(3,...,n)

L oot (13)  (n3)

pllanOpl;LnOA(l ,27.3,...,mn) - (12)(23) (n1)<13)A(3,...,n) (3.1.1)

that the result is independent of the order in which the two gluons are taken soft.
A similar simple calculation shows that if the two gluons have different helicities, then the result
cannot be given by a product of two single soft factors obtained by taking the gluons to be soft one

by one. Therefore this is the non-trivial case we are interested in, namely we would like to study
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the amplitude A(1*,27,3,...,n) in the double-soft limit
P12 = Tpi2  with 7 -0. (3.1.2)

We will use the standard spinor-helicity formalism for the four-dimensional massless particles through-
out this chapter:

Do = Aaras  (i5) = capAPN], [if] = g AN (3.1.3)

and realize the soft limit by taking

Atz = VTAz  and Ao > VTAr. (3.1.4)

Using the BCFW recursion relations [4, [3], it is straightforward to see that the two dominant

diagrams that contribute in the limit at hand are

(3.1.5)
with the following BCFW shifts
A=A+ 20, An=An—2A. (3.1.6)
Let us now analyse the two contributions separately. First for diagram (a) we have
[13]" Apg — [13]°(13) Ap-a, (3.1.7)
[12][23]{n|1 + 2|3]s123

A0 = s BP) P1sras

where we have used the fact that P — p3 in the limit; hence this result is independent of whether
particle 3 has positive or negative helicity (in the above calculation we have chosen it to be positive).
Now, the second diagram (b) gives

[P1)? : [P1]? [n3]

Apr(P3,...,70) > e I Apo(3,....n), (3.1.8)

Aw) =

where in the second expression we have used the fact that p; = p,, in the limit, and we also applied
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the single-soft theorem for the soft leg P. After some simplification, we find

{n2)°[n3]
(n1)(12)(n|1 + 23]sp12~ ">

Adding the contributions from the two diagrams together, we obtain the final result for two soft

gluons having different helicities,

1 1313(n3 2)?[n3

lim A(1%,27,3,...,n) - (13 °n3) | _(n2)7n3] ) , (3.1.10)
p1~p2—0 <’ﬂ|1 + 2|3:| [12] [23]8123 (nl)(12)sn12

As typical for amplitudes computed from the BCFW recursion relations, the result contains a spuri-

ous pole m We will show that it indeed cancels out between the two terms at leading order of

the soft limit, as should be the case. Now, if on the other hand we take the soft limit in succession,

namely say take p; to be soft first, then the first term in the soft factor is subleading, and the second

term simplifies to

1 [13]3(n3) (n2)3[n3] )_> (n2) [n3]
(n|1+2[3] ([12][23]8123 ’ (n1)(12)sn12 0+ 1 (3.1.11)

which is precisely the product of two soft factors of a positive gluon and a negative gluon, with the
positive gluon p; being taken soft first.

Although the above result is very compact and nicely reduces to a product of two soft
factors, if we take the soft limits in succession, it is specific to four dimensions and as a natural
property of using the BCFW recursion it contains a spurious pole. In the next section we will use
the CHY formula for pure Yang-Mills tree level scattering amplitudes [5] to derive a further formula
for the universal double-soft-gluon factor. This result will be valid in any dimension, for any helicity
combination of the soft gluons, and it will be manifestly free of unphysical poles. When the two
soft gluons have opposite helicity, the comparison of the result obtained from the CHY formula and
will yield agreement and provide us with the intuition to recast the above into the following

equivalent form

b A2y o 2113 (1+<n1>[13]<32>+[1n]<n2>[23]

pp2=0 (n1){12) [12][23] 5123(n2) Sn12[13] )An? - (3.1.12)

Therefore, we see that the alternating helicity double soft gluon factor is composed of the product

of two single soft gluon factors plus a non-trivial correction.
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3.1.2 Double-soft gluons from CHY

As we mentioned earlier, in this section we will reconsider the double-soft-gluon limit making use of
the CHY formula for tree-level scattering amplitudes in pure Yang-Mills, valid in arbitrary dimen-

sions [5]. The CHY formula for an n-point gluon scattering amplitude is given by

n O 170 ’ n 92(=1)m+w
A, = / H do, (0pgOqrorp)(Tij0jKTki) H §(f) (-1) Pf(‘IfZﬁ),
c=1 012023-.-0n,1 a=1 Omw

c#Ep,q,T a#*i,j,k

where 0;; = (0; —0;) and f, = me — . Upper and lower indices on the matrix ¥ denote removed
columns and rows respectively. The indices p,q,r, 1,5, k,m and w can be fixed arbitrarily without

changing the result. The 2n x 2n dimensional matrix W is given by
_T
U- A -C ,
C B

where the n x n dimensional sub-matrices are

Eakp €a€p €akp
VI e ,a+b B - —%b,aib o= o ,a#b
ab = ) ab = ) ab — n k .
0 ,a=b 0 ,a=b -y, ke a=b
. Tac

Here k# are external leg momenta, and the €” are corresponding polarization vectors. The product of
delta functions enforces the scattering equations and saturates all integrals. With this the integration
reduces to a sum over all solutions to the scattering equations.

We want to make the external gluon momenta k)" and k% soft by substituting k)" - 7k} and
ks — ki and considering 7 — 0. It is essential to send both momenta to zero simultaneously in
order to capture the double soft factor structure. We choose not to erase indices (1) and (2). With
this we have to isolate the extra terms in 4, as compared to A,_o and integrate out oy and os.
While doing so we will only keep the leading contribution in the 7 — 0 limit, to obtain the leading
double soft, gluon factor.

First we notice that at leading order in 7 the entire o and o2 dependence in A,, apart from the

pfaffian Pf (\I/m w) is contained in

m,w

/ doydos—3 5(1)6(f2). (3.1.13)
0n,101,2023

Another o, 3 term in the denominator is suppressed, which will help restore the proper Parke-

Taylor factor for the (n — 2)-point amplitude case. As in [75], we can make the convenient variable
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transformation

Ulzp_£/2a U2ZP+§/27

do1doad(f1)0(f2) = =2dpd&S(f1 + f2)0(f1 - f2), (3.1.14)

and immediately integrate out 6(f1 — f2) using the variable £. This will introduce a summation over

all solutions ¢ for the equation f; — f2 =0, and an overall factor of 1/F (&), where

F(§) = (f1 - f2) (3.1.15)

2
1 1 I kl'kb kz Ifb 1 & Tkl'kc Tkg'kc
P - - +
le'k2(z§(/)—g—0b P+5—0b)) 22:: (p—%—JC)Q (p+%—ac)2

Here we used that on the support of f; — fo =0 we can always substitute

E=7 21 k2 . (3.1.16)

Zn k}l -k}h _ k?z-k?b
b=3 £ _ £

P=3570bp p+3-0b

Making use of this, (3.1.13)) becomes

5 [t Z( bk bk ) On3 (3.1.17)

woniinsed LT E)F© E\p-§ -0y pr§-op) nros

Before we rewrite [ dpd(f1 + f2) as a contour integral over poles and deform the contour as usual,
we should also extract the extra terms depending on p and £ from the pfaffian factor Pf (\I/’m” 5)

order to reduce it to the (n—2)-point amplitude case. To do that, we will use the recursive definition

of a pfaffian for an anti-symmetric 2n x 2n matrix A:

Pf(A) = Z(_l)z+3+1+9(z—3)aijpf (AZ) , (3.1.18)

where a;; is an element of matrix A, §(z) is the Heaviside step function, and index ¢ can be chosen
arbitrarily. If rows and/or columns are missing from matrix A before the expansion is applied, the
respective indices have to be skipped in the summation. Since we are ultimately interested in the
leading double soft gluon factor, for convenience we will only keep the leading in 7 terms in the
expansion of Pf (\Ilmf’v) In order to isolate the leading terms, we recall that the summation over the

solutions ¢ in (3.1.17) features two types of solutions: non-degenerate solutions for which £ = O(1),
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and a unique degenerate solution for which & = O(7) [75].

Let us first consider the non-degenerate (nd) solutions. The (nd) case is non-trivial, since equation
(3.1.16) seemingly has to be solved in £ for the full non-linear constraint imposed by the scattering
equations involved, yet polynomial roots can be obtained in closed form for low degree polynomials
only. It is possible to derive non-degenerate solution contributions in this case employing a somewhat
cumbersome procedure. However, this will not be required in the following and will be addressed
in more generality in a future work. Instead, investigation of the soft factor integrand reveals that
the necessity of non-degenerate solutions computation can be avoided here at the expense of fixing
a particular polarization gauge for the two gluons going softEI This argument works as follows.

In the (nd) case it is straightforward to see that the only leading term in the pfaffian expansion is

given by

PE(UTE) uay = ~CraCaaPE (W00 ) + O(7)
n . k n . k.
-y 615 'S 625 ¢ _Pf (W) +O(T), (3.1.19)
b=3 P~ 5 ~Obc=3 P+t 35— 0¢
where for convenience we define the abbreviation
m,awY — m,w,1,2,n+1,n+2
PE (W) = PE(W i nes) - (3.1.20)

Combining (3.1.17) with (3.1.19), writing [ dpd(f1 + f2) as a contour integral

dp 1
27T’L'f1+f2’

f dpo(fr + fo) — (3.1.21)

and deforming the contour to wrap around all other poles in p instead, immediately reveals that
there is no pole at infinity and the only residues come from poles at (p + /2 — 03) — 0 and/or
(p—€/2-0,) — 0 due to the term o,, 3/(0y,102,3) remaining from the Parke-Taylor factor. Keeping
(3-1.19)) in mind, this tells us that for any of the non-degenerate solutions {(,qy, at leading order in 7
these residues will always be proportional to €3 - k3 and/or €; - k,,. Therefore, we select the following

polarization gauge for the external legs going soft
€2-ks3=0 €1 -kn=0. (3.1.22)

In this gauge all the non-degenerate solution contributions to the leading double soft gluon factor

IThe lost gauge invariance in the final result is recovered once we convert it to spinor helicity formalism.
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vanish, such that we can concentrate on the degenerate solution only.
Now we compute the degenerate (d) solution contribution. Using (3.1.16) we can straightfor-
wardly expand the degenerate solution {4y to leading order

2k1 - ko

o (kika)ky
= P=0b

§ay=T +0(7%). (3.1.23)

All the terms appearing in (3.1.17)) are expanded to leading order in 7 analogously. The expansion

of the pfaffian features three leading terms in this case:

Pf(\:[/m:lwu)(d) = (BLQALQ + CLQCQJ - 01’10272) Pf(\:[/;nm’;g)) + O(T)
1 €1 €9 (62'](11)(61']62) 2
= - - S 3.1.24
1 [(kl-kz (k- ka2 ’ (3124
+(61'k25—2261'ki) @ Mg oS 2R ) pp(gmey
k1 - ko mp—0oi )\ ki ko j=3 P~ 0j ’
+0(7),

where S =Y 4 (klpf_k%, and we used the abbreviation (3.1.20). Again, we combine (3.1.17) with
(3.1.24])), write f dpd(f1 + f2) as a contour integral (3.1.21)) and deform the contour to wrap around

all other poles in p instead. Analogously to the non-degenerate case we see that there is no pole
at infinity, and the only two contributing residues come from poles at p — o3 - 0 and p - o, — 0.
Dropping Pf(\Il;nm’;f,”), which is part of the (n — 2)-point amplitude and not the double soft gluon

factor, both these residues are of the following type at leading order in 7:

¢ 1(ki—kia) kg [ €i€irr (i ki)(€i ki) | (3.1.25)

bitl _5 (ki + kis1) - kg | ki ki (kz : ki+1)2
N ( €i-kisi  2ei-kg ) (€i+1 ki . 2€;11  kyq )]
ki kivn (ki—kiv1) kg J\ki-kier (ki —kiv1) kg )|

With this we conclude that the leading double soft gluon factor for legs i and i+ 1 going soft is given

by
Si(,(z)’-)%—l :( iJrzil - R:;il (3-1-26)
1 ( 1e €41 €i+1 - Ks )
= - k/’i—k‘i 'k‘i —761"]61'
O I UL A e

1 (1 € " €yl

e k.
- 9 ki—kiv1) ki + — ey ki ),
(ki +kiv1) - ki 2kzi-ki+1( +1) ki) €i+l " Ki-1

ki~ kip1
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valid in the polarization gauge

€; - kifl =0 5 €i+1 ° ki+2 =0. (3127)

Despite its first glance appearance, the double-soft factor is not manifestly anti-symmetric
under ¢ + 2 <> ¢ — 1, since this symmetry is broken by the gauge choice (3.1.27)). This is consistent
with the results of the previous section.

Therefore, the particular computation above for legs 1 and 2 going soft in an n-point amplitude

gives the following factorization in the double soft gluon limit

lim A, >S9 As (3.1.28)
p1~p2—0
1 1€ e €+ k1 )
_ : ky = ko) - ks — Tk
[(k1+k2)'/€3 (2k1'k2( 1=ka) ks kl'k2€1 ’
1 1er e €1 ko )
- - kf —k/’ kn kn n—2,
(k1+k2)-kn(2k1~k2( 1o ke) ke ]A ?

valid in the gauge . Here we emphasize again that since the above result is obtained from
the CHY formula, it features only physical poles, it holds in arbitrary dimension and for all helicity
combinations of the two soft gluons.

Let us now compare to the result obtained from BCFW. Specifying to four di-
mensions and selecting (1*,27) helicities for the soft gluons, we use the following standard dictionary

to translate R:{’Q and R{ , into spinor helicity formalism:

1 [14](in)

ki-ky = 50 ek = @3] . o 2n)13]

V2[23]

L€k = (3.1.29)

Here we have selected proper reference spinors to account for the gauge E| Anticipating that
R}, and R, roughly correspond to the two terms that are summed in , we notice that R} ,
already features an sio3 ~ 2k3 - (k1 + ko) and RY 5 an s,12 ~ 2k, - (k1 + k2) in the denominator. So
in both cases we introduce an extra factor of {n|1 + 2|3] in numerator and denominator, and expand
the numerators. The Schouten identity then yields a slight simplification such that the terms in the
numerators separate into an expected part and a part proportional to s123 or s,12 in the two cases

respectively. Finally, subtracting the resulting Ry , from R?’Q displays some cancellation and we are

2Note that the specific choice of reference spinors merely facilitates the proper conversion of the result (3.1.28) to
spinor helicity formalism. Once the conversion is done, full gauge invariance is recovered for the final result in spinor

helicity language i.e. (3.1.12).
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left with exactly the terms appearing in (3.1.10) E|

Similarly, we can show that selecting the soft gluons to be of the same helicity, i.e. (1*,2%), the

double soft gluon factor (3.1.28]) reduces to the product of two single soft factors. Here we also use:

o 2063 (3]
2T 2p) T (n1)(32)

(3.1.30)

In this case no strategic term manipulations are needed. R:{’,Q directly reduces to half of the expected

result and R, to minus half of it, so that (R}, - R} ,) properly gives what we expect.

3.2 Triple-soft gluons

With results of the double-soft limit at hand, we can go on to study the universal behavior of
scattering amplitudes with multiple gluons being soft. Here we will take a look at the triple-soft
limit, which is a natural next step beyond the double-soft limit. Again the non-trivial cases occur
when all soft gluons are adjacent. Beside the straightforward case of all soft gluons having the same
helicity, there are two helicity configurations of interest: A(1*,27,37,...) and A(1%,27,3%,...),
where 1,2 and 3 are the soft legs.

Let us begin with the first case, A(1%,27,37,...). It is easy to see that the following BCFW

diagrams are dominant in the soft limit

(3.2.1)

Since the calculation is similar to that of the double-soft limit, we will be brief here. The contribution

from diagram (a) to the soft factor gives

+-—
Sy =

[131}3 73] [A4] 7 (3.2.2)
[2

[12][2P]s12 [nP][P3] [n3][34]

where we have used the fact that P is soft, as well as the result of the double-soft limit with two

30ne should keep in mind that in spinor helicity formalism factors of v/2 from the amplitude are absorbed into the
coupling constant in front. In case of the double soft gluon factor this amounts to an overall extra factor of 2 which

is suppressed in (3.1.10]).
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negative-helicity gluons. Specifying P in terms of external momenta, the soft factor simplifies to

o (n2)?[na]
8 = Ty{12) Al Kol (3.23)

where K; j =k; +...+k;. Similarly, diagram (b) gives

[P1]? [(p4]  _ [4n](n|K2s[1]? (3.2.4)
[12][23][3P]s123 [AP][P4]  [12][23])(n|K12[3]{n|K1234]s1235n123 o

+-—
Sy =

Finally, for diagram (c) a couple of remarks are in order. First we note that if gluon 4 has positive
helicity, there are two allowed cases for the helicity of the internal line in the BCFW diagram.
However, it is clear that the one diagram with an NMHYV five-point amplitude on the left-hand
side is dominant in the soft limit. Second, just as in the case of the double-soft limit, the result is

independent of the helicity of gluon 4. Therefore, we can choose it to be negative and conclude

. (P1]? ) [14]° {n4)
) (2][23)34][P s (12I(231T34] (K sa AT 101 (3:2.5)

Summing over the three contributions, we obtain the universal behavior of amplitudes with three

adjacent soft gluons

A(1%,27,37,4,...,n)| = (S + Sy +S8i7) An-s.- (3.2.6)

p1~p2~p3—0

Now we go on to consider the second case of interest, A(1*,27,3*,...). The result is given by the

same set of BCFW diagrams, but now with the helicity of gluon 3 changed

2= 3t 3T 4
-~\\ -~\\ 3+
.- o 2°
1t n 1t n

(a) (b)

; (3.2.7)

From diagram (a) we have

. [P1P 1 ({4)3[714] , (3] (n4) ) (3.2.8)
[2 (P

® " [12])[2P]s1z (4P + 3a] \ (P3)(34)s 55, [7PI[P3]s,ps

where we have applied the alternating helicity double-soft gluon theorem (3.1.10) to the right sub-

amplitude in the BCFW diagram. After some further simplifications taking the soft limit into
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account, we obtain

. (2n)®

@ 7 (n1)(12)(2|K 1 Kn123]4)
( (24)3[n4] . (n2)(n4)[n3]? )
(23)(34)(2|K34K1234|n)  (n|K12[3]sn128n123 )

(3.2.9)

Note that it is not allowed to discard the soft momenta ki, ko and k3 in (2|K,1K,123/4) and
(2| K34K7234/4) to further simplify the above expressions in the soft limit. For the diagram (b)

we find

oy [13] (nd) [13]%(n4)
St = [12][23][3P][P1]s12s (nP)(P4)  [12][23](n|K12[3](4]K23[1]s125 (8.2.10)
Finally, diagram (c) gives
. (24)* _ (24)"[41]%(n4) (3.2.11)

© = (12)(23)(34)(4P)(P1)s1054  (23)(34)(4|K23[1](n|K1234 K 34]2) 523451234

In conclusion, we obtain the following soft theorem for three adjacent soft gluons with alternating

helicities

A(1%,27,3%,4,...,n)| = (S + Sy +8i57) Ans.- (3.2.12)

p1~p2~p3—0
Before we close this section, we would like to remark that both soft factors ¥;_(a) (b,() i~ and
Yic(a),(b),(c) Si " micely reduce to a product of a single-soft factor and a double-soft factor if we
take any one of the three soft gluons to be soft first. Finally, we note that all the unphysical poles
appear in pairs, and we have checked numerically that they all precisely cancel at leading order in

the soft limit.

3.3 Multi-soft gravitons

In this section we comment that, unlike in the case of two soft gluons, the double-soft-graviton limit is
simply given by the product of two single-soft gravitons, independent of their helicity configuration.

For instance, let us consider soft gravitons of opposite helicity g7 and g5~. Similar to the case of
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double-soft gluons from BCFW recursion, one needs to consider the following three diagrams:

(3.3.1)

In fact, a simple analysis of three- and four-point amplitudes reveals that only the diagram (a) will
contribute at leading order in the double-soft limit. A simple way to obtain the result for diagram
(a) is to view it as an “inverse-soft" diagram [77, [78], where leg 17 is considered as being added to

an (n-1)-point amplitude making use of

M® = NS ()Y Mpa (7., 27,...,0). (3.3.2)

12

Here the soft factor S;+ is defined as

(ni)?[i1]

n
S1+(1) = ———. 3.3.3
In this diagram the shifted legs are p;; and p,, which are given by
- ~ 1n) -~ © ~ 12) ~
Air = Ai + <.7n)/\1 s A= An + (72.>A1 : (3.3.4)
(in) (ni)

In the soft limit we simply have p; — p; and p,» — p,. Since p, is soft as well, it follows from the

single-soft graviton theorem that the above expression reduces to

M, - Z;SlJr(’L')Z:lSQ—(j)M(?),...,n) (3.3.5)
with
| lll2)
O 2] (459

for any choices of z and y. Considering that M,(la) is the dominant diagram at leading order, we
have replaced it by the full tree-level amplitude M,,. Finally, we note that the terms S;+(2) and
S2-(1), which are missing in the summation in (3.3.5)), are subleading in the limit. Thus the result
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can be alternatively written as

Mn g Zler(’L) ZSQ*(])M(?),,TL)

A J#1
- XS () LS OMEG...n)
~ Zler(’L)SQ—(])M(?),,TL) 5 (337)

¥
being simply the product of two single-soft factors. As mentioned earlier, this confirms that the
leading double-soft-graviton limit can be obtained by taking the gravitons to be soft in succession,
in either order, unlike the case of double-soft gluons. Given the result of double-soft gravitons, it is
straightforward to see that it can be extended to the case of multiple soft gravitons, such that the
soft factor of multiple-soft gravitons should be given by the product of multiple single-soft-graviton

factors for any number of soft gravitons.

3.4 Double-soft limits in supersymmetric gauge theories

In this section, we move on to study the universal behavior of scattering amplitudes in supersymmet-
ric gauge theories (in particular A" =4 SYM and pure N = 2 SYM) in the limit with the momenta
of two scalars or two fermions being soft. The double-soft-scalar limit was first studied in A = 8
supergravity in [36], where the 70 scalar fields in the theory parametrize the coset space Er(7)/SU(8).
Thus these scalar fields behave as “pions". As pointed out in [36], amplitudes in this theory vanish
in the single-soft-scalar limit consistent with the famous “Adler’s zero" [72], and behave universally
in the double-soft-scalar limit in a manner analogous to the soft-pion theorem
1n

lim M, (¢' 115213 (7py), @ ) TP2),3,,n) = = w R /M, 5, 3.4.1
lim M, ( (Tp1)s 11215 (TP2) ) 2;,pi-(p1+p2)( )" g Mys (3.4.1)

where (R;)! s is the generator for SU(8) rotations on particle i
(Ri)" 7 =10y . (34.2)

Recently, this result was extended to more general supersymmetric gravity theories [73], including
4 < N < 8 supergravity theories in four dimensions as well as N = 16 supergravity in three dimensions.
Soft-scalar theorems have been very useful in determining the UV counter terms in supergravity
theories |79, 80, [73]. It is known that for supersymmetric gauge theories (in particular N' =4 SYM),

a generic vacuum has mostly massive particles, and the massless S-matrix only exists at the origin
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of moduli space. Thus one should not expect that the scalars would behave as “pions". Indeed it
is easy to see that the amplitudes in N' = 4 SYM do not vanish in the single-soft-scalar limit, in
contrast to supergravity theories. However, as in [74], one can still ask whether the amplitudes in
SYM exhibit some universal behavior in certain soft limits. This is what we will explore in this

section.

3.4.1 Double-soft scalars in N =4 SYM

The on-shell fields in A/ =4 SYM can be nicely packaged into a superfield [81],
1 1 . _
A(n) ="+ va+ Sornoas + o0 vase + (' tn*n")g” (3.4.3)

where g* is the positive-helicity gluon, 14 is the spin +1/2 gluino, and so on. In this section, we
will consider the limit with two scalars ¢ 45 becoming soft. First of all, as we mentioned previously,
it is easy to see that amplitudes in A" =4 SYM behave as O(7°) in the single-soft-scalar limit.

Let us now consider the double-soft-scalar limit. First we note that when the two soft scalars
are not adjacent, the amplitude is not singular, and thus it cannot behave universally under the soft
limit. So we will only consider the case where the two soft scalars are adjacent, which is singular and
therefore universal. To be precise, we take p; and ps to be soft. Furthermore, if two scalars have no
common SU(4) index, they form a singlet and the leading singular result should simply be given by
the single-soft gluon limit. However, as pointed out in [73] for supergravity theories, one can extract
interesting information about this case by introducing suitably anti-symmetrised amplitudes. This
is particularly relevant to pure N' = 2 SYM where two scalars can only form a singlet, which will
be discussed in the next section. Here we will focus on the case where two scalars do not form a
singlet, as was considered in [36] for N = 8 supergravity. For this configuration it is easy to see that
the leading contribution arises when two soft scalars have one and only one common SU(4) index.
In terms of the BCFW representation of the amplitude, there are two leading contributions in the

double-soft limit:

(3.4.4)
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After integrating out 7, the contribution (a) is given by

VNG (P2) (P3) N
R Y e LA L (L LY
’ 5 (12)(23)(3P)(P1)s123 (1P) "~ ons
x exp(szW)An,g (3.4.5)

where the integration over n’s selects the soft legs 1 and 2 to be scalars. Note that, as mentioned
above, we are interested in the case where two scalars have one common SU(4) index. We have

applied the super BCFW recursion relations [36] [82], with shifts chosen as
Aj = A1 =2, A= An +2A1,  Na = o+ 271 (3.4.6)

Finally, we have written the shifts in A,,_o in an exponentiated form and only kept the leading

terms. There are two possible ways to get a leading contribution above, one is by expanding 7, from

exp (_%7728%3)’ and another one is by expanding 7; from exp (zpm%). In the first case we get

one 7, from the exponent, thus from the fermionic delta-function §(*) we have one 1, two 7;’s and

one 7n3. Thus we obtain,

An-2, (3.4.7)

where an extra minus due to the fermionic integral has been included. In the soft limit the above

expression simplifies to

1
59 4 2. (3.4.8)

Ay~ e
@ S (p1+p2) ™ 0P

Analogously, we obtain the second contribution, which is given by

~ oA N 2 A
1p)* P2)\" (P
Afay,2 - ( A) — ZP((M)) <A:§>77§8 aDAn—Q

(12)(28) (3P) Pl)sros + \(PT)) (PT)" o0k
Aps, 3.4.9
(i + 28] g 2 (349

where we used the on-shell solution zp = — (n‘%ﬂfgm ~ —<n§1>f§1].
Let us now consider the diagram (b), for which a similar consideration leads to
3@ ([12]np + [2P]m + [P1]ny 9 .
Ay = ( — )exp (sz—) Ap1(P,...,n). (3.4.10)
[12][2P][P1]s12 Onn
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Now, using the fact that P is also soft, one can apply the supersymmetric single-soft theorem to

An,l(fj, ...,n). Thus we have

A n3 nP P3
A (P3| [Pg][ip]‘w (np n [[3n]] ns + [[z,m]]nn) Aps. (3.4.11)

Substituting this result into eq. (3.4.10)), integrating out np, and selecting the scalar components we
find

Apy = -

[2P)[P1)zp  [n3] ([12][n13] s, [12][P3] B) O,

[12]2P][P1]s12 [P3][nP]\ [Bn] (Bu] ™) anp
1

1 0
B B
B n Ao 3.4.12
L +23]" " 2pn - (prrpa) ) onp " ( )

We observe that the unphysical pole cancels out. In particular, the first term in Ay cancels A, o,

and we obtain the double soft-scalar theorem in AN =4 SYM

1 1
An (¢2)59,. .. »( B p - ————— faD)An_ , 3.4.13
((#1)ep, (92) ) 2p3-(p1+p2)n3 " S (o +p2)77 L 2 ( )

where B¢ = €ABCP ¢y 4. Note the appearance of the R-symmetry generators n 0,p. As mentioned
earlier, although scalars in SYM are not Goldstone bosons, we find that our result very much
resembles what has been found in A = 8 supergravity. Furthermore, as we will see, the double-soft-
scalar theorem is exact even when we consider amplitudes in open superstring theory, meaning that
it does not receive any o’ corrections from string theory. Finally, we remark that the subleading
order of this limit will be finite and thus not universal, since general BCFW diagrams start to

contribute. This is the same for the double-soft limit of scalars in A/ = 8 supergravity.

3.4.2 Double-soft scalars in pure A’ =2 SYM

In this section we consider the double-soft-scalar limit for pure N' = 2 SYM. Due to the fact that
it is not a maximally supersymmetric theory, the on-shell fields in /' = 2 SYM are separated into
two distinct mulitplets. These multiplets can be nicely obtained from N =4 SYM by SUSY trunca-
tion [83],

ANZ2 () = AN ()| ﬁN:Q(n):fdn3dn4AN:4(n), (3.4.14)

n%m*=>0"

where AN=4 (n) is the superfield in N =4 SYM that we defined in the previous section. Therefore,
we see that the scalar in AN=2(n) corresponds to ¢12 in N = 4 SYM, while the scalar in AV=2(p)

corresponds to ¢34 in N =4 SYM. Thus they form a singlet.
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Since the scattering amplitudes in pure A" =2 SYM can be obtained from amplitudes in A =4
SYM via SUSY reduction, we will use the same strategy as in [73]: instead of studying the amplitudes
in N =2 SYM directly we will study the relevant amplitude in N =4 SYM first, and then reduce it
to N =2 SYM via the SUSY reduction. Now, in contrast with the case we studied in the previous
section, here we are interested in precisely the amplitudes with the two soft scalars forming a singlet

A((¢1)12, (¢2)34,-..), and with the following anti-symmetrization as introduced in [73]:

A((¢1)12: (92)34, - ) = A((h1)34, (¥2)12- - ) - (3.4.15)

Let us focus on A(($1)12,(P2)34,...). As before, in the soft limit the dominant contributions are
given by the diagrams shown in Fig.(3.4.4). The diagram (a) is given by a similar expression to that

used above, but now we select different species of scalars

1 Pyagsa) (P2) . (P3) .
Awy = fd4771d4n2n%nf?73773<1p> i mﬁ(Pi)nﬁ(Pi)ng)G (_(12) 7723)
¢ ) (12)(23)(3P)(P1)s103 1Py "~ ons
X exp (zpm%)/ln_z(f&,...,ﬁ), (3.4.16)

here we keep BCFW shifted legs (shifting the momenta p3 and p,,) in A,,_s, since we select different
scalars, the leading term now comes from taking two 7;’s as well as two 75’s from the fermionic delta-
function, these shifted legs contribute in the subleading orders. However, all these contributions
vanish after the anti-symmetrization (3.4.15). In fact, all the terms with all 7;’s and 7.’s from the
fermionic delta-function vanish after the anti-symmetrization. Thus we will focus on terms with
one 71 or 72 from the exponent, and the calculation proceeds as outlined in the previous section.

Therefore, we only quote the results

2 1 0 1 0
Ag) = — g i A4, 3.4.17
(a) ;1(2p3.(p1+p2)773 877%4 <n|1+2|3]773 an:}) 2 ( )

Similarly from diagram (b), we find

2 1 1 0
® Az=1((n|1+2|3]n3 - (p1+pa) ") A

(3.4.18)

Summing over all contributions, we find that after the anti-symmetrization we end up with

AV (@012, (62)34,--) = AT (91)s4, (92)12, )|

p1~p2—0
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(512 3 812 in 334 3 T 834 in ) An-2, (3.4.19)
where the double-soft factor 8%24 is defined as

1 A
SNt - ————— 1, Opa . (3.4.20)
i A;,j 2k (p1+p2) ©
Now we have to project this to A = 2 SUSY. The soft factor S 74 7 is unchanged, while 834 . depends
on whether particles 3 and n are in the AV=2(1) or the AV=2(n) multiplet. If they are in AV=2(n),
then the contribution from S ED k should be discarded, since we set 7> and n* to 0. If they are in
AN= 2(n), then integrating out 7° and n* the contribution from Sé\i . simply reduces to 2. The result

can be summarized as

AN (01:62,-) = AV (D1 620 ] o= (BT - RY) A, (3.4.21)
where the U(1) generator RV=2 is defined as
2 0 2 0 -
RN=2 - > nt -2, (for ie AN72), RN=2- > nt . (for ie AN=?), (3.4.22)
= Oyt I=1 37;{

which precisely correspond to the U(1) part of the R-symmetry generators in pure N =2 SYM.

3.4.3 Double-soft fermions in N =4 and pure N =2 SYM

In a similar fashion one can study the limit with two soft fermions in N' =4 SYM as well as pure
N =2 SYM. As before, the interesting case occurs when the two fermions are adjacent. Because the
(anti)-symmetrization procedure does not work for the double-soft fermions since they have different
helicities [74], we will only consider the case when two fermions do not form a singlet. Thus the
leading singular terms arise from adjacent fermions having one and only one common SU(4) index.
To be precise we take soft particles as (¢1)p and (¢2)pcp. The calculation in terms of BCFW

recursion relations is very similar to the case of double-soft scalars, and again the relevant BCFW
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diagrams are shown in Fig.(3.4.4). Let us quote them here for convenience

(3.4.23)

As before, any other generic BCFW diagrams are subleading, since they are diagrams with a single-
soft fermion and behave as 1/1/7 in our soft limit. In contrast, the dominant diagrams above behave

as 1/7. The contribution from diagram (a) is given by

A f A drronAnBnC (1P)46(4)(771 * 3772 * Eg?;ng) ( (12) o )
a = T eXp | ——F= P
(a) na 21y N 772 ( )(23)(3P)(P1)5123 p 1P>7]2 s
X exp (zpm ai) Ao, (3.4.24)

Now the integration on n’s is such that the soft legs 1 and 2 are the soft fermions of interest.
Following the analysis of double-soft scalars, we find two kinds of contributions from diagram (a).

One of them is given by

(1P)* (i2) (P3)((132))2 L0
A(a),l 1 > A A 2PN 3 D An—2
(12)(2 >1< P)(P [132]1 5 (1 15) (P1) \(P1) Ong
T 2ps-(pr+p2) [32 ]? omp (3429
and the other contribution is
_ ir' (<P2>)‘°’ (P3) 4 0
Aaa = (12)(23)(3P)(Pl)sas ~ \(P1)) (P1) " oD -2
. 1 [31] 4 9
T T+ 23] [32] s GyD -2 (34.26)
Similarly, from diagram (b) we find
o [151] (3] ([12][nP] 4 [12][P3] 4\ @
Aw = 1 [2 Pl 1512 [P3][ ]( Br] BT 30 )0775’ A
(n2 0
(nl) ( n|1+2|3 2pn.(p1+p2)n;?) 8777?/1”_2' (3427)
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Adding the results of the two diagrams together, we finally obtain the double soft-fermion theorem

in V =4 SYM,

(O N R pe— ( (23] 4y (O3],

0
Bp+nt -2 VA, ),
[237(n1) \2pn - (p1 +p2) " s ang) :

2p3 - (p1 + p2) s Ons
(3.4.28)

Unlike the case of double-soft scalars, the cross term 77{34817% does not cancel anymore. However, all
the unphysical poles cancel out manifestly. Note that the fermions in N = 2 SYM are not required
to form a singlet like the scalars. The extension to the fermions in A" = 2 SYM is straightforward

via SUSY truncation as we discussed in the previous section.

3.5 Double-soft limit in open superstring theory

It is known that the soft-scalar theorems in N = 8 supergravity are violated in the closed superstring
theory if o’ corrections are included [79, [80]. It is then natural to ask whether the newly established
double-soft-scalar theorems in SYM would receive any o' corrections for scattering amplitudes in
open superstring theory. We find remarkably that amplitudes in open superstring theory satisfy
exactly the same double-soft-scalar theorems as in SYM theory.

A general n-point color-ordered open string superamplitude of SYM vector multiplet at tree level

can be very nicely expressed in terms of a basis of (n—3)! SYM amplitudes [84] [85],

A(L,2,...n) = Y FCo 09 A i(1, 2,4, ..., (n-2)0,n-1,n) (3.5.1)

o’ESn_s

where Asym(1,25,...,(n-2),,n-1,n) is the color-ordered tree-level amplitude of SYM, and the

multiple hypergeometric functions are given as

2 2 3 1 2 /2l ks, ), 2 sk,
F@en=2) o (qyn- fo [T dz (H|zil|5”) 1> =" I > :
j=2 k=2

<Zi<zir1 j i<l m=1 “mk | \ k=[n/2]+1 m=k+1 Fkm

(3.5.2)

The Mandelstam variables are defined as s;; = o/(k;+k;)?. Here we have fixed the SL(2,C) symmetry

by choosing z; = 0,2,-1 = 1 and 2z, = oo. Explicit expressions for the multiple hypergeometric
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functions in terms of o’ expansion may be found in |85} [84]. For instance, at four points we have,

F(Q) _ _\/1d222312(1_22)52352 _ F(1+$12)F(1+523)
0 2 Z12 F(1+812 +823)
= 1- (2512823 + (3512513523 + -+ (3.5.3)

Let us start with the six-point amplitude as a simple example, the string amplitude is given as

A(L,2,...,6) = > FCo3249) Agyni(1,2,4,3,, 40, 5,6) . (3.5.4)

O'ES3

It turns out to be convenient to take the soft limit on legs 3 and 4, more generally for a n-point
amplitude, we take p,,_s and p,_s to be soft. From the definition of F(%-"=2) (for n = 6, the explicit
expressions for F(2<3242) in o/ expansion can be found in eq.(2.29) in [84]), it is easy to see that

for six points only F(>34) contributes in the limit, and it simply becomes F(?). Thus we have
A(1,2,...,6) > FAS;; Asym(1,2,5,6) = Si;A(1,2,5,6), (3.5.5)
where for the convenience of following discussion we defined the soft factor S;;

1 1
Syj=——— gl -yl (3.5.6)
T 2pi-(pr) " 2pi-(prq) T

with p and ¢ being the soft legs. In the above case these are ps and py. The amplitude with a
general multiplicity can be considered similarly by following a proof of single-soft-gluon theorem
in [84]. First of all, we note that only those permutations o € S,,_3 where indices (n-3) and (n-2)
are adjacent may contribute, since otherwise the amplitudes in SYM would be finite and therefore
subleading. By the property of hypergeometric functions F', the position (n-4) should always be
on the left of (n—3) and (n-2). Furthermore, (n-3) and (n—2) should be in the canonical order,
meaning that (n—3) should be on the left of (n—-2). Otherwise, for all the above cases the multiple

hypergeometric function F' is vanishing. For such o’s we find the following configurations:

e 0€S,_5 with (n-4), =n -4, we have

F Agym(1,20,...,(n=4),(n-3),(n-2),(n-1),n)

> Snoam a1 F D Agym(1,24,..., (n=4), (n—1),n) (3.5.7)

In the following, we then consider the cases with (n-4), +n - 4.
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e g€S, 5 with (n—4), #n—4, we have

F Agym(1,20, ..., (n=4),, (n-3),(n-2),(n-1),n)
= Stn-1)y 1 FS Asyni(1,25, ., (n = 4) g, (n = 1),n) (3.5.8)

e Finally, we have the non-vanishing contribution with o € S,,_5 with (n-4), € {25,...,is},

Fr(LU)ASYM(laQUa s >ioa (Tl— 3)7 (n_ 2)3 (Z + 1)07' s (77,—4)0’ (n_ 1)7”)

- ia,(i+1)oFéi%ASYM(1v 25,05 (n=4)5,(n-1),n) (3.5.9)

Using the definition of the soft factor S;; (in particular its antisymmetric property), we find that

the results of the second the third cases combine nicely,

€q. " +eq. " = Sn—4,n—1F;LT_2ASYM(17 2551, (’fl - 4)0’) (’/l - l)a n) : (3510)

Combining with the result of (3.5.7)), this concludes the proof that the amplitudes in open superstring

theory satisfy the same double-soft-scalar theorem as in SYM theory.
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Chapter 4

Leading multi-soft limits from

scattering equations

This chapter is based on the publication [86].

Investigation of soft factors has a rich history, reaching back to the contributions of Low, Weinberg
and others [17, [I8] 19, 20, 2], 22, 23], 26, 24] 25]. Soft factorization is a universal property of
scattering amplitudes. An n-point scattering amplitude A,, depends on external momenta k! of the
i=1,2,...,n ingoing and outgoing scattering particles. If a subset of adjacent external momenta k;
for Vj=1,2,...,m with m <n -3 is taken to zero, for example parametrized as k:;* - Tk:; and 7 - 0,
the amplitude is expected to factorize at leading order in 7 into a soft factor S, times a lower point

amplitude A,,_,:
A, = S Ap_m +sub-leading in 7. (4.0.1)

Universality in this context means that S, is independent of the remaining lower point amplitude
Ap—m, such that S, is always the same whenever the same types of m external particles are taken
soft within any original amplitude A,.

More recently, interest in investigation of soft theorems was refueled [27, 28] 29] [30] as Strominger
et al. showed that soft-graviton theorems can be understood from the point of view of BMS symmetry
[31), B2 33, [34], B5]. Further study of leading and sub-leading soft theorems in Yang-Mills, gravity,
string and supersymmetric theories ensued [5l, 37, [36] 42}, [43], 38|, [39] [40], 41, [46| 16}, 52, 56|, 68 &7,
88, [89, [90, (911 (92, 93| 94, [95], 96|, 97, ©8, @99, 100, 10T, 102, 03], partly based on the amplitude
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formulation due to Cachazo, He and Yuan (CHY) [5]. Double soft theorems have been considered in
I71, 170, [72], and more recently [13, 73, 724 75}, 53, 176, L04, (105, (106} 107, 61, 50, 51} 58, (108, (109, (10,
[1111, 112} 110, 113]. Construction rules for soft factors with multiple soft particles in A' =4 SYM
theory appeared in [114]. Work on related topics was also done, like sub-leading collinear limits
[115] and investigation of the current algebra at null infinity induced by soft gluon limits [116].

In this note we use the CHY formulation of scattering amplitudes [5) [10] to derive the leading
m-soft factor S, for gluons, bi-adjoint scalar ¢®, Yang-Mills-scalar and non-linear sigma model.

We find the m-soft gluon factor in the case when external legs 1,2, ..., m are soft to be given by

the CHY type formula (4.2.19] 4.2.20} [4.2.21] |4.2.22). We then consider explicit examples, obtain

analytic results in cases m = 1,2,3, and check the cases m = 2,3,4 numerically via amplitude ratios
in four dimensions obtained from the GGT package [117]. Based on these explicit examples, we infer

and conjecture a general pattern for the m-soft gluon factor:

m+1
m+1-r r—1
S%UOTL = Z (_1)T+1Pr(,r++1,...,)m,m+1pr(—1,r)—2,...,1,n7 (402)
r=1
where szl = beo) =1, and P1(,i2),...,i,z'+1v with dv; and 1/1[(?5) defined in (I4.2.20I) and (I4.2.22I), i
(i) _ 1 (i+1)
P1,2,...,i,1'+1 = / dv,y Hf;é 5c71,cPf(¢[1’i] ) (4.0.3)

If all Pl(ZQ)” 41 With 4 < m are known from calculations of lower soft factors, then Pf’;”mm 4118
the only new contribution that has to be computed to construct S,, at a given m.

The leading m-soft factor in bi-adjoint scalar ¢®, Yang-Mills-scalar and non-linear sigma model
theories involves the same integration measure dv, as in , while the integrands are different:
[2). (T9) and (1T,

As an alternative in four dimensions, we also develop a CSW type [118] automated recursive
procedure that gives the leading m-soft gluon factor (compare with construction rules in [114]).
Finally, we use BCFW recursion [3] to obtain all leading four-soft gluon factors with analytically
distinct helicity combinations in four dimensions.

This work is organized as follows. In section [4.1] we recall the CHY formalism and introduce the
soft limit. In section we demonstrate the soft factorization of gluons at any m and obtain our

general result. Explicit examples are worked out in section and a simpler evaluation formula

is conjectured. Multi-soft factors in scalar ¢, Yang-Mills-scalar and non-linear sigma model are

P(m+177')

I The cases il
L,

m+1 and Pi(,?fl,“.ﬂ,l,n are obtained by simple index exchange after integration.
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discussed in section Appendix contains a CSW type recursive procedure for m-soft factors in

four dimensions. Appendix contains BOCFW results for four-soft gluon factors in four dimensions.

4.1 The CHY formulation of Yang-Mills and the soft limit

We start with the usual n-point formula for the tree-level gluon amplitude [5]:

A, :f dpn IYM, (4.1.1)
where the CHY integration measure dy,, and the Yang-Mills CHY integrand Z ™ are

(1)
2 pr(whe)

00 jkOki n & kg -k Y M
dity, = f dto——L 22 1) , I, = 4.1.2
vol (SL(2,C)) ¢£[1 z; Oab 012023...0n1 ( )
a#i,j,k b+a
Moduli differences are abbreviated as o4p, = 04 — 03 and the matrix ¥ is given by
€ak

A -CT kaky . b €a€n . b Caky ca#b
\Il:( C )7 A:{aab 704#: , B: gabva¢ , C: ab , (413)

C B 0 ;a=0 0 ;a=b _Zvclzle;-kc ca=b

c*a
with a,b€{1,2,....,n}. The k* are momenta of scattering particles and " contain the corresponding
polarization data. The indices 1 <i<j<k<naswellasl<p<qg<nin (4.1.2) are chosen arbitrarily
but fixed. Upper and lower indices on matrix ¥ denote removed columns and rows respectively. We
would like to consider the case where m external legs with m < n — 3 are going soft simultaneously:

ki -7k, 7-0, for qe{l,2,...,m}. (4.1.4)

As we take 7 — 0, it is clear from the structure of matrix ¥ that at leading order in 7 the Pfaffian

factorizes asf

PE(WEL) — P(yp)PE(WL S5t o) +subleading in 7, (4.1.5)

p,9,1,2,.... mn+1,n+2,... n+m

possibly up to an overall sign. The 2m x 2m matrix ¢ in the first Pfaffian on the right hand side
of (4.1.5) is defined the same way as ¥, except the indices a,b in the sub-matrices A, B,C are

2To see this, make the substitution (4.1.4) and expand the Pfaffian along rows and/or columns 1,2, ..., m,n+1,n+
2,...,n+m. Retain only leading summands under 7 — 0, keeping in mind that solutions with o, = O(7) or o4, = O(1)
for a,be{1,2,...,m} are possible. Finally, reassemble the remaining coefficients into Pf(t)).
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restricted to the subset a,b € {1,2,...,m}. Here, to do the expansion along rows we employed the

usual recursive formula for the Pfaffian of an anti-symmetric 2n x 2n matrix M:

2n L .

Pt (M) = Z(—l)”ﬁ“ei’jmm—Pf(MZ;), (4.1.6)
j=1
j#i

where m;; are elements of matrix M, 6, = 6(x) is the Heaviside step function, and index i can be
freely chosen.

Alternatively, we could have noticed that 7 — 0 reduces matrix W74 at leading order to a block
matrix structure, with several blocks equal to zero. Factorization then directly follows from
trivial Pfaffian factorization identities for block matrices.

Note that Pf(¢y) contains terms leading and/or sub-leading in 7, depending on whether it is
evaluated on degenerate (o4, = O(7) for some a,b) or non-degenerate (ou = O(1) for all a,b)
solutions to the scattering equations. However, for our purposes it is only important that for all
types of solutions Pf(¢) contains all leading contributions.

The second Pfaffian on the right hand side of is the one we expect in an (n —m)-point

amplitude as we take 7 — 0. Furthermore, we can trivially rewrite

1 On,m+1 1

= - , (4.1.7)
012023-.-0n1 O0n1012---Omm+1  Onm+19m+1,m+2---On-1,n
and observe the following behavior in scattering equation delta functions
n n k . k m n k . k, n n k, . k,
TT6] > 22 =116 > 22| 11 of > =2 +on)|. (4.1.8)
a=1 =1 Oab a=1 b=1 Oab c=m+1 b=m+1 Ocb
bxa b*a bxc

The last equation holds since we necessarily have o, = O(1) for m+1 < ¢ < n due to the kinematics in
all k¥ being generic and therefore producing non-degenerate configurations of o., while all k, = O(7)
for the soft particles 1 < b < m tend to zero. The behavior of the first 1 < a < m delta functions in
is more subtle, since we can have o4, = O(1) or o4, = O(7) in this case. It will be investigated
in detail in the next section.

Considering the above, we can structurally rewrite (4.1.1) at leading order in 7 - 0 as

A, - f dbinm Sm IXM | sub-leading in T, (4.1.9)
Spn = / dmaﬁa i ko ko Tnmel  pe(y), (4.1.10)
a=1 b-1 Oab 0n1012---Om m+1
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where dpi,,_, and ZY ™ are based on objects with indices in the range {m +1,m +2,....n}.

Of course this alone does not provide a factorization yet, since S, still depends on o, and 7,41,
and the delta functions within still depend on all n momenta and o-moduli. In the following we
show that for any m the o,,41,...,0, dependence in S, drops out at leading order in 7 and the
amplitude indeed factorizes as A,, - Sy, Ap—mm+ sub-leading in 7. Furthermore, we find that S;,, only

depends on polarizations €}, €y, ..., ",

as well as momenta k¥, kI, kb, ... kb |, and establish a CHY

0 Ym+10

type formula for evaluating S,,, independently of the remaining factored amplitude A,,_,.

4.2 Factorization of S,, for Yang-Mills and the general result

Starting with S, in (4.1.10) we apply several transformations in order to more conveniently work

with this expression. First we rewrite the delta functions making use of the general identity

where o is a placeholder for some test function and we employ the specific m x m matrix

1 1 1 1 1 1
1 -1 0 0 0 0
o 000 . det(M) = (=1)™*!m, (4.2.2)
0 0 0 1 -1 0
0 0 0 0o 1 -1

which for our particular variables and functions of interest yields the effective relation

ol et -comima(§ 5 Rl ) s, (123

b=1  Oab a=1b=m+1 OFab q=1
b*a

"o kg ke Do kge1 - K
hg=Y ~L 20y Zl (4.2.4)
a=1 Ogqa b=1 Oq+1,b
a*q b#g+1
Furthermore, we transform the moduli o, into a new set of variables p and &;:
~ & E G
= = = 4.2.5
Z:: RPEE (4.2.5)
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which leads to a change of the integration measure as
doy Adoy A .. Adoy, = (-1)™  dp AdEy NdEg A . AdEp_1. (4.2.6)

The transformation (4.2.5) is convenient, since 4 q+1 = &, allows for more direct access to degenerate
solutions o, q+1 = O(7) in the new &, variables. To keep expressions short, we will maintain the o,

notation while implying the substitution (4.2.5). With the above changes, S, becomes

Sm:fdpdm_lfmé(i > M)nhlé(hq)WPf(w). (4.2.7)

a=1b=m+1 Tab q=1 0n1012---Om, m+1

Now consider keeping p fixed and integrating out the ¢ =1,2,...,m — 1 constraints h, = 0 (which
we will denote as {h} = 0) in the ¢ variables. This introduces a Jacobian det(H )™ with derivative
matrix H;; = O¢, h; and a summation over all solutions to the set of m -1 equations {h} =0 in the £

variables:

m

= L ka ! kb Jn,m+1
o = {;o f W Gt (i) 5(a1b=2 ) Pf(1)). (4.2.8)

n
m+1 Oab 0n1012---Om,m+1

solutions

Clearly, here all expressions in the integrand can be effectively thought of as functions of the single
variable p, since o, = 04 (p,{€(p)}) for a € {1,2,...,m} for each solution of {h} = 0 in £ variables.

Therefore, we can now map the single remaining delta function to a simple pole

dp m 1 On,m+1

Sy = a0 PH(1)) (4.2.9)
" {,%;0 2mi det(H) ™ 5 L;"zb On1012---Crmm+1 ’
solutions a
and consider contour deformations away from the initial locus Y00, S5, .1 k;:zb =0in p.

By simple power counting of poles we see that there is no pole and therefore no residue at infinity
in p. As we deform the contour in p, the expressions {h} change dynamically since they depend
on p directly and through £(p) variables. When we localize p at a pole contained in the integrand,
the {h} = 0 constraints can get rescaled and simplified. However, since we are summing over the
solutions, the set of constraints {h} = 0 has to stay analytic to leading order at the poles in p at
all times. This implies i.e. that the Jacobian det(H)™! can get rescaled and simplified due to the
contour deformation, but may never diverge. This is a powerful constraint that allows us to find all
integrand poles in p as follows.

Structurally, the only type of poles that exists in the integrand is of the shape 1/04,. As one such
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pole becomes localized, corresponding terms in the set of expressions {h} start to diverge. Maintain-
ing analyticity at leading order of the divergence in one of the {h} = 0 constraints then demands that
at least one different independent 1/o.q pole must become localized as well simultaneously and at
the same rateﬂ This second pole then threatens the analyticity in another {h} = 0 constraint which
is affected only by this new divergence, etc. In this fashion a chain of relations occurs demanding
that more and more poles must be localized at the same rate simultaneously until it is ensured that
analyticity in all {h} = 0 constraints at leading order in the poles is preserved. Overall we realize that
whenever a 1/o4 pole is localized due to the d.o.f. in p, the p dependence in contributing {£(p)}
solutions must be such that other (m-1) independent poles become localized as well simultaneously
to maintain analyticity in all the {h} = 0 constraints at leading order of divergence.

Equipped with the above observations, we must consider simultaneously localizing subsets of m
independent 1/0,, poles in the integrand, with a # b pairs a,b € {n,1,2,...,m,m + 1}. Regardless of
which m independend poles we choose to localize, the scattering equation expressions {h} as well as
the pfaffian pf(¢) develop poles in p — 0 of a certain power completely homogeneously (independent
of indices chosen). The only part of the integrand which can diverge more or less dependent on
the choice of localized poles is the Parke-Talor like factor. In the following we consider the case
of highest divergence, where combinations of m poles in the Parke-Taylor like factor are localizedﬁ
There are (mn:l) =m + 1 such pole combinations.

In the p and &; variables the Parke-Taylor-like factor reads:

On,m+1 On,m+1

= — — . (4.2.10)
O0n1012---Om,m+1 (O’n —-—p- Zi:ll %) 5152...57”,1 (p - Zi:ll % - O'm+1)

Structurally, there are three different classes of m-poles combinations that can occur, namely where

all appearing poles are localized except for:

1
On —pP— Zi:l 9
. 1 .
2.) xor a single pole G out of i € {1,2,...,m—1}, (4.2.11)
%
1
3.) xor the pole .
_ym-l &
P i=1 5 ~Om+l

3This is the case since k;]zb =0 for generic momenta only has the solution |74p| = oo, which is non-analytic, while
in the case of at least two summands *2*6 1 *e'Rd _ g finite solutions for the &; exist such that analyticity is preserved.

Tab Gc

4We will see that this leads to a simple pole overall, such that any lower polynomial degree would not develop a

divergence or residue and thus does not contribute. Therefore, localizing m pole combinations in the Parke-Taylor
like factor gives the only non-vanishing contributions.
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We choose to parametrize the m localized poles in the above three cases by a parameter p — 0 as

follows:

L) p=p+ome1, & =p& forallje{l,2,...m-1},
1 _ _
2) p:ﬁ-i- 5(0'77”_1 +0’n), fi:Un—O'm_H +ﬁ€i7 and fj :ﬁgj for allj;ti, (4212)

3)p=pto,, &=p&foralje{l,2, . ,m-1}.

The new variables &; account for the original degrees of freedom of &; variables at leading order
after localizing p — 0. Note that in all three cases we have dp = dp, and the one pole that is not
localized always directly reduces to 1/, ym+1 under p — 0, which cancels the numerator in (4.2.10).

In general, if we define E|

Gn=00=0ms1=0 and G,=1- Z % Z % for qe{1,2,...m}, (4.2.13)
dgl A dgg VANPRVAN dgm—l = 2d5’1 N d5'2 AN A d&m,l (4214)

then, for all possible pole combinations, the behavior of (4.2.10) for p - 0 is parametrized as

1 1
On,m+1 = — + O( — ) , (4.2.15)
0n1012--.-Om m+1 ﬁm H a=1 5',171’0, me

where index 7 € {1,2,...,m + 1} labels which one of the m + 1 poles in the denominator of (4.2.10) is

not being localized. Similarly, for all m + 1 possible pole combinations we obtain

1 _ L 0", (4.2.16)

kak .
el Dbemil 7;abb p(Zz kakn +Y0 M)

with the same index r. Depending on the particular value of r we also getﬁ

1 =~2m-2

__P _2m-1 B 1
det(H)  det(H,) +0(p ) and Pi(y)= 7Pf(w7’) O( 1) (4.2.17)

where now H, and %, only contain terms supported on the localized poles appearing in the Parke-

Taylor-like factor (4.2.10) for each r. It is only at this point that the scattering equations {h,.} =0,

5Note that only m — 1 of the G4 are now linearly independent since we have 6., =2 -571.

6Recall that H is the derivative matrix of scattering equations. This means it is composed of elements k; - k:j/afj
and their sums. While 4,5 € {1,2,...,n} initially, localizing the poles from the Parke-Taylor-like factor as
described above removes all dependence on oy,+1,...,0n. This factorizes the scattering equations and their Jacobian
from the remaining (n — m)-point amplitude.
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their Jacobian 1/det(H,) and all other terms become completely factorized from the remaining

(n—m)-point amplitude A,,_,,,. This means H, and 1, only depend on momenta k%, k{', k5, ... .kl |

and polarizations €/, el ..., ek as expected.

Plugging the above findings into and collecting the overall power of p we observe

ml dp 1 1 1
4 m ~0

5 - Pi(¢),) + O
m 7; (h;:o i b det(H ) Zr 1 k, kn N Zm kb Fmt1 Hm+1 Fetc (1/1 )+ (,0 )

solutions

so that it is now trivial to compute the residues in p, since for all  we just have a single simple pole

at p=0. The result is

mtl Z m 1 1
e det(H ) zr 1 kgfn +Zm kz, kme1 Hm+1 Goy

solutions

Pf(1),). (4.2.18)

,C

Under closer inspection we note that the Pfaffian factorizes as Pf(1),.) = Pf(w(") )Pf(w(m+1))

[1,7-1] [rm]
with definitions , again due to trivial factorization properties of Pfaffians of block matrices
with some zero blocks.

In principle, is already the final completely factorized result. For convenience, we can
rewrite it by reassembling the Jacobian and the sum over solutions back into a shape of delta function

integrations. This leads to our final general formulaﬂ

m+1
-3 deTHmila - Pr(u ) PE(w(D). (4.2.19)
Cc#T

dv, = H do; H 0(hg.r)

2m

Za a Zm kb Rm+1 ’

(4.2.20)

where, identifying kg = k¥ and keeping ¢ = 7, = 041 = 0 and &, =2 - &1 in mind, we have

mi:l(_l)a q kea k’b
0

b=
b+a

q+1
hq,r = aZ:;] 9(7‘ a——)(r b—7)7 (4221)

with 6, = 6(z) being the Heaviside step function. We call the constraints hg, = 0 the soft scattering

"Note the convention Pf(wg”j)]) =1 when i > j.
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equations. The 2(j —i+ 1) x 2(j -4 + 1) matrix wf;”j)] can be written explicitly as

Ay =T

z/J[(;fj?] o R with (j—i+1) x (j—i+ 1) sub-matrices (4.2.22)
[i.d] [i.7]
€q-k
ka'ky . €a€h . 275 ya * b
A[zg] =] Gab ;a#b , B[ij] — ] Gab ja#b , C(w) _ Gab ’
’ 0 ;a=b ’ 0 ;a=b [i.7] _Cakw -y, €a'kq ca=b
a o Gaq

and with indices in the range a,b € {i,i+1,...,5}. This is the final result for the m-soft gluon theorem
in CHY formulation. We emphasize that the result is correct to leading order in 7 — 0. However,
since (4.2.21) admits different solutions of types 7,5, = O(1) and &, = O(7), the integrations in

(4.2.19) have to be evaluated before the result can be systematically expanded to leading order in 7.

4.3 Explicit examples and general pattern

In this section we work out examples for the first few soft factors S,,. The factors S;, S and S3
are obtained analytically. The factor S4 (and higher) involves solutions to soft scattering equations
that cannot be solved in terms of radicals, therefore we verify the validity of S; numerically. Based
on the considered examples, we infer a non-trivial structural pattern for the m-soft factors which we

conjecture to hold for any m.

4.3.1 One-soft gluon factor 5;

For m =1 there are no soft scattering equations (4.2.21)) and no delta functions to integrate. The

result is just directly given by the sum over r in (4.2.19) ﬂ

. -k,
g, =2 k2 _,e 3 (4.3.1)
512 Sin

which clearly is the correct Weinberg soft factor[)] We see that the soft factor is composed out of

two pieces such as:

Py =22, (4.3.2)

8Recall that we imply &y, = 2 — 51, which for m = 1 reduces to a1 = 1.
9The sij = (ki + kj)2 is the usual Mandelstam variable.
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Anticipating the structure of higher m-soft factors, we also define
(4.3.3)

PO =p® =1,

(4.3.4)

Using (4.3.3)) and (4.3.2)) we can structurally write the Weinberg soft, factor (4.3.1)) as

512 PR - PO,

Based on this and further explicit results of this section, we propose in (4.3.21]) that this structure

generalizes and persists for all higher m-soft factors.
Restricting to four dimensions, we can convert the soft factor S; to spinor helicity formalism.

tok = M € "kj=
R YT )
s oer o i)l
)

We use the following standard dictionary to convert expressions of given helicity:

1, ...
ki kj = 5 (i5) ), - ,
M € €. = €. = (Zj)[TJTZ]
i "% (Tii><7'jj ’ i€ [iTi][jTj], (4.3.6)

)

+
6 .. 6 . " "
B F I3 ((et)
where 7; and r; label reference spinors assigned to spinor 7 and j respectively. With an appropriate

choice of reference spinor, we see in four dimensions:
(4.3.7)

which is the expected familiar single soft factor in spinor helicity formalism. For real momenta, S7

is given by complex conjugation of S7. Here we have suppressed an overall factor of V2 in ST per

usual spinor helicity convention.

4.3.2 Two-soft gluons factor 5
For m = 2, there is one soft scattering equation (4.2.21)) for each r, and the number of solutions

organizes as follows for the different solution types and different values of r
r=3
1 (4.3.8)

r=1] r=2

solution type
& ~0(1)
& ~O(7)

1 1
1 0 1
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Adding up the contributions of all 5 solutions and expanding to leading order in 7, we obtain the

following expression for Ss:
Sy = P, PO - PP 4 PP (4.3.9)

This agrees with the generalization (4.3.21) for m = 2. The quantities Pi(o) and Pi(;) are given by

, , and the new contribution of type Pi(j))l reads

(2) S13€1 * €2 S93€1 - €2 461 . k‘362 . 1{31 461 . k2€2 . k3 461 . ]{?362 . kg
Piyg= - - + + .

(4.3.10)

5123512 5123512 5123512 5123512 5123523

2 as we expect for the

Counting the powers of k1 and ks we see that this expression diverges as 7~
two-soft gluon factor. The result is gauge independent and reduces to the gauge fixed result
found in [53] when we select the gauge €2 - k3 =0, €1 -k, = 0.

Restricting to four dimensions, converting to spinor helicity formalism by use of and
, and choosing appropriate reference spinors we get the following expression for the non-trivial

helicity combination (+-) after some simplification via Schouten identities:

- (n2)  [13] (n1)[13](32)  [1n](n2)[23]
%2 T (n1)(12) [12][23] (1+ s125(12)  spia[13] ) (4.3.11)

which naturally agrees with the result found in [53]. The trivial helicity combination (++) reduces
to the product of single soft factors S3* = =3 as expected. Again, an overall factor of (V2)? is
suppressed in the above expressions per spinor helicity convention and the other helicity combinations
can be obtained by complex conjugation.

We can additionally numerically test the above result in four dimensions. Making use of the
GGT package provided in [I17] to generate explicit lower point amplitudes, we can form amplitude
ratios that correspond to the soft factor in appropriate soft kinematicsE Keeping in mind the

overall powers of \/2 that are suppressed in spinor helicity, we expect to find the following relation

at leading order in 7:

(V2)™A,(1,2,...,n)

Apem(m+1,m+2,...n)

S| = | I (4.3.12)

Indeed, if we generate a numeric kinematic point where k', k' have soft entries of order 10710 while

10Here, for brevity we use that 2(k1 + k2) - k3 ~ s123 at leading order in 7.
HNote that there is a Chop command in one of the routines of the GGT package, which does not work well with
soft limit numerics and therefore needs to be removed.
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the rest of the momenta have hard entries of order 10°, we can check that i.e.

246(1*,2*,3%,4%,57,67)
A4(3+a4+75_76_)

2A6(1%,27,3%,4*,57,67)

S++ —
15271 =1 Ay(3*,4%,57,67)

|, or |S37]=]| l, (4.3.13)

hold at least to first 10 digits, reflecting that the leading soft factor receives a first correction at the
next polynomially sub-leading power in TE Naturally, ratios of more complicated amplitudes yield

the same agreement.

4.3.3 Three-soft gluons factor S

For m = 3, there are two soft scattering equations (4.2.21)) for each r, and the number of solutions

organizes as follows for the different solution types and different values of r:

solution type r=1| r=2| r=3| r=4

€1~ €~ O(1 2 1 1 2
. G . ) , (4.3.14)
&~0(1), §~0(r) | 2 1 1 2

& ~E&~O(T) 2 0 0 2

where we imply ¢ # j and 4, j € {1,2}. Adding up the contributions of all 16 solutions and expanding
to leading order in 7, we obtain the following expression for Ss:

S3 = P1(,32),3,4P7(10) - 132(,23),4P(1

1,n

+ PP - POPS), . (4.3.15)

2,1,n

This agrees with the generalization (4.3.21) for m = 3. As before, expressions of type Pi(o), Pi(;.) and

Pl(i)l are given by (]4.3.3[), (14.3.2[) and (]4.3.10[), while the new contribution of type Pz(i')“ can still be

analytically computed to beﬁ

(3) 1
P17273’4 = s (w312 — U312 — U213 — V312 — U213) + B (w231 — U231 — U132 — V231 — U132)+
12 23

861 . k462 . k463 . k‘4
+

1 1
+ (7 + 7) (u123 + U321 + V123 + U321 — Wi23) + (4.3.16)

S12 823 534523451234
N 8y - ky (€2 - kges - ka — €3 - koea - ky) N 8 (€1 -koeg-ka—er- ki€ '/€4)€3'l€4+

523523451234 51253451234
N 2€1 - €2€3 - ky (2513 . 2514 51234) . des - €361 - ky ( 513 S:4 )+ deg - €163 - ky
51251234 5123 534 534 52351234 5123 5234 512351234

129 make sure that the comparison works properly, we use the same spinor conventions as the GGT package:

M=K+ k3, A2 = (K} +ik2) [\ /KO + k2 and A; = (A\)*.

13 Again, we use that 2(ky + ko + k3) - k4 ~ 51234 and similar at leading order in 7 to keep notation short.
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where we used the abbreviations

Usj51 = - y Wijl =

de;-kjej-e (1 S14 8€;-kjej - kie - ky 8e€i - kjej - kaey - k‘
2 » Vil =
SijlSijla SijlSijla

Sij1 3 Sijia

3

Counting the powers of k1, ks and ks we see that this expression diverges as 77°, as we expect for

the three-soft gluon factor.

Again, we can use (4.3.5) and (4.3.6) to pass to spinor helicity formalism if we restrict to four

dimensions. In particular, the two non-trivial independent polarization combinations are (- + -)
and (+ - -). For the case (- + —) we obtain, with appropriate choice of reference spinors and after

some simplification via Schouten identities:

o [m2](A3) [24] ([ (An)[n2](23)  [2n](nlk: + ks[2](23)[34]
SB _[Tll][12] <12>(23) [23] [34] (1 [ Sn123<13> * 8123.9"123[24] (4317)
[n1](13)[32] (1n)[n2])(23) [23](3n)[n4] (n .
* s123[n2] i (13)sn125n123[24] ' {1 - 3}])

Similarly, the case (+-—) with an appropriate choice of reference spinors and after some simplification

via Schouten identities yields

gr- . _(n2) [14] (1 _(n1)[14](42)  [In](nlks + k3l4]  [1n](n2)[23](3n)[n4]
° 7 (n1)(12) [12][23][34] s1234(n2) sn123[14] Sn128n123[14]
LD ) DA G0 L) (g
512351234(n2) 51238n123[14] (n2)s1235n123[14]

(n4)

maseaen. and all other

The trivial helicity configuration (+ + +) as expected reduces to S3** =
helicity configurations are obtained from the above by symmetry and complex conjugation. An
overall factor of 23/2 is suppressed in the above expressions per spinor helicity convention.

As before, is expected to hold. Making use of the GGT package [I17] to generate
explicit lower point amplitudes we can form ratios that correspond to the soft factor in appropriate
soft kinematics. Generating a numeric kinematic point such that k', k5 and k% have soft entries of
order 10719 while the rest of the momenta have hard entries of order 10°, we observe that i.e.

2312 A;(17,2%,3%,4%,5%.67,77)

232 A,(1%,27,3%,4%,5%,67,77)
A4(4+75+a6_77_) |

—++| _
155771 =1 Ay(4+,5%,67,77)

etc.

L1957 =]

hold to at least the first 10 digits, after which the first sub-leading correction in 7 becomes important.

Again, ratios of more complicated amplitudes yield the same agreement.
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4.3.4 Four-soft gluons factor S; and beyond

For m = 4, there are three soft scattering equations (4.2.21)) for each r, and the number of solutions

organizes as follows for the different solution types and different values of 7:

solution type r=1| r=2| r=3| r=4| r=5
&i~&o~ &~ O(1) 5 2 1 2 5
E~&~0(1), §~0(1) | 8 2 2 2 8 (4.3.19)
&~0(Q1), §~4~0(r) | 5 2 1 2 5
£~ & ~E3~O(T) 6 0 0 0 6

where we imply 7 # j, ¢ # 1, j # | and 4,4,] € {1,2,3}. With the generalization in mind,
we expect that the contributions for cases r = 2,3,4 can be constructed from previously determined
quantities (4.3.2), and ([£.3.16). That is easily verified numerically by obtaining and sum-
ming over explicit approximate solutions to the soft scattering equations (4.2.21)) in some example

kinematics. This confirms that the structure
_ p(4) 0 (3) (1) (2) p(2) (1) p(3) (0) p(4)
Sy = P1,2,3,4,5Pr(1 ) - Py ysPrg + P54y~ PisPyoq n+Ps " Prsog, (4.3.20)

continues to hold. Trying to obtain Pfé)73’4,5 for r =1 (and r = 5) we discover that finding the 12
solutions of the type &; ~ & ~ & ~ O(7) is equivalent to solving for the roots of two 6th degree
polynomials. Therefore, an analytic solution cannot be obtained in this direct fashion.

Based on the knowledge of previous analytic results found so far, we could try to infer the pole
structure of all the different terms appearing in Pl(é)& 4.5, effectively constructing the result without
solving the soft scattering equations. This works reasonably well for some of the appearing terms
such as €7 - kaes - kzes - kaey - ks, for which the correct contribution can be guessed (and numerically

checked) to be given by:

€1 'kgﬁz'k3€3 'k464']€5 1 1 1 1 1 1 1
16 —_—t— | —+ +l—+—]—),
51234512345 S12 823/ S123 S12534 §23 534/ S234

or terms like €1 - koeo - k3e3 - €4 with the correct guess for the contribution being:

sokeebaa(l sey( L 1)L, L (1 1) 1)

51234 4 512345 512 523/ S123 512534 523 534/ 5234

4 . .
However, P1(72)737475 also contains terms such as €3 - €4€1 - ko€g - k5 Or €1 - €a€3 - €4 for which the pole

70



structure is unclear since these patterns did not appear before. Even though an analytic solution is

thus not available, we can still check numerically that (4.2.19) is correct.

Using (4.3.5) and (4.3.6) to pass to spinor helicity formalism in four dimensions, (4.3.12)) is again

expected to hold. Therefore, we generate a numeric kinematic point such that k', k4, k% and kY
have soft entries of order 1071° while the rest of the momenta have hard entries of order 10°. Now we
can solve numerically and obtain the numeric soft factor Sy as a sum over all 64 solutions.
Subsequently, making use of the GGT package [I17], we can generate explicit amplitude ratios and
observe that e.g.

4As(17,2%,3%, 4%, 5%, 6*,77,87)
Ay(5+,6%,7°,87)

4Ag(17,2%,37,4%,5*,6%,77,87)

S—+++ _
IS5 =1 Ay(5+,6%,77,87)

187 =]

|, etc.

hold to at least the first 10 digits, after which the first sub-leading correction in 7 becomes important.
As before, ratios of more complicated amplitudes yield the same agreement.

For even higher m, the soft scattering equations become more and more complicated,
so that even numeric evaluation becomes increasingly harder to do. However, in principle the m-

soft gluon factor is always given by the CHY type expression summarized by (4.2.19), (4.2.21}) and
(4.2.22)), valid to leading order in 7.

4.3.5 Conclusion and general structural pattern

The above findings are of interest since they prove the existence of a universal soft factor for any
number of soft adjacent gluons and in principle provide a way to calculate these soft factors in
arbitrary dimension. As a byproduct we obtained an explicit analytic result for the three-soft gluon
factor for arbitrary polarizations and in arbitrary dimension, which to our knowledge is a new result.

Considering the particular results for m = 1,2, 3,4 discussed above, we can infer a generalization

for the structural pattern at arbitrary m to be given by:

m+1

S = 3 (-1)riptmeten o pih) . (4.3.21)
r=1

ror+l,...omm+l- r-1,r-2,....1)n

In essence, if all soft factors S, with a < m for a fixed m are known, then all contributions to S,

with 1 <7 <m + 1 are constructed from the lower point results, while the summandlﬂ r =1 equals

MOr alternatively the summand r = m + 1, which is related by simple index exchange.
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the only previously unknown contribution Pl(gl) In general we define P;O +)1 =P =1 and

omam+l”

i 1 i+1)
p = [ dvy ————Pf(pli*D). (4.3.22)
1,2,...,4,4+1 H?:é 60—1,c ( [1,7] )
In this sense, it suffices to evaluate only the r = 1 summand of (4.2.19) to obtain all new information
at a given mlEI

The above conjecture is inferred empirically, and it seems to be highly non-trivial to demonstrate

the factorization of each summand of (4.2.19) into (4.3.21) analytically. While the structure of the

Pfaffian admits such a factorization, the Parke-Taylor like factor as well as the multiplicative term
remaining from the contour deformation in p are not convenient. This implies the necessity of a

transformation along the lines of (4.2.1)) with a non-trivial Jacobian, which is not easily guessed. We

leave a general proof of the conjecture (4.3.21)), (4.3.22) to future work.

4.4 Multi-soft factors in other theories

It is possible to directly apply the procedure described above to several other theories in CHY
formulation. An important feature that largely governs the computations is the presence of at least

one Parke-Taylor factor

1

012023...0n1

c

(4.4.1)

in the CHY integrand of the amplitude, such that the amplitude in question is color ordered. The
theories considered in this section have this same feature. As further building blocks we will require

the sub-matrix A defined in (4.1.3)), the matrix U™ 1"+ 2144 which is 1} with rows and columns

n+l,n+2,...,n+q

n+1,n+2,...,n+q dropped, and the matrix

e g kb
pa
X = { ‘76b ach’ (4.4.2)

where I,,, I, are some internal space indices for scalar fields involved in the scattering process [10].
Since these indices have no non-trivial effect on the momentum dependence of soft factors, we will

consider the simplest case where I, = I, for all particle labels a,b , such that 6%« = 1.

15 There seems to be no obstruction to assuming that a similar pattern should appear for soft theorems e.g. in the
other theories discussed below as well, where appropriate.
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4.4.1 Multi-soft factors in bi-adjoint scalar ¢? theory

The CHY formula for tree level scattering in bi-adjoint scalar ¢* theory can be written as (4.1.1)) [5]

with ZYM replaced by
79" = 2. (4.4.3)

Starting with this integrand, the considerations in sections [£.1] and 2] go through in the same
manner, such that we are left with the following general expression for the m-soft scalar factor with

particles 1,2, ...,m going soft:

m+1
dvy——— 4.4.4
r=1 ‘/ m+1 Uc 1 5)2 ( )

c=1
c#Er

with dv,. given in (4.2.20), and the identification o¢ = 0,,. As in the gluon case, the soft scattering
equations contained in dv, can be explicitly solved for the cases m = 1,2,3, with exactly the same

solutions. At leading order in the soft limit this leads to

1 1

o _ 445
U Tk kR ko (4.4.5)
o0 _ 1 ( 1 N 1 ) 446
2 T ky ko \En - (ki + ko) (ky+ ko) -ks)’ (4.4.6)

2 1 1 1 1

SP = ( )( N ) (4.4.7)

s123 \k1 - ko k’2 ks ) \kp-(ki+ka+ks) (ki+ko+ks) ka

It is worth noticing that all contributions to the soft factors at leading order in the soft limit are
due to the two summands » = 1 and » = m + 1 only, while the intermediate summands are sub-

leading. As before, the general expression S®” can be used to evaluate ng and higher soft factors

m

numerically. We tested the results numerically against amplitude ratios in CHY formulation and

found agreement.

4.4.2 Multi-soft factors in Yang-Mills-scalar theory

The CHY formula for tree level scattering in Yang-Mills-scalar theory is (4.1.1) with ZY* replaced
by

7,+
IYMS QCPf( ) ( ) Pf(\lll,],rwl N+2,...,n+q (448)

i,j,n+1,n+2,...,n+q /"’
ij
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where matrix x is ¢ x ¢ dimensional , and 1 <i < j <n can be selected arbitrarily [10]. This
corresponds to the first ¢ of the scattering particles being scalars and the remaining n — ¢ being
gluons.

Starting with this integrand, the considerations in sections and go through in the same
manner. Soft gluon factors in this theory are exactly the same as in pure Yang-Mills. The general

expression for the m-soft scalar factor with particles 1,2, ...,m going soft amounts to@

m+1 1
S}T/LMS = Z / dv, Hm+1 5 Pf(X[l,r—l])Pf(X[r,m])Pf(A[l,r—l])Pf(A[r,m])v (449)
r=1 c=1 c-1,c
c#r

with dv, given in (4.2.20), and the identification ¢ = 0,. The matrix Ap; j; was defined in (4.2.22),
and the matrix x[; ;) relates to x in (4.4.2) the same as A[; ;) relates to A in (4.1.3)). As in the gluon

case, the soft scattering equations contained in dv,. can be explicitly solved for the cases m =1,2,3,
with exactly the same solutions. However, since Pf(x; ;1) vanishes when x; ;1 is of odd dimension,
only soft factors with an even number m of soft scalars are non-zero and only summands of odd r

contribute. At leading order in the soft limit this leads to

syms .1 (kn'(k2—k1)+(k1—k2)'k3).

= 4.4.10
2 Oky ko \kp - (ky +k2) (ko +k) ks ( )

YMS
Sm

This agrees with the result in [75]. As before, the general expression can be used to evaluate

Sy MS and higher soft factors numerically. We tested the results numerically against amplitude

ratios in CHY formulation and found agreement.

4.4.3 Multi-soft factors in non-linear sigma model

The CHY formula for tree level scattering in non-linear sigma model is (4.1.1) with ZY ™ replaced
by

INESM ¢ i SPE(AY)?, (4.4.11)
(035)

where Ai? is the matrix A defined in 1) with rows and columns 4, j removed, and 1<i<j<n
can be selected arbitrarily [10].

Starting with this integrand, the considerations in sections [£.I] and 2] go through in the same

16 Again, we introduce the convention Pf(x[s,51) = PE(A[4,51) =1 when i > j.
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manner. The general expression for the m-soft factor with particles 1,2, ...,m going soft amounts to:

m+1 1
SNLSM _ 3 f vy —————PH(App-11) " PE(Apym) (4.4.12)
r=1 Hc:1 Oc-1,c
c#T

with dv, given in (4.2.20), and the identification oo = 0,,. The matrix A[; j; was defined in (4.2.22]).

As in the gluon case, the soft scattering equations contained in dv,. can be explicitly solved for the
cases m = 1,2,3, with exactly the same solutions. However, since Pf(A[; ;;) vanishes when A[; ;) is
of odd dimension, only soft factors with an even number m of soft particles are non-zero and only

summands of odd r contribute. At leading order in the soft limit this leads to

gyesm _1 (kn'(k2—/<?1) . (k1 —k‘2)‘k3)

4.4.13
2 2\ kp - (ky + ko) (ko +ka) ks ( )

NLSM
Sm

This agrees with the result in [75]. As before, the general expression can be used to evaluate

SNLSM and higher soft factors numerically. We tested the results numerically against amplitude
ratios in CHY formulation and found agreement. Additionally, our SNVZSM numerically agrees with

the result found in [119]E

4.5 CSW recursion for multi-gluon soft-factors in four dimen-
sions

As an alternative to the construction rules presented in [114], we can set up a CSW type re-
cursion [II8] for the m-soft factors in four dimensions as follows. We start with the amplitude
AT (L kL kR kEL ), where kI denotes the external momentum of the i-th particle with
helicity h; € {+1,-1}. Here we have cyclically rotated the n-th position to be the first, and sup-
pressed all entries k;;.” with m + 1 < j < n since they do not enter the soft factor that we want to
extract from this amplitude. Since the helicities of particle n and m + 1 do not enter the soft factor,
we can choose these helicities to be + without loss of generality. The superscript (m) keeps track of
the number of adjacent external momenta that are taken soft.

In order to obtain the soft factor from CSW recursion, we have to generate all possible diagrams

17Note a typo in eq. (4.10) of [I19]: The numerator of last expression on the first line should involve g5 - k1 instead
of q4 - kl .
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in MHV expansion. To do this recursively, we introduce the following two functions:

S (AU (g bigs? s Fig™)) = (4.5.1)
-1 1
ha, hg, . _ 1
Z;lz; _Z;l H(Aj—i+2(k<hq R Y ,qj))) N x
v=+1i= =i iy .
j]i<l 1 ot ;o if Z hg, <1,
ha, hg., h
= XS(A(m)(kth ) kqiqj;la ;(ti’,,,,qj)vkqjqjll7~-~7quQZ))
(m) a1 hg, . .
(kq1 ,kq2 R ; otherwise,
as well as, making use of p(x) =mod(x - 1,1) + 1, the function:
a1 h‘ll
(Al(k;ql I ) = (4.5.2)
l i+l-3 5 1
o P e W EEN
=50 n w(i P qu(z)7 4u(5) Pq2“( Yoo du(y) ) if Z hQa <l - 4,
h
haeny dp(+i-1) 7,+1 a=1
= xH (Al+Z J(k‘qué‘ﬁfl) [ kquétlﬂtl) ’ kp(q;L(j+1)7"~)q/4(l+11—1)))
Ay(kiar haz | b . otherwise.
We supplement the above functions with the following resolution properties:
(i, .y Gyp(ay s 0) sy s v) =p(4, oy 4y @y ey by Uy ey V), (4.5.3)
p(ty .y gyryay by u, o v) =p(i, .y 4y ay o by, e, v), (4.5.4)
2 2
B i b o =L s by (4.5.5)
Pi2,...,j,r,a,...,b,r,u,...,v :PiZ,..,,j,a,...,b,u,...,v7 (456)

which ensure that the explicit propagator momenta always are properly resolved in terms of external
momenta. Naturally, the order of indices i, ..., appearing in p(i, ...,7) and PZQJ is irrelevant and
can be assumed to be sorted to make it easier to identify and group together identical expressions.

It is important to note that the sums in the functions and may contain summands
that immediately vanish due to trivial helicity configurations of sub-amplitudes involved that enter

the H functionﬁ Setting such summands to zero directly without allowing for any recursion depth

in such terms greatly speeds up the calculation.

18By trivial helicity configuration we mean amplitudes with none, or only one negative helicity gluon, as well as
amplitudes with none, or only one positive helicity gluon (special care is required for 3-point amplitudes due to special
kinematics).
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Recursion by means of (4.5.1) and (4.5.2)) with the above supplements will generate all possible

diagrams in MHV expansion that contribute to leading order in the soft limit. However, the simple
summation employed here comes at the expense of multiple counting for some of the resulting
diagrams. The easiest way to remove the over-counting is to simply set the integer coefficient in
front of each overall summand to 1 after the recursion has been completed and all terms have been

properly grouped together:
S’ = S with multiplicity of each overall summand set to 1, (4.5.7)

which implies that invariance of amplitudes under cyclic permutation of external legs is used to
identify and group together equivalent terms in the expansion. This, as well as the entire recursive
procedure, can be easily automated i.e. in Mathematica, such that the m-soft factor S, for any

helicity configuration is automatically generated by the input:

S = S" (A (k1 K KR k). (4.5.8)

M M gme

Finally, to evaluate the soft factor we use the substitutions

(n-1,n){n,m+1)m+1,m+2)

A (B ) > , (4.5.9)
e “ (n—Lth)(Hi;%(%‘,qi‘ﬂ))(qhm-ﬂ)
A (k+l k+1 k71 k+l k+1 k71 k+1 k+l) N (q17q_])4 (4 5 10)
INPgy oo gy gy s Rgapn oo g0 gy s g0 o gy ’ e

(0, 01) TIZ1 (44, gist)

where entries like |p(4,...,7)) are evaluated by the usual CSW replacement P; ;| X ] with reference
spinor |X]. Superficially, due to it might seem that the soft factor depends on (n—1)-st and
(m + 2)-nd external momentum as well. However, just as in [114], this dependence always cancels
out upon the CSW replacement of the shifted spinors at leading order in 7.

We have tested the above recursive procedure for soft factors Sy, So,...,.S7 with various helicity
configurations against appropriate amplitude ratios obtained from the GGT package [117], and found
numerical agreement at leading order in 7. For example, our recursion takes about two minutes to

* soft factor. If required, a trivial further

expansion in 7 can be used to isolate leading terms only.
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4.6 Four-soft gluons from BCFW

Naturally, it is also possible to apply BCFW recursion relations [3] to compute higher soft factors.
Here we demonstrate the four-soft gluon calculation. We pick gluons 1,2, 3,4 to be soft and perform

a [23) BCFW shift, so that 2 - 2 and 3 — 3 with
2)=12) . R2]=21+zB3] , B)=B)-z2) , Bl=13]. (4.6.1)

It is trivial to see that under this shift only the following four diagrams could possibly contribute to

the leading soft factor with any helicity configuration:

~ N 1 A~ ~
Sy,a=A4(n,1,2,-Pp12) S2(Pn12,3,4,5), (4.6.2)
Sn12
Ao 1 PN
Sy.p =A3(1,2,-P12)—S3(n, P12,3,4,5), (4.6.3)
512
N R 1 A
S4,C :A4(_P3457 37 47 5)8752(7% ]-7 27 P345)7 (464)
345
L 1 A
Sy,p =A3(~P34,3,4)—53(n, 1,2, P34,5), (4.6.5)
534
while the complete four-soft gluon factor is given by
Sy =844+8sB+S1c+SspD (4.6.6)

in each case. Here, A3, A4 are mostly-soft-leg sub-amplitudes factored by BCFW, and Sy, S3 are two-
and three-soft gluon factors that are extracted from the mostly-hard-leg sub-amplitudes factored by
BCFW. The usual on-shell constraints 152 = ( provide the following z values to leading order in the

soft limit{™|

_ —Sn12 - [12] _ S345 _ (34
ZA—W ) zB——ﬁ ) Zc—m ) ZD—@T~ (4.6.7)

- |

In case when all four soft gluons have the same helicity, the four-soft factor trivially reduces to a
product of consecutive soft factors. In the following, we specify explicit helicity configurations and

obtain the results for all analytically distinct non-trivial helicity configurations.

19We use the convention s;; = (ij)[ji], which with our spinor contraction conventions ({ij) = A}A? - )\22)\]1. and

[i7] = 5\35\; - 5\11 X?) corresponds to (+,—,—,—) Minkowski metric signature.

78



Helicity configuration (—+ ++):

For the helicity configuration of soft gluons (17,2%,3* 4%) we find:

. (30 (10)*(51)

44 Sn128n123(1 2)(45)(n|k12|3](4|kn123kn1|2)’
o 231%(n5)

BP T s103[12](45) (4]kas| 1](mlk12[3]
Sict=0,

gt = (n5>(4|k23|n]3 +
BP0 (23)(34)(45) [0 1] (4lkzs|1](4]k123In] (2l knios]4)

{15)°[n5] (n5)(1]ka34|n]>

(4.6.8)
(4.6.9)

(4.6.10)

(4.6.11)

* 812345(1 2)(2 3)(3 4)(4 5)(5|k1234|n] * 812348n1234(1 2)(2 3)(3 4)(4|k123|n](5|k1234|n] '

To see that the diagram C' is zero, we use the fact that the soft factor is independent of the helicity

of particle 5, thus we can choose it to be 5* which leads to no non-vanishing helicity configurations

for A4. In all other diagrams only one helicity configuration is non-vanishing. We tested the above

result numerically against amplitude ratios and found agreement.

Helicity configuration (+— ++):

For the helicity configuration of soft gluons (1*,27,3%,4%) we find:

_ 3n]3(2n)*(5n)

. [ 7 4.6.12

44 sn125n123(1 2)(45)(L n)(n|ki2[3](4|kn123kn1[2) ( )

- 13]*(n5)

— [ 7 4.6.13
T2 B) ks (ral?] (+6.13)

Sic =0, (4.6.14)

Gt _ (5n) ( [15]%(25)* . )
4P (23)(34)(5|k23a|1] \ S1234552345(4 5)(2|k3a5k12345n)  S12345234(4|k23|1](2|k3ak1234|0)

(2n)° (25)°[n5]

(2n)(5n)(2ksa|n]®

+ )
(12)(23)(34){1n)(2|kn1kn1234]5) ((45)(2|k345k12345|n) Sn1234(2|k’n1kn123|4)<n|/€1234k34|2))

(4.6.15)

Diagram C' vanishes the same way as described above. In all other diagrams again only one helicity

configuration is non-vanishing. We tested the above result numerically against amplitude ratios and

found agreement.
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Helicity configuration (+——+):

For the helicity configuration of soft gluons (1%,27,37,4%) we find:

R (2n)3 [4n]3(2n)(5n)
A 2T ) s 312 oz ) ( Swizsa[34] (4610
. [51](2|kn1 kn123|5)? )
(45)(2lkn1 kn123[4) (s345[3n](2n) + 5012[35](25))
Syt = {nlas|1]° x (4.6.17)
: s123[12][2 3](n[k12|3] ((5[k1234|n](nlkas[1] = (5 n)[1]kozk123|n])
X( [4n]*(5n)(nlkasll] [5n](5|k23[1]* )
sn123Sn1234(nlk123[4]  (45)(4]k23[1] ([45](5n)(4]kas|1] + (5|kas|1](n|k1234/5])
1 [14]*(5n)
12][23](5k23a[1] (81234[34]<n|k123|4]
. [15]%(n5)(5|k23[1]* )
$12345(4 5) (4] k23| 1] [1|koza5ka5]3] ([4 5](5 n){4lkaz[1] + (5|k23|1](nlk1234|5]) )
[45]3(25)3 [15]3(25)(n5)
53453 4](2|k34[5](2|k3a5k12345|1) (81234582345[1|k52345k45|3]
[n5](2n)? )
12){1n) (s315[3n](2n) + sn12[35](25)) )’
——t (23)° [n5](n|k234]1]* [15)°(n5)
Sip” = 5234(34)(4|k23|1](n|k1234/5] (512345n1234<2|k34k1234|n> ’ 512345(2|k34|5]) (4.6.19)
(23)3[n5](2n)?
' (12)(34)(1 n)(2[k3a[5](4[kn123kn1 |2)(2|k34k1234|0)

i

Syt = (4.6.18)

i

In all diagrams again only one helicity configuration is non-vanishing. We tested the above result

numerically against amplitude ratios and found agreement.

Helicity configuration (—— ++):

For the helicity configuration of soft gluons (17,27,3%,4%) we find:

e _ (12)°[3n]*(5n)

A ez (5N L) (k2 B Az kot 2 (4.6:20)
S 1 (n5)[n|ki234k123]°  [5 n](5|k12|3]3)

Sup” = s123[12][2 3](4]ka3|1](5[k1234|n] (812348n1234(4|]<1123|n] " 512345(45) (4.6:21)

) Bnl(5m)
sn123[12][23](45)[1 n]{4|k123|n]’

Sic =0, (4.6.22)
e [n5] (25) (2lksak1234]5)° )

S0 = (23)(34)(5|k234/1] (82345(45)[1 n] " 51234512345 5234 (4| k23|1](5|k1234|7 ] (4.6.23)

(n5)(2lksa|n]?

5)
" 82348n1234<2 3)(3 4)[1 n](4|k23|1](5|k1234|n] '
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Diagram C' vanishes the same way as described above. In all other diagrams again only one helicity
configuration is non-vanishing. We tested the above result numerically against amplitude ratios and

found agreement.

Helicity configuration (+ - +-):

For the helicity configuration of soft gluons (1*,27,3%,47) we find:

e [3n]3(2n)? N
A= UL ) Blkmizsshons B ko ]3] (46.24
y ( [3n][5n]{4n)? . [35]3(n5) )
Sn1238n1234<4|k‘n123kn1|2> [3 4] [4 5] (8345 [3 n](2 n) + Sn12[3 5](2 5)) ’
. [13'[35](n5)
8 I3 B AT Blhishizsdb ][ kssss kB Triz3] (4629
N [13]* ( (5n)(4]k123]5]° N [5n](4n)® )
s123[12][23](4kas|1](n|k1234|5] \ s1234512345[3|k12Kk12345]  Sn1234(nlk12/3] )’
[35)'(25)" )
Sic = 5345(34][45](2|k34]5](n|k12345k345|2) (4.6.26)
( [15]%(25)(5n) . [5n](2n)° )
51234552345 1|kosaskas|3]  (12)(1n) (s345[3n](2n) + sn12[35](25)) )’
. (24 [n5](2n)°
i )3 a2k 2l o ) (a frzsekal2) | (4627
. 1)’ (it D505 )
5934(23)(34)(4]kas|1](n|k1234]5] \ s12345n1234(2|ksak1234|n)  s12345(2|k34[5] )

In all diagrams again only one helicity configuration is non-vanishing. We tested the above result

numerically against amplitude ratios and found agreement.
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Chapter 5

Polynomial Reduction and Evaluation
of Tree- and Loop-Level CHY

Amplitudes

This chapter is based on the publication [120].

After the amazing discovery of the relation between perturbative gauge theory and twistor string
theory by Witten [121], there have been several developments on computing scattering matrices in
various theories from a moduli space on a punctured sphere [122], 123, [124] 125, [126]. Cachazo, He
and Yuan (CHY) proposed the equations governing the map from the space of kinematic invariants
to the moduli space to be the same in each case and independent of the particular spacetime di-
mension. This led them to search for a more general formulation of scattering matrices in arbitrary
dimension. Deriving some inspiration from a formula for MHV gravity amplitudes due to Hodges
[127, 128, [129], CHY went on to discover their new formulation for amplitudes in a range of theories
in [7, Bl 8], and later [9, 10]. This so called CHY formulation produces tree level n-point scattering
amplitudes for massless particles in arbitrary dimension by means of (n — 3) moduli integrations
localizing so called scattering equations. The scattering equations first appeared in the work of
Fairlie and Roberts [130, 131], and later Gross and Mende [132], as well as more recently Witten
[133], and from the string theory classical worldsheet perspective inf'| [I34} [135]. Soon after the CHY
equations made their appearance, the scalar and gluon cases were proven directly [136] by means of

BCFW recursion relations [3, [4]. Subsequently generalizations appeared, extending the formulation

! The author thanks P. Caputa for pointing out this last point.
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in terms of scattering equations to involve i.e. massive particles 136 137, 138, [139], fermions [140],
supersymmetric theory [141] [142], one-loop amplitudes [143] [144] 145], QCD related amplitudes
[146], off-shell amplitudes [147], or comparison to a string theory setting [148] [149, [150].

The most direct approach to evaluate amplitudes in CHY formulation was to try and find solutions
to the scattering equations in general [I51], [152], or solve at special kinematics [153, [154]. The
scattering equations could also be reformulated in a polynomial form [I1 [12]. However, it became
clear that solving scattering equations is very non-trivial and is not the most convenient way of
evaluating amplitudes. Subsequently, techniques that avoid explicit solving of scattering equations
started to emerge [155]. Contour deformations in the moduli integrals led to diagrammatic prescrip-
tions that can be used to evaluate separate amplitude building blocks [156] 157, 158, 159, 160]. An
algebraic approach to evaluating scattering amplitudes in CHY formulation involving so-called com-
panion matrices was suggested in [I61]. For a comparison of this method with an elimination theory
based technique see [162]. One further algebraic technique involving polynomial inversion of moduli
differences on the support of the ideal spanned by scattering equations, as well as the Bezoutian
matrix to evaluate amplitudes was presented in [I63]. Elimination theory was applied to scattering
equations in polynomial form to obtain single variable polynomials [164] [165]. Loop level integrands
have been shown to follow from higher dimensional massless tree-level amplitudes [166] [167]. Some
further progress on evaluating CHY amplitudes was made in [I68], diagrammatic techniques were
generalized to compute higher order poles [169], and a double cover deformation of the moduli space
led to evaluation of more general amplitude types as well [I70]. Finally, monodromy relations were
applied to Yang-Mills amplitudes in CHY representation to facilitate evaluation [I71].

In this work we start by developing a polynomial degree reduction procedure for multivariate poly-
nomials in g-moduli on the support of gauge fixed scattering equations for any n. As a consequence
we realize that the most general multivariate polynomial in o-moduli can be reduced to contain what
we call ladder type monomials only, with multivariate degree of at most % and coefficients
rational in kinematic data. We say such a fully reduced polynomial is of standard form. Application
of Hilbert’s strong Nullstellensatz as well as our degree reduction procedure conceptually allows us
to find a standard form polynomial expression for rational functions in the o-moduli. Making use of
the above findings, a CHY amplitude integrand of any theory at any n can be converted to a corre-
sponding standard form polynomial. This general structural constraint is one of the main findings of
the current work. After the polynomial reduction is carried out, we use the global residue theorem
to derive a prescription to evaluate CHY amplitudes by collecting simple residues at infinity only.

We note that only highest degree ladder type monomials contribute to any such amplitude integral,
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and since we find only simple poles the evaluation step is trivial. The difficulty is shifted towards
finding standard form polynomial integrands for CHY amplitudes. We demonstrate the prescription
on explicit examples of amplitude integrands at tree and one-loop level.

This chapter is organized as follows. In section [5.I] we review the CHY formulation of tree-level
scattering amplitudes for massless ¢ scalar theory as an example. As a warm up, section shows
a five point amplitude calculation to motivate our further investigation in section [5.3] Section [5.3.1]
describes the degree reduction of multivariate polynomials to the standard form, and section [5.3.2]
extends the reduction procedure to rational functions, on the support of gauge fixed scattering equa-
tions. Subsequently, section [5.3.3]describes the global residue theorem based proof for our amplitude
evaluation prescription after polynomial reduction is applied to the integrands. In section [5.3.4] we
give explicit examples on how amplitudes are evaluated making use of our new method. We go
on to consider 1-loop amplitudes in section [5.4] where we determine gauge fixed polynomial scat-
tering equations that are free of singular solutions in the forward limit. Section [5.4.1] contains a
few amplitude evaluation examples at 1-loop. We conclude in section Appendix suggests
a simple method to generate real rational on-shell momenta based on Euclid’s Pythagorean triple

parametrization.

Note

J. Bosma, M. Sggaard and Y. Zhang published a paper with similar results in [172].

5.1 CHY formulation of tree level scattering amplitudes

The Cachazo-He-Yuan (CHY) formulation of tree-level scattering amplitudes for massless particles
in arbitrary dimension was introduced in [7, [5]. In CHY representation, the map of kinematic data

to the moduli space is governed by the rational scattering equations

2 ke ke

b=1,bta 9a ~ Ob

£ = Vae{l,2,...n}. (5.1.1)

Dolan and Goddard transformed the original amplitude expression to involve polynomial scattering
equations [11]. In what follows, it will be more convenient for us to work with polynomial scattering

equations, therefore we will use the latter form for i.e. an n-point scalar ¢® amplitude in the examples
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to follow:

5
1<i<j<n (012023---0n1)

An:f ﬁ doc (quapwowq)( H Uij)(ﬁé(ila))l (5.1.2)

cEq,p,w

Here the indices 1 < ¢ < p < w < n are fixed and can be chosen arbitrarily without changing the
result. Minkowski momenta of scattering external particles are denoted k;, and the difference of
moduli is abbreviated as o;; = 0; — ;. There are n — 3 moduli integrations and the same amount
of delta functions, such that the integral reduces to a sum over the solutions to the system of the

scattering equations in the delta function arguments

h; = > Squ,nqs | | Oq, = 0. (5.1.3)
{ql,.A.,qi}C{l,Z,.u,n} Jj=1

In this formula the summation is over all possible unordered subsets of i different numbers {q1, ..., ¢; }
out of the integer sequence from 1 to n. Due to momentum conservation and massless on-shell

conditions, the kinematic variables

. 2
1 i
5q1,00i = 5 (zjlkq,) (514)
j=

are only non-zero when at least 2 or at most n — 2 indices are provided. Therefore, exactly n — 3
scattering equations (5.1.3) from hy through h,_o are nontrivial.
In the following we will be working with the particular gauge choice o = o0, 02 =0 and o3 = 1 for

convenience. For this purpose we define the gauge fixed polynomial scattering equations:
. 1- .
hiz( lim —hi+1)|o2:o =0 , Vie{l,2,..,n-3}. (5.1.5)
o3=1

o100 g1

Correspondingly, we will fix the free indices in (5.1.2) as ¢ =1,p = 2,w = 3.

5.2 Warm up: five point tree level scalar amplitude

At five points we have two scattering equations:

hi=04514+ 05815 +61,3=0,

hQ =0'4O'55213 + 0'552,4 + 0'452,5 =0.
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The gauge fixed scattering amplitude for scalars becomes

doydos o405 (1 - o05)
h1h2 (1 - 0'4) (0‘4 - 0'5)’

¢3
A = (5.2.1)
where the delta functions have been mapped to simple poles as usual, and the integration contour is
such that both poles are localized. We would like to transform the integrand such that an evaluation

via contour deformation becomes simpler. For that end, consider the following equality
3
0405 (1—0’5)3(1—0'4) (0’4—0’5)]\7;' (5.2.2)

3
where = shall denote equivalence on the support of scattering equations. Here NgJ clearly corre-
sponds to the explicit integrand part of (5.2.1). We claim that (5.2.2) can be realized i.e. by the

following Ansatz

3

Ng =C104 + C205. (523)

To show that this is indeed the case, we can first solve hy = 0 for either o4 or o5, and solve ho =0

for o405:

51,5 51,3 51,4 51,3
o4 = o5 — —=, 05 =———04 — —=, (5.2.4)
51,4 51,4 515 515
524 525
0405 = — o5 — 034. (5.2.5)

5
52,3 52,3

Then we start with (5.2.2) making use of (5.2.3)), expand both sides of the equation, and iterate the

following substitution rules:

1. Whenever we encounter a monomial featuring both o4 and o5, we isolate the highest power
of o405, substitute in the right hand side of (5.2.5) and expand - this leads to an overall

multivariate degree reduction in monomials.

2. Whenever we encounter a monomial featuring o4 xor o5 to a power higher than one, we isolate
a single power of o4 xor o5 respectively, substitute it by the right hand side of the respective
equation in (5.2.4)) and expand - this leads either to an overall degree reduction in monomials,

or to creation of new o405 terms.
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Iterating the above two steps a few times reduces both sides of to only the two monomials
04 and o5 with some constant coefﬁcientsﬂ Collecting all terms on one side of the equation and
demanding that the overall coefficients of monomials o4 and o5 vanish identically, we obtain a set of
two linear equations in two unknowns c¢; and ¢o. Solving these equations yields one possible solution

3
for the Ansatz Ng) , Le.

51,4525 ((51,3 +51,5)52,4 +51.4 (52,3 +2624 +52,5))
((51,3 +51,4) (52,3 +52,4) —517552,5) (51,352,3 - (51,4 +51,5) (52,4 +52,5)) 7
_ 52,4(51,3 +51,4) + 51,5524
51,592,5 — (51,3 +51,4) (52,3 +52,4) (51,4 +51,5) (52,4 +52,5) —51,352,3.

C1 =

C2

Deforming the integration contours to infinity consecutively, we find only simple poles and get E|

3
N¢
A?S:?fd@dag, 5 .94 2 (5.2.6)
hihy 514523 15923

Using momentum conservation and the fact that all external particles are massless, we can re-express

the above in the following familiar form

3 1 1 1 1 1
A? = + + + + ) (5.2.7)
51,2834 55,1923 54,5512 $34551 523545

confirming that the result we found is indeed the correct five point massless scalar amplitude in ¢3

theory. In the following section we will generalize the above technique to all n.

5.3 Amplitude structure and evaluation prescription

Our plan is to show that any multivariate polynomial on the support of scattering equations can
be written in a specific monomial structure we call the standard form. Subsequently, we show that
any rational function that is finite and non-vanishing on the support of scattering equations can be
written as a standard form polynomial. Lastly, we apply these findings to amplitude integrands,
convert them to standard form polynomials and evaluate the amplitude by means of the global

residue theorem while collecting simple pole residues at infinity only.

2The exact coefficients are not necessarily unique and might depend on the order of substitutions during the
reduction.
3In what follows, we give more details on this, from the point of view of global residue theorem.
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5.3.1 Degree reduction of polynomials to a standard form

In this section we start with an arbitrary multivariate polynomial N in the n — 3 different o-moduli
that are not gauge fixed (substitute n — n + 2 everywhere for 1-loop), and show that any such

polynomial can be degree reduced to a very specific form.

Conventions: Consider a generic monomial M within polynomial N separately:

M =Cobrob2.  ogmmas. (5.3.1)

Y mmax

C is an overall constant, g; # g2 # ... # ¢m,,,, label the different o-moduli appearing in the monomial
M, while pi1,ps,...,Pm,,.., are the corresponding powers of each o-modulus. We choose to always
order all o-moduli within each monomial such that p; < ps < ... < pm,,..- For convenience we
define py = 0 for all M. Since there are at most n — 3 different non-gauge fixed o-moduli, we have

0<Myazr <N -3 in generalﬁ

Definition 1: We define a monomial M as introduced in the conventions above to be of ladder
type if its moduli powers satisfy 0 < p; —p;—1 <1 for all j € {1,2, ..., Mynae } When my,q, > 0, and iff

additionally the property 0 < m,q < 7 — 4 is satisfied.

Definition 2: We define a multivariate polynomial in the non-gauge fixed o-moduli to be of
standard form if it consists of ladder type monomials only, with coefficients rational in kinematic

data. See Table for some examples of ladder type monomials.

4 n=>5 n==6

n =
1 1 1 2 2 2 2 2 2
9 04 ) 05 ) 04 ) 05 ] UG 9 04 05 ) 04 06 ) 05 06 9 05 04 ) 06 04 9 06 05 9 04 05 ) 04 06 9 05 UG

Table 5.1: Examples of all ladder type monomials for the first few n. (01, 09,03 gauge fixed.)

Theorem 1: On the support of the ideal spanned by scattering equations, an arbitrary regular
multivariate polynomial N in the n—3 non-gauge fized moduli, with coefficients rational in kinematic
data, is equivalent to at least one standard form polynomial N’ that consists of ladder type monomials

only, with coefficients rational in kinematic data.

Proof: To prove this we use flow arguments induced by scattering equation based transformations

in the space of moduli powers within monomials. The arguments consist of the following two steps.

4The case Mmaqz = 0 corresponds to only C being present in (5.3.1).
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Step 1: Reduction of monomials to 0 <p; —p;_1 <1 for all j e {1,2,....Mnq4z}

Consider a generic monomial of an arbitrary polynomial

P1 P2 GPj-1 5Pj  ;Pmmao
Coglogs...opl og...oqnmes, (5.3.2)

wiy terms wso terms

for some fixed 1 < j < Myyaq, ordered as p1 <ps < ... <Py, and such that p; —p;_1 > 1, so that the
monomial is non-ladder type. Also note that 0 < (w1 + wa = Mypqee) <1 —3. If we want to transform
this monomial into a sum over ladder type monomials, we first have to reduce the discrepancy
pj —pj—1 > 1 to 0 <p;j —p;j—1 < 1. We employ the scattering equations to do that as follows.

The general structure of gauge fixed polynomial scattering equations h, = 0 for a = 1,...,n—3 is such

that h, features all possible multilinear monomials of degree a and a — 1 respectively. Therefore, we

can solve the scattering equation h,, = 0 for the monomial o,...0,,
———
wo terms
Py
2
Og....O =04....0 - . (5.3.3)
4 Tmmae =~ 945 T dmmas
i j (aqu ...8gqmmaz hawy)

The derivatives in the denominator isolate the coefficient of monomial o, ...0,,,  within h,,. This
coefficient is canceled for the corresponding summand in the numerator and the pure monomial is
subtracted. Therefore, the right hand side of (5.3.3)) features all possible multilinear monomials of

degree wy — 1 and all multilinear monomials of degree ws except for o, .

. .(')'quM£ .

Pj—Pj-1

We can now isolate (oy;...04, )17 =) moduli from the ws terms in |i substitute them by

the right hand side of (5.3.3) to the power |22 | and expand Since each multilinear monomial
of a certain degree is unique up to a constant factor, this has the effect that in each of the resulting

terms
e the power of at least one modulus in the wy terms is reduced by at least one,

e the power of at least one modulus in the w; terms is increased by at least oneﬂ or the overall

degree is reduced.

Since the above guarantees a non-zero flow in the distribution of o-moduli powers away from wsq
terms either into the w; terms or into overall degree reduction, iteration of the substitution rule for
all j and each monomial in the resulting terms is bound to reach a fixed point. This fixed point is

straightforwardly given by the state where all monomials obey 0 < p; —p;_1 <1 for all j € {1,2,...}

5The notation |« | means the floor function, returning the biggest integer < z.
6Note that the power of this modulus could have been zero initially.
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= 0 for all j and no substitutions can be carried

within each respective monomial, since then | 2222 |

out any more.

Step 2: Reduction of monomials to m,,., <n -4
After step 1 is applied to all monomials in a polynomial NV, it can still contain monomials with the
maximal number of different moduli m,,q, =n — 3:

Coltol>. ..o (5.3.4)

17927 qn-3"

with p; =1 and 0 <p; —p,;_1 <1forall je{2,3,...,n-3}. Similar to , we can solve the gauge
fixed polynomial scattering equation h,_3 = 0 for the single highest degree multilinear monomial
0g10gy---0q,_5- Oince that yields only multilinear terms of degree n — 4, this necessarily leads to a
degree reduction. We isolate the highest power of 0g,04,...04,_, from monomials such as (5.3.4),
make the substitution obtained from h,_3 = 0 and expand. Due to the guaranteed degree reduction
in this step, we are again bound to iteratively reach a fixed point. This fixed point is trivially given
by the condition M4, < n—4 for all resulting monomials M, since then no highest degree multilinear
monomial can be isolated within the monomials, and therefore no substitutions can be carried out

any more.

Conclusion

Step 1 and 2 above can be applied consecutively and iteratively to an arbitrary multivariate poly-
nomial N. Due to the guaranteed degree reduction in step 2, both fixed points are bound to be
reached simultaneously eventually. Therefore, we have shown that any polynomial N on the support
of scattering equations can be cast into a standard form N’ containing only ladder type monomialsm
Note that the degrees of the ladder type monomials Mj; are 0 < deg(M;;) < W at n points.
The full set of pure ladder type monomials at any n is symmetric in all moduli. This homogeneity

follows from the homogeneity of scattering equations that are used to achieve this form.

5.3.2 Polynomial reduction of rational expressions

Theorem 2: On the support of the ideal spanned by the scattering equations, any regulmﬂ mul-

tivariate rational function g in the n — 3 non-gauge fixred moduli, where P and @ are polynomials

"The coefficients stay rational in kinematic data since we only used a finite number of additions and multiplications,
and the coefficients in the scattering equations are rational as well.
8By regular we mean non-infinite and non-zero on all solutions to the scattering equations.
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with rational coefficients in kinematic data, is equivalent to at least one standard form polynomial

N’ that consists of ladder type monomials only, with rational coefficients in kinematic data.

Proof: Similar to some ideas of [163], we will make use of Hilbert’s Nullstellensatz. Consider
the following equation involving the set of gauge fixed polynomial scattering equations h,, and

multivariate polynomials in the o-moduli P,Q,a and a,, for m € {1,2,...,n—3}
aQ+ Y amhy, = P. (5.3.5)

The strong version of the Nullstellensatz guarantees that we can always find polynomials a and a.,
for given polynomials P and @ such that (5.3.5) is satisfied, as long as the a,a,,, P and @ do not
share common roots among themselves and with the set of scattering equation polynomials h,,.

Considering the situation at the locus of solutions to the scattering equations, this simplifies to
a@ =P, (5.3.6)

where we use the symbol 2 to denote equivalence modulo the ideal spanned by the scattering equa-

tions. Thus, a = g is a polynomial expression for a rational functionﬂ Due to Theorem 1, a standard

form polynomial N’ 2 ¢ must exist, which concludes the proof.

Construction: In the above proof we used the fact that a standard form polynomial N’ 2 @ must
exist, however the proof was not constructive. To construct an explicit N’ corresponding to a given
rational function g we have to work harder. In principle, this step could be realized by various
techniques. Here we will make use of an ad hoc procedure as follows.

Since the ladder type monomials span a complete polynomial basis with rational coefficients on the
support of scattering equations, we can make an ansatz N’ containing all ladder type monomials
with unfixed coefficients to parametrize our ignorance of what N’ actually is: N’Q — P 2 0. Making
use of an implementation of the degree reduction procedure for Theorem 1, we can find a standard
form polynomial H’ such that H' 2 N'Q — P 2 0. Demanding that the overall coefficient of each
monomial in H’ vanishes separately, sets up a number of linear equations in (at least) the same
number of unknown coefficients of N ' Solving this set of equations fixes the coefficients and yields
an N’.

9Dividing by Q is allowed since it is per assumption non-zero at the locus of solutions to the scattering equations.

10Gince there is a finite number of ladder type monomials at any n, the number of unfixed coefficients in N’ is at least
equal to the number of monomials in a most general resulting standard form H’. If H' has fewer than the maximum
number of monomials, then the amount of unfixed coefficients is greater than the number of linear equations.
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In practice, in many cases of interest the ansatz for N’ does not require all ladder type monomials to
be present to find a valid standard form polynomial N’. This reduces the dimension and complexity
of the linear set of equations one has to solve. Additionally, we will see in the next section that only
the coefficients of the highest degree ladder type monomials have a non-vanishing contribution to

an amplitude integral.

5.3.3 Collecting residues

In this section we concentrate on tree level amplitudes for concreteness. However, at every step in
the following it should be clear that essentially the same logic applies to the loop level integrands.

Therefore, the result we find is valid in general.

Theorem 3: Any amplitude integral of the general shapelE
N .
A \¢‘ (047057 O'n) Hdo',“ (5.3‘7)

where h; for j = 1,..,n —3 are gauge fized scattering equation polynomials, N(o4,05,...,00) is
a standard form polynomial in the n — 3 non-gauge fired moduli and the integration contour is
initially localized at the locus of scattering equation solutions, can be evaluated by the following

anti-symmetrized sum over the (n—3)! different orders of consecutive infinity residueslﬂ

N
_ n-3
= (_1) (TL— 3)' Resa[n=00, sy O5=00, 04]=00 |:H" 3h :| (538)

Note: Instead of calculating the (n—3)! residues to evaluate the amplitude integral, it is possible to
employ an integrand deformation in which the h;’s are replaced by their leading homogeneous parts
1t(h;). With this, the sum over residues equals one single residue at the origin by the transformation

law of multivariate residues. This is an efficient alternative approach [173]5

Proof of Theorem 3: Starting with (5.3.7), it is straightforward to realize that any contour
deformation away from the locus defined by the solutions to the scattering equations can possibly

yield other residues only at infinity.

HHere, again, we consider the formulation where the delta functions have been mapped to simple poles with
appropriate integration contours. Factors of 27i are suppressed.

12The square brackets in O = 00, ..., 04] = oo denote anti-symmetrization with respect to the moduli indices, so
that i.e. Resg[s:w, o4y=c0 = %(Resgs:wRes%:w - ResM:mResUE:m). The right most residue operation always acts
first.

13The author thanks the JHEP referee of the original paper for pointing this out.
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Decompose the numerator polynomial of the integrand into monomials N =Y, N;. By additivity of
integrals, consider the contour integral in pieces involving just one monomial N, = M oc [I}_, 00"
at a time, where the integer powers a, > 0 are such that M is a ladder type monomial. Planning
to investigate residues at infinity, we perform the substitution o; - 1/o; and do; — —dai/ai2 for

i€{4,5,...,n}, to focus on residues at zero instead, so that

ogoe D
56 o B y (H;Lf’fzj)(nfzwf’r)gd% (5:3.9)

where al. = (a, —n+5) is an abbreviation for the new integer exponents, and ﬁj can be conveniently
obtained from the gauge fixed scattering equations in the slightly different gauge o1 =0, 09 = 00, 03 =
1M

Next we apply the global residue theorem (GRT), as for instance described in detail in [I74]. Consider
a contour integral in n — 3 variables over an integrand 1/f; fs...fn—3, such that the contours localize
all possible poles in the integrand f; = 0,Vi. Since all possible residues are collected in this way, it

follows from the GRT that the result must be zero:

Res(f1, forcfusfuma) = O- (5.3.10)

Using the above in our integrand of interest in || assign f; = h; for i = {1,2,...,n — 4} and
fr-3 =hn-sTlhy O'T . This clearly takes all possible poles into consideration, so that eq. (5.3.10)) is

satisfied. Expand the global residue as a sum over the poles in f,,_3:

n
RES(f, forfuafus) RES(p o p G v+ ;lRes{fl)f27'..7fw47ata;} =0. (5.3.11)

The first summand corresponds to (5.3.9)), so that we can re-express it in terms of the other n -3

residues Res{fl7f2,_“7fn74ﬁn73} =-Y1 4 Res Whenever partial poles in a multivariate

{1 f2resFre0,00 %t}
residue calculation depend on one variable only, single variable complex analysis can be used to
integrate out the corresponding residue separately. In our case each Res{ oo fo gy AINONE
other poles, involves a pole 1 /crta; dependent on a single variable o, which we will now integrate

out separately.

Considering that a; = (a; —n +5) for each ¢, only highest degree ladder type monomials have a

4 The set of scattering equations is invariant under simultaneous inversion o — 1/o of all e-moduli (up to overall
o-moduli factors that here are accounted for by the powers al.), as long as we also invert the values of the gauge fixed
moduli.
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non-vanishing contribution to the integral, since exactly one of their a; satisfies a; = n — 4 which
produces a simple pole as 1/0,5“;. For all other ladder type monomials we have 0 < a; < n —4 such
that a; <0 and l/ot“; ceases to be a pole and thus no residue is present.

To keep track of the correct contour orientation in the remaining variables, we anti-commute do; to
one side in the integration measure doy A dos A ... Adoy, = (£)idot T1iy 124 (Ado;). This produces an

overall plus or minus (+); dependent on the initial position ¢. Thus, we have

" H7;=4 do;
_¢ Zt=4(i)t ( SEz)tt ” for CLQ:].
n M55 hy )\ Ty 0"
[Tizs do; g ( it ) =0
§5 . : (5.3.12)
i (11528 hy) (T o)
0 for aj <1

with the saturation aj = 1 occurring for exactly one of the moduli in each highest degree ladder type
monomial (nevertheless, we sum over all 3.7, since it is not known a priori which label ¢ is going to

yield the contribution)E

As o, =0 in (5.3.12) is set, we find that h,_3 reduces to a single monomial }Aln_3|gt:o o< [1%-4 0j by
J#t

general structure of scattering equations. Therefore, the non-vanishing contribution schematically

becomes
f i H?:z; dO’Z‘ i Ct H?:z; dO’,’
(CO1Y ey =y§ () N . (5.3.14)
AR (o)) T IR o) (T )

Here Cj is one over the constant coefficient of the single monomial that survives as we take iln_g‘o-t:() o<
[17-4 j2¢ 0j, while the moduli of this monomial are accounted for by the new powers a”,;. The
remaining n — 4 scattering equation denominators ﬁj|gt:0 now have the same monomial structure as
scattering equation polynomials at n — 1 points. Therefore, we can treat each summand in the sum
over t in (5.3.14)) the same way as the initial expression , except now there is one fewer contour

to integrate in each case. Thus, we can iterate. Noticing that by general structure of polynomial

15 In terms of the expression in original variables on the left hand side of (5.3.9), this structurally means

Hn430']:: I_lldal = 56 2 (:t)uReSgu—oo [I;n‘lgo—;; ] H do’i, (5.3.13)
J i i=

iFu

where we imply that there are at most first order poles at infinity.
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scattering equations we always get single monomials as more and more o; are set to zero:

n

hn-glo,<0 < [[ 05,  hn-dlo,=0, ;im0 < [] 05, hn-slor0, o1=0, o=0 < [] 05,  etc.
=1 =1 =1
Get jet.l Jetil,e

ensures that each time a residue in a o-modulus is collected, the remaining set of non-trivial scattering
equation polynomials in the denominators is effectively reduced by one, as one of the scattering
equation polynomials reduces to a single monomial and produces simple poles for the next iteration.
With this, the above steps may be iterated from to n—-3 times, while always expanding
the resulting terms and summing over the process applied to one term at a time. Formally, each
iteration adds one more level of signed infinity residue operations to . At the end of the day,
when all contours have been treated, we are left with an anti-symmetrized sum over consecutive

residue operations

n a,
jg 1_[7« 40 Hdal )n73(n—3)! ReSg[nzoo, ey O5=00, 04=00 [M] (5315)

n-3
= ] i=4 nj:1 hj

This straightforwardly yields the full amplitude as we sum over all numerator monomials in the
integrand, so that our final result for the amplitude is (5.3.8). This concludes the proof.

Due to the structure of standard form polynomials on the support of scattering equations we could
rely on the fact that all residues we collect come from simple poles only. However, a straightforward
generalization of the above steps yields the same result even for cases where N is not a
standard form polynomial and higher order residues are present.

It is interesting to note that the above procedure replaces a summation over (n — 3)! scattering
equation solutions by a summation over the (n-3)! different (n—-3)-fold consecutive infinity residues
in the o-moduli. When N is a standard form polynomial, all residues come from simple poles, such
that the map from the integrand to the final result is trivial. With this the difficulty of the problem
is shifted towards finding a standard form polynomial numerator N. Applying the degree reduction
procedure described in the previous section this corresponds to solving a linear set on the order of

(n - 3)! equations.

5.3.4 Tree level amplitude examples

In the following we demonstrate the evaluation prescription (5.3.8) on ¢ scalar amplitudes at tree
level. We also consider specific examples that otherwise require the more advanced evaluation

techniques in order to be solved.
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5.3.4.1 Six point tree level scalar example

At six points the three scattering equations are given by:

hi=04514+05515+0651,6+51,3=0,
ho = 048134 + 055135 + 0651,3,6 + 040551,4,5 + 040651,4.6 + 050651,5,6 = 0,

h3 =04050652,3 + 050652,4 + 040652 5 + 040552 6 = 0.

The gauge fixed scattering amplitude for scalars is given by

d0'4d0'5d0'6 g4 (1 - 0'5) 05 (1 - 0’6) (0'4 - 0'6) 06
h1h2h3 (1—04) (0’4—05)(0'5—06)

Ags _ (5.3.16)

Applying partial fraction decomposition as well as transformations by rational scattering equations

(5.1.1), we can rewrite the integrand of ([5.3.16) as

04(1—05)0'5 (1—06) (0'4—06)0'6 2 P1
(1—0’4)(0’4—0’5)(0’5—0’6) 04 — 05

+ P (5.3.17)
where P; and P, are polynomials. To reduce the rational part to a polynomial, we take
Py 2(04-05)Ps (5.3.18)
with the following standard form Ansatz{'|
P = C10507% + Co040%2 + C30603 + 40400 + C50602 + C0500 + C70504 + (30604 + Co0506.

There are nine constants ¢; with ¢ = 1,2,...,9 we have to fix. We apply the reduction procedure
of section to both sides of , collect all terms on one side of the equation and demand
that the overall coefficient in front of each monomial vanishes. This produces a set of nine linear
equations in nine unknowns. Solving the set of linear equations fixes the nine unknown coefficients
and thus yields a polynomial Ps;. With this, also reducing P» to contain ladder type monomials only,
a standard form numerator polynomial Ng) *a P, + P5 is obtained. It takes a direct implementation
of the polynomial reduction algorithm in Mathematica and a linear solver just a few seconds to

3
find a valid analytic Ng7 result, without much effort spent on optimization We can evaluate the

16 ,adder type monomials with base length mmqz = n — 4 appear to be a sufficient monomial basis.
I7Tf we start with the left hand side of eq. (5.3.17) instead, as in o4 (1-o05)05(1-06) (04 —06)0s 2

3
(1-04)(0a-05) (05— 0'6)Ng5 , it takes the polynomial reduction algorithm and linear solver, with a few tweaks,
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amplitude making use of prescription ([5.3.8):

44 3 Ng i
6 = (=1)"3! Resps=c0, o5=c0, o4y=co lM] (5.3.19)
j=1 1%

The result is completely analytic and about one page long. It can be simplified making use of
momentum conservation and on-shell conditions by hand, which is somewhat tedious. Instead we
set up a basis of physical poles and fix the coefficients by multiple evaluation on different kinematic
points as follows.

As in [I61], the physical poles are given by 81 9,862 3,83 4,545,556,56,1,51,2,3,52,3.4 and 63 45. By
dimensional analysis we see that each term in the amplitude should have three different poles. This
means the complete basis is given by (g) = 84 different triple pole combinations with unknown
coefficients. Making use of the procedure described in appendix we can generate 84 different
rational kinematic points and evaluate the amplitude and the basis 84 times. This sets up a linear set
of 84 equations in the same number of unknowns. Solving this set of equations fixes the coefficients
(which turn out to be exactly 1 or 0) and yields the simplified 6-point scalar tree level amplitude in

terms of physical poles

3
AY =

—( 1 + L + L + L + ! (5.3.20)

51,293,4556 51,255,651,2,3 52,355,651,2,3 951,652,392,34 51,693,452,3,4
1 1 1 1 1
+ + + +
5§2.365,652,34 93,455692,3,4 5125345345 51,653,453,4,5 51,692,354,5
1 1 1 1
+ + + + ,
51,251,2,354,5 $2,351,2,3545 51,253,45%54,5 51,693,4,554,5

+

which is equivalent to summing Feynman diagrams in ¢ theory and agrees with the result found in

[161].

5.3.4.2 Six point tree level - first special example

Here we will give an example that is very hard to do with less advanced versions of diagrammatic

integration rule techniques@ It involves integrating the following terms over the CHY measure

! (5.3.21)

1 4 1 -
02,3045%6,1

3
about a minute to obtain a different more complicated analytic version of Ng .
18 The author thanks J. Bourjaily for pointing this out and suggesting this test integrand.
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Multiplying with the CHY measure and applying our gauge we get

doydosdog (1—04) 04 (1—05) 05 (1 —06) (04— 0¢) (05 — 06) 06

U, = 5.3.22
' hihahs (04-05)° ( )

In order to polynomially reduce the effective rational integrand, we write
(1 - 0'4) g4 (1 - 0'5) 05 (1 - 0'6) (0'4 - 0'6) (0'5 - 0'6) o6 = (0’4 - 0'5)3N (5323)

where we use the following standard form polynomial Ansatz
N = 2 2 2 2 2 2
= 1050, + 20405 + C3060, + C4040¢ + C50605 + C6050g + C70504 + C80604 + C90506.

We have to find nine constants ¢y, ca, ..., c9. A completely analytic result is directly accessible apply-
ing our procedure, yet not very readable@ We do not expect the result to be given by pure physical
poles either. Therefore, we will instead demonstrate an explicit exact evaluation of the integral
on the following kinematic point, which was generated making use of the procedure described in

appendix

ki =(20, 20, 0, 0), k= (60,-48, 0,-36),
ky =(25,-20, 15, 0), k= (-80, 48, 64, 0), (5.3.24)
Ky = (39, 0,-15, 36), K= (64, 0,-64, 0).

First we apply the degree reduction procedure of section to both sides of equation (5.3.23)
and collect all monomials on one side. The vanishing of the overall coefficient of each monomial

separately produces a set of linear equations. Solving this set of equations yields

cr=7059649218217401322274 Ccp=—-D529649875686983344959 o =12838684423 cq=354818034905

57 3974168469797996315755 ’ 6 15896673879191985263020 ) 2771662217245 ) 4757180273228

e— 5774994253402805042003591 ca=— 466431129022169341083793 Cco=— 70384223902707859416469 c1=c3=0
7 2146050973690918010507700 8 343368155790546881681232 9 158966738791919852630200 1=¢3 .

9Here an analytic N can be obtained from the polynomial reduction algorithm and a linear solver within 1 to 2
minutes. This timing probably could be substantially improved by optimization.
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Using this in the Ansatz for V above, we obtain a standard form numerator polynomial and can

apply (5.3.8) to evaluate the integral:

: N
U1 = (—1)33' Resg[é‘,:m, 05=00, 04 =00 |::|

n—-3
Hj:l hj
C2 Cq Cs Ce
= — + + —
51,552,351,45 51,652,351,4,6 51,592,351,56 91,652,391,5,6
14174374134763

- . (5.3.25)
40854136935339786240000

Note that indeed properly only the coefficients of highest degree ladder type monomials appear in
the final result.

Alternatively, we can solve the scattering equations numerically and obtain a numerical approxima-
tion for U, which agrees with ([5.3.25|).
5.3.4.3 Six point tree level - second special example

Another example that is impossible to do with less advanced diagrammatic integration rule tech-

niques involves integrating the following terms over the CHY measurd™]

1
. (5.3.26)
05,3057405,2‘7%,50;60%1
Combining this with the CHY measure and applying our usual gauge we have
U2= d0'4d0'5d0'6 (1—0’5) (0'4—0'5)0'5 (1—0’5) (0'4—0'6)0'6. (5327)
hlhghg (1—04)04 (05-0’6)

In order to polynomially reduce the effective rational integrand, we write the equation

(1-05)(c4a—05)05(1—0¢) (04 —06) 062 (1 -04)04(05—06) N (5.3.28)

where we use the following standard form polynomial Ansatz

2 2 2 2 2 2
N = C1050, + C20405 +C30604 +C4040g + C50605 + Cg050¢5 + C70504 + C30604 + C90506.

So that again there are nine constants ci,cs,...,co to be fixed. Just as before, we can proceed

completely analytically, yet the result would be too large to report@ Therefore, we will illustrate

20 Again, the author thanks J. Bourjaily for pointing this out and suggesting this test integrand.
21Here, again, an analytic N can be obtained from the polynomial reduction algorithm and a linear solver within
1 to 2 minutes. This timing probably could be substantially improved by optimization.
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the procedure by evaluating the integral on the kinematic point (5.3.24) instead.
First we apply the degree reduction procedure of section to both sides of equation (5.3.28]) and
collect all monomials on one side of the equation. Demanding that the overall coefficient of each

monomial vanishes separately provides us with a set of linear equations. Solving the set of equations

we obtain
. _ 162215379551 . _ 5662761717335 92500 . _ 39458
> 1221259549104 0 17097633687456 ' © 133623 © ° 133623
. __23433636506339 .. _ 320688007714075 . _ 3664568494697
T T34195267374912 T 273562138999296 3256692130944 1 0T

Plugging this into the Ansatz for N above, we therefore have obtained a standard form numerator

polynomial and can use (5.3.8) to evaluate the integral:

: N
U2 = (—1)33' Resg[e):oo, 05=00, 04)=00 |::|’

1= hy
__ C2 + Ca + C5 _ C6
51,552,351,45 51,652,351,4,6 51,592,351,5,6 91,652,391,5,6
2407
= (5.3.29)
15692753534976

Note that again properly only the coefficients of the highest degree ladder type monomials enter the
final result. Additionally, it is clear that the calculation for this example structurally follows exactly
the same steps and has the same level of complexity as the previous two examples, which would
have been different from the point of view of applying diagrammatic integration rules to evaluate
the integral.

Alternatively, we can solve the scattering equations numerically and obtain a numerical approxima-

tion for Uy, which agrees with ([5.3.29)).

5.3.4.4 Eight point tree level scalar amplitude

At eight points there are five scattering equations. The gauge fixed scattering amplitude for scalars

reads?]

8
19" f Hiza do; 040506070803,503,603,703,804,604,704,805,705,806,8 (5.3.30)
g = : 3.

5
1721 Ry 03,404,505,606,707,8

22Where o3 = 1 is implied.
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We will demonstrate an explicit evaluation of the amplitude. Making use of the procedure described

in appendix we generate some on-shell kinematic data

Kt = ( -54, =54, 0, 0), kl = (-85, 0, 75, 40),
k= (-246, 54,-240, 0), k= (50, 0,-30,-40), (5.3.31)
= (260, 100, 240, 0), ke = (=34, 0, 30,-16),
k' = ( 125,-100, =75, 0), kL= (<16, 0, 0, 16).

We want to find an effective integral expression

8 .
A¢" = 55 i1 doi ot (5.3.32)
Hj:l hj

3
where Néz’ is a standard form polynomial satisfying
¢3
040506070803,503,603,703,804,604,704,805 7058068 = 03404505,606,707,8Ng (5.3.33)

on the support of the ideal spanned by the scattering equations. As an Ansatz for N;f ’ we take the
375 different ladder type monomials with my,.. = n —4 = 4. At eight points, polynomially reduc-
ing the complete right hand side of proves to be time consuming. Therefore, we instead
perform a much simpler polynomial reduction of the expression o;N,, — N[’, for i = 4,...,8 with
the same Ansatz for Ngi@ These results can now be straightforwardly linearly combined as in
(0i-0j)N > N;, - N, =N, . Additionally, we can nest them by computing the reduction in steps
of one degree at a time (0; —0;)(0q —0p)N — (0: - 0;)N, = N7 . where in the second step we
treat the complete monomial coefficients of N, =~ as simple unknowns and substitute their structure
back in once the reduction has been performed. Clearly, we can apply the nesting as many times
as required. Therefore, the polynomial reduction of o;N,, is the only building block we need to
construct the complete effective numerator polynomial Ng 3.

Furthermore, it is more convenient to fractionally decompose the integrand in . The numer-
ators and denominators of each of the resulting fractions have smaller polynomial degree, so that
the complexity of finding a polynomial reduction for each of these fractions separately is reduced
compared to the original expression.

Once the polynomial reduction is complete, we collect all terms in (5.3.33)) on one side of the equation

23The resulting polynomial Nc’n features the same monomials as Ny, but with the coefficients mixed by the
reduction procedure.
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and demand the vanishing of all overall monomial coefficients separately. This gives us 375 linear

equations in the same number of unknowns. Solving these equations, we fix the unknown coefficients
3

and obtain the effective standard form numerator polynomial Ng) . With this, prescription ll

is easily evaluated:

NY’ ] 1360947997721

A¢3: -1 55'R O[g=00, O7=00, 0g=00, O5=00, 0 4]=00 = .
s =(1) P10, o7=00, dg=e0, @00, 01 [1/2 hy | 22293435818142720000000000000

This is an exact result since we did not invoke any floating point calculations at any step. Alter-
3
natively, we can approximately solve the scattering equations numerically and evaluate Ag) on the

solutions, which yields agreement.

5.4 CHY formulation of 1-loop level scattering amplitudes

At one loop, n-point scattering equations have been shown to follow from (n + 2)-point tree level
scattering equations with two massive particles by taking the forward limit of the two massive

momenta [I75]. The tree level scattering equations with two massive particles are given by [137, 138]:

n+2

Fo=3 P for ae{1,2,...n}, (5.4.1)
b=1 Oab
b+a

2 2
E _ w pn+1,b pn+1,n+2 +m E _ w pn+2,b pn+1,n+2 +m
n+l = Z + ) n+2 = - ;

b=1 On+1,b On+1,n+2 b=1 On+2,b On+1,n+2

where two particles are massive with the same mass k2,, = k2,, = m?. Here we have introduced a

shorthand notationPEl

pa(l),a(?),...,a(q) = Z kﬂ(l) . kB(Q) for integer q> 1. (542)
{8(1),8(2)}e{(1),a(2),....a(q)}

The sum is over all unordered subsets of two numbers out of a set of ¢ numbers. In the context

of 1-loop CHY amplitudes, equations (5.4.1) and (5.4.2) also naturally arise from the formalism

described in [I76], without the need to impose themﬂ
In the following we will require the scattering equations in polynomial form. To obtain them, we can

for instance apply an appropriate transformation to (5.4.1). However, we should proceed carefully,

24When all momenta are massless and on-shell, we have Pa(1).a(2).....a(q) = Sa(1),a(2),...,a(q) from (5.1.4).
25The author thanks C. Cardona and H. Gomez for pointing this out.
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since in the forward limit

klt

_JH
n+1_)l

T (5.4.3)

+

the set of equations (5.4.1) admits singular solutions with o;; — 0 for some ¢ # j, if E,,,; and E,49
are taken into consideration. Such singular solutions have no physical contribution to the amplitudes
of relevant theories [I75], [166]. Therefore, we will use (n — 1) independent equations E, with a <n
in order to exclude the singular solutions. It is straightforward to check that the transformation we

are looking for is given by

n+2
WP = Y 0ip0ig0n Yy B for ae{2,3,..,n}, (5.4.4)
=1
where
C{a(1),.a(@) i1, 2} {p gt =1 Ta(s) for 0 <z <n-2,
Yo, = 1 for 2 =0, (5.4.5)
0 forx<0and z>n-2.

The range in the index a is set to correspond to (5.1.3). Indices p,q,v label the three different
massive scattering equations 1) that are dropped. As we expect, fzg’”“’mz yields the same
results regardless of the choice of p, so in the following we can consider iz}l’”“’”*z for convenience.

We can compactly write this result as

ﬁl,n+1,n+2 —
a

(pa(l) ..... a(a) + m26a,{n+l,n+2}) H Oa(j) = O, (546)
{a(1),...,a(a)}c{1,2,...,n+2} j=1

for integer 2 < a <n. Here we used a generalized Kronecker delta

1 if {n+1l,n+2}c{a(l),..,aa)}

5“’{"”’”2}:{0 it {n+1n+2) ¢ {a(1),..,a(a)} (54.7)

As long as we consider hL"*17+2 in the massive case before taking the forward limit, the scattering
equations have the full set of (n—1)! solutions. Knowing that the forward limit is singular in nature,
we should check whether any singular solutions resurge in (5.4.6) due to the transformation (5.4.4)

having been applied. Indeed, if we choose to gauge fix o1,0,+1 and 0,42, it is straightforward to see
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that the trivial solution o; = o1 for ¢ = 2,3, ...,n is now present in the forward limitﬂ additionally
to the (n—1)!-2(n - 2)! expected regular solutions. Luckily, we can remove this trivial solution by
fixing the gauge o1 = oo@ For convenience we will also fix 0,41 =0, op2 = 1. Thus, we will work
with the following representation of gauge fixed polynomial scattering equations with two massive
particles

hi z( lim iiﬁv"”v"”)

o100 g1 i+1

om0 =0, Vie{l,2,..n-1}, (5.4.8)
on4+2=1

which has a smooth forward limit containing only regular solutions of interest@ It will be convenient
to treat the forward limit as a regulator whenever the kinematics in the limit becomes singular.
For hlm*1:m+2 the transformation Jacobian is (=1)"* [T/, ali][H{i;—L<an+2 0;q]. Therefore, possibly

up to a minus sign we have the usual CHY measure for polynomial scattering equations

n+2 n
du=| ] doc|(0gpopuwowg) ( I1 aij) (H ) (fz}l’”“’"”)) : (5.4.9)
“giw 1<i<j<n+2 a=2

Recall that we gauge fixed the moduli =1, p=n+1, w=n+2. To test our evaluation procedure
at one-loop level, we will consider the bi-adjoint scalar ¢® theory as proposed in [175], which can be

written as

2
1-loop ¢3 le 1 .
Atteop® [ 7L 1 / dp 5 PT(n+2,v,n+1)]| , (5.4.10)

D2 g
(27T‘) ! kz:;a i ~yecyclic{1,2,...,n}
where

1

PT(n+2,v,n+1)= .
Tn+2,7(1)97(1),7(2) -+ Tv(n),n+19n+1,n+2

(5.4.11)

However, our evaluation method applies more generally to any integrand that is rational in o-moduli

and is being integrated over the measure dpu.

268etting o; = o1 for i = 2,3,...,n causes all scattering equations to be proportional to P1,2,...,n, which vanishes in
the forward limit.

27The fact that the trivial solution can be projected out by a gauge choice indicates that its contribution is not
physical.

28We use the same symbol h as for tree level scattering equations here, since it is always clear from context which
scattering equations are in use.
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5.4.1 One-loop amplitude examples
5.4.1.1 Two point 1-loop scalar amplitude

At two points and 1-loop there is one scattering equation, given by

hi = O2P12 + P23 = 0. (5.4.12)
The gauge fixed amplitude amounts to
. dPl 1 dos 1
Altoord” _ ) R S— 5.4.13
: @nP P s P h (- (G413

3 3
We require a standard form numerator polynomial N fffo op such that 12 (1-03) 02N fﬁoop with the

3
standard form Ansatz Nf_’qfo op = C1- Making use of the scattering equation, we polynomially reduce

the right hand side, collect all terms on one side of the equation and in doing so obtain one linear

equation in one unknown. Solving this equation and applying momentum conservation yields:

200 _ _Pia (5.4.14)
17loop o spoy o
Prescription (5.3.8)) suggests the calculation
1 2
(-1)" (1D Resgy-0o [ P ] - Pz (5.4.15)
hi p23p24 P2.3P2.4
If we solve the scattering equation instead o9 = —';f—'z, we get exactly the same result
1 1
3 P12 (5.4.16)

= det([0;h;]) (1-02)02 ) p2,3P2a

solutions

In the forward limit we have p; 2 - 0 while py 3 and po 4 stay finite. Therefore, the 1-loop integrand

vanishes.

29Since the forward limit makes the kinematics singular, we use it as a parametrization.

105



5.4.1.2 Three point 1-loop scalar amplitude

At three points and 1-loop there are two scattering equations, given by

hi=09p12+03p1,3+p15=0,

ho = 03p2.4 + 02P3.4 +0203P4 5 = 0.

The gauge fixed amplitude can be written as

d°r 1 dosdos —(03+03—(02+1)03)?

Al-toop#® _ — lim .
3 (27T)D 2 Zé:*i hiha (1—0’2)0’2 (1—0’3) (0'2—0'3)0'3

Therefore, we consider the following equality in order to find a standard form effective numerator
4 3
polynomial fofoop

3
- (O’% + Ug - (o2 + 1)03)2 2(1l-02)02(1l-03) (02 —ag)ang’foop,

3
with the standard form Ansatz Nf’foop = 109 + c203. We apply the reduction procedure of section

to both sides of this equation, collect all terms on one side and demand that the overall
coefficient in front of each monomial vanishes separately. This sets up two linear equations in

3
two unknowns ¢y, ce. Solving for the unknowns yields a numerator polynomial Nf’ffo op’

Using
prescription (5.3.8) and simplifying via five-point momentum conservation and on-shell conditions

with two massive particles we get the result

(5.4.17)

N3
hyhy ] B

2 1-loop
(-1 2! Resg,=co, 02100[

_ 1(1+1) 1(1+1) 1(1+1) 1 1 1
P12 \P35 P34 P23 \ P15 P14 P13 \P25 P24 P1,5P2,4  P25P34 P1,4133,5.

Alternatively, we can solve the scattering equations and obtain the two solutions (o2 ,03) and

(02,-,05,_) with

_ P1,3P3,4—P15Pa5 P24 N \/(131,2132,4 —P1,3P3,a+P15Pa5) 2 —4p1aPishoabas

02,+ -
2012045 2045 2p1 2045
o = P1,2P2,4 —P15Pas P34 - V(P1,2P2,4 = P13P3.a +P15Pas)? — 4P12P1sP2abas
3+ = - .
* 2p1,3P45 2P4 5 2p1,3Pa5
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Evaluating the integral on these solutions, summing the contributions and simplifying by means of
momentum conservation and on-shell conditions directly leads to exactly the same result .

In the forward limit, terms p; 4, p; 5 with ¢ € 1,2, 3 stay finite while p; ; with 4, j € {1,2,3} tend to zero.
Therefore, we first rewrite each of the three different terms in parenthesis in analogously to

the following

1 ( 1 +1):_ 1 ( P34+ P35 ) (5.4.18)

_E P35 P34 P3,4P35 \ P34+ P35+ %(7@1 +ks)?

We may parametrize the forward limit as &} = —(I* + 7¢}) and k% = (I* + 7¢f') with 7 - 0 and finite

¢y #¢%. With this, at leading order we find

1 _ 1
( TP3,q45 7'13231,% 2) - S+ O(7). (5.4.19)
pS,l+TQ4p3,l+qu TP3,q5 - Tp3VCI4 +7T §(Q5 - q4) (Pg,l)

Therefore, the one-loop integrand at three points in bi-adjoint scalar ¢* theory is given by

D1 1 1 1 1 1 1
Al-teors® _ [ _d ( ) (5.4.20)

= + + b+ —
(2m)P 12 \ prap2s  PraPsg PeaPar PT, P33,

D
) dll(l 1 1)’ (5.421)

= =
(2m)D 12 P?,z p%,l pg,l

since the first three terms vanish by three-point momentum conservation. Since we might be inter-
ested in the 1-loop 3-point amplitude as a vertex correction, it would make sense to consider the
momenta ki, ks, k3 to be off-shell — then the above result is non-trivial. In case when k1, ko, k3 are

on-shell, all appearing integrals are scaleless.

5.5 Conclusion and outlook

In this work we started with the CHY formulation of scattering amplitudes in arbitrary dimension.
We then developed the degree reduction procedure of section [5.3.1]and applied it alongside the strong
Nullstellensatz to show that any rational function can be written as a standard form polynomial on
the support of scattering equations. Making use of this conversion for CHY amplitude integrands, we
derived an evaluation prescription that allows to find an amplitude purely from collecting consecutive
simple residues at infinity only.

Summing over all possible ladder type shapes and taking into account the multiplicity due to available

subsets of non-gauge fixed moduli that are used to compose the shapes, we realize that the total
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number of different ladder type monomials at any n is given by N!3d9 = 5(n —3), where the function

s(x) is

(0)=1, s@)-% (j)s(i).

=0

Upon inspection, the s(z) turn out to be equivalent to so called ordered Bell numbers, or Fubini
numbers. For large x these numbers asymptote to zs(z — 1) ~ In(2)s(z), so that the number of
ladder type monomials grows quicker than factorially with n.

In all explicit amplitude examples we studied above, it was sufficient to consider the subset of

ladder type monomials with highest base length m,,q; = n — 4 to find standard form polynomials

Nladd

Mmaz=n—4 =

corresponding to relevant rational functions. By the counting above, at any n there are
(n—-3)s(n—4) such ladder type monomials.

It is well known that gauge fixed scattering equations have (n — 3)! different solutions at tree level
[7,5]. In [164, 165] it was shown that gauge fixed polynomial scattering equations can be transformed
to a different form such that o;—P;(o,) =0fori € {4,5,...,n-1} and P,(c,) = 0, where the P;(o,,) are
univariate polynomials in ¢,. The polynomial P, (o) is of highest degree (n—3)! and accomodates
the (n — 3)! different solutions. Reducing multivariate polynomials over this transformed system

-3)1-1 .
(n=3) ) as a minimal

of equations trivially leaves (n —3)! univariate monomials (i.e. 1,0y, 07217 ey O
basis for the quotient ring of multivariate polynomials over the ideal spanned by scattering equations
Q = R/{h1,h2,...,hn_3). Therefore, the dimension of the quotient ring is dimg(Q) = (n - 3)! and
thus, in the present case, we can similarly expect only (n - 3)! of ladder type monomials to be
linearly independent on the support of the ideal spanned by scattering equations (h1, ha, ..., hy_3).
Here, a natural candidate for such a minimal basis would be the (n — 3)! highest degree ladder
type monomials. At first glance it might seem that restricting to this minimal basis could increase
computational efficiency, since this sets up a minimal linear system of equations in the polynomial
construction of rational terms and makes the resulting coefficients unique. However, on a second
thought it becomes apparent that modifying the polynomial reduction algorithm such as to eliminate
the tail of lower degree ladder type monomials is highly non-trivial and would introduce a large
computational overhead before the linear system of equations is set up. Therefore, employing more
than the minimal amount of ladder type monomials to keep polynomial reduction simple appears to
be more convenient.

One nice feature of the above procedure is that it works in exactly the same fashion at any n and

for amplitudes of any theory in CHY formulation due to the inherent structure of CHY integrands:
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While the complexity of the kinematic part of a CHY amplitude integrand in a theory like i.e. pure
Yang-Mills or gravity is greater compared to massless scalars, the integrand still always is a rational
function in the o-moduli, such that the conceptual steps towards finding the amplitude described in
previous sections still remain exactly the same, making the procedure universal. Furthermore, since
all relevant residues for any amplitude or partial term in consideration are always collected from
simple poles at infinity only, each generic evaluation step is of low complexity and the difficulty is
shifted towards finding standard form polynomial expressions for the originally rational amplitude
integrands. The polynomial reduction procedure that addresses this problem can be implemented
algorithmically in general, so that the amplitude evaluation becomes automated for general input,
which is one further strength of the current approach.

One problem that is bound to appear as we choose higher values for n, is the question of efficiency.
The number of linear equations and corresponding number of unknowns increases as (n—3)s(n—4)
if we apply the construction step of section [5.3.2] Even though other techniques to find the reduced
form might exist, this kind of limitation is bound to appear whenever a solution is formulated
algorithmically involving a sequence of structural steps leading from a certain input to an output
of a different structure. Therefore, as a possible direction for further investigation it might be
interesting to search for general n-point integrands of standard polynomial form in various theories
of interest directly, eliminating the necessity for the polynomial reduction procedure. Additionally,
knowing that only the highest degree ladder type monomials contribute to any integral, finding
just the coefficients for the minimal basis of highest degree ladder type monomials based on some
general physical arguments would be equivalent to obtaining a direct closed form expression for the

amplitude, since the remaining contour integration is trivial.

5.6 Generating real rational on-shell momenta

2

Pythagorean triples are integers a, b, ¢ such that the relation ¢? = a? + b? is satisfied. The following

well known parametrization of all such triples due to Euclid is convenient
a = h(u* - v?) , b = 2huv , c = h(u® +v?), (5.6.1)

where h,u, v are arbitrary integers. Thinking of an n-point amplitude, we can consider n—2 separate
copies of these integers a;,b;, ¢, hi,ui,v; with ¢ € {1,2,...,n - 2}. We would like to use the above

to parametrize n massless external momenta obeying momentum conservation. For that end, we
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distribute the integers a;, b;,c¢; into Minkowski momenta components in a fashion similar to the

following.

1) Fill a; into kY (with a random overall sign + in front) and ki components, such that:

k)‘f = (ial,al,O, 70)

2) Fill a;,b; into spatial components and +¢; (random sign) into the zero component
of vectors k‘;‘ for j €{2,3,...,n -1} so that a, and b,+1 always appear in consecutive
vectors and in the same spatial component but with opposite sign, such that i.e.:

kS = (xc1,-a1, b1, 0, 0,..,0)
kY = (£ca, 0,-az, by, 0,...,0)

kY = (£c3, 0, 0,-as,bs,...,0)

kﬁ_z = (:tcn—f}) 07 ceey —Qp-3, b’n—3a O)

ki:—l = (icn—Qa 07 ceey 07 —Un-2, bn72)

3) Fill b,,_o into kg and k; components, pairing the spatial component of k;_l, ie.:

k,’f = (:‘:bn,g,o7 ...70,07 —bn,g)

Since each set of a;,b;, ¢; integers is internally parametrized by , all momenta defined above
are automatically light-like k; - k; = 0 for ¢ € {1,2,...,n}. Furthermore, if we ensure that b, = ag+1 for
all g€ {1,2,...,n -3}, then all spatial components will sum up to zero, providing spatial momentum
conservation. The set of constraints b; = aq+1 can be solved using n — 3 of the h; of and
promoting them to variables. Finally, to ensure momentum conservation in the zero-th component,
we can solve the equation Y7, k? =0in uy of while promoting it to a variable. The solutions
to the constraints above are rational in the unfixed parameters, so that we are guaranteed to obtain
rational momenta if we seed integers to the unfixed h,_o and u;,v;. However, we should seed the
integers carefully since singular configurations exist. In order to avoid most singular results we
could for instance fix u; = 1 for all remaining ¢, while randomly selecting h,_o2,v; > 1. Finally,

it is clear that the position of the spatial components within a vector can be assigned flexibly as
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long as the canceling entries, such as b, and —a4.1, always are properly paired. Therefore, we can
randomly create real rational on-shell momenta in any spacetime dimension D > 2 using the above.
Even though this only provides access to a very specific subset of all possible real and rational
on-shell momenta, they are nevertheless sufficiently generic for testing purposes. Straightforward
slight modifications can also be made to obtain sufficiently generic results even for the four point

configuration, or cases involving massive particles.
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Chapter 6

Tree-level gluon amplitudes on the

celestial sphere

This chapter is based on the publication [177].

The holographic description of bulk physics in terms of a theory living on the boundary has been
concretely realised by the AdS/CFT correspondence for spacetimes with global negative curvature.
It remains an important outstanding problem to understand suitable formulations of holography for
flat spacetime, a goal that has elicited a considerable amount of work from several complementary
approaches 178, [1°79] [180] 181, [182] 29| 30, [183].

Recently, Pasterski, Shao and Strominger [184] studied the scattering of particles in four-dimensional
Minkowski space and formulated a prescription that maps these amplitudes to the celestial sphere
at infinity. The Lorentz symmetry of four-dimensional Minkowski space acts as the conformal group
SL(2,C) on the celestial sphere. It has been shown explicitly that the near-extremal three-point am-
plitude in massive cubic scalar field theory has the correct structure to be identified as a three-point
correlation function of a conformal field theory living on the celestial sphere [I84]. The factorization
singularities of more general scattering amplitudes in this CF'T perspective have been further studied
in [185]. The map uses conformal primary wave functions which have been constructed for various
fields in arbitrary dimensions in [I86]. In [I87] it was shown that the change of basis from plane
waves to the conformal primary wave functions is implemented by a Mellin transform, which was
computed explicitly for three and four-point tree-level gluon amplitudes. The optical theorem in the
conformal basis and scattering in three dimensions were studied in [188]. One-loop and two-loop

four-point amplitudes have also been considered in [I89].
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In this note we use the prescription [I87] to investigate the structure of CFT correlators corre-
sponding to arbitrary n-point gluon tree-level scattering amplitudes, thus generalizing their three-
and four-point MHYV results. Gluon amplitudes can be represented in many different ways that
exhibit different, complementary aspects of their rich mathematical structure. It is natural to sus-
pect that they may also take a particularly interesting form when written as correlators on the
celestial sphere. We find that Mellin transforms of n-point MHV gluon amplitudes are given by
Aomoto-Gelfand generalized hypergeometric functions on the Grassmannian Gr(4,n) . For
non-MHYV amplitudes the analytic structure of the resulting functions is more complicated, and they
are given by Gelfand A-hypergeometric functions and its generalizations. It will be very in-
teresting to explore further the structure of these functions, and possibly make connections to other

representations of tree-level amplitudes [5], 174, 122], 190, T9T] which we leave for future work.

6.1 Gluon amplitudes on the celestial sphere

We work with tree-level n-point scattering amplitudes of massless particles Ay, ..., (kf ) which are
functions of external momenta kf and helicities ¢; = £1, where j = 1,...,n. We want to map these
scattering amplitudes to the celestial sphere. To that end we can parametrize the massless external
momenta k' as
Y = ejw;iqf = ejw;(1+ |22, 25 + 25, =i(25 = 2;), 1 = |2]?), (6.1.1)
where z;, Z; are the usual complex cordinates on the celestial sphere, €; encodes a particle as incoming
(e; = —1) or outgoing (¢; = +1), and w; is the angular frequency associated with the energy of the
particle [I87]. Therefore, the amplitude Ay,...o, (wj, 25, Z;) is a function of w;, z; and Z; under the
parametrization (6.1.1)).
Usually, we write any massless scattering amplitude in terms of spinor-helicity angle- and square-
brackets representing Weyl-spinors (see [2] for a review). The spinor-helicity variables are related
to external momenta k;‘ , so that in turn we can express them in terms of variables on the celestial

sphere via [187]:

[’L]] =2, JWiWjZij <’L]) = —261‘63« JWiWjZij (6.1.2)

where Zij = 2 — %j and Zij = Zi — Zj.
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In [186| 187] it was proposed that any massless scattering amplitude is mapped to the celestial

sphere via a Mellin transform:

Agean (N 255 2) = [1 [O dw; ;™ Ap.oa, (W5,27,%5) (6.1.3)
j=1

The Mellin transform maps a plane wave solution for a helicity £; field in momentum space to a
corresponding conformal primary wave function on the boundary with spin J;, where helicity ¢;
and spin J; are mapped onto each other, and the operator dimension takes values in the principal
continuous series representation A; = 1+i\; [I86]. Therefore, Aj,..s. (\;,2j,%;) has the structure
of a conformal correlator on the celestial sphere, where the symmetry group of diffeomorphisms is
the conformal group SL(2,C).
Explicitly, under conformal transformations, we have the following behavior:
, azj+b az; + b

’ 2 >
wj = W = |ez; +d) w; zj > 2, = ——— Zi>Z = —— (6.1.4)
T ! T evd ezj+d’

where a,b,c,d € C and ad - bc = 1. The transformation for z;,z; is familiar from the usual action
of SL(2,C) on the complex coordinates on a sphere. Concerning w;, recall that q;f transforms as
qé‘ - |ez; +d|’2A“l,q;.’ [186], where A*, is a Lorentz transformation in Minkowski space corresponding
to the celestial sphere conformal transformation. Thus, w; must transform as in (6.1.4) to ensure
that kﬁ‘ transforms as a Lorentz vector: ké‘ - AF K.

The conformal covariance of Aj,...;, (A, 2;, ;) on the celestial sphere demands:

az; +b az; +b

Agp, (/\j ) = Hl [(czj +d)™ i (ez; + d)> ] Ags, (Mg, 25,%), (6.15)
i

) ) —— 7
czj+d czj+d

as expected for a correlator of operators with weights A; and spins Jj.

6.2 n-point MHV

The cases of 3- and 4-point gluon amplitudes have been considered in [187]. Here we will map

n > 5-point MHV gluon amplitudes to the celestial sphere.
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6.2.1 Integrating out one w;

Starting from (6.1.3]), we can anchor the integration to one of our variables w; by making a change

of variables for all [ £ 3
w = Ly, (6.2.1)

where s; is a constant factor that cancels the conformal scaling of w; in l) so that the ratio %*

is conformally invariant. One choice which is always possible in Minkowski signature is

|Zi—1 i+1|

si= (6.2.2)

- |Zz>1 z| |Zz i+1|.

Since gluon scattering amplitudes scale homogeneously under uniform rescalings, collecting all

the factors in front, we have

oo dwi (Wi )Z;‘L:l 2%

Wi

. n oo .
sLriN Hfo dwq W | Agya, (sisw1, 25, 25),  (6.2.3)
a=1

a*i

AJI...]"()\j,Zj,Zj) = ]0‘

54

where we used that the scaling power of dressed gluon amplitudes is A, (Aw;) - A" A, (w;). We

recognize that the integral over w; is the Mellin transform of 1, which is given by

'/000 dus (L:z)lz =27m0(2). (6.2.4)

Wi i
With this we simplify the transformation prescription (6.1.3)) to

AJl...Jn ()\j, Zj, Ej) =276 ( Z /\]) S}”/\i H /(; dw, wz)\a Agy .0, (51‘7 wy, ijj) . (625)
J=1 a=1

a#i

6.2.2 Integrating out momentum conservation /-functions

For simplicity, we choose the anchor variable above to be w; and use wy_3,...,w, to localize the
momentum conservation §-functions in the amplitude. These §-functions can then be equivalently

rewritten as follows, compensating the transformation by a Jacobian:

S

n
54(€1S1Q1 + Z €iwig;) =

[T 556 (wj - w)) o)), (6.2.6)
1=2 j=n-3
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*

where w;

are solutions to the initial set of linear equations:

N U, "“w U,
wji = —sj( T 25T ) (6.2.7)

The U;; and U are minor determinants by Cramer’s rule:
U ;= det(M{”_?’""’j_’i""’”}), U= det(M{”_?”'“’"}), (6.2.8)
where j — i means that index j is replaced by index i. M1®?¢4} denotes the 4 x 4 matrix
MDD = (py py pepa). (6.2.9)

For the purpose of determinant calculation, the column vectors p = ¢;s,¢!" can be written in a

manifestly conformally invariant form:

pT(Zug):€1(17070u_1) ) pg(z7§):62(170u071) ) pg(zag):€3(2u270a0)u

1 (6.2.10)
pf(z, Z) = Ezm(l + |ui|2,ui + ’(_Li, —i(ui - ﬂi), 1- |U7,|2) for 7= 4,5, RPN 2%
1
in terms of conformal invariant cross-ratios
s B2 and = 222 for i=4.5,..m, (6.2.11)
232241 232241
but if, and only if, we also specify the explicit choice
z z z
31:&, SQ:A, and si:& for i=3,..,n. (6.2.12)
|23,1][21,2] 23,2/ [22,1] 21,4/ 23,2

The indicator functions [];-,,_5 1s0(w;) appear due to the integration range in all w being along the
positive real line, such that the d-functions can only be localized in this region.

Furthermore, in order for all the remaining integration variables w; with j = 2,...,n -4 to be
defined on the whole integration range, the indicator functions [];.,,_51s0(w}) have to demand

% <Oforalli=1,...,n-4and j=n-3,...,n, so that we can write them as [], ; 1<0(%).
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6.2.3 Integrating the remaining w;
In this section we apply (6.2.5) to the usual n-point MHV Parke-Taylor amplitude [I] in spinor-

helicity formalism for n > 5 rewritten via (6.1.2):

4
Zia51w20" (€15141 + Nty €iwigi)
(—2)"‘4z23234...zn1w3w4...wn

A,,Jr“f(sl,wj,zj,éj) = . (6213)

Making use of the solutions (6.2.6) and performing four of the integrations in (6.2.5]), we have:

n 3 A1 +2 o *TA
Ao Ny 2z, %) =2m P21 A) i 55 ﬁf g wite 22 ey soi " [I1 O(Um)
——+... 1“1y 1) T a < .
(=2)" 41U 223234...2n1 423 J0 “ WWy...w;, i U
(6.2.14)
For convenience, we transform the remaining integration variables as:
U U;i_

Wi = 8 1 . i=23,..n-4, (6.2.15)

Uin 1- Z?;f u;
which leads to

3 _iA1+2 _iXo+2 i3 i
~ 2798 S S ...S
_ 12°1 2 3
A——+...+()\i,ziazi) ~
2232:34...2:"1(]17”

”n5(ikj)¢({a},x) H1<0(U5j). (6.2.16)

Note that the overall factor in (6.2.16|) accounts for proper transformation weight of the resulting
correlator under conformal transformations (6.1.5)).
Here we recognize a hypergeometric function p({a},z) of type (n—4,n), as defined in section

3.8.1 of [192] and described in appendix In particular, here we have:

) n o dPs dP,_4
o({at},x) E[l/120,.u,un7520 HPj(u) idp , dp-= ?2 A A ?71_4,

1-¥,ua20 J=1 (6.2.17)
Pj(u) =Toj + T1jUL + oo + o5 jUn-5 , L1<j<n.
The parameters in (6.2.17) corresponding to (6.2.16]) readﬂ
ap =1, a2:2+i)\2, Oé3=i)\3, ceey an_4:i)\n_4, Oén_gzi)\n_3—1, ey QU1 :i)\n—l_L
140\ Ul,i Uj,i Ul,z‘ U U 1 U
Qp = WAL, 0= 77 Lj-14 = - y Tom = —77 5 Lj-1n = 77— To1 =1, Tj-15=— )
" ’ Ul,n I Uj,n Ul,n " Ul,n I Ul,n = Uj,n
(6.2.18)

TFor n = 5, the normally different cases ag =2 +iA2 and ayp-3 = iA,—3 — 1 are reduced to a single az =1 +iX2. In
this case there also are no integrations so that the result becomes a simple product of factors.
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fori=n-3,n-2,n-1and j=2,3,...,n—4, and all other x,, = 0.

These kinds of functions are also known as Aomoto-Gelfand hypergeometric functions on the
Grassmannian Gr(n —4,n).

Making use of eq. (3.24) and (3.25) from [192], we can write down a dual representation of the

same function, which yields a hypergeometric function of type (4,n):

N Co n ) dP, -3 dP, -1
20} 0) =2 [sg o 1P @) dp= T2 n a2
c1 IS 050 =1 n-3 n-l (6.2.19)
Pj(u) =xo; + 1ju1 + Tojus + x35uz , 1<j<n.
In this case, the parameters of (6.2.19) corresponding to (6.2.16) read:
(651 =1, ()42:—2—i/\2, (0% =—i/\3,..., Oén_4=—i/\n_4, Ozn_gzl—i/\n_zg,..., Qp_1 = 1—i/\n_1,
. U; n U; n—4+1 U; n U
Qp =—i\p, Toj = 2, x5 = 2 I = ——— Tin=——, To1 =1,
n n sy 407 Ul,n s Lig Ul,n—4+i Ul,n s L0n Ul,n y Lin Ul,n s 01
-U -U U ey T+iA)T(2+ide) [T T(0N))
Tin-3 = y Tan-2 = y L3n-1= 2= ’ = (6.2.20)

Uin-3 Uin-2 Uin1’ @ D(1—iX) T, T —i\,s)

fori=1,2,3 and j =2,3,...,n—4, and all other x,, = 0.

The hypergeometric functions @({a},z) form a basis of solutions to a Pfaffian form equation
which defines a Gauss-Manin connection as described in section 3.8 of [192]. This Pfaffian form
equation can be interpreted as a generalized Knizhnik-Zamolodchikov equation satisfied by our
correlators [193] [194]. Similar generalized hypergeometric functions appeared in [I195] in the context

of N =4 Yang-Mills scattering amplitudes and the deformed Grassmannian.

6.2.4 6-point MHV

In the special case of six gluons there is only one integral in ((6.2.17]), such that the function reduces

to the simpler case of Lauricella function ¢p:

oo((aro) :(_U)i,\1+1 (_U)iA2+2(U2’3)i/\3—1 (U274)i>\4—1(U275)i>\5—1X
’ Uz Uis Use U Use

’ ) (6.2.21)
1
x f Attt (1= )7 (- wit) ™,
0 i=1
with parameters and arguments given by
Ui.iw2U.
a=2+idy, Y=A4+iA +idg, Bi=1—idise, ;=1 - —2220 g5 21,23 (6.2.22)

U1,6U2,i+2
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Note that xo; arguments have been factored out of the integrand to achieve this form.

6.3 n-point NMHV

In this section we will map the n-point NMHYV split helicity amplitude A___,,..., to the celestial
sphere via (6.2.5). The spinor-helicity expression for A___, ..., can be found e.g. in [196]

1 =l (1P, Py 2l3)? (7+17) =
A =— I , : = S{M;} (6.3.1)
e e T B pE P IR -

where Fj j= (i i+1)(i+1i+2)--(j—1j)and P, = Y7_ |k)[k| where z <y cyclically.
We will work with {My} for the purpose of our calculations. Using momentum conservation and

writing {M,} in terms of spinor-helicity variables, we find

1 ({12)[24](43) + (13)[34](43))°

{M4} X
(34)(45)--(n — 1 n)(nl) ((23)[23] + (24)[24] + (34)[34])(34)[34]
(54)
x . (6.3.2)
([23](35) + [24](45)) ((43)[32])
Writing this in terms of celestial sphere variables via (6.1.2)), we find
- 74w1w4(62312524w2+f3233531f[1:3)3
{M4} _ 256267“'2’"'_11"277/122\5234 j=2,j#4 W] (63'3)

(63235223603 + 64245524004) (€2w2 (63|223|2w3 + 64|Zz4|2w4) + 63€4|234|2w3w4) .

The following map of the above formula to the celestial sphere will only be strictly valid for n > 8.
We will comment on changes at 6- and 7-points in the next section. We use the map (6.2.5)), anchor

the calculation about wj, make use of solutions (6.2.6) and perform a change of variables

wi=si—— =2, n-4, (6.3.4)
1- ZJ 1 Uj

to find the resulting term in the n-point NMHYV correlator

n nooiA
{M4} N 5(2 /\j) ITiz1 55 21221324574 n8184f H 1oo( ,] (6.3.5)

- 212223213245256" " Zn-1,n%4,n Z342n1 U

with the function F(«,z) being a Gelfand A-hypergeometric function as defined in Appendix
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In this case it explicitly reads:

n-5 n-5
.7:"({04} T) = f du, H u’?‘j*luz(uluQajlo + UTU3T 0 + UgUsT30)
) lulzo,...un,5zo 1 Uqg i1 J 3
—up -y, 520 A= =
. (6.3.6)
X H(wm + UL+ Up5Tp5,i)
i=1

where parameters are given by

aq = 3, Qg = —1, ag = i)\l + 1, ay = i)\n_3 - 1, g = i/\n_g - 1, Qg = i)\n—l - 1, a7 = Z/\n - 1, (637)

and function arguments are given by

2 2 2
T10 = €2€3|223|7 5253, a0 = €2€4|224] 5254, T30 = €3€4]234] 5354,
T11 = €221222452, T21 = €321323453, T22 = €323522353, T32 = €424522454,
Usnes Ujns = U
. ,n— j,n—3 1,n-3 .
ro3=1, z;3=-1, j=1,...,n=5, xos = , Tjyp=——"———"—, j=1,...,n-5,
U U
Ui -2 U; -U
,n— Jjn—2 1,n-2

o5 = U ) Tj5 = U y J = 17' , = 5a (638)

Uina Ujn-1=-Uip1 1
o6 = U ) Tj6 = U , J =1, 'an_5a

_ Ul,n _ Uj,n - Ul,n .
To7 = T xﬂ—T, j=1,...,n-5.

Note that the first fraction in (6.3.5)) accounts for the correct transformaton weight of the correlator
under conformal tranformation (6.1.5]).

6- and 7-point NMHV

In the cases of 6- and 7-point the results in the previous section change somewhat, due to the presence
of w3 and wy in the denominator of . These variables are fixed by momentum conservation 4-
functions in the lower point cases, such that the parameters and function arguments of the resulting
Gelfand A-hypergeometric functions change.

For the 6-point case, we find that the resulting correlator part {M4} is proportional to a Gelfand

A-hypergeometric function as defined in Appendix [6.5}

~ du i — 7 7 73
.7:({01},33) = »/\ulzo — u1>\2 (.’EOQ +U1T10 + U?Z‘Qo) 1(1 — ul) A+l H(I‘Oi + leli) ° (639)

1-upz0 U1 i=2

120



where parameters are given by

Qg = ’L)\g - ]., Qg = ’L>\4 + ]., Qy = ’L)\5 - ]., a5 = ’L)\ﬁ - ]., Qg = 3, Qa7 = —]., (6310)

and function arguments z;; depend on ¢;, z;, Z; and U;;. Performing a partial fraction decomposition
on the quadratic denominator in , we can reduce the result to a sum of two Lauricella functions.

In the 7-point case, we find that the resulting correlator part {M4} is proportional to a Gelfand
A-hypergeometric function as defined in Appendix

A du1 d’LL2 ; ;
_ X2, iA3 2 2 -1
F({a},z) = w020 o ul?us (U110 + Uaag + UL ULT30 + UTTa0 + UST50)
1-ug —un>0
7 (6.3.11)
Qg
X H(%z‘ + UL + UpToi) M,
i=1
where parameters are given by
a1 = i)\l + 1, g = i)\4 + 1, a3 = ’L')\5 - 1, ay = i)\ﬁ - 1, ag = i)\7 - 1, g = 3, a7 = —1, (6.3.12)

and function arguments x;; again depend on ¢, 2;, Z; and Uj;.

6.4 n-point N\MHV

In this section we discuss the schematic structure of N¥MHYV amplitudes with higher k under the

Mellin transform (6.2.5)).

N2MHYV amplitude

In the 8-point N2MHYV split helicity case, A-___, ..., we consider one of the six terms of the ampli-

tude found in e.g. [196] on page 6 as an example:

1 (1|Py6ProPs 5P 54) (76)[23](65)
FiaFaz  P3gP?oPsPes  [2|Pos|T)(6]Pr2]2][3]P55(6)(5| P 3/3]

(6.4.1)
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where Fi’j is the complex conjugate of F; ;. Performing the same sequence of steps as in the previous

sections, we find a resulting Gelfand A-hypergeometric function of the form

f{ } _ du1du2du3 @1, Qo a37)3 11_3[ - - . o 642
({a},x) = 0200550 o gt uy?ug® Pryy | (xo; + urT1; + U2To; + UT3;) (6.4.2)
Tou —tig—ug >0 1 w2 U3 1=4
17
2 2 2 @
X H (.130]‘ T ULX15 + U225 + U3T3; + UL U2T 45 T UTUIT 55 + U2U3T6; + U1 L7 + UpXg; + U3JJ9]‘) s
j=14

for some parameters a;, where Py, is a degree four polynomial in u;, and function arguments z;;

again depend on ¢;, 2;, z; and Uj;.

NFMHYV amplitude

More generally a split helicity N°MHYV amplitude A_..._,..., involves a sum over the terms described
in eq. (3.1), (3.2) of [196]. Terms corresponding in complexity to {M,} discussed in the previous
section are always present, with constant Laurent polynomial powers at any k. However, for higher
k, the most complicated contributing summands result in hypergeometric integrals schematically

given by

n—4

N d’l,L o n-d “ i i 1 o
F({a},2) :ful ..... wp_g20 [1 7;“1 l (1 - “j) P?%} (H(P{1}) ) (H(Pfg}) ]) (6.4.3)
1-tg——ty_yg20 [=2 j=2 i j

where a; are parameters and P4y is a degree d polynomial in u,. Here we explicitly see an increase
in power of the Laurent polynomials with increasing k& in NV MHYV. The examples above feature the
Gelfand A-hypergeometric function F. The increase in Laurent polynomial degree is traced back
to the presence of Mandelstam invariants Pi%j for degree two polynomials, as well as the factors
(a|P; j Py ...Py4|b) for higher degree polynomials. The length of chains of the P; ; depends on n and
k, such that multivariate Laurent polynomials of any positive degree are present at sufficiently high
n, k.

Similar generalized hypergeometric functions, or, equivalently, generalized Euler integrals are
found in the case of string scattering amplitudes [I97, B4]. It will be interesting to explore this

connection further.
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6.5 Generalized hypergeometric functions

The Aomoto-Gelfand hypergeometric functions of type (n + 1,m + 1) relevant in this work can be

defined as in section 3.5.1 of [192]:

@({O&},SC) = ulzo,‘,_yunzoHPj(u)ajdsaa (651)
1-Y, ue>0 J=0
dP; dP;
dp=—= N n—% | 0<ji<..<j,<m, 6.5.2
Y= p P J1 Jn <m (6.5.2)
Pj(u) =xo; + T1ju1 + ... + Tpjun, , 1<j<m, (6.5.3)

where here the parameters «; collectively describe all the powers for the factors in the integrand.
When all a; are zero, the function reduces to the Aomoto polylogarithm.
The arguments z;; of the hypergeometric function of type (m+1,n+1) in (6.5.3) can be arranged

in a matrix:

oo --- Tom

_ 10 --- Tim

X = : (6.5.4)
Tno --- ILnm

Each column in this matrix defines a hyperplane in C™ that appears in the hypergeometric
integral as (zoj + Yoy @45u;)**. Furthermore, (n + 1) x (n + 1) minor determinants of the matrix
can be regarded as Pliicker coordinates on the Grassmannian Gr(n + 1,m + 1) over the space of
arguments x;;.

Sometimes it is convenient to transform the argument arrangement to the following gauge

fixed form

1 0 0 1 1 1
o1 ... 0 -1 —T11 —T1m-n-1
(6.5.5)
-1
o0 ... 1 -1 —Tpl .- “Tpm-n-1

In this case the hypergeometric function can then be written in the following two equivalent ways,
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eq. (3.24) of [192]:

m-n—1
P, (3758 =61 fln o e [T (1= Sy S0 T (1= S )™

z ua>0 =1

c1 =T (y)/T(y - Z; o) Ul I(a;),

(6.5.6)
and the dual representation in eq. (3.25) of [192]:
1 m-n—1 5i-1 m—-n—1 n m-n—1
(CORCAIRTORTY AR LT § R (S VRO L b § (R MO
1-%, ua20 i=1 =1 j=1 i=1
m-n—1 m-n-1
e =T(VN/T(y- > B)- [ T,
=1

| (6.5.7)

where the parameters are assumed to satisfy the conditions

o ¢Z, 1<i<n, j¢Z, 1<j<m-n-1,

m-n—1

(6.5.8)
Y- ZQZ¢Z - Z BJ¢Z

The hypergeometric functions (6.5.1) comprise a basis of solutions to the defining set of differ-
ential equations

; ; 0<j<m,
=0 axl] ]<‘07 ! "
m 9¢
(2) Z%af =—(1+a)g, 0<i<n, (6.5.9)
4=0 ij
0%¢ 9%¢
3 = 3 OS‘; < 9 0< ‘a <
( ) 8mij(’)qu 8.%‘,‘(18.’171,]' Lpsn Ja=m

In cases where factors of the integrand are non-linear in the integration variables, the functions

can be generalized further to Gelfand A-hypergeometric functions [198, [199] defined as

F({a},z) = ulzor._ﬁukzoHPi(ul,...,uk)aiu?l...ugkdul...duk, (6.5.10)
1-Y, ug20 i

where «; are complex parameters and P; now are Laurent polynomials in uq, ..., ug.
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