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ABSTRACT

Within the thermodynamic model two-particle correla-
tions are due to the fact that the two particles can emerge from
one or from two fireballs; these fireballs can behave as leading

or non-leading fireballs.

To compute two —particle correlations from the thermo-
dynamic model the decay chain multiplicity function - which de-
pends on the fireball mass and gives the number of decay genera-
tions - has to be specified. Several choices are considered.
They all have no effect on single-particle distributions, but
lead to significantly different predictions for the fully inte-

grated two-particle correlation R(2).

We compute the average number of fireballs produced.

The high energy behaviour of the one and two-fireball
contributions to R(Q) is obtained. Our model accounts for the
change of sign of R(2) as function of energy as is shown by
the data and asymptotically contains the multi-Regge model and

the diffractive excitation model as two limiting cases.
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INTRODUCTION

From the analysis of a large number of data, it 1is known that the
thermodynamic model (TM) describes well 1)-5) the shapes and energy depend—
ence of single-particle spectra. Especially, this model gives very naturally

the increase with increasing energy of single particle spectra
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4)—6), which has been detected experimentally in
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comparing data at accelerator and ISR energies . Also other models like,

in the pionization region

e.g., the multi-Regge model (MRM) and the diffractive excitation model (DEM)
are successful in describing the main features of single particle distribu-
tions in the accelerator energy region. The investigation of inclusive multi-
particle distributions and correlations is expected to eliminate some of these
models and therefore lead to a better understanding of the high energy pro-
duction mechanism. If many particle distributions and correlations are to be
studied with the thermodynamic model, it will be necessary to specify some
features of the model which do not lead to significant differences in single
particle distributions, but which might change the two-particle distributions

significantly. They thus lead to a better understanding of the model.

Due to the large number of variables, it is difficult to describe
even two-particle correlations in full generality. Therefore it is instruct-
ive to study partially integrated correlation functions which give, e.g.,
the correlation only in terms of the rapidities. Such a correlation function
0(2)(y§,y§) has been studied with the multiperipheral thermodynamic model
(MPTM) 8) ana compared successfully with K'p—> - T + anything data at
12 gev/c 90010,

the same fireball were considered. In the reaction studied at 12 GeV/c this

In Ref. 9) only the distribution of two pions emerging from

is justified because in most events only one fireball will be produced at
this energy and furthermore no through—-going particles contribute. At higher
energy and different reactions, more contributions have to be taken into

account.

Here we write down all possible terms to the inclusive two—-particle
distribution in the thermodynamic model. Mainly the fully integrated dis-—

tribution function and correlation and their energy dependence are studied.

The thermodynamic single-particle spectra have scaling behaviour and
a flat central plateau at high s. This leads in the asymptotic limit to

logarithmically increasing average multiplicities, <n>~ ins.



For the two-particle distribution according to the TM, several possible

4) into the velocity weight

subdivisions of the rapidity function G(v ,'7i)
function and the decay chain multiplicity function lead to widely different
behaviour of the average value <n(n-1)> which might grow asymptotically
like ~fns, ~in°s or ~s with 0 <q < 2.

In Section 2 we discuss the single particle spectra which show scaling
behaviour and a flat central plateau. This behaviour is not changed by
several possible choices for the subdivision of the rapidity function G(ﬂ )
into the velocity weight function F(A ,X}) of the fireballs and the decay

chain multiplicity function q(MF).

In Section 3 the two-particle distribution is defined and all contri-
buting mechanisms according to the TM, such as, one and two-fireball terms,
are given as distributions and in fully integrated form. The general formal-
ism includes correlations between newly produced particles, between leading

and non-leading particles and between two leading particles.

In Section 4 the asymptotic behaviour of all contributions to the two-—

particle distribution and the integrated two-particle function is obtained.

In Section 5 the integrafed two-particle correlations are evaluated at
finite energies and compared with data for jr—gr_ production in collisions
of two positively charged hadrons. Our model reproduces the change of sign

of the two-particle correlation as a function of the energy.

INCLUSIVE SINGLE—PARTICLE SPECTRA IN THE THERMODYNAMIC MODEL

2.1 Inclugsive single—particle gpectra defined in

terms of rapidity variables

Fireballs are excited hadrons which decay within the statistical
thermodynamic bootstrap model 11)’12)’2) in their rest frame isotropically

according to

>N /
0(3FI = CI(MF) ][i(Ez' /T-(Mr:)) (2.1)
Here fi(Ei,T(M is the Planck distribution 1) .
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E; is the energy of particle 1 in the rest frame of the fireball from which
1t emerges. Z; is a statistical weight factor and V is the hadron volume.

The temperature T of the fireball is connected with its masso MF. q(MF)

. It accounts f(or the fact that

the fireball does not decay in cne step into the final stable hadrons. q(MF)

is called decay chain multiplicity function 2

gives the average number of generations in the decay of a fireball with mass
M

F‘
The single-particle spectrum in the centre-of-mass system is obtained
by a superposition of decaying fireballs moving with different velocities

in the c.m.s.,
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The Lorentz parameters D' and 7{i are those ol the fireball and the in-
coming particle a in forward ( };) and b in backward ( }/) direction,
U /

respectively. TFor a newly produced particle 1 the single-particle distri-
bution is

Bl d%" e dN AN
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c.m.s. variables are denoted by a star. E; has to be expressed in terms of

c.m.S. quantities. The fireball mass MF might depend on the velocity A
of the fireball and on ]; .

We introduce the rapidity of particle 1

*

—

* = 1 f 2 2z
Ji = cosh /u‘_’ ) Pe ™ ]/mi P (2.6)

and the rapidity 7 of the fireball in the c.m.s.



N = COS(A-,'B/
= (sign \) coslfd[/l + {M(%—/I)] (2.7)

of particle 1 1is

=} cosl. (j:—w])

The velocity weight function has a slight energy dependence if single-
~ O 2 . It is, in this case,

The energy E;
(2.8)

partlcle distributions do not show a dip at y

for an asymmetric initial state 4)
F(x
F:<?X, )&:) - ‘———‘—‘}—’
l"’ahl/\""‘
(2.9)
~ -1) + 1
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is 2)

A good parametrization of F(X\)

E(A) = N ex() a\M> )

a= 076 (2.10)

N normalizes this function to 1 in the ranges =1 < X <0 and 0 < X\ £ +1,
respectively. We neglect the term #1 in f(E;,T(MF)), change the inte—

gration variable in (2.5) to n ’

: km -1 -1
= <3I%“ v:), ::3~ ;] — ) 7::=;COS& 21

(2.11)
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The function

q("?/"?:) = F(X/’]I('V_tvq()\,%("ni))%;_\_ (2.13)

is the only function of the TM which has to be determined from data on single
particle distributions. Single-particle spectra — subject to experimental

errors — do practically not aliow to determine the functions E( Ny ];(‘7i))
and qf %W’Xi( 71)) separately.

o.2 Different possible choices for the decay chain multiplicity

function and velocity weight function

In Ref. 2) the relation

q: qo z(/\,;to)

s )

£ = & 20/2/

has been used for pp collisions. This has been generalized in Ref. 4) for
asymmetric initial particles to

max
. M — M
(Mg) = X V) = g, —F 2
90ME) = GO ) = 90 =
9o 165 (2.14)
W, = amg ‘F"" A= O
M, = MW, ,?W AN£Oo

for the dependence of the decay chain multiplicity on the mass MF of the
fireball. In (2.14) M?ax is the maximal kinematically allowed mass of a

fireball moving with X ,

M = G()’-*(fdh%"—
— -1 (2.15)
(7",/777—:‘4):[;6 “/‘4 (547) ’

It has been shown 4) that the rapidity function (2.13) can be written in the
form

SI"’![\.
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+ for 7 >0 and m,=m

- for W} <0 and m =m
o] b

and
C = Cfo"\/ (2.17)

Calculating the decay chain multiplicity function aq( X\, yi), (2.14),
with the maximal allowed fireball mass M?ax means that we only consider the
production of one fireball. If the production of more than one fireball is to
be allowed, an average fireball mass MF smaller than Mgax has to be used
in calculating q()\, J&) = q(“?,'7i). The average fireball mass MF might
depend on the total energy s *and on A or 7 . MF(S’7 ) might be chosen

in one of the following forms

i)

F

-imly w
MC(_ES’_C o 0wz A (5. 150)
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S - Do i ax
2 'Wp sheve Motz < Mr (2.18b)
M:ax - omu‘wfse
ii) = "‘1')
Mobale Mg By
(1) < (2.19a)
= . (i "
MF(?W 4 qu}%v%:MFw
M oVecw-ise | (2.19%)

In case i) for w=0 the average mass of all fireballs produced is constant,
MF==MC. For w=1 +the fireball mass is the maximal one, MFzzMgaX, and

only one fireball can be produced. Our choice of O < w < 1 interpolates
between these two limiting situations. Case ii) gives the slowest possible

increase of the fireball mass MF with s.

*)

Instead of (2.183) a more general parametrization would be
() r—s— >\A —'fr,lv
hﬂF (s,7) = ch <F4C_ e
0<ucx<1, 0<v<1l, For simplicity we use (2.18a).
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Because the condition ,Jg/MC >> 1 can only be met at higher energies
in Section 5 we shall not give numerical results for the case ii), although

we discuss the asymptotic behaviour analytically.

Generally, we expect for fixed N and s a distribution of fireball
masses. For simplicity we perform here all calculations only for the average

mass of a fireball moving with lx .

Certainly, these choices i) and ii) should have no effect on single-
particle distributions. Therefore the function G( ﬂ 7¢ Eqg. (2.13) should
not be affected by our choice for q(MF). This leads us to a redefinition of
the function F( A’(Xi(q]i))' Denoting by Q(MF):=§( N )}Kf?i)) the decay

chain multiplicity function

(M, - %(x,&F CA{(S,¢])= 9 MF(S;VZ) — e (2.20)
p

in case 1) 2?(5,"]) = q(i)(sl,‘,}) = qo [M ,'7) \] (2.21)

(

P

the new velocity weight function becomes

IA:(K,)@ (”}:)) = F.(A,}) —LZ((: }) (2.23)

In case i) it is

[Mc MC(K =) - ™
MQ(%(}—WZ-—A)Y—M]

(2.24)

!%(x,?ﬁ_(w)i)) - FO)

which for high enough s 1is

: O Ye (7)) ~ F(A,%)[’E‘CW“ | ?(1‘4)} _ (2.25)



In case ii) it is

M (7= 177 ) e,
e fo {3 r =72 - o |

(2.26)

ﬁ(x,wt - FOup)

2.3 Single—=particle spectra for through—going particles

Diffractively produced fireballs of low mass (resonahces or particles

produced via diffraction dissociation) can lead to leading (through—going)

particles.

In the TM the spegtrum of a through—-going particle 1 is given by
13

several contributions
3, %
o dA*N°  d'N
3% g % 42 =
TR dyTdp,

, the most important of which is

e/ f(E T(Mp) (2-27)

Ny (T (M)

A
NN
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where NI(T(MF)) is given in Ref. 13). The decay chain multiplicity function

is q( %,’Xi) =1 1in this case. The function FO( >\, }Q is parametrized

as 2)

2 h\}{i\ = N QXP (’0 U\l) | b=478 (2.28)

As in Section 2.1, Eq. (2.12), the spectrum can be obtained in rapidity

formulation with a function GO(N],41i) defined as

EJNW:X . Q(L (2.29)
I(MF()\l 1—)> dq/,

Go('q, ni) has two maxima in the fragmentation region near '7+ and o]_.

C(ﬁo(w],V[Q - N
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2,4 The asymptotic behaviour of the thermodynamic

single-particle spectra

The asymptotic behaviour of single-particle spectra for newly produced
particles, as well as for through-going particles, has been discussed in
Ref. 2), 4) and 5). It has been shown that the TM leads to -

~ scaling behaviour and limiting fragmentation at high s;
- a non—vanishing central plateau in the rapidity; and

- that the asymptotic value of the spectra at small x is reached

5)

from below .

The model gives a fair understanding 4)-6) of the deviations from scaling at
presently available energy which have been detected between 3.7 and 1500 GeV/c7)°
Furthermore, it has been shown 2)-4)’6) that G( 7, 7i) is a universal function

with respeéct to
- the energy dependence between 3.7 and 1500 GeV/c; _énd
- the kind of primary and secondary hadrons in the collision.

It follows from this behaviour that the multiplicity grows asyﬁptotically like
gns for newly produced particles and remains constant for through=going

particles giving the asymptotic result

> ~ /&/\S‘ + 2 - . (2.30)

INCLUSIVE TWO—PARTICLE DISTRIBUTIONS AND CORRELATIONS
ACCORDING TO THE THERMODYNAMIC MODEL

3.1 Definitions

The invariant distribution for single=particle production is
3
3" * *
[y - A - E Ao
= Y 3 %
_ P O(P et A P
The stars denote the quantities in the c.m.s. The two—-particle distribution

@ . x d°NT p s . de
( 4* pr) = E; E; = E; E 3 .
-F P IP?_) d%n*dsr): Orimel 2 d3P4*0( P: (3.2)

(3.1)

is




' For convenience, we define furthermore the correlation functions 14)

Q(QZF? = -F(q) (r)’*) (3.3)

? (an—’ P:-x-) _ F(?—)(Ia:,‘l ';)-;*) . Q(")(r_);*) Q(‘Y)q:’;*) (3.4).

(2)(3* 3%) 15 the + ticl lation functi The fully i
Q PysP, is e two-particle correlation function. e fully integrated

single=particle distribution is

L e (B (e,
/R =F Eg‘EE']C(P)Ef_P—Q (P)E<n~> (3.5)

= P

which‘is by definition equal to the average multiplicity <wn>. The fully

integrated two-particle distribution is

: . 0{3 ,‘*- 0(3:- () x>y
F”=R§ EJ; P f

Ez,,. ( 2 ) [ 2 (3.6)
<"‘~,;(’V\»i -1)> ‘For identical P(Lr\Lic/es 7“"”(2(3.750
4 n,; %J. > -Fyr mow- (dentical fal’(’"des 4“’40/2(3.7]3)

i - The fully integrated two-particle correlation is

Cm e 3¢ 43 %
. : (1) dre' d Pz (2) e
_ 72 ‘H Er £ (e, p.

(3.8)

<, (m;-1)> — dm.i>z -Fn idetical particles ”alaa/2(3.9a)

<%i /nJ > - <44.1. ><’nj> 'F"" mou - 1oentca | (3.9b)
parficles 7 awol 2

.For identical particles R(2) is related to the dispersion of the multiplicity

~distribution



2

2® = D - szm> (3.10)
Due to
o " * 13 *
__EI;_ = O(j o P-L - ‘"_0(\\] G(PJ_Z (3.11)

it is convenient to study correlations starting with the rapidity formulation.

We call

(2

2 (2)
C s ey = o, d 5 g
G5 y2) =) Pd P, S (BT Pe
) q 1,
the two—particle rapidity correlation function.

3.2 Mechanisms for two—particle production

in the thermodynamic model

We consider a multiperipheral thermodynamic model &) in which particle
clusters are produced along a multiperipheral chain via Pomeron and/or Regge
exchange. We do not specify the internal cluster variables but consider the
clusters as fireballs. Their decay properties are described by statistical
thermodynamics T ’13). The average number <nF> of the produced fireballs
is a function of s and depends furthermore on the parameters MC and w
in (2.21) and (2.22). Our parametrizations (2.20) to (2.25) allow to compute
from kinematics and the normalization of F(,X, Xi)’ Eq. (2 9), the average

number of fireballs <nF> as function of s .

At sufficiently high s, such that two or more fireballs are produced,

. . . . . . . (2 Sy Ox
the following mechanisms contribute to the two=particle distribution f (p1,p2

i) particles 1 and 2 emerge from the same fireball;

ii) particles 1 and 2 emerge from different fireballs.

We denote by D a light fireball (or resonance ) with such quantum
numbers that it can be produced diffractively. Furthermore we use the index

F for a heavy fireball which can be produced diffractively or by other

(2)(ﬁ* %

mechanisms. Then we have the following contributions to PysPy

*)

An approach to determine <n_> from the DEM was described by
K, Gottfried and O. Kofoed=Hansen, CERN preprint TH.1514 (1972)



) ) ) _,
- according to 1) g P Pz) (3.12)

. . x ox . ox @ oy X
- according to ii) 'FFF(P r) ) AFF-D r’Uﬁ-) +‘(])]) (PAIFL) (3.13)

From this we derive the fully integrated two-particle distribution

—(D @ 2 (€D [€))
e N S T (3.14)

F EF

The two-=particle correlation is

@ Ay -’* ”*
Q) RN A
(7J -4 2%

+\CFF(P + gpp(ﬁ* PJ 1C:DD(,\{)A ’}3:5 (3.15)

- ¢ ¢ )
The fully integrated two-particle correlation for identical particles is

R(l) _ <M(M—4)>F
tmm=-N>_ +<M(M_4)>Fbﬁ_ m (M_4>%D(3.16)
—<m>"

For non—identical particles a similar expression with (3.9b) results.

. . . . . (2) % %
In the following we write down the various contributions to (pq, )
we obtain F(2) and discuss the high energy behaviour of F(z) and R(Q)

3.3 One fireball contribution

The two particles 1 and 2 emerge from a fireball statistically uncondi-
tional (uncorrelated) as long as the fireball is heavy enough such that energy,
momentum, charge, strangeness conservation, etc., always remain satisfied
without taking the kinematic limits imposed by the conservation laws into

account explicitly.
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In the rest frame of the decaying fireball with temperature T(MF) =T(x)

the two-particle spectrum is

d(o N,:z_ 2 R
W = 9 (K;/Xt) % (E,,’,T(M,Q) -F?_( Ez’ 'T(Mp» (3.17)

In the c.m.s. the two—particle spectrum due to the superposition of fireballs
moving with velocity XN is

o(éN* . 0(6/\/1:,;

12, F

E'E, & —m=r —
d pfd P dyfo(:,jo(mo( h.

~ (2n)°

-

| (3.18)
V B2e)\on Fl 7)q (A 2{ [E E 7f(ffq',’l’(;\)) {Z(s;,m\)]

All symbols have been explained already in Section 2. As in Section 2.1, the
rapidities y:(' and yz of particles 1 and 2 in the com.s. as well as the
fireball rapidity Eﬂqs (2.6) and (2 7[] can be introduced. As before,
we neglect the 41 in f (E1,T(>\)) and f (E ,T( N\)). We introduce the
rapidity weight function G( ’7 17:!: of Eq. (2 13) and the function q(7 7i
of Egs. (2.21) and (2.22). Then we have

2

AN . Vo2, 0{ c
] = (
e, T GO ) 91 G017

A (3.19)

' cosL(\jl “p exra( (77) OOSL(jt “7))

1= =1,2
Extending the piJ_ integrations (i=1,2) to infinity, we obtain the
rapidity distribution .-7
() AENY V2,2,
Ce (45, = =25 — dn G ( (
E
bode o(ufoly* ) 7@77 977’

- :  (3.20)

cosL(f{?—")))
cosl (
.’qu ’ j 7> I( T("),")t)




Here we have abbreviated

00
NPT
A‘ h J FZL,fdi -
2z .21
—-WH@AA Z-W“i + Z’,Mii + 4 (3 )
where /41 and m, are related by (2.6).
The one-=fireball contrlbutlon F(z) to the fully integrated two-
particle distribution F is obtalned by threefold integration
*» mayx *W&X
Ja
()
2, C{ C{ (
= L Ay | Ay 7 g( 7)6{
o (g'r" ) 7'7“
*max * max -
Y2 - (3.22)

I * T cosL(j,:-‘“’])'
'il,z wSL(t{i~v> l< T(7f17t> /\

The kinematic limits are

¥ max | COSL_A S +m:— ('maf-’mb+ mi)
3 = Zou V5 (5.25)

3
~ /é‘“ (3.24)

3.4 The two=fireball contribution

Here we consider the case that the two particles 1 and 2 emerge from
two different fireballs moving with )W and AZ’ respectively. The two-—

particle distribution in the com.s. is 4

déN: FF _ Log(me=1)D VZ%WZL Sc[)\4 Ar, F(n ?f)
dy oy, ol Puolpu Lomg>" <Z7’>6—4 }

Fo @ dou el o, WL E 0]
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The factor
(MF(%¢‘4)>

i (5.26)

gives the probability of simultaneous production of two fireballs. If only
one fireball is produced, due to this factor, this contribution to the two—

particle distribution vanishes, as it should do.

Introducing the rapidities 4 and 72 of the two fireballs and
their rapidity functions G( is ’vi (i=1,2) given in Eq. (2.12) similarly

as was done in Eg. (%.19) we have
4N, (np-1>  V° o
12 ) FlMe c{¢11 6(71,6;(74/1h)

_’17- _;7—

dy dyrolp dp, (me>t (2

q(7zz7r) W—hcogL(j; > eXF (- _—,7-_77_ cocl. (}1 _7>3-27)

Multiplying the integrand by a factor D-exp(—a,‘%- 72|2i] would avoid the
two fireballs being produced with equal rapidities and would therefore work
the same way as the factor (3.26). Apart from the factor H the integral
(3.27) is equal to the product of the two single-particle distributions of

particles 1 and 2.

Integrating (3.27) over y?, yz, W1 and '72 gives the contri-

bution F<2) to the two=particle distribution.

FF
(2)

can be computed as in (3 27) with one of the functions G( ﬂ]}

to the total two=particle distribution F(z)
"Zi) (i=1 or 2)

replaced by G ( 7 7 )y Eq. (2.29), as stated in Section 2.3, and putting

The contribution F

H=1, This term gives the correlation between a leading and a non-leading

particle.

The correlation between two leading particles is given by Fg%). It

is obtained like in (3.27) with both functions G( i ﬂ:), (i=1 and 2),
replaced by the functions G ( 7 i>’ (i=1 and 2) and with H=1. 1In
this case the y1 1ntegrat10n extends only from = ?_ to zero and the y;

integration extends from zero to 7+.
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4. THE ASYMPTOT IC BEHAVIOUR OF THE TWO-PARTICLE
DISTRIBUTIONS AND CORRELATION FUNCTIONS

We discuss the one fireball contribution and the two fireball contri~

butions for the choices i) and ii) of a(s,'7), Egs. (2.21) and (2.22).

4.1 The one—fireball contribution

p

Case i) Eq. (2.21) :

With this function §(1>(M ) and with the expression (2.16) for G 7, 7i)

the two-partlcle rapidity distribution is

2 * ,74.

ANy
C (34.32) —-——‘——0( ol —3- o exp( a exp(=In-p.l))

(4.1)
(1= 22 sim ) " Teosl gty [ (ot i)
(-5 st T Tl LB
iD=B-C-(€:>W
—B=Bﬂz—z~—q—°—M (4.2)

(gT'L>L e

with C given in (2.17). We substitute
*_
W P
* _ * *___ — *
= wl:j?’ I P pN P (4.3)

and

For |ﬂ1[ < W]Li’ where W]Li were defined in (2. 18a), i.e., away from

the fragmentation region, it can be shown that in good approximation the

(/l _ zva?uo s|\ML¢]> ~

expression

(4.4)

holds. Furthermore, for l nl < W]Li we have IW-jil large enough such
that
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xp <‘“"Y’(““1‘“1J)> x A | (4.5)
We approximate further
T(s) — To
and neglect the contribution to the integrand from the fragmentation region,
”"l L+ < W‘ < WL_
and
— < < - .
N’“ Wl q‘L.
We ‘then have "
- *
(2) m-f I “‘14 +P\W .
x ;
CF (j“jz"> =Dg o(r) e : cosL(—PB CogL(Aj—P>

s  (4.6)

.' I(CO% P) l“<cosL (_;it!*“ P)>

(¢

Introducing for I(A) the expression (5.21) and using equalimassesfvfor
particles 1 and 2, my =m,=m .we obtain |
Iy]L-p“j: \'
% - ol -2 feoskp ecor 6§
* . | = Jcos +Cosla (A~
Oty yn =Dt w) dpoppiypl Fetpeekisy
¥
'wh_.”j« o o :

(4.7)

—_— - 2

' T N 21 y (o N 2T
(4 " coshp ml(:ostlra " moosL(Aj*- b) mest(A:f*-P))

The integrand strongly decreases with increasing 'p and the value p=0

dominates the whole integral. We can estimate

@) - |34"‘l w o - % cosl Af

CF (34*; tff) = Lf"“v_‘:l:DQ e ap (4.8)

with some Ap. F§\2> is obtained by integration over y’f and Ay*.

The integral over d(Ay* is dominated by Ay¥=0 and the yfl(' integral

can be written as



*
14 e
S —» X «
. Yalw |
_—
Z d}h 2 COWGt. “ZU“ W=0
S —
o
The only s dependence of F§,2) remains in D

()
E

F

c

rs\" /
= BC Cokc',w(- o + Cou;i
and therefore

F(L) ~ (YE)W + conet.

F

In particular, for w=1

(2)
F:F ~ E + C,O\/\’—JH

15)

holds, as is found in the DEM of Hwa and Lam .

For w=0 we find

ly]l..-o-
F:—\ ~ CO'AQ'I‘. J 0(:14* = COMQL(“’)L +“]
-‘V'L- *

and because of "]L+ ~ fns, it is

L-

@

E

= <m (m—1) >F ~ conet. fun s

Case ii) Eq. (2.22) : q(ii)(s"t?) = o M. (&4 rs l“]')

With this function q(ii>(s,'V,) and G("), wh) of BEq. (2.16) the two-

particle rapidity distribution is

)N Coust. ZW\L+

(4.10)

(4.11)

(4.12)

(4.13)



C(z}(\j,‘*, })J) _ j ’\;1; Foo_ ’ECJ(d'V, QXP(‘Q""\*"’IL_‘
i -

(4.14)

* —cos(& )
sk - 19) T ek ] s

A— 2,

S

1=1L

Using the same method as in case i), we obtain from (4.14) the asymptotic

(2)
F

(2)
FF = <M(M~">>F % /é\/\zs - (4.15)

behaviour of F as

4.2 The two—=fireball contribution

In Section 3.4, it was shown that the two~fireball contribution
(2 (p1,5 ) to the two-particle distribution f(z)(Sf,Ez is equal to the
product of the single-particle distributions for particles 1 and 2, besides

the factor H=<<nF(nF—1)>/<nF>Z. Therefore, its asymptotic behaviour is

() 5
FFF ~<M(m-4>>n ~ Ho42s (4.16)
Producing tireballs with a finite average mass independent of rapidity
and primary energy [;ur case i) with w:(ﬂ along a multiperipheral chain
leads to the same prediction for the multiplicity <n>~ 4ns and <n(n—1)> ~
~ znzs as the MPM *). So we find the MPM and DEM as two llmltlng cases of a
thermodynamic model with the decay multiplicity functiow ( (s 4}), Eq. (2 21)

with w=0 and w=1.

#(2)

Similarly to Fp 0 @S discussed in Section 3.4, the terms (2)(p1,p2)
and fDD 1,p *) factorize. They contain the contributions of one or two
leading particles, respectivelyg to the two-particle spectrum. According to
Section 4.1, the integration over the distribution of the produced particle
leads to ~gns. The integral of the distribution of the through-going
particle is 1. Therefore we have

(2)

FDF voms (4.17)
and
F(z) ~  Coust. (4.18)
2D
*) (2)~J£ d t cel-
A MPM with factorized Pomeron chhange gives ns ue to,can

lations in <n(n-1)> and <n>". A general MPM would lead to R 2) ~ 4n°%s.
We thank Dr. A. Bassetto for pointing this out to us.
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In the Table, we collect our results on the asymptotic behaviour of
(2)

the various contributions to the inteﬁrated two-particle distribution F

and the two—particle correlation R(2 .

INTEGRATED TWO—PARTICLE DISTRIBUTION AND CORRELATION

AT FINITE ENERGY

We have computed the fully integrated single-particle distribution

R(1) = «n> and the one and two-fireball contributions ng) and Féi) to
the integrated two~particle distribution R(z) = <n(n—1)> for negative

pions produced in. K+p collisions. In this computation we have only used

asymptotic kinematics for the integrations (extending the P, integral

p
from O fo aﬁ and by the fachthat we have treated the fireballs as rather
heavy objects, for which energy and momentum conservation will not very
stringently change the spectrum of one or two irradiated pions, in the sense
discussed in Section 3.3. In this computation of R(1) and R(Z) we have
included the fragmentation region and we also have used the actual fireball

temperature rather than to put ,T—*TO.

(2)

In Fig. 1 we show the one-fireball contribution FF as a function
of /s for the decay chain multiplicity function q(i)( “,s) with w=0, ¥
and 1, Eq. (2.21). Already at finite Js, at the beginning of the ISR energy
region we find the asymptotic behaviour listed in the Table shown by our

numerical computation. In this computation we have used Mb==4 GeV.

From Egs. (2.9), (2.20) and (2.25), we have computed the average number
<nF> of the fireballs produced as a function of v@ for our various choices
of a(s, ) and for Mb:=2,5 and 4 GeV. As can be seen from Fig. 2, even for
constant fireball mass M_=M_ =2 GeV only at c.m.s. energies of 20 GeV there

F C
are in all collisions two or more fireballs produced. At ~15 to 20 GeV/c,

p
lab
we have even in this case (W%::Q GeV) less than 25% of two=fireball production.
For larger MC and for other choices of @(s,’?), where the fireball mass MF
is growing with energy, the number of fireballs produced is increasing much

slower.

In distinction to the Nova model 16) where the novas only are produced
diffractively, we also allow the fireballs to be produced via quantum number
exchange. Therefore we do not expect any problem with neutron production,

which arises in the Nova model 17 .
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r(2)

pions produced in collisions of two positive initial particles versus the

In Fig. 3 we plot the two—-particle correlation for all negative

multiplicity of the negative pions, <n >. We compare with data on jr+p

and pp collisions, as collected by Biazas et al. 18). At low <n > or low

2)

s our calculation gives negative R( , 1in agreement with the data. Two of

(2) , w/2

+const.£n2s show the change
of sign of R(z), as seems to be required by the data, although the errors

our choices @ * with w>0 giving F
are very large. The solution with g * w=0, that is constant fireball mass,
seems to be unfavoured by the data. This is the solution which gives R(z) in

agreement with the MPM.

Certainly, to draw more definite conclusions, better experimental data
as well as a theoretical calculation taking into account all kinematic limits

due to the finite mass of the fireballs are needed.

(2)

can be computed. It shows again a negative behaviour for small <n> and

Similarly as in Fig. 3, the correlation R of all charged particles

small ,/s and later changes sign.
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FIGURE CAPTIONS

Figure 1 :

Figure 2

Figure 3 @

The contribution F§2>

fireball F +to the integrated two-particle distribution

of two particles emerging from one

plotted versus the c.m.s. energy ./S for the decay chain

multiplicity function
() 9 s —I«,l ¥
= = ° — €.
q (5/47) "MP Mc{MC )

for w=0, &, and 1. The parameter M, is 4 GeV.

The average number <nF> of fireballs produced as obtained
from Egs. (2.9) and (2.20) to (2.25) plotted as a function of
the c.m.s. energy /s and the parameter MC==2, % and 4 GeV.
The decay chain multiplicity function used is
(2) 9o s =\
me MC

for w=0, % and 1.

The correlation function R(2>==<n_(ng—1)>- for Jf-Jf_
produced in collisions of two positively charged hadrons
plotted versus R ! =<n_> which is ~4ns. The computation
was done for K+p initial state with the decay chain multi-
plicity function
) 9% (YE A
C

96 = M1 ©

w=0, + and 1. We compare with the data of 7p and pp

into T J  compiled by Bia*as et al. 18).



ADDENDUM

19)%)

at NAL at 205 GeV/c became known. Their results are <n > = 2.82 + 0,81 and

(2) 2

R(_> = <n_ (n -1)>~ <n > =0.95 £ 0.21. 1In our Figure 3 these data lie half-

Since this paper was written, the measurement of G. Carleton et al.

way between our curves with w=1 and w-z, thus suggesting that the actual

mass of the fireballs increases with energy like MFA“M ( s “ﬂ % <w<1.

* X ¥ X ¥

19) G. Carleton, Y. Cho, M. Derrick, R. Engelmann, T. Fields, L. Hyman,
K. Jaeger, U. Mehtani, B. Musgrave, Y. Oren, D. Rhines, P. Schreiner,
H., Yuta, L. Voyvodic, R. Walker, J. Whitmore, H.B. Crawley,
7. Ming Ma and R.G. Glasser, "Charged particle multiplicity distri-
bution from 200 GeV pp interactions", NAL preprint (1972).

*) We thank Drs. D. Horn and M. Kugler for making this paper available
to us.
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