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der the chiral symmetry. In the literature, the non-anomaly
flavor-mixing due to the mismatched vector interactions in
the vacuum has been discussed in Ref. [28] based on a three-
flavor NJL model. We extend such a work to finite T and µ
to study the e↵ect of the non-anomaly flavor-mixing on the
chiral transition with isospin asymmetry.

II. EXTENDED NJL-TYPE MODEL WITH
MISMATCHED VECTOR INTERACTIONS

A. The general four-quark interaction model with
mismatched vector interactions under the chiral symmetry

We start with the following Lagrangian of four-quark inter-
action model for two-flavor QCD

L(4) = L(4)
sym +L(4)

det, (1)

with

L(4)
sym = gs1

3X

a=0

[( ̄⌧a )2 + ( ̄⌧ai�5 )2]

� gv2

3X

a=0

[( ̄⌧a�µ )2 + ( ̄⌧a�µ�5 )2]

� gv3[( ̄⌧0�µ )2 + ( ̄⌧0�µ�5 )2]

� gv4[( ̄⌧0�µ )2 � ( ̄⌧0�µ�5 )2], (2)

and

L(4)
det = gs2{det[ ̄(1 � �5) ] + h.c.}
= gs2[( ̄ )2 � ( ̄~⌧ )2 � ( ̄i�5 )2 + ( ̄~⌧i�5 )2], (3)

where ⌧0, and ~⌧ refer to the unit matrix and Pauli matrices
in the flavor space, respectively. The former term L(4)

sym in
(1) is the general Fierz-invariant form of the four-quark inter-
actions in color-singlet channels which respecting the global
flavor symmetries of S U(2)V⌦S U(2)A⌦U(1)V⌦U(1)A [29].
The latter one L(4)

det is the KMT interaction induced by the
gauge configurations of instanton and anti-instanton [19, 20],
which only possesses the S U(2)V⌦S U(2)A⌦U(1)V global fla-
vor symmetries.

As mentioned, we will focus on the flavor-mixing arising
from the mismatched vector interactions at finite density. We
see that three of four independent coupling constants in L(4)

sym
are related to the vector and axial vector interactions. Gen-
erally, the nozero sum gv3 + gv4 implies that the vector cou-
pling strength in the isovector channel is di↵erent from that
in the isoscalar one. Similarly, the non-vanishing gv3 � gv4
indicates the axial-vector interactions are also mismatched in
the isovector and isoscalar channels. How the vector cou-
pling di↵erence gives rise to the non-anomaly flavor-mixing
at finite density will be detailed in next section.

The axial-vector interaction may be responsible for the de-
viation of the chiral magnetic e↵ect in the recent lattice cal-
culation compared to the analytic formula, as proposed in
Ref. [30]. Here we mainly study the chiral phase transition in

the MFA, the axial-vector interactions in Lagrangian (1) will
be ignored. Thus we only consider the the following e↵ective
Lagrangian,

L(4)
e↵ = gs1

3X

a=0

[( ̄⌧a )2 + ( ̄⌧ai�5 )2]

+ gs2[( ̄ )2 � ( ̄~⌧ )2 � ( ̄i�5 )2 + ( ̄~⌧i�5 )2]

� gs
v( ̄�µ )2 � gv

v( ̄~⌧�µ )2, (4)

where the independent coupling constants are reduced to four.

B. Unequal vector coupling constants in the mean field
Hartree-Fork approximation

Here we stress that the vector coupling di↵erence in the
MFA can also arise from a very popular version of the NJL
model [29],

L(4) = gs1

3X

a=0

[( ̄⌧a )2 + ( ̄⌧ai�5 )2]

+ gs2[( ̄ )2 � ( ̄~⌧ )2 � ( ̄i�5 )2 + ( ̄~⌧i�5 )2]

� gv

3X

a=0

[( ̄⌧a�µ )2 + ( ̄⌧a�µ�5 )2], (5)

in which only one vector coupling gv is adopted. In the
Hartree approximation, there is no di↵erence between the
coupling strengths of the two vector interactions at the mean
field level for Lagrangian (5).

However, the e↵ective vector couplings (in the sense of
direct interaction) in the isoscalar and isovector channels will
di↵er from each other if the Fock contribution is also consid-
ered. For a four-fermion interaction, the Fock contribution
can be easily evaluated according to its Fierz transformation
[29]. Taking into account the exchange terms, the e↵ective
direct four-quark interactions of the Lagrangian (5) take the
following form

L(4)
e↵-direct = L(4) +L(4)

Fock

= (gs1 + gs2 +
gs2

2Nc
)[( ̄ )2 + ( ̄i�5~⌧ )2]

+ (gs1 � gs2 �
gs2

2Nc
)[( ̄~⌧ )2 + ( ̄i�5 )2]

� gv

3X

a=0

[( ̄⌧a�µ )2 + ( ̄⌧a�µ�5 )2]

� (
gv

Nc
+

1
2

gs1

Nc
)( ̄⌧0�µ )2

� (
gv

Nc
� 1

2
gs1

Nc
)( ̄⌧0�µ�5 )2, (6)

where Nc is the color number of the quarks. The e↵ective
Lagrangian (6) clearly shows that the exchange terms give
rise to the vector coupling di↵erence in the Hartree-Fock ap-
proximation (HFA), which is at the order of O(1/Nc) com-
pared to gs1 and gv. Note that the similar result in a three-
flavor NJL model has been given in [28].

S20511-2
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If both gv and gs1 in (5) originate from the color current-
current interaction g( ̄�µ�a

c )2, they fulfill the relation gv =
gs1/2 according to the Fierz transformation. In this case, the
vector coupling di↵erence shown in (6) becomes

�gv = gs
v � gv

v =
2

Nc
gv =

gs1

Nc
. (7)

This equation indicates that gs
v in (4) may be larger than gv

v
and their di↵erence is considerable compared to gv or gs1 for
Nc = 3.

C. Constraints on the vector interactions from the lattice
chiral curvatures

Even Eq. (7) implies that the coupling gv
v is weaker than gs

v,
it is also possible that gv

v may be stronger than gs
v. This can be

understood from the curvature di↵erence for the chiral phase
transition at finite baryon and isospin chemical potentials ob-
tained in recent lattice calculations [31].

For small baryon and isospin densities, the chemical
potential dependence of the pseudo-critical temperature for
the chiral crossover can be expressed as

Tc(µq, µi) = Tc + Aqµ
2
q + Biµ

2
i + O(µ4

q/i, µ
2
qµ

2
i ) , (8)

where Tc is the chiral pseudo-critical temperature at zero
quark chemical potential (In this subsection, µq and µi are
used to refer to the quark baryon and isospin chemical poten-
tials, respectively). Notice that Tc(µq, µi) is an even function
of µq/i [32]. So at the order of µ2

q/i, we can expand Tc(µ2
q/i) as

Tc(µ2
q/i) = Tc(1 � q/i

µ2
q/i

T 2
c

), (9)

where the two chiral curvatures are defined as

q/i = �Tc
dTc(µ2)

dµ2
q/i

|µ=0. (10)

The lattice QCD simulation in [31] suggests that the curva-
ture q is about 10% greater than i.

Recently, the role of gs
v on the determination of q has been

studied in a Polyakov-loop enhanced three-flavor NJL model
[22]. It is found that q decreases with gs

v and to reproduce the
lattice q the gs

v must keep relatively larger value compared to
gs. The authors of Ref. [22] then propose the lattice q can be
used as a useful constraint on gs

v.
We can directly extend this idea to determine i by replac-

ing µq with µi. As will be demonstrated in the next section,
the coupling gv

v influences the curvature i in the similar way
as gs

v does on q. In particular, i and q obtained at the
MFA of the two-flavor NJL model will take the same value
for gv

v = gs
v. In other words, the lattice curvature di↵erence

between i and q can be regarded as an useful evidence for
the unequal vector coupling strengths.

Since the two-flavor lattice calculation in [31] indicates that
i is less than q, we thus infer that gv

v may be larger than

gs
v near the chiral phase boundary for zero and small quark

chemical potential. Following the spirit of Ref. [22], our nu-
merical study suggests that gv

v is about 10% larger than gs
v near

Tc according to the lattice curvatures in [31]. Note that this
conclusion is quite di↵erent from the estimation given in (7).

D. Constraints on the vector interactions from the couplings
of vector mesons to nucleons and lattice susceptibilities

In Ref. [33], it is argued that the ratio of the couplings of
! and ⇢ mesons to nucleons can be used as a constraint on
the vector coupling di↵erence. In the chirally broken phase,
the empirical value for this ratio is given by g!NN/g⇢NN ' 3,
whereas in the chirally symmetric phase it is expected to be
one. It is then proposed that the ratio gv

v/g
s
v is located in the

range from 1/3 to 1.
In addition, another quite similar estimation is given in

Ref. [34], where the vector coupling di↵erence is expressed
as the function of two susceptibilities �q and �I under some
assumptions. Using the lattice data for these susceptibilities
as input, it is found that gv

v is always less than gs
v: their dif-

ference is quite large below Tc which approaches zero rapidly
above Tc for zero chemical potential.

All the arguments given in the above subsections suggest
that the vector interactions are repulsive (namely, gs

v and gv
v

are all positive), but the relation between the gs
v and gv

v re-
mains uncertain. In the following study, gs

v and gv
v in (4) will

be treated as the free parameters due to these uncertainties.

III. VECTOR-INTERACTION INDUCED
FLAVOR-MIXING AND THE THERMAL DYNAMICAL

POTENTIAL AT FINITE BARYON AND ISOSPIN
CHEMICAL POTENTIALS

In this section, we shall demonstrate that the vector
coupling di↵erence can lead to non-anomaly flavor-mixing at
finite baryon and isospin densities.

The full Lagrangian of two-flavor NJL model with the
interaction (4) reads

L =  ̄
⇣
i@µ�µ + �0µ̂ � m̂0

⌘
 +L(4)

e↵ , (11)

where the quark chemical potentials are introduced and m̂0 =
diag(mu,md) is the current quark matrix. We shall adopt the
isospin symmetric quark masses with mu = md ⌘ m0. The
µ̂ in the Lagrangian (11) is the matrix of the quark chemical
potentials which takes form

µ̂ =
✓
µu
µd

◆
=
✓
µ � µI

µ + µI

◆
, (12)

with

µ =
µu + µd

2
=
µB

3
and µI =

µu � µd

2
=
�µ

2
. (13)

In (13), µB (µI) is the baryon (isospin) chemical potential.
Note that the definition of the isospin chemical potential in
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the quark level is di↵erent from that in the nucleon level. For
more details on the role of isospin symmetry energy in nu-
clear matter, the reader can refer to [35–38] and references
therein.

At finite densities, the quark chemical potentials are shifted
by the vector interactions. Here we use µ0 to denote the modi-
fied quark chemical potential. Note that the u quark density is
di↵erent from the d quark one under the isospin asymmetry.
The shifted quark chemical potentials take the form

µ0u(d) = µu(d) � 2gs
v(⇢u + ⇢d) � 2gv

v(⇢u(d) � ⇢d(u))

= µu(d) � 2(gs
v + gv

v)⇢u(d) � 2(gs
v � gv

v)⇢d(u), (14)

or

µ0 = µ � 2gs
v(⇢u + ⇢d), µ0I = µI � 2gv

v(⇢u � ⇢d) (15)

where

⇢u(d) = h †u(d) u(d)i, (16)

is the u (d) quark number density. Eq. (14) clearly shows
that due to the vector coupling di↵erence, not only ⇢u but
also ⇢d give contribution to the e↵ective chemical potential of
u quark, and vise versa. This implies that the flavor-mixing
arises due to the vector interaction. As mentioned, this mix-
ing has nothing to do with the axial anomaly. The modified
chemical potentials can also be rearranged as Eq. (15), which
indicates that µ and µI are shifted by the isoscalar and isovec-
tor vector interactions, respectively.

Formally, the non-anomaly flavor-mixing shown in (14)
for the modified chemical potentials is quite similar to
the anomaly flavor-mixing for the constituent quark masses
induced by the instantons, namely:

Mu(d) = m0 � 4gs1�u(d) � 4gs2�d(u), (17)

where

�u(d) = h ̄u(d) u(d)i, (18)

is the u (d) quark condensate.
Using the conventional technique, the mean field thermal

dynamical potential of the Lagrangian (11) is expressed as

⌦(T, µu, µd) =
X

f=u,d

⌦0(T, µ0 f ; Mf ) + 2gs1(�2
u + �

2
d) + 4gs2�u�d

� (gs
v + gv

v)(⇢2
u + ⇢

2
d) � 2(gs

v � gv
v)⇢u⇢d, (19)

where ⌦0(T, µ0 f ; Mf ) is the contribution of a quasi-particle
gas of the flavor f which takes the form

⌦0(T, µ0 f ; Mf ) =

� 2NcT
Z

d3 p
(2⇡)3

h
ln[1 + exp(�(E f � µ0 f )/T )]

+ ln[1 + exp(�(E f + µ
0

f )/T )]
i

� 2Nc

Z
d3 p

(2⇡)3 E f ✓(⇤2 � ~p2), (20)

with the quasi-particle energy E f =
q
~p2 + M2

f . The ⇤ in
Eq. (20) is the parameter of three-momentum cuto↵ in the
NJL model. We see that besides the modified chemical po-
tential µ0f , the flavor-mixing due to the vector coupling di↵er-
ence is also explicitly demonstrated in Eq. (19) via the direct
coupling between ⇢u and ⇢d.

Minimizing the thermal dynamical potential Eq. (19), the
motion equations for the mean fields �u, �d, ⇢u and ⇢d are
determined through the coupled equations

@⌦

@�u
= 0,

@⌦

@�d
= 0,

@⌦

@⇢u
= 0,

@⌦

@⇢d
= 0. (21)

This set of equations is then solved for the fields �u,
�d, ⇢u and ⇢d as functions of the temperature and chemical
potentials.

IV. FATE OF THE SEPARATE CHIRAL TRANSITIONS
WITH NON-ANOMALY FLAVOR-MIXING

As mentioned, the separate chiral transitions due to finite
µI [10, 11] can be removed by the flavor-mixing induced by
the axial anomaly [23]. Since the instanton density may be
suppressed significantly near the phase boundary, we revisit
this problem by taking into account the non-anomaly flavor-
mixing due to the mismatched vector interactions.

For comparison, we follow the notations in Ref. [23] and
introduce two parameters ↵ and gs which are defined as

gs1 = (1 � ↵)gs, gs2 = ↵gs, (22)

here ↵ means the ratio of the KMT interaction in the scalar-
pseudoscalar channel, which is treated as a free parameter
in the following calculations. The other model parameters,
namely the current quark mass m0, the scalar coupling con-
stant gs and the three-momentum cuto↵ ⇤ are all adopted
from [23].

A. Fate of separate chiral transitions under the weak isospin
asymmetry without the axial anomaly

The role of the mismatched vector interactions on the sepa-
ration of chiral transition at finite T -µ under the weak isospin
asymmetry is investigated by switching o↵ the KMT interac-
tion. We focus on whether the two critical endpoints found
previously could be ruled out by the non-anomaly flavor-
mixing without the help of the axial anomaly.

We first study the cases for gv
v > gs

v with a fixed small
coupling gs

v = 0.2gs under the weak isospin asymmetry
�µ = �20 MeV (The typical value of �µ in heavy ion colli-
sions may be within this range, as estimated in [23]) 3. The
T–µ phase diagrams for varied gv

v are shown in Fig. 1. For

3 Note that the µI defined in [23] corresponds to the �µ in our notations
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Fig. 1. (Color online) The T -µ phase diagrams for varied vector-
isovector coupling gv

v at �µ = �20 MeV without the axial anomaly.
The vector-isoscalar coupling gs

v is fixed as 0.2gs. The solid line
stands for the first-order chiral boundary.

gv
v = 2.0gs

v, Fig. 1(a) shows two separate first-order phase
boundaries, which correspond to the chiral transitions for the
u and d quarks, respectively. For gv

v = 0.6gs, Fig. 1(b) shows

that only one first-order chiral boundary emerges at the low
temperature, but it splits into two lines at the relatively higher
temperature. So there are still two critical endpoints. Fur-
ther increasing gv

v to 0.68gs, Fig. 1(c) displays that only one
phase boundary appears. So we really observe that the two
separate phase boundaries can be changed into one by the
non-anomaly flavor-mixing induced by the mismatched vec-
tor interactions.

The above calculation for �µ = �20 MeV is further ex-
tended to a fixed moderate coupling gs

v = 0.4gs. The phase
diagrams for varied gv

v with gv
v > gs

v are shown in Fig. 2, which
is still analogous to Fig. 1. In contrast to Fig. 1, a stronger gv

v
is required for the conversion of the two phase transitions into
one due to the enlarged gs

v. Fig. 2 also shows that the chiral
transition is first softened and then strengthened with gv

v. By
comparison, the chiral transition is always weakened with the
increase of gs

v.
So for the weak isospin asymmetry, Figs. 1 and 2 show

that the chiral transition separation can be removed by the
mismatched vector interactions, even without the instanton
induced flavor-mixing. Actually, all the two sets of phase di-
agrams in Figs. 1 and 2 are quite similar to Figs. 2 in Ref. [23]
obtained by changing the ↵. In this sense, the non-anomaly
flavor-mixing due to the vector coupling di↵erence plays the
similar role as the KMT interaction.

However, Figs. 1 and 2 indicate that gv
v must be much

stronger than gs
v for turning the two chiral transitions into one:

gv
v is at least twice as strong as gs

v to remove the separation.
Of course, the fate of the separate chiral transitions depends
on not only the vector coupling di↵erence, but also the mag-
nitudes of gv

v and gs
v. Here we do not show the results for

gv
v > gs

v with a fixed strong gs
v since in this case only crossover

transition appears.
On the contrary, we do not find the coincidence of the de-

tached phase boundaries for gv
v < gs

v. In Fig. 3, we show
the phase diagrams for �µ = �20 MeV with varied gs

v and
fixed coupling gv

v = 0.2gs. We see that the two separate phase
boundaries get farther rather than closer with the increase of
|�gv| for gv

v < gs
v, which is quite di↵erent from what shown in

Figs. 1 and 2.
The reason can be traced back to Eqs. (14) and (15). First,

according to Eq. (15), the |µ0I | is explicitly less than the |µI |
since the signs of µI and �2gv

v(⇢u � ⇢d) in µ0I are di↵erent for
gv

v > 0. So for gv
v > gs

v with a fixed gs
v, increasing gv

v implies
not only the enhancement of the flavor-mixing but also the
reduction of |µ0I |. This is why the two phase boundaries ap-
proach each other with gv

v, as shown in Figs. 1 and 2. Second,
near the left side of the right phase boundary, the ⇢d is remark-
ably larger than the ⇢u because of the significant suppression
of the d quark mass; but around the left side of the left phase
boundary, the di↵erence between the ⇢d and ⇢u is relatively
small. So for gs

v > gv
v, the flavor-mixing term �(gs

v � gv
v)⇢d

in µ0u impacts the right phase boundary more significantly in
contrast to what the corresponding term �(gs

v � gv
v)⇢u in µ0d

does on the left phase boundary, according to Eq. (14). This
is why the right phase boundary moves more rapidly towards
the higher µ with gs

v in contrast to the left one, as shown in
Fig. 3.
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Fig. 2. (Color online) The T -µ phase diagrams for varied vector-
isovector coupling gv

v at �µ = �20 MeV without the axial anomaly.
The vector-isoscalar coupling is fixed as gs

v = 0.4 (relative to the
scalar coupling gs). The solid line stands for the first-order chiral
boundary.

If gs
v or/and gv

v are strong enough, the first-order chiral tran-
sition will change into crossover and it would be no critical
point. Owning to vector interactions, it is possible that one
of the two phase boundaries first disappears while the other
one still remains with the change of vector interactions (In

(MeV)

(M
e
V

)

Fig. 3. (Color online) The T -µ phase diagrams for varied vector-
isoscalar coupling gs

v at �µ = �20 MeV. The vector-isovector cou-
pling is fixed as gv

v = 0.2 (relative to the scalar coupling gs). The
axial anomaly is ignored. All the lines stand for the first-order chiral
boundaries.

contrast, the two critical endpoints always appear at the same
temperature in Refs. [10, 11]). Such a case is really observed
in Fig. 3 for very strong vector interaction gs

v = 1.0gs. Actu-
ally, our numerical study suggests that the emergence of only
one critical endpoint via this manner does not require very
strong vector interaction when the weak KMT interaction is
included.

Here only the weak isospin asymmetry is considered be-
cause |µI | is small in heavy-ion collisions. On the other hand,
the quark matter may appear in the core of neutron star. In
such a case, the magnitude of the di↵erence between the u
and d quark chemical potentials may be as large as 100 MeV
due to the constraint of charge neutrality4. For the strong
isospin asymmetry with a relatively large |µI |, we find that
the separation of the chiral transition can not be removed by
the non-anomaly flavor-mixing without considering the axial
anomaly. However, the similar phase diagram as Fig. 3 is still
observed for a proper choice of gv

v and gs
v.

V. DISCUSSION AND CONCLUSION

We have studied the influence of vector interactions with
di↵erent coupling constants in the isoscalar and isovector
channels on the possible separation of the chiral transition un-
der the isospin asymmetry in a two-flavor NJL model, where
the U(1)A symmetry is assumed to be restored e↵ectively near
the phase boundary.

We first show that, besides the argument from the em-
pirically di↵erent nucleon and vector-meson couplings [33],

4 Note that in another case with |µI | > m⇡/2 and vanishing µ, the pion con-
densation emerges at zero and low tmeperatures[39–41]
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the one-gluon exchange type interaction can also give rise to
unequal vector interactions with gs

v > gv
v in the MFA when

including the Fock contribution. On the other hand, by ex-
tending the work [24] to finite µI , we obtain the quite di↵erent
vector coupling di↵erence with gs

v < gv
v from the constraints

of lattice chiral curvatures at zero/small quark chemical po-
tentials. We demonstrate that, similar to the mass-mixing
induced by the KMT interaction, the density-mixing of two
flavors is produced owning to the mismatched vector interac-
tions.

The role of the non-anomaly flavor-mixing on the chi-
ral phase transition is investigated under the condition with
weak isospin asymmetry. We find that to convert the two
separate chiral transitions into one, gv

v must be significantly

stronger than gs
v without the axial anomaly. In this situation,

the non-anomaly flavor-mixing induced by vector interactions
impacts the separation of chiral phase transitions in the sim-
ilar way as the anomaly one induced by instantons: the two
detached phase boundaries get closer first and then coincide
with the enhancement of the flavor-mixing.

Note that recently the Polyakov-Loop extended NJL model
has been extensively used to investigate the thermal and dense
properties of QCD. We stress that introducing the Polyakov-
Loop dynamics does not qualitatively change our main con-
clusions. In addition, our study can be directly extended to
the quark meson model of QCD by incorporating the quark-
vector-meson couplings. Especially, it is interesting to inves-
tigate the role of the non anomaly flavor-mixing on the possi-
ble quark-menson transition in neutron star [42].
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