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Abstract

This thesis focused on cosmological constraints. First, we investigated the prob-
lem of determining the fundamental causes of the universe’s accelerated expansion.
We studied how the presence of a non-zero dark energy anisotropic stress impacts
both the dark matter and dark energy perturbations, as well as Cosmic Microwave
Background (CMB) angular power spectrum. Second, we investigated the impact
of neglecting lensing convergence when analysing data from a EUCLID-like sur-
vey. We showed that neglecting lensing convergence when constraining neutrino
masses would lead to spurious detection of their absolute mass scale, thus hin-
dering one of the key goals of future surveys. Third, we developed a statistical
method using Bayesian hyper-parameters to measure the Hubble constant H0 with
available data. The method allows a comprehensive treatment of available data
sets with no need for arbitrary outlier rejection algorithms. Our best estimate of
H0 = 73.88 ± 2.16km s≠1 Mpc≠1 is in good agreement with previous direct measure-
ments, but it is slightly less precise. This can be understood since our method reveals
remaining inconsistencies among the data sets.
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Résumé

Le contenu de cette thèse a pour sujet les contraintes cosmologiques. Nous avons tout
d’abord étudié les causes fondamentales de l’accélération de l’expansion de l’univers.
Nous nous sommes interrogés sur les e�ets de la présence d’un stress méchanique
anisotrope dans les perturbations de matière et d’énergie sombres, de même que
dans les propriétés statistiques du fond cosmique des micro-ondes (Cosmic Microwave
Background). Dans un second temps, nous avons estimé l’importance toute parti-
culière de l’e�et de lentille gravitationnelle lorsque l’on analyse les données d’un
catalogue de galaxies tel que EUCLID. On a montré que négliger cet e�et dans
les contraintes cosmologiques de la masse de neutrinos aurait pour conséquence de
fausser les mesures de leur masse, empêchant ainsi une des résultats essentiels des fu-
turs catalogues de galaxies. Dans une troisième, nous avons développé une méthode
statistique qui emploie des hyperparamètres Bayesiens (Bayesian hyper-parameters)
afin de mesurer le paramètre Hubble H0 avec les données disponibles. Cette ap-
proche permet un traitement compréhensif des ensembles de données disponibles
sans l’utilisation d’algorithmes arbitraires pour le traitement de données aberrantes.
Notre meilleur mesure de H0 = 73.88 ± 2.16km s≠1 Mpc≠1 correspond parfaitement
avec les mesures précédentes. Néanmoins, elle a une incertitude plus grande. Ceci
s’explique par le fait que la méthode utilisée met en évidence des incohérences entre
les ensembles de données.
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Introduction

The 20th century gradually saw the emergence of the standard model of cosmology. A
linear relation between distances and recession velocities of galaxies [1], the observed
abundance of chemical elements in the universe [2–5], and the existence of the Cosmic
Microwave Background radiation (CMB) [5, 6] evidenced a dynamical rather than
static universe: the universe is expanding. Observations of type Ia supernovae in
1998 [7, 8] modified a “little bit” the picture, setting one of the most important
problems cosmologists will be addressing in the 21st century: the universe is not
only expanding, it is speeding up and cosmologists want to find out why.

The cosmological principle – the assumption that the universe at su�ciently large
scales is homogeneous and isotropic – is one of the cornerstones of the concordance
model of cosmology [9, 10]. If one assumes there is no charge asymmetry in the
universe [11], the only relevant interaction on large scales is gravity. In the vanilla
model of cosmology the gravitational interaction is described by Einstein’s General
Relativity. Solutions for Einstein’s field equations – that couple geometry to both
matter-energy and pressure – satisfying the cosmological principle are known the
since early 20th century [12–15]. In those solutions – the so-called FLRW metric
– the expansion of the universe is given by the scale factor a(t), a function which
depends on the cosmic time t and scales the distance between two given points as
the universe expands. The matter content in the standard model of cosmology is
only partially given by particles in the Standard Model (SM) of particle physics
(i.e., photons, electrons, and so on). The remaining matter, dubbed Cold Dark
Matter (CDM) because it only seems to interact with the baryonic matter through
gravity, is required, for instance, to fit observations of galaxy velocities in galaxy
clusters [16]. Finally, in order to describe the accelerated expansion of the universe,
the concordance model of cosmology reintroduces the cosmological constant � (first
introduced by Albert Einstein in the early 20th century). The standard model of
cosmology is thus named �CDM model.
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The universe is obviously not completely homogeneous since inhomogeneities exist,
such as galaxies and clusters of galaxies. Moreover, both the convergence of ob-
servations into a flat universe and the fact that the CMB appears to be incredibly
uniform in regions now still causally disconnected make the �CDM model an incom-
plete description of the universe. These three main di�culties of the standard model
of cosmology (i.e., structure formation, horizon, flatness) can be solved by adding
an inflationary epoch to the history of the universe [17]. In the simplest inflationary
scenarios the potential energy of a scalar field drives an exponential expansion in the
very early universe rendering the universe extremely flat very quickly (within about
10≠35 s). The universe would have evolved from a tiny patch (about 10≠26 m) where
regions that are today causally isolated were then in causal contact thus solving the
horizon problem of the standard model of cosmology. Perhaps most importantly,
inflationary models predict that quantum fluctuations of the scalar field in the early
stage of the universe would have seeded the density fluctuations we observe today in
the form of galaxies, galaxy clusters, and CMB fluctuations.

Over the past three decades cosmology has become more and more precise. Full sky
CMB experiments such as Cosmic Background Explorer (COBE) [18], Wilkinson Mi-
crowave Anisotropy Probe (WMAP) [19], and PLANCK satellite [20] have measured
CMB anisotropies in di�erent frequencies and on a wide range of angular scales thus
allowing a careful study of the predictions made by the inflationary �CDM model
and determine its parameters. The CMB spectrum matches incredibly well that of a
black body with temperature 2.7 K as predicted by the standard model [5]. By inves-
tigating CMB fluctuations cosmologists have been able to constrain to high accuracy
the curvature of the universe: it agrees very well with the flatness prediction of infla-
tionary models [21]. Although rather controversial, there is no compelling evidence
for significant deviations of the cosmological principle in the Planck CMB data [22].
Furthermore, current CMB experiments support the existence of dark matter and
also the accelerated expansion of the universe. Galaxy surveys such as Sloan Dig-
ital Sky Survey (SDSS) have also played an important role in testing cosmological
models [23, 24]. Partially mapping the distribution of mass in the universe, using
observations of ¥ 106 galaxies with mean red shift z ¥ 0.1, the SDSS collaboration
detected a baryon acoustic peak which is an imprint of the recombination-epoch
acoustic oscillations on the low-redshift clustering of matter [25]. This detection
confirms a prediction of the standard cosmological theory. Upcoming galaxy surveys
o�er thus an important complementary probe and will be key for testing cosmological
models in the near future, for instance to determine the neutrino mass.

The current concordance cosmological model, although both simple and a good fit
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for current data sets, lacks in fundamental grounds. On the one hand, it assumes
the existence of dark matter which thus far has not been directly observed; the only
known dark matter candidate being neutrinos. On the other hand, the cosmological
problem poses a serious conundrum for quantum field theory which is unable to ex-
plain the extremely tiny observed value of the vacuum energy. Numerous alternative
approaches to explain the accelerated expansion of the universe from first principles
have been proposed over past years. In one family of models evolving scalar fields
– easily found in fundamental theories of matter – have been used to model dark
energy as a fluid driving the late-time acceleration [26]. Another family of models
exploits the ambiguity of the cosmological constant in the Einstein field equations
and proposes that modifications of General Relativity – the theory of gravity in the
concordance model – could be the reason that accounts for the speeding up of the
universe [27]. Therefore although remarkable progress has been made on both the-
ory and observation, degeneracies at the model level1 remain and e�cient ways to
discriminate cosmological models are needed.

In Chapter 1 of this thesis Lukas Hollenstein, Martin Kunz and I have considered
one possibility for breaking degeneracies at the model level. Dark energy anisotropic
stress is a key feature as it allows to discriminate the standard dynamical dark energy
model – a scalar field minimally coupled to gravity– from the so-called modified
gravity models. In linear theory, the former class of models does not support any
anisotropic stress whereas models such as scalar-tensor and f(R) generically have
a non-zero anisotropic stress. We have adopted a phenomenological approach and
studied a model of anisotropic dark energy which encompasses both internally and
externally sourced anisotropic stress, that additionally allows for a scale dependence
[30]. In particular, we have investigated how the presence of a non-zero dark energy
anisotropic stress impacts both the dark matter and dark energy perturbations, as
well as CMB angular power spectrum. We found approximate solutions for both dark
matter and dark energy perturbations in some particular scenarios and constrained
dark energy anisotropic stress parameters with recent data sets.

Gleaning information about cosmological parameters from all the available data sets
will surely shed light on the shortcomings of the �CDM model. Indeed, upcom-
ing galaxy surveys such as Dark Energy Survey (DES), Dark Energy Spectroscopic
Instrument (DESI), Large Synoptic Survey Telescope (LSST), Physics of the Accel-

1The situation is even worse taking into account the number of inflationary scenarios which are
compatible with current observations. Although non-Gaussianity of CMB fluctuations was expected
to break the degeneracy in inflationary models, the 2015 Planck results [28, 29] showed that there
are still several inflationary models compatible with observations.
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erating Universe Survey (PAUS), and EUCLID will play a key role in understanding
the accelerated expansion of the universe and constrain the neutrino masses. The
coming of all this new data will require very careful analyses and appropriate mod-
elling of the statistical properties of the matter density field. In particular, since those
galaxy surveys will probe scales comparable to the horizon, analyses must properly
include relevant relativistic e�ects. In Chapter 2 of this thesis, Ruth Durrer, Martin
Kunz, Francesco Montanari and I have investigated the impact of neglecting lens-
ing convergence when analysing data from a EUCLID-like survey. We have shown
that neglecting lensing convergence when constraining neutrino masses, for instance,
would lead to spurious detection of their absolute mass scale, thus hindering one
of the key goals of future surveys [31]. Moreover, we found that since biases of
cosmological parameters in analyses neglecting lensing might reach several standard
deviations, the usual linear approximation in Fisher matrix formalisms breaks down,
therefore it might no longer be appropriate. We have then adopted a Markov Chain
Monte Carlo (MCMC) approach to yield reliable forecasts.

Reliable, accurate, model independent measurements of the Hubble constant H0 are
essential to understand the physics behind the phenomenologically successful �CDM
model. Accurate and precise determinations of H0 will make possible to put tighter
constraints on dark energy parameters – such as the equation of state for dark energy
w – and the mass of neutrinos. Although direct measurements of H0 have proven
to be di�cult (e.g., control of systematic errors, relatively small data sets, fully
consistency of di�erent methods for measuring distances), remarkable progress has
been achieved over past decades; improvements include an enlarged sample of SNe Ia
hosts having a Cepheid calibrated distance, reduction of uncertainties on anchor
distances, and increase of infra-red observations of Cepheid stars. All these e�orts
have yielded a direct H0 measurement almost as precise as the indirect determination
for the �CDM model derived by the Planck collaboration [21,32]. The group led by
Adam Riess has recently found a H0 value which is in about 3‡ disagreement with
that derived from CMB measurements [32]. The reasons underlying this tension are
unclear (e.g., remaining CMB systematics, issues with utilised statistical methods),
but if the disagreement is proved robust, it might signify new physics. In Chapter
3 of this thesis, Martin Kunz, Valeria Pettorino, and I have developed a statistical
method using Bayesian hyper-parameters to measure the Hubble constant with the
available data. The method allows a comprehensive treatment of the available data
sets with no need for arbitrary outlier rejection algorithms. Our measurement of H0
is slightly less precise than that by Riess et al. [32], but we understand this as a
result of inconsistencies in the data sets.

4
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Chapter 1

Traces of dark energy anisotropic
stress

1.1 Introduction

The last twenty years have witnessed a revolution in observational cosmology, with
an incredible growth of data available to cosmologists. When interpreted within the
cosmological standard model, one consequence of the observations is the need for an
accelerated expansion of the Universe. To drive this acceleration a new constituent
is required, called dark energy. The main candidate model for the dark energy is
the cosmological constant �, but this model su�ers from severe fine-tuning issues.
Even though cosmologists have been very active and have invented a large number
of other possible models, including modifications to general relativity as the theory
of gravity, none of them appear like natural candidates for the dark energy (see
e.g. [26, 27,33–36] for reviews).

The jury is therefore still out concerning the nature of the dark energy, and it may be
preferable to approach the problem from the observational side, by characterising the
possible observational consequences of the dark energy, and then investigating the
link between those and its physical nature. (See e.g. [37] for a short review, as well
as [38–42] for recent works on parameterised or e�ective action approaches.)

Useful quantities that are close to the observations are the functions that describe
the metric [39, 43–46]. If we only use quantities up to first order in perturbation
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theory, and keep only scalar perturbations, then the metric can be written as

gµ‹dxµdx‹ = a2
Ó
≠ (1 + 2Â) d÷2 + (1 ≠ 2„) ”ijdxidxj

Ô
, (1.1)

where we used the longitudinal gauge. The relevant quantities then are the scale
factor a(÷), or equivalently the Hubble parameter H(÷), and the two gravitational
potentials „(k, ÷) and Â(k, ÷). The evolution of the Hubble parameter is measured
by probes like the luminosity distance to type-Ia supernovae (SNe Ia) or the baryonic
acoustic oscillations (BAO). Possible probes of the gravitational potentials include
weak lensing which measures the integral of „ + Â, the motion of test particles
which is governed by Â or also the integrated Sachs-Wolfe (ISW) e�ect of the cosmic
microwave background (CMB) or the large-scale distribution of galaxies.

The standard dynamical dark energy model invokes an additional minimally coupled
scalar field, possibly with a non-canonical kinetic term. An important feature of
this class of models is that the scalar field does not support any anisotropic stress
in linear theory, i.e. the space-space part of its energy-momentum tensor has only a
trace contribution. So-called modified-gravity models, which include scalar-tensor,
f(R), brane-world and similar models, generically have a non-zero (e�ective) con-
tribution to the anisotropic stress. As a non-zero anisotropic stress manifests itself
through a gravitational slip, „ ”= Â, the e�ective anisotropic stress provides a crucial
observational test for the nature of the dark energy [47,48].

Much of the e�ort in the literature has so far focused on determining observa-
tional bounds on the background evolution, usually for scalar field models without
anisotropic stress (e.g. [26,34,36,49]). In this project we will investigate specifically
how a non-zero anisotropic stress impacts the dark energy and dark matter perturba-
tions, as well as the CMB. For this, we use phenomenological prescriptions that are
motivated by the typical behaviour of the anisotropic stress for a range of modified
gravity models. We focus on two model ingredients: externally and internally sourced
anisotropic stress which reflects a simplified version of a more general structure pro-
posed in [39]. The paper is structured as follows: in the next section we briefly
present the perturbation equations including anisotropic stress, which also serves to
define our notation, as well as our closure relations for the pressure perturbations
and the dark energy anisotropic stress. We then study the phenomenological impact
of the presence of a nonzero anisotropic stress in Section 1.3, before discussing obser-
vational constraints from the CMB and geometrical probes in Section 1.4. In Section
1.5 we relate the e�ect of the anisotropic stress to the ‘modified growth’ parameteri-
sations that are commonly used in the literature. We finally conclude in Section 1.6.
The appendices contain more detailed explanations for the stability analysis as well
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as some exact but cumbersome solutions of the perturbation evolution.

1.2 Models of anisotropic dark energy

1.2.1 Perturbation equations

We have already given the perturbed metric in longitudinal gauge in Eq. (1.1). A
prime will stand for the derivative w.r.t. conformal time, ÷, and H © aÕ/a = aH
is the comoving Hubble parameter while H is the physical Hubble parameter that
takes the value of the Hubble constant H0 today when a0 = 1. The continuity and
Euler equations for the dark energy perturbations read [50–52]

”Õ
de + 3 H

A
”Pde

flde

≠ w”de

B

+ (1 + w)kvde ≠ 3(1 + w)„Õ = 0 (1.2)

vÕ
de + H(1 ≠ 3c2

a)vde ≠ k

A

Â + ”Pde

(1 + w)flde

≠ 2fide

3(1 + w)

B

= 0 (1.3)

where the adiabatic sound speed is

c2
a © P Õ

de

flÕ
de

= w ≠ wÕ

3 H(1 + w) . (1.4)

The evolution equations for the dark matter are the same, but with wm = ”Pm =
fim = 0. Notice that in terms of the often used variable ‡ for the anisotropic stress [52]
we have that fi = (3/2)(1 + w) ‡.

In addition to these evolution equations we need the Einstein constraint equations
to compute the impact of the dark matter and dark energy perturbations on the
metric. For the scalar perturbations considered here, there are two independent
Einstein equations which we can take to be

≠k2„ = 4fiGa2 (flm�m + flde�de) , (1.5)
k2(„ ≠ Â) = 8fiGa2fldefide . (1.6)

Here we wrote the Poisson equation (1.5) directly in terms of the comoving density
perturbation � which is linked to the density perturbation in the longitudinal gauge
” by a gauge transformation, � = ” + 3 H(1 + w)v/k. In the equation for the slip
(1.6) we further used that fim = 0 (which is strictly speaking only true at first order
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in perturbation theory [53]). From the two equations (1.2) and (1.3) one can derive
a single second order evolution equation for ”de by solving the continuity equation
(1.2) for vde and substituting that (and its derivative) into the Euler equation (1.3).
We find

”ÕÕ
de + (1 ≠ 6w) H”Õ

de + 3 H
A

”Pde

flde

BÕ
+ 3

5
(1 ≠ 3w) H2 + HÕ

6 A
”Pde

flde

≠ w”de

B

≠ 3 HwÕ”de = 3(1 + w)
C

„ÕÕ +
A

1 ≠ 3w + wÕ

(1 + w) H
B

H„Õ
D

≠ k2
C

(1 + w)Â + ”Pde

flde

≠ 2
3fide

D

. (1.7)

To this point we did not make any assumptions on ”Pde, fide and w. However, already
the last term makes clear that k2fide acts as a source for ”de while the pressure
counteracts the gravitational collapse. ≠k2Â is also a source because Â = „ for
vanishing anisotropic stresses and ≠k2„ Ã H2�tot.

1.2.2 Modelling the DE pressure perturbation

We define the e�ective, non-adiabatic sound speed of DE in its rest-frame, ˆµPde ©
c2

sˆµflde. This is the form of the sound speed that e.g. K-essence type models exhibit,
with c2

s = 1 for a canonical scalar field. When we perform a gauge transformation to
the longitudinal gauge, we find

”Pde

flde

= c2
s”de + 3(1 + w)

1
c2

s ≠ c2
a

2
k≠1 Hvde . (1.8)

We keep the sound speed cs as a free parameter, but assume it to be a constant.

1.2.3 Model 1: externally sourced anisotropic stress

In the quasi-static limit of DGP, the metric potentials are directly linked to the
matter perturbations through a time-dependent function [54] and consequently also
the anisotropic stress is proportional to �m [47] with, in general, a time-dependent
coe�cient. Another motivation to link the dark energy anisotropic stress to the
matter is the possibility of couplings between dark energy and dark matter. To keep
the model simple we use

fide © efian�m (1.9)
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with a constant coe�cient efi. We will see that this term will act as an additional
source for ”de. When looking at the constraints from data in section 1.4 we will fix
n = 0, which is also roughly the behaviour of the e�ective anisotropic stress in the
DGP model.

1.2.4 Model 2: counteracting the pressure perturbation

In [55] a coupling of the anisotropic stress to the pressure perturbation was proposed,
‡ Ã ”Pde/flde, linking isotropic and anisotropic stresses which appears quite natural1.
For non-zero sound speed the pressure perturbation is related to the density pertur-
bation by our model (1.8). Here we formulate the dependence directly in terms of
the comoving density perturbation since this is a gauge-invariant prescription. In ad-
dition, we allow for a di�erent behaviour on small and large scales, with a transition
scale kT

fide = ffi
(k/kT )2

1 + (k/kT )2 �de , kT = gfi H(a) (1.10)

with constant parameters ffi and gfi. We can then write this model also as

fide = ffi

1 + (gfi H/k)2 �de . (1.11)

For ffi = (3/2)c2
s the anisotropic stress cancels the pressure perturbation in the Euler

equation (1.3) on sub-horizon scales, but not in the continuity equation (1.2) and
the Einstein constraints.

The dark energy model used here corresponds actually to a subset of the closure
relations given in Eq. (2.47) of [39], although we originally started this work before
those relations were derived. The pressure perturbation is just the first term of the
first equation in their (2.47) with c2

s = C2 (plus the usual contribution to �1 from
the gauge transformation). The externally sourced anisotropic stress contribution
parameterised by efi belongs in this context to the dark matter coupling term with
parameter —fi. The second contribution to the anisotropic stress here corresponds
to the first term in their (2.47), parameterised by �. The scale-dependence in our
prescription leads to a suppression on large scales, and then ‘turns on’ the anisotropic
stress on scales k ∫ kT , similar to the behaviour of the non-minimally coupled

1A similar link was also exploited in [47] to define the pressure perturbation when mimicking
DGP.
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K-essence model described in the second part of [39] where the authors found a
‘perfect’ and an ‘imperfect’ regime. (However, here we limit ourselves to a case
where e�ectively M2

C = 0 and ŸÕ = 0.) For a detailed comparison to [39], notice
that we use a di�erent sign convention for the metric, and that their (k/a)2”fi is our
fldefide.

Our model also satisfies the constraint equations derived in [40]. These are a con-
sequence of the Bianchi identities, which lead to ÒµGµ

‹ = 0, and of the covariant
conservation of the matter energy-momentum tensor ÒµT µ

‹ = 0. The constraint
equations are equivalent to the covariant conservation of the energy momentum ten-
sor of the dark energy. For a general fluid they are equivalent to the conservation
equations (1.2) and (1.3).

Anisotropic stress perturbations in dark energy have been studied before, see e.g.
Refs. [56–59]. However, note that the approach taken in these references is very
di�erent to ours (and that of Refs. [47,55]). In the former, the Boltzmann hierarchy
of a generic fluid of collisional particles is truncated at the level of the anisotropic
stress [60]. A viscosity parameter c2

vis is introduced and the behaviour of anisotropic
stress of radiation (up to the quadruple) is recovered for c2

vis = 1/3. It turns out that
such anisotropic stress, often referred to as viscosity, tends to wash out fluctuations
in the dark energy and, therefore, makes dark energy perturbations even harder
to detect than in the absence of anisotropic stress. On the contrary, the models
discussed here are designed to imitate typical modified gravity scenarios and therefore
aim at creating very di�erent e�ects, e.g. detectable gravitational slip on sub-horizon
scales.

1.3 Phenomenology

From now on we consider the equation of state w as a free parameter, but assume it
to be a constant. From the evolution equation of ”de, Eq. (1.7), we can see that the
e�ective source term at high k (on sub-horizon scales) is proportional to

k2
C

(1 + w)Â + ”Pde

flde

≠ 2
3fide

D

¥ k2
5
c2

s�de ≠ 2
3fide

6
. (1.12)

Here we neglected the velocity contribution Ã v/k and the potential Â, as both
are suppressed by inverse powers of k relative to �. We then have a second-order
equation for �de with the above term proportional to �de. If the pre-factor of �de
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in this expression is positive, then it will lead to an oscillatory behaviour of �de and
the behaviour of the dark energy perturbations on small scales will be stable. In this
case Eq. (1.12) can be used to define an e�ective sound speed for the dark energy.
If on the other hand the pre-factor is negative then we expect rapid growth of the
perturbations on small scales which in general renders the model unviable.

Based on these considerations it makes thus sense to define an e�ective sound speed,
which for the models described in the last section takes the form

c2
e� © c2

s ≠ 2ffi

3 . (1.13)

It is this e�ective sound speed that characterises the propagation of perturbations
and the pressure support (and hence the clustering properties) on small scales (see
also [39,58,59] where the same combination was found to be relevant). Here we also
assumed that the scales of interest satisfy k2/ H2 ∫ g2

fi.

Since the full system of di�erential equations cannot be solved analytically in general,
we will focus in the next subsections on limiting cases for which dark matter and
dark energy perturbations decouple from each other. In some of them we compare
our results with the full numerical solutions explicitly, however we have checked for
all of them that the approximate expressions show a behaviour that is representative
of the full numerical solution in the relevant regime (see Figure 1.3). We found it to
be convenient to solve the 4-dimensional system (1.2)–(1.3) for the dark matter and
dark energy perturbations by using the dimensionless variables

Vm © ≠kvm

H , Vde © ≠kvde(1 + w)
H , (1.14)

along with the density contrast variables ”m and ”de. This choice makes it simpler to
expand the equations consistently in powers of k to study separately the super- and
sub-horizon behaviour, and we checked that we are are able to recover the solutions
for dark matter and dark energy perturbations in the matter dominated era found
in [61].

1.3.1 Sub-horizon scales

On sub-horizon scales, k/ H ∫ 1, we find three scenarios where dark matter and dark
energy perturbations decouple. These correspond to: i) dark matter domination
ii) dark energy domination without dark matter contribution to the dark energy
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anisotropic stress (efi = 0) and iii) the particular case where ffi = ≠1/2. Although
for the last case we find analytical solutions for dark matter perturbations, they
do not seem to have a special physical relevance and we will not discuss this case
further.

Dark matter domination

During dark matter domination the evolution of the conformal Hubble parameter
and (neglecting decaying modes and focusing on sub-horizon scales) the solutions for
matter perturbations are given by (e.g. [61])

H2 = H2
0

�m

a
, ”m = Vm = ”0a (1.15)

where ”0 is a constant. Using the solutions (1.15) it is possible to find a second
order equation for the dark energy density perturbations (assuming that k2/ H2 ∫
9(1 + w)/4efian) during matter domination which we can write as

”ÕÕ
de +

C
3 ≠ 6w + 4ffi

2a

D

”Õ
de

+
C

9H2
0 �m(1 ≠ 6c2

e�)(c2
e� + 2ffi

3 ≠ w) + 4ffig2
fiH2

0 �m + 6ac2
e�k2

6a2H2
0 �m

D

”de

= 2”0efiank2

3H2
0 �m

. (1.16)

In Principle, this equation can be solved analytically in terms of Bessel and hy-
pergeometric functions (see Eq. (B.1) of Appendix B). The argument of the Bessel
functions is proportional to

Ò
c2

e� , and as in the case of dark energy domination in
Section 1.3.1, the perturbations grow exponentially fast for c2

e� < 0 because the ar-
gument of the Bessel functions becomes imaginary. It is however more instructive
to look separately at super- and sub-sound horizon limits where we can simplify the
equation further and so obtain more tractable solutions.

Super-sound horizon (but sub-horizon)

The sound horizon is set by H/ce� , i.e. a given k is super-sound horizon but sub-
horizon if H π k π H/ce� . So for a clean separation of scales we need ce� π 1,
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which means we can just take the limit ce� æ 0 in Eq. (1.16). We notice from Eq.
(1.13) that if 0 Æ c2

s Æ 1, then 0 Æ ffi Æ 3/2.2 We find

”ÕÕ
de +

C
3 ≠ 6w + 4ffi

2a

D

”Õ
de +

C
3(2ffi ≠ 3w) + 4ffig2

fi

6a2

D

”de

= 2”0efiank2

3H2
0 �m

. (1.17)

The homogeneous part of the equation clearly has power-law solutions, in general
the solution for Eq. (1.17) is of the form

”de = A1a
1≠–≠—

2 + B1a
1≠–+—

2 + 2”0efik2a2+n

3H2
0 �m[2(1 + –) + Ë + n(3 + – + n)] (1.18)

where

Ë = 3(2ffi ≠ 3w) + 4ffig2
fi

6 (1.19)

– = 3 ≠ 6w + 4ffi

2 (1.20)

— =
Ô

1 ≠ 2– + –2 ≠ 4Ë (1.21)

and A1 and B1 are two constants of integration. The last term in Eq. (1.18) is
a growing mode driven purely by the external anisotropic stress (the part of the
anisotropic stress coupled to �m), and it can more clearly be written as

”(efi)
de = efi”m

A
k2

H2

B
2an

3[2(1 + –) + Ë + n(3 + – + n)] . (1.22)

The factor (k/ H)2 in this expression interpolates between 1 on horizon scales (where
k = H) and 1/c2

e� on sound horizon scales (where ce�k = H), i.e. between the terms
containing efi in Eqs. (1.39) and (1.26).

We show the exponents of the homogeneous solutions as a function of the parameters
ffi and gfi in Figure 1.1. For gfi . 1 we find a growing mode when ffi . ≠1, and for
very negative ffi this mode can grow very quickly. This rapid perturbation growth
will eventually lead to a conflict with observations so that we expect to find a lower
limit for ffi around ffi ƒ ≠3 to ≠5 based on the growth of dark energy perturbations

2If c2
s can take negative values then ffi can be negative as well since ffi = 3c2

s/2 when ce� = 0.
This is not a problem for the stability of the perturbations, as that is governed by ce� .
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during dark matter domination. For gfi ∫ 1 the dark energy perturbations grow
extremely fast as soon as ffi becomes negative, rendering this part of parameter
space unviable. (For ffi > 0 the exponent is purely imaginary, so that the dark
energy perturbations oscillate without growing.) We will see in the next section that
this gfi dependent lower limit on ffi is indeed clearly visible.

With Eq. (1.18) we can also find an expression for the dark energy velocity pertur-
bation,

Vde = [B1(1 + 4ffi ≠ 6w ≠ – + —)a— + A1(1 + 4ffi ≠ 6w ≠ – ≠ —)]a 1≠–≠—
2

2

+ 2efik2”0(2 + 2ffi ≠ 3w + n)a2+n

3H2
0 (2 + Ë + 2– + n(3 + n + –))�m

. (1.23)

Sub-sound horizon

The equations for dark energy velocity and density perturbations in this case are
given by

V Õ
de + 1 ≠ 6c2

e�
2a

Vde = ≠ c2
e�k2

H2
0 �m

”de

+ ”0

6H2
0 �m

Ë
4efian+1k2 + 9H2

0 (1 + w)�m

È
, (1.24)

”Õ
de + 3(c2

s ≠ w)
a

”de = Vde

a
. (1.25)

Here we re-introduced the second, sub-dominant term in Eq. (1.24) for the special
case efi = 0. Like [61] we can argue that if we want to avoid large velocity pertur-
bations, then we expect the source terms in Eq. (1.24) to cancel to a high degree. It
follows that

”de = a”0

C
2efian

3c2
e�

+ 3H2
0 �m(1 + w)
2ac2

e�k2

D

(1.26)

Vde = a”0

C
2

3c2
e�

efian
Ó
1 + 3(c2

e� ≠ w) + 2ffi + n
Ô

+ 3H2
0 �m {3(c2

e� ≠ w) + 2ffi} (1 + w)
2ac2

e�k2

D

(1.27)

where the last term in each equation is only relevant if efi = 0. We see that during
matter domination the dark energy perturbations in the sub-sound horizon regime
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Fig. 1.1: The dark energy perturbations during matter domination in the sub-horizon but super-sound horizon regime
have a power-law behaviour. Here we show the exponents of the first two terms in Eq. (1.18) for a range of values
of the parameters ffi and gfi (the parameter efi leads to an additional growing mode driven by the dark matter).
Real and imaginary parts for the exponent of the first term are plotted in red dashed and magenta dot-dashed lines,
respectively. For the second term the real part is plotted in blue and the imaginary part is shown in black dotted
lines. Positive real parts correspond to growing modes, not necessarily instabilities.

only grow if the coupling to �m is non-zero. In that case ”de is proportional to an”m.
If efi = 0 then the dark energy perturbations become constant on sub-sound horizon
scales in matter domination. However, it should be mentioned that we have here
neglected modes that are usually decaying (as in appendix B of [61]). As mentioned
at the start of the section, if c2

e� < 0 then the full solution of Eq. (1.16) grows
exponentially.

Dark energy domination and efi = 0

Considering that during dark energy domination the conformal Hubble parameter
can be approximated by
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H2 = H2
0

�x

a1+3w
, (1.28)

we find a homogeneous second order equation for the dark energy density perturba-
tions,

”ÕÕ
de +

I
3 + 4ffi ≠ 9w

2a

J

”Õ
de +

I
a1+3wc2

e�k2

a2H2
0 �x

+ ffi(2g2
fi ≠ 9 ≠ 27w)

3a2 (1.29)

≠ 3(c2
e� + 2ffi

3 )
Ë
6(c2

e� + 2ffi

3 ) ≠ (1 + 4ffi + 3w)
È

+ 3(1 ≠ w)(1 + 3w)
2a2

J

”de = 0 .

Again we can look at both super and sub-sound horizon limits for this equation.

Super-sound horizon

In the super-sound horizon limit Eq. (1.29) becomes

”ÕÕ
de +

C
3 + 4ffi ≠ 9w

2a

D

”Õ
de

+
C

4ffi(≠3 + g2
fi ≠ 9w) + 9(3w2 ≠ 2w ≠ 1)

6a2

D

”de = 0 (1.30)

which again has power-law solutions given by

”de = A3a
1≠–

3

≠—
3

2 + B3a
1≠–

3

+—
3

2 (1.31)

where

–3 = 3 + 4ffi ≠ 9w

2

Ë3 = 4ffi(≠3 + g2
fi ≠ 9w) + 9(3w2 ≠ 2w ≠ 1)

6
—3 =

Ò
1 ≠ 2–3 + –2

3 ≠ 4Ë3 (1.32)

We plot the behaviour of the exponents in Figure 1.2. Overall, the behaviour is
similar to the one shown in Figure 1.1: For small gfi the perturbations can grow
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rapidly if ffi . ≠3 while for large gfi they grow quickly whenever ffi < 0. For
velocity and matter perturbations we have

Vde = a
1≠–

3

≠—
3

2

2
Ë
B3a

—
3(1 + 6c2

s ≠ 6w ≠ –3 + —3) + A3(1 + 6c2
s ≠ 6w ≠ –3 ≠ —3)

È

”m = 6(1 + 2ffi)a
1≠–

3

≠—
3

2

C
B3a—

3

(1 ≠ –3 + —3)(2 ≠ 3w ≠ –3 + —3)

+ A3

(≠1 + –3 + —3)(≠2 + 3w + –3 + —3)

D

+ ”0 (1.33)

Vm =
3(1 + 2ffi)a

1≠–
3

≠—
3

2

Ë
A3(≠2 + 3w + –3 ≠ —3) + B3a—

3(≠2 + 3w + –3 + —3)
È

(2 ≠ 3w ≠ –3 + —3)(≠2 + 3w + –3 + —3)
where we have neglected a decaying mode in the matter density perturbation. We
can see that the dark matter density perturbation ”m follows the dark energy per-
turbations and grows at the same rate (in addition to a constant mode).

Sub-sound horizon

On the other hand, in the sub-sound horizon limit and if we assume
c2

e�k2

H2 ∫ ffi(2g2
fi ≠ 9 ≠ 27w)

3 ≠ 3c2
s [6c2

s ≠ (1 + 4ffi + 3w)] + 3(1 ≠ w)(1 + 3w)
2

equation (1.29) reads

”ÕÕ
de +

C
3 + 4ffi ≠ 9w

2a

D

”Õ
de +

C
c2

e�k2

H2
0 �xa1≠3w

D

”de = 0 (1.34)

and we expect to have exponential growth if c2
e� < 0. The general solution of Eq.

(1.34) is given by

”de =
3

x3

2

4 1≠–
4

1+3w {A4 J‹
1

(x3) + B4 J≠‹
1

(x3)} (1.35)

where

–4 = 3 + 4ffi ≠ 9w

2
‹1 = –4 ≠ 1

1 + 3w

x3 = 2a
1+3w

2 ce�k

(1 + 3w)H0
Ô

�x

, (1.36)
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Fig. 1.2: The dark energy perturbations during dark energy domination in the sub-horizon but super-sound horizon
regime have a power-law behaviour, with the exponents given here for a range of values of the parameters ffi and
gfi. Here we plot the exponents of the two terms in Eq. (1.31): red dashed (real part) and magenta dot-dashed
(imaginary part) lines correspond to the first term whereas blue (real part) and black dotted (imaginary part) lines
correspond to the second term.

and A4 and B4 are constants.3 We see that for c2
e� < 0 the argument x3 of the Bessel

functions becomes imaginary, and indeed the perturbations will grow exponentially.
Stable perturbations in this regime thus require ffi < 3c2

s/2. We can also see that the
overall pre-factor of Eq. (1.35) behaves like a(1≠–

4

)/2, where the exponent is linearly
decreasing with ffi, i.e. the dark energy perturbations grow faster for more negative
ffi. We therefore expect also a lower cuto� for ffi, around ffi ¥ ≠7.

3Gamma functions, similar to those appearing in solutions in Appendix B, have been absorbed
in the constants A4 and B4. These constants are fixed by the initial conditions.
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1.3.2 Super-horizon scales

When considering super-horizon scales, k/ H π 1, we find that dark matter and
dark energy perturbations decouple from each other again in matter and dark en-
ergy domination. However, we could only find analytical solutions during matter
dominance.

Dark matter domination

Since scales larger than the horizon are also super-sound horizon scales, we can set
ce� = 0 which according to Eq. (1.13) is equivalent to setting c2

s = 2ffi/3. Then, if
we use Eq. (1.15) for the Hubble parameter and neglect decaying modes, we find the
following set of solutions for matter and dark energy perturbations

Vm = ”0a , ”m = ”0
3H2

0 �m

k2 , (1.37)

Vde = ”0a

C
4efian

4ffi ≠ 3 ≠ 2n
+ 3(1 + w)

3 ≠ 4ffi

D

, (1.38)

”de = ”0
3H2

0 �m

k2

C
4efian(2ffi ≠ 3w)

(4ffi ≠ 3 ≠ 2n)(2ffi + n ≠ 3w) ≠ 3(1 + w)
4ffi ≠ 3

D

. (1.39)

We see that outside of the horizon the dark energy density perturbation grows like an

– in the particular case when n = 0 or efi = 0, the dark energy density perturbation
(like the dark matter one) is always constant on super-horizon scales. We also notice
that it is non-zero only if either the dark energy is coupled to the dark matter through
efi ”= 0 or if w ”= ≠1 4. We also note that we recover the solutions found in [61] in
the absence of anisotropic stress.

We summarise in Table 1.1 the regions in parameter space where we expect rapid
growth of the perturbations that is not compatible with the existence of a stable
universe. The growth of the perturbations on sub-sound horizon scales for c2

e� < 0 is
exponential and corresponds to the usual instability for negative sound speeds. For
theories with a given c2

s this provides an upper limit for the parameter ffi, namely
ffi < 3c2

s/2. On scales that are sub-horizon but lie above the sound horizon, the
4But notice that on sub-horizon scales a non-zero anisotropic stress of the dark energy itself can

drive the dark energy perturbations even if w = ≠1 and efi = 0, see Section 1.3.1. However, for
our model 2 the perturbations only grow if ffi < ≠5/4 and only in the sub-horizon but super-sound
horizon regime.
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scales rapid growth
matter dominance dark energy dominance (efi = 0)

sub-horizon sub-sound c2
e� < 0 c2

e� < 0

super-sound ffi π 9w

2(3 + 2g2
fi) ffi π 27w2 ≠ 18w ≠ 9

4(3 ≠ g2
fi + 9w)

Tab. 1.1: Regimes and regions in parameter space where dark energy perturbations grow rapidly.

perturbations grow as a power law with a very high power for su�ciently negative
ffi, as indicated in the table.5 This provides a lower limit for ffi as such a rapid
growth of the dark energy is again not compatible with the data.

In the next section we are going to vary ce� > 0 and ffi independently, so that c2
s

can take any value. For this reason we will not see the upper cuto� on ffi from the
instability arising due to c2

e� < 0, as we never enter in this regime, but we will see
the lower cuto�. Also, as in the approximate solutions shown in Figure 1.3, we will
limit ourselves to n = 0 for the model 1 defined by Eq. (1.9).

1.4 Observational constraints

In this section, we investigate the parameter degeneracies and the constraints on the
anisotropic stress models for dark energy imposed by di�erent cosmological observa-
tions. We use a modified version of the CosmoMC code (version Mar 13 [62, 63]) to
perform Markov-chain Monte-Carlo (MCMC) explorations of the model likelihoods.
The sampler calls a modified version of the CAMB code6 (version Mar 13 [64, 65]) to

5The regions in the table correspond to the sub and super-sound horizon limits of the second
order Eqs. (1.16) and (1.29). Note that according to the general solution for matter dominance
and sub-horizon scales, Eq. (B.1), there is also exponential growth on super-sound horizon scales
for c2

e� < 0.
6The modified codes are available at http://cosmology.unige.ch/content/cosmomc-and-camb-

early-dark-energy-and-anisotropic-stress and the chains (1.4 GB) can be downloaded from
http://theory.physics.unige.ch/≥kunz/traces-anisotropic-dark-energy/ade_chains.tar.gz.
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compute the linear theory CMB spectra for a given model. In all cases we use con-
straints on the number of relativistic degrees of freedom at Big-Bang nucleosynthesis
(BBN) [66] and put a prior on the age of the Universe to be between 10 and 20 Gyrs.
In addition we use the CMB likelihood code of the Planck collaboration (version
1.0 [67, 68]) which includes the Planck first data release combined with WMAP 9yr
low-multipole polarisation data [69]. Moreover, we add the high-multipole temper-
ature data from the South Pole Telescope (SPT) [70] and the Atacama Cosmology
Telescope (ACT) [71]. In the following, we use the abbreviation CMB data for the
combination of Planck temperature, WMAP9 low-multipole polarisation, and ACT
and SPT temperature (referred to as Planck+WP+highL in the Planck papers). We
expect the CMB data to provide constraints not only on the parameters that describe
the primordial power spectrum and the re-ionisation history but also to mildly con-
strain the late-time evolution of the gravitational potentials through the integrate
Sachs-Wolfe e�ect and CMB lensing.

To further constrain the parameters that are relevant for the late-time evolution
of the background geometry, the density parameter and equation of state of dark
energy, we also use constraints on the distance–redshift relation from baryon acoustic
oscillations (BAO) and type Ia supernovae (SNe Ia). Currently, there are seven BAO
measurements available: two from the Sloan Digital Sky Survey (SDSS) DR7 [72,73],
one from the 6dF Galaxy Survey [74], three from the WiggleZ Dark Energy Survey
[75], and one from the SDSS-III Baryon Oscillation Spectroscopic Survey (BOSS)
DR9 [76]. In case of the supernovae, we use the compilation of 473 SNe Ia provided
by the SuperNova Legacy Survey (SNLS) team [77]. The fact that Planck prefers a
slightly di�erent value for H0 than local measurements of the Hubble parameter in a
flat �CDM cosmology raises concerns about the compatibility of these data sets [68].
For this reason we chose not to include constraints on the local expansion rate. If
we included the H0 constraint of [78] we would find that the confidence intervals for
w are shifted slightly towards more negative values, with w = ≠1 sitting close to the
2‡ limit. On the other hand, we would not find significant changes in the constraints
on the parameters that govern the dark energy perturbations when including H0
data.

Using large-scale structure data like the galaxy power spectrum P (k) correctly in
the context of dark energy and modified gravity models is quite involved. There
are hidden model assumptions in the analysis of the data and the construction of
the likelihood. For example, the background cosmology is used when converting
angles and redshifts to k vectors. Moreover, the impact of modifications of gravity
on galaxy bias and non-linear clustering is mostly unknown. For these reasons we
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limit ourselves for the time being to the data sets mentioned above.

For the parameter estimation we vary a base set of seven parameters (those of the flat
wCDM model). These are the amplitude, ln[1010As], and the tilt, ns, of the spectrum
of primordial scalar curvature perturbations (modelled as a power law normalised at
k = 0.05 Mpc≠1), the reionisation optical depth, · , the physical baryon and cold dark
matter energy fractions, �bh2 and �ch2, 100 times the ratio of the sound horizon
to the angular diameter distance to the last-scattering surface, ◊, and finally the
constant equation of state parameter of dark energy, w. In the figures we will replace
the “fundamental” parameters As and ◊ by the variance of fluctuations in spheres
of 8 Mpc today, ‡8, and the value of the Hubble parameter today, H0 (in units of
km/s/Mpc), that are both derived parameters.

In addition to the base model, we vary or fix the values of the parameters that
describe the properties of the dark energy perturbations: the e�ective sound speed,
log10 c2

e� , the external anisotropic stress parameter, efi, and the internal anisotropic
stress parameter, ffi, with its transition scale, log10 gfi. We use flat priors for all
parameters, set adiabatic initial conditions for the evolution of the cosmological
perturbations, and ignore vector and tensor modes for simplicity.

Let us first take a look at the e�ect of the di�erent data sets on the parameter
constraints. In Figure 1.4 we show the marginalised posteriors and the marginalised
2d-likelihood contours of a parameter subset in the full model, i.e. varying all dark
energy parameters including the anisotropic stress model, efi, ffi, gfi (for n = 0). We
compare the e�ect of adding more data: blue is CMB data only, red is CMB+BAO,
and black and the likelihood density plots are CMB+BAO+SNe. For parameters
that are not related to dark energy anisotropic stress the likelihood contours shrink
considerably when adding the low-redshift data, as they contain much information on
the late-time expansion and therefore on w. The constraints on the anisotropic stress
parameters are not much altered by adding low-redshift data because BAO and SNe
do not contain information on the growth of structure that is a�ected by the dark
energy clustering. To improve those constraints we would need to add information
on galaxy clustering, redshift space distortions and cosmic shear.

The (ffi, log10 gfi) plane also shows nicely the lower limit on ffi from the rapid growth
of perturbations. As argued in the discussions of the sub horizon / super-sound
horizon perturbation evolution in section 1.3.1 and shown in Figs. 1.1 and 1.2, a very
negative value of ffi is in conflict with observations as the dark energy perturbations
become large. We can also see how the lower limit on ffi changes as a function of gfi,
with gfi ∫ 1 requiring ffi > 0.
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It is interesting to note that the marginalised likelihood in the (log10 c2
e� , ffi) plane

peaks where ffi is negative and log10 c2
e� close to 0, while the (ffi, log10 gfi) plane shows

that the likelihood for negative ffi is much lower than for positive ffi. Note that this is
a volume e�ect of the marginalization. If we were to fix ce� = 1, then the high plateau
of the likelihood in the (ffi, log10 gfi) plane would shift from the positive–positive to
the negative–negative quadrant, and the situation would be quite di�erent.

Thus, if we had additional observables that even more strongly prefer ce� = 1, we
would conclude ffi Æ 0. The constraints on efi would not be a�ected as it is virtually
not degenerate with log10 c2

e� . There is a hint that this could actually be the case: the
CFHTLens weak lensing survey [79] as well as the Planck cluster counts [80] prefer
‡8 and �m considerably lower than Planck alone (in the �CDM model). We added a
toy constraint on the combination ‡8(�m/0.27)0.6 that reflects the weak lensing and
cluster counts, and noticed that it is passed through the parameter degeneracies in
such a way that it constrains c2

e� ≥ 1 and ffi and log10 gfi both negative. In this case
ffi turns out to be strongly constrained and ffi = 0 is already in quite some tension
with the toy data. We interpret this as a hint that additional dark energy degrees
of freedom are able to reconcile apparent tensions between di�erent current data
sets. However, we emphasise that the analysis of the weak lensing and cluster count
likelihood needs to be done fully correctly within the framework of a generalised dark
energy model like ours, and the constraints quoted in the literature [79, 80] cannot
directly be implemented since they are derived for the �CDM model.

Next, let us study the anisotropic stress model parameters. In Figure 1.5 we show the
marginalised posteriors and 2d-likelihoods using the full data set, CMB+BAO+SNe.
We compare the di�erent models: for green we fix (efi, ffi, log10 gfi) = (0, 0, 0), for
blue we fix (ffi, log10 gfi, log10 c2

e�) = (0, 0, 0), for red we fix (ffi, log10 gfi) = (0, 0),
and for black and the likelihood density plots we vary all parameters. We observe
that in case of no anisotropic stress, green, the dark energy sound speed is only very
mildly preferred to be close to 1, as expected from earlier studies, see e.g. [81, 82].
Finally, in Figure 1.6 we show the marginalised posteriors for the remaining six base
parameters, {�bh2, �ch2, ns, · , ‡8, H0}, that are not directly related to dark energy.
We note that all models with dark energy anisotropic stress slightly prefer a higher ‡8
than in the smooth dark energy case, ce� = cs = 1 (see [83] for a study of the impact
of w on ‡8 in smooth dark energy models). This is compatible with the discussion
above on the slight tension between constraints on ‡8 from Planck CMB and Planck
cluster counts as well as weak lensing.
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1.5 Modified growth parametrisations

In this project we used prescriptions for the ‘hydrodynamical’ closure relations that
define ”P and fi in terms of other variables, in order to complete the system of
equations. Instead of defining the dark energy momentum tensor, it is also possible
to introduce functions that describe the change to the matter growth rate [85, 86]
or that modify the Einstein equations with an e�ective Newton’s constant and a
gravitational slip [43]. The latter parametrisation is in principle equivalent to giving
”P and fi as shown explicitly in [53], but the modified growth rate on its own is
not su�cient and needs to be supplemented by an additional condition. We will call
these approaches ‘modified growth’ parameterisations, see also section 1.3.2 of [36]
for a more detailed introduction.

As the modified growth approach is quite popular and since several groups have
derived predictions for the accuracy with which these parameters can be measured
(e.g. [43,87,88]), we give here the expressions necessary to compute these quantities
in general and discuss the links between them and our parametrisation. We then
show what bounds we can infer on these modified growth parameters from the data
that we use, in the context of our model.

1.5.1 Definition of the modified growth parameters

In general the presence of a dark energy fluid or of a modification of General Rel-
ativity will a�ect the growth rate of the dark matter perturbations. We define the
growth factor g as the logarithmic derivative of the comoving matter density pertur-
bation,

g © d log �m

d log a
(1.40)

The growth factor is often approximated using the growth index, “, as

g = �m(a)“ (1.41)

where �m(a) © 8fiGa2flm(a)/(3 H2). In general, g and “ are space and time depen-
dent functions. To investigate “ we express it in terms of g

“ = log g

log �m(a) (1.42)
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and we have implemented these expressions in CAMB so that we can obtain limits
on g and “ as derived parameters from our MCMC chains.

However, in general we have two scalar degrees of freedom, related to the possibility
to choose independent closure relations for both ”Pde and fide in the fluid picture.
To model these two degrees of freedom, we introduce a parameter Q which describes
either an e�ective Newton’s constant QG or an additional contribution to the clus-
tering from �de through the Poisson equation for „. In addition, we parameterise
the gravitational slip (the di�erence of the gravitational potentials which is in our
model due to the anisotropic stress of the dark energy) as ÷,

Q © ≠k2„

4fiGa2flm�m

= 1 + flde�de

flm�m

, ÷ © „

Â
. (1.43)

÷ should not be confused with conformal time, obviously. This parameter is occa-
sionally called È in the literature.

We can now derive some relations between di�erent parameters. For example we
have that

1
÷

= 1 + 2
Q

fldefide

flm�m

= 1 + 2fldefide

flm�m + flde�de

. (1.44)

In a pure model 1 situation, i.e. with ffi = 0, we then have that

1
÷

= 1 + 2efi

Q

flde

flm

= 1 + 2efi

Q

�de

�m

a≠3w ¥ 1 + 2efi

Q
, (1.45)

where the final expression is valid at late times for our averaging (see below).

1.5.2 Constraints on the modified growth parameters in our
model

In general the modified growth parameters are functions of scale and time. We limit
here our investigation to the late-time behaviour, by averaging the parameters over
the range z = 0 . . . 1 using 10 values linearly spaced in z. The scale dependence can
be important, so we consider separately ‘large’ scales, k = 10≠3 h Mpc≠1 and ‘small’
scales, k = 10≠1 h Mpc≠1.

In Figure 1.8 we show Q and ÷ values of a sample of ‘type 1’ models accepted by
the MCMC algorithm where efi varies and ffi is zero. In the first column we also fix
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cs = 1 (which is equivalent to ce� = 1 as ffi = 0), and in this case we can access
only a narrow region in (Q, ÷) space. This is not unexpected as in general we need
to vary both ”Pde and fide. When doing so in the second and third column, and now
a much larger part of the (Q, ÷) parameter space is accessible. This also illustrates
that our models are able to probe quite generally the space of modifications of the
growth parameters.

We can also see very nicely from the colours in the first two columns of Figure 1.8 how
a non-zero efi changes the growth rate “, with pretty much a one-to-one mapping
between the two on small scales. The sound speed on the other hand leads to a
rotation in the (Q, ÷) parameter space on small scales.

We can understand this latter behaviour with the help of the relation (1.45): The
presence of an anisotropic stress induced by efi impacts not only ÷, but also Q. On
sub-sound-horizon scales and during matter domination the induced dark energy
perturbations are given by Eq. (1.26),

�de ¥ ”de ¥ a”0

A
2efian

3c2
e�

B

¥
A

2efian

3c2
e�

B

�m , (1.46)

and therefore we have in that limit that

Q = 1 + 2efian

3c2
e�

flde

flm

∆ 1
÷

= 1 + 6c2
e�efianflde

2efianflde + 3c2
e�flm

. (1.47)

For high sound speed, cs ¥ 1, we find from the MCMC exploration that at 95%
CL ≠0.01 < efi < 0.18, and the allowed region shrinks around efi = 0 as the sound
speed decreases, see the red contours in Figure 1.5. Plotting the curves Q(efi; ce�)
and ÷(efi; ce�) for the allowed values of efi leads to a figure that corresponds very well
to the region visible in the upper row of Figure 1.8. We notice that for efi = 0 we
have that Q = 1 and ÷ = 1 independently of the sound speed. This behaviour is
clearly visible in the figure. We can also see that as ce� æ 0 the slip vanishes, ÷ æ 1,
even if efi ”= 0, while the impact of efi on Q is enhanced, explaining the horizontal
line visible in the top right-hand panel of Figure 1.8 for low sound speed.

On large scales, the impact of ce� is more indirect, by changing the size of the sound
horizon. We can see that for a lower e�ective sound speed we have a larger Q for
a given ÷, as the dark energy is able to cluster more easily. On super-sound (but
sub-horizon) scales and during matter dominance, dark energy density perturbations
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are given by (Eq. (1.18))

�de ¥ 2efian�m

3 [2 (1 + –) + Ë + n(3 + – + n)]
k2

H2 (1.48)

Q = 1 + 2efian

3
flde

flm

k2

H2 (1.49)

1
÷

= 1 + 6efianflde

3flm + 2efianflde
k2

H2

[2 (1 + –) + Ë + n(3 + – + n)]≠1 . (1.50)

On the other hand, if we consider solutions on super-horizon scales, that is, Eq.
(1.37)-(1.38), we have

�de ¥ �m

C
4efian ≠ 3(1 + w)

≠3

D

, (1.51)

Q = 1 +
5
≠4

3efian + (1 + w)
6

flde

flm

∆ 1
÷

= 1 + 6efianflde

3flm ≠ [4efian ≠ 3(1 + w)] flde

(1.52)

The last equation shows that on horizon scales dark energy can cluster even if efi = 0.
This is the reason why there is no ‘clean’ intersection of the curves at Q = 1, ÷ = 1
in the lower row of Figure 1.8.

1.6 Conclusions

In this paper we study e�ective fluid dark energy models that have a non-zero
anisotropic stress fide. These models can represent not only dark energy, but also
modified gravity models [47]. We consider specifically two scenarios, one where the
dark energy anisotropic stress is linked to the dark matter density perturbations by
a parameter efi, and another model where fide is linked to the dark energy density
perturbations by a parameter ffi. These are only two out of a range of possibilities
that arise naturally in general models like the Horndeski Lagrangian, but we think
that they illustrate rather well the impact of a non-zero anisotropic stress that is
either internal to the dark energy (model 2) or externally sourced (model 1). In
addition we allow for a free sound speed cs for the dark energy perturbations.
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When studying the evolution of the perturbations, we find that the internal anisotropic
stress changes the e�ective sound speed of the dark energy, see Eq. (1.13). This
means that the anisotropic stress can stabilise the dark energy perturbations even
if c2

s < 0, but also that c2
s > 0 does not guarantee stability, as the relevant quan-

tity is c2
e� = c2

s ≠ 2ffi/3. We also find that a su�ciently negative fide (relative to
�de) can lead to rapid growth of the dark energy perturbations in the regime that is
sub-horizon but outside of the sound horizon (cf Table 1.1).

We further find that the contribution to fide from �m acts like an external source
of dark energy perturbations. This coupling can lead to growing perturbations both
inside the dark energy sound horizon and outside of the Hubble horizon, at least
as long as the dark matter is dominating the evolution of the universe. With the
purely ‘internal’ anisotropic stress of our model 2 (where fide ≥ �de) this does not
happen. If the coupling to the matter perturbations is zero, then the dark energy
perturbations become constant on sub-sound horizon or super-Hubble horizon scales
during matter domination, even in the presence of an internal fide (except when the
e�ective sound speed of the dark energy becomes imaginary).

For all of these special cases we provide analytical approximations for the behaviour
of the dark energy perturbations. On the one hand, these are useful to understand
the behaviour of the dark energy and the resulting observational constraints, and
on the other hand, they can be used to correctly set initial conditions for numerical
codes.

When looking at the constraints from the cosmic microwave background, augmented
by distance data from BAO and SN-Ia, we find that the external contribution to fide

is quite well constrained, ≠0.01 < efi < 0.13 at 95% CL for ffi = 0 (marginalised
over log(ce�)), and ≠0.01 < efi < 0.23 when also marginalising over ffi and gfi, see
Figure 1.5. The internal contribution is much less constrained, and is limited mostly
by the stability of the perturbations. We also considered the resulting constraints
on the ‘modified growth’ parameters like the growth index “, the e�ective Newton’s
constant Q and the gravitational slip ÷, shown in Figure 1.8.

Overall, adding anisotropic stress to dark energy models (e�ectively turning them
into modified gravity models [48]) opens up a new region of parameter space that
is poorly constrained by the primary CMB anisotropies alone. Constraining these
models requires additional data that probes the evolution of the perturbations, like
weak lensing observations, redshift space distortions, the galaxy distribution and the
growth rate of structure. Currently ongoing and future experiments will provide a
wealth of data to improve our understanding of the dark energy, but it is important
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that the data sets are analysed carefully and consistently by taking into account the
full cosmological model, without assuming �CDM or smooth dark energy from the
beginning.
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Fig. 1.3: The figure shows the behaviour of the variables ”de and vde for k = 1.5 ◊ 10≠2, c2

s = 10≠1, w = ≠1.05,
n = 0 (the power in Eq. (1.9)) and di�erent combinations of parameters efi, ffi and gfi. The blue and cyan curves
are the numerical solutions. Green dashed and magenta dot-dashed curves are analytical solutions on super horizon
scales, Eqs. (1.38)-(1.39). On the other hand, the red dashed and black dot-dashed curves are analytical solutions
on sub-sound horizon scales given by Eqs. (1.26)-(1.27). The vertical lines give the scale factor at which the mode
enters the e�ective sound horizon (dashed line) and the Hubble horizon (dotted line). We consider a longer dynamic
range in a to illustrate the transition from super-horizon to sub-sound horizon scales more clearly, without however
including radiation in the numerical solution.
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— CMB = Planck + WP + highL

— CMB + BAO

— CMB + BAO + SNe

Fig. 1.4: Marginalised 2d likelihoods and 1- and 2-‡ contours of combinations of the model parameters {w, efi, ffi,
log

10

gfi, log
10

c2

e�

}. We compare the use of di�erent data sets: blue is CMB data only, red is CMB+BAO, and
black and the likelihood density plots are CMB+BAO+SNe. In all cases we vary all parameters.
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— (efi, ffi, log10 gfi) = (0, 0, 0) , varying (w, log10 c2
e�)

— (ffi, log10 gfi, log10 c2
e�) = (0, 0, 0) , varying (w, efi)

— (ffi, log10 gfi) = (0, 0) , varying (w, efi, log10 c2
e�)

— varying (w, ffi, log10 gfi, log10 c2
e�)

Fig. 1.5: Marginalised 2d likelihoods and 1- and 2-‡ contours of combinations of the model parameters {ns, ‡
8

, w,
efi, ffi, log

10

gfi, log
10

c2

e�

}. We compare the di�erent models: for blue we fix (ffi , log
10

gfi , log
10

c2

e�

) = (0, 0, 0), for
red we fix (ffi , log

10

gfi) = (0, 0), and for black and the likelihood density plots we vary all parameters (except for the
scaling exponent n of model 1 which is always set to n = 0). Here we are using the full data set, CMB+BAO+SNe.
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— CMB+BAO+SNe
— CMB+BAO
— CMB=PLANCK+WP+highL

— varying log10 c2
e� , efi, ffi, log10 gfi

— varying log10 c2
e� , efi

— varying efi

— varying log10 c2
e�

Fig. 1.6: Marginalised posteriors of those model parameters not directly related to dark energy {�bh2, �ch2, ns, · ,
‡

8

, H
0

}. Left panel: comparison of di�erent data sets as in Figure 1.4. The addition of background data sets helps
to constrain especially H

0

and ‡
8

. Right panel: comparison of di�erent models as in Figure 1.5. The constraints
on these parameters do not change significantly when the anisotropic stress is non-zero, with the exception of ‡

8

which prefers a slightly higher value.
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Fig. 1.7: CMB angular power spectra (left panel) and matter power spectra (right panel). The concordance model is
shown in blue. In green we plot a model with internally sourced anisotropic stress whose parameters are allowed by
the cosmological constraints. Two models with parameters excluded by cosmological constraints are depicted in red
(internally sourced anisotropic stress) and cyan (externally sourced anisotropic stress). For those models di�erent
from the concordance model we used w = ≠0.95. In the CMB the di�erences appear on large scales as the ISW
e�ect is strongly a�ected by the late-time anisotropic stress of the dark energy. The impact on the matter P (k) is
less strong and on scales smaller than the peak appears mostly as a shift in the normalisation (and thus a shift in
‡

8

), although this is di�erent on large scales (that are however di�cult to observe in galaxy surveys). The e�ect
looks degenerate with an early dark energy contribution (see e.g. Figure 5 of [84]) and it may also be di�cult to
distinguish observationally from galaxy bias.
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Fig. 1.8: Scatter plots of samples of accepted models in our MCMC chains for ffi = 0 and efi varying, when using the
full data set, CMB+BAO+SNe. The lower row of figures shows the behaviour on large scales (k

1

= 10≠3 h Mpc≠1),
while the upper row depicts smaller scales (k

2

= 10≠1 h Mpc≠1). First column: the sound speed is held fixed, cs = 1,
and the growth index, “, nicely parametrises the single allowed line in the (Q, ÷) plane. Second column: the sound
speed is allowed to vary, a whole area is sampled in the (Q, ÷) plane, and the growth index only parametrises one
direction. Third column: the other direction is parametrised by the sound speed.
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Chapter 2

Lensing convergence and neutrino
mass in galaxy surveys

2.1 Introduction

Measurements of the Cosmic Microwave Background (CMB) anisotropies over the
past three decades represent a remarkable achievement in cosmology [18–20]. Con-
stant increases in both amount and quality of data not only have allowed more
rigorous tests of cosmological models, but also have required the improvement of
both the tools and methods we use for the analysis of those data sets. This progress
has turned out in a phenomenological model of the universe which fits reasonably
well most of the available observations [21].

Although the �CDM model is relatively successful at explaining the current obser-
vations, most of the underlying physics in the model remains unknown (e.g., dark
energy, dark matter). In particular, the unknown Cold Dark Matter (CDM) con-
stitutes about 30% of the energy content in the universe. Searches for dark matter
particles have come out with no conclusive results, leaving neutrinos as the only
known dark matter candidate. Neutrino experiments have shown that neutrinos
are massive particles, but have been unable to provide an absolute scale for their
masses [89, 90].

Since massive neutrinos change the background evolution of the universe, CMB mea-
surements can be utilised to constraint their masses. When the neutrino mass is small
(¥ 0.1 eV ) neutrinos have a modest signature on the CMB angular power spectrum
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and those constraints can provide only an upper limit for the neutrino mass. Degen-
eracies with other parameters in the cosmological model (e.g., the equation of state
of dark energy w or the Hubble parameter H0) help to further degrade constraints
on the neutrino mass from CMB data.

By mapping the distribution of matter in the universe one can also test cosmological
models. Galaxy surveys, probing the low red-shift universe, allow to break parameter
degeneracies hence improving the constraints on the neutrino masses [91]. Massive
neutrinos would suppress the clustering of galaxies at small scales thus damping
the matter power spectrum P (k) on those scales. It is expected that future galaxy
surveys will be able to measure this suppression and therefore determine the absolute
mass of the neutrinos.

Future galaxy surveys will probe distance scales comparable to the Hubble horizon
(a few tens of Gpc3/h3) thus allowing more rigorous analysis. Non-linearities and
relativistic e�ects such as red-shift space distortions and lensing convergence should
then be consistently included in galaxy clustering analyses if the constraining power
of the survey is not to be wasted. This chapter aims at showing the importance of
the inclusion of lensing convergence in galaxy clustering analyses. In particular, we
show that if future analyses neglected the lensing convergence, measurements of the
neutrino masses would be severely biased thus throwing away valuable information
and leading to misleading conclusions about the cosmological model.

The plan of the chapter is as follows. In the next Section we recall how galaxy
number counts are modelled. Our methodology is explained in Section 2.3. Then
in Section 2.4 we show and discuss our results. Finally, we give our conclusions in
Section 2.5.

2.2 Galaxy number counts angular power spec-
trum

Although galaxy red-shift surveys measure red-shift z and direction n of sources in
the sky, analyses of galaxy clustering data are commonly done by using the matter
power spectrum P (k, z) [92] which is not an observable. An alternative approach
uses the angular matter power spectrum C¸(z, zÕ) which is an observable. It has been
shown in [93] that for galaxy catalogues with photometric red-shifts, an analysis of
the C¸(z, zÕ) spectra can perform significantly better than one using P (k, z). This
is due to both an optimal use of red-shift information and the not averaging over
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directions in the C¸(z, zÕ) approach. It is therefore more suitable to work with the
angular matter power spectrum and we have chosen to do so in this project.

Galaxy number counts for a survey with limiting magnitude mlim is given by

n(z, n; mlim) = n̄(z) [1 + �(z, n; mlim)] , (2.1)

where n̄(z) is the mean galaxy density per red-shift and per steradian at red-shift z,
and

�(z, n; mlim) = b(z)D + 1
H

Ë
�̇ + ˆ2

r V
È

+ (2 ≠ 5s)
C⁄ r

0

dr̃

r
(� + �) ≠ Ÿ

D

+ (fevo ≠ 3) HV + (5s ≠ 2)� + � +
A Ḣ

H2 + 2 ≠ 5s

r H + 5s ≠ fevo

B

◊
3

� + ˆrV +
⁄ r

0
dr̃(�̇ + �̇)

4
(2.2)

is the perturbation in the number density of sources which emerges due to both
red-shift density perturbations and volume distortions [94–96]. In Eq. (2.2), b(z)
takes into account that galaxies are biased tracers of the underlying dark matter
distribution, D is the density fluctuation in comoving gauge, H © aH is the confor-
mal Hubble parameter, � and � are the Bardeen potentials [50], V is the velocity
potential for peculiar velocities in the longitudinal gauge, vi = ≠ˆiV , s is the magni-
fication bias , Ÿ is the convergence, r is the comoving distance, fevo is the evolution
bias, and a dot denotes derivative w.r.t. conformal time. Both the evolution bias
and the magnification bias functions are defined below when giving the survey spec-
ifications.

Similarly to what is done in CMB analysis with temperature fluctuations, it is useful
to expand the perturbation in the number density of galaxies in spherical harmonics
Y¸ m(n). Whereas for the CMB case one expands the temperature fluctuations field
�T (n) at a single red-shift (z ≥ 1000), when analysing galaxy catalogues we have
data for a range of red-shifts and therefore the expansion takes into account this
red-shift dependence

�(z, n) =
ÿ

¸,m

a¸m(z)Y¸m(n), (2.3)

where we have omitted the limiting magnitude. Assuming statistical isotropy, it is
possible to define the angular matter power spectrum through the expansion (2.3)
as

Èa¸m(z)aú
¸m(zÕ)Í © ”¸¸Õ”mmÕC¸(z, zÕ). (2.4)
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In practice, galaxy clustering data is commonly analysed by using tomographically
binned samples of galaxies. The catalogue can be divided in di�erent red-shift bins
according to normalised window functions W�zi(z, zi) of width �zi and centred in
red-shift zi. One can then define correlations between red-shift bins i and j as

Cij
¸ ©

⁄
dzdzÕW�zi(z, zi)W�zj (z, zj)C¸(z, zÕ). (2.5)

In this project we have used synthetic galaxy clustering data for a survey consistent
with the Euclid photometric catalogue:

• the covered sky fraction fsky = 0.364;

• we divide the catalogue into Nbin = 5 Gaussian red-shift bins (Gaussian window
functions W�zi) containing equal number of galaxies;

• the galaxy red-shifts are assumed to range from 0.1 to 2;

• the galaxy density d = 30 arcmin≠2;

• the number of galaxies per red-shift and per steradian

dN

dzd� = 3.5 ◊ 108z2 exp
C

≠
3

z

z0

43/2
D

z0 = 0.637, (2.6)

is shown in Figure 2.1;

• the number of galaxies per steradian within a given red-shift bin is

N = 1
Nbin

⁄
dz

dN

dzd� ; (2.7)

• as suggested by previous studies (see, for instance, [23]) we assume a scale-
independent galaxy bias

b(z) = b0
Ô

1 + z; (2.8)

• following [97], the magnification bias for an Euclid-like survey is modelled as

s(z) =
3ÿ

k=0
skzk, (2.9)

with s0 = 0.1194, s1 = 0.2122, s2 = ≠0.0671, s3 = 0.1031;
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• finally, the evolution bias

fevo(z) ©
ˆ ln

A

a3 dN

dzd�

B

ˆ ln a
, (2.10)

where a is the scale factor and we assume that the survey observes all the
galaxies in the windows. The galaxy bias and the magnification bias are shown
in Figure 2.2.
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Fig. 2.1: Euclid photometric galaxy density distribution (black line) with a division into 5 bins containing the same
number of galaxies.
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Fig. 2.2: Galaxy bias bG(z) and magnification bias s(z) for Euclid. The magnification bias is computed at the
limiting magnitude m

lim

= 24.5. As a reference, we also plot the value s = 0.4 at which the lensing contribution to
number counts changes sign.

Having the survey specifications we can compute angular matter power spectrum as
in Eq. (2.5). We have utilised the code CLASSgal [98] where galaxy number counts
have been implemented including relativistic corrections in Eq. (2.2). In the next
section we study the importance of including the e�ect of lensing convergence in
galaxy clustering analyses when determining the neutrino mass.

2.3 Methodology

In order to show how important the inclusion of lensing convergence in galaxy
clustering analyses is, we perform a Markov Chain Monte Carlo (MCMC) analy-
sis [24, 62, 99] both including and neglecting the lensing e�ect. Studies analysing
the bias on cosmological parameters due to neglecting lensing convergence can be
found in the literature, but they do Fisher matrix analyses and focus on either the
primordial non-Gaussianity parameter (i.e., fNL) [100] or dark energy parameters
(e.g., w, ��) [101]. Although in this project we stress on the neutrino mass, we also
discuss other parameters in the concordance model.
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The MCMC technique is more suitable than a Fisher matrix method. Current Boltz-
mann codes such as CLASS [102] or CAMB [64] are accurate to 1% (with nominal
precision settings), but it is possible for random numerical errors to exceed this.
Future surveys will provide more precise Large Scale Structure (LSS) measurements
and therefore these e�ects might become problematic for approaches that rely on
computation of derivatives as a function of parameters (e.g., Fisher matrix). Since
our MCMC approach average over ≥ 105 galaxy number counts spectra, it is much
less sensitive to those numerical errors than the Fisher matrix approach.

We assume a fiducial flat �CDM model consistent with results from the Planck
collaboration [21], including massive neutrinos with a normal mass hierarchy (dom-
inated by the heaviest neutrino mass eigenstate). The cosmological parameters of
our fiducial model are the reduced baryon density parameter, Êb = 2.225 ◊ 10≠2,
the cold dark matter density parameter, Êcdm = 0.1198, the scalar spectral in-
dex, ns = 0.9645, the amplitude of curvature fluctuations, ln 1010As = 3.094, the
Hubble constant, H0 = 67.27 km s≠1 Mpc≠1, and the sum of the neutrino masses,q

m‹ = 0.06 eV.

To take into account a theoretical error on non-linear scales we use Halofit [103] to
rescale all linear transfer functions. The rescaling for the matter power spectrum
in models including massive neutrinos has been already implemented in CLASSgal.
Transfer functions are rescaled by the square root of

–(k, z) = ln[1 + k/kNL(z)]
1 + ln[1 + k/kNL(z)]

fth, (2.11)

where kNL is the non-linear scale determined by the Halofit algorithm, and fth is the
error percentage on non-linear scales that we have chosen to be fth = 10%. The
theoretical error power spectra Eij

¸ are then computed by taking the absolute value
of the resulting Cij

¸ . Because computing Eij
¸ with high accuracy is time-computing

demanding, in this project we compute the error power spectra only for the fiducial
model, that is, we ignore the parameter dependence on the theoretical error. In
addition, since the perturbation on the number density of galaxies is not a continuous
field, it is usually assumed that galaxies form a Poisson sample of the density field [92]
and therefore there is a shot-noise contribution N ≠1 to the error budget in the
angular power spectra.

Finally, the galaxy number counts are modelled as

CA, ij
¸ = Cij

¸ + Eij
¸ + N ≠1”ij, (2.12)
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where A = obs, th and i, j = 1, ..., Nbin are red-shift bin indices. Here Cobs
¸ stands

for spectra computed for our fiducial model which includes the e�ect of lensing
convergence, and Cth

¸ stands for models which might or might not include lensing
convergence. In the next Section we will study the impact of switching lensing
convergence o� in Cth

¸ when fitting this kind of models to our fiducial Cobs
¸ .

Following the cosmic shear implementation in [104] we have implemented a Gaussian
likelihood for an Euclid-like survey. For given observed and theoretical power spectra
in Eq. (2.12), let us define the determinants

dth
¸ = det

1
Cth, ij

¸

2
, (2.13)

dobs
¸ = det

1
Cobs, ij

¸

2
. (2.14)

Additionally, one can define a mixed determinant dmix
¸ formed from dth

¸ : one takes
each term in dth

¸ and replaces one at a time Cth, ij
¸ by the corresponding Cobs, ij

¸ . If
we worked with 2 red-shift bins, the mixed determinant would read

dmix
¸ = Cobs, 11

¸ Cth, 22
¸ + Cth, 11

¸ Cobs, 22
¸ ≠ 2Cth, 12

¸ Cobs, 12
¸ . (2.15)

It is known that in an ideal full-sky experiment, the di�erent multipoles in an spher-
ical harmonics expansion of a given function are uncorrelated. Then in this simple
case one can write the Gaussian likelihood

L = ÊN �¸

I
1

(dth
¸ ) 2¸+1

2

exp
C

≠(2¸ + 1)
2

dmix
¸

dth
¸

DJ

, (2.16)

where ÊN is a normalisation constant. The e�ective chi square is defined as

‰2
e� © ≠2 ln L = ≠2 ln ÊN +

ÿ

¸

(2¸ + 1)
A

ln dth
¸ + dmix

¸

dth
¸

B

, (2.17)

which is minimal for dmix
¸ = Nbindth

¸ = Nbindobs
¸ . Having into account the partial sky

coverage these definitions lead to a ‰2 relative to the fiducial model given by

�‰2 =
¸

maxÿ

¸=2
(2¸ + 1)fsky

A

ln dth
¸

dobs
¸

+ dmix
¸

dth
¸

≠ Nbin

B

, (2.18)

where to be conservative in the treatment of non-linear e�ects we use ¸max = 400.
In order to optimise the computation of the angular power spectra CA, ij

¸ we use the
Limber approximation and adjust the precision parameters in CLASSgal to have
�‰2 . 0.2 for Cth

¸ including lensing evaluated at the fiducial model. These ad-
justments are necessary to make feasible our MCMC approach and mean that our
computations are accurate up to �‰2 . 0.2.
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2.4 Results

Utilising the approach explained in Section 2.3, we have performed the three following
MCMC analyses:

1. Cth
¸ including lensing convergence.

2. Cth
¸ neglecting lensing convergence.

3. Cth
¸ neglecting lensing convergence, but including only auto-correlations.

We have done these analyses in two ways. First, we assume no previous information
and use wide, flat prior distributions for the cosmological parameters. Second, we
consider a more realistic scenario where information from a full-sky CMB experiment
is provided. In this case we assume a Gaussian prior distribution for the pertinent
cosmological parameters; we compute the covariance matrix for a model with varying
neutrino mass from information provided by the Planck collaboration. In addition
to these two analyses, we do a Fisher matrix analysis no using priors and compare
results with the corresponding MCMC analysis. We close this section by estimating
the significance of lensing detection with an Euclid-like survey.

2.4.1 MCMC with wide, flat priors

The Figure 2.3 shows two- and 1-D posteriors for the three mentioned analyses using
wide, flat priors on the cosmological parameters. The corresponding constraints are
shown in Table 2.1. Red contours indicate results for the analysis that consistently
includes lensing convergence in the theoretical model fitting the mock data. The anal-
ysis neglecting lensing convergence, but including only red-shift bin auto-correlations
(i.e. C¸(z, z)), is depicted in gray. Blue contours show the analysis neglecting lensing,
but including all possible red-shift bin correlations (i.e. C¸(z, zÕ)).

The analysis that consistently includes lensing convergence (red contours in Figure
2.3) should output the fiducial model. The corresponding constraints in Table 2.1
show that the best fitting parameters are indeed very close to the input fiducial
parameters (see the amplitude of the shift of the best fit). The amplitude of the
shifts of the mean of some parameters (i.e., m‹ , H0, Êcdm, Êb) reveal the limitations
of our analysis. On the one hand, since the main impact of massive neutrinos occurs
on small scales and we treat non-linear scales very conservatively, an improvement
on the constraints of the neutrino absolute mass scale is expected in an analysis
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Fig. 2.3: Two- and 1-D posteriors for the cosmological parameters inferred from the full analysis including lensing
(red dotted), an analysis neglecting lensing (blue dashed) and considering only auto-correlations (gray solid). The
68% and 95% confidence intervals are shown. Intersections between vertical and horizontal lines denote the fiducial
cosmology. In this analysis no significant priors were imposed on the parameters. Circles and squares represent the
estimates for the best-fits from a Fisher matrix analysis when neglecting lensing, and for the only auto-correlations
case, respectively.
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i) Consistently including lensing: �‰2 = 0
Parameter Mean best fit ‡ shift: mean best-fit

Êb 0.02979 0.02285 0.00624 1.2‡ 0.1‡
Êcdm 0.1455 0.1219 0.0200 1.3‡ 0.1‡
ns 0.9476 0.9642 0.0387 0.4‡ < 0.1‡

ln 1010As 3.047 3.097 0.065 0.7‡ < 0.1‡

H0
Ë

km
s·Mpc

È
73.84 67.84 5.48 1.2‡ 0.1‡

m‹ [eV] 0.29 0.09 0.19 1.2‡ 0.2‡
b0 1.018 1.000 0.031 0.6‡ < 0.1‡

ii) Neglecting lensing: �‰2 = 2064
Parameter Mean best fit ‡ shift: mean best-fit

Êb 0.02494 0.02120 0.00556 0.5‡ 0.1‡
Êcdm 0.1532 0.1435 0.0208 1.6‡ 1.1‡
ns 0.8702 0.8837 0.0446 2.1‡ 1.8‡

ln 1010As 2.867 2.965 0.394 0.6‡ 0.3‡

H0
Ë

km
s·Mpc

È
68.73 66.76 5.14 0.3‡ 0.1‡

m‹ [eV] 0.43 0.41 0.16 2.3‡ 2.2‡
b0 1.293 1.200 0.271 1.1‡ 0.7‡

iii) Neglecting lensing:
(only auto-

correlations)

�‰2 = 180

Parameter Mean best fit ‡ shift: mean best-fit
Êb 0.01982 0.01737 0.00520 0.5‡ 0.9‡

Êcdm 0.1658 0.1552 0.0242 1.9‡ 1.5‡
ns 0.7539 0.7675 0.0513 4.1‡ 3.8‡

ln 1010As 2.449 2.719 0.465 1.4‡ 0.8‡

H0
Ë

km
s·Mpc

È
61.64 59.11 5.43 1‡ 1.5‡

m‹ [eV] 0.41 0.41 0.14 2.6‡ 2.5‡
b0 1.888 1.603 0.428 2.1‡ 1.4‡

Tab. 2.1: MCMC results (flat prior). We show the mean and best fit values, the standard deviation and the amplitude
of the shift of the mean and best-fit w.r.t the fiducial value in units of the standard deviation, ‡, of the corresponding
analysis. The large value of �‰2 for case ii) shows that cross-correlations cannot be fitted if lensing is neglected. A
shift of less than about 0.2‡ is not serious and probably due to the reduced precision used to compute the theoretical
spectra.

including, for instance, scales up to ¸ = 2000. On the other hand, the universe’s
expansion rate, the reduced baryon density parameter, and the cold dark matter
density parameter are not well constrained due to degeneracies in these parameters
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(see Figure 2.3). These degeneracies come from the dominant contributions in the
matter transfer function that are basically fixed by the ratio Êb/Êcdm and by the
scale of the particle horizon at the radiation-matter equality epoch zeq [105]. The
equality scale keq behaves like

keq Ã Êm

H0
, (2.19)

where we assume a fixed radiation content and measure keq in h/Mpc.

Gray contours in Figure 2.3 show the analysis neglecting lensing, but including only
red-shift bin auto-correlations. The e�ective �‰2 for this case is greater than in the
case consistently including lensing, thus suggesting that the model neglecting lensing
has di�culties in fitting the mock data. The spectral index and the neutrino mass
are significantly biased (> 2.5‡) from the input fiducial parameters. Moreover, a
degeneracy between the bias parameter b0 and the amplitude of scalar fluctuations
As appears. This comes from the fact that the product Asb2

0 determines the overall
amplitude of matter fluctuations and therefore its increase (decrease) signifies an
enhancement (decrement) of power on all scales. The bias on ns and m‹ can be
understood as follows. Since the magnification bias in s(z) Eq. (2.9) is relatively
large (see Figure 2.2), the density-lensing correlation term

b(z)(5s(z) ≠ 2)ÈDŸÍ, (2.20)

contributes to the power with a positive (negative) sign for red-shift bins with z > 1
(z < 1). Because correlations of relatively small red-shifts bins probe mainly small
scales, the decrement of power on small scales due to lensing convergence must be
corrected in a model no including lensing. This correction can be achieved by lowering
the spectral index – since P (k) Ã kns≠1 – and increasing the neutrino mass.

Finally, we focus our attention on the analysis that neglects lensing convergence,
but includes all red-shift bin correlations (blue contours in Figure 2.3). Although
bias on cosmological parameters appear to be smaller in this case – as compared
to the gray contours –, this improvement is not significant. Since the lensing term
might actually dominate the radial power spectrum at large scales [94], it is even
more di�cult for a model that neglects lensing and includes cross-correlations to fit
the mock data. This is easily seen with the value of the e�ective �‰2 in Table 2.1.
The �‰2 increases from �‰2

auto ƒ 180 for the five auto-correlation bins to more than
�‰2

a+c & 2000 when adding the 10 cross-correlation bins. If one naively gives each
bin the same weight, one would expect an increase by a factor 3. We however find
an increase �‰2

a+c/�‰2
auto & 11.
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Parameter Shift of best-fit for MCMC
Êb 1.2‡ (0.9‡) ≠0.1‡ (≠0.9‡)

Êcdm 1.7‡ (1.1‡) 1.1‡ (1.5‡)
ns ≠1.9‡ (≠1.3‡) ≠1.8‡ (≠3.8‡)

ln 1010As ≠1.1‡ (0.005‡) ≠0.3‡ (≠0.8‡)
H0

Ë
km

s·Mpc

È
1.2‡ (0.9‡) ≠0.1‡ (≠1.5‡)

m‹ [eV] 3.3‡ (0.6‡) 2.2‡ (2.5‡)
b0 1.7‡ (0.1‡) 0.7‡ (1.4‡)

Tab. 2.2: Fisher matrix results for the shift in the best-fit values due to neglecting lensing, in units of standard
deviations (see Figure 2.5). The numbers in parenthesis refer the the case including only bin auto-correlations. For
comparison we also give in columns 4 and 5 the corresponding values from the MCMC analysis presented in Table 2.1
and Fig. 2.3. While Fisher matrices give a good qualitative description of parameter degeneracies, estimates of the
shifts in the best-fits seriously misestimate the magnitude and direction in parameter space.

Models with additional parameters, but neglecting lensing convergence are likely to
weaken the constraints – introducing new degeneracies – and produce even stronger
biases on the cosmological parameters. Therefore, from the analyses presented above,
we conclude that to go beyond the current state and derive accurate estimates of the
absolute neutrino mass scale with galaxy surveys absolutely requires taking lensing
convergence into account. Figure 2.4 shows number counts angular power spectra
for analyses including and neglecting lensing computed at the corresponding best fit
(see Table 2.1). The thick red lines indicate the model including lensing and the
thin blue lines show the model neglecting lensing (including all red-shift bin cross-
correlations). For the spectra of the model consistently including lensing, we show 1-‡
error bars that were computed by assuming Gaussian spectra (see Eq. (2.13) of [97]).
Correlations between the red-shift bins (ij) = (11), (55) and (15) are shown. One
can see that when neglecting lensing, the spectrum for the cross-correlation between
red-shift bins 1 and 5 lies outside the 1-‡ error bars around the fiducial spectrum
including lensing. This clearly evidences that a model neglecting lensing convergence
cannot fit the mock data.

2.4.2 Fisher analysis without priors

An alternative, widely used approach to make forecasts is the Fisher matrix method
[100,101,106,107]. In this subsection, we compare how well a Fisher matrix technique
performs as compared to the MCMC method of the precedent subsection. Since
we have seen the biases on cosmological parameters might reach several standard
deviations when neglecting lensing convergence in the analysis, we expect the Fisher
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Fig. 2.4: The thick red and the thin blue lines correspond to the spectra at the best-fit values estimated by consistently
including lensing and by neglecting it, respectively. Gaussian error bars accounting for cosmic variance and shot-
noise for the consistent analysis are shown as gray regions. The indices for the correlated redshift bins are shown
in the legend. The model neglecting lensing cannot fit the data, especially due to redshift cross-correlations.
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Fig. 2.5: Two- and 1-D posteriors for the cosmological parameters inferred from the Fisher analysis excluding
(orange solid) and including lensing (red dotted). We stress that, in the former case, to compute error ellipses
within the Fisher formalism we forecast parameter constraints in a Universe where lensing is absent (see the text for
more details). The 68% and 95% confidence intervals are shown. Intersections of dashed lines denote the fiducial
cosmology. The expected systematic shifts in the best-fit due to neglecting lensing in the theoretical modeling are
shown, including all bin correlations (circles), and including only auto-correlations (squares). For comparison, we
also show the corresponding results from the MCMC analysis. While the Fisher formalism is reliable for a qualitative
understanding of parameter degeneracies, the systematic errors are seriously misestimated. See table 2.2 for more
details about statistical quantities.
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matrix forecasts to be not very reliable (see Section 2.3). The basic expressions of
the Fisher matrix formalism are explained in the Appendix C.

The figure 2.5 shows two- and 1-D posteriors for two Fisher analyses. Red contours
indicate forecasts for an analysis consistently including lensing convergence, whereas
yellow contours show results for an analysis where lensing is neglected (not only in
the model, but also in the underlying universe). Red contours in both Figure 2.3 and
Figure 2.5 can therefore be directly compared. The shifts of the best fit parameters
for analyses neglecting lensing are computed as explained in Appendix C and shown
in Table 2.2. The standard deviations ‡ in this Table refer to the model neglecting
lensing which provides more conservative information about the importance of the
systematic error.

Comparing Figures 2.3 and 2.5, we can see that the Fisher matrix analysis provides a
good qualitative description of degeneracy between di�erent parameter constraints.
Although the 68% confidence intervals are in disagreement with MCMC results by a
factor 2-3, the shape and inclination of the ellipses very roughly follow the MCMC
contours. On the other hand, the Fisher matrix analysis badly fails in determining
the magnitude and direction of the best-fit shift in parameter space. Indeed, the
first-order formalism that we use to estimate the shift in the best-fitting parameters
due to a systematic error – neglecting lensing convergence – is valid as long as the
shift is small compared to the errors, and it also assumes that the systematic error
does not a�ect the ellipse contours [108]. The results from the MCMC approach in
the previous subsection and the contours depicted in Figure 2.5 clearly show that
these assumptions are not fulfilled in the present case.

2.4.3 MCMC with Planck Gaussian prior

As discussed above, degeneracies in parameter space limit the constraints from mea-
surements of the galaxy power spectrum. This di�culty is usually tackled by ap-
plying a variety of priors or constraints on parameters, and combining the galaxy
clustering data with other cosmological measures, such as CMB experiments [24].
We therefore repeat our MCMC analysis using Planck priors for all the cosmological
parameters except the bias b0, which is not measured in Planck, and the neutrino
mass. The latter is our most interesting parameter and we want to test how strongly
it is biased in an analysis which neglects lensing.

Planck chains are publicly available through the Planck Legacy Archive. In this
paper we use the chain for the extended model with a free neutrino mass based on
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the Planck TT, TE, EE + lowP likelihoods (Equation [54c] in [21]). We compute the
covariance matrix C for the cosmological parameters x̨ = (Êb, Êcdm, ns, As, H0) and
assume a Gaussian distribution for the prior. The ‰2 relative to the fiducial model
including the Planck prior is then the �‰2 in Eq. (2.18) plus

�‰2
prior =

ÿ

i,j

(xi ≠ xfid
i )C≠1

ij (xj ≠ xfid
j ), (2.21)

where x̨fid denotes parameters of the fiducial model and C≠1 is the inverse of the
covariance matrix. In this way we marginalize the Planck prior over the neutrino
mass and the optical depth, · , which are parameters that we want to leave free since
we want to determine the first and our survey is not sensitive to the second. The
results are shown in Table 2.3 and Fig. 2.6.

Red contours in Figure 2.6 indicate the full analysis including lensing convergence.
Adding CMB information clearly helps to remove degeneracies and cosmological pa-
rameters are now better determined than for the case with wide, flat priors. Blue and
gray contours show analyses neglecting lensing convergence. While the spectral index
ns shows now a smaller relative shift, the neutrino masses and galaxy bias actually
acquire larger shifts. Since the model neglecting lensing must correct the number
counts angular power spectrum on small scales by increasing neutrino mass and low-
ering spectral index, the Hubble parameter H0 is pulled away from the fiducial value
by over 4‡ in spite of the Planck prior. Hence, while the details of the analysis are
important in determining the actual size of error bars and degeneracies in parameter
space, a large bias 2‡–9‡ in the neutrino masses is a feature that persists in all the
analyses here performed. Lensing convergence must be included when analysing data
from future galaxy surveys, otherwise constraints on the neutrino mass will be in a
high degree biased.

2.4.4 Significance of the lensing detection

We can quantify the strength with which we detect the lensing signal in our setup
with the help of Bayesian model probabilities, comparing the case with lensing to
the case without lensing. To do this, we introduce formally an extended model
ML with an additional ‘lensing amplitude’ parameter AL that multiplies the lensing
contribution in the model. For the ‘with lensing’ model M1 we then set AL = 1, while
the ‘without lensing’ case M0 corresponds to AL = 0. In this way the two models are
nested within the extended model and we can use the Savage-Dickey density ratio
(SDDR) method to derive model probabilities (see e.g. [109] for an explanation of the
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Fig. 2.6: Two- and 1-D posteriors for the cosmological parameters inferred using Planck priors. We show the
full analysis including lensing (red dotted), an analysis neglecting lensing (blue dashed) and considering only auto-
correlations (gray solid). The 68% and 95% confidence intervals are shown. Intersections between vertical and
horizontal lines denote the fiducial cosmology. See Table 2.3 for numerical values of the statistical quantities.
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i) Consistently including lensing: �‰2 = 0
Parameter Mean best fit ‡ shift: mean best-fit

Êb 0.02223 0.02226 0.00013 0.2‡ < 0.1‡
Êcdm 0.1200 0.1196 0.0011 0.2‡ 0.2‡
ns 0.9642 0.9651 0.0041 0.1‡ 0.1‡

ln 1010As 3.092 3.098 0.026 0.1‡ 0.2‡

H0
Ë

km
s·Mpc

È
67.08 67.25 0.70 0.3‡ < 0.1‡

m‹ [eV] 0.08 0.04 0.05 0.4‡ 0.4‡
b0 1.005 0.994 0.018 0.3‡ 0.3‡

ii) Neglecting lensing: �‰2 = 2082
Parameter Mean best fit ‡ shift: mean best-fit

Êb 0.02220 0.02219 0.00017 0.3‡ 0.4‡
Êcdm 0.1215 0.1214 0.0014 1.2‡ 1.1‡
ns 0.9643 0.9640 0.0049 < 0.1‡ 0.1‡

ln 1010As 3.085 3.090 0.034 0.3‡ 0.1‡

H0
Ë

km
s·Mpc

È
65.66 65.64 0.87 1.8‡ 1.9‡

m‹ [eV] 0.35 0.34 0.06 4.8‡ 4.7‡
b0 1.072 1.070 0.022 3.3‡ 3.3‡

iii) Neglecting lensing:
(only auto-

correlations)

�‰2 = 230

Parameter Mean best fit ‡ shift: mean best-fit
Êb 0.02185 0.02181 0.00014 2.8‡ 3‡

Êcdm 0.1240 0.1240 0.0013 3.4‡ 3.3‡
ns 0.9529 0.9536 0.0044 2.7‡ 2.5‡

ln 1010As 3.079 3.081 0.033 0.5‡ 0.4‡

H0
Ë

km
s·Mpc

È
62.72 62.71 1.01 4.5‡ 4.5‡

m‹ [eV] 0.50 0.52 0.05 8.6‡ 8.8‡
b0 1.127 1.127 0.022 5.7‡ 5.7‡

Tab. 2.3: MCMC results with Planck priors. We show the mean and best fit values, the standard deviation and the
amplitude of the shift of the mean and best-fit w.r.t. the fiducial value in units of the standard deviation, ‡, of the
corresponding analysis. The large value of �‰2 for case ii) shows that cross-correlations cannot be fitted if lensing
is neglected.

SDDR, and section 3 of [110] for a more detailed description of the same reasoning
as the one used here): with the SDDR, the Bayes factor B between the case with
fixed AL and the general case is given by the posterior for AL (marginalised over all
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other parameters) of the general model divided by prior, both taken at the nested
point,

Bx © P (D|Mx)
P (D|ML) = P (AL = x|D, ML)

P (AL = x|ML) , (2.22)

where P denote probabilities, D the data and x is either 0 or 1. The Bayes factor
between two models with given fixed values for AL is then simply the ratio of the
Bayes factors relative to the extend model,

Bxy © P (D|Mx)
P (D|My)

= P (D|Mx)
P (D|ML)

P (D|ML)
P (D|My) = Bx

By

= P (AL = x|D, ML)
P (AL = y|D, ML) , (2.23)

where the last equality holds if P (AL = x|ML) = P (AL = y|ML), e.g. for an uniform
prior in AL, which is what we will use. We see that the only information needed
to determine Bxy is the relative value of the posterior at AL = x and at AL = y,
and this is approximately given by the ‰2 di�erence between these cases. As by
construction AL = 1 (the case where we include lensing consistently) has �‰2 = 0,
we find simply that ln B01 ¥ ≠�‰2

no lensing/2. We find thus that ln B01 ¥ ≠1000 when
using auto- and cross-correlations, and ln B01 ¥ ≠90 to ≠115 when only taking into
account autocorrelations. Both Bayes factors are way out on the often-used Je�reys’
scale [111] where anything larger than 5 is considered as strong. In other words,
lensing is detected in both cases with an overwhelming evidence.

We can also translate the �‰2 value into an order-of-magnitude estimate of ‘the
number of sigmas’ with which we detect the lensing signal in our setup. Assuming a
Gaussian probability distribution function for AL so that �‰2 ¥ (AL≠1)2/‡[AL]2, we
find that ‡[AL] needs to be 0.022 in order to explain the observed �‰2 values of 2064
and 2082. This implies that the lensing is measured roughly at the 45‡ level. Lensing
is clearly a strong signal in the photo-z type survey that we have considered here.
As also discussed above, most of the lensing signal is contained in the o�-diagonal
spectra. The �‰2 values of 180 and 230 when only looking at the auto-correlations
correspond to about 13‡ to 15‡, roughly comparable to the strength of the lensing
detection in the Planck temperature power spectrum [21].
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This also confirms the result of [97], which found that the lensing amplitude AL can
be determined to an accuracy of the order of (1-2)% with a Euclid like photomet-
ric survey, with the constraints coming especially from the o�-diagonal (inter-bin)
correlations.

2.5 Conclusions

Future galaxy surveys will probe scales comparable to the horizon. The come of all
this new data will make necessary very careful analyses and appropriate modelling
of the statistical properties of the matter density field. In this chapter we have inves-
tigated the impact of lensing convergence on constraints of cosmological parameters.
We have utilised both MCMC and Fisher matrix approaches to study the importance
of including lensing convergence when analysing galaxy clustering data. Although
the Fisher matrix formalism provides qualitative information about degeneracies in
the parameter space, it badly fails in determining quantitative estimations of shifts in
the best fitting parameters. When performing the analysis with a MCMC approach
we have found that biases of best fitting cosmological parameters might reach sev-
eral standard deviations when lensing convergence is neglected in the analysis. Since
the Fisher matrix technique is reliable only for shifts relatively small, this explains
why Fisher matrix results wrongly estimate the bias on cosmological parameters: for
shifts bigger than 2‡ the linear approximation in the Fisher formalism breaks down.
A MCMC method is therefore suitable as we have shown.

We have seen that analysis neglecting lensing convergence lead to biased cosmolog-
ical constraints. The spectral index ns and the neutrino mass m‹ are particularly
a�ected. When neglecting lensing a degeneracy between the amplitude of scalar
fluctuations As and the galaxy bias parameter b0 appears. One understands this by
noting that the product b2

0As determines the amplitude of the matter power spec-
trum, so b2

0As increases in analysis neglecting lensing to enhance power on all scales.
Since the density-lensing contribution to the number counts angular power spectrum
can become negative for small red-shift bins, therefore decreasing power on small
scales, its e�ect can be mimic by changes on ns and m‹ : decreasing the spectral in-
dex and increasing the neutrino mass one obtains a damped matter power spectrum
on small scales.

Finally, we conclude by noting that the specific shifts on the best fitting cosmological
parameters depend on the details of the survey. Although in this project we have
used specifications for an Euclid-like survey, the important point is that a consistent
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analysis of galaxy clustering data must take into account the magnification bias
defined by

s(z) © ˆ log10 N(z, m < mú)
ˆmú

, (2.24)

where mlim is the limiting magnitude of the survey and N(z, m) is the galaxy lumi-
nosity function of the survey at redshift z. Our results show that a correct modelling
of number counts might lead to detection of lensing with high significance as in the
case of CMB. The fact that deep galaxy surveys are so sensitive to lensing, however,
is not only a curse but also a blessing. It means that these surveys will allow us to
determine a map of the lensing potential at di�erent redshifts, i.e. perform ‘lensing
tomography’ with galaxy clustering. This will be a very interesting alternative to
lensing tomography with shear measurements proposed, e.g. in [112]. Both tech-
niques are challenging but they have di�erent systematic errors and allow valuable
cross-checks. So clearly both paths should be pursued.
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Chapter 3

Determining H0 with Bayesian
hyper-parameters

3.1 Introduction

Pinning down the Hubble constant H0 is crucial for the understanding of the stan-
dard model of cosmology. It sets the scale for all cosmological times and distances
and it allows to tackle cosmological parameters, breaking degeneracies among them
(e.g., the equation of state for dark energy and the mass of neutrinos). The expansion
rate of the universe can either be directly measured or inferred for a given cosmolog-
ical model through cosmological probes such as the cosmic microwave background
(CMB). Although accurate direct measurements of the Hubble constant have proven
to be di�cult (e.g., control of systematic errors, relatively small data sets, fully
consistency of di�erent methods for measuring distances), significant progress has
been achieved over the past decades [113, 114]. The Hubble Space Telescope (HST)
Key Project made possible to measure H0 with an accuracy of 10% by significantly
improving the control of systematic errors [115]. More recently, in the HST Cycle
15, the Supernovae and H0 for the Equation of State (SHOES) project has reported
measurements of H0 accurate to 4.7% (74.2 ± 3.6 km s≠1 Mpc≠1) [116], then to 3.3%
(73.8±2.4 km s≠1 Mpc≠1) [78] and very recently to 2.4% (73.24±1.74 km s≠1 Mpc≠1)
[32]. This remarkable progress has been achieved thanks to both an enlarged sample
of SN Ia having a Cepheid calibrated distance, a reduction in the systematic un-
certainty of the maser distance to NGC4258, an increase of infrared observations of
Cepheid variables in the Large Magellanic Cloud (LMC).
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The 2015 release in temperature, polarization and lensing measurements of the CMB
by the Planck satellite leads to a present expansion rate of the universe given by
H0 = 67.81 ± 0.92 km s≠1 Mpc≠1 for the base six-parameter �CDM model [21]. As
it is known, the derived estimation of H0 from CMB experiments provide indirect
and highly model-dependent values of the current expansion rate of the universe
(requiring e.g., assumptions about the nature of dark energy, properties of neutrinos,
theory of gravity) and therefore do not substitute a direct measurement in the local
universe. Moreover, indirect determinations (in a Bayesian approach) rely on prior
probability distributions for the cosmological parameters which might have an impact
on the results.

The Planck Collaboration used a ‘conservative’ prior on the Hubble constant (H0 =
70.6 ± 3.3 km s≠1 Mpc≠1) derived from a reanalysis of the Cepheid data used in [78],
done by G. Efstathiou in [117]: in this reanalysis, a di�erent rejection algorithm
was used (with respect to that in [78]) for outliers in the Cepheid period-luminosity
relation (the so-called Leavitt Law); in addition, [117] used the revised geometric
maser distance to NGC4258 of [118]. Although consistent with the Planck TT esti-
mate at the 1 ‡ level, this determination of H0 assumes that there is no metallicity
dependence in the Leavitt Law. Furthermore, it discards data (i) from both Large
Magellanic Cloud (LMC) and Milky Way (MW) Cepheid variables (ii) from the
sample of Cepheid variables in [78] using an upper period cut of 60 days.1

As discussed in [114], the sensitivity to metallicity of the Leavitt Law is still an open
question. In fact, due to changes in the atmospheric metal abundance, a metal-
licity dependence in the Cepheid period-luminosity is expected. Discarding data
involves somehow arbitrary choices (e.g., chauvenet’s criterion, period cut, threshold
T in [117]) and might hinder our understanding of the physical basis behind the in-
compatibility of data sets (if any) [119]. Therefore, neither no metallicity dependence
in Leavitt Law nor disregarding data seem to be very conservative assumptions.

Once systematics are under control (like the presence of unmodeled systematic errors
or biases in the outlier rejection algorithm for Cepheid variables), a reliable estimate
of H0 is very important also on theoretical grounds. Confirmation of significant

1In [117] G. Efstathiou also shows results utilizing the rejection algorithm for outliers used
in [78], but with the revised geometric maser distance to NGC4258 [118] which is about 4% higher
than that adopted by [78] in their analysis. Note that in [78] (see their page 13) the authors
provided a recalibration of H0 for each increase of 1% in the distance to NGC4258 : according
to this recalibration and the revised geometric maser distance their measurement would be driven
downwards from H0 = 74.8 km s≠1 Mpc≠1 to H0 ¥ 73.8 km s≠1 Mpc≠1 which is higher than all the
reported values in table A1 of [117] for the R11 rejection algorithm.
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discrepancies between direct and indirect estimates of H0 would suggest evidence
of new physics. Discrepancies could arise if the local gravitational potential at the
position of the observer is not consistently taken into account when measuring the
Hubble constant. Nevertheless, an unlikely fluctuation would be required to explain
an o�set as big as 2.4 ‡ [120]. Second-order corrections to the background distance-
redshift relation could bias estimations of the Hubble constant derived from CMB
[121]. However, it was shown in [122] that those corrections are already taken into
account in current CMB analyses.

It is clear from [117] that the statistical analysis done when measuring H0 plays a
part in the final result (for instance, through the outlier rejection algorithm, data
sets included, anchors distances included, the period cut on the sample of Cepheid
variables, the prior on the parameters of the Period-Luminosity relation). Given the
relevance of the Hubble constant for our understanding of the universe, it is neces-
sary to confirm previous results and prove them robust against di�erent statistical
approaches.

The goal of this project is to determine the Hubble constant H0 by using Bayesian
hyper-parameters to reanalyse the Cepheid data set used in both [78] and [32]. In
Section 3.2 we explain both our notation and the statistical method employed. We
then apply the method to di�erent data sets and determine H0 in Section 3.3. We
conclude and discuss our results in Section 3.4.

3.2 Notation and formalism

3.2.1 Distances and standard candles

Astrophysical objects with a known luminosity – the so-called standard candles– are
used to probe the expansion rate of the universe. In particular, measuring redshifts
and apparent luminosities for supernovae type Ia (SNe Ia) one can establish an
empirical redshift-distance relation for these objects. In order to estimate distances
to SNe Ia one uses the luminosity distance

dL ©
3

L

4fil

41/2
, (3.1)
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where L and l are the absolute luminosity and the apparent luminosity, respectively.
For historical reasons the apparent bolometric luminosity l is defined so that

l = 10≠2m/5 ◊ 2.52 ◊ 10≠5 erg/cm2 s (3.2)

where m is the apparent bolometric magnitude [123]. Similarly, one can define the
absolute bolometric magnitude M as the apparent bolometric magnitude a source
would have at a distance 10 pc

L = 10≠2M/5 ◊ 3.02 ◊ 1035 erg/s. (3.3)

Combining equations (3.1)-(3.3) it is possible to express the luminosity distance in
terms of the distance modulus m ≠ M :

µ0 © m ≠ M = 5 log10

A
dL

1Mpc

B

+ 25 . (3.4)

One can also estimate the luminosity distance dL of a light source with redshift z
within the context of General Relativity. Assuming a flat FLRW metric, one can
compute the luminosity distance

dL(z) = (1 + z)c
⁄ z

0

dzÕ

H(zÕ) (3.5)

where c is the speed of light and H(z) is the Hubble function. Since nowadays the
empirical curve for dL(z) is reasonably well known for relatively small redshift, the
Hubble function may then be usefully expressed as a power series in Eq. (3.5) leading
to

dL(z) © cz

H0
(1 + ”(z)) ¥ cz

H0

;
1 + 1

2[1 ≠ q0]z ≠ 1
6[1 ≠ q0 ≠ 3q2

0 + j0]z2 + O(z3)
<

(3.6)
where H0 is the Hubble constant, q0 is the present acceleration parameter, j0 the
present prior deceleration parameter, and ”(z) defines a function that vanishes as
z æ 0 and can be approximately expressed as a series expansion in redshift starting
with a term linear in z.

Having both an empirical curve and a theoretical estimation of dL(z) for a given set
of astrophysical objects, we can then try to find the parameters which fit the data
the best. Equating Eqs. (3.4) and (3.6) we obtain that

5 log10(cz(1 + ”(z))) ≠ mX = 5 log10 H0 ≠ MX ≠ 25 © 5aX , (3.7)
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where X denotes the use of wavelength band X (e.g., U for ultraviolet, B for blue, and
V for visual) and aX is a constant which defines the intercept of the log10 cz ≠0.2 mX

relation. Defining ”(z) through q0 = ≠0.55 and j0 = 1 [124], Riess et al. [78]
used the V wavelength band Hubble diagram for 153 nearby SN-Ia in the red shift
range 0.023 < z < 0.1 (a conservative lower limit in red shift imposed to avoid
the possibility of a local, coherent flow biasing the results) to measure the intercept
aV = 0.697 ± 0.00201. Using the Hubble diagram for 217 SNe Ia in the red shift
range 0.023 < z < 0.15, Riess et al. [32] found aB = 0.71273 ± 0.00176.

From Eqs. (3.4) and (3.7) one can easily express the apparent magnitude mSNe Ia
X

of a SNe Ia in terms of its distance modulus µ0, the Hubble constant H0, and the
intercept aX as

mSNe Ia
X = 5 log10 H0 + µ0 ≠ 5aX ≠ 25 . (3.8)

At this point (having measured aX) we are again in a position where we can try to
find the parameters H0 and µ0 which adjust the best the observed mSNe Ia

X . Cepheid
variables – another type of standard candle – are stars whose apparent luminosity is
observed to vary more or less regularly with time. There exist a few known galaxies
(19 up to date [32]) which simultaneously host both SNe Ia and Cepheid variables,
thus providing the means to measure the distance parameter µ0,i for the ith SN
Ia through the Leavitt Law [125]. According to the Leavitt Law there is a relation
between period and luminosity of Cepheids: in the ith galaxy, the pulsation equation
for the jth Cepheid star with apparent magnitude mCepheid

X,i,j (in the passband X) and
period Pi,j leads to a relation

mCepheid
X,i,j = µ0,i + MCepheid

X + bX(log Pi,j ≠ 1) + ZX� log[O/H]i,j, (3.9)

where ZX is the metallicity parameter, bX is the slope of the period-luminosity rela-
tion, and MCepheid

X is the Cepheid zero point. In principle, given an anchor distance,
a simultaneous fit of Eqs. (3.8) and (3.9) to observed SNe Ia and Cepheid variables
magnitudes would provide constraints for the expansion rate of the universe.

Constraints for the parameters of the period-luminosity relation (3.9) can be im-
proved by adding galaxies containing Cepheid stars and for which a direct measure-
ment of their distance (or the derived distance modulus µ0) is known. This is the case
for the megamaser system NGC4258, LMC, and M31. Although the sample of MW
Cepheid variables with parallax measurements is relatively small (15 up to date [32])
and mostly dominated by Cepheid stars with period P < 10 days, their inclusion
helps to further constrain parameters in the period-luminosity relation. Therefore,
the inclusion of any of these anchor distances in a simultaneous fit to Eqs. (3.8)-(3.9)
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is required to constrain the distance parameters µ0,i for the SNe Ia hosts and hence
the Hubble constant H0.

3.2.2 Hyper-parameters

Astrophysical observations are di�cult, and it is not easy to estimate and include the
associated errors and uncertainties correctly. Often the data sets show outliers with
error bars that are much smaller than the standard deviation from the expected
fit, for reasons that are not well understood or di�cult to quantify. An analysis
needs to deal with such outliers, typically by removing them based on some rejection
rule. As discussed in [78, 116, 117], the rejection of outliers on the Cepheid period-
luminosity relation has a non-negligible e�ect on the determination of the expansion
rate of the universe. One can argue that an outlier rejection criterion: i) involves
arbitrary choices (e.g., Chauvenet’s criterion, period cut) which might bias the results
ii) rejects data, thus increasing error bars and hindering a better understanding of
the data sets [119]. The hyper-parameters (HPs, hereafter) method o�ers a Bayesian
alternative to ad hoc selection of data points, avoiding problems associated with using
incompatible data points [126]. Instead of adopting an a priori rejection criterion
(galaxy-by-galaxy basis as in [78, 116] or from a global fit as in [117]), in this work
we analyse all the available measurements with Bayesian HPs. The latter e�ectively
allow for relative weights in the Cepheid variables, determined on the basis of how
good their simultaneous fit to the model is.

HPs allow to check for unrecognised systematic e�ects by introducing a rescaling of
the error bar of data point i, ‡i æ ‡i/

Ô
–i. Here –i is a HP associated with the data

point i [126]. In order to explain how HPs work, we start by assuming a Gaussian
likelihood for the datum Di,

PG(Di|w̨) = Ñi
exp(≠‰2

i (w̨)/2)Ô
2fi

, (3.10)

where ‰2
i and the normalisation constant Ñi are given by

‰2
i © (xobs,i ≠ xpred,i(w̨))2

‡2
i

, Ñi = 1/
Ò

‡2
i . (3.11)

Here for each measurement xobs,i there is a corresponding error ‡i and a prediction
xpred,i(w̨), (w̨ being the parameters of a given model). Suppose that some errors have
been wrongly estimated due to unrecognised (or underestimated) systematic e�ects
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and use hyper-parameters [126] to control the relative weight of the data points in
the likelihood. For each measurement i we introduce a HP to rescale ‡i as mentioned
above. In that case the Gaussian likelihood becomes [126]

P (Di|w̨, –i) = Ñi –1/2
i

exp(≠–i‰2
i (w̨)/2)Ô

2fi
. (3.12)

However, in general we do not know what value of –i is correct. In order to circum-
vent this problem, we follow a Bayesian approach, introducing the –i as nuisance
parameters and marginalising over them. Given a set of data points {Di}, we can
write the probability for the parameters w̨ as

P (w̨|{Di}) =
⁄

. . .
⁄

P (w̨, {–i}|{Di}) d–1 . . . d–N , (3.13)

where N is the total number of measurements. Bayes’ theorem allows us to write

P (w̨, {–i}|{Di}) = P ({Di}|w̨, {–i}) P (w̨, {–i})
P (D1, . . . , DN) (3.14)

and
P (w̨, {–i}) = P (w̨|{–i}) P ({–i}). (3.15)

As in [126] we assume:

P ({Di}|w̨, {–i}) = P (D1|w̨, –1) . . . P (DN |w̨, –N), (3.16a)
P (w̨|{–i}) = constant, (3.16b)

P ({–i}) = P (–1) . . . P (–N). (3.16c)

Thus far the formalism is fairly general and it contains two unspecified functions:
probability distributions for both data points and HPs. In this work we will assume
uniform priors for HPs (P (–i) = 1) and that errors never become smaller than their
reported value (–i œ [0, 1]).2 A low posterior value of the HP indicates that the
point has less weight within the fit. This may indicate the presence of systematic

2We have examined the more general case of an improper Je�rey’s prior (allowing decreasing as
well as increasing error bars). This works well when many data points are associated to the same
HP so that the ‰2 never vanishes. But when each data point has its own associated HP then the
model curve can pass through that data point so that ‰2

i = 0. In this case the likelihood grows
without bounds as –i æ 0, in other words the HP-marginalised likelihood is singular when at least
one of the points has ‰2 = 0 as can also be seen from Eq. (16) in [126].
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e�ects or the requirement for better modelling. With these assumptions Eq. (3.13)
now becomes:

P (w̨, {Di}) = P (D1|w̨) . . . P (DN |w̨)
P (D1, . . . , DN) , (3.17)

where
P (Di|w̨) ©

⁄ 1

0
P (Di|w̨, –i) d–i. (3.18)

The integral in Eq. (3.18) can be explicitly evaluated for the Gaussian HP likelihood
(3.12), it gives, for each data point,

P (Di|w̨ ) = Ñi

Q

ca
Erf

1
‰i(w̨)Ô

2

2
≠

Ò
2
fi
‰i(w̨) exp(≠‰2

i (w̨)/2)
‰3

i (w̨)

R

db . (3.19)

We can now rewrite Eq. (3.17) as

ln P (w̨, {Di}) =
ÿ

i

ln Ñi + ln ‰̃2
i , (3.20)

where constant terms have been omitted and where

‰̃2
i (‰2

i (w̨)) © Erf
1

‰i(w̨)Ô
2

2
≠

Ò
2
fi
‰i(w̨) exp(≠‰2

i (w̨)/2)
‰3

i (w̨) . (3.21)

One can easily obtain the most likely value for each HP by maximizing (3.12) w.r.t
HPs at a given set of best fit parameters w̨. We find that for each data point the
e�ective HP is given by:

–e�
i = 1, if ‰2

i Æ 1 (3.22a)

–e�
i = 1

‰2
i

, if ‰2
i > 1. (3.22b)

We will now apply HPs to combine Cepheid variable measurements and determine
the current expansion rate of the universe. We explore the parameter space w̨ with
the help of a Markov Chain Monte Carlo (MCMC) approach using flat priors if not
specified di�erently.
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Fig. 3.1: The hyper-parameter-marginalized probability distribution function (pdf) of Eq. (3.19) in yellow. Close
to the origin, x = 0, it is similar to a Gaussian pdf with ‡ = (5/2)1/3 (green), except that its amplitude at the
peak is 10.5% lower than a normalised Gaussian. Asymptotically for |x| æ Œ it decreases as 1/x3 and looks like a
student’s t distribution with 2 degrees of freedom (blue), but the latter is narrower at small x.
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3.3 Applying hyper-parameters

In this section we will apply HPs to determine the Hubble constant. First, we will
illustrate how the method works by fitting the period-luminosity relation of Cepheid
variables in the LMC, the MW, and the megamaser system NGC4258. This will
allow us to compare with results in [117]. Then, in Subsection 3.3.5 we determine
H0 with the Cepheid sample and SNe hosts in [78] (hereafter, R11). When this work
was about to finish a new enlarged and improved sample of Cepheid variables and
SNe hosts came out [32] (hereafter, R16); we determine the expansion rate of the
universe with this data set in Subsection 3.3.6.

3.3.1 The LMC Cepheid variables

We start out our analysis by applying HPs to the set of 53 LMC Cepheid variables
with H-band magnitudes, mH , listed in Table 3 of [127] and V , I band magnitudes,
mV , mI , listed in Table 4 of [128]. Following [32], we rely primarily on (near-infrared)
NIR ‘Wesenheit reddening-free’ magnitudes, defined as

mW,i = mH,i ≠ R (mV,i ≠ mI,i), (3.23)

where R is a constant defining the reddening law; in Subsections 3.3.1–3.3.5, where
R11 data set is used, we set R = 0.410 as G. Efstathiou did [117]; when utilising
R16 data set, we analyse the sensitivity of H0 to variations in R. For the purpose
of comparing with [117] we neglect for now metallicity dependence and fit the data
with a period-luminosity relation

mP
W = A + bW (log P ≠ 1), (3.24)

where A = µ0,LMC + MW in notation of Eq. (3.9) and P is the period.3 In order to
apply HPs we define

‰2,LMC
i = (mW,i ≠ mP

W )2

‡2
i + ‡2,LMC

int
, (3.25)

where ‡i is the observational error on mW,i and ‡LMC
int is what is referred to as ‘internal

scatter’ in [117]. The internal scatter is a common additional dispersion of the data
points that is independent of the measurement error and due to variations in the
physical mechanism behind the period-luminosity relation. As we do not know the

3We have dropped the label ‘Cepheid’ in the magnitudes for sake of simplicity.
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LMC Cepheid variables
Fit A bW ‡LMC

int Period cut
a 12.570 (0.035) ≠3.32 (0.10) 0.06 10 < P < 60
b 12.562 (0.016) ≠3.30 (0.05) 0.06 P < 60
c 12.562 (0.016) ≠3.31 (0.05) 0.06 P < 205
d 12.555 (0.019) ≠3.24 (0.06) 0.12 P < 205

Tab. 3.1: Mean value and standard deviation (in brackets) for the parameters in the period-luminosity relation.
Fits (a), (b), and (c) use HPs whereas fit (d) is a standard ‰2 minimization as done in [117].

origin and magnitude of the internal scatter precisely, we add it as an additional
random variable and marginalise over it.4 More precisely, we sample in log ‡int with
a flat prior ln ‡int œ [≠3, ≠0.7]. Maximizing

ln P LMC(A, bW , {Di}) =
ÿ

i

ln ‰̃2
i (‰

2,LMC
i ) + ln ÑLMC

i , (3.26)

where
ÑLMC

i = 1
Ò

‡2
i + ‡2,LMC

int

, (3.27)

we find the best-fitting parameters of the period-luminosity relation (3.24). Table
3.1 shows results for di�erent period cuts. Figure 3.2 shows the period-luminosity
relation for the LMC Cepheid variables and the best fit of cases (c) and (d) in Table
3.1. We also show in Figure. 3.3 the posterior probability distribution function (pdf)
of ‡int for the fits (c) and (d) of Table 3.1.

The LMC Cepheids are also treated as illustrative example in section 2 of [117]. This
allows us to compare the approach used there, which does not use hyper-parameters,
with the results found here. In our approach, the posterior mean values of A and bW

always lie in between the values given in [117]. They do also not depend significantly
on the period cut (except that the error becomes larger for the most restrictive cut,
10 < P < 60. We conclude that our treatment performs reasonably well when
compared to the standard ‰2 approach, and also that the hyper-parameters allow to
use all the available data without significant bias. We will investigate this conclusion
further as we add more data.

In Figure 3.2 we also show the colour-coded e�ective HP value for all the data points
in the LMC Cepheid sample, based on (3.22a) and (3.22b). Especially the lower

4Note that in R16 data set this intrinsic dispersion is already included in the total statistical
uncertainty reported in their table 4 [32]. Consequently, when analysing the R16 data set we do
not include an additional ‡int.
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Fig. 3.2: Period-luminosity relation for the LMC Cepheid variables. The upper panel shows the best fit of both
the case (c) (solid black line) and case (d) (red dotted line) in Table 3.1. Error bars have been rescaled with
corresponding e�ective HPs which are colour-coded as follows: black if –

e�

= 1, blue if 10≠1 Æ –
e�

< 1, green if
10≠2 Æ –

e�

< 10≠1, red if 10≠3 Æ –
e�

< 10≠2 and yellow if –
e�

< 10≠3. Lower panel shows magnitude residuals;
error bars are not rescaled and colours correspond to those in upper panel. The red dotted line in the lower panel
shows the di�erence between the best fits in the upper panel.
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Fig. 3.3: Two- and 1D posteriors for the parameters in the period-luminosity relation. Red shows a standard ‰2

minimisation and blue uses HPs.
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panel, where we plot the residuals with respect to the best fit, shows clearly how
outliers have a lower e�ective hyper- parameter and thus less weight. If instead we
used a standard ‰2 fit to all of these points (i.e. without period cut) then the fit
would be pulled towards a steeper slow (higher bW ) by the green points near the
extrema of P as shown by the red dotted line in the upper panel of Figure 3.2.

The LMC distance modulus derived from observations of eclipsing binaries [129]
is

µobs
0,LMC = 18.49 ± 0.05 mag, (3.28)

that together with A from Table 3.1 for fit (c) gives a Cepheid zero point

MW = ≠5.93 ± 0.07 mag. (3.29)

3.3.2 The MW Cepheid variables

Next, we discuss the set of 13 MW Cepheid stars with parallax measurements listed
in Table 2 of [130] (eliminating Polaris as in [117] and correcting for Lutz-Kelker
bias). We consider the MW Cepheids separately here because, as we will see, the
MW data pushes the inferred value of H0 to higher values, and it is thus important
to check whether there is a reason to discard this data set or not.

The period-luminosity relation for those Cepheid stars is given by

MP
W = MW + bW (log P ≠ 1), (3.30)

where ZW = 0 in Eq. (3.9), MP
W = mP

W ≠ µfi and µfi is the distance modulus derived
from parallaxes. Here we define

‰2,MW
i = (MW,i ≠ MP

W )2

‡2
i + ‡2,MW

int
, (3.31)

where ‡i is the observational error on MW,i and ‡MW
int is once more the internal

dispersion (that we again include as a free, marginalised parameter as in the previous
section on LMC Cepheids). Maximizing

ln P MW(MW , bW , {Di}) =
ÿ

i

ln ‰̃2
i (‰

2,MW
i ) + ln ÑMW

i , (3.32)

where
ÑMW

i = 1
Ò

‡2
i + ‡2,MW

int

, (3.33)
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Fig. 3.4: Period-luminosity relation for the MW Cepheid variables. Upper panel shows the best fit. Error bars
have been rescaled with corresponding e�ective HPs which are colour-coded as in Figure 3.2. Lower panel shows
magnitude residuals; error bars are not rescaled and colours correspond to those in upper panel.

we find the best-fitting parameters of the period-luminosity relation (3.30). They
are

MW = ≠5.88 ± 0.07 mag, bW = ≠3.30 ± 0.26, ‡MW
int = 0.02, (3.34)

in good agreement with fits in Table 3.1 and with [117]. Figure 3.4 shows the period-
luminosity relation for the MW Cepheid variables and best fit in Eq. (3.34).

The consistency in both the Cepheid zero point MW (see Eq. (3.29)) and the slope
bW between the MW and the LMC Cepheid data, as well as the lack of marked
outliers visible in Figure 3.4 provides no argument for excluding the MW data, at
least based on the Cepheid stars. For this reason, we will include the MW data in
our ‘standard analysis’ discussed in Section 3.3.5. We also note that our tests have
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Fig. 3.5: Period-luminosity relation for the NGC4258 Cepheid variables. Upper panel shows the best fit; error bars
have been rescaled with corresponding e�ective HPs which are colour-coded as in Figure 3.2. Lower panel shows
magnitude residuals; error bars are not rescaled and colours correspond to those in upper panel.

shown that the MW Cepheid data have no preference for a non-zero ‡MW
int , although

including it does not change the fit significantly.

3.3.3 Cepheid variables in the megamaser system
NGC4258

In this subsection we use the set of NGC4258 Cepheid variables included in the
sample of [78] to fit the period-luminosity relation (3.24) setting now A = µ0,NGC4258+
MW and neglecting metallicity dependence. We find
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A = 23.281 ± 0.078 mag, bW = ≠3.02 ± 0.17, ‡NGC4258
int = 0.12. (3.35)

Figure 3.5 shows period-luminosity relation and residuals for the NGC4258 Cepheid
variables. Note that the slope bW for the fit (3.35) is about 1.7‡ away from the fit
(c) in Table 3.1 and the internal scatter ‡NGC4258

int = 2‡LMC
int . The NGC4258 distance

modulus derived from the geometric maser distance estimate to the active galaxy
NGC4258 [118] is

µobs
0,NGC4258 = 29.40 ± 0.07 mag, (3.36)

which leads to a Cepheid zero point MW = ≠6.12 ± 0.15 mag, a value about 1.6‡
away from that in Eq. (3.34).5 In the next subsection we explore the possibility
of whether or not a metallicity dependence in the period-luminosity relation may
improve the agreement in both the Cepheid zero point MW and the slope bW .

3.3.4 Metallicity dependence in the period-luminosity rela-
tion

Although the Leavitt law is expected to depend at some level on the Cepheids metal
abundance [114], thus far we have neglected this e�ect. Here we will study how
an additional degree of freedom in the period-luminosity relation (i.e., ZW ”= 0)
impacts the fits we have presented. As in [117] we consider a mean metallicity
� log[O/H] = 8.5 for the LMC and � log[O/H] = 8.9 for the MW. For all other
galaxies we use the metallicity reported in Table 2 of [78]; Cepheid variables in those
galaxies have a mean metallicity close to that of the Cepheid variables in the MW,
� log[O/H] ¥ 8.9.

Table 3.2 shows the fit for the period-luminosity relation (3.9) (setting A = µ0,i+MW )
for all the galaxies containing Cepheid variables. We notice that the e�ect of metal-
licity on both the slope bW and the Cepheid zero point MW (through its dependence
on A) is never greater than 4.3% (n3021) and 8.1% (NGC4028), respectively. The
metallicity parameter ZW is compatible with zero in all galaxies, its main e�ect being
a small shift and a potentially large increase in the standard deviation of the Cepheid
zero point due to a degeneracy between these two parameters (see Figure 3.6).

5The standardised candle method for type IIP SNe [131] provides an alternative determination
of the NGC4258 distance modulus: µ0,NGC4258 = 29.25 ± 0.26 mag. Although compatible with
(3.36), it is much less precise and therefore we do not include it in our analysis.
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Another point worth noting from the results in Table 3.2 is the fact that the slope
bW of about half of the host galaxies in the sample of [78] is less steep than the one
of the LMC Cepheid variables, the shift being & 2‡ for n4536, n4639, n1309, n4038,
and n5584. This di�erence in the slope is however not improved by leaving more
freedom in the metallicity dependence.

Cepheid zero point MW derived from MW Cepheids is insensitive to including metal-
licity dependence in the period-luminosity relation. For both LMC and NGC4258
Cepheid variables, a small dependence on metallicity (strong prior) brings the Cepheid
zero point in slightly better agreement with that derived from MW Cepheids. In par-
ticular, for the NGC4258 distance modulus in Eq. (3.36) and using a strong prior
on ZW , we obtain MW = ≠6.11 ± 0.26.

Because of the MW -ZW degeneracy, and since the additional freedom in the metallic-
ity dependence does not bring the di�erent Cepheid data sets into better agreement,
we will use the ‘strong’ prior on the metallicity, ZW = 0 ± 0.02, as our default
choice.

3.3.5 Determining H0 with Bayesian hyper-parameters (R11
data set)

We have seen that the period-luminosity parameters independently derived from
LMC, MW, and NGC4258 Cepheid variables are in good agreement. We therefore
do not see any reason to discard any of the data sets when determining the Hubble
constant with hyper-parameters. In this section we use the sample of Cepheid vari-
ables for the SNe Ia hosts from [78], the set of LMC Cepheid variables used in Section
3.3.1 and the set of MW Cepheid variables used in Section 3.3.2 (we call these three
sets of Cepheid variables, R11 Cepheid sample or R11 data set). As for sources of
calibration of the absolute distance scale, we utilize both the revised NGC4258 geo-
metric maser distance from [118] and the distance to LMC derived from observations
of eclipsing binaries from [129].

We use hyper-parameters for all Cepheid fits as there are outliers in most of the
data sets (except possibly the MW Cepheids, see Figure 3.7). Although trigonomet-
ric parallaxes to MW Cepheid variables are one of most direct source of geometric
calibration for those stars, we have included them with HPs because there exists an
ongoing discussion about their parallax uncertainties (see Section 3.1.1 of [32]).

We find that the sample of SNe Ia hosts now shows inconsistencies (see Figure 3.8
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Sample of Cepheid variables
galaxy A bW ZW ‡int
LMC 12.699 (2.139) ≠3.31 (0.05) ≠0.016 (0.252) [W ] 0.06
LMC 12.562 (0.170) ≠3.31 (0.05) 0.000 (0.020) [S] 0.06
MW ≠5.88 (2.23) ≠3.30 (0.26) 0.000 (0.250) [W ] 0.02
MW ≠5.88 (0.19) ≠3.30 (0.26) 0.000 (0.020) [S] 0.02

NGC4258 25.175 (1.957) ≠3.00 (0.17) ≠0.214 (0.221) [W ] 0.12
NGC4258 23.293 (0.193) ≠3.02 (0.17) ≠0.001 (0.020) [S] 0.12

n4536 24.620 (1.866) ≠2.85 (0.17) 0.021 (0.214) [W ] 0.07
n4536 24.803 (0.207) ≠2.84 (0.17) 0.000 (0.020) [S] 0.07
n4639 26.572 (1.846) ≠2.46 (0.42) ≠0.147 (0.210) [W ] 0.03
n4639 25.303 (0.302) ≠2.49 (0.42) ≠0.001 (0.020) [S] 0.04
n3982 26.591 (1.724) ≠3.28 (0.42) ≠0.083 (0.200) [W ] 0.03
n3982 25.888 (0.283) ≠3.27 (0.42) 0.000 (0.020) [S] 0.03
n3370 28.317 (1.696) ≠2.99 (0.20) ≠0.260 (0.196) [W ] 0.02
n3370 26.098 (0.224) ≠3.03 (0.20) ≠0.003 (0.020) [S] 0.02
n3021 28.226 (1.983) ≠2.86 (0.51) ≠0.239 (0.231) [W ] 0.03
n3021 26.211 (0.325) ≠2.99 (0.50) ≠0.002 (0.020) [S] 0.03
n1309 26.788 (2.032) ≠2.09 (0.42) ≠0.105 (0.225) [W ] 0.03
n1309 25.857 (0.354) ≠2.08 (0.42) ≠0.000 (0.020) [S] 0.03
n4038 24.200 (2.171) ≠2.47 (0.27) 0.092 (0.243) [W ] 0.03
n4038 25.011 (0.291) ≠2.45 (0.27) 0.000 (0.020) [S] 0.03
n5584 25.428 (1.782) ≠2.83 (0.24) 0.013 (0.204) [W ] 0.03
n5584 25.541 (0.240) ≠2.83 (0.24) 0.000 (0.020) [S] 0.03

Tab. 3.2: Mean values and standard deviation (in brackets) in the period-luminosity relation parameters for the
sample of Cepheid variables used in this work. The period range used to fit the data is the same used in fit (c) of
Table 3.1 (P < 205 days). [W ] stands for a Gaussian prior with mean ¯ZW = 0 and standard deviation ‡ZW

= 0.25.
[S] stands for a Gaussian prior with ¯ZW = 0 and ‡ZW

= 0.02. The internal dispersion for each galaxy is shown in
the last column.
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and Table 3.5 below), so we include it also with hyper-parameters in our analysis.
We have however included a few cases where SNe Ia magnitudes are analysed without
HPs; in these cases SNe Ia measured magnitudes are assumed being drawn from a
Gaussian distribution.

We include the available distance modulus to both NGC4258 and LMC with hyper-
parameters (especially when combining these two anchor distances in the same fit),
but run a few cases including them without HPs. Note that the inclusion of these
distance calibrators in our approach can be viewed as the introduction of priors on
µ0,NGC4258 and µ0,LMC. For anchor distances and SNe Ia magnitudes we then assume
a Gaussian HP likelihood as in Eq. (3.19).

Hence, in order to find the best-fitting parameters w̨ we maximize

ln P (w̨, {Di}) = ln P Cepheid + ln P SNe Ia + ln P Anchors. (3.37)

For Cepheid variables we have, as in Subsections 3.3.1–3.3.4,

ln P Cepheid =
ÿ

ij

ln ‰̃2(‰2,Cepheid
ij ) + ln ÑCepheid

ij , (3.38a)

where
ÑCepheid

ij = 1
Ò

‡2
e,ij + ‡2

int,i
, (3.38b)

‰2,Cepheid
ij =

(mW,ij ≠ mP
W,i,j)2

‡2
e,ij + ‡2

int,i
, (3.38c)

and the Cepheid magnitude is modelled as in Eq. (3.9) for the passband W and
utilizing the ‘Wesenheit reddening-free’ magnitudes

mW,ij = mH,ij ≠ R (mV,ij ≠ mI,ij) (3.38d)

and ‡int,i, as in Subsections 3.3.1-3.3.4, is the internal scatter for the ith galaxy (i.e.,
ith = LMC, MW, NGC4258, . . . ), j being the index of the Cepheid belonging to the
ith galaxy. In this section we set R = 0.410, but when analysing the R16 data set
we study the impact of di�erent values of R in our analysis.

For SNe Ia magnitudes we use the likelihood

ln P SNe Ia =
ÿ

i

ln ‰̃2(‰2,SNe Ia
i ) + ln ÑSNe Ia

i ≠ (aR11
V ≠ aV )2

2‡2
aV

≠ ln(2fi‡2
aV

)
2 ≠ (acal)2

2‡2
a

cal

≠ ln(2fi‡2
a

cal

)
2 (3.39)
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where
ÑSNe Ia

i = 1
Ò

‡2
i

, (3.40)

‰2,SNe Ia
i =

(m0
X,i ≠ mth

X,i)2

‡2
i

, (3.41)

mth
X,i = µ0,i + 5 log H0 ≠ 25 ≠ 5aX (3.42)

is the SNe Ia apparent magnitude (3.8), and both m0
X,i and ‡i are taken from the

table 3 in [78]. Here aX is the intercept of the SNe Ia magnitude-redshift relation,
and [78] gives its value as aV = 0.697 ± 0.00201 (using wavelength V ). We call
the mean value in the above expression for the likelihood aR11

V = 0.697 and the
uncertainty ‡aV = 0.00201, and assume that aV itself has a Gaussian pdf given
by these quantities. If we were dealing with Gaussian likelihood for m0

V,i then we
could marginalize analytically over aV , which would then contribute a fully correlated
error to the covariance matrix for the m0

V,i. But as we are using HPs, we instead
add aV as an explicit (nuisance) parameter in Eq. (3.39), together with its associated
Gaussian likelihood, and sample from it numerically. Similarly, we take into account
the calibration error, ‡a

cal

, between the ground based and the WFC3 photometry by
introducing a nuisance parameter acal. We assume it has a Gaussian pdf with zero
mean and ‡a

cal

= 0.04.

Finally, motivated by the inconsistencies of distance anchors found by G. Efstathiou
in [117], we include the available distance modulus as

ln P Anchors =
ÿ

i

ln ‰̃2
1
‰2,Anchors

i

2
+ ln ÑAnchors

i , (3.43)

where
ÑAnchors

i = 1
Ò

‡2
i

, (3.44)

‰2,Anchors
i =

(µ0,i ≠ µobs
0,i )2

‡2
i

, (3.45)

where i = LMC, NGC4258 and µobs
0,LMC and µobs

0,NGC4258 are given by Eqs. (3.28) and
(3.36) respectively.

At this point we have assembled all ingredients necessary to determine the Hubble
parameter, using HPs rather than a rejection algorithm. We have performed several
variants (see Table 3.3) of the analysis that are shown in Table 3.4.
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Fit –Cepheid –SNe Ia –Anchors P R ‡ZW ‡int,i ‡LMC
int ‡MW

int CS µobs
0,NGC4258 µobs

0,LMC µobs
0,M31 MW

1 Y Y Y 205 0.410 - V V - R11 [118] - - -
2 Y Y Y 60 0.410 - V V - R11 [118] - - -
3 Y Y Y 205 0.410 0.02 V V - R11 [118] - - -
4 Y Y N 205 0.410 0.02 V V - R11 [118] - - -
5 Y Y Y 60 0.410 0.02 V V - R11 [118] - - -
6 Y Y N 60 0.410 0.02 V V - R11 [118] - - -
7 Y Y Y 205 0.410 - V V - R11 - [129] - -
8 Y Y Y 60 0.410 - V V - R11 - [129] - -
9 Y Y Y 205 0.410 0.02 V V - R11 - [129] - -
10 Y Y N 205 0.410 0.02 V V - R11 - [129] - -
11 Y Y Y 60 0.410 0.02 V V - R11 - [129] - -
12 Y Y N 60 0.410 0.02 V V - R11 - [129] - -
13 Y Y - 205 0.410 - V V V R11 - - - [130]
14 Y Y - 60 0.410 - V V V R11 - - - [130]
15 Y Y - 205 0.410 0.02 V V V R11 - - - [130]
16 Y Y - 60 0.410 0.02 V V V R11 - - - [130]
17 Y Y Y 205 0.410 - V V - R11 [118] [129] - -
18 Y Y Y 60 0.410 - V V - R11 [118] [129] - -
19 Y Y Y 205 0.410 0.02 V V - R11 [118] [129] - -
20 Y Y Y 60 0.410 0.02 V V - R11 [118] [129] - -
21 Y Y Y 205 0.410 - V V V R11 [118] - - [130]
22 Y Y Y 60 0.410 - V V V R11 [118] - - [130]
23 Y Y Y 205 0.410 0.02 V V V R11 [118] - - [130]
24 Y Y Y 60 0.410 0.02 V V V R11 [118] - - [130]
25 Y Y Y 205 0.410 - V V V R11 - [129] - [130]
26 Y Y Y 60 0.410 - V V V R11 - [129] - [130]
27 Y Y Y 205 0.410 0.02 V V V R11 - [129] - [130]
28 Y Y Y 60 0.410 0.02 V V V R11 - [129] - [130]
29 Y Y Y 205 0.410 0.02 V V V R11 [118] [129] - [130]
31 Y N Y 205 0.410 0.02 V V V R11 [118] [129] - [130]
32 Y Y N 205 0.410 0.02 V V V R11 [118] [129] - [130]
33 Y N N 205 0.410 0.02 V V V R11 [118] [129] - [130]
34 Y Y Y 60 0.410 0.02 V V V R11 [118] [129] - [130]
35 Y N N 60 0.410 0.02 0.30 0.113 0.10 R11 [118] [129] - [130]
36 Y Y Y 205 0.410 0.25 V V V R11 [118] [129] - [130]
37 Y Y Y 60 0.410 0.25 V V V R11 [118] [129] - [130]
38 Y Y Y 205 0.410 - V V V R11 [118] [129] - [130]
39 Y Y Y 60 0.410 - V V V R11 [118] [129] - [130]
40 Y Y Y 205 0.31 0.25 - - - R16 [32] [129] [32] [32]
41 Y Y Y 205 0.31 0.02 - - - R16 [32] [129] [32] [32]
42 Y Y Y 205 0.35 0.25 - - - R16 [32] [129] [32] [32]
43 Y Y Y 205 0.39 0.25 - - - R16 [32] [129] [32] [32]
44 Y Y Y 205 0.47 0.25 - - - R16 [32] [129] [32] [32]
45 Y Y Y 205 0.35 0.02 - - - R16 [32] [129] [32] [32]
46 Y Y Y 205 0.39 0.02 - - - R16 [32] [129] [32] [32]
47 Y Y Y 205 0.47 0.02 - - - R16 [32] [129] [32] [32]
48 Y Y Y 60 0.31 0.25 - - - R16 [32] [129] [32] [32]
49 Y Y Y 60 0.31 0.02 - - - R16 [32] [129] [32] [32]
50 Y Y Y 60 0.35 0.25 - - - R16 [32] [129] [32] [32]
51 Y Y Y 60 0.39 0.25 - - - R16 [32] [129] [32] [32]
52 Y Y Y 60 0.47 0.25 - - - R16 [32] [129] [32] [32]
53 Y Y Y 60 0.35 0.02 - - - R16 [32] [129] [32] [32]
54 Y Y Y 60 0.39 0.02 - - - R16 [32] [129] [32] [32]
55 Y Y Y 60 0.47 0.02 - - - R16 [32] [129] [32] [32]

Tab. 3.3: –Cepheid: Cepheid stars included with HPs. –SNe Ia: SNe Ia magnitudes included with HPs. –Anchors:
distance moduli of anchors included with HPs; ‘-’ stands for no distance moduli included in the fit. In columns 2–4
‘Y’ stands for ‘Yes’ and ‘N’ stands for ‘No’. P : upper period cuto�. R: reddening law. ‡ZW

: standard deviation
of the Gaussian prior on the metallicity parameter ZW ; ‘-’ stands for a flat, wide prior. ‡

int,i: internal dispersion
for SNe Ia hosts; ‘V’ stands for varying and marginalised; when the numerical value is given it means fixed internal
dispersion was used; ‘-’ stands for no internal dispersion included in the fit. ‡LMC

int

: LMC internal dispersion. ‡MW

int

:
MW internal dispersion. CS: Cepheid sample. Columns µobs

0,NGC4258

, µobs

0,LMC

, and µobs

0,M31

indicate the references
from which these quantities were taken; ‘-’ means that the data was not used in the fit. MW refers to the reference
for MW Cepheid stars; ‘-’ means that the data was not used in the fit.
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Fit H0 MW bW ZW ||–Cepheid|| ||–SNe Ia|| ||–Anchors||
1 71.2 (5.4) ≠3.54 (1.24) ≠3.15 (0.06) ≠0.285 (0.140) 0.72 0.81 1
2 72.5 (5.4) ≠1.99 (1.33) ≠3.25 (0.05) ≠0.457 (0.150) 0.72 0.82 1
3 71.1 (5.5) ≠6.00 (0.22) ≠3.17 (0.06) ≠0.006 (0.020) 0.72 0.73 1
4 70.8 (4.2) ≠6.01 (0.19) ≠3.17 (0.06) ≠0.006 (0.020) 0.72 0.72 -
5 72.7 (5.7) ≠5.94 (0.22) ≠3.26 (0.05) ≠0.008 (0.020) 0.72 0.71 1
6 72.1 (4.2) ≠5.95 (0.19) ≠3.26 (0.05) ≠0.008 (0.020) 0.72 0.75 -
7 71.3 (4.9) ≠3.48 (1.16) ≠3.15 (0.06) ≠0.291 (0.136) 0.72 0.77 1
8 70.1 (4.5) ≠2.11 (1.28) ≠3.26 (0.05) ≠0.450 (0.150) 0.72 0.87 1
9 74.5 (4.9) ≠5.90 (0.20) ≠3.17 (0.06) ≠0.006 (0.020) 0.72 0.75 1
10 74.4 (4.0) ≠5.90 (0.18) ≠3.17 (0.06) ≠0.006 (0.020) 0.72 0.78 -
11 75.0 (4.8) ≠5.87 (0.20) ≠3.26 (0.05) ≠0.008 (0.020) 0.72 0.78 1
12 74.7 (3.8) ≠5.87 (0.18) ≠3.26 (0.05) ≠0.008 (0.020) 0.72 0.73 -
13 78.1 (4.4) ≠3.44 (1.25) ≠3.16 (0.06) ≠0.272 (0.140) 0.73 0.82 -
14 78.3 (4.2) ≠2.08 (1.19) ≠3.26 (0.05) ≠0.426 (0.133) 0.72 0.72 -
15 77.4 (4.4) ≠5.81 (0.18) ≠3.17 (0.06) ≠0.006 (0.020) 0.72 0.64 -
16 77.1 (4.1) ≠5.81 (0.18) ≠3.26 (0.05) ≠0.008 (0.020) 0.74 0.77 -
17 71.1 (4.0) ≠3.47 (1.10) ≠3.15 (0.06) ≠0.293 (0.128) 0.72 0.81 1
18 71.2 (4.0) ≠2.27 (1.16) ≠3.25 (0.05) ≠0.428 (0.135) 0.71 0.68 1
19 73.0 (4.1) ≠5.93 (0.18) ≠3.17 (0.06) ≠0.007 (0.020) 0.72 0.75 0.84
20 73.9 (4.0) ≠5.89 (0.18) ≠3.26 (0.05) ≠0.008 (0.020) 0.72 0.78 1
21 76.4 (4.2) ≠3.44 (1.27) ≠3.18 (0.06) ≠0.277 (0.142) 0.73 0.80 0.21
22 76.9 (4.0) ≠2.13 (1.27) ≠3.27 (0.04) ≠0.425 (0.143) 0.73 0.70 0.48
23 75.6 (4.2) ≠5.85 (0.18) ≠3.20 (0.05) ≠0.006 (0.020) 0.72 0.73 0.41
24 75.8 (3.9) ≠5.84 (0.18) ≠3.27 (0.04) ≠0.008 (0.020) 0.72 0.74 0.35
25 76.0 (4.2) ≠4.33 (1.16) ≠3.18 (0.06) ≠0.178 (0.131) 0.73 0.75 0.12
26 76.2 (4.1) ≠3.10 (1.31) ≠3.27 (0.05) ≠0.318 (0.147) 0.72 0.83 0.11
27 76.0 (4.0) ≠5.86 (0.18) ≠3.19 (0.05) ≠0.004 (0.020) 0.72 0.74 0.60
28 76.1 (3.8) ≠5.84 (0.18) ≠3.27 (0.04) ≠0.007 (0.020) 0.72 0.71 1
29 75.0 (3.9) ≠5.88 (0.18) ≠3.20 (0.05) ≠0.005 (0.020) 0.72 0.74 0.79
31 73.2 (2.5) ≠5.89 (0.18) ≠3.19 (0.05) ≠0.004 (0.020) 0.72 - 0.92
32 74.1 (3.7) ≠5.89 (0.18) ≠3.21 (0.05) ≠0.005 (0.020) 0.72 0.81 -
33 72.4 (2.2) ≠5.90 (0.17) ≠3.20 (0.05) ≠0.004 (0.020) 0.71 - -
34 75.4 (3.7) ≠5.85 (0.18) ≠3.27 (0.04) ≠0.007 (0.020) 0.72 0.73 0.64
35 72.6 (2.4) ≠5.90 (0.18) ≠3.26 (0.07) ≠0.005 (0.020) 0.99 - -
36 74.7 (3.9) ≠4.68 (0.97) ≠3.20 (0.05) ≠0.141 (0.110) 0.72 0.76 0.55
37 75.2 (3.8) ≠3.62 (1.07) ≠3.27 (0.04) ≠0.261 (0.121) 0.72 0.71 0.60
38 74.7 (3.9) ≠4.34 (1.11) ≠3.20 (0.05) ≠0.179 (0.125) 0.72 0.79 0.64
39 75.2 (3.9) ≠3.09 (1.39) ≠3.27 (0.04) ≠0.321 (0.157) 0.72 0.76 0.58
40 74.20 (2.18) ≠4.98 (0.90) ≠3.23 (0.02) ≠0.09 (0.10) 0.86 0.85 0.95
41 74.21 (2.16) ≠5.78 (0.17) ≠3.23 (0.02) ≠0.00 (0.02) 0.86 0.86 0.81
42 74.11 (2.17) ≠4.89 (0.84) ≠3.24 (0.01) ≠0.11 (0.10) 0.86 0.80 1
43 73.88 (2.15) ≠4.96 (0.69) ≠3.25 (0.01) ≠0.11 (0.08) 0.86 0.80 1
44 73.76 (2.16) ≠5.08 (0.93) ≠3.28 (0.01) ≠0.10 (0.11) 0.85 0.79 0.78
45 74.06 (2.12) ≠5.83 (0.18) ≠3.24 (0.01) ≠0.00 (0.02) 0.86 0.80 0.76
46 73.91 (2.13) ≠5.86 (0.17) ≠3.25 (0.01) ≠0.01 (0.02) 0.86 0.74 0.78
47 73.76 (2.09) ≠5.94 (0.18) ≠3.28 (0.01) ≠0.00 (0.02) 0.86 0.81 0.78
48 73.98 (2.21) ≠4.92 (0.71) ≠3.23 (0.02) ≠0.10 (0.08) 0.86 0.83 0.62
49 73.83 (2.17) ≠5.79 (0.18) ≠3.23 (0.02) ≠0.00 (0.02) 0.86 0.88 0.86
50 74.03 (2.24) ≠5.00 (1.01) ≠3.24 (0.02) ≠0.10 (0.11) 0.86 0.78 0.80
51 73.72 (2.19) ≠4.79 (0.75) ≠3.25 (0.02) ≠0.13 (0.09) 0.86 0.81 0.62
52 73.70 (2.20) ≠4.83 (0.92) ≠3.28 (0.02) ≠0.13 (0.10) 0.86 0.79 0.9
53 73.78 (2.18) ≠5.81 (0.18) ≠3.24 (0.02) ≠0.01 (0.02) 0.86 0.84 0.75
54 73.71 (2.19) ≠5.86 (0.18) ≠3.25 (0.02) ≠0.00 (0.02) 0.86 0.79 0.78
55 73.49 (2.20) ≠5.95 (0.18) ≠3.28 (0.02) ≠0.00 (0.02) 0.86 0.79 0.79

Tab. 3.4: Constraints for fits in Table 3.3. Numbers in brackets indicate the standard deviation.
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Distance parameters
Host SN Ia µ0,i ≠ µ0,4258 µ0,i best –e� ‡int,i
n4536 SN 1981B 1.620 (0.071) 30.91 (0.08) 1 0.1
n4639 SN 1990N 2.325 (0.085) 31.61 (0.09) 1 0.03
n3370 SN 1994ae 2.805 (0.063) 32.09 (0.07) 1 0.02
n3982 SN 1998aq 2.502 (0.081) 31.79 (0.08) 0.23 0.03
n3021 SN 1995al 2.964 (0.110) 32.25 (0.11) 1 0.03
n1309 SN 2002fk 3.255 (0.079) 32.54 (0.08) 0.28 0.03
n5584 SN 2007af 2.399 (0.064) 31.69 (0.07) 0.43 0.03
n4038 SN 2007sr 2.304 (0.099) 31.59 (0.11) 1 0.03

Tab. 3.5: Distance parameters for the SNe Ia hosts corresponding to our primary fit for the R11 data set (fit (29)).
Numbers in brackets indicate the standard deviation. The last two columns correspond to the e�ective HP for each
SNe Ia host and the corresponding internal scatter, respectively.

Discarding data might hinder our understanding of the physical basis behind the
incompatibility of data sets (if any) [119], and for that reason our best estimate of
the universe’s expansion rate uses no period cut-o� in the sample of Cepheid stars
and includes the three distance calibrators. As discussed in Subsection 3.3.1, we
see no significant trend for the LMC Cepheid stars that would justify a tighter cut.
We also performed the analysis for a tighter period cut-o�, and report the results
in Table 3.4 (see details of fits (29), (34), (36)–(39) in Table 3.3). The di�erence
between the two is never larger than 0.5 kms≠1Mpc≠1 in H0 (with a somewhat larger
impact on bW ).

Fits (29), (34), (36)–(39) use di�erent prior on the metallicity parameter ZW (e.g.,
Gaussian with zero mean, or top-hat around zero). As discussed in Subsection 3.3.4,
this question remains open. The combined Cepheid data used here is unable to sig-
nificantly constrain ZW , instead we find a strong degeneracy with MW (see Figure
3.6). From a Bayesian model comparison point of view, there is no significant pref-
erence for specific prior or ZW = 0. However, looking again at Table 3.4 we see that
also this choice has no significant impact on H0. From theoretical arguments there
is probably some dependence on metallicity, but as we cannot strongly constrain it,
we have decided to use the ‘strong’ prior of [117], ZW = 0 ± 0.02, as our baseline
model.

Fit (29) uses both strong prior on ZW and no period cut-o� in the Cepheid variables
sample; it also includes Cepheid stars, SNe Ia magnitudes, and distance moduli to
anchor galaxies with HPs. We show the parameter constraints for this case in Figure
3.6. The resulting constraint on the Hubble parameter, which is also our primary fit
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Fig. 3.6: Posterior constraints for fit (29) in Table 3.4. Green, red and black vertical dashed lines in µ
0,4258

column indicate NGC4258 distance modulus from [131], [32] and [118], respectively. Black dashed vertical line in
µ

0,LMC

column shows LMC distance modulus from [129]. Black, green, and red dashed vertical lines in H
0

column
respectively indicate the values derived by the Planck collaboration for the base six-parameter �CDM model [21],
Efstathiou’s value [117] used by Planck collaboration as a prior, and the 3% measurement reported by [78]; the red
dotted vertical line indicates the best estimate from the analysis in [32].
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Fig. 3.7: E�ective hyper-parameters for the R11 Cepheid sample used in fit (29). From the 646 Cepheid variables
in the sample of [78], 348 have –

e�

= 1, 263 10≠1 Æ –
e�

< 1, 34 10≠2 Æ –
e�

< 10≠1, and 1 10≠3 Æ –
e�

< 10≠2.
For the 53 LMC Cepheid variables, the analysis outputs 25 –

e�

= 1, 24 10≠1 Æ –
e�

< 1, 4 10≠2 Æ –
e�

< 10≠1.
Finally, as for the analysis shown in Figure 3.4, the set of MW Cepheid variables has 10 stars with –

e�

= 1 and
3 stars with 10≠1 Æ –

e�

< 1. Overall, 23% of the MW Cepheids are down-weighted. The fraction raises 46% for
R11 Cepheids in [78]. As for the LMC Cepheid variables, the analysis down-weights 53% of the stars.
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Fig. 3.8: Relative distances from Cepheids and SNe Ia. We plot the peak apparent visual magnitudes of each SNe Ia
(from Table 3 in [78]) with error bars rescaled by HPs (colour code is the same as in Figure 3.2) against the relative
distances between hosts determined from fit (29) in Table 3.4. The solid line shows the corresponding best fit. The
first point on the left corresponds to the expected reddening-free, peak magnitude of an SNe Ia appearing in the
megamaser system NGC4258 which is derived from the fit (29).
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of the expansion rate derived with the R11 sample of Cepheids, is

H0 = 75.0 ± 3.9 km s≠1 Mpc≠1 . (3.46)

The dashed vertical lines in the 1D marginal posterior for H0 of Figure 3.6 give
(from left to right) the mean values of the Planck �CDM determination of H0 (67.8±
0.9 km s≠1 Mpc≠1 from Planck temperature and lensing data [21]) and of the analyses
of [117] (70.6 ± 3.3 km s≠1 Mpc≠1), [32] (73.0 ± 1.8 km s≠1 Mpc≠1), and [78] (73.8 ±
2.4 km s≠1 Mpc≠1). Our result here agrees best with the latter two (although our
width is somewhat larger due to the use of hyper-parameters), but even the Planck
value lies within our 95% credible interval. Note that as the HP likelihoods have
wide wings and are very non-Gaussian, one could expect that also the likelihood for
H0 is very non-Gaussian. We found however that it is relatively close to a normal
pdf.

Figure 3.7 shows a histogram for HPs in the sample of Cepheid variables used in our
primary fit for the R11 data set (fit (29)). Whereas in [78] about 20% of the Cepheids
are rejected by the Chauvenet’s criterion (this would be equivalent to –e� = 0 in our
analysis), our analysis finds that about 46% of the Cepheid variables in [78] are
down-weighted (–e� < 1). The analysis in [32], also using a Chauvenet’s criterion,
finds an outlier fraction of 2% in a larger sample of Cepheid variables. In the next
Subsection 3.3.6 we analyse this enlarged Cepheid sample by using HPs.

Figure 3.8 and Table 3.5 bring about the presence of possible outliers among the sam-
ple of SNe Ia hosts, thus justifying our use of HPs in the apparent visual magnitudes
of each SNe Ia. This could be a hint of unaccounted systematics in the light-curve
fits for those SNe Ia. Note that [32] has used a di�erent light-curve fitting algorithm
(SALT-II) to that utilised in [78] (MLCS2k2) finding no evidence for any of their 19
SNe Ia hosts to be an outlier. We will investigate this claim further in Subsection
3.3.6.

As mentioned above, the available distance moduli are included with HPs in our
primary fit. The resulting e�ective HPs are: –e�

LMC = 1, –e�
NGC4258 = 0.58. This shows

that the geometric maser distance estimate to the active galaxy NGC4258 from [118]
is slightly down-weighted in our analysis. As can be seen from the vertical, red,
dashed line in Figure 3.6, the revised maser distance to NGC4258 from [32] is now
closer to our 68% confidence region.

We also note that it is not least the di�erence between the supernova distance [131]
and the maser distance [118] to NGC4258 that limits the precision on H0 as can be
seen from the vertical dashed lines for µ0,NGC4258 in Figure 3.6. Especially the very
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recent supernova distance prefers a higher H0 as can be seen from the marginal 2D
likelihood for µ0,NGC4258 and H0. An improvement in the anchors is thus important for
future improvements in the direct determination of the local expansion rate H0.

The last three columns in Table 3.4 show the normalised weight of jth kind of data
defined as

||–j|| ©
qKj

i=1 –i,j

Kj

, (3.47)

where –i,j denotes ith HP of kind of data j (j = Cepheid, SNe Ia, Anchors), and Kj

stands for the number of objects of kind j. When the normalised weight of a given
kind of data equals one, it means their reported error bars are all ‘reliable’ in the
sense they do not require to be rescaled by HPs (given the best fit parameters). In
other words, it gives an idea of how compatible both model and data are. We could
also use these normalised weights to asses compatibility of the whole data set. For
our particular case of three kinds of data, and as long as q

j ||–j|| ”= 3, the most
compatible fit would be that with max(q

j ||–j||). This happens to be the case for
our primary fit (29), for which q

j ||–j|| = 2.25.

We have also considered variants of the general analysis presented thus far in this
section including the three anchor distances available in the R11 data set. They
correspond to fits (31)–(33) and fit (35) in Tables 3.3–3.4. Di�erently to fit (34),
where we use internal scatter nuisance parameters ‡int for each galaxy containing
Cepheid variables, in fit (35) we have fixed those nuisance parameters to the values
in fit (75) of [117] and used HPs only for the Cepheid variables. The constraints
output by two analyses agree within error bars; in particular, the values of H0 agree
pretty well. Because the role of ‡int is a common increment of the error bars in the
magnitudes of Cepheid variables, a big internal scatter ‡int would mean no Cepheid
variables down-weighted by HPs. In fit (35) the internal scatter is five times greater
than in fit (34) and as a result all HPs equal 1. The use of HPs does not weaken the
quality of the data as a whole, instead the method is able to identify and down-weight
only inconsistent data points.

In Figure 3.9 we show our primary fit (29) along with fits (31)–(33) and di�erent mea-
surements of the Hubble parameter which use three anchor distances done by other
groups. The precision of the measurement using HPs depends on the assumptions
made (e.g., including SNe Ia with HPs, including distance moduli with HPs). The
normalised weights for fits including three anchor distances do not suggest dropping
the HPs in any kind of data as they never equal 1 in the fits (29), (34), (36)–(39).
Our primary fit and its variants agree with previous measurements [78] and [117]
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using the same data set. While analyses using HPs agree with both most recent di-
rect local measurement of H0 [32] and the WMAP 2009 indirect determination [132],
our result is in disagreement with the indirect determination by the Planck collabo-
ration [21]. The fact that three di�erent analyses converge at similar values for H0
nicely shows that the result is robust.

Fig. 3.9: Di�erent determinations of the Hubble constant. Blue and black show the indirect determinations by the
WMAP team [132] and by the Planck collaboration [21], respectively. Direct measurements using NGC 4258 distance
modulus, LMC distance modulus and MW Cepheid variables as anchor distances are shown in red, magenta, green,
and dodger blue. Red corresponds to measurement by Riess et al. [78], magenta shows Efstathiou’s measurement [117]
which uses a 60 days period cut, green is the Riess et al. measurement [32], and dodger blue points correspond from
top to bottom to fits (29),(31),(32), (33) in Table 3.4.

Although we have found no reasons to discard any of the data sets, we have carried
out analyses simultaneously including only one or two anchors. The cases shown in
Table 3.3–3.4 suggest that i) inclusion of MW Cepheid variables drives H0 to higher
values independently of both prior on the metallicity parameter and period cut for
period-luminosity relation ii) a strong prior on the metallicity parameter when in-
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cluding distance modulus to LMC also drives H0 to higher values. Figure 3.10 shows
the most compatible fits according to the corresponding normalised weights.

Fig. 3.10: Di�erent measurements of the Hubble constant using di�erent combinations of anchor distances. Colours
and symbols are as in Figure 3.9. Fits shown are: (6) NGC4258, (10) LMC, (13) MW, (17) NGC4258 + LMC,
(22) NGC4258 + MW, (28) LMC + MW.

3.3.6 Determining H0 with Bayesian hyper-parameters (R16
data set)

We now apply HPs to measure the current expansion rate of the universe H0 by
using the R16 data set. It comprehends: a larger sample of Cepheids in the LMC
(775 compared to 53 in R11 data set); 2 new HST -based trigonometric parallaxes
for the MW Cepheids (a total of 15 MW parallaxes, taking into account the 13
included in the R11 data set); 11 new SNe Ia host galaxies (for a total of 19, taking
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into account the 8 in the R11 data set); HST observations of 372 Cepheid variables
in M31 (which were not in the R11 Cepheid sample); the possibility to use M31 as
an anchor distance taking advantage of the two detached eclipsing binaries based
distances to M31; NGC4258 Cepheid stars observed with the same instrument as
those in the 19 SNe Ia host galaxies, thus reducing the cross-instrument zeropoint
errors.

As we have seen in the previous sections, we do not find any evident reason to discard
any of the data sets. In this section we will utilise all available Cepheid data in the
R16 data set (including MW Cepheid stars) along with LMC distance modulus in
Eq. (3.28), M31 distance modulus [32] given by

µobs
0,M31 = 24.36 ± 0.08 mag, (3.48)

and the improved NGC4258 distance modulus [32]

µobs
0,NGC4258 = 29.387 ± 0.0568 mag. (3.49)

We have performed the same analysis as for primary best fit with the R11 data set (fit
(29) in Table 3.3), but also some variants to estimate the impact of used reddening
law, period cut-o�, metallicity dependence in the R11 data set. Di�erent variants are
specified in fits (40)–(55) of Table 3.3 and the corresponding constraints are shown
in Table 3.4. Changes on the Hubble constant H0 due to di�erent reddening law (dif-
ferent R in Eq. (3.23)) range from 0.33 up to 0.45 km s≠1 Mpc≠1. Di�erences in the
period cut-o� produce changes on H0 ranging from 0.06 to 0.38 km s≠1 Mpc≠1. Al-
lowing for a strong or weak metallicity dependence in the period-luminosity relation
we find di�erences in H0 which range from 0 to 0.25 km s≠1 Mpc≠1. The standard
deviation for measurements of H0 in fits (40)–(55) is ‡syst = 0.20 km s≠1 Mpc≠1 which
we consider as a systematic error due to changes on the reddening law, period cut-o�,
and metallicity dependence.

According to the normalised weight criterion discussed in Section 3.3.5, the most
compatible fits for the R16 data set are fits (40), (42)–(43) having q

j ||–j|| = 2.66
which is higher than that for the R11 data set. For sake of comparison with the best
estimate of H0 in [32], we choose fit (43), which uses the same reddening law as best
estimate in [32], as our primary fit for the R16 data set. Adding in quadrature the
statistical error (quoted in Table 3.4) and the systematic error estimated above, we
find

H0 = 73.88 ± 2.16 km s≠1 Mpc≠1, (3.50)
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which is a 2.9% measurement of the Hubble constant. The small change in the
uncertainty due to inclusion of systematic error shows that HPs are already taking
into account most of this contribution to the error budget.

Figures 3.11–3.14 show the period-luminosity relation for the best fit of our primary
fit (43) for Cepheid stars in galaxies LMC, MW, NGC4258, and M31. Note that no
outliers were released in the R16 data set. We find, however, that several Cepheid
stars which passed the 2.7‡ outlier rejection criterion in the analysis of [32] are
down-weighted in our approach. In Figure 3.15 we show a histogram for HPs in the
R16 Cepheid sample used in fit (43). Di�erently to our analysis in Section 3.3.5,
which used the R11 data set and included outliers (Cepheid stars which did not
pass the 2.5‡ outlier criterion in [78]), there are no Cepheid stars with –e� < 0.1
in the analysis in this section using the R16 data set. Although in the Riess et al.
analysis [32] outliers were not released, we find that about 30% of the Cepheid stars
in the R16 sample are down-weighted in our analysis. The fraction of down-weighted
Cepheid variables was about 46% in our analysis using the R11 data set. Note that
the normalised weight for Cepheids increases from 0.72 for the primary best fit (29)
(with the R11 data set) to 0.86 for the primary best fit (43) (with the R16 data set),
which shows that there is an improvement in the compatibility of the data set and
therefore a reduction in the fraction of down-weighted stars.

Riess et al. [32] used the SALT-II light curve fitter and found no outlier in the SNe Ia
hosts. Although we cannot claim the opposite, we do find that some of the SNe Ia are
down-weighted in our analysis. In Figure 3.16 we compare the SNe Ia distances to the
approximate, independent Cepheid distances from our primary fit (43). In Table 3.6
we show the distance parameters and the HPs for the SNe Ia hosts in the R16 data
set. The down-weighted SNe Ia hosts might indicate the presence of unaccounted (or
underestimated) systematics in the R16 data set. Whereas our analysis in Section
3.3.5 using the R11 data set showed that three out of the eight host galaxies are
down-weighted in the fit, the primary fit (43) using the R16 data set down-weights
eight SNe Ia host galaxies. The two host galaxies n3982 and n5584 are down-weighted
in both fit (29) and fit (43). From Table 3.4 we see that the normalised weight for
SNe Ia data is slightly higher for the R16 data set (0.80) in comparison to the R11
data set (0.74). This indicates an improvement in the compatibility of this kind of
data in the R16 sample.

If we compare the normalised weight of anchors in Table 3.4 for fits (29) and (43)
(0.79 and 1, respectively), we can also see an improvement in the compatibility of
this kind of data in the R16 data set. Although this would suggest not to include
distance moduli with HPs in the fit (since the HP Gaussian likelihood would add

90



Fig. 3.11: Period-luminosity relation (upper panel) and magnitude residuals for the LMC Cepheid variables in the
R16 data set. The solid line shows the best fit of fit (43). In the upper panel we rescale error bars with HPs, in the
lower panel we do not. Data are colour-coded as explained in Figure 3.2.
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Fig. 3.12: Period-luminosity relation (upper panel) and magnitude residuals for the MW Cepheid variables in the
R16 data set. The solid line shows the best fit of fit (43). In the upper panel we rescale error bars with HPs, in the
lower panel we do not. Data are colour-coded as explained in Figure 3.2.
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Fig. 3.13: Period-luminosity relation (upper panel) and magnitude residuals for the NGC4258 Cepheid variables in
the R16 data set. The solid line shows the best fit of fit (43). In the upper panel we rescale error bars with HPs, in
the lower panel we do not. Data are colour-coded as explained in Figure 3.2.
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Fig. 3.14: Period-luminosity relation (upper panel) and magnitude residuals for the M31 Cepheid variables in the
R16 data set. The solid line shows the best fit of fit (43). In the upper panel we rescale error bars with HPs, in the
lower panel we do not. Data are colour-coded as explained in Figure 3.2.
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Fig. 3.15: E�ective hyper-parameters for the R16 Cepheid sample used in fit (43). Out of the 1114 Cepheid variables
in the 19 SNe Ia host galaxies and in the NGC4258 megamaser system, 733 have –

e�

= 1 and the remaining 381
have 10≠1 Æ –

e�

< 1 (none have –
e�

< 10≠1). Out of the 775 LMC Cepheid variables, 601 have –
e�

= 1 and the
remaining 174 have 10≠1 Æ –

e�

< 1 (while none have –
e�

< 10≠1). Out of the 15 MW Cepheid stars, 12 have
–

e�

= 1 and the remaining 3 have 10≠1 Æ –
e�

< 1 (compare with Figure 3.4). Out of the 372 M31 Cepheid stars,
249 have –

e�

= 1 and the remaining 123 have 10≠1 Æ –
e�

< 1 (none have –
e�

< 10≠1). Overall, 20% of the MW
Cepheids are down-weighted; this fraction reaches 22% and 33% for LMC Cepheids and M31 Cepheids, respectively;
as for the Cepheid variables in the 19 SNe Ia hosts and the NGC4258 system the fraction is 34%.
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Fig. 3.16: Relative distances from Cepheids and SNe Ia. We plot the peak apparent visual magnitudes of each SNe Ia
(from Table 5 in [32]) with error bars rescaled by HPs (colour code is the same as in Figure 3.2) against the relative
distances between hosts determined from fit (43) in Table 3.4. The solid line shows the corresponding best fit. The
black square on the left corresponds to the expected reddening-free, peak magnitude of an SNe Ia appearing in the
megamaser system NGC4258 which is derived from the fit (43).
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Distance parameters
Host SNe Ia µ0,i ≠ µ0,4258 µ0,i best –e�
m101 2011fe ≠0.215 (0.049) 29.09 (0.05) 1
n1015 2009ig 3.216 (0.100) 32.53 (0.10) 1
n1309 2002fk 3.190 (0.070) 32.50 (0.07) 1
n1365 2012fr 1.968 (0.076) 31.28 (0.08) 1
n1448 2001el 1.981 (0.059) 31.29 (0.06) 0.52
n2442 2015F 2.171 (0.065) 31.48 (0.07) 1
n3021 1995al 3.058 (0.117) 32.37 (0.12) 0.86
n3370 1994ae 2.746 (0.063) 32.06 (0.07) 1
n3447 2012ht 2.572 (0.054) 31.88 (0.06) 1
n3972 2011by 2.285 (0.087) 31.59 (0.09) 0.60
n3982 1998aq 2.356 (0.093) 31.67 (0.09) 0.23
n4038 2007sr 2.048 (0.125) 31.36 (0.13) 0.39
n4424 2012cg 1.497 (0.182) 30.81 (0.18) 1
n4536 1981B 1.564 (0.067) 30.87 (0.07) 1
n4639 1990N 2.235 (0.097) 31.55 (0.10) 0.75
n5584 2007af 2.446 (0.058) 31.76 (0.06) 0.37
n5917 2005cf 2.939 (0.115) 32.25 (0.11) 1
n7250 2013dy 2.185 (0.102) 31.50 (0.10) 1
u9391 2003du 3.555 (0.087) 32.87 (0.09) 0.48

Tab. 3.6: Distance parameters for the SNe Ia hosts corresponding to our primary fit [fit (43)] for the R16 data
set. Numbers in brackets indicate the standard deviation. The last column contains the e�ective HP for each SNe Ia
host.
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uncertainty because of its slightly wider wings), the normalised weight of anchors
depends on the variants of the analysis (R, period cut-o�, metallicity prior) ranging
from 0.62 to 1. Hence, there is no strong reason to exclude the use of HPs in this
kind of data.

Figure 3.17 shows the best estimates of H0 by G. Efstathiou [117], Riess et al. [78],
Riess et al. [32], and those in this work, fits (29) and (43), along with the indirect
determinations of H0 by the WMAP team [132] and by the Planck collaboration [21].
Our best estimate using the R11 data set, fit (29), is the most uncertain (a 5.2%
measurement) of all presented measurements, but it agrees with all previous direct
determinations of H0 and di�ers by 1.8‡ from the Planck value. Note that because
G. Efstathiou considered only NGC4258 as an anchor and set a period cut-o� of 60
days, his determination is more uncertain than that of Riess et al. [78] which used
three anchors and no period cut-o�. As illustrated in the figure, our best estimate
using the R16 data set, fit (43), also agrees with the previous determinations of
H0, while its uncertainty is smaller (a 2.9% measurement) than the one of fit (29).
Concerning the indirect determinations of H0, we see that our best estimate, fit
(43), agrees within 1‡ with WMAP 2009, but it is in 2.6‡ disagreement with the
Planck value. This tension could be an indicator of unresolved systematics in CMB
data [32].

3.4 Discussion and Conclusions

In the previous Section we presented a statistical method which allows a compre-
hensive treatment of available data in order to determine the universe’s current
expansion H0. The use of Bayesian hyper-parameters avoids the arbitrary discard
of data which is implicit in outlier rejection algorithms. Such algorithms have been
used in [116], [78], [117] and in some cases a dependence of the results with the ap-
plied statistical method utilised has been found. The determination of the Hubble
constant with Bayesian hyper-parameters is robust against di�erent assumptions in
the analysis (e.g., period cut in the Cepheid variables data, prior on the metallicity
parameter ZW of the period-luminosity relation, reddening law) as listed in Table
3.4. In addition, since the method uses all available data sets, it allows to check how
consistent with each other they are and how much weight they are assigned in the fit.
Low values of HPs might be due to unrecognised (or underestimated) systematics in
the data sets and/or might be a calling for better modelling.

We have shown that, contrary to the usual ‰2 approach, when Cepheid variables are

98



Fig. 3.17: Best estimates of the Hubble constant. Blue and black show the indirect determinations by the WMAP
team [132] and by the Planck collaboration [21], respectively. Direct measurements using NGC4258 distance modulus,
LMC distance modulus and MW Cepheid variables as anchor distances are shown in red and green; red corresponds to
measurement by Riess et al. [78], whereas green shows measurement by Riess et al. [32]. Magenta shows Efstathiou’s
measurement [117] which uses only NGC4258 as anchor distance and a 60 days period cut-o�. In dodger blue we
show best estimates for both R11 and R16 data sets, fits (29) and (43) in Table 3.4, respectively.
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fitted using HPs, the down-weighted data (outlier candidates in an outlier rejection
algorithm) do not significantly bias the slope bW in the period-luminosity relation
(see Figure 3.2 and Table 3.1). Note that due to degeneracies in the parameters
(e.g., H0, MW , bW , ZW , . . . ), this could also lead to a bias in the determination of
the Hubble constant H0 in the usual ‰2 analysis. Moreover, a decrement of the data
set might lead to unnecessary increase of the error bars in the fitting parameters
(compare, for instance, Efstathiou [117] and Riess et al. [78] H0 values in Figure
3.17).

From Subsections 3.3.1–3.3.3 it becomes clear that the three sets of Cepheid variables
in the galaxies LMC, MW, and NGC 4258 are consistent with each other (bW and
MW agree within error bars), thus providing no argument to exclude any of them
from the main analysis. In Subsection 3.3.4 we have studied the period-luminosity
relation – allowing for a metallicity dependence – of each one of the galaxies in the
R11 data set containing Cepheid variables. Table 3.2 shows that at least five galaxies
have a slope bW which di�ers from that of LMC Cepheid variables by about 2‡. A
statistical method combining these data sets without taking those inconsistencies into
account could lead to biased results (compare, for instance, bW for our fits in Table
3.4 with the corresponding fits in Appendix A of [117] which are driven upwards).
Our method is able to deal with those data sets without biasing our constraints in
the period-luminosity parameters.

One of the advantages of using HPs to determine the Hubble constant is that one
can assess the compatibility of di�erent data sets. Our best estimates, fits (29) and
(43), include with HPs available Cepheid variables (i.e., no period cut), available
independent measurements of distance modulus to NGC4258, LMC, and M31 [only
in fit (43)], and available SNe Ia apparent magnitudes, but we have also performed
several variants which are shown in Table 3.4. We have estimated the degree of
agreement for di�erent kinds of data in our fits through the normalised weights (3.47)
and found that fits (29) and (43) provide the best solution for R11 and R16 data
sets, respectively. Although no outliers were released in the R16 data set, the HP
analysis down-weights some of the Cepheid stars which passed the outlier rejection
algorithm in [32]. Our analysis also suggests possible underestimated uncertainties
in the SNe Ia magnitudes of both R11 and R16 data sets.

Since our analysis shows down-weighted datums in available data sets, we think an
analysis with HPs is appropriate. The analysis is safe because it does not bias the
results in the presence of datums with unreliable error bars. The use of HPs is con-
servative because it does underestimate the error bars on the constraints. Moreover,
HPs are useful because they suggest the presence of possible underestimated system-
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atics in the data. We conclude that as long as the sum of normalised weights (3.47)
for the three kinds of data q

j ||–j|| ”= 3, HPs o�er a reliable approach to measure
the universe’s expansion rate. In a fully compatible case for which q

j ||–j|| = 3 the
usual ‰2 approach could be adopted and find constraints with smaller error bars than
those in a HP approach.
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Chapter 4

Testing isotropy and Gaussianity
in the Planck CMB estimates
(preliminary results)

4.1 Introduction

The cosmological principle – the assumption that the universe at su�ciently large
scales is homogeneous and isotropic – is one of the cornerstones of the standard
model of cosmology (see, e.g., [9,10,133]). Any significant indication of its violation
would mean a serious caveat in our cosmological paradigm. Therefore, to examine
the validity of these assumptions is crucial.

Recently, the Planck collaboration has measured the anisotropies in the CMB with
a much better precision than the Wilkinson Microwave Anisotropy Probe (hereafter,
WMAP) (see, e.g., [134]). According to the inflationary paradigm, at very early
times the universe was filled with a hypothetical scalar field, the inflaton, whose
fluctuations produced curvature perturbations distributed as a homogeneous and
isotropic Gaussian random field. Cosmological perturbation theory establishes a
relation between those primordial fluctuations and the CMB anisotropies, hence of-
fering a unique probe to test models of the early universe. This relation implies that,
in the framework of the cosmological principle, the CMB anisotropies are statisti-
cally isotropic and Gaussian. Thence, testing the statistical properties of the CMB
anisotropies allows us to examine basic assumptions of the standard model of cos-
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mology. In this chapter we will apply a statistical method di�erent to those used by
the Planck team in [135] to look for possible deviations of Gaussianity and isotropy
in the Planck data.

The WMAP team [134] and other groups found some unexpected features – anoma-
lous properties in the CMB anisotropies which are statistically inconsistent with
a best-fit �CDM model – especially on large angular scales (¸ < 600). The list of
anomalies includes lack of power on large angular scales [136], alignment of low-order
multipoles [137–140], north-south asymmetry in both power spectra [141, 142] and
several measures of non-Gaussianity [143–146], the cold spot [147, 148], and parity
asymmetry in the power spectrum [149]. Not long ago, the Planck team has con-
firmed the observation of those large scale anomalies. Bearing in mind that both
Planck and WMAP are cosmic variance limited, the presence of those unexpected
features in the WMAP and Planck data could be, in principle, due to unaccounted
systematic errors, non-subtracted foreground contamination, or more interestingly,
it could have a cosmological origin. On the one hand, the fact that two independent
experiments have observed the same features reduces drastically the possibility that
systematics errors be the source of these anomalies [150]. On the other hand, un-
resolved foreground and the more appealing cosmological origin need to be studied
further.

In [135] the Plank team tested the Gaussianity and isotropy of the CMB anisotropies
and determined the statistical significance of their findings with a set of Gaussian,
isotropic simulations of the CMB sky, namely, the “Full Focal Plane” (FFP6) simula-
tions. They used several statistical methods including the study of one-dimensional
moments, N-point correlation functions, Minkowski functionals, wavelet, bispectrum
and phase correlations. Several of those statistical methods (e.g., N-point correlation
functions, the Minkowski functionals, and the bispectrum) show consistency with
Gaussianity and isotropy regardless of the mask, the component separation and the
resolution of the CMB maps (i.e., Nside). Nevertheless, there is inconsistency with
the FFP6 simulations when other methods are utilised. In their one-dimensional
moments analysis they found that the variance is anomalously low at all consid-
ered resolutions (Nside = 2048, 512, 64, 32, 16) and that the skewness (kurtosis) is
anomalously low (high) at low resolutions (Nside = 64, 32, 16). When using the
wavelet statistics they also found inconsistencies. In particular, they report skew-
ness (kurtosis) at small (intermediate) scales significantly lower (greater) than in the
simulations. Finally, the most important discrepancy between data and simulations
appears when analysing the data with the method of surrogates. The Planck team
found presence of pronounced anisotropy and also correlations between the low-¸
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Fourier phases in the analysed CMB maps, findings which turn out to be robust re-
gardless of reference frame and component separation method. Similar results were
obtained previously in WMAP data [146].

It is of great importance for the standard model of cosmology to clarify these dis-
crepancies between the isotropic, Gaussian simulations and the Planck data. In
this chapter we use the VSK method to test isotropy and Gaussianity with a set of
Gaussian, isotropic simulations of the CMB sky. The VSK method consists of a set
of statistical estimators which measure variance, skewness, and kurtosis in patches
of the sky. The VSK method is similar to the wavelet statistics employed by the
Planck collaboration but, since our analysis works in real space, it localizes possible
non-subtracted foregrounds and may provide the angular scale of possible deviations
of Gaussianity and isotropy in the CMB anisotropies. Recently, a similar approach
was used in [151] and in [152] to study the north-south asymmetry phenomenon
and non-Gaussianity in CMB anisotropies, respectively. However, the authors used
overlapping patches of the sky when defining their estimators, possibly introducing
spurious correlations in their estimations. Moreover, they did not use CMB maps in
the full Planck resolution (Nside = 2048); even though this reduces the noise in the
data (dominant at small scales), it also increases the error in the estimations. Using
maps with lower resolution could make the error bars larger.

In the present chapter, we start out giving a brief description of the data (Section 4.2)
and then present the VSK method for non-overlapping patches of the sky (Section
4.3). The VSK method is subsequently applied to both Planck data and Gaussian,
isotropic simulations of the CMB sky and our results are discussed in Section 4.4.
We conclude in Section 4.5.

4.2 Data

Here we analyse of part of the 2013 Planck data release corresponding to the nom-
inal period of the Planck mission. We utilise some of the available masks, the two
available inpainted CMB maps, and the nearly full-sky foreground cleaned CMB
maps resulting from four component separation algorithms applied by the Planck
team [153], viz., Commander-Ruler, NILC, SEVEM and SMICA. The maps and masks
were provided in HEALPix1 format, with a pixel size defined by the Nside parame-
ter.

1http://healpix.sourceforge.net
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Throughout the paper we use the standardized common mask U73 (sky coverage
fsky = 73 per cent). However, when studying the mask dependence of our analysis
we use the confidence mask VALMASK (fsky = 89 per cent) and the mask of the
inpainted regions INP_MASK (fsky = 97 per cent) of the SMICA CMB estimate.
Where appropriate, we have changed the resolution of the mask and maps, originally
having Nside = 2048. In particular, we have degraded the data to have Nside =
1024, 512, and 256. When degrading the mask we have followed a conservative
approach: after degrading the mask to the final resolution using the ud_grade
HEALPix routine, any pixel having a value lower than 0.9 has been set to zero.

Finally, in order to assess the significance of any anisotropic or non-Gaussian signal
in the data, we resort to a set of 2000 simulated Gaussian, isotropic CMB maps.
The Monte Carlo simulations were generated using the synfast HEALPix routine
based on the Planck best-fit power spectrum and having an e�ective Gaussian beam
FWHM = 5 arcmin.

4.3 VSK Method

The method, which in the scope of this study will be referred to as VSK method, was
first introduced and applied to WMAP data in [154] (see also [155, 156]). However,
as originally proposed, the method uses overlapping patches in the sky that, as men-
tioned earlier, might introduce spurious correlations in the data. The VSK method
was modified to employ non-overlapping patches of the sky and applied to WMAP
data in [157] and simulations in [158]. Given a full-sky CMB map in HEALPix
format with parameter Nside, the construction of the estimators in the VSK method
proceeds as follows.

1. We remove both monopole and dipole with the remove_dipole
HEALPix routine

2. We superimpose on the original CMB map a HEALPix grid with much lower
resolution N Õ

side than that of the CMB map (e.g., N Õ
side = 2, 4, 8, . . . ). Thus, we

have a set of 12 ◊ N
Õ2
side non-overlapping patches in the sky, each patch having

equal number Np of pixels belonging to the initial CMB map2.
2For a full-sky CMB map with parameter Nside the number of pixels is given by 12 ◊ N2

side.
Then, the number of pixels per patch is given by (Nside/N Õ

side)2.
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3. For each patch we compute sample variance,

Vj = 1
Np ≠ 1

Npÿ

i=1
(Ti ≠ T̄ )2 = Np

Np ≠ 1‡2
j , (4.1)

sample skewness,

Sj = 1
Np‡3

j

Npÿ

i=1
(Ti ≠ T̄ )3, (4.2)

and sample kurtosis,

Kj = 1
Np‡4

j

Npÿ

i=1
(Ti ≠ T̄ )4 ≠ 3, (4.3)

where j numbers the non-overlapping patches, Ti is the temperature at the
ith pixel in the jth patch, T̄ is the CMB mean temperature in the jth patch,
and ‡j denotes the standard deviation of the CMB data in the jth patch.
We compute sample variance, sample skewness, and sample kurtosis including
only unmasked pixels; any patch for which more than 20 per cent of the area
is masked is set to zero.

4. The result of computing Vj, Sj, and Kj for all the patches is three di�erent
maps, namely, one map of sample variance, one map of sample skewness and
one map of sample kurtosis.

5. We repeat the four items above for the set of 2000 Gaussian, isotropic simu-
lations CMB maps and compute zero mean sample variance maps, zero mean
sample skewness maps, and zero mean sample kurtosis maps. Henceforward, we
will refer to a given zero mean map as V-map, S-map and K-map, respectively.

6. Since the V-map, S-map, and the K-map are signals on the sphere, they can
be written in terms of a spectral representation. For instance, for the V-map
we have

V (x) =
Œÿ

¸=0

ÿ̧

m=≠¸

v¸mY¸m(x) (4.4)

where x is a unit direction vector, Y¸m the spherical harmonics and

v¸m =
⁄

dxV (x)Y ú
¸m(x), (4.5)

m = 0, ±1, . . . , ±¸, ¸ = 0, 1, 2, . . . . Similar expressions are satisfied by both
S-map and K-map.
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7. Finally, we perform the harmonic analysis of the V-map, S-map, and K-map
with the help of the anafast HEALPix routine with maximum spherical
harmonic order given by ¸max = 3 ◊ N Õ

side ≠ 1. Taking as an example the V (x)
signal again, we have

V¸ = 1
2¸ + 1

ÿ

m

|v¸m|2, (4.6)

where V¸ is the angular power spectrum of the V-map. Similar expressions S¸

and K¸ apply for S-map and K-map, respectively.

Throughout this chapter we quantify the degree of agreement between the Gaussian,
isotropic simulations and the observations by a simple ‰2 test which has been per-
formed separately for the V, S, and K estimators. For instance, for the V estimator
we define ‰2

V as

‰2
V =

ÿ

¸¸Õ
(V¸ ≠ ÈV¸ÍG) C≠1

¸¸Õ (V¸Õ ≠ ÈV¸ÕÍG) , (4.7)

with analogous expressions for S and K estimators. In equation (4.7) V¸ is the angular
power spectrum of a V-map computed out of a given full-sky CMB map, ÈV¸ÍG the
corresponding average from the first 1000 Gaussian, isotropic simulations, and

C¸¸Õ = È(V¸ ≠ ÈV¸ÍG) (V¸Õ ≠ ÈV¸ÕÍG)ÍG (4.8)

the covariance matrix from the remaining 1000 Gaussian, isotropic simulations.

4.4 Results

We now apply the VSK method to the Planck data. We start by examining how the
method works when using full-sky (fsky = 100 per cent) CMB maps. In particular, we
use the two inpainted CMB estimates released by the Planck collaboration, namely,
the Nside = 2048 inpainted SMICA and NILC.

Figures 4.1–4.3 show V-map, S-map, and K-map for the inpainted SMICA. In Fig-
ures 4.4–4.6 we plot angular power spectra for the V-map, S-map, and the K-map
computed for both inpainted SMICA and NILC CMB estimates, as well as for 1000
Gaussian, isotropic simulations using N Õ

side = 2. The mean angular power spectra
for the simulations do not exhibit any strong scale dependence. The angular power
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Tab. 4.1: Lower-tail probability for the V, S, K estimators, for the Nside = 2048 inpainted SMICA and NILC.

Probability
CMB estimate V S K

N Õ
side = 2

SMICA 0.939 0.388 0.096
NILC 0.939 0.022 1.0

N Õ
side = 4

SMICA 0.969 0.727 0.521
NILC 0.943 0.761 1.0

N Õ
side = 8

SMICA 1 0.551 0.581
NILC 0.964 0.474 1

spectrum of the variance maps, V¸, for the two considered CMB estimates show no
departure from the null hypothesis. The VSK method does not bring about any
dipolar structure in the inpainted CMB estimates; this so-called north-south asym-
metry, was found in WMAP and Planck data [135, 141, 142, 159]. Using di�erent
values of the parameter N Õ

side, we are verifying the robustness of this result for the
inpainted CMB maps. The angular power spectra of the corresponding S-maps, S¸,
is consistent with the null hypothesis. The most remarkable di�erence between the
two CMB estimates is brought out when looking at the corresponding K¸. The in-
painting technique applied to the NILC CMB estimate seems to induce kurtosis at
all considered scales. We checked that this contribution vanishes when the inpainted
region is masked (see Figure 4.15). In Figures 4.7–4.9 we show the ‰2 analyses for the
spectra in Figures 4.4–4.6. Note that due to the discrepancy in the inpainted NILC,
we do not show its ‰2 value for K¸. In Table 4.1 we show the lower-tail probability
computed out of N-pdf ‰2 for di�erent values of the parameter N Õ

side. The V, S, and
K estimators give consistent results for the two CMB estimates and we are studying
whether or not the results depend on the N Õ

side parameter. The only discrepancy
appears for the K-map inpainted NILC that is fully inconsistent with the Gaussian,
isotropic simulations.

According to the previous analysis the inpainting technique applied to NILC might
induce deviations of the null hypothesis. We now apply the VSK method to the
almost full-sky Nside = 2048 CMB estimates; we examine the four component sep-
aration methods mentioned above and use the U73 mask. In Figures 4.10–4.12 we
illustrate, as an example, the V-map, S-map, and the K-map for the SMICA estimate.
In Figures 4.13–4.15 we plot the corresponding angular power spectra V¸, S¸, and
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Fig. 4.1: N Õ
side=2

V-map for the Nside = 2048 inpainted SMICA CMB estimate.
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Fig. 4.2: N Õ
side=2

S-map for the Nside = 2048 inpainted SMICA CMB estimate.
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Fig. 4.3: N Õ
side=2

K-map for the Nside = 2048 inpainted SMICA CMB estimate.
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Fig. 4.4: Angular power spectra for the N Õ
side = 2 V-map computed out of the full-sky Nside = 2048 inpainted CMB

estimates. The red solid line indicates the mean for 1000 Monte Carlo simulations and the shaded dark and light
gray regions indicate the 68 per cent and 95 per cent confidence regions, respectively.
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Fig. 4.5: Angular power spectra for the N Õ
side = 2 S-map computed out of the full-sky Nside = 2048 inpainted CMB

estimates. The red solid line indicates the mean for 1000 Monte Carlo simulations and the shaded dark and light
gray regions indicate the 68 per cent and 95 per cent confidence regions, respectively.
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Fig. 4.6: Angular power spectra for the N Õ
side = 2 K-map computed out of the full-sky Nside = 2048 inpainted CMB

estimates. The red solid line indicates the mean for 1000 Monte Carlo simulations and the shaded dark and light
gray regions indicate the 68 per cent and 95 per cent confidence regions, respectively.
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Fig. 4.7: N-pdf ‰2 for the angular power spectra shown in Figure 4.4. The vertical lines show values for the
corresponding CMB estimates.
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Fig. 4.8: N-pdf ‰2 for the angular power spectra shown in Figure 4.5. The vertical lines show values for the
corresponding CMB estimates.

116



Fig. 4.9: N-pdf ‰2 for the angular power spectra shown in Figure 4.6. The vertical lines show values for the
corresponding CMB estimates.
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K¸ computed for the four component separation CMB estimates. Since all the four
CMB estimates are consistent with the null hypothesis, we conclude the inpainting
technique applied to the NILC CMB map causes the discrepancy we noted before (see
Figure 4.6).

A modification in the VSK method to include only unmasked regions in the com-
putation of the angular power spectrum would be necessary. This would allow to
know the true shape of the angular power spectra and avoid spurious features possi-
bly induced by the masked region. Nevertheless, since in this work we want to test
whether or not the Planck data are consistent with the null hypothesis, we will not
include this modification in the present chapter. Such a modification would require
to adapt the VSK method as explained in [160] and [161]. The code PolSpice can
analyse functions on the cut-sky, correcting the e�ects of the masks. An adaptation
of the VSK method using PolSpice is under development.

None of the four component separation methods exhibits a dipole in the V-maps
outside the 95 per cent confidence region for N Õ

side = 2. Since all the four compo-
nent separation methods give pretty similar results and to avoid circumlocution, in
Table 4.2 we present the lower-tail probabilities only for the SMICA CMB estimate
masked with the U73 mask. We are examining the dependence of our results on the
parameters Nside and N Õ

side. Thus far, we do not see significant deviation of the null
hypothesis for almost all the possible combinations of parameters considered.

Since discrepancies might arise due to unresolved foregrounds, we are also investigat-
ing how our results depend on the masked region. The results for both the confidence
mask and the mask of inpainted regions for SMICA are shown in Table 4.3. In order
to facilitate the comparison, some of the results for the mask U73 are repeated.

4.5 Conclusions

In this chapter we carried out a non-parametric analysis, the VSK method, to test
for possible departures from the cosmological principle in the CMB anisotropies mea-
sured by the Planck satellite. We used the available full-sky maps (inpainted SMICA
and NILC) and the four almost full-sky CMB estimates released in 2013 by the Planck
collaboration (SMICA, NILC, Commander-Ruler, and SEVEM). We investigated pos-
sible anomalous angular variations of the variance, skewness, and kurtosis in the
CMB anisotropies and determined the statistical significance of our results by using
a set of Gaussian, isotropic simulations of the CMB sky seeded by the Planck best-fit
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Fig. 4.10: N Õ
side=2

V-map for the Nside = 2048 SMICA CMB estimate masked with the U73 mask.
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Fig. 4.11: N Õ
side=2

S-map for the Nside = 2048 SMICA CMB estimate masked with the U73 mask.
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Fig. 4.12: N Õ
side=2

K-map for the Nside = 2048 SMICA CMB estimate masked with the U73 mask.

121



Fig. 4.13: Angular power spectra of the N Õ
side = 2 V-map for the four Nside = 2048 CMB estimates. The magenta

line indicates the mean angular power spectrum for 1000 Monte Carlo simulations and the shaded dark and light
gray regions indicate the 68 per cent and 95 per cent confidence regions, respectively.
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Fig. 4.14: Angular power spectra of the N Õ
side = 2 S-map for the four Nside = 2048 CMB estimates. The magenta

line indicates the mean angular power spectrum for 1000 Monte Carlo simulations and the shaded dark and light
gray regions indicate the 68 per cent and 95 per cent confidence regions, respectively.
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Fig. 4.15: Angular power spectra of the N Õ
side = 2 K-map for the four Nside = 2048 CMB estimates. The magenta

line indicates the mean angular power spectrum for 1000 Monte Carlo simulations and the shaded dark and light
gray regions indicate the 68 per cent and 95 per cent confidence regions, respectively.
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Tab. 4.2: Lower-tail probability for the V, S, K estimators using di�erent N Õ
side, for di�erent resolutions Nside of

the SMICA CMB estimate using the U73 mask.

Probability
N Õ

side V S K
Nside = 2048

2 0.004 0.024 0.367
4 0.893 0.407 0.340
8 0.695 0.116 0.406

Nside = 1024
2 0.556 0.022 0.281
4 0.873 0.446 0.229
8 0.782 0.117 0.264
16 0.442 0.084 0.153

Nside = 512
2 0.711 0.027 0.229
4 0.898 0.485 0.240
8 0.794 0.103 0.140
16 0.311 0.200 0.146

Nside = 256
2 0.040 0.123 0.225
4 0.996 0.480 0.404
8 1.0 0.235 0.104
16 1.0 0.584 0.459

125



Tab. 4.3: Lower-tail probability for the V, S, K estimators at N Õ
side = 2, for the SMICA CMB estimate using di�erent

masks.

Probability
N Õ

side V S K
U73 (fsky = 73%)

2 0.004 0.024 0.367
4 0.893 0.407 0.340
8 0.695 0.116 0.406

VALMASK (fsky = 89%)
2 0.004 0.022 0.357
4 0.895 0.371 0.343
8 0.7 0.099 0.385

INP_MASK (fsky = 97%)
2 0.003 0.016 0.382
4 0.897 0.367 0.374
8 0.685 0.099 0.428

angular power spectrum.

The VSK method applied to inpainted Planck maps brings about the following fea-
tures. The V estimator indicates no departure (95 per cent confidence region) of the
null hypothesis at the level of the dipole and the quadrupole. Thus far, these results
are robust against both component separation and the parameter N Õ

side of the VSK
method. The S estimator is fully consistent with the null hypothesis in both CMB
estimates. This is not the case for the K estimator, where only inpainted SMICA
turns out to be consistent with the simulations. According to the K estimator, the
inpainting method applied to NILC induces kurtosis on all scales allowed by a given
N Õ

side. It remains to be seen whether or not this discrepancy with the null hypothesis
becomes less significant when higher N Õ

side is employed.

We studied several aspects of the VSK method applied to the almost full-sky Planck
maps. In particular, we considered the VSK method applied to the four component
separation CMB estimates by using di�erent resolutions of the data (Nside), masks,
and N Õ

side. Thus far, all the four component separation methods are fully consistent
with the hypothesis of a universe statistically isotropic and Gaussian regardless of
these parameters of the VSK method. It remains to be seen, however, whether the
VSK method using a larger sky fraction of the sky would bring about anomalies such
as north-south asymmetry or quadrupole alignment.
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When applying the VSK method to masked CMB maps one must be careful. Since
the method computes the full-sky angular power spectrum of V-map, S-map, and
K-map, the masked region of those maps might include spurious correlations. A
modified VSK method should take into account only unmasked pixels of the V-map,
S-map, and K-map and use orthogonal functions on the cut sphere in order to avoid
this caveat. Since both the simulations and the data are a�ected in the same way
by this limitation of the method, such a modification might not alter our results
(consistency with the null hypothesis), but produce the true shape of the angular
power spectra.

Finally, we notice that the results presented in this chapter are just preliminary
and the project is ongoing. The 2015 Planck data is now available and includes a
sophisticated set of Gaussian, isotropic simulations (the FFP8 simulations). These
simulations are maps of the CMB for the di�erent frequencies in the Planck satellite.
Since we have shown that the four component separation methods are in agreement
with each other when analysed with the VSK method, the use of the FFP8 simula-
tions in this project would require the implementation of at least one the component
separation methods. We plan to do this for the SEVEM component separation. An-
other additional point worthy of further investigation would be the dependence of
the results with CMB frequency. These two additional points – use of FFP8 simu-
lations and frequency dependence – would make possible a direct comparison with
the results found by the Planck team.
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Chapter 5

Summary and outlook

Almost two decades after the discovery of the universe’s acceleration in 1998 its
fundamental cause remains largely unknown and one of the most important questions
in cosmology. The current concordance cosmological model, although both simple
and a good fit for the universe’s expansion, lacks in fundamental grounds. On the one
hand, physicists have been making a huge e�ort to find direct evidence of dark matter,
but thus far no detection has been observed. On the other hand, the incredibly small
value of the observed vacuum energy has eluded an explanation within the quantum
field theory framework.

Some alternative approaches to explain the universe’s accelerating expansion from
first principles have been proposed over past years (e.g., evolving scalar fields models,
modified gravity models, higher dimensions), but degeneracies at the model level
remain. Although analyses of current data sets have made it possible to shrink the
allowed regions in parameter space, this e�ort has not been enough to rule out most
of the alternatives to the concordance model of cosmology. This situation is however
expected to change with the come of new data from the new generation of both
ground-based and space-based experiments; future galaxy surveys like Euclid will
map the distribution of matter in the universe at scales comparable to the horizon;
the James Webb Space Telescope (Webb), which is the successor of the Hubble
Space Telescope, will probably help to augment the sample of SNe Ia hosts; the Gaia
mission will surely provide parallax measurements of new Cepheid stars in our galaxy.
Precise measurements of the Hubble constant H0, the equation of state of the dark
energy w, and the matter power spectrum would allow to conclusively discriminate
�CDM from its alternatives.
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Precise measurements will require careful modelling and statistical methods as good
as the data sets, otherwise the analysis could lead to biased results and underes-
timation of error bars. In Chapter 3, Martin Kunz, Valeria Pettorino, and I have
applied a Bayesian method to determine the universe’s current expansion rate H0.
Our detailed analysis of samples of Cepheid variables and SNe Ia hosts from [32,78]
show that the precision of our measurements depends on the consistency of the data
sets. We found our measurements of H0 to be in good agreement with those by
Riess et al. [32,78], but with slightly larger error bars. Our results therefore confirm
the disagreement between local and indirect determinations of the Hubble constant.
This tension could arise from issues with the statistical method used in the determi-
nation of H0, be a hint of remaining CMB systematics [32], or signify new physics.
Despite using a di�erent statistical method as in Riess et al [32], both results agree
very well. This leads to the conclusion that the current local measurement of H0 is
robust against method biases. When adding external data sets to the CMB data,
the Planck collaboration utilised a conservative prior given by the analysis of G.
Efstathiou [117] that only uses NGC4258 megamaser system as an anchor distance.
Although Efstathiou’s value is consistent, within error bars, with our determination
of H0 using the R16 data set, his measurement has larger error bars. The inclu-
sion of Efstathiou’s value in the Planck analysis should therefore be revised as it
discards data and might hinder our understanding of both cosmological model and
data sets.

An accurate and precise measurement of the Hubble constant H0 will certainly be key
in determining the neutrino absolute mass scale. CMB data and local measurements
of the Hubble constant, for instance, will help to break degeneracies (e.g., H0 and
m‹) and improve constraints on cosmological parameters from future galaxy surveys.
Ruth Durrer, Martin Kunz, Francesco Montanari, and I have however shown in
Ref. [31] that a careful modelling of number counts will be required. In particular,
relativistic e�ects such as lensing convergence will need to be included in analyses of
data from future galaxy surveys. Neglecting lensing convergence when constraining
neutrino masses, for instance, would lead to spurious detection of their absolute
mass scale, thus hindering one of the key goals of future surveys. Since biases of
cosmological parameters in analyses neglecting lensing might reach several standard
deviations, the usual linear approximation in Fisher matrix formalisms breaks down
and might not be appropriate any longer. We have shown that a Markov Chain
Monte Carlo approach is suitable for reliable forecasts of neutrino masses. The
analysis in Ref. [31] used the number counts angular power spectrum C¸(z, zÕ) – an
observable – to make forecasts for an Euclid-like satellite. It took into account all
relevant relativistic e�ects, but included non-linear e�ects very conservatively and
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analysed scales up to ¸ = 400. Non-linear e�ects will be key in determining neutrino
masses considering that the e�ect of massive neutrinos on the angular matter power
spectrum is brought about on small scales. Therefore, a natural extension of the
analysis presented in Chapter 2 should divide the galaxy sample in more red-shift
bins. Scales up to ¸ = 2000 should be included and the likelihood adapted for a
possible error covering insensitivities to the deep non-linear regime. This extension
requires an optimisation of the computing tools used in Ref. [31] (i.e., both Boltzmann
and MCMC codes) which is currently under development.

One of the main scientific objectives of future galaxy surveys is to understand the
nature of dark energy and dark matter. By using weak lensing and galaxy clus-
tering, an Euclid-like survey will be able to constrain dark energy parameters and
distinguish General Relativity from a wide range of modified gravity theories. Dark
energy anisotropic stress is a key feature since it allows to discriminate the standard
dynamical dark energy model – a scalar field minimally coupled to gravity – from the
so-called modified gravity models. In linear theory, the former class of models does
not support any anisotropic stress whereas models such as scalar-tensor and f(R)
generically have a non-zero anisotropic stress. Determining how well anisotropic
dark energy will be constrained by the combination of data from both Planck-like
and Euclid-like satellites is therefore a challenging problem. A phenomenological
approach could be suitable to deliver satisfactory results. In Ref. [30], Lukas Hollen-
stein, Martin Kunz, and I have worked on a phenomenological model of anisotropic
dark energy which combines both internally and externally sourced anisotropic stress,
that also allows for a scale dependence. Our model comprehends, for instance, mod-
els of dark energy coupled to dark matter, modified gravity models, and isotropic
dark energy. In our analysis we constrained the parameter space of the model using
mainly observations of the CMB from the Planck satellite. Large-scale structure
observations were not included in the analysis but meanwhile the tools to include
the angular matter power spectrum have been developed. We have shown that the
dark energy anisotropic stress might act as a source of both dark matter and dark
energy perturbations. It would therefore be very important to investigate to what
extent observations of galaxy clustering could improve our results in Ref. [30]. The
detection of a non-zero anisotropic stress would play a key role in our understanding
of the fundamental causes of the universe’s late-time acceleration.
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Appendix A

Stability

The non-autonomous system of coupled di�erential equations (1.2)–(1.3) for density
and velocity perturbations can be written as

x̨Õ = B(a; ◊j) x̨ , (A.1)

where x̨| = (”m, Vm, ”de, Vde), B is a 4 ◊ 4 matrix which depends on the parameters
◊j = {H0, w, �m, �x, cs, efi, ffi, gfi}, on the mode k and the scale factor a. In order
to obtain information about the parameter space, we assess the stability of the system
(A.1). We compute the eigenvalues ⁄k(a, ◊j) of the matrix B(a; ◊j) numerically and
look at the regions in the ◊j≠space where all eigenvalues have negative real parts for
the whole time interval we consider, that is, from matter domination to the present
time.

For the system (A.1) we find one eigenvalue which does not have a region in ◊j≠space
where Re (⁄k(a, ◊j)) < 0. Then, since we know that in matter dominated era and
on sub-horizon scales matter perturbations grow linearly, that is, ”m Ã a, we use
the following approach to assess the stability of the system. First, we rescale the
variables x̨ dividing them by a power am of the scale factor, y̨ = a≠mx̨. It follows
that the system (A.1) becomes

y̨Õ = A(a; ◊j) y̨ , (A.2)

where A(a; ◊j) = B(a; ◊j) ≠ m
a

I, with I the identity matrix. Second, we find regions
in parameter space where all the eigenvalues of the matrix A have negative real
parts. We study models with efi = gfi = 0 since the e�ective sound speed c2

e� is only
defined in terms of cs and ffi; moreover we check the robustness of our method with
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Fig. A.1: The figure shows the region in the ffi≠space for which all the eigenvalues of the matrix A in Eq. (A.2)
have negative real parts. The red region (upper panel) corresponds to a mode on super-horizon scales (k = 5H

0

) in
matter domination. The blue region (lower panel) shows a sub-horizon mode (k = 300H

0

). We have used c2

s = 1,
w = ≠1.05, efi = 0 and gfi = 0. In each column, from left to right, we rescale the variables by using powers
m = 2, 3, 4.

di�erent powers m. Figure A.1 shows regions where all eigenvalues have real part
negative in the time interval relevant for both super and sub-horizon scales. Since
we use c2

s = 1 we can see clearly an upper limit on ffi = 3/2, which nicely agrees
with c2

e� > 0.

Then we study the impact of the parameter gfi on the stability of the system. For a
given scale factor a we determine regions in the plane ce� ≠ ffi for which the system
(A.2) is stable for both gfi ∫ 1 and gfi π 1. Figure A.2 shows again the stable
regions for large and small scales.
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Fig. A.2: Stability regions: parameter regions where the perturbations grow more slowly than a2 at a = 5 ◊ 10≠2,
for w = ≠1.05 and efi = 0. The upper row (red contours) are for k = 5H

0

, while the lower row (blue contours) is
for k = 300H

0

. The right panels are for gfi = 10≠5 and the left panels for gfi = 105.
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Appendix B

General solutions

In Section 1.3 we study some limiting cases in the 4≠dimensional system (1.2)–(1.3)
for which dark matter and dark energy perturbations decouple from each other. In
this appendix we give some solutions which are a bit cumbersome to be written in
the main body of the paper.

On sub-horizon scales and during matter dominance, dark energy density perturba-
tions are governed by Eq. (1.16) whose full solution is

”de =
A

ce�k

H
B

a–
8

I

A5 J≠‹
5

A
2ce�k

H
B

+ A6 J‹
5

A
2ce�k

H
BJ

(B.1)

+ efi—6 a–
7

A
ce�k

H
B–

6

J‹
5

A
2ce�k

H
B

˜1F2

A

‹6 ; –6 , ‹7 ; ≠k2c2
e�

H2

B

≠ efi—7a
–

7

A
ce�k

H
B–

9

J≠‹
5

A
2ce�k

H
B

˜1F2

A

‹8 ; –9 , ‹9 ; ≠k2c2
e�

H2

B

,

where

‹2
5 = 432c4

e� + 48f 2
fi + 72c2

e�(≠1 + 4ffi ≠ 6w) + 3(1 + 6w)2

12

≠ 8ffi(3 + 4g2
fi + 18w)

12 , (B.2)

‹6 = ≠5
4 ≠ ffi + n + 3w ≠ ‹5

2 , (B.3)
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‹7 = ‹6 + 1 , (B.4)

‹8 = ≠5
4 ≠ ffi + n + 3w + ‹5

2 , (B.5)

‹9 = ‹8 + 1 , (B.6)
–6 = 1 ≠ ‹5 , (B.7)
–7 = ≠2(1 + ffi) + 3w + n , (B.8)

–8 = ≠ffi + 3w

2 ≠ 3
4 , (B.9)

–9 = 1 + ‹5 , (B.10)

—6 = 1
24

c≠2≠4ffi+6w
e� k≠4ffi+6w

H2≠4ffi+6w
0

�≠1+2ffi≠3w
m fi”0 csc (fi‹5)

◊ � (–6) � (‹6) � (–9) , (B.11)

—7 = 1
24

c≠2≠4ffi+6w
e� k≠4ffi+6w

H2≠4ffi+6w
0

�≠1+2ffi≠3w
m fi”0 csc (fi‹5)

◊ � (–6) � (‹9) � (–9) , (B.12)

A5, A6 are constants of integration and ˜1F2 stands for the regularized generalized
hypergeometric function. The last two terms in Eq. (B.1) are due to the external
anisotropic stress.

On the other hand, for sub-sound horizon scales, during dark energy domination and
without external contribution to the dark energy anisotropic stress (efi = 0), we find
(by using Eq. (1.35)) for dark energy velocity perturbations

Vde =1
2

3
x3

2

4 1≠–
4

1+3w

Y
]

[

C

6(c2
s ≠ w) + 1 ≠ –4

D

◊

◊
5
B4 �

32 + 3w ≠ –4

1 + 3w

4
J≠‹

1

(x3) + A4 �
33w + –4

1 + 3w

4
J‹

1

(x3)
6

+ x3(1 + 3w)
4

5
B4 �

32 + 3w ≠ –4

1 + 3w

4
[J≠1≠‹

1

(x3) ≠ J1≠‹
1

(x3)]

+ A4 �
33w + –4

1 + 3w

4
[J≠1+‹

1

(x3) ≠ J1+‹
1

(x3)]
6 Z

^

\ , (B.13)
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while for dark matter velocity perturbations

Vm = 3(1 + 2ffi)
1 + 3w

2≠ 2≠–
4

+‹
1

+3w(1+‹
1

)

1+3w x
≠ ≠1+–

4

+‹
1

+3w‹
1

1+3w
3

Y
]

[A4 x2‹
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3
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1 + 3w

4
�

A
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2 + 6w

B
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AI
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2 + 6w

J

,
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4x2

3

B Z
^

\ , (B.14)

where –4, ‹1 and x3 are given by Eq. (1.36). By means of this solution we can easily
find an expression for dark matter density perturbations by solving the di�erential
equation

”Õ
m = Vm

a
. (B.15)
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Appendix C

Basic expressions for the Fisher
analysis

The Fisher information matrix F–— is given by

F–— =
¸

maxÿ

¸=2

ÿ

(ij)(pq)

ˆCij
¸

ˆ◊–

ˆCpq
¸

ˆ◊—

Cov≠1
C¸ [(ij),(pq)]

, (C.1)

where ◊a denotes a given cosmological parameter, Cij
¸ is the number counts angular

power spectrum of Eq. (2.5), and the covariance matrix Cov≠1
C¸ [(ij),(pq)]

is

CovC¸ [(ij),(pq)]

= CA,(ip)
¸ CA,(jq)

¸ + CA,(iq)
¸ CA,(jp)

¸

(2¸ + 1)fsky
, (C.2)

where A = obs, th; i, j, p, q = 1, ..., Nbin; and fsky is the covered sky fraction. The
derivatives in Eq. (C.1) are computed with a five-point stencil [97]; we choose the
step for each parameter with an iterative procedure: the step is chosen to be of the
same size as the 1-‡ widths obtained when fixing the other parameters ‡◊– = 1/

Ô
F––.

We have verified that our results are not significantly a�ected by the particular step
values. Since we treat non-linearities in a conservative way, we sum up to ¸max = 400.
The second sum in Eq. (C.1) is over the couple of matrix indices (ij) and (pq) with
i Æ j and p Æ q which run from 1 to the total number of bins Nbin when all bin auto-
and cross-correlations are taken into account.

In an analysis only including auto-correlations the covariance matrix (C.2) must be
first reduced to the relevant components, and subsequently inverted. We denote the

138



number counts angular power spectrum of a model neglecting lensing convergence by
ÂC¸. The shift in the best-fit values due to neglecting lensing convergence is estimated
through the systematic error [106,108,162,163]

�C¸ = Cobs
¸ ≠ ÂC¸ (C.3)

where Cobs
¸ consistently includes lensing convergence. The bias induced by incomplete

modelling of number counts angular power spectrum is then given by

�◊– =
ÿ

—

51
ÂF

2≠1
6

–—
B— , (C.4)

where
B— © ÿ

(ij)(pq)

ÿ

¸

�Cij
¸

ˆ ÂCpq
¸

ˆ◊—

Cov≠1
ÂC¸ [(ij),(pq)]

, (C.5)

and a tilde always denote the quantity computed according to the model neglect-
ing lensing convergence. This expression assumes that the systematic error does
not a�ect the covariance. Moreover, it is only valid if the shifts (C.4) are small
compared to the variances �2

◊–
/‡2

◊–
< 1. The MCMC analysis shows that biases in

cosmological parameters due to neglecting lensing convergence easily reach several
standard deviations, so none of these assumptions is satisfied in our case. Another
point worth noticing is that Eq. (C.1) can only be used to estimate error contours by
assuming that the underlying universe is described either by C¸ or by C̃¸, and does
not give information about error contours obtained when fitting the wrong model C̃¸

to data consistent with the full C¸ spectra. This signifies an advantage of the MCMC
approach over the Fisher matrix technique, as shown in Chapter 2.
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