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ABSTRACT

Aspects of 7D and 6D Gauged Supergravities. (December 2007)
Der-Chyn Jong, B.S., National Taiwan University;
M.S., National Taiwan University

Chair of Advisory Committee: Dr. Ergin Sezgin

We determine the conditions under which half-maximal matter coupled gauged super-
gravity in seven dimensions admits a chiral circle reduction to yield a matter coupled
gauged supergravity in six dimensions with 8 real supersymmetry. Solving these
conditions we find that the SO(2,2) and SO(3,1) gauged 7D supergravities give a
U(1)g, and the SO(2,1) gauged 7D supergravity gives an Sp(1)g gauged chiral 6D
supergravity coupled to certain matter multiplets. In the 6D models obtained, with
or without gauging, we show that the scalar fields of the matter sector parametrize
the coset SO(p+ 1,4)/SO(p+ 1) x SO(4), with the (p + 3) axions corresponding to
its abelian isometries.

We then derive the necessary and sufficient conditions for the existence of a Killing
spinor in N = (1,0) gauge 6D supergravity coupled to a single tensor multiplet, vector
multiplets and hypermultiplets. We show that these conditions imply most of the field
equations. We also determine the remaining equations that need to be satisfied by an
exact solution. In this framework, we find a novel 1/8 supersymmetric dyonic string
solution with nonvanishing hypermultiplet scalars. The activated scalars parametrize
a 4 dimensional submanifold of a quaternionic hyperbolic ball. The key point is that
we employ an identity map between this submanifold and the internal space transverse
to the string worldsheet, thereby finding a higher dimensional generalization of Gell-

Mann-Zweibach tear-drop solution.
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CHAPTER I

INTRODUCTION*

An impressively large number of string/M theory vacua admit a low energy super-
gravity description in diverse dimensions. An important class of such theories are
gauged supergravities. Study of such theories provides valuable information about
string/M theory. In particular, gauge supergravities have played an important role in
phenomena such as the anti-de-Sitter Space/conformal field theory correspondence as
well as the domain-wall/quantum field theory correspondence, among other phenom-
ena. However, starting directly from a given supergravity theory, it is not always clear
what, if any, string/M theory origin it may have. For example, an important class
of such theories, where string/M-theory origins are still not known, are the anomaly
free gauged minimal supergravities in six dimensions. The requirement of anomaly
freedom leads to highly restrictive conditions in 6D which single out a small number
of consistent quantum models. While the full classification of all possible anomaly-
free gauged supergravities in 6D is not available, it is interesting to understand their
string/M-theory origin.

Given that the 6D models of interest may be related to certain seven dimensional
gauged supergravity theories which in turn may be embedded in string/M theory,
we are motivated to study in this dissertation various aspects of gauged 6D and 7D
supergravity theories.

We reduce the half-maximal 7D supergravity with specific noncompact gaugings cou-

The journal model is Classical and Quantum Gravity.

“Portions of this chapter are reprinted from Classical and Quantum Gravity, Vol
23, E Bergshoeft et al., Noncompact Gaugings, Chiral Reduction and Dual Sigma
Models in Supergravity, Pages 2803-2831, Copyright 2006, with permission from IOP,
http://www.iop.org/journals/cqg.



pled to a suitable number of vector multiplets, on a circle to 6D and chirally truncated
it to N = (1,0) supergravity such that a R-symmetry gauging survives. These are
referred to as the SO(3,1),50(2,1) and SO(2,2) models, in which these groups re-
fer to isometries of manifolds parametrized by the scalar fields that arise in the 7D
theory. The 6D models we obtain describe coupling of N = (1,0) supergravity to
p + 1 hypermultiplets and n vector multiplets where p = 1,2 and n = 1,2,3 de-
pending on the model. We then exhibit in the full model, including the fermionic
contributions, how the scalar fields can be combined to parametrize an enlarged coset
SO(p+1,4)/SO(p+1) x SO(4).

We next derive the necessary and sufficient conditions for the existence of arbitrary
number of Killing spinor in N = (1,0), 6D gauge supergravity coupled to vector mul-
tiplets and hypermultiplets. We then determine all the integrability conditions and
the precise set of field equations that are satisfied automatically as a result. This
approach provides a powerful method for finding general supersymmetric solutions,
and is known the G-structure method. Here the G-structure refers to a geometric
structure, such as Kahler structures, that arise in a submanifold of spacetime. We
find that the existence of a null Killing vector suggests a 2 + 4 split of spacetime.
Thus it is natural to search for a string solution, possibly dyonic one, namely that
which carries electric and magnetic charges. Indeed, we have found a new 1/8 super-
symmetric dyonic string solution with novel properties.

Below, we shall summarize in some more detail our results. The full technical details

will be presented in chapter II and III.



A. The Noncompact Gaugings and Chiral Reduction of 7D Gauged Supergravities

We start with the 7D ungauged half-maximal supergravity coupled to n vector mul-
tiplets [1], in which the interactions of the scalar fields are governed by the coset
SO(n,3)/SO(n) x SO(3). Due to the conditions that arise from the consistency of
gauging with supersymmetry, it turns out that the noncompact gauge groups must
have up to 3 compact or up to 3 noncompact generators. Considering only semi-simple

gauge groups, it turns out that the allowed gauge groups are of the form
Go x H C SO(n,3) (1.1)

with Gg is one of the six groups listed in (2.7) and H is a semi-simple compact Lie
group with dimH < (n + 3 — dimGp). The models of special interest are those in
which the chiral truncation of the 7D gauged theory gives rise to an R-symmetry
gauged theory in 6D. As we shall see, the gauged chiral 6D supergravities arise
from half-maximal 7D supergravities with noncompact gaugings. While noncompact
gauging is necessary, it is not sufficient for obtaining R-symmetry gauging in 6D.
For example we find that the SL(3, R) gauged 7D model does not allow a consistent
chiral reduction to gauged 6D supergravity. With mild assumption we determine that
the 7D models with noncompact gauge groups whose chiral circle reduction do yield

gauge 6D gauged supergravities with matter multiplets are:

e The SO(3,1) model:

This model is obtained form the SO(3, 1) gauged half-maximal 7D supergravity
coupled to 3 vector multiplets, with SO(3,3)/S0O(3) x SO(3) scalar sector. Its

chiral reduction gives a U(1)g gauged supergravity coupled to a hypermultiplet.

e The SO(2,1) model:



This model is obtained form the SO(2,1) gauged half-maximal 7D supergrav-
ity coupled to a single vector multiplet, with SO(3,1)/SO(3) scalar sector. Its
chiral reduction gives rise to an Sp(1)r gauged supergravity coupled to a hy-

permultiplet.

e The SO(2,2) model: This model is obtained form the SO(2,2) gauged half-
maximal 7D supergravity coupled to 3 vector multiplets, with SO(3,3)/SO(3)
scalar sector. Its chiral reduction gives a U(1)g gauged theory coupled to an

additional Maxwell multiplet, and two hypermultiplets.

The SO(2,2) and SO(3,1) models can be obtained from a reduction of the N =
1, D = 10 supergravity on the noncompact hyperboloidal 3-manifolds Hy 9 and Hs ,
respectively [2, 3, 4]*. The hyperboloidal manifold, H,,, is the locus of points whose

coordinates satisfy

P q
~ =~
22 =1, = (F..+.=...0) (1.2)
with the metric
ds* = dxdxb Sy, (1.3)

These models can also be obtained from analytical continuation of an SO(4) gauged
7D supergravity [5] which, in turn, can be obtained from an S® compactification of
Type ITA supergravity [6], or a limit of an S* reduction of D = 11 supergravity which
reduces to a compactification on S x R [7]. With regard to matter coupled gauged
7D supergravities, we note that the heterotic string on 7% gives rise to half-maximal
7D supergravity coupled to 19 Maxwell multiplets, which, in turn, is dual to M-theory
on K3.

*These reductions can straightforwardly be lifted to D = 11. Note also that the
spaces H,, can be constructed from embedding into a (p, ¢) signature plane.



We shall show that in the full model, including the fermionic contributions, how the
scalar fields can be combined to parametrize an enlarged coset SO(p + 1,4)/SO(p +
1) x SO(4). This will be studied both in the symmetric gauge and in the Iwasawa
gauge. The latter makes use of the Iwasawa decomposition which for a semisimple
Lie group G generalizes the way a square real matrix can be written as a product of
an orthogonal matrix ,K, a diagonal matrix with positive diagonal entries, A, and a

unit upper triangular matrix ,N, as follows:

G = KAN. (1.4)

Finally, as a remark, we also shown that in a formulation of the 7D supergravity that
uses a 3-form potential, vector multiplet coupling are possible even in the presence of

a topological mass term, contrary to a claim made in the literature [8].

B. Supersymmetric Solutions of Gauged 6D Supergravity

Once gauged 6D supergravity is embedded in string/M-theory, it would be useful to
know its supersymmetric solutions. Supersymmetric solutions of supergravity theo-
ries are of particular importance in string theory because such solutions often have
certain stability and non-renormalization properties that are not possessed by non-
supersymmetric solutions. For example, it has been possible to give a microscopic
description of certain supersymmetric black holes. Several supersymmetric solutions
of gauged 6D supergravity have already been discovered. However, it is tempting to
suspect that these new solutions are just the tip of the iceberg, and that many more
surprises will be found in 6. Thus, we would like to know the general nature of

supersymmetric solutions of supergravity theories.



To do so, we will employ the elegant and powerful method that use G-structures. This
involves the derivation of the necessary and sufficient conditions for the existence of a
Killing spinor. We will study them for the N = (1,0), 6D gauge supergravity coupled
to vector multiplets and hypermultiplets. This generalizes the analysis of [9] and [10]
by the inclusion of the hypermultiplets. The existence of the Killing spinor implies
that the metric admits a null Killing vector. This is in contrast to some other dimen-
sions such as D = 4,5 where time-like and space-like Killing vectors arise in addition
to the null one. The Killing spinor existence conditions and their integrability are
shown to imply most of the equations of motion. This simplifies greatly the search
for exact solutions. We will show the remaining equations to be solved are (i) the
Yang-Mills equation in the null direction, (ii) the field equation for the 2-form poten-
tial, (iii) the Bianchi identities for the Yang-Mills curvature and the field strength of
the 2-form potential, and (iv) the Einstein equation in the double null direction.

The most symmetric solution in 6 supersymmetric Einstein-Maxwell theory with
U(1) gauge group, known as the Salam-Sezgin model, is R x S? which has been
shown [4] to be the unique maximally symmetric solution of such model. The model
by itself is anomalous but it can be embedded into an anomaly-free model with suit-
able Yang-Mills and hypermultiplet couplings. To find the string/M-theory origin
of the anomaly free models, it is then a natural attempt to a classification of the
general form of supersymmetric solutions of N = (1,0), U(1) and SU(2) gauged 6D
supergravity [9, 10]. In recent years there also has been a lot of interest in models
with branes embedded in higher dimensions. One particular motivation is the hope
of finding a solution to the notorious cosmological constant problem. From this point
of view, six-dimensional models with codimension-two branes are especially interest-
ing. The authors in [11, 12] have found the general warped solutions with maximally

symmetric four-dimensions and conical branes for the 6D Salam-Sezgin supergravity.



A solution of the matter coupled N = (1,0), 6D gauged supergravity called the 'su-
perswirl” has been found in [13] where they did not use G-structure method and only
activate two hyperscalars. Moreover, conditions for Killing spinors and general form
of the N = 2, D = 5 supersymmetric solutions in matter coupled gauged supergrav-
ities have also been investigated. The authors in [14] recently used the G-structure
method to construct supersymmetric solutions of N = 2, D = 5 gauged supergravity
coupled to two vector multiplets and three hypermultiplets. However, they only con-
sider the first-order equations for supersymmetric solutions that preserve a time-like
Killing vector, but not a null Killing vector. Moreover, though various dyonic string
solutions of N = (1,0),6D supergravities exist in the literature [15, 16, 17, 18], none
of them employ the hypermultiplets. In this dissertation, we activate 4 hyperscalar
fields which parametrize a 4 dimensional submanifold of a quaternionic hyperbolic
ball. We employ an identity map between this submanifold and the internal space
transverse to the string worldsheet. By solving the remaining equations, we then find
a new 1/8 supersymmetric dyonic string solution with novel properties.

While we will study the general theory, including vector multiplets and hypermulti-
plets, a particular subset for a certain field content will be free from all anomalies;
gravitational, gauged and mixed. The requirement of anomaly freedom puts especially
restrictive conditions on the gauged supergravities. We conclude our introduction by
a summary of what is known so far about the anomaly-free models which satisfy these
conditions. At present, the only known “naturally” anomaly-free gauged supergravi-

ties in 6D are:

e the £ X Eg x U(1)g invariant model in which the hyperfermions are in the
(912,1, 1) representation of the gauge group. This is a well-known model, first
found by Randibar-Daemi, Salam, Sezgin and Strathdee [19] in 1985.



e the £; x Go x U(1)g invariant model with hyperfermions in the (56, 14, 1) rep-

resentation of the gauge group [20], and

e the Fy x Sp(9) x U(1)g invariant model with hyperfermions in the (52,18,1)

representation of the gauge group [21].

These models have the shared features that (i) the hypermultiplets transform in non-
trivial representations, (ii) there are no singlet hypermultiplets and (iii) the represen-
tations involve half-hypermultiplets. If one considers a large factor of U(1) groups,
and tune their U(1) charges in a rather ad-hoc way [21], or considers only products
of SU(2) and U(1) factors with a large number of hyperfermions, and tune their U(1)
charges again in an ad-hoc way, infinitely many possible anomaly-free combinations
arise [22]. These models appear to be “unnatural” at this time.

In the remaining part of the dissertation, we will present the technical details of the

ideas and results summarized above.



CHAPTER II

THE NONCOMPACT GAUGINGS AND CHIRAL REDUCTION OF 7D
GAUGED SUPERGRAVITIES*

In this chapter we first recall the gauged half-maximal 7D supergravity couple to n
vector multiplets. In particular, we list the possible non-compact gaugings in the
theory. We then determine the conditions that must be satisfied by the requirement
of chiral supersymmetry in 6D, both, for the gauged and ungauged 7D theory. After
solving these conditions, we obtain the 6D supergravity for the fields that survive
the chiral circle reduction and their supersymmetry rules. Moreover, we exhibit the
hidden quaternionic Kahler coset structure that given the couplings of the matter
multiplets in 6D by an extensive use of the Iwasawa decomposition. This is not
surprising for the bosonic sector of the ungauged supergravity theory; however, here
not only we include the fermionic sector but we also exhibit the hidden symmetry in

the gauged supergravity theory.

A. The Gauged 7D Model with Matter Couplings

Half-maximal supergravity in D = 7 coupled to n vector multiplets has the field

content

Supergravity multiplet : (e, By, Ayt 0, ¥u, X)

(2.1)
Vector multiplet : (A7, ¢, A")

where the fermions 1, x, \" are symplectic Majorana and they all carry Sp(1) doublet

indices which have been suppressed. Moreover, we will combine a triplet of vector

*Reprinted from Classical and Quantum Gravity, Vol 23, E. Bergshoeffn
et al., Noncompact Gaugings, Chiral Reduction and Dual Sigma Models in
Supergravity, Pages 2803-2831, Copyright 2006, with permission from IOP,
http://www.iop.org/journals/cqg.
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fields, A,; %, in the supergravity multiplet to n of vector fields, A7, in vector multiplet

as Aﬁ for later convenience. The 3n scalars ¢®(a = 1,2, ..,3n) parametrize the coset

SO(n,3)
SO(n) x SO(3)

(2.2)

The gauge fermions X" (r = 1, ...,n) transform in the vector representation of SO(n),
while the vector fields Alﬂ (I = 1,....,n + 3) transform in the vector representation
of SO(n,3). The 2-form potential B,, and the dilaton o are real. It is useful to
define a few ingredients associated with the scalar coset manifold as they arise in the

Lagrangian. We first introducing the coset representative

L= (L L;"), I=1,..n+3, i=1,23, r=1,..,n, (2.3)

which forms an (n + 3) X (n 4+ 3) matrix that obeys the relation
—L LS+ L' Ly =y, (2.4)

where n;; = diag(— — — + +...+). The contraction of the SO(n) and SO(3) indices is
with the Kronecker deltas d,, and §;; while the raising and lowering of the SO(n, 3)
indices will be with the SO(n, 3) invariant metric 7;;. Given that the SO(3) indices

are raised and lowered by the Kronecker delta, it follows that, in our conventions,
Ly=Ly, LiLi=-0, LjL"=-".

Note also that the inverse coset representative L™" is given by L™' = (L’;, L’,) where
LYy =07 Ly and L, = n'/ Lj,. In the gauged matter coupled theory of [1], a key

building block is the gauged Maurer-Cartan form
P = L (9,61 + fr,NA]) L

Q7 = LY (0,01 + frs/"A;) L |
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Q;S = LIT (8M5f + f[JKAi> Li( , (25)

where f;;% are the structure constants of the not necessarily simple group K C
SO(n,3) of dimension n + 3, and the gauge coupling constants are absorbed into
their definition of the structure constants. The K-invariance of the theory requires

that the adjoint representation of K leaves 7, invariant:

fi" ey + fax e =0 (2.6)

It follows that for each simple subgroup of K, the corresponding part of n;; must be
a multiple of its Cartan-Killing metric. Since 7;; contains an arbitrary number of
positive entries, K can be an arbitrarily large compact group. On the other hand,
as 17y has only three negative entries, K can have 3 or less compact generators, or 3
or less noncompact generators®. The three real simple noncompact groups satisfying

these restrictions are listed in Table I.

Table I. The three real simple noncompact groups with 3 or less compact generators,

or 3 or less noncompact generators.

Group | Compact Dimensions | Noncompact Dimensions

SO(3,1) 3 3
SO(2,1) 1 2
SL(3,R) 3 5

*This is similar to the reasoning in [23] where the gauging of N = 4, D = 4
supergravity coupled to n vector multiplets is considered. In this case, the relevant
n is the SO(n, 6) invariant tensor and the resulting noncompact simple gauge groups
have been listed in [23].
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Thus, the allowed semi-simple gauge groups are of the form Gy x H C SO(n, 3) where

Gy is one of the following

(I)  SO(3)
(II)  SO(3,1)
(I1I)  SL(3,R)
(IV)  SO(2,1)
(V) 50(2,1) x SO(2,1)

(VI)  SO(2,1) x SO(2,1) x SO(2,1) (2.7)

and H is a semi-simple compact Lie group with dim H < (n 4+ 3 — dim Gy). Of these
cases, only (I) with H = SO(3) corresponding to SO(4) gauged supergravity, (II)
and (V) are known to have a ten- or eleven-dimensional origin. Though the cases
(IIT)—(VI) are not mentioned explicitly in [1], the Lagrangian provided there is valid
for all the cases listed above. The Lagrangian of [1], up to quartic fermion terms, is

given by *.
L = L+ LFr (28)
e 'Ly = FR— e (FL F/" + FF") — 567G ,G""

—39,00"0 — 3PPl — 177 (C"Cy, — $C7) (2.9)
e 'Lr = =i y"PDb, — By Dyx — INYF DA — 2y Y,0,0

*We follow the conventions of [1]. In particular, 7,, = diag(— + +---+), the
spinors are symplectic Majorana, CT = C and (v*C)T = —4*C. Thus, Yy )\ =
(—=1)"py"r 1\, where the Sp(1) doublet indices are contracted and suppressed. Here

we also use X4p = \/LE(U")ABXZ', and further conventions are: X4 = 48Xy, X, =

XBepa, e'Pepc = =08, YA =4, Yo'\ = pA(0%) 4P ep.
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N OV PP+ 515 G XM 4 P FL XY — 2P E X
— 26720 ("1, + 27X+ XX — AT
spe 70 (0" + 20,0 X + 3 — AN

+-Le7?2C,, (w#a AHNT — 2)Zai)\r) + 5670/207“8@5(0@')\3 , (2.10)

Z\f
where the fermionic bilinears are defined as

XWP = Pyt P 4 Ahay Py = 3XYHIX A NP,

X" = P e — 2000y Y 43X — N,

XM = by AN 4 2T (2.11)

The field strengths and the covariant derivatives are defined as

G,pr = 3(9[MBW} — \%wgyp y wgup = F[I p]nIJ Sf]JKAI{LAiApK y

F;{l/ = 28[#‘41]/] + fJKIA;iAf ) F;iy = F;fVLlI ) F;:u = Fl{I/L§ ) (212)
1 ab 7 i ) i ijk

Du = (9“ + Zw“ Yab + F Qu = E € Qujk ) (2~13)

and the C-functions are given by [1]
C =~ fr"LiL] L e”*
Cir = \/%fIJKLJI'LiLKr err
Crsi = frs/"LIL! Lye; . (2.14)
The local supersymmetry transformation rules read [1]

m

de," = ey, ,

&W = 2D,e— 60\f GPUT (VH'VPUT + 5’7‘)077#) €
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—zibeU/QFpio o (37,777 — 577 y,) € — g—ge’”/zC%e ,

oy = —%7"0”06 — 11060/2};21, ol e — —151/560Guyp7“”p6 + ‘;—ge_”/ZCe ,

(SBW, = i\/§670 (E’y[u’(ﬁy] + g’ywjx) - \/§A[Iu5Al{}T][J ,

oo = —2i€x,
6A£ = —e/? (Eaiwu + Eaiyux) L+ ie_a/Zéw)\rLf, ,
SL; = &’'\'L}, SLY = e\ L , (2.15)
N = —%ea/zFﬁyﬁy“l’e + ify“PZfaie — \/Lie*U/QC"Uie .

For purposes of the next section, we exhibit the gauge field dependent part of the

gauged Maurer-Cartan forms:

ir ir ijk ir Ak irs AS
P = PO — LR OITAL - O A
G = QU hCA - he e, @

where the zero superscript indicates the gauge field independent parts.

B. Chiral Reduction on a Circle

1. Reduction Conditions

Here we shall consider all the 7D quantities of the previous section such as fields,
world and Lorentz indices to be hatted, and the corresponding 6D quantities to be

unhatted ones. We parametrize the 7D metric as

ds? = 299 452 + 62ﬂ¢(dy _ A)Q . (2.17)
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In order to obtain the canonical Hilbert-Einstein term, }D/— gR,in D = 6, we choose

n 1 D -2
a:_\/2(D+n—2)(D—2):_2\/1_0’ f=-—pmaste. Q1)

where D = 6 and n = 1 in this dimensional reduction. We shall work with the natural

vielbein basis

e* = ee® | e" = e (dy — A) . (2.19)

It is also convenient to work with the Latin connection @pnp = €5 &pap, Which is a
scalar under general coordinate transformation and is antisymmetric in its last two

indices. In the second-order formalism, we have

~

Wrinaip = _Qﬁm,ﬁ + Qﬁﬁ,fn — Qs (2.20)

where

~

1 - . I
Qi p = §(é‘%é}; — €7,65)0p€pp. (2.21)

it turns out that the nonzero components of the spin structure are
Weap = efaqﬁ (Wcab + 2anc[aab}¢) ) dj77a = 6670@)8&(25 : (222)

Next, we analyze the constraints that come from the requirement of circle reduction
followed by chiral truncation retaining N = (1,0) supersymmetry. Let us first set
to zero the 7D gauge coupling constant and deduce the consistent chiral truncation
conditions. At the end of the section we shall then re-introduce the coupling constant
and determine the additional constraints that need to be satisfied. The gravitino
field in seven dimensions splits into a left handed and a right handed gravitino in six
dimensions upon reduction in a compact direction. Chiral truncation means that we
set one of them to zero, say,

Yo =0 (2.23)
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This condition with chirality properties, used in the supersymmetry variation of the

7D vielbein, gives the following supersymmetry variation of the 6D vielbein,

1

oe, " = 1e Y Yy + Z€+7m7u¢7—- (2.24)

It turns out that one of the components of the supersymmetric parameter, e_, van-
ishes. Note that the second term on the right-hand side can be removed by performing
a compensating local Lorentz transformation with parameter, A,™ = ;i€+7m’}/u¢7_.

Moreover, the supersymmetry variation of the 7D gravitino and the field Y gives

ur = Dyeg — ie"_Qa(ﬁG’va"‘"%@r + %e_“/Q_WF:} Lio'e,,
]_ _ . _ ~7z ..
0pr_ = —\/—1_07“3u¢6+ — %e" 2a¢GpanypaTe+ — %60/2 5‘]57“117’,{7 Li'o'e,,
ox. = —}ﬂ“@uaq — 3—106”_2°‘¢Gp077p076+ + ﬁe”ﬂ_’%v“ﬂf? Ljiaie+,

which follows further conditions
FLLi =0, (2.25)
Ac=0,  Car=0. dr =0, 5 =0 (2.26)
To see how we can satisfy the condition (2.25), it is useful to consider an explicit

realization of the SO(n,3)/SO(n) x SO(3) coset representative. A convenient such

parametrization is given by

1+¢to 2 (bt
1-¢t¢ 1-¢t¢

)
Il

(2.27)
2 2
bigs Lt Prgrpd
where ¢ is a n x 3 matrix ¢;;. Note that this is symmetric, and as such, we shall refer

to this as the coset representative in the symmetric gauge. Now, we observe that to
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satisfy (2.25), we can split the index
I={1,1Yy, I=1,.p+3, I'=p+4,..n+3, (2.28)

and set

Al=0, L) =0. (2.29)

a

Note that 0 < p < n, and in particular, for p = n, all vector fields A,ﬂ, I=1..n4+3
vanish (i.e. there are no AL’ fields) while all the coset scalars ¢™ are nonvanishing *.
For p < n, however, as we shall see below, (n — p) vector fields survive, and these, in
turn, will play a role in obtaining a gauged supergravity in 6D. The second condition

in (2.29) amounts to setting ¢,; = 0 and consequently, introducing the notation
r={rr}, r=1,...p, P=p+1,..n, (2.30)

we have

/ / !

L/ =0, Ly =0, Lp" =" (2.31)

Thus the surviving scalar fields are
(Z/,Z[’”) =(L/ L"), I=1,.p+3, i=123, r=1.p. (232

This is the coset representative of SO(p, 3)/SO(p) x SO(3). From the supersymmetric
variations of the vanishing coset representatives (L;/*, L, L"), on the other hand,
we find that

!

No=0, M =0. (2.33)

*Note also that for p = 0, all coset scalars ¢™ vanish while n vector field AL’
survive.
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Using these results in the supersymmetry variation of Eg, in turn, immediately gives

Al'—0 |
Next, defining
EzBW dx" ANdz” + B, dx" Ndy
the already found conditions @am =A, = Eg = (0 gives

0 = aab?
= 30 By — AL + 25 f1, K ALA] Arc
= aaBb - abBa

which implies that
B,=0.

In summary, the surviving bosonic fields are
~ Al r
<g,ul/7 ¢7 B,UJM g, ¢i1‘7 A7 ) Ap,) )

and the surviving fermionic fields are

(12#4” 1;7*7 5577 /):Z, Xi) .

(2.34)

(2.35)

(2.36)

(2.37)

(2.38)

(2.39)

We will show in the next section that suitable combinations of these fields (see Eq.

(2.62)) form the following supermultiplets:

(guwB/w;U: %7)() ) (A;ILIM\T,) ) (¢ira¢)],%0, Y?@D) )

I=1,.,p+3, I'=p+4,..,n+3,

r=1,..,p, Y =p+1,..n, i=123.

(2.40)
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The last multiplet represents a fusion of p linear multiplets and one special linear
multiplet, as explained in the introduction. In particular, the (p + 3) axionic scalars
®’ can be dualized to 4-form potentials. Further truncations are possible. Setting
¢y = 0 gives one special linear multiplet with fields (®%, ¢, ) while setting ®! = 0

eliminates all the (special) linear multiplets.

a. Extra Conditions due to Gauging

Extra conditions emerge upon turning on the 7D gauge coupling constants. They
arise from the requirement that the gauge coupling constant dependent terms in the

supersymmetry variations of (12)11_, 1274_,//{1, /):7"_,) vanish. These conditions are
C=0, Cc" =0,
Crsd* =0, C’"IS/AZ/ =0, (2.41)
where ®" = ®'Ly and A5 = AI'L},. More explicitly, these conditions take the form
P ILILE =0, Fu HILILE =0, 2.42)
Frox LILI®% =0, g LPAY =0 (2.43)

Solving these conditions, while keeping all AL/ and ®!, results in a chiral gauged
supergravity theory with the multiplets shown in (2.40) and gauge group K’ C
SO(n,3) with structure constants fyy. The scalars ® transform in a (p + 3) di-
mensional representation of K’, and there are 3p scalars which parametrize the coset
SO(p,3)/SO(p) x SO(3). The nature of the R-symmetry gauge group can be read
off from

D,e = DY

u L€+ ﬁiai C" Ale. (2.44)
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Note that the 6D model is R-symmetry gauged provided that C*" does not vanish
upon setting all scalars to zero. Moreover, an abelian R-symmetry group can arise
when ﬁ,/sxt/ vanishes with C*" # 0. Next, we show how to solve the conditions (2.42)

and (2.43).

2. Solution to the Reduction Conditions

The conditions (2.42) and (2.43) can be solved by setting
=0,  fr=0. (2.45)

Moreover, the structure constants of the 7D gauge group Gy x H C SO(n,3) must

satisfy the condition (2.6):
Fig" i+ Fignip =0 (2.46)

Given the 7D gauge groups listed in (2.7), we now check case by case when and
how these conditions can be satisfied. To begin with, we observe that given the
Go x H C SO(n, 3) gauged supergravity theory, the H sector can always be carried
over to 6 dimension to give the corresponding Yang-Mills sector whose H-valued
gauge fields do not participate in a possible R-symmetry gauging. Therefore, we shall

consider the Gy part of the 7D gauge group in what follows.

(I) S0@)
In this model, the 7D gauge group is SO(3) with structure constants
fii = (g€, 0) . (2.47)

To satisfy (2.45), we must set g = 0. Thus, we see that a chiral truncation to a gauged

6D theory is not possible in this case.
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(1) SO(3,1)

The smallest 7D scalar manifold that can accommodate this gauging is SO(3, 3)/SO(3) x
SO(3). In the 7D theory, the gauge group Gy = SO(3, 1) can be embedded in SO(3, 3)
as follows. Denoting the SO(3,3) generators by Tup = (1;;,1}s, T3 ), we can embed
SO(3,1) by choosing the generators (7, 73,) which obey the commutation rules of

the SO(3,1) algebra. These generators can be relabeled as
(T34, Tss, T36, Tus, Tse, Tea) = (11, T2, T3, Ty, Ts, Ts) = (11, Tp) (2.48)
with I =1,2,3 and I’ = 4,5,6. The algebra of these generators is given by
17, Ty) = f1,5 Ty [T, Ty = frs™ Tk | [Ty, Ty) = frg™ Trr . (2.49)

Thus, the conditions (2.45) are satisfied. Furthermore, the Cartan-Killing metric
associated with this algebra is (+ + 4+ — ——) and it satisfies the condition (2.46).
In this case, all the coset scalars are vanishing and the surviving matter scalar fields
are (@' ) which are the bosonic fields of a special linear multiplet. This sector
will be shown to be described by the quaternionic Kahler coset SO(4,1)/S0O(4) in
section 5. We thus obtain an Sp(1, R) gauged supergravity in 6D coupled to a single
hypermultiplet. In summary, we have the following chain of chiral circle reduction and

hidden symmetry in this case:

SO(3,3)
SO(3) x SO(3)

SO(4,1)
SO(4)

(@) (2.50)

Note that the 7D theory we start with has 64p + 64 physical degrees of freedom,

while the resulting 6D theory has 245 + 24 physical degrees of freedom. We will
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show that the 6D field contents can be rewritten as

Supergravity multiplet : (g, B, 0, ¥y, X) (2.51)

Hypermultiplet : (®%,¢), I =1,....4.
(I1) SL(3,R)

The minimal 7D scalar manifold to accommodate this gauging is SO(5,3)/SO(5) x
SO(3). In the 7D theory, the gauge group is SL(3, R), which has 3 compact and 5
noncompact generators. The condition (2.46) can be satisfied with n = diag(— — —+

+ + ++) by making a particular choice of the generators of SL(3, R) such as
(i)\27 7:)\57 i>\77 >\17 >\37 >\47 >\67 >\8> = (T17 T27 T37 T47 T57 TGJ T77 TS) = (va TI') ) (252)

where Aq, ..., A\g are the standard Gell-Mann matrices, and I = 1,....,p+3,I' = p +
4,...,8 with 0 < p < 5. However, the condition (2.45) is clearly not satisfied since
[T1,T,] = T3 and thus ]?[ 7% # 0. Therefore, we conclude that the chiral truncation to

a gauged 6D theory is not possible in this case.

(IV) SO(2,1)

For this gauging, the minimal 7D scalar manifold is SO(3,1)/S0O(3). Let us denote
the generators of SO(3,1) by Tup = (1j,1y) where ¢ = 1,2,3. The 7D gauge
group SO(2,1) can be embedded into this SO(3,1) by picking out the generators
(Ty1, Tyo, Th2), where the last generator is compact and the other two are noncompact.

Thus,
fisi = (9 €ijk 0) , 1=1,2,4, (2.53)

where (Ty1, Ty2, T12) correspond to (T4, Ty, Ty), respectively. The SO(3,1) vector in-

dex, on the other hand, is labeled as I = 1,2,3 and I’ = 4. Thus, the conditions
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(2.45) and (2.46) are satisfied and the resulting 6D theory is a U(1)r gauged super-
gravity coupled to one special linear multiplet. The gauge field is Aﬁ, and the special
linear multiplet lends itself to a description in terms of the quaternionic Kahler coset
SO(4,1)/S0O(4). We thus obtain an U(1)r gauged supergravity in 6D coupled to one
hypermultiplet. This model is similar to the Sp(1)r gauged model obtained from the
SO(3,1) gauged 7D supergravity described above, the only difference being that the
gauge group is now U(1)g. In summary, we have the following chain of chiral circle

reduction and hidden symmetry:

SO(3,1)
SO(3)

SO(4,1)

SO (2.54)

o (D) «

In this case, the 7D theory we start with has 645 + 645 physical degrees of freedom,
while the resulting 6D theory has 245 + 24 physical degrees of freedom. We will

show that the 6D field contents can be rewritten as

Supergravity multiplet : (g, Bu, 0, ¥y, X) (2.55)

Hypermultiplet : (®1,¢), I=1,...,4.
(V) 50(2,2)

This case is of considerable interest as it can be obtained from a reduction of N =1
supergravity in ten dimensions on a certain manifold Hs» as shown in [4], where its
chiral circle reduction has been studied. As we shall see below, their result is a special
case of a more general such reduction. The minimal model that can accommodate
the SO(2,2) gauging is SO(3,3)/S0O(3) x SO(3) ~ SL(4,R)/SO(4). To solve the
conditions (2.45), we embed the SO(2,2) in SO(3,3) by setting

fij:(glﬁﬂﬁklﬂZE@Wtfq): 22172767 £:37475a

niy = diag (= —+4),  ns = diag (= ++) , (2.56)
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where (g1, g2) are the gauge coupling constants for SO(2,1) x SO(2,1) ~ SO(2,2).
These structure constants can be checked to satisfy the condition (2.46). Further-
more, the conditions (2.45) are satisfied since [ = 1,2,3,4 and I’ = 5,6. The resulting
6D theory is a U(1)r gauged supergravity coupled to one external Mazwell multiplet
(in addition to the Mazwell multiplet that gauges the R-symmetry) and two hyper-
multiplets. The two hypermultiplets consist of the fields shown in the last group
in (2.40) with p = 1,n = 3. The U(1)g is gauged by the vector field A%. The

vector field A

4» which corresponds to O(1,1) rotations, resides in the Maxwell mul-

tiplet. In this model, the surviving SO(3,1)/S0O(3) sigma model sector in 6D, gets
enlarged with the help of the axionic fields to become the quaternionic Kahler coset
SO(4,2)/50(4) x SO(2), as will be shown in section 5. In summary, we have the

following chain of chiral circle reduction and hidden symmetry

S0(3,3) S0 SO(4,2) 257
SO(3) x SO(3) SO(3) SO(4) x SO(2) '

It is also worth noting that the Cvetic-Gibbons—Pope reduction [4] that gave rise to
the U(1) g gauged 6D supergravity is a special case of our results that can be obtained
by setting to zero all the scalar fields of the SO(3,1)/S0(3) sigma model, the gauge
field Ai and their fermionic partners. This model was studied in the language of the
SL(4,R)/SO(4) coset structure. In Appendix B, we give the map between this coset
and the SO(3,3)/SO(3) x SO(3) coset used here. Note that, in this case the 7D
theory we start with has 64 + 64 physical degrees of freedom, and the resulting

6D theory has half as many, namely, 325 + 32 physical degrees of freedom. We will
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show that the 6D field contents can be rewritten as

Supergravity multiplet : (g, Bu, 0, ¥y, X)
Vector multiplet : (A{;,)\I'), I'=1,2 (2.58)

Hypermultiplet : (®",¢7), I=1,...,4, r=1,2.
(VI) SO(2,2) x SO(2,1)

In this case, the minimal 7D sigma model sector is based on SO(6,3)/SO(6) x SO(3).
To solve the condition (2.45) in such a way to obtain an R-symmetry gauged 6D

supergravity, we embed the 7D gauge group SO(2,2)x S0O(2,1) in SO(6, 3) by setting

.]/[\'[Ajf( = <gl 6% UM y 92 €rst ntﬁ y 93 Gi’j’f'nk/£l> ) Z: 174757 r= 2767 77 i/ = 378797
niy = diag (—++) , 1 = diag (= ++), iy = diag (= + +), (2.59)

where (g1, 92, g3) are the gauge coupling constants for SO(2,1) x SO(2,1) x SO(2, 1).
The conditions (2.45) are satisfied since I = 1,2,3,5,7,9 and I' = 4,6,8. The
resulting 6D theory has a local O(1,1)® gauge symmetry, and hence three Mazwell
multiplets but no gauged R symmetry, and three hypermultiplets. The gauge fields are
(A%, AD, A%), and the hypermultiplets consist of the fields shown in the last group in
(2.40) with p = 3,7 = 6. In this model, the surviving SO(3,3)/S0O(3) x SO(3) sigma
model in 6D gets enlarged to the quaternionic Kahler SO(4,4)/S0(4) x SO(4) with
the help of the axionic fields, as will be described in section 5. In summary, we have

the following chain of chiral circle reduction and hidden symmetry:

SO(6,3) SO(3,3) SO(4,4)
SO(6) x SO(3) — SOB)xS0B) — SO) x SO(4)

(2.60)
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Moreover, we will show that the resulting 6D field contents can be rewritten as

Supergravity multiplet : (g, Bu, 0, ¥y, X)
Vector multiplet : (AI{L/,)\I/), I'=1,2,3 (2.61)
Hypermultiplet : (&7, ¢7), I=1,...4, r=1,2,3.
To summarize, we have found that the SO(3,1) and SO(2,2) gauged 7D models
give rise to U(1)r gauged supergravity, and the SO(2,1) gauged 7D model yields

an Sp(1l)r gauged chiral supergravity, coupled to specific matter multiplets in six

dimensions.

C. The 6D Lagrangian and Supersymmetry Transformations

The chiral reduction on a circle along the lines described above requires, as usual,
the diagonalization of the kinetic terms for various matter fields. This is achieved by

defining:

1
o = (6—209) . o= (6+8a0)
X = V2e/? ()Z + 17&7) Y= 1 /2 (127 - )2)
4 ) \/5 )
1 A 1 - 1 .
_ ap/2 - r_ o¢¢/2>\r
,lvba \/5 € (% 47a'¢7) ) ¢ \/§ € )

/

—~ 1 S
ol = Al A= 02\ €= —— /2% (2.62)
) \/§ )
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The 6D supergravity theory obtained by the reduction scheme describe above has the

Lagrangian £ = Lp + Ly where*
e 'Ly = %;R - i(auU)Q - %620GW0GWP o %GUF;;FWT/ (2.63)
—30up0"0 — 1P Pl — 1 (B P! + P, P))
e (CC + 25"’Sz-rf) :
e = 4Dt~ B D~ DA 260
D~ D — S o
—3U" " o B+ 500 00
— Ly o, Pl — %&TV“W”¢NPJ — P XY
—iPIXE e G, X — e 2 XY
+e /2 (—Cirr’j\rlaiwr QS AT — Sir/j‘rlaiw)
+#§e—a/25\r’ai7u¢u (Cir’ — \/§Sir’>
+ﬁ§e‘”/25\’"/aix (OW - \/551'7«/) :
and where
XPP = P T A X = XX N A TP,

X' = PPy o+ Xyto + N — Pt o . — dyto

*In order to make contact with more standard conventions in 6D, we have redefined
Gp — \/§G/“’P and multiplied the Lagrangian by a factor of 1/2. The spacetime
signature is (— +++ ++), the spinors are symplectic Majorana-Weyl, C* = —C and
(v*C)T = —4*C. Thus, 1y \ = (—1)"py*» 1\, where the Sp(1) doublet indices
are contracted and suppressed. We also use the convention: 7,,...s = €€4;...u5 V7-
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Xﬁ’y = @EP’YMV’YP)‘T’ +X7MV)‘T’ )

X = 1/_}7#1/)7"'

(2.65)

The action is invariant under the following 6D supersymmetry transformations

5eL”
5%
dx
0B,
oo
SA
O
L6
Lisg!

LioL}

oY

"

ey,

oT 1% » P
P77y, G por € — 57%0 €,

D,e— ie"”y
—%vuauae — %e"'yp”Gpm €,
e ? (Ey[uz/z,,] + %E%l,x) — 7["“5142],

—€X

. _ /
ie ”/2€7H)\T ,

R Lo G 2\%670/2 (C"l — \/55",) o'e
—ie Pey”

e Peo'y

—eo)"

i€y,

Lyt (79;07; — i0,p) €,

%”y“ (Pﬁrai + ZP;) €. (2.66)
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Several definitions are in order. Firstly, the gauged Maurer-Cartan form is associated

with the coset SO(p, 3)/SO(p) x SO(3) and it is defined as
Pr = L"(9,0] = fur’ A7) L
Ql = 1" (9f - for' A7) L)
Q= L7 (9u0f ~ fur' A7) Iy (2.67)

Various quantities occurring above are defined as follows:

?

Guvp = 30 Bup) — % <F[1/;l1/ ;j - %fr’s/t/AZAi/Apt’>
Fr, =20, A7 + fou” A5 AL
D,e= <8M + Lo, Py + ﬁ@; ai) €,
Q= J5 €M Qi = €M (LT19, L) + CT AT, (2.68)
The axion field strengths are defined as
P, = e?(Dyu¢")L; |

Py = (Do)

D,®" = 9,0 + f., AL @7, (2.69)
and the gauge functions as
O = Jsersi frr” LLYy . Cigw = for’ LiLy,
Sipr = —€? fur? ®; L, Sy = —€? fur? @5 LL . (2.70)

Note that the S? term in the potential in (2.63) comes from the P’ P& term since

P ~ S The above results cover all the chiral reduction schemes that yield gauged
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supergravities in 6. We simply need to take the appropriate structure constants and
the relevant values of p in the SO(p, 3)/SO(p) x SO(3) cosets involved. It is always
easiest to evaluate the gauge algebra on bosonic fields since one do not need to Fierz

rearrange, while the commutators close on the bosonic fields. These commutators are

[01,02)e) = da.c.(E)) + 0o(—EMbr) + 0L.L(E W™ + 5e7EGA™),
[517 52]B,u1/ = 5G.C. (5/\) + 5G(_€>\B)\u - %e_aél/>

01,02 A5 = d6.0.(EY) + da(—E1AY),
(2.71)
[51,52]0‘ = 6”(9“0',

[(51> 52]90 = 5”5)#%07

[61,(52](1)1 — f“@uqﬂ,

where §, = i€;7"€e;. In the case of the models (II) and (IV), with 7D gauge groups
SO(3,1) and SO(2,1), respectively, we have p = 0, which means that the coset

representative becomes an identity matrix and

frig —  €vij Cijrr — \/Eﬁr'ij, Ciprr — 0,

Sipr — —errije‘p@j, Sy — 0. (2.72)

By an untwisting procedure, which will be described in the next section, the scalar
fields (®*, ) can be combined to describe the quaternionic Kahler manifold SO(4,1)/S0(4)
that governs the couplings of a single hypermultiplet. In the case of Model (V), we
have p = 1, which means that in the 6D model presented above, the relevant sigma
model is SO(3,1)/S0(3). This gets enlarged with the help of axionic fields to the
quaternionic Kahler coset SO(4,2)/S0(4) x SO(2) that governs the couplings of one

external Maxwell multiplet and two hypermultiplets. In the case of Model (VI),
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we have p = 3, which implies the sigma model is SO(3,3)/S0O(3) x SO(3). This
gets enlarged with the help of axionic fields to become the quaternionic Kahler coset
SO(4,4)/50(4) x SO(4) that govern the couplings of three Maxwell multiplets and

three hypermultiplets.

D. The Hidden Quaternionic Kahler Coset Structure

It is well known that the ten dimensional N = 1 supergravity theory coupled to N
Maxwell multiplets when reduced on a k-dimensional torus down to D dimensions
gives rise to half-maximal supergravity coupled to (N + k) vector multiplets with an
underlying SO(N + k,k)/SO(N + k) x SO(k) sigma model sector. This means an
SO(N+3,3)/SO(N +3) x SO(3) sigma model in 7D. In the notation of the previous
sections, we have N + 3 = n. A circle reduction of this ungauged theory is then
expected to exhibit an SO(N + 4,4)/SO(N + 4) x SO(4) coset structure. This is a
well known phenomenon which has been described in several papers but primarily in
the bosonic sector. In this section, we shall exhibit this phenomenon in the fermionic
sector as well, including the supersymmetry transformations. Moreover, we shall
describe the hidden symmetry of the gauged 6D models obtained from a consistent
chiral reduction of the gauged 7D models, in which case the SO(p+3,3)/SO(p+3) x
SO(3) coset is enlarged to SO(p+4,4)/SO(p+4) x SO(4). Here, we have redefined
p — p+ 3 compared to the notation of the previous section, for convenience. The key
step in uncovering the hidden symmetry is to first rewrite the Lagrangian in Iwasawa
gauge. This gauge is employed by parametrizing the coset SO(p + 3,3)/SO(p+ 3) X
SO(3) = C(p + 3,3) by means of the 3(p + 3) dimensional solvable subalgebra K
of SO(p + 3,3). The importance of this gauge lies in the fact that it enables one to

absorb the (p + 6) axions that come from the 7D Maxwell fields, and a single dilaton
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that comes from the 7D metric, into the representative of the coset C'(p+3, 3) to form
the representative of the enlarged coset C(p+4,4)*. To do so, we shall first show, in
section 1, how various quantities formally combine to give the enlarged coset structure.
This will involve identifications such as those in (2.78) below. These identifications by
themselves do not furnish a proof of the enlarged coset structure, since one still has
to construct explicitly a parametrization of the enlarged coset which produces these
identifications. In section 2, we shall provide the proof by exploiting the Iwasawa
gauge. In the following we will present the basic idea for the proof of enlarged hidden
symmetry. More details will be given later. To begin with, the Maurer-Cartan form

dVV~! can be decomposed into two parts:
P=aw '+ (@vh) , Q=av'-(ovh . (2.73)

where V is the coset representative given in (2.88). The bosonic sector of the 6D
Lagrangian that contains the (4p +4) scalar fields, which we call L/, will then take

the form

e Lo = —10,00"0 — ttr (VY (VY + (VYT
—1e*(V9,®)" (Vo"'®) . (2.74)

where ¢ is a dilaton and ® are p + 3 axions. More explicitly, this can be written as
(2.98). The idea is now to combine the dilaton and axionic scalar field strengths with
the scalar field strengths for SO(p+3)/SO(p) x SO(3) to express them all as the scalar
field strengths of the enlarged coset SO(p +4,4)/SO(p +4) x SO(4). The resulting
Lagrangian Lg/y then can be rewritten as the SO(p+4,4)/SO(p+4) x SO(4) sigma

*In general, the solvable subalgebra K, C SO(p+ k+ 1,k + 1) decomposes into

the generators Ky C SO(p + k, k), and (p + 2k) generators corresponding to axions
and a single generator corresponding to a dilaton.
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model

e\ Loy = — L (dﬁﬁ—l) (dfz)?—l + (dﬁﬁ—l)T) (2.75)

where V is defined as V with the 3-valued indices replaced by 4-valued ones, (2.89).
This can in turn be written as the second line of (2.102). As to the fermionic sector,

for example, when we look at the covariant derivative
Dyx = (Du(w) + 1@ i + 5P0:) X (2.76)

which follows from the circle reduction of the 7D theory, we observe that it contains
the composite SO(3) g connections shifted by the positive torsion term (%Pﬁai) where

Pl = PiN*1 By introducing the SO(4) Dirac matrices, T';;, as defined in (2.85) the

R

covariant derivative are then given by
D,x = (V,, + 10, Py + };@Lj Fz;) X (2.77)
which transform under the SO(4)z symmetry group.

1. Hidden Symmetry in the Symmetric Gauge

The structure of the Lagrangian and transformation rules presented above readily

suggest the identifications pir = P, @ij =QY, @”5 = (™ and

ﬁ4r pPr o '
N A Q4z 7)1
piN+a | — | pi : R - (2.78)
QN+4,7~ Pr
]34,N+4 — 0y
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for the components of the Maurer-Cartan form, Cir' = cir’, O’ = O and the

following identifications

Ciir' gir’

641"1"/ Srr/

o | = . (2.79)
O'L, +4,r _Sl’r‘
54,N+4,r’ 0

where C"’ = \/Li €7k C* for the gauge functions. Note that the hat notation here
does not refer to higher dimensions but rather they denote objects which transform
under the enlarged symmetry groups. With these identifications the Lagrangian sim-

plifies dramatically. The bosonic part takes the form

6_1£B = %R —

1 2 1,2 pvp 1 0 por' e’
1(0u0)" = 1567 GG s L

~

—L1PIpr — Lemo Qi C, (2.80)

i
and the fermionic part is given by
¢ 'Lp = =50 Doty = 5XV" Dux — 5N Dude = ST D" (2.81)

— ARV 00 — 2 T P 4 e Gy X0
_i UﬂF;;Xff/” _ 6_0/2@7%/5\7”11%%
—femol2CV (Y'Fm‘% + Y'F;;x) , (2.82)

where i =1,...,4, 7 = 1, ...,p + 4, we have defined V** = 1), and

XHP = Pyt T by P = XX AT A A T

XE = b P A+ XY A (2.83)
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The covariant derivatives are defined as

Y ¥,
DM X = (V,/ + %Wuab/yab + iQLJ F{j) X 5
A" A
Dyt = (B + ds ™+ Q0 Ty ) w7 + QFF v (2.84)

The SO(4) Dirac matrices have been introduced in the above formula with the con-

ventions
U= (oi,—1) , [;=(041), Tp=TiTy, T;=T05. (2.85)
It is useful to note that @Eﬁf‘ze = —EF%WQ. Looking more closely at the covariant
derivatives
Dux = (Du(w) + Q) 05+ 5Pu00) X
Duwf - (Du(w) + %;QLJ Oij — %77501-) Wﬁ + @LS wé ’ (2.86)

we observe that they transform covariantly under the composite local Sp(1)g trans-
formations inherited from 7D, and that they contain the composite Sp(1)g connec-
tions shifted by the positive torsion term (4P’c’) in the case of fermions that are
doublets under the true Sp(1)r symmetry group in 6D, namely (i, x, "), and
the negative torsion term (—%P’c") in the case of ¢, which are singlets under this
symmetry. By true Sp(1)g symmetry group in 6D we mean the SO(3)r symmetry
group that emerges upon the recognition of the scalar field couplings as being de-
scribed by the quaternionic Kahler coset SO(p + 1,4)/SO(p + 1) x SO(4) in which
SO(4) ~ SO(3) x SO(3)g. The action of this group is best seen by employing the

[wasawa gauge, as we shall see in the next subsection. The action is invariant under
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the following 6D supersymmetry transformations
dey = i€y,
0, = Dye— ie"’yp”'qupM €,
ox = —%’}/”8“0'6 — l—geavp”TGpW €,
0B = ie™" (eyuth) + 3EwX) — ABIL(SAZi’
0o = —iéy,

SAI = e ey, N

SN = —ie"/ny“”F;;;e + 5670/2655”%6 ,
ﬁ;jéﬁf = —gr,z»l/ﬁ ,
SY" = E4MPTie . (2.87)

The relation between the supersymmetric variation of the enlarged coset representa-
tive and those involving the SO(n, 3)/SO(n) x SO(3) coset representative, the dilaton
and axions is similar to the relations in (3.32) for the corresponding Maurer-Cartan
forms, and field strengths, since L~'dL has the same decomposition as L='6 L. Finally,
we note that the above results for the matter coupled gauged N = (1,0) supergravity

in 6D are in accordance with the results given in [24].
2. Hidden Symmetry in the Iwasawa Gauge

a. The Ungauged Sector

In order to comply with the standard notation for the Iwasawa decomposition of

SO(p, q), we switch from our coset representative to its transpose as L = VT. Fol-
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lowing [25, 26], we then parametrize the coset SO(p + 3,3)/SO(p + 3) x SO(3) as
Lzd cipg La.vii gy .

Y = 2P HCUP o3 duaVy B i 3 r=1,..p, (2.88)
where <UZ-£, Vi B, ﬁ) with i < j and V% = —V7' are the generators of the 3(p+3)
dimensional solvable subalgebra of SO(p + 3, 3) multiplying the corresponding scalar
fields and - H stands for ©'H;. Using the commutation rules of the generators given

in Appendix D, one finds [25]

e35P i, | e3P Ak, By, | 3% Ak, (Agj + 3B% BY)
Y = 0 Ore Br. , (2.89)

where ¢; is defined in (D.5), and

The inverse of ¥ can be computed from the defining relation VTQV = Q and is given

_laz .3~ 1z.3
e 299 | =B | e2% Pk, (A + §BY BY;)

Vo= 0 Ors —e2% @k, Br, : (2.91)

0 0 2% P i ;
In equations (2.89) and (2.91) the indices (i,7) label the rows and (j, s) label the
column. The Iwasawa gauge means setting the scalars corresponding to the maximal
compact subalgebra equal to zero. Under the action of the global G transformations
from the right, the coset representative will not remain in the Iwasawa gauge but
can be brought back to that form by a compensating h transformation from the left,

namely, Vg = h)’. The Maurer-Cartan form dVV~! can be decomposed into two
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parts one of which transforms homogeneously under A and the other one transforms

as an h-valued gauge field:

P = dav'+(@v?h) . P — nPr,

Q = V' —(awv) . Q — dhh +hQRT. (2.92)
Both of these are, of course, manifestly invariant under the global g transformations.

The key building block in writing down the action in Iwasawa gauge is the Maurer-

Cartan form [25]

oYV =106 - H+> (e%@'j@Fva + e%%'@fﬁjw) + Y F, U, (2.93)

i<j
where @;; and I;ij are defined in (D.5) and
Fuj = 2" (8,Ak — B4%0,BY) |
Fur = 7i0uBjy |
Fii o= 4%0,0% (2.94)

%

and it is understood that ¢ < j. Other building blocks for the action are the field

strengths for the axions defined as

F,ui A’L
Vo o=| Fr |, @=|B]|, (2.95)
F Ct

where A; and B” form a (p+3) dimensional representation of SO(p+3) C SO(p+3,3),

and

Fu = 7 (8,A; + B"0,B" + Aj;,0,C* + 1 B";B"8,C") |
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Fr = 9,B"+ B%0,C",
F.o= 550,07 . (2.96)

With these definitions, the bosonic part of our 6D Lagrangian that contains the

(4p + 4) scalar fields, which we shall call L¢, g, takes the form
e Lo = —10,00"0 — ttr (AVV7') (VY + (VYT
—1e*(V9,®)" (Vo*'®) . (2.97)

More explicitly, this can be written as [25]

B_ILG/H = _zll Moa“@ - %Z (eaij.(ﬁijij + 65”.(5?#1']'-7:“1']‘) N Z %6&.5szF“iz
i<j @7
—1€% (P P 4 e P F '+ FLFY) (2.98)

The idea is now to combine the dilaton and axionic scalar field strengths (2.96) with
the scalar field strengths for SO(p + 3)/50(p) x SO(3) defined in (2.94) to express
them all as the scalar field strengths of the enlarged coset SO(p +4,4)/SO(p +4) %
SO(4). As is well known, this is indeed possible and to this end we need to make the

identifications

Fm' = \/LiFuMa
roo__ 1 r
woo 7§F,u47
Fu = 5 (2.99)
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The quantities on the right hand side are restrictions of the Maurer-Cartan form

based on the enlarged coset SO(p +4,4)/SO(p + 4) x SO(3) defined as

IV = 10,0 Ho + > (€350 F, 00V 4 e3P PR B ) 3 e3P F,, U
a<f a,r

(2.100)

—

where V is defined as in (2.89) and (Fuap, Fpi s Fuar) as in (2.94), and dag, bag, Ca

as in (D.5), with the 3-valued indices replaced by the 4-valued indices everywhere.

Equations (3.34) have a solution given by

A = \/% (A — Aijy"wC*y — LB By + LB" B j47,,C%y)
Bt = \/% (B4 — B"';C7y)
¢ = Ly,
Y = \/ig Yy - (2.101)

The identifications (3.34) (where r — r,7), together with (2.69), (2.95), (2.100),
(2.93), (2.67) (with A, = 0), (2.92) and (D.5) (defined for 3-valued and 4-valued
indices similarly), provide the proof of (3.32) used to show the hidden symmetry.
Using (3.34), the Lagrangian L g can be written as the SO(p +4,4)/SO(p + 4) x
SO(4) sigma model:

e Loy = —Lur <d1717*1)A(d17)7*1+(d1717*1)T)

e LY (R o )
a<f

—1N P g 1O (2.102)

8

where ang, bag, co are defined as in (D.5) with the indices 7,5 = 1,2,3 replaced by
a,f=1,..,4.
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b. Gauging and the C-functions

In order to justify the identifications (2.79) of the S-functions as certain components
of the C-functions associated with the enlarged coset space, we need to study these
functions in the Iwasawa gauge. Of the four supergravity models in 6D that have
nonvanishing gauge functions, two of them, namely models (II) and (IV), see section
3.2, are coupled to one special linear multiplet and as such they deserve separate
treatment. In both of these cases, the gauge functions obey the relations (2.72). We
begin by showing how these relations follow from the C-functions associated with the
U(1)r or Sp(1)gr gauged SO(4,1)/SO(4) sigma model. The coset representative for
S0O(4,1)/S0(4) in the Iwasawa gauge takes the form

e¥ | PP’ %e‘piﬂ

v=1{ 04 | & |. (2.103)

0 0 e ¥

where 2 = ®'®,. Note that we have made the identification B;, — ®; already.

Given that the Sp(1)z or U(1)g generators 7" are of the form

0] 0 [0
™ =1 ol7"]0 |, (2.104)
0] 0 [0

we find that the C' function based on the enlarged coset is given by

0|-T7®7| 0
Cr=vrvi=|o T |-TI® | - (2.105)

0 0 0
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Comparing with the relations given in (2.72), and recalling that T;; ~ €5, WE see
that indeed the projection of the C function based on the enlarged coset as defined
above does produce the C' and S functions obtained from the chiral reduction, as
was assumed in the previous section in (2.79). In the notation of Appendix D, the C

function is obtained from projection by 7;;, and the S-function from projection by U;.

js
Next, we consider the remaining two supergravities with nontrivial gauge function,
namely models (V) and (VI), see section 3.2, with hidden symmetry chains shown in
(2.57) and (2.60). Prior to uncovering the hidden symmetry, the C and S functions
occurring in the Lagrangian (2.63) and in the supersymmetry transformations (2.66)

are C9" C" S and S™. Using (2.70), and the fact that f..;” ~ (T,/);7, we deduce

the definitions

Uy, | (2.106)
for the C' functions in the coset direction,
O (X) = tr (VT”’V—l) X (2.107)

for the C function in the SO(3) direction, and

"= s | =vV2eP VT D | (2.108)
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for the S functions. For SO(p, q)/SO(p) x SO(q) with p > ¢, we have i = 1, ..., ¢ and
r=1,....,p— q. To show that the C' and S functions defined above combine to give
the C' functions for the enlarged coset, we begin with the observation that the gauge
group lies in the H* and T, directions. Thus we can denote the full gauge symmetry

generator that acts on the enlarged coset representative 1V as

/

H' | 0] 0
™ =1 0o |7T"| 0 : (2.109)
0| 0 |H"

where Hgélﬂ (o, =1,...,q+1) is symmetric and 7. (r, s = 1, ..., p—q) is antisymmetric.
Defining the C' functions for the coset SO(p +1,¢+ 1)/SO(p+ 1) x SO(q + 1) as
in (2.106) with the index i = 1,...,q replaced by o = 1,...,¢ + 1 and T"" defined in
(2.109), we find

Cr'(H) = o H’3%¢C, ,
CP(B) = ex @ @Pyn {50
Caﬁr,a/) — e%(c*rc*a)-sﬁyw[a 7661 (Hsm(Aén + %BgB%) _ TiBfB(?) 7

rsy

Ca£T (U) = —e%gaﬁzfyﬁa <H/g”y B’yﬂ + T;Bﬂ§> . (2110)

Using (2.101), the above quantities reduce to those for the SO(p+3,3)/SO(p + 3) x
SO(3) coset upon restriction of the 4-valued «a, 8 indices to 3-valued (i, j) indices,

C*'(H) =0 and
CZ(E) = \/iewsr/i )

OZ(V) = \/§e¢5’7”/i7
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Cr(U) = —V2e?S", . (2.111)

These identifications, upon comparing the definitions (2.106), (2.107) and (2.108)
with (2.70), provide the proof of the relations (2.79) used in showing the hidden
symmetry. In doing so, note that C" — (C™' C*") and S — (S, 8"") and
that C™7"" has components in the (ﬁ ,E, V.U, X) directions. Note also that, having
proven the relations for the Maurer-Cartan form, (3.32), and the C-functions, (2.79),
it follows that not only the bosonic part of the 6D Lagrangian, (2.80), but also its
part that contains the fermionic part, namely (2.82), exhibits correctly the enlarged
coset structure. Moreover, the relation between the supersymmetric variation of
the enlarged coset representative and those involving the SO(n,3)/SO(n) x SO(3)
coset representative, the dilaton and axions is similar to the relations in (3.32) for
the corresponding Maurer-Cartan forms, and field strengths, since L™'dL has the
same decomposition as L~'dL. This concludes the demonstration of the enlarged
coset structure in the 6 models with nontrivial gauge functions. Although the
bosonic field contents and field equations of supergravity theory has been formulated
by solvable Lie algebra [27, 28, 29], the feature of enlarged hidden symmetry using
the Iwasawa gauge has not been shown as far as we know. Here we have shown in
the full model, including the fermionic sector, how the scalar fields can be combined

to parametrize an enlarged coset SO(p + 1,4)/SO(p+ 1)SO(4).

E. Comments

We have reduced the half-maximal 7D supergravity with specific noncompact gaug-
ings coupled to a suitable number of vector multiplets on a circle to 6D and chirally

truncated it to N = (1,0) supergravity such that a R-symmetry gauging survives.

These are referred to as the SO(3,1),50(3,2) and SO(2,2) models, and their field
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content and gauge symmetries are summarized in Chapter 1. These models, in par-
ticular, feature couplings to p hypermultiplets whose scalar fields parametrize the
coset SO(p,3)/SO(p) x SO(3), a dilaton and (p + 3) axions, for p < 1. The value
of p is restricted in the case of chiral circle reductions that maintain R-symmetry
gauging, but it is arbitrary otherwise. We have exhibited in the full model, includ-
ing the fermionic contributions, how these fields can be combined to parametrize an
enlarged coset SO(p+ 1,4)/SO(p + 1) x SO(4) whose abelian isometries correspond
to the (p + 3) axions. Our results for the R-symmetry gauged reduction of certain
noncompact gauged 7D supergravities are likely to play an important role in finding
the string/M-theory origin of the gauged and anomaly-free N = (1,0) supergravities
in 6D which has been a notoriously challenging problem so far. This is due to the fact
that at least two of the 7D models we have encountered, namely the SO(3,1) and
SO(2,2) gauged 7D models, are known to have a string/M-theory origin. Therefore,
what remains to be understood is the introduction of the matter couplings in 6D that
are needed for anomaly freedom. A natural approach for achieving this is to associate
our chiral reduction with boundary conditions to be imposed on the fields of the 7D

model formulated on a manifold with boundary [30].
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CHAPTER III

SUPERSYMMETRIC SOLUTIONS OF GAUGED 6D SUPERGRAVITY*

The issue to be addressed in this chapter is to find the general supersymmetric so-
lutions in general matter coupled 6D, N = (1,0) supergravity, including hypermulti-
plets, which has been studied in [9, 10], in the absence of hypermultiplets. A useful
strategy is to use G-structure method to classify supersymmetric solutions in super-
gravity theories. To do so, we use at least one nonvanishing Killing spinor to begin
with. The Killing spinor is defined to be the spinor of the supersymmetry trans-
formations which satisfies the vanishing of the supersymmetric variations of all the
spinors. The advantage of seeking such Killing spinors is that they lead to first order
equations, which are much easier than the second order field equations, and their
integrability conditions imply most of the field equations and Bianchi identities satis-
fied automatically. In the following, we will present the basic idea of the G-structure
method. More details will be given later. We first construct nonvanishing fermionic

bilinears from commuting symplectic-Majorana Killing spinor e

o I (3.1)

T e = X1, THP, (3.2)

where T" are SU(2) generators. These bilinears prove to be convenient in analyzing
the necessary and sufficient conditions for the existence of Killing spinors. From the
Fierz identity Fﬂ(aﬁf‘; s = 0, it follows that V*V, = 0, so V,, is null. Multiplying
01, = 0, (3.34), which defines Killing spinors, with €I', and using (3.1), we find

*Reprinted from Journal of High Energy Physics, Vol 11, Der-Chyn Jong et al.,

6D Dyonic String with Active Hyperscalars, Copyright 2006, with permission from
IOP, http://www.iop.org/journals/jhep.
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V(.V,) = 0. Thus, V,, is a null Killing vector admitted by the metric which is part of

a supersymmetric solution. This then helps in parametrizing the metric as
2 ~1 F 2
ds® =2H " (du+ () (dv+w+§(du+ﬁ)) + Hdsp | (3.3)

where ds% is the metric on the base space B, 3 and w are 1-forms on B, and H is a
harmonic function. Examining the other vanishing of the supersymmetry variations
of the other fermions, as we will show in section B, they lead to the 2-form field
strength*

Fle —e 270 4 FL 4V AW (3.4)

where FY is self-dual, and the anti-selfdual part of three-form field strength
1
e2?G - =1(1—») [VAe Adp+V AK] , (3.5)

where % is the Hodge-dual, K is self-dual. Moreover, the differential conditions for
hyperscalars and dilaton are given by (3.58) and (3.59) respectively. We next show
that with the integrability conditions, (3.66)-(3.69), for the existence of killing spinors,

most of the equations of motion are satisfied automatically, except the following
Rip=Jir,  DueF")=Jl .  D(G") =0,  (36)
as well as the Bianchi identities
DF'=0, dG=1LiF'AF". (3.7)

We then apply above framework to find new exact solution which is particularly

interesting because the scalars of a hypermultiplet are nonvanishing. Indeed, we

*The Hodge-dual of a p-form, F' = Z%!dx”l A-e-dat?Fy, ., is calculated using,

*(dxht A - dxtv) = —(Dip)! € wp_, I At - daPr
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activate only four hyperscalars, and set all the rest equal to zero. The model ef-
fectively reduces to one in which the hyperscalars are described by 4-hyperboloid
Hy = 5S0(4,1)/SO(4). The most important key step in constructing the solution is
the identity map between the 4-dimensional scalar coset quaternionic structures and

the transverse internal space quaternionic structures,

J= (3.8)

The idea behind this identity map is the same as the 2-dimensional analog of the
Gell-Mann-Zwiebach tear-drop solution [31]. In N = 2, D = 10 supergravity theory,

the relevant field equations are

1 X
Rﬂ,;(g) = Ehaﬁﬁﬂqba&;gbﬁ, n = 0, 1, ceey 9 (39)
Vi(g)oh¢* =0, a=1,2 (3.10)

where 2 = (z#,y%), i = 1,2, and hag(¢) is the scalar manifold metric which can be

put into the conformally flat form

16,05

hap(@) = : 3.11
T P R PAEE G4y
The Gell-Mann-Zwiebach solution uses the identity map,

¢ = y'oL. (3.12)

Since hqp is a metric of constant negative curvature and the background metric g;;
is positively curved, instead of equating the two metrics h and ¢, Gell-Mann and
Zwiebach proceed to set

gij = Q26 (3.13)

R
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where Q? is a conformal factor. They find that (3.9) and (3.10) are satisfied provided
that Q? = 4a*(1 — y? — y2) where a is not determined by equations of motion. Thus,

the total metric is
ds® = dx"dx"n,, + 4a*(1 — y3 — y3)dy'dy’ 5;;. (3.14)

The internal space which has an axial symmetry is known as the tear-drop space. In
our case, dyonic string solution in 6D, the tear-drop is four-dimensional, and the full

solution is

1,1 o1, (b))
ds® = e 29te 2% (—dt® + da?) + e2¥te2" (—2> R dy dy? dag 5 (3.15)
Y

e? = eft/er | Pt = % : (3.16)
Y
4
ro__ r 0
Ay = 32 Pt (3.17)
8
Gagy = ——€apul’ , Gy = —0he %, 3.18

where a and b are integration constants, ¢4 and h are given in (3.117) and (3.118)
respectively. Moreover, while in Gell-Mann-Zwiebach solution only the metric and
2-scalars are activated, we emphasize that in our solution we activate dilaton, 4
hyperscalars, two-form and three-form field strengths as well. An interesting property
of our dyonic string solution is that while its electric charge is arbitrary, its magnetic
charge is fixed in Planckian units, and hence it is necessarily non-vanishing. We also
determine the source term needed to balance a delta function type singularity at the
origin. Moreover, the solution is shown to have 1/4 supersymmetric AdSs x S* near
horizon limit where the radii are proportional to the electric charge. Now, we turn to

a detailed description of our results outlined above.
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A. The Model

1. Field Content and the Quaternionic Kahler Scalar Manifold

The six-dimensional gauged supergravity model we shall study involves the combined
N = (1,0) supergravity plus anti-selfdual supermultiplet (g,., B, ¢, wlﬁr, x?), Yang-
Mills multiplet (A,, A%) and hypermultiplet (¢, 1®). All the spinors are symplectic
Majorana-Weyl, A = 1,2 label the doublet of the R symmetry group Sp(1)r and
a =1,...,2ny labels the fundamental representation of Sp(ngy). The chiralities of the
fermions are denoted by +*. The hyperscalars ¢¢, a = 1,...,4ny parameterize the
coset Sp(ny,1)/Sp(ny) @ Sp(1)g. This choice is due to its notational simplicity.
Our formulae can straightforwardly be adapted to more general quaternionic coset
spaces G/ H whose list can be found, for example in [32]. In this paper, we gauge the
group

K x Sp(1)r C Sp(nu,1), K C Sp(ng) . (3.19)

The group K is taken to be semi-simple, and the Sp(1)g part of the gauge group can
easily be replaced by its U(1)g subgroup. We proceed by defining the basic building
blocks of the model constructed in [33] in an alternative notation. The vielbein V.4,
the Sp(ny) composite connection Q% and the Sp(1)r composite connection QA7 on

the coset are defined via the Maurer-Cartan form as
L7 '0,L = ViATu + 2 Q%T + Q1P Tup (3.20)

*We use the spacetime signature (— + + + ++) and set e~ = 7% We define
I'; = %2345 The supersymmetry parameter has the positive chirality: I'ze = e.
Thus, Cyuvp = § €uvpors 17 Tz, and for a self-dual 3-form we have S,,,['**¢ = 0.
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where L is the coset representative, (Top, Tap, i154) = T35 obey the Sp(ny, 1) algebra

[Tap, Tepl = —QpeTap — acTep — LpTac — LapThe -

Qg = . (3.21)
0 Qu

The generator T, 4 is hermitian and (T'ap, T,s) are anti-hermitian. The vielbeins obey

the following relations:
gaﬁvﬁél‘/b% = Quean G%Vﬁ“B +a— = g“ﬁéf , (3.22)

where g, is the metric on the coset. Another useful definition is that of the three

quaternionic Kahler structures given by
VAVEP — A B=2J17. (3.23)
Next, we define the components of the gauged Maurer-Cartan form as
L7'D,L =P Toa+ Q0T+ 2 Q1" Tup (3.24)

where

D,L = (9, — AT L, (3.25)

Ai are the gauge fields of K x Sp(1)g. All gauge coupling constants are set equal to
unity for simplicity in notation. They can straightforwardly be re-instated. We also

use the notation

=" 1),  T,=2T"P Ty, Thp=—%0hg, 7=123. (3.26)
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The components of the Maurer-Cartan form can be expressed in terms of the covariant

derivative of the scalar fields as follows [34]

Pt = (D" )Vat Q= (Dud)Qe = A Q1P = (D0)QA" — A7
(3.27)

where
Dy¢™ = 0,0% — ALK'™™ | (3.28)

and K'(¢) are the Killing vectors that generate the K x Sp(1)x transformations on
G/H. Other building blocks to define the model are certain C-functions on the coset.
These were defined in [35], and studied further in [34] where it was shown that they

can be expressed as
LT'TL = C" = CMT 4 + §CT P Tap + 3C1 T, . (3.29)
Differentiating and using the algebra (3.21) gives the useful relation
D,C" = (PipC™ P + PuACT™) Tou + PLACLE Tup + PAC" 4 Toy - (3.30)
Moreover, using (3.24) and (3.27) we learn that

KIQVO?A — CIaA 7 KIaQZb — Clab . (511/Tﬁb 7 KIaQéB — CIAB . 517’ T;LXB )
(3.31)

Finally, it is straightforward and useful to derive the identities

D,Py = —1FLC (3.32)
PitPha = Qi+ dFLC™, (3.3

7 2 Wy T2

PPy = 1Q7 +3FL,CMP (3.34)
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2. Field Equations and Supersymmetry Transformation Rules

The Lagrangian for the anomaly free model we are studying can be obtained from
[33] or [35]. We shall use the latter in the absence of Lorentz Chern-Simons terms and
Green-Schwarz anomaly counterterms. Thus, the bosonic sector of the Lagrangian is

given by [35]

1 1

e 'L =R —1(0p)" — 56° Gpu,G"* — 1 e2? Fl F'" —2PWA Py — 4729 Ol pCT47
(3.35)

where the Yang-Mills field strength is defined by F! = dA! + % fIIEAT N AK and G

obeys the Bianchi identity
dG =iF"ANF". (3.36)

The bosonic field equations following from the above Lagrangian are [35]
Ry = 10,p0,0+ %e%“" (F2, — $F? gw) + 3¢9 (G}, — $G )
~2PIAP, 4+ ¢ 2 (ChpCTAP) g,
Oy = }leég" F? 4+ 1e? G* — 467%@ L zC4B
Dp(3%<p F'7) = 3e?F'"Gpoy+ 4PSAC¢£A ’
Vo(e?G ) = 0,

1
D, Prd = 4e29CABCTe, (3.37)

where we have used a notation Vlfy = V.. APVV’\”'"\P and V? = gV, for a p-form
V, and F? = FI F*™'. The local supersymmetry transformations of the fermions,

up to cubic fermion terms that will not effect our results for the Killing spinors, are
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given by [35]
1
0, = Dye+ 5e2°G) T"PT, ¢, (3.38)
l - 14
ox = 1 (F“@Mgp - %eﬂGwp r# p) £, (3.39)
1
SN, = —%FJVIWVSA — e 2%C 5 P (3.40)
st = PiiTrey (3.41)

where Dyeq = V,e4+Q, 4Bep, with V,, containing the standard torsion-free Lorentz
connection only. The transformation rules for the gauge fermions differ from those in

[33] by a field redefinition.

B. Killing Spinor Conditions

The Killing spinor in the present context is defined to be the spinor of the supersym-
metry transformations which satisfies the vanishing of the supersymmetric variations
of all the spinors in the model. The well known advantage of seeking such spinors is
that the necessary and sufficient conditions for their existence are first order equa-
tions which are much easier than the second order field equations, and moreover, once
they are solved, the integrability conditions for their existence can be shown to imply
most of the field equations automatically. In deriving the necessary and sufficient
conditions for the existence of Killing spinors, it is convenient to begin with the con-
struction of the nonvanishing fermionic bilinears, which provide a convenient tool for
analyzing these conditions. In this section, firstly the construction and analysis of
the fermionic bilinears are given, and then all the necessary and sufficient conditions

for the existence of Killing spinor are derived.
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1.  Fermionic Bilinears and Their Algebraic Properties

There are only two nonvanishing fermionic bilinears that can be constructed from

commuting symplectic-Majorana spinor €. These are:

EAFHGB = VHAB,
T e’ = X1, TP (3.42)

Note that X" is a self-dual three-form due to chirality properties. From the Fierz
identity Fu(aﬁf‘:)é =0, it follows that

ViV, =0, 1w X" =0. (3.43)
Introducing the orthonormal basis
ds® = 2ete” +e'e’ (3.44)

and identifying
et =V, (3.45)

the equation i,y X" = 0 and self-duality of X" yield

X" =2VAI", (3.46)
where
I" =3I e Ne (3.47)

is anti-self dual in the 4-dimensional metric ds? = e’e’. Straightforward manipula-
tions involving Fierz identities imply that I" are quaternionic structures obeying the

defining relation

(]r)zk (Is)kj — erst(lt)ij o 57‘55; . (348)
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Finally, using the Fierz identity I', H(a BP: s = (0 once more, one finds that

V,IHe=T"e=0. (3.49)
If there exists more than one linearly independent Killing spinor, one can construct as
many linearly independent null vectors. In this case (3.49) is obeyed by each Killing
spinor and the corresponding null vector, i.e. V;F“el =0, VMQF“EQ = 0, but it may

be that V,/T*e; # 0 and/or V’T"e; # 0. In that case, (3.49) should be relaxed since

¢ should be considered as a linear combination of ¢; and €.
2. Conditions From 6\ =0
Multiplying (3.40) with é®T”, we obtain

ivF! = 0, (3.50)

.. 1
FMIL = 4e729C" . (3.51)

The second has been simplified by making use of (3.50) and (3.46). Multiplying (3.40)

with €°T'y,,, on the other hand, gives

1
FIAV 4+ %(FIAV)4+2e27C" X" =0, (3.52)
SF X e+ 5€ e 2“”C’SXZWP =0. (3.53)

One can show that these two equations are identically satisfied upon the use of (3.50)

and (3.51), which, in turn imply that F' must take the form
1 -
Fl=—e2°C"I"+ FT+ V AW (3.54)

where F = ;Flg et A el is self-dual, and w! = w! e’. Reinstating the gauge coupling

constants, we note that the C-function dependent term will be absent when the
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index I points in the direction of a subgroup of K C Sp(2ny) under which all the
hyperscalars are neutral. Substituting (3.54) into the supersymmetry transformation
rule, and recalling (3.49), one finds that (3.40) gives the additional conditions on the
Killing spinor

(RILTY65 —T™'p) =0 (3.55)
The contribution from F drops out due to chirality-duality properties involved. Writ-
ing this equation as O"e¢ = 0, one can check that [O", O%] = €"'O". Thus, any two
projection imply the third one. In summary, the necessary and sufficient conditions

for 6A! = 0 are (3.54) and (3.55).

3. Conditions From d¢® =0

This time multiplying (3.40) with €2 and €Ty, gives rise to four equations which can

be shown to imply
aA
VEpy = 0, (3.56)

P = 21N (T s PP (3.57)

7

Using (3.23) and (3.27), we can equivalently reexpress the second equation above as
Dip™ = (I"){ (J")s" D;¢” . (3.58)

Writing (3.57) as P* = OP?, we find that (O — 1)(O — 3) = 0. Thus, (3.57) implies
that P is an eigenvector of O with eigenvalue one. Moreover, using (3.57) directly
in the supersymmetry transformation rule (3.41), and using the projection condition
(3.55), we find that §1* = 3J1*, and hence vanishing. In summary, the necessary and
sufficient conditions for d¢* = 0 are (3.56), (3.57) (or equivalently (3.58)), together

with the projection condition (3.55).
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4. Conditions From oy = 0

The analysis for this case is identical to that given in [10], so we will skip the details,
referring to this paper. Multiplying (3.39) with €® and €°T'y, gives four equations
which can be satisfied by

VO, =0, (3.59)

and parametrizing G~ as
1
e2?G" =11-»)[VAe Adp+V AK] | (3.60)

where « is the Hodge-dual, K = 1 K;; e’ Ae/ is self-dual. In fact, these two conditions

are the necessary and sufficient conditions for satisfying dx = 0.

5. Conditions From 61, = 0

Multiplying (3.38) with €l',, we find

1
V.V, = —1e2°G/, V", (3.61)

mvp

which implies that V* is a Killing vector. Similarly, multiplying (3.38) with €I, ,, gives

an expression for Vo X/ . Using (3.61) one finds that this expression is equivalent to

vp*
1
DI = e2¥GH i Iy (3.62)

where D,I" = V,I" 4+ Q5 1". One can use (3.62) to fix the composite Sp(1)r

connection as follows

QL _ }leSOGE;j)IMj - %GTStISijvu[fj ) (363)

Manipulations similar to those in [10] shows that, using (3.55) and (3.61), the variation

01, = 0 is directly satisfied, with € constant, in a frame where Ij; are constants. In
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summary, the necessary and sufficient conditions for di, = 0 are (3.61), (3.62),

together with the projection condition (3.55).
C. Integrability Conditions for the Existence of a Killing
Spinor

Assuming the Killing spinor conditions derived in the previous section, the attendant
integrability conditions can be used to show that certain field equations are automat-
ically satisfied. Since the field equations are complicated second order equations, it
is therefore convenient to determine those which follow from the integrability, and
identify the remaining equations that need to be satisfied over and above the Killing

spinor conditions. Let us begin by introducing the notation
0, = D€, ox = YA€, D eié‘PAle , St = Aey | (3.64)
for the supersymmetry variations and
Ruy=Jd,, Op=J, Du(e%@F”“’) =J", D,prdt =g (3.65)
for bosonic field equations. Then we find that
T#[D,, Alle! = 2 Du(e%“’F”‘”) —J"| 1t
€29 (D, FL ) T#Peh — §T# (D,CTAB 4 2014 p, D)) ¢
—2[A, ATl + 2639 FL T (5x4) + 160794 (31),) |
+8e2¢ JHEATTH (SN (3.66)
T#[D,, Aes = (D, P'4 — J4) e,

+I" (D, Pyt — 3F1,C7 ) e4
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1
—4C" N (N) — Le29G,,, I (y*) | (3.67)

~ 1
F‘M[D A]EA = (DQD — J) €A — %efi“"D”(e“’G“l,p) FVPEA

Iz

1
—Le2TH7 (V,Gpe — BFLFT ) €

4= pv* po

1 1
— (eWngrﬂ”ew + 8CjB) SA'P 4 129G, TP (5x 4)3.68)
1
IV[Dy, Dt = 3(Ru — Ju)TVe + 2729V (e9G,pp) T7T 6

1
+ eI, (V,Gorr — SFLFY) €

AB I IAB aA B v
+(Qu) + F.L,C™P —2PiAP,," ) TVep

1
+1 |0 + 529G, T T, | X + 2P3 (6¢,)

1
—3€29 [(TT, — 48/ T*)FL P —T,C"P] 6A% . (3.69)

If one makes the ansatz for the potentials directly , then the Bianchi identities and the
relations (3.30) and (3.32)—(3.34) are automatically satisfied. Otherwise, all of these
equations must be checked. Assuming that these are satisfied, from (3.66) it follows
that the Yang-Mills field equation K, = 0, except for Ky = 0, is automatically
satisfied, as can be seen by multiplying KMF‘“EA = 0 by €® and K,I'V, recalling
I'"e = 0 and further simple manipulations. Similarly, from (3.67) it follows that
the hyperscalar field equation K4 = 0 is automatically satisfied as can be seen by
multiplying K%e, = 0 by égI'*. Finally, from (3.68) and (3.69), it follows that the
dilaton and Einstein equation £, = 0, except E,; = 0, are automatically satisfied,
provided that we also impose the G-field equation. This can be seen by multiplying
E,,T7e4 = 0 with €5 and E,,I'” and simply manipulations that make use of I'"e = 0.

In summary, once the Killing spinor conditions are obeyed, all the field equations are
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automatically satisfied as well, except the following,
1
Ry =J,,, D, (e2?F' ) = JI | D,(e?G"P) =0, (3.70)

and the Bianchi identities DF! = 0 and dG = %FI A FT. Tt is useful to note that
in the case of gravity coupled to a non-linear sigma model, the scalar field equation
follows from the Einstein’s equation and the contracted Bianchi identity only when
the scalar map is a submersion (i.e. when the rank of the matrix d,¢“ is equal to the
dimension of the scalar manifold). In our model, however, the scalar field equation is
automatically satisfied as a consequence of the Killing spinor integrability conditions,
without having to impose such requirements. This is all the more remarkable given the
fact that there are contributions to the energy-momentum tensor from fields other
than the scalars. Finally, in analyzing the set of equations summarized above for
finding a supersymmetric solution, it is convenient to parametrize the metric, which

admits a null Killing vector, in general as [9]
ds* = 2H ' (du + 3) <dv +w+ g(du + ﬂ)) + Hdsy | (3.71)
with
¢ = H'(du+p),
e” = dv+w+iFHe",
e = HY%eldy* | (3.72)

where ds% = hasdy®dy”® is the metric on the base space B, and we have 3 = 3,dy”

and w = w,dy® as 1-forms on B. These quantities as well as the functions H and F



62

depend on u and y but not on v. Now, as in [9], defining the 2-forms on B by
J =H1'I", (3.73)

these obey

(Jr)a'y (Js)’yﬁ — ETSt(jt)aB o 5r55g : (374)
where raising and lowering of the indices is understood to be made with h,3. Note
that the index @ = 1, ..., 4 labels the coordinates y® on the base space . This should
not be confused with the index o« = 1,...,ny that labels the coordinates ¢ of the

scalar manifold! A geometrically significant equation satisfied by J” can be obtained

from (3.62), and with the help of (3.61) it takes the form [10],

Vil €QET — Bid i — BTy + Sy Ty = 0. (3.75)
where V; is the covariant derivative on the base space B with the metric ds% and
G=0.5
D. The Dyonic String Solution

For the string solution we shall activate only four hyperscalars, setting all the rest

equal to zero. In the quaternionic notation of Appendix B, this means

¢

0
t=1 (3.76)

In what follows we shall use the map

¢ =M = ¢*(0a)" (3.77)
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where 0, = (1, —id’) are the constant van der Wardeen symbols for SO(4). Moreover,

we shall chose the gauge group K such that
T't=0. (3.78)

This condition can be easily satisfied by taking K to be a subgroup of Sp(ngy — 1)

which evidently leaves ¢ given in (3.76) invariant. Finally, we set
All=0. (3.79)

Then, supersymmetry condition (3.54) in I’ direction is satisfied by setting FI' =
0 = w!" and noting that C7" = 0 in view of (3.78) (see (E.10)). The supersymmetry
condition (3.57) is also satisfied along the directions in which the hyperscalars are
set to zero. Therefore, the model effectively reduces to one in which the hyperscalars
are described by Sp(1,1)/Sp(1) x Sp(1), which is equivalent to a 4-hyperboloid Hy =

S0O(4,1)/S0O(4). Using (3.77) in the definition of Dt given in (E.8), we obtain
D¢ = 9,0" — 34,(0")%5 ¢, (3.80)
where the 't Hooft symbols p" are constant matrices defined as
prg=tr(0a T G5),  nhg=tr(0.T" og), (3.81)

where 0, = (1, —id’) are the constant van der Wardeen symbols for SO(4). These are
real and antisymmetric matrices. It is easily verified that pj; is anti-selfdual, while

ng/ﬂ is selfdual. Their further properties are

Py (0°) 3 = =000 + € plyg idem 77,5 ,

PapPss = 0ar085 — 0asOsy — €aprs
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Napys = Oary085 — 0as08y + €apys

(0 Vap (p°)ys = 9y (p)as + 3 more idem 7, . (3.82)

€
For SU(2) triplets, we use the notation:
XY =X"Thp, X =iX"PTy, (3.83)
For the metric we choose
B=0, w=0, F=0, hag = V00s (3.84)
in the general expression (3.71), so that our ansatz takes the form
ds® = 2H " dudv + Hds% ds% = QD2dy“dy’dus (3.85)
where € is a function of y? = y*y®.5. We also choose the null basis as

et =V =H"'du, e =dv. (3.86)

Thus, V*#90,, = 0/0v. Moreover, in the rest of this section, we shall take all the fields

to be independent of u and v. Given that 3 = 0, it also follows from (3.75) that
Vidl, +€7QJl, =0 (3.87)
Next, in the general form of G(=) given in (3.60), we choose
K=0. (3.88)

Then, from (3.60) and (3.61) we can compute all the components of Gt and G~
which yield for G = GT + G~ the result

G = e ¥/? (e" Nem Adpy +*adp_) (3.89)
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where %4 refers to Hodge dual on the transverse space with metric
dsi = Hdsy, , (3.90)

and we have defined

or = +ip+In H. (3.91)

Next, we turn to the supersymmetry condition (3.58) in the hyperscalar sector. With

our ansatz described so far, it can now be written as
Di¢® = (J)7 (J7) g2 D;é? | (3.92)

where

D¢p* = D;o* V,* | (3.93)
and V,% is the vielbein on Hy, and the above equations are in the basis
e =6, Qdy* (3.94)
referring to the base space B. We also note that
Ths = phg0n 0y | (3.95)

which follows from rom (F.2) and (F.3). Recall that the 't Hooft matrices pf,; are
constants. Next, we choose the components of j;; to be constants and make the

identification

Jr=J. (3.96)

Using the quaternion algebra, we can now rewrite (3.92) as

Di¢s = (6iabjp — 0jadip — €ijas) Djda - (3.97)
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Symmetric and antisymmetric parts in ¢ and 3 give
Di¢' =0, P = ¢g5; , (3.98)
Dip; — Dy = —€iie Dy (3.99)
To solve these equations, we make the ansatz

" =fy*, AL =gpsy, (3.100)

where f and g are functions of y2. This ansatz, in particular, implies that the function
w" arising in the general form of F" given in (3.54) vanishes. Assuming that the map
¢* is 1-1, one can actually use diffeomorphism invariance to set (at least locally) f = 1.
However, since we have already fixed the form of the metric as in (3.85), chosen a basis
as in (3.94), and identified the components of the quaternionic structures jz; referring
to this orthonormal basis, the reparametrization invariance has been lost. Therefore
it is important to keep the freedom of having an arbitrary function in the map (3.100).
Using (3.100) we find that (3.99) is identically satisfied and (3.98) implies

AfyP+8f

T (3.101)

where prime denotes derivative with respect to argument, i.e. y2. Next, the compu-

tation of the Yang-Mills field strength from the potential (3.100) gives the result

Fr=F® 4 pro) FrE =44, F't (3.102)

) 1.2 2

FI) = (=29 — g'v* + 56*) ol .

FIY = Fry = (29 + 6% (2yay’ olys + 592 phs) -
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Comparing these results with the general form of I given in (3.54), we obtain

e’ = % , (3.103)
where
n= (9" +29—3g°°) (1 — F*°) . (3.104)

Here we have used the fact that C™* = §"/(1 — ¢?) as it follows from the formula

(E.9). Finally using the composite connection (F.4) in (3.87) we obtain

Q (2f*—g)

= = 9 1
Q" 21 ) (3:107)
This equation can be integrated with the help of (3.101), yielding
b [1— f2? 1/3
=3 <W ’ (3.106)

where b is an integration constant. One can now see that all necessary and sufficient
conditions for the existence of a Killing spinor on this background are indeed satisfied.
As shown in the previous section, the integrability conditions for the existence of a
Killing spinor imply all field equations except (3.70) and the Bianchi identities on F’
and G. It is easy to check that (3.70) is identically satisfied by our ansatz, except
for the G-field equation. Furthermore, the Yang-Mills Bianchi identity is trivial since
we give the potential. Thus, the only remaining equations to be checked are the
G-Bianchi identity and the G-field equation. To this end, it is useful to record the
result

P10 16Q’

- T

TR = ———— 3.107
\/ﬁ aBt 8 yQHQQ‘*’ ( )

where g4 is the determinant of the metric for the line element ds?, and

Q= (9v)(g9y° —3) +c, (3.108)
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where c¢ is an integration constant. Interestingly, this term is proportional to the
sum of F? and C? terms that arise in the dilaton field equation, up to an overall
constant. We now impose the G-field equation d(e¥ x G) = 0 and the G-Bianchi

identity dG = %F " A F". The G-field equation gives
Oupy + 500 90%y = 0, (3.109)

and the GG-Bianchi identity amounts to

—20)

m 3 (3.110)

Ogp_ — %%gp 0%p_ =

where the Laplancian is defined with respect to the metric (3.90). These equations

can be integrated once to give

AL o = ((y;—)gf) , (3.111)

where v, A are the integration constants, ¢ has been absorbed into the definition of A,

and (3.103) has been used in the form H)? = ne®/2. These equation can be rewritten

as
SV f22 2/3
) = & (1_—f2y2> , (3.112)
. A — L 2,2 2/3
-y = 2=z (1 f ?@2) ’ (3.113)

by recalling ¢ = ¢, — ¢_, exploiting (3.103) and using the solution (3.106) for €.
It is important to observe that the second equation in (3.111), has to be consistent
with (3.103). Differentiating the latter and comparing the two expressions, we obtain
a third order differential equation for the function f:

;22— A—3Q
1= (iomm) 1= .
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In summary, any solution of this equation for f determines also the functions (¢, H, €2, g),
and therefore fixes the solution completely. This is a highly complicated equation,
however, and we do not know its general solution at this time. Nonetheless, it is

remarkable that an ansatz of the form

f= % , (3.115)

with a a constant, which gives g = 4/(3y?) from (3.101), does solve (3.114), and

moreover, it fixes the integration constant
A=—3. (3.116)
Furthermore, it follows from (3.106), (3.103), (3.104) and (3.112) that

b 20\ 2 a\?
a= s e@:( ) e = (U)W, 3ar7)

2 3b b

where 14 is an integration constant and
_Y
h:E—l ) (3.118)
Thus, the full solution takes the form

11 11 (b’
ds® = e 29e 2% (—dt® + dx?) + e2¥te2¥" <—2> B2 dy“dy® 5,5 (3.119)
y

# = e fer, =L (3.120)
Y
4
ro_ 7 16}
A, = 32 Pt (3.121)
8
Gagy = ————€apsl’ | Gy = —0he %, 3.122

with ¢ given in (3.117). The form of h dictates that a® < y? < oo, covering outside

of a disk of radius a. The hyperscalars map this region into H* which can be viewed
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as the interior of the disk defined by ¢? < 1. These scalars are gravitating in the
sense that their contribution to the energy momentum tensor, which takes the form

(trPP; — 3g;;trP?), does not vanish since the solution gives

J S — L B (3.123)
1 3y2 ( _ a_2> ) yz [e%
yQ

It is possible to apply a coordinate transformation and map the base space into the

disc by defining

o _ W

In 2% coordinates the solution becomes

1 1 11
ds? = e 2%%e 2% (—dt® + da?) + L?e2%e2% h¥3 (dr® + r2d032) (3.125)

e? = eft /e | (3.126)
G = £ —dt NdxNde # (3.127)
A" = 2707, (3.128)
»* = 2%, (3.129)

where

1
r=4/228005, Qz=oRAoRATH, h=—5-1, (3.130)

3vhl/3 4h1/3

et = 72 TV, e = oL7 (3.131)
and L = b/a. Here, o}, are the right-invariant one-forms satisfying
dofy = 3¢ o}, Nog (3.132)
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and 3 is the volume form on S2. We have also used the definitions
2% =rn%, nn’das =1, (3.133)
where dn® are orthogonal to the unit vectors n® on the 3-sphere, and satisfy

dn® = Lp 500", dn®dn’ S, = 1dO3 . (3.134)

Given the form of A", it is easy to see that the Yang-Mills 2-form F" = dA" — %e’"StAs/\

A" is not (anti)self-dual, as it is given by

= %rdr Nop+ %7‘2 (1 — %7‘2) etad Aoty (3.135)

The field strength PZA/A on the other hand, takes the form

/ 1 !
PAA = T (1= 2r%)67 + 2r®nin®] o (3.136)
—T

We emphasize that, had we started with the identity map ¢* = 2 from the beginning,
the orthonormal basis in which j[j are constants would be more complicated than the
one given in (3.94). Consequently, (3.105) would change since it uses (3.87) that

requires the computation of the spin connection in the new orthonormal basis.

E. Properties of the Solution

1. Dyonic Charges and Limits

To begin with, we observe that the solution we have presented above is a dyonic string

with fized magnetic charge given by

8
Qm = y G= 7 volgs . (3.137)
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The electric charge, however, turns out to be proportional to the constant parameter

v as follows:
Q.= / *x¥G = 2vvolgs . (3.138)
S3

Next, let us compare our solution with that of [17] where a dyonic string solution of
the U(1)g gauged model in the absence of hypermatter has been obtained. We shall
refer to this solution as the GLPS dyonic string [17]. To begin with, the GLPS solution
has two harmonic functions with two arbitrary integration constants, as opposed to
our single harmonic function h with a fixed and negative integration constant. In
our solution, this is essentially due to the fact that we have employed an identity
map between a hyperbolic negative constant curvature scalar manifold and space
transverse to the string worldsheet. Next, the transverse space metric ds? in the
GLPS solution is a warped product of a squashed 3-sphere with a real line, while in
our solution it is conformal to R*. In GLPS solution the deviation from the round
3-sphere is proportional to a product of U(1)g gauge constant and monopole flux due
to the U(1)r gauge field. Thus, assuming that we are dealing with a gauged theory,
the round 3-sphere limit would require the vanishing of the monopole flux, which
is not an allowed value in GLPS solution. As for the 3-form charges, the electric
charge is arbitrary in the GLPS as well as our solution. However, while the magnetic
charge in the GLPS solution is proportional to k{/gr where k is the monopole flux,
gr is the U(1)g coupling constant and & is the squashing parameter, and therefore
arbitrary, in our solution the magnetic charge is fixed in Planckian units and therefore
it is necessarily non-vanishing. This is an interesting property of our solution that
results from the interplay between the sigma model manifold whose radius is fixed in
units of Plank length, which is typical in supergravities with a sigma model sector,

and the four dimensional space transverse to the string worldsheet. Our solution has
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SO(1,1) x SO(4) symmetry corresponding to Poincaré invariance in the string world-
sheet and rotational invariance in the transverse space*. The metric components
exhibit singularities at » = 0 and r = 1. Too see the coordinate invariant significance

of these points, we compute the Ricci scalar as
A8(A + po)® + 1
17 5
6 (£)18 (A + po)2

where A = 3v(% — 1) and 19 = voL?. We see that, near the boundary r — 1, the

R:

, (3.139)

Ricci scalar diverges, and there is a genuine singularity there. Near the origin r = 0,
however, the situation depends on the parameter v. If v # 0, then as r — 0 the Ricci
scalar approaches the constant value 8/1/3v. The metric is perfectly regular in this

limit, and indeed, we find that it takes the form

Rg dr?
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+ R3d3 (3.140)

2
0

ds® — %2 r?3(—dt* + dx®) +
which is AdSs x S3 with Ry = \/m This is to be contrasted with the GLPS
solution which approaches the product of AdS3 with a squashed 3-sphere. The r =0
point can be viewed as the horizon, and as is usually the case, our solution also has
a factor of two enhancement of supersymmetry near the horizon. This is due to the
fact that the condition (3.49), which reads H'T'"¢ = 0 has to be relaxed since H !
vanishes in the » — 0 limit. Note, however, that our solution at generic point has

1/8 supersymmetry to begin with, as opposed to 1/4 supersymmetry of the GLPS

solution. For v = 0, the » — 0 limit of the metric is

L 2L
3 r1/3(—dt2 +da?) + T\/V_Or_5/3(d7‘2 +r2d02) (3.141)

ds® —
%

*It is clear that if one makes an SO(4) rotation in z® coordinates, the same trans-
formation should be applied to hyperscalars and 't Hooft symbols pf, 5 to preserve the

structure of the solution.
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Defining furthermore du = dr/r®/® the metric becomes
ds® ~ u?(—dt* + da® + dQ3) + du®. (3.142)

Ignoring = and (23 directions, this describes the Rindler wedge which is the near
horizon geometry of the Schwarzchild black hole. The “horizon”, which has the
topology R x {3, shrinks to the zero size at u = 0 and this gives the singularity in
the dyonic string. Next, consider the boundary limit in which » — 1. First, assuming

that vg # 0, we find that in the limit » — 1 the metric takes the form

1 1
ds® ~ —— (—dt2 +do® + u'(du® + = ng)) for vy #0, (3.143)

wl/3

where we have defined the coordinate v = h'/? and rescaled the string worldsheet
coordinates by a constant. For vy = 0, on the other hand, the » — 1 limit of the

metric is given by

1 1
ds® ~ —— (—dt* + dz*) + u* (du2 + = ng) for vy =0, (3.144)
u

u2/3

where, again, we have defined v = h'/? and rescaled coordinates by constants.

2. Coupling of Sources

Since the solution involves the harmonic function h, there is also a possibility of a

delta function type singularity at the origin since
0,0% h ~ —47%6(Z) . (3.145)

The presence of such a singularity requires addition of extra sources to supergravity
fields to get a proper solution. As it is not known how to write down the coupling of a
dyonic string to sources, and as we cannot turn off the magnetic charge, we consider

the coupling of the magnetic string to sources. Thus setting v = 0, from (3.125),
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(3.126) and (3.129) the dangerous fields that can possibly yield a delta function via
(3.145) are the metric, the dilaton ¢ and the three form field G. Indeed from (3.129)

we see that

dG ~ §(Z)dz* Nd2* Ad2 A d2*t (3.146)

therefore extra (magnetically charged) sources are needed for G at z = 0. For the

dilaton we find that the candidate singular term near 2= 0 behaves as
Op ~ 21136(2) =0, (3.147)

thus there is no problem at zZ' = 0. Finally for the Ricci tensor expressed in the

coordinate basis we find

Ry = —Ry~2'%(2)—0, (3.148)
Rug ~ 2°0(2) 605 — 0 . (3.149)

Contracting with the metric one can see that the possible singular part in the Ricci

scalar becomes

R~ 2135(2) =0, (3.150)

and thus there appears no extra delta function singularity. The above results can be
understood by coupling to supergravity fields a magnetically charged string located

at r = 0 with its action given by

S = —/d2ae”/2\/—7+/§, (3.151)

where 7 is the determinant of the induced worldsheet metric and B is the 2-form
potential whose field strength is dual to G. This coupling indeed produces exactly
the behavior (3.146) in the Bianchi identity. The source terms in (3.147) and (3.148)

are also produced, while the contribution to the right hand side of (3.149) vanishes



76

—

identically (which does not causes a problem since z20(Z) vanishes at z = 0 as well).

3. Base Space as a Tear Drop

In (3.125) the four dimensional base space for our solution (3.125) is
1 2/3
dsy, = L? (r_2 — 1) (dr® 4 r?d3)

(1- 7"2)8/3 2

where ds;, = 2(dr* + r2dQ3)/(1 — r*)? is the metric on Hy. Although the overall
conformal factor blows at » = 0, the total volume of this space turns out to have a
finite value (473L*)/(9+/3). To that extent, our solution can be viewed as the analog
of the Gell-Mann-Zwiebach teardrop solution, though the latter is regular at » = 0
as well. The analogy with Gell-Mann-Zwiebach tear-drop is also evident in the fact
that the scalar metric has been conformally rescaled by a factor that vanishes at the
boundary. The curvature scalar of the base manifold is also singular at r = 0, as it is

given by
1601 s
©3L2 2 (1 —r2)8/3°

Rg (3.153)

Since the total volume in the base space is finite, one would expect that the singularity
at r = 0 can be reached by physical particles at a finite proper time. We have checked
that this is indeed the case. Another tear-drop like feature here is that the base space
metric is conformally related to that of H4 which has negative constant curvature, and
that the curvature scalar of the bases space becomes positive due to the conformal
factor. This switching of the sign is crucial for satisfying Einstein equation in the
internal direction, just as in the case of 2-dimensional Gell-Mann-Zwiebach teardrop.
The base space B that emerges in the 2 + 4 split of the 6D spacetime is quaternionic

manifold, as it admits a quaternionic structure. To decide whether it is Quaternionic
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Kahler (QK), however, the standard definition that relies on the holonomy group
being contained in Sp(n) x Sp(1l) ~ SO(4) becomes vacuous in 4D since all 4D
Riemann manifolds have holonomy group Sp(1) x Sp(1). Nonetheless, there exists a
generally accepted and natural definition of QK manifolds in four dimensions, which
states that an oriented 4D Riemann manifold is QK if the metric is self-dual and
Einstein (see [36] for a review). According to this definition, our base space B is not

QK since it is neither self-dual nor Einstein.

4. Reduction of Metric to Five Dimensions

Finally, we would like to note the 5-dimensional metric that can be obtained by
a Kaluza-Klein reduction along the string direction. The 6-dimensional metric is

parametrized in terms of the 5-dimensional metric as
dsg = e2a¢3d5§ + €270 dg? (3.154)
where 3 = —3« and ¢ is the Kaluza-Klein scalar. From (3.125) one finds
2 2 1 1
ds? = —e 3¥e 3% dt? 4 L?e3%+e3%- h¥3(dr? + dQ2), (3.155)

where the functions are still given in (3.131). The metric (3.155) is singular at r = 0.

For v = 0 looking at the metric near the singularity one finds
dsz ~ u*(—dt* + d3) + du?, (3.156)

where du = dr/r"/°. The geometry is like the Rindler space but the candidate spheri-
cal “horizon” shrinks to zero size at u = 0 which produces a singularity. When v # 0,

one finds near r = 0 that

ds? ~ —r¥9de2 4 1692 4 429402 (3.157)
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which is again singular at » = 0. This singularity is resolved by dimensional ozidation

which is a well known feature of some black-brane solutions [37].

F. Comments

In this chapter, we have derived the necessary and sufficient conditions for the ex-
istence of a Killing spinor in N = (1,0), 6D gauge supergravity coupled to a single
tensor multiplet, vector multiplets and hypermultiplets. The Killing spinor existence
conditions and their integrability are shown to imply most of the equations of mo-
tion. The remaining equations to be solved are (i) the Yang-Mills equation in the
null direction, (ii) the field equation for the 2-form potential, (iii) the Bianchi iden-
tities for the Yang-Mills curvature and the field strength of the 2-form potential,
and (iv) the Einstein equation in the double null direction. We parametrize the
most general form of a supersymmetric solution which involves a number of unde-
termined functions. However, we do not write explicitly the equations that these
functions must satisfy. These can be straightforwardly derived from the equations
just listed. The existence of a null Killing vector suggests a 2 + 4 split of space-
time, and search for a string solution, possibly dyonic. As a natural application
of the general framework presented here, we have then focused on finding a dyonic
string solution in which the hyperscalars have been activated. Indeed, we have found
a 1/8 supersymmetric such a dyonic string. The activated scalars parametrize a 4
dimensional submanifold of a quaternionic hyperbolic ball of unit radius, character-
ized by the coset Sp(ng,4)/Sp(nmg) x Sp(1)g. A key step in the construction of
the solution is an identity map between the 4-dimensional scalar submanifold and
internal space transverse to the string worldsheet. The spacetime metric turns out

to be a warped product of the string worldsheet and a 4-dimensional analog of the
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Gell-Mann-Zwiebach tear-drop which is noncompact with finite volume. Unlike the
Gell-Mann-Zwiebach tear-drop, ours is singular at the origin. There is also a delta
function type singularity that comes from the Laplancian acting on a harmonic func-
tion present in the solution. This does not present any problem, however, as we place
a suitable source which produces contributions to the field equations that balance the
delta function terms. An interesting property of our dyonic string solution is that
while its electric charge is arbitrary, its magnetic charge is fixed in Planckian units,
and hence it is necessarily non-vanishing. This interesting feature results from the in-
terplay between the sigma model manifold whose radius is fixed in units of Planckian
length, as it is the case in almost all supergravities that contain sigma models, and
the four dimensional space transverse to the string worldsheet through the identity
map. The tear-drop is quaternionic but not quaternionic Kahler, since its metric is
neither self-dual nor Einstein. The metric is conformally related to that of H, which
has negative constant curvature, and its curvature scalar becomes positive due to the
conformal factor. This switching of the sign is crucial for satisfying Einstein equation
in the internal direction, just as in the case of 2-dimensional Gell-Mann-Zwiebach
teardrop. We have also shown to have 1/4 supersymmetric AdSs; x S® near horizon
limit where the radii are proportional to the electric charge. This is in contrast with
the 1/4 supersymmetric GLPS dyonic string that approaches the product of AdSs
times a squashed 3-sphere with 1/2 supersymmetry. In GLPS solution the squashing
is necessarily non-vanishing for non-vanishing gauge coupling constant, while in our

case the round 3-sphere emerges even in presence of nonvanishing gauge coupling.
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CHAPTER IV

CONCLUSIONS

In this dissertation, we have presented results on various aspects of supergravity the-
ories in six and seven dimensions. The remarkable properties of anomaly free gauged
supergravities in six dimensions, and their possible connection with supergravities in
seven dimensions have primarily motivated our work.

In seven dimensional spacetime, we have first determined the possible noncompact
gaugings and we have used them to find the most general circle reduction that can
yield chiral and gauged supergravity in six dimensions. We have obtained the resulting
theories in six dimensions and furthermore we have made explicit the realization of
the maximal symmetries in these theories. We have also shown that in a formulation
of the 7D supergravity that uses a 3-form potential, vector multiplet coupling are
possible even in the presence of a topological mass term, contrary to a claim made in
the literature [8].

Our results are likely to be used in constructing anomaly-free models by means of a
Horava-Witten-type formulation [38] of seven-dimensional supergravity on a space-
time with two boundaries. In this case, the symmetries of the theory impose chiral
conditions for the fermions on the boundaries yielding a chiral 6D theory with an
anomalous spectrum. Anomalies are canceled by introducing extra fields living on
the boundaries and applying a special version of the Green-Schwarz mechanism [39].
The 6D theory of interest could possibly emerge in the limit of coinciding boundaries.
In the second part of the dissertation we have found the general form of the super-
symmetric solutions in gauged 6D, N = (1,0) supergravity coupled to Yang-Mills

and hypermultiplets. We do so by using G-structure method which involves a study
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of the Killing spinors and their integrability conditions. The attendant integrability
conditions are then used to show that most of the field equations are satisfied auto-
matically. In this framework, the existence of a null Killing vector suggests a 244
split of spacetime. We have determined exactly the remaining equations that need to
be satisfied. Next, we have activated 4 hyperscalars parametrizing a 4 dimensional
submanifold of a quaternionic hyperbolic ball and then employed an identity map
between this submanifold and the internal space transverse to the string worldsheet.
Thus, we have found a new 1/8 supersymmetric dyonic string solution with novel
properties.

Our results may be used in classifying the supersymmetric solutions of gauged and
matter coupled N = (1,0), 6D supergravity theories. Moreover, some of those so-

lutions may play roles in brane-world [11, 40] and cosmology model building [41].



82

REFERENCES

[1] E. Bergshoeff, I. G. Koh and E. Sezgin, “Yang-Mills / Einstein supergravity in
seven-dimensions,” Phys. Rev. D 32 (1985) 1353.

2] C. M. Hull, “Noncompact gaugings of N=8 supergravity”, Phys. Lett. B 142
(1984) 39.

[3] C. M. Hull and N. P. Warner, “Noncompact gaugings from higher dimensions,”
Class. Quant. Grav. 5 (1988) 1517.

[4] M. Cvetic, G. W. Gibbons and C. N. Pope, “A string and M-theory origin for
the Salam-Sezgin model”, Nucl. Phys. B 677 (2004) 164 [arXiv:hep-th/0308026].

[5] A. Salam and E. Sezgin, “SO(4) gauging of N=2 supergravity in seven-
dimensions”, Phys. Lett. B 126 (1983) 295.

[6] M. Cvetic, J. T. Liu, H. Lu and C. N. Pope, “Domain-wall supergravities from
sphere reduction”, Nucl. Phys. B 560 (1999) 230 [arXiv:hep-th/9905096].

[7] H. Lu and C. N. Pope, “Exact embedding of N = 1, D = 7 gauged supergravity
in D = 117, Phys. Lett. B 467 (1999) 67 [arXiv:hep-th/9906168].

8] Y. J. Park, “Gauged Yang-Mills-Einstein supergravity with three index field in
seven-dimensions”, Phys. Rev. D 38 (1988) 1087.

9] J. B. Gutowski, D. Martelli and H. S. Reall, “All supersymmetric solutions of
minimal supergravity in six dimensions,” Class. Quant. Grav. 20 (2003) 5049

[arXiv:hep-th/0306235].



83

[10] M. Cariglia and O. A. P. Mac Conamhna, “The general form of supersymmetric
solutions of N = (1,0) U(1) and SU(2) gauged supergravities in six dimensions,”
Class. Quant. Grav. 21 (2004) 3171 [arXiv:hep-th/0402055].

[11] C. P. Burgess, C. Nunez, F. Quevedo, G. Tasinato and I. Zavala, “General brane
geometries from scalar potentials: Gauged supergravities and accelerating uni-

verses,” JHEP 0308, 056 (2003) [arXiv:hep-th/0305211].

[12] H. M. Lee and C. Ludeling, “The general warped solution with conical branes in
six-dimensional supergravity,” JHEP 0601, 062 (2006) [arXiv:hep-th/0510026].

[13] S. L. Parameswaran, G. Tasinato and I. Zavala, “The 6D superswirl,” Nucl.

Phys. B 737 (2006) 49 [arXiv:hep-th/0509061].

[14] J. T. Liu, H. Lu, C. N. Pope and J. F. Vazquez-Poritz, “New supersymmetric
solutions of N=2, D=5 gauged supergravity with hyperscalars,” arXiv:0705.2234
[hep-th].

[15] M. J. Duff, S. Ferrara, R. R. Khuri and J. Rahmfeld, “Supersymmetry and dual
string solitons,” Phys. Lett. B 356 (1995) 479 [arXiv:hep-th/9506057].

[16] M. J. Duff, H. Lu and C. N. Pope, “Heterotic phase transitions and singu-
larities of the gauge dyonic string,” Phys. Lett. B 378 (1996) 101 [arXiv:hep-
th /9603037].

[17] R. Giiven, J. T. Liu, C. N. Pope and E. Sezgin, “Fine tuning and six-dimensional
gauged N = (1,0) supergravity vacua,” Class. Quant. Grav. 21 (2004) 1001
[arXiv:hep-th/0306201].

[18] S. Randjbar-Daemi and E. Sezgin, “Scalar potential and dyonic strings in 6D
gauged supergravity,” Nucl. Phys. B 692 (2004) 346 [arXiv:hep-th/0402217].



84

[19] S. Randjbar-Daemi, A. Salam, E. Sezgin and J. Strathdee, “An anomaly free

model in six-dimensions”, Phys. Lett. B 151 (1985) 351.

[20] S. D. Avramis, A. Kehagias and S. Randjbar-Daemi, “A new anomaly-free

gauged supergravity in six dimensions”, arXiv:hep-th/0504033.

[21] S. D. Avramis and A. Kehagias, “A systematic search for anomaly-free super-

gravities in six dimensions”, arXiv:hep-th/0508172.

[22] R. Suzuki and Y. Tachikawa, “More anomaly-free models of six-dimensional

gauged supergravity,” arXiv:hep-th/0512019.

[23] M. de Roo and P. Wagemans, “Gauge matter coupling in N=4 supergravity”,
Nucl. Phys. B 262 (1985) 64

[24] H. Nishino and E. Sezgin, “Matter and gauge couplings of N=2 supergravity in

six-dimensions”, Phys. Lett. B 144 (1984) 187.

[25] H. Lu, C. N. Pope and K. S. Stelle, “M-theory /heterotic duality: A Kaluza-Klein
perspective”, Nucl. Phys. B 548 (1999) 87 [arXiv:hep-th/9810159].

[26] E. Cremmer, B. Julia, H. Lu and C. N. Pope, “Dualisation of dualities. I”, Nucl.

Phys. B 523 (1998) 73 [arXiv:hep-th/9710119].

[27] T. Dereli and N. T. Yilmaz, “Dualisation of the Salam-Sezgin D = 8 supergrav-
ity,” Nucl. Phys. B 691 (2004) 223 [arXiv:hep-th/0407004].

[28] L. Andrianopoli, R. D’Auria, S. Ferrara, P. Fre, R. Minasian and M. Trigiante,
“Solvable Lie algebras in type IIA, type IIB and M theories,” Nucl. Phys. B 493,
249 (1997) [arXiv:hep-th/9612202].



[29]

[30]

32]

[33]

[34]

[37]

[38]

85

P. Fre, “Solvable Lie algebras, BPS black holes and supergravity gaugings,”
Fortsch. Phys. 47, 173 (1999) [arXiv:hep-th/9802045].

S. D. Avramis and A. Kehagias, “Gauged D = 7 supergravity on the S(1)/Z(2)
orbifold”, arXiv:hep-th/0407221.

M. Gell-Mann and B. Zwiebach, “Curling up two spatial dimensions with SU(1,1)
/ U(1),” Phys. Lett. B 147 (1984) 111.

J. Bagger and E. Witten, “Matter couplings in N=2 supergravity ,” Nucl. Phys.
B 222 (1983) 1.

H. Nishino and E. Sezgin, “The complete N=2, D = 6 supergravity with matter
and Yang-Mills couplings,” Nucl. Phys. B 278 (1986) 353.

R. Percacci and E. Sezgin, “Properties of gauged sigma models,” arXiv:hep-

th/9810183.

H. Nishino and E. Sezgin, “New couplings of six-dimensional supergravity,” Nucl.

Phys. B 505 497 (1997), arXiv:hep-th/9703075.

Krzysztof Galicki’s lecture notes on “Quaternionic Kahler and Hyper-Kahler

manifolds”, unpublished.

G. W. Gibbons, G. T. Horowitz and P. K. Townsend, “Higher dimensional res-
olution of dilatonic black hole singularities,” Class. Quant. Grav. 12 (1995) 297
[arXiv:hep-th/9410073].

P. Horava and E. Witten, “Eleven dimensional supergravity on a manifold with

boundary,” Nucl. Phys. B 475, 94 (1996) [arXiv:hep-th/9603142].



[39]

[40]

[42]

[43]

[44]

86

M. B. Green and J. H. Schwarz, “Anomaly cancellation in supersymmetric D=10

gauge theory and superstring theory,” Phys. Lett. B 149, 117 (1984).

C. P. Burgess, F. Quevedo, G. Tasinato and I. Zavala, “General axisymmetric
solutions and self-tuning in 6D chiral gauged supergravity,” JHEP 0411 (2004)
069 [arXiv:hep-th/0408109].

Y. Aghababaie, C. P. Burgess, S. L. Parameswaran and F. Quevedo, “Towards
a naturally small cosmological constant from branes in 6D supergravity,” Nucl.

Phys. B 680 (2004) 389 [arXiv:hep-th/0304256].

P. K. Townsend and P. van Nieuwenhuizen, “Gauged seven-dimensional super-

gravity”, Phys. Lett. B 125 (1983) 41.

P. S. Howe, G. Sierra and P. K. Townsend, “Supersymmetry in six-dimensions”,

Nucl. Phys. B 221 (1983) 331.

F. Gursey and C. H. Tze, “Complex and quaternionic analyticity in chiral and

gauge theories. part 1,” Annals Phys. 128 (1980) 29.



87

APPENDIX A

THE DUAL GAUGED 7D MODEL WITH MATTER COUPLINGS AND
TOPOLOGICAL MASS TERM*

The 7D gauged and matter coupled supergravity we have used in this dissertation
is the theory with 2-form potential. For completeness, however, we will show the
dual formulation of the gauged and matter coupled supergravity, in which the 2-form
potential is dualized to a 3-form potential, even in the presence of couplings to an
arbitrary number of vector multiplets. A further motivation for presenting our results
here is to show that it is possible to perform this dualization contrary to a claim made
in the literature [8]. We begin by adding a total derivative term to obtain the new

Lagrangian as follows:

L= L= g0 oy (G + 50 ) (A1)

where

H,uupo' = 48[;1,Cz/pcr] . (AZ)

We can treat G as an independent field because the C-field equation will impose
the correct Bianchi identity that implies the correct form of G given in the previous

section. Thus, treating G' as an independent field, its field equation gives

_ _ 1 _-2c o104
Gup = =53¢ €€poy oy H +

4\356_”)(#,,,) . (A.3)

*Reprinted from Classical and Quantum Gravity, Vol 23, E. Bergshoeffn
et al., Noncompact Gaugings, Chiral Reduction and Dual Sigma Models in
Supergravity, Pages 2803-2831, Copyright 2006, with permission from IOP,
http://www.iop.org/journals/cqg.
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Using this result in the Lagrangian given in (2.8), one finds

— r_ 1,720 pvpo 1 _paepr 0
L3 = L — gee "Hy,oH NG Hyooopa W
o —0 17
53¢ € Hy oy X sy (A.4)

where £’ is the G-independent part of (2.8). For the readers convenience, we explicitly

give the dual Lagrangian £3 = L3p + L3r where

— o 1 vJ —20 vpo
e Ly = %R— lee a[JFWF“ — %ee 2 H,ppe HMP7 — ﬁe‘“ MHM~~#4“25---M
5 1 pir 1_—o (pvir 1,2
—gaﬂaﬁ“a — §P,u, ‘Pz/:" — 16 (O Cir — §O ) s (A5)
e 'Lsp = =50 Duby, — IV Dux — EXV Y u0ho — SN 0V Uy Pori

ANV DA + 555" Hypo X177 + Le"PEL X1 — Leo/Ppr X1
_%5670/20 (f&ufym/wy 4 2&#7“)( + 3>2X _ j\r)\r)

+#§€_U/QCZ’T ('QEHOJ")/M)\T — 25((71)\1”) + %6_0/2Orsi5\rai>\s ) (AG)

and where the fermionic bilinears are defined as
XHIPT = Py Ty )T A Ay T Y = BXYHTPTX + AN,
X = Pty e — 2060y Y 43X — Ny,
X = AN 4 2PN (A.7)
The supersymmetry transformation rules are
de," = ey, ,
0, = 2D,e— \3/—056_0/20’}/“6

51075¢ " Hooxr (07?7 45977 7,) € = 55¢7 Py 0t (37,077 = 5777 ) €
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oy = —%’}/“8“(76 — %e"mF/ﬁV ol e — ﬁe"’ e \3/_0560/206 ,
0Cup = € (eWuthn = iV2upX) | (A8)
do = —2iéy,
5A£ = —e /2 (Eaiwu + &72'%)() LF + ie’”ﬂE’yH)\TLf ,
SLy = ed'\'L: SLy = éd'\. L' | (A.9)
N = —%e"/QFLﬁWe + iv”Pliraie — %6_0/20"0% .

The supersymmetry transformation rule for the 3-form potential can be obtained from
the supersymmetry of the G-field equation (A.3). Indeed, it is sufficient to check the
cancelation of the J,e terms to determine the supersymmetry variation of the 3-form
potential. If we set to zero all the vector multiplet fields, the above Lagrangian and
transformation rules become those of SU(2) gauged pure half-maximal supergravity
[42], which in turn admits a topological mass term for the 3-form potential in a
supersymmetric fashion that involves a new constant parameter [42]. In [8], it has
been argued that the gauged theory in presence of the coupling to vector multiplets
does not admit a topological mass term. However, we have found that this is not the

case. Indeed, we have found that one can add the following Lagrangian to L3 given

in (A4):
ey = Mgy, B2 pedo /20— 16ih%et
= 36 € pr s Cpgeopy + 5 1€ th™e
ihe® (=" by + 8y X + 27X — ATA) (A.10)

Note that the coupling of matter to the model with topological mass term has led to

30/2

the dressing up of the term he present in that model by C' as shown in the second

term on the right hand side of (A.10). The second ingredient to make the supersym-
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metry work is the term he?? \"\, in (A.10)*. The action for the total Lagrangian
Lopew = L3+ Ly (A.11)

is invariant under the supersymmetry transformation rules described above with the

following new h-dependent terms:
Y, = —‘—éhe%yue ,
opx = —Lhe*e. (A.12)

For comparison with [42], we extract the potential and all the mass terms, and write

1t as

AL = 60m?® — 10 (m + 2he)? + 3 A4, — 5i (m 4 2he ) Pty

+5i (3m + 6he®) xx — & (5m + 4he® ) A"\, — e 707 Cy,
+525e P (Do N = 2X0"NT) + 3e PO N o' N (A.13)
where we have defined
m = —ﬁ Ce /% — 2he?” (A.14)
so that
8, = 2mrye,
§'x = —2(m+ 2he* e . (A.15)

In the absence of matter couplings, the above result has exactly the same structure as

that of [42] but the coefficients differ, even after taking into account the appropriate

*The obstacle reported in [8] in coupling matter in presence of the topological
terms may be due to the fact that these ingredients were not considered.



constant rescalings of fields and parameters due to convention differences.
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APPENDIX B

THE MAP BETWEEN SL(4, R)/SO(4) AND SO(3,3)/5S0(3) x SO(3)*

Two of our noncompact gauged 7D supergravities, namely the SO(2,1) and SO(2, 2)
gauged models, have SO(3,3)/SO(3) x SO(3) o-model sector. In particular, the
SO(2,2) gauged model has been reduced [4] to 6D to obtain Salam-Sezgin model. In
the work of [4] the SL(4, R)/SO(4) parametrization of the o-model is used. Given
that SL(3, R) ~ SO(3,3) and SO(4) ~ SO(3) x SO(3), to compare our results, and
for other possible future uses, it is useful to exhibit the relation between the two
parametrizations. To do so, let us denote the SL(4, R)/SO(4) coset representative

by VE which is a 4 x 4 uniocular real matrix with inverse V&:
VRV =065, a=1.4, R=1.4. (B.1)

The map between VI and the SO(3,3)/SO(3) x SO(3) coset representative L7 can
be written as

L = T s VEVS = 5 VTm'y (B.2)

i

where I'! and n* are the chirally projected SO(3, 3) Dirac matrices which satisfy [43]

(MDap(T) = 4™ . (T)ap(Tr)rs = —2€apqs » (B.3)
where 77 as well as n4p have signature (— — — 4+ ++). Similar identities are satisfied
by (n*)rs. Both I'! and n* are antisymmetric. Pairs of antisymmetric indices are

*Reprinted from Classical and Quantum Gravity, Vol 23, E. Bergshoeffn
et al., Noncompact Gaugings, Chiral Reduction and Dual Sigma Models in
Supergravity, Pages 2803-2831, Copyright 2006, with permission from IOP,
http://www.iop.org/journals/cqg.
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raised and lowered by the € tensor:
VI =35, Vag = 5éas V" (B.4)

Since V is real, the I' and n-matrices must be real as well. A convenient such repre-

sentation is given by
o o
M= (1) = , (ThH? = : (B.5)
p" —f
where o and " are real antisymmetric 4 x 4 matrices that satisfy

Qg = e ap — 051, (a')ap = 3€apys (a')as (B.6)
ﬁ?“ﬁs = €Epst ﬁt — 57"5 1 ) (ﬁr)ozﬂ = _%Eaﬁ'yé (/6T>76 .

Further useful identities are

(@)ap (@) = dardps — Gasdpy + €aprs (B.7)
€7 (a?)ag ()15 = dgy (a')as + 3 more (B.8)
(Bas (B )6 = 0ay085 — 00605y — €aprs » (B.9)
€™ (8)ap (8)4s = gy (8)as + 3 more . (B.10)

Using the above relations and recalling that V is uniocular, it simple to verify that
LiLinap =mny . LiLin™ =" (B.11)
As a further check, let us compare the potential

V=17 (C"Cy — 1C?) (B.12)
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for the SO(4) gauged theory with that of [5] where it is represented in terms of the

SL(4, R) coset representative. To begin with, the function C' can be written as
C = —pfuLiLjLipe™
= —ggfux (VIY) (VI V) (VIEpp) e
= g S [(T75)as T+ (PVF)*P Tg) (B.13)

where

Tos =VEVSops, T =VEV]ops . (B.14)

In the last step we have used (B.8). In fact, the expression (3.59) is valid for any gaug-
ing, not withstanding the fact that the SO(4) invariant tensor drg occurs in (B.14).
However, only for SO(4) gauging in which the fr;x refers to the SO(4) structure
constants, (3.59) simplifies to give a direct relation between C and T = T*%§,5 that
is manifestly SO(4) invariant, as will be shown below. To obtain a similar relation for
gaugings other than SO(4), for example SO(2,2), we would need to construct the I
and 1 matrices in a SO(2,1) x SO(2,1) basis with suitable changes in (C.6). In that
case, the SO(2,2) invariant tensor ngrs would replace the SO(4) invariant tensor drg
in (B.14) and we could get a manifestly SO(2,2) invariant direct relation between
C and T'. In the case of SO(4) gauging we have frjx = (€;k, —€5t). Using this in
(3.59) we find that the €;j; term gives a contribution of the form (8,57 + §*°T,3),
while the €4 term gives a contribution of the form (6,57 — §*°T,5). The 6*°T,5

contributions cancel and we are left with

C=-32T, T=T"6,p. (B.15)

3
2v/2
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Similarly, it follows from the definition of C*" and the orthogonality relations satisfied

by L4 that
C"Cip = frxfun™ LILILY LY +3C% . (B.16)
Thus, it suffices to compute
S fun™ LILJLYLY = =3 (VI'0'V) (VL V) + 6
= ITReT™ — 177 (B.17)
Using the results (B.15), (B.16) and (B.17) in (B.12), we find
V =te? (TrsT™ — 377 | (B.18)

which agrees with the result of [5]. In the case of Sp(1)g gauged 6D supergravity
obtained from the SO(3, 1) gauged supergravity in 7D, i.e. model II in section 1.2.2,
we have frjx = (—€5t, —€ijr), Where €, is totally antisymmetric and €124 = €35 =
€316 = 1. For this case, the C-function has a more complicated form in terms of
the SL(4, R) coset representative V. However, setting the scalar fields equal to zero,
which is required for model I at hand, V becomes a unit matrix and the C-function
vanishes. This is easily seen in the first line of (3.59), while it can be seen from the last
line of (3.59) by noting that the €, term gives the contribution (6,57%° — §*T,z),
and the €, term give the structure (o - 5)Q5Taﬂ + (a- ﬁ)aﬁTaﬁ, where 5 refers to
(,_3, both of which vanish when V is taken to be a unit matrix. In the second term

—

this is due to the fact that @ - (3 is traceless.
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APPENDIX C
DUALIZATION OF THE AXIONS IN THE UNGAUGED 6D MODEL*

Our SO(3,1),50(3,2) and SO(2,2) models in 7D, when reduced to 6D, feature
couplings of 6D, N = (1,0) supergravity to p hypermultiplets whose scalar fields
parametrize the coset SO(p,3)/SO(p) x SO(3), a dilaton and (p + 3) axions, for
p < 1. We have shown how these fields can be combined to parametrize an enlarged
coset SO(p+1,4)/SO(p+1) x SO(4) describing the scalars of (p+1) hypermultiplets.
Instead, one can proceed, at least in the ungauged model’ by dualizing the (p + 3)
axionic scalars to 4-form potentials to obtain the coupling of (p+1) linear multiplets?.
In this appendix we will present this dualization. We start by adding the suitable

total derivative term to this Lagrangian to define

Lo=Lp+ L+ gp e (=H, P+ Hi o Pr) e (C.1)

M1p5 " M6 1 (57 16

where the definitions (2.69) are to be used without the gauge coupling constants.
Recalling that (2.4) holds, the ® field equation implies dH! = 0 with H} = H!L!

and Hf = H! L7, which means that locally

HY e =50u,Chy e s I=1,..p+3. (C.2)

1 p5 B2 s

*Reprinted from Classical and Quantum Gravity, Vol 23, E. Bergshoeffn
et al., Noncompact Gaugings, Chiral Reduction and Dual Sigma Models in
Supergravity, Pages 2803-2831, Copyright 2006, with permission from IOP,
http://www.iop.org/journals/cqg.

fIn gauged model, an obstacle occurs to dualization since the axions are charged
and therefore minimally couple to gauge fields. See Eq. (2.69).

A linear multiplet consists of a 4-form potential, 3 scalars and one symplectic-
Majorana-Weyl spinor.
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Solving for (P}, P!) gives

P = e L L =0y o, — 5 X

v1Us

Pr _ _ﬁ Euyl"‘ysHi + iqzjr,yl/,)/uaiwy _ QZX; . (03)

wo 51 v1s

Substituting these back into the Lagrangian (C.1), we get

_ r_ 1 —2p 17t ipyeeps 1 —2p g7 T L
Ly = L 2x51€ Hm-"usH 2x51€ Hu1--~u5H

_ e PeHvi Vs [t

5!1/5 V1Us (¢7V,Y,U,O-’Lwy + %XL)

(" a0 b, — 21X} (C.4)

1 —@ _UV1Vs IJT
et € Hj ...

where £’ is the (73;, Py ) independent part of £ = L + L with L5 and Lp given in

(2.63) and (2.64). Thus, we have L4 = Ly4p + L4r with

1 ! !
e Ly = }lR — 1(8#0)2 — 1—1262“GWPG””’) — %e"FguF“W (C.5)
1 ir 1 -2 I Jpp -
T Mgp@“gp B %PM Pl; - 2><5!€ SDCLIJHM“'ME)H s )
e 'Ly = =50’ Dyb, — 5XV'Dux — SXT A Dy

— iy Dy — LY D T — Ly 0,0
— Ly b, P+ Syt a0,
(1/_)’Yy7u1--~u5‘7i¢u ZI + QZTVV’Yul--~#5Ui¢u L?)

1 el
5!\/56 Hm---us

Qo uvp i, 0/2 o v 1 —pryl M1 s
+57€7 G X 1€ L XY + e THy, s X , (C.6)

where the structure constants (hence the C-functions as well) are to be set to zero in

the definitions (2.67) and (2.68), and



XWP = Py Py 293Py —
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2X07MOX A+ N AN DA, 4y

X = ,J}p'y'uuﬁypAr’ —l-)Z’YW)\r' )

pews
X7 =

_1;7’7#1"'#5 O'ﬂ/}r _ @7#1 '"usaiw>

NV RO + 2% R A AT A

— LG LT s, (C.7)

The action is invariant under the following supersymmetry transformations:

de

*3

0y,

0By
oo

SAY
N
OCh

LISL;

01

Sy

ey,

1 poT —Q A pV1 Vs LT
DHG 6 v IYMGPUTE 5![6 v Hul V5€ ’

1.1 1 o.poT
—5V"0u0e — 757G por €

ie™" (et + 3% X) — ApOAY,
—1€EX ,
e 0'/26.}/“)\7" :
—ieU/Q'y“”F;;e
_L(— i 4& i )LI—L_ 'I’LI
V2 67#1'H4U¢+ EV[pr-ps 0 wmﬂ i \/56’)/#1#4#) r o
—aﬂ'lﬁr )
1€1),
2'7“ ppe + 5|f6 R HOH;1 ns€
%VHP;TUi 5'\[6 TS € (C.8)



99

The supersymmetry transformation rule for C’i 1y 18 derived from the requirement

of supercovariance of (C.3), which requires the cancelation of the 0, terms.
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APPENDIX D

THE IWASAWA DECOMPOSITION OF SO(P,Q)*

This appendix contains some useful formula on the Iwasawa decomposition of SO(p, q)
that is used in showing the hidden quaternionic Kahler coset structure in six dimen-
sional model. We begin with the Iwasawa decomposition of the SO(n + 3, 3) algebra

as g = h @ a ® n where

h: Xijvi/;'jaZir>T7"s>
a: H;
n: El'j ,Vij Uiy 1> (Dl)

Here X = E—ET,Y =V - VT Z = U — U7, together with the SO(n) genera-
tors T,s = —Ty, form the maximal compact subalgebra {h} of SO(n + 3) x SO(3).
Furthermore, {a} are the noncompact Cartan generators and {n} are the remain-
ing noncompact generators of SO(n + 3,3). The generators a @ n form the solvable

subalgebra of SO(n + 3,3), and can be represented as (see, for example, [25])

Zi E; €ii 0 0 —€ji 0 0
H= 0 |0 0 ., Ei=| 0 |olo |,
0 0] — Zz E; €ii 0 0 €ij

*Reprinted from Classical and Quantum Gravity, Vol 23, E. Bergshoeffn
et al., Noncompact Gaugings, Chiral Reduction and Dual Sigma Models in
Supergravity, Pages 2803-2831, Copyright 2006, with permission from IOP,
http://www.iop.org/journals/cqg.



00 €ij — €ji 0 Eir 0
Vi=1o0lo| o ., Ui=10|0]en
010 0 0010

eij — €5i | 0 0 0 0| e
Xij = 0 0 0 ) Yi; = 0 0
0 0 e — e eij — € | 0
0 er | O 0 0 0
Ly = —e | 0 ey ) T, = O|es—egq |0
0 |—eyr| O 0 0 0
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(D.2)

(D.3)

Each ey, is defined to be a matrix of the appropriate dimensions that has zeros in

all its entries except for a 1 in the entry at row a and column b. These satisfy the

matrix product rule e, €.qg = dpe €44- The solvable subalgebra of SO(n + 3,3) has the

nonvanishing commutators

(H B/ =by B/, [H VY=, V7,
(B, By = §E — 6B,
B, VH] = =V =5V B U] = —6iU}
[Uri> Ug] = (STSVU )

where the structure constants are given by

by=V2(-&+&), d;=V2(@E+E),

[F[,UZ]:E;- Ui?

G=v2e.

(D.4)

(D.5)
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The nonvanishing commutation rules of the maximal compact subalgebra SO(n +

3) @ SO(3) are

[ Xij, Xie) = 6;xXi0 + 3 perms | [Ty, Trs) = 0p Tps + 3 perms (D.6)
[ Xij, Yie] = 01Yi0 + 3 perms | (Xij, Ziy| = 0uZiy — OiriZjr
[Y;j, Yk@] = ijiZ + 3 perms [qu; ir] = 5quip - 6prZi )

(Zir, Zjs) = =075 Xij + 6rsYij — 2045 T Yijs Zir| = —0iuZir + 6itZjr
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APPENDIX E
THE GAUGED MAURER-CARTAN FORM AND THE C-FUNCTIONS*

For the purposes of chapter III, section D, where our dyonic string solution is de-
scribed, we describe in this appendix various aspects of the coset Sp(ng,1)/Sp(ng) x

Sp(1). A convenient choice for the coset representative L is [44]

where ¢ is an ny-component quaternionic vector t¥ (p = 1,...,ny), and
y=0 -t A=y —tth)V2, (E.2)

Here, I is an ny X ny unit matrix, and T refers to quaternionic conjugation, and it

can be verified that At = t. The gauged Maurer-Cartan form is defined as
Q. bf
L7'D,L = : (E.3)
P, Q,
where D, L is given in (3.25), with 7" representing three anti-hermitian quaternions

(in the matrix representation of quaternions 7" = —i¢”/2) obeying
[T7,T°] = T" (E.4)

“Reprinted from Journal of High Energy Physics, Vol 11, Der-Chyn Jong et al.,
6D Dyonic String with Active Hyperscalars, Copyright 2006, with permission from
IOP, http://www.iop.org/journals/jhep.
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and T represents a subset of ny X ny quaternion valued anti-hermitian matrices
spanning the algebra of the subgroup K C Sp(ny) that is being gauged. A direct

computation gives

Q. = %7—2 (Dut't —t'D,t) — AL T (E.5)
Q, = 7% (~tDut' + AD,A+ 20, (1)) — AT (E.6)
P, = v ?AD,t, (E.7)
where
Dyt =0t +tT A, — ATt . (E.8)

The C' functions are easily computed to yield
" Trtt
C" = L' T"L=~7 (E.9)

—tT" =Tt

—tiTl't —iTTA
o' = L7\1'L =~ (E.10)

ATt ATT' A
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APPENDIX F

THE MODEL FOR SP(1,1)/SP(1) x SP(1)z*

In chapter III, section D, we activated four hyperscalars which parametrize the coset
Sp(1,1)/Sp(1) x Sp(1)g in finding our dyonic string solution. Here, we summarize
the relevant part of the Lagrangian and supersymmetry transfornation rules in which
the scalar couplings are governed by this coset. This coset, which is equivalent to
SO(4,1)/S0(4), represents a 4-hyperboloid Hy. In this case we have a single quater-

nion t = ¢ g,, and the vielbein becomes
VA =202 (F.1)

It follows from the definitions (3.22) and (3.23) that

Gap = ﬁ 0o f = (12_p—fz)2 : (F.2)
We also introduce a basis in the tangent space of Hy
Vo = N {2¢2 o (F.3)
The Sp(1)r connection @, can be found from (E.5) as
Q=200 (QuT") = 5 (00" &~ A7) (F.4)

1@

With the above results at hand, the Lagrangian can be written as
1 1 —
e 'L = R — %(84,0)2 — %e‘p G, GHP — ieﬂ F, F™ - }162“’ N

*Reprinted from Journal of High Energy Physics, Vol 11, Der-Chyn Jong et al.,
6D Dyonic String with Active Hyperscalars, Copyright 2006, with permission from
IOP, http://www.iop.org/journals/jhep.
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4 6 3%
2
e D.O¥DH ﬁéa . € 2 120 12\2 F.5
(1— ¢?)2 e ¢” dap (1 — ¢2)? [gR +9"(¢7%) ] ) (F.5)
where the covariant derivatives are defined as
Dyu¢™ = 0,0" — $grAy (") ¢° — 39 A; (n7)s ¢, (F.6)

and we have re-introduced the gauge coupling constants gz and ¢’. The supersym-

metry transformation rules are

1
0y = Dye+ 5e2°G) T"PT,e, (F.7)
i - v
ox = 1 (F“@ugo — ge2*G,, T ”) €, (F.8)
1
r 1 r pupv 6_2<p T B
N = sl lea —or— 5 Ths < (F.9)
r! 1 pr' puv / 7150 ¢a o — ! B
6)\A = —ngjF catge 2 1_¢2 (UaT Uﬁ)AB e, (FlO)
/ 1 @ ’
5@[]"4 = 1_—¢2DM¢ U(‘?A&’A s (Fll)

where Dyeq = Va4 + QZ(TT)ABgB, with V,, containing the standard torsion-free

Lorentz connection only, and Q" is defined in (F.4).
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