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ABSTRACT

Aspects of 7D and 6D Gauged Supergravities. (December 2007)

Der-Chyn Jong, B.S., National Taiwan University;

M.S., National Taiwan University

Chair of Advisory Committee: Dr. Ergin Sezgin

We determine the conditions under which half-maximal matter coupled gauged super-

gravity in seven dimensions admits a chiral circle reduction to yield a matter coupled

gauged supergravity in six dimensions with 8 real supersymmetry. Solving these

conditions we find that the SO(2, 2) and SO(3, 1) gauged 7D supergravities give a

U(1)R, and the SO(2, 1) gauged 7D supergravity gives an Sp(1)R gauged chiral 6D

supergravity coupled to certain matter multiplets. In the 6D models obtained, with

or without gauging, we show that the scalar fields of the matter sector parametrize

the coset SO(p+ 1, 4)/SO(p+ 1)× SO(4), with the (p+ 3) axions corresponding to

its abelian isometries.

We then derive the necessary and sufficient conditions for the existence of a Killing

spinor in N = (1, 0) gauge 6D supergravity coupled to a single tensor multiplet, vector

multiplets and hypermultiplets. We show that these conditions imply most of the field

equations. We also determine the remaining equations that need to be satisfied by an

exact solution. In this framework, we find a novel 1/8 supersymmetric dyonic string

solution with nonvanishing hypermultiplet scalars. The activated scalars parametrize

a 4 dimensional submanifold of a quaternionic hyperbolic ball. The key point is that

we employ an identity map between this submanifold and the internal space transverse

to the string worldsheet, thereby finding a higher dimensional generalization of Gell-

Mann-Zweibach tear-drop solution.
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CHAPTER I

INTRODUCTION∗

An impressively large number of string/M theory vacua admit a low energy super-

gravity description in diverse dimensions. An important class of such theories are

gauged supergravities. Study of such theories provides valuable information about

string/M theory. In particular, gauge supergravities have played an important role in

phenomena such as the anti-de-Sitter Space/conformal field theory correspondence as

well as the domain-wall/quantum field theory correspondence, among other phenom-

ena. However, starting directly from a given supergravity theory, it is not always clear

what, if any, string/M theory origin it may have. For example, an important class

of such theories, where string/M-theory origins are still not known, are the anomaly

free gauged minimal supergravities in six dimensions. The requirement of anomaly

freedom leads to highly restrictive conditions in 6D which single out a small number

of consistent quantum models. While the full classification of all possible anomaly-

free gauged supergravities in 6D is not available, it is interesting to understand their

string/M-theory origin.

Given that the 6D models of interest may be related to certain seven dimensional

gauged supergravity theories which in turn may be embedded in string/M theory,

we are motivated to study in this dissertation various aspects of gauged 6D and 7D

supergravity theories.

We reduce the half-maximal 7D supergravity with specific noncompact gaugings cou-

The journal model is Classical and Quantum Gravity.
∗Portions of this chapter are reprinted from Classical and Quantum Gravity, Vol

23, E Bergshoeff et al., Noncompact Gaugings, Chiral Reduction and Dual Sigma
Models in Supergravity, Pages 2803-2831, Copyright 2006, with permission from IOP,
http://www.iop.org/journals/cqg.
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pled to a suitable number of vector multiplets, on a circle to 6D and chirally truncated

it to N = (1, 0) supergravity such that a R-symmetry gauging survives. These are

referred to as the SO(3, 1), SO(2, 1) and SO(2, 2) models, in which these groups re-

fer to isometries of manifolds parametrized by the scalar fields that arise in the 7D

theory. The 6D models we obtain describe coupling of N = (1, 0) supergravity to

p + 1 hypermultiplets and n vector multiplets where p = 1, 2 and n = 1, 2, 3 de-

pending on the model. We then exhibit in the full model, including the fermionic

contributions, how the scalar fields can be combined to parametrize an enlarged coset

SO(p+ 1, 4)/SO(p+ 1)× SO(4).

We next derive the necessary and sufficient conditions for the existence of arbitrary

number of Killing spinor in N = (1, 0), 6D gauge supergravity coupled to vector mul-

tiplets and hypermultiplets. We then determine all the integrability conditions and

the precise set of field equations that are satisfied automatically as a result. This

approach provides a powerful method for finding general supersymmetric solutions,

and is known the G-structure method. Here the G-structure refers to a geometric

structure, such as Kahler structures, that arise in a submanifold of spacetime. We

find that the existence of a null Killing vector suggests a 2 + 4 split of spacetime.

Thus it is natural to search for a string solution, possibly dyonic one, namely that

which carries electric and magnetic charges. Indeed, we have found a new 1/8 super-

symmetric dyonic string solution with novel properties.

Below, we shall summarize in some more detail our results. The full technical details

will be presented in chapter II and III.
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A. The Noncompact Gaugings and Chiral Reduction of 7D Gauged Supergravities

We start with the 7D ungauged half-maximal supergravity coupled to n vector mul-

tiplets [1], in which the interactions of the scalar fields are governed by the coset

SO(n, 3)/SO(n) × SO(3). Due to the conditions that arise from the consistency of

gauging with supersymmetry, it turns out that the noncompact gauge groups must

have up to 3 compact or up to 3 noncompact generators. Considering only semi-simple

gauge groups, it turns out that the allowed gauge groups are of the form

G0 ×H ⊂ SO(n, 3) (1.1)

with G0 is one of the six groups listed in (2.7) and H is a semi-simple compact Lie

group with dimH ≤ (n + 3 − dimG0). The models of special interest are those in

which the chiral truncation of the 7D gauged theory gives rise to an R-symmetry

gauged theory in 6D. As we shall see, the gauged chiral 6D supergravities arise

from half-maximal 7D supergravities with noncompact gaugings. While noncompact

gauging is necessary, it is not sufficient for obtaining R-symmetry gauging in 6D.

For example we find that the SL(3, R) gauged 7D model does not allow a consistent

chiral reduction to gauged 6D supergravity. With mild assumption we determine that

the 7D models with noncompact gauge groups whose chiral circle reduction do yield

gauge 6D gauged supergravities with matter multiplets are:

• The SO(3, 1) model:

This model is obtained form the SO(3, 1) gauged half-maximal 7D supergravity

coupled to 3 vector multiplets, with SO(3, 3)/SO(3)× SO(3) scalar sector. Its

chiral reduction gives a U(1)R gauged supergravity coupled to a hypermultiplet.

• The SO(2, 1) model:
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This model is obtained form the SO(2, 1) gauged half-maximal 7D supergrav-

ity coupled to a single vector multiplet, with SO(3, 1)/SO(3) scalar sector. Its

chiral reduction gives rise to an Sp(1)R gauged supergravity coupled to a hy-

permultiplet.

• The SO(2, 2) model: This model is obtained form the SO(2, 2) gauged half-

maximal 7D supergravity coupled to 3 vector multiplets, with SO(3, 3)/SO(3)

scalar sector. Its chiral reduction gives a U(1)R gauged theory coupled to an

additional Maxwell multiplet, and two hypermultiplets.

The SO(2, 2) and SO(3, 1) models can be obtained from a reduction of the N =

1, D = 10 supergravity on the noncompact hyperboloidal 3-manifolds H2,2 and H3,1,

respectively [2, 3, 4]∗. The hyperboloidal manifold, Hp,q, is the locus of points whose

coordinates satisfy

xaxbηab = 1, ηab = (

p︷ ︸︸ ︷
+...+,

q︷ ︸︸ ︷
−...−) (1.2)

with the metric

ds2 = dxadxbδab. (1.3)

These models can also be obtained from analytical continuation of an SO(4) gauged

7D supergravity [5] which, in turn, can be obtained from an S3 compactification of

Type IIA supergravity [6], or a limit of an S4 reduction of D = 11 supergravity which

reduces to a compactification on S3 × R [7]. With regard to matter coupled gauged

7D supergravities, we note that the heterotic string on T 3 gives rise to half-maximal

7D supergravity coupled to 19 Maxwell multiplets, which, in turn, is dual to M-theory

on K3.

∗These reductions can straightforwardly be lifted to D = 11. Note also that the
spaces Hp,q can be constructed from embedding into a (p, q) signature plane.
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We shall show that in the full model, including the fermionic contributions, how the

scalar fields can be combined to parametrize an enlarged coset SO(p+ 1, 4)/SO(p+

1) × SO(4). This will be studied both in the symmetric gauge and in the Iwasawa

gauge. The latter makes use of the Iwasawa decomposition which for a semisimple

Lie group G generalizes the way a square real matrix can be written as a product of

an orthogonal matrix ,K, a diagonal matrix with positive diagonal entries, A, and a

unit upper triangular matrix ,N , as follows:

G = KAN. (1.4)

Finally, as a remark, we also shown that in a formulation of the 7D supergravity that

uses a 3-form potential, vector multiplet coupling are possible even in the presence of

a topological mass term, contrary to a claim made in the literature [8].

B. Supersymmetric Solutions of Gauged 6D Supergravity

Once gauged 6D supergravity is embedded in string/M-theory, it would be useful to

know its supersymmetric solutions. Supersymmetric solutions of supergravity theo-

ries are of particular importance in string theory because such solutions often have

certain stability and non-renormalization properties that are not possessed by non-

supersymmetric solutions. For example, it has been possible to give a microscopic

description of certain supersymmetric black holes. Several supersymmetric solutions

of gauged 6D supergravity have already been discovered. However, it is tempting to

suspect that these new solutions are just the tip of the iceberg, and that many more

surprises will be found in 6D. Thus, we would like to know the general nature of

supersymmetric solutions of supergravity theories.
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To do so, we will employ the elegant and powerful method that use G-structures. This

involves the derivation of the necessary and sufficient conditions for the existence of a

Killing spinor. We will study them for the N = (1, 0), 6D gauge supergravity coupled

to vector multiplets and hypermultiplets. This generalizes the analysis of [9] and [10]

by the inclusion of the hypermultiplets. The existence of the Killing spinor implies

that the metric admits a null Killing vector. This is in contrast to some other dimen-

sions such as D = 4, 5 where time-like and space-like Killing vectors arise in addition

to the null one. The Killing spinor existence conditions and their integrability are

shown to imply most of the equations of motion. This simplifies greatly the search

for exact solutions. We will show the remaining equations to be solved are (i) the

Yang-Mills equation in the null direction, (ii) the field equation for the 2-form poten-

tial, (iii) the Bianchi identities for the Yang-Mills curvature and the field strength of

the 2-form potential, and (iv) the Einstein equation in the double null direction.

The most symmetric solution in 6D supersymmetric Einstein-Maxwell theory with

U(1) gauge group, known as the Salam-Sezgin model, is R1,3 × S2 which has been

shown [4] to be the unique maximally symmetric solution of such model. The model

by itself is anomalous but it can be embedded into an anomaly-free model with suit-

able Yang-Mills and hypermultiplet couplings. To find the string/M-theory origin

of the anomaly free models, it is then a natural attempt to a classification of the

general form of supersymmetric solutions of N = (1, 0), U(1) and SU(2) gauged 6D

supergravity [9, 10]. In recent years there also has been a lot of interest in models

with branes embedded in higher dimensions. One particular motivation is the hope

of finding a solution to the notorious cosmological constant problem. From this point

of view, six-dimensional models with codimension-two branes are especially interest-

ing. The authors in [11, 12] have found the general warped solutions with maximally

symmetric four-dimensions and conical branes for the 6D Salam-Sezgin supergravity.
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A solution of the matter coupled N = (1, 0), 6D gauged supergravity called the ’su-

perswirl’ has been found in [13] where they did not use G-structure method and only

activate two hyperscalars. Moreover, conditions for Killing spinors and general form

of the N = 2, D = 5 supersymmetric solutions in matter coupled gauged supergrav-

ities have also been investigated. The authors in [14] recently used the G-structure

method to construct supersymmetric solutions of N = 2, D = 5 gauged supergravity

coupled to two vector multiplets and three hypermultiplets. However, they only con-

sider the first-order equations for supersymmetric solutions that preserve a time-like

Killing vector, but not a null Killing vector. Moreover, though various dyonic string

solutions of N = (1, 0), 6D supergravities exist in the literature [15, 16, 17, 18], none

of them employ the hypermultiplets. In this dissertation, we activate 4 hyperscalar

fields which parametrize a 4 dimensional submanifold of a quaternionic hyperbolic

ball. We employ an identity map between this submanifold and the internal space

transverse to the string worldsheet. By solving the remaining equations, we then find

a new 1/8 supersymmetric dyonic string solution with novel properties.

While we will study the general theory, including vector multiplets and hypermulti-

plets, a particular subset for a certain field content will be free from all anomalies;

gravitational, gauged and mixed. The requirement of anomaly freedom puts especially

restrictive conditions on the gauged supergravities. We conclude our introduction by

a summary of what is known so far about the anomaly-free models which satisfy these

conditions. At present, the only known “naturally” anomaly-free gauged supergravi-

ties in 6D are:

• the E7 × E6 × U(1)R invariant model in which the hyperfermions are in the

(912, 1, 1) representation of the gauge group. This is a well-known model, first

found by Randibar-Daemi, Salam, Sezgin and Strathdee [19] in 1985.
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• the E7 ×G2 ×U(1)R invariant model with hyperfermions in the (56, 14, 1) rep-

resentation of the gauge group [20], and

• the F4 × Sp(9) × U(1)R invariant model with hyperfermions in the (52, 18, 1)

representation of the gauge group [21].

These models have the shared features that (i) the hypermultiplets transform in non-

trivial representations, (ii) there are no singlet hypermultiplets and (iii) the represen-

tations involve half-hypermultiplets. If one considers a large factor of U(1) groups,

and tune their U(1) charges in a rather ad-hoc way [21], or considers only products

of SU(2) and U(1) factors with a large number of hyperfermions, and tune their U(1)

charges again in an ad-hoc way, infinitely many possible anomaly-free combinations

arise [22]. These models appear to be “unnatural” at this time.

In the remaining part of the dissertation, we will present the technical details of the

ideas and results summarized above.
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CHAPTER II

THE NONCOMPACT GAUGINGS AND CHIRAL REDUCTION OF 7D

GAUGED SUPERGRAVITIES∗

In this chapter we first recall the gauged half-maximal 7D supergravity couple to n

vector multiplets. In particular, we list the possible non-compact gaugings in the

theory. We then determine the conditions that must be satisfied by the requirement

of chiral supersymmetry in 6D, both, for the gauged and ungauged 7D theory. After

solving these conditions, we obtain the 6D supergravity for the fields that survive

the chiral circle reduction and their supersymmetry rules. Moreover, we exhibit the

hidden quaternionic Kahler coset structure that given the couplings of the matter

multiplets in 6D by an extensive use of the Iwasawa decomposition. This is not

surprising for the bosonic sector of the ungauged supergravity theory; however, here

not only we include the fermionic sector but we also exhibit the hidden symmetry in

the gauged supergravity theory.

A. The Gauged 7D Model with Matter Couplings

Half-maximal supergravity in D = 7 coupled to n vector multiplets has the field

content

Supergravity multiplet : (eµ
m, Bµν , Aµj

i, σ, ψµ, χ)

Vector multiplet : (Arµ, φ
α, λr)

(2.1)

where the fermions ψµ, χ, λ
r are symplectic Majorana and they all carry Sp(1) doublet

indices which have been suppressed. Moreover, we will combine a triplet of vector

∗Reprinted from Classical and Quantum Gravity, Vol 23, E. Bergshoeffn
et al., Noncompact Gaugings, Chiral Reduction and Dual Sigma Models in
Supergravity, Pages 2803-2831, Copyright 2006, with permission from IOP,
http://www.iop.org/journals/cqg.
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fields, Aµj
i, in the supergravity multiplet to n of vector fields, Arµ, in vector multiplet

as AIµ for later convenience. The 3n scalars φα(α = 1, 2, .., 3n) parametrize the coset

SO(n, 3)

SO(n)× SO(3)
. (2.2)

The gauge fermions λr (r = 1, ..., n) transform in the vector representation of SO(n),

while the vector fields AIµ (I = 1, ..., n + 3) transform in the vector representation

of SO(n, 3). The 2-form potential Bµν and the dilaton σ are real. It is useful to

define a few ingredients associated with the scalar coset manifold as they arise in the

Lagrangian. We first introducing the coset representative

L = (LI
i, LI

r) , I = 1, ..., n+ 3, i = 1, 2, 3 , r = 1, ..., n , (2.3)

which forms an (n+ 3)× (n+ 3) matrix that obeys the relation

−LI iLiJ + LI
rLJ

r = ηIJ , (2.4)

where ηIJ = diag(−−−++...+). The contraction of the SO(n) and SO(3) indices is

with the Kronecker deltas δrs and δij while the raising and lowering of the SO(n, 3)

indices will be with the SO(n, 3) invariant metric ηIJ . Given that the SO(3) indices

are raised and lowered by the Kronecker delta, it follows that, in our conventions,

LiI = LIi , LiIL
I
j = −δij , LiIL

Ij = −δij .

Note also that the inverse coset representative L−1 is given by L−1 =
(
LI i, L

I
r

)
where

LI i = ηIJ LJi and LIr = ηIJ LJr. In the gauged matter coupled theory of [1], a key

building block is the gauged Maurer-Cartan form

P ir
µ = LIr

(
∂µδ

K
I + fIJ

KAJµ
)
LiK ,

Qij
µ = LIj

(
∂µδ

K
I + fIJ

KAJµ
)
LiK ,
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Qrs
µ = LIr

(
∂µδ

K
I + fIJ

KAJµ
)
LsK , (2.5)

where fIJ
K are the structure constants of the not necessarily simple group K ⊂

SO(n, 3) of dimension n + 3, and the gauge coupling constants are absorbed into

their definition of the structure constants. The K-invariance of the theory requires

that the adjoint representation of K leaves ηIJ invariant:

fIK
L ηLJ + fJK

L ηLI = 0 . (2.6)

It follows that for each simple subgroup of K, the corresponding part of ηIJ must be

a multiple of its Cartan-Killing metric. Since ηIJ contains an arbitrary number of

positive entries, K can be an arbitrarily large compact group. On the other hand,

as ηIJ has only three negative entries, K can have 3 or less compact generators, or 3

or less noncompact generators∗. The three real simple noncompact groups satisfying

these restrictions are listed in Table I.

Table I. The three real simple noncompact groups with 3 or less compact generators,

or 3 or less noncompact generators.

Group Compact Dimensions Noncompact Dimensions

SO(3,1) 3 3

SO(2,1) 1 2

SL(3,R) 3 5

∗This is similar to the reasoning in [23] where the gauging of N = 4, D = 4
supergravity coupled to n vector multiplets is considered. In this case, the relevant
η is the SO(n, 6) invariant tensor and the resulting noncompact simple gauge groups
have been listed in [23].
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Thus, the allowed semi-simple gauge groups are of the form G0×H ⊂ SO(n, 3) where

G0 is one of the following

(I) SO(3)

(II) SO(3, 1)

(III) SL(3, R)

(IV ) SO(2, 1)

(V ) SO(2, 1)× SO(2, 1)

(V I) SO(2, 1)× SO(2, 1)× SO(2, 1) (2.7)

and H is a semi-simple compact Lie group with dimH ≤ (n+ 3− dimG0). Of these

cases, only (I) with H = SO(3) corresponding to SO(4) gauged supergravity, (II)

and (V) are known to have a ten- or eleven-dimensional origin. Though the cases

(III)–(VI) are not mentioned explicitly in [1], the Lagrangian provided there is valid

for all the cases listed above. The Lagrangian of [1], up to quartic fermion terms, is

given by ∗.

L = LB + LF (2.8)

e−1LB = 1
2
R− 1

4
eσ
(
F i
µνF

µν
i + F r

µνF
µν
r

)
− 1

12
e2σGµνρG

µνρ

−5
8
∂µσ∂

µσ − 1
2
P ir
µ P

µ
ir − 1

4
e−σ

(
CirCir − 1

9
C2
)
, (2.9)

e−1LF = − i
2
ψ̄µγ

µνρDνψρ − 5i
2
χ̄γµDµχ− i

2
λ̄rγµDµλr − 5i

4
χ̄γµγνψµ∂νσ

∗We follow the conventions of [1]. In particular, ηµν = diag(− + + · · ·+), the
spinors are symplectic Majorana, CT = C and (γµC)T = −γµC. Thus, ψ̄γν1···νnλ =
(−1)nψ̄γνn···ν1λ, where the Sp(1) doublet indices are contracted and suppressed. Here
we also use XA

B = 1√
2
(σi)ABX

i, and further conventions are: XA = εABXB, XA =

XBεBA, ε
ABεBC = −δAC , ψ̄λ = ψAλA, ψ̄σ

iλ = ψ̄A(σi)A
BεB.
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−1
2
λ̄rσiγµγνψµPνri + i

24
√

2
eσGµνρX

µνρ + 1
8
eσ/2F i

µνX
µν
i − i

4
eσ/2F r

µνX
µν
r

− i
√

2
24
e−σ/2C

(
ψ̄µγ

µνψν + 2ψ̄µγ
µχ+ 3χ̄χ− λ̄rλr

)
+ 1

2
√

2
e−σ/2Cir

(
ψ̄µσ

iγµλr − 2χ̄σiλr
)

+ 1
2
e−σ/2Crsiλ̄

rσiλs , (2.10)

where the fermionic bilinears are defined as

Xµνρ = ψ̄λγ[λγ
µνργτ ]ψ

τ + 4ψ̄λγ
µνργλχ− 3χ̄γµνρχ+ λ̄rγµνρλr ,

Xµν
i = ψ̄λσiγ[λγ

µνγτ ]ψ
τ − 2ψ̄λσ

iγµνγλχ+ 3χ̄σiγµνχ− λ̄rσiγµνλr ,

Xµν
r = ψ̄λγ

µνγλλr + 2χ̄γµνλr . (2.11)

The field strengths and the covariant derivatives are defined as

Gµνρ = 3∂[µBνρ] − 3√
2
ω0
µνρ , ω0

µνρ = F I
[µνA

J
ρ]ηIJ − 1

3
fIJ

KAIµA
J
νAρK ,

F I
µν = 2∂[µA

I
ν] + fJK

IAJµA
K
ν , F i

µν = F I
µνL

i
I , F r

µν = F I
µνL

r
I , (2.12)

Dµ = ∂µ +
1

4
ωµ

abγab +
1

2
√

2
Qi
µ σ

i , Qi
µ =

i√
2
εijkQµjk , (2.13)

and the C-functions are given by [1]

C = − 1√
2
fIJ

KLIiL
J
j LKk ε

ijk ,

Cir = 1√
2
fIJ

KLIjL
J
kLKr ε

ijk ,

Crsi = fIJ
KLIrL

J
sLKi . (2.14)

The local supersymmetry transformation rules read [1]

δeµ
m = iε̄γmψµ ,

δψµ = 2Dµε− 1
60
√

2
eσGρστ (γµγ

ρστ + 5γρστγµ) ε
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− i
20
eσ/2F i

ρσ σ
i (3γµγ

ρσ − 5γρσγµ) ε−
√

2
30
e−σ/2Cγµε ,

δχ = −1
2
γµ∂µσε− i

10
eσ/2F i

µν σ
iγµνε− 1

15
√

2
eσGµνργ

µνρε+
√

2
30
e−σ/2Cε ,

δBµν = i
√

2e−σ
(
ε̄γ[µψν] + ε̄γµνχ

)
−
√

2AI[µδA
J
ν]ηIJ ,

δσ = −2iε̄χ ,

δAIµ = −e−σ/2
(
ε̄σiψµ + ε̄σiγµχ

)
LIi + ie−σ/2ε̄γµλ

rLIr ,

δLrI = ε̄σiλrLiI , δLiI = ε̄σiλrL
r
I , (2.15)

δλr = −1
2
eσ/2F r

µνγ
µνε+ iγµP ir

µ σ
iε− i√

2
e−σ/2Cirσiε .

For purposes of the next section, we exhibit the gauge field dependent part of the

gauged Maurer-Cartan forms:

P ir
µ = P ir(0)

µ − 1
2
√

2
εijk CjrAkµ − CirsAsµ ,

Qij
µ = Qij(0)

µ + 1
3
√

2
εijk C Akµ − 1

2
√

2
εijk Ckr Arµ , (2.16)

where the zero superscript indicates the gauge field independent parts.

B. Chiral Reduction on a Circle

1. Reduction Conditions

Here we shall consider all the 7D quantities of the previous section such as fields,

world and Lorentz indices to be hatted, and the corresponding 6D quantities to be

unhatted ones. We parametrize the 7D metric as

dŝ2 = e2αφ ds2 + e2βφ(dy −A)2 . (2.17)
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In order to obtain the canonical Hilbert-Einstein term, 1
4

√
−gR, in D = 6, we choose

α = −
√

n

2(D + n− 2)(D − 2)
= − 1

2
√

10
, β = −D − 2

n
α = −4α . (2.18)

where D = 6 and n = 1 in this dimensional reduction. We shall work with the natural

vielbein basis

êa = eαφea , ê7 = eβφ(dy −A) . (2.19)

It is also convenient to work with the Latin connection ω̂m̂n̂p̂ = êµ̂m̂ω̂µ̂n̂p̂, which is a

scalar under general coordinate transformation and is antisymmetric in its last two

indices. In the second-order formalism, we have

ω̂m̂n̂p̂ = −Ω̂m̂n̂,p̂ + Ω̂n̂p̂,m̂ − Ω̂p̂m̂,n̂ (2.20)

where

Ω̂m̂n̂,p̂ =
1

2
(êµ̂m̂ê

ν̂
n̂ − êν̂m̂ê

µ̂
n̂)∂ν̂ êµ̂p̂. (2.21)

it turns out that the nonzero components of the spin structure are

ω̂cab = e−αφ
(
ωcab + 2αηc[a∂b]φ

)
, ω̂77a = βe−αφ∂aφ . (2.22)

Next, we analyze the constraints that come from the requirement of circle reduction

followed by chiral truncation retaining N = (1, 0) supersymmetry. Let us first set

to zero the 7D gauge coupling constant and deduce the consistent chiral truncation

conditions. At the end of the section we shall then re-introduce the coupling constant

and determine the additional constraints that need to be satisfied. The gravitino

field in seven dimensions splits into a left handed and a right handed gravitino in six

dimensions upon reduction in a compact direction. Chiral truncation means that we

set one of them to zero, say,

ψ̂a− = 0 . (2.23)
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This condition with chirality properties, used in the supersymmetry variation of the

7D vielbein, gives the following supersymmetry variation of the 6D vielbein,

δeµ
m = iε̄+γ

mψµ+ +
i

4
ε̄+γ

mγµψ7−. (2.24)

It turns out that one of the components of the supersymmetric parameter, ε−, van-

ishes. Note that the second term on the right-hand side can be removed by performing

a compensating local Lorentz transformation with parameter, Λµ
m = i

4
ε̄+γ

mγµψ7−.

Moreover, the supersymmetry variation of the 7D gravitino and the field χ̂ gives

δψµ+ = Dµε+ − 1
24
eσ−2αφGρστγ

ρστγµε+ + i√
2
e−σ/2−βφF̂ Î

µ7 LÎ
iσiε+,

δψ7− = − 1√
10
γµ∂µφε+ − 1

30
eσ−2αφGρστγ

ρστε+ − 4i
5
√

2
eσ/2−βφγµF̂ Î

µ7 LÎ
iσiε+,

δχ− = −1
4
γµ∂µσε+ − 1

30
eσ−2αφGρστγ

ρστ ε+ + i
5
√

2
eσ/2−βφγµF̂ Î

µ7 LÎ
iσiε+,

which follows further conditions

F̂ Î
ab LÎ

i = 0 , (2.25)

Aa = 0 , Ĝab7 = 0 , ψ̂7+ = 0 , χ̂+ = 0. (2.26)

To see how we can satisfy the condition (2.25), it is useful to consider an explicit

realization of the SO(n, 3)/SO(n) × SO(3) coset representative. A convenient such

parametrization is given by

L̂ =


1+φtφ
1−φtφ

2
1−φtφφ

t

φ 2
1−φtφ 1 + φ 2

1−φtφφ
t

 (2.27)

where φ is a n×3 matrix φr̂i. Note that this is symmetric, and as such, we shall refer

to this as the coset representative in the symmetric gauge. Now, we observe that to
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satisfy (2.25), we can split the index

Î = {I, I ′} , I = 1, ..., p+ 3 , I ′ = p+ 4, ..., n+ 3 , (2.28)

and set

ÂIa = 0 , LI′
i = 0 . (2.29)

Note that 0 ≤ p ≤ n, and in particular, for p = n, all vector fields AIµ, I = 1, ..., n+ 3

vanish (i.e. there are no Ar
′
µ fields) while all the coset scalars φr̂i are nonvanishing ∗.

For p < n, however, as we shall see below, (n− p) vector fields survive, and these, in

turn, will play a role in obtaining a gauged supergravity in 6D. The second condition

in (2.29) amounts to setting φr′i = 0 and consequently, introducing the notation

r̂ = {r, r′} , r = 1, ..., p , r′ = p+ 1, ..., n , (2.30)

we have

LI
r′ = 0 , LI′

r = 0 , LI′
r′ = δI′

r′ . (2.31)

Thus the surviving scalar fields are

(
L̂I

i, L̂I
r
)
≡
(
LI

i, LI
r
)
, I = 1, ..., p+ 3 , i = 1, 2, 3 , r = 1, ..., p . (2.32)

This is the coset representative of SO(p, 3)/SO(p)×SO(3). From the supersymmetric

variations of the vanishing coset representatives (LI′
i, LI

r′ , LI′
r), on the other hand,

we find that

λ̂r+ = 0 , λ̂r
′

− = 0 . (2.33)

∗Note also that for p = 0, all coset scalars φr̂i vanish while n vector field Ar
′
µ

survive.
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Using these results in the supersymmetry variation of ÂI
′

7 , in turn, immediately gives

ÂI
′

7 = 0 . (2.34)

Next, defining

B̂ = Bµν dx
µ ∧ dxν +Bµ dx

µ ∧ dy , (2.35)

the already found conditions Ĝab7 = Aa = ÂIa = 0 gives

0 = Ĝab7

= 3∂[aB̂b7] − 3√
2
ÂI[aF̂

J
b7]ηIJ + 1√

2
f K
IJ ÂIaÂ

J
b Â7K

= ∂aBb − ∂bBa

(2.36)

which implies that

Bµ = 0 . (2.37)

In summary, the surviving bosonic fields are

(
gµν , φ, Bµν , σ̂, φir, Â

I
7 , A

I′

µ

)
, (2.38)

and the surviving fermionic fields are

(
ψ̂µ+, ψ̂7−, χ̂−, λ̂

r
−, λ̂

r′

+

)
. (2.39)

We will show in the next section that suitable combinations of these fields (see Eq.

(2.62)) form the following supermultiplets:

(gµν , Bµν , σ, ψµ, χ) , (AI
′

µ , λ
r′) , (φir,Φ

I , ϕ, λr, ψ) , (2.40)

I = 1, ..., p+ 3 , I ′ = p+ 4, ..., n+ 3 ,

r = 1, ..., p , r′ = p+ 1, ..., n , i = 1, 2, 3 .
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The last multiplet represents a fusion of p linear multiplets and one special linear

multiplet, as explained in the introduction. In particular, the (p+ 3) axionic scalars

ΦI can be dualized to 4-form potentials. Further truncations are possible. Setting

φir = 0 gives one special linear multiplet with fields (Φi, ϕ, ψ) while setting ΦI = 0

eliminates all the (special) linear multiplets.

a. Extra Conditions due to Gauging

Extra conditions emerge upon turning on the 7D gauge coupling constants. They

arise from the requirement that the gauge coupling constant dependent terms in the

supersymmetry variations of (ψ̂a−, ψ̂7+, λ̂
r
+, λ̂

r′
−) vanish. These conditions are

C = 0 , Cir = 0 ,

CirsΦs = 0 , Cir′s′As
′

µ = 0 , (2.41)

where Φr = ΦILrI and As
′
µ = AI

′
µL

r′

I′ . More explicitly, these conditions take the form

f̂IJK L
I
iL

J
j L

K
k = 0 , f̂IJK L

I
iL

J
j L

K
r = 0 , (2.42)

f̂IJK L
I
iL

J
rΦK = 0 , f̂Ir′s′ L

I
i A

s′

µ = 0 . (2.43)

Solving these conditions, while keeping all Ar
′
µ and ΦI , results in a chiral gauged

supergravity theory with the multiplets shown in (2.40) and gauge group K ′ ⊂

SO(n, 3) with structure constants f̂r′s′t′ . The scalars ΦI transform in a (p + 3) di-

mensional representation of K ′, and there are 3p scalars which parametrize the coset

SO(p, 3)/SO(p) × SO(3). The nature of the R-symmetry gauge group can be read

off from

Dµε = D(0)
µ ε+ 1

2
√

2
σiCir′ Ar

′

µ ε . (2.44)
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Note that the 6D model is R-symmetry gauged provided that Cir′ does not vanish

upon setting all scalars to zero. Moreover, an abelian R-symmetry group can arise

when f̂r′s′t′ vanishes with Ckr′ 6= 0. Next, we show how to solve the conditions (2.42)

and (2.43).

2. Solution to the Reduction Conditions

The conditions (2.42) and (2.43) can be solved by setting

f̂IJ
K = 0 , f̂I′J ′

K = 0 . (2.45)

Moreover, the structure constants of the 7D gauge group G0 × H ⊂ SO(n, 3) must

satisfy the condition (2.6):

f̂ÎK̂
L̂ ηL̂Ĵ + f̂ĴK̂

L̂ ηL̂Î = 0 . (2.46)

Given the 7D gauge groups listed in (2.7), we now check case by case when and

how these conditions can be satisfied. To begin with, we observe that given the

G0 ×H ⊂ SO(n, 3) gauged supergravity theory, the H sector can always be carried

over to 6D dimension to give the corresponding Yang-Mills sector whose H-valued

gauge fields do not participate in a possible R-symmetry gauging. Therefore, we shall

consider the G0 part of the 7D gauge group in what follows.

(I) SO(3)

In this model, the 7D gauge group is SO(3) with structure constants

f̂ÎĴK̂ = (g εIJK , 0) . (2.47)

To satisfy (2.45), we must set g = 0. Thus, we see that a chiral truncation to a gauged

6D theory is not possible in this case.
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(II) SO(3, 1)

The smallest 7D scalar manifold that can accommodate this gauging is SO(3, 3)/SO(3)×

SO(3). In the 7D theory, the gauge groupG0 = SO(3, 1) can be embedded in SO(3, 3)

as follows. Denoting the SO(3, 3) generators by TAB = (Tij, Trs, Tir), we can embed

SO(3, 1) by choosing the generators (Trs, T3r) which obey the commutation rules of

the SO(3, 1) algebra. These generators can be relabeled as

(T34, T35, T36, T45, T56, T64) = (T1, T2, T3, T4, T5, T6) ≡ (TI , TI′) , (2.48)

with I = 1, 2, 3 and I ′ = 4, 5, 6. The algebra of these generators is given by

[TI , TJ ] = fIJ
K′ TK′ , [TI′ , TJ ] = fI′J

K TK , [TI′ , TJ ′ ] = fI′J ′
K′ TK′ . (2.49)

Thus, the conditions (2.45) are satisfied. Furthermore, the Cartan-Killing metric

associated with this algebra is (+ + + − −−) and it satisfies the condition (2.46).

In this case, all the coset scalars are vanishing and the surviving matter scalar fields

are (Φi, ϕ) which are the bosonic fields of a special linear multiplet. This sector

will be shown to be described by the quaternionic Kahler coset SO(4, 1)/SO(4) in

section 5. We thus obtain an Sp(1, R) gauged supergravity in 6D coupled to a single

hypermultiplet. In summary, we have the following chain of chiral circle reduction and

hidden symmetry in this case:

SO(3, 3)

SO(3)× SO(3)
↔ (Φi, ϕ) ↔ SO(4, 1)

SO(4)
(2.50)

Note that the 7D theory we start with has 64B + 64F physical degrees of freedom,

while the resulting 6D theory has 24B + 24F physical degrees of freedom. We will
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show that the 6D field contents can be rewritten as

Supergravity multiplet : (gµν , Bµν , σ, ψµ, χ)

Hypermultiplet : (ΦI , ψ), I = 1, ..., 4.
(2.51)

(III) SL(3, R)

The minimal 7D scalar manifold to accommodate this gauging is SO(5, 3)/SO(5)×

SO(3). In the 7D theory, the gauge group is SL(3, R), which has 3 compact and 5

noncompact generators. The condition (2.46) can be satisfied with η = diag(−−−+

+ + ++) by making a particular choice of the generators of SL(3, R) such as

(iλ2, iλ5, iλ7, λ1, λ3, λ4, λ6, λ8) = (T1, T2, T3, T4, T5, T6, T7, T8) = (TI , TI′) , (2.52)

where λ1, ..., λ8 are the standard Gell-Mann matrices, and I = 1, ..., p + 3, I ′ = p +

4, ..., 8 with 0 ≤ p ≤ 5. However, the condition (2.45) is clearly not satisfied since

[T1, T2] = T3 and thus f̂IJ
K 6= 0. Therefore, we conclude that the chiral truncation to

a gauged 6D theory is not possible in this case.

(IV) SO(2, 1)

For this gauging, the minimal 7D scalar manifold is SO(3, 1)/SO(3). Let us denote

the generators of SO(3, 1) by TAB = (Tij, T4i) where i = 1, 2, 3. The 7D gauge

group SO(2, 1) can be embedded into this SO(3, 1) by picking out the generators

(T41, T42, T12), where the last generator is compact and the other two are noncompact.

Thus,

f̂ÎĴK̂ =
(
g εijk, 0

)
, i = 1, 2, 4 , (2.53)

where (T41, T42, T12) correspond to (T1, T2, T4), respectively. The SO(3, 1) vector in-

dex, on the other hand, is labeled as I = 1, 2, 3 and I ′ = 4. Thus, the conditions
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(2.45) and (2.46) are satisfied and the resulting 6D theory is a U(1)R gauged super-

gravity coupled to one special linear multiplet. The gauge field is A4
µ, and the special

linear multiplet lends itself to a description in terms of the quaternionic Kahler coset

SO(4, 1)/SO(4). We thus obtain an U(1)R gauged supergravity in 6D coupled to one

hypermultiplet. This model is similar to the Sp(1)R gauged model obtained from the

SO(3, 1) gauged 7D supergravity described above, the only difference being that the

gauge group is now U(1)R. In summary, we have the following chain of chiral circle

reduction and hidden symmetry:

SO(3, 1)

SO(3)
↔ (Φi, ϕ) ↔ SO(4, 1)

SO(4)
(2.54)

In this case, the 7D theory we start with has 64B + 64F physical degrees of freedom,

while the resulting 6D theory has 24B + 24F physical degrees of freedom. We will

show that the 6D field contents can be rewritten as

Supergravity multiplet : (gµν , Bµν , σ, ψµ, χ)

Hypermultiplet : (ΦI , ψ), I = 1, ..., 4.
(2.55)

(V) SO(2, 2)

This case is of considerable interest as it can be obtained from a reduction of N = 1

supergravity in ten dimensions on a certain manifold H2,2 as shown in [4], where its

chiral circle reduction has been studied. As we shall see below, their result is a special

case of a more general such reduction. The minimal model that can accommodate

the SO(2, 2) gauging is SO(3, 3)/SO(3) × SO(3) ∼ SL(4, R)/SO(4). To solve the

conditions (2.45), we embed the SO(2, 2) in SO(3, 3) by setting

f̂ÎĴ
K̂ = (g1 εij` η

k` , g2 εrst η
tq ) , i = 1, 2, 6 , r = 3, 4, 5 ,

ηij = diag (−−+) , ηrs = diag (−+ +) , (2.56)
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where (g1, g2) are the gauge coupling constants for SO(2, 1) × SO(2, 1) ∼ SO(2, 2).

These structure constants can be checked to satisfy the condition (2.46). Further-

more, the conditions (2.45) are satisfied since I = 1, 2, 3, 4 and I ′ = 5, 6. The resulting

6D theory is a U(1)R gauged supergravity coupled to one external Maxwell multiplet

(in addition to the Maxwell multiplet that gauges the R-symmetry) and two hyper-

multiplets. The two hypermultiplets consist of the fields shown in the last group

in (2.40) with p = 1, n = 3. The U(1)R is gauged by the vector field A6
µ. The

vector field A5
µ, which corresponds to O(1, 1) rotations, resides in the Maxwell mul-

tiplet. In this model, the surviving SO(3, 1)/SO(3) sigma model sector in 6D, gets

enlarged with the help of the axionic fields to become the quaternionic Kahler coset

SO(4, 2)/SO(4) × SO(2), as will be shown in section 5. In summary, we have the

following chain of chiral circle reduction and hidden symmetry

SO(3, 3)

SO(3)× SO(3)
↔ SO(3, 1)

SO(3)
↔ SO(4, 2)

SO(4)× SO(2)
(2.57)

It is also worth noting that the Cvetic-Gibbons–Pope reduction [4] that gave rise to

the U(1)R gauged 6D supergravity is a special case of our results that can be obtained

by setting to zero all the scalar fields of the SO(3, 1)/SO(3) sigma model, the gauge

field A5
µ and their fermionic partners. This model was studied in the language of the

SL(4, R)/SO(4) coset structure. In Appendix B, we give the map between this coset

and the SO(3, 3)/SO(3) × SO(3) coset used here. Note that, in this case the 7D

theory we start with has 64B + 64F physical degrees of freedom, and the resulting

6D theory has half as many, namely, 32B + 32F physical degrees of freedom. We will
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show that the 6D field contents can be rewritten as

Supergravity multiplet : (gµν , Bµν , σ, ψµ, χ)

Vector multiplet : (AI
′
µ , λ

I′), I ′ = 1, 2

Hypermultiplet : (ΦIr, ψr), I = 1, ..., 4, r = 1, 2.

(2.58)

(VI) SO(2, 2)× SO(2, 1)

In this case, the minimal 7D sigma model sector is based on SO(6, 3)/SO(6)×SO(3).

To solve the condition (2.45) in such a way to obtain an R-symmetry gauged 6D

supergravity, we embed the 7D gauge group SO(2, 2)×SO(2, 1) in SO(6, 3) by setting

f̂ÎĴ
K̂ =

(
g1 εij` η

k` , g2 εrst η
tq , g3 εi′j′`′η

k′`′
)
, i = 1, 4, 5, r = 2, 6, 7, i′ = 3, 8, 9,

ηij = diag (−+ +) , ηrs = diag (−+ +), ηi′j′ = diag (−+ +), (2.59)

where (g1, g2, g3) are the gauge coupling constants for SO(2, 1)×SO(2, 1)×SO(2, 1).

The conditions (2.45) are satisfied since I = 1, 2, 3, 5, 7, 9 and I ′ = 4, 6, 8. The

resulting 6D theory has a local O(1, 1)3 gauge symmetry, and hence three Maxwell

multiplets but no gauged R symmetry, and three hypermultiplets. The gauge fields are

(A4
µ, A

6
µ, A

8
µ), and the hypermultiplets consist of the fields shown in the last group in

(2.40) with p = 3, n = 6. In this model, the surviving SO(3, 3)/SO(3)×SO(3) sigma

model in 6D gets enlarged to the quaternionic Kahler SO(4, 4)/SO(4)× SO(4) with

the help of the axionic fields, as will be described in section 5. In summary, we have

the following chain of chiral circle reduction and hidden symmetry:

SO(6, 3)

SO(6)× SO(3)
↔ SO(3, 3)

SO(3)× SO(3)
↔ SO(4, 4)

SO(4)× SO(4)
(2.60)
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Moreover, we will show that the resulting 6D field contents can be rewritten as

Supergravity multiplet : (gµν , Bµν , σ, ψµ, χ)

Vector multiplet : (AI
′
µ , λ

I′), I ′ = 1, 2, 3

Hypermultiplet : (ΦIr, ψr), I = 1, ..., 4, r = 1, 2, 3.

(2.61)

To summarize, we have found that the SO(3, 1) and SO(2, 2) gauged 7D models

give rise to U(1)R gauged supergravity, and the SO(2, 1) gauged 7D model yields

an Sp(1)R gauged chiral supergravity, coupled to specific matter multiplets in six

dimensions.

C. The 6D Lagrangian and Supersymmetry Transformations

The chiral reduction on a circle along the lines described above requires, as usual,

the diagonalization of the kinetic terms for various matter fields. This is achieved by

defining:

σ = (σ̂ − 2αφ) , ϕ =
1

2
(σ̂ + 8αφ) ,

χ =
√

2eαφ/2
(
χ̂+

1

4
ψ̂7

)
, ψ =

1√
2
eαφ/2

(
ψ̂7 − χ̂

)
,

ψa =
1√
2
eαφ/2

(
ψ̂a −

1

4
γaψ̂7

)
, ψr =

1√
2
eαφ/2λ̂r ,

ΦI = ÂI7 , λr
′
=

1√
2
eαφ/2λ̂r

′
, ε̂ =

1√
2
eαφ/2ε . (2.62)
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The 6D supergravity theory obtained by the reduction scheme describe above has the

Lagrangian L = LB + LF where∗

e−1LB = 1
4
R− 1

4
(∂µσ)2 − 1

12
e2σGµνρG

µνρ − 1
8
eσF r′

µνF
µνr′ (2.63)

−1
4
∂µϕ∂

µϕ− 1
4
P ir
µ P

µ
ir − 1

4

(
P r
µP

µ
r + P iµP

µ
i

)
−1

8
e−σ

(
Cir′Cir′ + 2Sir

′
Sir′
)
,

e−1LF = − i
2
ψ̄µγ

µνρDνψρ − i
2
χ̄γµDµχ− i

2
λ̄r
′
γµDµλr′ (2.64)

− i
2
ψ̄γµDµψ − i

2
ψ̄rγµDµψ

r − i
2
χ̄γµγνψµ∂νσ

−1
2
ψ̄rγµγνσiψµP

ir
ν + i

2
ψ̄γµγνψµ∂νϕ

−1
2
ψ̄γµγνσiψµP iν −

i

2
ψ̄rγµγνψµP

r
ν − 1

4
P iµX

µ
i

−iP r
µX

µ
r + i

24
eσGµνρX

µνρ − i
4
eσ/2F r′

µνX
µν
r′

+e−σ/2
(
−Cirr′λ̄r

′
σiψr + iSrr′λ̄

r′ψr − Sir′λ̄r
′
σiψ
)

+ 1
2
√

2
e−σ/2λ̄r

′
σiγµψµ

(
Cir′ −

√
2Sir′

)
+ 1

2
√

2
e−σ/2λ̄r

′
σiχ

(
Cir′ −

√
2Sir′

)
,

and where

Xµνρ = ψ̄λγ[λγ
µνργτ ]ψ

τ + ψ̄λγ
µνργλχ− χ̄γµνρχ+ λ̄r

′
γµνρλr′ + ψ̄rγµνρψr + ψ̄γµνρψ ,

Xµ
i = ψ̄ργ[ργ

µγτ ]σiψ
τ + χ̄γµσiχ+ λ̄r

′
γµσiλr′ − ψ̄rγµσiψr − ψ̄γµσiψ ,

∗In order to make contact with more standard conventions in 6D, we have redefined
Gµνρ →

√
2Gµνρ and multiplied the Lagrangian by a factor of 1/2. The spacetime

signature is (−+ ++ ++), the spinors are symplectic Majorana-Weyl, CT = −C and
(γµC)T = −γµC. Thus, ψ̄γν1···νnλ = (−1)nψ̄γνn···ν1λ, where the Sp(1) doublet indices
are contracted and suppressed. We also use the convention: γµ1···µ6 = eεµ1···µ6 γ7.
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Xµν
r′ = ψ̄ργ

µνγρλr′ + χ̄γµνλr′ ,

Xµ
r = ψ̄γµψr . (2.65)

The action is invariant under the following 6D supersymmetry transformations

δemµ = iε̄γmψµ ,

δψµ = Dµε− 1
24
eσγρστγµGρστ ε− i

2
P iµσiε ,

δχ = −1
2
γµ∂µσε− 1

12
eσγρστGρστ ε ,

δBµν = ie−σ
(
ε̄γ[µψν] + 1

2
ε̄γµνχ

)
− Ar′[µδAr

′

ν],

δσ = −iε̄χ ,

δAr
′

µ = ie−σ/2ε̄γµλ
r′ ,

δλr
′

= −1
4
eσ/2γµνF r′

µνε− i
2
√

2
e−σ/2

(
Cir′ −

√
2Sir

′
)
σiε ,

LrIδφ
I = −ie−ϕε̄ψr ,

LiIδφ
I = e−ϕε̄σiψ ,

LIi δL
r
I = −ε̄σiψr ,

δϕ = iε̄ψ,

δψ = i
2
γµ
(
P iµσi − i∂µϕ

)
ε,

δψr = i
2
γµ
(
P ir
µ σi + iP r

µ

)
ε . (2.66)
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Several definitions are in order. Firstly, the gauged Maurer-Cartan form is associated

with the coset SO(p, 3)/SO(p)× SO(3) and it is defined as

P ir
µ = LIi

(
∂µδ

J
I − fr′IJAr

′

µ

)
LrJ ,

Qij
µ = LIi

(
∂µδ

J
I − fr′IJAr

′

µ

)
LjJ ,

Qrs
µ = LIr

(
∂µδ

K
I − fr′IJAr

′

µ

)
LsJ . (2.67)

Various quantities occurring above are defined as follows:

Gµνρ = 3∂[µBνρ] − 3
2

(
F r′

[µνA
r′

ρ] − 1
3
fr′s′

t′Ar
′

µA
s′

ν Aρt′
)
,

F r′

µν = 2∂[µA
r′

ν] + fs′t′
r′As

′

µA
t′

ν ,

Dµε =
(
∂µ + 1

4
ωµ

abγab + 1
2
√

2
Qi
µ σ

i
)
ε ,

Qi
µ = i√

2
εijkQµjk = εijk(L−1∂µL)jk + Cir′Ar

′

µ . (2.68)

The axion field strengths are defined as

P iµ = eϕ(Dµφ
I)LiI ,

P r
µ = eϕ(Dµφ

I)LrI ,

DµΦI = ∂µΦI + fr′J
I Ar

′

µ ΦJ , (2.69)

and the gauge functions as

Ckr′ = 1√
2
εkijfr′I

J LIiLjJ , Cirr′ = fr′I
JLIiLJr ,

Sir′ = −eϕ fr′IJ ΦJ L
I
i , Srr′ = −eϕ fr′IJ ΦJ L

I
r . (2.70)

Note that the S2 term in the potential in (2.63) comes from the P ir′
7 P ir′

7 term since

P ir′
7 ∼ Sir

′
. The above results cover all the chiral reduction schemes that yield gauged
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supergravities in 6D. We simply need to take the appropriate structure constants and

the relevant values of p in the SO(p, 3)/SO(p)× SO(3) cosets involved. It is always

easiest to evaluate the gauge algebra on bosonic fields since one do not need to Fierz

rearrange, while the commutators close on the bosonic fields. These commutators are

[δ1, δ2]emµ = δG.C.(ξ
λ) + δQ(−ξλψλ) + δL.L(ξλωmnλ + 1

2
eσξλG

λmn),

[δ1, δ2]Bµν = δG.C.(ξ
λ) + δG(−ξλBλν − 1

2
e−σξν)

[δ1, δ2]Ar
′
µ = δG.C.(ξ

λ) + δG(−ξλAr′λ ),

[δ1, δ2]σ = ξµ∂µσ,

[δ1, δ2]ϕ = ξµ∂µϕ,

[δ1, δ2]ΦI = ξµ∂µΦI ,

(2.71)

where ξµ = iε̄2γ
µε1. In the case of the models (II) and (IV), with 7D gauge groups

SO(3, 1) and SO(2, 1), respectively, we have p = 0, which means that the coset

representative becomes an identity matrix and

frIJ → εr′ij , Cijr′ →
√

2εr′ij , Cirr′ → 0 ,

Sir′ → −εr′ijeϕΦj , Srr′ → 0 . (2.72)

By an untwisting procedure, which will be described in the next section, the scalar

fields (Φi, ϕ) can be combined to describe the quaternionic Kahler manifold SO(4, 1)/SO(4)

that governs the couplings of a single hypermultiplet. In the case of Model (V), we

have p = 1, which means that in the 6D model presented above, the relevant sigma

model is SO(3, 1)/SO(3). This gets enlarged with the help of axionic fields to the

quaternionic Kahler coset SO(4, 2)/SO(4)×SO(2) that governs the couplings of one

external Maxwell multiplet and two hypermultiplets. In the case of Model (VI),
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we have p = 3, which implies the sigma model is SO(3, 3)/SO(3) × SO(3). This

gets enlarged with the help of axionic fields to become the quaternionic Kahler coset

SO(4, 4)/SO(4) × SO(4) that govern the couplings of three Maxwell multiplets and

three hypermultiplets.

D. The Hidden Quaternionic Kahler Coset Structure

It is well known that the ten dimensional N = 1 supergravity theory coupled to N

Maxwell multiplets when reduced on a k-dimensional torus down to D dimensions

gives rise to half-maximal supergravity coupled to (N + k) vector multiplets with an

underlying SO(N + k, k)/SO(N + k) × SO(k) sigma model sector. This means an

SO(N+3, 3)/SO(N+3)×SO(3) sigma model in 7D. In the notation of the previous

sections, we have N + 3 = n. A circle reduction of this ungauged theory is then

expected to exhibit an SO(N + 4, 4)/SO(N + 4)× SO(4) coset structure. This is a

well known phenomenon which has been described in several papers but primarily in

the bosonic sector. In this section, we shall exhibit this phenomenon in the fermionic

sector as well, including the supersymmetry transformations. Moreover, we shall

describe the hidden symmetry of the gauged 6D models obtained from a consistent

chiral reduction of the gauged 7D models, in which case the SO(p+3, 3)/SO(p+3)×

SO(3) coset is enlarged to SO(p+ 4, 4)/SO(p+ 4)× SO(4). Here, we have redefined

p→ p+ 3 compared to the notation of the previous section, for convenience. The key

step in uncovering the hidden symmetry is to first rewrite the Lagrangian in Iwasawa

gauge. This gauge is employed by parametrizing the coset SO(p+ 3, 3)/SO(p+ 3)×

SO(3) ≡ C(p + 3, 3) by means of the 3(p + 3) dimensional solvable subalgebra Ks

of SO(p + 3, 3). The importance of this gauge lies in the fact that it enables one to

absorb the (p+ 6) axions that come from the 7D Maxwell fields, and a single dilaton
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that comes from the 7D metric, into the representative of the coset C(p+3, 3) to form

the representative of the enlarged coset C(p+ 4, 4)∗. To do so, we shall first show, in

section 1, how various quantities formally combine to give the enlarged coset structure.

This will involve identifications such as those in (2.78) below. These identifications by

themselves do not furnish a proof of the enlarged coset structure, since one still has

to construct explicitly a parametrization of the enlarged coset which produces these

identifications. In section 2, we shall provide the proof by exploiting the Iwasawa

gauge. In the following we will present the basic idea for the proof of enlarged hidden

symmetry. More details will be given later. To begin with, the Maurer-Cartan form

dVV−1 can be decomposed into two parts:

P = dVV−1 +
(
dVV−1

)T
, Q = dVV−1 −

(
dVV−1

)T
. (2.73)

where V is the coset representative given in (2.88). The bosonic sector of the 6D

Lagrangian that contains the (4p+4) scalar fields, which we call LG/H , will then take

the form

e−1LG/H = −1
4
∂µϕ∂

µϕ− 1
8
tr
(
dVV−1

) (
dVV−1 + (dVV−1)T

)
−1

4
e2ϕ(V∂µΦ)T (V∂µΦ) . (2.74)

where ϕ is a dilaton and Φ are p + 3 axions. More explicitly, this can be written as

(2.98). The idea is now to combine the dilaton and axionic scalar field strengths with

the scalar field strengths for SO(p+3)/SO(p)×SO(3) to express them all as the scalar

field strengths of the enlarged coset SO(p+ 4, 4)/SO(p+ 4)× SO(4). The resulting

Lagrangian LG/H then can be rewritten as the SO(p+4, 4)/SO(p+4)×SO(4) sigma

∗In general, the solvable subalgebra K̂s ⊂ SO(p + k + 1, k + 1) decomposes into
the generators Ks ⊂ SO(p + k, k), and (p + 2k) generators corresponding to axions
and a single generator corresponding to a dilaton.
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model

e−1LG/H = −1
8
tr
(
dV̂V̂−1

)(
dV̂V̂−1 + (dV̂V̂−1)T

)
(2.75)

where V̂ is defined as V with the 3-valued indices replaced by 4-valued ones, (2.89).

This can in turn be written as the second line of (2.102). As to the fermionic sector,

for example, when we look at the covariant derivative

Dµχ =
(
Dµ(ω) + 1

4
Qij
µ σij + i

2
P iµσi

)
χ (2.76)

which follows from the circle reduction of the 7D theory, we observe that it contains

the composite SO(3)R connections shifted by the positive torsion term ( i
2
P iµσi) where

P iµ = P̂ i,N+4
µ . By introducing the SO(4) Dirac matrices, Γîĵ, as defined in (2.85) the

covariant derivative are then given by

Dµχ =
(
∇ν + 1

4
ωµ

abγab + 1
4
Q̂îĵ
µ Γîĵ

)
χ, (2.77)

which transform under the SO(4)R symmetry group.

1. Hidden Symmetry in the Symmetric Gauge

The structure of the Lagrangian and transformation rules presented above readily

suggest the identifications P̂ ir = P ir, Q̂ij = Qij, Q̂rs = Qrs and
P̂ 4r

P̂ i,N+4

P̂ 4,N+4

 =


P r

P i

−∂ϕ

 ,

(
Q̂4i

Q̂N+4,r

)
=

(
P i

P r

)
(2.78)
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for the components of the Maurer-Cartan form, Ĉijr′ = Cijr′ , Ĉirr′ = Cirr′ and the

following identifications 
Ĉ4ir′

Ĉ4rr′

Ĉi,N+4,r′

Ĉ4,N+4,r′

 =


Sir

′

Srr
′

−Sir′

0

 , (2.79)

where Ĉijr′ = 1√
2
εijk Ckr′ , for the gauge functions. Note that the hat notation here

does not refer to higher dimensions but rather they denote objects which transform

under the enlarged symmetry groups. With these identifications the Lagrangian sim-

plifies dramatically. The bosonic part takes the form

e−1LB = 1
4
R− 1

4
(∂µσ)2 − 1

12
e2σGµνρG

µνρ − 1
8
eσF r′

µνF
µνr′

−1
4
P̂ îr̂
µ P̂

µ

îr̂
− 1

8
e−σĈ îĵr′Ĉîĵr′ , (2.80)

and the fermionic part is given by

e−1LF = − i
2
ψ̄µγ

µνρDνψρ − i
2
χ̄γµDµχ− i

2
λ̄r
′
γµDµλr′ − i

2
ψ̄r̂γµDµψ

r̂ (2.81)

− i
2
χ̄γµγνψµ∂νσ − 1

2
ψ̄r̂γµγνΓ̄îψµP̂

îr̂
ν + i

24
eσGµνρX

µνρ

− i
4
eσ/2F r′

µνX
µν
r′ − e

−σ/2Ĉîr̂r′λ̄
r′Γîψr̂

− i
4
e−σ/2Ĉ îĵr′

(
λ̄r
′
Γîĵγ

µψµ + λ̄r
′
Γîĵχ

)
, (2.82)

where î = 1, ..., 4, r̂ = 1, ..., p+ 4, we have defined ψN+4 = ψ, and

Xµνρ = ψ̄λγ[λγ
µνργτ ]ψ

τ + ψ̄λγ
µνργλχ− χ̄γµνρχ+ λ̄r

′
γµνρλr′ + ψ̄r̂γµνρψr̂ ,

Xµν
r′ = ψ̄ργ

µνγρλr′ + χ̄γµνλr′ . (2.83)
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The covariant derivatives are defined as

Dµ


ψµ

χ

λr
′

 =
(
∇ν + 1

4
ωµ

abγab + 1
4
Q̂îĵ
µ Γîĵ

)
ψν

χ

λr
′

 ,

Dµψ
r̂ =

(
∂µ + 1

4
ωµ

abγab + 1
4
Q̂îĵ
µ Γ̄îĵ

)
ψr̂ + Q̂r̂ŝ

µ ψŝ . (2.84)

The SO(4) Dirac matrices have been introduced in the above formula with the con-

ventions

Γî = (σi,−i) , Γ̄î = (σi, i) , Γîĵ = Γ[̂iΓ̄ĵ] , Γ̄îĵ = Γ̄[̂iΓĵ] . (2.85)

It is useful to note that ψ̄r̂Γ̄îε = −ε̄Γîψr̂. Looking more closely at the covariant

derivatives

Dµχ =
(
Dµ(ω) + 1

4
Qij
µ σij + i

2
P iµσi

)
χ ,

Dµψ
r̂ =

(
Dµ(ω) + 1

4
Qij
µ σij − i

2
P iµσi

)
ψr̂ + Q̂r̂ŝ

µ ψŝ , (2.86)

we observe that they transform covariantly under the composite local Sp(1)R trans-

formations inherited from 7D, and that they contain the composite Sp(1)R connec-

tions shifted by the positive torsion term ( i
2
P iσi) in the case of fermions that are

doublets under the true Sp(1)R symmetry group in 6D, namely (ψµ, χ, λ
r′), and

the negative torsion term (− i
2
P iσi) in the case of ψr̂, which are singlets under this

symmetry. By true Sp(1)R symmetry group in 6D we mean the SO(3)R symmetry

group that emerges upon the recognition of the scalar field couplings as being de-

scribed by the quaternionic Kahler coset SO(p + 1, 4)/SO(p + 1) × SO(4) in which

SO(4) ∼ SO(3) × SO(3)R. The action of this group is best seen by employing the

Iwasawa gauge, as we shall see in the next subsection. The action is invariant under
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the following 6D supersymmetry transformations

δemµ = iε̄γmψµ,

δψµ = Dµε− 1
24
eσγρστγµGρστ ε ,

δχ = −1
2
γµ∂µσε− 1

12
eσγρστGρστ ε ,

δBµν = ie−σ
(
ε̄γ[µψν] + 1

2
ε̄γµνχ

)
− Ar′[µδAr

′

ν],

δσ = −iε̄χ ,

δAr
′

µ = ie−σ/2ε̄γµλ
r′ ,

δλr
′

= −1
4
eσ/2γµνF r′

µνε+ 1
2
e−σ/2Ĉ îĵr′Γîĵε ,

L̂î
ÎδL̂Î

r̂ = −ε̄Γîψ
r̂ ,

δψr̂ = i
2
γµP̂ îr̂

µ Γ̄îε . (2.87)

The relation between the supersymmetric variation of the enlarged coset representa-

tive and those involving the SO(n, 3)/SO(n)×SO(3) coset representative, the dilaton

and axions is similar to the relations in (3.32) for the corresponding Maurer-Cartan

forms, and field strengths, since L−1dL has the same decomposition as L−1δL. Finally,

we note that the above results for the matter coupled gauged N = (1, 0) supergravity

in 6D are in accordance with the results given in [24].

2. Hidden Symmetry in the Iwasawa Gauge

a. The Ungauged Sector

In order to comply with the standard notation for the Iwasawa decomposition of

SO(p, q), we switch from our coset representative to its transpose as L = VT . Fol-
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lowing [25, 26], we then parametrize the coset SO(p+ 3, 3)/SO(p+ 3)× SO(3) as

V = e
1
2
~ϕ· ~HeC

i
jEi

j

e
1
2
AijV

ij

eB
irUir , i = 1, ..., 3 , r = 1, ..., p , (2.88)

where
(
Uir, V

ij, Ei
j, ~H

)
with i < j and V ij = −V ji, are the generators of the 3(p+3)

dimensional solvable subalgebra of SO(p+ 3, 3) multiplying the corresponding scalar

fields and ~ϕ · ~H stands for ϕiHi. Using the commutation rules of the generators given

in Appendix D, one finds [25]

V =


e

1
2
~ci·~ϕ γj i e

1
2
~ci·~ϕ γkiB

s
k e

1
2
~ci·~ϕ γki

(
Akj + 1

2
Bq

k B
q
j

)
0 δrs Br

j

0 0 e−
1
2
~ci·~ϕ γ̃ij

 , (2.89)

where ~ci is defined in (D.5), and

γ̃ij = δij + Ci
j , γik γ̃

k
j = δij . (2.90)

The inverse of V can be computed from the defining relation VTΩV = Ω and is given

by:

V−1 =


e−

1
2
~cj ·~ϕ γ̃j i −Bs

i e
1
2
~cj ·~ϕ γkj

(
Aki + 1

2
Bq

k B
q
i

)
0 δrs −e 1

2
~cj ·~ϕ γkj B

r
k

0 0 e
1
2
~cj ·~ϕ γij

 . (2.91)

In equations (2.89) and (2.91) the indices (i, r) label the rows and (j, s) label the

column. The Iwasawa gauge means setting the scalars corresponding to the maximal

compact subalgebra equal to zero. Under the action of the global G transformations

from the right, the coset representative will not remain in the Iwasawa gauge but

can be brought back to that form by a compensating h transformation from the left,

namely, Vg = hV ′. The Maurer-Cartan form dVV−1 can be decomposed into two
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parts one of which transforms homogeneously under h and the other one transforms

as an h-valued gauge field:

P = dVV−1 +
(
dVV−1

)T
: P → hPh−1 ,

Q = dVV−1 −
(
dVV−1

)T
: Q → dhh−1 + hQh−1 . (2.92)

Both of these are, of course, manifestly invariant under the global g transformations.

The key building block in writing down the action in Iwasawa gauge is the Maurer-

Cartan form [25]

∂µVV−1 = 1
2
∂µ~ϕ · ~H +

∑
i<j

(
e

1
2
~aij ·~ϕFµijV

ij + e
1
2
~bij ·~ϕF iµjEij

)
+
∑
i,r

FµirU
ir , (2.93)

where ~aij and ~bij are defined in (D.5) and

Fµij = γkiγ
`
j (∂µAk` −Bq

k∂µB
q
`) ,

Fµir = γj i∂µBjr ,

F iµj = γkj∂µC
i
k , (2.94)

and it is understood that i < j. Other building blocks for the action are the field

strengths for the axions defined as

V∂µΦ =


Fµi

F r
µ

F iµ

 , Φ =


Ai

Br

Ci

 , (2.95)

where Ai and Br form a (p+3) dimensional representation of SO(p+3) ⊂ SO(p+3, 3),

and

Fµi = γj i
(
∂µAj +Br

j∂µB
r + Ajk∂µC

k + 1
2
Br

jB
r
k∂µC

k
)
,
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F r
µ = ∂µB

r +Br
i∂µC

i ,

F iµ = γ̃ij ∂µC
j . (2.96)

With these definitions, the bosonic part of our 6D Lagrangian that contains the

(4p+ 4) scalar fields, which we shall call LG/H , takes the form

e−1LG/H = −1
4
∂µϕ∂

µϕ− 1
8
tr
(
dVV−1

) (
dVV−1 + (dVV−1)T

)
−1

4
e2ϕ(V∂µΦ)T (V∂µΦ) . (2.97)

More explicitly, this can be written as [25]

e−1LG/H = −1
4
∂µϕ∂

µϕ− 1
8

∑
i<j

(
e~aij ·~ϕFµijF

µij + e
~bij ·~ϕFµijFµij

)
−
∑
i,r

1
8
e~ci·~ϕFµirF

µir

−1
4
e2ϕ
(
e~ci·~ϕFµiF

µi + e−~ci·~ϕF iµF
µ
i + F r

µF
µ
r

)
. (2.98)

The idea is now to combine the dilaton and axionic scalar field strengths (2.96) with

the scalar field strengths for SO(p + 3)/SO(p) × SO(3) defined in (2.94) to express

them all as the scalar field strengths of the enlarged coset SO(p+ 4, 4)/SO(p+ 4)×

SO(4). As is well known, this is indeed possible and to this end we need to make the

identifications

Fµi = 1√
2
Fµi4 ,

F r
µ = 1√

2
F r
µ4 ,

F iµ = 1√
2
F iµ4 . (2.99)
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The quantities on the right hand side are restrictions of the Maurer-Cartan form

based on the enlarged coset SO(p+ 4, 4)/SO(p+ 4)× SO(3) defined as

∂µV̂V̂−1 = 1
2
∂µϕ

αHα +
∑
α<β

(
e

1
2
~aαβ ·~ϕFµαβV

αβ + e
1
2
~bαβ ·~ϕFαµ βEαβ

)
+
∑
α,r

e
1
2
~cα·~ϕFµαrU

αr ,

(2.100)

where V̂ is defined as in (2.89) and (Fµαβ,Fαµ β, Fµαr) as in (2.94), and ~aαβ,~bαβ,~cα

as in (D.5), with the 3-valued indices replaced by the 4-valued indices everywhere.

Equations (3.34) have a solution given by

Ai = 1√
2

(
Ai4 − AijγjkCk

4 − 1
2
Br

iB
r
4 + 1

2
Br

iB
r
jγ

j
kC

k
4

)
,

Br = 1√
2

(
Br

4 −Br
iγ
i
jC

j
4

)
,

Ci = 1√
2
γijC

j
4 ,

ϕ = 1√
2
ϕ4 . (2.101)

The identifications (3.34) (where r → r, i), together with (2.69), (2.95), (2.100),

(2.93), (2.67) (with Aµ = 0), (2.92) and (D.5) (defined for 3-valued and 4-valued

indices similarly), provide the proof of (3.32) used to show the hidden symmetry.

Using (3.34), the Lagrangian LG/H can be written as the SO(p + 4, 4)/SO(p + 4) ×

SO(4) sigma model:

e−1LG/H = −1
8
tr
(
dV̂V̂−1

)
∧
(
dV̂V̂−1 + (dV̂V̂−1)T

)
↔ −1

8
∂µϕ

α∂µϕα − 1
8

∑
α<β

(
e~aαβ ·~ϕFαβ

µ F µ
αβ + e

~bαβ ·~ϕFµα
βFµαβ

)
−1

8

∑
α,r

e~cα·~ϕFµαrF
µαr , (2.102)

where aαβ, bαβ, cα are defined as in (D.5) with the indices i, j = 1, 2, 3 replaced by

α, β = 1, ..., 4.
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b. Gauging and the C-functions

In order to justify the identifications (2.79) of the S-functions as certain components

of the C-functions associated with the enlarged coset space, we need to study these

functions in the Iwasawa gauge. Of the four supergravity models in 6D that have

nonvanishing gauge functions, two of them, namely models (II) and (IV), see section

3.2, are coupled to one special linear multiplet and as such they deserve separate

treatment. In both of these cases, the gauge functions obey the relations (2.72). We

begin by showing how these relations follow from the C-functions associated with the

U(1)R or Sp(1)R gauged SO(4, 1)/SO(4) sigma model. The coset representative for

SO(4, 1)/SO(4) in the Iwasawa gauge takes the form

V =


eϕ eϕΦi 1

2
eϕΦ2

0 δij Φi

0 0 e−ϕ

 , (2.103)

where Φ2 = ΦiΦi. Note that we have made the identification B1r → Φi already.

Given that the Sp(1)R or U(1)R generators T r
′

are of the form

T r
′
=


0 0 0

0 T r
′

0

0 0 0

 , (2.104)

we find that the C function based on the enlarged coset is given by

Cr′ = VT r′V−1 =


0 −T r′ij Φj 0

0 T r
′

ij −T r′ij Φj

0 0 0

 . (2.105)
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Comparing with the relations given in (2.72), and recalling that T r
′

ij ∼ εr′ij, we see

that indeed the projection of the C function based on the enlarged coset as defined

above does produce the C and S functions obtained from the chiral reduction, as

was assumed in the previous section in (2.79). In the notation of Appendix D, the C

function is obtained from projection by Tij, and the S-function from projection by Ui.

Next, we consider the remaining two supergravities with nontrivial gauge function,

namely models (V) and (VI), see section 3.2, with hidden symmetry chains shown in

(2.57) and (2.60). Prior to uncovering the hidden symmetry, the C and S functions

occurring in the Lagrangian (2.63) and in the supersymmetry transformations (2.66)

are Cijr′ , Cirr′ , Sir
′
and Srr

′
. Using (2.70), and the fact that fr′I

J ∼ (Tr′)I
J , we deduce

the definitions

~Cr′(H) = tr
(
VT r′V−1

)
~H ,

Ci
jr′(E) = tr

(
VT r′V−1

)
Ei

j ,

Cij
r′(V ) = tr

(
VT r′V−1

)
V ij ,

Cir
r′(U) = tr

(
VT r′V−1

)
Uir , (2.106)

for the C functions in the coset direction,

Cijr′(X) = tr
(
VT r′V−1

)
X ij , (2.107)

for the C function in the SO(3) direction, and

Sr
′
=


Sr′i

Srr
′

Sir
′

 =
√

2 eϕ VT r′Φ , (2.108)
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for the S functions. For SO(p, q)/SO(p)×SO(q) with p ≥ q, we have i = 1, ..., q and

r = 1, ..., p − q. To show that the C and S functions defined above combine to give

the Ĉ functions for the enlarged coset, we begin with the observation that the gauge

group lies in the H i and Trs directions. Thus we can denote the full gauge symmetry

generator that acts on the enlarged coset representative V as

T r
′
=


Hr′ 0 0

0 T r
′

0

0 0 Hr′

 , (2.109)

where Hr′

αβ (α, β = 1, ..., q+1) is symmetric and T r
′

rs(r, s = 1, ..., p−q) is antisymmetric.

Defining the C functions for the coset SO(p + 1, q + 1)/SO(p + 1) × SO(q + 1) as

in (2.106) with the index i = 1, ..., q replaced by α = 1, ..., q + 1 and T r
′

defined in

(2.109), we find

~Cr′(H) = γγαH
r′

γ
δ γ̃αδ ~cα ,

Cβ
α
r′(E) = e

1
2

(~cα−~cβ)·~ϕ γγαH
r′

γ
δ γ̃βδ ,

Cαβr′(V ) = e
1
2

(~cα−~cβ)·~ϕ γγ [α γ
δ
β]

(
Hr′

γ
η(Aδη + 1

2
Br
δB

r
η)− T r

′

rsB
r
γB

s
δ

)
,

Cαr
r′(U) = −e

1
2
~cα·~ϕ γβα

(
Hr′

β
γ Bγr + T r

′

rsBβ
s
)
. (2.110)

Using (2.101), the above quantities reduce to those for the SO(p+ 3, 3)/SO(p+ 3)×

SO(3) coset upon restriction of the 4-valued α, β indices to 3-valued (i, j) indices,

C4r′(H) = 0 and

Cr′

4i(E) =
√

2eϕSr′ i ,

Cr′

4i(V ) =
√

2eϕSr
′
i ,
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Cr′

4r(U) = −
√

2eϕSr
′
r . (2.111)

These identifications, upon comparing the definitions (2.106), (2.107) and (2.108)

with (2.70), provide the proof of the relations (2.79) used in showing the hidden

symmetry. In doing so, note that Cirr′ → (Cirr′ , Ci,jr′) and Srr
′ → (Srr

′
,S ir′) and

that Ci,jr′ has components in the ( ~H,E, V, U,X) directions. Note also that, having

proven the relations for the Maurer-Cartan form, (3.32), and the C-functions, (2.79),

it follows that not only the bosonic part of the 6D Lagrangian, (2.80), but also its

part that contains the fermionic part, namely (2.82), exhibits correctly the enlarged

coset structure. Moreover, the relation between the supersymmetric variation of

the enlarged coset representative and those involving the SO(n, 3)/SO(n) × SO(3)

coset representative, the dilaton and axions is similar to the relations in (3.32) for

the corresponding Maurer-Cartan forms, and field strengths, since L−1dL has the

same decomposition as L−1δL. This concludes the demonstration of the enlarged

coset structure in the 6D models with nontrivial gauge functions. Although the

bosonic field contents and field equations of supergravity theory has been formulated

by solvable Lie algebra [27, 28, 29], the feature of enlarged hidden symmetry using

the Iwasawa gauge has not been shown as far as we know. Here we have shown in

the full model, including the fermionic sector, how the scalar fields can be combined

to parametrize an enlarged coset SO(p+ 1, 4)/SO(p+ 1)SO(4).

E. Comments

We have reduced the half-maximal 7D supergravity with specific noncompact gaug-

ings coupled to a suitable number of vector multiplets on a circle to 6D and chirally

truncated it to N = (1, 0) supergravity such that a R-symmetry gauging survives.

These are referred to as the SO(3, 1), SO(3, 2) and SO(2, 2) models, and their field
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content and gauge symmetries are summarized in Chapter I. These models, in par-

ticular, feature couplings to p hypermultiplets whose scalar fields parametrize the

coset SO(p, 3)/SO(p) × SO(3), a dilaton and (p + 3) axions, for p ≤ 1. The value

of p is restricted in the case of chiral circle reductions that maintain R-symmetry

gauging, but it is arbitrary otherwise. We have exhibited in the full model, includ-

ing the fermionic contributions, how these fields can be combined to parametrize an

enlarged coset SO(p+ 1, 4)/SO(p+ 1)× SO(4) whose abelian isometries correspond

to the (p + 3) axions. Our results for the R-symmetry gauged reduction of certain

noncompact gauged 7D supergravities are likely to play an important role in finding

the string/M-theory origin of the gauged and anomaly-free N = (1, 0) supergravities

in 6D which has been a notoriously challenging problem so far. This is due to the fact

that at least two of the 7D models we have encountered, namely the SO(3, 1) and

SO(2, 2) gauged 7D models, are known to have a string/M-theory origin. Therefore,

what remains to be understood is the introduction of the matter couplings in 6D that

are needed for anomaly freedom. A natural approach for achieving this is to associate

our chiral reduction with boundary conditions to be imposed on the fields of the 7D

model formulated on a manifold with boundary [30].
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CHAPTER III

SUPERSYMMETRIC SOLUTIONS OF GAUGED 6D SUPERGRAVITY∗

The issue to be addressed in this chapter is to find the general supersymmetric so-

lutions in general matter coupled 6D, N = (1, 0) supergravity, including hypermulti-

plets, which has been studied in [9, 10], in the absence of hypermultiplets. A useful

strategy is to use G-structure method to classify supersymmetric solutions in super-

gravity theories. To do so, we use at least one nonvanishing Killing spinor to begin

with. The Killing spinor is defined to be the spinor of the supersymmetry trans-

formations which satisfies the vanishing of the supersymmetric variations of all the

spinors. The advantage of seeking such Killing spinors is that they lead to first order

equations, which are much easier than the second order field equations, and their

integrability conditions imply most of the field equations and Bianchi identities satis-

fied automatically. In the following, we will present the basic idea of the G-structure

method. More details will be given later. We first construct nonvanishing fermionic

bilinears from commuting symplectic-Majorana Killing spinor εA

ε̄AΓµε
B ≡ V AB

µ , (3.1)

ε̄AΓµνρε
B ≡ Xr

µνρT
AB
r , (3.2)

where T r are SU(2) generators. These bilinears prove to be convenient in analyzing

the necessary and sufficient conditions for the existence of Killing spinors. From the

Fierz identity Γµ(αβΓµγ)δ = 0, it follows that V µVµ = 0, so Vµ is null. Multiplying

δψµ = 0, (3.34), which defines Killing spinors, with ε̄Γν and using (3.1), we find

∗Reprinted from Journal of High Energy Physics, Vol 11, Der-Chyn Jong et al.,
6D Dyonic String with Active Hyperscalars, Copyright 2006, with permission from
IOP, http://www.iop.org/journals/jhep.
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∇(µVν) = 0. Thus, Vµ is a null Killing vector admitted by the metric which is part of

a supersymmetric solution. This then helps in parametrizing the metric as

ds2 = 2H−1(du+ β)

(
dv + ω +

F
2

(du+ β)

)
+Hds2

B , (3.3)

where ds2
B is the metric on the base space B, β and ω are 1-forms on B, and H is a

harmonic function. Examining the other vanishing of the supersymmetry variations

of the other fermions, as we will show in section B, they lead to the 2-form field

strength∗

F I = −e−
1
2
ϕCIrIr + F̃ I + V ∧ ωI , (3.4)

where F̃ I is self-dual, and the anti-selfdual part of three-form field strength

e
1
2
ϕG− = 1

2
(1− ?)

[
V ∧ e− ∧ dϕ+ V ∧K

]
, (3.5)

where ? is the Hodge-dual, K is self-dual. Moreover, the differential conditions for

hyperscalars and dilaton are given by (3.58) and (3.59) respectively. We next show

that with the integrability conditions, (3.66)-(3.69), for the existence of killing spinors,

most of the equations of motion are satisfied automatically, except the following

R++ = J++ , Dµ(e
1
2
ϕF Iµ

+) = J I+ , Dµ(eϕGµνρ) = 0 , (3.6)

as well as the Bianchi identities

DF I = 0, dG = 1
2
F I ∧ F I . (3.7)

We then apply above framework to find new exact solution which is particularly

interesting because the scalars of a hypermultiplet are nonvanishing. Indeed, we

∗The Hodge-dual of a p-form, F = 1
p!
dxµ1 ∧ · · · dxµpFµ1...µp , is calculated using,

∗(dxµ1 ∧ · · · dxµp) = 1
(D−p)! εν1...νD−p

µ1...µp dxν1 · · · dxνD−p .
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activate only four hyperscalars, and set all the rest equal to zero. The model ef-

fectively reduces to one in which the hyperscalars are described by 4-hyperboloid

H4 = SO(4, 1)/SO(4). The most important key step in constructing the solution is

the identity map between the 4-dimensional scalar coset quaternionic structures and

the transverse internal space quaternionic structures,

J̃r = Jr. (3.8)

The idea behind this identity map is the same as the 2-dimensional analog of the

Gell-Mann-Zwiebach tear-drop solution [31]. In N = 2, D = 10 supergravity theory,

the relevant field equations are

Rµ̂ν̂(g) =
1

2
hαβ∂µ̂φ

α∂ν̂φ
β, µ̂ = 0, 1, ..., 9 (3.9)

∇µ̂(g)∂µ̂φα = 0, α = 1, 2 (3.10)

where xµ̂ = (xµ, yi), i = 1, 2, and hαβ(φ) is the scalar manifold metric which can be

put into the conformally flat form

hαβ(φ) =
4δαβ

[1− (φ1)2 − (φ2)2]2
. (3.11)

The Gell-Mann-Zwiebach solution uses the identity map,

φα = yiδαi . (3.12)

Since hαβ is a metric of constant negative curvature and the background metric gij

is positively curved, instead of equating the two metrics h and g, Gell-Mann and

Zwiebach proceed to set

gij = Ω2δij, (3.13)
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where Ω2 is a conformal factor. They find that (3.9) and (3.10) are satisfied provided

that Ω2 = 4a2(1− y2
1 − y2

2) where a is not determined by equations of motion. Thus,

the total metric is

ds2 = dxµdxνηµν + 4a2(1− y2
1 − y2

2)dyidyjδij. (3.14)

The internal space which has an axial symmetry is known as the tear-drop space. In

our case, dyonic string solution in 6D, the tear-drop is four-dimensional, and the full

solution is

ds2 = e−
1
2
ϕ+e−

1
2
ϕ−(−dt2 + dx2) + e

1
2
ϕ+e

1
2
ϕ−

(
b

y2

)2

h2/3 dyαdyβ δαβ , (3.15)

eϕ = eϕ+/eϕ− , φα =
ayα

y2
, (3.16)

Arα =
4

3y2
ρrαβy

β , (3.17)

Gαβγ =
8

27(y2)2
εαβγδ y

δ , G+−α = −∂αe−ϕ+ , (3.18)

where a and b are integration constants, ϕ± and h are given in (3.117) and (3.118)

respectively. Moreover, while in Gell-Mann-Zwiebach solution only the metric and

2-scalars are activated, we emphasize that in our solution we activate dilaton, 4

hyperscalars, two-form and three-form field strengths as well. An interesting property

of our dyonic string solution is that while its electric charge is arbitrary, its magnetic

charge is fixed in Planckian units, and hence it is necessarily non-vanishing. We also

determine the source term needed to balance a delta function type singularity at the

origin. Moreover, the solution is shown to have 1/4 supersymmetric AdS3 × S3 near

horizon limit where the radii are proportional to the electric charge. Now, we turn to

a detailed description of our results outlined above.
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A. The Model

1. Field Content and the Quaternionic Kahler Scalar Manifold

The six-dimensional gauged supergravity model we shall study involves the combined

N = (1, 0) supergravity plus anti-selfdual supermultiplet (gµν , Bµν , ϕ, ψ
A
µ+, χ

A
−), Yang-

Mills multiplet (Aµ, λ
A
+) and hypermultiplet (φα, ψa−). All the spinors are symplectic

Majorana-Weyl, A = 1, 2 label the doublet of the R symmetry group Sp(1)R and

a = 1, ..., 2nH labels the fundamental representation of Sp(nH). The chiralities of the

fermions are denoted by ±∗. The hyperscalars φα, α = 1, ..., 4nH parameterize the

coset Sp(nH , 1)/Sp(nH) ⊗ Sp(1)R. This choice is due to its notational simplicity.

Our formulae can straightforwardly be adapted to more general quaternionic coset

spaces G/H whose list can be found, for example in [32]. In this paper, we gauge the

group

K × Sp(1)R ⊂ Sp(nH , 1) , K ⊆ Sp(nH) . (3.19)

The group K is taken to be semi-simple, and the Sp(1)R part of the gauge group can

easily be replaced by its U(1)R subgroup. We proceed by defining the basic building

blocks of the model constructed in [33] in an alternative notation. The vielbein V aA
α ,

the Sp(nH) composite connection Qab
α and the Sp(1)R composite connection QAB

α on

the coset are defined via the Maurer-Cartan form as

L−1∂αL = V aA
α TaA + 1

2
Qab
α Tab + 1

2
QAB
α TAB , (3.20)

∗We use the spacetime signature (−+ + + ++) and set ε+−ijkl = εijkl. We define
Γ7 = Γ012345. The supersymmetry parameter has the positive chirality: Γ7 ε = ε.
Thus, Γµνρ = 1

6
εµνρσλτ Γσλτ Γ7, and for a self-dual 3-form we have SµνρΓ

µνρε = 0.
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where L is the coset representative, (Tab, TAB, iTaA) ≡ TÂB̂ obey the Sp(nH , 1) algebra

[TÂB̂, TĈD̂] = −ΩB̂ĈTÂD̂ − ΩÂĈTB̂D̂ − ΩB̂D̂TÂĈ − ΩÂD̂TB̂Ĉ ,

ΩÂB̂ =

 εAB 0

0 Ωab

 . (3.21)

The generator TaA is hermitian and (TAB, Tab) are anti-hermitian. The vielbeins obey

the following relations:

gαβV
α
aAV

β
bB = ΩabεAB , V α

aAV
βaB + α↔ β = gαβδBA , (3.22)

where gαβ is the metric on the coset. Another useful definition is that of the three

quaternionic Kahler structures given by

V A
αaV

aB
β − A↔ B = 2JABαβ . (3.23)

Next, we define the components of the gauged Maurer-Cartan form as

L−1DµL = P aA
µ TaA + 1

2
Qab
µ Tab + 1

2
QAB
µ TAB , (3.24)

where

DµL =
(
∂µ − AIµT I

)
L , (3.25)

AIµ are the gauge fields of K × Sp(1)R. All gauge coupling constants are set equal to

unity for simplicity in notation. They can straightforwardly be re-instated. We also

use the notation

T I = (T I
′
, T r) , Tr = 2TABr TAB , T rAB = − i

2
σrAB , r = 1, 2, 3 . (3.26)
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The components of the Maurer-Cartan form can be expressed in terms of the covariant

derivative of the scalar fields as follows [34]

P aA
µ = (Dµφ

α)V aA
α , Qab

µ = (Dµφ
α)Qab

α − Aabµ , QAB
µ = (Dµφ

α)QAB
α − AABµ ,

(3.27)

where

Dµφ
α = ∂µφ

α − AIµKIα , (3.28)

and KI(φ) are the Killing vectors that generate the K × Sp(1)R transformations on

G/H. Other building blocks to define the model are certain C-functions on the coset.

These were defined in [35], and studied further in [34] where it was shown that they

can be expressed as

L−1T IL ≡ CI = CIaATaA + 1
2
CIABTAB + 1

2
CIabTab . (3.29)

Differentiating and using the algebra (3.21) gives the useful relation

DµC
I =

(
P a
µBC

IAB + Pµb
ACIab

)
TaA + P aA

µ CI
a
B TAB + P aA

µ CIb
A Tab . (3.30)

Moreover, using (3.24) and (3.27) we learn that

KIαV aA
α = CIaA , KIαQab

α = CIab − δII′T abI′ , KIαQAB
α = CIAB − δIr TABr .

(3.31)

Finally, it is straightforward and useful to derive the identities

D[µP
aA
ν] = −1

2
F I
µνC

IaA , (3.32)

P aA
[µ P

b
ν]A = 1

2
Qab
µν + 1

2
F I
µνC

Iab , (3.33)

P aA
[µ Pν]a

B = 1
2
QAB
µν + 1

2
F I
µνC

IAB . (3.34)
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2. Field Equations and Supersymmetry Transformation Rules

The Lagrangian for the anomaly free model we are studying can be obtained from

[33] or [35]. We shall use the latter in the absence of Lorentz Chern-Simons terms and

Green-Schwarz anomaly counterterms. Thus, the bosonic sector of the Lagrangian is

given by [35]

e−1L = R − 1
4
(∂ϕ)2− 1

12
eϕGµνρG

µνρ− 1
4
e

1
2
ϕ F I

µν F
Iµν −2P aA

µ P µ
aA−4 e−

1
2
ϕCI

ABC
IAB ,

(3.35)

where the Yang-Mills field strength is defined by F I = dAI + 1
2
f IJKAJ ∧ AK and G

obeys the Bianchi identity

dG = 1
2
F I ∧ F I . (3.36)

The bosonic field equations following from the above Lagrangian are [35]

Rµν = 1
4
∂µϕ∂νϕ+ 1

2
e

1
2
ϕ (F 2

µν − 1
8
F 2 gµν) + 1

4
eϕ (G2

µν − 1
6
G2 gµν)

−2P aA
µ PνaA + e−

1
2
ϕ(CI

ABC
IAB) gµν ,

ϕ = 1
4
e

1
2
ϕ F 2 + 1

6
eϕG2 − 4 e−

1
2
ϕCI

ABC
IAB

Dρ(e
1
2
ϕ F Iρ

µ) = 1
2
eϕ F IρσGρσµ + 4P aA

µ CI
aA ,

∇ρ (eϕGρ
µν) = 0 ,

DµP
µaA = 4e−

1
2
ϕCIABCIa

B , (3.37)

where we have used a notation V 2
µν = Vµλ2...λpVν

λ2...λp and V 2 = gµνVµν for a p-form

V , and F 2 = F I
µνF

µνI . The local supersymmetry transformations of the fermions,

up to cubic fermion terms that will not effect our results for the Killing spinors, are
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given by [35]

δψµ = Dµε+ 1
48
e

1
2
ϕG+

νσρ Γνσρ Γµ ε , (3.38)

δχ = 1
4

(
Γµ∂µϕ− 1

6
e

1
2
ϕG−µνρ Γµνρ

)
ε , (3.39)

δλIA = −1
8
F I
µνΓ

µνεA − e−
1
2
ϕCI

AB εB , (3.40)

δψa = P aA
µ ΓµεA , (3.41)

where DµεA = ∇µεA+QµA
BεB, with ∇µ containing the standard torsion-free Lorentz

connection only. The transformation rules for the gauge fermions differ from those in

[33] by a field redefinition.

B. Killing Spinor Conditions

The Killing spinor in the present context is defined to be the spinor of the supersym-

metry transformations which satisfies the vanishing of the supersymmetric variations

of all the spinors in the model. The well known advantage of seeking such spinors is

that the necessary and sufficient conditions for their existence are first order equa-

tions which are much easier than the second order field equations, and moreover, once

they are solved, the integrability conditions for their existence can be shown to imply

most of the field equations automatically. In deriving the necessary and sufficient

conditions for the existence of Killing spinors, it is convenient to begin with the con-

struction of the nonvanishing fermionic bilinears, which provide a convenient tool for

analyzing these conditions. In this section, firstly the construction and analysis of

the fermionic bilinears are given, and then all the necessary and sufficient conditions

for the existence of Killing spinor are derived.
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1. Fermionic Bilinears and Their Algebraic Properties

There are only two nonvanishing fermionic bilinears that can be constructed from

commuting symplectic-Majorana spinor εA. These are:

ε̄AΓµε
B ≡ V AB

µ ,

ε̄AΓµνρε
B ≡ Xr

µνρT
AB
r . (3.42)

Note that Xr is a self-dual three-form due to chirality properties. From the Fierz

identity Γµ(αβΓµγ)δ = 0, it follows that

V µVµ = 0 , iVX
r = 0 . (3.43)

Introducing the orthonormal basis

ds2 = 2e+e− + eiei , (3.44)

and identifying

e+ = V , (3.45)

the equation iVX
r = 0 and self-duality of Xr yield

Xr = 2V ∧ Ir , (3.46)

where

Ir = 1
2
Irij e

i ∧ ej (3.47)

is anti-self dual in the 4-dimensional metric ds2
4 = eiei. Straightforward manipula-

tions involving Fierz identities imply that Ir are quaternionic structures obeying the

defining relation

(Ir)ik (Is)kj = εrst(I t)ij − δrsδij . (3.48)
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Finally, using the Fierz identity Γµ(αβΓµγ)δ = 0 once more, one finds that

VµΓµε = Γ+ε = 0 . (3.49)

If there exists more than one linearly independent Killing spinor, one can construct as

many linearly independent null vectors. In this case (3.49) is obeyed by each Killing

spinor and the corresponding null vector, i.e. V 1
µ Γµε1 = 0, V 2

µ Γµε2 = 0, but it may

be that V 1
µ Γµε2 6= 0 and/or V 2

µ Γµε1 6= 0. In that case, (3.49) should be relaxed since

ε should be considered as a linear combination of ε1 and ε2.

2. Conditions From δλI = 0

Multiplying (3.40) with ε̄BΓρ, we obtain

iV F
I = 0 , (3.50)

F IijIrij = 4e−
1
2
ϕCIr . (3.51)

The second has been simplified by making use of (3.50) and (3.46). Multiplying (3.40)

with ε̄BΓλτρ, on the other hand, gives

F I ∧ V + ?(F I ∧ V ) + 2e
1
2
ϕCIrXr = 0 , (3.52)

3
4
F Iσ

[µX
r
νρ]σ + 1

2
εrste−

1
2
ϕCIsX t

µνρ = 0 . (3.53)

One can show that these two equations are identically satisfied upon the use of (3.50)

and (3.51), which, in turn imply that F must take the form

F I = −e−
1
2
ϕCIrIr + F̃ I + V ∧ ωI , (3.54)

where F̃ I = 1
2
F̃ I
ij e

i ∧ ej is self-dual, and ωI = ωIi e
i. Reinstating the gauge coupling

constants, we note that the C-function dependent term will be absent when the
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index I points in the direction of a subgroup of K ⊂ Sp(2nH) under which all the

hyperscalars are neutral. Substituting (3.54) into the supersymmetry transformation

rule, and recalling (3.49), one finds that (3.40) gives the additional conditions on the

Killing spinor (
1
8
IrijΓ

ijδAB − T rAB
)
εB = 0 . (3.55)

The contribution from F̃ drops out due to chirality-duality properties involved. Writ-

ing this equation as Orε = 0, one can check that [Or,Os] = εrstOt. Thus, any two

projection imply the third one. In summary, the necessary and sufficient conditions

for δλI = 0 are (3.54) and (3.55).

3. Conditions From δψa = 0

This time multiplying (3.40) with ε̄B and ε̄BΓλτ gives rise to four equations which can

be shown to imply

V µP aA
µ = 0 , (3.56)

P aA
i = 2(Ir)i

j (T r)AB P
aB
j . (3.57)

Using (3.23) and (3.27), we can equivalently reexpress the second equation above as

Diφ
α = (Ir)i

j (Jr)β
αDjφ

β . (3.58)

Writing (3.57) as P a = OP a, we find that (O − 1)(O − 3) = 0. Thus, (3.57) implies

that P a is an eigenvector of O with eigenvalue one. Moreover, using (3.57) directly

in the supersymmetry transformation rule (3.41), and using the projection condition

(3.55), we find that δψa = 3δψa, and hence vanishing. In summary, the necessary and

sufficient conditions for δψa = 0 are (3.56), (3.57) (or equivalently (3.58)), together

with the projection condition (3.55).
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4. Conditions From δχ = 0

The analysis for this case is identical to that given in [10], so we will skip the details,

referring to this paper. Multiplying (3.39) with ε̄B and ε̄BΓλτ gives four equations

which can be satisfied by

V µ∂µϕ = 0 , (3.59)

and parametrizing G− as

e
1
2
ϕG− = 1

2
(1− ?)

[
V ∧ e− ∧ dϕ+ V ∧K

]
, (3.60)

where ? is the Hodge-dual, K = 1
2
Kij e

i ∧ ej is self-dual. In fact, these two conditions

are the necessary and sufficient conditions for satisfying δχ = 0.

5. Conditions From δψµ = 0

Multiplying (3.38) with ε̄Γν , we find

∇µVν = −1
2
e

1
2
ϕG+

µνρV
ρ , (3.61)

which implies that V µ is a Killing vector. Similarly, multiplying (3.38) with ε̄Γνρσ gives

an expression for ∇σX
r
µνρ. Using (3.61) one finds that this expression is equivalent to

DµI
r
ij = e

1
2
ϕG+k

µ[i I
r
j]k , (3.62)

where DµI
r ≡ ∇µI

r + εrstQs
µI

t. One can use (3.62) to fix the composite Sp(1)R

connection as follows

Qr
µ = 1

4
eϕG

(+)
µij I

rij − 1
8
εrstIsij∇µI

t
ij . (3.63)

Manipulations similar to those in [10] shows that, using (3.55) and (3.61), the variation

δψµ = 0 is directly satisfied, with ε constant, in a frame where Irij are constants. In
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summary, the necessary and sufficient conditions for δψµ = 0 are (3.61), (3.62),

together with the projection condition (3.55).

C. Integrability Conditions for the Existence of a Killing

Spinor

Assuming the Killing spinor conditions derived in the previous section, the attendant

integrability conditions can be used to show that certain field equations are automat-

ically satisfied. Since the field equations are complicated second order equations, it

is therefore convenient to determine those which follow from the integrability, and

identify the remaining equations that need to be satisfied over and above the Killing

spinor conditions. Let us begin by introducing the notation

δψµ = D̃µε , δχ = 1
4
∆ε , δλI = e−

1
2
ϕ∆Iε , δψa = ∆aAεA , (3.64)

for the supersymmetry variations and

Rµν = Jµν , ϕ = J , Dµ(e
1
2
ϕF Iµν) = J Iν , DµP

µaA = JaA , (3.65)

for bosonic field equations. Then we find that

Γµ[D̃µ,∆
I ]εA = 2

[
Dµ(e

1
2
ϕF Iµν)− J Iν

]
Γνε

A

+e
1
2
ϕ
(
DµF

I
νρ

)
ΓµνρεA − 8Γµ

(
DµC

IAB + 2CIa(APµa
B)
)
εB

−2[∆,∆I ]εA + 2e
1
2
ϕF I

µνΓ
µν (δχA) + 16CIaA (δψa) ,

+8e
1
2
ϕf IJKAJµΓµ(δλKA) , (3.66)

Γµ[D̃µ,∆
aA]εA =

(
DµP

µaA − JaA
)
εA

+Γµν
(
DµP

aA
ν − 1

2
F I
µνC

IaA
)
εA
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−4CIaA(δλIA)− 1
24
e

1
2
ϕGµνρΓ

µνρ (δψa) , (3.67)

Γµ[D̃µ,∆]εA = ( ϕ− J) εA − 1
2
e−

1
2
ϕDµ(eϕGµ

νρ) ΓνρεA

−1
6
e

1
2
ϕΓµνρσ

(
∇µGνρσ − 3

4
F I
µνF

I
ρσ

)
εA

−
(
e

1
2
ϕF I

µνΓ
µνεAB + 8CI

AB

)
δλIB + 1

6
e

1
2
ϕGµνρΓ

µνρ (δχA) ,(3.68)

Γν [D̃µ, D̃ν ]ε
A = 1

2
(Rµν − Jµν) ΓνεA + 1

16
e−

1
2
ϕ∇ν(eϕGνρσ) ΓρσΓµε

A

+ 1
48
e

1
2
ϕΓρσλτΓµ

(
∇ρGσλτ − 3

4
F I
ρσF

I
λτ

)
εA

+
(
QAB
µν + F I

µνC
IAB − 2P aA

[µ Pν]a
B
)

ΓνεB

+1
2

[
∂µϕ+ 1

12
e

1
2
ϕGνρσΓνρσΓµ

]
δχA + 2P aA

µ (δψa)

−1
8
e

1
2
ϕ
[
(ΓνρΓµ − 4δνµΓρ)F I

νρε
AB − ΓµC

IAB
]
δλIB . (3.69)

If one makes the ansatz for the potentials directly , then the Bianchi identities and the

relations (3.30) and (3.32)–(3.34) are automatically satisfied. Otherwise, all of these

equations must be checked. Assuming that these are satisfied, from (3.66) it follows

that the Yang-Mills field equation Kµ = 0, except for K+ = 0, is automatically

satisfied, as can be seen by multiplying KµΓµεA = 0 by ε̄B and KνΓ
ν , recalling

Γ+ε = 0 and further simple manipulations. Similarly, from (3.67) it follows that

the hyperscalar field equation KaA = 0 is automatically satisfied as can be seen by

multiplying KaAεA = 0 by ε̄BΓµ. Finally, from (3.68) and (3.69), it follows that the

dilaton and Einstein equation Eµν = 0, except E++ = 0, are automatically satisfied,

provided that we also impose the G-field equation. This can be seen by multiplying

EµνΓ
νεA = 0 with ε̄B and EµρΓ

ρ and simply manipulations that make use of Γ+ε = 0.

In summary, once the Killing spinor conditions are obeyed, all the field equations are
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automatically satisfied as well, except the following,

R++ = J++ , Dµ(e
1
2
ϕF Iµ

+) = J I+ , Dµ(eϕGµνρ) = 0 , (3.70)

and the Bianchi identities DF I = 0 and dG = 1
2
F I ∧ F I . It is useful to note that

in the case of gravity coupled to a non-linear sigma model, the scalar field equation

follows from the Einstein’s equation and the contracted Bianchi identity only when

the scalar map is a submersion (i.e. when the rank of the matrix ∂µφ
α is equal to the

dimension of the scalar manifold). In our model, however, the scalar field equation is

automatically satisfied as a consequence of the Killing spinor integrability conditions,

without having to impose such requirements. This is all the more remarkable given the

fact that there are contributions to the energy-momentum tensor from fields other

than the scalars. Finally, in analyzing the set of equations summarized above for

finding a supersymmetric solution, it is convenient to parametrize the metric, which

admits a null Killing vector, in general as [9]

ds2 = 2H−1(du+ β)

(
dv + ω +

F
2

(du+ β)

)
+Hds2

B , (3.71)

with

e+ = H−1(du+ β) ,

e− = dv + ω + 1
2
FHe+ ,

ei = H1/2ẽα
idyα , (3.72)

where ds2
B = hαβdy

αdyβ is the metric on the base space B, and we have β = βαdy
α

and ω = ωαdy
α as 1-forms on B. These quantities as well as the functions H and F
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depend on u and y but not on v. Now, as in [9], defining the 2-forms on B by

J̃r = H−1Ir , (3.73)

these obey

(J̃r)αγ (J̃s)γβ = εrst(J̃ t)αβ − δrsδαβ , (3.74)

where raising and lowering of the indices is understood to be made with hαβ. Note

that the index α = 1, ..., 4 labels the coordinates yα on the base space B. This should

not be confused with the index α = 1, ..., nH that labels the coordinates φα of the

scalar manifold! A geometrically significant equation satisfied by J̃r can be obtained

from (3.62), and with the help of (3.61) it takes the form [10],

∇̃iJ̃
r
jk + εrstQs

i J̃
t
jk − βi

˙̃J
r

jk − β̇[jJ̃
r
k]i + δi[jβ̇

mJ̃rk]m = 0 , (3.75)

where ∇̃i is the covariant derivative on the base space B with the metric ds2
B and

β̇ ≡ ∂uβ.

D. The Dyonic String Solution

For the string solution we shall activate only four hyperscalars, setting all the rest

equal to zero. In the quaternionic notation of Appendix B, this means

t =



φ

0

...

0


(3.76)

In what follows we shall use the map

φ = φA
′A = φα(σα)A

′A , (3.77)
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where σα = (1,−i~σ) are the constant van der Wardeen symbols for SO(4). Moreover,

we shall chose the gauge group K such that

T I
′
t = 0 . (3.78)

This condition can be easily satisfied by taking K to be a subgroup of Sp(nH − 1)

which evidently leaves t given in (3.76) invariant. Finally, we set

AI
′

µ = 0 . (3.79)

Then, supersymmetry condition (3.54) in I ′ direction is satisfied by setting F̃ I′ =

0 = ωI
′

and noting that CI′r = 0 in view of (3.78) (see (E.10)). The supersymmetry

condition (3.57) is also satisfied along the directions in which the hyperscalars are

set to zero. Therefore, the model effectively reduces to one in which the hyperscalars

are described by Sp(1, 1)/Sp(1)×Sp(1), which is equivalent to a 4-hyperboloid H4 =

SO(4, 1)/SO(4). Using (3.77) in the definition of Dµt given in (E.8), we obtain

Dµφ
α = ∂µφ

α − 1
2
Arµ(ρr)αβ φ

β , (3.80)

where the ’t Hooft symbols ρr are constant matrices defined as

ρrαβ = tr (σα T
r σ̄β) , ηr

′

αβ = tr (σ̄α T
r′ σβ) , (3.81)

where σα = (1,−i~σ) are the constant van der Wardeen symbols for SO(4). These are

real and antisymmetric matrices. It is easily verified that ρrαβ is anti-selfdual, while

ηr
′

αβ is selfdual. Their further properties are

ρrαγ (ρs)γβ = −δrsδαβ + εrst ρtαβ , idem ηr
′

αβ ,

ρrαβρ
r
γδ = δαγδβδ − δαδδβγ − εαβγδ ,
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ηr
′

αβη
r′

γδ = δαγδβδ − δαδδβγ + εαβγδ ,

εtrs(ρr)αβ (ρs)γδ = δβγ (ρt)αδ + 3 more , idem ηr
′

αβ . (3.82)

For SU(2) triplets, we use the notation:

XAB = Xr T rAB , Xr = 1
2
XAB T rAB. (3.83)

For the metric we choose

β = 0 , ω = 0 , F = 0 , hαβ = Ω2δαβ , (3.84)

in the general expression (3.71), so that our ansatz takes the form

ds2 = 2H−1 dudv +Hds2
B , ds2

B = Ω2dyαdyβδαβ , (3.85)

where Ω is a function of y2 ≡ yαyβδαβ. We also choose the null basis as

e+ = V = H−1du , e− = dv . (3.86)

Thus, V µ∂µ = ∂/∂v. Moreover, in the rest of this section, we shall take all the fields

to be independent of u and v. Given that β = 0, it also follows from (3.75) that

∇̃iJ̃
r
jk + εrstQs

i J̃
t
jk = 0 . (3.87)

Next, in the general form of G(−) given in (3.60), we choose

K = 0 . (3.88)

Then, from (3.60) and (3.61) we can compute all the components of G+ and G−,

which yield for G = G+ +G− the result

G = e−ϕ/2
(
e+ ∧ e− ∧ dϕ+ + ?4 dϕ−

)
, (3.89)
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where ?4 refers to Hodge dual on the transverse space with metric

ds2
4 = Hds2

B , (3.90)

and we have defined

ϕ± := ±1
2
ϕ+ ln H . (3.91)

Next, we turn to the supersymmetry condition (3.58) in the hyperscalar sector. With

our ansatz described so far, it can now be written as

Diφ
α = (J̃r)i

j (Jr)β
αDjφ

β , (3.92)

where

Diφ
α ≡ Diφ

α Vα
α , (3.93)

and Vα
α is the vielbein on H4, and the above equations are in the basis

ẽi = δiα Ω dyα , (3.94)

referring to the base space B. We also note that

Jrαβ = ρrαβ δ
α
α δ

β
β , (3.95)

which follows from rom (F.2) and (F.3). Recall that the ’t Hooft matrices ρrαβ are

constants. Next, we choose the components of J̃rij to be constants and make the

identification

J̃r = Jr . (3.96)

Using the quaternion algebra, we can now rewrite (3.92) as

Diφβ = (δiαδj β − δjαδi β − εijαβ) Djφα . (3.97)
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Symmetric and antisymmetric parts in i and β give

Diφ
i = 0 , φi ≡ φα δiα , (3.98)

Diφj −Djφi = −εijk`Dkφ` . (3.99)

To solve these equations, we make the ansatz

φα = fyα , Arα = g ρrαβ y
β , (3.100)

where f and g are functions of y2. This ansatz, in particular, implies that the function

ωr arising in the general form of F r given in (3.54) vanishes. Assuming that the map

φα is 1-1, one can actually use diffeomorphism invariance to set (at least locally) f = 1.

However, since we have already fixed the form of the metric as in (3.85), chosen a basis

as in (3.94), and identified the components of the quaternionic structures J̃rij referring

to this orthonormal basis, the reparametrization invariance has been lost. Therefore

it is important to keep the freedom of having an arbitrary function in the map (3.100).

Using (3.100) we find that (3.99) is identically satisfied and (3.98) implies

g =
4f ′y2 + 8f

3fy2
, (3.101)

where prime denotes derivative with respect to argument, i.e. y2. Next, the compu-

tation of the Yang-Mills field strength from the potential (3.100) gives the result

F r = F r(+) + F r(−) , F r± = ± ?4 F
r± , (3.102)

F
r(−)
αβ = (−2g − g′y2 + 1

2
g2y2) ρrαβ ,

F
r(+)
αβ ≡ F̃ r

αβ = (2g′ + g2)
(
2y[αy

δ ρrβ]δ + 1
2
y2 ρrαβ

)
.
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Comparing these results with the general form of F I given in (3.54), we obtain

eϕ− =
η

Ω2
, (3.103)

where

η ≡
(
g′y2 + 2g − 1

2
g2y2

)
(1− f 2y2) . (3.104)

Here we have used the fact that Cr,s = δrs/(1 − φ2) as it follows from the formula

(E.9). Finally using the composite connection (F.4) in (3.87) we obtain

Ω′

Ω
=

(2f 2 − g)

2(1− f 2y2)
. (3.105)

This equation can be integrated with the help of (3.101), yielding

Ω =
b

y2

(
1− f 2y2

f 2y2

)1/3

, (3.106)

where b is an integration constant. One can now see that all necessary and sufficient

conditions for the existence of a Killing spinor on this background are indeed satisfied.

As shown in the previous section, the integrability conditions for the existence of a

Killing spinor imply all field equations except (3.70) and the Bianchi identities on F I

and G. It is easy to check that (3.70) is identically satisfied by our ansatz, except

for the G-field equation. Furthermore, the Yang-Mills Bianchi identity is trivial since

we give the potential. Thus, the only remaining equations to be checked are the

G-Bianchi identity and the G-field equation. To this end, it is useful to record the

result

εαβγδ
√
g4

F r
αβF

r
γδ =

16Q′

y2H2Ω4
, (3.107)

where g4 is the determinant of the metric for the line element ds2
4, and

Q ≡ (gy2)2(gy2 − 3) + c , (3.108)



68

where c is an integration constant. Interestingly, this term is proportional to the

sum of F 2 and C2 terms that arise in the dilaton field equation, up to an overall

constant. We now impose the G-field equation d(eϕ ? G) = 0 and the G-Bianchi

identity dG = 1
2
F r ∧ F r. The G-field equation gives

4ϕ+ + 1
2
∂α ϕ∂

αϕ+ = 0 , (3.109)

and the G-Bianchi identity amounts to

4ϕ− − 1
2
∂αϕ∂

αϕ− =
−2Q′

y2H2Ω4
, (3.110)

where the Laplancian is defined with respect to the metric (3.90). These equations

can be integrated once to give

ϕ′+ =
νe−ϕ

(y2)2η
, ϕ′− =

(λ− 1
2
Q)

(y2)2η
, (3.111)

where ν, λ are the integration constants, c has been absorbed into the definition of λ,

and (3.103) has been used in the form HΩ2 = ηeϕ/2. These equation can be rewritten

as

(eϕ+)′ =
ν

b2

(
f 2y2

1− f 2y2

)2/3

, (3.112)

(eϕ−)′ =
λ− 1

2
Q

b2

(
f 2y2

1− f 2y2

)2/3

, (3.113)

by recalling ϕ = ϕ+ − ϕ−, exploiting (3.103) and using the solution (3.106) for Ω.

It is important to observe that the second equation in (3.111), has to be consistent

with (3.103). Differentiating the latter and comparing the two expressions, we obtain

a third order differential equation for the function f :

η′ −
(

2f 2 − g
1− f 2y2

)
η =

λ− 1
2
Q

(y2)2
. (3.114)
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In summary, any solution of this equation for f determines also the functions (ϕ,H,Ω, g),

and therefore fixes the solution completely. This is a highly complicated equation,

however, and we do not know its general solution at this time. Nonetheless, it is

remarkable that an ansatz of the form

f =
a

y2
, (3.115)

with a a constant, which gives g = 4/(3y2) from (3.101), does solve (3.114), and

moreover, it fixes the integration constant

λ = −4
3
. (3.116)

Furthermore, it follows from (3.106), (3.103), (3.104) and (3.112) that

Ω =
b

y2
h1/3 , eϕ− =

(
2a

3b

)2

h1/3 , eϕ+ = 3ν
(a
b

)2

h1/3 + ν0 , (3.117)

where ν0 is an integration constant and

h ≡ y2

a2
− 1 . (3.118)

Thus, the full solution takes the form

ds2 = e−
1
2
ϕ+e−

1
2
ϕ−(−dt2 + dx2) + e

1
2
ϕ+e

1
2
ϕ−

(
b

y2

)2

h2/3 dyαdyβ δαβ ,(3.119)

eϕ = eϕ+/eϕ− , φα =
ayα

y2
, (3.120)

Arα =
4

3y2
ρrαβy

β , (3.121)

Gαβγ =
8

27(y2)2
εαβγδ y

δ , G+−α = −∂αe−ϕ+ , (3.122)

with ϕ± given in (3.117). The form of h dictates that a2 < y2 <∞, covering outside

of a disk of radius a. The hyperscalars map this region into H4 which can be viewed
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as the interior of the disk defined by φ2 < 1. These scalars are gravitating in the

sense that their contribution to the energy momentum tensor, which takes the form

(trPiPj − 1
2
gijtrP

2), does not vanish since the solution gives

PA′A
i =

a

3y2
(

1− a2

y2

) (δαi − 4
yiy

α

y2

)
σA
′A

α . (3.123)

It is possible to apply a coordinate transformation and map the base space into the

disc by defining

zα ≡ ayα

y2
. (3.124)

In zα coordinates the solution becomes

ds2 = e−
1
2
ϕ+e−

1
2
ϕ−(−dt2 + dx2) + L2e

1
2
ϕ+e

1
2
ϕ− h2/3 (dr2 + r2dΩ2

3) (3.125)

eϕ = eϕ+/eϕ− , (3.126)

G = 8
27

Ω3 − dt ∧ dx ∧ de−ϕ+ , (3.127)

Ar = 2
3
r2σrR , (3.128)

φα = zα , (3.129)

where

r =
√
zαzβδαβ , Ω3 = σ1

R ∧ σ2
R ∧ σ3

R , h =
1

r2
− 1 , (3.130)

eϕ+ =
3νh1/3

L2
+ ν0 , eϕ− =

4h1/3

9L2
, (3.131)

and L ≡ b/a. Here, σrR are the right-invariant one-forms satisfying

dσrR = 1
2
εrst σsR ∧ σtR , (3.132)
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and Ω3 is the volume form on S3. We have also used the definitions

zα = r nα , nαnβδαβ = 1 , (3.133)

where dnα are orthogonal to the unit vectors nα on the 3-sphere, and satisfy

dnα = 1
2
ρrαβ σ

r
R n

β , dnαdnβδαβ = 1
4
dΩ2

3 . (3.134)

Given the form of Ar, it is easy to see that the Yang-Mills 2-form F r = dAr− 1
2
εrstAs∧

At is not (anti)self-dual, as it is given by

F r = 4
3
rdr ∧ σrR + 1

3
r2
(
1− 2

3
r2
)
εrstσsR ∧ σtR . (3.135)

The field strength PA′A
i on the other hand, takes the form

PA′A
i =

1

1− r2

[
(1− 2

3
r2)δαi + 2

3
r2nin

α
]
σA
′A

α . (3.136)

We emphasize that, had we started with the identity map φα = zα from the beginning,

the orthonormal basis in which J̃rij are constants would be more complicated than the

one given in (3.94). Consequently, (3.105) would change since it uses (3.87) that

requires the computation of the spin connection in the new orthonormal basis.

E. Properties of the Solution

1. Dyonic Charges and Limits

To begin with, we observe that the solution we have presented above is a dyonic string

with fixed magnetic charge given by

Qm =

∫
S3

G =
8

27
volS3 . (3.137)
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The electric charge, however, turns out to be proportional to the constant parameter

ν as follows:

Qe =

∫
S3

?eϕG = 2ν volS3 . (3.138)

Next, let us compare our solution with that of [17] where a dyonic string solution of

the U(1)R gauged model in the absence of hypermatter has been obtained. We shall

refer to this solution as the GLPS dyonic string [17]. To begin with, the GLPS solution

has two harmonic functions with two arbitrary integration constants, as opposed to

our single harmonic function h with a fixed and negative integration constant. In

our solution, this is essentially due to the fact that we have employed an identity

map between a hyperbolic negative constant curvature scalar manifold and space

transverse to the string worldsheet. Next, the transverse space metric ds2
4 in the

GLPS solution is a warped product of a squashed 3-sphere with a real line, while in

our solution it is conformal to R4. In GLPS solution the deviation from the round

3-sphere is proportional to a product of U(1)R gauge constant and monopole flux due

to the U(1)R gauge field. Thus, assuming that we are dealing with a gauged theory,

the round 3-sphere limit would require the vanishing of the monopole flux, which

is not an allowed value in GLPS solution. As for the 3-form charges, the electric

charge is arbitrary in the GLPS as well as our solution. However, while the magnetic

charge in the GLPS solution is proportional to kξ/gR where k is the monopole flux,

gR is the U(1)R coupling constant and ξ is the squashing parameter, and therefore

arbitrary, in our solution the magnetic charge is fixed in Planckian units and therefore

it is necessarily non-vanishing. This is an interesting property of our solution that

results from the interplay between the sigma model manifold whose radius is fixed in

units of Plank length, which is typical in supergravities with a sigma model sector,

and the four dimensional space transverse to the string worldsheet. Our solution has
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SO(1, 1)×SO(4) symmetry corresponding to Poincaré invariance in the string world-

sheet and rotational invariance in the transverse space∗. The metric components

exhibit singularities at r = 0 and r = 1. Too see the coordinate invariant significance

of these points, we compute the Ricci scalar as

R =
48(∆ + µ0)2 + µ2

0

r6
(

∆
3ν

)17
18 (∆ + µ0)

5
2

, (3.139)

where ∆ ≡ 3ν( 1
r2
− 1) and µ0 ≡ ν0L

2. We see that, near the boundary r → 1, the

Ricci scalar diverges, and there is a genuine singularity there. Near the origin r = 0,

however, the situation depends on the parameter ν. If ν 6= 0, then as r → 0 the Ricci

scalar approaches the constant value 8/
√

3ν. The metric is perfectly regular in this

limit, and indeed, we find that it takes the form

ds2 → L2

R2
0

r2/3(−dt2 + dx2) +
R2

0dr
2

r2
+R2

0dΩ2
3 , (3.140)

which is AdS3 × S3 with R0 =
√

4ν/3. This is to be contrasted with the GLPS

solution which approaches the product of AdS3 with a squashed 3-sphere. The r = 0

point can be viewed as the horizon, and as is usually the case, our solution also has

a factor of two enhancement of supersymmetry near the horizon. This is due to the

fact that the condition (3.49), which reads H−1Γ+ε = 0 has to be relaxed since H−1

vanishes in the r → 0 limit. Note, however, that our solution at generic point has

1/8 supersymmetry to begin with, as opposed to 1/4 supersymmetry of the GLPS

solution. For ν = 0, the r → 0 limit of the metric is

ds2 → 3L

2
√
ν0

r1/3(−dt2 + dx2) +
2L
√
ν0

3
r−5/3(dr2 + r2dΩ2

3) , (3.141)

∗It is clear that if one makes an SO(4) rotation in zα coordinates, the same trans-
formation should be applied to hyperscalars and ’t Hooft symbols ρrαβ to preserve the
structure of the solution.
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Defining furthermore du = dr/r5/6 the metric becomes

ds2 ∼ u2(−dt2 + dx2 + dΩ2
3) + du2. (3.142)

Ignoring x and Ω3 directions, this describes the Rindler wedge which is the near

horizon geometry of the Schwarzchild black hole. The “horizon”, which has the

topology R × Ω3, shrinks to the zero size at u = 0 and this gives the singularity in

the dyonic string. Next, consider the boundary limit in which r → 1. First, assuming

that ν0 6= 0, we find that in the limit r → 1 the metric takes the form

ds2 ∼ 1

u1/3

(
−dt2 + dx2 + u4( du2 +

1

u2
dΩ2

3)

)
for ν0 6= 0 , (3.143)

where we have defined the coordinate u = h1/2 and rescaled the string worldsheet

coordinates by a constant. For ν0 = 0, on the other hand, the r → 1 limit of the

metric is given by

ds2 ∼ 1

u2/3

(
−dt2 + dx2

)
+ u4

(
du2 +

1

u2
dΩ2

3

)
for ν0 = 0 , (3.144)

where, again, we have defined u = h1/2 and rescaled coordinates by constants.

2. Coupling of Sources

Since the solution involves the harmonic function h, there is also a possibility of a

delta function type singularity at the origin since

∂α∂
α h ∼ −4π2δ(~z) . (3.145)

The presence of such a singularity requires addition of extra sources to supergravity

fields to get a proper solution. As it is not known how to write down the coupling of a

dyonic string to sources, and as we cannot turn off the magnetic charge, we consider

the coupling of the magnetic string to sources. Thus setting ν = 0, from (3.125),
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(3.126) and (3.129) the dangerous fields that can possibly yield a delta function via

(3.145) are the metric, the dilaton φ and the three form field G. Indeed from (3.129)

we see that

dG ∼ δ(~z) dz1 ∧ dz2 ∧ dz3 ∧ dz4 , (3.146)

therefore extra (magnetically charged) sources are needed for G at ~z = 0. For the

dilaton we find that the candidate singular term near ~z = 0 behaves as

ϕ ∼ z11/3 δ(~z)→ 0 , (3.147)

thus there is no problem at ~z = 0. Finally for the Ricci tensor expressed in the

coordinate basis we find

Rtt = −Rxx ∼ z4δ(~z)→ 0 , (3.148)

Rαβ ∼ z2δ(~z) δαβ → 0 . (3.149)

Contracting with the metric one can see that the possible singular part in the Ricci

scalar becomes

R ∼ z11/3 δ(~z)→ 0 , (3.150)

and thus there appears no extra delta function singularity. The above results can be

understood by coupling to supergravity fields a magnetically charged string located

at r = 0 with its action given by

S = −
∫
d2σeϕ/2

√
−γ +

∫
B̃ , (3.151)

where γ is the determinant of the induced worldsheet metric and B̃ is the 2-form

potential whose field strength is dual to G. This coupling indeed produces exactly

the behavior (3.146) in the Bianchi identity. The source terms in (3.147) and (3.148)

are also produced, while the contribution to the right hand side of (3.149) vanishes
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identically (which does not causes a problem since z2δ(~z) vanishes at z = 0 as well).

3. Base Space as a Tear Drop

In (3.125) the four dimensional base space for our solution (3.125) is

ds2
B = L2

(
1

r2
− 1

)2/3 (
dr2 + r2dΩ2

3

)
=

(1− r2)8/3

2r4/3
ds2

H4
, (3.152)

where ds2
H4

= 2(dr2 + r2dΩ2
3)/(1 − r2)2 is the metric on H4. Although the overall

conformal factor blows at r = 0, the total volume of this space turns out to have a

finite value (4π3L4)/(9
√

3). To that extent, our solution can be viewed as the analog

of the Gell-Mann-Zwiebach teardrop solution, though the latter is regular at r = 0

as well. The analogy with Gell-Mann-Zwiebach tear-drop is also evident in the fact

that the scalar metric has been conformally rescaled by a factor that vanishes at the

boundary. The curvature scalar of the base manifold is also singular at r = 0, as it is

given by

RB =
16

3L2

1

r2

r4/3

(1− r2)8/3
. (3.153)

Since the total volume in the base space is finite, one would expect that the singularity

at r = 0 can be reached by physical particles at a finite proper time. We have checked

that this is indeed the case. Another tear-drop like feature here is that the base space

metric is conformally related to that of H4 which has negative constant curvature, and

that the curvature scalar of the bases space becomes positive due to the conformal

factor. This switching of the sign is crucial for satisfying Einstein equation in the

internal direction, just as in the case of 2-dimensional Gell-Mann-Zwiebach teardrop.

The base space B that emerges in the 2 + 4 split of the 6D spacetime is quaternionic

manifold, as it admits a quaternionic structure. To decide whether it is Quaternionic
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Kahler (QK), however, the standard definition that relies on the holonomy group

being contained in Sp(n) × Sp(1) ∼ SO(4) becomes vacuous in 4D since all 4D

Riemann manifolds have holonomy group Sp(1)× Sp(1). Nonetheless, there exists a

generally accepted and natural definition of QK manifolds in four dimensions, which

states that an oriented 4D Riemann manifold is QK if the metric is self-dual and

Einstein (see [36] for a review). According to this definition, our base space B is not

QK since it is neither self-dual nor Einstein.

4. Reduction of Metric to Five Dimensions

Finally, we would like to note the 5-dimensional metric that can be obtained by

a Kaluza-Klein reduction along the string direction. The 6-dimensional metric is

parametrized in terms of the 5-dimensional metric as

ds2
6 = e2αφ̂ds2

5 + e2βφ̂dx2 (3.154)

where β = −3α and φ̂ is the Kaluza-Klein scalar. From (3.125) one finds

ds2
5 = −e−

2
3
ϕ+e−

2
3
ϕ− dt2 + L2e

1
3
ϕ+e

1
3
ϕ−h2/3(dr2 + dΩ2

3), (3.155)

where the functions are still given in (3.131). The metric (3.155) is singular at r = 0.

For ν = 0 looking at the metric near the singularity one finds

ds2
5 ∼ u2(−dt2 + dΩ2

3) + du2, (3.156)

where du = dr/r7/9. The geometry is like the Rindler space but the candidate spheri-

cal “horizon” shrinks to zero size at u = 0 which produces a singularity. When ν 6= 0,

one finds near r = 0 that

ds2
5 ∼ −r8/9dt2 + r−16/9dr2 + r2/9dΩ2

3 (3.157)
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which is again singular at r = 0. This singularity is resolved by dimensional oxidation

which is a well known feature of some black-brane solutions [37].

F. Comments

In this chapter, we have derived the necessary and sufficient conditions for the ex-

istence of a Killing spinor in N = (1, 0), 6D gauge supergravity coupled to a single

tensor multiplet, vector multiplets and hypermultiplets. The Killing spinor existence

conditions and their integrability are shown to imply most of the equations of mo-

tion. The remaining equations to be solved are (i) the Yang-Mills equation in the

null direction, (ii) the field equation for the 2-form potential, (iii) the Bianchi iden-

tities for the Yang-Mills curvature and the field strength of the 2-form potential,

and (iv) the Einstein equation in the double null direction. We parametrize the

most general form of a supersymmetric solution which involves a number of unde-

termined functions. However, we do not write explicitly the equations that these

functions must satisfy. These can be straightforwardly derived from the equations

just listed. The existence of a null Killing vector suggests a 2 + 4 split of space-

time, and search for a string solution, possibly dyonic. As a natural application

of the general framework presented here, we have then focused on finding a dyonic

string solution in which the hyperscalars have been activated. Indeed, we have found

a 1/8 supersymmetric such a dyonic string. The activated scalars parametrize a 4

dimensional submanifold of a quaternionic hyperbolic ball of unit radius, character-

ized by the coset Sp(nH , 4)/Sp(nH) × Sp(1)R. A key step in the construction of

the solution is an identity map between the 4-dimensional scalar submanifold and

internal space transverse to the string worldsheet. The spacetime metric turns out

to be a warped product of the string worldsheet and a 4-dimensional analog of the
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Gell-Mann-Zwiebach tear-drop which is noncompact with finite volume. Unlike the

Gell-Mann-Zwiebach tear-drop, ours is singular at the origin. There is also a delta

function type singularity that comes from the Laplancian acting on a harmonic func-

tion present in the solution. This does not present any problem, however, as we place

a suitable source which produces contributions to the field equations that balance the

delta function terms. An interesting property of our dyonic string solution is that

while its electric charge is arbitrary, its magnetic charge is fixed in Planckian units,

and hence it is necessarily non-vanishing. This interesting feature results from the in-

terplay between the sigma model manifold whose radius is fixed in units of Planckian

length, as it is the case in almost all supergravities that contain sigma models, and

the four dimensional space transverse to the string worldsheet through the identity

map. The tear-drop is quaternionic but not quaternionic Kahler, since its metric is

neither self-dual nor Einstein. The metric is conformally related to that of H4 which

has negative constant curvature, and its curvature scalar becomes positive due to the

conformal factor. This switching of the sign is crucial for satisfying Einstein equation

in the internal direction, just as in the case of 2-dimensional Gell-Mann-Zwiebach

teardrop. We have also shown to have 1/4 supersymmetric AdS3 × S3 near horizon

limit where the radii are proportional to the electric charge. This is in contrast with

the 1/4 supersymmetric GLPS dyonic string that approaches the product of AdS3

times a squashed 3-sphere with 1/2 supersymmetry. In GLPS solution the squashing

is necessarily non-vanishing for non-vanishing gauge coupling constant, while in our

case the round 3-sphere emerges even in presence of nonvanishing gauge coupling.



80

CHAPTER IV

CONCLUSIONS

In this dissertation, we have presented results on various aspects of supergravity the-

ories in six and seven dimensions. The remarkable properties of anomaly free gauged

supergravities in six dimensions, and their possible connection with supergravities in

seven dimensions have primarily motivated our work.

In seven dimensional spacetime, we have first determined the possible noncompact

gaugings and we have used them to find the most general circle reduction that can

yield chiral and gauged supergravity in six dimensions. We have obtained the resulting

theories in six dimensions and furthermore we have made explicit the realization of

the maximal symmetries in these theories. We have also shown that in a formulation

of the 7D supergravity that uses a 3-form potential, vector multiplet coupling are

possible even in the presence of a topological mass term, contrary to a claim made in

the literature [8].

Our results are likely to be used in constructing anomaly-free models by means of a

Horava-Witten-type formulation [38] of seven-dimensional supergravity on a space-

time with two boundaries. In this case, the symmetries of the theory impose chiral

conditions for the fermions on the boundaries yielding a chiral 6D theory with an

anomalous spectrum. Anomalies are canceled by introducing extra fields living on

the boundaries and applying a special version of the Green-Schwarz mechanism [39].

The 6D theory of interest could possibly emerge in the limit of coinciding boundaries.

In the second part of the dissertation we have found the general form of the super-

symmetric solutions in gauged 6D, N = (1, 0) supergravity coupled to Yang-Mills

and hypermultiplets. We do so by using G-structure method which involves a study
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of the Killing spinors and their integrability conditions. The attendant integrability

conditions are then used to show that most of the field equations are satisfied auto-

matically. In this framework, the existence of a null Killing vector suggests a 2+4

split of spacetime. We have determined exactly the remaining equations that need to

be satisfied. Next, we have activated 4 hyperscalars parametrizing a 4 dimensional

submanifold of a quaternionic hyperbolic ball and then employed an identity map

between this submanifold and the internal space transverse to the string worldsheet.

Thus, we have found a new 1/8 supersymmetric dyonic string solution with novel

properties.

Our results may be used in classifying the supersymmetric solutions of gauged and

matter coupled N = (1, 0), 6D supergravity theories. Moreover, some of those so-

lutions may play roles in brane-world [11, 40] and cosmology model building [41].
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APPENDIX A

THE DUAL GAUGED 7D MODEL WITH MATTER COUPLINGS AND

TOPOLOGICAL MASS TERM∗

The 7D gauged and matter coupled supergravity we have used in this dissertation

is the theory with 2-form potential. For completeness, however, we will show the

dual formulation of the gauged and matter coupled supergravity, in which the 2-form

potential is dualized to a 3-form potential, even in the presence of couplings to an

arbitrary number of vector multiplets. A further motivation for presenting our results

here is to show that it is possible to perform this dualization contrary to a claim made

in the literature [8]. We begin by adding a total derivative term to obtain the new

Lagrangian as follows:

L3 = L − 1
144
εµ1···µ7Hµ1···µ4

(
Gµ5···µ7 + 3√

2
ω0
µ5···µ7

)
, (A.1)

where

Hµνρσ = 4∂[µCνρσ] . (A.2)

We can treat G as an independent field because the C-field equation will impose

the correct Bianchi identity that implies the correct form of G given in the previous

section. Thus, treating G as an independent field, its field equation gives

Gµνρ = − 1
24
e−2σeεµνρσ1···σ4H

σ1···σ4 + i
4
√

2
e−σXµνρ . (A.3)

∗Reprinted from Classical and Quantum Gravity, Vol 23, E. Bergshoeffn
et al., Noncompact Gaugings, Chiral Reduction and Dual Sigma Models in
Supergravity, Pages 2803-2831, Copyright 2006, with permission from IOP,
http://www.iop.org/journals/cqg.
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Using this result in the Lagrangian given in (2.8), one finds

L3 = L′ − 1
48
ee−2σHµνρσH

µνρσ − 1
48
√

2
εµ1···µ7Hµ1···µ4ω

0
µ5···µ7

− i
576
√

2
e−σεµ1···µ7Hµ1···µ4Xµ5···µ7 , (A.4)

where L′ is the G-independent part of (2.8). For the readers convenience, we explicitly

give the dual Lagrangian L3 = L3B + L3F where

e−1L3B = 1
2
R− 1

4
eσaIJF

I
µνF

µνJ − 1
48
ee−2σHµνρσH

µνρσ − 1
48
√

2
εµ1···µ7Hµ1···µ4ω

0
µ5···µ7

−5
8
∂µσ∂

µσ − 1
2
P ir
µ P

µ
ir − 1

4
e−σ

(
CirCir − 1

9
C2
)
, (A.5)

e−1L3F = − i
2
ψ̄µγ

µνρDνψρ − 5i
2
χ̄γµDµχ− 5i

4
χ̄γµγνψµ∂νσ − 1

2
λ̄rσiγµγνψµPνri

− i
2
λ̄rγµDµλr + i

96
√

2
eσHµνρσX

µνρσ + 1
8
eσ/2F i

µνX
µν
i − i

4
eσ/2F r

µνX
µν
r

− i
√

2
24
e−σ/2C

(
ψ̄µγ

µνψν + 2ψ̄µγ
µχ+ 3χ̄χ− λ̄rλr

)
+ 1

2
√

2
e−σ/2Cir

(
ψ̄µσ

iγµλr − 2χ̄σiλr
)

+ 1
2
e−σ/2Crsiλ̄

rσiλs , (A.6)

and where the fermionic bilinears are defined as

Xµνρσ = ψ̄λγ[λγ
µνρσγτ ]ψ

τ + 4ψ̄λγ
µνρσγλχ− 3χ̄γµνρσχ+ λ̄aγµνρσλa ,

X iµν = ψ̄λσiγ[λγ
µνγτ ]ψ

τ − 2ψ̄λσ
iγµνγλχ+ 3χ̄σiγµνχ− λ̄rσiγµνλr ,

Xrµν = ψ̄λγ
µνγλλr + 2χ̄γµνλr . (A.7)

The supersymmetry transformation rules are

δeµ
m = iε̄γmψµ ,

δψµ = 2Dµε−
√

2
30
e−σ/2Cγµε

− 1
240
√

2
e−σHρσλτ

(
γµγ

ρσλτ + 5γρσλτγµ
)
ε− i

20
eσ/2F i

ρσ σ
i (3γµγ

ρσ − 5γρσγµ) ε ,
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δχ = −1
2
γµ∂µσε− i

10
eσ/2F i

µν σ
iγµνε− 1

60
√

2
e−σHµνρσγ

µνρσε+
√

2
30
eσ/2Cε ,

δCµνρ = eσ
(

3i√
2
ε̄γ[µνψρ] − i

√
2ε̄γµνρχ

)
, (A.8)

δσ = −2iε̄χ ,

δAIµ = −e−σ/2
(
ε̄σiψµ + ε̄σiγµχ

)
LIi + ie−σ/2ε̄γµλ

rLIr ,

δLrI = ε̄σiλrLiI , δLiI = ε̄σiλrL
r
I , (A.9)

δλr = −1
2
eσ/2F r

µνγ
µνε+ iγµP ir

µ σ
iε− i√

2
e−σ/2Cirσiε .

The supersymmetry transformation rule for the 3-form potential can be obtained from

the supersymmetry of the G-field equation (A.3). Indeed, it is sufficient to check the

cancelation of the ∂µε terms to determine the supersymmetry variation of the 3-form

potential. If we set to zero all the vector multiplet fields, the above Lagrangian and

transformation rules become those of SU(2) gauged pure half-maximal supergravity

[42], which in turn admits a topological mass term for the 3-form potential in a

supersymmetric fashion that involves a new constant parameter [42]. In [8], it has

been argued that the gauged theory in presence of the coupling to vector multiplets

does not admit a topological mass term. However, we have found that this is not the

case. Indeed, we have found that one can add the following Lagrangian to L3 given

in (A.4):

e−1Lh =
he−1

36
εµ1···µ7Hµ1···µ4Cµ5···µ7 + 4

√
2

3
he3σ/2C − 16ih2e4σ

ihe2σ
(
−ψ̄µγµνψν + 8ψ̄µγ

µχ+ 27χ̄χ− λ̄rλr
)
. (A.10)

Note that the coupling of matter to the model with topological mass term has led to

the dressing up of the term he3σ/2 present in that model by C as shown in the second

term on the right hand side of (A.10). The second ingredient to make the supersym-
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metry work is the term he2σλ̄rλr in (A.10)∗. The action for the total Lagrangian

Lnew = L3 + Lh (A.11)

is invariant under the supersymmetry transformation rules described above with the

following new h-dependent terms:

δhψµ = −4
5
he2σγµε ,

δhχ = −16
5
he2σε . (A.12)

For comparison with [42], we extract the potential and all the mass terms, and write

it as

∆L = 60m2 − 10
(
m+ 2he2σ

)2
+ 5im

2
ψ̄µγ

µνψν − 5i
(
m+ 2he2σ

)
ψ̄γµχ

+5i
(

3
2
m+ 6he2σ

)
χ̄χ− i

2

(
5m+ 4he2σ

)
λ̄rλr − 1

4
e−σCirCir

+ 1
2
√

2
e−σ/2Cir

(
ψ̄µσ

iγµλr − 2χ̄σiλr
)

+ 1
2
e−σ/2Crsiλ̄

rσiλs , (A.13)

where we have defined

m = − 1
30
√

2
Ce−σ/2 − 2

5
he2σ , (A.14)

so that

δ′ψµ = 2mγµε ,

δ′χ = −2(m+ 2he2σ)ε . (A.15)

In the absence of matter couplings, the above result has exactly the same structure as

that of [42] but the coefficients differ, even after taking into account the appropriate

∗The obstacle reported in [8] in coupling matter in presence of the topological
terms may be due to the fact that these ingredients were not considered.
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constant rescalings of fields and parameters due to convention differences.
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APPENDIX B

THE MAP BETWEEN SL(4, R)/SO(4) AND SO(3, 3)/SO(3)× SO(3)∗

Two of our noncompact gauged 7D supergravities, namely the SO(2, 1) and SO(2, 2)

gauged models, have SO(3, 3)/SO(3) × SO(3) σ-model sector. In particular, the

SO(2, 2) gauged model has been reduced [4] to 6D to obtain Salam-Sezgin model. In

the work of [4] the SL(4, R)/SO(4) parametrization of the σ-model is used. Given

that SL(3, R) ∼ SO(3, 3) and SO(4) ∼ SO(3)× SO(3), to compare our results, and

for other possible future uses, it is useful to exhibit the relation between the two

parametrizations. To do so, let us denote the SL(4, R)/SO(4) coset representative

by VRα which is a 4× 4 uniocular real matrix with inverse VαR:

VαRVSα = δSR , α = 1, ...4, R = 1, ..., 4 . (B.1)

The map between VRα and the SO(3, 3)/SO(3)× SO(3) coset representative LAI can

be written as

LAI = 1
4

ΓαβI ηARS VRα VSβ ≡ 1
4
VΓIη

AV , (B.2)

where ΓI and ηA are the chirally projected SO(3, 3) Dirac matrices which satisfy [43]

(ΓI)αβ(ΓJ)αβ = −4ηIJ , (ΓI)αβ(ΓI)γδ = −2εαβγδ , (B.3)

where ηIJ as well as ηAB have signature (−−−+++). Similar identities are satisfied

by (ηA)RS. Both ΓI and ηA are antisymmetric. Pairs of antisymmetric indices are

∗Reprinted from Classical and Quantum Gravity, Vol 23, E. Bergshoeffn
et al., Noncompact Gaugings, Chiral Reduction and Dual Sigma Models in
Supergravity, Pages 2803-2831, Copyright 2006, with permission from IOP,
http://www.iop.org/journals/cqg.
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raised and lowered by the ε tensor:

V αβ = 1
2
εαβγδVγδ , Vαβ = 1

2
εαβγV

γδ . (B.4)

Since V is real, the Γ and η-matrices must be real as well. A convenient such repre-

sentation is given by

ΓI ≡ (ΓI)αβ =

(
αi

βr

)
, (ΓI)αβ =

(
αi

−βr

)
, (B.5)

where αi and βr are real antisymmetric 4× 4 matrices that satisfy

αiαj = εijk αk − δij 1l , (αi)αβ = 1
2
εαβγδ (αi)γδ , (B.6)

βrβs = εrst βt − δrs 1l , (βr)αβ = −1
2
εαβγδ (βr)γδ .

Further useful identities are

(αi)αβ (αi)γδ = δαγδβδ − δαδδβγ + εαβγδ , (B.7)

εijk(αj)αβ (αk)γδ = δβγ (αi)αδ + 3 more , (B.8)

(βr)αβ (βr)γδ = δαγδβδ − δαδδβγ − εαβγδ , (B.9)

εtrs(βr)αβ (βs)γδ = δβγ (βt)αδ + 3 more . (B.10)

Using the above relations and recalling that V is uniocular, it simple to verify that

LIIL
B
J ηAB = ηIJ , LAI L

B
J η

IJ = ηAB . (B.11)

As a further check, let us compare the potential

V = 1
4
e−σ

(
CirCir − 1

9
C2
)

(B.12)
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for the SO(4) gauged theory with that of [5] where it is represented in terms of the

SL(4, R) coset representative. To begin with, the function C can be written as

C = − 1√
2
fIJ

KLIiL
J
j LKk ε

ijk ,

= − 1
64
√

2
fIJK

(
VΓIηiV

) (
VΓJηjV

) (
VΓKηkV

)
εijk

= 1
8
√

2
fIJK

[
(ΓIJK)αβ T

αβ + (ΓIJK)αβ Tαβ
]
, (B.13)

where

Tαβ = VRα VSβ δRS , Tαβ = VαR V
β
S δRS . (B.14)

In the last step we have used (B.8). In fact, the expression (3.59) is valid for any gaug-

ing, not withstanding the fact that the SO(4) invariant tensor δRS occurs in (B.14).

However, only for SO(4) gauging in which the fIJK refers to the SO(4) structure

constants, (3.59) simplifies to give a direct relation between C and T = Tαβδαβ that

is manifestly SO(4) invariant, as will be shown below. To obtain a similar relation for

gaugings other than SO(4), for example SO(2, 2), we would need to construct the Γ

and η matrices in a SO(2, 1)× SO(2, 1) basis with suitable changes in (C.6). In that

case, the SO(2, 2) invariant tensor ηRS would replace the SO(4) invariant tensor δRS

in (B.14) and we could get a manifestly SO(2, 2) invariant direct relation between

C and T . In the case of SO(4) gauging we have fIJK = (εijk,−εrst). Using this in

(3.59) we find that the εijk term gives a contribution of the form (δαβT
αβ + δαβTαβ),

while the εrst term gives a contribution of the form (δαβT
αβ − δαβTαβ). The δαβTαβ

contributions cancel and we are left with

C = − 3
2
√

2
T , T ≡ Tαβ δαβ . (B.15)
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Similarly, it follows from the definition of Cir and the orthogonality relations satisfied

by LAI that

CirCir = fIJKfMN
K LIiL

J
j L

M
i L

N
j + 1

3
C2 . (B.16)

Thus, it suffices to compute

fIJKfMN
K LIiL

J
j L

M
i L

N
j = −1

4

(
VΓiηjV

)
(VΓiηjV) + 6

= 1
2
TRST

RS − 1
2
T 2 . (B.17)

Using the results (B.15), (B.16) and (B.17) in (B.12), we find

V = 1
8
e−σ

(
TRST

RS − 1
2
T 2
)
, (B.18)

which agrees with the result of [5]. In the case of Sp(1)R gauged 6D supergravity

obtained from the SO(3, 1) gauged supergravity in 7D, i.e. model II in section 1.2.2,

we have fIJK = (−εrst,−εijr), where εijr is totally antisymmetric and ε124 = ε235 =

ε316 = 1. For this case, the C-function has a more complicated form in terms of

the SL(4, R) coset representative V . However, setting the scalar fields equal to zero,

which is required for model II at hand, V becomes a unit matrix and the C-function

vanishes. This is easily seen in the first line of (3.59), while it can be seen from the last

line of (3.59) by noting that the εrst term gives the contribution (δαβT
αβ − δαβTαβ),

and the εrsi term give the structure (~α · ~β)αβT
αβ + (~α · ~β)αβTαβ, where ~β refers to

βr−3, both of which vanish when V is taken to be a unit matrix. In the second term

this is due to the fact that ~α · ~β is traceless.
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APPENDIX C

DUALIZATION OF THE AXIONS IN THE UNGAUGED 6D MODEL∗

Our SO(3, 1), SO(3, 2) and SO(2, 2) models in 7D, when reduced to 6D, feature

couplings of 6D,N = (1, 0) supergravity to p hypermultiplets whose scalar fields

parametrize the coset SO(p, 3)/SO(p) × SO(3), a dilaton and (p + 3) axions, for

p ≤ 1. We have shown how these fields can be combined to parametrize an enlarged

coset SO(p+1, 4)/SO(p+1)×SO(4) describing the scalars of (p+1) hypermultiplets.

Instead, one can proceed, at least in the ungauged model† by dualizing the (p + 3)

axionic scalars to 4-form potentials to obtain the coupling of (p+1) linear multiplets‡.

In this appendix we will present this dualization. We start by adding the suitable

total derivative term to this Lagrangian to define

L4 = LB + LF + 1
5!
√

6
εµ1···µ6

(
−H i

µ1···µ5
P iµ6

+Hr
µ1···µ5

Prµ6

)
e−ϕ , (C.1)

where the definitions (2.69) are to be used without the gauge coupling constants.

Recalling that (2.4) holds, the ΦI field equation implies dHI
5 = 0 with H i

5 = HI
5L

i
I

and Hr
5 = HI

5L
r
I , which means that locally

HI
µ1···µ5

= 5∂[µ1C
I
µ2···µ5] , I = 1, ..., p+ 3 . (C.2)

∗Reprinted from Classical and Quantum Gravity, Vol 23, E. Bergshoeffn
et al., Noncompact Gaugings, Chiral Reduction and Dual Sigma Models in
Supergravity, Pages 2803-2831, Copyright 2006, with permission from IOP,
http://www.iop.org/journals/cqg.
†In gauged model, an obstacle occurs to dualization since the axions are charged

and therefore minimally couple to gauge fields. See Eq. (2.69).
‡A linear multiplet consists of a 4-form potential, 3 scalars and one symplectic-

Majorana-Weyl spinor.
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Solving for (P iµ, P r
µ) gives

P iµ =
√

2
5!
εµν1···ν5H i

ν1···ν5 − ψ̄γ
νγµσ

iψν − 1
2
X i
µ ,

Prµ = −
√

2
5!
εµν1···ν5H i

ν1···ν5 + iψ̄rγνγµσ
iψν − 2iXr

µ . (C.3)

Substituting these back into the Lagrangian (C.1), we get

L4 = L′ − 1
2×5!

e−2ϕH i
µ1···µ5

H iµ1···µ5 − 1
2×5!

e−2ϕHr
µ1···µ5

Hrµ1···µ5

− 1
5!
√

2
e−ϕεµν1···ν5H i

ν1···ν5

(
ψ̄γνγµσ

iψν + 1
2
X i
µ

)
− 1

5!
√

2
e−ϕεµν1···ν5Hr

ν1···ν5

(
iψ̄rγνγµσ

iψν − 2iXr
µ

)
, (C.4)

where L′ is the (P iµ, P r
µ) independent part of L = LB + LF with LB and LF given in

(2.63) and (2.64). Thus, we have L4 = L4B + L4F with

e−1L4B = 1
4
R− 1

4
(∂µσ)2 − 1

12
e2σGµνρG

µνρ − 1
8
eσF r′

µνF
µνr′ (C.5)

−1
4
∂µϕ∂

µϕ− 1
8
P ir
µ P

µ
ir − 1

2×5!
e−2ϕaIJH

I
µ1···µ5

HJµ1···µ5 ,

e−1LF = − i
2
ψ̄µγ

µνρDνψρ − i
2
χ̄γµDµχ− i

2
λ̄r
′
γµDµλr′

− i
2
ψ̄γµDµψ − i

2
ψ̄rγµDµψ

r − i
2
χ̄γµγνψµ∂νσ

−1
2
ψ̄rγµγνσiψµP

ir
ν + i

2
ψ̄γµγνψµ∂νϕ

− 1
5!
√

2
e−ϕHI

µ1···µ5

(
ψ̄γνγµ1···µ5σ

iψν L
i
I + ψ̄rγνγµ1···µ5σ

iψν L
r
I

)
+ i

24
eσGµνρX

µνρ − i
4
eσ/2F r′

µνX
µν
r′ + 1

2
√

2×5!
e−ϕHI

µ1···µ5
Xµ1···µ5

I , (C.6)

where the structure constants (hence the C-functions as well) are to be set to zero in

the definitions (2.67) and (2.68), and
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Xµνρ = ψ̄λγ[λγ
µνργτ ]ψ

τ + 2ψ̄λγ
µνργλχ− 2χ̄γµνρχ+ λ̄r

′
γµνρλr′ + ψ̄rγµνρψr + ψ̄γµνρψ ,

Xµν
r′ = ψ̄ργ

µνγρλr′ + χ̄γµνλr′ ,

Xµ1···µ5

I = LiI (ψ̄ργ[ργ
µ1···µ5γτ ]σiψ

τ + 2χ̄γµ1···µ5σiχ+ λ̄r
′
γµ1···µ5σiλr′

−ψ̄rγµ1···µ5σiψr − ψ̄γµ1···µ5σiψ)− 4iLrI ψ̄γ
µ1···µ5ψr . (C.7)

The action is invariant under the following supersymmetry transformations:

δemµ = iε̄γmψµ ,

δψµ = Dµε− 1
24
eσγρστγµGρστ ε− i

5!
√

6
e−ϕγµν1···ν5H i

ν1···ν5ε ,

δχ = −1
2
γµ∂µσε− 1

12
eσγρστGρστ ε ,

δBµν = ie−σ
(
ε̄γ[µψν] + 1

2
ε̄γµνχ

)
− Ar′[µδAr

′

ν],

δσ = −iε̄χ ,

δAr
′

µ = ie−σ/2ε̄γµλ
r′ ,

δλr
′

= −1
4
eσ/2γµνF r′

µνε ,

δCI
µ1···µ4

= − 1√
2

(
ε̄γµ1·µ4σ

iψ + 4ε̄γ[µ1·µ3σ
iψµ4]

)
LIi − i√

2
ε̄γµ1·µ4ψ

rLIr ,

LIi δL
r
I = −ε̄σiψr ,

δϕ = iε̄ψ,

δψ = 1
2
γµ∂µϕε+ i

5!
√

2
e−ϕγµ1···µ5H i

µ1···µ5
ε ,

δψr = i
2
γµP ir

µ σi − i
5!
√

2
e−ϕγµ1···µ5Hr

µ1···µ5
ε . (C.8)



99

The supersymmetry transformation rule for CI
µ1···µ4

is derived from the requirement

of supercovariance of (C.3), which requires the cancelation of the ∂µε terms.
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APPENDIX D

THE IWASAWA DECOMPOSITION OF SO(P,Q)∗

This appendix contains some useful formula on the Iwasawa decomposition of SO(p, q)

that is used in showing the hidden quaternionic Kahler coset structure in six dimen-

sional model. We begin with the Iwasawa decomposition of the SO(n+ 3, 3) algebra

as g = h⊕ a ⊕ n where

h : Xij , Yij , Zir , Trs ,

a : Hi ,

n : Ei
j , V ij , Uir , i > j . (D.1)

Here X = E − ET , Y = V − V T , Z = U − UT , together with the SO(n) genera-

tors Trs = −Tsr form the maximal compact subalgebra {h} of SO(n + 3) × SO(3).

Furthermore, {a} are the noncompact Cartan generators and {n} are the remain-

ing noncompact generators of SO(n + 3, 3). The generators a ⊕ n form the solvable

subalgebra of SO(n+ 3, 3), and can be represented as (see, for example, [25])

~H =


∑

i ~ci eii 0 0

0 0 0

0 0 −
∑

i ~ci eii

 , Ei
j =


−eji 0 0

0 0 0

0 0 eij

 ,

∗Reprinted from Classical and Quantum Gravity, Vol 23, E. Bergshoeffn
et al., Noncompact Gaugings, Chiral Reduction and Dual Sigma Models in
Supergravity, Pages 2803-2831, Copyright 2006, with permission from IOP,
http://www.iop.org/journals/cqg.
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V ij =


0 0 eij − eji

0 0 0

0 0 0

 , U i
r =


0 eir 0

0 0 eri

0 0 0

 . (D.2)

The maximal compact subalgebra generators are then represented as

Xij =


eij − eji 0 0

0 0 0

0 0 eij − eij

 , Yij =


0 0 eij − eji

0 0 0

eij − eji 0 0

 ,

Zir =


0 eir 0

−eri 0 eri

0 −eir 0

 , Trs =


0 0 0

0 ers − esr 0

0 0 0

 . (D.3)

Each eab is defined to be a matrix of the appropriate dimensions that has zeros in

all its entries except for a 1 in the entry at row a and column b. These satisfy the

matrix product rule eab ecd = δbc ead. The solvable subalgebra of SO(n+ 3, 3) has the

nonvanishing commutators

[ ~H,Ei
j] = ~bij Ei

j , [ ~H, V ij] = ~aij V
ij , [ ~H,U j

r ] = ~ci U
i
r ,

[Ei
j, Ek

`] = δjkEi
` − δ`iEkj ,

[Ei
j, V k`] = −δki V j` − δ`iV kj , [Ei

j, Uk
r ] = −δki U j

r ,

[U i
r, U

j
s ] = δrsV

ij , (D.4)

where the structure constants are given by

~bij =
√

2 (−~ei + ~ej) , ~aij =
√

2 (~ei + ~ej) , ~ci =
√

2 ~ei . (D.5)
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The nonvanishing commutation rules of the maximal compact subalgebra SO(n +

3)⊕ SO(3) are

[Xij, Xk`] = δjkXi` + 3 perms , [Tpq, Trs] = δqrTps + 3 perms , (D.6)

[Xij, Yk`] = δjkYi` + 3 perms , [Xij, Zkr] = δjkZir − δikZjr ,

[Yij, Yk`] = δjkXi` + 3 perms , [Tpq, Zir] = δqrZip − δprZiq ,

[Zir, Zjs] = −δrsXij + δrsYij − 2δijTrs , [Yij, Zkr] = −δjkZir + δikZjr .
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APPENDIX E

THE GAUGED MAURER-CARTAN FORM AND THE C-FUNCTIONS∗

For the purposes of chapter III, section D, where our dyonic string solution is de-

scribed, we describe in this appendix various aspects of the coset Sp(nH , 1)/Sp(nH)×

Sp(1). A convenient choice for the coset representative L is [44]

L = γ−1


1 t†

t Λ

 (E.1)

where t is an nH-component quaternionic vector tp (p = 1, ..., nH), and

γ = (1− t† t)1/2 , Λ = γ (I − t t†)−1/2 . (E.2)

Here, I is an nH × nH unit matrix, and † refers to quaternionic conjugation, and it

can be verified that Λt = t. The gauged Maurer-Cartan form is defined as

L−1DµL =


Qµ P †µ

Pµ Q′µ

 , (E.3)

where DµL is given in (3.25), with T r representing three anti-hermitian quaternions

(in the matrix representation of quaternions T r = −i σr/2) obeying

[T r, T s] = εrstT t (E.4)

∗Reprinted from Journal of High Energy Physics, Vol 11, Der-Chyn Jong et al.,
6D Dyonic String with Active Hyperscalars, Copyright 2006, with permission from
IOP, http://www.iop.org/journals/jhep.
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and T I
′

represents a subset of nH × nH quaternion valued anti-hermitian matrices

spanning the algebra of the subgroup K ⊂ Sp(nH) that is being gauged. A direct

computation gives

Qµ =
1

2
γ−2

(
Dµt

†t− t†Dµt
)
− ArµT r (E.5)

Q′µ = γ−2
(
−tDµt

† + ΛDµΛ + 1
2
∂µ(t†t)I

)
− AI′µ T I

′
, (E.6)

Pµ = γ−2ΛDµt , (E.7)

where

Dµt = ∂µt+ t T rArµ − AI
′

µ T
I′ t . (E.8)

The C functions are easily computed to yield

Cr = L−1T rL = γ−2


T r T rt†

−tT r −tT rt†

 (E.9)

CI′ = L−1T I
′
L = γ−2


−t†T I′t −t†T I′Λ

ΛT I
′
t ΛT I

′
Λ

 (E.10)
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APPENDIX F

THE MODEL FOR SP (1, 1)/SP (1)× SP (1)R
∗

In chapter III, section D, we activated four hyperscalars which parametrize the coset

Sp(1, 1)/Sp(1) × Sp(1)R in finding our dyonic string solution. Here, we summarize

the relevant part of the Lagrangian and supersymmetry transfornation rules in which

the scalar couplings are governed by this coset. This coset, which is equivalent to

SO(4, 1)/SO(4), represents a 4-hyperboloid H4. In this case we have a single quater-

nion t = φα σα, and the vielbein becomes

V A′A
α = γ−2 σA

′A
α . (F.1)

It follows from the definitions (3.22) and (3.23) that

gαβ =
2

(1− φ2)2
δαβ , Jrαβ =

2 ρrαβ
(1− φ2)2

. (F.2)

We also introduce a basis in the tangent space of H4

Vα
α =

√
2

1− φ2
δαα . (F.3)

The Sp(1)R connection Qr
µ can be found from (E.5) as

Qr
µ = −2 tr (QµT

r) =
1

1− φ2

(
2ρrαβ∂µφ

α φβ − Arµ
)
. (F.4)

With the above results at hand, the Lagrangian can be written as

e−1L = R − 1
4
(∂ϕ)2 − 1

2
eϕGµνρG

µνρ − 1
4
e

1
2
ϕ F r

µν F
rµν − 1

4
e

1
2
ϕ F r′

µν F
r′µν

∗Reprinted from Journal of High Energy Physics, Vol 11, Der-Chyn Jong et al.,
6D Dyonic String with Active Hyperscalars, Copyright 2006, with permission from
IOP, http://www.iop.org/journals/jhep.
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− 4

(1− φ2)2
Dµφ

αDµφβ δαβ −
6e−

1
2
ϕ

(1− φ2)2

[
g2
R + g′2(φ2)2

]
, (F.5)

where the covariant derivatives are defined as

Dµφ
α = ∂µφ

α − 1
2
gRA

r
µ(ρr)αβ φ

β − 1
2
g′Ar

′

µ (ηr
′
)αβ φ

β, (F.6)

and we have re-introduced the gauge coupling constants gR and g′. The supersym-

metry transformation rules are

δψµ = Dµε+ 1
48
e

1
2
ϕG+

νσρ Γνσρ Γµ ε , (F.7)

δχ = 1
4

(
Γµ∂µϕ− 1

6
e

1
2
ϕG−µνρ Γµνρ

)
ε , (F.8)

δλrA = −1
8
F r
µνΓ

µνεA − gR
e−

1
2
ϕ

1− φ2
T rAB εB , (F.9)

δλr
′

A = −1
8
F r′

µνΓ
µνεA + g′e−

1
2
ϕ φ

αφβ

1− φ2
(σ̄αT

r′σβ)AB εB , (F.10)

δψA
′

=
1

1− φ2
Dµφ

α σA
′A

a εA , (F.11)

where DµεA = ∇µεA + Qr
µ(T r)A

BεB, with ∇µ containing the standard torsion-free

Lorentz connection only, and Qr is defined in (F.4).
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