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Abstract: There is growing evidence that the net accelera-
tion of the Universe over its entire history is essentially
zero. This finding is critical in light of a recent examination
of the Friedmann–Lemaître–Robertson–Walker (FLRW) metric
using the local flatness theorem (LFT) in general relativity,
which argues that FLRW is consistent with the principle of
equivalence only if the total energy density ρ and pressure p

satisfy the zero active mass condition, + =ρ p3 0. This equa-
tion-of-state produces zero acceleration, and significantly
mitigates the growing tension between lambda cold dark
matter (ΛCDM) and the ever-improving observations. This
article takes an alternative approach to this critical issue
and directly tests the expansion rate predicted by the stan-
dard model against the requirements of the LFT. It demon-
strates that ΛCDM simply does not satisfy the principle of
equivalence. Some of the many important consequences of
this outcome are discussed in the conclusions.

Keywords: classical theories of gravity, cosmological theory,
early universe, inflation, dark energy

1 Introduction

In spite of its success in accounting for many cosmological
observations over the past three decades, the standard
model lambda cold dark matter (ΛCDM) [1] is imperfect.
Indeed, the tension between its predictions and the data
grows as the measurement precision continues to improve.
For example, the Hubble constant, H0, which characterizes
the cosmic expansion rate and its absolute distance scale,
cannot be determined self-consistently from measurements
of the cosmic microwave background ( ±67.4 0.5 km −s 1

−Mpc 1; [2]) and local Type Ia supernovae calibrated with
the Cepheid distance ladder ( ±74.03 1.42 km −s 1 −Mpc 1;
[3]). Each new generation of instruments seems to com-
pound this 4– σ5 disparity rather than eliminate it.

ΛCDM is comprehensively based on the cosmological prin-
ciple, whose symmetries inform the Friedmann–Lemaître–
Robertson–Walker (FLRW) metric (see, e.g., [4,5]), one of the
most famous solutions to Einstein’s equations. As a special
member of the class of spherically symmetric spacetimes often
used in problems of gravitational collapse or expansion [6–9],
FLRW shares many of its brethren’s characteristics, except
for one critical difference: the dynamical equations used to
describe the Universe’s expansion, such as the Raychaud-
huri [10] (or “acceleration”) Eq. (2), are derived after homo-
geneity and isotropy are introduced to greatly simplify the
metric. This procedure thus ignores the possible depen-
dence of at least some of the coefficients on the chosen
stress–energy tensor.

FLRW is conventionally written in the form
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where a t( ) is the expansion factor as a function of cosmic
time t, the comoving spatial coordinates r θ ϕ, ,( ) remain
“fixed” for all particles moving with the Hubble flow, and

≡ +θ θ ϕdΩ d sin d2 2 2 2. The spatial curvature constant k ,
which can take on the value +1 for a closed universe, 0
for a flat universe, and −1 for an open universe, is now
believed to be very close to – if not exactly – zero [2].

The most notable feature of Eq. (1) that we shall
address in this article is the so-called “lapse” function, g

tt

which, quite remarkably, is assumed to be one, reflecting
free-fall conditions throughout the cosmos, without any
confirmation that this choice is consistent with an acceler-
ated expansion ( ≠ä 0). But ΛCDM predicts various phases
of acceleration and deceleration, so the Hubble flow is not
inertial in this model. One should, therefore, question
whether FLRW – with a constant =g 1

tt
– can adequately

handle the dynamics in standard cosmology. We shall
demonstrate here that it actually does not.

2 The local flatness theorem (LFT)

The motivation for seriously raising this issue now stems
from the combined assessment of observational and theo-
retical clues pointing to an expansion history of the



* Corresponding author: Fulvio Melia, Department of Physics, The
Applied Math Program, and Department of Astronomy, The University of
Arizona,AZ85721,UnitedStatesofAmerica, e-mail: fmelia@email.arizona.edu

Open Physics 2023; 21: 20230152

Open Access. © 2023 the author(s), published by De Gruyter. This work is licensed under the Creative Commons Attribution 4.0 International License.

https://doi.org/10.1515/phys-2023-0152
mailto:fmelia@email.arizona.edu


Universe consistent with net zero acceleration. By now,
over 27 different tests have been completed, showing that
ΛCDM is a better fit to the data with the inclusion of the so-
called zero active mass condition in general relativity, i.e.,

+ =ρ p3 0, in terms of the total energy density ρ and pres-
sure p. A summary of this work is provided in Table 2 of
the study by Melia [11]. A more complete compilation and
discussion are available in the study by Melia [5]. As one
can easily see from the Raychaudhuri equation,
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zero active mass produces zero acceleration, i.e., =ä 0.
From a theoretical standpoint, a careful examination

[12] of the LFT in general relativity seems to suggest that
the use of FLRW is in fact valid only when + =ρ p3 0

(and the much less relevant case of = =ρ p 0, consistent
with Minkowski space). The LFT is a mathematical for-
mulation of the Principle of Equivalence (PoE) [4], stating
that there exists – at each spacetime point x

μ

0 – a local,
inertial (i.e., free-falling) frame, ξ xμ

0( ), against which one
may “measure” the spacetime curvature in the observer’s
frame. The coordinates xμ and ξ μ must satisfy the equa-
tions [4]
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in terms of the Christoffel symbols,
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describing the spacetime curvature.
It is not difficult to understand why Eq. (3) must be

satisfied in order for a metric (such as FLRW) to be con-
sistent with the chosen stress–energy tensor, Tμν. The
metric coefficients account for the spacetime curvature
expressed in Einstein’s equations (the “fine marble” on
the left-hand side, as he described it) generated by the
source Tμν. As is well known, absolute velocity is not mea-
surable in general relativity, but, in contrast, acceleration
is known absolutely with respect to a local inertial frame.
Unfortunately, the identification of the latter often gives rise
to some confusion, because the coordinates ξα appearing in
Eq. (3) are defined continuously throughout spacetime, not
just locally at any given point, x

μ

0 .
What is meant here, however, is not that the coordi-

nates ξα represent the local free-falling frame everywhere
but that, while they are continuously defined everywhere,
they nevertheless correspond to the local free-falling frame
only at x

μ

0 . The only known FLRW solution for which this is

not true, i.e., for which a single set of ξ μ coordinates does in
fact constitute a unique free-falling frame validly defined
everywhere, is the Milne universe. Only in this case is
there a single definition of ξ μ independent of the chosen
point x

μ

0 .
But Eq. (3) needs to be satisfied only at the point x

μ

0

where the defined coordinates ξ μ represent the local free-
falling frame. This equation simply states that the space-
time curvature at that point must be measurable relative
to the free-falling frame. Without this condition, the effects
of gravity would not be equivalent to a transformation
between accelerated frames, thereby violating the funda-
mental premise behind the derivation of Einstein’s equa-
tions. For this reason, there does not appear to be any
possibility of the FLRW metric being a viable description
of cosmic spacetime while not satisfying Eq. (3).

According to the LFT, g
tt
in FLRW is not automatically

one. It depends on the equation-of-state and must instead
satisfy the following constraint [12]:
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(Note that we have corrected the missing square-root sign
in the original expression.) The choice =g 1

tt
is therefore

consistent only with the expansion profile ∝a t t( ) (and the
much less relevant Minkowski space solution with =a

constant).
With the outcome expressed in Eq. (5), it would there-

fore appear that any expansion profile with ≠ä 0 would be
inconsistent with the LFT and ought to be rejected on the
basis that it does not satisfy the PoE. The goal of this article
is to demonstrate this result in reverse. We shall focus
specifically on ΛCDM, take its predicted form of a t( ), and
prove that it is inconsistent with Eq. (3).

3 ΛCDM and the LFT

Throughout its evolutionary history, the equation-of-state in
ΛCDM has been dominated by one component, either radia-
tion (and possibly an inflaton field) early on, or matter up to
the present, and perhaps a cosmological constant into our
future. The effect on a t( ) due to these changing conditions
may easily be seen in Figure 1, which shows a t( ) vs t for the
standard model parameters, including the hypothesized
inflationary spurt at −~10 37 s. At least for radiation (with

= ∕p ρ 3
r r

) and matter (with ≈p 0
m

), the corresponding
dynamical expansion predicted by Eq. (2) is well repre-
sented by the quantity
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where = ∕β 1 2 for radiation and = ∕β 2 3 for matter. This
normalization for a in terms of the present age, t0, of the
Universe is consistent with spatial flatness, i.e., =k 0.

Let us first convince ourselves that the case =β 1, cor-
responding to =ä 0 (the straight, red line in Figure 1), does
in fact satisfy the LFT. The transformation that takes us
into the local free-falling frame at any spacetime point xμ

may be written as follows:

=
=

ξ ctη
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( )
(7)

The use of one’s chosen ξ μ needs to satisfy Eq. (3) only in
the vicinity1 of each selected spacetime point. Thus, as is
customary when using the LFT, we assume that η x( ) is
approximately constant for coordinates close to xμ.

Therefore, adopting the Minkowski form of the line
element,

= − − −s ξ ξ ξ ξd d d d d ,2 0 2 1 2 2 2 3 2( ) ( ) ( ) ( ) (8)

we recover Eq. (1) if
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If we make an additional reasonable assumption that the
ξ μ coordinates correspond to the Hubble flow – which is,
after all, what the condition =g 1

tt
would require – we

may simplify this further to

= +η x
r

ct
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It is not difficult to see that the only nonzero Christoffel
symbols consistent with Eqs. (1) and (6), written in Carte-
sian coordinates, are
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where =i 1, 2 or 3. With these, one can thus show that the
ξ μ coordinates in Eq. (7) are fully consistent with Eq. (3).
For example, the component = =α μ i and =ν 0 in this
equation gives ∕ct1 0 on both the left- and right-hand sides.
The component = = =α μ ν i gives 0 on the left-hand side
and ∕ax cti

0
2( ) on the right-hand side. But ∕ ≤t t 10 , and

∕ ≪x ct 1i
0

2( ) , so the right-hand side is also ≈0.
The situation with <β 1, however, is completely dif-

ferent. In this case,
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When we now consider the component =α i and = =μ ν 0

in Eq. (3), we find that the right-hand side is 0, while the
left-hand side is
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which can become arbitrarily large for small values of t, so
the left-hand side of the LFT equation blows up. Similarly,
the component = = =α μ ν i gives 0 on the left-hand side,
while the right-hand side becomes

∂
∂

= ⎛
⎝

⎞
⎠

−
ξ

x

βξ

ct

t

t
Γ ,λ

ii

i

λ

i β

0

0
1

(14)

which similarly diverges for small values of t and <β 1.
Of course, there is nothing mysterious about this

dichotomy in the outcome of the LFT for different values
of β, because it ultimately originates from the choice of g

tt
.

When =β 1, there is no acceleration and therefore no
implied time dilation in the observer’s frame. The lapse
function should then correctly be unity, and the LFT equa-
tions confirm that the coordinate transformation in Eq. (7)
is correct. But when ≠β 1, the observer’s frame is
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Figure 1: The expansion factor, a t( ), as a function of t for the standard
model parameters (black), in comparison with a linear expansion (red)
corresponding to =β 1 in Eq. (6). The label Rh is the Hubble radius,
defined as c/H, where the Hubble parameter is = ∕H t1 when =β 1.
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1 As noted earlier, the Milne universe is unique among FLRW cosmol-
ogies, because the coordinates ξ μ for this model actually refer to a
single inertial frame throughout the cosmos; see, e.g., [5]. But this is
not the case in general, and one must find the appropriate inertial
frame separately at each new spacetime point, as we do here.
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decelerating, and they should then see a time dilation rela-
tive to the local inertial frame. It is not correct for them to
force the lapse function to be unity in that case, which is
reflected in the failure of the xμ and ξ μ coordinates to
satisfy the LFT equations.

4 Conclusion

In this article, we have affirmed the constraint imposed by
the LFT on g

tt
, as shown in Eq. (5). We have done this

specifically for ΛCDM, adopting its predicted expansion
factor a t( ), and demonstrating that setting =g 1

tt
in the

standard model violates the PoE.
The consequences of this outcome are quite significant,

of course. Some of the issues raised by the inconsistency
of ΛCDM with the PoE have been highlighted elsewhere
(notably [5,12,13]). Specifically, the formal constraint that
g

tt
must satisfy relative to the chosen stress–energy tensor

in Einstein’s equations has been fully described in the study
by Melia [12], leading to the expression in (Eq. 5). When the
FLRW metric is written in terms of comoving coordinates
(Eq. 1), the LFT does not leave any room for choices of g

tt

other than those selected by this condition.
There have been some previous attempts at altering

the form of FLRW with suitable choices of coordinate
transformations, notably with the inclusion of conformal
time into the FLRW description. In some cases, these efforts
typically begin with the conventional form of the metric
given in Eq. (1) and then alter the metric coefficients via the
transformation to the new time coordinate ≡ ∕η t a td d ( )

[14–16]. In the majority of these cases, however, the choice
of lapse function =g 1

tt
at the beginning still imposes a

zero time dilation condition on the Hubble flow, so the
transformed metric cannot alter the constraint that there
should be zero acceleration in this frame.

The work that may be more relevant to the present
manuscript is that of Vavryčuk [17], which also begins
with =g 1

tt
and then transforms the FLRW metric into its

conformal form, but goes one step further by suggesting
that the physical time coordinate should not be the cosmic
time t but, rather, the conformal time = ∕η t a td d ( ). This
approach certainly produces variations from the standard
procedure, but one must remember that a t( ) itself changes
form, now becoming a function of the conformal time η

rather than t. Nevertheless, the physics represented by
the conformal FLRWmetric is identical to that represented
by its standard form (based on cosmic time), so this trans-
formation cannot create a time dilation between the accel-
erated frame and the local inertial frame if zero time
dilation, i.e., =g 1

tt
, is assumed from the beginning.

The overall success of ΛCDM in accounting for many
kinds of data is slowly being tempered by the growing ten-
sion seen between its predictions and the ever-improving
measurements. We are seeing growing concerns that the
time vs redshift relation in the standard model fails to
explain the formation of structure [18]. The anisotropies in
the cosmic microwave background are not fully consistent
with the predictions of inflation, and the persistent disparity
between the observed elemental abundances and those pre-
dicted in big bang nucleosynthesis all suggest that, at a
minimum, refinements are needed in the basic picture
[19]. This is quite evident on large scales, but observations
on smaller scales ~1 Mpc amplify the concerns because dark
energy and dark matter, as assumed in ΛCDM, apparently
produce galaxy distributions, halo demographics, and other
statistical features at odds with the measurements, calling
into question whether the basic idea underlying the
nature of dark energy and/or dark matter is even sustain-
able [20,21].

There is some indication from the observations that the
zero active mass condition is a necessary ingredient, and
our conclusion that the FLRW spacetime is consistent only
with such an equation-of-state certainly supports this view.

A comparison of the two curves in Figure 1 adds to our
suspicion that the parametrization in ΛCDM is merely an
empirical approximation designed to account for the data
as best as possible, without necessarily having a solid the-
oretical foundation. This plot highlights what is arguably
the most glaring coincidence in cosmology, i.e., that in spite
of the many phases of acceleration and deceleration (black
curve) experienced by the ΛCDM Universe, the expansion
factor today is precisely what it would have been anyway
(red curve) with a constant expansion. Given the complex
formulation of ΛCDM, the crossover at the point labeled
“today” could happen only once in the entire history of the
Universe, and it is occurring right now, when we happen to
be looking, following 60 magnitudes of expansion out of
the initial Planck scale. The probability of this hap-
pening randomly is, of course, effectively zero. The proof
we have provided in this article is fully consistent with
this argument.

One of the most anticipated and influential observa-
tional campaigns over the next few years will measure the
real-time redshift drift of distant sources [22,23]. The red-
shift drift should be zero everywhere if ∝a t t( ) , and non-
zero otherwise [24]. If all goes well, a confidence level of

σ~3 in this measurement should be attainable in only
5 years; σ~5 could be reached over a baseline of about
20 years. Therefore, we may not have to wait very long
to see a compelling confirmation of the work reported in
this article.
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Looking farther afield, an FLRW cosmology with ∝a t t( )

completely avoids all horizon problems [25,26], so we may
eventually find that inflation is not needed after all. The 40-
year struggle to find a consistent model of the inflaton field
without much success may therefore be an indication that
this hypothesized brief period of acceleration in the early
Universe was unnecessary and simply never happened.
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