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ABSTRACT The pathfinding problem in a graph has been solved using several classical algorithms, notably
Dijkstra’s and A* algorithms. However, most classical algorithms are most effective on static graphs.
They either cannot be adapted to dynamic graphs or become computationally expensive. The challenge
of processing dynamic graphs, which demands significant computational resources, can be addressed using
Classical and Quantum Machine Learning methods. For this review, we consider a dynamically changing
graph representing a disaster-stricken city. Our problem, termed the Disaster Escape Routing problem,
aims to find the optimal path within this dynamic graph. We review and analyze an existing hybrid
quantum-classical machine learning model alongside classical machine learning models specifically for
this problem. We also explore Variational Quantum Circuits and Encoding Methods. Our study suggests
that hybrid quantum-classical machine learning, Graph Neural Networks, and Temporal Graph Networks
offer high performance in terms of path prediction and accuracy in finding the optimal path. This review
also identifies Kolmogorov Arnold Networks as a promising approach to solving escape routing problems.
Additionally, an integrated approach combining strengths of all the models has been hypothesized to enhance
emergency escape route planning.

INDEX TERMS Machine learning, quantum computing, vehicle routing.

I. INTRODUCTION and quantum solutions. By doing so, we aim to demonstrate

In today’s rapidly evolving world, technological innovation
has driven scientific advancement. The increasing complexity
of data and the demand for more sophisticated solutions to
complex problems necessitate greater computational power.
While classical computing has long been the dominant
paradigm, it struggles with certain tasks, such as simulating
molecular dynamics, modeling graph networks, and predict-
ing protein folding. To address these limitations, alternative
computing models are emerging, with quantum computing
being one of the most promising.

Building on this, our focus in this paper is the graph-based
escape routing problem, where we analyze both classical
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how quantum computing, particularly Quantum Machine
Learning (QML), can offer significant improvements in solv-
ing such dynamic and computationally intensive problems.
We begin by defining key concepts, including Quantum
Computing (QC), QML, Escape Routing (ER), and the
application of Quantum Machine Learning to the Escape
Routing (QML in ER) problem.

A. KEY CONCEPTS

1) QUANTUM COMPUTING

QC is a field at the intersection of Computer Science and
Physics. It represents a fundamentally different approach to
classical computing methods. QC leverages the fundamental
principles of quantum mechanics, namely entanglement,
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superposition, and quantum parallelism, to perform quantum
computations. It has been proposed that a Quantum Computer
will help solve problems that are intractable or unsolvable by
classical computers. As Feynman said:

Nature isn’t classical, dammit, and if you want to make
a simulation of nature, you’d better make it quantum
mechanical [14].

Thus, one of the aims of QC is to simulate quantum systems
such as molecules. Scientists are striving to find quantum
solutions to problems that will offer an exponential speedup,
the holy grail of Computer Science, over classical solutions.
Additionally, quantum computers are being developed to
tackle problems that are beyond the reach of even the
most powerful supercomputers. This milestone is known as
Quantum Advantage. One example of quantum advantage
is factoring large integers using Shor’s algorithm on QCs
in sub-exponential time complexity [16]. QML is another
such application where the processing power of a QC can be
harnessed to handle vast amounts of data and solve intricate
machine learning problems in real-time.

2) QUANTUM MACHINE LEARNING

Quantum Machine Learning (QML), a cutting-edge research
area at the intersection of QC and machine learning, aims to
leverage QC to solve machine learning problems. The capa-
bilities of machine learning algorithms are fundamentally tied
to the hardware they run on. The success of modern Deep
Learning (DL), for example, relies heavily on the parallel
processing power of GPU clusters. QML extends this pool of
hardware for complex machine learning algorithms to QCs.
From a modern perspective, QCs can be used and trained
like neural networks [17]. This review studies an innovative
application of a hybrid QML model for ER and evacuation

mapping.

3) ESCAPE ROUTING
ER is a class of problems in graph theory that involves finding
optimal paths between two nodes in a graph. ER algorithms
play a significant role in modern industry. They are used to
find optimal routing on printed circuit boards (PCBs), plan
paths for autonomous vehicles, enhance disaster management
through large-scale evacuation planning, and much more.
Disaster management teams utilize ER algorithms for
large-scale evacuation planning in emergencies like floods
or earthquakes. By analyzing population density, terrain,
and infrastructure damage, these algorithms predict potential
bottlenecks and suggest optimal evacuation routes for
entire communities, potentially saving lives during critical
situations.

4) QML IN ER

ER algorithms on large graphs, such as those encoun-
tered in disaster management and evacuation problems,
demand significant computational power to be practical.
Moreover, dynamically updating graphs necessitate multiple
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iterations to account for parameter variations and generate
new optimal paths in real-time. The need for higher
computational speed intensifies with the scale of application.

QML offers an innovative solution to this challenge.
By applying the principles of quantum mechanics, we can
exponentially increase the speed of computation. Further-
more, a hybrid network comprising both quantum and classi-
cal neural networks can be employed to run ER algorithms,
yielding results of comparable accuracy and optimality to
those obtained from classical algorithms like Dijkstra’s or A*,
but with significantly increased computational speed.

Il. RESEARCH QUESTIONS

This study will specifically focus on presenting Quantum and
Classical approaches along with supplementary techniques
for the following goal:

Predicting the most optimal path in a graph of a disaster-
hit city.

The study addresses the following research questions:

1) What do the new quantum and classical solutions offer

for solving this problem?

2) What challenges have been reported in implementing

these classical and quantum solutions?

3) What success factors have been reported for imple-

menting these classical and quantum solutions?

Most existing reviews focus on the routing problem in
general. We specifically target the Escape Routing problem
in the domain of traffic routing during an earthquake.
Therefore, if a researcher or practitioner is using this
study to examine the challenges and success factors in
the disaster Escape Routing problem, they will find the
relevant issues.

lill. ABBREVIATIONS
Table 1 lists the abbreviations and their full forms used in
this text.

IV. PAPERS USED
In this review, we have mainly analyzed ideas from the
following papers:

o« A supervised hybrid quantum machine learning
solution to the emergency escape routing problem
(Haboury et al. [1])

o Graph Neural Networks for Optimal Pathfinding:
Uncovering the Shortest Distance (Neyigapula [2])

o Temporal Graph Networks for Deep Learning on
Dynamic Graphs (Rossi et al. [3])

o Quantum Neural Networks and Their Potential in Traffic
Prediction (Moskvin et al. [4])

o Efficient Encodings of the Travelling Salesper-
son Problem for Variational Quantum Algorithms
(Schnaus et al. [5])

« Kolmogorov-Arnold Networks (KANSs) for Time Series
Analysis (Vaca-Rubio et al. [7]).
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TABLE 1. List of abbreviations.

Abbreviation Term

QC Quantum Computing

QML Quantum Machine Learning

ER Escape Routing

vQcC Variational Quantum Circuit

FiLM Feature-wise Linear Modulation

PHN Parallel Hybrid Network

HQNN Hybrid Quantum Neural Network

GNN Graph Neural Network

QGNN Quantum Graph Neural Network

QAOA Quantum Approximate Optimiza-
tion Algorithm

VQE Variational Quantum Eigensolver

QUBO Quadratic Unconstrained Binary
Optimization

HOBO Higher-order Binary Optimization

TGN Temporal Graph Network

QNN Quantum Neural Network

DL Deep Learning

MLP Multilayer Perceptron

KAN Kolmogorov Arnold Network

V. STRUCTURE OF THE PAPER

The remainder of this paper is structured as follows.
Section VI describes our search and selection strategy for the
reviewed papers. This is followed by Section VII on results
and analysis of HQNN, GNNs, TGNs, VQCs, Encoding
Methods, and KANSs. Finally, Section X gives the conclusion
to the review.

VI. PAPER SEARCH AND SELECTION STRATEGY
Suitable keywords were identified using synonyms. The
search terms were:

« “Disaster escape routing machine learning”
¢ ‘“Quantum machine learning escape routing”
o “Graph neural network escape routing”

o “Temporal graph learning”

+ “KAN:s for time series analysis”

The search terms were organized into two groups. In the
first group, we included the most directly related papers to
the research questions. The second group included papers
that were supplementary to the research questions and also
presented the latest research in the field. In total, we used
six papers that were most relevant to answer the research
questions.

VIl. MODELS AND METHODS
This section provides an overview of the Quantum and
Classical solutions to the ER problem.

A. HYBRID QUANTUM-CLASSICAL MODEL

An effective QML approach to solving the problem of finding
an optimal path in a dynamic graph is the hybrid quantum-
classical Feature-wise Linear Modulation (FiLM) model.
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This section provides a concise summary of the Hybrid
Quantum-Classical model proposed in [1].

Emergency response (ER) routing during natural disasters,
such as earthquakes, can be represented as a dynamically
evolving graph routing problem. In this context, it is essential
to identify the shortest path from an arbitrary starting point
to predefined, fixed exit points. Traditional graph algorithms,
such as Dijkstra’s Shortest Path algorithm, perform well on
static graphs but require adaptability to dynamic graphs to
be applicable to ER scenarios. The Hybrid Quantum Neural
Network (HQNN) introduced in [1] incorporates a novel
quantum FiLM network in parallel with a classical FiLM
network, aiming to emulate the node-wise functionality of
Dijkstra’s algorithm while accessing only a limited portion
of the graph. Outputs from the node-wise Dijkstra’s algorithm
are utilized to train the HQNN, enhancing its performance on
dynamic routing tasks.

The proposed circuit architecture integrates a PHN model
with a Feature-wise Linear Modulation (FiLM) model,
forming a composite structure that includes both a classical
FiLM neural network and a quantum neural network. Inputs
to this model consist of earthquake coordinates, starting and
ending points, and data on the immediate neighbors of each
node. Both the classical and quantum networks process these
inputs independently. Following processing, the outputs from
each network are combined linearly and passed through a
fully connected layer, reducing the output to five values.
These five values serve as a logit layer (raw output) for
the node classifier, where the neighboring node with the
highest score is selected as the next node. Fig. 1 illustrates
the architecture of the PHN FiLM model, which effectively
identifies the next node in the optimal path solution.

It is important to recognize that the model considers
only earthquake coordinates, start-end nodes, and immedi-
ate neighbors when determining the optimal path. While
promising, this approach does not account for factors such
as elevation or real-time traffic conditions. Elevation may
be negligible on plains but is critical in mountainous areas
susceptible to landslides, which could significantly affect
route optimization. Similarly, real-time traffic conditions
are vital for identifying the most efficient path. Including
these variables would make the model more robust and
applicable to a broader range of scenarios. However,
acquiring post-disaster data presents unique challenges [1].
Further research is necessary to develop reliable methods for
obtaining such data.

Once reliable data becomes available, comprehensive
modeling and data analysis are essential to avoid overfitting.
For example, a model trained solely on data from one region
may lack generalizability, potentially performing poorly in
different areas with distinct environmental conditions, which
could lead to incorrect escape route recommendations.

Although QC offers speed and efficiency advantages
over classical computing, it remains a developing field
with limited hardware availability. This hybrid approach,
combining quantum and classical machine learning,
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FIGURE 1. Representation of the PHN FiLM Model [1].

seeks to address the ER problem by harnessing the strengths
of both. Given the critical importance of efficient ER
and evacuation mechanisms during emergencies, continued
exploration, development, and enhancement of these methods
are vital to improving existing infrastructures and achieving
faster, more reliable outcomes.

B. GRAPH NEURAL NETWORK MODEL

A second approach to shortest pathfinding in graphs is
proposed by [2], which explores the application of Graph
Neural Networks (GNNs) for optimal pathfinding. This
framework combines the strengths of GNNs with efficient
algorithms such as Dijkstra and A*.

The core strategy leverages GNNs’ expressive capabilities
to learn correlations within the graph structure. These learned
representations are then incorporated into a pathfinding
algorithm to identify the shortest path effectively. This
research highlights GNNs’ potential to capture complex
correlations within graph structures, a significant challenge
for traditional pathfinding algorithms.

As graph size and complexity increase, classical algo-
rithms often struggle to meet the demands of pathfinding
tasks. In contrast, GNNs demonstrate promising results
in capturing complex relationships within graph data.
GNNs are a specialized class of neural networks tailored
for graph-structured data, operating primarily through the
aggregation of information from neighboring nodes to
create meaningful representations that encode the underlying
graph structure.
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FIGURE 2. Representation of a GNN model for pathfinding. The predicted
path is colored red.

GNNss can capture both local and global graph structures,
consider node features, and adapt to various types of graphs.
However, they still face challenges such as scalability to
large graphs, robustness against noisy or incomplete data, and
interpretability of learned representations. Interpretability,
in this context, refers to the ability to understand and
explain the embeddings generated by GNNs during training.
Fig. 2 illustrates a GNN model designed for pathfinding
applications.

Traditional pathfinding algorithms, such as Dijkstra
and A*, depend on heuristics or explicit graph explo-
ration, which can be computationally expensive. In contrast,
GNNs adopt a data-driven approach to pathfinding by
learning to capture and propagate information across nodes
and edges. Two critical components in this learning pro-
cess are Graph Representation and Feature Engineering.
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Graph Representation schemes encode the connectivity of
the graph, while Feature Engineering represents node-
specific attributes. Additionally, Graph Adjacency Matrices,
Node Embeddings, and feature aggregation mechanisms
enable GNNs to capture both structural and semantic
information [2].

However, despite these advantages, challenges persist in
effectively leveraging GNNs for pathfinding. The model’s
reliance on high-quality training data introduces potential
vulnerabilities, particularly when real-world datasets con-
tain noise or inconsistencies. Moreover, applying GNNs
to dynamic graphs—such as those encountered in ER
scenarios—requires adaptations that traditional architectures
may not fully support. Addressing these limitations may
involve exploring alternative GNN architectures and incor-
porating additional graph features, such as edge weights or
temporal data, to enhance model performance and versatility.

C. TEMPORAL GRAPH NEURAL NETWORKS

Temporal Graph Networks (TGNs) offer a flexible and
efficient framework for deep learning on dynamic graphs
modeled as time-stamped events. TGNs outperform earlier
approaches in both performance and computational effi-
ciency by combining memory modules with graph-based
operators. In this model, a dynamic graph is represented
as a sequence of time-stamped events, such as additions
or modifications to nodes or interactions between nodes at
discrete intervals. Node deletion is also modeled as an event
when a node loses all connections [26].

The core modules of TGNs support real-time processing
on dynamic graphs. The Memory Module maintains the
state and interaction history of each node, effectively serving
as a historical record. Upon each event, the memory of
the affected nodes is updated, and an optional global
memory tracks the graph’s evolution to improve predictive
accuracy. The Message Function generates messages for
each event—one for the source node and another for the
target node—capturing the nodes’ updated states. TGNs also
incorporate a Message Aggregator that enhances network
efficiency by handling multiple node events simultaneously,
using strategies such as Mean Message or Most Recent
Message to avoid redundant updates. Finally, the Message
Updater uses these messages to refresh the states of the source
and target nodes within the memory module [27].

A critical feature in TGNs is the Embedder module,
designed to address node staleness—when inactive nodes
miss updates due to inactivity—by employing embedding
algorithms that refresh their state [28]. Originally created to
model social interactions on networking platforms, TGN’ can
also be adapted for escape routing scenarios by customizing
the message function. Additionally, dynamic graph data
derived from real-world events, like earthquakes, can train the
network to replicate optimal solutions provided by Dijkstra’s
algorithm. TGNs thus present a promising approach to
meet the computational speed requirements essential during
natural disasters [29].
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D. COMPARATIVE ANALYSIS
This section compares the performance of three neural
network models—Classical NN, GNN, and HQNN—in the
context of disaster escape routing. Fig. 3 presents their results
across key evaluation metrics:

o Average Accuracy (Purple): Measures the overall
correctness of the model’s path predictions.

— GNN achieves 98% accuracy.
— HQNN follows with 94%.
— Classical NN records 87%.

o Path Prediction Success (Green): Represents the
proportion of correctly identified safe evacuation routes.

— HQNN achieves 95%.
— GNN reaches 93.4%.
— Classical NN records 92%.

o Dijkstra Path Alignment (Yellow): Evaluates how
closely the model’s predicted paths align with those
generated by Dijkstra’s algorithm.

— HQNN aligns with Dijkstra’s paths 30% of the time.
— GNN achieves a 28% match.
— Classical NN records 24%.

+ Improved Path Prediction (Orange): Measures the
proportion of cases where the model identifies an
alternative path that is potentially more efficient than the
standard routes.

— HQNN predicts improved paths in 25% of cases.
— GNN achieves 20%.
— Classical NN records 15%.

o Failure Rate (Red): Indicates the proportion of
instances where the model fails to provide a viable
evacuation path.

— HQNN has a 5% failure rate.
— GNN records 6%.
— Classical NN has the highest failure rate at 8%.

Disaster Routing Insights:

1) Performance Trends in Advanced Models: The
results indicate that GNN and HQNN offer notable
improvements in disaster escape routing compared to
traditional neural networks.

o Higher accuracy and path prediction success sug-
gest increased reliability in emergency evacuation
planning.

o Better alignment with Dijkstra’s algorithm indi-
cates improved pathfinding efficiency.

« Lower failure rates demonstrate greater robustness
in high-risk scenarios.

2) Implications for Emergency Management: The
performance improvements translate into practical
advantages:

o Reduced failure rates enhance the reliability of
evacuation strategies.

o Higher path prediction accuracy ensures more
dependable route recommendations.
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FIGURE 3. Performance comparison of different neural network approaches for disaster escape routing.

o The ability to identify improved routes may
optimize evacuation efficiency under dynamic
conditions.

3) Computational Adaptability: The evaluated models
exhibit key strengths in:

« Handling dynamic and complex disaster environ-
ments.

« Adapting to real-time changes in evacuation sce-
narios.

« Enhancing decision-making through improved
route optimization.

These insights reinforce the role of advanced neural
network architectures in improving disaster escape routing,
highlighting their potential to enhance evacuation effective-
ness and overall emergency response efficiency.

E. SUPPLEMENTARY CONCEPTS

1) VARIATIONAL QUANTUM CIRCUIT

The HQNN model discussed earlier integrates a quantum
component. Although the HQNN circuit appears complex in
terms of parameter equations, it operates on the fundamental
principle of optimizing the parameter 6. This section
introduces a simplified version of the quantum component in
the HQNN circuit, known as the VQC.

Ref. [4] presents a straightforward solution utilizing a VQC
to implement a QNN. Although the paper does not directly
address the ER problem, examining its approach to traffic
prediction offers insights into the application of VQCs.

The circuit comprises five qubits, upon which a series
of angle-parameterized quantum gates are applied. These
parameters are iteratively updated to optimize a cost function.
In this case, the cost function is the Mean Squared Error
(MSE), though alternative functions can be employed.
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FIGURE 4. Variational quantum circuit.

The model is trained and evaluated on traffic data, and upon
demonstrating reliable performance, it can be deployed for
real-time traffic prediction. Fig. 4 illustrates the quantum
circuit as described.

The primary focus is to introduce angle-parameterized
quantum gates within a quantum circuit, followed by the
application of a classical optimization algorithm to adjust
hyperparameters for optimizing the cost function.

However, it is important to note that this approach
does not guarantee convergence to the global optimum.
Since the method involves selecting an initial guess for
the parameters, the solution is highly sensitive to the
choice of these initial values. Furthermore, the model’s
performance is influenced by the selected optimization
algorithm and the complexity of the cost function landscape.
Despite these limitations, this approach demonstrates how a
straightforward Quantum-Classical optimization model can
be implemented.
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2) ENCODING STRATEGIES FOR ROUTING PROBLEMS

ER problems can be framed as well-known optimization chal-
lenges, such as the Travelling Salesperson Problem (TSP).
The complexity of these problems grows significantly
with the number of cities or nodes, rendering optimal
solutions computationally expensive for classical algorithms.
This difficulty arises due to the exponential increase in
possible solutions, which classical methods struggle to handle
efficiently. Quantum algorithms, especially those utilizing
permutation encoding, present promising approaches to
overcoming these challenges. Notable methods, such as the
QAOA and the VQE, have shown potential in addressing
NP-hard problems like TSP.

The study in [5] on encoding schemes for the TSP is
especially relevant to QML solutions in ER applications,
as the choice of encoding directly affects the efficiency
and scalability of quantum algorithms. In ER scenarios,
where real-time dynamic optimization is critical, encoding
techniques like QUBO, HOBO, and permutation encoding
determine how effectively quantum circuits can manage
complex routing scenarios. By minimizing qubit require-
ments and ensuring solution feasibility, as demonstrated
with Permutation encoding, quantum algorithms offer the
potential for faster and more accurate pathfinding solutions
for large-scale emergencies, which classical methods may
struggle to resolve optimally.

Understanding the impact of these encoding schemes on
quantum algorithms is essential. Below, we briefly outline
QUBO, HOBO, and permutation encoding, emphasizing
their advantages and limitations in optimizing ER problems
with QML.

1) QUBO Encoding: This method presents a natural
formulation for the TSP within quantum computing,
where each route is represented by a binary matrix.
Binary variables denote whether a specific city is
visited at a particular time step. However, a key
disadvantage of this approach is its vulnerability to
infeasible solutions, as it can produce states that violate
TSP constraints (e.g., visiting multiple cities simul-
taneously). Additionally, the solution space expands
rapidly with increasing problem size, meaning only a
small fraction of feasible solutions exists within the
total solution space.

When applied to disaster ER, QUBO encoding has
distinct strengths and weaknesses. On the positive side,
QUBO allows for the mapping of ER optimization
tasks onto quantum hardware, with the potential for
accelerating complex computations. Its binary matrix
format offers a structured way to represent decisions on
location visits, and the quadratic objective function can
accommodate multiple variables and interactions—
making it suitable for considering various routing
criteria.

However, significant challenges persist. QUBO encod-
ing is prone to generating infeasible solutions,
such as scenarios where multiple locations are
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2)

3)

visited simultaneously, which must be avoided in
disaster situations. Moreover, QUBO faces scalability
limitations; the solution space grows exponentially
with the number of cities, complicating real-time
decision-making. QUBO is also a static formulation,
struggling to adapt to dynamic ER conditions like
road closures or the emergence of hazards. Enforcing
strict constraints, such as avoiding dangerous areas,
is difficult, and balancing multiple objectives—
such as optimizing for both safety and speed—adds
further complexity. Although QUBO shows promise
theoretically, its application to disaster ER requires
improvements in constraint handling and adaptability
to dynamic conditions for practical viability.

HOBO Encoding: HOBO encoding enhances QUBO
by minimizing the number of qubits required and
increasing the ratio of feasible solutions. Unlike the
one-hot encoding approach, HOBO employs a binary
representation for each node, allowing for better
scalability in larger graphs. This representation enables
more efficient use of quantum resources compared
to QUBO.

Despite these improvements, HOBO encoding still
faces limitations concerning solution feasibility. While
it reduces the likelihood of generating infeasible
solutions compared to QUBO, challenges remain in
ensuring that all generated solutions comply with
the problem constraints. Additionally, HOBO often
necessitates deeper quantum circuits to accommodate
its encoding structure, which may pose challenges for
implementation on near-term quantum devices, where
circuit depth can impact coherence times and overall
performance.

Permutation Encoding: Among the three encodings,
permutation encoding is the most efficient, as it ensures
that every quantum state corresponds to a valid TSP
solution, thereby eliminating infeasibility issues. This
encoding requires fewer qubits and can be effec-
tively integrated with classical methods within hybrid
quantum-classical algorithms like the VQE. However,
the absence of an efficient Hamiltonian construction for
permutation encoding limits its applicability in purely
quantum approaches.

In the experimental setup outlined in [5], the authors
demonstrate that permutation encoding consistently
outperforms both QUBO and HOBO in terms of
solution feasibility and closeness to optimal routes.
Nonetheless, its computational advantages are pri-
marily observed in small problem sizes, as larger-
scale instances may introduce new challenges that
necessitate further investigation.

These findings highlight the critical role of encoding
strategies in quantum optimization algorithms, partic-
ularly in the context of escape routing for complex
earthquake scenarios. While permutation encoding
shows distinct advantages for small-scale problems,
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FIGURE 5. Kolmogorov Arnold Network (KAN) with learnable edge functions and simple summation at nodes.

its scalability to larger, real-time dynamic environ-
ments remains a concern due to exponential growth
in problem complexity, quantum resource limitations,
and challenges in maintaining real-time responsive-
ness. Addressing earthquake-related escape routing
problems, where rapid decision-making is essential,
will require ongoing refinement of these quantum
techniques to effectively manage evolving conditions.
Therefore, continued research is crucial to unlocking
the full potential of quantum algorithms in tackling
such high-stakes, real-world challenges.

F. KOLMOGOROV ARNOLD NETWORKS

Until now, the models we have discussed have been
fundamentally based on Multilayer Perceptrons (MLPs),
which serve as the foundational architecture for traditional
deep learning. While we can certainly enhance existing
models and innovate new architectures based on MLPs to
achieve higher performance, it is also essential to explore the
fundamental architecture itself. This is precisely the focus of
Kolmogorov-Arnold Networks (KANSs), a recently proposed
alternative to MLPs widely used in deep learning. For more
detailed information on KANSs, readers can refer to [6].

In the context of traffic prediction problems, experiments
conducted in [7] suggest that KANs effectively capture rapid
fluctuations in traffic volume, whereas MLPs sometimes tend
to overpredict or underpredict these changes. This ability
to adapt to quickly evolving scenarios positions KANs as
a superior choice for dynamic traffic routing applications.

VOLUME 13, 2025

Further analysis indicates that KANs exhibit robustness and
high performance in environments characterized by variable
and intense traffic conditions.

One of the proposed advantages of KANs is their inter-
pretability, which mitigates the black-box nature typical
of MLP models. This transparency allows for visualization
of the network’s learning and decision-making processes.
Interpretability is a crucial aspect of machine learning, as Al-
based systems increasingly play a pivotal role in making
critical decisions within society. In MLP models, users cannot
ascertain why the Al made a particular decision over others.
By contrast, KANs appear to offer potential for deeper
interrogation, allowing questions such as Why did the Al
choose this specific route?, What precisely did it learn that
influenced this choice?, and Could it have made a better
decision given an alternative learning approach?. Current
MLP-based black-box models are unable to address these
questions, whereas KANs present promising possibilities in
this area. Fig. 5 shows the KAN model and its application in
the ER problem.

KANs require fewer parameters than MLPs to achieve
comparable or superior performance, making them simpler
and faster models [6]. They are grounded in a robust
theoretical framework, providing them with an intrinsic
advantage in modeling complex, non-linear patterns typical
of traffic systems. Their consistent performance across
diverse environments also suggests that KANs possess strong
generalization capabilities, which are crucial for applications
in geographically varied locations with differing traffic
dynamics. However, [6] notes that KANs have primarily
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been evaluated on small toy datasets, where they have either
outperformed or matched MLPs. The dynamic ER problem
introduces a different level of complexity, requiring KANS to
identify the shortest path in graphs with at least a thousand
nodes. Thus, investigating the development of larger KANs
and integrating them with Graph Neural Networks (GNNs) to
address such complex scenarios could be beneficial, allowing
for performance comparisons with traditional MLPs.

KANSs offer several key features that make them particu-
larly well-suited for handling the complex, nonlinear systems
required in escape routing (ER) problems, such as disaster
evacuations. These features include:

1) DECOMPOSITION OF MULTIVARIATE FUNCTIONS

One of the primary features of KANs is their ability
to represent multivariate continuous functions as a sum
of simpler univariate functions. Specifically, KANs break
down a complex, high-dimensional problem (such as a
disaster evacuation scenario) into a set of low-dimensional
problems, each involving a simple, continuous function of
one variable. For example, in disaster evacuation, multiple
factors influence routing decisions, such as traffic flow,
road closures, crowd density, and weather conditions. KANs
can allow these complex interactions to be represented
as a combination of simpler, one-dimensional components.
This decomposition may help the network capture nonlinear
relationships without requiring large numbers of parame-
ters, enhancing computational efficiency while maintaining
accuracy.

2) FLEXIBLE NONLINEAR REPRESENTATION

Traditional neural networks typically rely on activation
functions like ReLU or sigmoid to introduce nonlinearity,
but these functions are global and lack the interpretability
that KANs provide. KANs, however, represent complex
dependencies using a combination of piecewise univariate
activation functions—enabling them to model nonlinear
relationships at a granular level. For disaster evacuation,
this means that dynamic systems—such as how crowd
behavior affects traffic patterns during evacuations—can be
captured more precisely. Traffic flow on specific routes might
follow nonlinear behavior depending on crowd density and
available shelter capacity. KANs can represent these subtle
nonlinear effects efficiently by using univariate functions
across different variables.

3) MODELING TEMPORAL DEPENDENCIES

Evacuation routes must adapt in real-time based on changing
conditions (e.g., updated information on road closures,
ongoing traffic incidents, or real-time weather conditions).
KANs could model time-dependent functions, which is
essential in scenarios where events evolve over time and
affect escape route decisions dynamically. KANs’ ability
to represent complex, time-varying functions gives them an
advantage in handling dynamic, real-time changes in traffic
flow or emergency responses. By capturing the underlying
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temporal structure, KANs could provide an adaptive system
capable of adjusting evacuation routes as conditions shift.

4) EFFICIENT HIGH-DIMENSIONAL DATA REPRESENTATION
Escape routing often involves high-dimensional data, includ-
ing spatial and temporal variables like geospatial mapping
(of roads, obstacles, and shelters), traffic flow data, weather
forecasts, and communication from emergency services.
Traditional neural networks may require enormous amounts
of data or overly complex architectures to model these
relationships, whereas KANs reduce dimensionality by
representing multi-dimensional functions as sums of lower-
dimensional functions. This makes KANs exceptionally
suited for high-dimensional routing problems that involve
multiple sources of input data, such as real-time traffic and
weather. For example, in evacuations through an urban area,
KANSs could efficiently represent traffic conditions on every
possible route, crowd density on roads, and the capacity
of infrastructure without requiring massive computational
resources.

5) INTERPRETABILITY IN NONLINEAR SYSTEMS

KANSs are particularly valuable because they generate more
interpretable models, which are crucial in domains like
disaster escape routing, where emergency responders need
to understand the decision-making behind routing choices.
Traditional deep neural networks, especially those with many
layers and parameters, can become black boxes. However,
KANSs use a combination of univariate, continuous functions,
making it possible to break down and interpret how each
factor (e.g., weather, crowd behavior, or road blockage)
influences the final decision. In disaster response scenarios,
KANSs can allow for the explicit tracking of how changes
in weather or a newly closed road directly influence the
predicted evacuation route, helping decision-makers trust
and adapt the system’s recommendations. This transparency
ensures that routing systems are not only accurate but also
accountable and explainable.

By leveraging these features, KANs provide an ideal
solution for modeling complex, nonlinear, time-sensitive
environments like disaster evacuation routing, where numer-
ous factors influence the outcome, and the dynamics of the
system evolve rapidly. However, research is still ongoing in
the development and application of KANs for large-scale
and dynamic ER problems. Ongoing efforts to integrate
KANs with Graph Neural Networks (GNNs) and Quantum
Computing could potentially unlock more advanced and
scalable solutions for real-world applications in escape
routing challenges.

Despite KANs showing promise, they have primarily been
evaluated on small datasets. As stated in [6], larger datasets
and complex environments, such as the dynamic ER problem,
require further investigation of KANSs integrated with GNNGs,
which could better handle large-scale systems. Additionally,
the application of QC (as explored in [11]) could further
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enhance the scalability and performance of KANS in practical
ER scenarios.

Despite the theoretical potential of KANs in solving
complex routing problems, our literature review revealed a
notable absence of empirical studies applying KANs specif-
ically to disaster escape routing scenarios. This research gap
presents a limitation in our comparative analysis, as we lack
concrete performance metrics and experimental validation
that would enable direct comparison with other approaches.
The scarcity of such studies may be attributed to the relatively
recent emergence of KANs in the optimization domain,
coupled with the inherent complexity of implementing
these networks for large-scale routing problems where
real-time performance is critical. Consequently, while we can
discuss the theoretical foundations and potential advantages
of KANs, we cannot present quantitative benchmarks or
empirical evidence of their effectiveness in disaster escape
routing applications at this time.

VIil. OVERALL ANALYSIS
In this section, we reflect on our efforts to address the research
questions outlined in Section II.

A. HQNN MODEL

The HQNN model addresses the research questions by
presenting a hybrid supervised learning framework for
tackling ER problems. It offers a novel approach by training
the Quantum FiLM model to emulate the node-wise Dijk-
stra’s algorithm, effectively combining classical optimization
techniques with quantum computing. This integration aims to
enhance routing efficiency and decision-making in dynamic
environments, showcasing potential success factors such as
improved performance and adaptability. However, despite
the HQNN’s notable performance, it faces challenges in
its reliance on earthquake coordinates, start-end nodes, and
immediate neighbors for determining optimal paths. This
limited approach overlooks critical factors such as elevation
and real-time traffic conditions, which can significantly
impact route optimization. Including these variables would
enhance the model’s robustness and applicability, but acquir-
ing post-disaster data poses unique challenges, necessitating
further research to develop reliable data-gathering methods.

B. GNN MODEL

The GNN model provides a graph-centric approach that
focuses on learning the correlations within the graph struc-
ture, which is crucial for modeling the intricate interactions
among various nodes. This relationship between nodes is
particularly significant in dynamic disaster scenarios, where
node dependencies are prevalent and the number of nodes can
increase to levels that classical machine learning strategies
struggle to manage.

However, the ability of GNNs to model such complex
interactions can be limited, as traditional GNNs are not
inherently designed to handle dynamic environments. Fur-
thermore, the presence of noise in the data complicates the
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task of accurately identifying node correlations. This presents
a substantial challenge for conventional GNN approaches
when applied to escape routing problems, highlighting the
need for more robust methodologies that can effectively
address these limitations.

C. TGN MODEL

The TGN model addresses the shortcomings of traditional
GNNs in dynamic escape routing environments. Unlike
GNNgs, which struggle to adapt to changing node interactions,
TGNs are designed to manage time-varying graphs, facilitat-
ing real-time updates of node states based on time-stamped
events. This capability is essential for dynamic situations
where conditions can change rapidly.

TGNs leverage memory mechanisms to preserve inter-
action histories, effectively reducing node staleness and
improving predictive accuracy. Moreover, they exhibit greater
robustness to noise and can integrate temporal information
along with additional graph features. This combination
enhances their ability to capture complex relationships in
rapidly evolving scenarios, making TGNs a more suitable
choice for tackling the challenges presented by dynamic
escape routing problems.

D. KAN MODEL

Kolmogorov Arnold Networks (KANs) present a compelling
alternative to Multilayer Perceptrons (MLPs) in deep learn-
ing, particularly for tasks involving complex graph structures.
KAN:s utilize fewer parameters while achieving comparable
or superior performance, which facilitates the development
of simpler and faster models—attributes that are especially
beneficial for larger graphs.

As the complexity of graphs increases, KANs capitalize
on their robust theoretical foundation to effectively model
intricate, non-linear patterns characteristic of traffic systems.
This efficiency positions KANs to perform well even
under demanding computational constraints, making them
particularly suited for applications that require scalability and
robustness, such as dynamic escape routing scenarios.

Further research into larger KAN architectures could
significantly enhance their ability to tackle complex tasks,
thereby solidifying their role as a leading alternative to
traditional MLPs. Such advancements would also expand
their applicability to large-scale escape routing problems,
further demonstrating the potential of KANs in real-world
scenarios.

IX. INTEGRATING DIVERSE MODELS FOR
COMPREHENSIVE ESCAPE

ROUTING SOLUTIONS

While each model discussed brings unique strengths to
addressing real-world ER challenges, combining them can
lead to a more robust and scalable solution for solving
complex ER problems. Below, we illustrate how the HQNN,
GNN, TGN, and KAN can complement each other:
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Integrated Model

FIGURE 6. Block diagram illustrating the integration of Hybrid Quantum-Classical Model, Graph Neural Network, Temporal Graph Networks,
and Kolmogorov Arnold Networks in addressing the dynamic ER problem. Each model contributes to specific tasks: global optimization,
localized path refinement, real-time adaptation, and human behavior modeling, respectively, culminating in a unified escape routing plan.

A. HYBRID QUANTUM-CLASSICAL MODEL FOR GLOBAL
OPTIMIZATION

The Hybrid Quantum-Classical model is highly suited for
solving global optimization problems involving exponen-
tially large solution spaces. For ER, it can compute the most
efficient evacuation pathways on a macro level, accounting
for constraints such as total evacuation time and road or traffic
capacities across multiple regions. These global solutions
serve as the foundational input to other models, which refine
them further based on dynamic and localized factors.

B. GRAPH NEURAL NETWORK (GNN) FOR
NETWORK-WIDE PATH REFINEMENT

GNNSs process graph-structured evacuation networks to refine
routes identified by the Hybrid Quantum-Classical model.
By encoding edge-level details, such as road conditions,
traffic capacity, and vehicle types, GNNs ensure compliance
with localized constraints. They can also model interactions
within the network, such as cooperative or competitive behav-
iors among evacuees, enhancing the system’s adaptability to
regional variations.

C. TEMPORAL GRAPH NETWORKS (TGN) FOR REAL-TIME
ADAPTATION

TGNs address the dynamic nature of ER scenarios by
incorporating temporal updates, such as road accessibility
changes, evolving traffic conditions, or fluctuating weather
patterns. By refining the evacuation strategy continuously,
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TGNs adapt routes in real time to prevent bottlenecks and
address disruptions, ensuring a high level of responsiveness
to dynamic scenarios.

D. KOLMOGOROV ARNOLD NETWORKS (KAN)

FOR HUMAN BEHAVIOR MODELING

AND INTERPRETABILITY

KANSs are particularly suited for modeling nonlinear depen-
dencies, such as crowd behavior and psychological responses
during emergencies. By focusing on tasks like predicting
panic-induced deviations or estimating evacuation times for
pedestrians, KANs add a critical layer of human-centric
modeling. Moreover, their interpretability provides insights
into the evacuation plan, enabling decision-makers to identify
and address potential weak points effectively.

E. COLLABORATIVE WORKFLOW OF MODELS
The synergy between these models can be illustrated through
the following workflow:

1) Initialization: The Hybrid Quantum-Classical model
generates an optimized global evacuation plan by
solving for macro-level constraints, such as evacuation
time and regional risks.

2) Refinement and Adaptation: GNNs refine the global
plan, ensuring localized compliance with road con-
ditions, traffic capacities, and individual evacuee
behaviors.
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3) Dynamic Updates: TGNs monitor evacuation oper-
ations, dynamically rerouting evacuees based on live
data, such as traffic congestion, road blockages,
or hazard zones.

4) Behavior Analysis and Decision Support: KANs
model human behavior dynamics and provide inter-
pretable insights, enabling further evaluation and
improvement of the evacuation plan.

F. UNIFIED DEPLOYMENT FOR ER SCENARIOS

By leveraging the complementary strengths of these models,
a dynamic system can be constructed to handle ER chal-
lenges. The integration ensures scalability across diverse geo-
graphical contexts while adapting dynamically to real-time
crises, bridging global optimization, localized refinement,
real-time updates, and interpretable outcomes. Fig. 5 shows
the block diagram representation of the integrated model.

To the best of our knowledge, there are no existing studies
that have implemented this combined approach, as indicated
by our comprehensive review of the literature. This observa-
tion highlights a gap in current research. By leveraging the
distinct strengths of each model, we hypothesize that their
integration could lead to improved outcomes. Testing this
hypothesis through rigorous experimentation is beyond the
scope of this study and is proposed as future work.

X. CONCLUSION

This review enhances the understanding of research con-
ducted on both Quantum and Classical solutions to the
Disaster Escape Routing (ER) problem. We reviewed the
HQNN Model, GNN Model, and TGN Model as responses
to the research questions outlined earlier. Additionally,
we provided insights into Variational Quantum Circuits
(VQCs) and Encoding Strategies for routing problems, which
contribute to a deeper understanding of these solutions.

We also discussed the latest developments in deep learning,
particularly Kolmogorov Arnold Networks (KANs), high-
lighting their performance in the context of traffic routing
problems. Our analysis suggests that while individual models
show promise, a more comprehensive approach integrating
multiple models could provide superior results. The proposed
integration framework combines HQNN’s global optimiza-
tion capabilities, GNN’s network-wide refinement, TGN’s
real-time adaptation, and KAN’s human behavior modeling
to create a more robust and adaptable system for disaster
response.

This study primarily focused on disaster traffic ER issues,
making it a relevant resource for researchers in this specific
field. However, other researchers may also find value in the
latest trends, such as KANs and the integrated approach,
for broader ER applications. The integration framework
proposed in this study opens new avenues for research in
combining quantum and classical approaches for enhanced
emergency response systems.

Given the niche nature of our research topic, we con-
centrated on papers directly related to Quantum Machine
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Learning (QML) and Machine Learning (ML) solutions for
disaster ER problems. Consequently, this study may overlook
other effective QML/ML solutions applicable to general ER
challenges. Future research could expand on these solutions
and the proposed integration framework, providing a more
comprehensive exploration of the capabilities of quantum
and classical approaches in tackling diverse ER problems.
Testing and validating the integrated approach through
practical implementations remains an important direction for
future work.

ACKNOWLEDGMENT

This work was part of the Practice School 1 Program
conducted by BITS Pilani in association with CDAC-
CINE, Cachar, Assam PS Station. The authors express their
gratitude to both institutions for facilitating their research.
They would also like to extend their heartfelt thanks to
Prof. V.S. N. Murthy for his invaluable mentorship through-
out the duration of the program. Their sincere appreciation
goes to Jitesh Choudhary, Director of CDAC-CINE, for his
support in facilitating this initiative. They also acknowledge
the contributions of Grammarly, ChatGPT, and Gemini for
assisting in correcting grammatical errors in their work.

REFERENCES

[1] N. Haboury, M. Kordzanganeh, S. Schmitt, A. Joshi, I. Tokarev,
L. Abdallah, A. Kurkin, B. Kyriacou, and A. Melnikov, “A supervised
hybrid quantum machine learning solution to the emergency escape routing
problem,” 2023, arXiv:2307.15682.

[2] B. S. Neyigapula. (2023). Graph Neural Networks for Optimal Pathfind-
ing: Uncovering the Shortest Distances. Jawaharlal Nehru Technological
Univ. [Online]. Available: https://bit.ly/3Wc1QBg

[3] E. Rossi, B. Chamberlain, F. Frasca, D. Eynard, F. Monti, and
M. Bronstein, “Temporal graph networks for deep learning on dynamic
graphs,” 2020, arXiv:2006.10637.

[4] V. S. Moskvin, “Quantum neural networks and their potential
in traffic prediction,” in Proc. Intell. Technol. Electron. Devices
Vehicle Road Transp. Complex (TIRVED), Nov. 2023, pp. 1-5, doi:
10.1109/tirved58506.2023.10332762.

[S] M. Schnaus, L. Palackal, B. Poggel, X. Runge, H. Ehm, J. M. Lorenz, and
C. B. Mendl, “Efficient encodings of the travelling salesperson problem
for variational quantum algorithms,” in Proc. IEEE Int. Conf. Quan-
tum Softw. (QSW), Jul. 2024, pp. 81-87, doi: 10.1109/qsw62656.2024.
00022.

[6] Z. Liu, Y. Wang, S. Vaidya, F. Ruehle, J. Halverson, M. Soljaci¢,
T. Y. Hou, and M. Tegmark, “KAN: Kolmogorov-arnold networks,” 2024,
arXiv:2404.19756.

[7]1 C. J. Vaca-Rubio, L. Blanco, R. Pereira, and M. Caus, ‘“Kolmogorov-
arnold networks (KANs) for time series analysis,” 2024,
arXiv:2405.08790.

[8] R. Yu, W. Yu, and X. Wang, “KAN or MLP: A fairer comparison,” 2024,
arXiv:2407.16674.

[9]1 A.D.Bodner, A. S. Tepsich, J. N. Spolski, and S. Pourteau, ““Convolutional
kolmogorov-arnold networks,” 2024, arXiv:2406.13155.

[10] F. Zhang and X. Zhang, “GraphKAN: Enhancing feature extraction with
graph Kolmogorov Arnold networks,” 2024, arXiv:2406.13597.

[11] W. Troy, “Sparks of quantum advantage and rapid retraining in machine
learning,” 2024, arXiv:2407.16020.

[12] (Jul. 21, 2024). IBM Quantum Learning. [Online]. Available: https://
learning.quantum.ibm.com/

[13] (Jun. 21, 2024). OSMnx Documentation. [Online]. Available:
https://osmnx.readthedocs.io/en/stable/

[14] C. Bernhardt, Quantum Computing for Everyone. Cambridge, MA, USA:
MIT Press, 2019, doi: 10.7551/mitpress/11860.001.0001.

81505


http://dx.doi.org/10.1109/tirved58506.2023.10332762
http://dx.doi.org/10.1109/qsw62656.2024.00022
http://dx.doi.org/10.1109/qsw62656.2024.00022
http://dx.doi.org/10.7551/mitpress/11860.001.0001

IEEE Access

A. Vinil et al.: Topical Review of Quantum and Classical Machine Learning Approaches

[15] T. Dai, W. Zheng, J. Sun, C. Ji, T. Zhou, M. Li, W. Hu, and Z. Yu,
“Continuous route planning over a dynamic graph in real-time,” Proc.
Comput. Sci., vol. 174, pp. 111-114, Jan. 2020. [Online]. Available: https://
www.sciencedirect.com/science/article/pii/S1877050920315799

[16] (Jun. 21, 2024). OpenStreetMap. [Online]. Available: https://www.
openstreetmap.org/map=13/26.1522/91.7230&layers=CG

[17] 1. Quilez. (Jun. 21,2024). The Hidden Beauty of the A Algorithm. YouTube.
[Online]. Available: https://youtu.be/A60q6dcoCjw

[18] Gate Smashers. (Apr. 5, 2019). A Algorithm in Al (Artificial Intelligence)
in HINDI | A Algorithm With Example. [Online]. Available: https:/youtu.
be/tvAhOJZF2YE

[19] YouTube. (Dec. 8, 2022). VTU AIML LABI ASTAR || A Search Algorithm.
[Online]. Available: https://youtu.be/64q7zokfdJo

[20] Graph Neural Netw. Some GNN Applications: Everything You Need To
Know. Accessed: Jul. 18, 2024. [Online]. Available: https://neptune.ai

[21] L. Sauras-Altuzarra and E. W. Weisstein. (2025). Adjacency Matrix.
MathWorld—-A Wolfram Web Resource. [Online]. Available: https:/
mathworld.wolfram.com/AdjacencyMatrix.html

[22] A. Trabesinger, “Quantum simulation,” Nature Phys., vol. 8, no. 4, p. 263,
Apr. 2012, doi: 10.1038/nphys2258.

[23] DeepFindr. (Dec. 2021). Friendly Introduction to Temporal Graph Neural
Networks (and Some Traffic Forecasting). [Online]. Available: https:/
www.youtube.com/watch?v=WEWq93tioC4

[24] P. W. Shor, “Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer,” 1995, .

[25] PennyLane. (2023). What is Quantum Machine Learning?. Accessed:
Aug. 3, 2024. [Online]. Available: https://pennylane.ai/qml/whatisqml/

[26] S. Mehran Kazemi, R. Goel, K. Jain, I. Kobyzev, A. Sethi, P. Forsyth, and
P. Poupart, “Representation learning for dynamic graphs: A survey,” 2019,
arXiv:1905.11485.

[27] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proc. 31st Int. Conf. Neural Inf. Process. Syst.
(NeurIPS), Long Beach, CA, USA, Jan. 2017, pp. 1024-1034.

[28] P. Krusche, C. L. M‘uller, and P. Mutzel, “Efficient shortest paths
computation in temporal networks,” in Proc. 23rd Int. Conf. Data Eng.
(ICDE), San Diego, CA, USA, 2017, pp. 743-753.

[29] E. W. Dijkstra, “A note on two problems in connex ion with graphs,”
Numerische Math., vol. 1, pp. 269-271, Dec. 1959.

A. VINIL is currently pursuing the B.E. degree in electrical and electronics
engineering from the Birla Institute of Technology and Science, Pilani,
Hyderabad Campus, India.

In Summer 2024, he was a Research Intern at the Centre for Development
of Advanced Computing (C-DAC)—Center in North East (CINE), Assam,
India. His research interests include quantum machine learning and quantum
computing.

81506

PARAMESWARAN IYER is currently pursuing the bachelor’s degree in
mathematics and electronics and communication engineering with the Birla
Institute of Technology and Science, Pilani, Hyderabad Campus, India.

During Summer 2024, he interned at the Centre for Development of
Advanced Computing (C-DAC)—Center in North East (CINE), Assam, India.
His research interests include post-quantum cryptography, biomedical signal
processing, and robotics.

JETAIN CHETAN is currently pursuing the B.Tech. degree in electronics
and communication engineering from the Birla Institute of Technology and
Science, Pilani, Hyderabad Campus, India.

In Summer 2024, he was a Research Intern at the Centre for Devel-
opment of Advanced Computing (C-DAC)-Center in North East (CINE),
Assam, India.

ANIKET BEMBALE received the Post-Graduation Diploma degree in
artificial intelligence from the Centre for Development of Advanced
Computing (C-DAC), Noida, and the M.Sc. degree in physics.

He is currently a Project Associate with C-DAC. He has been working on
quantum machine learning for disaster management. He is also involved in
developing Al solutions and optimizing large language models for specific
applications. His research interests include artificial intelligence and physics.

NAGENDRA SINGH received the M.Tech. degree in computer science from
IIT Jodhpur, India.

He is currently a Scientist B with the Centre for Development of
Advanced Computing (C-DAC)-Center in North East (CINE), Silchar.
He has led projects on quantum machine learning for disaster management
and has worked on quantum accelerators for HPC systems, as well as
FPGA-based deep learning accelerators. He has contributed to publications
on quantum recommendation systems, federated learning, and FPGA
quantum gate simulations. His current research interests include quantum
machine learning and deep learning accelerators.

VOLUME 13, 2025


http://dx.doi.org/10.1038/nphys2258

