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Abstract

A key feature of the singularity resolution in loop quantum cosmology (LQC) is the occurrence of
the quantum bounce when the spacetime curvature becomes comparable to the Planck scale. The
presence of quantum bounce greatly modifies the dynamics of the early universe and can have important
implications for observational signatures. Although the quantum bounce has been previously studied
via numerical methods for initial conditions that correspond to large macroscopic universes at late times,
a detailed study of the robustness of the quantum bounce for a generic class of initial condition has so far
been missing due to severe computational challenges. In the first part of this dissertation, we develop the
Chimera scheme, an efficient numerical technique, and study the physics of the quantum bounce in an
isotropic and homogeneous spacetime. We find that the quantum bounce is a robust phenomenon and
independent of initial conditions, while its quantitative features depend on the quantum fluctuations of
the initial state. In addition to these results we present a detailed analysis of the validity of the effective
description of LQC, which shows that the effective description remains valid so long as the quantum
fluctuations in the state are negligible. These results set the stage to compute finer corrections due to
the quantum fluctuations of the spacetime geometry to the observational signatures of LQC. Using the
Chimera scheme we also study, for the first time, non-singular evolution in the presence of a negative
scalar field potential which gives rise to a cyclic universe. In the second part of the thesis, we focus on the
phenomenological aspects of the singularity resolution. We study the transitions of various geometrical
structures across the bounce and the effect of the quantum bounce on the inflationary scenario in
Bianchi-I spacetime. Using the nonsingular evolution of LQC we also explore the possibility of anti-de
Sitter to de Sitter vacuum transitions, a long standing problem in the multiverse scenario, which plays
an important role in defining a local measure in the multiverse.

xii



Chapter 1
Introduction

Over the past century, our understanding of the cosmological paradigm has remarkably evolved
from theoretical proposals to precise measurements. Astounding theoretical and experimental
advancements made over the past few decades have made it possible to test and constrain, and
at times rule out various theoretical ideas regarding the origin and the evolution of our universe.
Observational data from experiments such as Wilkinson-Microwave-Anistropy-Probe[1], Sloan
Digital Sky Survey [2], supernova redshift measurements [3, 4], Planck mission [5], Cosmic
Microwave Background Polarization measurement [6], BICEP2 [7] and others have determined
and refined the values of various cosmological parameters through independent investigations. It
is remarkable that almost all of the experimental observations obtained via the aforementioned
experiments and the large scale structure of our universe can be very well explained using
Einstein’s theory of general relativity (GR).

Despite its success in explaining the current observational universe, GR fails to provide
reliable answers to some of the most fundamental questions about the early stages of the universe.
The powerful singularity theorems in GR, due to Hawking, Penrose, Raychaudhuri and others
in early 1960’s, show that the past evolution of the universe ends into the big bang singularity.
At it all the curvature invariants diverge and the geodesics can not be extended further, which
is an indication of the breakdown of GR in the regime close to the big bang. Similarly in the
inflationary paradigm, which explains very well the immense isotropy and homogeneity of the
current universe [8, 9, 10, 11], the past evolution of the spacetime is incomplete due to the
presence of the big bang singularity [12]. As a result, the inflationary paradigm also remains
silent on questions like: What was the universe like before inflation? or How are the conditions
necessary for inflation developed? Most of these issues including that of big bang singularity
arise because one is trusting the classical notion of general relativity throughout the evolution,
including close to the big bang where the spacetime curvature becomes too large to ignore the
quantum effects. There are many other physically plausible situations where GR would not be
enough to describe the physics. For example, at the center of a black hole. The main reason
why GR fails in these situations is that, in them, both the gravitational and quantum effects
play equally important role. Therefore, while applying only the classical notion of GR in such
situations, we are not only going beyond the applicability of GR but also ignoring the quantum
effects completely. For a proper treatment of such issues one would need to resort to a more
general theoretical framework i.e. a theory of quantum gravity.

1.1 Quantum Gravity

The goal of quantum gravity is to bring the two main paradigms of physics, namely quantum
field theory and general relativity under a more general framework. Both of these paradigms
have their own problems. In classical GR, as mentioned above, the presence of the big bang
singularity is an indication that one is working beyond the realm of the applicability of the theory.
For example, in the case of a homogeneous and isotropic spacetime, as one approaches the big
bang, all curvature invariants diverge. Quantum field theory, on the other hand, is perturbative
in nature and highly depends on the nature of the background spacetime. Therefore, if one
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changes the background spacetime, the theory may change a lot and one would need to revisit
the renormalization techniques which may not be well defined in all cases. The hope for a
theory of quantum gravity is that it, by unifying quantum field theory with general relativity,
may remedy the problems of the individual theories as well.

It is expected that, in addition to resolving the issue of big bang singularity, a quantum theory
of gravity will also shed light on the suitable initial conditions in the early universe, how they
lead to an inflationary spacetime as well as remedy the trans Planckian issues. Quantum gravity
is also required for the conceptual understanding of many other fundamental issues including,
but not limited to, the final stages of an evaporating black hole and the fundamental structure
of the spacetime geometry [13, 14, 15, 16]. A complete theory of quantum gravity is expected
to make testable predictions in both the high and low energy limits. But it is very difficult
to build an experiment which will absolutely require a quantum theory of gravity to explain
the results. Therefore, due the lack of experimental guidance, mathematical and conceptual
consistencies are taken as the basic rationale in designing such a theory. There is, however, no
unique method or foundation as to where one should start. That is, which theory – general
relativity or quantum theory – should be considered as the starting point.

One of the oldest approaches to quantum gravity, which takes classical GR as the starting
point, is “quantum geometrodynamics”, which is a canonical way of quantizing gravity based
on the Hamiltonian formulation of classical GR in four dimensions [17, 18]. The central idea in
the Hamiltonian formulation of GR is to decompose the four dimensional spacetime into three
dimensional spacelike hypersurfaces. In this picture, the whole spacetime can be thought as
a stack of several spatial sections. The separation between two neighboring spatial sections is
parameterized by a scalar quantity called lapse, while the spatial separation between two points
on a three dimensional spatial section is characterized by three components of a vector called
shift. In this formalism, one can view the whole spacetime as a single time dependent three
dimensional metric living on a spatial hypersurface, while the entire spacetime is generated via
the time evolution of the components of this 3-metric, let us call it gij. The latter concept of the
time dependent three metric turns out to be extremely useful both for a convenient Hamiltonian
formulation and the initial value formulation of GR.

The configuration variables in this setting are the six components of the symmetric three-
metric gij, and their conjugate momenta πij which are related to the extrinsic curvature and
encode the information about how the spatial section is curved with respect to the spacetime.
The lapse function and three components of the shift vector together give rise to four Lagrange
multipliers in the theory. There are four constraints associated with these four Lagrange multi-
pliers: one Hamiltonian constraint H, and three diffeomorphism constraints Di. In this picture,
the classical evolution is then characterized by six evolution equations corresponding to the
configuration variables and four constraints. The Hamiltonian constraint is associated with
the property that the theory remains invariant under the choice of deformation of the spatial
section, and the diffeomorphism constraints represent the fact that the spacetime is invariant
under the spatial coordinate transformations. In this sense the Hamiltonian and the diffeo-
morphism constraints represent four symmetries of the theory. Quantum geometrodynamics is
then obtained by choosing the metric components gij as the basic configuration variables, and
quantizing the resulting Hamiltonian and diffeomorphism constraints following the canonical
quantization procedure. Now, the goal is to solve the equation

HΨ[gij] = 0 (1.1)

known as the Wheeler-DeWitt equation, which essentially is the Hamiltonian constraint equa-
tion. Note that the wavefunctional Ψ, in addition to being a solution of the Wheeler-DeWitt
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equation given above, is also invariant under the spatial coordinate transformation because of
the diffeomorphism symmetry imposed by the diffeomorphism constraints. It is noteworthy that
such an approach to quantizing gravity is inherently non-perturbative in nature. Though the
program of Wheeler-DeWitt quantization is indeed promising, there are also several issues with
it: In terms of the metric variables the form of the quantum constraints are very complicated
and in many situations due to non-polynomial dependence of the Hamiltonian constraint on
the metric variables it is very difficult to write a quantum operator associated with it. Now
the question is: Can these issues be simplified to some extent in the Hamiltonian formulation
– probably via a different way of constructing the quantum constraints? The answer to this
question, as we will see next, is in affirmative in the context of loop quantum gravity.

Loop quantum gravity (LQG) is based on the Hamiltonian formulation of gravity in terms
of a different pair of canonical variables which are based on the connection-triad formalism
[19, 20, 21, 22, 23]. The basic configuration variables are densitized triads Ea

i and their conjugate
SU(2) connections are Aia, also known as Ashtekar variables [24, 19, 25, 26, 27]. Triads are three
dimensional vector fields are related to the metric variables and in addition also have internal
degrees of freedom related to rotations in the internal three dimensional space. The connections,
on the other hand, are related to the extrinsic curvature hence determine how the spatial metric
evolves in the spacetime. The new variables prove very useful. They are similar to the variables
used in the well understood Yang-Mills theory, and one can now quantize the theory in a similar
way. This is one the main advantages of working with these variables. Similarly to what happens
in quantum geometrodynamics there are constraints in this approach as well. Due to the internal
symmetries, in this formulation, there are three more constraints called the Gauss constraints
in addition to the usual Hamiltonian and the momentum constraints. Hence, there are in total
seven constraints: one Hamiltonian constraint, three momentum constraints and three Gauss
constraints. The diffeomorphism constraint of the theory can be obtained by combining the
momentum constraints with the Gauss constraints. The variables chosen for quantization of the
theory are the so called holonomies of the connection and the fluxes of the triads rather than
the connection and the triads themselves. Considering the pair of holonomies and the fluxes as
the elementary objects for quantization, one can construct the holonomy-flux algebra [28], also
know as the Ashtekar-Isham algebra, which plays a key role in the quantization.

LQG endows the spacetime with a discrete quantum geometry by predicting Planck scale
discreteness in the eigenvalues of the geometric operators such as area and volume [29, 30, 31, 32].
Although the full LQG theory is yet to be completed, there has been various applications of the
LQG ideas to gain physical insights on many issues. One of the main accomplishments of LQG is
the computation of the black hole entropy based on the quantum statistical counting of the states
on the horizon [33, 34, 35, 36, 37, 38]. In a recent series of papers [39, 40, 41], loop quantization
of a spherically symmetric black hole spacetime is LQG has been provided which resolves the
singularity at the center of a Schwarzschild black hole [40], as well as explores the Hawking
radiation in a spherically symmetric black hole in detail [42] in the light of LQG. Another very
important applications of loop quantization is loop quantum cosmology (LQC) where the the
classical big bang singularity in various cosmological models has been resolved, by taking into
consideration the quantum geometric structure predicted by LQG[43]. Thus, although the full
theory of loop quantum gravity is yet to be completed, the theory has been quite successful in
extracting physical insights by applying the ideas of LQG to symmetry reduced mini and midi
superspace systems.

Parallel to LQG, which is based on a canonical formulation, there have been developments in
building a covariant approach to quantum gravity, namely, the spinfoam approach[23, 44, 45, 46].
A spinfoam consists of the sum of all the possible configuration of a geometry. In this setting
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one can compute the probability of transition between two given spin network states – which
represent quantum states on a three dimensional hypersurface in LQG – by summing over all
the possible spin foams which connect these two spin network states. There also has been a lot
of progress in implementing this approach and building physical models [23].

Another prominent approach to a quantum theory of gravity is string theory [47, 48, 49].
String theory aims to unify all the fundamental forces and is a promising candidate for a unified
quantum theory of all interaction (a “theory of everything”) which includes gravity. In string
theory all fundamental particles are viewed as excitation of one dimensional objects called
strings. String theory having given birth to many interesting ideas such as the AdS/CFT
correspondence and holography, which have been applied to understand critical phenomena in
condensed matter systems as well.

Despite several prominent approaches to a theory of quantum gravity, we are still far from
having a full theory of quantum gravity. It is very hard to build such a theory without any ex-
perimental guidance. The main hindrance stems from the fact that so far there are practically
no physically accessible systems where both the quantum effects and gravitation are simulata-
neously important. However, one can think of several plausible scenarios in physics where a
quantum theory of gravity will be absolutely necessary. As discussed before, a simple example
would be the very early stages of our universe, where the spacetime curvature grows beyond the
realm of applicability of GR and the quantum effects are not negligible. A proper treatment of
such problems requires inputs from both quantum theory and general relativity. While it is true
that designing an experiment which clearly requires a quantum theory of gravity is extremely
difficult – almost impossible – one can still learn a lot about a potential candidate of quantum
gravity by applying its ideas to a rather simpler situations, such as cosmology, than solving
the problem of quantum gravity in its entirety. Let us now discuss such attempts to study the
symmetry reduced models in the light of ideas motivated from quantum gravity.

1.2 Quantum cosmology

The underlying symmetries present in the cosmological spacetimes simplify many technical is-
sues which are difficult to resolve in the full quantum gravity. Due to this, it is simpler to design
a theory of quantum cosmology which is mathematically consistent and has inputs from both
general relativity and quantum theory. This reduces the technical complexity in the quantization
significantly. Due to the symmetries of cosmological spacetimes the form of the Hamiltonian
and diffeomorphism constraints are much simpler and easier to solve. For example, in a homo-
geneous and isotropic spacetime, certain gauge choice can be made so that the diffeomorphism
constraints are trivially satisfied leaving only the Hamiltonian constraint to be solved. Moreover,
cosmological spacetimes are examples of mini-superspaces which have a finite number of degrees
of freedom. Hence, simple quantum mechanics rather than quantum field theory may be suffi-
cient to incorporate the relevant quantum effects. Moreover, cosmological setting is well suited
to undertake conceptual issues such as the problem of time, construction of the physical Hilbert
spaces and corresponding Dirac observables and so on in a background independent formalism.
With the enormous amount of observational data available today, quantum cosmology provides
a hope – probably the only hope – of testing the ideas of quantum gravity against observations.
In this way, quantum cosmology sets the stage to seek answers to the following conceptual and
phenomenological questions, while incorporating both classical GR and quantum theory:

• Fate of the cosmological singularities: Are the cosmological singularities present in classical
GR resolved in the quantum theory? How is the dynamics modified as the singularity is
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approached? Is there a smooth quantum modified geometry or the evolution becomes
fuzzy while spacetime becoming like a quantum foam?

• Initial conditions and determinism of evolution: If the classical singularities are resolved,
is the quantum evolution deterministic ? How generic is the resolution of singularities?
Is the resolution of singularity obtained for special fine tuned conditions? What is on the
“other side” of the evolution? Is there a pre-big bang universe? What can we learn about
the initial conditions suitable for the inflationary scenario and structure formation in the
universe? Or is there an alternative to inflation that may arise from the quantum effects?

• Planck scale physics: In the classical theory as the singularity is approached the curvature
invariants diverge signaling the limit of validity of the classical description. What happens
to the curvature scalars in a quantum cosmological model? Do the quantum geometric
effects put an upper bound to them? The resolution of classical singularity can lead to
many interesting and novel phenomena at the Planck scale. How do these modifications
affect the physics?

• Quantum to classical transition: It is known that the current observations of the large
scale structure of the universe are very well explained by classical GR. This means that
there must have been a point in the past evolution when the classical and the quantum
trajectories agreed with each other. When did that happen? Was that before inflation?
If yes, does inflation always happen at a scale when the quantum corrections are already
negligible? What is the scale up to which the classical GR can be trusted?

• Observational consequences of quantum geometry: If the quantum corrections modify the
dynamics in the deep Planck regime, the classical evolution trajectory must have been
different from the quantum one, for some period of time in the very early universe. In
principle those differences would affect the way cosmological perturbations leave observa-
tional imprints on the CMB in terms of the observed inhomogeneities and anisotropies.
How big or small those effects would be? Can we observe signatures of those corrections
in the current or future experimental observations?

• The problem of time: As we previously discussed that the Hamiltonian formalism of GR
is characterized by a Hamiltonian constraint rather than a true Hamiltonian. Due to
this, there is no preferred notion of time in the theory. On the other hand, in quantum
mechanics, for example in the time dependent Schrödinger equation, there is an explicit
time variable present. Due to such fundamental difference in the treatment of time in the
two theories, it becomes extremely difficult to device a notion of evolution, or time for
that matter, in canonical quantum gravity. In quantum cosmology many technicalities of
the problem in the full theory are absent, opening the possibility of progress.

• Lessons for the full theory: In addition to answering the aforementioned fundamental
questions about the early universe and possible observational consequences of the quantum
spacetime geometry, the study of quantum cosmology may have important implications
for the full quantum gravity theory. Studying the symmetry reduced cosmological models
can also help resolve various quantization ambiguities that arise during the process of
quantization. This way quantum cosmology can serve as a guide to the path leading to a
full theory of quantum gravity.
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The Hamiltonian formulation provides an excellent avenue to build a quantum theory where,
due to the absence of a background spacetime structure, the dynamics is generated by the Hamil-
tonian constraint. The solutions to the quantum constraints (which includes both the Hamil-
tonian and the diffeomorphism constrains) actually are the physical solutions. The expectation
values of the physical observables are then computed using these physical states.

The Wheeler-DeWitt quantum cosmology is based on quantum geometrodynamics. That is,
one starts with a cosmological spacetime, and while accounting for the underlying symmetries of
the spacetime, one writes the Hamiltonian and diffeomorphism constraints. It turns out that for
the homogeneous spacetimes the diffeomorphism constraints can be solved using suitable vari-
ables. Then promoting the metric variables and their conjugate momenta to the corresponding
quantum operators one obtains a quantum Hamiltonian constraint similar to eq. (1.1). The
solutions of this equation are then the physical states with respect to which the expectation
values of various observables can be be computed. Although the Wheeler-DeWitt theory is a
systematic approach to a quantum cosmology, it has limitations.

One of the main limitations has to do with the procedure of minisuperspace quantization
itself. In minisuperspace quantization, one first identifies the symmetries of the spacetime, and
quantization is then perform on the symmetry reduced system. This process in general is not
equivalent to starting with a full quantum gravity theory and then truncating it according the
symmetries of spacetime (see for example [50]). In this way, the question arises whether the
minisuperspace quantization captures the key elements of quantum gravity? In other words,
is a minisuperpace quantum theory a representation of the quantum gravity effects, at least in
some simple cases?

As we have discussed previously, in quantum geometrodynamics the physical states are given
by the solutions of the quantum Hamiltonian constraints and there is no a priory notion of time.
Due to this the evolution from an initial state to a final state may depend on the choice of
foliation of the spacetime into spatial hypersurfaces. This issue is somewhat resolved in the case
of the minisuperspace system, particularly in the homogeneous spacetimes, where due to the
homogeneity there is a preferred foliation. However, there is no prescribed way of defining an
inner product and Dirac observables and the notion of their evolution remains elusive. There
have been proposals to deal with this issue by defining an internal time with respect to one of
the phase space variables [51]. For example, in the Wheeler-DeWitt theory, one can choose the
scale factor (which comes from the determinant of the 3-metric) to play the role of internal time.
This proposal works well for the models where the scale factor behaves monotonically such as
for the flat Friedmann-Robertson-Walker (FRW) models but fails in the cases, for example for
closed FRW models, where the scale factor is not monotonic even in the classical theory.

As it was discussed before, a quantum theory of cosmology, in addition to agreeing with the
classical GR in the low curvature limits, should also be able to resolve the classical singularity
in some sense. The powerful singularity theorems show that classical GR is generically singular
for the matter fields which obey certain energy conditions, for example matter field which have
positive energy density throughout the evolution, or an inflationary matter field. The question
for quantum cosmology is to resolve the singularity in these cases where the matter field satisfies
the energy conditions used to prove the singularity theorems in classical GR. For example, can
one resolve the big bang singularity in a flat FRW spacetime in the presence of a perfect fluid
with constant equations of state, i.e. P/ρ = const where P and ρ respectively are the pressure
and the energy density of the matter field?. The expectation that a quantum theory should
agree with classical GR in the low curvature limit, is well met by the Wheeler-DeWitt theory
but it fails to provide a satisfactory answer to the issue of singularity resolution in the precise
sense mentioned above. For such models the Wheeler-DeWitt theory is singular. That is, the
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expectation values of physical observables in the Wheeler-DeWitt quantum theory coincide with
the values of those observables in the classical theory all the way to the singularity, meaning
that the classical singularity is not resolved in the Wheeler-DeWitt quantum cosmology.

The question now is the following: Is there an approach to quantum cosmology which ad-
dresses the above limitations of the Wheeler-DeWitt quantum cosmology in a systematic and
mathematically consistent way, at least in the simple cases of homogeneous spacetimes? As we
will see next the answer is affirmative in the context of loop quantum cosmology which not only
deals with the issues of internal time, construction of inner product and Dirac observables but
also resolves the singularities present in classical GR.

1.3 Loop quantum cosmology

Loop quantum cosmology (LQC) is an approach to quantum cosmology where one starts with
a symmetry reduced cosmological spacetime and follows the quantization program of LQG as
closely as possible, while inheriting some essential features of LQG to the simple setting of
cosmology[52, 53, 54, 43, 55]. Although the derivation of LQC from full LQG is still to be
understood, one can still learn a lot about cosmological models in the high curvature regime
and attempt to answer some of the fundamental questions of quantum cosmology using LQC.
Due to the simplicity of the spacetime and finite number of degrees of freedom, many of the
technical difficulties of the full LQG can be avoided, making it possible to arrive at a systematic
theory of quantum cosmology. For example, similarly to what happens in the Wheeler-DeWitt
quantum cosmology, in the case of homogeneous spacetimes the diffeomorphism constraints
are trivially satisfied and the only remaining constraint to be solved is the Hamiltonian one.
The overall quantization procedure is similar to that in the case of Wheeler-DeWitt theory in
the sense that, first the classical constraints are written while paying the due attention to the
symmetries of the spacetime, then promoting the classical objects, suitable for quantization,
to their corresponding quantum operators to obtain the quantum constraints. In LQC, one
begins with the classical theory and performs symmetry reduction on the Ashtekar variables:
the densitized triads and the SU(2) connection, which are usually complicated in the full theory.
Following the symmetry reduction, these variables take rather a much simpler form and the
holonomy-flux algebra is much simpler. Then the resulting symmetry reduced model is loop
quantized.

The resulting theory has remarkable properties which provide an excellent avenue to answer
long standing questions about the early universe and the Planck scale physics. There has been
enormous progress in the field of LQC over the past decade and a half [43]. The striking
feature of loop quantum cosmology is its success in resolving the curvature singularities in the
cosmological spacetime and the prediction of a non-singular quantum bounce, which replaces
the classical notion of big bang. The idea of loop quantum cosmology was first put forward in
a series of papers by Bojowald [56, 57, 58, 52] where the resolution of the classical singularity
was partially discussed, and later a concrete foundation of the mathematical structure of LQC
was presented by Ashtekar, Bojowald and Lewandowski in Ref. [59]. Using the mathematical
foundation developed in Ref. [59] detailed physics and the dynamics of a flat isotropic FRW
model was first investigated in Refs. [60, 61, 62], in the so called improved dynamics of LQC.
Moreover, the occurrence of quantum bounce as a result of loop quantum corrections was shown
in Refs. [61, 62] via rigorous numerical simulations of states which are sharply peaked on a
classical trajectory at late times when the spacetime curvature is well below the Planckian
value. Later, the paradigm of the quantum bounce was analytically established for an exactly
solvable model for generic states and its robustness was studied in detail [63]. The analytical and
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numerical investigation of the flat isotropic FRW model in the presence of a massless scalar field
showed that the classical big bang singularity is resolved and generically replaced by a quantum
bounce, predicting a pre-existing contracting branch of the universe to which the evolution
from the current expanding branch is smooth and non-singular. Moreover, the resolution of
singularity is accompanied by an upper bound on the energy density ρmax ≈ 0.41 ρPl where ρPl

is the Planck density[62, 63].
The key ingredient inherited from LQG to LQC is the discreteness in the eigenvalues of the

area operator. In loop quantization the classical field strength of the gravitational connection
is represented in terms of the so called holonomy around a loop. Holonomies can be promoted
to quantum operators on the Ashtekar-Lewandowski Hilber space whereas connections can not.
Classically, the area of the loop around which the holonomy is computed can be made arbitrarily
small, whereas in the quantum theory due to the discrete spectrum of the area operator the
minimum area of the loop is rather the minimum eigenvalue of the area operator. Due to
this fundamental discreteness predicted by LQG, the LQC quantum Hamiltonian is a difference
operator with uniform discretization in terms of the variable representing the volume of space,
as compared to the Wheeler-DeWitt quantum operator which is a differential operator devoid
of such notion of discreteness in the spatial geometry. Remarkably, in the limit of large volume
(small spacetime curvature), the LQC Hamiltonian constraint can be well approximated by
the Wheeler-DeWitt Hamiltonian. Since, the evolution given by the Wheeler-DeWitt theory
agrees with classical GR, the LQC evolution agrees with classical GR solution in the limit of
small spacetime curvature or large volume. Hence, in addition to providing a singularity free
evolution, the solutions to the LQC Hamiltonian constraint also have the correct infrared limit .
It is however noteworthy that the correct infrared limit of the LQC Hamiltonian constraint was
only established in the so called improved quantization developed in Ref. [62], and was absent
in the early quantizations of LQC given in Refs. [56, 57, 58], which were also pointed out in
Refs. [64, 65, 66]. In the early loop quantization of the Refs. [56, 57, 58], there was an additional
problem, that is the energy density at the bounce would depend on the phase space initial values.
This is a serious problem because, then one could choose values of the phase space variables
which would cause the bounce at an energy density as small as the density of water. These
issues were fixed in the improved quantization which predicts the maximum energy density at
bounce to be independent of the phase space variables [62].

The improved quantization of LQC has been applied to quantize many cosmological space-
times with various matter models including closed [67, 68] and open [69, 70] isotropic FRW
model, flat FRW model with positive [71, 72] and negative [73] cosmological constants, in the
presence of radiation [74] and in the presence of a quadratic inflationary potential [75]. Going
beyond the isotropic spacetimes, a rigorous quantization of the flat homogeneous and anisotropic
Bianchi I spacetime has been also performed in the Ref. [76], which overcomes various issues
in the previous quantization of the Bianchi I spacetime in Ref. [77, 78]. Loop quantization
of the Bianchi II and Bianchi IX models have also been performed in Ref. [79] and [80, 81]
respectively. Loop quantum cosmology of the inhomogeneous Gowdy model, which allows inho-
mogeneity in one of the spatial directions, has also been studied [82]. Also loop quantization of
the Schwarzschild spacetime has also been discussed in detail [83, 39, 40, 41, 84, 85, 86]. In the
recent years cosmological models have also been studied in the spinfoam approach, which is the
covariant form of LQG [87, 88, 89, 90, 91, 92, 93, 94]

Due to the complexity of the difference equations it is usually very difficult to find analytical
solutions, except for a very special case where it was possible to construct an exactly solvable
model via appropriate choices of factor ordering and the internal time [63]. As discussed before,
the first evidence of the quantum bounce was obtained via numerical solution of the quantum
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difference equation for a spatially flat FRW model with a massless scalar field with sharply
peaked states [61, 62]. Since then, numerical simulations have become inseparable part of the
study of the evolution of a semiclassical state in LQC. Due to the lack of exactly analytically
soluble models, one has to rely on the numerical techniques to solve the quantum difference
equation and investigate the resolution of singularity and Planck scale physics in various cos-
mological model [95, 96, 97, 65, 98]. In the past significant amount of numerical work has been
done, in both the earlier quantization and the improved dynamics. For a review on the numerical
progress see [95, 99].

An effective continuum description of the quantum geometry of the spacetime in LQC, can
be derived by considering the geometric formulation of quantum mechanics through a faithful
embedding of the classical phase space into the quantum phase space of LQC [100, 101]. Such
an embedding can be obtained by appropriate choice of states which are peaked on a classical
macroscopic universe at late times. An effective Hamiltonian can then be derived by computing
the expectation values with respect to the appropriately chosen states [102, 103, 104]. The effec-
tive Hamiltonian hence obtained contains leading quantum corrections coming from the discrete
quantum geometry of the spacetime. Several numerical investigations in various cosmological
models have shown that the effective dynamical trajectories are in excellent agreement with
the full quantum trajectories for sharply peaked states, including the the vacuum anisotropic
Bianchi I spacetime [61, 62, 67, 63, 69, 73, 71, 105, 106, 74]. It is worth noting that the effective
theory has been systematically derived only in the case of massless scalar field [103] and dust
[102], and the derivation for a general matter field is in progress [104]. In the derivation of
the effective theory presented in Refs. [102, 103], there are two main assumptions: first, the
states are chosen to be sharply peaked Gaussian hence fluctuation of the states do not alter the
dynamical trajectory, and second that the volume of the universe always remains much larger
than the Planck volume. In the numerical simulations performed before the work presented in
this thesis, the states were chosen such that the above two conditions for the validity of the
effective description are satisfied.

Since the effective description presents a continuum description of the quantum corrections
while ignoring the intricacies of the quantum difference equations – while still being excellent
approximation to the full quantum dynamics – the effective dynamical equations are much
easier to handle numerically compared to the full quantum difference equations. Thus the
effective description provides an excellent framework to study the ramifications of the quantum
geometric corrections in various cosmological scenarios without solving the full LQC Hamiltonian
constraint. For example, all the strong curvature singularities have been shown to be resolved
in the isotropic [107, 108] and in the presence of anisotropies [109] using the effective theory.
There has been enormous amount of work to study the resolution of cosmological singularity in
the effective theory from a phenomenological perspective which includes the study of ekpyrotic
and inflationary potentials [110, 111], probability of slow roll inflation [112, 113, 114], power-law
and assisted inflation [115], various scenarios in the anisotropic spacetimes [111, 116, 117, 118],
and Gowdy model [119, 120], Kantowski-Sachs spacetime with various matter fields [121]. For
review of recent works on the effective dynamics see Ref. [43]. Many possible observational
consequences and issues have been explored using the effective description of LQC [122, 123,
124, 125, 126, 127, 128]. A recent review on these aspect can be found in Ref. [129].

1.4 Plan of the thesis

In this thesis our goal is two fold. Firstly, to extend the numerical studies of the quantum bounce
in the flat FRW model to include a more general classes of states, for instance widely spread
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and non-Gaussian states, and study the evolution of sharply peaked states in the presence of a
cyclic potential. These investigations are important to establish the robustness of the quantum
bounce and study the validity of the effective theory beyond the underlying assumptions in
its derivation. Secondly, we were interested to explore phenomenological implications of the
non-singular quantum bounce in the effective description of the Bianchi I spacetime. We study
how various geometric structures in the Bianchi I spacetime change across the bounce and
investigate the effect of quantum gravitational corrections on the inflationary scenario in Bianchi
I spacetime. Additionally, we also studied how the singularity resolution in LQC can be used to
answer some of the long standing questions in the multiverse scenario. The thesis is organized
as follows.

In chapter 2, we present a brief overview of the loop quantum cosmology of the flat FRW
model and the Bianchi I spacetime. We describe the symmetry reduction of the Ashtekar
variables by paying the due attention to the spatial symmetries of the spacetimes, which simplify
the quantization procedure significantly. The quantum Hamiltonian constraint obtained as a
result of the loop quantization turns out to be discrete and singularity free in both cases. We
also discuss the effective description of the underlying quantum geometry and obtain upper
bound on various curvature scalars in Bianchi I, II and IX spacetimes.

In chapter 3 we discuss the numerical properties of the quantum difference evolution equa-
tion for a flat FRW model in the presence of a massless scalar field. We find that a stable
simulation of widely spread state is computationally extremely expensive and intractable with
the previous techniques. We discuss the stability conditions of the evolution equations which
leads to numerical limitations and puts restriction on the time steps taken in the numerical
evolution. We circumvent this problem by utilizing the large volume limit of the quantum dif-
ference equations. We introduce the Chimera scheme based on a hybrid spatial grid composed
of two parts: An inner part with fixed discreteness where we solve the LQC difference equation,
and an outer part where we solve the Wheeler-DeWitt equation and one is free to choose the
discreteness. Via a coordinate transformation on the outer grid the Wheeler-DeWitt equation
can further be simplified. We present two different implementation of the scheme: One based
on finite difference (FD) method and one based on the Discontinuous Galerkin (DG) method
to solve the Wheeler-DeWitt equation on the outer grid. Such implementation, in particular
the DG one, reduces the computational cost tremendously making it possible to perform the
simulations of very widely and non-Gaussian states in an efficient manner.

In chapter 4, we use the Chimera scheme to test the robustness and study nature of the
quantum bounce and the validity of the effective theory for a large class of states including
widely spread Gaussian states and states which depart, in some cases greatly, from Gaussianity.
We will pose and answer the following main questions regarding the robustness of the quantum
bounce, effects of fluctuations and the validity of the effective theory:

• How do various properties of the quantum bounce change with the choice of initial states?
Is the occurrence of the quantum bounce for states with large fluctuations and non-
Gaussian profiles, in the models which are not exactly solvable, as robust as expected
from the exactly solvable model?

• How do the quantitative details of bounce change with the choice of different types of
initial states and their parameters? Is the upper bound on the energy density saturated?
How does it depend on the fluctuations in the matter and gravitational variables?

• Are there deviations between the effective and the full LQC trajectories for widely spread
states? How robust is the effective theory and how do these deviations, if there are any,
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vary with the choice of initial states and their parameters?

• How do the fluctuations of the state evolve through the bounce for different choices of
states?

We find that the quantum bounce is a generic feature of all numerical simulations performed,
and the main qualitative features of the bounce is very well captured by the effective theory.
However, there are quantitative differences between the effective theory and LQC for widely
spread states. These differences greatly depend on the type and the properties of the initial
state. As a general result, we see that the effective theory always underestimates the volume and
overestimates the energy density at the bounce. Our results being in excellent agreement with
the exactly solvable model also show that irrespective of the state, the effective theory remains
a good approximation to LQC as long as the relative fluctuations in the physical observables
are much smaller than unity. Further, going beyond the massless scalar field model we consider
a negative varying potential for the scalar field, which gives rise to a cyclic like evolution. This
is the first such work to study the numerical evolution of states in the presence of a negative
varying potential. We study the numerical evolution of sharply peaked Gaussian initial states.
The occurrence of multiple bounces at non-vanishing potential presents yet another numerical
evidence of the robustness of the bounce in LQC.

In chapter 5, we study the effective dynamics of Bianchi-I spacetime. In the presence of
perfect fluids with constant equations of state we explore how various geometrical structures,
such as point, barrel, pancake and cigar which are characterized by Kasner exponents change
across the bounce. Via a detailed numerical study we will address the following questions in
this context: Given a set of initial conditions how Does the formation of various geometrical
structure depend on the matter and anisotropy content of the spacetime, as one approach the
bounce of the mean volume? Do the structure across the bounce always remain same? If not,
what kind of transitions are possible? Are they random or do they depend on the matter and
anisotropy content of the spacetime in a definite way?

We also study a quantum gravitational extension of the inflationary scenario in Bianchi-I
spacetime, where we raise and address the following questions: by considering an inflaton with a
quadratic potential : (i) How does the presence of non-zero shear affects the occurrence of slow
roll? Is slow-roll inflation in this setting an attractor of trajectories starting from an arbitrary
initial conditions? (ii) How is the amount of inflation affected due to non-zero shear scalar?
(ii) Does the universe always isotropize before the inflation start or there may remain a short
phase of anisotropic era during the inflation? (iii) What are the phenomenological implications
of the presence of anisotropy on the value of the inflaton field to generate sufficient number of
e-foldings in comparison to the isotropic LQC? (iv) How a highly anisotropic universe, such as
one with cigar spatial structure (one of the directions contracting while other two expanding
while mean scale factor expands), in the pre-inflationary universe turns into a spacetime with
all the directions expanding?

In chapter 6, we study the singularity free evolution in a landscape scenario in LQC, and
investigate AdS-dS vacuum transitions in the associated landscape potential. Via explicit nu-
merical studies we will show that the big crunch singularity that occurs in the landscape scenario
in the classical theory, is resolved in the effective dynamics of LQC. In addition to giving a sin-
gularity free evolution, the results of this study has important implications in defining a local
measure based on a time like observer in the multiverse. Finally we summarize the main results
of the thesis and discuss future outlooks in chapter 7.
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Chapter 2

Loop quantum cosmology1

Loop quantum cosmology (LQC) is a quantum theory of cosmology based on the quantization of
symmetry reduced cosmological spacetimes using the techniques of loop quantum gravity (LQG),
which is a non-perturbative canonical quantization of general relativity (GR). By providing a
consistent framework to gain insights on the Planck scale physics, LQC proves to be a promising
avenue to answer long standing questions about the early universe. One of the most striking
features of LQC is the resolution of big bang singularity in various cosmological spacetimes,
which is a direct consequence of the underlying discrete quantum geometry predicted by LQG.
In LQC, the resolution of the big bang singularity is characterized by a non-singular quantum
bounce which establishes a quantum bridge between an expanding and contracting branches
of universe which were disjoint in GR. As discussed in the previous chapter, the goal of this
thesis is to explore the properties of the quantum bounce and gain understanding of of the new
physics near the Planck scale via phenomenological models. This requires an introduction to the
paradigm of LQC and the discussion basic concepts, such as that of the quantum Hamiltonian
constraint, which will be extremely important for the later chapters.

In this chapter we present a brief overview of the LQC of a flat FRW and Bianchi-I models.
In both cases, we will discuss how the ideas borrowed from LQG lead to a discrete quantum
geometry, which further causes the non-singular evolution. In the following we begin with short
introduction to the framework of canonical gravity and the Hamiltonian formulation of GR on
which the canonical quantization is based. In this discussion we will visit two formulations of
canonical gravity: geometrodynamics and connection-triad formulations. We will see that at
the classical level both of these formulations are equivalent. We will then turn to the discussion
of the symmetry reduction of the connection-triad formulation at the classical level for the
cosmological spacetimes, which will set the stage for LQC. We will then discuss the derivation
of quantum Hamiltonian constraint and the effective description as well as how the quantum
corrections resolve the classical singularity for both the flat FRW and Bianchi I model in separate
sections. This chapter we will base our discussion on Ref. [61, 62, 63] for FRW model and [76]
for the Bianchi-I model.

2.1 Canonical Gravity

Canonical framework of gravity is based on the Hamiltonian formulation of general relativity,
which requires the decomposition of the four dimensional spacetime into 3 dimensional hyper-
surfaces. The whole spacetime then looks like a sequence of several 3D spatial hypersurfaces.
The metric on the spatial section qab, a 3-metric, is considered to be a time dependent quantity.
In this setting the sequence of spatial hypersurfaces can be thought of as a temporal deforma-
tion of an initial hypersurface. In this process, the topology of spacetime is fixed in the form of

1Sections 2.4.4 and 2.5 reproduced from B. Gupt and P. Singh, Phys.Rev. D85 (2012) 044011 (Copy-
right(2012) American Physical Society) [130] by the permission of the American Physical Society. See Appendix
B for the copyright permission from the publishers. Portions of these sections are updated and adapted to the
dissertation format.
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Nna

ta

NaS

qab

Figure 2.1: 3+1 decomposition of the spacetime: Σ is the spatial hypersurface with the spatial
3-metric qab, N is the lapse function, Na is the shift vector and na is the unit normal vector to
the spatial hypersurface Σ.

Σ × R, where Σ and R respectively refer to the topology of the spatial and temporal sections.
We will adopt this notion of spacetime topology throughout the following discussion.

Let us consider a family of spatial hypersurfaces intersected by a curve parameterized by t
and characterized by a time like tangent vector ta in such a way that t = const surfaces are the
spatial sections Σ. As demonstrated in Fig. 2.1, the vector ta can be decomposed as follows

ta = Nna +Na. (2.1)

where Nna and Na components respectively are normal and tangential to the spatial hypersur-
face Σ. Here, na is the unit normal vector to Σ, N is a scalar called the lapse function and Na

is called the shift vector. The line element of the four dimensional metric can now be written in
terms of lapse and shift as follows

dS2 = (−N2 +NaN
a) dt2 + 2Na dtdx

a + qab dx
adxb, (2.2)

where xa are the spatial coordinates on Σ. Since, the physics should be independent of the
choice of the foliation in the classical theory, N and Na are rather arbitrary functions and one
is free to choose them for simplicity of the calculations. For example, one of the most popular
choice is the one that makes the line element of the spacetime diagonal in the coordinate system
(t, xa). In this case the line element takes the following form:

dS2 = −N2 dt2 + qab dx
adxb,

which can be obtained from the previous expression by substituting Na = 0.
The notion of 3+1 decomposition is then used for the Hamiltonian formulation of GR. In

any Hamiltonian formulation first one identifies a pair of canonical variables which form the
phase space of the theory. As we will see that, due to the foliation of the whole spacetime
into several 3 dimensional hypersurfaces, the lapse and the shift appear as Lagrange multipliers,
and give rise to four constraints. The physical solutions are then the ones which satisfy these
constraints. Different Hamiltonian formulations of GR can be obtained by choosing different set
of canonical pairs. In the following we will discuss two of such formulations: one based on the
metric variables called geometrodynamics and another which is based on the connection-triad
formalism also called the Ashtekar-Barbero formulation.

13



2.1.1 Geometrodynamics

The action of general relativity is given by the so called Einstein-Hilbert (EH) action. It is a
functional given as the spacetime integral of the scalar curvature as follows

S =
1

16πG

∫
d4x
√
|det(g)|R, (2.3)

where R is the Ricci scalar curvature of the spacetime and det(g) denotes the determinant of
the spacetime metric gab. The Einstein’s field equations can be obtained by varying the EH
action with respect to the configuration variables. In the Hamiltonian formulation, one chooses
a canonical pair of variables and writes the action in terms of those. In geometrodynamics the
canonical variables are chosen to the the three-metric qab and its conjugate momentum πab.

As mentioned above, the spatial hypersurfaces are characterized by a time dependent 3
dimensional metric qab which can be written in terms of the spatial part of the spacetime metric
gab as

qab = gab + nanb. (2.4)

Geometrodynamics is based on the Hamiltonian formulation of GR in terms of the metric
variables. The EH action of GR can now be written in terms of the canonical pair begin
(qab, π

ab) as follows

S =

∫
dt

∫
d3x πabq̇ab + 2Nb

√
|det(q)|∇(3)

a

(
πab√
|det(q)|

)
(2.5)

+N
√
|det(q)|

(
R(3) − 1

2 |det(q)|
πabπab +

1

2 |det(q)|
Tr(πba)

2

)
, (2.6)

where ∇(3) is the covariant derivative on the 3 dimensional spatial section compatible with qab,
R(3) is the Ricci scalar of qab, and N and Na respectively are the lapse and shift. The conjugate
momentum πab is related to the extrinsic curvature of the spacetime Kab as

πab =
√
|det(q)|

(
Kab − Tr(K)qab

)
where Kab =

1

2
N−1

[
q̇ab −∇(3)

a Nb −∇(3)
b Na

]
. (2.7)

Hence, πab determines the way the 3-metric on the foliated 3 dimensional spatial section evolves
in the full four dimensional spacetime. As qab and πab form a canonical pair, they have the
following Poisson bracket relation

{qab(x), πcd(y)} = δcaδ
d
b δ(x− y), (2.8)

where δ(x−y) is the Dirac delta and δac is the Kronecker delta. It is noteworthy that in eq. (2.5),
neither the lapse function N not the shift vector Na appear with their time derivatives. Hence,
they act like Lagrange multipliers, and result in constraints which can be derived via variation
of the action with respect to them.

The variation of the action with respect to the lapse function gives the Hamiltonian or the
scalar constraint

H =
√
|det(q)|

(
R(3) − πabπab +

1

2 |det(q)|
Tr(πba)

2

)
≈ 0, (2.9)
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and the variation with respect to three components of the shift vector Na where (a = 1, 2, 3),
gives the so called diffeomorphism or the vector constraints

Db =
√
|det(q)|

(
∇(3)
a

(
πab√
|det(q)|

))
≈ 0. (2.10)

In the above equations, ‘≈’ means that the constraints vanish only for the physical solutions. The
Hamiltonian constraint is associated with the property that the theory remains invariant under
the choice of deformation of the spatial section, and the diffeomorphism constraints represent the
fact that the spacetime is invariant under the spatial coordinate transformations. In this sense
Hamiltonian and the diffeomorphism constraints represent four symmetries of the theory, which
are preserved by the physical solutions. It is notable that there are six independent elements in
qab, but due to the four constraints obtained above there are only two true degrees of freedom
in GR.

The total Hamiltonian constraint, that would generate the dynamics, is given as the sum of
the above constaints as follows

C =

∫
d3xNH +NaDa. (2.11)

Since both the components of C vanish at the surface of physical solutions, also known as the
constraint surface, C must also vanish for the physical solutions. The dynamical equations can
now be computed by computing the Hamilton’s equation of motion with regard to the total
hamiltonian. That is,

q̇ab = {qab, C}
π̇ab = {πab, C}. (2.12)

Quantum geometrodynamics is obtained by quantizing the resulting Hamiltonian and dif-
feomorphism constraints following the canonical quantization procedure. Now, in principle one
can solve the resulting quantum Hamiltonian constraint equation

HΨ[gij] = 0. (2.13)

The above equation is known as the Wheeler-DeWitt equation. Note that the wavefunctional
Ψ, in addition to being a solution of the Wheeler-DeWitt equation given above, is also invariant
under the spatial coordinate transformation because of the diffeomorphism symmetry imposed
by the diffeomorphism constraints, i.e. DaΨ[gij] = 0. Quantization of these constraints, as
obtained above in terms of the metric variables, pose several technical challenges. For example,
due to the non-polynomial dependence of the Hamiltonian constraint on the metric variables, it
is extremely difficult to solve them, and define physical inner product and Dirac observables. It
turns out that these issues become more manageable in the connection-triad formulation of GR.
Before going into the discussion of the connection-triad formulation, let us briefly discuss the
Wheeler-DeWitt quantum cosmology for a flat FRW model, which will be important for later
discussions.

As discussed above, the expressions for the quantum Hamiltonian and diffeomorphism con-
straints in the quantum geometrodynamics are extremely difficult to solve. However, one can
reduce the complexity of the problem in symmetry reduced models, for example, in cosmolog-
ical spacetimes. Let us consider a flat FRW model in the presence of a massless scalar field.
Due to the homogeneity and the isotropy of the spacetime, the diffeomorphism constraint is
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trivially satisfied. The only non-trivial constraint is the Hamiltonian constraint. Also since the
FRW model has finite number of degrees of freedom, the form of the Hamiltonian constraint is
relatively a lot simpler than in the full quantum geometrodynamics. By considering the metric
variables as the configuration variable, the Hamiltonian constraint can then be quantized via
canonical quantization procedure. The resulting theory is called the Wheeler-DeWitt quan-
tum cosmology. In this setting, the Wheeler-DeWitt Hamiltonian constraint (eq. (2.13)) can be
written as follows:

∂2

∂φ2
Ψ(v, φ) = 12πGv

∂

∂v

(
v
∂

∂v

)
Ψ(v, φ) =: −Θ̂Ψ(v, φ), (2.14)

where, to facilitate comparison with the quantum evolution equation in LQC, we have expressed
the scale factor in terms of the variable v which is related to to the volume V via eq. (2.57).
Ψ is the physical wavefunction and φ is the scalar field. The Wheeler-DeWitt equation given
above looks very similar to a one dimension wave equation with the scalar field playing the role
of time and v being analogous to the spatial dimension. It turns out that the above equation
gives rise to an evolution trajectory which coincides with that in GR all the way to the big bang
singularity. Hence, the Wheeler-DeWitt quantum theory in this setting fails to resolve the big
bang singularity.

2.1.2 Ashtekar-Barbero formulation

Instead of choosing the metric and it conjugate momentum as the canonical pair, as in the
geometrodynamics, in Ashtekar-Barbero formulation one uses the so called connection-triad
formalism, where the configuration variables are SU(2) connection Aia which are very similar to
the Yang-Mills connection (or the vector potential in Maxwell’s theory). The connection Aia has
two indices: a is the spatial index which corresponds to the co-ordinate system on the spatial
section, where i is an internal index which is due to the internal SU(2) rotational degrees of
freedom. Corresponding to the internal indices this formulation has Gauss constraints which
represent the rotational symmetry in the internal three dimensional space. In this way, there
are nine independent elements in Aia and seven constraints: one Hamiltonian, three vector and
three Gauss constraints. Therefore, the number of true degrees of freedom is two, same as in
the geometrodynamics.

The variable conjugate to Aia are the densitized triads Ea
i , and they follow the following

Poisson bracket relation

{Aia(x), Eb
j (y)} = 8πGγ δbaδ

i
jδ(x− y). (2.15)

Here, G is the Newton’s constant and γ is called the Barbero-Immirzi parameter which, as we
will discuss later, is fixed based on the black hole entropy computation in LQG. The densitized
triads are related to the 3-metric on the spatial hypersurface as follows

|det(q)| qab = Ea
i E

b
i δ
ij. (2.16)

The connection Aia, on the other hand, determines how the metric evolves and can be related
to the extrinsic curvature in the following way

Aia = Γia + γKi
a. (2.17)

In the expression above, Γia is the spin connection, Ki
a = KabE

bi/
√
|det(q)| where Kab is the

extrinsic curvature of the metric, and γ is the Barbero-Immirzi parameter.
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Like in geometrodynamics, the Einstein-Hilbert action can also be written in terms of (A, E)
and the Hamiltonian and vector constraints can be derived. Due to the internal symmetries
present in the variables. There are three additional constraints collective called the Gauss
constraints, which basically mean that the divergence of the densitized triads is zero. These
constraint take the following form:

Gi = DaE
a
i = 0

Da =
1

8πG
Eb
iF

i
ab −

(
1 + γ2

)
Ki
aGi

H =
1

16πG
√
|det(q)|

Ea
i E

b
j

(
εijk F

k
ab − 2(1 + γ2)Ki

[aK
j
b]

)
. (2.18)

Here, Gi, Da andH refer to the Gauss, diffeomorphism and Hamiltonian constraints respectively.
F i
ab is the field strength of the connection Aia defined as follows

F i
ab = ∂aA

i
b − ∂bAia + εijkA

j
aA

k
b , and Ki

[aK
j
b] = Ki

aK
j
b −K

i
bK

j
a, (2.19)

where εijk is the Levi-Civita symbol.
Note that the roles of the Hamiltonian and diffeomorphism constraints are exactly the same as

in the metric formulation, and at the classical level both of these formulations are equivalent. The
canonical pair of variables in both the formulations can be related via a canonical transformation.
The main advantage of writing the constraints in the connection-triad formalism is its similarity
with gauge theories. For example, the SU(2) connection Aia is very similar to that in the
Yang-Mills theory, which is well understood in the quantum theory. In this sense, GR in
terms of Ashtekar variables can be understood as a Yang-Mills theory which, apart from Gauss
constraints, has four additional constraints and a Hamiltonian which vanishes. Due to the
presence of these four constraints, which are not present in Yang-Mills theory, the dynamics of
GR in Ashtekar variables will be quite different from that of a Yang-Mills theory. Nevertheless,
the similarity with Yang-Mills theory is useful.

2.2 Symmetry reduction

Let us now discuss the first step towards LQC, that is, the symmetry reduction of the Ashtekar-
Barbero connection and the triads for cosmological spacetime. We will begin with the symmetry
reduction for a spatially flat homogeneous spacetime. For the simplicity, without the loss of
generality, we consider the the following spacetime element

ds2 = −N2dt2 + a2
1(t) dx2

1 + a2
2(t) dx2

2 + a2
3(t) dx2

3, (2.20)

where N is the lapse, ai(t) are the directional scale factors and xi are the spatial co-ordinates.
The expansion of the spacetime is determined by the directional scale factors ai(t). It is to be
noted that, due to the homogeneity of the spacetime, the scale factors are only functions of time.
It is apparent from the expression of the line element that the topology of the spatial section is
chosen to be Σ = R3 which is non-compact, hence, the topology of the spacetime is Σ×R = R4.

Since, the spatial topology considered here is non-compact, the integrals involved in the
Hamiltonian formulations will diverge. For example, the integrals in defining the symplectic
structure is taken over the whole spatial section, and will diverge. However, due to the underlying
homogeneity of the spatial section, this problem can be circumvented by choosing a fiducial cell
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‘V ’, with volume Vo, and restricting all the integrals to it.2 Since, the fiducial cell is an artificial
construction, the resulting physics must be independent of its choice. For the simplicity of the
calculations let us consider a cubical fiducial cell V with `i being the length of its edges. The
volume of the fiducial cell would then be Vo = `1`2`3. We can define a fiducial metric q̊ab, with
respect to which the lengths of the edges of the fiducial cell are measured on the fiducial cell,
and corresponds to the following fiducial line element

ds2
o = dx2

1 + dx2
2 + dx2

3. (2.21)

Corresponding to q̊ab, we can define a fiducial co-triad ωia and fiducial triad eai . The co-triads
are chosen to be compatible with the fiducial metric so that

q̊ab = ω̊iaω̊
j
b δij. (2.22)

The physical co-triads are related to the fiducial ones as

ωia = `i ω̊
i
a, (2.23)

and the physical 3-metric is given as

qab = ωiaω
j
b δij. (2.24)

Since we are considering a homogeneous spacetime, the connection Aia and the densitized
triads Ea

i can be written as

Aia = Aij(t)ωja and Ea
i = E ji (t)

√
det(q̊)eaj (2.25)

where Aij(t) and E ij(t) are solely function of time and the entire spatial dependence is encoded
in co-triads and triads. Choosing the diagonal gauge and assuming that the matter field under
consideration is also homogeneous, Aij(t) and E ij(t) can further be written as

Aij = diag (c1, c2, c3) and E ji = diag (p1, p2, p3) (2.26)

for a diagonal Bianchi I spacetime. For the isotropic flat FRW model, Aij(t) and E ij(t) become

Aij = c δij and E ji = p δij. (2.27)

In the following we will use the symmetry reduction discussed above to study the flat FRW and
Bianchi-I models.

2.3 Flat FRW model: LQC

In this section, we will first discuss the classical theory of the flat FRW model in terms of the
symmetry reduced connection and triads, and obtain the classical Friedmann equation. Then,
we will move on to the quantum theory. We will discuss in detail the kinematic of LQC and see
how the loop quantum Hamiltonian constraint turn out to be a non-singular quantum difference
equation. An effective description of the model will also be discussed, where the comparison
with the classical trajectory will become more apparent due to the modified Friedmann equations
obtained in this description.

2On the other hand, if the topology of the spatial geometry is taken to be compact then the volume of the
fiducial cell can then taken to be equal to the total volume.
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2.3.1 Symmetry reduction

The line element of a flat FRW model can be obtained by substituting ai = a in eq. (2.20).
Due to the underlying symmetries of the spacetime, as described above, the connection and the
densitized triads can be written in terms of the symmetry reduced connection c and triad p as
follows

Aia = c Vo
1/3 ω̊ia, and Ea

i = |p| Vo−2/3
√
|det(q)| e̊ai , (2.28)

where e̊ai and ω̊ia are the triads and co-triads compatible with q̊ab on the spatial three manifold,
and Vo is the volume of the fiducial cell chosen to be a rectangular cell with `1 = `2 = `3. The
symmetry reduced connection and the triads can be related to the metric variables a and its
time derivative ȧ as follows

p = Vo
2/3a2, c = γVo

1/3ȧ, (2.29)

which have the following Poisson bracket relation

{c, p} =
8πGγ

3
. (2.30)

Due to the symmetry properties of the spacetime, the diffeomorphism and Gauss constraint are
automatically satisfied and Hamiltonian constraint remains as the only non-trivial constraint.
The Hamiltonian constraint contains two components: a gravitational and a matter component.
The gravitational part of the Hamiltonian can be expressed in terms of the symmetry reduced
connection and triads

Cgrav = − 1

16πG

∫
d3x εijk

EaiEbjF k
ab√

|det(E)|
= − 3

8πGγ2
c2
√
|p|, (2.31)

where F k
ab is the field strength of the connection.

So far have seen that imposing the symmetry of the spacetime in a flat FRW model, in the
classical theory, simplifies the Hamiltonian constraint and due to the presence of homogeneity,
the Gauss and diffeomorphism constraints are automatically satisfied. In the following we will
use the classical Hamiltonian constraint derived above to obtain the classical equations of motion
and show that they result in the classical Friedmann and Raychaudhuri equations. This will
require coupling matter to the gravitational part of the Hamiltonian. Classically this is done
by adding the matter part of the Hamiltonian to the total gravitational constraint and com-
puting the equations of motion afterwards. Since, the Hamiltonian constraint is to be satisfied
throughout the evolution, one of the classical equations of motion can directly be obtained from
the vanishing of the Hamiltonian constraint. We will see in the following discussion that, in the
quantum theory when the matter field is taken to be a massless scalar field, the Hamiltonian
constraint can be deparamterized with respect to scalar field to derive the quantum evolution
equation, while the scalar field playing to role of an “internal time”.

2.3.2 Classical theory

Let us consider a flat FRW spacetime in the presence of a massless scalar field as the matter
source. A scalar field is characterized by a pair of canonically conjugate variables (φ, pφ) where
φ is the scalar field and pφ is it conjugate momentum. They satisfy the following Poisson bracket
relation

{φ, pφ} = 1. (2.32)
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Together with the gravitational variables, the phase space of the model becomes (c, p, φ; pφ).
The matter part of the Hamiltonian can be written in terms of these variables as follows

Cφ =
p2
φ

2p3/2
. (2.33)

As discussed above the total Hamiltonian constraint is the sum of the gravitational and the
matter Hamiltonian

Cgrav + Cφ ≈ 0. (2.34)

Substituting the expression for the gravitational and matter parts of the Hamiltonian and uti-
lizing the relation between the loop variables and the usual metric variables, the vanishing of
the classical Hamiltonian constraint gives the classical Friedmann equation

H2 =

(
ȧ

a

)2

=
8πG

3
ρ, (2.35)

where ρ =
p2φ
2a3

is the energy density of the matter field and H is the Hubble rate. The equations
of motion for the scalar field can be computed via the Hamilton’s equation of motion while
treating the left hand side of the Hamiltonian constraint as a true Hamiltonian

φ̇ = {φ, CCl} =
∂CCl

∂pφ
(2.36)

ṗφ = {pφ, CCl} = −∂CCl

∂φ
. (2.37)

Combining the equations of motion of φ and pφ hence obtained, we get the following Klein-
Gordon like equation for the scalar field

φ̈+ 3Hφ̇ = 0. (2.38)

which is equivalent to the conservation equation: ρ̇ + 3H(ρ + P ) = 0 where P = φ̇2/2 is the
pressure of the matter field. For the massless scalar field one can exactly solve the Klein-Gordon
which results in

ρ = ρ0a(t)−6, (2.39)

that is the energy density diverges as the scale factor approaches zero. Moreover, substituting
this expression in the Friedmann equation (eq. (2.35)), one gets

a(t) ∝ (t− t0)−1/3. (2.40)

Where, t0 is a constant of integration. From the expression above it is clear that the scale factor
becomes zero at a finite time in the evolution at t = t0. At this point, the energy density will
diverge which signals the occurrence of singularity. It is also straightforward to show that for
any matter field with a constant equation of state, i.e. P/ρ = const there is a singularity at a
finite time during the evolution. The same will also hold true for any matter field which satisfies
the weak energy condition (ρ > 0), as shown by the powerful singularity theorems in classical
GR.

Using the Hamilton’s equation of motion, it is also easy to derive the following parametric
relation between the scalar field and the volume variable V = Voa

3 as follows

φ = ±
√

1

12πG
ln

(
V

V0

)
+ φ0, (2.41)
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where V0 and φ0 are constants of integration. The plus and minus signs respectively correspond
to expanding and contracting solutions. It is clear that, in the classical theory, they are two
completely independent solutions. The expanding branch encounters a big bang singularity in
the past and the contracting branch undergoes a big crunch singularity in its future evolution
as the volume V → 0.

2.3.3 Quantum theory

Let us now discuss the loop quantization of a flat FRW model with a massless scalar field.
As discussed earlier, loop quantum cosmology is based on the quantization techniques of loop
quantum gravity. Usually, one first identifies the symmetries of the spacetime at the classical
level and applies these symmetries to obtained the symmetry reduced form of the Ashtekar-
Barbero connection and the densitized triads, as we have discussed in the previous section. In
LQG, the fundamental variables which are promoted to quantum operator are not the Ashtekar-
barbero connection A, but they actually are specific functions of A called holonomies, and their
conjugates fluxes of the triads. In the full theory their expressions are complicated, but become
very simple in the symmetry reduced model such a flat FRW model. In the following, we first
present the kinematical framework for the loop quantization of FRW model and then move to
the discussion of the quantum difference equation by considering a massless scalar field followed
by the discussion of an effective description of the theory.

Kinematics: As described above, for a flat isotropic and homogeneous FRW model the symmetry
reduction results into a single homogeneous and isotropic connection c. Further the symmetry
of the spacetime simplifies the computation of the elementary object of the algebra employed
in LQG: the holonomy of the connection the flux of triad.3 As discussed before let us consider
a fiducial cell V . The holonomy is then computed along the edges and the flux across the faces
of V . Therefore, our first step towards quantization of a cosmological model in LQC framework
is to obtain the holonomy of the symmetry reduced connection. Holonomy of the connection c
over a straight edges that is aligned along ith edge of the fiducial triad, so that the length of the
edge is µe̊ai , can be given as

h
(µ)
i = exp (µc τi) = cos

µc

2
I + 2 sin

µc

2
τi . (2.42)

where I is the Identity matrix and τk is the basis of the su(2) Lie algebra. A crucial input of
the underlying quantum geometry on the quantization of the Hamiltonian constraint manifests
itself in terms of the field strength operator F i

ab in eq. (2.31). To construct this operator one
considers holonomies of connection over a closed square loop �ij that corresponds to minimum
eigenvalue of the are operator:

h�ij = h
(µ)
i h

(µ)
j (h

(µ)
i )−1(h

(µ)
j )−1. (2.43)

The notion of holonomy actually comes from Yang-Mills theory, where the holonomy is computed
around a loop, called Wilson loop. The shape of the loop does not matter as long as the loop is
closed, therefore, for the simplicity of the calculations we have chosen a square loop whose edges
are aligned along the fiducial triads. The elementary object for the quantization are now the
elements of the holonomy: Nµ(c) = ei µc/2, which are almost periodic functions of c. The flux of
the triad across a face of a surface act multiplicatively and due to the underlying symmetry of

3It is important to note that, in LQC, ĉ does not exist. The basic configuration variables, which are promoted
to quantum operators, are rather the holonomies of the connection.
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the spacetime it is given by p. These functions, that is , Nµ(c) and p then will be promoted to
quantum operators with the following classical Poisson algebra

{Nµ, p} = i
8πGγ

3

µ

2
Nµ (2.44)

whose quantum analogue is the following commutator[
N̂µ, p̂

]
= −~8πGγ

3

µ

2
N̂µ. (2.45)

The quantum state are represented as a countable linear combination of the almost periodic
functions Nµ (which are analogues of the spin network states in full LQG) as follows

Ψ(c) =
∑
n

ψne
i µnc/2. (2.46)

Using the expression for the quantum state in terms of Nµ, the norm of the state becomes

||Ψ||2 =
∑
n

|ψn|2. (2.47)

It is noteworthy that the norm of the quantum state is not an integral. It is rather a countable
sum over the basis states N . The orthonormal basis for the kinematical Hilbert space is given
by Nµ. The kinematical Hilbert space the space of square integrable functions on the Bohr
compactification of the real line: Hkin

LQC = L2(RBohr, dµBohr). The kinematical inner product
between two basis states of LQC is then given by

〈Nµ|Nµ′〉 = δµ, µ′ , (2.48)

where δµ, µ′ is the Kronecker delta, not the Dirac delta. Hkin
LQC is already different from the

kinematical Hilbert space in the Wheeler-DeWitt theory where the Hilbert space is same as
that in the Schrödinger’s representation of quantum mechanics, that is Hkin

wdw = L2 (R, dc).
Let us now consider the action of the elementary operators N̂µ and p̂ on the kinematical

states given in eq. (2.46).

N̂µ Ψ(c) = Nµ
∑
n

ψne
i µnc/2 = ei µc/2

∑
n

ψne
i µnc/2

=
∑
n

ψne
iµn+µ

2
c, (2.49)

which is again a linear combination of almost periodic functions as in eq. (2.46), but with µn
replaced by µn+µ. In this precise sense, N̂µ acts as a one parameter family of unitary operators.
Let us now consider the action of the triad operator p̂. The triad operator acts on the basis
states as differentiation with respect to the connection c

p̂Ψ(c) = −i8πG~γ
3

∂

∂c
Ψ(c) = −i8πG~γ

3

∂

∂c

∑
n

ψne
i µnc/2

=
8πG~γ

3

∑
n

ψn

(µn
2

)
ei µnc/2. (2.50)
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The operator p̂ is a self adjoint operator, so it is convenient to use the representation where
it is diagonal. Hence, the quantum states can be represented as ψ(µ) with the following inner
product on the kinematical Hilbert space

〈Ψ1|Ψ2〉kin =
∑
n

Ψ1(µn)Ψ2(µn), (2.51)

and the action of the operators N̂ζ and p̂ on the states Ψ(µ) is then given as

N̂ζΨ(µ) = Ψ(µ+ ζ) and p̂Ψ(µ) =
8πG~γ

6
µΨ(µ). (2.52)

Hence, N̂ζ , which is an element of the holonomy operator acts as a translation on the kinematical
states, while, p̂ acts as a multiplication operator.

We now have the basic operators and their actions defined on the kinematical states. The
next step in the quantization program is to express various terms of the classical Hamiltonian
constraints in terms of the triads and holonomies of the connection. The quantum Hamiltonian
constraint can then obtained by promoting the classical triads and holonomies to their corre-
sponding quantum operators. The classical Hamiltonian constraint in eq. (2.31) has two main

parts: the field strength Fab and EaiEbj√
|det(E)|

. In the following we will discuss the quantization of

these two parts. Let us first discuss the field strength, and we will come back to EaiEbj√
|det(E)|

later.

The field strength F k
ab of the connection can be classically expressed in terms of the holonomy

around a square loop (chosen to be square for convenience) �ij which has edge lengths as µ̄V
1/3
o

F k
ab = −2 lim

Ar�→0
Tr

(
h

(λ)
�ij
− 1

Ar�

)
τ kω̊iaω̊

j
b , (2.53)

where h�ij is the holonomy of the symmetry reduced connection around the square loop as
defined in eq. (2.43) and Ar� is the area of the plaquette whose limit is taken to approach
zero in the classical theory. In the quantum theory, however, the eigenvalues of the geometric
operators are discrete and the minimum eigenvalue of the area operator, known as the area gap,
is non-zero4. Due to the discrete spectrum of the area operator, one can not take the same limit,
i.e. Ar� → 0, in LQC. Instead, one should shrink the plaquette in such a way that the minimum
area of the plaquette is equal to the minimum eigen value of the area operator ∆l2Pl in LQC, i.e.
Ar� → ∆l2Pl. This would mean that the field strength of the connection Fab is to be determined
by computing the holonomy of the connection around a square loop whose area is given by the
area gap in LQC.

In this setting, the next step is now to find an appropriate edge length µ̄ which would
correspond to the area gap. We will now describe three different approaches to computing the
expression for µ̄. The first one is the oldest in which one calculates the area of the plaquette
as measure by the fiducial metric and equates it to the area gap [59]. The later two approaches
take a careful strategy and conclude that one should measure the area of the plaquette by the
physical metric and not the fiducial one [62, 63]. Here we will discuss one of the latter approaches
which considers the basis state

In full LQG the quantum geometry is represented by spin network states. Let us describe
the quantum geometry element of LQC as an element of the full LQG. For the simplicity of

4This is analogous to the eigenvalues of the energy operator in harmonic oscillator. The energy of the ground
state is nonzero, E0 = 1

2~ω, where ω is the angular frequency of the oscillator.
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the arguments we can consider the edges of the spin network aligned with the three axes of the
fiducial cell. Corresponding to every edge of the spin network the associated area of the surface
is ∆j = 8πGγ

√
j(j + 1). Therefore, the minimum area can be obtained by substituting j = 1/2

i.e. ∆ l2Pl = 4
√

3πγ l2Pl. Let us now consider one of the faces � of the fiducial cell, corresponding
to the face in the x-y plane. The corresponding spin network edges are then aligned in the z
direction. Since we are considering a homogeneous spatial geometry, all the edges carry the
same label j. If one considers a loop of this surface, then the area of the loop will be given by
the summation of the all area elements associated with every spin network edge. Let us consider
N number of identical plaquettes, with the edge lengths being µ̄`o as measured by the fiducial
metric, each capturing one edges of the spin network with j = 1/2 so that the physical area
corresponding to each square is the minimum area gap. Then, the total area of the surface,
when described as an element of LQG is Ar� = N∆ l2Pl. This is the physical area of � given by
LQG. Since the cell under consideration is a homogeneous and isotropic cell in LQC, with the
symmetry reduced triad p, we have

N∆ l2Pl = |p|. (2.54)

The area of each plaquette as measure by the fiducial metric is (µ̄`o)
2. Since the total area of the

surface � measured by the fiducial metric is `2
o and there are N such plaquetes on the surface

we have N(µ̄`o)
2 = `2

o. Substituting this expression of N in eq. (2.54) we obtain the following
expression for µ̄:

µ̄ =

√
∆

|p|
lPl. (2.55)

Having fixed µ̄ as described above, the holonomy around �ij is obtained by substituting
µ = µ̄ in eq. (2.43)

h�ij = h
(µ̄)
i h

(µ̄)
j (h

(µ̄)
i )−1(h

(µ̄)
j )−1 (2.56)

where µ̄ =
√

∆/|p| lPl. Let us now discuss the action of the holonomy operator which can be
expressed in terms of its elements exp

(
i µ̄c

2

)
. Since, µ̄ is not a constant anymore, the action of

the operator ̂exp
(
i µ̄c

2

)
will not be the same as that given in eq. (2.52). However, it turns out

that action of the operator ̂exp
(
i µ̄c

2

)
becomes simple, if one changes the basis from |µ〉 to |v〉,

where |v〉 is the eigenket of the volume operator V̂

V̂ |v〉 =

(
8πγ

6

)3/2 |v|
K
l3Pl |v〉, where K =

2

3
√

3
√

3
. (2.57)

Similar to |µ〉, the eigenkets are also orthonormal, i.e. 〈v1|v2〉 = δv1 v2 . In this representation the

action of the operator ̂exp
(
i µ̄c

2

)
becomes

̂
exp

(
i
µ̄c

2

)
|v〉 = |v + 1〉 (2.58)

Since ̂exp
(
i µ̄c

2

)
is unitary we can generalize the above expression as follows

̂
exp

(
ik
µ̄c

2

)
|v〉 = |v + k〉, (2.59)

where k is a real constant. Having a well defined action of the elements if the holonomy operator
one can now promote the field strength Fab part of the Hamiltonian constraint.
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Let us now discuss the action of the EaiEbj√
|det(E)|

part of the Hamiltonian. This part contains

negative power of the triads due to the presence of
√
|det(E)| in the denominator, which is

problematic because a priori there is no way to regularize it. This is another instance where the
lessons from the full theory comes to rescue. The terms involving negative powers of triads, such
as the one under consideration, can be classically be written in terms of the Poisson bracket of
the positive powers of the triads with the holonomy, using Thiemann’s trick [21, 131] as follows

εijk
EaiEbj√
|det(E)|

=
∑
k

sgn(p)

2πγGµ
ω̊kc ε

abc Tr

[
h

(µ)
k {
(
h

(µ)
k

)−1

, V }
]
τi. (2.60)

Using the above expression and the expression of the field strength in terms of the holonomy
around a square loop the classical Hamiltonian constraint can be written as follows

Cgrav =
4sgn(p)

8πGγ3µ̄3

∑
ijk

εijkTr

(
h

(µ̄)
i h

(µ̄)
j (h

(µ̄)
i )−1(h

(µ̄)
j )−1 × h(µ)

k {
(
h

(µ)
k

)−1

, V }
)
. (2.61)

We will now use this form of the gravitational part of the Hamiltonian constraint to obtain the
quantum constraint operator.

Dynamics: Using the expression for the elements of the holonomy and combining the results
obtained during the discussion of the kinematics of LQC we obtain the following quantum
constraint operator

Ĉgrav = sin(µ̄c)

[
24 i sgn(µ)

8πγ3µ̄3l2Pl

(
sin(µ̄c/2)V̂ cos(µ̄c/2)− cos(µ̄c/2)V̂ sin(µ̄c/2)

)]
sin(µ̄c)

:= sin(µ̄c)Â sin(µ̄c) (2.62)

where Â = 24 i sgn(µ)

8πγ3µ̄3l2Pl

(
sin(µ̄c/2)V̂ cos(µ̄c/2)− cos(µ̄c/2)V̂ sin(µ̄c/2)

)
. Using this form of the

quantum Hamiltonian constraint operator and the action of the operator ̂exp(iµ̄c/2) on the
eigenkets |v〉 we obtain

ÂΨ(v) =
27K

4

√
8π

6

lPl

γ3/2
|v| (|v + 1| − |v − 1|) Ψ(v). (2.63)

The action of the gravitational part of the quantum Hamiltonian constraint can now be given
as

ĈgravΨ (v) = C+(v)Ψ (v + 4) + Co(v)Ψ (v) + C−(v)Ψ (v − 4) (2.64)

where the coefficients C+, C− andCo are given by [62]:

C+(v) =
3πKG

8
|v + 2| ||v + 1| − |v + 3|| ,

C−(v) = C+(v − 4) =
3πKG

8
|v − 2| ||v − 3| − |v − 1|| , (2.65)

C0(v) = −C+(v)− C−(v).

In order to write the total Hamiltonian constraint, we also need to consider the matter part
of the Hamiltonian. As discussed above, we consider a massless scalar field as the matter source
in our model, whose Hamiltonian in the classical theory can be given as

Cφ = 8πG
1

|p|3/2
p2
φ, (2.66)
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where pφ is the momentum of the scalar field. In the quantization of Cφ, the nontrivial part is
that due to the presence of the negative power of the triad in 1

|p|3/2 which classically diverges as

p→ 0. Once again using Thiemann’s trick [21, 131], we can write the inverse triad operators in
terms of the Poisson bracket between the holonomy and positive powers of the triads:

|p|−1/2 = sgn(p)

[
1

4πγl2Plµ̄
Tr
∑
k

τ kh
(µ̄)
k {h

(µ̄)−1
k , V 1/3}

]
. (2.67)

The quantum operator corresponding to the matter of the Hamiltonian constraint can now be
written as

ĈφΨ(v, φ) = B(v)(p̂φ)2, (2.68)

where B(v) denotes the eigenvalue of the inverse triad operator 1
|p|3/2 and can be given as

B(v) =
27K

8
|v|||v + 1|1/3 − |v − 1|1/3|3. (2.69)

The total Hamiltonian constraint now becomes

ĈΨ(v, φ) = ĈgravΨ(v, φ) + ĈφΨ(v, φ) = 0. (2.70)

Recall that pφ acts on the states as differentiation with respect to the scalar field, using which
we can write the total Hamiltonian constraint acting on state Ψ(v, φ) as follows

∂2

∂φ2
Ψ(v, φ) = −Θ̂Ψ(v, φ), (2.71)

where the operator Θ̂, is called the evolution operator of LQC

Θ̂Ψ(v, φ) = −B(v)−1 [C+(v)Ψ (v + 4, φ) + C0(v)Ψ (v, φ) +C−(v)Ψ (v − 4, φ)
]
. (2.72)

It is evident from the above equation that Θ̂ acts on the wavefunction as a difference operator
with uniform discreteness in v, which is determined by the minimum eigenvalue of the area gap.
In this model, Θ̂ is a self adjoint operator with a continuous spectrum [132].

The physical states are considered to be symmetric under the change of orientation of the
triad, i.e. they satisfy: Ψ(v, φ) = Ψ(−v, φ). Since the quantum evolution operator Θ̂ couples
a physical state on a uniform lattice in volume, the wavefunctions have support on lattices
±ε + 4n, where ε ∈ [0, 4). It is important to note that these lattices are preserved by quantum
dynamics, and the physical Hilbert space becomes separable in ε sectors. In our analysis, we
focus on the case of ε = 0 which includes the possibility of vanishing volume in the quantum
evolution. Hence, we see that the fundamental discreteness in the quantum geometry leads to
a discrete quantum Hamiltonian constraint which is a difference equation with uniform Planck
scale discreteness. The non-singular quantum bounce, in fact is a direct consequence of the
quantum discreteness.

Large volume limit: Let us now turn to the discussion of the large volume limit. In the limit of
large volume v � 1 we find that the LQC coefficients, given in (2.65), take the form

C+(v) =
3πKG

4
(v + 2),

C−(v) = C+(v − 4) =
3πKG

4
(v − 2), (2.73)

C0(v) = −C+(v)− C−(v) = −3πKG

2
v,

B(v) =
K

v
+O

(
v−3
)
.
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Using these we find that the action of spatial operator Θ̂ in the large volume limit can be written,
to leading order, as

Θ̂Ψ(v, φ) = −12πGv
[
vΨ(v+4,φ)−2Ψ(v,φ)+Ψ(v−4,φ)

16
+Ψ(v+4,φ)−Ψ(v−4,φ)

8

]
. (2.74)

We recognize the two terms in square brackets in (2.74) as the second order accurate finite
difference approximation to the second and first partial derivative of Ψ(v, φ) with grid-spacing
∆v = 4. Thus in the large volume limit the equation of motion can be written as

∂2Ψ

∂φ2
= 12πGv

[
v
∂2Ψ

∂v2
+
∂Ψ

∂v

]
= 12πGv

∂

∂v

(
v
∂Ψ

∂v

)
, (2.75)

which is the Wheeler-DeWitt equation.

Emergent time and Dirac observables: As discussed previously that the quantum Hamiltonian
constraint and the Wheeler- DeWitt equation can be written in a deparameterized form which
resembles a second order wave equation. Moreover, since pφ is a constant of motion, the scalar
field varies monotonically with respect to the proper time. In this way, φ behaves like an
emergent time with respect to which the physical states can be evolved and Dirac observables
can be defined. The evolution with respect to φ turns out to be unitary and the norm of the
physical states remain constant from one φ slice to another for a massless scalar field as the
matter source. In this setting the Dirac observables are p̂φ and V̂ |φ which are constants on a
constant φ slice of the evolution.

The physical inner product between two states Ψ1(v, φ) and Ψ2(v, φ) is given as

〈Ψ1|Ψ2〉 =
∑
v

B(v)Ψ̄1(v, φo)Ψ2(v, φo) (2.76)

at the emergent time φ = φo. As in the Wheeler-DeWitt theory, the physical observables are
the set of Dirac observables: p̂φ and v̂|φ=φo . These observables are self-adjoint with respect to
the inner product (eq. (2.76)).

Using the inner product defined in (2.76) the expectation value of v̂ and p̂φ can be computed
as follows

〈Ψ|v̂|φ=φo|Ψ〉 = ||Ψ||−1
∑
v

B(v)|v||Ψ(v, φo)|2,

〈Ψ|v̂2|φ=φo|Ψ〉 = ||Ψ||−1
∑
v

B(v)|v2||Ψ(v, φo)|2, (2.77)

〈Ψ|p̂φ|Ψ〉 = ||Ψ||−1(−i~)
∑
v

B(v)Ψ̄(v, φ) ∂φΨ(v, φ),

〈Ψ|p̂2
φ|Ψ〉 = ||Ψ||−1(−i~)2

∑
v

B(v)Ψ̄(v, φ) ∂2
φΨ(v, φ),

where ||Ψ|| = 〈Ψ|Ψ〉. These can then be used to compute the dispersions in pφ and v as

〈∆pφ〉 =

√
〈p̂2
φ〉 − 〈p̂φ〉2, 〈∆v|φ=φo〉 =

√
〈v̂2|φ=φo〉 − 〈v̂|φ=φo〉2. (2.78)

For the brevity of notation, in the discussion of results and plots, we will denote 〈∆V̂ |φ=φo〉 as

∆V (or equivalently 〈∆V |φ=φo〉 as ∆V ) for the dispersion in volume, and similarly 〈V̂ |φ=φo〉 as
V for the volume observable.
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2.3.4 Construction of physical states: numerical solution

Let us now turn our attention to the methods of solving the quantum Hamiltonian constraint. In
this subsection, we will discuss two different methods of obtaining the physical states which are
solutions of the quantum Hamiltonian constraint. The first method is based on the eigenfunc-
tions of the evolution operator, where we write the physical solutions in the eigen space of the
evolution operator and then obtained the state as a function of V via Fourier transform. In this
method the Fourier transform is computed by using fast Fourier transform (FFT) techniques.
The second method, will be based on treating the quantum difference equation as an initial
value problem. In the following, we will first describe these two methods, and then discuss the
results of numerical simulations in the end of this section.

FFT: In this method, one recognizes that any physical solution of the Hamiltonian constraint
can be expressed in terms of the eigenfunction of the Θ̂ operator as follows

Ψ(v, φ) =

∫
dk Ψ̃(k) ek(v)e−iωφ, (2.79)

where ω2 is the eigenvalue of the operator Θ̂ while the eigenfunctions being ek(v) so that

Θ̂ek(v) = ω2ek(v) and ω2 = 12πGk2. In the above expression Ψ̃(k) denotes a suitable waveform
of the physical state, usually taken to be a Gaussian as in Ref. [61, 62]. Once the eigenfunctions

of Θ̂ are known, it is straightforward to perform the integral in eq. (2.79) to obtain the physical
state as a function of φ and v. Unlike, in the Wheeler-DeWitt equation where finding the eigen-
function was straightforward, in LQC one has to solve a recursion relation in order to obtain
the eigenfunctions for a given eigenvalue, which would require numerical implementation. After
numerically evaluating the eigenfunctions, the integral in eq. (2.79) can then by solved, again,
via numerical methods.

Let us now discuss how to find the eigenfunctions of the LQC evolution operator. From the
definition of the momentum of the scalar field in terms of the derivative with respect to φ and
the form of the quantum Hamiltonian constraint in eq. (2.71), it is clear that the eigenvalue of

the Θ̂ can be related to the scalar field momentum in the following way

ω = pφ/~, (2.80)

and since the spectrum of p̂φ is continuous and p̂φ ∈ (0, ∞) for positive frequency solutions, we
have ω ∈ (0, ∞). Now eq. (2.72) can be written in terms of the eigenvalues ω as follows

C+(v)eω(v + 4) + C0(v)eω(v) + C−(v)eω(v − 4) = −ω2B(v), (2.81)

which is a second order discrete recursion relation in v. That is, given the value of the eigenstate
at any two neighboring points on the v grid, one can solve the recursion relation to obtain the
values of eigenfunction for all v for a given ω and a super-selected sector ε. Having computed
the eigenfunctions, the integration in eq. (2.79) can be numerically performed to obtain the state
Ψ(v, φ) for a given Ψ̃(k). It is easy to check that the state Ψ(v, φ) as defined in eq. (2.79) is a
solution to the Hamiltonian constraint by construction. Let is now discuss the second method
to find the numerical solution to the quantum Hamiltonian constraint.

Evolution: As we discussed in the previous section of this chapter that, in LQC, the quantum
Hamiltonian constraint is difference equation with uniform discreteness when written in terms
of the variable v. Due to the complicated form of this difference equation it is very difficult to
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solve it via analytical methods and one has to reply on numerical methods to obtain physical
solutions. Actually, the first results on the occurrence of quantum bounce were obtained using
numerical techniques. The quantum Hamiltonian constraint given in eq. (2.71), as written in a
deparameterized form so that the scalar field φ plays the role of internal time, has similarities
with a one dimensional wave equation. In this analogy, the variables v and φ are respectively
equivalent to the spatial and time co-ordinates in a one dimensional wave equation. One can
now solve eq. (2.71) as an initial value problem, much in the same way a wave equation is solved.
That is, given an initial state and its first time derivative one can completely determine the state
at a next time step subject to appropriate boundary conditions. By repeating this procedure
for each time step one can determine the entire physical state for all φ for all v.

For numerical convenience we express the second order evolution equation by introducing
Φ = ∂Ψ/∂φ as an independent variable and rewriting (2.71) in first order in time form

∂

∂φ
Ψ(v, φ) = Φ(v, φ) (2.82)

∂

∂φ
Φ(v, φ) = −Θ̂Ψ(v, φ). (2.83)

Since Θ̂ is a difference operator, the equations are already discrete in the spatial domain. Hence,
the evolution equations only contain derivative with respect to φ. Therefore, at each point on
the spatial grid the evolution equation is an ordinary differential equation coupled with the
nearest neighboring points on the v grid. Now, let us discuss the algorithm to construct the
initial state.

Our previous analysis of the large volume limit of the quantum Hamiltonian constraint shows
that the difference equation can be very well approximated by a differential equation which, in
fact, is the Wheeler-DeWitt equation. Therefore, if the initial state is constructed far from the
bounce where the expectation value of the volume observable is very large and the spacetime
curvature is very small compared to the Planck scale, then a physical state which is a solution
to the Wheeler-DeWitt equation will very well approximate a solution to the LQC difference
equation. The initial state is then evolved in time as described above. Considering only the
positive frequency solutions, a solution to the Wheeler-DeWitt equation can be obtained by
evaluating the following integral

Ψ (v, φo) =

∫ ∞
−∞

dk Ψ̃ (k) ek(v) eiωφo , (2.84)

where ek(v) is the eigenfunction of the Wheeler-DeWitt evolution operator and Ψ̃(k) is a suitably
chosen profile of the initial state in k space. Note that, the above integral is performed only
to construct the initial data. In the numerical simulations performed in Ref. [61, 62], Ψ̃(k) was
chosen to be Gaussian peaked at k∗ = −p∗φ/

√
12πG~, with a spread σ such that

Ψ̃(k) = e−(k−k∗)2/2σ2

. (2.85)

In some cases the integral in eq. (2.84) is analytically solvable, otherwise any numerical inte-
gration technique can be used to evaluate the integral. We will discuss in detail about various
methods of initial state construction in chapter 4.

Let us now briefly discuss the main results of these numerical studies. Recall that in the
classical theory for a given initial energy density there are two possible solutions: an expanding
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and a contracting solution, which are disjoint in the classical theory. The same is true for
the Wheeler- DeWitt theory, for which the trajectory described by the expectation value of
the Dirac observables is exactly the same as the trajectories of corresponding quantities in the
classical theory. Hence, Wheeler-DeWitt theory also admits two disjoint solutions in form of
an expanding and a contracting branch. The main feature of these solutions in the classical
and Wheeler-DeWitt theory is that the expanding solutions undergo big bang singularity in the
past and the contracting solutions meet the big crunch singularity in the future. The situation
in LQC, as shown by the numerical solutions in Ref. [61, 62], is very different. If a state is
chosen to be sharply peaked on a classical trajectory at late times so that the energy density
in the initial data is very small compared to the Planck density and the spacetime curvature
is negligible compared to the Planckian value, then the trajectory described by the expectation
values of the physical observables in LQC agrees extremely well with the Wheeler-DeWitt theory
and the corresponding classical theory as long as the spacetime curvature remains small. This
implies that LQC has the correct infrared behavior. However, during the backward evolution of
the state chosen in the expanding branch,5 when the value of the energy density reaches close
to a percent of the Planck density, there are deviations between the trajectory predicted by the
classical theory and LQC. The classical trajectory encounters big bang singularity, whereas the
expectation value of the volume observable in LQC bounces from a finite non-zero value and
further joins a contracting solution in the past across the bounce. Similarly, if one starts the
evolution of state in a contracting branch and evolves forward in time, then the classical theory
undergoes a future big crunch whereas the universe undergoes a non-singular bounce. In this
way, the classical big bang and big crunch singularities of the classical theory is replaced by a
quantum bounce in a flat FRW model in presence of a massless scalar field.

During the backward evolution of an initial state chosen in the expanding brach, the energy
density keep increasing as long as the expectation value of the volume observable decreases. At
the bounce, where the volume is minimum, the energy density takes the maximum value. If
the initial states are chosen in be very sharply peaked, then the energy density at the bounce
is very close to the universal maximum, i.e. ρbounce ≤ ρmax ≈ 0.41 ρPl. As we will see later in
this chapter that these results, including the value of upper maximum on the energy density,
were also later confirmed by two different approaches: the first based on a very specific exactly
solvable model in the case of massless scalar field and the second based on the so called effective
description. In following we will first discuss the exactly solvable model and we will come back
to the discussion of the effective description later in this section.

2.3.5 Exactly solvable model

So far we have seen that the quantum Hamiltonian constraint in eq. (2.71) is a difference equation
with uniform discreteness in v. In this representation it is not possible to solve the evolution
equation analytically. Therefore, one had to rely on numerical methods to obtain physical
solutions. However, the flat FRW model with a massless scalar field can be expressed in form
of a differential equation via a suitable transformation in the representation [63], and choosing
the scalar field as an internal clock already at the classical level before quantization. The
resulting model, called solvable LQC (sLQC), is an exactly solvable model which gives analytical
expressions for the expectation values of the physical observables such as volume and the energy
density. This model presents a robust tests of the nature of the quantum bounce, while providing

5The initial data can also be given in a contracting branch at very early times when the spacetime curvature
is small compared to the Planckian value and evolve the initial state forward in time. The non-singular nature
of the evolution is independent of this choice.
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an analytical way to compute the upper bound on the energy density operator.
The main idea is to make the following transformation on the volume variable v as follows

v =
1

2πG

(
8πγ

6

)3/2 |v|
K
, (2.86)

and work with the conjugate pair (v, b) where b = c√
|p|

in the classical theory. The pair (v, b)

then obeys the following Poisson bracket relation

{v, b} = 2γ. (2.87)

The matter variables are kept the same as before, i.e. (φ, pφ). Now let us write the classical
Hamiltonian constraint in the Harmonic time form. That is, already at the classical level we
interpret the scalar field as a clock, and separate out the matter part from the gravitational part
in the classical Hamiltonian constraint. The classical constraint then takes the following form

p2
φ − 3πGv2b2 = 0. (2.88)

The above classical constraint is essentially the same classical Hamiltonian constraint for flat
FRW model with massless scalar field as in eq. (6.4) written in the transformed phase space
variables (v, b;φ, pφ). The quantum constraint in LQC then becomes

∂2

∂φ2
χ(x, φ) =

∂2

∂x2
χ(x, φ) := −Θ̂χ(x, φ). (2.89)

where

x =
1√

12πG
ln

(
tan

(
λb

2

))
, x ∈ (−∞,+∞).

Eq. (2.89) is a differential equation unlike the difference equation obtained in eq. (2.71). The
above equation will, in general, have both the positive and negative frequency solutions. The
states in the physical Hilbert space that is given by the space of positive frequency solution of
eq. (2.89), satisfy the following first order equation

−i ∂
∂φ
χ(x, φ) =

√
Θ̂χ(x, φ). (2.90)

The evolution equation again becomes an initial value problem. For given initial state at an
initial time φ = φo one can determine the state at a later time by solving the first order equation
given above. Since, the physical Hilbert space consists of the positive frequency solutions, the
physical states we consider here will be positive frequency solutions of eq. (2.89). In the x space,
these solutions can further be decomposed into left and right moving modes, i.e. χ(x, φ) =
χL(x, φ) +χR(x, φ). Since there are no fermion in the model considered here, the orientation of
the triads does not matter which leads the following symmetry in the physical states: χ(−x, φ) =
−χ(x, φ). Having the physical Hilbert space and the physical inner product, one can define the
Dirac observables in this setting. These are the field momentum pφ which is a constant of motion
and the volume observable at a given constant φ slice. One can the also obtain the expectation

value of the scalar field momentum, and define the energy density operator as 〈ρ̂|φ〉 =
〈p̂φ〉2

2〈V̂ |φ〉2
.

Based on the above expression one can find out the maximum of the expectation value of the
energy density [63]:

ρ(sLQC)
max := max (〈ρ̂〉) =

3

8πGγ2λ2
≈ 0.41 ρPl, (2.91)
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which again shows that independent of the choice of the initial state, the energy density is
bounded above by ρ

(sLQC)
max when the matter field is taken to be a massless scalar field. Addition-

ally, the expectation value of the volume observable has a non-zero finite minimum[63]. Thus,
by choosing a particular factor ordering and writing the Hamiltonian constraint in the harmonic
time, the quantum Hamiltonian constraint for a flat FRW model with a massless scalar field
turns out to be a differential equation when written in terms of the variable x as defined above.
This analysis is independent of the choice of state, therefore the results of sLQC are true for all
types of states. That is, in the setting of sLQC the bounce is a generic feature and the big bang
singularity is generically resolved.

2.3.6 Effective dynamics

So far we have discussed that the classical big bang singularity is resolved in LQC due to the
discrete quantum geometry of the spacetime. Interestingly, various important aspects of the
singularity resolution and phenomenological implications of the non-singular quantum bounce
can also be studied in the so called effective description. The effective description presents
a continuum approximation to the quantum difference equation while incorporating the lead-
ing quantum corrections due to the discrete quantum geometry. In this approach, based on
the geometric formulation of quantum mechanics developed in Ref. [100, 102], one can derive
an effective Hamiltonian. This effective Hamiltonian can then be used to derive the effective
dynamical equations for the phase space variables via Hamilton’s equation of motion. Since
the geometry in the effective description is continuum, the effective dynamical equations are
rather ordinary differential equations and are much easier to solve as compared to the quantum
Hamiltonian constraint in the full LQC. The effective equations hence obtained can then be
used to derived the modified Friedmann equations which demonstrate a direct comparison of
the quantum corrected Friedmann equations with with the classical ones.

The main idea in the formulation of effective description is to use the geometric formulation of
quantum mechanics [100, 101] and obtain an effective Hamiltonian constraint Heff by calculating
the expectation value of the Hamiltonian constraint with appropriate states. As described above,
the resulting effective Hamiltonian can be treated as a true Hamiltonian which would generate
quantum corrected dynamical equations. The geometric formulation of quantum mechanics
can be obtained by treating the space of quantum state as a phase space with a symplectic
structure. There are two main methods to obtain the effective description: the truncation
method [133, 134] which is based on order by order perturbative approach, and the embedding
method [102, 103, 104] where one attempts to find a suitable embedding of classical phase space
into the quantum phase space. In this thesis, we will be using the effective description derived
via the latter method.

The effective description based on the embedding approach has been studied, and the mod-
ified Friedmann equations have been derived in the spatially flat model with a massless scalar
field [103]. Similar investigation were also performed for dust and radiation matter fields albeit
for an older form of quantum constraint [102]. These results have been extended to a general
equation of state of matter recently [104]. Further, the effective description has been used to
gain insights on many fundamental issues such as generic resolution of strong singularities in
flat FRW model [107] and Bianchi I model [109]. Many phenomenological studies have also
been performed in various cosmological settings and cosmological perturbations and their obser-
vational consequences have been explored . The validity of the modified Friedmann dynamics
in the effective theory has so far been verified with the evolution obtained from the quantum
Hamiltonian constraint in LQC, using sharply peaked states, for isotropic spacetimes in the
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presence and absence of spatial curvature for massless scalar field [62, 67, 69], in the presence of
a cosmological constant [73, 71] and inflationary potential [75]. Let us now discuss the effective
theory for a spatially flat FRW model, for which we have discussed the full quantum theory in
the previous sections.

Effective dynamics of flat FRW model: The effective Hamiltonian constraint for spatially flat,
homogeneous and isotropic FRW spacetime is given as [103]

Heff = − 3V

8πGγ2

sin2 (λβ)

λ2
+Hφ = 0, where Hφ = p2

φ/2V. (2.92)

Here, β is the caonjugate variable to V , satisfying {β, V } = 4πGγ and λ2 = 4
√

3πγl2Pl is
the minimum eigenvalue of the area operator in LQC. In the derivation of the above effective
Hamiltonian constraint it has been assumed that the volume remains much larger than the
Planck volume throughout the evolution and the relative fluctuation of the state is very small
compared to unity. Using the Hamilton’s equation of motion, one can easily compute the time
derivative of volume:

V̇ = −4πGγ
∂

∂β
Heff =

3

2γλ
sin (2λβ)V. (2.93)

Considering the vanishing of the Hamiltonian constraint given in eq. (2.92), and using the
expression for the energy density ρ = p2

φ/(2p
3) we obtain the following modified Friedmann

equation

H2 =

(
ȧ

a

)2

=
8πG

3
ρ

(
1− ρ

ρ
(eff)
max

)
, (2.94)

where H is the Hubble rate, a is the scale factor and ρ
(eff)
max is the upper bound on the energy

density given as

ρ(eff)
max =

3

8πGγ2λ2
≈ 0.41 ρPl. (2.95)

It is worth noting that the upper bound on the energy density computed in sLQC is exactly
the same as that obtained above. Utilizing the equations of motion of V and β given via the
Hamilton’s equation of motion, we can derive the modified Raychaudhuri equation as

ä

a
=
−4πG

3
ρ

(
1− 4

ρ

ρ
(eff)
max

)
− 4πGP

(
1− 2

ρ

ρ
(eff)
max

)
. (2.96)

These modifications to the classical Friedmann and Raychaudhuri equations are independent of
the choice of state, present a very good approximation to the underlying quantum geometry.
Also, the resulting trajectories agree very well with the full quantum evolution as long as the
volume is larger than the Planck volume [104]. It has also been argued that the potential
corrections due to the state dependent quantum fluctuations in the non-compact model are
negligible, in the limit of taking the volume of the fiducial cell to infinity [135].

Hamilton’s equation of motion for the matter field yields the following equation, which is
equivalent to the conservation of the stress energy tensor,

ρ̇+ 3H(ρ+ P ) = 0. (2.97)

Here, ρ is the energy density and P = −∂Hφ/∂V is the pressure of the matter field. Using the
modified Friedmann equation and the expression for the energy density of the massless scalar
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field, it is straightforward to find that the volume at the bounce is determined by the values of
pφ as follows:

V
(eff)

b ≈ 1.1 pφ VPl/
√
G~ . (2.98)

Thus, the effective dynamics predicts that the bounce volume should decrease as pφ is decreased.
In the derivation of the effective Hamiltonian obtained above, there are two main assump-

tions: (i) the states are chosen to be sharply peaked so that the fluctuations in the phase space
variables are small, and (ii) the expectation value of the volume observable remains large com-
pared to the Planck volume. This implies that one can expect differences between the LQC
evolution trajectory and the effective dynamical trajectory obtained from the effective Hamil-
tonian obtained above if any of these two assumptions are violated. As we will see in chapter
4, this actually turns out to be true.

2.4 Anisotropy: Bianchi I model

Let us now turn to the discussion of anisotropic models. In this section we present the loop
quantum cosmology of the Bianchi-I model, one of the simplest anisotropic spacetime with
zero intrinsic curvature. In the classical theory, Bianchi-I spacetime approaches the flat FRW
spacetime in the vanishing anisotropy limit. In the following, we consider a homogeneous and
diagonal Bianchi-I spacetime with a manifold Σ×R where Σ refers to the flat spatial manifold
having a R3 topology. As the spatial manifold considered here is non-compact, one needs to
introduce a fiducial cell V in order to define the symplectic structure. The fiducial cell is chosen
to have a fiducial volume Vo = l1l2l3 where li are the coordinate length in the three spatial
directions. The edges of the cell are chosen to lie along fiducial triads eia with the fiducial
cotriads being ωia. The choice of fiducial cell hence defines a fiducial metric qab compatible with
the cotriads.

2.4.1 Symmetry reduction

Performing the symmetry reduction due to homogeneity in the Bianchi-I spacetime, as discussed
previously in this chapter, the Ashtekar connection Aia and the triads Ea

i can be expressed in
terms of the symmetry reduced variables ci and pi as follows

Aia = ci (li)
−1 ωia, and Ea

i = pi li V
−1
o

√
q (2.99)

The symmetry reduced connection ci and triad pj have the following poisson bracket

{ci, pj} = 8πGγδij (2.100)

where γ is Barbero-Immirizi parameter. The homogeneous Bianchi-I metric is given as

ds2 = −dt2 + a2
1 dx

2 + a2
2 dy

2 + a2
3 dz

2 (2.101)

where a1, a2, a3 are the scale factors in the three directions and t is the proper time. The triads
are related to the directional scale factors via

p1 = l2 l3 |a2 a3|, p2 = l1 l3 |a1 a3|, p3 = l2l1|a1a2|, (2.102)

and in the classical theory the expression for the directional connections are related to the time
derivative of the scale factors as:

ci = liγȧi. (2.103)
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From the above expressions of the physical triads and the connections it is clear that there is
rescaling freedom pertaining to the change in the shape of the fiducial cell. That is, under the
transformation (li → l′i), the directional triads and the connections transform as below

p1 → p′1 = l′2l
′
3p1, and c1 → c′1 = l′1c1. (2.104)

The physical predictions from the quantum theory should respect the above rescaling freedom.
That is, the physical quantities such as the expansion scalar and other curvature scalars should
be independent of Vo.

Like in the case of the flat FRW model, due to the homogeneity of the spacetime, the
Gauss and the diffeomorphism constraints are automatically satisfied with the only remaining
constraint being the Hamiltonian constraint which, for a vacuum Bianchi I spacetime can be
written in terms of the symmetry reduced variables as follows

Cgrav = − 1

16πG

∫
d3x εijk

EaiEbjF k
ab√

|det(E)|
= − 1

8πGγ2 V
(c1p1c2p2 + cyclic terms) . (2.105)

In the following we will use the classical Hamiltonian constraint given above to obtain the
classical equations of motion which can then be used to obtain the generalized Friedmann equa-
tion and Raychaudhuri equation for Bianchi-I spacetime. Before going to the loop quantization
of this model we will discuss some properties of the classical Bianchi-I spacetime and derive the
expression for the shear scalar in terms of the directional Hubble rate, which will be useful to
compute the upper bound on the shear scalar using the effective dynamics. The discussion of
loop quantization of this model will based on the Ref. [76] where the matter field is chosen to
be a massless scalar field.

2.4.2 Classical theory

Owing to the symmetry due to homogeneity in the Bianchi-I spacetime considered here, the dif-
feomorphism and the Gauss constraint are trivially satisfied, and the only non- trivial constraint
to be solved is the Hamiltonian constraint which can be written as follows [76, 111, 116, 77]

Ccl =
1

8πGγ2 V
(c1p1c2p2 + cyclic terms) + Cmatt = 0, (2.106)

where Cmatt is the matter part of the Hamiltonian constraint, which describes the matter field
present. The physical solutions are characterized by vanishing of the Hamiltonian constraint,
i.e. Ccl ≈ 0 and the dynamical equations of the phase space variables are given via Hamilton’s
equation of motion as follows:

ṗi = {pi, Ccl} = −8πGγ
∂Ccl

∂ci
and

ċi = {ci, Ccl} = 8πGγ
∂Ccl

∂pi
. (2.107)

Here we have chosen the lapse to be N = 1. In this case the symmetry reduced connections ci
can be related to the metric variables as follows

ci = γliȧi = γliHiai. (2.108)

Note that the above equation is derived using the classical Hamilton’s equations of motion.
Therefore, it is valid only in the classical theory. We will see that in the quantum theory this
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relation is much more complicated. The classical equations of motion for the matter variable
can also be obtained in a similar way. For example, if the matter field is taken to be a scalar
field φ with a potential V (φ) then the matter part of the Hamiltonian constraint can be written
as

Cmatt = Cφ =
p2
φ

2
√
p1p2p3

+ V (φ)
√
p1p2p3, (2.109)

where pφ is the conjugate momentum of the scalar field, and has the following Poisson bracket
relation

{φ, pφ} = 1 (2.110)

and the equation of motion for the scalar field can be given as

φ̇ =
∂Cφ
∂pφ

and ṗφ = −∂Cφ
∂φ

. (2.111)

The equations of motion obtained from the above expressions can then be combined to obtain
the following Klein-Gordon equation for the scalar field

φ̈+ 3Hφ+ ∂φV (φ) = 0, (2.112)

where H = ȧ/a = (H1 +H2 +H3)/3 is the mean Hubble rate, and a = (a1a2a3)1/3 is the mean
scale factor. The directional Hubble rates can be computed using the time derivatives of the
triad components as follows

H1 =
1

2

(
ṗ2

p2

+
ṗ3

p3

− ṗ1

p1

)
. (2.113)

Similarly, H2 andH3 can be computed by the cyclic permutation of the above expression, and
the directional scale factors can be expressed in terms of the triads as

a1 =

(
p2p3

p1

)
, a2 =

(
p1p3

p2

)
, and a3 =

(
p2p1

p3

)
. (2.114)

Using the classical Hamiltonian constraint and the equations of motion and the equations
of motion of the phase space variable, the Einstein’s field equations for the diagonal Bianchi-I
metric can be derived as follows

H1H2 +H2H3 +H3H1 = 8πGρ (2.115)

Ḣ2 + Ḣ3 +H2
1 +H2

2 +H2
3 = −8πGP, (2.116)

where P is the pressure and ρ is the energy density of the matter field. The Klein-Gordon
equation for the matter field can then be written as the conservation equation

ρ̇ = −3H(ρ+ P ). (2.117)

Using the directional Hubble rates one can define the expansion scalar θ for a co-moving observer
as

θ = H1 +H2 +H3. (2.118)

The traceless part of the expansion matrix defines the anisotropic shear which takes the following
form for the diagonal Bianchi-I spacetime

σij = diag (σ1, σ2, σ3) (2.119)
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where σi = Hi − 1
3
θ are the anisotropy parameters and since the shear matrix σij is traceless,

they satisfy the following equation-

σ1 + σ2 + σ3 = 0. (2.120)

Because of the constraint given via Eq. (2.120) there are only two true anisotropic degrees of
freedom in the spacetime. The shear scalar defined as σ2 = σijσij can be expressed in terms of
the directional Hubble rates -

σ2 =
∑
i

σ2
i =

1

3

(
(H1 −H2)2 + (H2 −H3)2 + (H3 −H1)2

)
. (2.121)

Using the definition of the mean Hubble rate and the expression for the shear scalar in terms
of the directional Hubble rates, one can derive the generalized Friedmann equation for a diagonal
Bianchi-I spacetime as follows

H2 =

(
ȧ

a

)2

=
8πG

3
ρ+

Σ2

a6
, (2.122)

where6

Σ2 =
1

6
σ2a6. (2.123)

For a perfect fluid with constant equation of state the energy density of the matter field varies
as

ρ ∝ a−3(1+w) (2.124)

From the definition of the shear scalar, it follows that σ2 ∝ a−6 which implies that Σ2 is
a constant of motion in the classical theory. As we will see later that Σ2 is not a constant of
motion in LQC, and it approaches a constant value only in the classical limit when the spacetime
curvature is very small compared to the Planck scale.

Further, it is to be noted that since Σ2 is constant of motion in the classical theory, the second
term in the generalized Friedmann equation diverges as the mean scale factor tends to vanish,
i.e. a → 0. In this way the classical singularity in Bianchi-I spacetime can also be caused by
the divergence in the shear term of the generalized Friedmann equation. For a matter field with
a constant equation of state w < 1, the shear scalar dominates over the energy density as the
singularity is approached, and the classical singularity is generically dominated by anisotropy.
On the other hand, for w > 1 the energy density grows faster than σ2, whereas, for w = 1 both
grow at the same rate as the mean scale factor tends to vanish.

In the following, we will now discuss the loop quantization of a diagonal Bianchi-I spacetime.
We will outline the main steps involved in the quantization procedure given in the Ref. [76] and
obtain the quantum Hamiltonian constraint without going into a detail discussion. After that
we will present the effective description of Bianchi-I model, which will be used to study the
resolution of singularity and various phenomenological implications in later chapters.

2.4.3 Quantum theory

As discussed above, due to the symmetry of a homogeneous Bianchi-I spacetime the Gauss and
diffeomorphism constraints are trivially satisfied and the only remaining nontrivial constraint is

6Sometimes in the literature, for example in [136], the shear scalar is defined as σ2 = 1
2σ

ijσij . In such cases
Σ2 is defined as Σ2 = 1

3σ
2a6, leaving the overall expression of the generalized Friedmann equation unaffected.
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the Hamiltonian constraint. The phase space of the system in terms of the symmetry reduced
variables and a massless scalar field becomes (ci, pi, φ, pφ). The classical Hamiltonian constraint
then becomes, with the choice of lapse being N = V =

√
p1p2p3

Ccl =
p2
φ

2
− 1

8πGγ2
(c1p1c2p2 + cyclic terms) ≈ 0. (2.125)

The quantization procedure follows much in the same way as that in the isotropic case. At
the kinematical level, the basic variables are the triads pi and the holonomy h`iof the symmetry
reduced connections ci along the edges whose length in the fiducial metric along the xi axes
is given as `li. The holonomies can then expressed in terms of the exponentials exp (i`ci).
In the quantum theory, the triads and the elements of the holonomies are promoted to their
corresponding operators, where p̂i acts as multiplication while exp (i`ci) generates displacement
in the arguments of the wavefunction Ψ like in the isotropic case. Since, the physics is invariant of
the orientation of the triads, the physical states should satisfy the following symmetry: Ψ(pi) =
Ψ(|pi|). This implies that in the dynamics it is sufficient to work in the positive octant pi > 0
to capture the physics.

Further, in order to obtain the quantum Hamiltonian constraint operator, one needs to
define suitable loops �ij to compute the holonomies which are used to write quantum operator
corresponding to the field strength F i

ab. This requires finding a suitable µ̄i. In the isotropic
case we obtained the expression for µ̄ based on the arguments that relate LQG to LQC. Here,
generalizing that argument to include anisotropic cell we obtain,

µ̄1 = λ

√
p1

p2p3

, µ̄2 = λ

√
p2

p1p3

, and µ̄3 = λ

√
p3

p1p2

, (2.126)

where λ2 = ∆ is the minimum area gap. It is to be noted that in the isotropic limit with pi = p
the expression for µ̄i reduces to that of µ̄. An important feature of the above expressions is
that, under the rescaling given in eq. (2.104), µ̄i scales as µ̄i → µ̄′i = (li)

−1µ̄i which leaves µ̄ici
invariant. In this way the physical quantities, such as the curvature scalars, remain invariant
during the rescaling of the fiducial cell, a property which was absent in the previous attempts
to quantizing Bianchi-I spacetime [77, 116] where µ̄i was simply taken to be a generalization
of the isotropic case giving µ̄i = λ/

√
pi. As discussed in Ref. [137], µ̄i defined in eq. (2.126) is

unique that keeps the physics invariant under the rescaling of the fiducial cell. For any other
choice, such as that in [77, 116], the physics of the model would depend on the fiducial cell and
results would be unphysical.

The expression for the Hamiltonian constraint for Bianchi-I spacetime become very com-
plicated since µ̄i depends on all p1, p2 and p3. However, as described in Ref. [76], it can be
simplified by making a transformation from (p1, p2, p3) to (λ1, λ2, v) which are given as follows

λi =

√
pi

(4πγ
√

∆ l2Pl)
1/3

v = 2λ1λ2λ3, giving V = 2πγ∆|v| l3Pl, (2.127)

where V is the physical volume of the cell, and v has the same meaning as the variable v in the
isotropic case. Then, one can introduce an orthonormal basis |λ1, λ2, v〉 which are eigenvectors
of the triad and volume operators:

p̂i|λ1, λ2, v〉 = (4πγ
√

∆ l3Pl)
2/3 λ2

i |λ1, λ2, v〉 (2.128)

V̂ |λ1, λ2, v〉 = 2πγ∆|v| l3Pl |λ1, λ2, v〉. (2.129)
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The action of the elements of the holonomy operators can be given via

exp (±iµ1c1) = exp

(
∓8πγ

√
∆l3Pl

√∣∣∣∣ p1

p2p3

∣∣∣∣ ddp1

)
= exp

(
∓8πγ

√
∆l3Pl

√∣∣∣∣λ1

2v

∣∣∣∣ ddλ1

)
. (2.130)

which acts on the physical states as follows

̂exp (∓iµ̄1c1)Ψ (λ1, λ2, v) = Ψ

(
λ1

(
1± 2

v

)
, λ2, v ± 2sgn(λ)

)
. (2.131)

Using the action of the elements of the holonomies and the triads as given above the gravitational
part of the Hamiltonian can be quantized [76]. In the presence of a massless scalar field, the
total quantum Hamiltonian constraint can now be written in a deparameterized form as follows

∂2

∂φ2
Ψ(λ1, λ2, v) = −Θ̂BIΨ(λ1, λ2, v), (2.132)

where Θ̂BI is a difference operator whose action of the physical states is given as follows [76]:

Θ̂BIΨ(λ1, λ2, v; φ) =
πG~2

8

√
v

[
(v + 2)

√
v + 4Ψ+

4 (λ1, λ2, v; φ)− (v + 2)Ψ+
0 (λ1, λ2, v; φ)

− (v − 2)
√
vΨ−0 (λ1, λ2, v; φ) + (v − 2)

√
|v − 4|Ψ−4 (λ1, λ2, v; φ)

]
(2.133)

where

Ψ±4 (λ1, λ2, v) = Ψ

(
v ± 4

v ± 2
λ1,

v ± 2

v
λ2, v ± 4

)
+ Ψ

(
v ± 4

v ± 2
λ1, λ2, v ± 4

)
+Ψ

(
v ± 2

v
λ1,

v ± 4

v ± 2
λ2, v ± 4

)
+ Ψ

(
v ± 2

v
λ1, λ2, v ± 4

)
+Ψ

(
λ1,

v ± 2

v
λ2, v ± 4

)
+ Ψ

(
λ1,

v ± 4

v ± 2
λ2, v ± 4

)
(2.134)

and

Ψ±0 (λ1, λ2, v) = Ψ

(
v ± 2

v
λ1,

v

v ± 2
λ2, v

)
+ Ψ

(
v ± 2

v
λ1, λ2, v

)
+Ψ

(
v

v ± 2
λ1,

v ± 2

v
λ2, v

)
+ Ψ

(
v

v ± 2
λ1, λ2, v

)
+Ψ

(
λ1,

v

v ± 2
λ2, v

)
+ Ψ

(
λ1,

v ± 2

v
λ2, v

)
. (2.135)

The physical states are given as the solutions to the above quantum Hamiltonian constraint. The
Dirac observables in this case are same as those in the isotropic case: the scalar field momentum
pφ which is constant of motion, and the volume V̂ |φ. Due to anisotropy there are two additional

Dirac observables corresponding to λ̂i|φ can also be defined.
It is interesting to note that, although the discretization in λi depends on v in a complicated

manner, there is a uniform discretization in v in the units of 4 same as in the isotropic case. In
this way the underlying quantum geometry is captured in the quantum Hamiltonian constraint.
It is clear from eq. (2.133) that the action of Θ̂BI vanishes, which implies that the v = 0 part of
the lattice is decoupled from the rest of the lattice. This further signals that the singularity at
v = 0 is resolved in the dynamics. That is, if an initial wavefunction has zero support on v = 0,
it will remain so throughout the evolution.
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2.4.4 Effective dynamics

Let us now discuss the dynamics effective dynamics of Bianchi-I spacetime based on the em-
bedding method [102, 103, 104]. Similar to the isotropic case, the effective description is based
on geometrical formulation of quantum mechanics [100]. Using a judicious choice of states, one
then finds an embedding of the finite dimensional classical phase space. If this embedding is
approximately preserved under the flow generated by the quantum Hamiltonian vector field,
then up to the order of approximation the embedding is considered faithful, and one obtains
effective equations which incorporate quantum corrections.

The effective Hamiltonian constraint for Bianchi-I spacetime in LQC for lapse N = V is
given as [116, 111, 76]

Heff = − 1

8πGγ2

(
sin (µ̄1c1)

µ̄1

sin (µ̄2c2)

µ̄2

p1p2 + cyclic terms

)
+ HmattV , (2.136)

where µ̄i are given by eq. (2.126). As described above, the relationship of µ̄i with the triads is
a consequence of the way area of the loops along which holonomies of connection are computed
relates with the eigenvalue of the area operator in LQG. The minimum allowed area of such a
loop is labeled by λ2. It is to be noted that the dependence of µ̄i on the triads is unique, in
the sense that any other choice leads to resulting physics being affected by the rescaling of the
lengths of the edges of the fiducial cell and also by change in its shape [137].

Using Hamilton’s equations, we can compute the effective dynamical equations can be com-
puted as follows:

ṗ1 =
p1

γλ
(sin (µ̄2c2) + sin (µ̄3c3)) cos (µ̄1c1) (2.137)

and

ċ1 =
1

p1γλ

[
c2p2 cos (µ̄2c2) (sin(µ̄1c1) + sin(µ̄3c3)) + c3p3 cos (µ̄3c3) (sin(µ̄1c1) + sin(µ̄2c2))

− c1p1 cos (µ̄1c1) (sin(µ̄2c2) + sin(µ̄3c3)) − 2µ̄1p2p3

λ

(
sin(µ̄2c2) sin(µ̄3c3)

+ sin(µ̄3c3) sin(µ̄1c1) + sin(µ̄1c1) sin(µ̄2c2)

)]
+ 8πGγ

∂Hmatt

∂p1

. (2.138)

Similarly one can obtain equations for ṗ2, ṗ3, ċ2 and ċ3, and also äi/ai [109]. From these, we can
obtain the equations for the directional Hubble rates, for example

H1 =
1

2γλ
(sin (µ̄1c1 − µ̄2c2) + sin (µ̄2c2 + µ̄3c3) + sin (µ̄1c1 − µ̄3c3)) . (2.139)

Using these equations, one finds that that unlike in the classical theory, in LQC, ci 6= γliHiai.
Further, it is straightforward to show, that Σ2 is not a constant of motion in LQC [116, 111].

In contrast to the classical theory, the directional Hubble rates are bounded in LQC, with
a maximum value given by Hi,max = 3/2γλ. The resulting expression for the expansion scalar
yields

θ =
1

2γλ
(sin (µ̄1c1 + µ̄2c2) + sin (µ̄2c2 + µ̄3c3) + sin (µ̄1c1 + µ̄3c3)) (2.140)

which has the following maxima

θmax =
3

2γλ
≈ 2.78

lPl

. (2.141)
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The expression for the energy density in terms of the gravitational phase space variables can be
obtained from the effective Hamiltonian constraint Heff ≈ 0

ρ =
1

8πGγ2λ2
(sin (µ̄1c1) sin (µ̄2c2) + cyclic terms) , (2.142)

which implies that ρ has a universal maxima, independent of any energy conditions, as:

ρmax =
3

8πGγ2λ2
≈ 0.41ρPl . (2.143)

Thus, the maxima of energy density in Bianchi-I model turns out to be the same as in the
isotropic models in LQC. Note that for an arbitrary choice of initial conditions in Bianchi-I
spacetime, is not generically achieved at a bounce of the directional scale factor. This bound is
only saturated when anisotropies vanishes at the bounce.

Similarly, using eq. (2.139) (and equations for H2 and H3) in (2.121), it is straightforward
to obtain the expression for shear scalar, which as the one for θ and ρ turns out to be composed
of bounded functions:

σ2 =
1

3γ2λ2

[
(cos (µ̄2c2) (sin (µ̄1c1) + sin (µ̄3c3))− cos (µ̄1c1) (sin (µ̄2c2) + sin (µ̄3c3)))2

+ cyclic terms

]
, (2.144)

which has the following global maxima

σ2
I max =

10.125

3γ2λ2
≈ 11.57

l2Pl

(2.145)

at µ̄1c1 = π/6, µ̄2c2 = π/2 and µ̄3c3 = 5π/6. Interestingly, the maxima of shear scalar is
reached when energy density is itself close to the Planckian value. At above values of µ̄ici,
the energy density turns out to be ρ ≈ 0.41ρmax. In the case of Bianchi-I vacuum spacetime
(ρ = 0), depending on the initial conditions, the shear scalar can attain one of the two (local)
maxima: σ2

max = 2/γ2λ2 at µ̄1c1 = π/2, µ̄2c2 = π and µ̄3c3 = 0, or σ2
max = 6.3/3γ2λ2 at

µ̄1c1 = −0.339837, µ̄2c2 = π/2 and µ̄3c3 = 5π/6.
The existence of upper bounds on energy density, expansion scalar and shear scalar for arbi-

trary matter indicate the resolution of various singularities in the loop quantization of Bianchi-I
spacetime. The upper bounds of these quantities are completely generic, obeyed by all types
of matter. Further, all strong singularities for the matter with equation of state w > −1 have
been shown to be resolved [109].

2.5 Inclusion of spatial curvature

In the previous section, we discussed that in the effective description of LQC, the curvature
invariants such as the scalar, shear scalar and the energy density are bounded by their respective
upper maxima in the Bianchi I spacetime. In this section we will study the similar properties
of the curvature scalars in anisotropic spacetimes with non-vanishing intrinsic curvature. In
particular we will focus on Bianchi II and Bianchi IX spacetimes whose loop quantization have
been studied in Refs. [79] and [80]. The results on the upper bounds of the curvature scalars
presented in this section are based on Ref. [130].
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2.5.1 Bianchi II model

Bianchi-II spacetimes are more general than the Bianchi-I spacetimes in the sense that they have
a non-vanishing intrinsic curvature. Unlike the Bianchi I model, the Bianchi II spacetime lacks
an isotropic limit. In the following we consider the case of a non-compact Bianchi-II spacetime.
The procedure of symmetry reduction, introduction of a cell V and details of the symplectic
structure follow closely as in the Bianchi-I model. In terms of Ashtekar variables, the classical
Hamiltonian constraint for lapse N = V , can be written as

Hcl = − 1

8πGγ2
[p1p2c1c2 + cyclic terms]− 1

8πGγ2

[
α p2p3c1 − (1 + γ2)

(
αp2p3

2p1

)2
]

+HmattV

(2.146)
where α is related to the structure constants of the Lie algebra corresponding to the Killing fields.
Using Hamilton’s equations, it is straightforward to obtain the classical dynamical equations for
the time variation of pi and ci. As an example:

dp1

dτ
=

1

γ
(p1(c2p2 + c3p3) + α p2p3) . (2.147)

However, unlike the Bianchi-I model, it is not possible to use these equations to obtain an analog
of the generalized Friedmann equation (eq. (2.122)) for the mean Hubble rate. A detailed analysis
of these dynamical equations reveal a singularity when the triads vanish.

We now consider the effective Hamiltonian for the Bianchi-II model [79]. For the same choice
of the lapse function as above, it is given as

Heff = − p1p2p3

8πGγ2λ2
[sin (µ̄1c1) sin (µ̄2c2) + cyclic terms]

− 1

8πGγ2

[
α

λ

(p2p3)3/2

√
p1

sin (µ̄1c1)− α2(1 + γ2)

4

(
p2p3

p1

)2
]

+HmattV (2.148)

which is a sum of the effective Hamiltonian in Bianchi-I model and the terms originating from
the presence of the spatial curvature. Imposing the the constraint Heff ≈ 0 we obtain

ρ =
1

8πGγ2λ2
[sin (µ̄1c1) sin (µ̄2c2) + cyclic terms] +

1

8πGγ2

[
x

λ
sin (µ̄1c1)− (1 + γ2)x2

4

]
(2.149)

where as in the Bianchi-I model, ρ = Hmatt/V and x is defined as

x = α

√
p2p3

p3
1

. (2.150)

The right hand side of the eq. (2.149) has a global maxima at x = 2
(1+γ2)λ

and sin(µ̄ici) = 1.

This results in a maximum allowed value of the energy density as [76]:

ρ ≤ ρmax =
3 + (1 + γ2)

−1

8πGγ2λ2
≈ 0.54ρPl . (2.151)

However, the above bound on ρ is only the upper bound. It does not lead to a lower bound
without further assumptions. It is straightforward to see that eq. (2.149) gives rise to large
negative energy densities depending on the values of triads, whose magnitude can exceed the
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Figure 2.2: The plot (in Planck units) shows the variation of energy density as a function of x
in the loop quantization of non-compact Bianchi-II model when sin(µ̄ici) = 1 is substituted in
eq. 2.149

above bound.7 A possible way to obtain a bound on the magnitude of energy density is by
imposing energy conditions on the matter content. In particular, if we assume weak energy
condition (WEC), which results in ρ ≥ 0, then the above equation gives the required bound on
the energy density. WEC also restricts the maximum allowed value of x, as is evident from Fig.
1.

Using (2.148), one can derive the modified dynamical equations using Hamilton’s equations.
For the triad components we obtain

dp1

dτ
=

1

γ

(
p2

1

µ̄1

(sin (µ̄2c2) + sin (µ̄3c3)) + αp2p3

)
cos (µ̄1c1)

which yields the classical equation (2.147) in the limit λ2 → 0. In terms of the proper time, this
equation can be written as

ṗ1

p1

=
1

γλ
(sin (µ̄2c2) + sin (µ̄3c3) + λx) cos (µ̄1c1) . (2.152)

Equations for the time variation of other triads can be derived in a similar way, and they turn
out to be:

ṗ2

p2

=
1

γλ
(sin (µ̄1c1) + sin (µ̄3c3)) cos (µ̄2c2) (2.153)

ṗ3

p3

=
1

γλ
(sin (µ̄1c1) + sin (µ̄2c2)) cos (µ̄3c3) . (2.154)

Using these equation we can obtain the directional Hubble rates, Hi, and the expansion
scalar θ using eq.(??) which becomes

θ =
1

2γλ
(sin(µ̄1c1 + µ̄2c2) + sin(µ̄2c2 + µ̄3c3) + sin(µ̄3c3 + µ̄1c1) + λx cos (µ̄1c1)) . (2.155)

7As noted earlier, in the anisotropic spacetimes, negative values of energy density do not necessarily cause
problems with the reality of the expansion scalar.
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Unlike the expansion scalar in the Bianchi-I model, θ in Bianchi-II model is generically un-
bounded because of the divergence in x as p1 → 0 or (p2, p3 → ∞). However, if one imposes
energy conditions demanding that the energy density be bounded below, then x can not grow
beyond a maximum value, and θ turns out to be bounded. For matter satisfying WEC, the
maximum allowed value of θ is given by,

θmax ≈
6.05

2γλ
≈ 5.60

lPl

. (2.156)

at µ̄1c1 = 0.642, µ̄2c2 = 0.982, µ̄3c3 = 0.982 and x = 1.717.
Finally, the expression for the shear scalar in Bianchi-II model, σ2

II can be obtained using
(2.121), which after a straightforward calculation yields,

σ2
II = σ2

I +
1

3γ2λ2

[
2λ2x2 cos2(µ̄1c1) + 2λx cos (µ̄1c1)(2(sin (µ̄2c2) + sin (µ̄3c3)) cos (µ̄1c1)

−(sin (µ̄1c1) + sin (µ̄3c3)) cos (µ̄2c2)− (sin (µ̄2c2) + sin (µ̄1c1)) cos (µ̄3c3))

]
(2.157)

where σ2
I is given by eq.(2.144). This term is bounded, as shown in Sec. II. However, the term

with square parenthesis is an increasing quadratic function in x. Thus, σ2
II does not have an

upper bound. The shear scalar for non-compact Bianchi-II model is devoid of a generic maxima
in contrast to the Bianchi-I spacetime. In order to obtain a bound on σ2

II, one needs to assume a
lower bound for the energy density, as for the expansion scalar. Imposing WEC, the maximum
value of σ2

II turns out to be

σ2
II max ≈

57.58

3γ2λ2
≈ 65.82

l2Pl

. (2.158)

Note that the maximum of the shear scalar, as that of the energy density and the expansion
scalar in the non-compact Bianchi-II model turns out to be different from the Bianchi-I model.

It is to be emphasized that the bound on the shear scalar is sensitive to the energy conditions,
i.e. if one imposes a different energy condition, the allowed range for the parameter x would be
different and so would be the upper bound on the shear scalar. WEC is followed by almost all
types of the matter and it provides an adequate estimation of the bounds on shear and energy
density. Thus, WEC has two roles: first to give a lower bound on ρ and the second to provide the
corresponding upper bounds on θ and σ2

II. Further, the upper bounds on θ and σ2 are saturated
in the dynamical evolution, and the bounce of directional scale factors occur before these values
are reached. As in the case of Bianchi-I model, this is tied to the interplay of the Ricci and the
Weyl parts of the spacetime curvature in the Bianchi-II model.

2.5.2 Bianchi-IX Model

The spatial manifold for the Bianchi-IX model has a compact topology S3 with a fiducial volume
given by Vo =: `3

o = 16π2. In contrast to the Bianchi-I and Bianchi-II spacetimes, none of
the Killing vectors commute with each other in the Bianchi-IX model. In this spacetime, the
interplay of intrinsic curvature and anisotropies is also much richer in comparison to the Bianchi-
II model. Classical dynamics can exhibit a Mixmaster behavior as singularities are approached.
In the isotropic limit, one recovers the classical dynamics of the k = 1 FRW model.
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Let us first consider the classical Hamiltonian constraint for the Bianchi-IX model. With
lapse N = V , in terms of the connections and triads, it is given by

Hcl = − 1

8πGγ2

(
p1p2c1c2 + p2p3c2c3 + p3p1c3c1 +

2`o
2

(p1p2c3 + p2p3c1 + p3p1c2)

+
`2
o

4

(
1 + γ2

) [
2p2

1 + 2p2
2 + 2p2

3 −
(
p1p2

p3

)2

−
(
p2p3

p1

)2

−
(
p3p1

p2

)2
])

+HmattV

(2.159)

which using Hamilton’s equation for motion, leads to

dp1

dτ
=
p1

γ

[
p2c2 + p3c3 + `0

p2p3

p1

]
(2.160)

and similarly for p2 and p3, and the connection components. In this case, one can use these
equations to derive a generalized Friedmann equation, as in the Bianchi-I model, and it turns
out to be:

H2 =
8πG

3
ρ+

1

6
σ2 − `2

o

12p1p2p3

[
2
(
p2

1 + p2
2 + p2

3

)
−
(
p1p2

p3

)2

−
(
p2p3

p1

)2

−
(
p3p1

p2

)2
]
. (2.161)

The Hubble rate diverges as the singularities are approached in the Bianchi-IX spacetime. Fur-
ther, due to the presence of intrinsic curvature, singularities can occur both in past and the
future evolution, as in the k = 1 universe. As shown in Appendix A, in the isotropic limit, one
recovers the dynamical equations for the k = 1 model.

As in the case of the loop quantization of the Bianchi-II model, it is not possible to express
the field strength operator in terms of holonomies along closed loops. To overcome this difficulty,
a quantization has been proposed, along the lines of Bianchi-II model, following the connection
operator approach [80]. In the following we analyze the physics resulting from the effective
Hamiltonian constraint of this quantization. Since the underlying manifold is spatially compact,
the resulting effective Hamiltonian constraint contains modifications originating from both the
non-local nature of the field strength operator and the eigenvalues of the inverse triads. Let
us first analyze some features of the resulting physics for the effective Hamiltonian constraint
of Bianchi-IX model, if inverse triad modifications are ignored (as in the analysis of Ref. [80]).
We denote this effective Hamiltonian constraint by H̃eff in order to distinguish it from the
Hamiltonian constraint in eq. (2.169) where the inverse triad corrections are included. For the
lapse N = V , the effective Hamiltonian constraint is given by [80]:

H̃eff =
p1p2p3

8πGγ2λ2
[sin (µ̄1c1) sin (µ̄2c2) + cyclic terms]− `o

8πGγ2λ

[
(p1p2)3/2

√
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]
− `o
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[
2(p2

1 + p2
2 + p2

3)−

((
p2p3

p3

)2

+ cyclic terms

)]
+HmattV . (2.162)

The vanishing of this constraint leads to the following expression of energy density

ρ =
1

8πGγ2λ2
[sin (µ̄1c1) sin (µ̄2c2) + cyclic terms] +

`o
8πGγ2λ

[√
p1p2

p3
3
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]
+
`o

2(1 + γ2)

32πGγ2

[(
2
p1

p2p3

− p2p3

p3
1

)
+ cyclic terms

]
. (2.163)

45



Utilizing the boundedness properties of the trigonometric functions, this expression implies that

ρ ≤ 3

8πGγ2λ2
+

`o
8πGγ2λ

[x1 + x2 + x3] +
`2
o(1 + γ2)

32πGγ2

[
2(x1x2 + x2x3 + x3x1)− (x2

1 + x2
2 + x2

3)
]

(2.164)

where x1 =
√

p2p3
p31
, x2 =

√
p1p3
p32
, and x3 =

√
p1p2
p33

.

The first term in eq. (2.164) is the maximum energy density obtained in Bianchi-I spacetime.
It is the behavior of the second and the third term, which determines the boundedness of energy
density from the above effective Hamiltonian constraint. In order that the energy density to
have a maxima, ρ(x1, x2, x3) should have a viable simultaneous solution to the following system
of equations:

∂ρ(x1, x2, x3)

∂x1

= 0;
∂ρ(x1, x2, x3)

∂x2

= 0;
∂ρ(x1, x2, x3)

∂x3

= 0 . (2.165)

Solving these equations, one obtains the following condition:

6

`oλ(1 + γ2)
+ x1 + x2 + x3 = 0 . (2.166)

Thus a physical solution is allowed only when at least one of xi is negative. However, by defi-
nition, all of xi are positive.8 The energy density resulting from H̃eff does not have a maxima,
unlike the Bianchi-I and Bianchi-II models in the absence of inverse triad modifications. On
analyzing the modified dynamical equations resulting from H̃eff , we find that the expansion and
the shear scalars are also unbounded.

However, as discussed above the effective Hamiltonian constraint H̃eff is incomplete as it
lacks the contribution from inverse triad corrections in the Bianchi-IX model which is spatially
compact. To conclude whether the energy density in Bianchi-IX model has an upper bound,
it is necessary to include these modifications. To introduce these modifications in the corre-
sponding effective Hamiltonian constraint in LQC for such terms, we consider eigenvalues f(pi)

of the operator p̂i−1/2 and substitute them in place of inverse triad terms. As an example, the

eigenvalues for the inverse triad operator p̂1
−1/4 turn out to be [76]

p̂
−1/4
1 |p1, p2, p3〉 = f(p1)|p1, p2, p3〉 (2.167)

where |p1, p2, p3〉 denote eigenstates of the volume operator, and v = 2
4πγλl2Pl

√
p1p2p3 and

f(p1) =
2

4πγλl2Pl

(p2p3)1/2

[√
|v + 1| −

√
|v − 1|

]2

. (2.168)

Similarly, one can derive expressions for other inverse triad operators. With these modifications,

8The unboundedness argument given here is valid irrespective of the choice of orientation of triads, which
has been here fixed to be positive.
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Figure 2.3: Behavior of energy density ρ as a function of v is shown (in Planck units).

the effective Hamiltonian constraint becomes:

Heff = − p1p2p3

8πGγ2λ2

[
sin (µ̄1c1) sin (µ̄2c2) + cyclic terms

]

− ε`o
8πGγ2λ

[
(p1p2)3/2f(p3) sin (µ̄3c3) + (p2p3)3/2f(p1) sin (µ̄1c1) + (p3p1)3/2f(p2) sin (µ̄2c2)

]

−`
2
o(1 + γ2)

32πGγ2

[
2(p2

1 + p2
2 + p2

3)− (p1p2)2f(p3)4 − (p2p3)2f(p1)4 − (p3p1)2f(p2)4

]
+HmattV

(2.169)

where the inverse triad modifications also contribute to Hmatt if one considers matter Hamilto-
nian containing inverse powers of the scale factor.

We now analyze the behavior of energy density. Due to the inverse triad modifications, an
ambiguity in its definition arises. Using the effective Hamiltonian constraint, one can define the
energy density ρ as ρ = Hmatt/V , where the Hmatt includes modifications due to inverse triad
operators. However, one can also define energy density such that it agrees with the eigenvalues of
̂V −1Hmatt (suitably symmetrized). We label this energy density as ρq. In the absence of inverse

volume modifications, ρ and ρq are equal to each other. However, when these are present, ρq
and ρ can behave in a qualitatively different way, at small volumes. As it turns out, ρ and ρq,
indeed have qualitative differences in the loop quantization of Bianchi-IX model.

Using the effective Hamiltonian, a division by volume, leads to the following inequality for
the energy density ρ for the physical solutions:

ρ ≤ 3

8πGγ2λ2
+

`o
8πGγ2λ

[√
p1p2

p3

f(p3) +

√
p2p3

p1

f(p1) +

√
p3p1

p2

f(p2)

]
(2.170)

+
`2
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32πGγ2
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)
− p1p2

p3

f(p3)4 − p2p3

p1

f(p1)4 − p3p1

p2

f(p2)4

]
.

The behavior of energy density with respect to v is shown in Fig. 2. We find that the energy
density ρ does not have a global maxima if the effective Hamiltonian description is assumed
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to be valid for the entire range of v. However, in the case when all the triads approach the
singularity at the same time in the classical theory i.e. the singularity is isotropic, then for the
range v > 1 there exists a local maxima at pi ≈ 3.634l2Pl , given by

ρmax ≈ 6.34ρPl . (2.171)

Thus, for the energy density defined as the ratio of the matter Hamiltonian to the physical
volume, inverse triad modifications do not suffice to control the divergence as v → 0.

Let us now analyze the behavior of ρq. In this case, the effective Hamiltonian constraint
yields

ρq ≤ g(v)

[
3
√
p1p2p3

8πGγ2λ2
+

`o
8πGγ2λ

[
p1p2√
p3

f(p3) +
p2p3√
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p3p1√
p2
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]
(2.172)
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where g(v) denotes the eigenvalue of the volume operator(̂1/V )

g(v) =
1

(2πγλl2Pl)
3

(p1p2p3)
[√

v + 1−
√
v − 1

]6

(2.173)

The variation of ρq with respect to v is shown in Fig. 3. We find that there exists a global
maxima at pi ≈ 2.109l2Pl, when the approach to singularity is isotropic in the classical theory,
given by

ρq max ≈ 11.74ρPl . (2.174)

Note that this maximum value is higher than the one in Bianchi-I or Bianchi-II models. Further,
in contrast to Bianchi-II model, both ρ and ρq are bounded below. Thus, one is not forced to
use the energy conditions in Bianchi-IX model. However, one can always choose a specific form
of matter satisfying certain energy conditions as in Bianchi-II model, which as we show below,
affects the maximum allowed value of the expansion and shear scalars in the effective spacetime
description.

Let us now obtain the dynamical equations for the triads and the expression for the expan-
sion scalar. Using the effective Hamiltonian constraint (2.169), one obtains using Hamilton’s
equations:

ṗ1

p1

=
1

γλ

[
sin (µ̄2c2) + sin (µ̄3c3) + ε λ`o

√
p2p3

p1

f(p1)

]
cos (µ̄1c1) (2.175)

and similarly for ṗ2 and ṗ3. Using these, the expansion scalar can be computed as

θ =
1

2γλ

[(
sin (µ̄2c2 + µ̄3c3) + ε λ`o cos (µ̄1c1)

√
p2p3

p1

f(p1)

)
+ cyclic terms

]
. (2.176)

The expansion scalar turns out to have a global maxima at pi ≈ 2.258l2Pl, for the isotropic
approach to singularity, given by

θmax ≈
46.83

2γλ
≈ 43.36

lPl

. (2.177)
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Figure 2.4: Variation of energy density ρq is shown versus v in Planck units.

whereas for more general approaches to singularity such as cigar or pancake like ones, there
exists no such global maxima for θ

Note that unlike the Bianchi-II model, this is a global bound which does not depend on the
imposition of any energy condition. Nevertheless, if one imposes WEC as in the Bianchi-II case,
one get a lower value. The maximum allowed value of θ on imposing WEC is θmax = 28.55/2γλ.

We now consider the behavior of shear scalar in the Bianchi-IX model. Using Hamilton’s
equations, we obtain

σ2
IX =

1

3γ2λ2

[((
sin (µ̄2c2) + sin (µ̄3c3) + ε λ`o

√
p2p3

p1

f(p1)

)
cos (µ̄1c1)−

(
sin (µ̄1c1) + sin (µ̄3c3) + λ`0

√
p1p3

p2

f(p2)

)
cos (µ̄2c2)

)2

+ cyclic terms

]
. (2.178)

The shear scalar has a global maxima at pi ≈ 2.258l2Pl, again for isotropic approach to singularity,

σ2
IXmax ≈

2165.91

3γ2λ2
≈ 2476.04

l2Pl

. (2.179)

If one imposes the WEC, the maximum allowed value is given by σ2
max ≈ 690.98/(3γ2λ2).

Other than isotropic approach to singularity there exist following two cases leading to cigar
and pancake type singularities- (i) two of the triads tends to zero while the third approaches
infinite, (ii) one of the triads tend to zero while other two approach to infinite. As shown in
Fig.(2.5.2), the energy density diverges in case (i), while the shear scalar diverges for both of
the above cases as shown in Fig. (2.5.2).

Thus, we find that in the Bianchi-IX model, energy density (ρq), expansion scalar and the
shear scalar are all bounded for isotropic approach to singularity, if we include inverse triad
modifications to the effective Hamiltonian constraint. However, energy density (ρ) defined by
taking a ratio of the matter Hamiltonian to the physical volume does not have a global max-
ima. It is to be emphasized that in the dynamical evolution these bounds are not saturated
and in certain situations, bounce of scale factors can occur close to the values in Bianchi-I and
Bianchi-II models.
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Figure 2.5: Variation of energy density ρq, in Planck units, is shown versus p2 on one axis and
p3 on the other, while p1 = p2 has been taken. The energy density diverges as two of the triads
tend to zero while the other approaches infinite, for other trajectories ρq is finite.

Figure 2.6: Variation of shear scalar σ2 for Bianchi-IX is shown versus p2 on one axis and p3

on the other, and p1 = p2. For isotropic approach to singularity there exists a local maxima
whereas in case two of the triads tend to zero and the other approaches to infinite shear scalar
diverges, divergence also occurs when one of the triads tends to zero while other two approach
infinite.
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Remark: It is noteworthy that the effective description of the Bianchi II and IX spacetimes
discussed above is based on the so called ‘A’ quantization [76, 80] where one considers the
holonomies of the Ashtekar connection Aia around a closed loop and promotes them to their
corresponding quantum operators. In a recent proposal, the so called ‘K’ quantization, fol-
lowing a slightly different strategy, was proposed in Ref. [138], where the quantum operators
were constructed by taking the parallel transport of the extrinsic curvature along open edges.
Surprisingly, in this approach, the expansion and the shear scalars are bounded above, for all
approaches to the singularity, without even considering the corrections due to the inverse triad
terms. Moreover, one does not need to impose any energy condition to obtain these bounds.
What is even more surprising is that these bounds are exactly the same as the upper bound on
the expansion and the shear scalars obtained in the ‘A’ quantization of Bianchi I spacetime as
described above.

2.6 Discussion

In this chapter we have given a short review of the loop quantum cosmology of the flat FRW
model and the Bianchi I model in the presence of a massless scalar field. In both cases the result-
ing quantum Hamiltonian constraint is a difference equation, which is a direct consequence of
the underlying discreteness in the spacetime geometry. We also discussed the effective descrip-
tion of these two models, which is based on the geometric formulation of quantum mechanics.
The resulting quantum theory and the effective description lead to the resolution of the big bang
singularity. It is evident from the discussion presented in this chapter that analytical solution of
the quantum Hamiltonian is difficult, except one simple case of the massless scalar field where
one could obtain an exactly solvable model by choosing the scalar field to be an emergent al-
ready at the classical level. In the next two chapters, we will study the numerical properties of
the quantum Hamiltonian constraint for the flat isotropic FRW model and develop an efficient
numerical technique for the numerical evolution of states. For the phenomenological studies
in later chapters we will use the effective description where the dynamical equations are much
easier to solve.
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Chapter 3
Numerical evolution in isotropic loop

quantum cosmology: Chimera scheme1

As we discussed in the previous chapter, the complicated form of the quantum difference equa-
tion (eq. (2.71)) make it difficult to obtain analytical solutions in closed form, except for one
special case where the evolution equations can be exactly solve by adopting a clever co-ordinate
transformation already at the classical level. Therefore, numerical techniques turn out to be
very useful tool in understanding the nature of the new physics due to the discrete quantum
geometry of LQC. The first results on the quantum bounce were obtained via numerical evo-
lution of a sharply peaked Gaussian states by considering flat FRW universe with massless
scalar field [60, 61, 62], which revealed many remarkable features of singularity resolution and
its phenomenological implications in various cosmological models. However, these studies were
limited to certain types of states for a flat FRW spacetime with a massless scalar field. For a
detailed investigation of the nature of quantum bounce one must study the quantum evolution
in more general matter model and with different types of initial states. For this, one must rely
on numerical methods, as the exactly solvable model is not available in all the cases. It turns
out that such simulations pose severe computational challenges and are very difficult to tackle
with previous numerical techniques. In this chapter, we describe the Chimera scheme, a hybrid
numerical scheme recently developed for the quantum simulations of more general classes of
states including widely spread and non-Gaussian states. We will describe the importance and
challenges of the numerical simulations and discuss in detail the numerical properties of the
evolution equations as well as the stability conditions for the evolution. This will reveal the ori-
gin of the limitations of the previous numerical techniques. We will then describe the Chimera
scheme and present various robustness tests of the convergence and accuracy of the scheme.

3.1 Introduction

Numerical solution of the quantum difference equation in LQC (eq. (2.71)) in the presence of a
massless scalar field is similar to solving a second order wave equation, which can be thought of as
an initial value problem. The initial data is given in terms of a wavefunction which corresponds
to a large macroscopic universe at late times, at which the expectation value of the volume is so
large that the energy density at the initial time is much smaller than the Planck density. The
initial data is chosen in the expanding branch and the states are then evolved backwards. As
we have discussed in the previous chapter that at large volumes and low curvature the LQC
difference equation can be extremely well approximated by the Wheeler-DeWitt equation. The
initial states, therefore, can be constructed as a solution to the Wheeler-DeWitt equation by
evaluating the integral in eq. (4.2). Recall that in this setting, the scalar field φ plays the role
of time and the field momentum pφ is a constant of motion. For a complete set of initial data

1Sections 3.2.2, 3.2.3, 3.2.4 and 3.3 are reproduced by updating and adapting the contents of P. Diener,
B. Gupt, and P. Singh, Class.Quant.Grav. 31 (2014) 025013 [139] by the permission of the IOP publishing
Limited. See Appendix B for the copyright permission from the publishers.
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we also need the φ derivative of the initial state, as the evolution equation contains the second
order derivative with respect to φ. This can be evaluated by first taking φ derivative of the
integrand in eq. (4.2), an performing the integral afterwards.

Since the evolution trajectory of the Wheeler-DeWitt theory agrees with that of GR, choosing
the initial data as a solution to the Wheeler-DeWitt equation makes sure that the initial state
is peaked at a classical GR trajectory. In the classical theory during the backward evolution as
the singularity is approached, the volume goes to zero and energy density diverges signaling the
approach to big bang singularity. Whereas in the LQC evolution, as shown for the evolution of
sharply peaked states, the expectation value of the volume observable never becomes zero and
the universe bounces from a non-zero volume while the energy density takes a finite maximum
value at the bounce [60, 61, 62]. After the bounce, as the backward evolution is continued,
the universe enters into a contracting phase which, in the classical theory, was dynamically
disjoint from the expanding branch. As also discussed in the previous chapter that the energy
density at the bounce is bounded by an upper maximum such that at any time of the evolution
ρ ≤ ρmax ≈ 0.41 ρPl. The value of ρmax is a universal constant and does not depend on any of
the phase space variables [62]. In this way, the classical big bang singularity is resolved by the
quantum effects in LQC, by giving an upper bound on the energy density and preventing the
expectation value of volume observable from becoming zero.

In the presence of a massless scalar field the dispersions in the scalar field momentum and
the volume observable obey the uncertainty relation. This implies that the dispersion in the
field momentum and the relative dispersion in volume are not independent of each other. It
is clear from eq. (4.2) that specifying the field momentum, its dispersion and the volume at
which the state is peaked determines the whole state. The dispersion in volume (∆V ) can then
be computed from the state hence obtained using eq. (2.77).2 The relative volume dispersion,
that is ∆V/V , of the state is then computed as the ratio of ∆V and V . The relative volume
dispersion characterizes the peakedness property of the initial state: for a small value of the
relative dispersion i.e. ∆V/V � 1 the initial state is sharply peaked, whereas large values of
∆V/V correspond to widely spread state. To give an example, a state peaked at pφ = 1500

√
G~

with a relative dispersion in the field momentum of 10% and peaked at V ≈ 67000 vPl, has a
small relative volume dispersion ∆V/V ≈ 0.1. On the other hand for pφ = 1500

√
G~ with the

same relative dispersion in the field momentum, the state is widely spread with ∆V/V ≈ 3.2.
Previous numerical studies focused on the physics of singularity resolution by considering

the evolution of sharply peaked states which correspond to large classical universe at late time
[62, 67]. In numerical simulations of such states, it turns out that the bounce takes place when
the energy density is very close to its maximum value, and the effective dynamical trajectories
agree extremely well with the evolution trajectories in the full LQC evolution. An important
question in this context is whether the properties of the quantum bounce, which were obtained
for sharply peaked Gaussian states, hold true for more general type of states, for instance the
state which are not so sharply peaked and the states which are not Gaussian to begin with. Such
studies are especially important for the models which can not be exactly solved analytically. A
rigorous numerical study of such more general states will provide strong numerical evidence in
support of the robustness of the quantum bounce as well as serve as a test to test the strength
and the validity of the effective dynamics beyond the assumptions made in its derivation. The
numerical simulations of these states, however, pose severe computational challenges. As we
will discuss further in this chapter that the main limitation comes from the Courant-Friedrichs-

2As we will see in the next chapter there is another method of constructing the initial data where the
dispersion in volume is specified using which the dispersion in the field momentum is calculated.
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Lewy (CFL) stability analysis which puts a condition on the size of the time step for stable
numerical solution of partial differential equations when using finite difference methods. It
turns out that for a stable numerical solution of the LQC difference equation, the size of the
time step is inversely proportional to the number of grid points on the spatial grid. In the
simulation of wide states, one needs to take a large spatial grid. This in turn would restrict
the size of the time step in such a way that wider the state is, smaller the time step would
have to be for a numerically stable simulation. Hence, the simulation of a wider state will
take more computational time compared to a sharply peaked state. To give an example of the
computational requirements, let us consider the sharply peaked states considered above, i.e.
with pφ = 1500

√
G~ and ∆V/V ≈ 0.1. The simulation of such a state peaked state can be

performed by choosing ∼ 30000 points on the spatial grid, which takes approximately 4 minutes
on a modern 16 core workstation. On the other hand for the simulation of a wide state, such as
with pφ = 20

√
G~ and ∆V/V ≈ 3.2, it is necessary to use 1.5 × 1019 spatial grid points. This

requires 1.25× 1014 times more grid points as compared to the sharply peaked state. Also, due
to the CFL stability conditions one would have to take 1.25 × 1014 times smaller time steps.
Such a simulation would take 1× 1027 hours ∼ 1023 years on a similar workstation. Clearly such
a simulation is intractable even with modern supercomputers.

In this chapter, we propose an efficient numerical technique to overcome the numerical lim-
itations mentioned above. Utilizing the fact that in the large volume limit, the LQC evolution
equations can be very well approximated by the Wheeler-DeWitt equation (as discussed in chap-
ter 2), we propose a hybrid numerical spatial grid composed of two components: an inner and
an outer component. The inner component, corresponding to the small volumes, is a discrete
spatial grid with the discreteness fixed by the fundamental discreteness in LQC and we solve
the LQC difference equation on it. The outer component, corresponding to the large volumes
where the LQC difference equations can be well approximated by the Wheeler-DeWitt differen-
tial equation, is a continuous grid which can be discretized freely for numerical implementation.
We solve the Wheeler-DeWitt equation on the outer grid. Since, the Wheeler-DeWitt equation
is a partial differential equation we can use advanced techniques to solve the evolution equa-
tion on the outer grid. As we will see later in this chapter that this scheme turns out to be
extremely efficient. It uses less grid points and allows larger time steps. With this scheme, the
simulation which would have taken 1023 years with the usual finite difference method which uses
a single grid used for the entire computational domain, can now be performed very efficiently
and accurately in a few hours with much less memory requirements.

This chapter is organized as follows: first we will describe the large volume limit of the
LQC evolution equation and perform the CFL stability analysis by computing the characteristic
speeds of the evolution equations. Based on the stability analysis we will estimate the compu-
tational cost for various parameters of the initial states. Next, we will describe the ‘Chimera’
scheme where we show that, by a simple coordinate transformation on the Wheeler-DeWitt
grid, the evolution equations can be simplified. We will describe two methods to solve the evo-
lution equation on the outer grid: (i) a finite difference implementation, and (ii) a discontinuous
Galerkin implementation. In order to test the robustness of the Chimera scheme we will present
various convergence tests which offer a close examination of the scheme and highlight its accu-
racy, efficiency and several other features which are of key importance in its implementation to
various models discussed in later chapters. Here we will only demonstrate the numerical scheme,
and leave the discussion of the results of numerical studies for the following chapters.
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Figure 3.1: We show two time slices such that in the numerical evolution φ1 precedes φ2 and
∆v is the spatial discreteness. The triangular area formed by the lines meeting at A represents
the “numerical light cone”. At any time slice between φ1 and φ2, the domain of dependence is
given by the solid points inside the numerical light cone. The empty circles, on the other hand,
fall out of the domain of dependence.

3.2 Numerical scheme: Chimera

As mentioned in chapter 2, solving the LQC evolution equation for a given initial data is very
similar to solving a one dimensional second order wave equation. However, there is a subtle
difference between them i.e. the spatial discreteness in the LQC difference equation is fixed by
the theory whereas the wave equation is a partial differential equation where one is free to choose
the spatial discreteness in the numerical evolution. We will see later in this section that the
fixed spatial discreteness in LQC causes severe computational limitations for the stable quantum
evolution of an initial state. In the following discussion, φ plays the role of internal time and
v the role of spatial co-ordinate, in analogy with a one dimensional wave equation. Therefore,
when discussing the numerical evolution of a state, we will refer to v as the spatial and φ as the
time coordinate of the system. The initial data is given at an initial time φ = φo in the form of a
wavefunction Ψ(v, φo) = Ψ(v, φ) |φ=φo and its time derivative Φ(v, φo) = ∂φΨ(v, φ) |φ=φo . The
strategy is now to compute the value of Ψ and Φ at each value of v on the spatial grid at all steps
of the time during the evolution. Before delving into the analysis of the evolutions equations,
let us discuss the CFL stability condition briefly, as it plays a key role in the development of
the Chimera scheme.

3.2.1 Courant-Friedrichs-Lewy (CFL) condition

In the numerical solution of hyperbolic partial differential equation, Courant-Friedrichs-Lewy
condition is a necessary stability condition when the equations are solved using finite differencing
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via explicit time integration methods [140, 141]. It puts a limit on the maximum size of the
allowable time step for a given space discretization. Any time step larger than the limit put by
the CFL condition would result in instabilities in form of diverging numerical characteristics of
the evolution equation. The condition arises because the hyperbolic equations have finite speed
of propagation which leads to a finite domain of dependence. Essentially, the CFL condition
determines this finite domain and puts a limit on the size of time step. This is very similar to
the concept of a light cone in special relativity. That is, at any point t in the spacetime diagram,
the domain of dependence of a point D(A) at a past time slice t′ is defined as the section the
spatial slice at t′ that affects A. Since the limit of speed of propagation in special relativity is
the speed of light c = 1, the domain of dependence is limited by 45◦ lines originating at A and
crossing the spatial section at t′.

In much the same way, CFL condition can be understood as some sort of “numerical light
cone” which restricts the domain of dependence of a point A on the finite difference numerical
grid at a time depending on the maximum speed of propagation of the characteristics of the
evolution equation. Fig. 3.1 shows an example of a finite difference scheme with the spatial
discreteness ∆v. The thick solid lines meeting at point A, form a triangle much like a light cone
marking the domain of dependence at any past time slice. All the solid points inside this cone
are in the numerical causal past of point ‘A’. While the circles outside of the cone are not in
the causal past of A. For a given spatial discreteness ∆v, if the time spacing φ2 − φ1 is such
that the points on the spatial slice at φ1 fall within the numerical domain of dependence of A
(for example, the points marked by solid points) then the evolution will be stable. On the other
hand if the points at φ1 are beyond the domain, then there will be numerical instabilities. In
other words, given an initial data at φ1 at all the solid points shown in Fig. 3.1, the farthest one
can numerically evolve is till the slice φ2. If one chooses ∆φ > φ2 − φ1, then the next time step
would fall beyond the numerical light cone causing instabilities in the numerical evolution.

There is an important distinction between the use of CFL condition in solving a partial
differential equation, for example in numerical relativity, and here. In the case of a partial
differential equation, the underlying spatial coordinate is actually continuous and one discretizes
the equations for numerical implementation. In such case one is free to choose the spatial
discreteness depending on the method of the discretization and the required accuracy. The CFL
conditions, then, puts a restriction on the time step for that particular choice of the spatial
discreteness. Whereas, here we are interested in solving a difference equation whose spatial
discreteness is fixed by the theory.

3.2.2 Large volume limit and the CFL stability

The Wheeler-DeWitt equation for the flat FRW model with a massless scalar field, written in
the second order form both in spatial and time direction in eq. (2.75) is a homogeneous wave
equation. For the numerical implementation it is convenient to introduce the auxiliary variables
Φ̃ = ∂Ψ/∂φ and Π̃ = ∂Ψ/∂v and cast the evolution equation in two first order time and space
form as follows:

∂Φ̃

∂φ
= 12πGv2∂Π̃

∂v
+ 12πGvΠ̃,

∂Π̃

∂φ
=

∂Φ̃

∂v
, (3.1)

∂Ψ

∂φ
= Φ̃.
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The first equation in eq. (3.1) is the Wheeler-DeWitt equation written in terms of the auxiliary
variables. The second equation is obtained by taking the derivative of Π̃ with respect to φ and
writing it in terms of the v derivative of Φ̃. The third equation is the definition of Φ̃. This
set of equations form a first order evolution system which is equivalent to the second order
Wheeler-DeWitt equation, and forms a well posed initial value problem.

In order to solve these equations, one requires the initial data in form of the wavefunction
Ψ(v, φo) and its time derivative ∂φΨ(v, φo). Subject to the given initial data set and the
appropriate boundary condition, the value of the wavefunction and its derivative at the next
time step can be computed. By further repeating this procedure for all the time steps, the
wavefunction is determined for all v and φ. The characteristic properties of eq. (3.1) can be
completely determined via Π̃ and Φ̃ as none of these equations contain the derivative with
respect to v. The third equation is just the definition and is actually not required in order to
evolve the initial data, therefore in the following discussion we omit this equation, and write the
other two equations in the matrix form by defining ũ = (Φ̃, Π̃) as follows:

∂ũ

∂φ
= Ã

∂ũ

∂v
+ Bũ, (3.2)

where

Ã =

(
0 12πGv2

1 0

)
(3.3)

and

B =

(
0 12πGv
0 0

)
. (3.4)

The speed of the characteristics of the Wheeler-DeWitt equation is given by the eigenvalues of
the matrix Ã in the above equations.

λ̃± = ±
√

12πGv. (3.5)

Thus the characteristic speeds are proportional to v. This means that the characteristic farther
out on the spatial grid travel faster than the ones at smaller v. The matrix B does not multiply
with the spatial derivative of u, hence does not affect the characteristic properties of the evolution
system. In an explicit time integration scheme, the time step size ∆φ for a stable evolution is
limit by the Courant-Friedrich-Lewy (CFL) condition [140] as follows:

∆φ < C
∆v

max
(
λ̃±

) , (3.6)

where C is the Courant factor which is usually of the order unity, and its exact value depends
on the numerical method used to integrate the equations. On the numerical spatial grid the
maximum of the characteristic speed will be limited by the position of the outer boundary of the

grid as: max
(
λ̃±

)
= ±
√

12πGvouter. Hence, for a given spatial discreteness ∆v the constraint

on the time step for numerical stability as given by the CFL condition can be obtained as:

∆φ ≤ C
∆v√

12πGvouter

. (3.7)

It is apparent from the equation above that larger the size of the spatial boundary the smaller
the time step one would have to take for stable numerical evolution. Also, a larger spatial
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grid would require more floating point operations at each time step. Hence, the computational
cost of the numerical solution of the Wheeler-DeWitt equation with a fixed spatial discreteness
would increase as v2

outer. As we have discussed in the previous chapter, the large volume limit
of the LQC evolution equation is mimicked by the Wheeler-DeWitt equation. Therefore, the
properties of the numerical evolution of LQC would be the same as Wheeler-DeWitt system
with the spatial discreteness fixed at ∆v = 4. Thus the time step for a pure LQC evolution
would be limited as ∆φ < 2C/

√
3πGvouter.

The Wheeler-DeWitt equation can be written in a simpler form by changing the coordinate
from v to x = ln(v), which results in the following first order form of the evolution equations
along the lines of eq. (3.1):

∂Ψ

∂φ
= Φ,

∂Φ

∂φ
= 12πG

∂Π

∂x
, (3.8)

∂Π

∂φ
=

∂Φ

∂x
,

where

Φ =
∂Ψ

∂φ
= Φ̃, (3.9)

Π =
∂Ψ

∂x
= vΠ̃. (3.10)

For the clarity, we will denote the variables which use x as coordinate without a tilde on them,
as opposed to the ones which use v as the spatial coordinate. Same as before we can introduce
u = (Φ,Π) and write the evolution equations in x coordinate in the matrix form as follows:

∂u

∂φ
= A

∂u

∂x
, (3.11)

where

A =

(
0 12πG
1 0

)
. (3.12)

The characteristic speeds in the x coordinate are now constant:

λ± = ±
√

12πG, (3.13)

and are independent of the position on the spatial grid.
So far, we have seen that the characteristic speeds for the LQC evolution equations which

are defined on the v coordinate increase with increasing vouter, but those of the Wheeler-DeWitt
equation when expressed in terms of the x coordinate are constant. This leads to an upper limit
on the time step taken for the evolution of LQC equations in v coordinate, limited by the size
of the v grid. Whereas, for the Wheeler-DeWitt equation in x coordinate, the time step would
not be limited by the size of the spatial boundary. The main idea of the Chimera scheme is
to split the spatial numerical domain into two separate domains: the first, an inner grid in v
corresponding to small values of v with fixed spatial discreteness∆v where we solve the full LQC
equations; and second, an outer grid in x where we solve the Wheeler-DeWitt equation which
well approximates the LQC difference equation. The two grids are joined by an interface at

58



v = vinterface, which must to be chosen large enough in order for the Wheeler-DeWitt equations
to be in good agreement with the LQC equations. Such a hybrid spatial grid turns out to be
advantageous in the following two main aspects: (i) a significant reduction in the number of grid
points and hence the number of floating point operation at each time step, and (ii) a significant
increment in the size of the allowed time step as the time step now would be limited by the
interface boundary vinterface, rather than by the outer boundary vouter.

We will use the Method of Lines (MoL)3 to evolve the initial data. The computational domain
is discretized only in the spatial direction while the time direction is taken to be continuous. As
discussed, the discreteness on the inner LQC grid is fixed at ∆v = 4 while the we choose the
discreteness in the outer Wheeler-DeWitt grid ∆x according to our requirements. This way the
evolution equation – which are partial difference equation on the LQC grid and partial differential
equation on Wheeler-DeWitt grid – turns into a system of coupled ordinary differential equations
(ODEs) which are then solved using the standard ODE solving techniques. There is one ODE
for each grid point and the coupling between two ODEs comes from the dependence of the
discretized evolution equation on the neighboring spatial grid points. In order for the evolution
system to be well posed one needs to provide the boundary condition on the outer boundary of
the spatial grid at all times. Once again utilizing the fact that at large volume the LQC difference
equations are well approximated by the Wheeler-DeWitt equations, we provide the conditions at
the outer boundary as a solution to the Wheeler-DeWitt equation. In our numerical simulations
the outer boundary can be chosen to be so far out that the amplitude of the state and its time
derivative are essentially zero and remain smaller than the roundoff error. We have performed
several tests and found that this choice of the boundary conditions gives the same result as giving
the boundary condition by computing Ψ and its time derivative ∂φΨ at the outer boundary.

Since the evolution equation on the outer grid is essentially a partial differential equation we
can use advanced numerical techniques available to solve ODEs on the outer grid, while solving
the difference equation on the inner grid same as before. We present two implementation of
the Chimera scheme which differ in terms of the techniques to solve ODEs on the outer grid:
first uses a finite difference (FD) and the second a Discontinuous-Galerkin approximation to the
derivatives on the outer Wheeler-DeWitt grid. We find that the DG implementation is much
more efficient and accurate than the corresponding FD implementation of the Chimera scheme.
Therefore, all the numerical results for evolution of states in isotropic spacetime, presented in
this thesis are obtained using the DG implementation. However, for completeness we describe
both the implementation in the following two subsections:

3.2.3 Finite Difference (FD) implementation

Fig. 3.2 shows the grid set up close to the interface boundary for the FD implementation. The
grid spacing on the inner grid is uniform with ∆v = 4 which is fixed by the underlying quantum
geometry and vN denotes vinterface and the inner grid is extended by one additional grid point
vN+1. The grid functions Ψ, Φ and their time derivatives ΨRHS, ΦRHS as functions of v are
allocated, where the subscript RHS denotes that the time derivative is given by the right hand
side of the first order evolution system given in eq. (2.72). Given Ψ and Φ data everywhere,

3Method of lines is a widely used numerical approach to solving partial differential equations (PDEs). The
elementary idea of the method of lines is to decompose the partial differential equations into a set of ordinary
differential equations (ODEs), by approximating the spatial derivative by algebraic expressions by discretizing
the spatial derivatives, for example, via finite difference. After this approximation is made, the PDE looks like
a set of coupled ODEs with only the temporal derivative being present. One can now use numerical methods
suitable of ODEs to solve the PDE.
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Figure 3.2: The grid setup near the interface boundary in the finite difference implementation
of the Chimera scheme. The positions of the grid points on the outer grid are shown in v-space.
In x-space they are uniformly spaced.

ΨRHS is then computed everywhere on the grid and ΦRHS is computed up to and including the
grid point vN according to (2.72). The grid spacing on the outer grid is chosen to be uniform
in x with ∆x = 4/vinterface to make sure that the numerical resolution on both sides of the
interface is the same, and the first grid point of the outer grid x1 = ln(vinterface). The outer
grid is extended by an additional grid point (x0) on the inside. On this grid the grid functions
Ψ,Φ,Π and their RHS ΨRHS, ρRHS

,ΠRHS are allocated4. Given Ψ,Φ and Π data everywhere
ΨRHS is then computed everywhere according to eq. (3.8), while ΦRHS and ΠRHS are computed
everywhere from and including grid point x1 according to eq. (3.8) using second order accurate
centered finite differencing. Before completing a full time step we need to fill in values for ΦRHS

at point vN+1, and for ΦRHS and ΠRHS at point x0. Since, in the large volume limit, ΦRHS = ΦRHS

the value of ΦRHS at point vN+1 can just be filled using quadratic interpolation of the values
of ΦRHS in x1, x2 and x3. Similarly the value of ΦRHS at point x0 can be filled using quadratic
interpolation of the values of ΦRHS in vN−2, vN−1 and vN . Now, ΠRHS on the outer grid does not
have a corresponding grid function on the inner grid. However, since

ΠRHS =
∂Φ

∂x
= v

∂Φ

∂v
(3.14)

we can find approximations to ΠRHS in grid points vN−2, vN−1 and vN on the inner grid by
taking second order accurate finite differences of Φ with respect to v, convert to derivatives with
respect to x and interpolate those values to grid point x0 on the outer grid. This prescription
leads to a stable evolution scheme, where ingoing and outgoing modes are passed back and forth
without noticeable problems between the inner and outer grids.

3.2.4 Discontinuous-Galerkin (DG) implementation

We implement a discontinuous Galerkin (DG) method for the solution of the Wheeler-DeWitt
partial differential equation on the outer grid. The main idea is to divide the whole outer spatial
grid into a number of elements, and within each element represent the grid functions using a
p-th order polynomial where p is a large integer. It is possible to use either a polynomial basis or
interpolating polynomials to represent grid functions. In the latter case p+ 1 nodes within each
element are selected and the interpolating polynomials are constructed so that the polynomial
Pi has the value of the grid function at node i and is zero at all other nodes. This is the approach
we take in our analysis. Approximations to derivatives of grid function at all nodes can then
be computed simply by evaluating the derivative of the interpolating polynomials. The final
ingredient is the coupling of each element to its neighbors. This is done using suitable numerical

4The grid functions with under lines are Wheeler-DeWitt variables while grid functions without underlines
are LQC variables.
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Figure 3.3: The grid setup near the interface boundary in the discontinuous Galerkin imple-
mentation is presented. It corresponds to the case of 4th order discontinuous Galerkin imple-
mentation. Here n0 and n1 label the first two DG elements. Each element consists of 5 nodes
(labeled x0–x4 for the first element). Node x4 of the first element coincides with the first node
(unlabeled) of the second element.

fluxes evaluated at either side of an element boundary. Such numerical fluxes can be constructed
in several different ways to maintain numerical stability and accuracy. In this implementation
we use simple Lax-Friedrich fluxes (see 7). The inner grid is set up exactly in the same way
as in the FD implementation. The outer grid, instead of uniformly discretizing, is divided into
n elements each with p + 1 non-uniformly distributed nodes, where p denotes the order of the
DG scheme. Fig. 3.3 shows the implementation of the first two nodes close to the interface
boundary using a 4th order DG scheme. The first node of the first element (x0) is placed at
x0 = ln vinterface = ln vN . On outer grid we use the same variables (Ψ,Φ,Π) as in the FD scheme
and their time derivatives given by the system of evolution equations in terms of x. In the DG
scheme we set the fields Ψ and Φ in point vN+1 on the inner grid directly from interpolation
from the corresponding variables in the first element on the outer grid. As the solution on the
outer grid is stored as interpolating polynomials, this is a straightforward operation. In order
to pass the information from the inner boundary to the DG grid elements, we need to construct
the a numerical flux that travels from the inner boundary to the first element of the outer grid.
The values of the wavefunction and its time derivative at the boundary are needed in order to
construct the numerical flux. These can be given as follows:

Φ|x0 = Φ|vN , (3.15)

Π|x0 =
∂Ψ

∂x

∣∣∣∣
x0

= v
∂Ψ

∂v

∣∣∣∣
vN

≈ vN
ΨN+1 −ΨN−1

8
. (3.16)

The boundary is then treated like any other boundary between two neighboring DG elements,
independently of the order of the DG scheme. As the accuracy of the DG scheme is much higher
than the 2nd order finite difference scheme, we do not have to use the same resolution on the
inner and outer grids. For the numerical simulations presented in this thesis we have used 64th
order implementation of the DG elements, which is effectively 32 times lower resolution than
a corresponding 2nd order FD implementation. That is, the number of actual numerical grid
points in the DG implementation are much less than the corresponding FD implementation.
This is the main advantage of the DG method over the FD method of the Chimera scheme.

3.3 Robustness of the Chimera scheme

As discussed in the beginning of this chapter the numerical simulations of wide states which often
corresponding to small values of pφ are computationally challenging and expensive. Using the
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Chimera scheme, however, these simulations can be performed very efficiently in a reasonably
small amount of CPU time and using much less memory than what would have been necessary
in the perviously existing techniques. As discussed before, the main advantage of the Chimera
scheme stems from the fact that at large volume the LQC difference equations can be extremely
well approximated by a Wheeler-DeWitt equation. In this section we present several tests of the
Chimera scheme and its robustness showing that the approximations made in the implementation
of Chimera scheme have a very little or practically no effect on the accuracy and the reliability
of the results. First we present the analysis of the efficiency of the scheme by comparing the
computational resources required in the two implementation with those needed without using
Chimera scheme. Then, we will discuss the convergence of the results when the resolution of the
grid is changed by shifting the interface boundary farther and when the integration boundary
needed for computation of the expectation values is varied. We also present the comparison of
the accuracy of the results with pure LQC evolution.

3.3.1 Efficiency

Table 3.1 shows representative run times for the simulation of a state with p∗φ = 20
√
G~ and

∆V/V ≈ 6.44 using the both the implementations of the Chimera scheme on a 16 core 2.4
GHz Sandybridge workstation. The first two columns give the grid size (ninner) and run time
of evolving only on the inner LQC grid, the next two columns give the outer grid size (nouter)
and total run time for the finite difference Chimera scheme and the final two columns give the
same information for the DG Chimera scheme. For both cases (FD and DG), nouter was chosen
so that the outer boundary was placed at vouter = 1.5 × 1019. For the FD implementation, the

Table 3.1: Computational cost for various grid setups. The first two columns lists the number
of grid points (ninner) and the time spent on evolution on the inner LQC grid. The next 2
columns lists the number of grid points (nouter) on the outer Wheeler-DeWitt grid and the total
evolution time (on both the inner and outer grid) with the finite difference implementation
of the Chimera scheme. The last 2 columns lists the same quantities for evolution with the
discontinuous Galerkin Chimera scheme. For both the FD and DG chimera schemes the grid
is set up so that the outer boundary is at vouter = 1.5 × 1019. The timings are given in total
walltime (seconds) when running on 16 cores on a 2.4 GHz Sandybridge workstation.

LQC grid Chimera (FD) Chimera (DG)
ninner time (s) nouter time (s) nouter time (s)
7,500 38.8 253,953 1117.6 8,125 143.5
15,000 87.4 497,508 9148.8 15,860 471.3
30,000 239.3 974,221 40339.0 31,005 1671.0
60,000 870.0 — — 60,645 6160.0

grid spacing on the outer grid is chosen to match the grid spacing on the inner grid at the
interface. The outer grid in the DG scheme is constructed using 64th order DG elements which
are highly accurate. Due to the high accuracy of the DG implementation we can use a much
lower resolution (larger grid size) without compromising with the reliability of the results. This
is reflected in the much lower values for nouter for the DG scheme in the table (compared to
the FD scheme) and, though the computational cost per grid point is higher in the DG scheme
than in the FD scheme, this the main reason for the corresponding much smaller run times. It
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is noteworthy that the run times listed in the FD and DG implementation include the the time
spent on the inner grid as well. Due to the n2

inner scaling of the run time on the inner grid, the
run time for the simulation widely spread state can be estimated. For a state with p∗φ = 20

√
G~

it is necessary to use about 1.5× 1019 spatial grid points. This requires 1.25× 1014 times more
grid points as compared to the sharply peaked state. Also, due to the CFL stability conditions
one would have to take 1.25 × 1014 times smaller time steps. Such a simulation would take
1× 1027 hours ∼ 1023 years on a similar workstation. This run time is reduced to half a day for
the FD implementation of the Chimera and less than half an hour for the DG implementation
for the highest resolution listed in the table. For the FD Chimera scheme we did not execute the
computational run with ninner = 60, 000 since it would take a long time. For the DG Chimera
scheme the run at ninner = 30, 000 gives accurate enough results, and a higher resolution is not
required for discussion of results. Though the major portion of the saving in the computational
cost comes from using the hybrid grid of the Chimera scheme, it is clear from the table that the
computational cost is brought down by another order of magnitude by using the DG scheme.

3.3.2 Convergence

As discussed in the previous subsection, DG scheme is far more efficient than the FD imple-
mentation. Therefore, we use the DG scheme for the simulations presented in this thesis and
we restrict the discussion of robustness from here on to the DG scheme. There are two main
concerns regarding the accuracy of the results: first, the effect of the choice the interface be-
tween the LQC and DG grid and the second, the initial data being chosen as a solution to the
Wheeler-DeWitt equation instead of the LQC evolution equation. We can control the errors
from the interface by performing runs with different values for vinterface and compare the re-
sults. As the resolution on the Wheeler-DeWitt grid is chosen to match the resolution on the
LQC grid in v-space, increasing vinterface automatically results in higher resolution (in x) on the
Wheeler-DeWitt grid. Thus, increasing vinterface results in higher accuracy due to two different
factors. The Wheeler-DeWitt equations are better approximations to the LQC equations, and
the Wheeler-DeWitt equations are solved with higher numerical resolution. With regard to
the second issue, we are interested in setting up a simulation where the state starts to travel
inwards (towards smaller volume) as the evolution proceeds. We will refer to this as an ingoing
mode. Similarly we refer to a mode that initially travels outwards (towards larger volume) as
an outgoing mode. Initial data constructed as a pure ingoing Wheeler-DeWitt state will have
a small (depending on where the state is peaked and how wide it is) outgoing LQC mode. The
amplitude of the outgoing mode can be reduced by starting the simulation at a larger value of φo.
In the following we demonstrate the convergence of the Chimera scheme with varying interface
boundary and also demonstrate that the interface between the LQC and Wheeler-DeWitt grids
also helps by acting as a filter that reflects the outgoing LQC mode.

Convergence for sharply peaked states: Four snapshots of an example evolution of a sharply
peaked state corresponding to p∗φ = 1500

√
G~ and ∆V/V = 0.064 starting at φ = 1 are shown

in figures 3.4 and 3.5. The upper and the lower panels in Fig. 3.4 respectively show the state
at φ = 1 and at φ = 0 when the state has just passed through the interface while traveling
inwards. We consider three different resolutions, corresponding to three different locations of
the interface. The solid (red), dashed (black) and dotted (blue) vertical lines denote low, medium
and high resolutions with vinterface = 3 × 104, 6 × 104 and 1.2 × 105 respectively. As the state
passes through the interface, an outgoing part of the state is reflected from the interface. The
amplitude of this reflected part depends on the location of the interface. Farther the location of
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Figure 3.4: Log-log plots of the absolute value of the state as a function of the volume variable
v. Here snapshots of the evolution of a sharply peaked state with p∗φ = 1500

√
G~ and ∆V/V =

0.064 at φ = 1 (upper panel) and φ = 0 (lower panel). The solid (red), dashed (black) and
dotted (blue) curves are for the low (vinterface = 30, 000), medium (vinterface = 60, 000) and high
(vinterface = 120, 000) resolution runs, respectively. For clarity the thinner vertical lines shows
the position of vinterface for the three cases.
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Figure 3.5: Log-log plots of the absolute value of the state as a function of the volume variable
v. Here snapshots of the evolution of a sharply peaked state with p∗φ = 1500

√
G~ and ∆V/V =

0.064 at φ = −0.7 (upper panel) and φ = −1.8 (lower panel). The solid (red), dashed (black)
and dotted (blue) curves are for the low (vinterface = 30, 000), medium (vinterface = 60, 000) and
high (vinterface = 120, 000) resolution runs, respectively. For clarity the thinner vertical lines
shows the position of vinterface for the three cases.

the interface, earlier the reflection takes place and the reflected part has propagated to a larger
volume. The amplitude of the reflected mode converges to zero to second order in vinterface. That
is, the amplitude decreases by a factor of four when the location of the interface is increased by
a factor of two. The flat noisy features in the state below 10−9 result due to a combination of
the round-off and truncation errors. Fig. 3.5 shows two snapshots of the state:one close to the
bounce at φ ≈ −0.7 and another after the bounce at φ ≈ −1.8 after the state has crossed the
interface once more. The reflect part, now propagating to the left, again convergence to zero
with vinterface. This time the reflection at the interface is delayed if the interface is put further
out in v. This allows a longer interval between two reflections at the interface (the first before
and the second afterwards) for higher resolution.

The first reflection is caused by the fact that the initial state is set up as a purely ingoing
Wheeler-DeWitt state. It evolves cleanly until it hits the interface. As this purely ingoing
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Wheeler-DeWitt state is not a purely ingoing LQC state, it contains a small outgoing component.
This component can not be propagated inwards and is reflected. In this sense the interface acts
as a filter that ensures that the state on the LQC grid is purely ingoing. If the initial state
was set up completely contained within the LQC grid, we would see a small part of the state
immediately starting to move outwards.

Convergence for wide states: Similar to the discussion of convergence for the sharply peaked
states, we present four snapshots of the evolution of a very wide state with p∗φ = 20

√
G~ and

∆V/V ≈= 6.44 starting at φ = 2 in figures 3.6 and 3.7. The vertical lines again denote the
locations of interfaces for three different resolution. Here, higher resolution refers to farther
location of the interface. For the parameters given, the state is so wide that we have to place
the outer boundary of the entire grid at 1019 in order to contain the state within the numerical
domain and the state has non-zero amplitude on the inner LQC grid. Due to this there is an
outgoing LQC mode, however, its amplitude is small enough not to affect the results. The lower
panel in Fig. 3.6 shows the state at φ = 0. In the outer part of the grid the numerical solution
is dominated by roundoff errors, while in the inner part of the grid part of the state has already
started to bounce. The upper panel in Fig. 3.7 shows the state at φ = −1.35 close to the bounce
which occurs at φb = −1.4167 at Vb = 146.219VPl. For v > 108 it is possible to see the part of
the state that has been reflected off the interface boundary. The amplitude of the reflection is
much smaller compared to the case of the narrow state. In this case the reflected amplitude is
about 108 times smaller than the amplitude of the state. As before, the amplitude converges
to zero at second order with the interface position vinterface. The lower panel shows the state at
φ = −2.7 well after the peak has bounced. At this point the shoulder of the reflection propagates
cleanly towards large v ahead of the bouncing state.

Convergence of ∆V/V : As described in eq. (2.77), in order to compute the expectation value
of the observables one has to sum over the spatial grid at each slice of φ. As the expression
used to compute the expectation value of ∆V requires computing 〈V 2〉, which contains an extra
factor of V as compared to 〈V 〉, it is apparent from eq. (3.6) we would get contributions from
the roundoff error (noise at the 10−13 level contributes significantly when multiplied by 1019) if
the integration is extended all the way to the outer boundary. Due to this we must choose an
upper limit to the integration volume vint where the summation over the spatial grid is to be
stopped. On one hand, vint has to be large enough to contain the whole state above the round-off
error, on the other hand, it should not to be too large as it may get spurious contributions from
the roundoff error noise or from the reflected part of the state. In fact, in several cases it is
impossible to choose a vint which remains satisfactory for the entire duration of the evolution.
This has been illustrated in figures 3.8, 3.9 and 3.10 for the extreme case of p∗φ = 20

√
G~

and ∆V/V ≈ 6.44 at low, medium and high resolutions respectively. In all cases, the plots
show the calculated value of ∆V/V as function of φ using three different values of vint. The
solid (red) curve is for vint = 108, the dashed (green) curve is for vint = 109 and the dotted
(blue) curve is for vint = 1010. At late times, when the state is peaked at large volume (the
Wheeler-DeWitt regime), ∆V/V should be constant. However, in this regime the state is not
completely contained within the integration volume and we get different values for ∆V/V for
the three different values of vint, for the simulations shown in Figures 3.8, 3.9 and 3.10. As
the state contracts further (as φ decreases) it becomes small enough that first vint = 1010, then
vint = 109 and finally vint = 108 is large enough to contain the state. After this we get good
agreement between the calculations of ∆V/V using the three different values of vint through the
bounce (at φ = −1.42 in this case) and for some time afterwards until the state expands and
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Figure 3.6: Log-log plots of the absolute value of the state as a function of the volume variable
v. Here snapshots of the evolution of a very wide state with p∗φ = 20

√
G~ and ∆V/V ≈ 6.44 at

φ = 2.1 (upper panel) and φ = 0 (lower panel). The solid (red), dashed (black) and dotted (blue)
curves are for the low (vinterface = 30, 000), medium (vinterface = 60, 000) and high (vinterface =
120, 000) resolution runs, respectively. For clarity the thinner vertical lines shows the position
of vinterface for the three cases.
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Figure 3.7: Plots of the absolute value of the state as a function of the volume variable v.
Here snapshots of the evolution of a very wide state with p∗φ = 20

√
G~ and ∆V/V ≈ 6.44 at

φ = −1.35 (upper panel) and φ = −2.7 (lower panel). The solid (red), dashed (black) and
dotted (blue) curves are for the low (vinterface = 30, 000), medium (vinterface = 60, 000) and high
(vinterface = 120, 000) resolution runs, respectively. For clarity the thinner vertical lines shows
the position of vinterface for the three cases.

become large enough that it no longer is contained within the integration volume. A close up
of the near bounce region at low resolution (see the inset in Figure 3.8), however, reveals some
small differences. A small difference is visible between the vint = 108 and vint = 109 curves while
the vint = 1010 curve shows a clear deviation from the other curves. These are caused by the
reflected part of the state of the interface between the inner LQC grid and the outer Wheeler-
DeWitt grid seen in Figure 3.6. However, as the interface between the two grids are moved out
(and the resolution is increased), the amplitude of the reflection decreases. Thus at the medium
resolution (see the inset in Figure 3.9), the vint = 108 and vint = 109 curves agree very nicely,
while the deviation of the vint = 1010 curve has decreased significantly compared to the low
resolution case. Finally in the high resolution case (see the inset in Figure 3.10) all three curves
agrees nicely all the way through the bounce. Thus we conclude that the interface between the
grids is far enough out in the “classical” region that any artifacts introduced by the Chimera
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Figure 3.8: ∆V/V for 3 different integration ranges: vint = 108 (solid/red line), vint = 109

(dashed/green line) and vint = 1010 (dotted/blue line) for the case p∗φ = 20
√
G~ and ∆V/V ≈

6.44 at low resolution vinterface = 30, 000. the inset shows in detail what happens near the bounce.
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Figure 3.9: ∆V/V for 3 different integration domains: vint = 108 (solid/red line), vint = 109

(dashed/green line) and vint = 1010 (dotted/blue line) for the case p∗φ = 20
√
G~ and ∆V/V ≈

6.44 at medium resolution vinterface = 60, 000. The inset shows in detail what happens near the
bounce.
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Figure 3.10: ∆V/V for 3 different integration domains: vint = 108 (solid/red line), vint = 109

(dashed/green line) and vint = 1010 (dotted/blue line) for the case p∗φ = 20
√
G~ and ∆V/V ≈

6.44 at high resolution vinterface = 120, 000. The inset shows in detail what happens near the
bounce.

scheme does not affect the results. For different initial data parameters the optimal choice of
vint will be different, so in each case we have to perform simulations at different resolutions and
examine the plots of ∆V/V for different vint. For the sharply peaked state shown in Figure 3.4
and 3.5, for example, we find that vint = 105 is sufficient. Even though the round off noise is
in the integration volume at the bounce, it is at a sufficient low level that it does not adversely
affect the value of ∆V/V . Also the reflected wave in that case (of much larger amplitude than
the really wide state) leaves the integration volume already for φ ≈ 0 in the high resolution case.

The volume dispersion of the state is computed via (2.77). In the computation of the
expectation value of v2 for wide states, the numerical errors on the outer side of the Wheeler-
DeWitt grid are amplified, due to v2 term in eq. (2.77). This problem, however, is much less
severe in the computation of v, as the numerical errors will be amplified only by a factor of v.
In this way, convergence of ∆V implies the convergence of the expectation value of V 2 which,
in turn, guarantees the convergence of expectation value of V .

3.3.3 Accuracy

As the wide state requires the outer boundaries to be placed at v = 1.5×1019, it’s not feasible to
make a comparison in this case. So, for the comparison we use the sharply peaked state shown
in figures 3.4 and 3.5. Those simulations where started at φo = 1 where the state is peaked
at v ≈ 107, requiring the outer boundary to be located at at least vouter = 2 × 107. Using the
results of runs in Table 1, the estimated time to complete such a simulation turns out to be
approximately 70 days on a workstation. Thus, this simulation is too expensive to do with a pure
LQC grid. Therefore, to do the comparison we take the following strategy. We perform three
pure LQC simulations with different starting times φo = (0, 0.1, 0.2) with vouter = 240, 000 and
compare with the Chimera runs. In these three cases the state is initially peaked at v = 20, 000,
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37, 000 and 70, 000, respectively. In all these cases, states are so sufficiently far inside the outer
boundary, that we avoid any outer boundary problems. In Fig. 3.11 we plot the relative difference
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Figure 3.11: The relative difference ε = |〈v̂〉LQC − 〈v̂〉Chimera|/〈v̂〉Chimera for different starting φ0

as function of φ for the sharply peaked state p∗φ = 1500
√
G~ and ∆V/V = 0.064. The solid

(red) curve is for φ0 = 0, the dashed (black) curve is for φ0 = 0.1 and the dotted (blue) curve
is for φ0 = 0.2

in the expectation value of v between the pure LQC simulations and the Chimera simulation
as function of φ for the three different starting times. For φo = 0 the relative difference is of
order 10−4. This difference is due to the fact that the initial state is setup as a solution to the
Wheeler-DeWitt equations and therefore is not a pure ingoing mode for the LQC equations.
We use the term ingoing in the same sense here as we did in the beginning of Sec. ??. As φo
increases, the state is initially peaked at larger v and the Wheeler-DeWitt initial state is a better
approximation to the pure ingoing LQC state. Therefore we see the relative difference decreases
for larger values of φo, and for φo = 0.2 the difference is of order 10−5. In fact the decrease in
relative difference shown in the figure is consistent with second order convergence in the starting
location (in v) of the peak of the state and is also consistent with the second order convergence
in the amplitude of the reflected part of the state off the interface boundary when the Chimera
scheme is used. This again shows the advantage of being able to use a large domain, allowing us
to setup the initial data peaked at a large enough volume that the errors made in constructing
the state as a Wheeler-DeWitt state is negligible.

3.4 Discussion

In this chapter we have presented an efficient numerical technique to study the evolution of states
in loop quantum cosmology in flat FRW background with a massless scalar field. Previous works
in this direction [60, 61, 62] focused on the simulations of sharply peaked states. Our goal in
this chapter was to extend the numerical simulations to cover regions of the parameter space
which were previously inaccessible. For example, states which are widely spread in volume.
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We found that simulations of such states are numerically very challenging. To resolve these
difficulties we have implemented a hybrid numerical technique named ‘Chimera’, which uses a
combination of LQC and Wheeler-DeWitt computational grids. The inner grid corresponding to
the lower volume range is a uniform discrete grid based on the discreteness given by LQC. The
outer grid, on the other hand is a grid with a continuum limit on which we solve the Wheeler-
DeWitt equation. We have seen that this schemes proves to be advantageous both in terms of
the accuracy of the results and the cost of computation. More importantly, with the scheme
presented here we are able to perform simulations with a wide variety of states. In the next
chapter we will use this scheme to study the evolution of a wide variety of states including wide
states, the ones which bounce close to the Planck volume and various classes of non-Gaussian
states. We will also use the Chimera scheme to study the evolution of a cyclic like universe
which can be described by a matter model with a scalar field under the influence of a negative
potential.
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Chapter 4
Robustness of the quantum bounce in

the flat FRW spacetime1

In the previous chapter, we described the Chimera scheme which is a hybrid numerical scheme
developed to study the numerical evolution of state in LQC for a wide variety initial data. Here,
we performed various robustness tests of the scheme and saw that one can efficiently perform
numerical simulations of very widely spread states in the presence of a massless scalar field. We
study in detail the properties the quantum bounce for a variety of initial states including widely
spread Gaussian states and states with non-Gaussian profiles, and extract both qualitative and
quantitative insights on the nature of the quantum bounce for a flat isotropic and homogeneous
FRW spacetime, using the Chimera scheme [142, 143]. Going beyond the massless scalar field
we will also discuss preliminary numerical results by considering a negative potential which gives
rise to a cyclic like universe.

This chapter is organized as follows. We begin with a short introduction to the physical
motivation and the importance of the numerical study of evolution of various initial states.
Then, we describe the methods of obtaining various Gaussian and non-Gaussian initial states.
This will follow the discussion of the main results for the Gaussian and non-Gaussian states in the
presence of a massless scalar field in separate sections where we present a detailed qualitative
and quantitative analysis of various features of the quantum bounce and the way deviations
between the effective and full LQC theory vary with different parameters of various types of
initial states. Then, we describe the cyclic model of the universe and present few preliminary
numerical results. Finally we summarize the main results obtained in this chapter.

4.1 Introduction

The occurrence of quantum bounce and the non-singular evolution in LQC are direct conse-
quences of the underlying discrete quantum geometry of spacetime. As discussed in chapter 2,
for a flat FRW model in the presence of a massless scalar field, the quantum Hamiltonian con-
straint in LQC is a difference equation with uniform discreteness in volume. The discreteness in
the quantum Hamiltonian constraint is fixed by the minimum eigenvalue of the area operator in
LQG. An important feature of the non-singular evolution and the quantum bounce is that the
energy density is bounded above by a universal maximum ρmax = 0.41 ρPl whose value is also
fixed by the fundamental discreteness in the quantum geometry. As discussed in the previous
chapter, the quantum Hamiltonian constraint can be treated as an initial value problem which
can be solved by giving an initial data at an initial time. Typically, one provides the initial data
as a state which corresponds to large macroscopic universe at late times. Such an initial state
can then be evolved using the quantum difference equation and the evolution trajectory can be
described via the expectation values of the physical observables at various instances of time.

1Sections 4.2.1, 4.2.3, 4.3 and 4.4 are reproduced by updating and adapting the contents of P. Diener, B. Gupt,
and P. Singh, Class.Quant.Grav. 31 105015 [142, 143] by the permission of the IOP publishing Limited. See
Appendix B for the copyright permission from the publishers.
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As described in chapter 2, for suitable choices of states, one can derive an effective continuum
description of the theory which captures the main corrections of the underlying quantum geome-
try. An effective Hamiltonian can also be derived in this description, which leads to the modified
Friedmann and Raychaudhuri equations. A key result of the previous numerical simulations for
sharply peaked states with large scalar field momentum is that the LQC trajectory is in a very
good agreement with the corresponding effective dynamical trajectory, and the bounce happens
very far from the Planck volume. For these simulations the energy density at the bounce is
very close to the maximum allowed energy density. The value of the field momentum in these
simulations plays an important role, because the bounce volume is proportional to the scalar
filed momentum in the effective theory. The derivation of the effective dynamics is based on
appropriate choices of sharply peaked Gaussian states which bounce at large volumes, there-
fore it is expected that for such states effective trajectories will be an excellent approximation
to the LQC ones. So far the validity of the effective theory has never been explored beyond
the realm of the above assumptions. In order to rigorously test the strength of the effective
theory and investigate the robustness of the quantum bounce paradigm, a detailed numerical
study of more general classes of the states is required. For example, one needs to study the nu-
merical evolution of states with wide spread, states which bounce close to Planck volume, and
non-Gaussian states. As discussed in the previous chapter, the numerical investigation of such
states, are computationally very challenging. Thanks to the Chimera scheme, these limitations
can be overcome in an efficient and accurate manner and the simulations can be performed for
a variety of initial conditions.

Here, we consider different types of Gaussian and non-Gaussian states and study their nu-
merical evolution governed by the difference equation in the presence of a massless scalar field
using the Chimera scheme. We explore a wide range of parameters which includes the values for
which the relative volume spread of the states are as large as ∆V/V ≈ 6 and bounce volume in
the effective theory is as small as 20 Planck volumes. Since the bounce volume in the effective
theory is proportional to the scalar field momentum, choosing the conditions for small bounce
volume puts restriction on the value of the field momentum. This also in turn leads to states
with large spread. Since these states clearly violate the assumptions made in the derivation of
the effective theory, it is expected that there will be differences between the effective theory and
the full quantum evolution for these types of states. If such departures are found, then this
would open a new avenue to compute finer corrections to the modified Friedmann dynamics and
understand the robustness of various phenomenological predictions extracted in LQC. This can
be potentially very useful. In particular, to gain a deeper understanding of the novel results
found in the pre-inflationary epoch in LQC [128] and by considering the perturbations of the
effective Hamiltonian [129].

Going beyond the simple setting of the massless scalar field, in this chapter, we will also
consider the quantum evolution of states in the presence of a negative potential, which will give
rise to a cyclic like evolution of the universe. This model can be understood as a generalization of
the negative cosmological constant model given in the Ref. [73] which is equivalent to a scalar field
with a constant negative potential. Interestingly, it turns out that for the potential considered
in this chapter the scalar field varies monotonically. Hence, the scalar field is a good choice for
an emergent clock, similarly to the case of massless field. In this way, the quantum Hamiltonian
constraint can be partially deparameterized with respect to the kinetic term of the scalar field so
that the evolution equation resembles a second order wave equation with a time dependent source
term given by the potential. Since the quantization of the gravitational part of the Hamiltonian
is exactly same as that in the case of massless scalar field, the quantum Hamiltonian constraint
in this case is also a difference equation with uniform discreteness in volume. In the presence of

74



a negative potential the classical trajectory encounters two singularities: a big bang in the past,
and a big crunch in the future due to classical recollapse of the volume. As these singularities
are approached, the energy density of the matter field diverges and volume goes to zero. In
LQC, on the other hand, these singularities are expected to be resolved, giving rise to a smooth
non-singular evolution across these singularities.

The results obtained in this chapter show that the quantum bounce is a generic qualitative
feature of the LQC evolution irrespective of the quantum fluctuations and the types of the
initial states. However, there are some quantitative details which heavily depend on the choice
of initial states. These include the way quantitative features of the quantum bounce as well as
the way the differences between the effective and LQC trajectories vary with the parameters of
the initial data and the fluctuations of the initial state. We also find that the effective theory
stands a good approximation to the LQC trajectories unless the fluctuations are large. A general
result of these simulations is that the effective theory underestimates the bounce volume and
overestimates the energy density at the bounce while preserving the occurrence of the quantum
bounce. We also investigated the validity of the triangle inequality for these states derived in
Ref. [144] that put restrictions on the growth of dispersions of the state across the bounce.
We find that the triangle inequality regarding the dispersion of the states across the bounce is
obeyed irrespective of the choice of the states, hence presenting a numerical evidence to discard
the speculations about growth of fluctuations during and after the bounce for both Gaussian
and non-Gaussian states.

4.2 Initial data: Massless scalar field

Let us begin with the discussion of the construction of the initial data. In previous chapters we
discussed that in the large volume limit, the LQC evolution equation can be approximated by
the Wheeler-DeWitt evolution equation. Here, we utilize this property of the LQC evolution
equation to construct the initial state for the numerical evolution. In the spatially flat model un-
der consideration, for a given value of the field momentum pφ, the spacetime curvature becomes
smaller as the volume increases. Therefore, at the large volumes, the eigenfunctions of LQC can
be approximated by a linear superposition of the eigenfunctions of Θ̂ in the Wheeler-DeWitt
theory, which are given by

ek(v) =
1

2π
ei k ln |v|, (4.1)

with ω =
√

12πG|k| is the eigenvalue of the Wheeler-DeWitt evolution operator. In our numer-
ical simulations we will consider initial states which are peaked on the expanding trajectory at
late times (i.e. large φ) and have ω > 0. A general positive frequency Wheeler-DeWitt initial
state at time φ = φo is of the form

Ψ(v, φ) =

∫
Ψ(k)ek(v)eiω(φ−φo) dk, (4.2)

where k = −pφ/
√

12πG~2. The time derivative of Ψ(v, φ) can be computed by evaluating the
following integral:

∂

∂φ
Ψ(v, φ) =

∫
iω Ψ(k)ek(v)eiω(φ−φo) dk. (4.3)

Given the form of a wavepacket Ψ(k) (or equivalently Ψ(ω)), the initial state and its derivative
can be computed by numerically evaluating the integrals in eq. (4.2) and (4.3). Since the physical
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states are required to be symmetric under the change in the orientation of the triads, we have
Ψ(v, φ) = Ψ(−v, φ).

The initial data in form of the state and its time derivative for all values of v at a given
initial time φ = φ∗, as described above, makes the quantum evolution a well posed initial value
problem. That is, the quantum difference equations can now be solved to obtained the state at
a later or earlier times. Let us now discuss different types of Gaussian and non-Gaussian initial
states constructed for the numerical simulations performed in this chapter. We begin with the
Gaussian states.

4.2.1 Gaussian states

The initial data in form of a Gaussian wavepacket are characterized by three main parameters:
(i) the volume at which the initial state is peaked, v∗,
(ii) the scalar field momentum p∗φ where the state is peaked and
(iii) the spread of the state, σ or σv. As discussed above, the value of v∗ is chosen to be

large. Here we will consider three different types of initial data, based on Ref. [61]. The first is
a Gaussian in v, and the second and third types of initial states are Gaussian in ω, characterized
by Ψ(ω) as follows

Ψ(ω) = e−(ω−ω∗)2/2σ2

, (4.4)

where ω = pφ/~, ω∗ is the value of ω at which the initial state is peaked and σ represents the
spread of the Gaussian waveform. In the effective theory the bounce volume can be exactly
predicted to be vb ≈ 0.32p∗φ [62]. Thus, larger p∗φ corresponds to larger volume at the bounce.
As we will see later in this chapter the relative spread in volume, ∆v/v, depends on the spread
in the field momentum, σ. Hence, by changing σ in the initial data, we have a control over the
relative spread in volume, of the initial state. Let us now discuss the three types of Gaussian
initial states:

(i) Method-1: Gaussian in volume (v)
In this method of constructing the Gaussian initial data, we choose the wavefunction to be

a Gaussian in v, peaked at large volume v∗. Such a state at a given value of the scalar field
φ = φo can be written as

Ψ(v)|φ=φo = e
− (v−v∗)2

2σ2v eib
∗(v−v∗). (4.5)

where b is the variable conjugate to v, and σv is the spread of the Gaussian. Using the classical
Hamiltonian constraint, the φ derivative of the above wavefunction can be shown to be

d

dφ
Ψ(v, ω)|φo =

√
12πG

[
v(v − v∗)

σ2
v

+ ib∗v

]
Ψ(v)|φ=φo , (4.6)

where b∗ is the initial value of b, given by

b∗ = ± ω∗√
12πGv∗

. (4.7)

Substituting the value of b∗ in eq. (4.6) we obtain the “time” derivative of the initial state and
hence have the complete set of initial conditions needed in order to study the further evolution.
Note that the above relation between b and ω holds true only in the classical limit, i.e. when the
LQC difference equation can be safely approximated by Wheeler-DeWitt equation. To satisfy
this condition one has to make sure to give large enough v∗ in the initial data.
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(ii)Method-2: WDW initial state
We consider a solution of the Wheeler-DeWitt equation given by the integral eq. (4.2), as

the method-2 of specifying a Gaussian initial data with the profile given by eq.(4.4). Using
the eigenfunctions for Wheeler-DeWitt evolution operator, the integral in eq. (4.2) yields the
following form of the wave-function

Ψ(φ, v) =
σ√
2π

exp

(
− 1

2

(
ln (v/v∗)√

12πG
− φ
)(

σ2 ln (v/v∗)√
12πG

− σ2φ− 2iω∗
))

. (4.8)

The initial state given above is a continuous function of v, but in the numerical simulations,
since the spatial grid in LQC is discrete with uniform discreteness ∆v = 4, we compute the
states only at the discrete points on which an LQC state has support on. In order for a well
posed initial value problem, one also needs the value of the time derivative of state ∂φΨ|φ=φo ,
which is given as

∂φΨ(φ, v) =

(
σ2 ln(v/v∗)√

12πG
− σ2φ− iωo

)
Ψ(φ, v). (4.9)

(iii) Method-3: Rotated WDW initial state
In this method of constructing the Gaussian initial data we consider a variation of method-II

described above. The initial state is obtained by rotating an initial Wheeler-DeWitt state by
an ω dependent phase factor by multiplying the eigenfunctions of the Wheeler-DeWitt operator
with e−iα, where α is given via [61]

α = k (ln(|k|)− 1), (4.10)

with k = −ω/
√

12πG. This phase is introduced to match the eigenfunctions of the LQC
evolution operator with those of the Wheeler-DeWitt operator in the large volume regime. The
intial state is obtained by numerically evaluating the following integral

Ψ(v, φ) =

∫
dkΨ(k)e−iαek(v)eiω(φ−φo) (4.11)

with Ψ(k) chosen to be a Gaussian peaked on k∗ = −p∗φ/
√

12πG with a spread σk = σ/
√

12πG:

Ψ(k) = e−(k−k∗)/2σ2
k . (4.12)

Further, the time derivative of the initial state can also be numerically evaluated as follows

∂φΨ(v, φ) =

∫
dk iωΨ(k)e−iαek(v)eiω(φ−φo). (4.13)

4.2.2 Uncertainty product for Gaussian states

An important aspect of the state dependent properties of the evolution is captured by the
product of the uncertainties in V and pφ (which are related through the uncertainty relation
between φ and pφ). Depending upon whether or not the initial state is a minimal uncertainty
state, the evolution of the total uncertainly product varies with the choice of the initial state.
Another important feature of the choice of initial state is the symmetry of the dispersion of the
state across the bounce. It turns out (also noted previously in Refs. [61, 62]) that the relative
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dispersion in V may or may not be symmetric on the two sides of the bounce depending on the
type of initial state and the dispersion in pφ.

In the Wheeler-DeWitt theory the time parameter ‘φ’ is related to the volume V via the
following relation:2

φ =
1√

12πG
ln

(
V

Vo

)
+ φo. (4.14)

Using the above relation we can obtain the relation between the dispersion in φ and the relative
dispersion in V , ∆V/V as follows

∆φ =
1√

12πG

∆V

V
. (4.15)

The product of the uncertainties of the matter sector is given as

∆φ∆pφ ≥
~
2
. (4.16)

Since, the evolution equations are de-parameterized with respect to the scalar field φ which plays
the role of emergent time, we can write the above uncertainty product as the product of the
relative dispersion in volume ∆V/V and the dispersion in the field momentum ∆pφ as follows:

∆V

V
∆pφ ≥

√
3πG~. (4.17)

Thus, for a minimum uncertainty initial state the above inequality turns to the following equality(
∆V

V
∆pφ

)
min

=
√

3πG~. (4.18)

The initial state for method-2 is a minimum uncertainty state by construction [61], and the
above equality holds for all values of ∆pφ and ∆V/V . Let us now consider a particular choice

∆̃pφ and ∆̃V
V

such that the relative dispersions in volume and the field momentum are equal.
Together with eq.(4.18), this yields the following relation

∆̃pφ
pφ

=
∆̃V

V
=

(√
3πG~
pφ

)1/2

(4.19)

so that

∆̃pφ = (3πp2
φG~2)1/4, and

∆̃V

V
=

(
3π

p2
φ

G~2

)1/4

. (4.20)

It is straightforward to verify that for ∆̃pφ and ∆̃V
V

the uncertainty product remains minimum
during the evolution.

In contrast to the behavior of uncertainty product for the initial state constructed using
method-2, for method-1 and method-3 the uncertainty product in the initial data is not mini-

mized for ∆̃pφ and ∆̃V
V

. Further, the numerical simulations show that for method-1 and method-
3, the following turns out to be true.

2This result is straightforward to derive using classical evolution equations. The Wheeler-DeWitt states are
peaked on this classical trajectory (see Ref.s [61, 62, 139] for details).
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• For method-1: The input parameter in this method of choosing the initial data is σv
which directly determines ∆V/V . Moreover, ∆pφ is a non-monotonic function of ∆V

V
, and

becomes minimum at ∆̃V
V

=
(

3π
p2φ
G~2

)1/4

.

• For method-3: The input parameter for this method is σ which directly determines ∆pφ,

and ∆V
V

is non-monotonic function of ∆pφ. It turns out that at ∆̃pφ = (3πp2
φG~2)1/4, ∆V

V

is minimized.

The non-monotonic nature of the relative volume dispersion for a Gaussian state was earlier
found and studied in Ref. [145], where the state considered was different from the initial states
discussed in this work. However, the value of ∆pφ which minimizes the relative volume dispersion

turns out to be the same as we find in our analysis. We will discuss later that ∆̃pφ and ∆̃V
V

play
important roles in understanding the behavior of the deviation of the effective trajectory from
the LQC trajectory. It turns out that these values are directly related to the non-monotonic
behavior of the quantity that measures the deviation of effective theory from LQC. Let us now
discuss the non-Gaussian initial states considered in this chapter.

4.2.3 Non-Gaussian states

We will consider three classes of non-Gaussian states: (i) Squeezed Gaussian states, a simple
generalization of a Gaussian states, in which the spread of the wave-packet is considered to be
a complex number, (ii) average Gaussian states, consisting of wave-packets with two Gaussian
peaks in ω space and (iii) a class of multi-peaked states. In what follows we will express the wave
packets in terms of k2 = ω2/12πG, and the state as a function of v is obtained via eq. (4.11).
Using the Hamiltonian constraint, the time derivative can be numerically computed as given in
eq. (4.13).

(i) Squeezed states: These states can be written as a generalization of the Gaussian states
considered in previous numerical works [61, 62, 142]. A Gaussian state is characterized by two
parameters: the field momentum where the state is peaked (p∗φ) for which k∗ = −p∗φ/

√
12πG~

and the spread of the Gaussian quantified by a real quantity η. Here we generalize the Gaussian
to a squeezed Gaussian state by allowing η to be a complex quantity. As yet another variation
we include a factor kn, which leads to the following expression for the wavepacket in k space:

Ψ(k) = kne−η(k−k∗)2 , (4.21)

where n ∈ R and η ∈ C.
(ii) Average Gaussian states: For this type of initial data we use the sum of two separated

Gaussian waveforms in k space as follows:

Ψ(k) =
1

2

(
e
−η
(
k−
(
k∗+ δk√

24π|η|

))2

+ e
−η
(
k−
(
k∗− δk√

24π|η|

))2)
, (4.22)

where k∗ = −p∗φ/
√

12πG~ and δk is a free parameter which parameterizes the separation between
the two Gaussian components in k space. We will see later that an average Gaussian state, when
expressed as a function of v, does not resemble a Gaussian wavefunction. In fact, depending on
the value of the parameters, there can be more than one peak. In this sense the state may not
be peaked at a single volume at the initial time.
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(iii) Multipeaked States: For a multipeaked state we choose the following waveform in the
k space,

Ψ(k) = e
−η2

(
k−
(
k∗+ δk√

24π|η|

))2

−η
(
k−
(
k∗− δk√

24π|η|

))2

, (4.23)

where k∗ = −p∗φ/
√

12πG~ and δk is a free parameter. We will see later that the above state,
when expressed in v space, has several local maxima. Thus, the peakedness of the initial state
is not a well defined property.

Before we go further, let us discuss the triangle inequality of the dispersion of states which
will be important for the later discussion in this chapter.

4.2.4 Triangle inequality

An important property of the evolution of states in flat FRW model in the presence of a massless
scalar field is that of a triangle inequality derived in the Ref. [144] which – since does not assume
any particular type states in its derivation – is supposed to be valid irrespective of the choice
of state or the parameters of the initial data. This inequality constraints the growth of the
volume dispersion of the state depending on the relative fluctuations in the matter field. It is
quite a robust feature which presents analytical evidences that if a state is semi-classical at late
times before the bounce, then the semi-classicality of the state will again be recovered across the
bounce in the asymptotic limit. As we will see later in this paper that, irrespective of the choice
of the initial state, the qualitative shape of the wavefunction at late times on the two sides of
the bounce is the same even for non-Gaussian states with multiple peaks despite the fact that
the close to the bounce the shape is not necessarily the same as that in the initial data.

In previous numerical works it has been seen that the dispersion of the state across the
bounce may or may not be symmetric and the asymptotic values of the dispersion in volume are
not the same in general [61, 62, 142]. Nevertheless, the analytical investigation of the dispersion
of a localized state performed in Ref. [144] shows that although the volume dispersions ∆ ln(V )
could be different across the bounce, still the difference between their asymptotic values is
bounded by the dispersion in the field momentum ∆ ln(pφ). The corresponding inequality is like
a triangle inequality given as follows:

|σ+ − σ−| ≤ 2σ (4.24)

where σ− = ∆ ln(V )− is the asymptotic dispersion in volume in contacting branch, σ+ =
∆ ln(V )+ is the asymptotic dispersion in volume in expanding branch and σ = ∆ ln(pφ) is the
dispersion in the field momentum which is a constant of motion for massless scalar field. Using
the triangle inequality given by the above equation one can obtain

σ+ − σ−
2σ

≤ 1. (4.25)

Since the derivation of eq. (4.24) assumes no particular state, the inequality is valid for all
choices of initial states, irrespective of whether the state is sharply peaked or not. As discussed
in the Ref. [146] that if a state is sharply peaked then the dispersion in a physical observable
O can be approximated as 〈∆ ln (O)〉 = 〈∆O〉/〈O〉. Under this approximation we can write,
∆ ln(V ) ≈ Σ± := (∆V/V )± and ∆ ln(pφ) ≈ Σ := ∆pφ/pφ. The inequality in eq. (4.24) then
takes the following form

|Σ+ − Σ−| ≤ 2Σ, (4.26)

which can also be written as

E :=
|Σ+ − Σ−|

2Σ
≤ 1. (4.27)
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Figure 4.1: This figure shows the bounce of the volume for large value of pφ = 1500
√
G~ and

σ = 95. It is clear that the bounce happens far from the Planck volume and the effective
trajectory is a good enough approximation to the LQC trajectory.

It is noteworthy that unlike eq. (4.24), the inequality in eq. (4.27) is only valid as long as the
approximation ∆ ln(V ) ≈ Σ± := (∆V/V )± is valid. As discussed in Ref. [146], this approxima-
tion is a property of semiclassical states. Hence, eq. (4.27) implies that the difference between
the relative dispersions across the bounce for a semiclassical state is tightly constrained, and
the semiclassicality of a state across the bounce is preserved. That is, if the wavefunction of the
universe on one side of the bounce is semiclassical then it will remain semiclassical throughout
the evolution. This is an important argument in support of the cosmic recall [147], which also
discards speculations about the growth of the dispersion of a state across the bounce. Moreover,
the violation of eq. (4.27) can be interpreted as the failure of semi-classicality. As we will see
later in this paper that eq. (4.27) is violated for the squeezed states which have large relative
volume spread, whereas eq. (4.24) continues to be valid for all states.

4.3 Results: Gaussian States

In this section we will consider a wide range of values of the field momentum and the spread of
the Gaussian initial states and study its evolution. We will compare the LQC evolution with the
effective dynamical evolution, starting with the same initial conditions as the LQC evolution.
The effective dynamical equations have been derived in the approximation that the initial state
is sharply peaked and the volume at the bounce is very large compared to the Planck volume. We
will go beyond these assumptions and probe the validity of the effective equations in that range.
As discussed previously, considering smaller values of the field momentum results in smaller value
of the bounce volume, and a wide spread in the state violates the sharp peakedness property of
a semi-classical state. Hence, relaxing the condition on the largeness of the bounce volume and
the sharp peakedness property, one deviates from the underlying assumptions of the effective
description. In the following two subsections, we discuss the representative evolution of the LQC
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trajectories and the relative volume dispersion, where we choose the Gaussian method-3 initial
data and use the Discontinuous-Galerkin Hybrid Chimera scheme in order to numerically evolve
the states. Recall that, the initial state is characterized by three main parameters: the field
momentum (pφ), the width of the state in the field momentum (σ) and the volume v∗ at which
the initial state is peaked on. Here we will consider variety of values of pφ and σ while keeping
the value of the volume to be large. A large value of v∗ is taken to make sure that initial state
is peaked at a classical trajectory. The value of pφ and σ on the other hand govern whether the
state is sharply peaked. Larger the value of σ, more sharply peaked the state is in v.

4.3.1 Evolution trajectory

Fig. 4.1 shows the evolution of the expectation value of the volume with p∗φ = 1500
√
G~ and

σ = 95. The solid (blue) curve shows the evolution of effective trajectory and the errorbars
show the dispersion in the volume centered around the LQC trajectory. It is straightforward
to see that the centers of the errorbars are in excellent agreement with the effective evolution
and bounce happens at Vb ≈ 1660VPl. In this simulation, the properties of the initial states
are compatible with the assumptions made in the derivation of the effective theory. Therefore,
the agreement of the LQC evolution with the effective dynamical trajectory is natural. Let
us now vary the value of pφ so that the volume at the bounce is smaller. We vary the value
of pφ to a value as small as p∗φ = 20

√
G~ and perform over hundreds of simulation using the

Chimera scheme. In this section we show the results of the simulations for selected values of
the field momentum, p∗φ = (200, 20)

√
G~. In the simulations shown in this section, the spread

σ for each of these values is kept in the range of 8 − 15% of the mean value of pφ. There
are two important points worth emphasizing: (i) smaller value of pφ leads to smaller bounce
volume, and (ii) as the spread in pφ decreases, the relative volume spread of the state increases,
leading to deviation from sharp peakedness. Thus, by choosing various values of pφ, we perform
simulations in the range of parameters which lie beyond the assumptions on which the effective
theory is based. Fig. 4.2 and Fig. 4.3 show the evolution of the expectation value of the volume
for p∗φ = (200, 20)

√
G~ compared with the respective effective trajectories. It is straightforward

to see from these figures that as the value of the pφ decreases, the deviation between the effective
and LQC trajectory increases. The differences between the effective and the LQC trajectory are
quite prominent for pφ = 20

√
G~, where the value of spread σ ranges between 2.25 and 3.0. The

volume at the bounce for pφ, in the effective theory, turns out to be Vb = 21VPl, whereas the
bounce volumes for LQC trajectories are larger. We make two important observations from the
results of these simulation: (i) there are dispersion dependent deviations in the LQC trajectory
from the effective trajectory, and (ii) the deviations seem to grow as the spread σ is decreased
for a fixed pφ, for the method-3 of choosing the initial data for the values of σ shown in these
figures. As we will see later in this chapter that these deviations depend on the fluctuations
in a non-trivia fashion. The LQC trajectories shown in Fig. 4.2 and 4.3, correspond to fixed pφ
with different values of field momentum such that ∆pφ < ∆̃pφ. In this regime as the value of
σ decreases, ∆pφ decreases which leads the relative volume dispersion to increase. This results
in a larger deviation from the effective trajectory. which is consistent with the behavior shown
in Table-4.2, that is, for method-3 of specifying the initial data, the the deviation from effective
theory increases as the value of relative volume dispersion increases if ∆pφ < ∆̃pφ.

Table. 4.1 provides the values of the bounce volume for different values of the field momentum
pφ and spread σ. It is clear to see that the dependence of the bounce volume on the spread of
the state is more prominent for small values of pφ.
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Figure 4.2: Fig.(a) shows the evolution of the expectation value of the volume for pφ = 200
√
G~

for different values of σ. It is clear to see that bounce happens close to the Planck volume and
the effective trajectory deviates from the LQC trajectory quite a bit depending on σ. Fig.(b)
shows the comparison between the LQC trajectory plotted with the dispersion in volume as the
errorbars and the effective trajectory shown by a solid curve. It is evident that although there
are differences between these trajectories, the effective theory lies within the errorbars. These
trajectories correspond to ∆pφ < ∆̃pφ, for which σ < σ̃ =

√
2∆̃pφ = 35.04 for pφ = 200

√
G~. In

this regime, increasing ∆V/V (decreasing σ) results in larger deviation from effective theory, as
shown in Table-4.2.
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Figure 4.3: This figure shows the evolution of the expectation value of the volume for pφ =
20
√
G~ for different values of σ. It is clear to see that bounce happens close to the Planck

volume and the effective trajectory deviates from the LQC trajectory quite a bit depending on
σ. Fig.(b) shows the comparison between the LQC trajectory plotted with the dispersion in
volume as the errorbars and the effective trajectory shown by a solid curve. It is evident that
although there are differences between these trajectories, the effective theory lies within the
errorbars. These trajectories correspond to ∆pφ < ∆̃pφ, for which σ < σ̃ =

√
2∆̃pφ = 11.08 for

p∗φ = 20
√
G~. In this regime, increasing ∆V/V (decreasing σ) results in larger deviation from

effective theory, as shown in Table-4.2.
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Figure 4.4: This figure shows the evolution of the relative dispersion in V . Fig. (a) shows the
evolution for pφ = 1500

√
G~ for method-1 (σv = 1000), and method-2 and method-3 (σ = 95).

Fig. (b) shows the evolution of ∆V/V for pφ = 20
√
G~ σ = 2.5 for method-2 and 3 of specifying

the initial data. The simulation of method-1 with pφ = 20
√
G~ is not under control even with

the Chimera scheme, therefore we do not show them here.
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Table 4.1: This table shows the value of bounce volume for different values of pφ depending on
the spread σ. All quantities given in the table are in the Planck units.

pφ = 20
√
G~ pφ = 80

√
G~ pφ = 140

√
G~ pφ = 200

√
G~

σ Vb σ Vb σ Vb σ Vb
2.25 146.22 5.0 129.07 10.0 170.12 16.0 229.41
2.5 102.66 6.0 115.03 13.0 163.69 19.0 226.97
2.75 79.03 7.0 107.31 15.0 161.43 22.0 225.47
3.9 42.25 9.0 99.46 17.0 159.94 26.0 224.22

4.3.2 Relative dispersion, ∆V
V

Study of the evolution of the dispersion of the states are important for several reasons, the most
important one being the issue of semi-classicality in the low curvature regime on the two sides
of the bounce. We will also relate our numerical study with the analytical study of the states
perform in [144], where a triangle inequality regarding the relative spread in volume and the
field momentum is derived. We test the validity of the aforementioned triangle inequality by
studying the evolution of a wide variety of initial states and point out some interesting spread
dependent features.

Let us first discuss the evolution of ∆V/V in LQC. Fig. 4.4(a) shows the evolution of the
relative volume dispersion for a state which is sharply peaked on a classical trajectory in the
initial data. The value of the field momentum is pφ = 1500

√
G~ for method-1 (σv = 1000) and

method-2 and 3 (σ = 95). From the figure it is clear that far from bounce in the low curvature
regime, ∆V/V tends to a constant value in the asymptotic limit. As the state is evolved
backwards, and the Planckian curvature is reached, the relative volume dispersion decreases.
In the, further backward evolution, it achieves a minimum value at some point and then starts
increasing again. Across the bounce, as the low curvature regime is obtained once again, the
relative volume dispersion tends to a constant value. The asymptotic constant values on the two
sides of the bounce, are equal if the initial state is chosen according to method-3 of specifying
the initial data. For the method-1 and method-2 of giving initial data, they are different, in
general. However, it turns out that for method-2, the asymptotic values of the relative volume
dispersion can be brought close by choosing appropriate values of the relative dispersion in the
field momentum.

Fig. 4.4(b) shows the evolution of relative volume dispersion for pφ = 20
√
G~ and σ = 2.5

for method-2 and 3. It turns out that the numerical errors in the simulation of states according
to method-1 are beyond control even with the Chimera scheme. Therefore, we do not discuss
them here. It is clear from the figure that the initial value of the fractional dispersion in volume
is as large as 4.3. Due to such a large dispersion in volume, the state is not sharply peaked.
However, the evolution across the bounce shows that the relative volume dispersion again takes
a constant value in the asymptotic limit on both sides of the bounce. It is important to note
that in both cases, i.e. as shown in Fig. 4.4(a) and Fig. 4.4(b), ∆V/V approaches a constant
value in the asymptotic limit, far from bounce. Also, the value of the relative dispersion near
the bounce is smaller than these asymptotic values.

Triangle inequality of dispersion: Let us now turn to discussion of dispersion of the state across
the bounce and compare the relative volume dispersion on the two sides of the bounce. A
large disparity between the dispersion on the two sides may imply the loss of semi-classicality
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Figure 4.5: Triangle inequality for the method-1 of choosing the initial data for pφ =
(1500, 500)

√
G~ and σv = 1000 for method-1 of specifying the initial data. It is clear from

the figure that the triangle inequality is valid throughout the evolution in both the cases shown
in this figure.
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Figure 4.6: This figure shows the evolution of the relative volume dispersion and the validity
of the triangle inequality for pφ = (1500, 20)

√
G~ σ = 95 for method-2 of specifying the initial

data. It is clear from the figure that the triangle inequality is valid throughout the evolution for
both large and small pφ.

88



 0.05

 0.1

 0.15

 0.2

 0.25

-1.4 -1.2 -1 -0.8 -0.6 -0.4 -0.2  0

φ

p∗φ=1500, σ=95, Method-3

∆V/V
Σ++2Σ
Σ-+2Σ

(a)

 3

 4

 5

 6

-2 -1.8 -1.6 -1.4 -1.2 -1 -0.8

φ

p∗φ=20, σ=2.5, Method-3

∆V/V
Σ++2Σ
Σ-+2Σ

(b)

Figure 4.7: This figure shows the evolution of the relative volume dispersion and the validity of
the triangle inequality for pφ = 1500

√
G~ σ = 95. The Fig. (a) and (b) correspond to Method-2

and 3 respectively. for method-3 of specifying the initial data. It is clear from the figure that
the triangle inequality is valid throughout the evolution for both large and small pφ.
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as the universe evolves from one side of the bounce to the other. As discussed previously in
this chapter, the asymptotic values of the relative dispersions, far from bounce obeys triangle
inequalities given as follows

Σ− ≤ Σ+ + 2 Σ and Σ+ ≤ Σ− + 2 Σ, (4.28)

where Σ+ and Σ− are the asymptotic values of the relative volume dispersion in the expanding
and contracting branches respectively. Σ = ∆pφ/pφ is the relative dispersion in the field mo-
mentum. The triangle inequality given in eq. (4.28), in a way puts bound on the asymmetry in
the relative volume dispersion on the two sides of the bounce

|Σ− − Σ+| ≤ 2 Σ. (4.29)

Fig. 4.5, Fig. 4.6 and Fig. 4.7 show the evolution of the relative volume dispersion for method-1,
2 and 3 respectively, with large and small values of the field momentum. For method-2 and 3
we show the simulations for p∗φ as small as 20

√
G~, whereas for method-1 we restrict ourselves

to p∗φ > 500 due to the numerical limitations. The dotted and dashed curves show Σ± + 2 Σ.
It is clear to see from the figure that on both sides of the bounce, the triangle inequality is
satisfied i.e. Σ± < Σ∓ + 2 Σ. It is also important to note that the inequality holds true for all
the three methods of specifying the initial data. Fig. 4.8 shows the asymptotic values of the
volume dispersion, Σ± compared with Σ∓ + 2 Σ, for method-1 of specifying the initial data.
Similarly Fig. 4.9 and Fig. 4.10 show the asymptotic values of the relative volume dispersion,
Σ± compared with Σ∓ + 2 Σ, for method-2 and method-3 of specifying the initial data. The
dashed curves in the upper panel of these figures show Σ−, in the lower panel they depict Σ+

for various values of p∗φ. It is evident from these figures that the triangle inequality is valid for
all the values of p∗φ as well as for all types of the initial data.

4.3.3 Comparison with the effective theory

In this section, we perform a large number of simulations by considering various initial values
of p∗φ in the range 20

√
G~ < p∗φ < 1500

√
G~ for method-2 and 3 of specifying the initial data.

It turns out that for small values of the field momentum the numerical errors for method-1 are
not under control even with the Chimera scheme, therefore we restrict out numerical studies for
method-1 for p∗φ ≥ 500

√
G~ which are well behaved. For each value of the field momentum we

vary the spread of the gaussian, ∆pφ in the range of 5% to 15% of the mean value of the field
momentum. The value of pφ relates to the bounce volume while ∆pφ dictates whether the state
is sharply peaked in the initial data. For each of the simulations performed we compute the
expectation values of various quantities and their relative dispersions both at the bounce and
in the asymptotic limit far from the bounce. This way we are able to provide a quantitative
investigation of the spread dependent properties of the evolution of an initial state in LQC. As
we will see further in this section that the analysis performed here enables us to explore the
deviation of LQC trajectory from the effective trajectory in a quantitative fashion. Study of the
spread dependent corrections will guide us to understand up to what scale the effective theory
is reliable.

The initial state is constructed according to methods described previously in this chapter.
We perform over a hundred of simulations, by varying pφ, ∆V/V and ∆pφ. In order to quantify
the deviation of LQC trajectory from the effective dynamical trajectory, we define a quantity

δ =

(
Vb − Vb

(eff)
)

Vb
(eff)

, (4.30)
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Figure 4.8: This figure shows the validity of the triangle inequality for method-1 of specifying the
initial data for varying ∆pφ, plotted on the x-axis. Fig. 4.8(a) shows the plot of and Fig. 4.8(b)
respectively show the variation of Σ+ + 2Σ and Σ− + 2Σ demonstrating the validity of the first
and the second inequality in eq. (4.28). The dashed curves in the upper panel shows the value of
Σ− for various values of pφ, for example the upper most dashed curve correspond to pφ = 500.
Similarly the dashed curves correspond to Σ+ in the lower panel for various pφ’s; the left most
corresponds to pφ = 500 and the right one depicts the curve for pφ = 1500.
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Figure 4.9: This figure shows the validity of the triangle inequality for method-2 of specifying
the initial data for varying ∆pφ, plotted on the x-axis. Fig. 4.9(a) and Fig. 4.9(b) respectively
show the variation of Σ+ + 2Σ and Σ− + 2Σ demonstrating the validity of the first and the
second inequality in eq. (4.28).. It is also interesting to note that the inequality is saturated in
the low ∆pφ region.
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Figure 4.10: Validity of the triangle inequality for method-3 of specifying the initial data for
varying ∆pφ is shown: Fig. 4.10(a) and Fig. 4.10(b) respectively show the variation of Σ+ + 2Σ
and Σ− + 2Σ demonstrating the validity of the first and the second inequality in eq. (4.28).. It
is also interesting to note that the inequality is saturated in the low ∆pφ region.
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Table 4.2: Summary of the main results.
Initial data Fixed ∆V

V
increasing pφ Fixed pφ increasing ∆V

V
Fixed ∆pφ increasing pφ

Method-1 δ decreases δ decreases δ decreases if ∆V
V
< ∆̃V

V

δ increases if ∆V
V
> ∆̃V

V

Method-2 δ decreases δ increases if ∆pφ < ∆̃pφ δ decreases

δ decreases if ∆pφ > ∆̃pφ
Method-3 δ increases if ∆pφ < ∆̃pφ δ increases if ∆pφ < ∆̃pφ

δ decreases if ∆pφ > ∆̃pφ δ decreases if ∆pφ > ∆̃pφ δ is independent of pφ

where Vb denotes the expectation value of the bounce volume in the LQC trajectory and Vb
(eff)

is the bounce volume in the effective trajectory. The quantity δ denotes the fractional difference
in the bounce volumes in LQC and effective theory with respect to the bounce volume in the
effective theory.

Table 4.2 summarizes the main results of the simulations. i.e. how the quantity δ behaves
as one changes the parameters of the initial data. It is evident from the table that δ depends
on several different factors including pφ, ∆pφ and ∆V/V and the way the initial data is chosen.
For example, if one fixes the relative volume dispersion and increases the field momentum pφ,
then δ decreases for method-1 and method-2 for all ∆pφ, whereas for method-3 δ increases if

∆pφ < ∆̃pφ = (3πp2
φG~2)1/4. Similarly, for a fixed value of the field momentum δ decreases with

increasing ∆V/V for all ∆pφ, whereas for method-2 and 3, the behavior is different for the two

regimes namely, ∆pφ < ∆̃pφ and ∆pφ > ∆̃pφ. Note that, for method-1 the parameters of the
initial data is different from those in method-2 and 3. Initial data in method-1 is a Gaussian
which is characterized by σv(=

√
2∆V ), vo and pφ, and the value of ∆pφ is then derived from

these. On the other hand, for method-2 and method-3 the parameters of the initial data are
σ(=

√
2∆pφ), vo and pφ. In the following, we consider the three methods of choosing the initial

data in separate subsections.

Method-1: Gaussian state

1. As discussed previously, ∆V/V appears as an input parameter and the value of the disper-
sion in the field momentum is computed from it. It turns out that ∆pφ has a non-monotonic
behavior with ∆V/V . Fig. 4.11 depicts the field dispersion, ∆pφ plotted against the relative
volume dispersion far from the bounce (Fig. 4.11(a)). Clearly, the dispersion in volume does
not vary with dispersion in the field momentum monotonically. Moreover, the turn around

in the plots correspond to the values of dispersion for which ∆V
V

= ∆̃V
V

=
(

3π
p2φ
G~2

)1/4

, and

∆pφ is minimum for a given value of pφ. Fig. 4.11(b) shows the plot of ∆V
V

√
pφ plotted

against ∆pφ on the x-axis. Irrespective of the value of p∗φ, ∆V
V

√
pφ = (3π)1/4 is satisfied

at the minimum of ∆pφ, where ∆V
V

= ∆̃V
V

. Due to this non-monotonicity, if a quantity
behaves monotonically with ∆V/V , then it will have a non-monotonic behavior with ∆pφ.

2. Fig. 4.12 shows the variation of δ for various different values of pφ as the relative dispersion
in volume is varied. It is clear that as ∆V/V increases for a fixed value of pφ δ decreases in
a monotonic fashion. This presents an example opposite to the belief that a wide-spread
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Figure 4.11: This figure shows the variation in the value of ∆V/V with ∆pφ for the method-1
of choosing the initial data. Fig. 4.11(a) depicts the values in the regime far from the bounce
in the expanding branch, while Fig. 4.11(b) shows the variation of ∆V/V at the bounce. It is
clear that in the initial data, ∆pφ shows a non-monotonic behavior with respect to ∆V/V , and
becomes minimum at some ∆V/V . Further, the value of ∆V/V for which ∆pφ is minimum is

given via ∆V
V

= ∆̃V
V

=
(

3π
p2φ
G~2

)1/4

.
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Figure 4.12: This figure shows the variation of the quantity δ with respect to the relative
dispersion in volume, ∆V/V .

state should show more deviation from the effective theory. It is also evident from the
figure that for a fixed value of the relative volume dispersion, the trajectory with lower
value of pφ has larger value of δ(summarized in the row for method-1 and column for
fixed ∆V/V in Table 4.2). The variation of δ with respect to the dispersion in the field
momentum is portrayed in Fig. 4.13, which shows a non-monotonic behavior. It turns out

that as long as ∆V
V
< ∆̃V

V
corresponding to the upper branch of each curve before bending,

δ decreases with increasing pφ. Whereas, after the turn around which corresponds to
∆V
V
> ∆̃V

V
, δ increases with increasing pφ as summarized in the row for method-1 and the

column for fixed ∆pφ in Table 4.2.

3. As discussed before in this chapter that the scalar field φ acts like a time parameter, its
absolute value does not have a physical meaning as it can be shifted by adding a constant,
without affecting the physics. However, the “time” difference between two points in the
evolution is a useful quantity. We study the difference between the values of the scalar

field at the bounce in the effective and the LQC trajectory, i.e.
(
φb − φ(eff)

b

)
, shown in

Fig. 4.14. It is evident that the LQC trajectory bounces before the effective one and the

difference in the bounce time increases with increasing ∆pφ if ∆V
V
< ∆̃V

V
. Moreover, for a

fixed ∆pφ this difference decreases with increasing pφ if ∆V
V
< ∆̃V

V
and increases with pφ if

∆V
V
> ∆̃V

V
.

4. Energy density at the bounce, ρb also depends on the relative volume spread of the initial
state. As shown in Fig. 4.15(a), for a fixed value of the field momentum, ρb decreases with
decreasing spread in the volume. On the other hand, if one fixes the dispersion in volume,
then ρb takes smaller value as the field momentum decreases. It is to be noted that the
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Figure 4.13: Variation of the quantity δ plotted against the dispersion in the field momentum for
method-1 of choosing the initial data. For all the data points shown in the figure the vo = 20000.
Different lines correspond to different values of the field momentum which are given in the units
of
√
G~.
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Figure 4.14: Variation of the difference between the bounce “time” in LQC and the effective
theory plotted against the dispersion in the field momentum for method-1 of choosing the initial
data.
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energy density never exceeds the upper bounce on rho, i.e. ρb ≤ ρcrit ≈ 0.41ρPl. Deviation
of ρb from ρcrit is also a measure of the deviation of effective trajectory from the LQC one.
That is, larger the difference between ρb and ρcrit, more the departure between LQC and
effective which will entail a larger value of the quantity δ. Fig. 4.15(b) on the other hand
shows the variation of the energy density at the bounce, with the dispersion in the field
momentum. It is clear that the energy density always remains below the critical value for
all values of the field momentum.

Method-2: WDW initial state

1. Variation of the relative volume dispersion with varying spread in the field momentum,
∆pφ is shown in Fig. 4.16. For the entire range of ∆pφ, the relative dispersion in volume
decreases with increasing ∆pφ in a monotonic fashion. This implies that if a quantity has
a monotonic behavior with ∆pφ it should also behave in the same way with ∆V/V . Note
that a method-2 initial state is a minimal uncertainty state in (φ, pφ), and the variation of
relative volume dispersion with respect to the dispersion in field momentum is monotonic.
This is not the case for method-1 and 3 initial state, which are not minimal uncertainty
states in (φ, pφ).

2. Fig. 4.17 shows the variation of δ with respect to ∆pφ for the method-2 of specifying the
initial data, in a log-log scaled plot. It is evident from the figure that in the low ∆pφ
regime, δ is large. As the value of ∆pφ increases, δ decreases and in the large ∆pφ regime δ
is quite small. This behavior of δ is in agreement with the fact that in the low ∆pφ regime,
the initial state is not sharply peaked in v which leads to significant deviation from the
effective trajectory near the bounce. While, for large ∆pφ, since the volume spread of the
initial state, ∆V is small, the state is sharply peaked. Because of sharp peakedness in
the large ∆pφ regime, the deviation of the LQC trajectory from the effective one is very
small. As the value of spread in field momentum is increased, the values of δ decreases
in a monotonic fashion. Then, around ∆pφ ≈ 10, there is a small region of linearity in
Fig. 4.17. Up until this linear region, δ shows a monotonic behavior with ∆pφ. Further, for
larger values of ∆pφ, around ∆pφ ≈ 50 the curve has a fork like behavior, with different
tines of the fork corresponding to different values of pφ. It is also evident from the figure
that, in the large pφ regime, δ shows non-monotonic behavior with varying ∆pφ, and takes
a minimum value at some ∆pφ for a given pφ. This value of ∆pφ at which δ is minimum

turns out to be ∆pφ = ∆̃pφ = (3πp2
φG~2)1/4. For ∆pφ < ∆̃pφ the quantity δ decreases

with increasing ∆pφ, where as for ∆pφ < ∆̃pφ, it increases. This behavior is summarized
in the row for method-2 and column for fixed ∆pφ in Table 4.2.

3. Let us now study the behavior of δ with the relative spread in volume, ∆V/V . For small
∆V/V , the state is sharply peaked and semiclassical. On the other hand, large ∆V/V
gives a widely spread state. Fig. 4.18(a) shows the behavior of the δ with varying relative
dispersion in volume. As expected in the small ∆V/V regime, the value of δ is very
small, implying the well agreement of LQC trajectory with effective dynamics for sharply
peaked semi-classical states. As the value of relative dispersion in volume is increased
the value of δ increases, and in large dispersion regime it shows a monotonic behavior
with ∆V/V . However, in the small dispersion regime δ behaves non-monotonically. Fig. 2
shows the behavior of δ zoomed-in near the small ∆pφ to pronounce the non-monotonicity
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Figure 4.15: Variation of the energy density, ρb at the bounce with respect to the initial relative
volume dispersion for the method-1 of choosing the initial data. It is evident that ρb decreases as
∆V/V decreases for a given value of pφ. For a fixed ∆V/V , as the value of the field momentum
decreases ρb also decreases. Moreover, ρb < ρcrit for all the values of ∆V/V .
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Figure 4.16: This figure shows the variation in the value of ∆V/V with ∆pφ for the method-2
of choosing the initial data. Fig. (a) depicts the values in the regime far from the bounce in the
expanding branch, while, Fig. (b) shows the variation of ∆V/V at the bounce.
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Figure 4.17: This figure shows the variation of the quantity δ with varying spread in the field
momentum ∆pφ, for method-2 of choosing the initial data in a log-log plot. It is clear that, in
the large ∆pφ regime, δ has a non-monotonic behavior and attains a minimum at some ∆pφ for
a given value of the field momentum pφ.
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Figure 4.18: This figure shows the variation of the quantity δ with respect to the relative
dispersion in volume, ∆V/V for the method-2 of choosing the initial data. It is clear from
Fig. 4.18(a) that δ increases with increasing spread in V , i.e. when the state becomes less
semiclassical. Fig. 2 shows the same plot zoomed in near small ∆V/V region. The dashed curve
intersects the curves with various pφ’s at the points where the relative fluctuation in pφ and V

are equal, i.e.
∆pφ
pφ

= ∆V
V

=
(√

3πG~
pφ

)1/2

(see eq. (4.19)).
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Figure 4.19: This figure shows the variation of the difference in the time of bounce in the
LQC evolution and the effective dynamical evolution for method-2 of choosing the initial data.
Clearly, in the small ∆pφ region, the curve is linear in log-log scale, implying a power law

relation between
(
φb − φb

(eff)
)

and ∆pφ given in eq. (4.31). The slope of curves turns out to be

ν = −2.015± 0.003.

in the behavior. Each curve in this figure corresponds to different values of pφ with the
data points corresponding to different σ. The dashed curve joining the separate pφ curves

correspond to the points where δ is minimum, and ∆pφ = ∆̃pφ = (3πp2
φG~2)1/4. It is

clear that above the dashed curve ∆pφ > ∆̃pφ, δ decreases with increasing ∆V/V . This
behavior is summarized in the row for method-2 and the column for fixed p∗φ in Table
4.2. Whereas below the curve it increases with increasing ∆V/V , as shown in the row for
method-2 and the column for fixed ∆V/V in Table 4.2..

4. Fig. 4.19 shows the variation of the difference in the bounce time between LQC and effective

trajectories,
(
φb − φb

(eff)
)

, with varying ∆pφ in log-log scaled plot. It is clear to see that

in the low ∆pφ regime, the curve is linear, which implies a power-law relation between(
φb − φb

(eff)
)

and ∆pφ: (
φb − φb

(eff)
)
∝ (∆pφ)ν , (4.31)

where ν is an exponent. A numerical fit to the curve in the linear region gives the value of
the exponent to be ν ≈ −2.017± 0.008. As we will see in the next subsection, this power
law also holds true for method-3 of specifying the initial data. In the large ∆pφ region

there is non-monotonicity in the plot, and
(
φb − φb

(eff)
)

becomes minimum at ∆pφ = ∆̃pφ

for a given value of pφ.

5. Fig. 4.20(a) and Fig. 4.20(a) respectively show the variation in the energy density at the
bounce with respect to the relative volume dispersion and the field dispersion. It is evident

102



from the figure, that for sharply peaked states (corresponding to small ∆V/V ), the energy
density at the bounce is very close to the maximum allowed energy density ρmax = 0.409 ρPl.
It is, however, noteworthy that the energy density at the bounce always remains smaller
than ρmax.

Method-3: Rotated WDW initial state

1. Fig. 4.21(a) shows the behavior of the relative dispersion in volume with respect to ∆pφ
in the regime far from bounce in the expanding branch. It is evident that in the large
pφ regime, the relative volume dispersion has a minimum at a certain value of ∆pφ. The

turn around of this curve at the minimum corresponds to ∆̃pφ = (3πp2
φG~2)1/4. For the

method-3 of choosing the initial data, the dispersion in the field momentum ∆V/V behaves

non-monotonically with ∆pφ and at ∆pφ = ∆̃pφ =
(
3πp2

φG~2
)1/4

it becomes minimum.

Fig. 4.21(b) shows the plot of
∆pφ√
pφ

plotted against ∆V/V on the x-axis. It is clear from

the plot that for a given value of pφ,
∆pφ√
pφ

= (3π)1/4 for all pφ’s when ∆V/V is minimum.

This non-monotonicity is reflected in the behavior of other quantities as one varies the
dispersion in the field momentum and volume.

2. Fig. 4.22 shows the variation of δ with varying ∆pφ. In these simulations different values
of ∆pφ were obtained by varying both ∆pφ and pφ. It is interesting to note that δ varies
with ∆pφ in a monotonic fashion. The graph between δ and ∆pφ when plotted on a log-log
axes, turns out to contain a linear region in the high ∆pφ regime, as shown in Fig. 4.22. In
this regime, the initial state is relatively more sharply peaked, and hence, is semiclassical
in nature. Whereas, in the small ∆pφ region as one can see from the Fig. 4.22 that there
are deviations from the linearity. Such a linear behavior in log-log graph points to a power
law relation between δ and ∆pφ

δ ∝ (∆pφ)µ , (4.32)

where µ is a constant exponent. A numerical fit, yields the value of the exponent to be
µ = −2.018±0.001, in the large pφ regime. As we will discuss later in this subsection that
a similar power-law relation also holds true in the behavior of emergent time at bounce
with ∆pφ.

3. We now study the behavior of δ with the relative dispersion in volume, ∆V/V . The value
of δ behaves almost linearly in the small pφ regime where ∆V/V is large. As the relative
dispersion in V decreases, i.e. in the large pφ regime, and the state becomes more semi-
classical, the quantity δ decreases (shown in Fig. 4.23(a)). That is, as the state tends
to become more semi-classical, the effective trajectory comes closer to LQC trajectory,
and serves as a good approximation to the full LQC evolution. Fig. 4.23(b) shows the
behavior of δ with the relative volume dispersion, in the regime corresponding to large
pφ. Different curves in Fig. 4.23(b) show the variation of δ for different pφ, and the data
points in each curve represent different ∆pφ corresponding to a given pφ. It is interesting
to note the non-monotonicity shown in Fig. 4.23(b) for a given value of pφ. It is clear
from the figure that δ changes it behavior at the point where ∆V/V becomes minimum.
The dashed curve connecting the turn around points of separate curves corresponds to
∆pφ = ∆̃pφ = (3πp2

φG~2)1/4 which is where ∆V/V is minimum. It is clear that below this

curve (∆pφ > ∆̃pφ) δ decreases with increasing ∆V/V , while above the curve (∆pφ < ∆̃pφ)
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Figure 4.20: Variation of the energy density at the bounce with respect to the initial relative
volume dispersion for the method-2 of choosing the initial data. In the large ∆V/V regime the
energy density is significantly smaller than ρcrit, where for small ∆V/V which corresponds to
the sharply peaked states the energy density is close to but still smaller than ρcrit.
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Figure 4.21: This figure shows the variation in the value of ∆V/V with ∆pφ for the method-3
of choosing the initial data. Fig. (a) depicts the values in the regime far from the bounce in the
expanding branch. It is evident that far from the bounce, ∆V/V shows non-monotonic behavior
with increasing ∆pφ. Fig. (a) shows ∆pφ/

√
pφ plotted against the relative volume dispersion

for method-3. It is clear from the figure that ∆pφ/
√
pφ = (3π)1/4 when ∆V/V is minimum,

as discussed previously in this chapter. The turn around point in these curves correspond to
∆pφ = ∆̃pφ = (3πp2

φG~2)1/4.
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Figure 4.22: Variation of δ with varying spread in the field momentum ∆pφ for method-3 is
shown in a log-log plot. The linear behavior of the curve in the large ∆pφ regime is evident,
where the slope of the curve is fit to −2.018 ± 0.001. This gives the exponent of the “power
law” relation given in eq. (4.32), as µ = −2.018± 0.001.

δ increases. This is summarized in the row for method-3 and the column for fixed p∗φ in
Table 4.2. Fig. 4.24 shows the dependence of δ with varying p∗φ for different values of
∆pφ. It can be seen that δ is practically independent of p∗φ for a given value of ∆pφ as
summarized in the row for method-3 and the column for fixed ∆pφ in Table 4.2.

4. Fig. 4.25 shows the variation of the difference in the values of emergent time ‘φb’ at the

bounce in the LQC and effective trajectory,
(
φb − φb

(eff)
)

with respect to ∆pφ. It turns

out that there is a power law relation between
(
φb − φb

(eff)
)

and ∆pφ(
φb − φb

(eff)
)
∝ (∆pφ)ν , (4.33)

with ν being the power law exponent. In the numerical simulations performed the exponent
can be fit to ν = −2.015 ± 0.003. At this point, this behavior is a result of numerical
simulations, we do not have an analytical argument in its favor. The power law followed
by eq. (4.33) is very similar to the one followed by δ, as given in eq. (4.32), with the same
exponent µ = ν = −2.01 to three significant figures. Also, ν is surprisingly close to the

exponent in the power law behavior of
(
φb − φb

(eff)
)

for method-2, that is −2.017±0.008.

5. Fig. 4.26 shows the variation of the energy density at the bounce with respect to ∆V/V
and ∆pφ in the upper and the lower panel respectively. It is clear from the figure that as
the relative dispersion in volume increases the energy density at the bounce decreases. In
the small ∆V/V regime, where the state is sharply peaked in volume, the energy density
is close to yet smaller than ρcrit.
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Figure 4.23: This figure shows the variation of the quantity δ with respect to the relative
dispersion in volume, ∆V/V for method-3 of choosing the initial data. It is clear from Fig. (a)
that δ increases with increasing spread in V , i.e./ when the state becomes less semiclassical.
Fig. (b) shows the same plot zoomed in near small ∆V/V region. The dashed curve connecting

the turn around points of separate curves corresponds to ∆pφ = ∆̃pφ = (3πp2
φG~2)1/4. It is

clear that behavior of δ below this curve (∆pφ > ∆̃pφ) is different from that above the curve

(∆pφ < ∆̃pφ).
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Figure 4.25: This figure shows the variation of the difference in the time of bounce in the
LQC evolution and the effective dynamical evolution for method-3 of choosing the initial data.
Clearly, the curve is linear in log-log scale, implying a power law relation between φbLQC−φbEff

and ∆pφ. The slope of curves turns out to be −2, giving ν = −2 in the eq. (4.33).

108



 0.1

 0.2

 0.3

 0.4

 1  2  3  4  5  6

ρ
b

∆V/V

p∗φ=20

p∗φ=50

p∗φ=80

p∗φ=140

p∗φ=170

p∗φ=200

p∗φ=260

p∗φ=500

p∗φ=750

p∗φ=1000

p∗φ=1250

p∗φ=1500

ρmax

 0.1

 0.2

 0.3

 0.4

 0  50  100  150  200

ρ
b

∆pφ

p∗φ=20

p∗φ=50

p∗φ=80

p∗φ=140

p∗φ=170

p∗φ=200

p∗φ=260

p∗φ=500

p∗φ=750

p∗φ=1000

p∗φ=1250

p∗φ=1500

ρmax

Figure 4.26: Variation of the energy density at the bounce with respect to the initial relative
volume dispersion for the method-3 of choosing the initial data. As the value of ∆V/V increases,
the energy density has larger departure from ρcrit. For sharply peaked states, the energy density
is close to, but always smaller than ρcrit.
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4.4 Results: Non-Gaussian states

As discussed previously, the study of the evolution of non-Gaussian states is important in order
to understand various features and the robustness of the quantum bounce in the evolution
governed by the quantum difference equation in LQC. The early investigations of the quantum
bounce in LQC were obtained by performing numerical simulations of sharply peaked states
in Refs. [61, 62] where the main objective was to understand the way the classical singularity
is resolved in the quantum theory for universes which become macroscopic at late times, i.e.
can be described by sharply peaked initial states. In those simulations, the value of the field
momentum was taken to be large so that the quantum bounces took place at volumes well above
the Planck volume. Due to the use of sharply peaked states and corresponding large bounce
volumes, which are the basic assumptions in the derivation of the effective description of LQC,
the trajectories described by the expectation values of the physical observable in LQC showed
excellent agreement with the corresponding effective dynamical trajectories. In a recent work,
the numerical simulations were extended to widely spread states, and a detailed study of the
quantum bounce was performed for various types of Gaussian states [142]. As described in
the previous section, the numerical simulations of these states are computationally challenging
– which are very difficult to tackle with previous numerical schemes. Thanks to the Chimera
scheme, described in the previous chapter, these limitations can be resolved in an efficient
manner [139]. The main focus of this paper is to understand the robustness of the quantum
bounce and its properties for the non-Gaussian states described in the previous section. The
computational challenges for the simulations of these states are similar to those for the widely
spread Gaussian states, which can be resolved by using the Chimera scheme.

The evolution of all non-Gaussian states considered in this paper undergo a non-singular
quantum bounce, as was also the case for Gaussian states. In the vicinity of the initial time,
when the spacetime curvature is very small, the trajectory (defined by the expectation value of
the volume and the internal time) agrees quite well with a classical trajectory. This agreement
continues to hold as long as the energy density remains well below the maximum energy density
at the bounce. As the backward evolution is carried out and the curvature of the spacetime
approaches the Planck scale, the LQC and classical trajectories start deviating. Due to the
quantum geometric effects, the evolution in LQC is non-singular, whereas the classical trajectory
encounters a big bang when the backward evolution is continued. The occurrence of a quantum
bounce for all the states considered in this paper, which stands in agreement with the predictions
of the exactly solvable model [63], provides strong numerical evidence in favor of the generic
occurance of the quantum bounce.

We present the results of over 100 simulations performed by studying the numerical evolution
of the three different classes of non-Gaussian states described in Sec. 4.2. We have considered a
wide variety of initial parameters for squeezed states with various n (where n is the exponent
of the wavenumber k in eq. (4.21)), and other non-Gaussian states with various ω∗ = p∗φ/~. A
summary of some of the representative simulations performed for each class of initial states is
presented in Table 4.3.

We show the expectation value of the field momentum (〈p̂φ〉), the time of bounce (φb), the

bounce volume in LQC (Vb) and the bounce volume in the effective theory (V
(eff)

b ) for various
values of ω and η for the three types of non-Gaussian states discussed in the previous section.
It is interesting to note that the values of ω∗ and 〈p̂φ〉 are the same for the squeezed states with
n = 0, average Gaussian and multipeaked states, while the value of 〈p̂φ〉 is greater than that of
ω for n = 50. Nevertheless, the numerical simulations show that 〈p̂φ〉 is a constant of motion
in all the cases. Another interesting feature of these simulations is that the bounce volume in
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Table 4.3: Summary of the representative simulations shown in various figures in this paper.

ω∗ ηr ηi 〈pφ〉 φb Vb V
(eff)

b Fig.

Squeezed, n = 0
1000 0.0001 0.0001 1000 -0.7830 1109.3 1105.66 4.33(a)
1000 0.0001 0.001 1000 -0.7785 1336.3 1105.66 4.33(b)
500 0.0001 0.001 500 -0.8865 667.22 552.83 –
500 0.01 0.01 500 -0.8954 805.61 552.83 –
60 0.01 0.01 60 -1.233 96.73 66.34 4.33(d)

Squeezed, n = 50
1000 0.0003 0.0003 1077.40 -0.7366 1204.27 1191.24 4.35(a)
500 0.0003 0.0003 632.07 -0.8164 706.63 698.86 –
50 0.03 0.03 63.21 -2.611 221.22 69.89 4.35(b)

Average Gaussian
1000 0.0002 0 1000 -0.7835 1108.74 1105.66 4.38(a)
500 0.0002 0 500 -0.8964 554.38 552.83 –
50 0.02 0 50 -1.271 78.231 55.28 4.38(b)

Multipeaked
1000 0.0001 0 1000 -0.7835 1121.07 1105.66 4.41(a)
200 0.0025 0 200 -1.796 318.85 221.13 4.41(b)

the effective theory is smaller than in the LQC evolution for all the cases. A similar feature was
also obtained in the recent numerical study in Ref. [142] of Gaussian states. We will present a
more detailed analysis of these results in the following subsections.

In the following, we will study how the profile of a given initial wavefunction evolves across
the quantum bounce, compare the trajectory given by the expectation value of the volume
observable in LQC with the corresponding effective trajectory and investigate the properties
of the dispersion in the matter and volume observables for various choices of parameters and
the types of initial state. The properties of the dispersion is directly related to the validity of
the triangle inequality which implies that the growth of the dispersion in the massless scalar
is tightly constrained irrespective of the choice of initial state. We will analyze our numerical
results in the light of two different formulations of the triangle inequality, as described previously
in this chapter. We also study how the energy density behaves during the evolution and compare
our numerical results with the analytical results obtained in the Refs. [146, 145] for the squeezed
states.

4.4.1 Squeezed States

The squeezed states considered in this paper are obtained by evaluating the integral in eq. (4.2)
with Ψ(k) given by eq. (4.21). Here the form of the wavepacket is very similar to a Gaussian
except that the parameter η, which was real for Gaussian states, is a complex number. The
spread of the squeezed states is then governed by both the real and imaginary parts of η: ηr and
ηi. Hence, the dispersion of the state can be varied relative to that of a Gaussian state for the
same ηr by varying ηi. For example, for a given value of ηr for which the corresponding Gaussian
states is sharply peaked, the squeezed state could be made widely spread by setting ηi to some
non-zero value.

In the following we will present a detailed study of the numerical evolution of the squeezed
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Figure 4.27: Evolution of a squeezed state with n = 0, η = (1 + i) × 10−4 and ω∗ = 1000.
Panel (a) shows the amplitude of the wavefunction, |Ψ|, as a function of the volume V and the
internal time φ, including a projection onto the V − φ plane to help visualizing the 3D graph.
Panel (b) shows |Ψ(V )| at different values of φ around the bounce time, φb = −0.7830, where
δ = 0.1. A line joining the discrete values is included to help guide the eye. The vertical dashed
line indicates the bounce volume, Vb = 1109.3. Panel (c) presents a comparison betwwen the
LQC and classical GR trajectories. Panel (d) shows the relative dispersion ∆V/V .
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states for various initial parameters ω∗, n and η. We first discuss how the squeezed state
wavepacket evolves through the bounce by studying the amplitude of the wavefunction as a
function of volume and the internal time. We then turn our attention to the change in the
dispersion of the state across the bounce and examine the validity of the triangle inequality
derived in Ref. [144] for a general class of state. We also study the behavior of the energy
density at the bounce as the imaginary part of η is varied while keeping the real part fixed
and compare our results with the analytical results obtained in [146]. After that, we illustrate
the dynamical trajectories for various parameters by studying the behavior of the expectation
value of the physical observables with respect to the internal time, and compare them with the
corresponding effective trajectories.

Evolution: As discussed previously, the initial state is constructed as a solution to the Wheeler-
DeWitt equation which is a very good approximation to the LQC difference equations at large
volumes and low curvature. The initial state is chosen to be peaked at a large volume so that
the energy density at the initial time is well below the Planck regime. In the following, we first
present the evolution of three representative cases of squeezed states: (i) A sharply peaked initial
state with field momentum expectation value equal to ω∗: n = 0, ω∗ = 1000, η = (1 + i)× 10−4,
(ii) A very widely spread initial state with field momentum expectation value equal to ω∗:
n = 0, ω∗ = 1000, η = (1 + 10i)×10−4, (iii) A sharply peaked initial state with field momentum
expectation value different from ω∗: n = 50, ω∗ = 1000, η = (1 + i) × 10−4. These three cases
are also summarized in Table 4.3.

Case (i) is presented in Fig. 4.27, where Fig. 4.27(a) shows the evolution of the wavefunction
amplitude and Fig. 4.27(b) shows snapshots at different times around the bounce time φb. It
is evident from these figures that during the entire evolution the wave-packet is peaked on a
non-zero finite value of the spatial volume. This feature is more apparent in the projection of
the wavefunction amplitude in the V − φ plane. Fig. 4.27(c) shows the expectation value of

the volume (〈V̂ 〉) plotted against φ. As expected from the evolution of the wavefunction, 〈V̂ 〉
always remains non-zero. Since the initial data is provided when the spatial curvature is very
small, the LQC trajectory coincides with the classical theory in the region far from the bounce.
As the backward evolution takes place, the wavepacket travels inwards and the expectation
value of the volume decreases. This in turn leads to an increment in the spacetime curvature.
In this process, as soon as the curvature becomes Planckian, the quantum geometric effects
become prominent, which in turn leads to a notable difference between the LQC and classical
trajectories. The LQC trajectory undergoes a non-singular bounce while the classical trajectory
goes to a big-bang singularity. Fig. 4.27(c) also shows two classical trajectories, corresponding
to the contracting and expanding branch of the universe. These trajectories are disjoint in the
classical theory, but they are connected by a smooth non-singular quantum bridge in LQC.
Although the shape of the wavefunction before and after the bounce is similar, the spread of the
state, shown in Fig. 4.27(d), is not symmetric. The asymmetry is also apparent in Fig. 4.27(b).
This feature is in contrast with the behavior of the spread of a Gaussian counterpart (ηi = 0)
of the squeezed state.

Case (ii), a very widely spread squeezed state with parameters ω∗ = 1000, n = 0 and
η = (1 + 10i) × 10−4 is shown in Fig. 4.28. It is noteworthy that the shape of the state in
Fig. 4.28(a) is quite different from that in Fig. 4.27(a), even far from the bounce. Moreover, in
the vicinity of the bounce the shape of the wavefunction has prominent non-Gaussian features
(see also Fig. 4.28(b)). It is noticeable, however, that despite the non-trivial features close to the
bounce, the original shape of the wavefunction is recovered on the other side of the bounce. That
is, the profile of the wavefunction on both sides of the bounce, at late times is the same. Such
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Figure 4.28: Evolution of a squeezed state with n = 0, η = (1 + 10i) × 10−4 and ω∗ = 1000.
Panel (a): |Ψ(V, φ)|, including the projection onto the V -φ plane, shown here to help visualizing
the 3D plot. Panel (b): |Ψ(V )| at different values of φ close to the bounce, as indicated in the
figure, where φb = −0.7785 and δ = 0.1. A line joining the discrete values is included to help
guide the eye. The vertical dashed line indicates the bounce volume, Vb = 1109.3.

non-Gaussian features are also seen in the simulation of very widely spread Gaussian states,
as shown in Fig.(10) of Ref. [139]. It is worth mentioning here that the non-Gaussian features
observed in the case of widely spread states is a phenomena which was not seen in the early
numerical simulations of [61, 62] as they were limited only to sharply peaked states. Also, these
features are not artifacts of numerical techniques as confirmed by several convergence tests of
these simulations. It is apparent from these figures that, despite some fine differences in the
evolution in the high curvature regime, the squeezed states also undergo a smooth quantum
bounce.

Finally, figures 4.29(a) and 4.29(b) show the evolution of the squeezed state with parameters
ω∗ = 1000, n = 50 and η = (1 + i) × 10−4, case (iii). As in the cases with n = 0, the
state is always peaked on a non-zero finite volume, while undergoing a non-singular bounce. It
is however noteworthy that, although they both have initial state parameter ω∗ = 1000, the
expectation value of the field momentum for n = 0 is pφ = 1000

√
G~ while for n = 50, it

is pφ = 1207
√
G~. Nevertheless, as expected, the expectation value of the field momentum

remains constant throughout the evolution in both cases.

Relative volume dispersion ∆V/V : Let us now discuss the behavior of the dispersion of the
state as a function of the internal time. The relation between the dispersions on the two sides
of the bounce in the presence of a massless scalar field has been analytically understood in the
Ref. [144], where it was shown that the relative fluctuations in the field momentum and the
volume observable follow a triangle inequality which constrains the growth of the dispersion of
the state during the evolution. As discussed before, a variation of the triangle inequality, in the
approximation 〈∆ln(Ô)〉 ≈ 〈∆O〉/〈O〉, can be used to understand the semi-classicality of the
initial state, which was also studied in the context of squeezed states in the exactly solvable
model in Ref. [146]. Here, we will study how the relative dispersions in the volume observable
and in the momentum of the matter field changes across the bounce and their impact on the
validity of the triangle inequality.
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Figure 4.29: Evolution of a squeezed state with n = 50, η = (1 + i)× 10−4 and ω∗ = 1000. The
expectation value of the field momentum is pφ = 1207

√
G~. Panel (a): |Ψ(V, φ)|, including the

projection onto the V -φ plane. Panel (b): |Ψ(V )| at different values of φ close to the bounce,
as indicated in each sub-figure, where φb = −0.7417 and δ = 0.1. A line joining the discrete
values is included to help guide the eye. The vertical dashed line indicates the bounce volume,
Vb = 1339.4.

As an example, let us consider a squeezed states with n = 0, ηr = 1× 10−4 and ω∗ = 1000.
The evolution of ∆V/V for different values of ηi for fixed ηr = 1× 10−4 are shown in Fig. 4.30.
Compared to their Gaussian counterparts, the squeezed states show some similarities and some
important differences. The solid (red) curve in Fig. 4.30 shows ∆V/V for ηi = 0, that is a pure
Gaussian, for which the relative volume dispersion takes the same value on the two sides of the
bounce. On the other hand, it is evident from the figure that for ηi 6= 0, the asymptotic values of
∆V/V on the two sides of the bounce are different. Moreover, it shows a mirror symmetry with
respect to the bounce point for opposite signs of ηi for a fixed ηr. That is, the plot of ∆V/V for
ηi is a mirror image of the one for −ηi, with the center of the mirror being the bounce point.
As mentioned in Sec. 4.2, the initial data is constructed with a phase factor (method-3 of Refs.
[61, 142]) for which the plot of relative volume dispersion of the corresponding Gaussian state
has a symmetric behavior, and the eigenfunctions of the evolution operator in Wheeler-DeWitt
theory match those in LQC. If the phase factor is not included in the initial data, the above
mirror symmetry will not be present. We also find that all pairs of mirror symmetric curves
intersect at the bounce. This is a numerical result for which we do not have analytical arguments
at this point.

It was shown analytically in Ref. [144] that, irrespective of the particular state, the dispersions
∆ ln(V ) and ∆ ln pφ for a flat FRW model in the presence of a massless scalar field obey the
inequality given in eq. (4.24). For the sharply peaked Gaussian states, the dispersion in an

observable ln(Ô) can be approximated by 〈∆ln(Ô)〉 ≈ 〈∆O〉/〈O〉. Based on this approximation
the triangle inequality can be expressed in terms of the quantity E as described in eq. (4.27),
where E remains smaller than unity in the regime where the above approximation is valid. In
that regime the state can then be interpreted to be more semiclassical. That is, the state is
semiclassical when ∆ ln(V ) can be approximated by ∆V/V and the inequality in eq. (4.27) is
satisfied.
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Figure 4.30: Relative volume dispersion for various values of the ηi and fixed ηr = 1 × 10−4 is
plotted. The expectation value of the field momentum for all the curves is same pφ = 1000

√
G~

(in Planck units) and ω∗ = 1000. It is evident that all the curves intersect each other at the
same value of φ, and the curves corresponding to ηi are mirror images of those with −ηi.

Fig. 4.31(a) shows the difference between the asymptotic values of ∆ ln(V ) on the two sides
of the bounce compared with 2 ∆ ln(pφ) for ω∗ = 1000 and two values of ηr with varying ηi. The
red curve in the figure corresponds to ηr = 1 × 10−4 and the black one to ηr = 5 × 10−5. The
figure clearly shows that the difference between the asymptotic values of the dispersion ∆ ln(V )
on the two sides of the bounce is always less than 2∆ ln (pφ). That is, the triangle inequality
in eq. (4.24) remains valid for all the states considered. Fig. 4.31(b), on the other hand, shows
the variation of E with varying ηi. It is apparent that E is smaller than unity for small |ηi|.
As |ηi| increases, E also increases. As a result E becomes greater than unity if |ηi| is increased
further, hence violating the inequality in eq. (4.27) for large ηi. As discussed in chapter 2, such
a violation can be interpreted as the failure of the semiclassical approximation. Therefore, the
horizontal curve E = 1 in Fig. 4.31(b) separates two regimes. Below the horisontal curve the
states are semiclassical, while above it they not.

Energy density: As discussed previously in this paper, the matter energy density in LQC is
bounded above by its maximum allowed value ρmax ≈ 0.41 ρPl, which has also been confirmed
in the previous numerical investigations of the Gaussian states for flat FRW models [62]. For
sharply peaked states, the energy density at the bounce (ρb) is very close to, though still smaller
than, ρmax. For widely spread Gaussian states, however, ρb is significantly smaller than ρmax

[142]. On the other hand, the energy density at the bounce in the effective description of a

flat FRW model is always equal to its absolute upper bound, i.e. ρ
(eff)
b = ρmax. In this way, the

effective theory always overestimates the energy density at the bounce for the Gaussian initial
states [142]. We see the same qualitative behavior of ρb to hold for squeezed states.

We computed the energy density at the bounce for various squeezed states and found that
it varies monotonically with |ηi|, always remainig below ρmax and reaching its maximum value
for ηi = 0. The variation of the energy density at the bounce for squeezed states was studied
analytically in the context of the exactly solvable model in Ref. [145]. Fig. 4.32 shows the values
of energy density at the bounce for two values of ηr and varying ηi. The solid (black) curves
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Figure 4.31: Panel (a) demonstrates the validity of the triangle inequality as described by
eq. (4.24) for the n = 0 squeezed states. Panel (b) shows the violation of the weak form of the
triangle inequality and the variation of E with varying ηi. E remains smaller than 1 as long as
|ηi| is close to zero. The two curves correspond to: ηr = (1× 10−4, 5× 10−5) and ω∗ = 1000.
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Figure 4.32: The energy density at the bounce computed for various different value of ηi at a
fixed ηr = 1× 10−4 in Fig. 4.32(a) and ηr = 5× 10−5 in Fig. 4.32(b). It is clear that the energy
density at the bounce is always bounded above by ρmax, and the maximum energy density at
the bounce decreases with increased squeezing.
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Figure 4.33: Evolution trajectories for squeezed states with n = 0. Panel (a): ω∗ = 1000,
η = (1 + i) × 10−4. Panel (b): ω∗ = 1000, η = (1 + 10i) × 10−4. Panel (c): ω∗ = 1000,
η = (1 + i)× 10−2. Panel (d): ω∗ = 60, η = (1 + i)× 10−2.
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Figure 4.34: Expectaion value of V as a function of the emergent time φ plotted for Squeezed
states with n = 50 and η = 3× 10−4 + 3× 10−4i.
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show the bounce energy density obtained via analytical calculation following Ref. [145], while
the (red) symbols correspond to the bounce density computed from the numerical simulations,
where the centers of errorbars show the energy density ρb and the errorbars themselves encode
the spread in the energy density, ∆ρb. It is remarkable to see that there is an excellent agreement
between the analytical and the numerical calculations.
Comparison with the effective theory: So far we have discussed the evolution of squeezed state
wavefunctions, their dispersion and the energy density at the bounce for various choices of
parameters. Let us now consider the trajectories, as described by the expectation value of the
volume observable as a function of the internal time. A detailed comparison of such trajectories
with the corresponding effective ones for Gaussian states were performed in the Ref. [142], which
concluded that for all the types of Gaussian initial data considered the effective trajectory always
underestimates the bounce volume. We obtain the same qualitative behavior for squeezed states
in the numerical simulations performed in this paper.

In Fig. 4.33 we compare the trajectories of four different squeezed states with n = 0. The
particular cases shown were chosen to illustrate the effects of varying one property of the initial
state at a time. Specifically, Fig. 4.33(a) and Fig. 4.33(b) correspond to states that differ only
in ηi, whereas Fig. 4.33(a) and Fig. 4.33(c) correspond to initial states with different η but
with the same ratio ηi/ηr, all of them with the same ω∗. Finally, Fig. 4.33(c) and Fig. 4.33(d)
correspond to states with different ω∗, but with the same η. The particular values of ω∗ and η
are indicated in each subfigure. We see that incresing |η|, either by keeping the same ratio ηi/ηr
or by increasing ηi alone, leads to a wider state and the deviation between the effective and the
LQC trajectories close to the bounce increases. In both cases the volume at the bounce is also
increased. Comparing Fig. 4.33(c) and Fig. 4.33(d) we see that decreasing ω∗, while resulting in
a smaller bounce volume, may nonetheless result in a similar relative deviation from the effective
theory. This is evident from the qualitative similarity between these two figures (although the
scales differ approximately by an order of magnitude).

A similar trend about the deviation between the effective and the LQC trajectories can also
be seen for the squeezed states with n = 50. Fig. 4.35 shows the comparison of the effective
and LQC trajectories for ω∗ = 1000 in panel(a) and for ω∗ = 50 in panel (b), both for η =
3 × 10−4 + 3 × 10−4i. It is evident from these figures that in the case of ω∗ = 1000, where
the dispersion in the state is small, there are small differences between the LQC and effective
theory. These differences are much more prominent for ω∗ = 50, for which the states have large
dispersion. Once again, the effective theory predicts a smaller bounce volume in all the cases of
the squeezed state considered in this paper.

We have discussed the evolution of squeezed states for various values of the initial parameters.
In all the cases discussed here, the evolutions are non-singular and undergo a quantum bounce,
showing similar qualitative features as Gaussian states. We have also seen that the numerical
results regarding the variation of the energy density with respect to the imaginary part of η
are in very good agreement with the analytical results obtained in Ref. [145], and the triangle
inequality derived in the Ref. [144] is obeyed irrespective of the initial data considered. Let us
now study the evolution of two more non-Gaussian states, which have quite distinct features
compared to a Gaussian state. For these states we will discuss the evolution of the wavepacket
and compare the LQC trajectories with the corresponding effective one for both small and large
dispersions.
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Figure 4.35: Expectaion value of V as a function of the emergent time φ plotted for Squeezed
states with n = 50 and η = 3 × 10−4 + 3 × 10−4i. The solid (red) curve, with the errorbars
representing the dispersion, shows the LQC trajectory while the dashed (blue) curve shows the
corresponding effective trajectory. There is an excellent agreement between the two trajectories
for ω∗ = 1000, whereas the differences are prominent for ω∗ = 50.
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Figure 4.36: Evolution of an average Gaussian initial state with ω∗ = 1000, η = 2 × 10−4 and
δk = 2. Panel (a): |Ψ(V, φ)|, including the projection onto the V -φ plane, shown here to help
visualize the 3D graph. Panel (b): |Ψ(V )| at different values of φ around the bounce time,
φb = −0.7835, as indicated, where δ = 0.1. A line joining the discrete values is included to help
guide the eye. The vertical dashed line indicates the bounce volume, Vb = 1108.7.
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Figure 4.37: Evolution of an average Gaussian initial state with ω∗ = 50, η = 2 × 10−4 and
δk = 2. Panel (a): |Ψ(V, φ)|, including the projection onto the V -φ plane. Panel (b): |Ψ(V )|
at different values of φ close to the bounce time, φb = −1.271, as indicated in the figure, where
δ = 0.1. A line joining the discrete values is included to help guide the eye. The vertical dashed
line indicates the bounce volume, Vb = 78.231.

4.4.2 Average Gaussian states

As discussed in Sec. 4.2, this type of initial condition is chosen to be the average of two Gaussians
separated by δk × σ in the k space. The initial state for the evolution is then obtained by
evaluating the integral that transforms the state into V space. The resulting state may have
several local peaks, depending on the value of ω without being peaked at a particular value of
V . In this sense, unlike the squeezed states, they are not peaked at any classical volume at the
initial time. The state is then chosen such that the expectation value of the volume at the initial
time is very large and the corresponding energy density is very small compared to the Planck
density. It is, however, remarkable that in addition to the occurrence of a quantum bounce the
trajectories are in excellent agreement with the effective theory as long as the relative volume
dispersion is small, despite the fact that the effective equations were derived for sharply peaked
Gaussian states. For large dispersions, on the other hand, we see deviations between the effective
and LQC trajectories. As with the squeezed states, the energy density at the bounce remains
below ρmax.

Figure 4.36 shows the evolution of an average Gaussian state with ω∗ = 1000 and η = 2×10−4.
Fig. 4.36(a) shows the 3D evolution of the wavefunction plotted against the volume V and the
emergent time φ. Fig. 4.36(b) shows snapshots of the wavefunction around the bounce time φb.
The shape of the wavepacket, as seen more clearly in Fig. 4.36(b), is quite different from that
of a Gaussian. During the entire evolution shown in these figures, the state has support on
non-zero finite volume and undergoes a non-singular bounce. Another important feature of the
evolution is that the shape of the wavepacket is recovered on the other side of the bounce. For
example, at φb + 3δ and φb − 3δ the wavefunctions have almost the same profile, as shown in
the first and the last panel of Fig. 4.36(b).

We also present results for an average Gaussian state with the same η and with ω∗ = 50
(Fig. 4.37). This state has a quite different profile and a much larger spread, showing features
at small V reminiscent of those in the squeezed state presented in Fig. 4.28, which also had a
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Figure 4.38: Comparison of the LQC and effective trajectories for an average Gaussian state
for ω∗ = 1000 (panel (a)) and ω∗ = 50 (panel (b)). The solid (red) curve, with the error bars
showing the volume dispersion, correspond to the LQC trajectory and the dashed (blue) curve
shows the corresponding effective trajectory. For both the plots: ηr = 2 × 10−4, ηi = 0 and
δk = 2. For large ω the relative volume dispersion is small and the effective theory is in quite
a good agreement with the LQC one, whereas for small ω the ∆V/V is large and the difference
between the LQC and the effective theory is more prominent.

very large spread. Despite these features, this average Gaussian state also goes through a non
singular bounce and presents an almost identical shape at equidistant times from the bounce.
We will see, however, that its trajectory deviates much more from the effective theory when
compared with the ω∗ = 1000 case.

Fig. 4.38 shows the comparison of the LQC and orresponding effective trajectory for the two
average Gussian states presented in this subsection. For the state with ω∗ = 1000, shown in
Fig. 4.38(a), the relative volume dispersion of the initial state is small: ∆V/V = 0.13 and the
bounce happens at Vb ≈ 1204VPl. This results in quite a good agreement between the two
trajectories. On the other hand, for the state with ω∗ = 50, shown in Fig. 4.38(b), the initial
dispersion in volume is ∆V/V = 2.94 and Vb ≈ 220VPl. There is a significant difference between
the effective and the corresponding LQC trajectory. It is also worth noticing that the energy
density at the bounce ρb satisfies the upper bound limit for both of the extreme cases shown in
the figure. Like in the case of squeezed states, ρb is closer to the absolute maximum ρmax for
smaller ∆V/V .

Let us now examine the validity of the triangle inequality. Fig. 4.39 shows the volume
dispersion ∆ ln(V ) and the quantity σ± + 2σ plotted for ω∗ = 1000 and ω∗ = 50. In this figure
2∆pφ/pφ is a constant of motion and the asymptotic values of the volume dispersions on both
sides of the bounce are the same. Therefore, the horizontal curves for σ+ + 2σ and σ− + 2σ
overlap. It is apparent from the figure that σ± + 2σ remains larger than ∆ ln(V ) throughout
the evolution, which implies that the triangle inequality given in eq. (4.24) is satisfied.

Finally, it is worth mentioning that due to the non-trivial nature of the wavepacket, the nu-
merical simulations of these states are very difficult with the usual techniques, and the Chimera
scheme was essential to tackle the computational challenges.
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Figure 4.39: Triangle inequality is shown to be valid for two values of ω∗ = (1000, 50) for the
average Gaussian initial state. σ±+ 2σ remains greater than ∆ ln(V ) throughout the evolution.
2σ remains constant throughout the evolution, and the asymptotic values of the volume disper-
sions on both sides of the bounce are the same. Therefore, the horizontal curve for σ+ + 2σ and
σ− + 2σ overlap each other.

4.4.3 Multi-peaked states

In order to probe the robustness of the quantum bounce further, we consider yet another type
of initial state with a non-Gaussian waveform. We call them multi-peak states, as they do not
have a single maximum but rather have several local maxima. In this sense, similarly to the
average Gaussian case, the state is not peaked on any particular volume. However, the relative
volume dispersion can be varied depending on the initial parameters, allowing to choose a state
with either small or large spread. Figure 4.40 shows the evolution of a multi-peaked state with
ω∗ = 1000, η = 2 × 10−4 and δk = 2. The initial data is chosen so that the energy density
is much smaller than the Planck density and the expectation value of the volume variable is
large. It is evident that despite the non-Gaussian features of the initial state, the wavefunction
undergoes a non-singular evolution and a quantum bounce takes place. It is noteworthy that,
like in the case of the Gaussian states, the shape of the wavepacket remains the same on the two
sides of the bounce although the behavior in the vicinity of the bounce is quite different from
the initial state.

Let us now compare the trajectories of multi-peaked states in LQC with those of the ef-
fective theory. Besides the particular state just mentioned, we now also consider one with
ω∗ = 200 and η = 2.5 × 10−3, which has a much larger spread. Fig. 4.41 shows the expectation
value of the volume variable as a function of φ for both LQC and the effective theory. In the
first case, shown Fig. 4.41(a), the initial volume dispersion is small (∆V/V = 0.22) and the
effective theory turns out to be a good approximation to the full LQC trajectory. On the other
hand, in the second case the initial volume dispersion is large (∆V/V = 1.17), and there are
significant differences between the LQC and the effective trajectory (Fig. 4.41(b)). The bottom
panels in Fig. 4.41 also show the evolution of the energy density ρ. We can see that in both
cases ρ remains below the absolute maximum ρmax (indicated with a dashed horizontal line in
the figures). However, ρ gets very close to ρmax at the bounce for the state with smaller spread,
while remaining much below ρmax for the larger spread state. As we did with the other types
of non-Gaussian states, we now discuss the validity of the triangle inequality. The evolution of
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Figure 4.40: Evolution of a multi-peaked state with ω∗ = 1000, η = 10−4 and δk = 2. Panel (a):
|Ψ(V, φ)|, including the projection onto the V − φ plane. Panel (b): |Ψ(V )| at different values
of φ close to the bounce, as indicated in the figure, where φb = −0.7835 and δ = 0.1. A line
joining the discrete values is included to hel guide the eye. The vertical dashed line indicates
the bounce volume, Vb = 1121.07.
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Figure 4.41: Multi-peak state with δk = 2: panel (a) shows the evolution trajectories for
ω∗ = 1000 and η = 1× 10−4 and panel (b) correspond to ω∗ = 200 and η = 2.5× 10−3. The solid
(red) curves, with the error bars representing the volume dispersion of the state, shows the LQC
trajectory and the dashed (blue) curve shows the corresponding effective trajectory.
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Figure 4.42: Validity of triangle inequality for the multipeaked state is shown for ω∗ =
(1000, 200). The asymptotic values of the volume dispersions on both sides of the bounce
are the same. Therefore, the horizontal curve for σ+ + 2σ and σ− + 2σ overlap each other..

the dispersion in volume ∆ ln(V ) is shown for both cases in Fig. 4.42. It is clear that σ± + 2σ
remains larger than ∆ ln(V ) throughout the evolution in both cases, as predicted by the triangle
inequality derived in Ref. [144]. Similarly to the case of average-Gaussian state, 2σ is a constant
of motion and the asymptotic values of the volume dispersions on both sides of the bounce are
the same in both cases shown. Therefore, the horizontal curve for σ+ + 2σ and σ−+ 2σ overlap.

So far in this chapter, we have studied in detail the resolution of the big bang singularity
and the robustness of the quantum bounce for wide variety of states in a flat FRW model in the
presence of a massless scalar field. We found that the occurrence of the quantum bounce is a
generic phenomena. Moreover, the effective description is a good approximation to the full LQC
evolution for states with small relative volume dispersion. The results obtained in this setting
were in synergy with the predictions of the solvable LQC which asserts that in a flat FRW model
in the presence of a massless scalar field quantum the bounce happens for all types of states.
The exactly solvable model is, however, limited to the massless scalar case. In the following we
will study the evolution of semiclassical states in a flat FRW model in presence of a scalar field
with a negative potential. In such models, the classical theory has the big bang singularity in
the past and big crunch singularity in future. In loop quantum cosmology, however, both of
these singularities are expected to be resolved via quantum bounces giving rise to a cyclic like
universe. This is a work in progress and the results presented in this chapter are preliminary.

4.5 Cyclic model

Similarly to the case of a massless scalar field, the total Hamiltonian constraint in the presence of
negative potential is the summation of the gravitational and matter components. Quantization
of the gravitational part of the Hamiltonian is performed exactly the same way as described
for the massless scalar field case in chapter 2. That is, one considers the holonomies of the
symmetry reduced connection and the flues of the triads. The quantum Hamiltonian constraint
then can be obtained by promoting these objects to their corresponding quantum operators.
This yields a difference equation with a uniform discreteness in v, where the discreteness is fixed
by the minimum area gap (eq. (2.64)). The matter part of the Hamiltonian is quantized using

the standard Shrödinger type quantization where the basic operators are φ̂ and p̂φ which act on
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the physical states in the following manner: φ̂ acts as multiplication and p̂φ acts a differentiation
with respect to φ

φ̂Ψ(φ) = φΨ(φ) and p̂φ Ψ(φ) = −i~∂Ψ(φ)

∂φ
. (4.34)

The resulting quantum Hamiltonian, is then deparameterized with respect to the kinetic terms
of the scalar field. The action of the total Hamiltonian constraint on the states Ψ, in the presence
of a potential, can be given as

∂

∂φ2
Ψ(v, φ) = −ΘΨ(v, φ) = −ΘoΨ(v, φ) + ΘφΨ(v, φ), (4.35)

where Θo is the evolution operator same as for the massless scalar case

Θ̂o := − 1

B(v)

[
C+(v)Ψ(v + 4, φ) + Co(v)Ψ(v, φ) + C−(v)Ψ(v − 4, φ)

]
, (4.36)

and Θφ appears due to the presence of a self interacting potential and it is given as

Θ̂φ :=
v

B(v)

128π3γ3

27K
U(φ). (4.37)

The coefficients C±(v), Co(v) and B(v) take the same form as in the case of massless scalar field
(see eq. (2.65)). It is straightforward to check that in the limit of zero potential i.e. U(φ) = 0,
the evolution equation is exactly same as that in the case of massless scalar field. In the case of
constant negative potential i.e. U(φ) = Λ/(8π), the matter part of the Hamiltonian constraint
is same as that given for negative cosmological constant as given in the Ref. [73], where Λ is the
effective negative cosmological constant.

The quantum Hamiltonian constraint written in the deparameterized form in eq. (4.35) re-
sembles an inhomogeneous second order wave equation with a fixed discreteness in the spatial
direction and a time dependent source term. Similarly to the case of massless scalar field, we
treat eq. (4.35) as an initial value problem and obtain the physical solutions by providing an
appropriate initial data. The initial data, again, is constructed by considering the corresponding
Wheeler-DeWitt equation which is the large volume limit of the difference equation.

Wheeler-DeWitt limit: The LQC evolution operator Θ̂ hence is a difference operator acting on
the states Ψ(v, φ) similar to a second order finite difference operator with fixed discreteness in
v, ∆v = 4. Utilizing the large volume limit of the difference operator discussed in chapter 2 we
can write the Θ̂o as a differential operator. This results in a Wheeler-DeWitt evolution equation

∂

∂φ2
Ψ(v, φ) = 12πG

(
v
∂

∂v
v
∂

∂v

)
Ψ(v, φ) + v2 128π3γ3

27K2
U(φ)Ψ(v, φ). (4.38)

In order to make a distinction between the LQC and Wheeler-DeWitt operators and states we
denote the Wheeler-DeWitt ones with an underline. The Wheeler-DeWitt limit of the LQC
evolution operator is an important feature of the theory, which can be utilized to construct
initial data for the evolution.

Specifics of the potential U(φ): In analysis presented here we choose a Gaussian potential given
as

U(φ) = Uo e
−(φ/ν)2 , (4.39)
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where Uo is the amplitude of the potential, taken to be negative in this chapter and ν is the
parameter which controls the width of the Gaussian potential. In this chapter, as in previous
numerical studies of the evolution of states, we consider the relational notion of time rather
than the proper time. The evolution equation is derived from the Hamiltonian constraint by
deparameterizing the theory with respect to the scalar field φ. The evolution of the scalar field
in the potential is monotonic, which makes the scalar field a good choice to play the role of
emergent time. As described in chapter 2, the observables are defined with respect to constant
slicing in φ.

Caveats and assumptions: Having chosen the the scalar field φ as the emergent clock, as de-
scribed above, the evolution equation can be partially deparameterized with respect to the
kinetic term of the matter Hamiltonian while keeping the potential term on the right hand sides
of eq. (4.35) and eq. (4.38). Hence, the evolution operator has two parts: Θ̂o which is same as

the evolution operator in the case of a massless scalar field, and Θ̂φ which appears because of the
potential U(φ). The spectrum of the evolution operator and its self-adjointness properties are
still to be understood in detail. To compute the norm of the wavefunction and the expectation
values of the physical observable we use the following inner product which is based on Ref. [73]

〈Ψ1|Ψ2〉 =
∑

Ψ1(v, φ)B(v)Ψ2(v, φ). (4.40)

It is to be emphasized that the above definition of the inner product is an assumption which is
tied to the analogy between the negative cosmological constant model and the model discussed
here. The idea now is to use the above inner product to compute the expectation values of the
physical observable much in the same way as given in eq. (2.77), and define the norm of the
wavefunction as

‖Ψ‖2 = 〈Ψ|Ψ〉 =
∑

Ψ(v, φ)B(v)Ψ(v, φ). (4.41)

As we will see later in this section that the expectation values of the physical observable com-
puted using the inner product discussed above, give a non-singular evolution and the evolution
trajectory is in a very good agreement with the corresponding effective trajectory throughout
the evolution. However, the norm of the wavefunction as computed above is only approximately
preserved during the evolution far from recollapse. For the numerical results shown in this pa-
per there is 10% variation in the norm of the wavefunction at each recollapse. It is surprising
that despite the variation in the norm the trajectory described by the expectation values of the
physical observable agree very well with the corresponding effective trajectory.

4.5.1 Initial data

As mentioned earlier, the initial data for the evolution is given in terms of a solution to the
Wheeler-DeWitt equation. If the eigenfunctions of Θ̂ are known, then the solution of the
Wheeler-DeWitt equation can be written in a closed form as follows

Ψ(v, φ) =

∫
e−(ω−ω∗)2/2σ2

eω(v)eiω(φ−φo) dω, (4.42)

where eω(v) are the corresponding eigenstates. It is to be noted that the eigenfunctions of the
Wheeler-DeWitt equation for a varying potential are not known in a closed form, unlike in the
massless scalar case. Therefore, we compute the eigenfunctions numerically at the minimum of
the potential. These eigenfunctions are then used to construct the physical state, as given in
eq. (4.42), which will be a solution to the Wheeler-DeWitt equation. Since the potential under
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consideration decays to zero exponentially, the physical solution can be approximated by the
solution of a massless scalar field in the large φ regime where the magnitude of the potential is
negligible compared to the kinetic energy of the scalar field. Noting these two considerations we
construct the initial state for the numerical simulations in the following two ways:

(i) At the minimum of U(φ): In this method of constructing the initial state, we begin our
simulation at the minimum of the potential. In a very small neighborhood of the the minimum
of the potential, the slope ∂φU(φ) is zero and it mimics negative cosmological constant with
Λ = U0/8πG. Following this equivalence, one can construct the initial data for numerical
simulations as a solution to the Wheeler-DeWitt equation with constant negative potential or
negative cosmological constant (following along the lines of the Ref. [73]). The procedure is is to
find the eigenfunctions of the Θ operator and then performs the integral in eq. (4.42) in order to
get the initial wavefunction which will be a solution to the Wheeler-DeWitt equation by the very
construction. However, unlike in the case of massless scalar case we do not have an analytical
expression for the eigenfunctions. Therefore, we find the eigenfunctions by numerically solving
the Wheeler-DeWitt equation:

ω2 eω(v) = 12πG

(
v
∂

∂v
v
∂

∂v

)
eω(v) + v2 128π3γ3

27K
Uo eω(v),

where eω is the numerically obtained eigen function, when the minimum of the potential ap-
proximated by a constant potential Uo.

(ii) Far from the minimum of U(φ): In this approach we construct initial states at large φ which
implies that the contribution from the potential (4.39) is small enough, compared to the kinetic
energy of the scalar field. In this case we can consider the massless scalar field case, U(φ) = 0,
as a good approximation. Furthermore, we choose a large enough volume v so that the LQC
difference equations can be approximated by the Wheeler-DeWitt evolution equation. We then
construct the states as in Eq. (4.42), with ek(v) being the eigenstates of the Wheeler-DeWitt
equation with U(φ) = 0:

ek(v) =
1

2π
e−i k ln(v). (4.43)

Having the eigenfunctions in the above two cases, the integral in eq. (4.42) can be performed
to obtain the initial state Ψ(v)|φ=φ0 . We use the Wheeler- DeWitt equation in eq. (4.42) to find
the time derivative of the initial state, ∂φΨ(v)|φ=φ0 . Therefore, although the physical states are
obtained by making approximations, the initial data satisfies the Wheeler-DeWitt Hamiltonian
constraint by construction.

We note that, by constructing initial data for an expanding (contracting) state in the
Wheeler-DeWitt approximation, the LQC evolution gives a superposition of an expanding (con-
tracting) state plus a very small contracting (expanding) one. In our simulations we start with
a expanding solution at late φ and evolve backwards. While setting the initial state on the
discrete LQC grid, since the initial state is an ingoing solution to the Wheeler-DeWitt equation,
it has a small outgoing part.

4.5.2 Results

Let us now discuss the results of the numerical evolution of the two different types of initial
states described in the previous section. For both types of initial states, we find that the big
bang and the big crunch singularities are resolved and replaced by non-singular bounces. In
this scenario, the evolution trajectory given by the expectation values of the volume observables
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looks like a cyclic universe, where there are multiple bounces and recollapses. A similar cyclic
evolution can also be obtained by considering a massless scalar field with negative cosmological
constant in flat FRW model [73] or with a massless scalar field in a closed universe [67]. However,
note that in these two cases the size of each cycle remains the same. That is, the the volume at
the bounce and recollapse does not vary from one cycle to another. As we will see later in this
section, that in the presence of a negative potential the recollapse volume may vary from one
cycle to another, and the size and duration of each cycle can be different. In the model presented
in Refs. [73, 67], the scalar field was taken to be massless and therefore pφ was a constant of
motion. Whereas, here, due to the presence of varying potential, pφ is not a constant of motion
and varies from one cycle to another.

In the following, we consider sharply peaked initial states for a variety of parameters by
changing Uo, ν, initial pφ and initial φ. We find that the evolution trajectories of 〈V 〉 at recol-
lapse concur with the classical trajectory showing the correct infrared limit of the LQC evolution
equations, and has excellent agreement with the effective trajectory throughout the evolution
implying the validity of the effective theory. It is noteworthy that although the effective equa-
tions were originally derived for a massless scalar field, they still remain a good approximation
to the LQC trajectories in the presence of a potential. We also find that the energy density of
the matter field at the bounce is bounded above by the absolute maximum derived in sLQC
and effective theory, i.e. ρb < ρmax. Let us now discuss the results of the numerical evolution in
more detail.

An example of the evolution of the initial state constructed at the minimum of the potential
is presented in Fig. 4.43, where Fig. 4.43(a) shows the evolution of the wavefunction amplitude
(|Ψ|) for ω∗ = 1000, V ∗ ≈ 27150VPl ν = 1.0, Uo = 1×10−5. The initial data is provided at φ = 0
where the potential is minimum, and then the state is evolved both backwards and forwards
in time. It is evident from Fig. 4.43(a) that during the entire evolution the wavefunction is
peaked on a non-zero finite V . During the evolution the wavefunction undergoes two bounces
and one recollapse, and remains sharply peaked all the time. These features are more apparent
in the projection of |Ψ| in the V − φ plane. The corresponding expectation value of the volume
observable plotted against φ is shown in Fig. 4.43(b). For simplicity of the notation we denote
〈V 〉 by V . The dispersion in V is shown via error bars centered at expectation value of V . As
expected from the evolution of the wavepacket, 〈V (φ)〉 remains non-zero and finite throughout
the evolution, and also shows recollapse. The dispersion in the volume (∆V ) is shown by (red)
errorbars. It is also clear from the figures that the effective theory is in excellent agreement with
the LQC trajectory throughout the evolution. In this particular example, we see on recollapse
and two quantum bounces. It is to be noted that 〈V (φ)〉 is symmetric around φ = 0. This
symmetry is due to the choice of initial data. Of course one could have chosen the initial
parameters so that the recollapse takes place at some other φ.

As discussed previously in this chapter in the presence of a massless scalar field that if the
initial state is taken to be sharply peaked, it remains so throughout the evolution. This implies
that in those models, the semiclassicality of the wavefunction is preserved across the bounce. It
is interesting to see that the same behavior turns out to be true in the presence of the negative
potential considered here, showing that the semiclassical can be preserved over several cycles.
As we will see further in this section, that this feature also holds for asymmetric cycles.

Let us now consider some examples of the second method of constructing the initial state
at large φ where the magnitude of the potential is very small compared to the kinetic energy
of the field. Fig. 4.44 shows an example such an initial Gaussian wavepacket constructed for
ω∗ = 815, ν = 0.7, V ∗ = 457374VPl. Fig. 4.44(a) shows the evolution of |Ψ|. It is evident from
this figure that during the entire evolution the wavefunction is always peaked on non-zero V ,
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Figure 4.43: Evolution of a sharply peaked initial state constructed at the minimum of the
potential. Parameters of the initial data are: ω∗ = 1000, V ∗ ≈ 27150, VPl ν = 1.0, Uo = 1×10−5,
φ0 = 0. The wavefunction remains non-singular throughout the evolution giving rise to a cyclic
universe with two bounces and one recollapse in the range of φ ∈ (−2.2, 2.2). The inset shows
the evolution zoomed in close to the second bounce.

130



(a)

 0

 50000

 100000

 150000

 200000

 250000

V

LQC
∆V
Eff

 2095

 2100

 2105

 2110

0.34 0.36

-0.002

-0.001

 0

-2 -1 0 1 2 3

U
(φ

)

φ

 0

 0.2

 0.4

ρ

(b)

Figure 4.44: Evolution of a sharply peaked initial state constructed at large φ where potential
is small. Parameters of the initial data are:ν = 0.7, U0 = −2 × 10−3, σ = 80, ω∗ = 815,v∗ =
134918.73, φ0 = 3.46. Panel(a) shows the evolution of |Ψ| and panel (b) shows the corresponding
trajectory of 〈V (φ)〉. The evolution of the wavefunction is non-singular and the trajectory
〈V (φ)〉 has three bounces and two recollapses showing a cyclic like behavior. The inset shows
the evolution zoomed in near one of the bounces. It is apparent that the effective theory is in
good agreement with the LQC evolution.
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while undergoing multiple cycles of recollapses and bounces. The initial wavefunction is given
at φ = 3 where the magnitude of the potential of the scalar field is very small and the equation
of state of the scalar field is extremely close that of massless scalar field, that is, P/ρ ≈ 1. The
projection of the peak of the wavefunction, as shown in the V − φ plane of the Fig. 4.44(a)
represents the trajectory of the evolution which also clearly shows the occurrence of quantum
bounce and classical recollapse giving rise to a cyclic like evolution. Since, U(φ) is not constant,
the values of the potential energy at each bounce (also at each recollapse) are different from
each other. This would lead to different bounce and recollapse volumes in different cycles. In
this way, unlike in Fig. 4.43 the evolution is not symmetric. However, it is possible to fine tune
the initial condition to obtain a symmetric evolution.

The corresponding 〈V (φ)〉 trajectory is shown in Fig. 4.44(b). The top panel shows the energy
density during evolution, middle pane shows the expectation value of volume and the bottom
panel shows the potential U(φ) during the evolution. The corresponding effective trajectory is
shown with (blue) dashed curve. It is apparent from the figure that the effective theory is in
such an excellent agreement with the LQC trajectory that is is difficult to distinguish between
them at a coarse level. The inset in the figure shows the region around the third bounce b3

zoomed in at a level where the small difference between the effective and the LQC trajectory
is visible. However, the effective trajectory is well within the dispersion of the state and the
difference between the bounce volumes in the two trajectory is approximately 0.07%.

4.6 Discussion

In this chapter we have presented a detailed numerical study of the evolution of states in loop
quantum cosmology for flat FRW universe in the presence of a massless scalar field for a variety
of Gaussian and non-Gaussian states. The numerical investigation of such states present severe
computational challenges which limit the types of states and the values of parameters for which
a stable numerical evolution could be performed with previous techniques. In order to overcome
the computational limitations and study the numerical evolution of more general classes of
states, we used the Chimera scheme which, as discussed in the previous chapter in detail, proves
to be a robust and efficient way to perform these simulations (see Ref. [139] for details). We also
discussed few preliminary numerical results of the evolution of sharply peaked Gaussian states
in the presence of a negative potential giving rise to a cyclic like universe.

Let us now summarize the main results of this chapter. These results also answer some of the
questions, which were raised in chapter 1, regarding the numerical aspect of the work presented
in this thesis as follows:

• The occurrence of the quantum bounce is a generic property of all the classes of states
including the wide Gaussian, squeezed Gaussian and other non-Gaussian states considered
in this chapter, irrespective of the choice of type and the values of the parameters of the
initial state. For all the cases considered in this chapter, the expectation values of the
physical observables were non-singular and the energy density remained finite throughout
the evolution. These results imply that the occurrence of the quantum bounce is a very
robust phenomena in LQC.

• As we have seen that, the quantitative detail of the bounce however, depends quite promi-
nently on the type and the values of the parameters of the initial state. Since, the present
form of the effective theory fails to capture some of the features of the initial state such
as the fluctuations, there are differences in the quantitative features of the bounce as pre-
dicted by the effective and the full LQC evolution. The detailed study of such deviations is
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important for many reasons. For example, these results will guide us find state dependent
effective description of LQC. Moreover, these fine state dependent properties of the bounce
can potentially be important to compute subtle corrections to the observation consequence
of LQC as computed in a quantum gravitational treatment of the inflationary paradigm
in the Ref. [128].

• As the results clearly show that not only there are differences between the effective and the
full LQC trajectories, but also these deviations vary in a subtle fashion, both quantitative
and qualitatively, depending on the class and the parameters of the initial states. For
example, let us consider the quantity δ that we defined as the fractional difference in the
bounce volume in the two descriptions. It turns out that δ can be large for small pφ,
for which the bounce happens closer to the Planck volume. However, δ depends on the
choice of initial state in a subtle way. For a fixed value of ∆V/V , δ always increases with
decreasing pφ for method-1 and method-2 initial Gaussian states, while for method-3 the
behavior depends on whether ∆pφ is greater or smaller than a certain value. In the large
pφ regime, where δ is small, we found interesting non-monotonic variations of δ with ∆V/V
and ∆pφ. This behavior is similar to the non-monotonic dependence of ∆V/V on ∆pφ for
the initial state. This was also noted in Ref. [145] for a different construction of initial
state and a different quantum constraint.

• As a general result we see that the effective theory always underestimates the bounce vol-
ume while overestimates the energy density hence the spacetime curvature at the bounce.
Moreover, the effective theory remains a good approximation to LQC as long as the fluc-
tuations in the initial state are small.

• The study of the squeezed states, especially, revealed an excellent agreement between the
analytical study in Ref. [145] and numerical study presented here, regarding the variation
of the energy density at the bounce as the squeezing in the initial state changes. This is
a little unexpected result as the construction of the initial data as well as the form of the
Hamiltonian constraints are slightly different in the the Ref. [145] and here.

• For all states and all initial conditions considered in this chapter, our results are in ac-
cordance with the study of the fluctuations of states across the bounce, and obey the
corresponding triangle inequality [144] which places restrictions on the variation of the
fluctuations across the bounce. Hence, our results discard the speculations about loss of
semi-classicality of a state across the bounce. Agreement with the triangle inequality im-
plies that if a state is semi-classical to begin with, it will remain semiclassical throughout
the evolution while the growth of dispersions are constrained via the inequality.

Most of the phenomenological studies of various cosmological models and observational predic-
tions of LQC are based on the effective description of LQC. The rigorous numerical simulations
and the study of the differences between the effective and LQC trajectories, presented in this
chapter, offer important lessons. Moreover, these results open promising avenues for a careful
and rigorous investigation of fluctuation dependent corrections to the modified Friedmann equa-
tions as well as their consequences on the observational signatures of the quantum geometry,
such as those computed in Refs. [127, 128]. Our results also show that one should practice cau-
tion while drawing any general conclusions about the reliability of the effective theory. Whether
the effective theory becomes more or less reliable as one varies the parameters of the initial
state, depends on the initial data parameters and the way the initial state is constructed.
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In this section we also presented few preliminary numerical results of the evolution of sharply
peaked states in flat FRW spacetime in the presence of a scalar field with a varying negative
potential. The resulting evolution consists of quantum bounces and classical recollapses in the
expectation value of the volume observable, hence giving rise to a cyclic like universe. While
extending the robustness of quantum bounce to include varying potentials, these results also
show that the effective theory remains a good approximation to the full LQC evolution for the
sharply peaked states considered in this chapter. It is to be emphasized that the results obtained
for the cyclic model are based on work in progress and various aspects of the analysis are still
to be understood in more detail, which sets the stage for future work in this direction.
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Chapter 5
Effective dynamics of Bianchi-I space-

time: phenomenology1

So far, in this thesis, we have studied various aspects of loop quantum cosmology of the flat
and isotropic FRW spacetime in two different matter models, including a massless scalar field
without any self-interacting potential and a model with a scalar field influenced by a cyclic
like potential U(φ). We found that the non-singular quantum bounce is a robust features of
evolution in LQC. In this chapter we turn our attention towards anisotropic models, where we
will use the effective description of the Bianchi-I spacetime to explore some phenomenological
consequences of the quantum corrections due to the discrete quantum geometry. We study
two main phenomenological aspects: Kasner transitions and inflationary scenario in Bianchi I
spacetime.

5.1 Introduction

As discussed in chapter 2, in LQC, the classical singularity is resolved and replaced by non-
singular quantum bounce. The numerical studies of the evolution of various types of states in
FRW model, presented in the previous chapters, shows that the quantum bounce is a robust
feature of LQC and the effective dynamical trajectories are in excellent agreement with the LQC
evolution of states which become semi-classical at late times and correspond to large macroscopic
universe. The same is expected to be true for anisotropic spacetimes as well. As also discussed
in chapter 2, in the effective dynamics, all the strong singularities in Bianchi I spacetime are
resolved for perfect fluid with constant equation of state. Moreover, this result can be generalized
to matter fields with varying equation of state also. Similarly to the isotropic spacetimes, the
singularity resolution in Bianchi I spacetime is accompanied by non-singular quantum bounce.
Due to anisotropy, however, the expansion in different directions are different, and different
directional scale factors can undergo bounce at different times in the evolution. This leads
to interesting features of the quantum bounce in anisotropic spacetimes, as compared to the
isotropic models.

Due to the presence of non-vanishing anisotropic shear, the dynamics of the spacetime is gov-
erned both by the Ricci scalar curvature and the Weyl curvature. In the classical theory, this
modifies the way classical singularity is approached. That is, the occurrence of classical singu-
larity in the anisotropic spacetime in general is characterized by the interplay between the Ricci
and the non-vanishing Weyl curvature. Moreover, due to more degrees of freedom in terms of
the directional expansion rate the physics of these models in much richer already in the classical
theory. An interesting avenue where the homogeneous but anisotropic models are of particular
importance is that in the context of the Belinski-Khalatnikov-Lifshitz (BKL) conjecture [150].
According to the BKL conjecture, during a generic approach to spacelike singularities the time

1Sections 5.2 and 5.3 reproduced from B. Gupt and P. Singh, Phys.Rev. D86 (Copyright(2012) American
Physical Society) [148] and Class.Quant.Grav. 30 (2013) 145013 [149] by the permission of the American Physical
Society and the IOP publishing Limited respectively. See Appendix B for the copyright permission from the
publishers. Portions of these sections are updated and adapted to the dissertation format.
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derivatives in the Einstein’s field equation dominate over the spatial derivatives. Due to this, as
one gets closer to the classical singularity, each point in the spacetime can be approximated by
a homogeneous metric which in turn is represented by the various Bianchi spacetimes. In the
classical theory, an anisotropic spacetime can have various geometrical structure such as barrel,
cigar, pancake or a point. These geometrical structures are described via the so called Kasner
exponents in the space-time metric. An interesting feature of the approach to the classical
singularity in the presence of spatial curvature is the Mixmaster behavior [151] which involves
chaotic oscillations between different Kasner phases. In this way, Bianchi models have rich
phenomenology, especially close to the classical singularity.

In this scenario, it is important to understand how the dynamics of anisotropic spacetimes
is modified by the quantum geometric effects in LQC, and to explore possible phenomenological
implications of the quantum bounce. In this chapter our focus will be along these lines. Here,
we are interested in the models which correspond to large macroscopic universes at late times
and can be described by sharply peaked states. As affirmed by the numerical simulations
presented in the previous chapters, for such universes, the effective description is an excellent
approximation to the full LQC. Based on these results, we will rely on the effective description
for the phenomenological investigations performed in this chapter. We will consider two different
classes of matter models in Bianchi I spacetime: one with perfect fluids with constant equation
of state leading to Kasner transitions and one in the presence of a scalar field influenced by a
self interacting inflationary potential.

In the context of non-singular LQC model of a homogeneous and isotropic universe, the
geometrical structure during the approach to the bounce is same on both sides of the quantum
bounce. This is due to the fact that if the universe is isotropic, then the approach to the
bounce, whether in forward evolution of contracting universe or in backward evolution of an
expanding universe, is point-like. Such a scenario can change in anisotropic setting where
due to the presence of Weyl curvature, physics is much richer. In particular, given that in
Bianchi-I spacetime, classical theory leads to different geometric structures as the singularity is
approached, it becomes important to understand how such structures arise in effective spacetime
description of LQC and the way they are affected across the bounce. It is worth noting that
far away from the Planck regime, since LQC and GR are in excellent agreement, an in-falling
observer in GR and another in LQC, measure practically the same Kasner exponents of the
spacetime metric for a given initial conditions on the matter and anisotropic content of the
universe. Such observers thus deduce the formation of same geometric structure, such as a cigar
or a pancake, in high curvature regime. However, there is an important difference between the
geometrical structures measured by an LQC and a GR observer, which arises simply because in
GR these structure undergo singularity and become infinite, while in LQC the structures remains
non-singular and finite. In this section we investigate these issues for Bianchi-I spacetimes for
which detailed analysis of the formation of geometric structures in the classical theory are
already available [152, 153]. Here, we will consider the effective dynamics of Bianchi-I model
in LQC for a barotopic fluid with equation of state corresponding to stiff matter, dust and
radiation, with an objective to understand answers to the following questions: Given a set of
initial conditions under what conditions do particular geometric structures arise in LQC as one
approaches bounce of the mean scale factor? Does a physical evolution across the bounce yield
same geometric structure in the pre-bounce and post-bounce phase? If not, then is such a
transition across the bounce random, or does it follows a set of rules? If such rules exist, under
what conditions are some transitions favored over others, and finally how do they depend on
the matter content?

Various aspects of the large scale structure in the universe, such as its immense isotropy and
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homogeneity, can be explained by the inflationary scenario. However, various questions about
the physics of the pre-inflationary stage of the universe remain unanswered. In particular, in
general relativity (GR), inflationary spacetimes have been shown to be past incomplete [12] due
to the classical singularity, and little is known about the initial conditions and the geometry of
the pre-inflationary epoch. Both of these issues need to be carefully addressed in any complete
model of inflation. Unlike the issue of the past singularity, which can only be faithfully addressed
using a quantum theory of gravity, the issue of the role of pre-inflationary geometry on the onset
and predictions of inflation has been previously studied using GR (and also in modified theories
of GR). In this setting, various investigations have been carried out to understand the onset of
inflation in the presence of anisotropic shear in the pre- inflationary epoch, often by assuming
a homogeneous and anisotropic patch of spacetime using Bianchi models. It was argued in
Ref. [154] by Barrow and Turner that in the inflationary paradigm of Guth’s, the presence of
large amount of anisotropy in the early universe may have detrimental effects on the amount of
inflation. Steigman and Turner [155], Turner and Widrow [156] and Demianski [157] investigating
the ‘new inflation’ found that anisotropic shear actually does not prevent inflation. Isotropization
and homogenization in presence of anisotropy was studied by Gron [158]. Isotropization of
inflationary Bianchi models was studied by Jensen and Stein Schabes [159]. Rothman and
Madsen [160] pointed out that the classical treatment of inflation in Bianchi-I spacetime suffers
from problems, especially in the pre-inflationary regime, due to the inconsistencies arising from
the failure of the classical framework to hold true in the deep Planck regime. Therefore, a
proper treatment of inflationary Bianchi-I spacetime requires a quantum theory of gravity (see
also [161]). Inflationary Bianchi-I spacetime has also been studied in modified theories of gravity.
For instance, Maartens, Sahni and Saini [162] investigated the Bianchi-I inflation in the light of
brane-world cosmology, they found that anisotropy actually helps inflation and the number of
e-foldings is enhanced by non-vanishing shear scalar. The dynamics of the classical Bianchi-I
inflationary spacetime has also been studied and the attractor behavior and evolution of Kasner
exponents and slow-roll parameters have been discussed in the Ref. [163]. In this chapter we will
explore the effect of anisotropy on inflation in Bianchi-I spacetime in the effective description of
LQC and attempt to answer following questions: (i) How does the presence of non-zero shear
affects the amount of inflation? (ii) Does the universe always isotropize before the inflation
start or there may remain a short phase of anisotropic era during the inflation? (iii) What are
the phenomenological implications of the presence of anisotropy on the value of the inflaton
field to generate sufficient number of e-foldings in comparison to the isotropic LQC? (iv) How
a highly anisotropic universe, such as one with cigar spatial structure (one of the directions
contracting while other two expanding while mean scale factor expands), in the pre-inflationary
universe turns into a spacetime with all the directions expanding? We analyze these issues both
in the classical theory and effective dynamics of LQC and bring out the contrast between their
properties.

This chapter is organized as follows. First we study Kasner transitions in Bianchi I spacetime,
where we will begin with describing the formation of various geometrical structures in the
classical theory. Depending on the matter content of the spacetime, we will derive a hierarchy
of the geometrical structures, which are then studied in detail in the effective dynamics of
Bianchi I spacetime exploring the relation between the formation of these structure on the
two sides of the bounce. We will, then, move to the discussion of inflationary scenario where
again the classical theory is discussed in detail and the effect of anisotropic shear on inflation
is studied by numerically solving the dynamical equations. This will reveal the occurrence
of classical singularity and the related issues which arise in the inflationary scenario in the
presence of anisotropy shear. Adopting the effective dynamics of Bianchi I spacetime, we study
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the resolution of singularity and its possible effects on the onset inflation. Let us now begin the
discussion of Kasner transition.

5.2 Kasner transitions

As discussed in chapter 2, due to more degrees of freedom, the approach to the classical singu-
larity in Bianchi I spacetime is far richer than that in the isotropic spacetime. The nature of the
classical singularity is greatly modified due the presence of non-zero Weyl curvature and its in-
terplay with the Ricci scalar, for example, the singularity can be characterized by the divergence
of Weyl or Ricci or both the components of the spacetime curvature. This leads to the forma-
tion of various geometrical structures such as barrel, cigar, pancake or point near the singularity
[164, 165, 153, 136]. These structures can be classified by computing the Kasner exponents
which characterize a Kasner phase. This is in contrast with the isotropic spacetime, where the
only possible geometrical structure during the approach to classical singularity is point like.
In the following, we will outline all the conditions under which particular geometric structures
form in the Bianchi-I model in LQC, which will lead to a hierarchy between different structures
depending on the various anisotropic parameters. Whether or not a certain geometric structure
forms, depends on the ratio of shear and the expansion scalar. For large values of expansion
normalized shear, cigar structures are more probable, whereas for small values of ratio of shear
and expansion scalar, a point like or isotropic approach to bounce occurs. An important result
of our analysis is that even though energy density and anisotropic shear are conserved across the
bounce, pre-bounce and post-bounce branches may have different geometric structures. That
is, depending on the initial conditions, a universe which forms a cigar type structure in the
contracting branch before bounce, may form cigar, barrel, pancake or point like structure in the
expanding branch (in the backward evolution). Interestingly, such a Kasner transition is not
random. It follows selection rules which are determined by the initial relative strength of matter
and anisotropies, captured in terms of two anisotropy parameters.

We begin with the discussion of the Kasner exponents and their relation to the various
geometric structures in the classical theory, and provide a hierarchy of these structures based
on the Kasner exponents as well as illustrate the parametrization adopted by Jacobs in Refs.
[152, 153] which is very useful in understanding the transition of these structures across the
bounce. We will then discuss the classical solutions of Bianchi I spacetime in the presence of
various perfect fluids which includes stiff matter, dust, and radiation. Following the analysis of
the classical theory, we will study the effective dynamics of these solution in LQC by solving
the effective dynamical equations in Bianchi I spacetime discussed in chapter 2, where we will
analyze the allowed and forbidden Kasner transitions based on the matter and anisotropy content
of the spacetime. This will lead to a selection rule for the transitions.

5.2.1 Kasner solutions, singularity types and Jacob’s parameters

The generalized Friedmann equation for Bianchi I spacetime in the classical theory, as given in
eq. (2.122) in chapter 2, can be written as follows

H2 =
8πG

3
ρ+

Σ2

a6
, where Σ2 =

1

6
σ2a6, (5.1)

H = (H1+H2+H3)/3 is the mean Hubble rate and σ2 = ((H1−H2)2+(H2−H3)2+(H3−H1)2)/3
is the anisotropic shear scalar. The evolution of the vacuum Bianchi-I spacetime is given via
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the Kasner solution according to which the directional scale factors can be written as

ai ∝ tki (5.2)

where ki are called the Kasner exponents which are constant for vacuum Bianchi I model and
in the presence of a massless scalar field (stiff matter). For vacuum Bianchi-I, these exponents
satisfy the following two constraints

k1 + k2 + k3 = 1 (5.3)

k2
1 + k2

2 + k2
3 = 1. (5.4)

In general, the directional scale factors can always be written in form of eq. (5.2) but the ex-
ponents ki take constant values only for vacuum and the perfect fluid with equations of state
w = 1 (of which massless scalar field is an example). These exponents satisfy eqs. (5.3 and 5.4)
for vacuum whereas for w = 1 they only satisfy the constraint given in eq. (5.3). The equivalent
relation to eq. (5.4) for w = 1 is given via [166]

k2
1 + k2

2 + k2
3 = 1− k2 (5.5)

where k2 is a constant which can be expressed in terms of the energy density and shear scalar

as k2 = 2
3

(
8πGρ/3

8πGρ/3+σ2/6

)
. For a massless scalar field (for which the equation of state is w = 1)

the constant k2 can also be expressed in terms of its field momentum (Pφ, which is a constant
of motion) as-

k2 =
2

3

(
4πGP 2

φ/3

4πGP 2
φ/3 + Σ2

)
(5.6)

where, Σ2 = 1
6
σ2a6 is also a constant motion.

We now have the expression for k2 in terms of the two constants of motion of the system
for a massless scalar field. It is evident from the above equations that its value depends on the
initial data and k2 ≤ 2/3. The Kasner exponents in terms of the directional Hubble rates can
be given as ki = Hi/(3H). Utilizing this relation and σi = Hi − H, it is straightforward to
show that the constraints on the Kasner exponents given in eq. (5.4) follow from eqs. (2.120 and
2.121). The second constraint in eq. (5.4) can also be derived from the classical Hamiltonian
constraint.

The case of massless scalar field is interesting as it is the only matter, satisfying dominant
energy condition, for which Bianchi-I universe does not isotropize as the universe expands. This
is so because the energy density for w = 1 scales as ρ ∝ a−6 (eq. (2.124)), in the same way as σ2.
Behavior of the energy density in relation to σ2 also shows that unless the matter is massless
scalar field, the anisotropic shear always dominates ρ as the classical singularity is approached
(for w ≤ 1). Thus, for w < 1, Bianchi-I spacetime near the singularity approaches the Kasner
vacuum solution. Let us now discuss the classical theory of the Bianchi-I models with the matter
being the perfect fluid with equation of state w such that P = wρ. The case of perfect fluid
was discussed by Jacobs (1968) [152] where the exact solutions to the Einstein’s field equation
for Bianchi-I spacetime were obtained for various equations of state in the range 0 ≤ w ≤ 1.
Unlike in the isotropic case where the singularity is always pointlike, there are several possible
geometrical structure of singularity in anisotropic spacetime depending on whether or not the
scale factors in the three directions approach to zero together. The various possible approaches
to classical singularity are as follows
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• Point: Pointlike approach to singularity takes place when all the scale factors tend towards
zero simultaneously i.e. when all three Kasner exponents k1, k2, k3 > 0. Point singularity
is forbidden for the equation of state 0 ≤ w < 1 and the vacuum spacetime, it occurs only
for w = 1 (the Zeldovich solution).

• Barrel: Barrel singularity occurs when one of the scale factors is constant while the other
two approach zero i.e. a1 → const and a2, a3 → 0. The corresponding Kasner exponents
for barrel type singularity are k1 = 0 and k2, k3 > 0

• Pancake: It occurs when one of the scale factors tends to zero while the other two are
constant i.e. a1 → 0 and a2, a3 → const which means that the Kasner exponents k1 > 0
and k2, k3 = 0. This singularity appears as one of the axisymmetric solutions for 0 ≤ w < 1
and does not take place for w = 1.

• Cigar: Cigar singularity takes place when one of the scale factors diverges while the other
two approach to zero i.e. a1 → ∞ and a2, a3 → 0 as the singularity is approached. For
cigar type singularity one of the Kasner exponents is negative while the remaining two are
positive i.e. k1 < 0 and k2, k3 > 0

The approach to singularity for the vacuum Bianchi-I spacetime is always either cigar or
pancake like. Introducing the perfect fluid to the Bianchi-I spacetime brings in other types of
approach to singularity which were otherwise forbidden in the vacuum Kasner solution. The
structure of singularity is decided by the anisotropies present in the system. For a pointlike
singularity to exist, the matter part should dominate over the anisotropies. On the other hand
if the anisotropy wins over the matter, the pointlike approach to singularity becomes less likely.

It turns out that one can define a hierarchy of the various approaches to singularities based
on the value of σ2/θ2, the normalized dimensionless shear scalar. Using the definitions of the
shear and the expansion scalar, the normalized shear scalar can be expressed in terms of the
Kasner exponents in the following way-

σ2

θ2
=

2

3
(1− 3(k1k2 + k2k3 + k3k1)) (5.7)

where ki are the Kasner exponents. From eq. (5.7) it clear to see that the σ2/θ2 takes the
smallest value when all three Kasner exponents are positive which is the case for point singularity.
It is also evident from the expression for σ2/θ2 and the definitions of the various singularities
that for a pancake singularity σ2/θ2 = 2/3, for barrel singularity 1/6 ≤ σ2/θ2 < 2/3 and for cigar
singularity to take place σ2/θ2 > 1/6. This hierarchy of singularities based on the normalized
shear scalar is shown in Fig. 5.1. From here we can say that the point like singularity is the least
anisotropic structure of singularity while cigar corresponds to the most anisotropic situation.
As we discussed, there are only two independent parameters of anisotropy in the Bianchi-I
spacetime. Following the definition given in the Ref. [152] we can, following a transformation,
write the two independent anisotropy parameters as ε andψ, defined via:

ε =

√
σ2

4πGρ
(5.8)

and

sin

(
ψ, ψ +

2π

3
, ψ +

4π

3

)
=

(√
3

2

σ2
1

σ2
,

√
3

2

σ2
2

σ2
,

√
3

2

σ2
3

σ2

)
. (5.9)
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Figure 5.1: Hierarchy of singularity structure in the classical theory based on σ2/θ2 for Bianchi-I
spacetime.

We will refer to these transformed parameters as Jacobs’ anisotropy parameters in the rest of
the chapter. The ranges of the Jacobs’ anisotropy parameters are |ε| = (0,∞) and ψ = [0, 2π/3].
It is worth noting that, in the classical theory, ε = 0 is the isotropic limit of the model and it
is never actually attained if one starts with non-vanishing anisotropic shear in the initial data.
Similarly, ε = ∞ is also a limit when the energy density is infinitesimally small and ε = ∞
is never exactly achieved during the dynamics of the models as the energy density can not be
exactly zero for w = 1, also known as Zel’dovich universe. For a Zeldovich universe |ε| is a
constant of motion in the classical theory, therefore a non- vanishing (or non-diverging) |ε| in
the initial data ensures that |ε| will never be zero (infinity) during the evolution, not even if σ2

and ρ diverge as the singularity is approached. In LQC, since the energy density and shear both
are finite during the entire evolution for Bianchi-I spacetime, ε = 0 is possible when σ2 = 0,
which is again the isotropic limit of the model and ε = ∞ takes place only when ρ = 0 which
is not exactly allowed in a Zel’dovich universe. Hence, both in the classical theory and LQC,
|ε| = 0,∞ are obtained only in a limit and are never actually realized during the evolution of a
proper initial data.

It is evident from the Eqs. (5.8 and 5.9) that ε refers to the ratio of total anisotropic
shear present in the spacetime to the energy density while the parameter ψ tells how the total
anisotropy is distributed in the three directions. Thus, one has the complete information about
the shear matrix σij of the spacetime, when both ε and ψ are specified.

The classical Einstein’s equations can be analytically integrated for a few constant equations
of state w. These solutions are among the few exact solutions available for an anisotropic
spacetime[152]. For 0 ≤ w ≤ 1, upon integration, the Einstein’s equations give following
expression for the scale factors,

ai(t) ∝


a(t)

(
[4 a(t)3(1−w)+ε2]

1/2
+|ε|

[4 a(t)3(1−w)+ε2]
1/2
−|ε|

) 2sgn(ε)Zi
3(1−w)

(0 ≤ w < 1)

a(t)1−2 εZi(4+ε2)−1/2
(w = 1)

(5.10)
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where

Z1 = sin (ψ) , Z2 = sin

(
ψ +

2π

3

)
, Z3 = sin

(
ψ +

2π

3

)
.

Also, the expressions for the directional Hubble rates are given via,

Hi(t) =

{
[4 a(t)3(1−w)+ε2]

1/2
∓2|ε|Zi

3(6πρo)−1/2a3(t)
(0 ≤ w ≤ 1) (5.11)

where ρo is the initial energy density.
Let us now discuss the properties of these solutions for various perfect fluid matter. The

behavior of the solutions depends on the value of w as it appears in the expressions for directional
scale factors and Hubble rates. In fact we will see that the equation of state dictates the possible
structure of singularity when a→ 0 i.e. when the singularity is approached. Especially the w = 1
equation of state, also known as Zel’dovich solution, behaves quite differently from other values
of w.

Zel’dovich solution: w = 1
The solution of Bianchi-I spacetime with stiff matter is referred to as Zeldovich solution[167].

For such a type of universe where w = 1 the energy density varies with the mean scale factor in
the following fashion (see eq. (2.124))

ρ ∝ a(t)−6 (5.12)

and, as discussed in chapter 2, from the definition of the anisotropic shear it can be concluded
that

σ2 ∝ a(t)−6. (5.13)

Therefore, the ratio of the shear scalar to the energy density is a constant which means that
the Zel’dovich universe always remains anisotropic and isotropization does not take place. On
the other hand since the ratio of anisotropy and shear is a constant, it is also possible that mat-
ter density dominates over the anisotropy and the approach to singularity is pointlike. Hence,
Zel’dovich universe does not in general behave like vacuum Kasner universe as the singularity
is approached. The requirement for vacuum Kasner like behavior is that the anisotropic contri-
bution to the extrinsic curvature takes over the contribution due to the matter i.e. the ratio of
anisotropic shear to energy density given by the anisotropic parameter ε should be greater than
some critical value ε∗. For any ε < ε∗, the approach to singularity will be always point like and
the Kasner behavior will be absent. We will now find out this critical value ε.

For simplicity, let us make a transformation on the parameter ε as follows-

δ = − |ε|√
4 + ε2

. (5.14)

Range of the new anisotropy parameter δ for Zel’dovich universe is 0 ≤ |δ| ≤ 1. The expressions
for directional scale factors and Hubble rates [152] for Zel’dovich universe take much simpler
form in terms of the parameters (δ, ψ) -

ai(t) ∝ a(t)1±2|δ|Zi (5.15)

and

Hi(t) ∝
(1± 2|δ|Zi)

3a(t)3
(5.16)
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from the eq. (5.16) for Hubble rate it is clear that for all of the Hubble rates to be positive which
is the requirement of pointlike approach to singularity, δ must be given by 1 + 2|δ| > 0 which
yields the following inequality for δ

|δ| < 1

2
(5.17)

Therefore, for δ < 1/2 the approach to singularity will always be pointlike, irrespective of the
value of ψ. In the Ref. [152] (pg. 133), the author has given a compact table showing all
the possible type of singularity depending on the values of δ andψ we refer the reader to this
reference to compare the results with the table given therein.

Using the definition of the δ given by eq. (5.14) we can find that

ε∗ =
2√
3

(5.18)

Therefore for all value of ε < 2/
√

3, the approach to singularity is always point like i.e. other type
of singularity are allowed only when ε ≥ 2/

√
3. This is an important property of the Zel’dovich

universe and as we will see in the next subsection that such a critical value of anisotropy
parameter is absent for w < 1 where the point like singularity is forbidden. From the classical
solution given in the Ref. ([152]) the mean scale factor for Zel’dovich universe can be written
as a function of time in the following way

a(t) ∝ (t+ to)
1/3 (5.19)

where to is an integration constant and it refers to the time where the classical singularity occurs
i.e. the classical singularity takes place at t = −to . Now let us write the classical directional
scale factors in terms of Kasner exponents as follows:

ai(t) ∝ (t+ t0)ki (5.20)

where ki are the Kasner exponents. The anisotropy parameters δ and ψ can now be expressed
in terms of the directional scale factors and Kasner exponents as follows -

ψ(t) = tan−1

(
1√
3

+
2 log (a1/a2)√
3 log (a2/a3)

)
(5.21)

and

δ(t) =
3 (k1 − k2)

2 (sin(Z1)− sin(Z2))
. (5.22)

Zel’dovich universe admits all kind of singularity except the pancake type. The axisymmetric
solution could be either cigar or barrel depending on the value of δ and ψ. We notice that if the
anisotropic shear (δ) is small enough, the only possible singularity is point. For higher values
of δ, barrel and cigar singularity take place depending on the value of the parameter ψ. The
various possible structure of singularity in the classical Bianchi-I model for Zel’dovich universe
are shown in the second column of Tables 5.1 and 5.2 in the following section.

In the next section, we will see that the transition of singularity structure across the bounce
from cigar to cigar happens for larger values of δ while the point to point transition takes place
for small values of δ. We will show that if the anisotropies are small enough i.e. |δ| < 1/2,
then no matter what value of ψ is chosen the transition is always from point to point across the
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bounce. On the other hand as δ is increased, there are less point to point transitions and more
anisotropic transitions, for example cigar to point, start showing up.

Dust (w = 0) and radiation (w = 1/3)
Solution for a general equation of state in the range 0 ≤ w < 1 is given via Eqs. (5.10 and

5.11). The energy density depends on the mean scale factor as ρ ∝ a(t)−3(1+w) and hence the
ratio of the anisotropic shear scalar to energy density is given via

σ2

ρ
∝ a−3(w−1) . (5.23)

It is evident from the above equation that the shear always dominates over the energy density for
w < 1 as the singularity is approached i.e. a(t)→ 0 which implies that the point like singularity
is unlikely for w < 1. The point like singularity is actually forbidden for the equation of state
w < 1 in Bianchi-I spacetime. Near the singularity the spacetime behaves similar to vacuum
Bianchi-I solution namely the Kasner solution. Moreover, the axisymmetric case is either a cigar
or a pancake singularity, barrel singularity does not take place for w < 1. In the asymptotic limit
when a → ∞ it is the energy density which is more prominent and contribution of anisotropic
shear to the extrinsic curvature become negligible compared to that of energy density and hence
the isotropization takes place. This is an important distinction from w = 1 where the universe
never isotropizes, not even in the asymptotic limit. It can also be concluded from the eq. (5.23)
that smaller the equation state, faster will be the isotropization. The behavior of the directional
scale factors for a dust filled universe (w = 0) is given via

ai(t) = aot
ki(t+ to)

2/3−ki (5.24)

where to is the initial time and ki are the vacuum Kasner exponents satisfying the Eqs. (5.3
and 5.4). As the classical singularity is approached i.e. when t << to, then it is straightforward
to see from the eq. (5.8) that the directional scale factors behave in the following way (in this
limit, t+ to → to which is a constant and therefore the time dependence comes from tki part of
the expression)

ai(t) ∝ tki (5.25)

This precisely is the Kasner vacuum solution to the Bianchi-I spacetime. This shows that, near
singularity, w = 0 universe behaves like vacuum solution to Bianchi-I. Note that the Kasner
solution is only a limit which is approached when t << to, the universe never actually becomes
an exact Kasner universe. On the other hand the asymptotic limit t >> to gives the following
expression for the directional scale factors

ai(t)dust|t→∞ ∝ t3/2 (5.26)

and in this limit the the spacetime isotropizes. Similarly, for a radiation filled universe the
spacetime behaves like vacuum Kasner universe as the singularity is approached while in the
asymptotic limit the spacetime isotropizes and the directional scale factors given via

ai(t)rad|t→∞ ∝ t1/2. (5.27)
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Table 5.1: Transition of structures across the bounce for (1/2 ≤ δ < 1)

Expanding branch Contracting branch

1/
√

3 < δ < 1 Cigar Cigar 0 < ψ < π
3
− ψo

0 < ψ < 2π
3
− ψo Barrel ψ = π

3
− ψo

Point π
3
− ψo < ψ < ψo

Barrel ψ = ψo
Cigar ψo < ψ < 2π

3
− ψo

Barrel Cigar
ψ = 2π

3
− ψo ψ = 2π

3
− ψo

Point Cigar
2π
3
− ψo < ψ < π

3
+ ψo

2π
3
− ψo < ψ < π

3
+ ψo

Barrel Cigar
ψ = π

3
+ ψo ψ = π

3
+ ψo

Cigar Cigar
π
3

+ ψo < ψ < 2π
3

π
3

+ ψo < ψ < 2π
3

δ = 1/
√

3 Barrel ψ = 0 Barrel ψ = 0
Cigar 0 < ψ < π

3
Point 0 < ψ < π

3

Barrel ψ = π
3

Barrel ψ = π
3

Point π
3
< ψ < 2π

3
Cigar π

3
< ψ < 2π

3

1/2 < δ < 1/
√

3 Point Point
0 ≤ ψ < ψo − π

3
0 ≤ ψ < ψo − π

3

Barrel Point
ψ = ψo − π

3
ψ = ψo − π

3

Cigar Point
ψo − π

3
< ψ < 2π

3
− ψo ψo − π

3
< ψ < 2π

3
− ψo

Barrel Point
(ψ = 2π

3
− ψo) (ψ = 2π

3
− ψo)

Point Point (2π
3
− ψo < ψ < ψo)

(2π
3
− ψo < ψ < 2π

3
) Barrel (ψ = ψo)

Cigar (ψo < ψ < π − ψo)
Barrel (ψ = π − ψo )

Point (π − ψo < ψ < 2π
3

)
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5.2.2 Effective dynamics

We will now study the effective dynamics of Bianchi-I spacetime, as discussed in chapter 2, in
the presence of stiff matter, radiation and dust matter fields. In the classical theory, depending
on the matter content and the anisotropy, Bianchi-I spacetime demonstrates various geometrical
structures of singularity; for example if one of the three directional scale factors diverges and
the other two approach to zero as the singularity is approached, then the structure of the spatial
geometry of the spacetime tends to an ‘infinite’ cigar. In LQC, for the same initial data, the
structure near the bounce is rather a ‘finite’ cigar. This is so because in LQC, due to the
nonsingular bounce the singularity is avoided and all the scale factors take non-zero and finite
value near the bounce. Similarly, if the classical trajectory for a given initial data collapses to a
barrel, point or pancake singularity, then in LQC, these geometric structures form for the same
initial data, but are finite. Although LQC and GR trajectories are in agreement with each other
in the low curvature regime and an observer sees both trajectories tending towards the same
type of geometrical structure as the high curvature regime is approached, the actual spatial
geometry near the bounce in LQC is non-vanishing and is a finite version of the geometry in
GR near singularity.

In the following analysis we always specify the initial data in the expanding branch (post-
bounce) of the mean scale factor and perform a backward time evolution through the bounce
to the contracting branch (pre-bounce). A Kasner transition in the following is defined as the
change in geometric structure from the post-bounce phase of the mean scale factor a, as observed
by an observer approaching the bounce, to the one in the pre-bounce phase as will be observed
by the same observer if she/he evolves forward in time in the contracting branch. Thus, even
though the evolution occurs in only one direction (i.e. backward), the geometric structure in the
pre- and post-bounce phases is defined in the approach to the bounce. Note that the nature of
transition is unaffected by providing the initial data in the contracting branch of the mean scale
factor and evolving in future time direction.

Stiff matter w = 1:
We perform several numerical simulations (over 100 simulations for each range of δ) for

various anisotropy parameters to solve the system of differential equations (2.137 and 2.138) for
a variety of initial data. We use 4th order adaptive Runge-Kutta for the numerical solutions to
the equations. Then, for various ranges of the anisotropy parameters we find out the structure of
spacetime near bounce by calculating the values of the Kasner exponents. This way a wide class
of transition of structure based on the initial anisotropy for Zel’dovich universe is obtained. It
is also shown that the structures of spacetime on two sides of the bounce are not same although
the total anisotropy σ2 or δ2 is same on both the sides. This provides a rich and interesting
transitions of structures across the bounce. Fig. 5.2 shows an example of transition from a cigar
to cigar like structure across the bounce while the mean scale factor undergoes a nonsingular
bounce.

In all numerical simulations presented here, the initial data is given at t = 0 without loss
of generality and the classical singularity occurs at t = −ts. The value of ts depends on the
initial data. The absolute value of the ratios of effective Hamiltonian to matter Hamiltonian
and gravitational part of the Hamiltonian are of the order of 10−8 or less during the evolution.
This assures the numerical accuracy of the results presented in this chapter upto the order of
10−8. We consider such a numerical accuracy to be good enough for our analysis because the
physical quantities of interest are of an order much higher than 10−8 and hence the numerical
errors can safely be neglected.

Let us now discuss the cases of various values of the anisotropy parameter δ.
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Figure 5.2: The left plot shows the cigar-cigar transition of structure of singularity for 1/
√

3 <
δ < 1, the dotted lines represent the corresponding classical trajectory and the right plot shows
the evolution of the mean scale factor. The classical singularity is at t = −ts
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Figure 5.4: Various transitions of structure across the bounce for δ = 1/
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3. The Barrel-Barrel
transition occurs at ψ = 2π/3, a small deviation from ψ = 2π/3 results in other transitions for
example when ψ decreased, the transition is Point-Cigar and when increased, the transition is
Cigar-Point.

1. 1/
√

3 < δ < 1

This range of anisotropy parameter δ corresponds to the highest total shear scalar. The
possible transitions are shown in the Table-I. 1/

√
3 < δ < 1 is the only range in positive

δ region when cigar to cigar transition is allowed. Out of the total range of ψ = {0, 2π/3},
the cigar to cigar transition takes place for most of the range. Axisymmetric solutions
exist for ψ =

(
2π
3
− ψo and π

3
+ ψo

)
on the expanding side of the universe and for ψ =(

π
3
− ψo andψo

)
on the contracting side.

The anisotropy parameter δ is related to the ratio of the shear scalar to the energy density
of the matter field and larger value of δ means that the anisotropy dominates over the
matter energy density and is partially the reason why there are no point to point transitions
allowed for this range of δ. Fig. 5.3 shows the various possible transitions for a choice of
δ = 0.8, in this figure we show the values of the Kanser components change across the
bounce and the Kasner transition takes place. Similar to BKL behavior where, during the
Kasner transition, one of the Kasner components retains its behavior and the remaining
two switch their role or two of them retain their behavior while the remaining one changes
its sign i.e. if k1 < 0 and k2, k3 > 0, then after the transition takes place the Kasner
components may look like k1, k2 > 0 and k3 < 0 (as shown in the cigar-cigar transition in
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Fig. 5.3) or k1 > 0 and k2, k3 > 0 (as shown for the cigar-point transition in Fig. 5.3). The
table also shows that if there is an axisymmetric barrel singularity on one side, it goes to
cigar type singularity across the bounce, there are no barrel to barrel or barrel to point
transitions allowed for this range of δ.

2. |δ| = 1/
√

3

δ = 1/
√

3 is very interesting case in the sense that this the only case where the barrel to
barrel transition occurs but the cigar to cigar transition present in the 1/

√
3 < δ < 1

does not show up anymore. Except for the two value of ψ when the barrel structure is
allowed, for all the other ψ the transitions are the point-cigar transitions. Actually the
barrel to barrel transitions occur at particular values of ψ unlike for other transitions
for which there are ranges of ψ instead of discrete values. This is the only value of the
parameter δ for which there are axisymmetric solutions possible on both side of the bounce
for a given value of parameter ψ. In all the other cases if there is axisymmetric barrel
structure, it becomes either cigar or point across the bounce. Fig. 5.4 shows the Kasner
Transition for δ = 1/

√
3. In the barrel-barrel transitions one of the Kasner exponents

remain the same while the other two interchange their value across the bounce, this is
a typical characteristics of the Kasner transitions in BKL behavior. It is important to
note the transitions involving barrel occur at a fixed value of ψ for a given δ while other
structures happen for a range of values of ψ. This feature is shown in Fig. 5.4 – the
barrel-barrel transition takes place at ψ = 2π/3 and if ψ is decreased by a small amount,
the structures on both sides of the bounce change and the resulting transition becomes
point-cigar. Similarly, when ψ increased by a small amount, cigar-point transition takes
place.

3. 1/2 < δ < 1/
√

3 In this range of δ the point-point transition appear but there are no cigar-
cigar transitions anymore, also the barrel-barrel transition are now forbidden. Absence
of cigar-cigar transitions and appearance of point-point transition is consistent with the
fact that the shear scalar is now smaller than the previous cases, in other words matter
starts to dominate over the anisotropy present in the spacetime, this also results in giving
rise to barrel-point transitions. Fig. 5.5 shows the various transitions for δ = 0.53. It is
worth noting that barrel-point transition occurs at fixed value of ψ = ψo− π/3 and if ψ is
changed even for a small amount, the transition of structures changes; as shown in figure
if ψ is decreased, the transition is point-cigar and when increased it becomes cigar-point.
Again, at the fixed value ψ = 2π/3−ψo the transition involves the barrel structure in the
expanding branch.

4. |δ| ≤ 1/2

This range of δ is the highly isotropic range in the sense that the matter dominates over
the anisotropy, as a result the approach to singularity is always point like except for the
two special cases namely (δ = 1/2, ψ = π/2) and (δ = −1/2, ψ = π/6). This feature is
shown in Fig. 5.6, the transition involving barrel is the axisymmetric case and all the other
transitions are always point-point transitions. For |δ| < 1/2 there is no other structure
possible than point and therefore the transition for |δ| < 1/2 is always point-point. As
once decreases |δ| further towards zero the universe tends towards a more isotropic one
and |δ| = 0 essentially is the isotropic spacetime.
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Figure 5.5: This figure shows the transition of structure across the bounce for 1/2 < δ < 1/
√

3
when δ = 0.53.
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Figure 5.6: The left figure shows the axisymmetric transition for δ = 0.5 and right figure shows
the transition for the same value of δ and ψ = π/4 which gives the point-point transition.
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Table 5.2: Transition of structures across the bounce for (−1 < δ ≤ 1/2)

Expanding branch Contracting branch

|δ| = 1/2 Point Point ψ 6= π
2

ψ 6= π
6

(δ > 0) Barrel ψ = π
2

Point Point ψ 6= π
6

ψ 6= π
2

(δ < 0) Barrel ψ = π
6

0 < |δ| < 1/2 Point (∀ψ) Point (∀ψ)

−1/
√

3 < δ < −1/2 Point Point 0 ≤ ψ < ψo − π
3

0 ≤ ψ < ψo Barrel ψ = ψo − π
3

Cigar ψo − π
3
< ψ < 2π

3
− ψo

Barrel ψ = 2π
3
− ψo

Point 2π
3
− ψ0 < ψ < ψo

Barrel Point
ψ = ψo ψ = ψo
Cigar Point

ψo < ψ < π − ψo ψo < ψ < π − ψo
Barrel Point

ψ = π − ψo ψ = π − ψo
Point Point

π − ψo < ψ < 2π
3

π − ψo < ψ < 2π
3

δ = −1/
√

3 Barrel (ψ = 0) Barrel (ψ = 0)
Point (0 < ψ < π

3
) Cigar (0 < ψ < π

3
)

Barrel (ψ = π
3
) Barrel (ψ = π

3
)

Cigar (π
3
< ψ < 2π

3
) Point (π

3
< ψ < 2π

3
)

−1 < δ < −1/
√

3 Cigar Cigar
0 ≤ ψ < π

3
− ψo 0 ≤ ψ < π

3
− ψo

Barrel Cigar
ψ = π

3
− ψo ψ = π

3
− ψo

Point Cigar
π
3
− ψo < ψ < ψo

π
3
− ψo < ψ < ψo

Barrel Cigar
ψ = ψo ψ = ψo
Cigar Cigar ψo < ψ < 2π

3
− ψo

ψo < ψ < 2π
3

Barrel ψ = 2π
3
− ψo

Point 2π
3
− ψo < ψ < π

3
+ ψo

Barrel ψ = π
3

+ ψo
Cigar π

3
+ ψo < ψ < 2π

3

Table-5.2 shows the structure of approach to singularity on both sides of bounce for −1 <
δ < −1/2. One can see that once again with increasing value of |δ| other more anisotropic
transitions start showing up. In this way, there is preference of certain transitions over other
depending on the value of |δ|. Table-5.2.2 shows the allowed transitions for various values of
the anisotropy parameter. Since, there are favored set of transitions for different values of δ,
let us now define the “fraction” T of a transition as the ratio of the range of ψ for which the
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Figure 5.7: Fraction of various transitions. The red-solid line corresponds to point-point tran-
sition, blue-dotted line represents the cigar-point transitions and the orange-dashed line shows
the likelihood of the cigar-cigar transition. The thick blue line for 0.5 ≤ |δ| ≤ 0.57 shows that
the transitions involving barrel take place in this range, however the fraction T is negligible for
such transitions.

transition takes place to the total range of ψ. For example, the point-point transition takes
place for 1/2 ≤ |δ| < 1/

√
3 for the following values of ψ-

ψP↔P =

[(
ψo −

π

3

)
+

(
ψo −

(
2π

3
− ψo

))
+

(
2π

3
− (π − ψo)

)]
(5.28)

therefore the fraction of point-point transition

TP↔P =
4 (ψo − π/3)

2π/3

and for |δ| ≤ 1/2 the fraction of point-point transition is 1. Therefore P for various transitions
takes the following form

TP↔P =


6
π

(
sin−1

(
1

2|δ|

)
− π

3

)
(1/2 < |δ| < 1/

√
3)

1 (|δ| ≤ 1/2)

0 (otherwise)

(5.29)

TP↔C =


3
π

(
2 sin−1

(
1

2|δ|

)
− π

3

)
(1/
√

3 < |δ| < 1)

3
π

(
π − 2 sin−1

(
1

2|δ|

))
(1/2 < |δ| < 1/

√
3)

0 (otherwise)

(5.30)

TC↔C =

{
6
π

(
π
3
− sin−1

(
1

2|δ|

))
(1/
√

3 < |δ| < 1)

0 (otherwise)
(5.31)
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Table 5.3: This table shows that depending on δ, some transitions are favored over others. As
δ increases, the transitions involve more anisotropic structures across near the bounce. For
|δ| < 1/2 only transition possible is point-point and as |δ| increases more anisotropic transitions
take place and for |δ| > 1/

√
3 the point-point transition is forbidden.

0 < |δ| < 1
2
|δ| = 1

2
1
2
< |δ| < 1√

3
|δ| = 1√

3
1√
3
< |δ| < 1

P ↔ P P ↔ P P ↔ P P = P P = P
B = P B ↔ P B ↔ P B = P B = P
C = P C = P C ↔ P C ↔ P P ↔ C
B = B B = B B = B B ↔ B B = B
B = C B = C B = C B = C B ↔ C
C = C C = C C = C C = C C ↔ C

Fig. 5.7 shows how the fraction of point-point transition depends on δ. P for point-point
transitions is highest for smaller values of δ, as δ increases beyond 1/2 the fraction of point-point
transition decreases and cigar-point transition starts increasing and attains a maximum. At this
maximum, point-point transition has the zero fraction and as δ is increases beyond this value,
the cigar-cigar transitions begin to increase from zero while the P for cigar-point transitions
decrease. As the anisotropy increases, cigar-cigar transitions become more prominent than the
rest of the transitions.

Remark: The barrel structures are special in the sense that they occur at a particular value of
ψ for a given δ and so do the cigar-barrel or point-barrel transitions. According to the definition
of P , the fraction for any transition involving barrel is essentially negligible. Table-5.2.2 shows
that transition to (from) barrel is possible only for 1/2 ≤ |δ| ≤ 1/

√
3. The range of transitions

involving barrel is marked in the Fig. 5.7 by a blue thick line.

Dust (w = 0) and Radiation (w = 1/3):
In this subsection we will discuss the Kasner like transitions for the equation of state 0 ≤

w < 1. From eq. (5.23), it is clear that the behavior of anisotropy with respect to the matter
energy density is different in the two limits i.e. a→ 0 and a→∞. Recall that in the classical
theory, the shear scalar always dominates over the energy density and the universe behaves like
a vacuum Bianchi-I near the singularity, whereas in the asymptotic limit universe isotropizes
giving the directional scale factors to be ai(t) ∝ t3/2 for dust (w = 0) and ai(t) ∝ t1/2 for
radiation (w = 1/3). In LQC, as expanding branch of the spacetime is evolved backwards in
time the bounce happens well before the vacuum solutions are reached. Since there are no point
or barrel structures allowed for the dust and radiation filled universe, the transitions involve only
pancake and cigar. Also, since the classical behavior of dust and radiations filled universe near
the singularity is same (i.e. the vacuum Kasner solution), they allow similar types of transitions
across the bounce. Table 5.4 shows the possible transitions for 0 ≤ w < 1. We find that in all the
transitions the structure is cigar on atleast one side of the bounce, there is no pancake-pancake
transition present.

For dust and radiation models, pancake type structure comes out to be special (similar
to barrel in the Zel’dovich universe) in the sense that it happens to take place only as an
axisymmetric solution and it occurs for certain values of ψ (ψ = π/6 when ε > 0 and ψ = π/2
when ε < 0) for a given |ε|. If one starts with an initial condition such that structure near the
bounce is pancake, then one does not obtain a pancake structure across the bounce because ψ is
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Table 5.4: Transitions for 0 ≤ w < 1. (P→Point, B→Parrel, Pc→Pancake and C→Cigar)

P B Pc C
P × × × ×
B × × × ×
Pc × × × X
C × × X X

PancakeCigar
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Figure 5.8: The left plot shows the directional Hubble rates for a dust filled universe near the
bounce when the spacetime undergoes a transition from pancake type structure to a cigar. The
right plot shows the evolution of kasner exponents far from the bounce point, all the Kasner
exponents tend to take the same value (ki = 2/3) in this limit which is an indication of the
isotropization. The initial anisotropy parameters for this figure are: ε = 34, ψ = π/6 (for the
left plot) and ψ = 13π/36 (for the right plot).

same on both the sides but ε changes the sign. For example, if one starts with ε > 0 and ψ = π/6
in the expanding branch, then the backward evolution will end up in a pancake like structure
near the bounce. Whereas, on the other side far from the bounce the anisotropy parameters
will be ε < 0 and ψ = π/6 which is clearly not a condition for pancake like structure.

Fig 5.8 shows the behavior of dust filled Bianchi-I spacetime across the bounce, the left plot
shows the directional Hubble rates for which the initial parameter is taken to be ε = 34 andψ =
π/6, this corresponds to the axisymmetric case as discussed above. In the expanding branch
two of the directional Hubble rates are zero while the other is positive, this calls for a pancake
type structure near the bounce. On the other hand, two of the Hubble rates are negative while
the remaining one is positive on the contracting side of the bounce, this leads to a cigar like
structure. Hence, the Fig. 5.8 shows a pancake-cigar transition. The right plot of Fig 5.8 depicts
the Kasner exponents with the initial anisotropy parameters being ε = 34 andψ = 13π/36. In
this plot it is evident that in the asymptotic limit all the Kasner exponents tend to take the
same value (i.e. ki → 2/3) which leads to the isotropization of the spacetime such that ai ∝ t2/3.
This is also a general classical asymptotic behavior of a dust filled Bianchi-I, as noted in the
previous section.

The evolution of a radiation Bianchi-I spacetime has been shown in Fig. 5.9, the left figure
shows the directional Hubble rates close to the bounce and the right one portrays the late time
behavior of the Kasner exponents on the two sides of the bounce. It is evident from the figure
that the structure of the spacetime near the bounce is cigar on the expanding side as well
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Figure 5.9: The left plot shows the directional Hubble rates for a radiation filled universe near
the bounce. The right plot shows the evolution of kasner exponents far from the bounce when
all the Kasner exponents tend to take the same value (i.e. ki = 0.5). This is an indication of
isotropization of the spacetime at very late time. The initial conditions for this simulation are
ε = 8.1, ψ = π/18.

as on the contracting side which entails to a cigar-cigar transition. The asymptotic behavior is
straightforward to see from the nature of the late time behavior of the Kasner exponents. All the
three Kasner exponents tend to take the same value i.e. ki → 1/2 which is an indication of the
isotropization of the radiation Bianchi-I spacetime in the asymptotic limit. This also is a general
asymptotic property of a classical radiation Bianchi-I universe. It is worth mentioning that a
pancake-cigar transition also takes place radiation Bianchi-I for appropriate initial conditions.

5.2.3 Discussion

In the previous section, we have discussed the evolution of Bianchi-I spacetime with prefect
fluid having the equation of state 0 ≤ w ≤ 1 using the effective description of the spacetime
provided by LQC. The analysis of perfect fluid Bianchi-I models in classical theory [152] ex-
plored the various geometrical structures of approach to singularity. In contrast to the isotopic
(and homogeneous) universe, where the approach to singularity is always point like, a general
approach to singularity in Bianchi spacetimes can have various geometric structure depending
on the anisotropic shear and the matter content. These structures, which include barrel, cigar,
pancake and a point, are labelled using the Kasner exponents in the spacetime metric. Since the
formation of these structures is tied to the detailed properties of the matter and anisotropies,
understanding of their formation in LQC, and their evolution across the bounce provides us
with valuable hints on the change in detailed composition of the universe from one side of the
bounce to the other.

The analysis presented in this chapter answers several questions concerning the structure of
spacetime near the bounce. There exists Kasner like universes on the both sides of the bounce
and there are several possible Kasner transitions depending on the anisotropic shear and the
matter content of the spacetime. Our analysis shows that these transitions depend only on the
two anisotropic degrees of freedom for a given equations of state. In the expanding branch,
far from the bounce, the LQC trajectory agrees with the one given by the classical general
relativity. Also, prior to the bounce in the contracting branch of the universe, the evolution
predicted by both the LQC and classical GR are in excellent agreement. As the a → 0 is
approached, the classical trajectory collapses into singularity while there is a bounce in LQC,
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bridging the contracting and expanding phases of the universe which were otherwise disparate
in the classical GR. Though there is a continuous non-singular passage from the expanding to
contracting branches in LQC and the total anisotropic shear is conserved through the bounce,
the exact values of the anisotropy parameters (δ and ε) are not the same on both sides of the
bounce, they differ in sign. Owing to this difference in the values of the anisotropy parameters,
the structure of the universe close to the bounce point on the two sides of the bounce are in
general different and there are various Kasner transitions present. Since, the Kasner exponents
near the bounce point are different for different value of δ there are variety of transitions possible
for various |δ|. It turns out that for a given value of |δ| there are some transitions favored over
the others. We find that if |δ| and ε are small then point-point transitions are favored over others
and with the increasing |δ| fraction of point-point transition decreases while other transitions
start becoming more prominent. For large |δ| cigar-cigar transitions take the priority over other
transitions. In this way, there is aselection rule for the transitions based on the value of the
parameter |δ|.

The Kasner transitions described here has similarities with the mixmaster behavior between
Kasner phases in classical Bianchi-IX universe. However, there are important differences as
well. As mentioned earlier, there are no Kasner transitions in the Bianchi-I model in GR. Thus,
such transitions are purely quantum gravitational in origin. Further, unlike Kasner transitions
in classical Bianchi-IX spacetime, there is only one transition across the bounce. And finally,
Kasner transitions in classical Bianchi-IX model lie on the same branch (expanding or contract-
ing) of the universe, whereas in LQC, they involve a non-singular transition between expanding
and contracting branches. This concludes our discussion of the Kasner transitions in Bianchi
I spacetime in LQC. Let us now turn to the study of the inflationary scenario of Bianchi I
spacetime by considering a scalar field influenced under a quadratic inflationary potential.

5.3 Inflationary scenario with quadratic potential

In this section, we will investigate inflationary Bianchi-I spacetime under the paradigm of loop
quantum cosmology (LQC). LQC provides an excellent avenue to explore the properties of
spacetime in the deep Planck regime (such as pre-inflationary era) where the classical general
relativity fails to be reliable. The isotropic spacetime, under inflationary potentials, in the
effective description of LQC has been studied and the dynamics in the pre-inflationary era has
been explored [110, 168, 115, 169]. The probability of occurrence of inflation in the isotropic LQC
has been discussed in great detail by Ashtekar and Sloan [113]. Unlike in the classical theory, in
the isotropic LQC, the bounce point provides a suitable place with respect to which a measure
can be defined [113, 114]. In the isotropic LQC, the bounce always happens when the energy
density reaches its maximum allowed value ρmax = 0.41 ρPl. For the isotropic spacetime sourced
with a scalar field with a self-interacting quadratic potential given by V (φ) = m2φ2/2, and the
mass of the inflaton being m = 1.21 · 10−7mPl, consistent with the 7 years WMAP data [1], the
velocity of the scalar field at the bounce, in a kinetic dominated bounce, is φ̇b ≈ ±0.905m2

Pl.
This, however, is not necessarily true in Bianchi-I spacetime, because the bounce in Bianchi-
I spacetime can also happen due to the shear scalar reaching its maximum or as a result of
its interplay with energy density. Thus, in Bianchi-I spacetime the conditions at bounce are
characterized by both φ̇b andσ2

b. For example, the bounce of the mean scale factor in Bianchi-I
spacetime (defined as a = (a1a2a3)1/3 can take place even if the energy density is not at its
maximum value at the bounce. In this way, presence of non-vanishing shear leads to sets of
initial conditions which were not allowed in the isotropic spacetime.

We consider a scalar field sourced with a self-interacting potential V (φ) = m2φ2/2 and ana-
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lyze both the classical and LQC effective dynamics of Bianchi-I spacetime under the influence of
the aforementioned scalar field by numerically solving the dynamical equations. In the classical
theory, due to the presence of anisotropic shear, the Hubble friction is enhanced which, in turn,
leads to faster decay of the kinetic energy of the scalar field [162]. This helps the isotropic slow-
roll conditions arrive more quickly. If the inflaton is initially taken to roll down the potential
(φ̇(0) < 0, φ(0) > 0), then due to the enhanced Hubble friction, the higher the anisotropy is,
the earlier slow roll starts. This, hence, gives rise to more number of e-foldings if the inflaton
is initially considered to roll down the potential. In this chapter, we have also considered a
more generic initial condition on the initial velocity of the inflaton, i.e. when the inflaton is
rolling up the potential in the pre-inflationary era. We find that, for such initial conditions i.e.
φ̇(0) > 0, φ(0) > 0, the number of e-foldings decreases with increasing anisotropic shear in the
classical theory. In the low anisotropy regime, there is a significant difference in the number
of e-foldings for positive and negative φ̇(0). Whereas, large anisotropy gives rise to the same
number of e-foldings for both the cases φ̇(0) ≶ 0. This behavior of the amount of inflation can
be attributed to the strength of the Hubble friction which, at large anisotropy, is so strong that
the field starts to inflate at very close to its initial value in both the cases. In the classical theory,
for a given type of initial condition, the number of e-foldings (N) show a monotonic variation
with anisotropic shear i.e. N either decreases (for rolling up inflaton) or increases (for rolling
down) with increasing initial value of the anisotropic shear. In LQC, however, it turns out that
the amount of inflation does not monotonically vary with the anisotropic shear. In the case of
φ̇(0) < 0 at the bounce, the number of e-foldings increase with increasing shear if σ2 < σ2

∗,
then decreases if σ2 > σ2

∗ and attains a maximum number of e-foldings at σ2 = σ2
∗, where σ2

∗
depends on the initial value of φ̇ at the bounce. On the other hand, if the initial velocity of
the scalar field is positive, the behavior of N is opposite. That is, N decreases for σ2 < σ2

∗,
increases if σ2 > σ2

∗ and attains a minimum value at σ2 ≈ σ2
∗. Interestingly, the value of σ2

∗
turns out be independent of whether the initial velocity of the scalar field is positive or negative
(though it depends on the absolute value of φ̇(0)).

We also study the attractor behavior of the phase-space trajectories of the classical and
LQC effective dynamics. In the classical theory, it is known that all the classical trajectories
join the isotropic slow-roll inflationary trajectory in their future evolution provided the initial
value of φ is high enough to allow inflation (see for eg. [163]). Also, in the limit of initial
shear scalar tending to zero, Bianchi-I trajectories approach the isotropic Friedmann-Robertson-
Walker (FRW) trajectory, irrespective of the initial energy density. As in GR, it turns out that in
LQC, irrespective of the initial anisotropic content of the spacetime, all the Bianchi-I spacetime
trajectories, meet the isotropic slow-roll inflation in their future evolution, if the initial value
of the inflaton field is high enough. In this way, slow-roll inflation is an attractor for all the
trajectories in the effective spacetime of Bianchi-I LQC with a φ2 potential starting at the
bounce. Unlike in the classical theory where there exists an isotropic trajectory for every given
value of energy density in the initial data, in LQC, the energy density at the bounce is fixed at
ρ = ρmax in the isotropic spacetime. Therefore, in order to obtain the isotropic limit of Bianchi-I
spacetime in LQC at the bounce, one has to consider ρ → ρmax in addition to σ2 → 0. If the
energy density at the bounce is fixed at any value other than ρmax (which is allowed in Bianchi-I
LQC), then it turns out, that the shear scalar can not be decreased to zero. In that case, there
is a minimum non-zero value of the shear scalar, depending on the energy density at the bounce.
In this sense, the approach to the isotropic limit in the effective description of LQC is subtle
in comparison to the classical theory. That is, in the classical theory, isotropic spacetime can
be approached by decreasing σ2 to zero for any fixed value of energy density in the initial data,
whereas, in LQC, the energy density at the bounce must also tend to ρmax in addition to σ2 → 0.
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5.3.1 Inflation in the classical theory

Using the equations of motion and the expression for the directional Hubble rates as given in
chapter 2, it is straightforward to write the classical Einstein’s equations for Bianchi-I spacetime
as

H1H2 +H2H3 +H3H1 = 4πG(φ̇2 +m2φ2),

Ḣ2 + Ḣ3 +H2
1 +H2

2 +H2
3 = −4πG(φ̇2 −m2φ2) (5.32)

and the cyclic permutation of these two equations. The set of dynamical equations given by
eq. (5.32) govern the evolution of the spacetime under the influence of the scalar field with
potential m2φ2/2. Equations of motion for the scalar field can also be derived in a similar
fashion which, on combining together, give the following Klein-Gordon (KG) equation

φ̈+ 3Hφ̇+ V,φ = 0 (5.33)

where H = (H1 + H2 + H3)/3 is the mean Hubble rate and V,φ is the derivative of the self
interacting potential w.r.t. the field φ. The KG equation governing the evolution of the scalar
field is equivalent to the conservation equation ρ̇ = −3H(ρ + P ), where ρ = φ̇2/2 + V (φ) is
the energy density and P = φ̇2/2 − V (φ) is the pressure of the scalar field. Eq. (5.33) can
also be interpreted as an equation for harmonic oscillator in presence of a friction term given
by 3Hφ̇, called the Hubble friction. It plays a very important role in obtaining the slow-roll
conditions for inflation. A bigger friction term results in faster decay of the kinetic energy of the
inflaton thus leading to an early start of the slow-roll conditions. This turns out to be the key to
understand the effect of the anisotropy on the amount of inflation obtained, as the anisotropic
shear interacts with the dynamics of the scalar field through eq. (5.33).

By satisfying the Hamiltonian constraint one can obtain the generalized Friedmann equation
for diagonal Bianchi-I spacetime as

H2 =
8πG

3
ρ+

1

6
σ2, (5.34)

where σ2 is the anisotropic shear which can be expressed in terms of the directional Hubble
rates as

σ2 =
1

3

(
(H1 −H2)2 + (H2 −H3)2 + (H3 −H1)2) . (5.35)

Using the Einstein’s equations for diagonal Bianchi-I spacetime (given by eq. (5.32)) one can
derive the Raychaudhuri equation as follows

ä

a
= −4πG

3
(ρ+ 3P )− 1

3
σ2. (5.36)

Eq. (6.18) can also be obtained by computing the time derivative of the Friedmann equation
given by eq. (5.34) and utilizing the conservation equation ρ̇ = −3H(ρ + P ) along with σ̇2 =
−6Hσ2 [170, 152].

Conditions for accelerated expansion: For the following discussion, it is convenient to use the
Kasner exponents, ki, which are related to the directional scale factors via ai ∝ tki . Based on
the values of the Kasner exponents, structure of the spatial geometry during the approach to
classical singularity can be classified into point, barrel, pancake and cigar types. When all the
Kasner exponents are positive (k1, k2, k3 > 0), then all the directional scale factors approach
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singularity together and the spatial geometry of the spacetime tends to a point like structure.
Similarly, the approach to singularity is pancake when two of the Kasner exponents are zero
and one of them is positive (k1, k2 = 0 and k3 > 0), barrel, when one of the exponents is zero
while other two positive (k1 = 0, k2, k3 > 0), and cigar, when one of the exponents is negative
and two of them are positive (k1 < 0 and k2, k3 > 0). Using the definition of the shear scalar
(σ2) and the expansion scalar θ = H1 + H2 + H3, one can write the quantity σ2/θ2 in terms of
the Kasner exponents as follows

σ2

θ2
=

2

3
(1− 3 (k1k2 + k2k3 + k3k1)) . (5.37)

The ratio of the shear scalar and the expansion scalar takes minimum value when all the three
directions of the spacetime are expanding i.e. all the three Kasner exponents are positive. It
can be easily proved that if σ2/θ2 < 1/6, then the only solution possible is that all of the
Kasner exponents are positive. This corresponds to a point-like approach to classical singularity
in the backward evolution. Similarly, pancake type structure is characterized by σ2/θ2 = 2/3,
the cigar type structure takes place when σ2/θ2 > 1/6 and the barrel type structure is formed
when 1/6 ≤ σ2/θ2 < 2/3. Thus, σ2/θ2 describes a hierarchy of the spatial geometry based on
the anisotropic shear present in the spacetime [148]. Since the expression for σ2/θ2 does not
assume any particular form of matter, the spatial structure of the geometry given by eq. (5.37)
holds true irrespective of the matter content. So, at a given point of time in the evolution, if
σ2/θ2 < 1/6, then all the Kasner exponent must take positive values hence all the directions of
the spacetime must be expanding in the forward evolution.

For the simplicity of the following calculations we use the Jacobs’ parameter ε2J = σ2/4πGρ
[152]. The parameter ε2J denotes the dominance of the anisotropic shear over the matter density.
Large value of ε2J refers to highly anisotropic universe while ε2J → 0 corresponds to isotropization
(i.e. when the contribution of matter density to the total extrinsic curvature is greater than
that of the anisotropic shear). Moreover, the value of ε2J can be related to the structure of the
spatial geometry near the classical singularity, for example, for ε2J < 4/3 (which corresponds
to σ2/θ2 < 1/6), all the directional Hubble rates are necessarily positive and the approach to
singularity in the backward evolution is point like. For very large anisotropy i.e. ε2J � 4/3 the
approach to singularity is cigar like. For a detailed discussion on the relation between anisotropy
and the hierarchy of the approach to classical singularity in diagonal Bianchi-I spacetime see
Ref. [148].

The condition for accelerated expansion in terms of the equation of state and the parameter
ε2J can be obtained, by putting the condition ä > 0 in the Raychaudhuri equation (eq. (6.18))
for Bianchi-I spacetime, as follows

w < −1 + ε2J
3

, (5.38)

where w = P/ρ is the varying equation of state of the scalar field. For ε2J = 0 the above
expression reduces to the condition for inflation in isotropic spacetime. Fig. 5.10 shows two
plots which depict the validity of the inequality given in eq. (5.38), the left plot is for lower value
of initial anisotropic shear and the right one corresponds to higher anisotropic shear. It is clear
to see that in the right plot the equation of state w attains the value −1 quite early (around
t ≈ 1, 000 tPl) but inflation does not start until eq. (5.38) is satisfied (i.e. around t ≈ 50, 000 tPl).
Also, the onset of inflation takes place earlier in right plot which corresponds to higher value
of the anisotropic shear in the initial data. In these plots, the initial conditions are taken such
that the kinetic energy is greater than potential energy and the equation of state is w ≈ 1,
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Figure 5.10: In this figure the (red) solid curve shows the equation of state, the (blue) dashed
line shows the −(1 + ε2J)/3, the thin black horizontal line shows the w = −1/3 line and the
black dot marks the onset of inflation. It is clear to see that the inflation starts when equation
of state satisfies the condition given by eq. (5.38). The initial data for these plots are φ̇(0) =
−2 · 10−5m2

Pl, φ(0) = 3.14mPl and ε2J(0) = 4.01 for left and ε2J(0) = 1.17 · 105 for the right plot.

initially. As the further evolution takes place, the kinetic energy decays and hence also the
equation of state. Further, as the potential energy takes over the kinetic energy, the equation
of state becomes w ≈ −1. By starting with a kinetic dominated initial conditions we make sure
that inflation has not happened yet and it would take place in forward evolution. The initial
trajectory, although away from the inflationary trajectory, will join the inflationary trajectory
in the forward evolution (as we will see later in this chapter).

Using eq. (5.38), one may be tempted to conclude that a non-vanishing value of the parameter
εJ is detrimental to the amount of inflation in comparison to the isotropic model, since more
negative value of the equation of state is required for an accelerated expansion of the universe.
However, as earlier pointed out in Ref. [162], this expectation turns out to be incorrect. It turns
out that the presence of anisotropy actually helps inflation by increasing the Hubble rate, which
in turn enhances the friction term (3Hφ̇) in the Klein-Gordon equation. Due to this enhanced
Hubble friction, the kinetic energy of the scalar field decays at a faster rate. This brings the
condition for accelerated expansion to be achieved earlier, in presence of anisotropy, causing a
longer phase of accelerated expansion.

Substituting the expressions for energy density and pressure in terms of the kinetic (φ̇2/2)
and potential energy (V (φ)), eq. (6.18) can be rewritten as follows

ä

a
= −4πG

3

(
2φ̇2 − 2V (φ) +

σ2

4πG

)
. (5.39)

From the above equation one can derive the condition for accelerated expansion by demand-
ing that ä > 0. This yields the following inequality

V (φ) > 2

(
φ̇2

2
+

σ2

16πG

)
,

let us now define the shear energy, SE = σ2/16πG. The above inequality can now be written
as

PE > 2(KE + SE). (5.40)
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Figure 5.11: This figure shows the evolution of kinetic and potential energies. The (red) solid
line shows the KE while the (blue) dashed line corresponds to PE. The black dot marks the onset
of inflation. It is clear from the figure that inflation takes place in the regime when potential
energy dominates over the kinetic energy.

This relation gives an important information about the conditions suitable for the accelerated
expansion. It tells us that for inflation (accelerated expansion) to take place, the potential energy
must dominate both the kinetic and the shear energy terms. Fig. 5.11 shows the evolution of the
all the three components of the “total” energy density, the (black) dot marks the point where
inflation starts. It is evident that inflation does not start until the shear and kinetic energy
both become less than the potential energy. Following the onset of inflation, however, there is
a short period when the shear energy is greater than the kinetic energy, but due to accelerated
expansion shear energy falls of fairly quickly. In this sense there may be a short duration of
anisotropy during the classical inflationary phase of Bianchi-I spacetime. This is not a generic
feature of Bianchi-I spacetime though. If the initial conditions are so that the shear energy is less
than the kinetic energy in the beginning, then there will not be any duration of such dominance
of shear over kinetic energy.

For the subsequent discussion of the numerical results, it is useful to define the slow-roll
parameters. In the classical isotropic inflationary spacetime, the slow-roll parameters ε and η
are defined as

ε = 3
φ̇2

φ̇2 + 2V (φ)
and η = − φ̈

Hφ̇
. (5.41)

The slow-roll inflation is defined as the phase of evolution where ε, |η| � 1. Smallness of
these parameters implies that the Hubble rate (H) varies very slowly. In the discussion of
the numerical results, we consider above definition of slow-roll parameters in the inflationary
Bianchi-I spacetimes.

It is evident from the eq. (5.41) that for small slow-roll parameters, the value of both φ̇ and
φ̈ will be small, when ε , η � 1. This implies that during the slow-roll phase, the inflaton rolls
down the potential with a small and almost constant velocity. An example of the numerical
evolution of ε and φ̇, starting from φ(0) = 3.14mPl and φ̇(0) = 0.00002m2

Pl, is shown in Fig. 5.12.
Mass of the inflaton in this simulation has been taken as m = 1.21 · 10−6mPl. It is noteworthy
that for ε ≈ 0.008, the value of the field velocity turns out to be φ̇ ≈ ∓1.97 · 10−7m2

Pl. As the
further evolution takes place, the value of the slow-roll parameter slowly changes and the field
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Figure 5.12: This figure shows an example of the evolution of the slow-roll parameter ε and
corresponding field velocity φ̇. The dashed black line in the left plot marks ε = 0.008 and in the
right plot it shows the corresponding value of the field velocity φ̇ ≈ 1.97 · 10−7m2

Pl. The initial
conditions are taken as φ(0) = 3.14mPl and φ̇(0) = 0.00002m2

Pl.

velocity remains almost constant (due to small φ̈) at φ̇ ≈ ∓1.97 · 10−7m2
Pl (see Fig. 5.12). For

the following discussion, in this chapter, we undertake a similar notion of slow roll i.e. when
ε� 1 and φ̇ remains small and almost constant.

5.3.2 Effective dynamics

The solution of the equations of motion, while the effective Hamiltonian constraint being satisfied
all the time, for a given initial data, gives the evolution of the corresponding spacetime at
a later time. The dynamical equations obtained from the effective Hamiltonian constraint
modify the classical Einstein’s field equations and are equivalent to generalized Friedmann and
Raychaudhuri equations for Bianchi-I spacetime. It is evident from eq. (2.137) that ṗi/pi never
diverge during the evolution as the value of sin(µ̄ici) and cos(µ̄ici) are bounded above by 1.
This further leads to non-diverging curvature scalars of Bianchi-I spacetimes such as energy
density, shear and expansion scalars which are bounded above by their respective maxima [130].
Moreover, it has been shown that all the curvature invariants of Bianchi-I spacetime are bounded
and all the physical singularities of Bianchi-I spacetime, for the matter satisfying null energy
condition, are resolved [109].

The finite and non-diverging values of the curvature scalars introduce interesting modifica-
tions in terms of the choice of initial conditions and the dynamics of the evolution of universe in
the pre-inflationary regime. There are two important modifications relevant to our discussion

• Unlike in the classical theory, the mean Hubble rate does not monotonically vary with the
shear scalar. This behavior is seen in the numerical simulations. It is also shown in the Ref.
[116] that, in the weak σ2 limit, the modified Friedmann equation for Bianchi-I spacetime
contains σ4 corrections which can cause the Hubble rate to decrease if the anisotropic shear
increases beyond a certain value. Due to such a non-monotonic behavior of the Hubble
rate as a function of the shear scalar, the Hubble friction in the KG equation is affected
in a similar fashion. In other words, unlike in the classical theory, Hubble friction is not
always enhanced by the anisotropic shear in LQC.

• The shear scalar in LQC during the pre-inflationary regime behaves very differently than
that in the classical theory. Unlike in the classical theory (where σ2 ∝ a−6 always), shear
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scalar does not have a monotonic dependence on the scale factor, near the bounce. There
may be instances when, depending on the conditions at the bounce, the shear scalar start
out with a very small value, then, it increases and reaches a local maximum. Following
this local maximum, shear scalar decreases and joins the classical behavior in due course of
further evolution. As we will see in next section, this has important implications in regards
to the isotropic limit and the attractor behavior of Bianchi-I spacetime in the vicinity of
the bounce.

In the following, we present the numerical studies of the Bianchi-I spacetime with a mat-
ter field sourced by an inflaton, under self-interacting potential V (φ) = m2φ2/2. In the first
subsection we discuss the results of the classical theory and the following subsection is devoted
to the numerical simulations of the effective description of LQC. The numerical study brings
out important features of both the classical and the LQC description of the Bianchi-I infla-
tionary spacetime, such as effect of anisotropic shear on the amount of inflation, the process
of isotropization, the isotropic limit of Bianchi-I spacetime, the late time behavior etc. Over
a hundred simulations were performed for each class of initial data for both the classical and
LQC description by varying different parameters e.g. the initial shear scalar, the value of the
inflaton and the initial velocity of the inflaton etc. In all of the simulations, numerical accuracy
of vanishing of the Hamiltonian constraint is of the order of 10−10.

5.3.3 Results: Classical theory

As discussed in the previous section, the dynamics of the classical Bianchi-I spacetime is governed
by the generalized Friedmann and Raychaudhuri equations given via eq. (5.34) and eq. (6.18)
from where it follows that specifying the energy density, pressure and the shear scalar at a given
time provides a complete initial data. For a scalar field the pressure and energy density can
be expressed in terms of the value of the scalar field φ and its time derivative φ̇. Thus, giving
the initial value of the the scalar field, its velocity and the shear scalar forms a complete set
of information required to compute the state of the universe at any later time. We evolve the
initial data provided in a pre-inflationary phase and study various properties of the dynamical
trajectories including isotropization, amount of inflation and the phase-space portraits. As dis-
cussed in the previous section, inflation takes place when the potential energy dominates over
the kinetic and shear energy (see eq. (5.40) and the adjoining discussion). In the numerical
simulations presented in this section we will, however, start with a kinetic and shear dominating
initial conditions. This will give insight on how one can achieve conditions in favor of inflation
starting from a comparatively unfavorable initial conditions. Moreover, it brings out important
insights about the behavior of the dynamics and its dependence on various parameters.

Isotropization: behavior of the directional scale factors
Here we will discuss the process of isotropization of Bianchi-I spacetime and how it turns

into all-expanding-directions from a highly anisotropic state such as one corresponding to a
cigar structure near the singularity. From the equations of motion of Bianchi-I spacetime,
it can be shown that the anisotropic shear (σ2) in an expanding Bianchi-I spacetime always
decreases: σ2 ∝ a−6, in the classical theory. Moreover, since inflation causes the scale factor to
increase exponentially, the shear scalar decreases exponentially in the inflationary era. Hence,
the presence of inflationary era, helps the spacetime to isotropize. As discussed previously,
our universe may have been evolving starting from highly anisotropic initial conditions which,
depending on the strength of anisotropy, entail to various possible geometrical structures of the
spatial geometry such as a cigar, pancake etc, close to singularity. It is, therefore, important

163



Cigar

Isotropization

w=-1 t=TON

1 100 104 106

0.1

100

105

108

1011

1014

t

Cigar

Isotropization

w=-1

t=TON

1 100 104 106
-1.0

-0.5

0.0

0.5

1.0

t

Figure 5.13: This figure shows the evolution of directional scale factors in classical Bianchi-I
spacetime under inflationary scenario. The initial data is such that backward evolution gives
a cigar like singularity. It is evident from the left plot that, in the forward evolution, the
contracting direction undergoes a turn around at the onset of inflation and during most of the
inflation all the scale factors expand. The adjoining plot shows the evolution of the corresponding
Kasner exponents. Note that although w = −1 is attained earlier, inflation does not begin until
t = TON due to the presence of anisotropy. (t = TON is the time of onset of inflation)

to understand how the spacetime evolves from a highly anisotropic geometric structure, such
as a cigar, to a state when all directions are expanding during and after the inflationary era.
Recall that the structure of the spatial geometry of the spacetime can be determined via the
value of the Jacobs’ parameter ε2J. For example, ε2J < 4/3 is a sufficient condition for all the
directions to expand, whereas, for ε2J ≥ 4/3, not all of the directions will be in expanding state
(as shown in the left plot of Fig. 5.13 where one of the directions is contracting while the other
two expand in forward evolution). Thus, at the onset of inflation, depending on the value of
ε2J, all the directions may be expanding or not. During inflation, the mean scale factor grows
exponentially which leads to a rapid decrement of the parameter ε2J. Due to this, ε2J quickly
becomes less than 4/3 even if it starts from a larger value. Thus, even if one starts with a large
ε2J in this model, anisotropy decays so that ε2J < 4/3 is obtained either before, or shortly after,
the start of inflation. Therefore, all the directional scale factors turn out to be in expanding
state before or shortly after the onset of inflation.

Fig. 5.13 shows the evolution of the three directional scale factors starting from a cigar like
structure, such that two of the scale factors are increasing while the remaining one decreases, as
the universe expands. It is evident from the left plot of Fig. 5.13 that the decreasing scale factor
undergoes a turn around shortly after the time of onset of inflation, t = TON. After the turn
around, all the scale factors are in expanding state. The adjoining right plot shows the evolution
of individual Kasner exponents. In the beginning, one of the Kasner exponents is negative which
becomes positive during inflation. Similarly, barrel and pancake like structures, also turn into a
state where all the directional scale factors are expanding in the inflationary phase. This way,
an inflationary Bianchi-I spacetime isotropizes, no matter what the pre-inflationary conditions
are. Such a turn around of the scale factor is a feature of a generic initial data, except for those
with point like structures for which all the three directions are already expanding. Similar turn
around of directional scale factors and the evolution of Kasner exponents was also noted in the
Ref. [163].
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Figure 5.14: The left plot in this figure shows the number of e-foldings, N plotted against
ln(ε2J) for various values of the initial φ̇. From top to bottom the curves correspond to φ̇(0) =
(−2 · 10−5, −2 · 10−3, −2 · 10−2,−0.1)m2

Pl. It is clear to see from the figure that for large value
of ε2J all the trajectories tend to produce the same number of e-foldings. The right plot shows
the variation of the number of e-foldings with time for various initial anisotropy parameter ε2J
but starting with the same KE corresponding to φ̇(0) = −0.1mPl.

Number of e-foldings and initial conditions:
Number of e-foldings measure the amount of inflation during the inflationary era of the

universe. We compute the number of e-foldings for various initial values of the anisotropic shear.
Fig. 5.14 shows the variation of the number of e-foldings as a function of the initial anisotropy,
for a scalar field having negative initial velocity (φ̇(0) < 0, corresponding to a rolling down
inflaton). It is straightforward to see that the amount of inflation (i.e. the number of e-foldings,
N) increases with increasing anisotropy. Further, different initial φ̇’s produce the same number
of e-foldings for large initial anisotropy. That is, the spacetime tends to achieve the same number
of e-foldings at large anisotropies irrespective of the initial kinetic energy of the scalar field. This
happens because of the enhanced Hubble friction in the KG equation, caused by the presence of
the anisotropic shear, which results in faster decay of the kinetic energy of the inflaton causing
it to slow down quickly. In turn, this leads to a quicker arrival of the slow-roll conditions.

The right plot in Fig. 5.14 shows the evolution of the number of e-foldings during the forward
evolution of inflationary Bianchi-I spacetime starting with the same φ̇(0) = −0.1m2

Pl but for the
various values of the initial anisotropy parameters ε2J. For these initial conditions, the number of
e-foldings in the isotropic case is less than 10, whereas, in Bianchi-I spacetime, the same initial
conditions on the scalar field produce significantly more number of e-foldings for higher ε2J. Thus
for φ̇(0) < 0, anisotropic shear not only increases the number of e-foldings, a large anisotropy
makes slow-roll conditions be achieved irrespective of the initial velocity of the inflaton (since the
strong Hubble friction, in presence of large anisotropy, slows down the inflaton quickly, leading
to a slow-roll2).

In Fig. 5.14 the initial conditions on the inflaton is taken so that φ̇(0) is negative i.e. the
inflaton is initially in rolling down the potential. Let us now take φ̇(0) > 0, i.e. inflaton rolling up
the potential initially. The left plot in the Fig. 5.15 shows the variation of number of e-foldings
with the increasing anisotropy in the initial data for various values of φ̇(0) = (2 · 10−5, 2 ·

2In GR, irrespective of the initial inflaton velocity, one can always find a suitable value of initial anisotropic
shear such that slow-roll is obtained.
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Table 5.5: This table summarizes the number of e-folding in the classical Bianchi-I spacetime
for various initial values of φ̇(0) and φ(0), depending on value of anisotropic shear present in the
initial data. Note that for ε2J = 0, we have not shown the entries corresponding to φ = 3.14mPl

leading to 60 e-foldings. For the conditions required to obtain 60 e-foldings in the isotropic case.

φ̇(0) (m2
Pl) ε2J φ(0) (mPl)

1.0 2.0 3.0 3.14 4.0 5.0

0 1.551 2.755 20.600 24.195 52.051 96.749
0.060 1.503 2.849 20.790 24.398 52.326 97.101
1.084 0.907 4.947 23.587 27.369 57.364 102.195

-0.002 9.665× 104 6.388 25.322 56.727 62.122 100.662 157.145
5.994× 108 6.563 25.646 57.195 62.611 101.271 157.892
3.881× 1019 6.566 25.651 57.203 62.619 101.282 157.905
1.565× 1041 6.566 25.651 57.203 62.619 101.282 157.905

0 31.055 62.534 106.206 113.788 161.763 229.467
0.060 30.853 62.149 105.86 113.429 161.349 228.988
1.084 28.018 57.415 100.94 108.343 155.451 222.147

0.002 9.665× 104 6.744 25.970 57.6814 63.118 101.903 158.666
5.994× 108 6.569 25.657 57.211 62.628 101.292 157.918
3.881× 1019 6.566 25.651 57.203 62.619 101.282 157.905
1.565× 1041 6.566 25.651 57.203 62.619 101.282 157.905

0 3.9404 0.199 12.284 15.163 38.690 78.448
0.060 3.8420 0.194 12.495 15.393 39.027 78.901
1.084 2.5564 1.692 15.653 20.1637 43.962 85.487

-0.02 9.665× 104 6.358 25.261 56.636 62.028 100.541 156.994
5.994× 108 6.562 25.645 57.194 62.609 101.269 157.89
3.881× 1019 6.566 25.651 57.203 62.619 101.282 157.905
1.565× 1041 6.566 25.651 57.203 62.619 101.281 157.905

0 41.544 77.366 125.623 133.832 185.725 258.003
0.060 41.230 76.781 125.101 133.296 185.102 257.282
1.084 36.855 69.644 117.725 125.679 176.281 247.045

0.02 9.665× 104 6.776 26.029 57.773 63.214 102.025 158.818
5.994× 108 6.569 25.657 57.2126 62.6293 101.294 157.92
3.881× 1019 6.566 25.651 57.203 62.619 101.282 157.905
1.565× 1041 6.566 25.651 57.203 62.619 101.282 157.905
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Figure 5.15: This figure shows the number of e-foldings, N plotted against ln(ε2J) for various
values of the initial φ̇. In the left plot, from bottom to top, the curves correspond to φ̇(0) =
(2 · 10−5, 2 · 10−3, 2 · 10−2, 0.1)m2

Pl and initial value of field is taken φ(0) = 3.14mPl for all the
simulations. The right plot shows the time evolution of the number of efoldings for various
initial anisotropy starting with the same initial value of the inflaton φ(0) = 0.1mPl.

10−3, 2 · 10−2, 0.1)m2
Pl. In all these simulations, the value of the inflaton field in the initial data

has been taken as φ(0) = 3.14mPl. It turns out that, in this case (i.e. φ̇(0) > 0), the number
of e-foldings decrease as the anisotropy in the initial data increases and at large anisotropy all
the trajectories attain the same number of e-foldings irrespective of the initial φ̇. Usually in the
isotropic case, φ̇(0) > 0 causes the field to roll up the potential before inflation actually starts,
for example if the initial φ̇ = 0.1m2

Pl, then the inflaton will roll up the potential and inflation
starts to take place at φ ≈ 4.8mPl. As a result, the amount of inflation is greater as compared
to the case of φ̇ < 0. On the other hand, in Bianchi-I spacetime due the faster decay of the
KE of the field, the field tires up before reaching φ ≈ 4.8mPl and inflation starts taking place
at a comparatively smaller value of the field. Due to this additional friction introduced by the
presence of anisotropy, the amount of inflation actually decreases with increasing anisotropy if
the inflaton is initially rolling up the potential. At very large anisotropy, the Hubble friction is so
strong that the KE decays extremely fast and inflation onsets very close to the initial value of the
inflaton (in this case φ ≈ 3.14mPl). It is also clear from the plot, that although large anisotropic
shear may diminish the number of e-foldings yet it never destroys the occurrence of inflation.
It is important to note from the figure that at large anisotropy both the positive and negative
initial velocity of the field give the same amount of inflation. The right plot in Fig. 5.15, shows
the time evolutions of the number of e-foldings, for φ̇(0) > 0, starting with different anisotropy
but with the same initial φ̇(0) = 0.1m2

Pl. It is evident that, the maximum number of e-foldings
decreases with increasing initial anisotropy. Table-5.5 tabulates the amount of inflation in terms
of the number of e-foldings obtained during the inflationary phase for various initial values of
the φ̇(0) depending on the anisotropy present in the initial data.

Phase portrait and attractor behavior: Let us now discuss the phase-space trajectories of an
inflationary Bianchi-I spacetime in the classical theory. Fig. 5.16 shows the evolution of various
classical trajectories in the φ−φ̇ space for Bianchi-I spacetime. Trajectories in the same quadrant
correspond to different initial anisotropies but with the same values of φ(0) and φ̇(0). The thick
(red) arrow shows the order of decreasing anisotropy, the dashed thick trajectories correspond
to the FRW trajectories i.e. for ε2J = 0 (corresponding to zero anisotropy) and the (black) dots
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Figure 5.16: This figure shows the two attractor behavior of the inflationary Bianchi-I space-
time. The dashed trajectories (denoted by 1©) show the non-slow roll FRW attractor while the
horizontal lines to which all the trajectories meet depicts the slow-roll attractor (denoted by
2©). The directions of (red) arrows show decreasing anisotropy (i.e. increasing parameter ε2J).
The black dots denote the onset of accelerated expansion and κ = 8πG/3.

on the trajectories mark the point when the accelerated expansion begins. The trajectories
in the upper half of the phase space correspond to φ̇(0) > 0 and the curves in the lower
half show the trajectories for φ̇(0) < 0. For all the curves, initial value of the inflaton is
kept the same at |φ| = 3.14mPl and the anisotropic shear is varied. The horizontal lines
correspond to the isotropic slow-roll conditions where φ̇ is very small and almost constant,
resulting in the potential energy dominant phase. In this case the slow-roll is characterized
by φ̇ ≈ ∓1.97 · 10−7m2

Pl, as discussed in Sec.-IIA. It is clear to see in Fig. 5.16 that all the
trajectories corresponding to various initial anisotropy meet the slow-roll curve at some or the
other point in their evolution. In this sense, the isotropic slow-roll is an attractor for all such
solutions. For φ̇(0), φ(0) > 0 (also for φ̇(0), φ(0) < 0) i.e. the conditions corresponding to the
inflaton rolling up the potential initially, the trajectories remain on the slow-roll line for longer
time for smaller initial value of anisotropic shear. Furthermore, with increasing anisotropy the
duration of the slow-roll decreases. This behavior is compatible with the variation of amount of
inflation with the varying initial anisotropy. On the other hand, the trajectories corresponding
to φ̇(0) < 0 (and φ(0) > 0) tend to have longer duration of slow-roll for larger value of the
anisotropy which is again compatible with the observation that larger anisotropy leads to more
e-foldings for φ̇(0) < 0.

Fig. 5.17 shows the 3D plot of the phase space trajectories of the field in the classical Bianchi-
I spacetime. It turns out that as the shear scalar tends to decrease, the phase-space trajectory
of Bianchi-I spacetime approaches that of the corresponding isotropic FRW spacetime (with
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Figure 5.17: This figure shows the 3D plot of the phase-space trajectories of the scalar field.
The trajectories in the same quadrant with the same color correspond to the same initial values
of φ and φ̇ but different shear scalar. The dashed trajectories in the σ2 = 0 plane depicts the
corresponding isotropic trajectories.

σ2 = 0). This behavior is also evident from the Fig. 5.16 where the thick (red) arrows show
the order of decreasing anisotropy. In this sense, in addition to the attraction behavior of the
slow-roll, the isotropic spacetime behaves as an ‘attractor’ of Bianchi-I spacetime in the limit
σ2 → 0. In other words, FRW spacetime is an isotropic attractor of the Bianchi-I spacetime.
That is, as the initial anisotropy is decreased, the trajectories tend closer to the FRW isotropic
trajectories (shown by the dashed-thick lines in Fig. 5.16 and Fig. 5.17). To differentiate this
attractor from the slow-roll, we call it the ‘non slow-roll FRW attractor’. It is important to note
that FRW trajectory is only a limit of the Bianchi-I spacetime when the anisotropy tends to zero
and never actually reached. Whereas the isotropic slow-roll attractor is actually met during the
future evolution. In this precise sense, there is a two attractor behavior of the classical Bianchi-I
spacetime. As we will see in the following discussion, that this two attractor behavior does not
turn out to be generically true in LQC. Before we go into the discussion of numerical results for
LQC, a remark about the two ‘attractors’ is in order.

Remark: The two attractors discussed above, namely, the non slow-roll FRW attractor and
the isotropic slow-roll, are two distinct properties of the Bianchi-I spacetime. Approach to
the isotropic slow-roll is a property of the Bianchi-I spacetime with inflationary potential. It is
achieved in the future evolution when the slow-roll conditions are met, whereas, the non slow-roll
FRW can be approached in the pre slow-roll phase of the evolution when the value of the initial
anisotropic shear is decreased. In the case of non slow-roll FRW attractor, the entire phase
space trajectory of Bianchi-I spacetime tends to the FRW trajectory (as shown in the Fig. 5.17)
whereas the slow-roll attractor is achieved during the inflationary phase. In other words, the
slow-roll attractor is demonstrated by the dynamics of inflaton, while the non slow-roll FRW
attractor is approached in the vanishing shear limit in Bianchi-I spacetime.
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Figure 5.18: This figure shows the evolution of the mean scale factor for different initial shear
scalars (but with the same initial φ(0) = 3.14mPl and φ̇ = −0.002m2

Pl) at the bounce. The
values of the shear scalar shown in the figure correspond to the value at the bounce and contain
the unit l−2

Pl .

5.3.4 Results: Effective dynamics of LQC

In this subsection we perform numerical simulations of the effective dynamical equations of
Bianchi-I spacetime under φ2 potential with mass m = 1.21×10−6mPl. In all the simulations the
initial conditions are provided at the bounce, characterized by t = 0. Bounce is characterized by
the turn around of the mean scale factor which entails to vanishing mean Hubble rate, H(0) = 0
at the bounce. Therefore, the initial conditions along with satisfying the Hamiltonian constraint,
must be chosen such that the mean Hubble rate equals to zero. To ensure this, we provide
p1(0), p2(0), p3(0), c1(0), φ(0), and φ̇(0) at the bounce and compute the value of c2(0) and c3(0)
by requiring that both the Hamiltonian constraint and the mean Hubble rate vanish. It turns out
that specifying the inflaton velocity φ̇ and its value φ at the bounce there exist multiple solutions
of the gravitational variables, pi and ci. These multiple solutions correspond to different values
of anisotropic shear. Hence, by varying the initial conditions on the gravitational variables one
can vary the initial shear scalar at the bounce while the matter energy density kept fixed. This
freedom of specifying the shear scalar plays a key role in the analysis presented in this subsection.
Fig. 5.18 shows the bounce of mean scale factors for varying σ2

b for the same φb = 3.14mPl and
φ̇b = −0.002m2

Pl at the bounce. Unlike in the classical theory, the energy density and shear and
expansion scalars are bounded above by their respective maxima.

Directional scale factors and isotropization:
We study the evolution of the spacetime starting from initial conditions characterized by

the presence of significant anisotropic shear. Due to non-vanishing anisotropic shear, as in the
classical theory, depending on the strength of the anisotropy, the expansion of the spacetime can
be anisotropic. That is, the mean scale factor expands while one or two of the directional scale
factors decrease and the remaining one(s) increase in the forward evolution of time. However,
in contrast to the classical theory, the backward evolution in LQC is non-singular. Here, we are
interested to find out how an anisotropically expanding universe turns into isotropically inflating
spacetime in LQC.

It turns out that long before the onset of accelerated expansion, LQC trajectory enters
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Figure 5.19: This figure shows the evolution of directional scale factors for σ2(0) = 3.47 l−2
Pl

at the bounce with initial φ(0) = 3.14mPl and φ̇(0) = −0.002m2
Pl. The right plot shows the

isotropization of the directional scale factors. At the bounce one of the scale factors start out in
decreasing state but as the inflationary era progresses, all the three directions turn to expand.

into the classical domain and the shear scalar monotonically falls as ∼ a−6. Due to the ever
decreasing shear scalar, in this domain, the parameter ε2J keeps decreasing and, just like in the
classical theory, reaches ε2J < 4/3 before or right after the onset of inflation. Fig. 5.19 shows the
evolution of a spacetime having a cigar like structure of the spatial geometry close to the bounce.
As the accelerated expansion starts to take place, like in the classical theory, the parameter ε2J
falls even more quickly and the decreasing directional scale factor turns around while the mean
scale factor still expanding.

We now consider the evolution of the potential, kinetic and the shear energies. Fig. 5.20
shows an example of the evolution of all the three contributions to the total energy during the
expanding branch of inflationary Bianchi-I spacetime. Starting with a shear dominant (while
KE > PE) initial state the kinetic energy monotonically decays, whereas, the shear energy
shows a non-monotonic behavior in the vicinity of the bounce i.e. it attains a local maximum
and then continues to fall down. This behavior of the shear stands in contrast with the classical
evolution where the shear energy always monotonically decreases in an expanding universe. This
brings out a difference between the process of isotropization in classical and LQC evolutions (the
non-monotonicity of the shear energy is not a generic behavior of the Bianchi-I LQC spacetime,
as we will see further in this section). This distinction holds true in the deep quantum regime
close to the bounce. In the forward evolution, as the spacetime curvature approaches the classical
conditions, the shear energy starts to fall down monotonically. It is also clear from the plot that
the onset of accelerated expansion (marked by black dot) takes place when the potential energy
wins over the shear and kinetic energy, just like in the classical theory. This is not surprising
because at the onset of inflation the spacetime is already well concurrent with a classical solution.
Following the start of inflation there may be a period when shear energy is still greater than
kinetic energy (while PE being larger than both). However, shear scalar quickly fades away
giving rise to isotropization during the inflationary phase. In this way, similar to the classical
theory, there may be a short period in the inflationary era when the shear energy dominates the
kinetic energy, while potential energy remains greater than the both.

Amount of inflation:
We discussed earlier in this section that the amount of inflation in the classical theory
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Figure 5.20: Evolution of the kinetic, potential and shear energy density in LQC effective dy-
namics. The (blue) dotted line represents potential energy, the (orange) dashed line corresponds
to the shear energy and the (red) solid line shows the evolution of kinetic energy of the inflaton.

increases with increasing initial value of the shear scalar, for an inflaton which is rolling down.
The shear scalar, since increases the mean Hubble rate, enhances the damping term in the Klein-
Gordon equation causing the slow roll conditions to be achieved earlier. Unlike the classical
theory, in LQC, the mean Hubble rate is not necessarily a monotonic function of the shear
scalar. Due to the higher order corrections introduced by the underlying quantum geometry, the
modified form of generalized Friedmann equation for Bianchi-I spacetime may contain nonlinear
terms3 in σ2. Fig. 5.23 shows the variation of the mean Hubble rate with increasing initial value
of shear scalar. It is evident that the mean Hubble rate shows a non-monotonic behavior with
increasing shear scalar and attains a maximum at some value of σ2. Hence, in LQC, in the
presence of anisotropic shear the number of e-foldings can show a non-monotonic behavior with
an increasing shear scalar (while keeping the φ̇(0) fixed). Fig. 5.21 shows the variation of the
number of e-foldings for various different values of the initial energy density and φ̇(0) < 0 at the
bounce. It turns out that for small shear scalar, the number of e-foldings (N) increases with
the values of shear scalar, then N attains a maximum value at some σ2 = σ2

∗. For any higher
value of anisotropic shear than σ2

∗, the amount of e-foldings decreases. Note that, for the values
of the parameters considered here, the changes in the number of e-foldings is very small4, as
can be seen in Fig. 5.21. In the numerical simulations, σ2

∗ turns out to be σ2
∗ ≈ 1.47 l−2

Pl for
|φ̇(0)| < 0.02m2

Pl (for |φ̇(0)| > 0.02m2
Pl it weakly depends on the initial data). At this point the

occurrence of σ2
∗ is an unexpected numerical result. Due to the unavailability of the generalized

Friedman equation for Bianchi-I spacetime in LQC, we do not yet have analytical argument to
explain its existence.

As seen in the classical theory, for different sign of φ̇ in the initial data (in this case the
initial data given at the bounce), the amount of inflation shows different behaviors with initial
anisotropic shear. The numerical simulations performed for φ̇ > 0 are shown in Fig. 5.22. It is
evident that for φ̇ > 0, in contrast to φ̇(0) < 0, N decreases with increasing σ2 in the small

3For example, an approximate expression in the small shear limit, discussed in the Ref. [116], contains σ4

terms with opposite sign to σ2 term, suggesting non-monotonic behavior of the mean Hubble rate with shear
scalar.

4This is not a numerical artifact. The accuracy of the numerical method used is of the order of 10−10 whereas,
as shown in Fig. 5.21 the change in N is atleast of 10−3 order.

172



0.05 0.10 0.50 1.00 5.00 10.00

62.384

62.386

62.388

62.390

62.392

62.394

Σ
2

bounce

N

Φ
 

bounce
� -0.002

0.05 0.10 0.50 1.00 5.00 10.00

60.26

60.28

60.30

60.32

60.34

60.36

60.38

Σ
2

bounce

N

Φ
 

bounce
� -0.02

Figure 5.21: This figure shows the variation of the number of e-foldings with the changing shear
scalar at the bounce for φ̇ < 0 at the bounce. The values of φ̇ is given in the units of m2

Pl. The
plot clearly shows the non-monotonic behavior of the number of e-foldings with the shear scalar.
This behavior is related to that of the mean Hubble rate. As discussed in the classical theory,
an enhancement in the mean Hubble rate results in increment in the amount of inflation if the
inflaton is initially rolling down, and decrement if rolling up. In LQC, since the mean Hubble
rate first increases, attains a maximum and then decreases with increasing initial shear scalar
(Fig. 5.23), the amount of inflation varies in the same way. The units of φ̇ and σ2 are in m2

Pl

and l−2
Pl respectively.
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Figure 5.22: Variation of the number of e-foldings with the changing shear scalar at the bounce
for φ̇ > 0 at the bounce. The values of φ̇ and σ2 are in the units of m2

Pl and l−2
Pl respectively.The

plot clearly shows the non-monotonic behavior of the number of e-foldings with the shear scalar.
This behavior is related to that of the mean Hubble rate. As discussed in the classical theory,
an enhancement in the mean Hubble rate results in increment in the amount of inflation if the
inflaton is initially rolling down, and decrement if rolling up. In LQC, since the mean Hubble
rate first increases, attains a maximum and then decreases with increasing initial shear scalar
(Fig. 5.23), the amount of inflation varies in the opposite way. The units of φ̇ and σ2 are in m2

Pl

and l−2
Pl respectively.
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Figure 5.23: This figure shows the non-monotonic behavior of the mean Hubble rate at the onset
of inflation with varying initial value of the shear scalar at the bounce. The left plot corresponds
to a negative initial φ̇ and the right plot corresponds to a positive initial φ̇. The units of φ̇ and
σ2 are in m2

Pl and l−2
Pl respectively.

shear regime, while it increases for σ2 > σ2
∗. Interestingly, the value of σ2

∗ turns out to be
numerically same as that for φ̇ < 0.

Such variation of N with initial anisotropy is tied to the behavior of the mean Hubble
rate. As discussed in the classical theory, an enhancement in the mean Hubble rate results in
increment in the amount of inflation if the inflaton is initially rolling down, and decrement if
rolling up. In LQC, since the mean Hubble rate first increases, attains a maximum and then
decreases with increasing initial shear scalar (Fig. 5.23), the amount of inflation varies in the
same way for φ̇(0) < 0 (Fig. 5.21) i.e. first increases, attains a maximum and then falls down.
The behavior of N for φ̇(0) > 0 is opposite to that of φ̇(0) < 0.

Table - 5.6 summarizes the variation of the number of e-foldings with initial shear scalar at
the bounce for different values of φ̇(0). An interesting feature of the Bianchi-I spacetime lies in
the comparison of the amount of inflation, for a given initial value of the inflaton field at the
bounce, with that in the isotropic case. It is important to note that in the isotropic spacetime,
the value of φ̇ at the bounce for the kinetic dominated bounces is fixed to φ̇ ≈ 0.905m2

Pl as the
bounce always occurs when ρ = ρmax in the isotropic LQC. Whereas, in the anisotropic case the
bounce can happen for smaller values of the φ̇ due to the presence of non-zero Weyl curvature.
The numerical simulations show that amount of inflation in Bianchi-I spacetime is more than
that in the isotropic spacetime for the same initial inflaton field φ(0). For example if the initial
value of the field at the bounce is taken to be φ(0) = 3.14mPl (with φ̇ = −0.905m2

Pl i.e. inflaton
rolling down the potential), then the total number of e-foldings during the inflationary era in
the isotropic case is N ≈ 3.12. Whereas, for the same value of the initial φ(0) at the bounce,
the maximum number of e-foldings obtained for φ̇ = (−0.2, −0.02, −0.002, −0.0002)m2

Pl are
N ≈ (42.75, 60.38, 62.39, 62.59) respectively (see Table 5.6). To generate N ≈ 60 e-foldings
in isotropic spacetime the value of the inflaton, initially rolling down, at the bounce should
be φ(0) ≥ 5.50mPl [113], while the same number of e-foldings can be generated in Bianchi-I
spacetime for φ(0) < 5.50mPl. Thus, in comparison to the isotropic inflationary spacetime,
inflationary scenario in Bianchi-I spacetime widens up the window of the values of inflaton, at
the bounce, which produce a given amount of inflation. In other words, in Bianchi-I spacetime,
the same amount of inflation can be generated as in the isotropic case for even a lower value of
the inflaton field at the bounce.
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Table 5.6: This table summarizes the variation of number of efoldings with varying shear scalar
at the bounce, for various initial φ̇ at the bounce. The units of σ2 and φ̇ are l−2

Pl and m2
Pl

respectively.

φ̇(0)(m2
Pl) σ2(0)(l−2

Pl ) φ(0) (mPl)
1.06 1.5 2.0 3.0 3.14 4.0 5.0

0.002 7.269 14.143 23.548 56.959 62.404 101.016 155.575
0.277 7.274 14.148 23.555 56.971 62.426 101.03 155.592
0.967 7.275 14.150 23.559 56.976 62.428 101.037 155.601

-0.002 1.441 7.276 14.152 23.561 56.979 62.429 101.041 155.606
3.184 7.277 14.153 23.562 56.981 62.428 101.044 155.61
5.983 7.277 14.153 23.563 56.983 62.425 101.046 155.613
6.831 7.278 14.154 23.564 56.984 62.424 101.048 155.615
0.002 7.456 14.400 23.887 57.447 62.833 101.659 156.365
0.277 7.452 14.395 23.880 57.436 62.812 101.645 156.347
0.967 7.449 14.392 23.877 57.431 62.809 101.638 156.339

0.002 1.441 7.448 14.391 23.874 57.427 62.809 101.633 156.333
3.184 7.447 14.389 23.873 57.425 62.811 101.63 156.33
5.983 7.447 14.388 23.872 57.424 62.812 101.628 156.327
6.831 7.447 14.388 23.871 57.423 62.813 101.627 156.325
0.049 6.518 13.392 23.548 56.959 60.278 101.016 155.575
0.287 6.513 13.384 23.555 56.970 60.352 101.03 155.592
0.976 6.520 13.395 23.559 56.975 60.377 101.037 155.601

-0.02 1.450 6.527 13.405 23.561 56.978 60.381 101.041 155.606
3.194 6.533 13.414 23.562 56.981 60.361 101.044 155.61
5.993 6.537 13.420 23.563 56.982 60.349 101.046 155.613
6.841 6.541 13.425 23.564 56.983 60.333 101.048 155.615
0.049 8.250 15.768 27.221 59.486 65.001 105.226 161.673
0.287 8.256 15.776 27.233 59.502 64.924 105.248 161.700
0.976 8.248 15.764 27.217 59.479 64.898 105.218 161.663

0.02 1.450 8.240 15.753 27.203 59.457 64.893 105.188 161.626
3.194 8.233 15.744 27.191 59.439 64.915 105.164 161.596
5.993 8.228 15.737 27.182 59.425 64.924 105.145 161.572
6.841 8.224 15.732 27.175 59.415 64.943 105.131 161.554

-0.905 0 11.6712 6.08762 2.08709 1.6475 3.10292 17.9973 47.994
0.905 0 69.1792 87.7415 111.65 168.524 177.454 237.553 318.805

Phase portrait and the attractor behavior:
Let us now explore the properties of the phase plot of the dynamical trajectories in LQC.

We will discuss the trajectories of both the matter and the gravitational sector i.e. (φ, φ̇)
for the inflaton and (log(a), H) for the gravitational part respectively. A phase portrait of
Bianchi-I spacetime in LQC is shown in Fig. 5.24. The left plot corresponds to the inflaton in
which the dashed thick lines show the isotropic trajectories with the initial conditions φ(0) =
±3.14mPl and φ̇(0) ≈ ±0.905m2

Pl at the bounce. The solid (blue) line and the dotted-dashed
(red) lines correspond to the LQC trajectories with the initial conditions at the bounce as
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Figure 5.24: The left figure shows the phase-space trajectory of the scalar field and the right
plot is the plot of the trajectory in the gravitational phase-space (log(a) , H).

φ(0) = ±3.14mPl and φ̇(0) ≈ ±0.002m2
Pl. It turns out that all the trajectories starting at the

bounce meet the slow-roll trajectory characterized by an almost constant and horizontal line
in φ − φ̇ phase plot. It is also evident that the isotropic trajectories starting in the first and
the third quadrant meet the slow roll attractor quite early in the evolution while the isotropic
trajectories in the second and fourth quadrant meet the inflationary trajectory close to the end
of the slow roll period. Clearly the former will give rise to greater number of e-foldings than
the latter ones. Thus, adding just a little anisotropy in the spacetime changes the evolution in
the pre-inflationary era significantly. Presence of anisotropic shear at the bounce (even a small
value) leads the dynamical trajectory to meet the slow-roll curve sufficiently early which, in
contrast to the isotropic case, results in higher number of e-foldings. Analysis of the phase-space
trajectories of gravitational variables log(a) vs . H gives information about the isotropization of
the spacetime. The right plot in Fig. 5.24 shows the comparison of isotropic trajectories with
Bianchi-I trajectories for various initial shear at the bounce. The thick (black) curve shows
the isotropic trajectory, the dashed (blue) curve corresponds to Bianchi-I trajectory with initial
shear scalar σ2(0) = 5·10−4 l−2

Pl , the dashed (orange) curve with initial shear σ2(0) = 5.7·10−2 l−2
Pl

and the solid (red) line with σ2(0) = 6.81 l−2
Pl at the bounce while the other initial conditions

being fixed at φ̇ = −0.002m2
Pl andφ = 3.14mPl. The black dot denotes the bounce point of the

mean scale factor. It is evident from the plot of the trajectories that as the shear scalar at the
bounce decreases, the Bianchi-I trajectories do not approach the isotropic trajectory completely,
in the near bounce regime. This is a feature of the underlying quantum geometry which plays
significant role near the bounce when the curvature of the spacetime is Planckian. Away for the
bounce, when the curvature is much smaller, then all the trajectories tend to meet the isotropic
trajectory.

We now discuss, in detail, a feature of the attractor behavior of Bianchi-I spacetime in the
effective description of LQC. Fig. 5.25 shows the evolution of trajectories starting with the same
initial φ(0) = 3.14mPl but different initial φ̇. For clarity, we only show the first and the fourth
quadrant of the phase portrait. The initial values of φ̇ for the trajectories in the fourth quadrant
are φ̇(0) = (−0.905, −0.856, −0.727, −0.584, −0.536, −0.407, −0.289, −0.171, −0.053)m2

Pl, and
in the first quadrant, φ̇(0) = (0.0, 0.053, 0.171, 0.289, 0.407, 0.536, 0.584, 0.727, 0.856, 0.905)m2

Pl.
The left most trajectory, in the fourth quadrant, denoted by σ2 = 0 corresponds to the isotropic
spacetime with φ̇(0) = −0.905m2

Pl, and the right most trajectory in the first quadrant marked
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Figure 5.25: This figure shows the evolution of various trajectories starting with different φ̇(0) =
(−0.905, −0.856, −0.727, −0.584, −0.536, −0.407, −0.289, −0.171, −0.053)m2

Pl starting in the
fourth quadrant and φ̇(0) = (0.0, 0.053, 0.171, 0.289, 0.407, 0.536, 0.584, 0.727, 0.856, 0.905)m2

Pl

in the first quadrant (from left to right). The solid black curves marked with σ2 = 0 correspond
to the isotropic trajectories and the solid (orange) curves denoted by σ2 = 11.57 (in Planck
units) correspond to trajectories with maximum shear scalar at the bounce. For all the
trajectories, the initial value of the inflaton is kept fixed at φ(0) = 3.14mPl. All the values
shown in this plot are in Planck units.

with σ2 = 0 represents the evolution of isotropic spacetime with φ̇(0) = 0.905m2
Pl. All the other

trajectories correspond to Bianchi-I spacetime with non-zero initial anisotropic shear scalar.
Recall that in the effective description of Bianchi-I spacetime the shear scalar has an upper
bound, σ2

max = 11.57 l−2
Pl . Evolution of trajectories starting with initial σ2 = σ2

max are shown by
solid (orange) curves denoted by “σ2 = 11.57”. All the other Bianchi-I trajectories correspond
to smaller values of initial shear scalar the bounce. The slow-roll curve is characterized by the
horizontal line with an almost constant φ̇ ≈ 1.97 × 10−7m2

Pl, to which all the trajectories with
various initial φ̇(0) and σ2(0) meet in their future evolution. Thus, like in the classical the-
ory, the slow-roll curve turns out to be an attractor for all the trajectories shown in the phase
portrait. This implies that irrespective of the initial anisotropic content of the spacetime, all
the Bianchi-I spacetime trajectories in the effective description of LQC do meet the slow-roll
curve in their future evolution, if the initial φ(0) is kept high enough. Thus, we conclude that
the presence of non-vanishing anisotropic shear does not prevent the occurrence of slow-roll
inflation with φ2 potential in Bianchi-I LQC. In the effective description of LQC, the isotropic
spacetime is characterized by two conditions: the first condition requires the vanishing of the
shear scalar σ2 = 0 at all times and the second condition requires the energy density to be
ρ = ρmax at the bounce. This leads to an interesting feature of effective dynamical trajectories
of Bianchi-I spacetime regarding its isotropic limit. That is, in order to approach the isotropic
limit of Bianchi-I spacetime in effective dynamics of LQC, the energy density at the bounce
must tend to approach its maximum, i.e. ρ → ρmax (|φ̇(0)| → 0.905m2

Pl, if φ(0) = 3.14mPl),
along with the shear scalar vanishing, i.e. σ2(0)→ 0 at the bounce. This stands in contrast with
the classical theory, where σ2 → 0 is sufficient for Bianchi-I spacetime to approach the isotropic
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Figure 5.26: This plot shows the 3D phase portrait of various trajectories starting with different
φ̇(0) < 0 in the near bounce region. The black dot marks the bounce point. The solid (orange)
line corresponds to the maximum shear scalar at the bounce σ2 = σ2

max = 11.57 l−2
Pl . The thick

black line in the σ2 = 0 plane corresponds to the isotropic trajectory. Clearly, as the value of
initial φ̇ tends to −0.905m2

Pl, the Bianchi-I trajectories approach the isotropic trajectory.
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limit, irrespective of the value of the energy density. As discussed earlier, in the classical theory,
for a fixed initial energy density, the isotropic limit can be approached by continuously varying
the initial σ2 to zero as shown in Fig. 5.16. Thus, there is an isotropic trajectory corresponding
to every initial energy density in the classical theory. In contrast, in LQC, the energy density
for an isotropic spacetime must be ρ = ρ

(eff)
max ≈ 0.41 ρPl at the bounce. In this way, for a given

initial value of the inflaton field, there are several classical isotropic trajectories, but there are
only two isotropic LQC trajectories (as shown in Fig. 5.25). These two trajectories correspond to

different signs of initial φ̇, such that ρ = ρ
(eff)
max at the bounce. Therefore, for a given initial value

of the inflaton field, there is a unique isotropic curve in each quadrant of the φ− φ̇ phase portrait
of Bianchi-I spacetime in effective description of LQC. The two isotropic curves corresponding
to φ(0) = 3.14mPl are shown in Fig. 5.25, one in first and the other in the fourth quadrant.
Starting from any given trajectory in Fig. 5.25, if one decreases φ̇(0) to −0.905m2

Pl, which is the
value of φ̇ at the bounce in the isotropic spacetime for an inflaton which is rolling down, then the
Bianchi-I trajectories approach towards the isotropic trajectory in the fourth quadrant. While
if one increases φ̇(0) to 0.905m2

Pl, the value of φ̇ at the bounce in the isotropic spacetime for an
inflaton which is rolling up, then the isotropic trajectory in the first quadrant is approached. In
this way, the isotropic spacetime turns out to be an “isotropic attractor” of Bianchi-I spacetime
in the effective description of LQC. This behavior is easy to understand from a 3D plot of the
phase trajectories as shown in Fig. 5.26, where we show the evolution of Bianchi-I trajectory
in the vicinity of the bounce. The solid black trajectory in the σ2 = 0 plane corresponds to
the isotropic spacetime with φ̇(0) = −0.905m2

Pl and all the other ones correspond to Bianchi-I
spacetime with different initial φ̇ and σ2 at the bounce. It is clear to see from this figure that
as φ̇(0) → −0.905m2

Pl, the trajectories tend to approach the isotropic trajectory in the σ2 = 0
plane.

It is important to note that the isotropic attractor behavior in LQC is obtained by varying
both the initial energy density at the bounce and the shear scalar, whereas in the classical theory
the isotropic spacetime can be approached for any fixed initial energy density. If one fixes the
energy density, at the bounce in LQC, to any other value than ρmax by specifying φ(0) and φ̇(0)
and tries to vary the shear scalar, then it turns out that the shear scalar can not be varied to a
value less than a non-zero minimum value which depends on the energy density at the bounce.
In this way, again, unless the energy density at the bounce tends to ρmax, Bianchi-I trajectories
do not approach to the isotropic spacetime. Thus, in LQC, isotropic attractor is not obtained
for those Bianchi-I trajectories for which ρ 6= ρmax at the bounce.

To obtain a complete set of initial data, for the trajectories in Fig. 5.25, we give pi(0), c1(0), φ(0)
for varying φ̇(0), and the values of c2(0), c3(0) are computed by solving the Hamiltonian con-
straint and the mean Hubble rate being, H = 0 at the bounce. In the numerical simulations,
it turns out that for a fixed value of c1(0), there is a fixed range of the values of φ̇(0) for
which the Hamiltonian constraint is satisfied. That is, φ̇(0) can not be continuously varied from
−0.905m2

Pl to 0.905m2
Pl for a fixed value of c1(0), in the numerical simulations performed. In

this way, depending on various fixed values of c1(0), one can generate a continuous family of
trajectories by varying φ̇(0) within the corresponding range, which depends on the value c1(0).
In each of these ranges, there will be a limiting curve with minimum shear scalar to which the
other trajectories in the range tend, as the shear scalar in the initial data decreases. For the
simulations shown in Fig. 5.25, one has to choose atleast two different values of c1(0), one for
|φ̇(0)| < 0.5839m2

Pl and another for |φ̇(0)| > 0.5839m2
Pl.

It is now clear from the discussion of the phase portraits of the inflationary Bianchi-I space-
time that:
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• Trajectories starting with a wide variety of initial conditions meet the slow-roll trajectory
in the future evolution. This indicates slow-roll is an attractor for Bianchi-I spacetime.

• Isotropic spacetime behaves like an “isotropic attractor” for Bianchi-I spacetime if the
isotropic limit is taken by considering both σ2(0) → 0 and ρ(0) → ρmax at the bounce.
For the trajectories, for which the initial energy density does not approach ρmax at the
bounce, the isotropic limit does not exist.

Hence, the two attractor behavior present in the classical Bianchi-I spacetime with φ2 poten-
tial, is also present in the effective description of LQC, with the above noted subtlety in the way
isotropic limit of Bianchi-I spacetime is taken. It is worth emphasizing that due to quantum
geometric effects in the pre-inflationary era, the physical trajectories of the effective description
are very different from those of the classical Bianchi-I spacetime. It is due to these differences
that the conditions to approach the isotropic limit are modified in the effective description of
LQC as compared to the classical theory.

5.4 Discussion

A key question for various models in LQC is to understand various physical properties in the high
curvature regime, the way they change across the bounce and affect the subsequent evolution.
Our goal in this chapter dealt with gaining insights on these issue for Bianchi-I model using
effective dynamics. Bianchi-I spacetimes are one of the simplest settings where the role of Weyl
curvature on the nature of the singularities becomes transparent. We studied in detail the
Kasner transitions and the inflationary scenario in Bianchi I spacetime. In the discussion of
Kasner transition our detailed analysis for dust, radiation and stiff matter, showed that in the
evolution across the bounce, the geometric structure in the post-bounce phase can be different
from the one in the pre-bounce phase. A novel result of our investigation is that there are
certain selection rules between the transitions of geometric structures across the bounce. These
transitions imply change in the Kasner exponents across the bounce for asymptotic observers.
Many of these Kasner transitions occur in a particular range of anisotropic parameters, whereas
some occur only for fine tuned values (those involving the barrel for stiff matter and the pancake
for dust and radiation). Thus, given the initial conditions on the anisotropies and the matter,
it is possible to identify allowed and forbidden transitions.

In the study of the inflationary scenario we have analyzed these questions for the φ2 inflation
in the setting of an anisotropic spacetime described by the Bianchi-I model using the effective
spacetime approach of LQC and made a comparative analysis with the classical theory. We
revisited the analysis in the classical theory by taking a generic initial data by including the case
when inflaton is initially rolling up the potential. In this case, we found that in comparison to the
corresponding isotropic evolution, the amount of inflation actually decreases with an increasing
anisotropic shear. This happens because of the greater anisotropy, the Hubble friction in the
Klein-Gordon equation increases which turns up the decay of kinetic energy of the inflaton. Due
to the faster decay of the kinetic energy, an inflaton which is initially rolling up, stops at a
lower value of the potential which decreases the amount of e-foldings in the subsequent slow-roll
evolution. It is worth emphasizing again that the presence of anisotropic shear does not rule out
inflation. We showed that for accelerated expansion to take place, the potential energy must
win over the kinetic and the shear energy. Owing to this property, in the inflationary era, shear
term is always less than the potential energy. There may however be, a small period during
the accelerated expansion when anisotropic shear contribution (σ2/16πG) while being less than
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potential term (V (φ)), is still greater than the kinetic term (φ̇2/2). In this sense there may be
a brief duration of shear dominance in the inflationary phase of Bianchi-I spacetime. We also
showed by explicit simulations that if one starts with highly anisotropic initial conditions such
that two of the scale factors are contracting and third one is expanding, in the inflationary phase
all of the scale factors expand.

In effective dynamics of LQC, on the other hand, due to the presence of an upper bound
on the anisotropic shear and the energy density, the set of initial conditions are quite different
from those in the classical theory. Also, to give initial conditions on the bounce point, along
with satisfying the Hamiltonian constraint, one has to make sure that the mean Hubble rate
is zero, a condition which was not present in the classical theory. Our analysis shows that the
amount of inflation in LQC does not change monotonically with the initial anisotropic shear at
the bounce. It has a turning point at σ2

∗ whose value depends on the initial value of inflaton
and its velocity (but is independent of the sign of the initial velocity). For an inflaton initially
rolling down the potential, the number of e-foldings increase with anisotropy only when initial
σ2 is less than σ2

∗. On the other hand, if the inflaton is initially rolling up, then the number of
e-foldings decrease with anisotropy only when initial σ2 is less than σ2

∗. As in the classical theory,
isotropization is inevitable in the inflationary LQC Bianchi-I spacetime starting from arbitrary
anisotropic initial conditions. In our analysis we also found that in the Bianchi-I spacetime
sufficient number of e-foldings can be obtained by starting at a significantly lower value of the
inflaton field at the bounce than in the isotropic LQC when the inflaton is initially rolling down
the potential. Further there is a more freedom in specifying the initial data at the bounce
in the anisotropic model. This can be of significance in the study of observational signatures
of quantum gravitational effects in the pre-inflationary stage of LQC. As an example, it has
been recently suggested that for the isotropic LQC, a narrow window depending on the value of
the inflaton field at the bounce exists for which there can be potentially distinct signatures of
LQC in the cosmic microwave background [127, 128]. Our analysis suggests that such a window
potentially widens in the presence of anisotropies if the inflaton is initially rolling down in the
pre-inflationary epoch, which can potentially have additional possible observational signatures
of loop quantum effects in the primordial power spectrum.
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Chapter 6
Beyond LQC: Eternal inflation and land-

scape scenario1

One of the key issues in cosmology is to understand the evolution of universe in its early stages
and gain physical insights to the physics at the Planck scale. Such issues are difficult to study
based on the cosmological models in classical GR, which breaks down in the high curvature
regime due to the presence of the classical singularities. As we have discussed in the previous
chapters that LQC being free of cosmological singularities, on the other hand, presents an ex-
cellent avenue to explore these issues. The quantum geometric effects of LQC introduce striking
ramifications to the evolution of universe by resolving big bang and big crunch singularities via
non-singular quantum bounce. So far in this thesis, we have studied various properties of the
quantum bounce via extensive numerical simulations and explored phenomenological implica-
tions of the singularity resolution. In this chapter we present an application of the ideas of
singularity resolution in LQC to study the transition of a bubble universe from an anti-deSitter
(AdS) phase to a de-Sitter (dS) phase, a long standing issue in the multiverse paradigm and
the landscape scenario which is envisioned in string theory. The landscape scenario allows the
existence of a vast panorama of numerous local minima, known as false vacua, in the associated
landscape potential. The evolution of a universe in this setting can be understood by considering
a scalar field under the influence of a self interacting potential given by the landscape potential
as the matter source. Here, we will study how the non-singular evolution predicted by LQC can
alter the global structure of spacetime in the the eternal inflation model linked to the landscape
scenario, leading to AdS-dS transitions as well as opening possible ways to address the measure
problem in the multiverse.

6.1 Introduction

In an eternally inflating model, the universe inflates in a false vacuum producing a vast volume
of the spacetime [172, 173, 174]. Different parts of this vast spacetime inflate in different false
vacua, giving rise to a landscape of numerous vacua. At the scale of the entire vastness of
the spacetime, inflation goes on forever, while there are “pocket universes” where inflation
ends locally. This picture of a big universe containing several pocket universes is often named
“multiverse”. The model of eternal inflation naturally arises from the landscape scenario as
a low energy approximation in string theory. Transitions of the configuration of the compact
manifold in the string theory, results in transitions between different vacua in the 4-dimensional
effective field theory description. A metastable vacuum with a positive minima leads to a de-
Sitter (dS) evolution, and one with a negative minimum results in an anti-deSitter (AdS) phase
of evolution in the landscape. The evolution of a bubble in an AdS vacuum encounters the big
crunch singularity in future, as due to the negative potential energy of the scalar field the bubble

1Sections 6.2 and 6.3 reproduced from B. Gupt and P. Singh, Phys.Rev. D89 063520 (Copyright(2014)
American Physical Society) [171] by the permission of the American Physical Society. See Appendix B for the
copyright permission from the publishers. Portions of these sections are updated and adapted to the dissertation
format.
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universe recollapses. Due to this, classically, an AdS pocket universe terminates and transition
from AdS to dS is forbidden. LQC, on the other hand, provides a well defined mechanism
through which the curvature singularities such as big bang and big crunch are resolved, hence
setting the stage to explore the possibility of non-singular AdS to dS transitions in a landscape
scenario.

Obtaining such a non-singular transition from AdS to dS vacuum is also related to the
“measure problem” in a landscape scenario, which concerns with the problem of associating
probabilities to various events in an eternally inflating model of universe [175, 176]. In this
model, the universe inflates in a false vacuum producing a vast volume of the spacetime [172].
There are several prescription to define measure in the multiverse [176]. One of the many
proposals in this direction is to define the measure with respect to a single observer sitting on
a time like geodesic [177, 178, 179]. Such a global observer is called a “watcher” who collects
information and records data in a prescribed manner [179]. This proposal of a global watcher,
however, encounters an issue of big-crunch singularity when inside an AdS vacuum due the re-
collapse caused by negative energy density. In order for the watcher to continue recording data
in an ordered timely fashion, the corresponding geodesic must smoothly evolve through the
singularity and emerge on the other side. It was conjectured in [179] that this problem might
be resolved by undertaking inputs from a more fundamental theory which will somehow surpass
the big-crunch singularity.

The main problem arises from the fact that following the re-collapse in the AdS phase the
spacetime goes into big-crunch and there is no known prescription in the classical theory that
would let the ‘watcher’ pass through the singularity. Since, near the singularity, the spacetime
curvature becomes Planckian, the continuum spacetime description of general relativity breaks
down. In such a state, the quantum mechanical effects becomes vital and a proper treatment
of this issue requires a quantum theory of gravity. Although a full quantum theory of gravity
is yet to be found, loop quantum cosmology (LQC), a theory of quantum cosmology based on
the quantization framework of loop quantum gravity (LQG), presents a promising avenue to
tackle issues involving curvature singularities. LQC provides a well defined mechanism through
which the curvature singularities such as big bang and big crunch are resolved, and replaced
by a non-singular quantum bounce [60, 61, 62, 43, 107]. The non-singular bounce builds up
a quantum bridge connecting an expanding and a contracting solutions, which are completely
disjoint in the classical theory. If an observer follows the worldline of a contracting universe, then
instead of falling into big-crunch singularity, he smoothly transits from the contracting phase
to the expanding phase of universe, without encountering any curvature singularity. Hence, the
bounce scenario of LQC provides an excellent approach to address the difficulties, arising due
to big crunch singularity, in the proposal of a “watcher” of the multiverse.

Several investigations in the landscape paradigm imply that a pocket universe is born out of
a tunneling event from an other vacuum in the neighborhood. One of the key consequences of
this event is that the metric of the spacetime inside the bubble is given by an open FRW universe
with negative curvature [180, 181, 182, 183, 184, 185]. This proposal has been investigated in
great detail and its observational consequences have also been discussed (see Ref. [185] and
references therein). In this chapter we are going to consider an open FRW universe with a
scalar field which has a self interacting potential motivated by the landscape scenario in the
multiverse. Our goal in this chapter would be study how loop quantum effects resolve the big
crunch singularity while making a transition from an AdS to a dS vacuum. This will alter the
global structure of multiverse providing the watcher a safe passage from AdS to dS vacuum.
There are other proposals to survive through the AdS crunch [186, 187, 188, 189, 190], but here
we focus on a particular one coming from loop quantum cosmology.
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The main result of this chapter is based on the resolution of curvature singularities in LQC.
Let us consider a pocket universes originating in a bubble whose interior metric is given by
negatively curved open FRW spacetime. Several of these bubbles undergo an AdS vacua at some
point in their evolution. In the classical description a bubble in AdS vacuum would develop
big crunch singularity in a finite proper time, due to the negative energy density. Whereas, in
LQC, the big crunch singularity is resolved due to the quantum geometric corrections which
become important in the Planck regime. As conjectured in the Ref. [179], such a resolution of
big crunch singularity would provide a way to define a measure with respect to a ‘watcher’ who
travels on the worldline of the multiverse. This in turn opens promising ways to address the
measure problem in cosmology.

This chapter is organized as follows: in the next section we briefly review the loop quan-
tization of an open FRW spacetime with k = −1. We introduce the loop variables which are
the SU(2) Ashtekar-Barbero connection Aai and triads Ei

a, discuss their relation with the usual
metric variables and derive the dynamical equations both in the classical theroy and the effective
description of LQC. We consider two different types of landscape: a double and a triple well
potential, and solve the equations of motion in these scenarios. We discuss the evolution of
scale factor, scalar field and also provide a phase diagram of the dynamical trajectories of the
scalar field. In this section, we show non-singular transition from AdS to dS vacua with help of
numerical simulations. We then summarize and discuss our results.

6.2 Loop quantum cosmology of k = −1 FRW spacetime

In this section we present the open FRW spacetime with negative spatial curvature in terms of
loop variables – the Ashtekar-Barbero connection Aia and triads Ea

i . We discuss the relationship
of these variables with usual metric variables and describe the classical Hamiltonian. Then,
we discuss the effective description of loop quantum cosmology for k = −1 spacetime. The
effective equations of motion are then derived via Hamilton’s equation of motion. The dynamical
equations hence obtained are then used to derive modified Friedmann equations for k = −1 FRW
spacetime. We will also describe the important features of the modified Friedmann equations
which lead to vital differences between the classical and effective LQC trajectories in the deep
Planck regime.

6.2.1 Classical theory

We consider a homogeneous and isotropic open FRW spacetime with negative spatial curvature,
i.e. k = −1 with the following metric

dS2 = −N2dt2 + a2(t)

(
dr2

1− kr2
+ r2dΩ2

)
, (6.1)

where N(t) is the lapse function, a(t) is the scale factor, r is the radial co-ordinate of the spatial
metric and dΩ2 is the metric on the surface of a 2-sphere. Thus the spatial topology of the metric
is Σ = R × S2. In oder to define symplectic structure on the spatial manifold we introduce a
fiducial cell V whose volume is given as Vo. The edges of the fiducial cell are chosen to lie
along the fiducial triads e̊ia. The fiducial metric is q̊ab taken to be compatible with the fiducial
co-triads. Similarly to the flat FRW model as presented in chapter 2, utilizing the underlying
symmetry of k = −1 FRW spacetime the Ashtekar variables can be written in terms of the
symmetry reduced connection and triads as follows:

Aia = cV 1/3
o ω̊, and Ea

i = p V −2/3
o

√
qe̊ai , (6.2)
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where e̊ai are the densitized triads and ω̊ia are the fiducial co-triads compatible with the fiducial
metric q̊ab. The triad, p and the connection, c are related to the scale factor, a and its time
derivative as follows

p = a2, c = γȧ+ k, (6.3)

where the ‘dot’ represents the time derivative with respect to the proper time. Note that the
expression for the flat FRW model can be obtained by substituting k = 0 in the above expression.
The relation between the connection, c and the time derivative of the scale factor, as given above,
holds true only in the classical theory. This relation is modified in the effective description, and
given by the effective dynamical equations. On the other hand, the triad is given by the same
relation both in the classical and the effective description of LQC.

The classical Hamiltonian constraint, for FRW spacetime with the lapse function chosen to
be N = 1, can be written in terms of the symmetry reduced connection and triad as follows

Hcl = − 3

8πGγ2

√
p

[
(c− k)2 + kγ2

]
+Hmatt. (6.4)

From the vanishing of the Hamiltonian constraint, Hcl = 0 we obtain(
c− k
γ

)2

=
8πG

3
ρ p− k (6.5)

where ρ is the energy density related to the matter part of the Hamiltonian as Hmatt = ρp3/2.
Substituting the expressions of p and c in terms of metric variables from eq. (6.3) to the above
equation, one can obtain the classical Friedmann equation

H2 =

(
ȧ

a

)2

=
8πG

3
ρ− k

a2
. (6.6)

The dynamical equations of the triad and the connection are given via the Hamilton’s equation
of motion

ṗ = {p, Hcl}, ċ = {c, Hcl}. (6.7)

One can now use the equations of motion of the connection and the triad to obtain the Ray-
chaudhuri equation

Ḣ +H2 =
ä

a
= −4πG

3
(ρ+ 3P ) , (6.8)

where P denotes the pressure of the matter field.

6.2.2 Effective dynamics

As described in chapter 2, based on the geometric formulation of quantum mechanics via a faith-
ful embedding of the classical phase space into the phase space of LQC, an effective continuum
description of the leading order corrections coming from quantum geometry can be obtained.
An effective Hamiltonian constraint can then be derive by making an appropriate choice of semi-
classical states by incorporating the leading order corrections due to the underlying quantum
geometry of the spacetime. Based on the Hamilton’s equation of motion, effective dynamical
equations are derived from the effective Hamiltonian hence obtained. These dynamical equations
govern the evolution of a cosmological model under the effective description of LQC, and it turn
give rise to modified Friedmann and Raychaudhuri equations. As we have seen in chapter 5,
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the effective description can be used to investigate various phenomenological implications of the
singularity resolution. Similarly, here we will use the effective description to study non-singular
evolution in the landscape scenario.

It is worth noting that the effective theory has been derived under the assumption that the
wavefunction of the universe remains sharply peaked and the expectation value of the volume
observable is always much greater than the Planck volume. In the extensive numerical studies
of the evolution of a variety of states and wide range of initial conditions, presented in chapter
4, we investigated the validity of the effective dynamics for a flat FRW model in the presence
of a massless scalar field. We found that although the effective theory excellently captures
the qualitative features of full LQC, there are quantitative deviations between the evolution
trajectories of the effective theory and LQC. As a general result we found that the effective
theory always underestimates the volume and over estimates the energy density at the bounce,
compared to the evolution in LQC. Such deviations between the effective and LQC trajectories
greatly depend on the choice of initial states and their property (see chapter 4). However,
we found that for the states which become sharply peaked corresponding to large macroscopic
universe at late times, the differences between the effective and LQC trajectories are small.
That is, the effective theory is an excellent approximation to LQC for states with very small
fluctuations, which correspond to classical universe at late times. Here, we assume that the
spacetime under consideration can be described by sharply peaked states which give rise to
classical universe in future evolution, so we can trust the predictions of the effective theory in
this scenario.

The effective Hamiltonian for k = −1 FRW spacetime in terms of the symmetry reduced
triad (p) and connection (c), with lapse (N = 1) is given as [69, 70, 108]

Heff = − 3V

8πGγ2λ2

(
sin (µ̄ (c− k))2 − kχ

)
+

p2
φ

2V
+ V (φ)V, (6.9)

where µ̄ = λ/
√
p is the length of the edge along which holonomy is computed (see chapter 2),

λ2 = 4
√

3 π γ l2Pl is the minimum area gap, and χ = −γ2µ̄2 for k = −1. pφ is the conjugate
momentum of the scalar field and V (φ) is the self interacting potential.The dynamical equations
for the connection and triad is given via the Hamilton’s equations of motion:

ṗ = {p, Heff}, ċ = {c, Heff}, (6.10)

which gives the following evolution equations for c, p, pφ and φ:

ċ = −8πγ

3

(
3p3/2

8πγ2λ2

(
γ2λ2

p2
− µ̄(1 + c) cos (µ̄(1 + c)) sin (µ̄(1 + c))

)
+

9
√
p

16πγ2λ2

(
−γ

2λ2

p
+ sin (µ̄(1 + c))2

)
+

3p2
φ

4p5/2
− 3

2

√
p V (φ) (6.11)

ṗ =
2

γλ
cos (µ̄(1 + c)) sin (µ̄(1 + c)) , (6.12)

φ̇ =
pφ
p3/2

, (6.13)

ṗφ = −p3/2∂V (φ)

∂φ
. (6.14)
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Combining the dynamical equations for φ̇ and Ṗφ it is straightforward to obtain the Klein-
Gordon equation, which is equivalent to the conservation equation ρ̇ = −3H (ρ+ P ) (where H
is the Hubble rate)

φ̈+ 3Hφ̇ = −V,φ. (6.15)

The energy density and the pressure of the scalar field are given in terms of the velocity of scalar
field and potential as follows:

ρ =
φ̇2

2
+ V (φ), and P =

φ̇2

2
− V (φ). (6.16)

Using the dynamical equations hence obtained and the relation between the triad and scale
factor, we obtain the following modified Friedmann and Raychaudhuri equation for k = −1 in
the effective description of LQC [108]:

H2 =

(
8πG

3
ρ+

µ̄2

λ2

)(
1− ρ

ρcrit

− γ2µ̄2

)
(6.17)

Ḣ =

(
−4πG (ρ+ P )− ξ + γ2µ̄2

γ2λ2

)(
1− 2

(
ρ

ρcrit

+ γ2µ̄2

))
(6.18)

where ξ = sin2(µ̄) − µ̄ sin(µ̄) cos(µ̄). The modified form of the Friedmann and Raychaudhuri
equations lead to the resolution of singularity. Various aspects of the singularity resolutions in
the effective description of LQC has been studied in detail in the Ref. [108].

6.3 Landscape potentials and ‘AdS to dS’ transition.

In this section we consider two types of landscape potentials: (i) a double well landscape with
one AdS and one dS vacua, and (ii) a triple well landscape with one AdS and two dS vacua. We
will consider these landscape potentials as self-interacting potentials of a scalar field and study
the evolution in the effective description of LQC.

6.3.1 Double well

Let us consider a landscape potential as shown in Fig. 6.1. The point ‘A’ in this figure corre-
sponds to positive part of the potential from where the field begins to roll down and enters the
AdS well in the further evolution. We consider this as one of our initial conditions. We also
consider the initial conditions on the field such that the field begins at the bottom of the AdS
well denoted by ‘C’. The points ‘B’ and ‘D’ denote the two zeros of the potential and ‘E’ marks
the position of the positive local minimum corresponding to a dS vacuum. The vacuum ‘C’ of
the potential corresponds to negative potential and would give rise to negative energy density.
This vacuum is referred as the AdS vacuum. The second vacuum, denoted by ‘D’ has a positive
potential which would mimic a positive cosmological constant (dS) vacuum. In order to model
such a potential, we consider the following polynomial expression

V (φ) = Vo

((
φ2

α2
− δ
)2

+
β

α
φ

)
, (6.19)

where the parameters α, β and δ determine the shape of the potential; α controls the horizontal
distance between the two local minima of the potential, β governs the vertical distance between
the two local minima and δ governs the position of the V |φ=0 for given values of α and β.
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Figure 6.1: Asymmetric double well potential. Point ‘A’ shows the position of one of the initial
conditions when the field starts rolling down from the positive part of the potential and enters
the AdS well in future evolution. Points ‘B’ and ‘D’ denote the zeros of the potential, ‘C’ marks
the AdS vacuum and ‘E’ shows corresponds to the dS vacuum where the value of the potential
is positive and locally minimum.

An important feature of the potential is that one of the minima corresponds to a negative
potential energy which, under right initial conditions, gives rise to a phase of negative energy
density. If the field spends some time in the minimum of the potential then it mimics an AdS
like situation with almost constant negative energy density. This happens when the scalar field,
φ is stuck in the lower minimum of the potential with a small kinetic energy. In the same way
if the field is stuck in the positive side of the potential with a small field momentum, it will
correspond to a de-Sitter (dS) like spacetime with a constant positive energy density. The value
of the “effective cosmological constant” in this model can be controlled by changing the value
of the magnitude of the potential Vo. The dynamics of the field in this potential has interesting
phenomenological features due to AdS and dS like phases. In the classical theory, during the
AdS phases there is a big-crunch like singularity and the spacetime will collapse into singularity.
Therefore, once the field comes into the negative potential regime the spacetime has no escape
but to collapse into big-crunch. In loop quantum cosmology, however, there is a well defined
mechanism to surpass the big-crunch type singularity and evolve into an expanding branch.

The matter Hamiltonian for the scalar field under the potential eq. (6.19), can be given as

Hmatt =
p2
φ

2 p3/2
+ p3/2 Vo

((
φ2

α2
− δ
)2

+
β

α
φ

)
. (6.20)

In the following, we will solve the effective dynamical equations for the above matter Hamil-
tonian. The set of equations 6.11 to 6.14 form a well posed initial value problem. That is,
by providing initial conditions on (p, c, φ, pφ) at a given point of time t = to, the state of
universe at a later time t can be computed. Since, the initial conditions must satisfy the effec-
tive Hamiltonian constraint, we provide the initla values of three of the variables and calculate
the initial value of the remaining one variable from the vanishing of the effective Hamiltonian
constraint, Heff ≈ 0. Typically we provide p(0), φ(0), and pφ(0) and calculate c(0) from the
effective Hamiltonian constraint. We investigate the numerical evolution by proving the initial
conditions on the scalar field at two different places in the landscape potential. In the first, the
field is considered to roll down from a positive part of the potential (corresponding to point ‘A’),
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Figure 6.2: This figure shows the evolution starting from the left of the AdS vacuum of the
landscape shown in Fig. 6.1. Figures a, b, c and d respectively show the evolution of the scalar
field, potential, equation of state of the scalar field and the scale factor. It is clear from this
figures that in the AdS phase, instead of big-crunch singularity, there is a non-singular bounce.

and in the second, the field starts to evolve from the bottom of the AdS well. The form of the
dynamical equations are too complicated to be solved analytically, therefore we will solve them
numerically.

Evolution in double well potential: initial conditions at ‘A’
In this subsection, we give the initial conditions when the field is high up in the potential so

that the field is not in the AdS vacuum in the beginning, i.e. the field is near the point A shown
in the Fig. 6.1. As the further evolution takes place, the field rolls down and crosses point ‘B’.
During this process, the field loses its kinetic energy due to Hubble friction as the scale factor
expands. As the field enters the negative part of the potential near the AdS vacuum, it has a
very small kinetic energy, so it spends some time at the bottom of the potential, corresponding
to point ‘C’. During this phase, as shown in Fig. 6.2(a), the scalar field takes almost constant
value between t ≈ 200 and t ≈ 1000. There, the negative potential energy dominates the kinetic
energy and the total energy density of the field remains almost constant, as shown in Fig. 6.2(b),
where the potential is almost constant negative as long as the field remains close to the bottom
of the potential. The equation of state of the scalar field remains almost constant at w = −1 in
this duration (Fig. 6.2(c)), mimicking a negative cosmological constant. Due to this, the scale
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Figure 6.3: This figure shows the evolution of the energy density of the scalar field as the bounce
takes place. The plot is zoomed in near the bounce in order to show the smooth evolution. It is
clear to see that unlike in the classical theory where the energy density would have diverged to
infinity, in LQC it remains finite throughout the evolution. The value of energy density shown
in this figure is in the units of Planck density ρPl

factor starts to contract and the Hubble rate becomes negative.
As long as the value of Hubble friction is small enough the scalar field dwells around the AdS

vacuum for a finite duration. As the re-collapse takes place (shown in Fig. 6.2(d)), the kinetic
energy of the field increases again due to anti-friction originating from the negative Hubble rate.
As a result, the field starts to roll up with a high kinetic energy. In the further evolution, as soon
as the energy density of the field becomes Planckian, the quantum geometric effects come into
dominance and the universe undergoes a non-singular bounce, as shown in Fig. 6.2(d). Following
the bounce, the Hubble rate becomes positive again, and its value increases rapidly, pushing the
scalar field quickly to the positive part of the potential. If the kinetic energy is high enough,
the scalar field shoots into the positive well of the potential, as shown in the Fig. 6.2. In this
phase of the evolution, the scale factor expands due to the positive Hubble rate and the field
slows down, this time getting trapped into dS vacuum. In the dS vacuum state, the scale factor
undergoes exponential expansion and the due to high Hubble friction the field remains in the
dS vacuum, undergoing inflation during the rest of the evolution.

Thus, it is clear from the above discussion and Fig. 6.2 that in the effective dynamical de-
scription of LQC, there is a non-singular and smooth transition from AdS to dS vacuum. It is
also important to note that the energy density of the scalar field remains finite throughout the
evolution. Fig. 6.3 shows the evolution of energy density of the scalar field close to the bounce
as the transition from AdS to dS vacuum takes place. It is evident from the figure that, unlike
in the classical theory where the energy density would have diverged, in LQC the energy density
remains bounded. As discussed in chapter 2 this is distinguished feature of LQC, that all the
curvature scalars always remain finite.

It is worth mentioning that, the initial conditions are a little fine tuned, in order for the field
to roll down and spend some time at the bottom of the AdS vacuum. However, the behavior
described above remains for a small perturbation around the initial conditions. As shown in
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Figure 6.4: This figure shows the dynamical phase trajectories of the scalar field at late times
when the field climbs up to the positive part of the potential. Different trajectories correspond
to different initial conditions on the value of the scalar field velocity, φ̇. It is clear from the plot
that the terminal dS phase is obtained for a range of initial condition. This implies that dS
vacuum is a future attractor for such solutions.

Fig. 6.4, it also turns out that the dS vacuum phase is a future attractor for all initial such
conditions for which the evolution takes place according to Fig. 6.2. It is also evident that the
dynamical trajectories corresponding to different initial conditions tend to the dS vacuum in
their future evolution.

Fig. 6.5 shows an interesting phenomenological case for the double well landscape potential.
As compared to the evolution shown in Fig. 6.2, the scale factor undergoes two cycles of recollapse
while the scalar field oscillates in the AdS well. It turns out that after the first bounce, the
scalar field does not have sufficient kinetic energy to cross the barrier between AdS and dS
vacua. However, during the second cycle, the field develops enough kinetic energy to transit
to the dS vaccum. Similarly, the initial conditions can be fine tuned to obtained more cycles
of recollapse before transiting to dS vacuum. By tuning the parameters of the potential, one
may also give an initial condition such that the field never shoots off to the positive part of the
potential and keeps oscillating around the AdS vacuum. In this way the evolution of spacetime
under the landscape potential in LQC has rich phenomenology.

Evolution in double well potential: initial conditions in the AdS vacuum
So far we discussed the evolution of the field in a double well potential (as shown Fig. 6.1)

when the initial conditions are given near the point ‘A’. That is, the field begins to roll down
from a positive part of the potential, out of the AdS well. Let us now consider initial conditions
so that the field starts its evolution from the bottom of the AdS well with a very small kinetic
energy. Fig. 6.6 shows the evolution of the scalar field and the corresponding scale factor. It
is evident from Fig. 6.6(a), that in the further evolution, as the recollapse happens the field
gains sufficient kinetic energy. Due to this, the field comes out of the AdS well and, if the
kinetic energy is sufficient, settles in the dS well (corresponding to point ‘D’). In the course
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Figure 6.5: This figure shows the an example of evolution when the field spend more time in
the AdS well while the scale factor undergoes two cycles of recollapse and bounce. After these
two cycles, the field makes a transition to dS vacuum.

of this evolution, the scale factor undergoes a recollapse as long as the field dwells in the AdS
well. Following the recollapse, as the curvature of spacetime becomes Placnkian, the quantum
geometric effects become prominent and the scale factor goes through a non-singular bounce.
In the further evolution, as shown in the Fig. 6.6, as the field settles in the dS vacuum, while
the scale factor undergoes an exponentially expanding phase.

6.3.2 Triple well

We now consider a triple well potential in landscape which has one AdS vacuum and two different
dS vacua. In order to model such a landscape we consider the following form:

V (φ) = Vo

((
φ2

α2
− δ
)3

+ ν

(
φ2

α2
− δ
)2

+
β

α
φ+ Ω

)
, (6.21)

The landscape given by the above equation has the shape as shown in the Fig. 6.7. We provide
the initial conditions in the positive part of the potential on the left of the AdS vacuum. The
scalar field is taken to be rolling down the potential so that in the future evolution the field
will pass through the AdS vacuum. As compared to the double well landscape discussed in the
previous section, there are two possible end states in the present case. That is, after the field
comes out of the AdS well, it can either settle in the first dS vacuum (dS(I)) or to the second
higher false dS vacuum (dS(II)). Whether the field ends up in dS(I) or dS(II) depends on the
magnitude of the potential and the initial velocity of the scalar field. We will now solve the
equations for motion for the landscape potential given in eq. (6.21), and obtain transitions to
both the dS vacua, namely dS(I) and dS(II).

The initial evolution of the scalar field is similar to that in the case of double well potential.
As the field rolls down to the AdS well, the scale factor begins to contract. In the further
evolution there is a non-singular bounce, and the scale factor bounces from a finite non-zero
value. During the bounce, the field gains a lot of kinetic energy owing to the anti-friction caused
by negative Hubble rate. After the bounce, the field either may roll back in to the AdS well
(which happens if the kinetic energy is not sufficient), or climb up the potential all the way to
the positive hill. From this moment onwards, if the field has enough kinetic energy, it passes
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Figure 6.6: This figure shows the an example of evolution when the initial conditions are provided
at the minimum of the AdS well corresponding to the point ‘C’ in Fig. 6.1. It is clear to see that
the field following a non-singular evolution, ends up in the dS vacuum. During this evolution
the scale factor undergoes one cycle of recollapse in the AdS phase.
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Figure 6.7: This figure shows an example of a triple well landscape. The negative minimum
corresponds to the AdS vacuum while the two positive maxima show two different dS false
vacua.
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Figure 6.8: This figure shows the dynamical phase trajectories of the scalar field at late times
when the field climbs up to the positive part of the potential. Different trajectories correspond
to different initial conditions on the value of the scalar field velocity, φ̇. It is evident from the
figure that there are two possible future attractors for these class of solutions. Some of the
trajectories end up into first dS vacuum (denoted by dS(I)) and others into second dS vacuum
(denoted by dS(II)).

through the dS(I) vacuum and sits in the dS(II) vacuum. Otherwise, the field will settle down in
the first de-Sitter well, i.e. dS(I).

Fig. 6.8 shows the phase diagram of the dynamical trajectories of the scalar field, in the
triple well landscape potential shown under consideration. Different trajectories in this phase
plot correspond to different initial values of the scalar field velocity, φ̇(0). It is evident that in
the future evolution, some of the trajectories end up in the first de-Sitter vacuum dS(I) while
others in the second vacuum dS(I). In this way, the two de-Sitter vacua are the future attractors
of the corresponding dynamical trajectories. Let us now analyze the time evolution of the scalar
field and the scale factor as the field passes through the landscape potential.

Fig. 6.9 shows the evolution of the scalar field and the corresponding scale factor for two
different situations. In one of these situations, the field makes a transition from the AdS vacuum
to the first dS vacuum (dS(I)), and in the other case the field ends up in the second dS vacuum
(dS(I)). The evolution of the corresponding scale factors show that during these transitions,
the universe undergoes a non-singular bounce instead of falling into big-crunch singularity. As
a result the scale factor bounces from a non-zero finite value. During the entire evolution the
energy density and the expansion scalar remain finite, which signals the avoidance of curvature
singularity in the course of ‘AdS − dSi’ vacuum transitions. Fig. 6.10 shows two examples of
the evolution where the the scale factor undergoes two cycles of AdS recollapse, before the
scalar field makes a transition from the AdS vacuum to one of the dS vacua. The solid curve
corresponds to the transitions to dS(II) and the dotted curves shows the evolution when the end
state of the field is dS(I) This happens because the field does not have enough kinetic energy at
the end of the first cycle to climb up the potential. In this way, by tuning the initial conditions
one can obtain more than one AdS cycles before making the transition to dS vacuum.
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Figure 6.9: This figure shows two examples of evolutions in triple well landscape potential. The
solid (red) curve corresponds to the transition from AdS to dS(I) and the dashed (blue) curve
shows the transition from AdS to dS(I). The figure (a) shows the evolution of the scalar field
and (b) shows the corresponding scale factor which undergoes a bounce while the field makes a
transition from AdS to one of the dS vacua. It is evident from the figure that in the beginning
of the evolution, the scalar field spends some time in the AdS vacuum and then depending on
the initial conditions and the parameters of the potential there is a non-singular transition from
the AdS vacuum to one of the false dS vacua.
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Figure 6.10: This figure shows the an example of evolution when the field spend more time in
the AdS well while the scale factor undergoes two cycles of recollapse and bounce. After these
two cycles, the field makes a transition to dS2 vacuum.
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It is evident from the results present above that the quantum gravitational effects coming
from the discrete quantum geometry of LQC that make possible these transitions in a smooth
fashion without encountering any curvature singularity. It is to be noted that the quantum
gravitational effects come into play only when the energy density is Planckian. Far away from
bounce, when the curvature is very small and the energy density is less than a percent of the
maximum allowed energy density, the quantum geometric effects are too feeble to make any
difference between the effective trajectory of LQC and the classical theory.

It is now clear from the discussion of above two landscape potentials, namely a double and
a triple well, that, unlike the classical theory, in LQC there is a smooth non-singular transition
from AdS vacuum to dS vacua, without meeting big-crunch. This result can now be generalized
to any such landscape with more than one well. The LQC effects are visible only when the
energy density becomes Planckian. Such a situation arises whenever, the scale factor undergoes
re-collapse (in our case while passing through the AdS phase). So, in any generic landscape the
LQC effects will always resolve the big-crunch singularity [107]. In this section, with the help
of numerical solution, we have shown that following the bounce, there are transitions possible
from AdS to dS vacua. However, it is possible that for some initial conditions the field gets
trapped inside the AdS well and oscillates for more than one cycle of AdS recollapse before
making transition to dS vacuum In the analysis presented in this section, we have given the
initial conditions out of the AdS well where the potential of the landscape takes a positive
value. Such initial conditions can be generated by considering a more general landscape with
several well of which the ones discussed here are a part.

6.4 Discussion

In the multiverse scenario, it is an important issues to understand the way a bubble universe
makes a transition from an AdS phase to a dS phase, which are described by various vacua in
the landscape potential. The metric inside such a bubble universe is given by that of an open
FRW model. In the classical theory, a bubble which originates in an AdS phase encounters the
big crunch singularity in future, and the evolution stops making the transition to a dS phase
impossible. Understanding of such transitions are also crucial in the context of defining a local
measure proposed in Refs. [177, 178, 179]. In this proposal, the measure is defined with respect
to an eternal observer, also called a “watcher”, associated with a time like geomdesic. This
proposal, however, suffers a problem of big-crunch singularity when inside an AdS bubble. In
order for the watcher to continue collecting information, he must evolve through the big-crunch
in a non-singular fashion. There are a few proposals to get around this issue [177, 178], but they
remain an approximate descriptions [179]. Unfortunately, there is no known mechanism in the
classical theory to dynamically resolve singularities. Moreover, near the big-crunch singularity
the spacetime curvature becomes Planckian, quantum mechanical effects become prominent
and as a result, the classical general relativity can not be trusted anymore. It is believed that
quantum gravitational effects can given rise to a nonsingular evolution through the big crunch
opening the possibility of the transition to a dS phase.

In order to study the resolution of singularity and a smooth transition from AdS phase to
a dS phase we considered the evolution of the model in the effective description of LQC. We
construct two different types of potentials, representing a double and a triple well landscape.
With the help of explicit numerical simulations we show that, unlike in the classical theory, the
big-crunch singularity is resolved in LQC. Resolution of big-crunch changes the global structure
of multiverse, as well as providing the watcher a safe passage from AdS to dS vacuum. In the
numerical simulations of the double well landscape we consider two types of initial conditions,
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first when the scalar field begin to roll down from a positive part of the potential, and second
when the field is already inside the AdS well. In the first type of initial conditions the field
enters the AdS well in future evolution. In both the cases, the numerical simulations show
that there is a non-singular smooth transition from AdS to dS phase, if the field builds up
sufficient kinetic energy during the bounce. We have also shown examples of simulations where
it takes two AdS cycles for the field to transit to the dS phase, giving rise to a ‘AdS-AdS-dS’
transition. In the triple well potential landscape we have considered one AdS vacuum with
negative potential and two dS vacua with positive potential. As compared to the double well
landscape, there are two different possible end states from the scalar field in the triple well,
i.e. the two de-Sitter phases dS(I) and dS(II). The numerical simulations show that, like in the
double well, there are transitions from AdS to dS phases. We have considered the transitions
to both of the dS phases in the numerical simulations presented here. It turns out that there
are initial conditions for which there are two AdS cycles before the field settles in one of the dS
phases. For these initial conditions, there are two different future attractors corresponding to the
two dS vacua, portrayed in the dynamical trajectories of the field. Thus, we see that quantum
geometric corrections in LQC resolve the big-crunch singularity occurring inside a bubble in the
AdS phase. The non-singular evolution across the the big- crunch enables one to extend the
geodesics across the big crunch. This provides the ‘watcher’ a safe transition from AdS to dS
phase as well as opens up promising avenues to address the measure problem in cosmology.

In this chapter, we focused only on the qualitative aspects of the problem. In order to
better understand the proposal of the “watcher” and define a local measure with respect to
the non- singular evolution in due to the quantum geometric effects one needs to study the
probabilities of these transitions and the associated rate equations. This will require the study
of the evolution of states in the influence of the landscape potential, along the similar lines of
the studies presented in chapter 4. At present this is an open problem which requires a careful
attention.
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Chapter 7
Conclusion

One of the main goals of studying quantum cosmology is to understand the evolution of the
early universe in the Planck regime where the classical description of general relativity fails to
be reliable, and cure the problem of cosmological singularities inherent in the classical theory.
Additionally, it is believed that quantum cosmology will also shed light on how quantum gravity
corrections in the deep Planck regime lead to conditions suitable to generate the current large
scale observable universe. As described in this thesis, LQC is such an approach to quantum
cosmology, which resolves the classical singularities and provides an excellent framework to gain
insights to various issues related to the Planck scale physics. The main ingredient of LQC is
the fundamental discreteness of the spacetime geometry predicted by LQG, a feature that is
responsible for the quantum difference evolution equations. The discrete quantum geometry of
spacetime hence obtained, leads to modifications in the classical Friedmann and Raychaudhuri
equations. An important feature of these corrections is that they become prominent only in the
Planck regime. In the classical limit, when the spacetime curvature is very small, the quantum
corrections are negligible. In this way, while introducing quantum gravity correction in the deep
Planck regime, the infrared limit of LQC is GR.

In LQC, the classical singularities such as the big bang and the big crunch are resolved
via a non-singular quantum bounce, which is characterized by finite non-diverging curvature
scalars. For example, in a homogeneous and isotropic spacetime the energy density is found to
be bounded by a universal upper maximum. Similarly, in the presence of anisotropy such as in
Bianchi I spacetime, both the energy density and the shear scalars have universal upper maxima.
The first results on the quantum bounce were obtained for a flat FRW model in the presence of
a massless scalar field [61, 62], by numerically evolving sharply peaked states that correspond to
large macroscopic universe at late times. Since then, the occurrence of the quantum bounce has
been confirmed via numerical simulations of sharply peaked states in a variety of cosmological
models. As an important feature of these simulations is that the physics of singularity resolution
and quantum bounce can be captured by the effective description of LQC, which incorporates
the leading quantum corrections. Since the effective theory is easier to work with, it provides
an excellent framework to explore phenomenological implications of the singularity resolution in
various cosmological models for universes that become classical at late times. In this thesis, we
focused on two aspects of the quantum bounce: Firstly, the numerical aspect where we studied
the numerical evolution of states in the flat FRW model in the presence of a massless scalar
field for various classes of states and in the presence of a negative potential which gave rise to a
cyclic like behavior. Secondly, in the phenomenological aspect of the analysis, we considered the
effective description of Bianchi I spacetime to study the phenomena of Kasner transition and
inflation, as well as explored the AdS-dS transitions in a landscape scenario. In the following
we summarize our main results and present future outlooks.

It is apparent from the discussion in this thesis that numerical techniques are necessary
to understand the full quantum evolution described by the difference equation in LQC. The
early numerical efforts in LQC were aimed towards investigating the resolution of the classical
singularity by studying the evolution of very sharply peaked semi-classical states, which corre-
spond to large macroscopic universes at late times. The numerical results show that in LQC the
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evolution of such universes is non-singular. These results have been also confirmed via exactly
solvable model in a particular case of the flat FRW model with a massless scalar field. Such
analytical solutions are extremely rare to find because of the complicated form of the difference
equation. The existence of an exactly soluble model in the case of massless scalar field ensures
the occurrence of bounce for an arbitrary choice of state. However, it does not guarantee the
same if one chooses a slightly different form of the quantum Hamiltonian constraint based on a
different factor ordering, such as the one considered in [62] where numerical methods are abso-
lutely necessary to obtain physical solutions. Moreover, exact solutions are extremely difficult
to obtain for the matter sources other than the massless scalar field. In such cases where the
analytical solution is not available one has to rely on numerical methods to solve the quantum
Hamiltonian constraint. In the numerical aspects of this thesis our focus was to develop an
efficient numerical infrastructure for the simulation of loop quantum universes corresponding to
various kinds of initial states and in the presence of more general matter fields, and utilize it
to probe fine questions regarding the robustness of the quantum bounce and the validity of the
effective description for an arbitrary choice of initial states.

However, as we discussed in this thesis that a detailed numerical investigation of the evolution
of widely spread states, non-Gaussian states and states that bounce close to the Planck volume,
which are critical in understanding new physics at the Planck scale, is computationally very
challenging. For example, a typical simulation of a sharply peaked state which bounces at
1600VPl takes about 4 minutes on a modern workstation, whereas a stable simulation of a widely
spread state which bounces at 20VPl would require 1023 years on the same workstation assuming
it has enough memory to store the necessary data as well. The computational challenges for the
simulation of non-Gaussian states are of similar nature. These limitations become even more
intractable when considered anisotropic spacetime which has more spatial degrees of freedom. In
order to tackle these computational challenges and perform the simulations in a more accurate
and efficient way we developed the ‘Chimera’ scheme. With the help of the Chimera scheme
the simulations which would have taken 1023 years can now be performed within few hours on a
similar modern workstation. Various convergence and accuracy tests showed that the Chimera
scheme is robust.

An important feature of the LQC bouncing model with a massless scalar field shown analyt-
ically [63], numerically [62] and in the effective description [107], is the existence of a universal
upper bound on the energy density ρmax ≈ 0.41ρPl. All the previous numerical simulations
performed for the sharply peaked showed that the bounce actually does happen at the energy
density very close to ρmax. The detailed numerical investigation using the Chimera scheme in
thesis revealed that ρmax is only an upper bound, and the actual energy density at the bounce
may be significantly lower than that if one considers states with large relative fluctuations for
example squeezed states [145]. This has important implications regarding the initial conditions
on the matter field at the bounce. For example, in the recent work on quantum gravitational
treatment of the inflationary paradigm for a quadratic potential in LQC[128], the initial condi-
tions on the scalar field were obtained by assuming that the bounce happens at the maximum
energy density and observational consequences of LQC were discussed. In this scenario there
may be further potential corrections because of the fluctuation dependent energy density at the
bounce.

Further, most of the phenomenological studies and the investigation of the observational con-
sequences of LQC are based on the effective description. As we discussed in thesis, the effective
description is derived through a choice of appropriate sharply peaked Gaussian states. Another
assumption involved in the derivation of the effective theory is that the volume observable is
always much larger than the Planck volume. The predictions from the effective description were
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in excellent agreement with the numerical results obtained in Ref. [62]. In these simulations,
the initial states were sharply peaked and the bounce volume was of the order of 1000 Planck
volume. These conditions are in agreement with the assumptions made in the derivation of the
effective description. As a result an important feature of non-singular evolution, the universal
upper bound on the energy density, turn out to be the same as that in the effective theory as
in the numerical simulations of Ref. [62] and the exactly solvable model given in Ref. [63]. We
performed a careful analysis of the validity of the effective description for a variety of initial
states beyond the underlying assumptions made in its derivation.In such situations, that is when
the bounce happen close to Planck volume and the states are not so sharply peaked, we found
significant differences between the predictions of the effective description and LQC. Finding such
departures between the effective and the full LQC evolution, sets the stage to compute more
refined corrections to the modified Friedmann equations as well as understand the robustness of
previously found phenomenological results on quantum bounce in various cosmological setting.
Such an exercise will also be useful in understanding finer details of the novel results found in
relation to the pre-inflationary era in LQC [128, 129].

Based on the results obtained from the numerical simulations we can conclude that the ef-
fective description remains a very good approximation to LQC for sharply peaked states which
become semi-classical at late times and correspond to large macroscopic universe. In the phe-
nomenological aspect of the thesis we used the effective description of LQC to gain insights on
some of very interesting physical situations both within and beyond loop quantum cosmology.
In particular, our main focus was the Bianchi I anisotropic spacetime with various matter fields,
and open FRW spacetime describing the eternal inflation in a landscape scenario. Since, the
qualitative behavior of the quantum bounce does not depend on the choice of states, most of
the qualitative features of the phenomenological studies

Anisotropic spacetimes, such as Bianchi I model, introduce more degrees of freedom com-
pared to the isotropic spacetimes. Expansion of the whole spacetime is now governed by both
the matter energy density and the anisotropic geometric shear scalar as well as their mutual
interplay. The presence of anisotropy gives rise to non-zero Weyl curvature due to which the
physics is much richer. For example, the classical singularity can also be characterized by a
diverging shear scalar in addition to the diverging matter energy density. As discussed in this
thesis, during the approach to the classical singularity, the geometry of the spatial section can
be of various types, namely, point, barrel, cigar and pancake depending on whether the scale
factors in various directions approach zero at the same time or few of them diverge while others
tend to vanish [164, 165, 153, 136]. In a quantum theory, however, these singularities are re-
solved. In particular, as we have discussed, the singularity resolution happens via a nonsingular
bounce which occurs due to the underlying discrete quantum geometry, and bridges two clas-
sically disjoint branches of continuum spacetime. The relation between the physics on the two
sides of the bounce in the isotropic spacetime has been explored in detail, where due to isotropy
only point like approach to the classical singularity is possible. This changes in the presence
of anisotropy due to the possibility of forming various geometric structures as discussed in the
previous paragraph. We found that the Kasner exponents across the bounce vary depending on
the matter and the anisotropy content of the spacetime, giving rise to the phenomena of Kasner
transition. Based on the anisotropy parameters of the spacetime there is a definite selection
rule to these transitions. In the classical theory such transitions are absent in the Bianchi I
spacetime, and are seen only in the presence of spatial curvature.

An important aspect of non-zero anisotropy that we studied in this thesis is the effect of the
presence of anisotropic shear on the occurrence of inflation in Bianchi I spacetime. Inflation
provides an excellent explanation of the homogeneity, isotropy and the flatness observed at the
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large scale in the present universe. However, various questions about the physics of the pre-
inflationary stage of the universe remain unanswered. In particular, in general relativity (GR),
inflationary spacetimes have been shown to be past incomplete [12] due to the classical singu-
larity, and little is known about the initial conditions and the geometry of the pre-inflationary
epoch. Various investigations, in the classical theory, have been performed to understand the
way presence of anisotropy may affect the onset of inflation in Bianchi I model It was, how-
ever, pointed out that the classical treatment of inflation in Bianchi-I spacetime suffers from
problems, especially in the pre-inflationary regime, due to the inconsistencies arising from the
failure of the classical framework to hold true in the deep Planck regime. Therefore, a proper
treatment of inflationary Bianchi-I spacetime requires a quantum theory of gravity [160, 161].
LQC lays out an excellent framework to study these issues, due to the non-singular nature of
the LQC Bianchi I spacetime [109]. In this thesis, we used the effective description of LQC to
answer the following important questions in a quantum gravitational treatment of the inflation-
ary paradigm in Bianchi I spacetime. We found that: (i) The amount of inflation in LQC varies
non-monotonically with the initial anisotropic shear at the bounce, (ii) isotropization takes place
when the spacetime becomes classical and follows the classical trajectory closely and, like in the
classical theory, isotropization is inevitable also in the inflationary LQC Bianchi-I spacetime, (iii)
like in the classical theory, there is a two attractor behavior in effective dynamics of Bianchi-I
spacetime, with a modification in the way the isotropic limit is taken, (iv) it turns out that in the
Bianchi-I spacetime sufficient amount of inflation can be obtained by starting at a significantly
lower value of the inflaton field at the bounce than in the isotropic LQC. This can potentially
have corrections to the observational signatures as computed in Ref. [127, 128], where potential
LQC corrections in the cosmic microwave background (CMB) power spectrum were computed
based on the values of the inflaton field at the bounce for a given number of e-foldings during
the inflationary phase.

Another interesting paradigm of evolution of universe is that of eternal inflation. In an
eternally inflating model, the universe inflates in a false vacuum producing a vast volume of
the spacetime [172, 173, 174]. Different parts of this vast spacetime inflate in different false
vacua, giving rise to a landscape of numerous vacua. At the scale of the entire vastness of
the spacetime, inflation goes on forever, while there are “pocket universes” where inflation
ends locally. This picture of a big universe containing several pocket universes is often named
“multiverse”. The model of eternal inflation naturally arises from the landscape scenario as
a low energy approximation in string theory. Transitions of the configuration of the compact
manifold in the string theory, results in transitions between different vacua in the 4-dimensional
effective field theory description. A metastable vacuum with a positive minima leads to a de-
Sitter (dS) evolution, and one with a negative minimum results in an anti-deSitter (AdS) phase
of evolution in the landscape. The evolution of a bubble in an AdS vacuum encounters the
big crunch singularity in future, as due to the negative potential energy of the scalar field the
bubble universe recollapses. Due to this, classically, an AdS pocket universe terminates and
transition from AdS to dS is forbidden. As discussed in detail in this thesis LQC provides
a well defined mechanism through which the curvature singularities such as big bang and big
crunch are resolved, hence setting the stage to explore the possibility of non-singular AdS to dS
transitions in a landscape scenario. The issue of obtaining such non-singular transitions is also
important for a related problem of defining appropriate measures for computing the probability
of inflation to occur in an eternal inflationary multiverse [176]. One of the many proposals in this
direction is to define the measure with respect to a single observer sitting on a time like geodesic
[177, 178, 179]. Such a global observer is called a “watcher” who collects information and records
data in a prescribed manner [179]. Due to the big crunch singularity inside the AdS vacuum,
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the evolution of the watcher in classical GR stops and in such situations the proposal of defining
the measure with respect to a watch would break down. If non-singular transitions from AdS
to dS are allowed, an observer following the worldline of a contracting universe, then instead
of falling into big-crunch singularity, can smoothly transit from the contracting phase to the
expanding phase of universe without encountering any curvature singularity. We demonstrated
the application of the singularity free evolution in LQC to understand AdS-dS transitions in the
landscape scenario. Via explicit, numerical studies we showed that the big crunch singularity
that occurs in the landscape scenario in the classical theory, is resolved in the effective dynamics
of LQC. In addition to giving a singularity free resolution, the results of this study has important
implications in defining a local measure based on a time like observer in the multiverse.

Outlook: There are several natural extensions of the work presented in this thesis. The quantum
Hamiltonian constraint in the flat isotropic FRW model considered in this thesis has uniform
discreteness in the volume variable. In a more general model the spatial discreteness may not
be uniform, which introduces additional numerical challenges [191, 96]. Examples of such mod-
els are anisotropic spacetimes and the interior of a Schwarzschild black hole. In these models
the numerical evolution of states and the study of the resolution of classical singularities would
require developing new techniques. In addition, we will need to examine the CFL stability con-
ditions for the non-uniform spatial discreteness. Another important open issue in the isotropic
models is to study the evolution in presence of a general potential. In the presence of a potential
the scalar field may not behave monotonically. As a result, the scalar field will not be a good
choice for the emergent time. In such a scenario one can either try to find a suitable variable for
the emergent time, or consider an additional massless scalar field which can then play the role
of time. In the latter case, due to the presence of an additional field the evolution system would
resemble a 2+1 dimensional system which clearly will be computationally more challenging.
These problems remain to be addressed so far and open new avenues for future numerical work.

The evolution of states in more general models pose several technical challenges. To give an
example, let us consider a Bianchi I spacetime with a massless scalar field. In this case, although
one can deparameterize the quantum Hamiltonian constraint with respect to the massless field,
the evolution equation is very complicated. Moreover, the hyperbolicity and the stability prop-
erties of the evolution equations are not well understood even in the Wheeler-DeWitt theory.
In addition we need to better understand the selfadjointness properties and the spectrum of the
evolution operator in such spacetimes. Study of these models will in particular be important
to explore the effects of quantum geometry on the Mixmaster like behavior, Kasner transitions
and the classical chaos during a generic approach to a spacelike singularity. The numerical
simulations of the anisotropic spacetimes and investigations of the aforementioned issues is very
expensive. Due to the presence of three spatial directions the computational requirements in-
crease significantly as compared to the isotropic models. For example, the numerical simulation
of a sharply peaked Gaussian state in Bianchi I spacetime in the presence of a massless scalar field
would typically require approximately 100,000 core hours, which is clearly beyond the capabili-
ties of a workstation. For these simulations one would need to use high performance computers
(HPC), which would require writing scalable high performance numerical codes suitable for HPC
systems.

Another interesting avenue is the study of the dynamic resolution of singularity at the center
of a black hole in quantum gravity. According to the recent results of Ref. [40] the singularity at
the center of the black hole is resolved in loop quantum gravity. In this scenario the study of the
dynamical trajectories and the possibility of a quantum bounce has so far not been performed,
which would require a careful examination of the numerical properties of the evolution equation.
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Moreover, one may also need to develop new numerical algorithms. A related direction of study
is the investigation of the critical phenomenon in the collapse of scalar field in spherically
symmetric gravity, which results in the formation of a black hole. It has studied in general
relativity in detail but the a quantum description of the collapse is still missing. In the classical
theory the mass of the resulting black hole follows an empirical power law. According to this law
the mass of black hole formed is given via MBH ∼ (a−a∗)γ where a is a parameter of initial data
and a∗ is the critical value of the parameter at which the black holes start to form Ref. [192].
The constant γ is apparently a universal scaling exponent. In the classical description of the
collapse, the mass of the final black hole formed is continuous function of the parameter of the
initial data i.e. there is no restriction on how small the mass of a black hole can be. Whereas, in
the quantum theory, due to quantum geometrical effects, there is a minimum value of black hole
mass M∗, called the mass gap, below which no black hole will be formed. A full investigation
of the scaling laws and the computations of the mass gap is a numerically challenging problem
which may also require advanced numerical concepts such as adaptive mesh refinement (AMR).

Most of the phenomenological studies and the investigations of the observation signatures of
LQC are based on the effective theory. The numerical studies of various states performed in this
thesis show that depending on the relative fluctuations of the states the difference between the
predictions of LQC and the effective description can be significant and the energy density at the
bounce can be smaller compared to the maximum allowed value. Naturally, these difference will
give rise to corrections in the observational signatures of the quantum geometry, for example
computed in Ref. [128]. At the moment it is an open issue. Another related problem is to study
the evolution of the matter perturbation on the spacetime background corresponding to widely
spread states, and compute the primordial power spectrum at the end of inflation. One can then
evolve the primordial power spectrum to obtain the CMB power spectrum and compare them to
the observational data. Lastly, a complete quantum treatment of the scalar field perturbation
in an inflationary Bianchi-I anisotropic background may bring out more possible observational
signatures of loop quantum cosmology in the CMB.
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Appendix A:
Discontinuous Galerkin method

In this appendix we describe the main ideas behind Discontinuous Galerkin (DG) methods. We
will use the notation and the discussion present in the Ref. [193] which can be referred to for
further reading. In the following we will describe the DG method by taking a simple example
of the advection equations, a partial differential equation which is one order in both time and
spatial direction. The spatial domain of computation is divided into a number of elements which
are then discretized further using polynomials whose order is determined by the number of nodes
in each elements. The solution to the differential equation at each node of the element can be
written as a linear combination of these polynomials. Let us consider a one dimensional scalar
advection equation to demonstrate the basic steps involved in the implementation of the DG
scheme.

∂u

∂t
+
∂f(u)

∂x
= 0, x ∈ [L,R] = Ω, (1)

where f(u) = au and a is a constant. The numerical domain Ω is approximated by K non-
overlapping elements Dk

Ω ' Ωh =
K⋃
k

Dk, (2)

where x ∈ [xkl , x
k
r ] = Dk, and where xkr = xk+1

l (see Fig. 1). Within each element, the local
solution is approximated as a polynomial of order N = Np − 1:

x ∈ Dk : ukh(x, t) =

Np∑
n=1

ûkn(t)ψn(x) =

Np∑
i=1

ukh(x
k
i , t)`

k
i (x). (3)

Here ukh(x, t) denote the numerical approximation to the solution u(x, t) within element k. In
the first sum the numerical approximation is expressed in terms of an expansion in a polyno-
mial basis, where ψn(x) are the basis functions and ûkn are the coefficients. This is called the
modal form. In the second sum the numerical approximation is expressed in terms of a sum
of interpolating polynomials. Here a set of Np distinct nodes xki (see Fig. 1) are defined within
each element and the interpolating polynomials `ki (x) satisfies `ki (x

k
j ) = δij. This is called the

nodal form. In the following, we will only consider the nodal form. The global solution is then
approximated by the piecewise N -th order polynomial

u(x, t) ' uh(x, t) =
K⊕
k=1

ukh(x, t), (4)

i.e. the direct sum of the K local polynomial solutions ukh(x, t). Note that the global solution is
multi-valued at element boundaries.

We finally define the numerical residual

Rh(x, t) =
∂uh
∂t

+
∂f(uh)

∂x
(5)
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Figure 1: This figure illustrates the way the numerical domain Ω = [L,R] is split into 4 non-
overlapping 5th order elements D1, . . . ,D4. The black dots above (for D1 and D3) and below (for
D2 and D4) the coordinate line shows the location of the 6 nodes inside each 5th order element.
Notice that the nodes are not distributed evenly inside the element and that the boundary nodes
on neighboring elements have the same coordinates.

by inserting the numerical approximation to the solution uh(x, t) into the continuum (1). Since
the numerical solution has a finite number of degree of freedom, the residual Rh(x, t) can not be
zero everywhere (unless the continuum solution itself is an Nth order polynomial). To quantify
how small the residual is, it is natural to use a suitable defined inner product and norm. Within
element k, we define the local inner product and norm as

(u, v)Dk =

∫
Dk
uv dx, ‖u‖kDk = (u, u)Dk , (6)

and with this we define the global inner product and norm as

(u, v)Ω,h =
K∑
k

(u, v)Dk , ‖u‖Ω,h = (u, u)Ω,h. (7)

In a Galerkin method the choice is then made to require that the residual is orthogonal to all
the basis functions in which the numerical solution is expanded, i.e.

(Rh, ψn)Dk =

∫
Dk
Rh(x, t)ψn(x) dx = 0, 1 ≤ n ≤ Np. (8)

This is a local statement on each element and does not connect the solution between neighboring
elements. Since the interpolating polynomials can be expanded uniquely in the basis functions
an equivalent set of conditions can be written in nodal form(

Rh, `
k
i

)
Dk =

∫
Dk
Rh(x, t)`

k
i (x) dx = 0, 1 ≤ i ≤ Np. (9)

Eq. (9) results in Np equations for the Np unknowns ukh(x
k
i , t) within each element. Using inte-

gration by parts we find

(
Rh, `

k
i

)
Dk =

∫
Dk

(
∂ukh
∂t
− f(ukh)

∂`ki
∂x

)
dx+

[
f(ukh)`

k
i

]xkr
xkl
, (10)

where the surface term can be used to glue the solution in neighboring elements together. This
can be achieved by replacing f(ukh) in the boundary term in (10) by a numerical flux f ∗ that
depends on the solution on both sides of the boundary. This leads to the so called weak form
of the equations ∫

Dk

(
∂ukh
∂t
− f(ukh)

∂`ki
∂x

)
dx = −

[
f ∗`ki

]xkr
xkl
, 1 ≤ i ≤ Np, (11)
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where f ∗ at the right boundary of element k is a suitable function of both ukh(x
k
r) (from element

k and uk+1
h (xk+1

l ) (from element k + 1). Using integration by parts on the weak form of the
equations we obtain the strong form of the equations∫

Dk
Rh(x, t)`

k
i (x) dx =

[
(f(ukh)− f ∗)`ki

]xkr
xkl
, 1 ≤ i ≤ Np. (12)

It turns out that the choice of f ∗ is not unique. Often it can be tailored to be optimal for the
set of equations being considered. An often used expression for the numerical flux that works
well in many cases is the Lax-Friedrichs flux along the normal n̂

f ∗ = fLF(a, b) =
f(a) + f(b)

2
+
C

2
n̂(a− b), (13)

where (a, b) represents internal and external values, respectively and

0 ≤ C ≤ max

∣∣∣∣∂f∂u
∣∣∣∣ (14)

where the maximum has to be taken over all nodes in the element. For the simple advection
equation it can be proven that this choice of flux leads to a stable scheme. For C = 0 we have
a symmetric flux that just depends on the average flux on either side of the element boundary
(hence the name). For positive values of C the jump in the solution across the element boundary
is taken into account. For f(u) = au and C = |a| the Lax-Friedrich flux becomes an upwinding
flux in the sense that information is used only in the direction in which it is traveling. Inserting
now the expansion of the numerical approximation in interpolating polynomials from (3) into
the strong form of the equations (12) and rewriting in matrix form we find

Mk d

dt
ukh + Skaukh =

[
(aukh − (auh)

∗)`k(x)
]xkl
xkr
, (15)

where we have defined the solution vector ukh and interpolating polynomial vector as

ukh =
[
ukh(x1, t), . . . , u

k
h(xNp , t)

]
, `k(x) =

[
`k1(x), . . . , `kNp(x)

]
(16)

and the mass matrix1 Mk and stiffness matrix Sk are given by

Mk
ij =

(
`ki , `

k
j

)
Dk , Skij =

(
`ki ,

d`kj
dx

)
Dk
. (17)

Multiplying through with the inverse of the mass matrix (Mk)−1 and defining the differentiation
matrix Dkr = (Mk)−1Sk we find

d

dt
ukh = −aDkrukh +

(
Mk

)−1 [
`k(x)(aukh − (auh)

∗)
]xkl
xkr
. (18)

If we now form the 2-element boundary vector v = [v1, v2]T where v1 = (aukh − (auh)
∗)|xkr and

v2 = (aukh−(auh)
∗)|xkl (i.e. v contains the boundary terms of the element which are coupled to the

1This is just a name that has nothing to do with a gravitational mass.
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neighboring elements through the numerical Lax-Friedrich flux (auh)
∗) and use the properties

that `k(xkr) = δi1 and `k(xkl ) = δiNp to introduce the Np × 2 vector

b =


1 0
0 0
...

...
0 1

 (19)

we can rewrite the boundary term and obtain

d

dt
ukh = −aDkrukh + Lkv (20)

where the lift matrix Lk is defined as

Lk = (Mk)−1b. (21)

Given the differentiation matrix and the lift matrix, the RHS evaluation in the DG scheme
consists of construction of the boundary matrix (using e.g. the Lax-Friedrich flux) and then
performing matrix-vector multiplications to calculate the spatial derivative and the boundary
correction.

The above discussion provides a brief summary of the general idea behind the DG method.
There are still several technical details that needs to be addressed before it can be turned into a
working numerical algorithm. For example, we have not described how the nodal points inside
the elements are chosen (there is a reason the nodes are unequally spaced) and we have left out
any discussion of how to numerically construct the differentiation and lift matrix. For further
details, we refer the reader to [193].
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