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Cosmogenic neutrinos are expected to originate in the extragalactic propagation of ultra-high-
energy cosmic rays (UHECRs), as a result of their interactions with background photons. Due to
these reactions, the visible Universe in UHECRS is more limited than in neutrinos, which instead
could reach us without interacting after traveling cosmological distances. In this contribution,
we exploit a multimessenger approach by computing the expected energy spectrum and mass
composition of UHECRs at Earth corresponding to combinations of spectral parameters and mass
composition at their sources, as well as parameters related to the UHECR source distribution,
and by determining, at the same time, the associated cosmogenic neutrino fluxes. By comparing
the expected UHECR observables to the energy spectrum and mass composition measured at the
Pierre Auger Observatory above 1078 eV and the expected neutrino fluxes to the most updated
neutrino limits, we can constrain the parameter space of the properties of the potential sources of
UHECRSs, such as their cosmological evolution and maximum redshift. In addition, the fraction

of protons compatible with the data is also investigated in terms of expected neutrino fluxes.
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1. Introduction

Cosmogenic neutrinos are expected to be produced during the extragalactic propagation of ultra-

high-energy cosmic rays (UHECRs), as a consequence of their interactions with photon fields such
as the cosmic microwave background (CMB) or the extragalactic background light (EBL), where
the produced charged mesons subsequently decay, producing neutrinos. Due to these reactions, the
visible Universe in UHECRS is much more limited than what can be seen in neutrinos, which can
reach us without interacting in their extragalactic travel. Neutrinos can therefore bring information
on parameters relevant for UHECR source classes which are connected with the cosmological
distribution, as well as with the maximum redshift of the sources contributing to UHECRs.
In [1], a pure-proton scenario for UHECRs was used to constrain the source evolution and the
maximum redshift of the UHECR source class, through the associated cosmogenic neutrinos. The
aim of the present work is to update the results obtained in [1] by taking into account the most
up-to-date upper limits from the Pierre Auger Observatory, shown in [2] and [3]. In addition, here
we also explore scenarios where the mass fractions and the spectral parameters at the emission from
the sources are considered as free parameters, by taking into account the entire energy range across
and above the ankle for the fit of the energy spectrum and the mass composition, as done in [4].
The outcome in cosmogenic neutrinos is thus exploited to possibly constrain the characteristics of
UHECR source classes dominating different energy ranges.

The Pierre Auger Observatory [5] is currently the world largest array of detectors exploring
the energy spectrum, arrival distributions and composition of cosmic rays above about 10'7 eV. It
is located in the Pampa Amarilla, in the Province of Mendoza, Argentina. The observatory is a
giant hybrid detector combining water Cherenkov tanks known as the Surface Detector (SD) and
fluorescence telescopes known as the Fluorescence Detector (FD). The original design consisted
of an array of 1600 tanks separated by 1.5 km spread over an area of 3000 km?, overlooked by
24 fluorescence telescopes in four buildings at the edge of the array. The SD samples the lateral
distribution of particles and the time of arrival of the shower front, while the FD records the
longitudinal distribution profile of the extensive air shower (EAS). An extension deployed since
then includes a denser infill array with 61 extra SD stations with 750 m spacing over a 27.5 km? area
overlooked by 3 extra telescopes, designed to detect lower-energy showers down to 10!7 eV. With the
SD of the Pierre Auger Observatory we can detect neutrinos with energy between 10'7 eV and 10%°
eV from point-like sources across the sky. The identification is efficiently performed for neutrinos
of all flavors interacting in the atmosphere at large zenith angles, as well as for Earth-skimming
7 neutrinos with nearly tangential trajectories relative to the Earth. For more details on neutrino
searches with Auger, see [1] and [3].

2. The procedure

We assume UHECRS to be injected in the extragalactic space with a power-law energy spectrum
that depends on spectral index vy and rigidity cutoff R.y. The injection spectrum for a cosmic ray
of mass A follows
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Figure 1: Exposure of the SD of the Pierre Auger Observatory to UHE neutrinos [2] as a function of neutrino
energy for each neutrino flavor and for the sum of all flavors assuming a flavor mixture of v, : v, : vy =1
: 1: 1. The exposures to upward-going Earth-skimming v, only and to the downward-going of all flavors
including charged current and neutral current interactions are also shown. The exposures correspond to the
time range Jan 04 - Dec 21 (solid lines) and Jan 04 - Aug 18 (dashed lines).

where f4 is the CR primary mass fraction, z is the redshift of production, m is the evolution
parameter and fo (E, ZaRcy) is the cutoff function of the energy spectrum at injection defined as

(@)

1 E < ZsR
Jewt(E, ZARcyt) = { ( ARcuw)

exp(1 - Zj%cm) (E > ZARcw)

where Z4 is the electric charge. We use SimProp [6] to simulate the propagation through the
intergalactic medium and we consider Gilmore et al. 2012 fiducial (G12) [7] as EBL model. With
the same software, we get the cosmogenic neutrino flux associated to the corresponding cosmic-ray
flux. The total exposure &y (reported in Fig. 1, for the time range Jan 04 - Dec 21 with solid lines
and Jan 04 - Aug 18 with dashed lines) folded with a single-flavor flux of UHE neutrinos ¢(E, ) per
unit energy, area A, solid angle Q and time, and integrated in energy gives the expected number of
events for that flux:

Nevt:'/b; eot(Ey)¢(Ey)dE, . 3)

This number is then compared with the Feldman-Cousins factor [8] for a non-observation of events
in the absence of an expected background accounting for systematic uncertainties [9], to the aim of
evaluating the power of exclusion.

3. Results

The section is organized as follows: in Sec. 3.1, an analysis of a pure-proton scenario in which
all the parameters that characterize the spectrum are fixed is shown and then make predictions
about the achievable sensitivity of the Pierre Auger Observatory until Dec 35; also in Sec. 3.2, a
pure-proton scenario has been taken into account but in this case only the primary mass composition
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Figure 2: Constraints on UHECR source evolution models parameterized as oc (1+z)" for sources distributed
homogeneously up to a maximum redshift z;,,, and emitting protons following a power-law J(E) oc E~2
upto Epax =6 %1020 eV. The cosmogenic neutrino fluxes for each combination of m and zy,x Were obtained
with SimProp. The color code shows different levels of C.L. exclusion reported on the z-axis. The solid and
dashed lines represent the contours of 90% and 68% C.L. exclusion, respectively. Top panel: exposure from
Jan 04 to Dec 21; Bottom panel: exposure from Jan 04 to Dec 35 (considering running of the observatory
until Dec 35).

has been fixed, and the parameters that describe the UHECR spectrum, e. g. spectral index and
rigidity cutoff, have been obtained; in Sec. 3.3, we study the presence of a subdominant component
at energies above the ankle and, for this reason, we scale the proton component in the primary mass
composition; finally a mixed composition scenario has been analyzed in Sec. 3.4. We refer to the
energy spectrum and mass composition data of ICRC 2019 reported in [10].

3.1 Pure-proton scenario with fixed parameters

In this first analysis, only a pure-proton scenario was considered in which the spectral index
v of the UHECR proton spectrum at the sources is fixed to 2.5, and the maximum energy is cut at
Emax = 6 x 10?2 eV. We performed a comprehensive scanning of the parameters Zuyay (in the range
[1.0,5.0] with steps of 0.1) and m (in the range [2.0, 5.0] with steps of 0.1) of the source evolution
function: for each pair, the cosmogenic neutrino flux was obtained and, consequently, the expected
number of neutrino events considering the Eq. 3. In Fig. 2 (top), the obtained exclusion plot is
reported, corresponding to the exposure shown in Fig. 1 (solid line). We observe that the parameter
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Figure 3: Constraints on UHECR source evolution models as in Fig. 2 with exposure for the time range Jan
04 - Dec 21. Each (zmax, m) combination corresponds to the best (y, R.y) combination which fits the energy
spectrum above 1.5 x 10'8 eV.

space above the solid line can be excluded with a 90% confidence level (C.L.). When comparing
these results to the ones from [1], one should note that there are differences due to, apart from the
updated neutrino limits, the updated energy spectrum and the shape of the cutoff function in Eq. 2 as
well as the use of a different code for the simulation of the extragalactic propagation (CRPropa [11]
was used in [1]). In the bottom panel of Fig. 2, we report the exclusion plot re-scaling the exposure
for the time range Jan 04 - Dec 35, showing the benefit of the extended running of the Observatory
on the determination of UHECR characteristics, provided the fact that we do not observe neutrinos.

3.2 Pure-proton scenario with fitted parameters

In this section, we analyze again the case of a pure-proton scenario, but now the spectral index
v and the maximum energy of the protons En.x are not fixed. We performed a fit of the energy
spectrum measured by the Pierre Auger Observatory at energies above 1.5x 108 eV. A minimization
procedure is applied in the intervals y = [-2.0,2.5] and logio(Rcue/V) = [17.985, 19.985], while
we scan over the parameters space (zmax, ) as in the previous section. The corresponding results
are shown in Fig. 3. One can note a similar behaviour between the plot in the top panel of Fig. 2
and this plot, but the latter is the result of the fit of the spectrum in which the spectral parameters
that characterize the flux are not fixed as in the previous case. The fact that the excluded region is
smaller than the previous one, suggests that the fit procedure finds rigidity values much lower than
in the previous case. The rigidity is strongly correlated to the spectral index and these small values
of rigidity are thus reflected in the number of associated cosmogenic neutrinos.

3.3 Scaling of the proton component

We also want to explore the compatibility of our data with a proton component by reducing
the expected spectrum chosen in Sec. 3.1, by a factor Fy,. Such a proton component might have a
limited effect on the observed spectrum, but would strongly alter the expected cosmogenic neutrino
flux. This is because protons produce significantly more neutrinos when propagating through the
Universe than heavier nuclei of the same total energy, particularly if the latter were not accelerated
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Figure 4: Exclusion plot for the source evolution model parameter /m and the variable F}, < 1. The regions
above the colored lines corresponding to several values of zpn,x are excluded at 90% C.L. from the lack of
neutrino candidates in Auger data. We consider the same scenario as in Sec. 3.1.

significantly beyond the GZK energy threshold. The parameters describing the UHECR spectrum
in Eq. 1 are fixed as in Sec. 3.1 and the expected spectrum is re-scaled by the value F}, (a scan of
Fy, from 0.0 up to 1.0 with steps of width 0.01). Fig. 4 shows the F}, as a function of the evolution
parameter /n and the lines correspond to the 90% C.L. for different values of zy.x. It is evident that
as the value of zp,x increases, the capability to exclude a region of the parameters space increases.
For instance, corresponding to the energy of the ankle, a fraction of protons at Earth is found to
be around 20% [12]; this analysis allows then to exclude the source classes with zyax = 5.0 and
m > 4.0.

3.4 Mixed composition scenario

In this section, we analyze more realistic scenarios by taking into account both the energy
spectrum and mass composition measured by the Pierre Auger Observatory. We assume a model
consisting of two populations of extragalactic sources, one dominating at energies above the ankle
(high energy, HE), and another dominating at low energies (LE) as in [4]. The SimProp simulations
are made taking into account the PSB (Puget, Stecker and Bredekamp) model [13] for photo-
disintegration cross-section. We have adopted EPOS-LHC [14] as hadronic interaction model for
estimating the mass distributions in each energy bin. For the HE component, the minimization
procedure is applied in the intervals yyg = [—4.0,2.0] and log;o(Reune/V) = [17.0,20.0], while
for the LE component the intervals y g = [0.0,4.0] and logio(Rcure/V) = [19.0,22.0] were
chosen. In this case, also the mass fractions are not chosen a priori, but they result from the fits of
Xmax distributions measured by the Pierre Auger Observatory [4]. A scan over each combination
of (zmax, m) parameter space is performed for both the HE component and the LE component, with
both zp.x and m from 3.0 up to 5.0 with a step width of 0.2. The quality of the fit is evaluated
by minimizing the deviance D defined as a generalised y?, where the sum of the contributions
of the energy spectrum and mass composition are taken into account, as in [4]. Fig. 5 shows the
deviance as a function of the cosmological evolution of the two populations. For each population
the free fit parameters are the spectral index vy, the rigidity cutoff R, and the n — 1 mass fractions
fa (where the n nuclear species are 'H, 4He, N, 28Si and 56Fe). Thus, corresponding to each
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Figure 5: Deviance of the fit of the energy spectrum and mass composition as a function of the cosmological
evolution of the two populations.
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Figure 6: Confidence level as a function of the cosmological evolution of the two populations of UHECR
sources dominating the LE and HE regions.

combination (mygg, myg), all the parameters which are not shown are the ones that minimize the
deviance. One can note how the deviance increases for high values of mpyg, as anticipated in [4].
Finally, we compute the corresponding neutrino flux associated to each combination of parameters
for the HE and LE populations. In Fig. 6, we report the confidence level associated to the number
of cosmogenic neutrinos as a function of the cosmological evolution of the two populations. In this
case, the parameter space excluded at 90% C.L. corresponds to a region centered around myg = 4.0
and mpg > 4.6. We observe that in this region the spectral parameters that minimize the deviance
correspond to very high rigidity for the LE population which strongly contributes to the neutrino
flux. In conclusion, while the strong evolution of the HE population is disfavored due to the quality
of the fit of the spectrum and the mass composition, the white region in Fig. 6 can be excluded due
to the associated neutrino flux.
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4. Conclusions

In this contribution, we exploited a multimessenger approach by using the expected energy
spectrum and mass composition of UHECRs at Earth to determine the associated cosmogenic
neutrino fluxes for different scenarios. Thanks to the number of expected cosmogenic neutrinos, it
is possible to constrain relevant parameters of UHECRs considering the combinations of spectral
parameters and mass composition at their sources, as well as parameters related to the UHECR
source distribution. We updated the results obtained in [ 1] by taking into account the most up-to-date
upper limits from the Pierre Auger Observatory. We analyzed the case of a pure-proton scenario,
showing that this scenario allows us to constrain a wide region of parameter space (Zqx, )
through the use of the expected number of neutrinos, although it was already disfavored by other
measurements of the Pierre Auger Observatory. We analyzed how the power of exclusion changes
for a different amount of proton fraction at energies of the ankle. The proton component has a
limited effect on the observed spectrum, but it can be seen how the exclusion power obtained by
the non-observation of cosmogenic neutrinos depends on the choice of the parameters. In addition,
here we also explored scenarios where the mass fractions and the spectral parameters at the emission
from the sources are considered as free parameters, by taking into account the entire energy range
across and above the ankle for the fit of the energy spectrum and the mass composition. We put
together the information coming from the quality of the fit and the outcome in terms of the flux
of cosmogenic neutrinos and with this procedure we were able to constrain the characteristics of
UHECR source classes. We found out that the strong evolution of HE population is disfavored due
to the quality of the fit of the spectrum and the mass composition and strong evolution of the LE
population can be excluded with 90% C.L. thanks to the associated neutrino flux.
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