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The one-dimensional variable-mass Dirac equation is connected to various models used
throughout many branches of physics. An analog simulation of the equation in a spinor slow
light system allows experimental realizations of such models. This work concentrates on an
interesting model of historical importance that led to a prediction of charge fractionalization,
which in turn occurs due to the presence of a topologically protected zero-energy mode. After
describing how the model can be realized in a spinor slow light system, the current work explains
how the presence of the zero-energy mode can be verified from the dynamics of the spinor slow light.
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I. Introduction

The Dirac equation was the first successful attempt
at merging quantum mechanics and relativity [1]. The
relativistic wave equation predicted paradoxical effects
such as Zitterbewegung, a rapid oscillatory motion of a
Dirac particle, and Klein’s paradox, tunneling of a Dirac
particle through an infinitely long barrier. The cause
of these effects lies in the fact that the Dirac equation
allows both positive and negative energy states, or par-
ticle/antiparticle pairs as discovered by Dirac himself.
The subsequent development of quantum field theory ex-
plained these paradoxical effects, but the equation itself
and its predictions continued to fascinate many genera-
tions of physicists.

An analog simulation, or an emulation, of the Dirac
equation was first proposed in a trapped ion system in
2007 [2]. The one-dimensional Dirac equation was im-
plemented experimentally soon after, and both Zitterbe-
wegung [3] and Klein’s paradox [4,5] have been observed.
This has sparked an interest in emulations of the Dirac
equation in other systems such as coupled waveguides
[6–9] and dark state polaritons [10,11]. These were fol-
lowed by many proposals and experiments on emulations
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of relativistic models and effects, which are too numerous
to mention here (see [12–17] for a selection).

Usefulness of the Dirac equation is not limited to the
description of a fermionic particle. By allowing the mass
term to vary in space (or even in time) the model’s appli-
cability extends to many other areas of physics including
condensed matter physics and nuclear physics. Pointing
out such a connection is one of the aims of this work.
For simplicity and for the ease of experimental imple-
mentation, we stick to the one-dimensional Dirac equa-
tion, which, despite the limitation, gives rise to plenty of
interesting physics as we will see. Only one-dimensional
models will be considered in the rest this work and the
Dirac equation will always be in one-dimension.

A convenient starting point for a derivation of the one-
dimensional Dirac equation is the covariant form

iγµ∂µψ = mcψ, (1)

where {γµ, γν} = 2ηµν with ηµν the metric in flat space-
time. The latter is the two-by-two Pauli matrix σz in
one spatial dimension and as a consequence, other Pauli
matrices can be used to represent the gamma matrices
γµ. This implies that the spinor has two components
instead of the four needed in three-dimensional space.
Using γ0 = σy and γ1 = iσx, one obtains

i∂tψ(x, t) = −icσz∂xψ(x, t) +mc2σyψ(x, t), (2)
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with a two-component spinor ψ(x, t) =

(ψ1(x, t), ψ2(x, t))
T . This equation will be called

the variable-mass Dirac equation when the mass term
mc2 is allowed to vary in space (and time).

This work provides brief descriptions of various mod-
els associated with the variable-mass Dirac equation and
show how some of their predictions can be emulated us-
ing spinor slow light (SSL). Section II gives a gentle
introduction to the so-called dark state polaritons (see
Ref. [18] for a short pedagogical introduction), con-
centrating on how they can be coerced to form an SSL,
which follows the dynamics of the Dirac equation. It also
explains the preparation, evolution, and measurement
stages of the emulation process and sets the stage for
the rest of the work. Section III introduces the Jackiw-
Rebbi model, whose implementation in an SSL system
has already been proposed in [19]. Whereas the latter
work concentrated on a transmission-and-reflection sce-
nario, this work concentrates on a loading-and-releasing
scenario. Section IV discusses three other models related
to the variable mass Dirac equation, namely polyacety-
lene, the random mass Dirac model, and the Lorentz
scalar potential.

II. Spinor slow light

That the so-called dark state polaritons (DSPs) can be
manipulated to simulate the physics of the Dirac equa-
tion has been noticed in Refs. [10,20] and experimen-
tally realized in [21]. The basic setup consists of atoms
coupled to an effectively one-dimensional waveguide as
illustrated schematically in Fig. 1(a). Atomic levels have
a double-tripod structure as shown in Fig. 1(b). In order
to understand this setup, let us first consider a simpler
atomic structure of the lambda-type configuration de-
picted in Fig. 2(a). When a probe field resonant with
the atomic transition |g⟩ ↔ |e⟩ enters the waveguide, it
is strongly absorbed by the medium.

The situation changes completely when a strong con-
trol field, driving the transition |e⟩ ↔ |s⟩, is introduced.
Due to a destructive interference, a phenomenon called
electromagnetically induced transparency (EIT) sets in:
The probe field passes freely through the medium and
does so at an ultra-slow speed [22]. In the medium,

(a)

(b)

Fig. 1. (Color online) (a) Schematic representation of the
spinor slow light setup and (b) associated double tripod
atomic level structure.

a collective excitation of light and matter called a dark
state polariton is formed [22], which follows the dynam-
ics governed by the equation

(∂t + vg∂z)ψ̂(x, t) = αψ̂(z, t). (3)

ψ̂ is the dark state polariton operator, which is propor-
tional to the probe field operator Ê under the condi-
tion of EIT, i.e., a small group velocity. The propor-
tionality factor α depends on system parameters such
as the atom-field coupling strength (g), atomic density
(n), control field strength (Ω), and the two photon de-
tuning (δ). The precise form of α is not needed for the
purpose of this work. The group velocity is given by
vg ≈ vΩ2/(Ω2 + 2πg2n), where v is the speed of light in
an empty waveguide.

By introducing a counter-propagating control fields
Ω1,2 to the above system as shown in Fig. 2(b), two
counter propagating DSPs, ψ̂1,2, are formed, which com-
bine to form a single polariton field. The latter has zero
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(a) (b)

Fig. 2. (Color online) Atomic level schemes of the lambda
type that realizes (a) the slow light and (b) the stationary
light.

group velocity and is called the stationary light [23],
which can be formed as follows. First, a traveling pulse
of light E1 is introduced to the system with the con-
trol field Ω1 turned on. Due to the EIT condition, the
pulse travels slowly through the medium. When the
pulse has completely entered the medium, the control
field is turned off adiabatically, which reduces the group
velocity to zero. The pulse is now stored as atomic coher-
ences between the states |g⟩ and |s⟩ and can be retrieved
at will by turning the control field back on. A DSP sys-
tem can therefore be used as a quantum memory device
as experimentally demonstrated in Ref. [24]. A long-
lived stationary light is produced when the control fields
Ω1 and Ω2 are slowly turned on after the pulse has been
loaded.

To obtain a spinor slow light, consisting of two-
components, additional ground (or metastable) states
are needed [10,20]. The double tripod setup proposed
in [20] is shown in Fig. 1(b). Such a configuration yields
two DSPs, Ψ1,2, that obey an effective equation

(i∂t + iv0σz∂z − δσy)Ψ(z, t) = 0, (4)

where Ψ = (Ψ1,Ψ2)
T , v0 is the group velocity, and δ is

the two-photon detuning as depicted in the figure. Note
that this takes the same form as Eq. (2) so the variable-
mass Dirac equation can be emulated by allowing the
two-photon detuning δ to vary in the spatial dimension
z or even in time t. Only spatially varying mass will be
considered in this work, but time-varying models can be
related to interesting physics in curved 1+1 dimensional
spacetime as shown in Ref. [8].

III. Solitons and the Dirac equation

In its essence, the Jackiw-Rebbi (JR) model is de-
scribed by the Dirac equation with a specific type of
position-dependent mass profile [25]. It was used by the
authors to predict charge fractionalization, before frac-
tional quantum Hall effect was discovered. Essentially
the same effect has been found independently in study-
ing the electron-phonon coupling in polyacetylene [26].
Before we delve into the details of the model, let us start
with a brief remark on charge fractionalization, the de-
tails of which can be found in a review article [27].

The JR model arises as an approximation to the quan-
tum field theory for an electron coupled to bosonic fields.
The equations of motion for the bosonic fields allow soli-
ton solutions when treated classically, which, in the ap-
proximate Dirac equation, acts as a position-dependent
mass term with the soliton profile. A fractionalization
of charge occurs in this model because it allows a zero-
energy mode, or a zero-mode for short. The ground state
of the quantum field can either contain the zero-mode or
not, and the charge conjugation symmetry dictates that
these two degenerate ground states must have opposite
charges. Now, because only one electron may occupy the
zero-mode, the latter must have a fractional charge of
e/2 or −e/2. Indeed, a detailed calculation of the formal
charge operator confirms this prediction. Surprisingly,
the existence of a zero-mode is guaranteed irrespective
of the details of the soliton and depends only on a global
property. That is, the existence of the zero-mode is topo-
logically protected.

1. Jackiw-Rebbi model

As noted above, charge fractionalization is ultimately
connected to the presence of the zero-mode, which is
topologically protected by global properties of the soli-
ton field. While the polariton emulator cannot ex-
hibit fractionalization explicitly because the DSP is not
a fermionic field, the existence of the zero-mode and
its topological robustness can be probed as shown in
Ref. [19]. This section explains the basic theory of the
zero-mode and describes how it can be observed in the
spinor slow light system. While the original proposal has
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Fig. 3. (Color online) The spatial part of the zero-mode
spinor, Ψ0(z) shown as the solid (blue) curves along with
the ‘mass’ profile ϕs(z) shown as (black) dashed curves.
(a) For the soliton solution ϕ(z) = κ tanh(λz) and (b)
for the linear profile ϕ(z) = λz. Localization scale is on
the order of λ = 1. Other parameters are mc = 1 and
κ = 0.5.

concentrated on optical transmission measurements [19],
this work concentrates on the dynamics of the spinor.

In the JR model, a Dirac particle is coupled to a real
scalar field ϕ(z) as described by

i∂tΨ =

(
σzcpz +

mc2

κ
ϕ(z)σy

)
Ψ, (5)

where ϕ(z) obeys the Klein-Gordon equation

∂µ∂
µϕ(z) +

λ2

2κ2
(
κ2 − ϕ(z)2

)2
= 0.

The ground state solutions are ϕ(z) = ±κ and the de-
generacy implies a soliton solution that interpolates be-
tween −κ at z = −∞ and κ at z = ∞ (the corresponding
anti-soliton also exists). That is, there exists a (soliton)
solution of the form

ϕs(z) = κ tanh(λz), (6)

which is localized around z = 0. Plugging this into
Eq. (5) yields the zero-energy solution

Ψ0(z) = exp
(
−mc
κ

∫ z

0

dxϕs(x)

)
χ

= exp
[
−mc
λ

ln(coshλz)
]
χ, (7)

where σzσyχ = −iσx = −iχ holds, yielding χ =

[1, 1]T /
√
2. That this is the zero-energy solution can be

easily checked by substituting the solution into Eq. (5).
The soliton solution and the corresponding zero-mode
are depicted in Fig. 3(a).

Before we move on to the topic of emulation using
SSL, a discussions on a few important aspects of the
zero-energy solution is in order. Firstly, the zero-mode
solution only depends on the value of mc, upon fixing

the parameters λ = 1, which determines the width of
the solution. To understand the second aspect, consider
a generic mass profile ϕ(z) instead of the soliton profile
ϕs(z). Let us assume a constant ϕ(z). Then the integral
on the first line of Eq. (7) diverges as z → −∞, so the
solution is not normalizable. Therefore, a zero-energy
solution exists only if ϕ(z) goes from a negative value at
z = −∞ to a positive value at z = ∞. Lastly, a zero-
mode exists as long as ϕ(z) has these limiting values.
While the detailed shapes of the solution depends on the
mass profile, the existence of the zero-mode depends only
on the fact that ϕ(z) has the correct boundary condition.
This is evident for a linear profile ϕ(z) = z, which is il-
lustrated in Fig. 3(b) along with its zero-energy solution.
Although such ϕ(z) is not a valid solution of the Klein-
Gordon equation, it serves as a nice example to show the
topological nature of the zero-energy solution.

2. Analog simulation with spinor slow light

Due to the similarity between Eqs. (4) and (5), the
SSL system follows the dynamics of the Dirac equation
with an effective speed of light v0 = c and an effective
mass term δ = mc2

κ ϕ(z). The JR model can be emu-
lated if the two-photon detuning δ can be made to follow
the soliton profile, which can be achieved by introducing
an auxiliary field to shift the energy levels appropriately
[21]. Having prepared such a system, how can one ‘ob-
serve’ the zero-mode? Two possible schemes have been
proposed in [19].

In the first scheme, one utilizes the intrinsic non-
equilibrium property of the quantum optical systems by
driving the waveguide with a laser field [28] and observ-
ing the transmission spectrum [19]. Transmission spec-
trum shows a peak at zero energy, revealing the presence
of the zero-mode.

The second scheme, which has been only briefly
touched upon in [19], focuses on the time evolution
of a spinor. To understand this scheme, let us assume
that the zero-energy state has been prepared at time
t = 0. Then because it is an eigenstate of the Dirac
Hamiltonian, the state remains unchanged for t > 0.
Because preparing the exact eigenstate will be diffi-
cult, let us consider an initial Gaussian state. That
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Fig. 4. (Color online) Comparison between a Gaussian
function with σ = 1.2 (solid blue curve) and the spa-
tial part of the zero-mode state with λ = 1 (dashed red
curve).

is, ΨGauss(z, 0) = N exp[−z2/2σ2]χ where N is a nor-
malization factor. This class of states can be used to
closely mimic the ideal zero-energy state as illustrated
in Fig. 4. For λ = 1, σ = 1.2 yields the state overlap of∫
dzψGauss(z, 0)ψ0(z, 0) ≈ 0.997, which is equivalent to

the overlap between two quantum states ⟨ψ1|ψ2⟩. ψGauss

and ψ0 are the spatial parts of the Gaussian state and
the zero-energy state, respectively.

Under time evolution, the initial Gaussian state
exhibits completely different behavior depending on
whether the mass term has a soliton profile or not. In
Fig. 5(a) the mass term δ has the soliton profile tanh(z),
in which case the total intensities of each component of
the spinor remain unchanged (changes are too small to
be noticed). By total intensity, we mean the integral of
the square of the absolute value of a spinorfcomponent,
i.e., Ii ≡

∫
dz|Ψi(z, t)|2. For a constant mass profile,

say δ = 1, the intensities fluctuate as shown in Fig. 5(b).
Therefore, the existence of the zero-mode can be inferred
from the time evolution of the intensities, which can be
observed in the SSL system by retrieving the light pulses.

Actually, this is not the whole story and Fig. 5(a) can
be deceiving. For example, for σ = 0.5 the fidelity drops
to ∼ 0.85, but the figure remains the same. In fact,
the total intensities do not fluctuate at all for an initial
Gaussian state regardless of the value of σ. To observe
differences in the dynamics, one needs to look at the
intensity profiles as illustrated in Fig. 6. Panel (a) dis-
plays the density plots of the intensity profiles |Ψi(z, t)|2

Fig. 5. (Color online) Total intensities of the spinor com-
ponents as functions of time for an initial Gaussian spinor
with σ = 1.2. Solid blue curves represent I1 while dotted
orange curves represent I2. (a) When the mass term is
given by the soliton mass profile δ(z) = tanh(z). (b) For
a constant mass δ = 1.

Fig. 6. (Color online) Time evolution of the spinor. Den-
sity plots of the intensities of the spinor components
|Ψ1|2 and |Ψ2|2. The brighter the color, the higher the
intensity. Initial Gaussian state with (a) σ = 1.2 and (b)
σ = 0.5.

for the initial Gaussian state with σ = 1.2. There are
slight modulations in the profile but they are well con-
fined to the central region. Upon reducing σ to 0.5, the
fidelity drops and the two components scatter in the op-
posite directions as shown in panel (b). However, even
in this case, a significant fraction of the spinor eventu-
ally gets trapped in the zero-mode as evidenced by the
central peaks after time t ≳ 3,

An experiment to verify the presence of the zero-mode
can be run as follows. First, a Gaussian state is pre-
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pared initially. This can be achieved either by using
the EIT technique described earlier to store two counter
propagating light pulses as atomic coherences or by us-
ing Raman transitions to create the coherences directly.
Second, all four control fields Ωij with i, j = 1, 2 are
turned on, which effectively creates the required Dirac
Hamiltonian. The JR model can be emulated if the fre-
quencies of the control fields vary in such a way to make
δ follow the soliton profile. Another method is to use
auxiliary electric or magnetic fields to detune the states
|si⟩ [21].

Third, after waiting for a certain period of time t,
turn off the control fields and retrieve the light using
the conventional EIT technique. Intensities of the re-
trieved fields correspond to the intensities of the spinor
components. Therefore, by measuring how the intensi-
ties of the retrieved fields change in time, the intensity
distributions |Ψi(z)|2 for a given run time t can be mea-
sured. By repeating the experiment for different values
of t, an equivalent of Fig. 6 can be constructed.

There can be many complications in an actual exper-
iment, one of which is that the total intensity decays in
time [21,29]. This occurs for many reasons, such as cou-
plings to other states in an actual atom and instability of
the states |s1⟩ and |s2⟩. Generally, the two spinor com-
ponents have different decay rates and by assuming that
the decay rates are uniform in z, the equation of motion
becomes

(i∂t + iv0σz∂z − δσy − iΓ)Ψ(z, t) = 0, (8)

where Γ is a 2 by 2 matrix with diagonal components
γ1 and γ2, corresponding to the decay rates of Ψ1 and
Ψ2, respectively. This causes the total intensities of the
individual components to decay, limiting the evolution
time, but the effects of the zero-mode can still be ob-
served from the initial time evolution. This is illustrated
in Fig. 7, where an asymmetrical choice γ1 = 0.1 and
γ = 0.2 was made. Only |Ψ1(z, t)|2s are shown, for an
initial state that is very close to (left) and not quite the
same as (right) the zero-mode. |Ψ2(z, t)|2 decays a little
faster. A comparison to Fig. 6 clearly demonstrates the
effect of the dissipation.

Lastly, the topological character of the zero-mode can
be verified by varying the details of the spatial mass pro-
file. For example, upon changing the value of λ, one can

Fig. 7. (Color online) Time evolution of |Ψ1(z, t)|2 in the
presence of loss. The loss parameters are γ1 = 0.1 and
γ2 = 0.2. (a) σ = 1.2 and (b) σ = 0.5.

always find a zero-energy solution via Eq. 7, which can
be verified by a judicial choice of σ. In an experiment, it
is actually easier to choose the linear mass profile consid-
ered in Sec. III 1, because the zero-mode is a Gaussian
in such a case [21].

IV. Dirac equation in other areas of physics

The variable-mass Dirac model is not only useful in
high-energy physics, but also in other branches of physics
such as condensed matter and nuclear physics. The pur-
pose of this section is to point out three such cases: Poly-
acetylene, random mass Dirac model, and Lorenz scalar
potential. We limit ourselves to the most basic aspects
of each topic and briefly discuss how the relevant physics
can be emulated in a SSL setup.

1. Polyacetylene

Polycetylene can be modeled as electrons confined to
move in a one-dimensional chain [27]. Phonon modes of
the atoms are coupled to the electrons because the hop-
ping strength depends on the distance between the sites.
In such a system, the configuration of equally spaced
sites does not support the ground state. Instead, it sup-
ports two degenerate ground state configurations with
broken reflection symmetry. This is called the Peierls
instability [30]. A soliton is formed when the two con-
figurations coexist in a single chain, at the location at
which the configuration changes from one to the other. A
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localized electron state forms around the site, whose en-
ergy lies between the gap created by the electron-phonon
coupling.

The situation is analogous to the Jackiw-Rebbi model,
where a zero-mode forms between the mass gap of the
Dirac electrons. This can be established formally by tak-
ing the continuum limit of the electron hopping model
and using the Jordan-Wigner transformation, which
turns out to yield a slightly more generalized version of
Eq. (5). Therefore, analogous physics to the JR model
occur in polyacetylene, which can be observed in the
same SSL setup described above. One complication that
arises in polyacetylene is the spin of the electron, which
is absent in the one-dimensional Dirac particle. In short,
the soliton is associated with a charge e and spin 0, so the
singly-occupied state has charge 0 and spin ±1/2 [27].
This is an anomalous spin-charge relation arising due to
charge fractionalization.

2. Random mass Dirac model

Random mass Dirac model is a variant of the Jackiw-
Rebbi model, where solitons are assumed to take the
form of a step-function (a kink) and are randomly dis-
tributed in space. The mass term in the Dirac equation
thus randomly flips its sign. This is called the telegraph
signal and is described by

ϕ(x) =
∏
i

sgn(x− xi), (9)

where sgn denotes the sign function and xi denotes the
randomly distributed locations of the kinks. Interest in
this model arose from the realization that the Dirac equa-
tion describes the low-energy physics in the spin sector of
the two chain spin-ladder [31] and a spin-Peierls system
[32].

The spin-Peierls model describes an antiferromagnetic
spin-1/2 chain with an additional dimerization term [32]:

HSP =
∑
n

[J + (−1)n∆n] S⃗nS⃗n+1. (10)

∆n determines the strength of the phonon-mediated
dimerization and is related to the mass term in the con-
tinuum limit. When impurities are introduced, domain
walls are formed at their locations, affecting ∆n, which

in turn introduces a kink in the mass term. The low-
energy physics of this model is described by the random
mass Dirac model.

One of the characteristics of the model is a long-range
correlation in the mid-gap (zero-mode) state [32]. Be-
cause the localization length of a state is proportional to
ln(1/ϵ), where ϵ is the energy of the state, the mid-gap
state has a diverging localization length. This in turn
leads to a polynomial decay in the impurity-averaged
intensity-intensity correlation function

I(x)I(0) ∝ x−3/2, (11)

at length scales greater than the mean free path.
An emulation in terms of our polaritonic setup starts

from noting that the Gaussian distribution of the mass
term, instead of the telegraph signal described earlier, ex-
hibits the same scaling in the correlation function [32].
Note that the mass term does not follow a Gaussian pro-
file in space, but has a random value picked out from a
Gaussian distribution. In an emulation, the two-photon
detuning should be varied randomly in space according
to a Gaussian distribution. After loading and evolving
an initial state following the same procedure introduced
in the previous section, the intensity correlation func-
tion I(x)I(0) can be obtained by measuring the intensity
correlations in the spinor components. The latter con-
verts to time-correlations in the retrieved field, that is,
|Ψi(t)|2|Ψi(0)|2 where i = 1, 2. Finally, averaging over
many impurity realizations yields the desired correlation
function.

We note that the random mass Dirac model can be re-
alized in the SSL system was already noted by Unanyan
et al. [10] and a related model with a random vector po-
tential has been studied in the setting of cold atoms [33].
Even an experimental demonstration was performed in
a waveguide arrays setup [7].

3. Lorentz scalar potential

As another application of the variable-mass Dirac
equation, imagine a Dirac field coupled to a Lorentz-
scalar potential. Such a case was first studied as a spin-
off of the MIT bag model, devised as a phenomeno-
logical model for quark confinement [34, 35]. Yet an-
other area that uses similar models is nuclear physics
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(see e.g. [36]). The Hamiltonian describing a Dirac
field interacting with both a scalar potential Vs(x) and
a vector potential Vv(x) can be written as

i∂tΨ = [αpz + Vv(x) + (m+ Vs(x))β] Ψ. (12)

The vector potential is known to exhibit Klein’s paradox
when it is strong enough to create a particle and an an-
tiparticle [1]. This type of behaviour occurs because the
positive and negative energy states see different poten-
tials and does not occur for a scalar potential.

In the phenomenological study of quarkonium, an
equal mixture of a vector and a scalar confining poten-
tial is used to obtain a best fit for the spin-orbit splitting
[37]. One widely studied potential is a linearly increasing
potential, V (x) = g|x|. A similar model is also used to
study pseudospin doublets in nuclei [38].

The vector potential term can be introduced by
slightly modifying the double tripod scheme in Fig. 1(b).
Instead of choosing the equal and opposite two photon
detunings as shown in the figure, choose different detun-
ings δ1 and δ2. Then, following the analysis in Ref. [20],
one obtains an extra term δ0Ψ(z, t) on the left hand side
of Eq. (4), where δ1 = δ0+δ and δ2 = δ0−δ. This allows
an experimental realization of Eq. (12) with various com-
binations of vector and scalar potentials. In particular,
fixing the vector potential term and tuning the strength
of the scalar potential, by changing the two-photon de-
tuning, would yield a crossover from the regime of the
Klein paradox to confinement. Methods described in the
previous section can be used to check such a transition
experimentally, which will be clearly imprinted on the
spatial profile of the SSL and thus the temporal profile
of the retrieved field. Another option is to employ a
continuous driving scenario, in which the scalar poten-
tial term can be changed continuously in time while the
system is continuously driven, which will affect, in real
time, the statistics of the output field.

V. Conclusion

In conclusion, a connection between the one-
dimensional Dirac equation and a spinor slow light sys-
tem has been pointed out. The latter system was shown
to be able to emulate a variable-mass Dirac equation

which in turn is related to models in diverse branches
of physics such as high-energy, condensed matter, and
nuclear physics. In particular, the SSL setup realizing
the Jackiw-Rebbi model was considered in detail, along
with a possible experimental procedure to observed the
presence of the topologically protected zero-mode.
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