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Abstract

In this thesis we study a number of geometric structures arising in the
study of four-dimensional supersymmetric quantum field theories.

We study properties and applications of so-called “spectral networks”
on Riemann surfaces C, focusing in particular on the “abelianization
map” which we use to produce special coordinate systems on mod-
uli spaces of local systems on C. We generalize the classical Fenchel-
Nielsen coordinates and utilize these coordinates to compute super-
potentials, following and generalizing a conjecture of Nekrasov-Rosly-
Shatashvili.

Our first result is a computation of the higher rank spectral coordinates
associated to certain “generalized Fenchel-Nielsen” networks, yielding
explicit formulas for the trace functions on the moduli space with two
“minimal” and two “maximal” punctures. We use this result to verify
the NRS conjecture at the lowest order asymptotics for a prototypical
SU(3) theory, and furthermore compute the 1-instanton correction in
the SU(2) case, extending previous results. In the final chapter we in-
clude some partial results the author has obtained on the existence and
uniqueness of abelianizations for certain classes of networks related to
Grassmannians.





“All problems in mathematics are psychological.”

— P. Deligne
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Chapter 1

Introduction

In this thesis we study a number of aspects of the geometry of meromorphic
connections on Riemann surfaces in relation to four-dimensionalN = 2 supersym-
metric quantum field theories (QFTs), focused around geometric objects known as
“spectral networks”. To help the reader orient themselves as to what this means,
let us give some context.

1.1 Context

Connections on vector bundles are among the most fundamental mathemati-
cal objects used in the basic description of reality. Indeed, connections are every-
where — they govern the curvature of spacetime in general relativity, and describe
the three fundamental forces (weak, strong, and electromagnetic) of the Standard
Model; not to mention the shape of the Earth and other everyday geometries. Our
connections will be slightly more abstract than these — meromorphic, and on holo-
morphic vector bundles over Riemann surfaces — but as we will see, still very
much intertwined with physics.

One of the most important special cases is that of flat connections — these are
constrained enough to be tractable, but retain enough information to tell us some-
thing interesting about the underlying space. Given some space X, we can then
assemble all the possible flat connections on vector bundles over X into a single,
reasonably well-behaved, de Rham moduli spaceMdR — a space parameterizing all
of the flat connections, up to equivalence, on (say, a fixed rank K bundle over) X.

On the other hand, the moduli space of flat connections, somewhat amazingly,
appears in the study of four-dimensional N = 2 supersymmetric QFTs from a
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totally different perspective as well. Here it arises as part of a hyperkähler fam-
ily (owing to the supersymmetry) describing the low energy dynamics of the the-
ory and the vacua of its reduction to three dimensions. From this fact, numerous
constructions from physics can be reinterpreted as geometric structures onMdR.
One such structure is the “abelianization map” arising from a “spectral network”
[1, 2, 3, 4]. The abelianization map is a machine for producing very special co-
ordinate systems on MdR, by relating connections on rank K bundles over C to
connections on line bundles over a related “spectral” curve Σ.

We are going to study some of the properties, structure, and physical applica-
tions of various classes of these coordinates.

1.2 Motivation

Spectral networks were introduced by Gaiotto, Moore, and Neitzke [1, 2, 3] for
the purpose of counting “BPS states” in four-dimensional N = 2 QFTs. These are
certain collections of paths drawn on a surface with some additional data; they
have been shown to have a number of interesting applications, both physical and
mathematical, especially to moduli spaces arising in geometry. We will use them
to obtain a generalization of “complexified Fenchel-Nielsen coordinates” onMdR,
and then use these coordinates as a tool for obtaining “effective twisted superpo-
tentials” for certain kinds of supersymmetric QFTs. Let us elaborate.

The main physical problem in this thesis consists of studying and generaliz-
ing a conjecture of Nekrasov, Rosly, and Shatashvili regarding a geometric ap-
proach to computing “effective twisted superpotentials”. In the course of studying
this conjecture, we are interested in generalizing the classical Fenchel-Nielsen co-
ordinates on Teichmüller space (though of as embedded in the moduli space of
flat connections) to higher rank bundles. In [4] it was shown that (complexified)
Fenchel-Nielsen coordinates arise as spectral coordinates at a special real locus of
the Coulomb branch. By similarly studying networks arising from a special locus
in higher rank, we find these coordinates.

Let us describe the NRS conjecture in slightly more detail. In recent years,
Nekrasov and collaborators have studied the relationship between quantum in-
tegrability and four-dimensional gauge theories. In the process, it was found that
one could obtain crucial physical information by studying a certain geometric ob-
ject, the “brane of opers” sitting inside a moduli space of flat connections. The
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brane of opers is conjectured to contain essentially all the information of the low-
energy physics of a certain reduced theory, provided we study it in the “right”
coordinates. This is interesting in its own right, but also leads to the prospect of
allowing access to the superpotential for theories not possessing a Lagrangian de-
scription, which are not amenable to traditional methods of analysis, and whose
superpotential is not known. We should mention that there are numerous exam-
ples known of such QFTs, so the problem is quite important from the physical per-
spective. By mapping the physical problem to a purely geometric one, we can gen-
eralize to cases even when we have no Lagrangian from which to extract physics.

Let us describe this “effective twisted superpotential” in further detail. In gen-
eral, one of the main problems in quantum field theory is to evaluate the partition
function Z of a given theory T. A major advance in the case of four-dimensional
N = 2 supersymmetric theories came with the advent of the Nekrasov partition
function [5, 6], which is the partition function of a two-parameter (traditionally de-
noted ε1 and ε2) deformation of the theory which regularizes the IR divergences
arising from instantons running off to infinity. When defined, this can be under-
stood as a perfectly well-defined formal series in the instanton parameter q with
rational coefficients in the remaining parameters, and can be written explicitly for
theories with a Lagrangian description. However, in general, it is not known, par-
ticularly for the so-called non-Lagrangian theories that have attracted much atten-
tion from physicists in recent years. Here, one might seek alternative approaches
to the definition that generalize more easily. This motivates understanding the
following proposed equivalence.

Let us first simplify the situation slightly — take the Nekrasov-Shatashvili limit,
resulting in

W̃eff(a, m, ε, q) = lim
ε2→0

ε2logZ(a, m, ε, ε2, q) (1.2.1)

called the effective twisted superpotential associated to T; here a, m denote some ad-
ditional parameters. W̃eff can be thought of as a two-dimensional shadow of the
original Z. Furthermore, consider only those theories of “class S”, which are a
large class of theories arising from a choice of simple Lie algebra g, and a punc-
tured Riemann surface equipped with some extra data at the punctures. It will be
important that this is just the data needed to defineMdR.

Nekrasov, Rosly, and Shatashvili [7] proposed a geometric description of this
superpotential W̃eff. Specifically, they propose to study the opers sitting inside an
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MdR associated to the data we started with. These form a complex Lagrangian
subvariety, and so given a Darboux coordinate chart {αi, βi}, possess a local gener-
ating function Woper, defined by the property that ∂αiW

oper = βi. The main claim is
that, if the Darboux chart is chosen judiciously,

W(a, m, q, ε) = Woper(α, m̃, q, ε) (1.2.2)

where one identifies the appropriate parameters on the left with the α coordinates
on the right, and m, m̃ are parameters related in a simple way. NRS verified this
when K = 2 using “complexified Fenchel-Nielsen” coordinates, but the right co-
ordinate choice was not at all apparent for K > 2. Our goal is to study the higher
rank case, find these coordinates, and use them to compute the superpotential.

1.3 Outline

In this thesis we present a number of results related to spectral networks and
the NRS conjecture. After some preliminary material, the first step is to define
and compute the higher length-twist coordinates that we will need. Chapter 5 de-
scribes this part of the joint work [8] with L. Hollands. We first strengthen the
K = 2 result of [4] by observing that a certain “averaged” spectral coordinate pre-
scription fixes ambiguities otherwise present in the definition of the twist coordi-
nate, whose utility carries over to K > 2 as well. The main result of this chapter
is a computation of these spectral coordinates arising from K = 3 “generalized
Fenchel-Nielsen networks of length-twist type”, yielding a formula for the trace
functions onMdR in terms of these coordinates.

In Chapter 6, we use our coordinates to generalize the NRS calculation and give
a proposal for the coordinates in which equality holds. More precisely, we find that
our higher length-twist coordinates do indeed reproduce, at the lowest asymptotic
order in q, the superpotential in the case of the simplest nontrivial K = 3 exam-
ple (“SU(3), N f = 6 theory”). We also improve on previously known results for
SU(2), computing the first “instanton correction” which provides further evidence
for the conjecture. Furthermore, we were able to put some of the heuristic approx-
imations employed by physicists on firm footing using a slight generalization of
known perturbation theory results, summarized in Appendix A. From a mathe-
matical perspective, we have given a description of the monodromy representa-
tion of opers on a punctured curve C in a series expansion in its complex structure
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parameters and verified a prediction for the generating function of a particular
interesting Lagrangian subspace inside the moduli space of flat connections.

In the last chapter of this thesis, we move on to study some purely mathemat-
ical properties of spectral coordinates in some specific cases – in particular, we
study some special classes of spectral networks whose associated coordinates are
essentially the cluster coordinates for Grassmannians introduced previously in the
literature. We study a question of the uniqueness of the abelianization construc-
tion, posed to the author by A. Neitzke. We prove uniqueness in several nontrivial
examples, and outline an approach to deal with the problem more generally (with-
out looking at the specific network, of which there are many).

The thesis is organized as follows. Chapters 2 and 3 contain review of back-
ground material from both physics and mathematics related to 4d N = 2 theories
and moduli spaces of flat connections. Chapter 4 contains an introduction to the
basics of spectral networks and abelianization and sets the stage for the main con-
tent of the thesis. Chapters 5 and 6 cover the results outlined above of the joint
work with L. Hollands “Higher length-twist coordinates, generalized Heun’s op-
ers, and twisted superpotentials” [8] — they are essentially a modified version of
this preprint, made to fit better the structure of the thesis. In Chapter 7 we move on
to study the uniquness problem for “Grassmannian networks”, and record some
partial results on our work-in-progress.

This work lies at the boundary between pure mathematics and theoretical physics.
As such, I have tried to make it understandable to both physicists and mathemati-
cians. For this reason, we include two separate chapters of prerequisite material,
trying to assume as little as possible from the reader (which is still probably a lot!).
For the preliminary material, we have organized the physics to come before the
mathematics for motivational and narrative purposes, though we will make free
use of definitions and facts mentioned in the latter. The reader may wish to read
the mathematics preliminaries separately.

1.4 Notational conventions

Throughout, by punctured curve we will mean either the compact curve C
equipped with the corresponding divisor of poles (perhaps even enhanced to the
data of defects), or the noncompact C× (i.e. C with points removed) – it should
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be clear from the context which is meant. D will always denote the divisor of
poles/punctures on C. The number n always refers to the number of punctures.

So-called “mass parameters” m will usually be omitted from notation, but are
present in many places and assumed fixed as part of the initial data, satisfying
necessary genericity assumptions.

We will sometimes shorten the surface equipped with defects (C,D) to Cz1,...,zn ,
leaving masses implicit, and underlining so-called “minimal” punctures.

KC will always denote the canonical bundle of the compact curve, and when-
ever necessary we assume from that we have fixed a choice of K1/2

C .
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Chapter 2

Preliminaries: Physics

In this chapter we give a basic introduction to four-dimensional N = 2 su-
persymmetric QFTs, particularly the theories of “class S” that we will be primar-
ily concerned with. These are the fundamental physical theories which we are
interested in studying, from which geometric structures will unravel. We keep
prerequisites to a minimum, and try to explain things in a way that a mathemati-
cian might understand them. On the other hand, we do not attempt to give a
comprehensive treatment, so one should think of this as a “lightning review” for
orientation.

2.1 4d N = 2 supersymmetric field theories

2.1.1 N = 2 SUSY Lagrangians

Consider everything on R4, with either the Minkowski or Euclidean (”Wick-
rotated”) metric. Fix some compact simple Lie group G, the gauge group.

The d = 4, N = 2 super Poincaré algebra is the super Lie algebra

spoin := s0 ⊕ s1 := [poin⊕C]⊕ [(2, 1)⊕ (1, 2)]

where s0 is the even-graded part and s1 is the odd-graded part. Here poin denotes
the 4d Poincaré algebra, and (i, j) label its spinor representations by dimension in
the usual way. The extra C summmand is the “central charge”. Our theories will
be invariant under an infinitesimal action of this super Lie algebra on the space of
fields. With this purpose in mind, the field content is chosen so that the fields take
values in various representations of this algebra, as in what follows.

N = 2 supersymmetry is a special case ofN = 1 supersymmetry, so it’s useful
to describe the field content in terms of N = 1 superfields. The basic fields in
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N = 1 SUSY field theory, written in superfield notation (which can be found in
any textbook on the subject, with conventions usually following [9]) are:

• V = −θσµθ̄Aµ + iθ2θ̄λ̄− iθ̄2θλ + 1
2 θ2θ̄2D “N = 1 vector multiplet”

• Φ = φ +
√

2θψ + θθF + . . . “chiral multiplet”

where the “. . .” denotes terms involving derivatives of φ, ψ, F. Here A ∈ Ω1(R4, g)
is a connection over the trivial G-bundle over spacetime,

• λ ∈ Ω0(R4, g) an “adjoint-valued Weyl-spinor”

• φ ∈ Ω0(R4, R) an “R-valued scalar”

• ψ ∈ Ω0(R4, ΠS+ ⊗W ⊗ R) an “R-valued Weyl spinor”

where R is some chosen “matter” representation of G (this can be any complex
representation equipped with a hermitian form), S+ is the usual left-handed spinor
module (2, 1), W is a two-dimensional complex vector space, and Π denotes parity
reversal of super vector spaces. The D and the F are just (g or R-valued) functions
called “auxiliary fields” — in a sense, they only exist to make the supersymm-
metry formulas work out; their equations of motion are algebraic so they can be
solved for in terms of the other fields. One often simply writes and thinks of these
superfields as tuples written (A, λ, D) and (φ, ψ, F).

In N = 2 SUSY we will not bother introducing superfield notation (though we
could), and simply list the field content as a tuple:

• (V, Φ) = ((A, λ, D), (φ, ψ, F)) “N = 2 vector multiplet”

• (Q, Q̃) = ((q, ψq, Fq), (q̃, ψ̃q̃, F̃q̃)) “hypermultiplet”

where now, denoting the complex conjugate representation by R̄,

• (q, q̃) ∈ Ω0(R4, R⊕ R̄) two scalars, valued in R and R̄

• (ψq, ψ̃q̃) ∈ Ω0(R4, ΠS+ ⊗W ⊗ R ⊕ R̄) one left and one right-handed Weyl-
spinor in R and R̄
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and Fq and F̃q̃ are R-valued functions.
Assuming familiarity with N = 1 superfield notation and Berezin integration,

we assemble these into a Lagrangian as follows:

Lvmult =
Imτ

4π

∫
d4θ Φ†e[V, · ]Φ − i

8π
τ
∫

d2θ Tr WαWα + c.c. (2.1.1)

where Wα := λα + F(αβ)θ
β + Dθα . . ., with Fαβ := i

2 σ
µβ
γ̇ σ̄

νγ̇
α Fµν the SUSY analogue

of the Yang-Mills field strength. Here we have written the complexified coupling
constant

τ =
ϑ

2π
+

4πi
g2 (2.1.2)

where g is the usual Yang-Mills coupling constant and ϑ is another (real) param-
eter, the coefficient of the “topological term”

∫
Tr F ∧ F. Classically this is just

a fancy way of writing a constant, so it doesn’t affect the classical equations of
motion, but it plays an important role in the quantum theory, since it affects the
weighting of different topological sectors of the field space in the path integral.

The Lagrangian Lvmult by itself is the Lagrangian for the N = 2 analogue of
pure gauge theory. We observe that by taking fields valued in representations
of spoin, merely having a gauge field in our theory in a natural way necessitates
certain other terms and fields, even without putting fermions in by hand.

Writing the Lagrangian out in components, we can get an idea of what’s actu-
ally going on under the notation:

Lvmult =
1
g2 Tr

[
− 1

4
FµνFµν + g2 ϑ

32π2 Fµν F̃µν + (Dµφ)†(Dµφ)− iλσµDµλ̄

−iψ̄σ̄µDµψ− i
√

2[λ, ψ]φ† − i
√

2[λ̄, ψ̄]φ− 1
2
[φ†, φ]2

]
(2.1.3)

Similarly, we can put hypermultiplets, which represent matter, in the theory by
adding terms of the form:

Lmatter =

N f

∑
i=1

∫
d4θ̃

(
Q†

i e−2VQi + Q̃ie2VQ̃†
i

)
+
∫

d2θ̃
(√

2Q̃iΦQi + µiQ̃iQi

)
+ h.c

(2.1.4)
where we have N f copies (or ”flavours”) of the representation R (so really, R is their
direct sum), and µi are some complex (”bare mass”) parameters. More generally,
we can add terms for different choices of R to introduce various species of particle
in the theory.
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We can see that there are only a few building blocks for our Lagrangian SUSY
theories, namely:

(i) A choice of the gauge group G

(ii) A choice of matter representation(s) R

(iii) The values of the parameters: the coupling constant τi associated to each
simple factor of G, and the masses µi of the hypermultiplets.

Terminology: the representation R is often given as a direct sum of irreducible rep-
resentations, some of which may appear multiple times. Physicists might thus re-
fer to a theory containing “N f fundamental hyper(multiplet)s”, which then means
that R includes as a summand fundN f .

Example 1. Pure N = 2 super-Yang-Mills theory. Here we have

• G = SU(2)

• R = triv (no matter multiplets)

This is the theory that Seiberg and Witten famously solved exactly in the low en-
ergy limit (described below).

Example 2. SU(2), “N f = 4” theory. Here we have

• G = SU(2)

• R = (fund)4

This is the theory that Gaiotto generalizes to produce his network of S-dual theo-
ries in [10]. It is a fundamental building block of the theories we study.

2.1.2 Vacuum moduli space

Quantum field theory is usually “defined” via the path integral. That is, the
expectation value of an observable O is (schematically) defined to be

〈O〉 =
∫

fields
DΦ Oe−S (2.1.5)

One must specify what exactly one means by integrating over the “space of fields”—
specifically, on a noncompact spacetime, boundary conditions on the fields to sin-
gle out a class to integrate over. This can be viewed as a special case, relevant to
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our theories, of the general principle that we must compute observable quantities
relative to a particular choice of quantum vacuum. We will see in a moment that
the supersymmetric Lagrangians above possess a continuum of vacua, so that a
N = 2 supersymmetric theory automatically produces, by passing to the IR limit,
a family of theories determined by the choice of vacuum. The parameter space of
this family is called the moduli space of vacua or vacuum moduli space.

How can we characterize these vacua? We can evaluate the expectation values
of various operators in the theory on a given vacuum state to get some numbers,
which will serve as coordinates. For example: u = 〈tr Φ2〉, where we are abus-
ing notation in a standard way1. On fairly general grounds, and certainly for the
theories we will be interested in — those of “class S” — it can be argued that
the vacuum expectation values (vevs) of non-scalar fields all vanish, so only the
scalars2 are relevant, and thus the equations describing vacua are written purely
in terms of φ, qi, and q̃i

We begin by studying the classical moduli space of vacua. We take the La-
grangian L = Lvmult + Lmatter and seek to minimize the “potential”, i.e. the part
of the Lagrangian polynomial in the scalar fields. A simple calculation yields the
following equations:

1
g2 [φ

†, φ] + (qiqi† − q̃†
i q̃i)|traceless = 0 (2.1.6)

φqi + µiqi = q̃iφ + µiq̃i = 0 (2.1.7)

qiq̃i|traceless = 0 (2.1.8)

where X|traceless := X− 1
m trX for an m×m matrix X. This locus, modulo conjuga-

tion by elements of G and the action of the Weyl group W, is known as the classical
moduli space of vacua.

The moduli space can be divided into three “branches” with different behaviour:

• φ = 0 is known as the “Higgs branch”. By general considerations, it is always
hyperkähler.

• qi = q̃i = 0 is known as the “Coulomb branch” or the “vector multiplet
moduli space”. It is always Kähler.

1Rather than thinking of the classical superfield Φ we mean the corresponding operator that
ought to exist in the quantum version of the theory.

2That is, the lowest components φ or q, q̃ in the multiplets of §2.1.1
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• If neither φ nor all qi, q̃i vanish, it is called the “mixed branch”.

We will be interested in the Coulomb branch, so let us set the hypermultiplets
to zero. This means minimizing the potential amounts to the single equation:

tr [φ†, φ]2 = 0 (2.1.9)

The left hand side is clearly hermitian, so this equation is equivalent to φ commut-
ing with its adjoint. Hence φ is diagonalizable and can be taken to lie in the Cartan
subalgebra, φ ∈ t. Thus the Coulomb branch B is

B = t/W

Let us focus on the case of SU(2) now for simplicity, though everything gener-
alizes to higher rank and other gauge groups.

In this case any φ ∈ t has some eigenvalue 1
2 a, and is of the form

φ =
1
2

(
a 0
0 −a

)
So that we can parametrize inequivalent vacua using

u = tr φ2 =
1
2

a2. (2.1.10)

In the quantum theory, φ is promoted to an operator in some appropriate sense,
and u is now defined as the expectation value

〈
tr φ2〉. The relationship (2.1.10) is

thus modified, but can be thought of as a first approximation that holds asymptot-
ically at weak coupling.

Now, a general fact: generically (away from a lower-dimensional “singular lo-
cus” Bsing), the low energy behaviour of the theory corresponding to the vacuum
u ∈ B \ Bsing is described by a pure and abelian N = 2 gauge theory; that is, with
G = U(1)r, where r is the rank of the original gauge group, and with no matter
(R = triv). This follows from integrating out massive modes: the matter multi-
plets go away, and only the components of the vector multiplet scalars contained
in the Cartan, which are massless, remain as they cannot be integrated out. This
description breaks down at Bsing because at this locus some of the particles inte-
grated out actually become massless, which invalidates the argument.
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Returning to the SU(2) case, the most general physically reasonable3 low-energy
effective action for a U(1)r, N = 2 gauge theory with at most two derivatives is:

Seff =
1

4π
Im
∫

d4x
(∫

d4θ Φ† ∂F (Φ)

∂Φ
+
∫

d2θ
1
2

∂2F (Φ)

∂Φ2 WαWα

)
(2.1.11)

where F is holomorphic. Thus all the data about the low-energy theory is con-
tained in a single holomorphic function F (for example, the metric on the moduli
space is computed as Im( ∂2F

∂a2 dadā)). Thus to “solve” the theory in the low-energy
limit is to determine this function, i.e. which pure U(1) theory, of all the possible
choices of F in (2.1.11) describes the low energy behaviour of our theory?

Now, for physical reasons (positive-definiteness of the kinetic energy), it turns
out a(u) cannot be globally defined on the whole quantum moduli space – it is
multivalued. Thus we need to introduce a new coordinate,

aD :=
∂F
∂a

. (2.1.12)

Furthermore, (a, aD) must satisfy certain monodromy constraints (they form a
section of a local system over B \ Bsing). We are looking for locally defined func-
tions (a, aD) with such properties. Seiberg and Witten produced an answer to this
as follows.

Introduce an auxiliary curve Σu, and a one-form λ on that curve , both of which
must be derived somehow via physical insight. In our case of pure SU(2) theory,
Seiberg and Witten proposed the curve Σu

y2 = (x + 1)(x− 1)(x− u)

and the one-form
λ =

y
x2 − 1

dx

defined for u ∈ B = C, with singular locus Bsing = {±1}. Σu is called the Seiberg-
Witten curve of the theory and λ is called the Seiberg-Witten differential.

Now, choose a symplectic basis {A, B} of H1(Σu, Z). We claim that

a(u) =
∫

A
λ aD(u) =

∫
B

λ

3There is more freedom here in the Lagrangian than suggested earlier because we are now only
talking about an effective theory rather than a fundamental theory — renormalizability doesn’t
concern us.
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satisfies all the necessary properties (for higher rank there will be g Ai’s and Bi’s
and corresponding (ai, aD,i)). This has the desired monodromy and a correct SL(2, Z)

ambiguity corresponding to a change in the symplectic basis, and turns out to pass
many “tests” of its physical correctness.

Given a symplectic basis, a general cycle can be decomposed as γ = ne A+ nmB,
where ne, nm are thought of as the ”electric” and ”magnetic” charge of the particle
corresponding to γ. Thus in general, the central charge can be written:

Zγ(u) =
1
π

∫
γ

λ =
1
π

∫
γe(u)

λ +
1
π

∫
γm(u)

λ = nea(u) + nmaD(u) (2.1.13)

Let us give an indication of what happens in general. Given a four-dimensional
N = 2 theory, there is an algebraically integrable system over a base B which
describes its low-energy behaviour away from a singular locus Bsing. In particular

1. We have a holomorphic symplectic manifold M, and a holomorphic map
π : M → B such that if u ∈ B \ Bsing, then π−1(u) is a compact complex
Lagrangian torus of dimension r. Integration along the cycles of these tori
gives the coordinates ai, aD,i.

2. The IR physics at u ∈ B \ Bsing is given by pure abelian U(1)r gauge theory
in accordance with the above. The complex dimension of B is r, the rank of
the gauge group.

At the singular locus, the tori degenerate and the physics is in general more com-
plicated.

2.2 Theories of class S

2.2.1 Class S

One fairly general method of constructing four-dimensional N = 2 theories
is by compactifying from higher dimensions — six, in our case. More precisely,
one considers the conjectured “6d (2, 0) theory” associated to a Lie algebra g and a
punctured Riemann surface C with certain “defects”D associated to the punctures,
by taking the spacetime to be

M = X× C, (2.2.1)

where X is a (pseudo-)Riemannian 4-manifold and assuming C to be small. Com-
bining this with a so-called “partial topological twist”, we produce a 4dN = 2 the-
ory. When X = R4, we denote the resulting theory by S[g, C,D], or when g = AK−1
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as will often be the case, TK[C,D]. Theories of this form are called theories of class
S .

As we mentioned in the previous section, every 4dN = 2 theory is expected to
have an integrable system associated to it governing its low-energy behaviour. In
the case of theories of class S , it turns out that this is the Hitchin systemM =MH

(described in detail in §3.3). The Coulomb branch is identified with the Hitchin
base

B =
⊕

i

H0(C, K⊗di
C )

and the projection π : MH → B is the Hitchin map. The Seiberg-Witten curve is
then the spectral curve Σ ⊂ T∗C

det(x− ϕ) = 0 (2.2.2)

where ϕ is the Higgs field. The Seiberg-Witten differential λ is then the restriction
of the tautological one-form on T∗C.

Remark. Further compactification on S1 leads to a three-dimensional theory whose
low-energy effective Lagrangian is that of a supersymmetric sigma model into
MH. The vacua of a sigma model are simply the constant maps, so we identify
the moduli space of vacua asMH, the total space of the Hitchin system. So we can
see that the Hitchin system not only arises in field theory as an associated inte-
grable system, but also as a vacuum moduli space.

Without going into the precise details of the construction, let us summarize the
data and some properties of a class S theory. Fix a positive integer K, which we call
the “rank”4 and a punctured Riemann surface C. We equip the Riemann surface
with a collection

D = {Dl}l=1,...,n (2.2.3)

of “regular defects” associated to each puncture zl. Physically, these are objects fill-
ing up the entire R4 factor of spacetime, thus appearing as a point in the remaining
two dimensions, which modify the path integral along their extent. From a physics
perspective, defects in QFT are a subject of intense study, and we will content
ourselves below with a somewhat restricted definition which will suffice for our

4This is the rank of the bundles we will later be studying, rather than the rank of the Lie algebra
which is K− 1 in our usual case of AK−1
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purposes. To each choice of such data (K, C,D) corresponds a four-dimensional
N = 2 superconformal field theory S[AK−1, C,D] of type AK−1 with defects D of
“regular” type.

A slightly more precise though less flexible way of saying these things, suffi-
cient for our purposes is as follows. Let C be a Riemann surface equipped with
some marked points, or punctures.

Definition. A regular defect at a puncture zl is the data (Yl,ml) consisting of a
Young diagram Yl with K boxes and a collection of compatible “mass” parameters
ml = (ml,i)i=1,...,K satisfying Trml = ∑K

i=1 ml,i = 0. The height of each column in
the Young diagram encodes the multiplicities of coincident mass parameters in the
obvious way.

We will use the notation that the divisor D = ∑n
k=1 1 · zk keeps track of the locations

of the defects. We will only have occasion to deal with regular singularities, so this
is all we need, but we could encode “irregular” punctures as well in an analogous
fashion. We will call any compact Riemann surface equipped with defects at a
finite number of points a punctured Riemann surface (C,D).

Definition. Let g be a complex semisimple Lie algebra, C a compact Riemann sur-
face, and D = {(Yi,mi)} a collection of (regular) defects at some choice of punc-
tures. We will call a tuple T = (g, C,D) a tuple of class S data.

Given class S data, we can associate a number of objects that are part of the
corresponding physical theory. The Seiberg-Witten curve (or spectral curve) corre-
sponding to the point ϕ = (ϕ2, . . . ϕK) ∈ B is the curve Σ ⊂ T∗C

λK + λK−2ϕ2 + . . . ϕK = 0 (2.2.4)

and the Seiberg-Witten differential is the pullback of the tautological one-form to
Σ.

Definition. The mass parameters of the theory are the residues of the Seiberg-
Witten differential λ,

ml,j = reszl λj (2.2.5)
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Thus whenever we specify class S data, we are implicitly fixing the residues of the
Seiberg-Witten curve in accordance with our choice of mass parameters.

The data of the defects determines the Coulomb branch. To state this, we de-
fine the space of allowed translations of the Hitchin base given by restricting the
allowed poles of the subleading terms of ϕk at each puncture zi, as follows:

1. Starting from the topmost row of the Young diagram, write integers p(1)i =

0, p(2)i = 1, . . . p(r1)
i = r1 from left to right in each box until reaching the last

(r1th) box in the row.

2. In the next row, write integers p(r1+1)
i = r1, p(r1+2)

i = r1 + 1, . . . p(r2)
i = r1 + r2

until reaching the last (r2th) box in the row, and repeat this process until all
K boxes are filled

3. Ignoring the irrelevant case of k = 1, the order of the pole of ϕk at the punc-
ture zi is p(k)i .

Thus, the allowed translations are H0(C, K⊗k
C (∑ p(i)k · zi). In particular, for the

case of a maximal puncture, we can just write D = ∑ 1 · zi, and H0(C, KC(D)⊗K.
For example, when K = 2 there is only one choice, leading ϕ2 having a pole of
order 1. When K = 3 we have two choices, giving either ϕ2, ϕ3 both with a pole of
order 1 (minimal) or ϕ2 of order 1, ϕ3 of order 2 (maximal).

Definition. The Coulomb branch of a class S theory T with regular defects is the
affine subspace of the full Hitchin base

B = B(T) ⊂
K⊕

i=2

H0(C, KC(D)⊗i) (2.2.6)

where the masses are fixed to have residues mi,j and the subleading terms are al-
lowed translations.

“Definition”. The theory of class S associated to the class S data (g, C,D) is the
partially twisted compactification T = S[g, C,D] described above.

This is a four-dimensional N = 2 supersymmetric QFT which, like almost any
other QFT, has no precise mathematical definition at present. But unlike many
other QFTs, it does not even have a satisfactory physical definition, owing to the
mysterious and conjectural nature of the 6d (2, 0) theory it came from. Nonethe-
less, many of its expected properties can be determined and studied.
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2.2.2 Generalized quiver gauge theories

In [10] Gaiotto studies generalized quiver gauge theories. These are theories Tg,n

associated to trivalent graphs with g loops and n external legs. Such graphs (once
equipped with a cyclic ordering of edges at each vertex) are equivalent to pants
decompositions of a Riemann surface Cg,n of genus g with n punctures. Pick an
integer K ≥ 2 specifying that our theories will have gauge groups which are prod-
ucts of SU(K). Each weakly coupled Lagrangian description of Tg,n corresponds
to a pants decomposition of Cg,n (though not conversely!), with the “plumbing pa-
rameter” q = e2πiτ (see §3.4.1) identified with the exponentiated coupling of the
gauge group at the ith pants curve. For K = 2, the construction is:

• Assign to each external leg a hypermultiplet in the representation R = fund,
so that the flavor group is SU(2)n.

• Assign to each internal edge a gauge group SU(2) so that the total gauge
group is G = SU(2)3g−3+n.

• Assign to each vertex with two internal edges hypermultiplet in the “bifun-
damental” representation 21 ⊗ 22, where the subscripts denote the two adja-
cent gauge groups.

• Assign to each vertex with three internal edges the “trifundamental repre-
sentation” 21 ⊗ 22 ⊗ 23 where the subscripts denote the three adjacent gauge
groups.

Speaking in terms of pants decompositions, what this means is that (in the case
of weak coupling) we have a collection of three-punctured spheres connected by
long thin tubes. Each tube adds a factor of SU(2) to the gauge group, each puncture
gives a hypermultiplet, and bi- or tri-fundamentals are put between adjacent gauge
groups. Physically one should think of these theories as obtained from pairs of
pants (which correspond to the theory of four free hypermultiplets) by “weakly
gauging a flavour symmetry”.

The quiver gauge theories are exactly the weakly coupled Lagrangian descrip-
tions of theories of class S . The theory came from C = Cτ which has a complex
structure τ, and the moduli space of complex structuresMg,n(C) is identified with
the parameter space of gauge couplings. If τ is not near a degeneration there is no
weakly coupled description of the theory.
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Duality. Recall that S-duality in pure N = 4 super Yang-Mills is a “quan-
tum symmetry” of the theory which conjectures the equivalence of theories (that
is, that various properties like correlation functions, Coulomb branch, etc. are the
same or related in some prescribed way) under the usual SL(2, Z) action on the
coupling constant τ ∈ H by fractional linear transformations. A similar symme-
try, still called S-duality, exists for the N f = 4 SU(2) theory mentioned earlier, but
the group is actually SL(2, Z)n S3 which permutes the flavour symmetries asso-
ciated to the hypermultiplets (via triality i.e. the outer automorphisms of Spin(8),
i.e. permuting its three irreducible representations). Gaiotto extends this to an
S-duality on any SU(2) quiver gauge theory.

Claim: (generalized) S-duality acts transitively on the set of pants decomposi-
tions. Here by “generalized” we mean the group is actually SL(2, Z)n S3 which
permutes the flavour symmetries associated to the hypermultiplets (via triality i.e.
the outer automorphisms of Spin(8), i.e. permuting its three irreducible repre-
sentations). This depends on the fact that all SU(2) theories in class S have a La-
grangian description.

In the SU(3), N f = 6 theory, there is another duality, called Argyres-Seiberg
duality [11], replacing S-duality, but which no longer necessarily takes Lagrangian
theories to Lagrangian theories. The constructions above generalize to this case,
but now we can have two types of punctures (“maximal” and “minimal”), cor-
responding to two different possibilities for the defects in the 6d theory. These
place constraints on the Coulomb branch (the allowed orders of poles in the dif-
ferentials). As in the SU(2) case, Gaiotto extends the known duality to a duality
on any SU(3) quiver gauge theory. However, the claim about the transitive ac-
tion no longer holds, since we often get so-called “non-Lagrangian” theories. The
basic example of this phenomenon is Argyres-Seiberg duality itself, which sends
the weakly coupled SU(3), N f = 6 theory to an SU(2) theory coupled to a non-
Lagrangian E6 theory, the so-called “Minahan-Nemeschansky E6 theory”.

Similar constructions with a few more elaborations can also be generalized to
SU(N) for arbitrary N. One refers to this as “Gaiotto duality” in general.

We can summarize the identifications described above in the following table, a
“dictionary” between the geometry and the physics:
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Physics Geometry
UV curve Punctured Riemann surface C
Seiberg-Witten curve Branched covering π : Σ→ C
Coulomb branch Base of the integrable system B
Duality frame Symplectic basis of H1(Σ)
S-duality group Mapping class group MCG(C)
Gauge coupling τ Complex structure τ
Space of gauge couplings Mg,n(C)
Weakly-coupled Lagrangian description Pants decomposition of C

2.2.3 Examples and zoology

In the same way that any punctured Riemann surface C can be glued out of
three-punctured spheres, the basic building blocks of theories of class S are those
corresponding to three-punctured spheres. The possible building blocks are spec-
ified by the integer K and the choice of defects.

Some building blocks have a standard field theory description in terms of the
usual matter multiplets of the N = 2 SUSY algebra in §2.1.1, whereas others are
much more mysterious, described as intrinsically strongly coupled (non-Lagrangian)
SCFTs.

As per the construction via quiver gauge theories above, none of these building
blocks involve vector multiplets. These are only introduced when gluing the three-
punctured spheres. On the level of theN = 2 theory this corresponds to “gauging”
the corresponding flavour symmetry groups associated to punctures.

As a result, one can in some sense build up an understanding of complicated
theories by studying theories on four-punctured spheres, thought of as being glued
together from two such building blocks. The generalization to more gluings should
be relatively straightforward, at least conceptually, once this basic case is under-
stood. For this reason, our main examples in Chapters 5 and 6 will be the theories
TK[C,D] where (C,D) is the four-punctured sphere P1

0,q,1,∞, with q ∈ C \ {0, 1},
with the rank either K = 2 or K = 3. In the following we briefly review their ge-
ometry. For a complete classification of the class S theories of type AK−1 for small
K, see [12].

Examples, K = 2

When K = 2 there is only one possible regular defect, labeled by the Young dia-
gram

(2.2.7)
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Figure 2.1: The UV curve for the theory T2[P
1
0,q,1,∞].

consisting of one row with two boxes. The mass parameters corresponding to
this defect are taken to be generic, with ml,2 = −ml,1. In the corresponding four-
dimensional quantum field theory this defect corresponds to an SU(2) flavour
symmetry group. In particular, there is only a single building block T2[P

1
0,1,∞].

Example. The theory T2[P
1
0,1,∞] describes a half-hypermultiplet in the trifunda-

mental representation of SU(2)0 × SU(2)1 × SU(2)∞. Its Coulomb branch B is a
single point corresponding to the quadratic differential

ϕ2(z) = −
m2

∞z2 − (m2
∞ + m2

0 −m2
1)z + m2

0
4z2(z− 1)2 (dz)2, (2.2.8)

for fixed values of the parameters m0, m1 and m∞. The combinations ±m0±m1±m∞
2

correspond to the (bare) masses.

Gauge fields are introduced by gluing three-punctured spheres. The corre-
sponding complex structure parameters q are identified with the gauge couplings
e2πiτ. The limit q→ 0 corresponds to the weakly coupled description of the gauge
theory at a cusp of the moduli space. For every pants cycle α there is a Coulomb
parameter a0, which is defined as the period integral a0 =

∮
A λ along a lift A of the

pants cycle.

Example. The theory T2[P
1
0,q,1,∞] corresponds to the superconformal SU(2) gauge

theory coupled to four hypermultiplets, see Figure 2.1. Its Coulomb branch B is
1-dimensional and parametrized by the family of quadratic differentials

ϕ2(z) = −
(

m2
0

4z2 +
m2

4(z− q)2 +
m2

1
4(z− 1)2 (2.2.9)

+
m2

0 + m2 + m2
1 −m2

∞

4z(z− 1)
− u

z(z− q)(z− 1)

)
(dz)2,
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where the parameter u is free and the mass parameters m0, m, m1 and m∞ are
fixed. The combinations m0±m

2 and m1±m∞
2 correspond to the bare masses of the

four hypermultiplets.
The corresponding Seiberg-Witten curve Σ is a genus one (after compactifying)

covering of P1
0,q,1,∞ with four simple branch points. Let A be the lift of the 1-cycle

α going counterclockwise around the punctures at z = 0 and z = q; then the
Coulomb parameter a0 = a0(u) is defined as the period integral a0 =

∮
A λ.

Examples, K = 3

The case K = 3 is the first in which we encounter different types of punctures.
The two types will be referred to as “maximal” and “minimal” punctures5. For a
maximal puncture zl the mass parameters ml,i are generic with ml,1 6= ml,2, whereas
for a minimal puncture ml,1 = ml,2. In particular:

A maximal puncture is labeled by the Young diagram

(2.2.10)

consisting of one row with three boxes. In the corresponding quantum field theory
this defect corresponds to an SU(3) flavour symmetry group.

A minimal puncture is labeled by the Young diagram

(2.2.11)

consisting of one row with two boxes and one row with a single box. In the corre-
sponding quantum field theory this defect corresponds to a U(1) flavour symme-
try group.

In terms of the Seiberg-Witten differential, a maximal puncture at z = zl turns
into a minimal puncture if it satisfies two requirements:

(i) Two of the masses at the puncture coincide:

ml,1 = ml,2 = ml. (2.2.12)

(ii) The discriminant of

λ3 + (z− zl)
2ϕ2 λ + (z− zl)

3ϕ3 (2.2.13)

should vanish up to order (z− zl)
2. This enforces two simple branch points

of type (ij) of the covering to collide with the puncture at z = zl.
5Some use the terminology “full” and “simple” instead, respectively.
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Figure 2.2: Left: the UV curve for the free bifundamental hypermultiplet T3[P
1
0,1,∞].

Right: the UV curve for the non-Lagrangian E6 theory T3[P
1
0,1,∞].

Example. The theory T3[P
1
0,1,∞] with three maximal punctures (Figure 2.2, right),

is the so-called E6 Minahan-Nemeschansky theory [13]. Microscopically (via the
class S construction) its flavour symmetry group is SU(3)1 × SU(3)2 × SU(3)3, en-
hanced in the low energy limit to E6. It is a non-Lagrangian theory.

The Coulomb branch B of the theory T3[P
1
0,1,∞] is described by the 1-dimensional

family of differentials

ϕ2 =
c∞z2 − (c0 − c1 + c∞)z + c0

z2(z− 1)2 (dz)2 (2.2.14)

ϕ3 =
d∞z3 + uz2 + (d0 + d1 − d∞ − u)z− d0

z3(z− 1)3 (dz)3, (2.2.15)

where u is a free parameter, whereas the parameters cl and dl are fixed and can
be written as combinations of SU(3)1 × SU(3)2 × SU(3)3 mass parameters. If we
choose

cl =
1
4
(−m2

l,1 −ml,1ml,2 −m2
l,2) (2.2.16)

dl =
1
8
(ml,1ml,2(ml,1 + ml,2)) (2.2.17)

then the residues at the punctures z = l are {ml,1
2 , ml,2

2 , −ml,1−ml,2
2 }, respectively.

The Seiberg-Witten curve Σ defines a 3-fold ramified covering over the UV
curve P1

0,1,∞, with generically six simple branch points. This implies that Σ is a
punctured genus one Riemann surface. In contrast to weakly coupled gauge theo-
ries, the Seiberg-Witten curve has no distinguished A-cycle.

Recall that we sometimes write (C,D) as Cz1,...zn , and denote a minimal punc-
ture by underlining the position of the puncture. Mass parameters are left implicit.
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Example. The theory T3[P
1
0,1,∞] with two maximal and one minimal puncture (Fig-

ure 2.2, left), corresponds to a free hypermultiplet in the bifundamental represen-
tation of SU(3)0 × SU(3)∞. We find its Coulomb branch by applying the con-
straints (2.2.12) and (2.2.13) to the family of T3[P

1
0,1,∞]−differentials described in

equation (2.2.14) and (2.2.15) at z = 1. The latter constraint cuts down the only
parameter we had:

u =
(m1

2

)3
− d0 − 2d∞ +

m1

2
(c0 − c∞). (2.2.18)

so that the Coulomb branch is just a single point ϕbif = (ϕbif
2 , ϕbif

3 ).

These two examples provide the possible building blocks for K = 3 theories
[10, 12]. Vector multiplets are introduced by gluing three-punctured spheres at
maximal punctures (gluing elsewhere is not allowed). The (exponentiated) gauge
coupling corresponds to the complex structure parameter q, where the gluing is
performed in a standard way according to the transition z1z2 = q (see §3.4.1).

Example. The theory T3[P
1
0,q,1,∞] is the superconformal SU(3) gauge theory cou-

pled to N f = 6 hypermultiplets. It may be obtained by gluing two three-punctured
spheres with two maximal and one minimal puncture. Its Coulomb branch B is
parametrized by two parameters u1 and u2.

The explicit form of the differentials ϕ2 and ϕ3 can be obtained as before. First
we write down the most general quadratic and cubic differential with regular poles
at the punctures. Eight of the twelve parameters are fixed by writing the residues at
each punctures in terms of the mass parameters. Two more parameters are fixed by
additional requirements at both minimal punctures, analogous to equation (2.2.12)
and (2.2.18). The resulting differentials are written down explicitly in Chapter 6.

2.3 Instanton counting

2.3.1 Nekrasov partition function

Formally, the partition function of a quantum field theory with action S is given
by the path integral

Z =
∫

fields
DΦ e−S (2.3.1)

where Φ is shorthand for all of the fields involved, and DΦ is the heuristic (non-
existent) measure on the space of fields.

24



For theories whose classical solutions are instantons, this expression can be fac-
tored as follows:

Z = ZpertZinst (2.3.2)

Here Zpert is the perturbative (classical/tree and loop contributions coming from
Feynman calculus), and Zinst represents the nonperturbative contributions coming
from the existence of instantons. In the 4d, N = 2 theories we are interested in, it
turns out that only 1-loop corrections occur, so in fact we can write:

Z = ZclassZ1−loopZinst

The method for making sense of and evaluating these expressions in our set-
ting was pioneered by Nekrasov [5]. The classical and 1-loop contributions had
been known for some time, but it was not known was how to make sense of the
seemingly infinite contributions from instantons. Nekrasov’s answer to this was to
introduce the so-called Ω-deformation, a two-parameter deformation of the theory.
Without going into precise details, these are theories on spacetimes possessing a
T = U(1)×U(1) isometry group that allow us to render finite the integrals over
instanton moduli spaces. The Nekrasov partition function (or instanton partition
function) is then defined by

Zinst(a, m, q, ε1, ε2) =
∞

∑
k=0

qk
∫
Mk

1 (2.3.3)

where 1 is interpreted as the equivariant cohomology class 1 ∈ H∗T(Mk), andMk

is a certain compactification of the moduli space of instantons on R4 with instan-
ton number k. Here a collectively denotes the Coulomb branch parameters, m the
mass parameters of the matter representations, and τ the coupling constants. One
often writes q = e2πiτ due to its occurrence in formulas, but really q should be in-
terpreted formally here since we do not know if Zinst converges. The integrals can
be interpreted as certain explicit rational functions in a, m, ε1, ε2 (see [14]), so that
Zinst is a well-defined formal series with coefficients in C(a, m, ε1, ε2).

The fundamental claim (proved in [14, 6]) is that the Nekrasov partition func-
tion of a 4d, N = 2 theory contains the information of the prepotential of the
low-energy effective theory. In particular, it is obtained as the following limit:

F (a, m, q) = lim
ε1,ε2→0

ε1ε2log Z(a, m, q, ε1, ε2) (2.3.4)
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Thus the Ω-deformation and Nekrasov partition function give a two-parameter
deformation of the physical setup we started with. In the limit as ε1, ε2 → 0,
we amazingly recover the information of Seiberg and Witten’s low-energy theory
despite Z ostensibly having no knowledge at all about periods, differentials, etc.,
which convinces us of the correctness of their solution.

The Nekrasov partition function can also be understood as a field theory limit
of topological strings, where the ε1, ε2 are interpreted as certain deformation pa-
rameters in the refined topological string (see e.g. [15]).

2.3.2 Localization

In the presence of supersymmetry, it is often possible to argue that the “infinite
dimensional” path integral actually reduces to a finite dimensional integral over
some “supersymmetric locus”. Let V[Φ] denote a fermionic functional, and Q an
odd element of the supersymmetry algebra such that QV has positive-semidefinite
bosonic part, and Q2V = 0. Suppose, furthermore, that T is a topological quantum
field theory6, which means that the observables have no dependence on the metric
of spacetime. Then one can argue (e.g. [16]) that

Zt =
∫
D[Φ]e−S−tQV (2.3.5)

is independent of t and therefore can be evaluated in the limit as t→ ∞ to compute
Z = Z0. In particular, the exponential is suppressed unless QV = 0, i.e. unless we
are are on the locus where these equations are satisfied. So we expect that in fact the
partition function should become an integral over the moduli space of solutions,
which in our case are instantons:

Z =
∞

∑
k=0

qk
∫
Mk

1 (2.3.6)

This is how we can justify the indirect definition given above as correctly comput-
ing the path integral.

Terminology. The “semiclassical approximation” refers to summing over pertur-
bations around all critical points of the action i.e. classical extrema. The point is
that the semiclassical approximation is exact when we have supersymmetry in a
topological theory as above.

6This phrase means different things to different people. A quantum field theory that is topolog-
ical (“topological quantum field theory” to physicists) is as above. A topological QFT (or TQFT) to
topologists is a certain kind of functor from a “bordism category” to the category of vector spaces.
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The only obstruction to the above procedure for us is that the theory as for-
mulated is not actually topological. Nekrasov circumvented this and applied lo-
calization by first using Witten’s classic trick of “topological twisting” — roughly
speaking, this is a method of modifying the theory by exploiting the R-symmetry
group HR (outer automorphisms fixing the even part) of spoin. The possible twists
are classified by homomorphisms ρ : Spin(4) → HR, and in particular Nekrasov
chose a particular one known as the “Donaldson twist”. The localization applied
to the Donaldson twist of our original theory then gives the Nekrasov partition
function as above.

2.3.3 Explicit formulas

It turns out that for U(N) or SU(N) gauge theories (or more generally, any
theories with an explicit Lagrangian description) the partition function can be ex-
plicitly evaluated. We will need these expressions to derive the superpotential for
the theory we will eventually study. The conventions for the expressions given
here are among the most standard in the literature, and can be found in [17].

The classical part is just

Zclas = exp

[
− 1

ε1ε2
∑

i
(2πi) a2

i logqi

]
(2.3.7)

The only further perturbative corrections arise at one loop, so we only need:

z1−loop
vector (~a) = ∏

i<j
exp[−γε1,ε2(ai − aj − ε1)− γε1,ε2(ai − aj − ε2)]

z1−loop
fund (~a, µ) = ∏

i
exp[γε1,ε2(ai − µ)]

z1−loop
antifund(~a, µ) = ∏

i
exp[γε1,ε2(−ai + µ + ε+)]

z1−loop
bifund (~a,~b, m) = ∏

i,j
exp[γε1,ε2(ai − bj −m)]

Here ε+ = ε1 + ε2, and we have used γε1,ε2(x) = logΓ2(x + ε+, ε1, ε2) where

Γ2(x, ε1, ε2) = exp
d
ds

∣∣∣∣
s=0

1
Γ(s)

∫ ∞

0

dt
t2

tse−tx

(1− e−ε1t)(1− e−ε2t)
(2.3.8)

Finally, the instanton pieces look as follows. It is known that U(N) instanton
configurations centred at the origin of R4 can be labelled by an N-tuple of Young
diagrams whose total number of boxes is the instanton number. The instanton
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partition function is expressed as a sum over instantons, and thus as a sum over
N-tuples of Young diagrams. For linear quivers, they look like (recall that fund
and antifund are different for U(2), so both must be included):

Zinst = ∑
~Y1...~YN

(
N

∏
i=1

q|
~Yi|

i zvector(~ai,~Yi)

)
zantifund(~a1,~Y1, µ1)zantifund(~a1,~Y1, µ2)

×
(

N−1

∏
i=1

zbifund(~ai,~Yi;~ai+1,~Yi+1)

)
zfund(~aN,~YN, µ3)zfund(~aN,~YN, µ4)

So, for example, in the U(2) N f = 4 theory we have:

Z
U(2),N f =4
inst =∑

~Y

q|~Y|zvector(~a,~Y)

zantifund(~a,~Y, µ1)zantifund(~a,~Y, µ2)zfund(~a,~Y, µ3)zfund(~a,~Y, µ4).

The individual pieces are given by certain simple rational expressions involv-
ing the “arm length” and “leg length” of the Young diagram. We refer the reader
to [17] for the expressions.

To obtain formulas for SU(N) gauge groups, we take the U(N) results and
simply impose the condition of tracelessness: aN = −a1 − . . .− aN−1.

2.4 Nekrasov-Shatashvili limit and the twisted super-
potential

2.4.1 The cigar theory

So far, all of the constructions above were done on R4 equipped with the Minkowski
or Euclidean metric; in particular, the theory TK[C,D] was defined on this space-
time. Let us for a moment consider a slightly different setup, in which instead of
R4, we take as our spacetime

X = D2 ×R2, (2.4.1)

where D2 is topologically a disk with a cigar metric ds2 = dr2 + f (r)dφ2 — this
means that f (r) ∼ r2 for r → 0 and f (r) ∼ R2 for r → ∞, for some constant R > 0.
We should think of D2 as a “cigar”, a degenerate S1 fibration over the nonnegative
real axis R≥0, parametrized by r ≥ 0.
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The Ω-deformation still makes sense in this setup, with one of the planar ro-
tations (say, corresponding to ε1) replaced by the rotation of the cigar generated
by ∂/∂φ. Furthermore, we consider the limit in which we turn off the remaining
parameter ε2, so the resulting theory Tε is deformed by only one parameter (which
we drop the subscript for and call ε). It can be shown that Tε is invariant under a
N = (2, 2) super-Poincare algebra, and its low-energy behaviour turns out to be
characterized by a 2d supersymmetric sigma model. Analogous to the prepoten-
tial F in four dimensions, this low energy theory is then characterized by a single
holomorphic function, the “(effective) twisted superpotential” W̃eff(a, m, q, ε). This
is the quantity we will be interested in computing — we can think of it as a kind
of two-dimensional shadow of the four-dimensional partition function.

2.4.2 Effective twisted superpotential

It is argued in [18] that the effective twisted superpotential governing the low-
energy limit of the cigar theory should be given by the expression (“the Nekrasov-
Shatashvili limit”):

W̃eff(a, m, q, ε) = lim
ε2→0

ε2logZ(a, m, q, ε1, ε2) (2.4.2)

Since Z is a formal series in q and the first term of Zinst is 1, we can define the
log of this formally without trouble, and we see immediately that we have:

W̃eff(a, m, ε) = W̃eff
clas(a, m, ε)logq + W̃eff

1−loop(a, m, ε) +
∞

∑
k=1

W̃eff
k (a, m, ε)qk (2.4.3)

as a formal series in q. Hence, in order to keep things mathematically well-defined,
we will define W̃eff to be this limit.

Definition. Let (g, C,D) be a tuple of class S data. The effective twisted superpo-
tential associated to (g, C,D) is the Nekrasov-Shatashvili limit

W̃eff(a, m, q, ε) = lim
ε2→0

ε2 logZ(a, m, ε, ε2, q) (2.4.4)

Since it will be important for us later, we record the explicit expressions for the
SU(2), N f = 4 theory up to one instanton. While the classical and instanton parts
we give next are simply the NS limit of the previous section up to a normalization
of ai, the 1-loop part is more subtle due to the possible differences in regularization
scheme one can use to define it. It turns out that only the magnitude of Z1−loop is
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canonically defined, leaving an ambiguity in the phase. For agreement with the
generating function, we choose to use the 1-loop factor coming from the so-called
“Liouville” scheme. Then the expressions are:

W̃clas(a, m, ε) =
1
4ε

a2 (2.4.5)

W̃1−loop(a, m, ε) = W̃vect(a, ε) + W̃hyp(a, m, ε) (2.4.6)

W̃1(a, m, ε) =
4

∏
l=1

(a + ml + ε)

16a(a + ε)
+

4

∏
l=1

(a−ml − ε)

16a(a− ε)
. (2.4.7)

(2.4.8)

with

W̃vect(a, ε) = −1
2

Υ(−a)− 1
2

Υ(a) (2.4.9)

W̃hyp(a, m, ε) =
1
2

4

∑
l=1

Υ
(

ε + a + ml
2

)
+

1
2

4

∑
l=1

Υ
(

ε− a + ml
2

)
, (2.4.10)

where the special function Υ is given by

Υ (x) =
∫ x

1
2

du log
Γ(u)

Γ(1− u)
. (2.4.11)

2.4.3 The NRS conjecture

If compactified to three dimensions along the S1-fibre of the cigar D2, the result-
ing theory may be studied in the low-energy limit as a three-dimensional N = 4
sigma model 7 with worldsheet R+ ×R2 into the Hitchin moduli space M. The
boundary condition at r = 0 is known to be specified by the “brane of opers” L
[19]. In §3.5 we describe in detail what these are; for now we simply mention they
form a certain distinguished complex Lagrangian subvariety of the moduli space
of flat connections. As a result, they possess a generating function in any Darboux
coordinate chart, defined by yi = ∂xiW

oper. Nekrasov-Rosly-Shatashvili proposed
that, as a consequence of the physical picture above,

W̃eff(a, m, q, ε) = Woper(a, m̃, q, ε) (2.4.12)

when we identify the Darboux coordinates xi with the two-dimensional scalars ai,
and m̃, m are related in a simple prescribed way [7].

7That is, with bosonic part a 3d sigma model whose target space metric is hyperkähler
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More precisely, they studied this conjecture for K = 2, where they introduced
a particular Darboux coordinate system on MC

dR(C, SL2), which we will refer to
as the NRS Darboux coordinates and coincide with the “complexified Fenchel-
Nielsen coordinates” of Tan [20] and Kourouniotis [21]. They found that the cor-
respondence (2.4.12) holds provided the generating function of the Lagrangian of
SL2-opers is expressed in the NRS Darboux coordinates. Chapters 5 and 6 are de-
voted to the study and generalization of these coordinates and the NRS conjecture.
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Chapter 3

Preliminaries: Mathematics

In this chapter we will review some basic facts about the mathematics of con-
nections and moduli spaces, which will play a fundamental role in the rest of the
thesis. We will necessarily be cursory in our treatment — the reader is encouraged
to consult the original papers in the bibliography for a complete understanding.

Notation. We will adhere to the notation that sheaves Ak
X refer to sheaves of

smooth k-form valued sections of various objects, and ΩX to sheaves of holomor-
phic k-form valued holomorphic sections. If F is a sheaf, then F (U) where U is an
open set always denotes sections over U. For smooth (resp. holomorphic) sections
of a smooth (resp. holomorphic) vector bundle E, we define Ak

X(E) := Ak
X ⊗ E

(resp. Ωk
X(E) := Ωk

X ⊗ E). Throughout, all our Lie groups G will be linear alge-
braic groups G ⊂ GLK(C) or PSL.

3.1 Flat connections

Our main objects of study will be moduli spaces of flat connections on vector
bundles over Riemann surfaces. Let us give some of the basic setup before pro-
ceeding, to fix notation and orient the reader.

Definition. Let E be a smooth complex vector bundle over a smooth manifold X.
A connection on E is a C-linear map

D : AX(E)→ A1
X(E)

satisfying the Leibniz rule:

D( f s) = d f ⊗ s + f Ds (3.1.1)
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for s ∈ AX(U)(E), f ∈ AX(U). If X is a complex manifold, then a holomorphic
connection over a holomorphic vector bundle E is one in which AX is replaced
with ΩX, the holomorphic sections.

Definition. The curvature of a connection D is the map

D ◦ D : AX(E)→ A2
X(E)

which can be thought of as a two-form taking values in End(E). In the holomor-
phic case, again replace A with Ω.

It follows immediately that a holomorphic connection on a holomorphic vector
bundle over a Riemann surface is automatically flat, since the curvature is neces-
sarily a (2, 0)-form, of which there are none.

Monodromy Given a flat connection ∇, and a basepoint, x0, we can define the
parallel transport map around any loop γ based at x0:

Tγ : Ex0 → Ex0

The fact that this map always exists and is well-defined amounts to the existence
and uniqueness theorem for ODEs. Since ∇ is flat, it can be shown that the par-
allel transport map is independent of the precise curve, and depends only on its
homotopy class. Thus, a flat connection yields representation

ρ : π1(X, x0)→ GL(Ex0)

called the monodromy representation of ∇.

We are interested in studying the space of all connections, up to an appropriate
notion of equivalence (that is, up to the action of bundle automorphisms or “gauge
transformations”). We define the de Rham moduli space or moduli space of flat
connections on E to be

MdR = {(E ,∇) | ∇ a connection on E and F∇ = 0} /G

where G is the group of gauge transformations i.e. holomorphic sections of End(E).
As written, this space is a quotient of an infinite-dimensional affine space by an
infinite-dimensional group. While it is possible to treat this analytically, it turns
out that it has a more algebraic avatar as well.
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Definition. Let G be a reductive algebraic group. The character variety or Betti
moduli space is the GIT quotient

MB(C, G) = Hom(π1(C), G)//G (3.1.2)

where the action of G is by conjugation:

(g · ρ)(x) = gρ(x)g−1

This space is an algebraic variety. To see this when G ⊂ GLK(C), pick a set of
generators {γ1, . . . γk}, allowing us to identify Hom(π1(C), G) with a subvariety
of Gk. If we restrict to certain nice representations, then the categorical quotient is
the same as the quotient by conjugation, so thatMB is an algebraic variety. This
algebraic structure can be shown to be independent of the choice of generators and
embedding.

There is a correspondence between the character variety for the structure group
of a bundle G and the moduli space of flat connections. One direction simply takes
a connection to its monodromy: ∇ 7→ Holp(∇) where p is a “basepoint”. This
map is invertible as follows. Given a representation ρ : π1(C̃) → G, consider the
principal G-bundle P = C̃ ×π1(C) V where π1(C) acts on C̃ by deck transforma-
tions, and on V via ρ. There is a canonical flat connection which one obtains from
this. One can then check that the map descends to the quotient. The corresponding
holomorphic vector bundle equipped with a flat connection is denoted Vρ. We will
blur the distinction betweenMdR andMB as a result of this correspondence, and
almost always simply stick to the notationMdR.

Definition. Let X be a complex manifold. A (complex, rank K) local system on X
is a sheaf that is locally isomorphic to the constant sheaf CK. Local systems on X,
with morphisms the usual morphisms of sheaves, form a category, which we will
denote Loc(X).

There is a categorical equivalence between local systems and holomorphic bun-
dles equipped with holomorphic connections over a Riemann surface. Given a lo-
cal section of V, write s = ∑ fiei. Define a connection on the bundle defined by
V = O ⊗C V by ∇s = ∑ d fi ⊗ ei. Conversely, a holomorphic connection is flat
on a Riemann surface and so we can define the sections over U to be the parallel
sections ∇s = 0.
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It is not hard to see that the category of rank K local systems and the category of
representations of π1 into GLK are equivalent. Thus we can see the moduli space
of local systems is just the same thing asMB.

3.1.1 Singularities

We will mostly be concerned with the more interesting case in which connec-
tions can have singularities. The object we will be interested in is:

Definition. Let D be an effective divisor. A meromorphic connection with poles
bounded by D is a C-linear morphism of sheaves

∇ : E → E ⊗Ω1
X(D) (3.1.3)

The points in D will be called singularities of the connection. As before, a mero-
morphic connection on a curve is automatically flat since dim C = 1. Restricting
the connection to the complement C \ |D|, we still get a monodromy representa-
tion, but this time it is not enough data to classify them up to isomorphism. The
Riemann-Hilbert correspondence in the next section tells us how to restrict our at-
tention so as to keep the classification by monodromy data even when there are
singularities1.

If ∇ has simple poles at p (this is well-defined) we say it is logarithmic at p.
If all the poles of ∇ are simple, then we call the connection itself logarithmic or
Fuchsian. We can define a notion of residue at such points:

Definition. Let ∇ be a connection on a holomorphic vector bundle E , logarithmic
at a singularity p. The residue at p, denoted Resp∇, is the linear map

resp∇ : Ep → Ep (3.1.4)

given by writing in ∇ a local chart

∇ = d− A = d−
(

A−1

z
+ A0 + A1z + . . .

)
dz (3.1.5)

and setting Resp(∇) = A−1. It is easy to check that this is well-defined, indepen-
dent of the choice of chart.

The following is not hard to verify:

1More generally, one should consider Stokes data which gives us additional information about
asymptotics near the singularities to distinguish between distinct meromorphic connections with
the same monodromy.

35



Proposition 3.1.1. Let ∇ be a meromorphic connection on E , logarithmic at p. Then
the monodromy of ∇ around a small counterclockwise loop γ around p is conjugate to
exp(2πi Resp(∇)). In particular, the eigenvalues of Holγ∇ are exp(2πi ·) of the eigen-
values of Resp(∇).

3.1.2 The Riemann-Hilbert correspondence

The Riemann-Hilbert correspondence relates flat connections to their monodromy
data, and also deals with the case of singularities if they are sufficiently nice. DDe-
note by Conn (Connreg) the category whose objects are meromorphic connections
(with regular singularities along D) and whose morphisms areOX(D)-linear maps
satisfying ∇ ◦ ϕ = (1⊗ ϕ) ◦ ∇. We have:

Theorem 3.1.2. [22] Suppose X is a complex manifold, D is a divisor, and Y := X \ D.
Then there is an equivalence of categories

Connreg(X, D)
∼−→ Conn(Y) (3.1.6)

induced by the restriction functor (E ,∇) 7→ (E ,∇)|Y

Then, from the earlier correspondence, we conclude the following equivalence
between regular (flat) meromorphic connections and monodromy data:

Corollary 3.1.3. There is an equivalence of categories

Connreg(X, D)
∼−→ Loc(X \ D) (3.1.7)

In particular, this yields the analytic isomorphism between MB ' MdR that
we will need.

3.2 The relative moduli space

Let C be a compact Riemann surface, and let {z1, . . . , zn} be n marked points,
or punctures. Furthermore, assume for each zi we are given a Young diagram Yi.

Let π1 = π1(C \ {z1, . . . , zn}) denote the fundamental group of the punctured
surface. Recall that the SLK-character variety is the GIT quotient

MB(C, SLK) = Hom (π1, SLK)//SLK. (3.2.1)
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It is an affine variety with smooth locus given by the irreducible representations.
We may take a standard presentation of the fundamental group by generators so
that we can identify

Hom (π1, SLK) ={
(A1, . . . , Ag, B1, . . . , Bg, G1, . . . , Gn) ∈ SL2g+n

K | [A1, B1] . . . [Ag, Bg] G1 . . . Gn = 1
}

(3.2.2)

and if we restrict to reductive or irreducible representations, MC
B(C, SLK) is the

usual geometric quotient by simultaneous conjugation.
The character variety is a holomorphic Poisson manifold on its smooth locus,

but the Poisson structure is in general degenerate [23, 24, 25, 26]. If we fix the
conjugacy classes of the monodromy around punctures, which we will collectively
denote by C = (C1, . . . , Cn), we end up on a symplectic leaf. This leaf, the relative
character variety (with the boundary conjugacy classes C) is denoted

MC
dR(C, SLK) (3.2.3)

We will study relative character varieties where all Ci are semisimple and with
multiplicities of the eigenvalues encoded by the Young diagram in the obvious
way. We can write these as a tuple µ = (µ1 . . . , µn) of partitions of K, µi =

(µ
(1)
i , . . . µ

(ri)
i ) with µ

(1)
i ≥ . . . ≥ µ

(ri)
i and ∑ri

j=1 µ
(j)
i = K.

Condition 3.2.1. [27] A tuple of semisimple conjugacy classes (C1, . . . , Cn) in SLK sat-
isfy the genericity condition if there are no nonzero proper vector subspaces V ⊂ CK

stable under some Xi ∈ Ci for all i with the property that
n

∏
i=1

det (Xi|V) = 1. (3.2.4)

A moment of thought should convince the reader that this is a genuinely ”generic”
condition, and it is true in any case that generic conjugacy classes of any type al-
ways exist [27]. We can guarantee that we have no singularities to worry about in
this case:

Theorem 3.2.2. [27] If C = (C1, . . . , Cn) is of type µ and satisfies the genericity condition,
thenMC

dR is a smooth affine variety of pure dimension (whenever nonempty)

dimCMC
dR(C, SLK) = (2g− 2 + n)K2 − (2g− 2)−

n

∑
i=1
|µi|2 (3.2.5)

where for a partition µi = (µ
(1)
i , . . . , µ

(ri)
i ) of K , we set |µi|2 := ∑ri

j=1(µ
(j)
i )2.
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Finally, let us define the notion of maximal and minimal punctures for the rel-
ative character variety:

Definition. A puncture/conjugacy class is called maximal if all eigenvalues are
distinct, and minimal if all but one eigenvalue coincide. In other words, they cor-
respond to partitions with Young diagram consisting of either a single row of K
boxes, or one column of K− 1 boxes and one column with one box.

Perhaps the simplest example we can give is the case where K = 2 and there
are three punctures, all (necessarily) maximal. ThenMC

dR(C, SLK) is a single point,
the unique local system arising from the unique hypergeometric equation (up to
meromorphic equivalence) with specified monodromy conjugacies at the punc-
tures. This generalizes when K > 2 to the well-known fact that the generalized
hypergeometric equation is rigid:

Example. Let K > 2, and C = P1, with punctures at 0, 1, ∞, and let C0, C∞ be of
maximal type, C1 minimal (no eigenvalues of which are Kth roots of unity). Then
MC

dR(C, SLK) contains a single point, and this point corresponds to the Kth order
generalized hypergeometric equation with appropriate exponents.

Example. Let K = 2, and C = P1, and q ∈ C \ {0, 1}. Take punctures at p =

0, q, 1, ∞, with Cp all of one (the only) type µ = (1, 1)i=1,...,4, C1. Then the dimension
formula gives dimCMC

dR(C, SLK) = 2, which is the number of NRS coordinates as
expected.

Example. Let K = 3, and C = P1, with punctures at 0, q, 1, ∞, and let C0, C∞ be of
maximal type (1, 1, 1), Cq, C1 of minimal type (2, 1). Then the dimension formula
gives dimCMC

dR(C, SLK) = 4, which is the number of coordinates we will need to
construct later on in the thesis.

The following proposition will be useful to us:

Proposition 3.2.3. Suppose M ∈ SLK(C), has eigenvalues λ1 . . . λK, and assume none
of the λi are Kth roots of unity. Then M has K− 1 coincident eigenvalues if and only if M
is a a scalar multiple of a complex reflection matrix, that is, rk(λ−1M− I) = 1 for some
λ ∈ C×.
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Proof. If M has K − 1 coincident eigenvalues, say λ1 = . . . = λK−1 = λ, λK =

λ−(K−1), then rk(λ−1M − I) = rk
(
diag {1, . . . , 1, λ−K} − I

)
which is 0 if λK = 1,

and 1 under the assumption.
Conversely, if there is λ ∈ C∗with rk (λ−1M− I) = 1 then diag {λ1

λ − 1, . . . λK−1
λ −

1, λK
λ } has at most one nonzero column, so all but one eigenvalue must coincide

and equal λ.

Thus with our semisimplicity assuption, minimal punctures are characterized
exactly by having a multiple of a complex reflection for their local monodromy.
In §3.6.4 we will see that a single minimal puncture is essentially the condition
characterizing the generalized hypergeometric equation.

3.2.1 Trace functions

The definition of the GIT quotient defining the character variety is such that the
coordinate ring

C[MB(C, SLK)] = C[x1, . . . , xr]
SLK (3.2.6)

is precisely the set of invariants of the monodromy matrices associated to the
curves γ. It turns out that by a theorem of Procesi [28], this ring is generated
by the trace functions. That is, the monodromy traces

trγ :MdR(C, SLK) −→ C (3.2.7)

[ρ] −→ tr ρ(γ) (3.2.8)

form a generating set for the algebraic (holomorphic) functions on MB(C, SLK),
with or without conjugacy classes fixed. Thus, algebraically speaking anything we
can study about our character variety can be understood by relating it to the trace
functions. Later on, we will do precisely that and find formulas expressing the
trace functions in terms of our generalized Fenchel-Nielsen coordinates.

3.3 Hitchin systems

3.3.1 Moduli of Higgs bundles

Higgs bundles were introduced by Hitchin [29] in the study of the dimension-
ally reduced Yang-Mills equations over a Riemann surface C. Since then, the study
of their moduli spaces and related geometry has been a rich source of interest to
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both physicists and mathematicians. While we will not use Higgs bundles explic-
itly, they are deeply linked to our story both mathematically and physically. In
particular, the Hitchin base of tuples of k-differentials will play an important role
in the rest of the thesis. Thus we will give a brief summary to the reader here. For a
fuller understanding, we direct the reader to original references and recommended
reviews such as [29, 30, 31, 32, 33].

The following objects will be important throughout the rest of the thesis:

Definition. Let D be an effective divisor on C. A meromorphic k-differential with
poles bounded by D is a section ϕ ∈ H0(C, KC(D)⊗k), where KC is the canonical
bundle of C. If D = 0, we say ϕ is a holomorphic k-differential.

Locally, a meromorphic k-differential can be written as ϕk = u(z)dzk where u is a
meromomorphic function. If D is reduced, so that ϕk has a pole of at most order k,
we will say ϕk has regular singularities.

Definition. A hyperkähler manifold is a 4n dimensional Riemannian manifold
possessing 3 covariantly constant orthogonal endomorphisms I, J, K of the tangent
bundle, satisfying the quaternionic relations:

I2 = J2 = K2 = I JK = −1

Note: all hyperkähler manifolds are Ricci-flat and therefore Calabi-Yau.

Definition. A Higgs bundle over a Riemann surface C is a pair (E , Φ) where π :
E → C is a holomorphic vector bundle and Φ ∈ H0(C, End(E)⊗ KC).

These arise from the Hitchin equations:

FA + [Φ, Φ∗] = 0 (3.3.1)

∂̄AΦ = 0 (3.3.2)

where A is a unitary connection, FA ∈ Ω2
C(End(E)) is its curvature, and Φ an

adjoint-valued (1, 0)-form, and the adjoint is taken with respect to the hermitian
metric h making A into its Chern connection. A Higgs pair is a solution (A, Φ)

of the Hitchin equations. There is a one-to-one correspondence [29, 34] between
irreducible Higgs pairs and “stable” Higgs bundles – that is, between irreducible
solutions of Hitchin’s equations and what turn out to be the smooth points in the
moduli space. If we drop the condition of irreducibility, we arrive at “semistable”
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Higgs bundles, which are still points in the moduli space but correspond to singu-
larities.

The defintion of stability is as follows. Define the slope of a holomorphic vector
bundle E to be µ(E) := degE/rkE . Then E is stable if for every proper holomor-
phic subbundle F ,

µ(F ) < µ(E) (3.3.3)

For Higgs bundles (E , Φ), we have the same definition verbatim, except that we
demand only that (3.3.3) hold for Φ-invariant holomorphic subbundles. So a Higgs
bundle might have an unstable underlying holomorphic bundle E , but still be sta-
ble as a Higgs bundle by excluding the subbundles not preserved by Φ.

Then, fixing the determinant of the bundle, the moduli space of stable Higgs
bundles (with fixed determinant) is the space

MH = A/G

whereA is the space of all irreducible solutions (A, Φ) and G is the group of gauge
transformations. This space is also called the Hitchin moduli space after its dis-
coverer, or the Dolbeault moduli space to emphasize its close relation with the
complex structure of C2.

Some of the most important facts aboutMH are:

(i) It is noncompact.

(ii) It is hyperkähler.

(iii) It is a quasiprojective algebraic variety.

(iv) It is smooth away from reducible solutions.

(v) There is a fibration p : MH → B with p proper, making it into an integrable
system.

(vi) When G = SU(K), it contains T∗N as a natural open dense submanifold,
where N is the moduli space of (stable) holomorphic bundles of rank K and
trivial determinant.

2In contrast, the Betti moduli space is actually independent of the complex structure of C, and
encodes topological information in that sense.
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If there are no punctures, then dimCMH = (2g− 2)dimG.

The Hitchin moduli space is a noncompact hyperkähler manifold. To see this,
one considers the description as a quotient of the infinite-dimensional affine space

W =
{
(A, φ) | A a connection, φ ∈ Ω1,0

C (End(E))
}

This is a symplectic affine space when equipped with any of the three symplectic
structures:

ωI = −
1

4π
Tr
∫

C
δA ∧ δA− δφ ∧ δφ

ωJ =
1

2π
Tr
∫

C
|dz|2δφz̄ ∧ δAz + δφz ∧ δAz̄

ωK =
1

2π

∫
C

Tr δφ ∧ δA

where δA ∈ Ω1(Σ, g) denotes a tangent vector to the infinite-dimensional affine
space of connections. One also defines three complex structures I, J, K on this space
in a similar way (we omit the formulas). Now, define a flat metric onW by:

ds2 = − 1
4π

∫
C
|dz|2 Tr (δAz ⊗ δAz̄ + δAz̄ ⊗ δAz + δφz ⊗ δφz̄ + δφz̄ ⊗ δφz) (3.3.4)

The Hitchin equations can be written as the the vanishing of three moment
maps (with respect to each of the symplectic structures).

µI = −
1

2π

∫
C

Tr ε(FA − φ ∧ φ)

µJ = −
1

2π

∫
C
|dz|2 Tr ε(Dzφz̄ + Dz̄φz)

µK = − 1
2π

∫
C
|dz|2 Tr ε(Dzφz̄ − Dz̄φz)

collectively denoted as ~µ, where ε is an infinitesimal gauge transformation. The
hyperkähler quotient ~µ−1(0)/G is clearly MH, and it is a theorem that this con-
struction makes MH into a hyperkähler manifold itself. The complex structures
on W descend to complex structures on MH, which we continue to denote by
I, J, K. In complex structure I, it is the moduli space of Higgs bundles.

How can we interpret the other complex structures? It turns out that any suf-
ficiently nice (say, reductive) flat GC connection ∇ (or A), where GC denotes the
complexification of G, can be decomposed as

∇ = D + Φ + Φ∗ (3.3.5)
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where D (or A) is a unitary flat connection, and Φ a Higgs field, such that (A, Φ)

solves the Hitchin equations. Thus (slightly glossing over stability considerations
and precise details), the Hitchin moduli space is also the moduli space of flat GC

connections. The complex structures J(ζ), ζ ∈ C∗ are all equivalent, and equal to
the one arising from this description. For notation, in the future we parametrize
these complex structures with a point ζ ∈ CP1 so that the case ζ = 0, ∞ corre-
sponds to Higgs bundles, and ζ ∈ C∗ corresponds to flat connections. This corre-
spondence is known as the nonabelian Hodge correspondence due to Hitchin and
Simpson, and has been developed and extended in many ways since [29, 34, 35, 36].

3.3.2 Integrable systems

What makes the Hitchin moduli space so interesting is that, in addition to the
properties above, it is (in the complex structure I) also an algebraically integrable
system, which is a complex integrable system with some extra conditions we will
omit. In particular, we consider the map

p :MH →
⊕

i

H0(C, K⊗di
C ) := B (3.3.6)

where di are the degrees of the invariant polynomials on g, and B is called the
Hitchin base. EquippingMH with the holomorphic symplectic form ΩI = ωJ +

iωK gives it the structure of a holomorphic symplectic manifold. Then p is a proper
holomorphic map whose generic fibre is a Lagrangian abelian variety (in particu-
lar, a compact complex torus), making it into an algebraically integrable system.

As a concrete example, we can consider the case of G = SU(2), C compact with
g ≥ 2. In this case the Hitchin map p :MH → H0(C, K⊗2

C ) is just

(E , ϕ) 7→ tr ϕ2. (3.3.7)

More generally one may choose a basis {θi}i=1...3g−3 for the quadratic differentials
and expand

p(E, ϕ) =
3g−3

∑
i=1

Hiθi (3.3.8)

yielding 3g− 3 holomorphic functions Hi, sometimes called Hitchin’s Hamiltoni-
ans, which Poisson commute, exhibiting the structure of an integrable system.
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3.3.2.1 Singularities

So far, we have considered holomorphic Higgs bundles on compact Riemann
surfaces. For our purposes, we will need to consider meromorphic Higgs bundles
on punctured Riemann surfaces.

Given an effective divisor D, passing to meromorphic Higgs bundles requires a
few modifications. The Higgs fields are now sections Φ ∈ H0(C, End(E)⊗KC(D)),
the Hitchin base is now B =

⊕
i H0(C, KC(D)⊗di). A more in-depth description of

Higgs bundles with values in any line bundle can be found in original references
such as [30, 31].

It is also possible to arrive at these spaces by considering the Hitchin equations
with delta function sources [1, 37], though we do not take that point of view here.

3.4 Teichmüller space and Fenchel-Nielsen coordinates

3.4.1 Teichmüller space

The Teichmüller space is the geometric space arising from the study of all of
the complex structures on a fixed topological surface S of genus g. By the uni-
formization theorem, this is equivalent (whenever χ(S) < 0, as will always be
the case for us) to studying hyperbolic metrics of constant curvature −1 on the
surface. Usually, we will have a particular punctured Riemann surface C in mind,
with underlying topological surface S. Then the Teichmüller space of C is the space
of hyperbolic structures on S modulo equivalence by diffeomorphisms isotopic to
the identity:

T (S) = {hyperbolic structures on S}/Diff0(S) (3.4.1)

The Teichmüller space can be given a topology either via coordinates, or more
directly as follows. Let U(X, ε) be the set of [X] ∈ T (S) such that for every sim-
ple closed curve γ ⊂ S with marking ϕ : X → S, | log`γ(X) − log`γ(C) | < ε.
These form a basis for the topology, which coincides with the one coming from the
Fenchel-Nielsen coordinates defined in the next section.

There is a crucial link between flat connections and Teichmüller space. In
particular, there is an embedding of the Teichmüller space T (S) as a connected
component of MdR(C, PSL(2, R)) (for any C with underlying surface S). Since
MdR(C, PSL(2, R)) can be viewed as a real slice of MdR(C, PSL(2, C)), we can
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thus make the link between the original “Fenchel-Nielsen” coordinates on the Te-
ichmüller space and the restrictions of coordinates on the moduli space of flat rank
2 connections on C.

Kra’s plumbing construction

Let us mention a procedure due to Kra [38] for gluing together three-holed
spheres to construct Riemann surfaces. Fix q with |q| < 1. Take two copies D1,
D2 of P1 \ {0, 1, ∞}, and consider coordinates z1, z2 around 0. Let A1, A2 be annuli
given by:

Ai =
{

z ∈ Di : |q| 12 < |z| < |q|− 1
2

}
(3.4.2)

Given two points P1 ∈ A1 and P2 ∈ A2, identify them if

z1(P1)z2(P2) = q

This gives a Riemann surface with transition function zi = q/zj on the overlap.
We can view q as a holomorphic coordinate on the Teichmüller space in a small
punctured disk around 0, with 0 corresponding to the nodal curve in the boundary.
One may iterate this process with more spheres or different values of q to construct
Riemann surfaces of any topological type and any complex structure (at least in a
neighbourhood of the nodal curve).

Fenchel-Nielsen coordinates

There is a well-known set of coordinates on the Teichmüller space which arises
from a considering the surface as a collection of three-holed spheres. Suppose that
C has genus g and n boundary components.

Definition. A pants decomposition of a Riemann surface C is a collection of mu-
tually nonintersecting closed curves P = {c1, . . . c3g−3+n} whose complement is a
disjoint union of pairs of pants.

A fundamental and well-known fact is the following:

Proposition 3.4.1. The hyperbolic (and thus conformal) structure of a pair of pants S is
uniquely determined by the lengths of its three boundary curves c1, c2, c3. Conversely, for
any l1, l2, l3 > 0 there exists a pair of pants S with boundary curves c1, c2, c3 of these
lengths.
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So a pair of pants is determined entirely by the lengths of its boundary circles.
This underlies the idea that we can (and should) study the hyperbolic (or complex)
structure of Riemann surfaces by decomposing them into pairs of pants.

It can be shown that each pants curve is homotopic to a unique closed geodesic.
The lengths of these geodesics are called the Fenchel-Nielsen length coordinates,
which evidently tell us something about the hyperbolic metric on C. Intuively, we
can imagine then that knowing these numbers will help specify which point in
the Teichmüller space C represents. This information is not enough however (as
is obvious from the dimensions); it also matters how the pairs-of-pants are glued
together.

The other half of the coordinates, called twist coordinates are given by mea-
suring the deviation or “twisting” of geodesics from one pair of pants to another.
These involve choosing another, complementary set of 3g− 3 + n curves. The de-
tails can be found in e.g. [39]. One consequence of the fact that the Fenchel Nielsen
coordinates form a global coordinate system is

Theorem 3.4.2. The Teichmüller space T (S) is homeomorphic to (R+)3g−3+n× (R≥0)
3g−3+n.

In particular, it is contractible.

3.4.2 The Teichmüller component inMdR

Let C be a point in T (S). Given its corresponding hyperbolic metric h =

e2ϕdzdz̄, we write ∇ = ∇′ +∇′′

∇′ = ∂ +

(
0 (∂z ϕ)2 − ∂2

z ϕ
1 0

)
, ∇′′ = ∂̄. (3.4.3)

which gives us a flat bundle on S. Conversely, given a flat PSL(2, C)-bundle on S,
the hyperbolic metric can be reconstructed from the solution to∇s = 0. As a result,
there is a canonical connected component inMdR(C, PSL2(R)) ⊂MdR(C, PSL2(C))

identified with the Teichmüller space T (C). It is the set of all representations
ρ : π1(C)→ PSL2(R) such that H/ρ is homeomorphic to C.

3.4.3 Complexified Fenchel-Nielsen coordinates

The classical Fenchel-Nielsen coordinates defined above were defined on the
Teichmüller space. It turns out they can be found as the restriction of a set of holo-
morphic Darboux coordinates on the PSL2 character variety. These coordinates
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were constructed by Tan [20] and Kourouniotis [21] and were studied by others as
well [40, 39]. These are the coordinates found by Hollands-Neitzke [41] to arise as
spectral coordinates, and which we will generalize in this thesis. Explicit formulas
for them are written down later in §5.2.2.

3.5 Opers

A central object of our study will be a special subspace of the moduli space of
flat connections, the space of so-called “opers” L ⊂ MC

dR(C, SLK) (we leave C, C
etc. implicit in the notation).

Let C be a compact Riemann surface. Throughout, we will fix a square root

of the canonical bundle K
1
2
C (also known as a spin structure or theta-characteristic).

There are 22g possibilities for this choice (which is equivalent to choice of canonical
lift of representations from PSL2(C) to SL2(C)), and the connected components of
L will labelled by this discrete data.

Definition. Let D be an effective divisor on C. A meromorphic SLK-oper (E , {Ei},∇)
with poles bounded by D is a rank K vector bundle E over C, equipped with a flat
meromorphic connection ∇ and a filtration 0 = E0 ⊂ E1 ⊂ ... ⊂ EK−1 ⊂ EK = E
satisfying:

(i) ∇Ei ⊂ Ei+1 ⊗Ω1
C(D)

(ii) The induced maps ∇̂ : Ei/Ei−1 → (Ei+1/Ei)⊗Ω1
C(D) are isomorphisms.

(iii) E has trivial determinant (with fixed trivalization) and ∇ induces the trivial
connection on it.

One may generalize this defintion to GLK by dropping the third condition, or
more generally to any algebraic group using principal bundles as in [42]. We will
however be only concerned with SLK-opers, in particular with K = 2, 3.

Not all bundles with connection admit an oper structure, but it can be shown
that those which do admit a unique such structure3. Therefore if we fix the un-
derlying bundle and the conjugacy classes we can think of the space of opers L as
embedded intoMC

dR(C, SLK).
The defining conditions imply that locally one may always choose a trivializa-

tion so that SLK-opers can be put in the following form, uniquely:

3A proof in the compact (holomorphic) case can be found in [33], and with singularities in [43].
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∂z +


0 t2 . . . tK
1 0 . . . 0
...

... . . . ...
0 . . . 1 0

 . (3.5.1)

It is thus clear that locally an oper is equivalent to an Kth order linear ODE, whose
(K− 1)th derivative term vanishes in the SLK case. However, the relation between
the coefficients ti in different coordinate charts is not nice. There is an alternative
“canonical form” one may give which results in nice transformation laws. First we
need the notion of a differential operator between (line) bundles:

Definition. Let E ,F be holomorphic vector bundles over C. A linear map

D : E → F (3.5.2)

is a k-th order (linear) differential operator if for any s ∈ E and p ∈ C, jk(s)(p) = 0
implies (Ds)(p) = 0, where jk(s) denotes the k-jet of s. The sheaf of vector spaces
of all such operators is denoted Diffk(E ,F ).

It is not hard to see that the map which sends T ∈ Hom(Jk(E), F) to s 7→ T∗(jk(s))
is an isomorphism of vector spaces Hom(Jk(E), F) ' Diffk(E ,F ). The restriction

σ : Diffk(E, F)→ Hom (K⊗k
X ⊗ E, F) (3.5.3)

is called the principal symbol of D.

Now we introduce the notion of a “local system realized in a line bundle L”.
By definition this is a local system V and an exact sequence

0 −→ V
ϕ−→ L D−→ L⊗ KK

C −→ 0

where D is a Kth order differential operator. Then we may observe that there is a
correspondence between opers and local systems realized in K(1−K)/2

C :

0 −→ V
ϕ−→ K(1−K)/2

C
D−→ K(K+1)/2

C −→ 0

To be precise, we may state the following ([44, 33]):

Theorem 3.5.1. Let D : K(1−K)/2
C → K(K+1)/2

C be a C-linear differential operator, locally
of the form

Dy = y(K) + Q2y(K−1) + . . . + QKy (3.5.4)
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Then 12
K(K2−1) Q2 transforms as a projective connection, and for k ≥ 3, there exist wk, lin-

ear combinations of Qj (j = 2, . . . , k), and their derivatives, with coefficients polynomials
in Q2, such that wk transform as k-differentials. Conversely, given one such operator and
k-differentials wk, k = 2, . . . , n, these conditions uniquely determine the operator D.

The map from opers to differential operators in this theorem is explicitly given
as follows. If ∇ is an oper and given y locally of the form y(z)dz⊗(1−K)/2, let
{φ1 . . . φK} be a set of linearly independent local flat sections of ∇. Then define

Dy := det

 φ1 φ2 y
...

...
...

φ
(K+1)
1 φ

(K+1)
K y(K+1)

 (3.5.5)

from which the transformation properties follow. The proof allows for an explicit
calculation of wk in terms of Qk and vice-versa, which we write down for k = 2, 3
as these are the cases we will need:

Q2 =w2 (3.5.6)

Q3 =w3 +
K− 2

2
w′2 (3.5.7)

In particular, the above theorem implies the following “oper transformation
law” for the nontrivial component t2 of an SL2-oper, whenever y and w are local
holomorphic coordinates with overlapping domains:

t(y) 7→ (y′(w))2t(y(w)) +
1
2
{y, w} (3.5.8)

where {y, w} (also written S(y)) is the Schwarzian derivative of y:

{y, w} :=
(

y′′

y′

)′
− 1

2

(
y′′

y′

)2

.

Any collection of local expressions related in this way are in fact a known geo-
metric object — this is precisely the defining condition for a projective connection
on a Riemann surface. In particular, while it is not a quadratic differential, any
two SL2-opers differ by a quadratic differential. We can take a fixed projective con-
nection P0 and write any other one as P = P0 + ∑

3g−3+n
i=1 Hiθi. The Hi are called

accessory parameters. Thus, the space of SL2-opers is an affine space modelled on
the quadratic differentials. From this result and the above theorem, it follows that
(each connected component of) L is an affine space modelled on the Hitchin base
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B =
⊕K

i=2 H0(C, Ki
C). More generally, when singularities along a divisor D are

present, we simply tensor withOX(D) and restrict the residues at each puncture if
desired.

In fact, it turns out that for an oper the bundle E is always just a jet bundle in

disguise. If we let L := K
1−K

2
C = E/EK−1 be the top graded piece of the filtration,

we will have, given an element ϕ ∈ B (and some additional choices, including a
choice of principal sl2 yielding a grading g = ⊕Vi) a canonical isomorphism Fϕ:

JK−1(L) E

L

Fϕ

pr
πK−1

where pr is is the projection onto the 0-jet , and πK−1 is the quotient map.
The choices are as follows. Assume we have made a choice of Cartan subalge-

bra and positive roots {αi} for g = slK, so we have a Cartan decomposition

g = n− ⊕ h⊕ n+, (3.5.9)

and n−, n+ are spanned by the so-called Cartan generators { fi}, {ei}, respectively.
To see the isomorphism, we put the oper in the canonical local form

∂z + p−1 + v(z) (3.5.10)

where p−1 is the lower-triangular element of an sl2-triple, and v(z) ∈ Vcan =

⊕K−1
i=1 Vcan

i . Here Vcan is the space of adp1-invariants in n = n− ⊕ n+, with Vcan
i

determined by the principal grading.
Let us write a choice of ei and fi out in the case of sl3 with the usual decompo-

sition into upper- and lower- triangular and diagonal subalgebras:

e1 = E1,2 =

 0 1 0
0 0 0
0 0 0

 , e2 = E2,3 =

 0 0 0
0 0 1
0 0 0

 (3.5.11)

for n+, and fi their transposes. Then

p−1 = ∑
i

fi =

 0 0 0
1 0 0
0 1 0

 (3.5.12)

The grading, having chosen our principal sl2, is
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Vcan
1 = span


 0 1 0

0 0 1
0 0 0

 , Vcan
2 = span


 0 0 1

0 0 0
0 0 0

 . (3.5.13)

The choices correspond to a basis element of each of these 1-dimensional Vcan
i

in the K = 3 case can be written as

∂z +

 0 µϕ2 νϕK
1 0 µϕ2
0 1 0

 (3.5.14)

so that we have some additional freedom beyond what the earlier theorem sug-
gests – setting µ = 1/2, ν = 1 we recover the previous isomorphism. The only
remaining non-canonicity is in the choice of principal sl2 subalgebra.

It is instructive to note some of the different incarnations of projective connec-
tions.

Definition. A projective structure on C is an atlas of holomorphic charts for C
whose transition functions consist entirely of restrictions of Möbius transforma-
tions.

Note that a projective connection and a projective structure are equivalent data,
as follows: given a projective structure we simply take the projective connection
to be ∂2

z in all coordinate charts. Since Möbius transformations are killed by the
Schwarzian derivative, this is well-defined. Conversely, given a projective connec-
tion S and a point p ∈ C, consider the equation(

∂2
z +

1
2

S
)

φ = 0. (3.5.15)

Let φ1, φ2 be linearly independent solutions in some small neighbourhood U. Then
the coordinate y := φ1/φ2 is a chart in the atlas. The union of all such charts yields
a projective structure.

Thus, once we have chosen a projective structure or projective connection, we
may identify (the chosen connected component of) the space of opers with the
Hitchin base, as the Schwarzian derivative term in the transformation law drops
out, leaving us with an identification of t2 with a quadratic differential. In partic-
ular, we may use the projective structure coming from Fuchsian uniformization –
that is, if w is the uniformization coordinate, the corresponding projective connec-
tion is ∂2

w.
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Remark. For compact C, the variety Hom(π1(C), PSL2(C))//PSL2(C) splits into
two irreducible connected components: those which lift to a representation of
SL2(C), and those which do not. The monodromy of projective structures always
lift, and there are precisely 22g choices of such a lift. In fact, a theorem of Gallo,
Kapovich, and Marden [45] identifies precisely the representations which arise as
monodromies of projective structures: they are the “non-elementary” representa-
tions which lift to an SL2 representation.

3.5.1 Generating function

It turns out that the opers (with fixed boundary monodromy) form a smooth,
complex Lagrangian subvariety ofMC

dR(C, SLK) with respect to the holomorphic
symplectic structure ΩJ [43]. The half-dimensionality follows from the isomor-
phism with the Hitchin base described above, whereas the vanishing of the sym-
plectic form follows from the infinite-dimensional Atiyah-Bott description and
noting the integrand vanishes in the “oper gauge” (3.5.1).

In this thesis we will be interested in computing the generating function of the
Lagrangian of opers. Let us explain what this means precisely:

Definition. Let C be a punctured curve, and C a collection of conjugacy classes at
the punctures. Suppose we have holomorphic Darboux coordinates {αi, βi} on a
neighbourhood U ⊂ MC

dR(C, SLK), and let L be the complex Lagrangian subvari-
ety of opers. Suppose furthermore that all ∂/∂βi are transverse to L. A generating
function for L, relative to the the coordinate system {αi, βi}, is a (unique up to ad-
ditive constant) holomorphic function Woper : L ∩U → C such that if∇ is an oper
in the domain of Woper, then

βi(∇) =
∂Woper

∂αi
(∇) (3.5.16)

for all i.

3.6 Monodromy of linear ODEs in the complex do-
main

3.6.1 Connections on P1

Consider vector bundles equipped with flat connections (E ,∇) on P1; the par-
allel transport condition defines a system of ODEs, and if ∇ is an oper it gives a
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scalar equation whose monodromy is the holonomy of the connection. Conversely,
given a linear ODE on C with coefficients whose singularities lie at at z1 . . . zn we
can consider its sheaf of solutions, which is locally free and thus corresponds to a
vector bundle with flat connection over C \ {z1 . . . zn}. The corresponding connec-
tion is locally just the ODE written in “companion matrix” form.

Because of this equivalence, we are interested in studying the monodromy of
some particular ODEs that will be of importance to us. In particular, since all our
bundles are holomorphic, we are interested in the equation

Lw := a0(z)w(K) + a1(z)w(K−1) + . . . + aK−1(z)w′ + aK(z)w = 0 (3.6.1)

defined on P1 \ {z1 . . . zn}where ai are all holomorphic and a0 vanishes only at the
{z1 . . . zn}, called the singular points or singularities of the equation. A singular
point is called regular singular if the solutions grow at most polynomially in every
sector around it, or irregular otherwise. An equation whose singularities are all
regular is called Fuchsian (an important point is to note that this is true only for
equations, and the word “Fuchsian” takes on different meaning for systems that are
not equations). We can characterize the equations on P1 with this property with
the following proposition [46].

Proposition 3.6.1. Let z ∈ P1. Then

1. The system dx
dz = Ax has finite singularities z1, . . . zm which are regular singular if

and only if

A(z) = ∑
Aj

z− zj

2. The equation x(K) + b1(z)x(K−1) + . . . bK(z)x = 0 has singular points t1, . . . , tm

that are regular singular if and only if

bj(z) =
Pj(z)
Qj(z)

where Q(z) = (z− z1) . . . (z− zm) and Pj are polynomials of degree ≤ (m− 1)j.

Viewing the equation as a connection on P1 \ {z1 . . . zn}, the holonomy of the
connection yields a representation of the fundamental group of C, ρ : π1(C) →
GLK(C) where we have chosen a basis for the fibre above the basepoint p. The
representation is called the monodromy representation, and its image is called the
monodromy group of the equation.
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A basic tool for both studying solutions of these equations, as well as their
monodromy, is the indicial equation, defined as follows. Write

L = rnθn + . . . r1θ + r0 (3.6.2)

where we have defined the operator θ := z d
dz . Then the indicial polynomial is

p(x) = rn(0)xn . . . + r1(0)x + r0(0) and the indicial equation at the singularity 0
is p(x) = 0. Its solutions are called the local exponents of the equation at the sin-
gularity 0. Their exponentials (after first multiplying by 2πi), are the eigenvalues
of the monodromy around 0. Similar definitions can be made at any singularity by
Möbius transforming its position to 0.

The next important observation is that, as long as we are restricted to regular
singularities, the monodromy of such equations can be built up from the mon-
odromy of the functions zλ and log z (e.g. [47]):

Theorem 3.6.2. Let z0 be a singular point of the equation

a0(z)w(n) + a1(z)w(n−1) + . . . + an−1(z)w′ + an(z)w = 0 (3.6.3)

Then the following are equivalent:

1. The functions bk(z) := ak(z)
a0(z)

have at worst a pole of order k at z0.

2. The vector space of multivalued holomorphic functions in a sufficiently small punc-
tured disk {0 < |z− z0| < δ} which are solutions of (3.6.3), has dimension n and
is generated by functions of the form

(z− z0)
λ(log(z− z0))

j f (z)

where λ ∈ C, j ∈ Z, 0 ≤ j ≤ n− 1, and f (z) is holomorphic in the disk {|z− z0| <
δ} and f (z0) 6= 0.

In particular, if all the exponents modulo integers are distinct, then there are no
logs in the solutions.

In general, we are interested in more than just the eigenvalues of the mon-
odromy; we want to know the entire monodromy group. To do this explicitly
requires computing the change of basis matrix between the solutions near singular
points. This is in general highly nontrivial, but can be done in some special cases,
as we will see next.
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3.6.2 The hypergeometric equation

When n = 2 and we have exactly three singularities, at (0, 1, ∞), we arrive at
the study of the hypergeometric equation. Up to Möbius transformations, this is
the most general Fuchsian ODE with three singularities, up to a minor subtlety
(see below). The hypergeometric equation is written:(

z(z− 1)
d2

dz2 + (γ− (α + β + 1)z)
d
dz
− αβ

)
f = 0 (3.6.4)

where α, β, γ ∈ C are parameters. It is easy to check that the exponents around
0, 1, ∞ are (0, α), (0, β), (0, γ− α− β) respectively. The solutions can be written in
terms of Gauss’s hypergeometric function:

2F1(α, β, γ|z) :=
∞

∑
n=0

(α)n(β)n

(γ)n

zn

n!
(3.6.5)

where the Pochhammer symbol is (a)k := Γ(a+k)
Γ(a) = a(a + 1) . . . (a + k − 1). In

particular, a basis of solutions around 0 is given by{
2F1(α, β, γ|z), z1−γ

2F1(α + 1− γ, β + 1− γ, 2− γ|z)
}

(3.6.6)

For the main applications in this thesis , we will also need to consider the third
order analogue of this equation. This is the so-called generalized hypergeometric
equation:

[z(θ − α1) . . . (θ − αn)− (θ − β1 + 1) . . . (θ − βn + 1)] f = 0 (3.6.7)

Assuming βi are distinct mod 1, which we always will (see below), the solutions
around 0 can be given by

z1−βi nFn−1(1 + α1 − βi, . . . , 1 + αn − βi ; 1 + β1 − βi, ∨. . . , 1 + βn − βi|z) (3.6.8)

for i = 1, . . . n, where ∨ denotes the omission of 1 + βi − βi, and nFn−1 is the
generalized hypergeometric function

nFn−1(α1, . . . , αn, β1, . . . , βn−1|z) :=
∞

∑
k=0

(α1)k . . . (αn)k
(β1)k . . . (βn−1)k

zk

k!
(3.6.9)

It is important to note that all three singularities are not equivalent for the gen-
eralized hypergeometric equation. In particular,
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Proposition 3.6.3. The generalized hypergeometric equation (3.6.7) has n − 1 linearly
independent holomorphic solutions in a neighbourhood around 1.

So that in particular the monodromy around 1 only has one eigenvalue that
isn’t 1.

3.6.3 The Riemann equation

The hypergeometric equation is almost the most general second order mero-
morphic differential equation with three regular singular points (by a Möbius trans-
formation, the singularities can always be assumed to be at (0, 1, ∞). However, one
of the local exponents of the hypergeometric equation vanish at 0 and 1. The most
general second order meromorphic linear equation with three regular singularities,
however, may have arbitrary exponents σ1, σ2, σ3, τ1, τ2, τ3 satisfying the “Fuchs re-
lation” ∑(σi + τi) = 1. Fortunately, the solutions to such an equation are easily
expressed in terms of the hypergeometric equation. Introduce the notation

P

 a1 a2 a3
σ1 σ2 σ3 z
τ1 τ2 τ3


denoting the set of solutions to the Riemann equation. In particular,

zσ1(z− 1)τ1 F (3.6.10)

is a solution of the Riemann equation with the desired exponents whenever F
solves the corresponding hypergeometric equation. The same idea generalizes
straightforwardly to higher order equations.

3.6.4 Monodromy of the generalized hypergeometric equation

It will be crucial for our calculations that we have explicit expressions for the
monodromy of opers on the three-punctured sphere. For the generalized hyperge-
ometric equation, these expressions are well-known [48, 49, 50]. We simply quote
their results here.

Proposition 3.6.4 ([48], Cor 3.2.2). The monodromy of the generalized hypergeometric
equation (3.6.7) is irreducible if and only if αi − β j are all non-integral for every i, j.

We will always be interested in the irreducible case, and so when linear com-
binations of mass parameters are later identified with αi, βi, our results will hold
away from the corresponding locus.
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Proposition 3.6.5 ([49]). An irreducible representation ρ : π1(C \ {0, 1}) → GLK(C)

is the monodromy of a hypergeometric equation if and only if the monodromy around z = 1
is a complex reflection matrix.

Let us stick to the notation of the third order equation to avoid clutter. In the
Frobenius basis of solutions around 0 given by{

z1−β1 F1, z1−β2 F2, z1−β3 F3

}
where Fi are holomorphic, the monodromy around 0 is diagonal:

M0 =

 e−2πiβ1 0 0
0 e−2πiβ2 0
0 0 e−2πiβ3

 (3.6.11)

There is another basis, the Mellin-Barnes basis, in which it is possible to com-
pute the monodromy around all three punctures explicitly. For details of the com-
putation, see [50]. We quote the result:

Proposition 3.6.6 (Levelt). Suppose αk differ from βl modulo 1 for all 1 ≤ k, l ≤ n. The
monodromy matrices in the Mellin-Barnes basis are

A0 =

 0 1 0
0 0 1
−Y3 −Y2 −Y1



A1 =

 1 + X3−Y3
Y3

X2−Y2
Y3

X1−Y1
Y3

0 1 0
0 0 1



A∞ =

 −X2
X3
−X1

X3
−X0

X3
1 0 0
0 1 0

 =

 0 1 0
0 0 1
−X3 −X2 −X1

−1

where t3 + Y1t2 + Y2t + Y3 and t3 + X1t2 + X2t + X3 are the polynomials with roots
e−2πiβk and e−2πiαk , k = 1, 2, 3, respectively.

It turns out the change of basis between the two is explicitly known, e.g. [48,
50]. As a result, we have all the information we need to write the monodromy
down explicitly. Setting our notation back to arbitrary n, we have:
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Theorem 3.6.7 ([50],Theorem 2.8). Suppose α1, . . . , αn, β1, . . . , βn are distinct modulo
1. Write

Ci =
Γ(α1 − βi + 1) . . . Γ(αn − βi + 1)
Γ(β1 − βi + 1) . . . Γ(βn − βi + 1)

,

and let c̃ = 2ieπi(β1−α1...βn−αn). In the Frobenius basis at z = 0, the monodromy matrix
around 1 is given by:

(MF1 )kl = δkl + c̃
Cl
Ck
·

n

∏
m=1

sin(π(βl − αm))

sin(π(βl − βm))
(3.6.12)

where k, l = 1, 2, . . . , n, and the term sin(π(βl − βl)) denotes 1.
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Chapter 4

Spectral networks and abelianization

With the preliminaries out of the way, we are ready to introduce the central
tools of this thesis. The mathematical objects we will use to studyMdR are known
as spectral networks. These are certain collections of oriented paths on a punctured
Riemann surface C equipped with some extra data. Spectral networks were intro-
duced by Gaiotto, Moore, and Neitzke [1, 2, 3] as a geometric tool for counting BPS
states in theories of class S , though they also appeared previously in the literature
on the “exact WKB method” as ”Stokes graphs”. For us, their primary use will be
to construct certain nice coordinate systems onMdR. In this chapter we summa-
rize the relevant definitions for spectral networks and describe the abelianization
construction for obtaining spectral coordinates which plays a crucial role through
the rest of the thesis.

4.1 Spectral networks

We begin by defining a spectral network. More precisely, we will describe a
class of networks known as “WKB spectral networks” which can be generated in
a canonical way from a tuple of k-differentials. A more general definition, which
abstracts the holomorphic data we will use into a purely topological notion, but
which we will not need, can be found in [2, 51].

Consider a compact curve C equipped with an effective divisor D, and let the
structure group (of the bundles we will study) be G = SLK for some fixed integer
K ≥ 2. Fix some phase ϑ ∈ R/2πZ and a tuple ϕ = (ϕ2, . . . , ϕK) ∈ B. Write the
corresponding spectral curve Σ in terms of a tuple (λ1, . . . , λK) of meromorphic
1-differentials on C as
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Σ =

{
λ ∈ T∗C : λK + ϕ2 λK−2 + . . . + ϕK =

K

∏
j=1

(λ− λj) = 0

}
⊂ T∗C. (4.1.1)

where we choose a collection of branch cuts for the projection and label the sheets
away from them.

Define an ij trajectory of phase ϑ , for i 6= j ∈ {1, . . . , K}, as an open path on C
such that

(λi − λj)(v) ∈ eiϑR, (4.1.2)

for every nonzero tangent vector v to the path. In other words, an ij trajectory of
phase ϕ is a curve z(t) satisfying the differential equation(

xi(z(t))− xj(z(t))
)

z′(t) = eiϑ. (4.1.3)

where xi are the coordinate expressions for λi. The WKB spectral networkWϑ(ϕ)

consists of a collection of such ij-trajectories on C, together with some labels, as
follows.

Call any ij-trajectory that has an endpoint on a branch point of the covering
Σ → C a wall, and orient the wall so that it starts at the branch point. Any other
ij-trajectory that has its endpoint at the intersection of previously defined walls is
another wall. We orient this wall such that it starts at the intersection. The set of
walls of the spectral networkWϑ(ϕ) is the union of all walls defined iteratively in
this manner.

We label the walls as follows. The two sheets i and j of Σ over a wall correspond
to the two differentials λi and λj. Given a positively oriented tangent vector v to
the wall, the quantity e−iϑ(λi − λj)(v) is real. If it is positive we label the wall by
the ordered pair ji, and if negative we label the wall by ij.

What do spectral networks look like? Apart from the case of K = 2, where
it amounts to the classic subject of trajectories of quadratic differentials, little is
known rigorously about the kinds of paths generated. Globally, the most straight-
forward way to examine the shape is to simply plot solutions, but we can make
some local observations too. Generically, the spectral network in the neighbour-
hood of a simple branch point of the covering Σ → C looks as in Figure 4.1. In a
neighbourhood of a simple intersection of walls the spectral network is illustrated
in Figure 4.2. Generically, each wall ends at a puncture of C.
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Figure 4.1: Configuration of walls around a simple branch point.

Figure 4.2: A wall with label ik is born at the intersection of two walls with label ij
and jk.

We decorate a puncture with incoming walls as follows. Each root λi has a
simple pole at the puncture with residue mi. We decorate the puncture with an
ordered tuple i1 . . . iK such that Re(e−iϑmij) > Re(e−iϑmik) for each j < k. One then
checks that the only walls which fall into the puncture are the ones whose labeling
(read left-to-right) agrees with the cyclic ordering given by the decoration.

At special values for the differentials ϕ and the phase ϑ it might happen that
two walls with labels ij and ji, with opposite orientations, overlap. This is illus-
trated in Figure 4.3. We say that the locus where the two walls overlap is a double
wall. If there is at least one double wall, the spectral network must be further
equipped with a choice of a resolution, which is either “British” or “American”.
We think of the resolution as telling us how the two constituents of a double wall
are infinitesimally displaced from one another, and draw the walls as such.
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Figure 4.3: Local configuration with a double wall in the American resolution.

There is a natural notion of equivalence of spectral networks. Even though
in the above we have fixed a complex structure on C and described a spectral
network in terms of the tuple ϕ of differentials, we will later only be interested in
the isotopy class of the spectral network on the topological surface underlying C.
We thus define two spectral networks W and W ′ to be equivalent if one can be
isotoped into the other.

4.1.1 Examples, K = 2

When K = 2, there can be no birthing and intersections (since that requires at
least three distinct labels), so the possible spectral networks are somewhat con-
strained. It turns out they are the same thing as a well-known construction with
quadratic differentials, arising as the so-called critical graph of an associated folia-
tion.

Let ϕ2 be a meromorphic quadratic differential on C, holomorphic away from
the punctures zl. Locally such a differential is of the form

ϕ2 = u(z)(dz)2 (4.1.4)

It is well-known that given a phase ϑ, the differential ϕ2 canonically determines a
singular foliation Fϑ(ϕ2) on C. By definition, its leaves are real curves on C such
that, if v denotes a nonzero tangent vector to the curve,

e−2iϑ ϕ2(v2) ∈ R+. (4.1.5)

A generic ϕ2 will yield a spectral network looking something like this:
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Figure 4.4: A Fock-Goncharov network. The punctures are at ±1 and ±i, depicted
in blue.

All walls eventually fall into the punctures. These types of networks are known
as “Fock-Goncharov”, since they were shown [3] to induce the well-known Fock-
Goncharov coordinates associated to (dual) ideal triangulations via their abelian-
ization. On the other hand, one can find for special parameter values networks
with double walls, which play an essential role in the original motivation for spec-
tral networks, the counting of BPS states, and will be crucial to us. Furthermore, it
can occur that there are no single walls at all, which leads to the so called “Fenchel-
Nielsen” networks introduced by Hollands and Neitzke in [4]. The two main ex-
amples are:

Figure 4.5: Fenchel-Nielsen networks on the three-punctured sphere. Left:
“molecule I”, Right: “molecule II”. The blue dots are the punctures, and the or-
ange crosses are branch points of the covering Σ→ C. All walls are double walls.

Using their terminology, we can say

Definition. [4] A K = 2 spectral networkW is Fenchel-Nielsen if it consists of only
double walls and respects some pants decomposition of C; that is, the restriction
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to every three-punctured sphere in the decomposition is itself a network of only
double walls.

In particular, for such networks each wall both begins and ends on a branch point
of the covering Σ → C, and there are no incoming walls at any puncture. We will
discuss the decoration at such punctures, as well as along the pants curves, later in
this section.

Since by definition a Fenchel-Nielsen network respects a pants decomposition,
we can glue it from Fenchel-Nielsen networks on the individual pairs of pants.
In the next chapter, we will review the possible Fenchel-Nielsen networks on the
three-punctured sphere for K = 2 and detail the gluing procedure.

4.1.2 Examples, K > 2

When K = 3 much more interesting behaviour can occur. We will simply give
some examples here to give the reader some minimal intuition of what can happen.
A slightly more systematic approach to a particular class of K = 3 networks will
be seen in Chapter 7.

One relatively simple-looking K = 3 network with a joint phenomenon occur-
ring only when K > 2 is depicted below:

Figure 4.6: Behaviour possible when K = 3 but not when K = 2. Labels have been
omitted.

In general, spectral networks can be much more complicated when K > 2.
Apart from the additional sheets, the “birthing” in phenomenon Fig 4.1 is now
possible. One such K = 3 network on P1 (with irregular singularity at ∞) that we
will study later on is depicted below:
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Figure 4.7: A “Grassmannian” network. The only singularity is at ∞.

On punctured spheres, choosing some generic parameter values, we can find
networks that look like below:

Figure 4.8: A K = 3 network on the three-punctured sphere. Punctures lie at 1,−1,
and ∞, and we have omitted labels and cuts.
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These are the K = 3 analogue of the Fock-Goncharov networks above. These
can be thought of as generalizing the notion of an ideal triangulation [3]. On the
other hand, the case we will be most interested in is the opposite, in which all walls
are double walls, so that we have networks like:

Figure 4.9: A “generalized Fenchel-Nielsen” network.

This particular network will be studied in much greater detail in the next chapter.

4.2 Abelianization and spectral coordinates

One of the most interesting applications of spectral networks is that they in-
duce holomorphic Darboux coordinate systems on moduli spaces of flat connec-
tions, called spectral coordinates [2]. These are very special coordinate systems,
subsuming a range of previously known examples, and will serve to produce new
examples for us. In particular, in [3] it was found that for certain types of spectral
networks the resulting coordinates are the same as coordinates introduced earlier
by Fock and Goncharov. In [4] this was detailed in the special case of rank K = 2,
and it was found that other types of spectral networks, namely the Fenchel-Nielsen
networks, lead to (complexified) Fenchel-Nielsen length-twist coordinate systems.
In this section we review the definitions and constructions, to be used in the fol-
lowing chapter to construct the higher length-twist coordinates.
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In the following and throughout the sequel we replace all maximal punctures
in a generalized Fenchel-Nielsen network by holes, to facilitate gluing.

4.2.1 Abelianization and nonabelianization

The key to the construction of spectral coordinate systems is the notion of
“abelianization” and “nonabelianization” [4, 2]. Let C be a compact real oriented
surface with some marked points, or singularities, C× = C \ {s1 . . . sm} (say, a
punctured Riemann surface). Fix a branched covering π : Σ → C and a spectral
network W “subordinate”1 to this covering. Given a flat SLK-connection ∇ on a
complex vector bundle E over C, aW-abelianization of∇ is a way of putting∇ in
almost-diagonal form, by locally decomposing E as a sum of line bundles, which
are preserved by∇. Let C′ and Σ′ denote C and Σ respectively with the (preimages
of) branch points removed.

Starting from a line bundle (L′,∇ab) over Σ, to nonabelianize, we begin with
the crudest approximation to the bundle we want, π∗L′, which takes L′ to E re-
stricted to C′ \ W (this is the definition of E away from the branch points and
the network). Going the other way, when we abelianize we aim to get as close
to this situation as possible. Precisely, we may define W-abelianization and W-
nonabelianization in terms ofW-pairs [4].

Definition. AW-pair (E,∇, ι,L′,∇ab) for a networkW subordinate to the branched
covering π : Σ→ C is the collection of data:

(i) A flat rank K bundle (E,∇) over C

(ii) A flat rank 1 bundle (L′,∇ab) over Σ′

(iii) An isomorphism ι : E|C′\W → π∗L′|C′\W

with the properties

(a) the isomorphism ι takes (the restrictions of) ∇ to π∗∇ab

1Here, we simply mean thatW is a WKB network arising from a tuple ϕ = (ϕ2, . . . , ϕK) whose
spectral curve is Σ→ C, where C is endowed with a complex structure. This definition makes sense
verbatim in the context of general spectral networks [1, 4], in which case the word subordinate is
defined without reference to a complex structure, but agrees with this definition whenW is of WKB
type.
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(b) at each single wall w ⊂ W , ι jumps by a map Sw = 1 + ew ∈ End(π′∗L′|C′\W )

where ew : L′i → L′j if w carries the label ij, ew 6= 0 (here by L′i we mean the
summand of π∗L′ associated to sheet i; relative to diagonal local trivializations
of π∗L, this condition says Sw is upper or lower triangular). At each double
wall w′w ι jumps by a map Sw′Sw, with the ordering determined by the reso-
lution.

We call twoW-pairs equivalent and write (E1,∇1, ι1L′1,∇ab
1 , ) ∼ (E2,∇2, ι2,L′2,∇ab

2 ),
if there exist bundle isomorphisms ϕ : L′1 → L′2 and ψ : E1 → E2 making
the obvious diagrams commute. In particular, in this case we have equivalences
(L′1,∇ab

1 ) ∼ (L′2,∇ab
2 ) and (E1,∇1) ∼ (E2,∇2) as flat bundles. Denote the moduli

space ofW-pairs byMpair(W) (this depends on both π andW), leaving the rank
K implicit.

Definition. Given a flat SLK-connection ∇ on a complex rank K bundle E over C,
aW-abelianization of ∇ is any extension of (E,∇) to aW-pair (E,∇, ι,L′,∇ab).

Definition. Given an equivariant almost-flat GL1-connection ∇ab on a complex
line bundle L′ over Σ′, aW-nonabelianization of∇ab is any extension of (L′,∇ab)

to aW-pair (E,∇, ι,L′,∇ab).

In fact, to W-abelianize a flat SLK-connection ∇, it is sufficient to define the
flat GL1-connection ∇ab on L′ restricted to Σ′\π−1(W). Then ∇ab automatically
extends from Σ′\π−1(W) to Σ′:

Proposition 4.2.1. Suppose P = (E,∇, ι,L′,∇ab) satisfies all the conditions for being
aW-pair, except that ∇ab is a connection on the restriction to Σ′ \ π−1(W). Then ∇ab

extends uniquely across the walls, extending P to aW-pair.

Proof. Straightforward extension of [4], section 5.1.

4.2.2 Boundary

If C has boundary, it is useful to consider connections andW-pairs with extra
structure. We fix a marked point on each boundary component of C. Then, aW-
pair with boundary [4] consists of

• AW-pair (E,∇, ι,L′,∇ab),

• a basis of Ez for each marked point z,
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• a basis of L′zi
for each preimage zi ∈ π−1(z) for each marked point z,

• a trivialization of the covering Σ over a neighbourhood of each marked point
z,

such that ι maps the basis of Ez to the basis of π∗L′z induced from those of L′zi
and

Σ.
Given two surfaces C1, C2 with boundary we can glue along a boundary com-

ponent, in such a way that the marked points are identified. Suppose that we have
a W1-pair with boundary on C1 and a W2 pair on C2, and that the monodromies
around the glued component are the same (when written relative to the given triv-
ializations at the marked points). Then using the trivializations we can glue the
W1-pair to theW2-pair to obtain aW-pair over the glued surface.

4.2.3 Equivariant GL(1) connections

The abelianization of a flat SLK-connection ∇ amounts to choosing a basis
(s1, . . . , sK) of E at any point in C\W , with respect to which ∇ is diagonal, sat-
isfying certain constraints ensuring the correct transition across walls. As a result,
any GL1 connection ∇ab obtained byW-abelianizing a flat SLK-connection ∇ au-
tomatically carries some additional structure. We will capture this by saying that
the GL1 connection ∇ab is equivariant on Σ [4]:

Definition. An equivariant line bundle over Σ (subordinate to the covering π) is
a line bundle with connection (L′,∇ab) over Σ′, equipped with a flat trivialization
of det π∗L′. We say ∇ab itself is an equivariant connection.

We denote the moduli space of all equivariant line bundles on Σ up to equiv-
alence byMeq(Σ, GL1) (note that this depends not just on Σ as a surface but also
on the branching structure of π).

An equivariant connection cannot be extended to a flat connection over the
whole of Σ, but we will sometimes say it is almost-flat on Σ, due to the next propo-
sition.

Proposition 4.2.2. Suppose all branch points of π are cyclic permutations of order r, and
∇ab is an equivariant connection. Then (Hol

γ
(i)
b
∇ab)r = 1, where γ

(i)
b is the ith lift of a

small loop encircling a branch point b ∈ C.
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Suppose we are given aW-pair (E,∇, ι,L′,∇ab) with ∇ a flat SLK-connection.
The isomorphism ι identifies the basis (s1, . . . , sK) with a basis (τ̃1, . . . , τ̃K) of the
pushforward bundle π∗L′, where τ̃j = ι(sj). The determinant line bundle det(π∗L′)
is trivialized by the product

(τ̃1 ∧ . . . ∧ τ̃K). (4.2.1)

The triangular property of the jumps Sw shows that this trivialization extends over
π−1(W). Furthermore, the trivialization is parallel with respect to the induced
connection on the determinant line bundle det(π∗L′).

Equivariance just says that the parallel transport of a local frame (τ̃1, . . . , τ̃K)

over a path in C\W (not crossing a branch cut) is given by a diagonal matrix with
determinant 1. It also implies that the holonomy of π∗∇ab around a simple branch
point of type (ij) can be represented by the matrix whose only vanishing diagonal,
and whose only nonvanishing off-diagonal, entries are(

dii dij
dji djj

)
=

(
0 d
−d−1 0

)
. (4.2.2)

This implies that the holonomy of ∇ab around a simple branch point of type (ij)
is diagonal with entry −1 corresponding to the two sheets interchanged, and 1
elsewhere . A connection∇ab with this property is called an almost-flat connection
over Σ in [4].

The GL1 connection ∇ab furthermore carries additional structure at the punc-
tures, characterized by the type of the puncture. In particular, since the mon-
odromy of ∇ around a minimal puncture is a multiple of a reflection matrix, this
implies that the monodromy of π∗∇ab around a minimal puncture is given by a
diagonal matrix with K− 1 equal eigenvalues.

4.2.4 Framing

Let x0 denote the chosen base point of the fundamental group π1.

Definition. Let p be a maximal 2 puncture/boundary, and E ,∇ a flat bundle over
the punctured surface C. AW-framing of ∇ at p is a filtration of the fibre Ex0 by
eigenspaces of the monodromy around p.

2The reason for only fixing a framing at the maximal punctures and maximal boundaries of C
will become clear in §5.3, where we also discuss framings at other types of punctures and bound-
aries.
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We define aW-framed connection∇ on C to be a flat SLK connection on C together
with a framing of ∇ at each maximal puncture and maximal boundary. The fram-
ing is just an ordered tuple of eigenlines (lα1 , . . . , lαK) of the monodromy M+ (in the
+ direction) around the maximal boundary or maximal puncture. As a genericity
condition, we require furthermore that lαi 6= lαj for i 6= j and also that each of lαi

for any puncture or boundary is distinct from each of lαj for any adjacent puncture
or boundary (that is, a puncture or boundary belonging to the same pair of pants).
Note that aW-framing of ∇ exists only if all of the M± are diagonalizable.

4.2.5 Moduli spaces

Consider the following moduli spaces:

• MdR(C, SLK;W), the moduli space parametrizing flatW-framed SLK-connections
over C, up to equivalence,

• Meq(Σ, GL1), the moduli space parametrizing equivariant GL1-connections
over Σ, up to equivalence,

• Mpair(W), the moduli space parameterizingW-pairs, up to equivalence.

The abelianization and nonabelianization constructions lead to the following
diagram relating these spaces:

Mpair(W)

Meq(Σ, GL1) MdR(C, SLK;W)

π1 π2

ψ1 ψ2

where π1 and π2 are the forgetful maps which map a W-pair to the underlying
equivariant GL1-connection orW-framed flat SLK-connection respectively, whereas
ψ1 is the W-nonabelianization map and ψ2 the W-abelianization map. From this
description it is evident that π1 ◦ ψ1 and π2 ◦ ψ2 are the identity maps.

To avoid notational clutter we have not explicitly mentioned the restricted bound-
ary monodromies in the above. Yet, all remains true if we consider flatW-framed
SLK-connections with fixed conjugacy classes at the boundaries and punctures,
and interpret their eigenvalues as the boundary monodromies for the equivariant
GL1 connections.

In [4] it was established that all of these mappings are bijections for K = 2
Fenchel-Nielsen networksW . In particular, it was established thatW-abelianizations
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are in one-to-one correspondence withW-framings for Fenchel-Nielsen networks
W , and that there is there is a unique nonabelianization for any equivariant GL1-
connection. In particular, this shows that the mapping Ψ = π1 ◦ ψ2 is a bijection
(in fact a diffeomorphism).

In the next section we will show that this result extends to K = 3 Fenchel-
Nielsen networksW of length-twist type. We expect it to hold for any generalized
Fenchel-Nielsen networks of length-twist type. W-abelianizations for arbitrary
generalized Fenchel-Nielsen networks (not of length-twist type) are more subtle,
however, and are discussed in [52].

4.2.6 Spectral coordinates

Let Σ′ denote Σ with the preimages of branch points removed. Given an equiv-
ariant GL1 connection ∇ab we can construct the holonomies

Xγ = Holγ(∇ab) ∈ C× (4.2.3)

where γ ∈ H1(Σ′, Z). Together these form a coordinate system on the moduli
space of equivariant GL1 connections (because of the equivariance, we will really
only need a sublattice of γ’s). Through the abelianization map, these complex
numbers also determine a coordinate system on the moduli space of W-framed
flat connections3. The resulting coordinates are called spectral coordinates.

Spectral coordinates have a number of good properties. First, they are multi-
plicative in the sense that

XγXγ′ = Xγ+γ′ (4.2.4)

for any two γ, γ′ ∈ H1(Σ′, Z).
Furthermore, they are “Darboux” coordinates with respect to the holomorphic

Poisson structure on the moduli space of flat rank K connections over C (that is,
holomorphic on the punctured curve or equivalently considered over the compact
C with logarithmic singularities at the punctures):

{Xγ,Xγ′} = 〈γ, γ′〉Xγ+γ′ , (4.2.5)

where 〈., .〉 denotes the intersection pairing on H1(Σ′, Z). In particular, for a sym-
plectic basis {Ai, Bi} of H1(Σ′, Z), {logXAi , logXBi} form Darboux coordinates in
the usual sense. This fact will be essential to us in the coming chapters.

3We discuss framings at general regular punctures in §5.3
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Chapter 5

Higher length-twist coordinates from
abelianization

This chapter is based on the joint work [8] with L. Hollands, arXiv:1710.04438.

In this chapter we study the geometry of the moduli spaces of flat connections
over a punctured Riemann surface C using the machinery of spectral networks
and abelianization. Given class S data with only minimal or maximal punctures,
we define and compute a generalization of (complexified) Fenchel-Nielsen coordi-
nates onMdR. In the next chapter we utilize these coordinates to compute super-
potentials associated to the class S theory.

In §5.1 we define the higher rank generalization of Fenchel-Nielsen networks
and relate this to a generalized Strebel condition on the differentials. We use this to
generate examples of generalized Fenchel-Nielsen networks on the four-punctured
sphere. If the Riemann surface C is built out of three-punctured spheres with one
minimal and two maximal punctures, by gluing the maximal punctures, there is an
essentially unique (up to certain “moves”) generalized Fenchel-Nielsen network.
We call this a generalized Fenchel-Nielsen network of length-twist type.

The relevant moduli spaceMC
dR(C, SLK) is the moduli space of flat connections

on C with fixed conjugacy classes at each puncture. We require that each conjugacy
class is semisimple, with K distinct eigenvalues for a maximal puncture and K −
1 equal eigenvalues for a minimal puncture (or more generally, a partition of K
eigenvalues corresponding to a puncture labeled by any Young diagram).

In §5.3 we show how to realize the higher rank length-twist coordinates as
spectral coordinates through the abelianization method, focusing on our two main
examples. In particular, we show that the abelianization and non-abelianization
mappings are bijective. We then collect the resulting monodromy representations
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in terms of higher rank length-twist coordinates in §5.4, giving explicit formulas
for the trace functions.

5.1 Generalized Fenchel-Nielsen networks

Fix a pants decomposition P = (α1, . . . α3g−3+n) of the punctured curve C. In
this section we define and study examples of a type of spectral network on C that
respects this pants decomposition, called a generalized Fenchel-Nielsen network
when K > 2. To be precise, recall that a network respects the pants decomposition P
if the walls and pants curves are disjoint; in other words, the network is glued out
of networks on three punctured spheres. We can then define:

Definition. We say that a K > 2 spectral networkWϑ(ϕ) is a generalized Fenchel-
Nielsen network if it consists only of double walls and respects some pants decom-
position of C.

In particular, for such networks each wall both begins and ends on a branch
point of the covering Σ→ C, and there are no incoming walls at any puncture. We
will discuss the decoration at such punctures, as well as along the pants curves,
later in this section.

In [4] the case K = 2 was studied in detail and it was observed that the cor-
responding differential ϕ2 satisfies the Strebel condition. In the following we will
argue that for K > 2 there is a natural generalization of the Strebel condition which
generates generalized Fenchel-Nielsen networks.

Since by definition a Fenchel-Nielsen network respects a pants decomposition,
we can glue it from Fenchel-Nielsen networks on the individual pairs of pants. We
analyze the possible Fenchel-Nielsen networks on the three-punctured sphere for
K = 2 and K = 3 and detail the gluing procedure.

Even though in the above we have fixed a complex structure on C and de-
scribed a spectral network in terms of the tuple ϕ of differentials, we will later
only be interested in the isotopy class of the spectral network on the topological
surface C. We thus define two spectral networksW andW ′ to be equivalent if one
can be isotoped into the other.
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5.1.1 K = 2

Let ϕ2 be a meromorphic quadratic differential on C, holomorphic away from
the punctures zl. Locally such a differential is of the form

ϕ2 = u(z)(dz)2 (5.1.1)

As we described in the previous chapter, given a phase ϑ, the differential ϕ2 canon-
ically determines a singular foliationFϑ(ϕ2) on C. The differential e−2iϑ ϕ2 is called
Strebel if all leaves of the foliation Fϑ(ϕ2) are either closed trajectories or saddle
connections (i.e. trajectories that begin and end at a simple zero of ϕ2).

Suppose that the singular foliation Fϑ(ϕ2) respects a given pants decomposi-
tion of the surface C. That is, suppose that each pants curve αk is homotopic to a
closed trajectory of Fϑ(ϕ2). Then the Strebel condition implies that the period of
√−ϕ2 around each pants curve αk as well as around a small loop γl around each
puncture zl has phase ϑ, that is

e−iϑ
∮

αk

√
−ϕ2 ∈ R and e−iϑ

∮
γl

√
−ϕ2 ∈ R. (5.1.2)

Conversely, given any pants decomposition P = {α1, . . . , α3g−3+n} consisting
of simple closed curves of a punctured Riemann surface C and arbitrary hk > 0,
k = 1, . . . , 3g − 3 + n and ml > 0, l = 1, . . . n, there is a unique Strebel differen-
tial ϕ2 whose foliation consists of punctured discs centered at the punctures and
characteristic annuli homotopic to αk, such that∮

αk

√
−ϕ2 = hk and

∮
γl

√
−ϕ2 = ml, (5.1.3)

for a suitable choice of branch of the root
√−ϕ2 [53].

As explained in [4] a rank K = 2 spectral networkWϑ(ϕ2) can be obtained from
the critical locus of the singular foliation Fϑ(ϕ2). The resulting networkWϑ(ϕ2) is
Fenchel-Nielsen if and only if the foliation respects a given pants decomposition of
C, has no leaves ending on punctures and only compact leaves. This is equivalent
to saying that e−2iϑ ϕ2 is a Strebel differential.

Example. Recall that any meromorphic quadratic differential ϕ2 on the three-punctured
sphere P0,1,∞, with regular singularities and prescribed residues −m2

l can be writ-
ten as

ϕ2 = −
m2

∞z2 − (m2
∞ + m2

0 −m2
1)z + m2

0
z2(z− 1)2 (dz)2. (5.1.4)
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The above differential is a Strebel differential if and only if all parameters ml have
the same phase ϑ− π

2 . Without loss of generality we can assume all ml are real and
ϑ = π

2 .
The isotopy class of the corresponding spectral network Wπ

2
(ϕ2) depends on

the precise values of the parameters m0, m1 and m∞. The spectral network changes
its isotopy class when one of the four hyperplanes defined by the equations

m∞ = ±m0 ±m1 (5.1.5)

in parameter space is crossed, which is when two branch-points of the covering
Σ → C collide. The spectral networks on either side of such a hyperplane are
related by a “flip move” (in the terminology of [54]), where two branch points
approach each other, collide and then move away in perpendicular directions, as
is illustrated in Figure 5.1.

Figure 5.1: Flip move: when varying a real parameter t in ϕ from a small negative
value to a small positive value two branch points come closer until they collide
and then move away from each other in a perpendicular direction. All walls in
this figure are double walls.

If we do not distinguish the three punctures on P0,1,∞ there are only two in-
equivalent spectral networks, named “molecule I” and “molecule II”, which are
plotted in Figure 5.2 for m∞ = 1 and m0 = m1 = 0.45 and m∞ = m0 = m1 = 1,
respectively. The illustrated molecules are related by varying the parameter t =

m0 + m1 −m∞ from t = −0.1 to t = 1 (while keeping m∞ > −m0 + m1).
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Figure 5.2: Fenchel-Nielsen networks on the three-punctured sphere. On the left
is molecule I with m∞ = 1 and m0 = m1 = 0.45. On the right is molecule II with
m∞ = m0 = m1 = 1. The blue dots are the punctures, and the orange crosses are
branch points of the covering Σ→ C. All walls are double walls.

In applications we often need to study the two limits ϑ → 0±. These corre-
spond to the two “resolutions” of the network. In each of the two resolutions each
double wall is split into two infinitesimally separated walls. The two resolutions
of molecule I are shown in Figure 5.3. By drawing the branch cuts in this figure we
have moreover fixed a local trivialization of the covering Σ→ C.

Figure 5.3: The two resolutions of molecule I: on the left the American resolution
and on the right the British one. The wavy orange lines illustrate a choice of branch
cuts of the covering Σ→ C.

A Fenchel-Nielsen network on a general Riemann surface C is defined with
respect to a pants decomposition of C and can be constructed by gluing together
molecules (in the same resolution) on the individual pairs of pants. The molecules
are glued together along the boundaries of the pairs of pants, with marked points
on the boundary identified, and inserting a circular branch cut around each pants
curve.

Any puncture in a molecule is surrounded by a polygon of double walls. The
decoration at a puncture is an assignment of an ordering of the sheets of the spec-
tral curve Σ over the puncture to each direction around the puncture, compatible
with the labelings of the double walls surrounding it, in such a way that reversing
the direction reverses the ordering. In Figure 5.3 we have chosen the branch cuts
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such that the 12-walls run in the clockwise direction around each puncture. The
decoration thus assigns the sheet ordering 12 to the clockwise orientation.

Similarly, any pants curve in a Fenchel-Nielsen network is surrounded on either
side by a polygon of walls. We thus also associate a decoration to each pants curve.
This is an assignment of an ordering of the sheets to each direction around the
pants curve, compatible with the labelings of the double walls surrounding it, in
such a way that reversing the direction reverses the ordering.

5.1.2 K = 3

We generalize the Strebel condition to K > 2 as follows.

Definition. A tuple of differentials ϕ = (ϕ2, . . . , ϕK) is generalized Strebel (at
phase ϑ) if there exists a symplectic basis for the compactified spectral cover Σ,
i.e. a choice of A- and B-cycles on Σ, such that

e−iϑ
∮

Ak

λ ∈ R and e−iϑ
∮

γ̃l

λ ∈ R, (5.1.6)

for each A-cycle Ak and each lift γ̃l of a small loop around each puncture zl to Σ,
where λ is the tautological 1-form on Σ.

We say that the generalized Strebel tuple ϕ respects a pants decomposition P of C
if the generalized Strebel condition (5.1.6) holds for a basis whose A-cycles are the
lifts of each pants curve α ∈ P to Σ.

Recall that a spectral network Wϑ(ϕ) is called a generalized Fenchel-Nielsen
network if it respects some pants decomposition and consists of only double walls.
We use generalized Strebel tuples to generate our examples of Fenchel-Nielsen
networks throughout the thesis, though we do not have a proof of why this must
happen. Based on this, we propose

Conjecture 5.1.1. Suppose P is a pants decomposition of C and ϕ is a generalized Strebel
tuple at some phase ϑ which respects P. Then the WKB spectral network Wϑ(ϕ) is a
generalized Fenchel-Nielsen network respecting P.

(In [54, 55] a related class of networks, called BPS graphs, were given an inter-
pretation in terms of BPS quivers. In the terminology of [4] they would be called
generalized fully contracted Fenchel-Nielsen networks. In particular, they do not
respect any pants decomposition.)
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Example. The differentials ϕ2, ϕ3 on the three-punctured sphere P1
0,1,∞ with two

maximal and one minimal puncture were discussed in §2.2.3. Applying an auto-
morphism of P1 to move the punctures to za = 1, zb = ω and zc = ω2, where ω is
the third root of unity, these differentials can be written explicitly as

ϕbif
2 (z) =

−9m2
a

(1− z)(1− z3)
+

3(1− z)2

(1− z3)2 (m
2
b,1 + mb,1mb,2 + m2

b,2) (5.1.7)

ϕbif
3 (z) =

9(1 + z)m3
a

(1− z)(1− z3)2 −
9(1− z)2(1 + z)

(1− z3)3 mb,1mb,2(mb,1 + mb,2), (5.1.8)

where ma is the single mass parameter at the minimal puncture at z = 1, and where
we have set the mass parameters mb,1 and mb,2 at the maximal puncture at zb = ω

to be minus the ones at zc = ω2.
The spectral network (̧ϕbif, ϑ) is a generalized Fenchel-Nielsen network if and

only if all mass parameters ma, mb,1 and mb,2 have the same phase ϑ − π
2 . This is

precisely when the corresponding tuple ϕbif is generalized Strebel. Without loss of
generality we can assume that the mass parameters are real and ϑ = π

2 .
Just as in the previous example, the different isotopy classes generated by ϕbif

are classified by the connected components of the complement of the hyperplanes
corresponding to the collision of two or more branch points of the covering Σ→ C.
We refer to any of these isotopy classes as a K = 3 generalized Fenchel-Nielsen
molecule with two maximal and one minimal puncture. Any two such molecules
are related by a sequence of elementary local transformations, such as the flip
move. Some molecules are shown in Figure 5.5.

Figure 5.4: The two possible joints in which six double walls can intersect.

The generalized Fenchel-Nielsen molecules with two maximal and one min-
imal puncture share a number of features. They are built out of two (rank 2)
Fenchel-Nielsen molecules, intersecting each other in (both of) the 6-joints illus-
trated in Figure 5.4. Maximal punctures are surrounded by a polygon of double
walls, whereas minimal punctures lie on top of a double wall.
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Figure 5.5: Examples of non-isotopic generalized Fenchel-Nielsen molecules with
two maximal and one minimal puncture, symmetric about the horizontal. All
walls are double walls.

Each K = 3 molecule comes with two resolutions, in which each double wall is
split into two infinitesimally separated walls. For instance, the two resolutions of
the molecule at the top-left in Figure 5.5 are illustrated in Figure 5.6. Note that a
minimal puncture is in between two single opposite walls. In Figure 5.6 we have
also chosen a local trivialization of the spectral cover Σ.

Each K = 3 molecule can be represented with several choices of wall labelings.
For instance, for the K = 3 molecule in Figure 5.6 the wall labelings are completely
determined if we fix the labels for the double wall surrounding the maximal punc-
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ture at z = ω as well as one of the two possible combinations of joints around the
minimal puncture at z = 1. All different choices can be obtained from the represen-
tation in Figure 5.6 by introducing additional branch cuts around the punctures.

Each choice of wall labelings determines a decoration at the punctures and
along the pants curves. As before, the decoration assigns an ordering of the sheets
of the spectral curve Σ over the puncture or over the pants curve to each direction,
in such a way that reversing the direction reverses the ordering. For instance, for
the K = 3 molecule in Figure 5.6 the decoration at the maximal puncture at z = ω

assigns the sheet ordering (123) to the clockwise direction and (321) to the coun-
terclockwise direction, whereas the decoration at the maximal puncture at z = ω2

assigns the sheet ordering (321) to the clockwise direction and (123) to the coun-
terclockwise direction. The decoration at the minimal puncture at z = 1 assigns
the sheet ordering (31; 2) to the clockwise direction and (13; 2) to the counterclock-
wise direction, where 2 is the distinguished sheet that does not appear in the label
of the double wall intersecting the minimal puncture.

Figure 5.6: The two resolutions of the generalized Fenchel-Nielsen molecule at the
top-left in Figure 5.5 together with a choice of local trivialization of the spectral
cover Σ.

Example. Equations (2.2.14), (2.2.15) from Chapter 2 describe the 1-dimensional
family of tuples (ϕ2, ϕ3) on the three-punctured sphere P1

0,1,∞ with three maximal
punctures. Each tuple defines a spectral cover Σ over C whose compactification
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has genus 1. This implies that the possible generalized Strebel tuples are labeled
by a choice of A-cycle on Σ. The generalized Strebel condition (5.1.6) fixes the
parameters u and mi,j relative to the choice of the phase ϑ.

Generalized Fenchel-Nielsen networks on the three-punctured sphere P1
0,1,∞

with three maximal punctures were classified in [41] in the special case when all
parameters mi,j vanish. It was found that there is a single generalized Fenchel-
Nielsen network at each phase ϑ[p,q] with

tan ϑ[p,q] =

√
3q

q− 2p
, (5.1.9)

for any pair of coprime integers (p, q). Each generalized Fenchel-Nielsen network
corresponds to a generalized Strebel differential ϕ2 with

e−iϑ[p,q]

∮
Ap,q

λ ∈ R. (5.1.10)

where Ap,q = pγ1 + qγ2, for a certain basis of 1-cycles γ1 and γ2 on Σ.

Generalized Fenchel-Nielsen networks on a punctured Riemann surface C are
defined with respect to a pants decomposition of C and can thus be found by glu-
ing together generalized Fenchel-Nielsen “molecules” on the individual pairs of
pants. Allowed gluings require that not only the type of the punctures match,
but also the decorations along the pants curves (possibly by inserting additional
branch cuts).

In the following we restrict ourselves to Fenchel-Nielsen networks obtained
from gluing Fenchel-Nielsen molecules with two maximal and one minimal punc-
ture along maximal boundaries. We call this class of generalized Fenchel-Nielsen
networks of length-twist type. Figure 5.14 gives an example of such a length-twist
type network on the four-punctured sphere (where we have replaced the two max-
imal punctures by boundaries).

5.2 Higher length-twist coordinates

Let ∇ be a flat SLK-connection on a punctured curve (C,D) with a fixed semi-
simple conjugacy class

Cl = diag{Ml,1, . . . Ml,K} (5.2.1)

at each puncture with Ml,i ∈ C×.
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The partition of the K eigenvalues can be read off from the Young diagram
assigned to the puncture: the height of each column in the Young diagram encodes
the multiplicities of coincident eigenvalues. In particular, for generic1 values of
the eigenvalues, a conjugacy class at a minimal puncture is a scalar multiple of a
complex reflection matrix.

We denote the (relative) moduli space of such flat connections by

MC
dR(C, SLK), (5.2.2)

where C = {Cl} is the collection of conjugacy classes.
We will restrict ourselves to Riemann surfaces C that can be obtained by gluing

spheres with two maximal and one minimal puncture, where gluing is permit-
ted only along maximal boundaries2. Since a generic flat SLK-connection on the
sphere with two maximal and one minimal puncture is completely specified (up
to equivalence) by the eigenvalues of the monodromy around the punctures, the
moduli space of flat SLK-connections on any such surface C is (K− 1)(6g− 6+ 2n)-
dimensional, where 3g− 3 + n is the number of pants curves.

In this section we define a generalization of the standard Fenchel-Nielsen length-
twist coordinates on the moduli space

MC
dR(C, SLK;W)

of W-framed flat SLK connections, where C is built by gluing as above. In sec-
tion 5.3 we show that these coordinates are realized as spectral coordinates through
the abelianization method. TheW-framing will be crucial in picking out a canoni-
cal abelianization of ∇.

5.2.1 Higher length-twist coordinates

A flat SLK connection∇ on C with fixed boundary conjugacy classes is specified
(up to equivalence) by 2K− 2 parameters at each pants curve αi.

Half of this set of parameters, say `1, . . . , `K−1, are simply the (logs of) eigenval-
ues of the monodromy Mi. The indexing of these parameters is determined by the
decoration as well as the framing data. If the decoration at the boundary assigns

1Ml,1 = . . . = Ml,K−1 not equal to a K-th root of unity
2This constraint is natural from the physical point of view, where it corresponds to “gauging the

flavor symmetry” associated to the punctures.
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the sheet ordering (i1, . . . , iK) to the + direction and the framing of∇ at the bound-
ary in the + direction is given by the ordered tuple of eigenlines (lα1 , . . . , lαK), then
we define

Lij = −e
πi `ij (5.2.3)

as the eigenvalue corresponding to the eigenline lαj .
3

The other half of the parameters, say τ1, . . . , τK−1, have a more indirect defini-
tion. One approach is in terms of their transformation under the following modi-
fication of the connection ∇. Suppose we cut the surface C into two pieces along
a pants curve α.4 We obtain two surfaces with boundary, say C1 and C2 carrying
flat connections ∇1 and ∇2, as well as an isomorphism ι that relates ∇1 to ∇2. Let
us now change ∇1 by a gauge transformation κ that preserves the monodromy M
around α, and then glue C back along the boundary α.

If the monodromy M+ is diagonalized by the gauge transformation g, then the
transformation κ can be written as

κ = g−1 ◦ diag
(

eλ1 , . . . , eλK
)
◦ g (5.2.4)

with ∑K
i=1 λi = 0. After gluing back we thus obtain a 1-parameter family of modi-

fied connections ∇(λ). This operation is sometimes called the (generalized) twist
flow (see for instance [56] in the real-analytic setting, which builds on [57, 58, 59]).

Any choice of parameters τ1, . . . , τK−1 with the property that they change under
the twist flow as

τj 7→ τj +
λj

2
− λK

2
(5.2.5)

are called twist parameters. The twist parameters τi are thus only defined up to an
additive function in the length parameters `1, . . . , `K.

This definition of the length-twist coordinates `1, . . . , `K−1 and τ1, . . . , τK−1 guar-
antees that they are Darboux coordinates on the moduli space of (W-framed) flat
SLK connections. We refer to them as (complex) higher length and twist coordi-
nates, respectively.5 In §5.3 we will realize these coordinates explicitly as spectral
coordinates associated to the generalized Fenchel-Nielsen network W of length-
twist type, and obtain coordinate formulas for the trace functions onMdR.

3A rationale for the slightly odd conventions is given in §6.3.
4Here we suppose that α is a separating loop, a similar discussion holds if it is nonseparating.
5This is a rather straightforward higher rank generalization of the definition of Fenchel-Nielsen

length-twist coordinates in [4].
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5.2.2 Fenchel-Nielsen twist coordinate

Let K = 2, so there is only one pair of coordinates (`, τ) associated to each pants
curve. The twist coordinate defined as above is only determined up to a canoni-
cal transformation τ′ = τ + f (`). However, certain other constructions yield a
distinguished choice for the twist, given by the so-called complex Fenchel-Nielsen
twist τFN [20, 21, 60, 61]. This twist parameter is identical to the NRS Darboux
coordinate β/2 [7].

Example. On the four-punctured sphere P1
0,q,1,∞ fix the presentation of the funda-

mental group as illustrated in Figure 5.7, generated by the paths γ0, γ, γ1 and γ∞

with the relation

〈γ0, γ, γ1, γ∞| γ0 γ γ∞ γ1 = 1〉. (5.2.6)

If the conjugacy class around the path γl is semisimple with eigenvalues Ml and
M−1

l , we have that the traces of the monodromy matrices Mα = Mγ0Mγ and Mβ =

Mγ0Mγ∞ are given by

Tr Mα = L + L−1, (5.2.7)

Tr Mβ =
√

N(L)
(

T + T−1
)
+ N◦(L), (5.2.8)

where

L + L−1 = −2 cos(π`),

T + T−1 = −2 cosh(2τFN), (5.2.9)

Ml + M−1
l = −2 cos(πml),

and

N(L) =
c0q(L)c1∞(L)

sin4(π`)
, (5.2.10)

ckl = cos(π`)2 + cos(πmk)
2 + cos(πml)

2 + cos(π`, πmk, πml)− 4,

N◦(L) =
cos(π`) (cos(πm0, πm1) + cos(πm, πm∞)) + cos(πm, πm1) + cos(πm0, πm∞)

1
2 sin2(π`)

,

where we defined cos(x, y) = cos(x) cos(y). We realize the Fenchel-Nielsen length-
twist coordinates ` and τFN as spectral coordinates in §5.4.2 by averaging over the
two resolutions of a Fenchel-Nielsen network.
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Figure 5.7: Generators for the fundamental group π1(C, ∗) of the four-punctured
sphere P1

0,q,1,∞.

5.2.3 Higher length-twist coordinates as spectral coordinates

The coordinate system one obtains from abelianization depends in general on
the isotopy class of the spectral networkW . The spectral coordinates for general-
ized Fenchel-Nielsen networks of length-twist type are higher length-twist coor-
dinates, in the sense that they satisfy the twist flow property described in §5.2.1.
The proof of this is a straightforward generalization of the argument in [4], where
it was shown that the spectral coordinates corresponding to Fenchel-Nielsen net-
works are Fenchel-Nielsen length-twist coordinates.

Indeed, let us fix an annulus A, corresponding to a glued maximal boundary,
and construct the corresponding basis of equivariant 1-cycles Aj and Bj, corre-
sponding to a choice of A and B-cycles on the cover Σ.

Suppose that the decoration at the annulus A in the + direction is (i1, . . . iK)

and that the framing of ∇ in the + direction is (lα1 , . . . , lαK). Fix a path ℘ going
around the annulus A in the + direction. Consider the lift Aj ∈ H1(Σ, Z) of ℘ onto
sheet j. The spectral coordinate XAj is equal to the eigenvalue corresponding to
the eigenline lαj′ with ij′ = j, which according to §5.2.1 equals the higher length
coordinate Lj.

Fix a 1-cycle Bj that crosses the j-th and K-th lift of the annulus A. Under the
twist flow parametrized by (Λ1, . . . , ΛK) the section (s1, . . . , sK) 7→ (Λ1s1, . . . , ΛKsK).
This shows that the twist flow acts on XBj as

XBj 7→ (ΛK)
−1 Λj XBj ,

which according to §5.2.1 implies that XBj is a higher twist coordinate.
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The 1-cycles Aj and Bj satisfy

〈Aj, Bk〉 = δjk

and thus indeed correspond to a choice of A and B-cycles on the cover Σ.

5.2.4 Representations

Instead of working directly with flat connections, we use the Riemann-Hilbert
correspondence and work with the corresponding parallel transport maps. As in
§6 of [4] we replace flat SLK-connections of C by SLK-representations of a groupoid
GC of paths on C and equivariant GL1-connections by equivariant GL1-representations
of a groupoid GΣ′ of paths on Σ′. The objects of the groupoid GC are basepoints on
either side of a single wall in the spectral network W , whereas the objects of the
paths groupoid GΣ′ are lifts of these basepoints to the cover Σ′. Morphisms of
the groupoid GC (and GΣ′) are homotopy classes of oriented paths ℘ which begin
and end at basepoints on C (and their lifts to Σ′ respectively). Examples of such
path groupoids are given in Figure 5.9 and 5.11. In figures, paths that do not cross
any walls are coloured light-blue, whereas paths that connect the two basepoints
attached to a single wall are coloured red.

5.3 Abelianization for higher length-twist networks

Let C be a punctured surface together with a pants decomposition into pairs of
pants with two maximal and one minimal puncture. Furthermore, choose a gener-
alized Fenchel-Nielsen networkW of length-twist type on C respecting the pants
decomposition. Our aim in this section is to show that the W-nonabelianization
mapping ψ1 as well theW-abelianization mapping ψ2 both are bijections. We use
the following strategy.

Fix a length-twist type network W and a W-framed flat SLK connection ∇.
Suppose that we are given aW-abelianization of ∇. That is, suppose that we are
given local bases

(sR1 , . . . , sRK )

on all domainsR of C\W , and that the transformation Sw that relates the bases in
adjacent domains, divided by a wall of type ij is of the form

Sw = 1 + ew, (5.3.1)
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where ew lies in the 1-dimensional vector space Hom(Li,Lj).
The transformations ew are not arbitrary, as they must satisfy some constraints.

Encircling a (simple) branch point of the covering Σ → C, due to almost-flatness,
yields a constraint on their coefficients, as does encircling each joint of the spectral
networkW (which must give the identity). We show that these constraints admit
a unique solution for the transformations Sw, up to abelian gauge equivalence, if
we demand the local bases around maximal punctures agree with the choice of
W-framing of ∇.

Recall that theW-framing of ∇ is specified by a choice of framing at the maxi-
mal punctures and boundaries (see §4.2.4). Rather than requiring any similar data
at the minimal puncture, we find that the constraints impose that the local basis at
each minimal puncture may be expressed uniquely in terms of the transformations
Sw and the framing data at any one of the maximal punctures or boundaries.

We conclude that there is a unique W-abelianization of ∇ for every choice
of W-framing of ∇. But at the same time we deduce that there is a unique W-
nonabelianization of the corresponding equivariant GL(1) connection ∇ab. Fur-
thermore, we find that allW-abelianizations of ∇ are obtained in this way: if we
have an abelianization of ∇, then the K lines ι−1(Li) for 1 ≤ i ≤ K at each max-
imal puncture or maximal boundary must all be eigenlines of the monodromy of
∇ around that maximal puncture or maximal boundary. The only freedom is the
choice which of these lines is which eigenline, i.e. the choice of framing. Hence we
find that both mappings ψ1 and ψ2 (from §4.2.5) are bijections.

In the following we first spell out the details for a Fenchel-Nielsen and a gen-
eralized Fenchel-Nielsen molecule. We then use the gluing formalism to complete
the argument for Fenchel-Nielsen and generalized Fenchel-Nielsen networks of
length-twist type on any surface C.6

5.3.1 K = 2 molecule

Fix the Fenchel-Nielsen moleculeW from Figure 5.8 on the three-holed sphere
C. This was one of the examples from [4] (although we discuss theW-abelianization
in a slightly different way). Say that ∇ is aW-framed flat SL(2) connection on C;
the framing is a choice of eigenlines l+ and l− at each annulus A. Say that M is the

6To be precise, we show uniqueness only for networks glued from the molecule illustrated
in Figure 5.10, but we expect it to hold for any network built from the K = 3 Fenchel-Nielsen
molecules of length-twist type.

88



eigenvalue corresponding to the eigenline l+ and M−1 the eigenvalue correspond-
ing to the eigenline l−.

Figure 5.8: Length-twist network on the three-holed sphere together with a choice
of + direction around each hole.

Choose a trivialization of the covering π : Σ → C, and suppose that ∇ admits
a W-abelianization. We require that the corresponding W-abelianization singles
out the basis of eigenlines li = l+ and lj = l− if the decoration in the + direction is
ij. We will now show that this uniquely determines theW-abelianization.

TheW-abelianization corresponds to choosing a basis (s1, s2) ∈ l1 ⊕ l2 in each
annulus, such that the bases in adjacent domains are related by a transformation
Sw. Choose basepoints and generators of the path groupoids GC and GΣ′ as in
Figure 5.9. The section si changes by a constant when parallel transporting it along
a light blue path that does not cross a branch cut. If the path does cross branch
cuts it furthermore changes sheet accordingly. We encode the parallel transport of
the basis (s1, s2) along light blue paths ℘ in matrices D℘ and along red paths w,
connecting the red dots across walls, in matrices Sw.
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Figure 5.9: Length-twist network on the three-punctured sphere together with a
choice of basepoints (the red dots) and a choice of paths (in light-blue and red).
The red paths are admittedly barely visible in this figure, but connect the red dots
across walls.

The matrices D℘ are not arbitrary, as they encode the parallel transport coeffi-
cients of the equivariant flat connection ∇ab. When going around the boundaries
we find the constraints

D3 = diag(M0, M−1
0 ) (5.3.2)

D6 = diag(M1, M−1
1 ) (5.3.3)

D2D5D̃4D̃1 = diag(M−1
∞ , M∞). (5.3.4)

When traversing around the branch points we find the almost-flatness constraints

(D3D2D̃1)
2 = −1 (5.3.5)

(D6D5D̃4)
2 = −1. (5.3.6)

Together, these abelian flatness constraints determine the matrices D℘ up to
transformations Gz = diag(gz, g−1

z ) at the basepoints z that act on the matrices D℘

by

D℘ 7→ G f (℘)D℘ G−1
i(℘), (5.3.7)

where i(℘) is the initial point of the path ℘ and f (℘) its end point. That is, up
to abelian gauge transformations,W-abelization determines a unique equivariant
GL(1) connection ∇ab on the cover Σ.

It remains to check that there is a unique solution to the transformations Sw (up
to an abelian gauge transformation). The transformations Sw are constrained by
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the requirement that following any contractible loop on the base C should result in
the identity. Traversing around either branch point gives the constraints

D2 Sw2 D̃1 S−1
w1

D3 Sw1 = 1 (5.3.8)

D̃4 S−1
w2

D5 S−1
w3

D6 Sw3 = 1, (5.3.9)

where

Sw1 =

(
1 0
c̃1 1

)(
1 c1
0 1

)
(5.3.10)

Sw2 =

(
1 c2
0 1

)(
1 0
c̃2 1

)
(5.3.11)

Sw3 =

(
1 0
c̃3 1

)(
1 c3
0 1

)
(5.3.12)

Indeed, this has a unique solution up to equivalence, with for instance,

c1 =
g2

1 (1−M0M1M∞)
(

1− M0 M∞
M1

)
(1−M2

∞)
c̃1 = − 1

g2
1(1−M2

0)
, (5.3.13)

where g1 is a coefficient of the abelian gauge transformation at basepoint 1. As ex-
plained in [4], the s-parameters cz and c̃z have an interpretation as abelian parallel
transport along so-called “detour paths” which follow a wall back to its emanating
branchpoint and return to a different preimage on Σ.

Note that that the unique solution to the branch point constraints crucially de-
pends on the chosen framing at each of the annuli, but in a simple way: changing
the framing at any one of the annuli Al corresponds to replacing Ml 7→ M−1

l in the
expressions for the transformations Sw.

5.3.2 K = 3 molecule

Fix the length-twist type networkW from Figure 5.10 on the sphere C with two
(maximal) holes and one minimal puncture, and suppose that ∇ is a W-framed
flat SL3 connection on C. As before, the framing corresponds to an ordered tuple
of three eigenlines around each boundary component. That is, an ordered tuple
(l0,α, l0,β, l0,γ) at the top annulus and an ordered tuple (l∞,α, l∞,β, l∞,γ) at the bottom
annulus. We will show that there is a uniqueW-abelianization of this∇ that agrees
with the framing.

One might ask why we did not introduce framings for minimal punctures. Sup-
pose for the moment that we needed a ”framing” at a minimal puncture, given by
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any ordered tuple (l1,α, l1,β; l1,γ) of eigenlines, where the eigenline l1,γ corresponds
to the distinguished eigenvalue of the monodromy. It seems like this would intro-
duce a continuous family of abelianizations, but in fact we find in the following
that the abelianization constraints determine the tuple (l1,α, l1,β; l1,γ) uniquely in
terms of the framings at the maximal punctures.

Figure 5.10: Rank 3 Fenchel-Nielsen molecule together with a + direction at each
puncture and hole.

Choose a trivialization of the covering π : Σ → C, and suppose that ∇ admits
a W-abelianization. Around each hole Al we require that the corresponding W-
abelianization has eigenlines ll,i = ll,α and ll,j = ll,β and ll,k = ll,γ if the decoration
in the + direction is (ijk). Around the minimal puncture we require that the corre-
spondingW-abelianization has eigenlines l1,i = l1,α, l1,j = l1,β and l1,k = l1,γ if the
decoration in the + direction is (ij; k).

TheW-abelianization corresponds to the data of a basis (sR1 , sR2 , sR3 ) on all do-
mainsR of C\W , such that the bases in adjacent domains are related by a transfor-
mation Sw. Choose basepoints and generators of the path groupoids GC and GΣ′ as
in Figure 5.11. As before, we encode the parallel transport of∇ in “abelian gauge”
along light blue paths ℘ in matrices D℘ and along red paths w in matrices Sw.

The matrices D℘ are not arbitrary, as they encode the parallel transport coeffi-
cients of the equivariant connection∇ab on the cover Σ′. For instance, when going
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around a loop encircling the top branch point twice we find the constraint

(D̃3D1D2)
2 = diag(−1,−1, 1). (5.3.14)

The abelian holonomies in the + direction around the holes, labeled by 0 and ∞,
and around the puncture labeled by 1 are given in terms of the monodromy eigen-
values as

Hol0∇ab = diag(M0,1, M0,2, (M0,1M0,2)
−1), (5.3.15)

Hol∞∇ab = diag(M∞,1, M∞,2, (M∞,1M∞,2)
−1), (5.3.16)

Hol1∇ab = diag((M1)
−2, M1, M1). (5.3.17)

Note that, whereas the framing at each annulus fixes the ambiguity of which
eigenvalue corresponds to which sheet, for the puncture there is no such ambigu-
ity. The abelian holonomy around a puncture must have coefficient M−2

1 for the
distinguished sheet, and the coefficient M1 for the two other sheets is the same.

Figure 5.11: Rank 3 Fenchel-Nielsen molecule together with a choice of basepoints
(the red and purple dots) and a choice of paths (in light blue and red). The purple
basepoints should be identified. Even though we have only oriented and labeled
a few paths to avoid cluttering of the picture, all paths are oriented and labeled.
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Solving for all abelian flatness constraints one finds that the matrices D℘ are
uniquely determined up to abelian gauge transformations. In other words, there
is a unique equivariant GL(1)-connection ∇ab on the cover Σ.

It remains to check that there is a unique solution to the transformations Sw,
which are constrained by nonabelian ”branch point constraints” and ”joint con-
straints”. The former impose that ∇ has trivial monodromy around the branch
points, and the latter that∇ has trivial monodromy around the joints. For instance,
encircling the top branch point gives the constraint (see Figure 5.11)

D̃3 Sw1 D1 Sw2 D2 S−1
w2

= 1. (5.3.18)

Furthermore, we need to enforce the boundary conditions at the punctures. For
instance, going around the minimal puncture gives the constraint (see Figure 5.12)

Sw3,a D4 D5 S−1
w4

D6 D7 Sw3,b = Hol1∇ab, (5.3.19)

where Sw4 = Sw4,bSw4,a .

Figure 5.12: A close-up of Figure 5.11 near the minimal puncture labeled by 1. The
red short paths w3 and w4 are split in half, labeled by the letters a and b.

Solving all these constraints shows that the matrices Sw have a canonical solu-
tion, which (just like for K = 2 abelianizations) have an interpretation as parallel
transport along auxiliary paths.

The resulting expressions for the matrices Sw depend on the choice of framing
at the (maximal) holes through the choice of ordering the eigenvalues in the abelian
holonomy matrices Hol0∇ab and Hol∞∇ab. In contrast, the particular choice of
eigenlines (l1,α, l1,β; l1,γ) at the minimal puncture doesn’t play any role in comput-
ing the Sw.

Yet, the unique solution for the transformations Sw implies that the basis in
any region C\W , and in particular near the minimal puncture, is uniquely deter-
mined in terms of the choice of eigenlines at the boundary components. That is, the
abelianization of∇ canonically determines the choice of eigenlines (l1,α, l1,β; l1,γ) at
the minimal puncture. In particular, there is no framing ambiguity at the minimal
puncture after all.
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Note that this is consistent with the interpretation of the framing data in terms
of the S matrices. Indeed, whereas a change in framing at an annulus Al corre-
sponds to a permutation of the mass parameters Ml,i, the permutation group of
mass parameters at the minimal puncture is trivial. Generalizing this argument
to any regular puncture, we expect that the framing ambiguity at a regular punc-
ture with Young diagram Y is given by the group Sn1 × . . .× Snk , where n1, . . . , nk

counts columns of Y with the same height and Sn is the permutation group with n
elements.

5.3.3 Gluing

Fix a length-twist type networkW built out of two molecules. (The same argu-
ment can be extended to more molecules.) Say that ∇ is aW-framed flat connec-
tion on C and suppose that ∇ admits aW-abelianization.

Choose a pants cycle α relative to W and fix a marked point zα on α. The
monodromy∇ along α is diagonal in the “abelian” gauge. Cut the surface C along
α into two pair of pants C1 and C2. Say ∇1 is the restriction of ∇ to C1, and ∇2 the
restriction to C2. ∇1 and∇2 are both flat SLK-connections with trivialization at the
marked point zα.

TheW-abelianization of ∇1 (as well as ∇2) is almost the same as described in
the previous subsection. In particular, we still find the same unique solution to
the S matrices Sw. The only difference that we have to introduce an additional
path pα,1 connecting the basepoint z2 with zα. The parallel transport matrix Dα1

along this path is diagonal and determined by ∇1. This uniquely fixes the W-
abelianization on C1 (and similarly on C2).

If we glue back together the three-holed spheres C1 and C2, we can glue the two
W-abelianizations on C1 and C2 to obtain a uniqueW-abelianization of ∇. Since
we need to divide out by (diagonal) gauge transformations at the marked point zα,
the resulting equivariant GL1 connection ∇ab on C is characterized by its parallel
transport along the lifts of the path pα,1 ◦ p−1

α,2 to Σ.
We conclude that theW-framed connection∇ admits a uniqueW-abelianization

and that the corresponding ∇ab admits a uniqueW-nonabelianization. Moreover,
as before, different W-abelianizations of ∇ (without the W-framing) correspond
to differentW-framings.
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5.4 Monodromy representations in higher length-twist
coordinates

In the previous section we have explicitly constructed W-abelianizations as
well asW-nonabelianizations. With the resulting description of ∇ in terms of the
parallel transport matrices D and transformations Sw it is a straightforward matter
to write down the monodromy representation for ∇ in terms of the spectral coor-
dinates Xγ. In this section we summarize these monodromy representations in a
few examples.

Recall that any length-twist type network carries a resolution, which can ei-
ther be American or British. The spectral coordinates Xγ corresponding to either
resolution are generalized Fenchel-Nielsen length-twist coordinates. The spectral
length coordinates are the same in either resolution, while the spectral twist coor-
dinates differ (corresponding to the ambiguity in the Fenchel-Nielsen twist coor-
dinates).

In this section we will see that the NRS Darboux coordinates (i.e. the standard
complex Fenchel-Nielsen length-twist coordinates) are only obtained by averaging
over the two resolutions. More precisely, we define the average higher length-twist
coordinates as7

Li = X+
Ai

= X−Ai
(5.4.1)

Ti =
√
X+

Bi
X−Bi

, (5.4.2)

where Ai and Bi constitute a choice of A and B-cycles on the cover Σ, as defined in
§4.2.6, and + and − refer to the American and the British resolution, respectively.
Indeed, we find that the average length and twist agree with the standard length
and twist of §5.2.2.

The only left-over ambiguity in the spectral coordinates is an ambiguity in
defining the B-cycles on the cover Σ and a choice of (generalized) Fenchel-Nielsen
length-twist network. Resultingly, we find that the higher length-twist coordinates
are determined up to a multiplication by a simple monomial in the (exponentiated)
mass parameters.

7We thank Andrew Neitzke for this suggestion.
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5.4.1 Strategy

Let us spell out our strategy for computing the spectral coordinates of the
length-twist network W on the four-holed sphere C illustrated on the left in Fig-
ure 5.13.

First we cut the four-holed sphere C into two three-holed spheres C1 and C2

along the pants cycle α. Say that C1 is the upper and C2 the lower three-holed
sphere. Any flat SL2-connection ∇ restricts to flat connections ∇1 on C1 and ∇2

on C2 with fixed trivialization at a marked point zα at the boundary. The W-
abelianization of ∇1 is outlined in §5.3.1. The W-abelianization of ∇2 is similar,
but with opposite wall labels.

Then we can construct a monodromy representation for∇1 with base point zw2

from the matrices

M0 = Sw2 D̃1D2, (5.4.3)

M1 = D5D̃4S−1
w2

(5.4.4)

Mα = diag(M−1
∞ , M∞) (5.4.5)

with

Mα ·M1 ·M0 = 1. (5.4.6)

Recall that the matrices D℘ encode the parallel transport coefficients along the
paths ℘ illustrated in Figure 5.9.

Applying the same recipe toW2 yields a monodromy representation of ∇2 on
C2, generated by the three matrices M0′ , M1′ and Mα′ with the constraint Mα′ ·M1′ ·
M0′ = 1. We have that

Mα′ = diag(M∞, M−1
∞ ). (5.4.7)

Now glue the three-holed spheres C1 and C2 along α together again, while in-
troducing the matrix

P = diag(p, p−1), (5.4.8)

describing the parallel transport of ∇ along the annulus A (from basepoint w′2 to
basepoint w2). Then we can construct a monodromy representation for∇ in terms
of the matrices M0, M1, Mα, M0′ , M1′ , Mα′ and P. For instance,

Mβ = M1 · P ·M1′ · P−1. (5.4.9)
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Since Σ is a torus, the monodromy representation depends on two spectral vari-
ables: the abelian monodromy along an A-cycle on Σ, which can be expressed in
terms of M∞, and the abelian monodromy along a B-cycle on Σ, which can be ex-
pressed in terms of p.

In the next section we give explicit expressions for invariants constructed from
this monodromy representation.

5.4.2 K = 2, four-punctured sphere

Consider the K = 2 Fenchel-Nielsen network on the sphere P0,q,1,∞ with four
(maximal) punctures that is illustrated on the left in Figure 5.13 (where we have
replaced all punctures by holes). We choose counter-clockwise abelian holonomies
around the punctures and holes as

Mab
l = diag(Ml,

1
Ml

), (5.4.10)

and two spectral coordinates XA and XB as the abelian holonomies along the 1-
cycles A and B that are illustrated on the right in Figure 5.13. These 1-cycles form
a symplectic basis of H1(Σ, Z).

Figure 5.13: Left: Fenchel-Nielsen network on the four-holed sphere (in the British
resolution). Right: basis of 1-cycles A and B on the compactified cover Σ.

With the W-abelianization construction the monodromy representation of a
generic flat SL2 connection ∇ can be expressed in terms of the spectral parame-
ters XA, XB and the mass parameters M0, M, M1, M∞. Choose generators γ0, γ, γ1
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and γ∞ for the fundamental group of the four-punctured sphere as in Figure 5.7.
The corresponding monodromy matrices Mγ0 , Mγ, Mγ1 and Mγ∞ with

Mγ0 ·Mγ ·Mγ∞ ·Mγ1 = 1 (5.4.11)

whose conjugacy classes at the punctures are fixed such that

Tr Mγl = Ml +
1

Ml
. (5.4.12)

Here we focus on the monodromies Mα = Mγ0Mγ and Mβ = Mγ0Mγ∞ (al-
though other monodromies are just as easy to compute).

In the British resolution, with spectral coordinates

L = X+
A (5.4.13)

T+ = −X+
A X

+
B , (5.4.14)

we find that

Tr Mα = L +
1
L

(5.4.15)

Tr Mβ = N T+ + N◦ +
1

T+
, (5.4.16)

with

N(L) =
( f 2

L + f 2
0 + f 2 − fL f0 f − 4)( f 2

L + f 2
1 + f 2

∞ − fL f1 f∞ − 4)
(L− 1

L )
4

(5.4.17)

N◦(L) =
fL( f0 f1 + f f∞)− 2( f f1 + f0 f∞)

(L− 1
L )

2
, (5.4.18)

and where fL = L + 1
L and fl = Ml +

1
Ml

.
On the other hand, in the American resolution, with spectral coordinates

L = X−A (5.4.19)

T− = −X−A X
−
B , (5.4.20)

we find that

Tr Mα = L +
1
L

(5.4.21)

Tr Mβ = T− + N◦ +
N

T−
. (5.4.22)
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Hence, in terms of the average spectral coordinates

L = XA (5.4.23)

T = XA

√
X+

B X
−
B , (5.4.24)

we have that

Tr Mα = L +
1
L

, (5.4.25)

Tr Mβ =
√

N(L)
(

T +
1
T

)
+ N◦(L), (5.4.26)

Later, it will be useful that N can be rewritten as

N(L) =
∏i,j∈{± 1

2}

(
L

1
2 Mi

0Mj − L−
1
2 M−i

0 M−j
) (

L
1
2 Mi

1Mj
∞ − L−

1
2 M−i

1 M−j
∞

)
(L− 1

L )
4

.

(5.4.27)

Note that the monodromy invariants expressed in terms of the average length-
twist coordinates agree with those in §5.2.2. This is our first new result. That is, the
average length-twist coordinates L and T are the standard exponentiated complex
Fenchel-Nielsen length-twist coordinates (which are equal to the NRS Darboux
coordinates α and β), removing the ambiguity (up to constants arising from the
choice of network and cycles, monomials in the Ml,j) otherwise present in the twist
coordinate.
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5.4.3 K = 3, sphere with two minimal and two maximal punctures

Figure 5.14: Fenchel-Nielsen network on an open region on the sphere P1
0,1,q,∞

with two minimal and two maximal punctures (in the American resolution). The
complete network on C is found by identifying the endpoints of all vertical double
walls.

Next, consider the K = 3 Fenchel-Nielsen network on the sphere P0q1∞ with
two minimal and two maximal punctures that is illustrated in Figure 5.14. We
choose counterclockwise abelian holonomies around the punctures and holes as

Mab
0 = diag(M0,1, M0,2,

1
M0,1M0,2

) (5.4.28)

Mab = diag(
1

M2 , M, M) (5.4.29)

Mab
1 = diag(

1
M2

1
, M1, M1) (5.4.30)

Mab
∞ = diag(M∞,1, M∞,2,

1
M∞,1M∞,2

). (5.4.31)

We choose four spectral coordinatesXA1 ,XA2 ,XB1 ,XB2 as the abelian holonomies
along the 1-cycles A1, A2, B1, B2, respectively, that are illustrated in Figure 5.15.
These 1-cycles form a basis of 1-cycles on the compactified cover Σ.
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Figure 5.15: Illustrated in green and red are four 1-cycles A1, A2, B1, B2 which form
a basis of 1-cycles on the compactified cover Σ.

Nonabelianization with respect to the spectral network in Figure 5.14, in ei-
ther the American or British resolution, yields a family of SL3 flat connections,
depending on the spectral parameters XA1 , XA2 , XB1 , XB2 and the mass parame-
ters M0,1, M0,2, M, M1, M∞,1 and M∞,2. Their monodromy representations can be
expressed in terms of Mγ0 , Mγ, Mγ1 and Mγ∞ with

Mγ0 ·Mγ ·Mγ∞ ·Mγ1 = 1 (5.4.32)

whose conjugacy classes at the punctures are fixed such that

Tr Mγ0 = M0,1 + M0,2 +
1

M0,1M0,2
(5.4.33)

Tr Mγ =
1

M2 + 2M (5.4.34)

Tr Mγ1 =
1

M2
1
+ 2M1 (5.4.35)

Tr Mγ∞ = M∞,1 + M∞,2 +
1

M∞,1M∞,2
. (5.4.36)

Here we focus on the monodromies Mα = Mγ0 Mγ and Mβ = Mγ0 Mγ∞ (al-
though other monodromies are just as easy to compute). In terms of the average
generalized length and twist coordinates

L1 = XA1 T1 =
√

M0,2M∞,2

√
X+

B1
X−B1

(5.4.37)

L2 = XA2 T2 =
√

M0,2M∞,2
XA1

XA2

√
X+

B2
X−B2

(5.4.38)
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we find

Tr Mα = L1 + L2 + L3, (5.4.39)

Tr M−1
α =

1
L1

+
1
L2

+
1
L3

, (5.4.40)

Tr Mβ = N◦ + N(L1, L3)T1 + N(L2, L3)T2 + N(L1, L2)
T1

T2
(5.4.41)

+ N(L2, L1)
T2

T1
+

N(L3, L2)

T2
+

N(L3, L1)

T1
,

Tr M−1
β = N◦ + N(L1, L3)T1 + N(L2, L3)T2 + N(L1, L2)

T1

T2
(5.4.42)

+ N(L2, L1)
T2

T1
+

N(L3, L2)

T2
+

N(L3, L1)

T1
.

where we introduced L3 = 1/(L1L2). Furthermore,

N(Lk, Ll) =
1√

MM1

N(Lk)N(Ll)

N?(Lk, Ll)
(5.4.43)

N(Lk, Ll) =
√

MM1
N(Lk)N(Ll)

N?(Lk, Ll)
(5.4.44)

are symmetric in Lk and Ll, whose numerators are defined by

N(Lk) = M−
3
4 M−

3
4

1

√
(Lk MM0,1 − 1)(Lk MM0,2 − 1)

(
Lk M

M0,1M0,2
− 1
)

×

√(
M1M∞,1

Lk
− 1
)(

M1M∞,2

Lk
− 1
)(

M1

Lk M∞,1M∞,2
− 1
)

(5.4.45)

and whose denominators are defined as

N?(Lk, Ll) = L−
5
2

k L−
5
2

l (Lk − Ll)
2(1− L2

k Ll)(1− LkL2
l ). (5.4.46)

Finally, we write the Ti-independent term (for Tr Mβ — the other is similar) as

N◦ =
(N◦,1 + N◦,2 + N◦,3)

MM1M0,1M0,2M∞,1M∞,2
(5.4.47)

The formulas for the three terms are displayed on the following page.
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Chapter 6

Twisted superpotentials from opers

This chapter is based on the joint work [8] with L. Hollands, arXiv:1710.04438.

In this chapter we study our main physical application of the higher length-
twist coordinates developed in the previous chapter. Given the data of a class
S theory we utilize these coordinates, following and generalizing a conjecture of
Nekrasov-Rosly-Shatashvili, to compute the effective twisted superpotentials as-
sociated to the class S theory by examining how the Lagrangian subvariety of op-
ers looks in them. These superpotentials can be interpreted as a two-dimensional
shadow of the generating series for equivariant volumes of the instanton moduli
spaces in four dimensions.

6.1 Introduction and summary

Let (g, C,D) be a tuple of class S data — a complex (semi)simple Lie algebra
g and a punctured Riemann surface C with defects D. We can obtain a four-
dimensional N = 2 quantum field theory T from this data via partially twisted
compactification of the six-dimensional (2, 0) theory of type g on C — this pro-
duces a theory of class S . Throughout, we will assume g = AK−1.

The low energy dynamics of T is described in terms of the Seiberg-Witten pre-
potentialF0(a; m, q), a holomorphic function of the Coulomb moduli a = (a1, . . . , aK−1),
the mass parameters m = (m1, . . . , mn) and the UV gauge couplings q = (q1, . . . , q3g−3+n).

As we reviewed in §2.1.2, the prepotential F0(a; m, q) is in general related to a
classical algebraically integrable system [62]. It may be interpreted as a generating
function of a Lagrangian submanifold L0 relating the Coulomb parameters a to
the dual Coulomb parameters aD = ∂aF0. For theories of class S this integrable
system is a Hitchin system associated to C [1, 10, 63].
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Consider T as usual with spacetime

R4 = R2
1,2 ⊕R2

3,4 (6.1.1)

and with the Ω-deformation with complex parameters ε1 and ε2, corresponding to
the two isometries rotating the planes R2

1,2 and R2
3,4, respectively. The low energy

dynamics of the resulting theory Tε1,ε2 is described in terms of the ε1, ε2-deformed
prepotential F (a; m, q, ε1, ε2). Then ε1ε2F (a; m, q, ε1, ε2) is analytic in ε1, ε2 near
zero and becomes the prepotential F0(a; m, q) in the limit ε1, ε2 → 0 [5, 6, 14]. That
is,

F (a; m, q, ε1, ε2) =
1

ε1ε2
F0(a; m, q) + . . . , (6.1.2)

with . . . denoting terms regular in ε1 and ε2.

6.1.1 Effective twisted superpotential

Recall the cigar theory of §2.4.2, where instead T is considered on D × R2,
where D is a cigar. We only turn on the Ω-deformation with parameter ε1 = ε cor-
responding to the rotation of the cigar, corresponding to the Nekrasov-Shatashvili
limit. The resulting theory Tε turns out to preserve a two-dimensional N = (2, 2)
super-Poincare invariance.

In [18] it is proposed that, at low energy, Tε is described by a supersymmetric
sigma model, whose fields in two dimensions are abelian gauge multiplets coupled
to an effective twisted superpotential W̃eff(a; m, q, ε) for the twisted chiral fields
in the abelian gauge multiplets. This effective twisted superpotential should be
obtained from the four-dimensional partition function as

W̃eff(a; m, q, ε) = lim
ε2→0

ε2 logZ(a; m, q, ε1 = ε, ε2), (6.1.3)

where we denote the complex vevs of the twisted chiral fields by a = (a1, . . . aK−1).
Recall that mathematically, this limit interpreted term by term in q is our definition
of W̃eff.

Since the (deformed) prepotential is given by

F (a; m, q, ε1, ε2) = logZ(a; m, q, ε1, ε2), (6.1.4)

we have that

W̃eff(a; m, q, ε) =
1
ε
F0(a; m, q) + . . . , (6.1.5)
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where . . . are terms regular in ε, and F0 is the usual Seiberg-Witten prepotential of
the undeformed theory.

Recall that the effective twisted superpotential W̃eff(a; m, q, ε) can be written

W̃eff(a; m, q, ε) = W̃eff
clas(a; m, ε) log q + W̃eff

1−loop(a; m, ε) + W̃eff
inst(a; m, ε). (6.1.6)

The first two terms — the “perturbative part” — consist of a classical contribution,
proportional to log q, and a 1-loop-term, which is independent of q. The instanton
part is a (formal) series in powers of q of the form

W̃eff
inst(a; m, q, ε) =

∞

∑
k=1

W̃eff
k (a; m, ε) qk. (6.1.7)

For theories T with a known Lagrangian description, these terms have been com-
puted explicitly, and the effective twisted superpotential W̃eff(a; m, q, ε) has a known
expression.

Note that for the theories we are interested in, which are superconformal, the
function W̃eff(a; m, q, ε) can simply be recovered from W̃eff(a; m, q, 1) by scaling the
Coulomb and mass parameters with ε−#, where # is their mass dimension. In the
following we often leave out ε from the notation, knowing that we can simply
reintroduce it by scaling the Coulomb and mass parameters.

Example. Let Tε be the four-dimensional N = 2 superconformal “SU(2), N f = 4”
in the partial Ω-background with parameter ε.

The classical contribution to its effective twisted superpotential is simply

W̃eff
clas(a; m, ε) =

a2

4ε
. (6.1.8)

The 1-loop contribution exp W̃eff
1−loop may be computed as a product of determi-

nants of differential operators. There is a certain freedom (though there are a num-
ber of natural choices) in its definition due to the regularization of divergences,
which implies that it is only determined up to a phase [64, 65]. For a distinguished
choice of phase exp W̃eff

1−loop may be identified with the square-root of the prod-
uct of two Liouville three-point functions in the Nekrasov-Shatashvili (or c → ∞)
limit. In this “Liouville scheme” the 1-loop contribution is of the form

W̃eff
1−loop(a, m; ε) = W̃eff

vector(a; ε) + W̃eff
hyper(a; m, ε) (6.1.9)
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with

W̃eff
vector(a; ε) = −1

2
Υ(−a)− 1

2
Υ(a) (6.1.10)

W̃eff
hyper(a; m, ε) =

1
2

4

∑
l=1

Υ
(

ε + a + ml
2

)
+

1
2

4

∑
l=1

Υ
(

ε− a + ml
2

)
, (6.1.11)

where

Υ (x) =
∫ x

1
2

du log
Γ(u)

Γ(1− u)
. (6.1.12)

The instanton contributions may be written as a sum over Young tableaux [5, 6].
In particular, the 1-instanton contribution is given by

W̃eff
1 (a; m, ε) =

4

∏
l=1

(a + ml + ε)

16a(a + ε)
+

4

∏
l=1

(a−ml − ε)

16a(a− ε)
. (6.1.13)

The effective twisted superpotential W̃eff(a; m, q, ε) turns out not only to char-
acterize the low energy physics of the theory Tε, but is part of a larger correpon-
dence still under investigation. According to the philosophy of [18], it may also be
identified with the Yang-Yang function governing the spectrum of a quantum inte-
grable system. This quantum integrable system is the quantization of the classical
algebraic integrable system describing the low energy effective theory of the four-
dimensional N = 2 theory T , with the deformation parameter ε playing the role
of the complexified Planck constant. For theories of class S it is thus a quantization
of a Hitchin system associated to C.

The corresponding moduli space of flat connectionsMdR(C, SLK) is holomor-
phic symplectic, and furthermore supports a distinguished complex Lagrangian
subspace L, the space of SLK-opers on C [43]. The definition and some properties
were given in 3.5, though we will be a little more concrete in this chapter since we
will be interested in making some explicit computations. Recall that any SLK oper
can locally be written as a Kth order linear differential operator

D = ∂K
z + t2(z) ∂K−2

z + . . . + tK(z), (6.1.14)

whose subleading ((K − 1)th derivative) term vanishes. More precisely, we con-
sider families of SLK-valued ε-opers whose coefficients are dependent on the com-
plex parameter ε. These may be obtained in the conformal limit R, ζ → 0, while
R/ζ = ε is kept fixed, of a certain family of flat connections coming from the non-
abelian Hodge correspondence [66, 67].
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Let us choose a Darboux coordinate system onMdR(C, SLK), say xi, yi with

{xi, yj} = δij. (6.1.15)

Since the opers on C define a complex Lagrangian submanifold ofMdR(C, SLK),
we can guarantee they posses a generating function in this coordinate chart. This
function Woper is defined through the equation

yi =
∂Woper(x, ε)

∂xi
. (6.1.16)

and determined uniquely up to a constant in x.

6.1.2 Summary of results

We refine the methods to verify the NRS correspondence for SU(2) gauge the-
ories and find the ingredients to extend the NRS correspondence to any supercon-
formal theory of class S . That is, using our generalization of the NRS Darboux
coordinates, we describe the relevant spaces of opers, and compute the generat-
ing functions of these spaces of opers in some prototypical examples. Our main
two examples are the superconformal SU(2) theory with four hypermultiplets and
the superconformal SU(3) theory with six hypermultiplets. In these cases we cal-
culate the generating function Woper(a; m, q) as a perturbation in q and verify its
agreement with the known superpotential W̃eff(a; m, q).

We find that the opers associated to a theory of class S with regular defects are
described as certain Fuchsian differential operators with fixed semisimple conju-
gacy classes (with a certain “mass shift”) at the punctures. Whereas for a surface
C with only maximal punctures there are no further constraints, the space of opers
on a surface C with other types of regular punctures is obtained by restricting the
local exponents at the punctures, while keeping the conjugacy classes semisimple.
This is analogous to the way that the space of differentials for a surface C with
arbitrary regular punctures may be obtained from the space of differentials for the
surface C with only maximal punctures, although the condition is different.

In particular, this implies that the locus of opers for the superconformal SU(2)
theory coupled to four hypermultiplets is described by the family of Heun’s op-
ers, given by the differential equation (6.3.31), whereas the locus of opers for the
superconformal SU(3) theory coupled to six hypermultiplets is described by the
family of what we call “generalized Heun’s opers”, given by the differential equa-
tion (6.3.80). These families reduce in the limit q → 0 to the hypergeometric and
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generalized hypergeometric oper, respectively, which we will see gives us a handle
on explicitly describing their monodromy.

We describe how to calculate the monodromy representation explicitly for the
family of (generalized) Heun’s opers as a perturbation in the parameter q, and
compute the result up to first order corrections in q. This is a generalization of
the leading order computations of [68, 69], and a nontrivial extension of the work
of [70] which computes the monodromy matrix around the punctures at z = 0
and z = q in a perturbation series in q. The computation may be in principle
generalized to any family of opers that depends on a small parameter.

We then calculate the generating function Woper(`; m, q) in the (generalized)
NRS Darboux coordinates by comparing the monodromy representation for the
opers to the monodromy representation in terms of the spectral coordinates. For
SU(2), N f = 4 theory we find

Woper(a; m, q) = Woper
clas (a; m) log q + Woper

1−loop(a; m) + Woper
1 (a; m) q +O(q2),

(6.1.17)

where the classical and the 1-loop contribution are computed in equation (6.5.16),
and the 1-instanton contribution in equation (6.5.25). For the SU(3), N f = 6 theory
we find a similar expansion, where the classical and the 1-loop contribution are
computed in equation (6.5.46).

We find that Woper
1−loop(a; m) in the SU(2) example equals the field theory expres-

sion (6.1.9). This computation is similar to and in agreement with the computation
in [65]. Furthermore, we find that the 1-instanton correction Woper

1 (a; m) is equal
to (6.1.9), the four-dimensional 1-instanton correction in the Nekrasov-Shatashvili
limit ε2 → 0.

The interpretation of the generating function Woper(a, m, q) in the SU(3) ex-
ample is similar. In particular, exp Woper

1−loop(a; m) computes the square-root of the
product of two Toda three-point functions with one semi-degenerate primary field
in the Nekrasov-Shatashvili limit.

We conclude that our computation of the generating function of opers Woper(a; m, q),
expressed in the generalized Nekrasov-Rosly-Shatashvili Darboux coordinates, in-
deed agrees with the known effective twisted superpotential W̃eff(a; m, q) with the
above “Liouville scheme” convention. Particularly interesting is that, while our
computation of the generating function Woper(a; m, q) is a perturbation series in q,
it is exact in ε.
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Given an SL2 ε-oper ∇oper(ε) there is another method to compute its mon-
odromy representation, called the “exact WKB method” (see [71] for a good intro-
duction). In the last section of the chapter we compare abelianization to the exact
WKB method.

We argue that the monodromy representation for the oper ∇oper(ε) computed
using the abelianization method is equal to its monodromy representation com-
puted using the exact WKB method, when the spectral network is chosen to co-
incide with the Stokes graph, and with an appropriate choice of framing data. In
this correspondence the so-called Voros symbols are identified with the spectral
coordinates.

As a consequence it follows that the spectral coordinates Xγ, when evaluated
on the ε-oper∇oper(ε), have good WKB asymptotics in the limit ε→ 0. In this limit
Xγ is computed by what is sometimes called the quantum period Πγ(ε) associated
to ∇oper(ε). The asymptotic expansion in ε of the generating function Woper(ε)

may thus be simply found from the equation

log ΠB =
∂Woper(ΠA, ε)

∂ log ΠA
. (6.1.18)

This relates the Nekrasov-Rosly-Shatashvili correspondence to other approaches
for computing the effective twisted superpotential [72].

We emphasize though that while the quantum periods are not particularly sen-
sitive to the choice of Stokes graph, the exact resummed expressions are. In [73]
it was found that there are “non-perturbative corrections” to the superpotential
computed using quantum periods, but these corrections are ambiguous depend-
ing on the resummation process. In particular, the exact expression for the twisted
effective superpotential W̃eff(a, ε) can only be found by applying the exact WKB
method to the oper ∇oper(ε) where the phase of ε (and of other parameters) is
chosen such that the corresponding Stokes graph is of Fenchel-Nielsen type. The
results (6.1.17) then show that there are no non-perturbative corrections to W̃eff(ε),
in agreement with [6].

This chapter is organized as follows.
We start in §6.2 by briefly recalling the geometric setup of §2.2.3 and writing

down explicitly some families of differentials for various theories. In particular, we
introduce our two main examples, the superconformal SU(2) theory with N f = 4
and the superconformal SU(3) theory with N f = 6.
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Section 6.3 starts off with some explicit treatment of opers, in contrast with
the more abstract treatment in §3.5, after which we introduce the relevant fam-
ilies of opers to our main examples. This is the family of Heun’s opers for the
superconformal SU(2) theory and the family of generalized Heun’s opers for the
superconformal SU(3) theory. We then define the moduli space of flat connections
MC

dR(C, SLK) with fixed conjugacy classes C at the punctures associated to the the-
ory of class S. In particular, we specify these conjugacy classes for the different
kinds of punctures relevant to this chapter.

In §6.4 we detail the main calculation of the chapter, computing the monodromies
of these opers in a perturbation series in the complex structure parameter q. While
the computation of the instanton correction is based on the formal expansion of
[68], perturbation theory for the lowest-order asymptotics can be justified by the
results described in Appendix A (generalizing [69]), so that we have the lowest-
order piece of a convergent expansion in q.

The final computations of the generating function of opers are contained in
§6.5. Indeed, we find that in our two examples the generating function agrees
with the effective twisted superpotential in an expansion in the parameter q, at the
lowest order asymptotics for both SU(2) and SU(3) examples, and furthermore to
1-instanton level for SU(2).

In §6.6 we comment on the relation of the abelianization method with the exact
WKB method and relate the NRS conjecture to other proposals for computing the
effective twisted superpotential.

6.2 Class S geometry

Let us quickly review the geometry and notations described in §2.2.3. Fix a
positive integer K and a tuple of class S data (AK−1, C,D). To each such choice
corresponds a four-dimensional N = 2 superconformal field theory T = TK[C,D]
of type AK−1 with regular defects D.

Each puncture has an associated flavor symmetry attached to it. The flavour
symmetry associated to a puncture with defect labelled by the Young diagram Y is

S[U(n1)× · · · ×U(nk)], (6.2.1)

where n1, . . . , nk count columns of Y with the same height.
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The Coulomb branch B = B(T) of the theory T is equal to the corresponding
Hitchin base, parametrized by tuples

(ϕ2, . . . , ϕK) ∈ B =
K⊕

i=2

H0(C, KC(D)⊗i) (6.2.2)

of k-differentials ϕk on C, with regular singularities of the appropriate pole struc-
ture at the punctures. Here D = ∑n

i=1 1 · zi denotes the divisor of punctures, and
the residues are fixed at each puncture as specified by the data D.

Thus, B is an affine space for the space of differentials with strictly lower order
poles (possibly with restrictions as described in §2.2.3). Concretely, ϕk is given
locally by

ϕk(z) = uk(z)dz⊗k (6.2.3)

where the function uk(z) has at most a pole of order k at each puncture.
To each tuple (ϕ2, . . . , ϕK) we can associate the corresponding spectral curve

Σ ⊂ T∗C, defined by the equation

λK + λK−2ϕ2 + . . . + ϕK = 0, (6.2.4)

where λ is the tautological 1-form on T∗C, locally given by λ = wdz.
The spectral curve Σ is the Seiberg-Witten curve, and the restriction of λ to Σ is

the Seiberg-Witten differential. The K residues of λ at each puncture zl are fixed to
be the mass parameters ml,j.

In §2.2.3, we described some building blocks of class S theories, particularly for
theories we will be interested in what follows. Our main examples in this chapter
are the theories TK[C,D] where C is the four-punctured sphere P1

0,q,1,∞, with q ∈
C \ {0, 1}, and the rank is either K = 2 or K = 3. Let us recall these examples, and
parameterize explicitly the points in their Coulomb branches.

6.2.1 K = 2

Recall when K = 2 there is only one possible regular defect, labeled by the
Young diagram consisting of a single row with two boxes, and the mass parameters
are generic, with ml,2 = −ml,1. In the corresponding four-dimensional quantum
field theory this defect corresponds to an SU(2) flavour symmetry group. Since
there are no other possible diagrams, there is a single building block T2[P

1
0,1,∞].
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Example. The theory T2[P
1
0,1,∞], describing a half-hypermultiplet in the trifunda-

mental representation of SU(2)0 × SU(2)1 × SU(2)∞. Its Coulomb branch B is a
single point corresponding to the quadratic differential

ϕ2(z) = −
m2

∞z2 − (m2
∞ + m2

0 −m2
1)z + m2

0
4z2(z− 1)2 dz2, (6.2.5)

where the values of the mass parameters m0, m1 and m∞ are fixed from the outset.

Recall that gauge fields are introduced by gluing three-punctured spheres, and
the corresponding complex structure parameters q are identified with the gauge
couplings e2πiτ. The limit q → 0 corresponds to the weakly coupled description
of the gauge theory at a cusp of the moduli space. For every pants cycle α there
is a corresponding Coulomb parameter a0, which is defined as the period integral
a0 =

∮
A λ along a lift A of the pants cycle.

Figure 6.1: The UV curve for the theory T2[P
1
0,q,1,∞].

Example. The theory T2[P
1
0,q,1,∞] corresponds to the superconformal SU(2) gauge

theory coupled to four hypermultiplets, see Figure 6.1. Its Coulomb branch B is the
space of quadratic differentials with at most second order poles and fixed residues
— it is 1-dimensional and parametrized by the family of quadratic differentials

ϕ2(z) = −
(

m2
0

4z2 +
m2

4(z− q)2 +
m2

1
4(z− 1)2 (6.2.6)

+
m2

0 + m2 + m2
1 −m2

∞

4z(z− 1)
− u

z(z− q)(z− 1)

)
(dz)2,

where the parameter u is free and the parameters m0, m, m1 and m∞ are fixed from
the outset.

The corresponding Seiberg-Witten curve Σ is (after compactifying) a genus one
covering of P1

0,q,1,∞ with four simple branch points. Let A be the lift of the 1-cycle
α going counterclockwise around the punctures at z = 0 and z = q; then the
Coulomb parameter a0 = a0(u) is defined as the period integral a0 =

∮
A λ.
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Figure 6.2: Left: the UV curve for the free bifundamental hypermultiplet T3[P
1
0,1,∞].

Right: the UV curve for the non-Lagrangian E6 theory T3[P
1
0,1,∞].

6.2.2 K = 3

Recall that for K = 3 there are two types of punctures, of “maximal” and
“minimal”. For a maximal puncture zl the mass parameters ml,i are generic with
ml,1 6= ml,2, whereas for a minimal puncture ml,1 = ml,2.

As described in §2.2.3, a maximal puncture at z = zl turns into a minimal punc-
ture if it satisfies two requirements:

(i) Two of the masses at the puncture should coincide:

ml,1 = ml,2 = ml. (6.2.7)

(ii) The discriminant of

λ3 + (z− zl)
2ϕ2 λ + (z− zl)

3ϕ3 (6.2.8)

should vanish up to order (z− zl)
2.

We can use this condition to write down explicitly the differentials in the Coulomb
branch in examples.

Example. The theory T3[P
1
0,1,∞] with two maximal and one minimal puncture, see

on the left of Figure 6.2, corresponds to a free hypermultiplet in the bifundamental
representation of SU(3)0 × SU(3)∞. We find its Coulomb vacua by applying the
constraints (6.2.7) and (6.2.8) to the family of differentials for T3[P

1
0,1,∞] described

in equation (2.2.14) and (2.2.15) at z = 1. Concretely, the latter constraint implies
that

u =
(m1

2

)3
− d0 − 2d∞ +

m1

2
(c0 − c∞). (6.2.9)

115



where di, ci are symmetric polynomials in the mass parameters given in §2.2.3.
Thus the Coulomb branch is a single point ϕbif = (ϕbif

2 , ϕbif
3 ).

The resulting Seiberg-Witten curve Σ determines a 3-fold ramified covering of
the UV curve P1

0,1,∞ with four simple branch-points. It is therefore a punctured
genus zero surface.

This is the K = 3 building block in the case that we will primarily be interested
in (the E6 theory is another possible choice, but we do not pursue it here). Once
again, gauge fields are introduced by gluing three-punctured spheres at (maximal)
punctures, so that this covers all cases in which we have n punctures, with n− 2 of
minimal type. The gauge coupling associated to the ith pants curve corresponds
to the complex structure parameter qi, where the gluing is performed according to
the plumbing construction. The fundamental example we will be interested in is:

Example. The theory T3[P
1
0,q,1,∞] is the superconformal SU(3) gauge theory cou-

pled to N f = 6 hypermultiplets. It may be obtained by gluing two three-punctured
spheres with two maximal and one minimal puncture. Its Coulomb branch B is
parametrized by two parameters u1 and u2.

The explicit form of the differentials ϕ2 and ϕ3 can be obtained as before. First
we write down the most general quadratic and cubic differential with regular poles
at the punctures. Eight of the twelve parameters are fixed by writing the residues at
each punctures in terms of the mass parameters. Two more parameters are fixed by
additional requirements at both minimal punctures, analogous to equation (2.2.12)
and (2.2.18). The resulting differentials can be written in the form

ϕ2 =
c0

z2 +
c

(z− q)2 +
c1

(z− 1)2 +
c∞ − c0 − c− c1

z(z− 1)
+

u1

z(z− q)(z− 1)
(6.2.10)

ϕ3 =
d0

z3 +
d

(z− q)3 +
d1

(z− 1)3 +
d∞ − d0 − d− d1

z(z− q)(z− 1)
+ (6.2.11)

+
(1− q)(4c0 − 3m2 − 3m2

1 − 4c∞)m1

8z(z− 1)2(z− q)
+

u2

z2(z− q)(z− 1)
(6.2.12)

− u1

z(z− 1)2(z− q)2

(m1

2
(z− q) +

m
2
(z− 1)

)
(6.2.13)

where c, d are the symmetric polynomials in the mass parameters as in §2.2.3.
The resulting Seiberg-Witten curve Σ is a genus two (after compactifying) cov-

ering of P1
0,q,1,∞ with eight simple branch points. The two Coulomb parameters a1

0

and a2
0 are defined as the period integrals a1

0 =
∮

A(1) λ and a2
0 =

∮
A(2) λ along two

independent lifts of the pants cycle α to the Seiberg-Witten curve.
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6.3 Opers from slass S

The moduli space MC
dR(C, SLK) of flat SLK connections has a distinguished

complex Lagrangian submanifold

L ⊂MC
dR(C, SLK) (6.3.1)

of “SLK-opers”, known to physicists as the “brane of opers”. These objects were
first formalized in [42], and play an important role in the geometric Langlands pro-
gram [43, 74]. They also appeared in a conjecture of Gaiotto [66] as the “conformal
limit” of a certain canonical family of flat connections in the moduli space, which
was recently proved in [67].

An SLK oper is essentially a special kind of SLK flat connection, which can lo-
cally be written in the form of a (single, scalar) differential equation

D y(z) = y(K)(z) +
K

∑
i=2

tk(z)y(K−i)(z) = 0, (6.3.2)

where globally y(z) is not a function on C, but rather the local expression for a
(−K−1

2 )-differential. The latter ensures that the differential equation is globally
well-defined after specifying the transformation laws for the coefficients. So D is
really a differential operator between line bundles

D : K(1−K)/2
C → K(K+1)/2

C ⊗O(K · D), (6.3.3)

which in our SLK case must have vanishing subprincipal symbol (K − 1th order
term in the local form). This definition is equivalent to the one given in other parts
of thesis, and the most convenient for our purposes.

With the assumption we are acting on K(1−K)/2
C , imposing that the differen-

tial equation (6.3.2) stays invariant under holomorphic coordinate transformations
yields the transformation properties of the coefficients tk(z). As we spell out in
detail below,

12
K(K2 − 1)

t2 (6.3.4)

transforms as a projective connection, whereas there exist linear combinations wk

of tj (j ≤ K) and its derivatives, such that the wk transform as k-differentials. The
SLK flat connection is obtained from the oper equation (6.3.2) by writing it instead
as a linear rank K differential equation.
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We begin by characterizing the space of opers L associated to any type A the-
ory TK[C,D] of class S with regular defects. The fact that the defects are regular
suggests that we should take the associated opers to be Fuchsian (i.e. have regular
singularities at the punctures of C). Our recipe for obtaining L is similar to the
recipe for obtaining the space of differentials associated to TK[C,D], as explained
in §2.2.3. That is, we first describe the space of opers on C with only maximal punc-
tures, and then impose appropriate restrictions at the punctures to obtain the space
of opers on C with minimal punctures (or more generally, any regular punctures)
associated to TK[C,D].

An important point is to note that the conjugacy classes are not simply the
exponentiated mass parameters, but acquire a slight shift: the relevant space of
opers associated to the theory TK[C,D] sits insideMC

dR(C, SLK), where the Cl are
such that

Ml,i = e2πi(ml,i+
K−1

2 ). (6.3.5)

This corresponds to the most symmetric choice of local exponents for an SLK oper,
and is necessary to ensure the desired equality between the generating function
and the superpotential.1 We will sometimes call these the shifted masses

µl,i := ml,i +
K−1

2 ε, (6.3.6)

where we have reinserted ε. Let us stress, then:

Henceforth in this chapter, whenever MC
dR(C, SLK) is written, we are taking the Cl

at punctures to be Cl = [diag(e2πiµl,1 , . . . , e2πiµl,K)], having started with class S data
(AK−1, C,D) containing masses ml,i.

In particular, our characterization leads to a concrete description of the space of
opers on any three-punctured sphere with regular punctures. These spaces may be
seen as the building blocks for the space of opers. For instance, we find that opers
on the three-punctured sphere with two maximal and one minimal puncture are
characterized by the (generalized) hypergeometric equation. Furthermore, we find
that the space of SLK opers on the four-punctured surface P1

0,q,1,∞ are characterized
by the (generalized) Heun equation.

Although in the following we will only spell out the details for K = 2 and
K = 3, it should be straightforward how to generalize the discussion to find the

1A related mass shift has been observed in the context of the AGT correspondence, see for in-
stance [75].
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space of SLK opers associated to any building block, and more generally any theory
TK[C,D] of class S with regular punctures.

The locus of opers L may be interpreted as a quantization of the Coulomb mod-
uli space B (or equivelantly, the spectral curves sitting above)in the sense of asso-
ciating to each point a differential operator (see e.g. [76] for details). Indeed, the
internal Coulomb parameters u as well as external mass parameters m carry mass
dimensions. It is natural to introduce an additional parameter ε with mass dimen-
sion one such that all terms in the oper equation have the same mass dimension.
In the semi-classical limit ε → 0 the family of opers then limits to the family of
spectral curves over Coulomb moduli space B.

6.3.1 SL2 opers

An SL2 oper is locally described by a scalar differential equation of the form

Dy = y′′(z) + t2(z)y(z) = 0, (6.3.7)

where y(z) is a (−1
2)-differential on C. It is an instructive exercise to determine

the transformation properties of the coefficient t2(z) directly, so we will consider
what happens to the differential equation (6.3.7) under a holomorphic change of
coordinates.

Under the holomorphic coordinate change z 7→ z(w) the (−1
2)-differential y(z)

transforms into

ỹ(w) = y(z(w))

(
dz
dw

)− 1
2

. (6.3.8)

This implies that

ỹ′′(w) = (z′(w))
3
2

(
y′′(z(w))− 1

2
{w, z} y(z(w))

)
. (6.3.9)

where the brackets {·, ·} denote the Schwarzian derivative

{w, z} = w′′′(z)
w′(z)

− 3
2

(
w′′(z)
w′(z)

)2

= −{z, w}/z′(w)2 (6.3.10)

Under a holomorphic coordinate change z 7→ z(w) the differential equation (6.3.7)
thus transforms into

0 = ỹ′′(w) + t̃2(w) ỹ(w) (6.3.11)

= (z′(w))
3
2

(
y′′(z(w)) +

1
2
{w, z} y(z(w)) + (z′(w))−2 t̃2(w) y(z(w))

)
,
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where we have not specified yet how the coefficient t2(z) transforms.
Now, demanding the differential equation (6.3.7) be invariant under the holo-

morphic coordinate change z 7→ z(w), we find that

t̃2(w) = (z′(w))2
(

t2(z(w))− 1
2
{w, z}

)
(6.3.12)

= (z′(w))2 t2(z(w)) +
1
2
{z, w}

In other words, the coefficient t2 should transform as a so-called projective connec-
tion on C.

Observe that the transformation properties (6.3.12) of the coefficient t2 show
that the difference between any two SL2 opers is a quadratic differential on C. Thus
the space of SL2 opers L is an affine space modelled on the quadratic differentials.

SL2 flat connection

The differential equation

Dy = y′′(z) + t2(z)y(z) = 0, (6.3.13)

can be put in the form of an SL2 flat connection

∇operY = dY + AY =
dY(z)

dz
dz + Az dz Y(z) = 0 (6.3.14)

where

Y(z) =
(
−y′(z)

y(z)

)
and Az =

(
0 −t2(z)
1 0

)
. (6.3.15)

While under a change of variables z→ z(w) we have that

ỹ(w) = y(z(w))

(
dz
dw

)− 1
2

=: y(z(w))s(w), (6.3.16)

the section Y transforms as

Ỹ(w) =

(
s(w)−1 −s′(w)

0 s(w)

)
Y(z(w)) =: U−1(w)Y(z(w)), (6.3.17)

and hence obeys

dỸ + ÃỸ =
dỸ(w)

dw
dw + Ãw dw Ỹ(w) = 0, (6.3.18)
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with

Ã = U−1dU + U−1AU = Ãw dw. (6.3.19)

Since the new connection form is

Ãw =

(
0 − t2(z(w))

s(w)4 + s′′(w)
s(w)

1 0

)
=

(
0 −t̃2(w)
1 0

)
, (6.3.20)

we find that the SL2 oper D defined locally by equation (6.3.13) is equivalent to the
SL2 flat connection ∇oper defined locally by equation (6.3.14).

More invariantly, the transformation property (6.3.17) says that Y transforms as
a 1-jet, and says that we have converted the oper D into the flat connection ∇oper

on the rank 2 vector bundle E = J1(L) of 1-jets of sections of L = K−
1
2

C .

Fuchsian SL2 opers

The space L of SL2 opers on any surface C with regular punctures consists of
Fuchsian SL2 opers on C, which are locally defined by a Fuchsian differential equa-
tion of order 2. We require that the local exponents of these SL2 opers at each
puncture zl are given by2

1
2
± ml

2
, (6.3.21)

in terms of the mass parameters ml. This implies that the Fuchsian SL2 opers are
SL2 flat connections with a fixed semisimple conjugacy classes

Cl = diag
(
−e−πiml ,−eπiml

)
. (6.3.22)

at each puncture zl. For reference, recall that we fixed the residues of the differen-
tials

√
ϕ2 in B at each puncture zl to be ±ml

2 .

Example. Locus of opers for T2[P
1
0,1,∞].

Recall that for a fixed choice of residues±ml
2 , the three-punctured sphere P1

0,1,∞

admits the unique quadratic differential

ϕ2(z) = −
m2

0
4z2 −

m2
1

4(z− 1)2 −
m2

∞ −m2
0 −m2

1
4z(z− 1)

(6.3.23)

2Fuch’s theorem necessitates that the exponents of an SL2 oper add up to 1 at each puncture,
hence (6.3.21) is the most symmetric choice.

121



with at most second-order poles at all punctures. The corresponding SL2 oper is
given by

D y(z) = y′′(z) + t2(z)y(z) = 0, (6.3.24)

with

t2(z) =
δ0

z2 +
δ1

(z− 1)2 +
δ∞ − δ0 − δ1

z(z− 1)
, (6.3.25)

and

δl =
1−m2

l
4

. (6.3.26)

This is equivalent (after a simple and standard transformation) to the classical
Gauss’ hypergeometric differential equation. Note that the local exponents of the
SL2 oper (6.3.24) are indeed given by 1

2 ±
ml
2 , and that ε2 t2(z) reduces to ϕ2(z) in

the semi-classical limit ε→ 0 discussed in §6.3.3.

The hypergeometric oper (6.3.24) with vanishing masses ml = 0 corresponds
to a distinguished projective structure, namely the one induced by the Fuchsian
uniformization of P1

0,1,∞. Indeed, the three-punctured sphere P1
0,1,∞ is uniformized

by the modular lambda function

λ : H→ P1
0,1,∞ (6.3.27)

w 7→ z = λ(w),

invariant under the discrete group Γ(2) ⊂ PSL2(R). The uniformization oper Dunif

on the three-punctured sphere is thus represented by the differential operator

Dunif = ∂2
w = ∂2

z +
1
2
{w, z} = ∂2

z −
{z, w}
2z′(w)2 (6.3.28)

= ∂2
z +

1− z + z2

4z2(z− 1)2 = ∂2
z +

1
4z2 +

1
4(z− 1)2 −

1
4z(z− 1)

,

where in the first line we have used the transformation law for projective connec-
tions. Both its local exponents are equal to 1

2 .
Note that the hypergeometric oper (6.3.24) itself is of the form

Dunif + ϕ2. (6.3.29)
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Example. Locus of opers for T2[P
1
0,q,1,∞].

The four-punctured sphere P1
0,q,1,∞ admits the 1-dimensional space of quadratic

differentials

ϕ2(z) = −
m2

0
4z2 −

m2

4(z− q)2 −
m2

1
4(z− 1)2 −

m2
∞ −m2

0 −m2 −m2
1

4z(z− 1)
+

u
z(z− q)(z− 1)

(6.3.30)

with regular singularities at all punctures.
The corresponding 1-dimensional family of SL2 opers are defined by the differ-

ential equation

D y(z) = y′′(z) + t2(z)y(z) = 0, (6.3.31)

with

t2(z) =
δ0

z2 +
δ

(z− q)2 +
δ1

(z− 1)2 +
δ∞ − δ0 − δ− δ1

z(z− 1)
+

H
z(z− q)(z− 1)

, (6.3.32)

where H is a free complex parameter, the so-called accessory parameter, and

δl =
1−m2

l
4

. (6.3.33)

The differential equation (6.3.31) is known as Heun’s differential equation. It is the
most general Fuchsian equation of order 2 with four singularities.

As before we may write the Heun’s opers in the form

D = D0 + ϕ2 (6.3.34)

with respect to the base oper

D0 = ∂2
z +

1
4z2 +

1
4(z− q)2 +

1
4(z− 1)2 −

1
2z(z− 1)

+
const

z(z− q)(z− 1)
, (6.3.35)

but unlike before we are not forced to fix the arbitrary constant.

In the limit q→ 0 the four-punctured sphere P1
0,q,1,∞ can be thought of as degen-

erating into two three-punctured spheres. In the same limit, the family of Heun’s
opers degenerates into a pair of hypergeometric opers.

More precisely, if we define ` through

H = δ` − δ0 − δ +O(q), (6.3.36)

with δl = 1−`2

4 in the limit q → 0, the family of Heun’s opers (6.3.31) has two
interesting limits:
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1. In the limit q→ 0 the family reduces to the hypergeometric oper (6.3.24) with
parameters (`, m1, m∞).

2. If we first map z 7→ qt and then take the limit q → 0, the family reduces to
the hypergeometric oper (6.3.24) with parameters (m0, m, `).

The definition of ` through equation (6.3.36) will be justified in §6.4, where it will
be the eigenvalue of the monodromy around the pants curve enclosing 0 and q.

Using the AGT correspondence, the effective twisted superpotential for the su-
perconformal SU(2) theory can be found as a series expansion of the accessory pa-
rameter H in q, through a generalized Matone relation [77, 78, 79, 80]. This is how-
ever not the route that we take here. Instead, we aim to find the effective twisted
superpotential directly from the oper monodromies. (Our strategy might be useful
though for establishing similar generalized Matone relations beyond SU(2) theo-
ries.)

6.3.2 SL3 opers

An SL3 oper is locally described by a differential equation of the form

Dy = y′′′(z) + t2(z)y′(z) + t3(z)y(z) = 0, (6.3.37)

where y(z) is now the local expression for a section of K−1
C , i.e. a (−1)-differential

on C. Again, we work out the transformation properties of the coefficients t2(z)
and t3(z), so let us consider again what happens to the differential equation (6.3.37)
under a holomorphic change of coordinates.

Under a holomorphic coordinate change z 7→ z(w) the (−1)-differential y(z)
transforms as

ỹ(w) = y(z(w))

(
dz
dw

)−1

=: s(w) y(z(w)). (6.3.38)

This implies that

ỹ′(w) = y′(z(w)) + s′(w) y(z(w)). (6.3.39)

and

ỹ′′′(w) =
y′′′(z(w))

s(w)2 +

(
2s′′(w)

s(w)
− s′(w)2

s(w)2

)
y′(z(w)) + s′′′(w)y(z(w)). (6.3.40)
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Under the holomorphic coordinate change z 7→ z(w) the differential equa-
tion (6.3.37) thus transforms into

0 = ỹ′′′(w) + t̃2(w) ỹ′(w) + t̃3(w) ỹ(w) (6.3.41)

=
1

s(w)2

(
y′′′(z(w)) +

(
s(w)2 t̃2(w) + 2s(w)s′′(w)− s′(w)2

)
y′(z(w))+ (6.3.42)

+
(

s(w)3 t̃3(w) + s(w)2s′(w) t̃2(w) + s(w)2s′′′(w)
)

y(z(w))
)

, (6.3.43)

where we have not specified yet how the coefficients t2(z) and t3(z) transform.
Now, since the differential equation (6.3.37) must be invariant under the holo-

morphic coordinate change z 7→ z(w), we find that

t̃2(w) = (s(w))−2
(

t2(z(w))− 2s(w)s′′(w) + s′(w)2
)

(6.3.44)

= (z′(w))2 t2(z(w)) + 2{z, w}. (6.3.45)

and

t̃3(w) =
t3(z(w))

s(w)3 − s′(w)

s(w)
t̃2(w)− s′′′(w)

s(w)
. (6.3.46)

Equation (6.3.44) says that the coefficient t2(z)/4 transforms as a projective con-
nection.

To find how t3(z) transforms, we read off from equation (6.3.44) that

1
2

∂w t̃2(w)− 1
2

∂zt2(z(w))

s(w)3 = − s′(w)

s(w)
t̃2(w)− s′′′(w)

s(w)
. (6.3.47)

Substituting this into equation (6.3.46) yields

t̃3(w)− 1
2

∂w t̃2(w) = (z′(w))3
(

t3(z(w))− 1
2

∂zt2(z(w))

)
. (6.3.48)

In other words, the combination t3(z)− 1
2 t′2(z) transforms as a 3-differential.

SL3 flat connection

Note that the differential equation

Dy = y′′′(z) + t2(z)y′(z) + t3(z)y(z) = 0, (6.3.49)

can be put in the form of an SL3 flat connection

∇operY = dY + AY =
dY(z)

dz
dz + Az dz Y(z) = 0 (6.3.50)
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where

Y(z) =

 y′′(z)
−y′(z)

y(z)

 and Az =

 0 −t2(z) t3(z)
1 0 0
0 1 0

 . (6.3.51)

While under a change of variables z→ z(w) we have that

ỹ(w) = y(z(w))

(
dz
dw

)−1

=: y(z(w))s(w), (6.3.52)

the section Y transforms as

Ỹ(w) =

 s(w)−1 − s′(w)
s(w)

s′′(w)

0 1 −s′(w)
0 0 s(w)

Y(z(w)) =: U−1(w)Y(z(w)), (6.3.53)

and hence obeys

dỸ + ÃỸ =
dỸ(w)

dw
dw + Ãw dw Ỹ(w) = 0, (6.3.54)

with

Ã = U−1dU + U−1AU = Ãw dw. (6.3.55)

Since the new connection form is

Ãw =

 0 −t̃2(w) t̃3(w)
1 0 0
0 1 0

 , (6.3.56)

with

t̃2(w) =
t2(z(w))

s(w)2 +
s′(w)2

s(w)2 −
2s′′(w)

s(w)
(6.3.57)

t̃3(w) =
t3(z(w))

s(w)3 − s′(w)t2(z(w))

s(w)3 − s′(w)3

s(w)3 +
2s′(w)s′′(w)

s(w)2 − s′′′(w)

s(w)
(6.3.58)

in agreement with equations (6.3.44) and (6.3.48), we find that the SL3 oper defined
locally by equation (6.3.49) is equivalent to the SL3 flat connection defined locally
equation (6.3.50).

More invariantly, the transformation property (6.3.53) says that Y transforms as
a 2-jet, and says that we have converted the oper D into the flat connection ∇oper

on the rank 3 vector bundle E = J2(L) of 2-jets of sections of L = K−1
C .
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Fuchsian SL3 opers

The space L of SL3 opers on a surface C with regular punctures consists of
all Fuchsian SL3 opers on C, which are locally given by a Fuchsian differential
equation of order 3, with various possible restrictions at each puncture depending
on the type of the puncture.

Maximal punctures

Suppose that the surface C has only maximal punctures. The corresponding
space of SL3 opers on C consists of all Fuchsian SL3 opers on C, where we require
that the local exponents at each such puncture zl are given by3

1 +
ml,1

2
, 1 +

ml,2

2
, 1− ml,1

2
− ml,2

2
, (6.3.59)

in terms of the mass parameters ml,1 and ml,2. This implies that the resulting SL3

opers have fixed semisimple conjugacy class

Cl = diag
(

eπiml,1 , eπiml,2 , e−πi(ml,1+ml,2)
)

, (6.3.60)

at each maximal puncture zl.

Example. Locus of opers for T3[P
1
0,1,∞].

As summarized in equations (2.2.14) and (2.2.15), the three-punctured sphere
P1

0,1,∞ with three maximal punctures admits a 1-dimensional family of differentials

ϕ2 =
c∞z2 − (c0 − c1 + c∞)z + c0

z2(z− 1)2 (dz)2 (6.3.61)

ϕ3 =
d∞z3 + uz2 + (d0 + d1 − d∞ − u)z− d0

z3(z− 1)3 (dz)3. (6.3.62)

The 1-dimensional family of Fuchsian SL3 opers on P1
0,1,∞ with three maximal

punctures may be parametrized as

y′′′(z) + t2(z)y′(z) + t3(z)y(z), (6.3.63)

with coefficients

t2 =
(1 + c∞)z2 − (1 + c0 − c1 + c∞)z + (1 + c0)

z2(z− 1)2 (6.3.64)

t3 =
d∞z3 + uz2 + (d0 + d1 − d∞ − u)z− d0

z3(z− 1)3 +
1
2

t′2. (6.3.65)

3It is a simple exercise to check that the exponents of an SL3 oper add up to 3 at each puncture,
hence (6.3.59) is the most symmetric choice.
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Its local exponents are given by

z = 0 : 1 +
m0,1

2
, 1 +

m0,2

2
, 1− m0,1

2
− m0,2

2
z = 1 : 1 +

m1,1

2
, 1 +

m1,2

2
, 1− m1,1

2
− m1,2

2
(6.3.66)

z = ∞ : 1 +
m∞,1

2
, 1 +

m∞,2

2
, 1− m∞,1

2
− m∞,2

2
.

The Fuchsian SL3 oper (6.3.63) may be written in the form

y′′′(z) +
(

4tunif
2 + ϕ2(z)

)
y′(z) +

(
2∂ztunif

2 (z) +
1
2

∂z ϕ2(z) + ϕ3

)
y(z), (6.3.67)

where

tunif
2 (z) =

1− z + z2

z2(z− 1)2 (6.3.68)

is the coefficient of the Fuchsian uniformization oper (6.3.29). The Fuchsian SL3

oper (6.3.63) thus again has an interpretation in terms of Fuchsian uniformization.
In fact, in the limit ml,i → 0 it is equal to a lift of the Fuchsian uniformatization
oper.

This is most easily seen by rewriting the SL3 flat connection defined locally by
equation (6.3.50) in the form4

dỸ(z)
dz

dz +

 0 −1
2 t2(z) t3(z)− 1

2 ∂zt2(z)
1 0 −1

2 t2(z)
0 1 0

 dz Ỹ(z) = 0. (6.3.69)

Indeed, in this form it is clear that the SL3 oper defined locally by

y′′′(z) + t2(z) y′(z) +
1
2

∂zt2(z) y(z) = 0, (6.3.70)

is the lift of the SL2 oper defined locally by

y′(z) +
1
4

t2(z) y(z) = 0, (6.3.71)

using the homomorphism ρ : sl2 → sl3 given by the spin 1 representation of sl2.
The lift of the Fuchsian uniformization oper

D(3)
unif = ∂3

z + 4tunif
2 ∂z + 2

(
∂ztunif

2

)
(6.3.72)

has all three exponents equal to 1.

More generally, if the underlying surface C has complex structure moduli, such
as for instance for P1

0,q,1,∞, the SL3 base oper D(3)
0 may be described as the lift (using

the homomorphism ρ : sl2 → sl3 given by the spin 1 representation) of the SL2 base
oper D0, which in the example of P1

0,q,1,∞ is written down in (6.3.35).

4This is the “canonical form” as in e.g. [42, 81], which makes the ϕ-action more obvious. This is
also the form in which it plays a role in [67], in the scaling limit of Hitchin section.
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Minimal punctures

Suppose that C has minimal punctures as well. We may obtain the space of
Fuchsian SL3 opers on C with minimal punctures from the locus of Fuchsian SL3

opers on C with only maximal punctures, by simply enforcing the monodromy
around the minimal punctures to be diagonal with two equal eigenvalues, i.e. a
multiple of a reflection matrix.

This requires tuning two of the local exponents at each minimal puncture as
well as tuning one internal parameter for each minimal puncture. These con-
straints can be expressed in terms of the differential equation (6.3.37) as follows:

(i) We set the mass parameters at the minimal puncture zl equal to ml ± 1.

(ii) We require that if we multiply the differential equation

D̃y(z) = D(z− zl)
1−ml

2 y(z) = 0 (6.3.73)

by a factor (z− zl)
1+ml

2 , such that the leading coefficient has an order 1 zero at
z = zl, the resulting differential equation has analytic coefficients at z = zl.

This second condition implies that two of the solutions of the diffential equation
D̃y(z) = 0 are holomorphic at z = zl (see for instance [49]). In return, that implies
that the local monodromy of the SL3 oper defined by the differential operator D
around the puncture zl is a multiple of a reflection matrix.

Example. Locus of opers for T3[P
1
0,1,∞].

Suppose that z = 1 is a minimal puncture. This imposes the constraints

mbif
1,1 = m1 − 1 (6.3.74)

mbif
1,2 = m1 + 1,

as well as

ubif =
1
23 (m1 − 1)m1 (m1 + 1)− d0 − 2d∞ +

m1

2
(c0 − c∞). (6.3.75)

on the family of Fuchsian SL3 opers defined by the coefficients (6.3.64) and (6.3.65).
This fixes the oper uniquely.

The resulting differential equation

Dbify(z) = 0 (6.3.76)
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can be written in the form of the generalized hypergeometric differential equation[
z(θ + α1)(θ + α2)(θ + α3)− (θ + β1 − 1)(θ + β2 − 1)(θ + β3 − 1)

]
ỹ(z) = 0

(6.3.77)

where θ = z∂z, with coefficients

α1 = 1
2(−m∞,1 + m1 + m0,3 − 1 + 2β3),

α2 = 1
2(−m∞,2 + m1 + m0,3 − 1 + 2β3),

α3 = 1
2(−m∞,3 + m1 + m0,3 − 1 + 2β3), (6.3.78)

β1 = 1
2(−m0,1 + m0,3 + 2β3),

β2 = 1
2(−m0,2 + m0,3 + 2β3),

where m0,3 = −m0,1 −m0,2, m∞,3 = −m∞,1 −m∞,2 and

ỹ(z) = z−
β1+β2+β3

3 (z− 1)−
α1+α2+α3−β1−β2−β3+3

3 y(z). (6.3.79)

Finally, comparing the constraint (6.3.75) on the opers with the constraint (2.2.18)
on the differentials, we notice a “quantum” difference. This implies that the gen-
eralized hypergeometric oper cannot be written in the form (6.3.67) for any choice
of the coefficient tunif

2 .

Example. Locus of opers for T3[P
1
0,q,1,∞].

The space of SL3 opers on the four-punctured sphere P1
0,q,1,∞ with two maximal

punctures at z = 0 and z = ∞ and two minimal punctures at z = q and z = 1
is 2-dimensional. It may be obtained from the 4-dimensional family of Fuchsian
SL3 opers on the four-punctured sphere P1

0,q,1,∞ with four maximal punctures by
imposing the conditions for a minimal puncture at z = q and z = 1.

The resulting family of opers may be written down as the differential equations

D y(z) = y′′′(z) + t2(z)y′(z) + t3(z)y(z) = 0, (6.3.80)

with coefficients

t2 =
1 + c0

z2 +
1 + c

(z− q)2 +
1 + c1

(z− 1)2 +
c∞ − c0 − c− c1 − 2

z(z− 1)
+

H1

z(z− q)(z− 1)
(6.3.81)

t3 =
d0

z3 +
d

(z− q)3 +
d1

(z− 1)3 +
d∞ − d0 − d− d1

z(z− q)(z− 1)
+ (6.3.82)

+
(1− q)(4c0 − 3m2 − 3m2

1 − 4c∞ + 6)m1

8z(z− 1)2(z− q)
+

H2

z2(z− q)(z− 1)

− H1

z(z− 1)2(z− q)2

(m1

2
(z− q) +

m
2
(z− 1)

)
+

1
2

t′2.
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We call this family (6.3.80) the family of generalized Heun’s opers. For any
member of this family the monodromy around either minimal puncture is semisim-
ple with two equal eigenvalues.

Note that the coefficients t2 and t3 − 1
2 t′2 from equations (6.3.81) and (6.3.82)

only differ with the differentials (6.2.10) and (6.2.11) in terms that have a smaller
mass dimension. This difference goes to zero in the semi-classical limit ε → 0
discussed in §6.3.3.

In the limit q → 0 the four-punctured sphere P1
0,q,1,∞ degenerates into two

three-punctured spheres. In the same limit, the family of generalized Heun’s opers
degenerates into a pair of generalized hypergeometric opers.

If we assume that

H1 = 1 + c0 + c− c` +O(q) (6.3.83)

H2 = d0 − d` +
m
2
(c0 − c`)−

1
23 (m− 1)m(m + 1) +O(q) (6.3.84)

in the limit q→ 0, the family of generalized Heun’s opers (6.3.80) has two interest-
ing limits:

1. In the limit q → 0 the family reduces to the generalized hypergeometric
oper (6.3.77) with coefficients (m0,i 7→ `i), m1,i and m∞,i.

2. If we first map z 7→ qt and then take the limit q→ 0, the family reduces to the
generalized hypergeometric oper (6.3.77) with coefficients m0,i, (m1,i 7→ mi)

and (m∞,i → −`i).

The assumptions (6.3.83) will be justified in §6.4.

6.3.3 Semiclassical limit

It is natural to introduce an additional parameter ε with mass dimension 1 such
that all terms in the Fuchsian differential equations have the same mass dimension.
The corresponding locus of ε-opers Lε is a complex Lagrangian subspace of the
moduli space of flat ε-connections. In the semiclassical limit ε → 0 the locus Lε

limits to the space of quadratic (and higher if K > 2) differentials B, or equivalently
the spectral curves sitting above them.

In the following we often leave out the ε to avoid notational clutter, but at any
stage it is a simple matter to reintroduce the ε-dependence.
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6.4 Monodromy of opers

We now study the monodromy representation of the opers in the locus L in our
main examples. For the superconformal SU(2), N f = 4 theory this is Heun’s dif-
ferential equation (6.3.31), while for the superconformal SU(3), N f = 6 theory this
is its generalization (6.3.80) to K = 3. Since both are families of opers on a punc-
tured sphere, there are no complications due to tricky coordinate transformations,
and the monodromy representation is simply found as the fundamental system of
solutions to the respective differential equations.

The relevant differential equations are too complicated for one to write down
the monodromy representation explicitly in q. We use the fact that the underlying
Riemann surface is the four-punctured sphere P1

0,q,1,∞ and write down the expres-
sions in a series expansion in q, following and expanding arguments of [68, 69, 70].5

We are helped by the fact that the leading contribution when q → 0 is described
by the (generalized) hypergeometric differential equation, whose monodromy has
been explicitly computed [48, 50, 49].

The same method may be applied in principle to compute the monodromy rep-
resentation of any family of opers of class S in a perturbation series in the complex
structure parameters q, whenever exact expressions are known for the oper mon-
odromies in the limit q→ 0.

6.4.1 Heun’s differential equation

In this subsection we compute the monodromy representation of the Heun
equation (6.3.31) in a perturbation series in q.

To compare to the monodromy representation (5.4.23) of any flat SL2 connection
on the four-punctured sphere P1

0,q,1,∞ in terms of average length-twist coordinates,
we fix the monodromy Moper

α around the punctures z = 1 and z = ∞ such that it
has trace

Tr Moper
α = −2 cos(π`), (6.4.1)

with ` non-integer. The parameter ` will later play the role of the Coulomb param-
eter a.

5While finishing this work we noticed a seemingly related strategy for calculating the Painlevé
VI tau-function for small q in [82].
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As computed in [70], fixing the monodromy Moper
α in this way determines a

series expansion of the accessory parameter H in q

H =
∞

∑
k=0

qk Hk, (6.4.2)

with for instance

H0 = δ` − δ0 − δ (6.4.3)

and

H1 =
(δ` − δ0 + δ)(δ` − δ∞ + δ1)

2δ`
− H0. (6.4.4)

It remains to compute the monodromy Moper
β of the Heun equation (6.3.31)

around the punctures at z = 0 and z = ∞ in a perturbation series in q. Our
strategy for this is as follows:

1. We define the rescaled Heun equation by substituting z = qt in Heun’s equa-
tion itself. We construct solutions v1(t) and v2(t) of the rescaled Heun equa-
tion in a neigbourhood of t = 0, in a perturbation series in q.

2. We analytically continue the solutions v1(t) and v2(t) to t = ∞ while keeping
z = qt finite, but very small. We re-organize the functions w1(z) = v1(t/q)
and w2(z) = v2(t/q), which are solutions of the Heun equation itself, around
z = 0 in a perturbation series in q.

3. We analytically continue the solutions w1(z) and w2(z) to z = ∞.

These three steps together determine the connection matrix Stotal(q) that relates
the local solutions of Heun’s differential equation near the puncture at z = 0 to the
local solutions near the puncture at z = ∞. Say that M0 and M∞ are the local
monodromies around z = 0 and z = ∞, respectively. Then the monodromy matrix
of Heun’s equation around the punctures z = 0 and z = ∞ is found as

Moper
β = M0 Stotal(q) M∞ (Stotal(q))

−1 . (6.4.5)

The computation is illustrated in Figure 6.3 and the result is summarized in equa-
tion (6.4.85).
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Figure 6.3: Decomposition of the cycle β on P1
0,q,1,∞ into four paths corresponding

to the computation of the monodromy matrix Mβ on P1
0,q,1,∞ as in equation (6.4.5).

Step 1: Perturbation of the rescaled Heun’s differential equation

We first define the rescaled Heun’s differential equation by substituting z = qt
in equation (6.3.31) and expand it in a perturbation series in q. We also expand its
solutions v(t, `) in q as

v(t, `) =
∞

∑
k=0

qk v(k)(t, `). (6.4.6)

The leading contribution v(0)(t, `) is determined by the hypergeometric differ-
ential equation

∂2
t v(0)(t, `) + Q0(t, `) v(0)(t, `) = 0, (6.4.7)

with

Q0(t, `) =
∆0 − (∆` − ∆ + ∆0)t + ∆`t2

t2(1− t)2 . (6.4.8)

We find the two independent solutions

v(0)1 (t, `) = t
1−m0

2 (1− t)
1+m

2 2F1

(
1− `+ m−m0

2
,

1 + `+ m−m0

2
, 1−m0, t

)
(6.4.9)

v(0)2 (t, `) = t
1+m0

2 (1− t)
1+m

2 2F1

(
1− `+ m + m0

2
,

1 + `+ m + m0

2
, 1 + m0, t

)
,

(6.4.10)

where 2F1 (a, b, c, t) is the Gauss hypergeometric function

2F1 (a, b, c, t) =
∞

∑
k=0

(a)k(b)k
(c)k

tk

k!
, (6.4.11)

134



with (x)k := x(x + 1) . . . (x + k− 1) the Pochhammer symbol.
The subleading contribution v(1)(t, `) is determined by the equation

∂2
t v(1)(t, `) + Q0(t, `) v(1)(t, `) + Q1(t, `) v(0)(t, `) = 0, (6.4.12)

with

Q1(t, `) =
(δ` + δ1 − δ∞)(δ` + δ1 − δ∞ − 2δ`t)

2 δ` t (1− t)
. (6.4.13)

Its solutions can be found in two ways.
First, we may use general perturbation theory (following [69] and appendix A)

to write the solution in the form

v(1)r (t, `) = Sr1v(0)1 (t, `) + Sr2v(0)2 (t, `) (6.4.14)

with

Sr1 =
1

m0

∫ t

0
v(0)2 (s, `)Q1(s, `)v(0)r (s, `)ds (6.4.15)

Sr2 = − 1
m0

∫ t

0
v(0)1 (s, `)Q1(s, `)v(0)r (s, `)ds. (6.4.16)

In a perturbation series in t we find

S11 = −t (σ +O(t)) S12 = −t1−m0

(
σ

m0 − 1
+O(t)

)
(6.4.17)

S21 = −t1+m0

(
σ

m0 + 1
+O(t)

)
S22 = −t (σ +O(t)) (6.4.18)

with

σ =
(`2 + m2

0 −m2 − 1)(`2 + m2
1 −m2

∞ − 1)
8m0(`2 − 1)

. (6.4.19)

Note that there is the freedom of adding any multiple of v(0)r (t, `) to v(1)r (t, `).
This only changes the boundary conditions of vr(t, `) at t = 0. The choice made in
equation (6.4.14) fixes

v(1)r (t = 0, `) = 0. (6.4.20)

This choice implies that the t-expansion of v(1)1 (t, `) starts off with a term propor-

tional to t
3−m0

2 , and that the t-expansion of v(1)2 (t, `) starts off with a term propor-

tional to t
3+m0

2 :

v(1)1 (t, `) = −t
3−m0

2

(
(`2 + m2

0 −m2 − 1)(`2 + m2
1 −m2

∞ − 1)
8(`2 − 1)(m0 − 1)

+O(t)
)

(6.4.21)

v(1)2 (t, `) = t
3+m0

2

(
(`2 + m2

0 −m2 − 1)(`2 + m2
1 −m2

∞ − 1)
8(`2 − 1)(m0 + 1)

+O(t)
)

(6.4.22)
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Alternatively, we could make an ansatz of the form (following [68]):

ṽ(1)r (t, `) = A(1)
r,−1v(0)r (t, `+ 2) + A(1)

r,0 v(0)r (t, `) + A(1)
r,1 v(0)r (t, `− 2). (6.4.23)

This ansatz confirms the value (6.4.4) for H1 and fixes

A(1)
1,−1 = −

(`±m−m0 + 1)(`2 + m2
1 −m2

∞ − 1)
16`(`+ 1)2 (6.4.24)

A(1)
1,1 = −

(`±m + m0 − 1)(`2 + m2
1 −m2

∞ − 1)
16`(`− 1)2 (6.4.25)

A(1)
2,−1 = −

(`±m + m0 + 1)(`2 + m2
1 −m2

∞ − 1)
16`(`+ 1)2 (6.4.26)

A(1)
2,1 = +

(`±m−m0 − 1)(`2 + m2
1 −m2

∞ − 1)
16`(`− 1)2 , (6.4.27)

where (`± b) = (`+ b)(`− b).
The coefficient A(1)

r,0 is left underdetermined, corresponding to the freedom of

adding a multiple of v(0)r (t, `) to v(1)r (t, `). Comparing to equation (6.4.14) we
choose

A(1)
r,0 = −A(1)

r,1 − A(1)
r,−1, (6.4.28)

to fix the boundary condition v(1)r (t = 0, `) = 0. Indeed, we then find that

ṽ(1)r (t, `) = v(1)r (t, `). (6.4.29)

The expansion of v(1)(t, `) in terms of hypergeometric functions as in equa-
tion (6.4.23) will be useful to analytically continue to t = ∞.

We can continue this perturbation to any order in q by expanding [68]

v(k)r (t, `) =
k

∑
j=−k

A(k)
r,j v(0)r (t, `− 2j). (6.4.30)

and find for instance that

A(2)
1,−2 =

(`±m−m0 + 3)(`±m−m0 + 1)(`±m1 ±m∞ + 1)
512`(`+ 1)2(`+ 2)2(`+ 3)

(6.4.31)

+
(`±m−m0 + 3)(`±m−m0 + 1)(m2

1 − 1)
128`(`+ 1)(`+ 2)(`+ 3)

A(2)
1,2 =

(`±m + m0 − 3)(`±m + m0 − 1)(`±m1 ±m∞ − 1)
512`(`− 1)2(`− 2)2(`− 3)

(6.4.32)

+
(`±m + m0 − 3)(`±m + m0 − 1)(m2

1 − 1)
128`(`− 1)(`− 2)(`− 3)

.
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Step 2: Solutions for |z| < 1

We have just seen that the solutions vr(t, `) of the rescaled Heun equation may
be expanded in q as

vr(t, `) = v(0)r (t, `) (6.4.33)

+ q
(

A(1)
r,−1 v(0)r (t, `+ 2) + A(1)

r,0 v(0)r (t, `) + A(1)
r,1 v(0)r (t, `− 2)

)
+ q2

2

∑
k=−2

A(2)
r,k v(0)r (t, `− 2k)

+O(q3)

Instead of considering the solutions vr(t, `) around t = 0, we now want to analyti-
cally continue them to |t| � 1.

For |t| � 1 the hypergeometric functions v(0)1 (t) and v(0)2 (t) may be expanded
as

v(0)r (t, `− 2j) = (−1)
1−2m+m0

2 (−t)
1−`

2 +jBt[`− 2j]r1 (6.4.34)(
1 +

(`− 2j)2 + m2 −m2
0 − 1

4(`− 2j + 1)
t−1 +O

(
t−2
))

+ (−1)
1−2m+m0

2 (−t)
1+`

2 −jBt[`− 2j]r2 (6.4.35)(
1−

(`− 2j)2 + m2 −m2
0 − 1

4(`− 2j− 1)
t−1 +O

(
t−2
))

with

Bt[`] =


Γ[−`]Γ[1−m0]

Γ[1−`+m−m0
2 ]Γ[1−`−m−m0

2 ]

Γ[`]Γ[1−m0]

Γ[1+`+m−m0
2 ]Γ[1+`−m−m0

2 ]
Γ[−`]Γ[1 + m0]

Γ[1−`+m+m0
2 ]Γ[1−`−m+m0

2 ]

Γ[`]Γ[1 + m0]

Γ[1+`+m+m0
2 ]Γ[1+`−m+m0

2 ]

 . (6.4.36)

This implies that the solutions vr(t, `) have the expansion

vr(t, `) = (−1)
1−2m+m0

2 (−t)
1−`

2

( ∞

∑
l=0

Bt[`− 2l]r1 A(l)
r,l (−z)R +O

(
t−1
) )

(6.4.37)

+(−1)
1−2m+m0

2 (−t)
1+`

2

( ∞

∑
l=0

Bt[`+ 2l]r2 A(l)
r,−l (−z)R +O

(
t−1
) )

.

for |t| � 1, yet |z| = |qt| < 1.
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Leading order in q

Write the solutions wr(z, `) = vr

(
z
q , `
)

to the unrescaled Heun equation (6.3.31)
in a q-expansion as

wr(z, `) = ∑
k

qk w(k)
r (z, `). (6.4.38)

Equation (6.4.37) implies that the leading contribution w(0)
r (z, `) is given by

w(0)
r (z, `) = (−1)

1−2m+m0
2

(
− z

q

) 1−`
2

Bt[`]r1

 ∞

∑
l=0

Bt[`− 2l]r1 A(l)
r,l

Bt[`]r1
(−z)R

 (6.4.39)

+ (−1)
1−2m+m0

2

(
− z

q

) 1+`
2

Bt[`]r2

 ∞

∑
l=0

Bt[`+ 2l]r2 A(l)
r,−l

Bt[`]r2
(−z)R

 .

(6.4.40)

The coefficients in front of (−z) are

Bt[`− 2]r1 A(1)
r,1

Bt[`]r1
=

(`2 + m2
1 −m2

∞ − 1)
4(`− 1)

(6.4.41)

Bt[`+ 2]r2 A(1)
r,−1

Bt[`]r2
= −

(`2 + m2
1 −m2

∞ − 1)
4(`+ 1)

, (6.4.42)

whereas the coefficients in front of (−z)2 are

Bt[`− 4]r1 A(2)
r,2

Bt[`]r1
=

(`−m1 ±m∞ − 3)(`−m1 ±m∞ − 1)
32(`− 1)(`− 2)

(6.4.43)

+
(m1 + 1)(`−m1 ±m∞ − 1)

8(`− 1)
+

(m2
1 − 1)
8

Bt[`+ 4]r2 A(2)
r,−2

Bt[`]r2
=

(`+ m1 ±m∞ + 3)(`+ m1 ±m∞ + 1)
32(`+ 1)(`+ 2)

(6.4.44)

− (m1 + 1)(`+ m1 ±m∞ + 1)
8(`+ 1)

+
(m2

1 − 1)
8

.

This suggests that w(0)
r (z, `) can be rewritten in the form(
w(0)

1 (z, `)
w(0)

2 (z, `)

)
= Bt[`] T

(
y(0)1 (z, `)
y(0)2 (z, `)

)
(6.4.45)

with

T =

(
q
`−1

2 0
0 q

−`−1
2

)
, (6.4.46)
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and

y(0)1 (z, `) = (−1)
1−2m+m0

2 (1− z)
1+m1

2 (−z)
1−`

2 (6.4.47)

2F1

(
1− `+ m1 −m∞

2
,

1− `+ m1 + m∞

2
, 1− `, z

)
y(0)2 (z, `) = (−1)

1−2m+m0
2 (1− z)

1+m1
2 (−z)

1+`
2 (6.4.48)

2F1

(
1 + `+ m1 −m∞

2
,

1 + `+ m1 + m∞

2
, 1 + `, z

)
,

which is a basis of solutions to the unrescaled Heun equation (6.3.31) at q = 0.
Indeed, since w(0)

r (z, `) is a solution to the unrescaled Heun equation at q = 0,
and since we have verified equation (6.4.45) up to order z2, equation (6.4.45) must
hold to any order.

subleading order in q

To find the subleading contribution w(1)
r in q we substitute the t−1-expansion (6.4.34)

of v(0)r into the q-expansion (6.4.33) of vr. The resulting expansion is

w(1)
r (z, `) = (−1)

1−2m+m0
2

(
− z

q

) 1−`
2 ∞

∑
m=−1

W(1)
1,m zm (6.4.49)

+ (−1)
1−2m+m0

2

(
− z

q

) 1+`
2 ∞

∑
m=−1

W(1)
2,m zm (6.4.50)

with

W(1)
1,−1 = Bt[`]r1

`2 + m2 −m2
0 − 1

4(`+ 1)
(6.4.51)

W(1)
1,0 = − Bt[`− 2]r1 A(1)

r,1
(`− 2)2 + m2 −m2

0 − 1
4(`− 1)

+ Bt[`]r1 A(1)
r,0 (6.4.52)

W(1)
2,−1 = −Bt[`]r2

`2 + m2 −m2
0 − 1

4(`− 1)
(6.4.53)

W(1)
2,0 = Bt[`+ 2]r2 A(1)

r,−1
(`+ 2)2 + m2 −m2

0 − 1
4(`+ 1)

+ Bt[`]r2 A(1)
r,0 (6.4.54)

and so forth.
This expansion is consistent with the closed form(

w(1)
1 (z, `)

w(1)
2 (z, `)

)
= Bt[`] T

(
y(1)1 (z, `)
y(1)2 (z, `)

)
, (6.4.55)
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where

y(1)r (z, `) = C(1)
r,−1 y(0)r (z, `+ 2) + C(1)

r,0 y(0)r (z, `) + C(1)
r,1 y(0)r (z, `− 2), (6.4.56)

with coefficients

C(1)
1,−1 =

1− `2 + m2
0 −m2

4(`+ 1)
(6.4.57)

C(1)
1,0 =

`

4

(
1 +

(m2
1 −m2

∞)(m2
0 −m2)

(`+ 1)2(`− 1)2

)
(6.4.58)

−
(m2

1 −m2
∞)(m2

0 −m2)

4(`+ 1)2(`− 1)2 +
(m2

1 −m2
∞)(1−m0)

4(`+ 1)(`− 1)
− m0

4

C(1)
1,1 =

(`2 + m2 −m2
0 − 1)(`±m1 ±m∞ − 1)

64 `(`− 1)3(`− 2)
(6.4.59)

and C(1)
2,k (`) = C(1)

1,k (−`).
Indeed, since y(0)1 (z, `)+ qy(1)1 (z, `)+O(q2) is a solution of the unrescaled Heun

equation in a perturbation series in q, and since we can verify equation (6.4.55) up
to second order in z, it must hold to any order in z.

Step 3: Solutions at z = ∞

Analytically continuing to z = ∞ gives(
y(0)1 (z, `)
y(0)2 (z, `)

)
≈ Bz[`]

(
(−1)

1−2m+m0
2 (−z)

1−m∞
2

(−1)
1−2m+m0

2 (−z)
1+m∞

2

)
(6.4.60)

with

Bz[`] =


Γ[1− `]Γ[−m∞]

Γ[1−`−m1−m∞
2 ]Γ[1−`+m1−m∞

2 ]

Γ[1− `]Γ[m∞]

Γ[1−`−m1+m∞
2 ]Γ[1−`+m1+m∞

2 ]
Γ[1 + `]Γ[−m∞]

Γ[1+`−m1−m∞
2 ]Γ[1+`+m1−m∞

2 ]

Γ[1 + `]Γ[m∞]

Γ[1+`−m1+m∞
2 ]Γ[1+`+m1+m∞

2 ]

 .

(6.4.61)

This implies that(
y(1)1 (z, `)
y(1)2 (z, `)

)
≈ Sz[`]

(
(−1)

1−2m+m0
2 (−z)

1−m∞
2

(−1)
1−2m+m0

2 (−z)
1+m∞

2

)
(6.4.62)

where

Sz[`]rs = C(1)
r,−1 Bz[`+ 2]rs + C(1)

r,0 Bz[`]rs + C(1)
r,1 Bz[`− 2]rs (6.4.63)
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Hence (
w1(z, `)
w2(z, `)

)
≈ Stotal(q)

(
(−1)

1−2m+m0
2 (−z)

1−m∞
2

(−1)
1−2m+m0

2 (−z)
1+m∞

2

)
(6.4.64)

with

Stotal[q] = Bt[`] T Bz[`]
(

1 + q Bz[`]
−1Sz[`] +O(q2)

)
. (6.4.65)

Step 4: Monodromy

Say that

M0 =

(
eπi(1−m0) 0

0 eπi(1+m0)

)
(6.4.66)

and

M∞ =

(
eπi(1+m∞) 0

0 eπi(1−m∞)

)
(6.4.67)

are the local monodromy matrices at zero and infinity, respectively. Then the mon-
odromy matrix of Heun’s differential equation around the punctures z = 0 and
z = ∞ is given by

Moper
β = M0 Stotal[q] M∞ Stotal[q]−1. (6.4.68)

We compute the inverse of Mβ using that

Bz[`]
−1 = Bt[−`]

∣∣∣
m=m1,m0=−m∞

. (6.4.69)

and that

Stotal[q]−1 = (1− q Bz[`]
−1 Sz[`]) (Bt[`] T Bz[`])

−1 +O(q2). (6.4.70)

We then find

Moper
β = Moper,(0)

β + q Moper,(1)
β +O(q2) (6.4.71)

with

Moper,(0)
β = M0 Bt[`] T Bz[`] M∞ Bz[`]

−1 T−1 Bt[`]
−1. (6.4.72)

and

Moper,(1)
β = M0 Bt[`] T Bz[`]

(
Bz[`]

−1 Sz[`] M∞ −M∞ Bz[`]
−1 Sz[`]

)
(6.4.73)

Bz[`]
−1 T−1 Bt[`]

−1. (6.4.74)
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Leading order monodromy

In the limit q → 0 the four-punctured sphere P1
0,q,1,∞ may be approximated by

gluing two three-punctured spheres P1
0,1,∞ using the plumbing construction. In

the same limit Heun’s differential equation (6.3.31) may be approximated by the
two hypergeometric differential equations (6.3.24), one on each three-punctured
sphere. It is well-known that Bt[`] and Bz[`]−1 are the connection matrices for
these hypergeometric differential equations, respectively. Equation (6.4.72) shows
that the leading order contribution in q to the monodromies of Heun’s differential
equation may simply be found from the monodromies of the hypergeometric dif-
ferential equation by splicing in the gluing matrix T (see [68, 69] for an alternative
proof, whose generalization is described in the appendix).

To leading order in q we calculate that

Tr Moper,0
β = D− q−` + D◦ + D+ q`, (6.4.75)

where

D− = −4π2 Γ[1 + `]2Γ[`]2

Γ
[

1
2 +

`±m0±m
2

]
Γ
[

1
2 +

`±m1±m∞
2

] (6.4.76)

D+ = −4π2 Γ[1− `]2Γ[−`]2

Γ
[

1
2 −

`±m0±m
2

]
Γ
[

1
2 −

`±m1±m∞
2

] (6.4.77)

and

D◦ =
cos(π`, πm0, πm1) + cos(π`, πm, πm∞) + cos(πm0, πm∞) + cos(πm, πm1)

1
2 sin2(π`)

,

(6.4.78)

where we defined

cos(x1, . . . , xn) = cos(x1) · · · cos(xn). (6.4.79)

subleading order monodromy

At subleading order in q we find

Bz[`]
−1 Sz[`] M∞ −M∞ Bz[`]

−1 Sz[`] =

(
0 δM+

δM− 0

)
(6.4.80)

with

δM+ =
2iπ2

(
C(1)

1,0 − C(1)
2,0

)
sin[π`]

Γ[1 + m∞]

Γ[1−m∞]

1

Γ
[

1±`±m1+m∞
2

] (6.4.81)
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and

δM− =
2iπ2

(
C(1)

2,0 − C(1)
1,0

)
sin[π`]

Γ[1−m∞]

Γ[1 + m∞]

1

Γ
[

1±`±m1+m∞
2

] (6.4.82)

This leads to

Tr Moper,1
β = D−

(
C(1)

2,0 − C(1)
1,0

)
q−` + D+

(
C(1)

1,0 − C(1)
2,0

)
q`. (6.4.83)

with

C(1)
1,0 − C(1)

2,0 =
`

2

(
1 +

(m2
1 −m2

∞)(m2
0 −m2)

(`+ 1)2(`− 1)2

)
. (6.4.84)

The result

Up to order q we thus find that

Tr Moper
β = D− q−`

(
1− c1q +O(q2)

)
+ D◦ + D+ q`

(
1 + c1q +O(q2)

)
, (6.4.85)

with

D− = −4π2 Γ[1 + `]2Γ[`]2

Γ
[

1
2 +

`±m0±m
2

]
Γ
[

1
2 +

`±m1±m∞
2

] (6.4.86)

D+ = −4π2 Γ[1− `]2Γ[−`]2

Γ
[

1
2 −

`±m0±m
2

]
Γ
[

1
2 −

`±m1±m∞
2

] , (6.4.87)

whereas

D◦ =
cos(πm0, πm∞) + cos(πm, πm1) + cos(π`, πm0, πm1) + cos(π`, πm, πm∞)

1
2 sin2(π`)

,

(6.4.88)

and

c1 =
`

2

(
1 +

(m2
1 −m2

∞)(m2
0 −m2)

(`+ 1)2(`− 1)2

)
. (6.4.89)

Using the same techniques one can in principle compute the oper monodromies to
any order in q.

We rewrite this result in terms of perturbative and instanton corrections to the
effective twisted superpotential of the superconformal SU(2) theory coupled to
four hypers in §6.5.1.
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6.4.2 Generalized Heun’s equation

The monodromies of the generalized Heun equation (6.3.80) may be computed
perturbatively in an expansion in q in the same way,. Here we content ourselves
with the leading contribution in q.

Again, we start with fixing the coefficients in the expansion

H1 =
∞

∑
k=0

qkH1,k (6.4.90)

H2 =
∞

∑
k=0

qkH2,k (6.4.91)

of the accessory parameters H1 and H2 in equation (6.3.80), by requiring that the
monodromy Moper

α around the punctures z = 1 and z = ∞ has traces

Tr Moper
α = e2πi

(
1+ `1

2

)
+ e2πi

(
1+ `2

2

)
+ e2πi

(
1− `1

2 −
`2
2

)
, (6.4.92)

Tr
(
Moper

α

)−1
= e2πi

(
1− `1

2

)
+ e2πi

(
1− `2

2

)
+ e2πi

(
1+ `1

2 +
`2
2

)
,

for some fixed complex numbers `1 and `2. This determines the leading coeffi-
cients (6.3.83), i.e.

H1,0 = 1 + c0 + c− c`, (6.4.93)

H2,0 = d0 − d` +
m
2
(c0 − c`)−

(m− 1)m(m + 1)
8

. (6.4.94)

Recall that, on the one hand, the generalized Heun’s equation (6.3.80) limits to
the generalized hypergeometric oper (6.3.77) with coefficients m0,i, (m1,i 7→ mi)

and (m∞,i → `i) if we first replace z 7→ qt and then take the limit q → 0. A
basis of three independent solutions of the limiting generalized hypergeometric
differential equation at t = 0 is given by the generalized hypergeometric functions

v(0)r (t) = t1+m0,r 3F2(αr,1, αr,2, αr,3, βr,j, βr,k, t) (6.4.95)

= t1+m0,r
∞

∑
n=0

(αr,1)n(αr,2)n(αr,3)n

(βr,j)n(βr,k)n

tn

n!
,

with j 6= r and k 6= r, and with coefficients

αr,j =
1 + m + m0,r − `j

2
, βr,j = 1 +

m0,r −m0,j

2
, (6.4.96)

where `3 = −`1 − `2 and m0,3 = −m0,1 −m0,2.
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The analytic continuation of the solutions v(0)r (t) from t = 0 to t = ∞ is de-
scribed by the connection matrix with coefficients

Bt[`]ij = ∏
k 6=i

∏
l 6=j

Γ[
`j−`l

2 ]Γ[1 + m0,i−m0,k
2 ]

Γ[1−`l+m+m0,i
2 ]Γ[

1+`j−m−m0,k
2 ]

. (6.4.97)

On the other hand, the generalized Heun’s equation (6.3.80) limits to the gen-
eralized hypergeometric oper (6.3.77) with coefficients (m0,i 7→ `i), m1,i and m∞,i if
we just take the limit q→ 0.

The analytic continuation of its solutions y(0)i (z) from z = 0 to z = ∞ is thus
determined by the connection matrix

Bz[`]ij = ∏
k 6=i

∏
l 6=j

Γ[
m∞,j−m∞,l

2 ]Γ[1 + `i−`k
2 ]

Γ[1−m∞,l+m1+`i
2 ]Γ[

1+m∞,j−m1−`k
2 ]

. (6.4.98)

Similar to equation (6.4.69) the connection matrices Bt[`] and Bz[`] are related by

Bz[l]−1 = Bt[−l]
∣∣∣
m=m1,m0=−m∞

. (6.4.99)

Going through the same steps as for the Heun’s differential equation in the pre-
vious subsection, we find that the leading contribution to the monodromy matrix
of the generalized Heun’s equation around the punctures z = 0 and z = ∞ is
computed by the expression

Moper,0
β = M0 Bt[`] T Bz[`] M∞ Bz[`]

−1 T−1 Bt[`]
−1, (6.4.100)

where now

T = diag
(

q
−`1

2 , q
−`2

2 , q−
`3
2

)
, (6.4.101)

M0 = diag
(

e2πi
(

1−m0,1
2

)
, e2πi

(
1−m0,2

2

)
, e2πi

(
1−m0,3

2

))
, (6.4.102)

M∞ = diag
(

e2πi
(

1+
m∞,1

2

)
, e2πi

(
1+

m∞,2
2

)
, e2πi

(
1+

m∞,3
2

))
. (6.4.103)

We break the computation of Moper,0
β up in smaller pieces. We find that(

Bz[`] M∞ Bz[`]
−1
)

ij
= e

πi
2 (2m1−2+`i+`j)

(
δi,j+ (6.4.104)

2ie−
3πi

2 (m1−1)
∏3

k=1 cos
(

π(`j+m1−m∞,k)
2

)
∏m 6=j sin

(
π(`j−`m)

2

) ∏3
k=1 Γ

[
1+`j+m1−m∞,k

2

]
∏l 6=i Γ

[
1 + `i−`l

2

]
∏3

k=1 Γ
[

1+`i+m1−m∞,k
2

]
∏m 6=j Γ

[
1 +

`j−`m
2

]),
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whereas(
Bt[`]

−1 M0 Bt[`]
)

ij
=
(

Bz[−`] M∞ Bz[−`]−1
)
{m1 7→m,m∞ 7→−m0},ij

. (6.4.105)

Substituting these expressions into Moper,0
β , we find that the leading order con-

tribution to the traces is given by6

Tr Moper,0
β = D◦ + D(`1, `3) q

`3−`1
2 + D(`2, `3) q

`3−`2
2 + D(`1, `2) q

`2−`1
2

(6.4.106)

+ D(`2, `1) q
`1−`2

2 + D(`3, `2) q
`2−`3

2 + D(`3, `1) q
`1−`3

2

Tr
(

M(oper,0
β

)−1
= D◦ + D(`1, `3) q

`3−`1
2 + D(`2, `3) q

`3−`2
2 + D(`1, `2) q

`2−`1
2

(6.4.107)

+ D(`2, `1) q
`1−`2

2 + D(`3, `2) q
`2−`3

2 + D(`3, `1) q
`1−`3

2

where

D(`k, `l) = −4π2e−πi
(

m+m1−2
2

)
D?(`k, `l)

D↑(`k)D↓(`l)
, (6.4.108)

D(`k, `l) = −4π2eπi
(

m+m1−2
2

)
D?(`k, `l)

D↑(`k)D↓(`l)
, (6.4.109)

and

D?(`k, `l) = Γ
[
1 +

`k − `l
2

]2
Γ
[`k − `l

2

]2
Γ
[
1− `l −

`k
2

]
(6.4.110)

× Γ
[
1 + `k +

`l
2

]
Γ
[
`k +

`l
2

]
Γ
[
− `k

2
− `l

]
,

whereas

D↑(`k) =
3

∏
j=1

Γ
[1−m−m0,j + `k

2

]
Γ
[1 + m1 −m∞,j + `k

2

]
(6.4.111)

and

D↓(`k) =
3

∏
j=1

Γ
[1 + m + m0,j − `k

2

]
Γ
[1−m1 + m∞,j − `k

2

]
. (6.4.112)

We rewrite this result in terms of perturbative corrections to the effective twisted
superpotential of the superconformal SU(3) theory coupled to six hypers in §6.5.2.

6The expression for D◦ is given by the same formulas as N◦ from the previous chapter, after
identifying e−π`i with Li, Ml with e2π Iµl , and Ml,j with e2π Iµl,j . It thus drops out in what follows,
and we omit rewriting the unwieldy expression.
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6.5 Generating function of opers

The locus of (framed) opers forms a complex Lagrangian subspace inside the
moduli space of (framed) flat connections MC

dR(C, SLK). Given any set of Dar-
boux coordinates {xi, yi} on MC

dR(C, SLK) we can thus define a generating func-
tion Woper(x, ε) of the space of opers by the coupled set of equations

yi =
∂Woper(x, ε)

∂xi
. (6.5.1)

In this section we find the generating function of opers Woper(x, ε) in our two
main examples, the superconformal SU(2) theory with four flavors and the super-
conformal SU(3) theory with six flavors, with respect to the length-twist coordi-
nates Li and Ti defined in Chapter 5. We do this by comparing the formulae for
the oper monodromies in §6.4 to the formulae for the monodromies in terms of the
length-twist coordinates Li and Ti in §5.4.

Since the spectral twist coordinates Ti are only determined up multiplication
by a simple monomial in the (exponentiated) mass parameters, due to the ambi-
guity in the choice of a Fenchel-Nielsen spectral network, the generating function
Woper(x, ε) that we find in this section is determined up to a linear factor of the
form mx.

6.5.1 Superconformal SU(2) theory with N f = 4

Comparing the monodromy traces Moper
α of the opers around the pants curve

α to the monodromy traces Mα in terms of the length-twist coordinates L and T,
gives the identifications

Ml = −eπiml , (6.5.2)

L = −eπi`. (6.5.3)

These identifications in particular imply that the constant term N◦ in equation (5.4.26)
agrees with the constant term D◦ in equation (6.4.85).

Next, we want to find the twist T as a function of the length L on the locus of
opers.
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Leading order contribution in q

Comparing the leading order contribution in q to the oper monodromy Moper
β ,

as computed in equation (6.4.75), to the monodromy Mβ in terms of the length-
twist coordinates L and T, as computed in equation (5.4.26), shows that up to lead-
ing order in q

T +
1
T
=

D+√
N

q` +
D−√

N
q−`, (6.5.4)

where

N(`) =
16 cos

(
π`±πm0±πm

2

)
cos

(
π`±πm1±πm∞

2

)
sin(π`)4 . (6.5.5)

and D− = D+|`=−` with

D+(`) = −4π2 Γ[1− `]2Γ[−`]2

Γ
[

1
2 −

`±m0±m
2

]
Γ
[

1
2 −

`±m1±m∞
2

] . (6.5.6)

Repeatedly using the identity

cos
(πx

2

)
Γ
[1

2
+

x
2

]
Γ
[1

2
− x

2

]
= π, (6.5.7)

we find that

D+√
N

=

√√√√Γ[1
2 +

`±m0±m
2 ]Γ[1

2 +
`±m1±m∞

2 ]

Γ[1
2 −

`±m0±m
2 ]Γ[1

2 −
`±m1±m∞

2 ]

Γ[1− `]Γ[−`]
Γ[1 + `]Γ[`]

, (6.5.8)

and hence that

D−√
N

=

√
N

D+
(6.5.9)

This implies that equation (6.5.4) is solved by

T =

√√√√Γ[1
2 +

`±m0±m
2 ]Γ[1

2 +
`±m1±m∞

2 ]

Γ[1
2 −

`±m0±m
2 ]Γ[1

2 −
`±m1±m∞

2 ]

Γ[1− `]Γ[−`]
Γ[1 + `]Γ[`]

q` (6.5.10)

up to leading order in q.
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Classical and 1-loop contribution

Since the generating function of opers Woper(`, q) is defined by

1
2

log T =
∂Woper(`, q)

∂`
(6.5.11)

on the locus of opers, we find that

∂Woper(`, q)
∂`

=
`

2
log q +

1
4

log
Γ[1

2 +
`±m0±m

2 ]

Γ[1
2 −

`±m0±m
2 ]

+
1
4

log
Γ[1

2 +
`±m1±m∞

2 ]

Γ[1
2 −

`±m1±m∞
2 ]

(6.5.12)

+
1
2

log
Γ[1− `]

Γ[`]
+

1
2

log
Γ[−`]

Γ[1 + `]
+O(q).

To make contact with known formulae, we write the last equation in terms of
the special function

Υ(x) =
∫ x

1
2

du log
Γ(u)

Γ(1− u)
, (6.5.13)

which has the property that

∂

∂x
Υ(β + γx) = γ log

Γ[β + γx]
Γ[1− β− γx]

(6.5.14)

as well as

Υ[1− x] = Υ[x]. (6.5.15)

We thus find

Woper(`, q) = Woper
clas (`, τ) + Woper

1−loop(`) +O(q) (6.5.16)

with

Woper
clas (`, τ) =

`2

4
log q, (6.5.17)

and

Woper
1−loop(`) = Woper

anti−hyp(`, m0, m) + Woper
vector(`) + Woper

hyp (`, m1, m∞) (6.5.18)

with

Woper
vector(`) = −

1
2

Υ[−`]− 1
2

Υ[`] (6.5.19)

Woper
anti−hyp(`, m0, m) =

1
2

Υ
[1

2
+

`±m0 ±m
2

]
(6.5.20)

Woper
hyp (`, m1, m∞) =

1
2

Υ
[1

2
+

`±m1 ±m∞

2
]
, (6.5.21)
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up to an integration constant that is independent of `.
If we identify the length coordinate ` with the Coulomb parameter a, and com-

pare to the expression for the Nekrasov-Shatashvili effective twisted superpoten-
tial for the SU(2) gauge theory coupled to four hypermultiplets, given in equa-
tions (6.1.8), (6.1.9) and (6.1.13), we find that

Woper
clas (a, τ) = W̃eff

clas(a, τ) (6.5.22)

Woper
1−loop(a) = W̃eff

1−loop(a). (6.5.23)

In particular, Woper
1−loop(`) is equal to half the classical Liouville action on the nodal

four-punctured sphere.
This computation is similar to and agrees with that in [65].

1-instanton correction

The 1-instanton correction Woper
1 (`, q) in the generating function of opers,

Woper(`, q) = Woper
clas (`) log q + Woper

1−loop(`) + Woper
1 (`) q +O(q2), (6.5.24)

is computed by the subleading order correction in q in equation (6.4.85) as

Woper
1 (`) =

`2

8
+

(m2
0 −m2)(m2

∞ −m2
1)

8(`+ 1)(`− 1)
(6.5.25)

=
(`±m0 + m + 1)(`+ m1 ±m∞ + 1)

16`(`+ 1)
(6.5.26)

+
(`±m0 −m− 1)(`−m1 ±m∞ − 1)

16`(`− 1)

− 1
8
(m2 −m2

0 + m2
1 −m2

∞ − 1)− 1
2
(1 + m)(1 + m1),

up to an integration constant that is independent of `.
Comparing this to the 1-instanton contribution to the Nekrasov-Shatashvili

effective twisted superpotential for the SU(2) theory with four hypermultiplets,
given in equation (6.1.13), we conclude that

Woper
1 (a) = W̃eff

1 (a), (6.5.27)

after setting the integration constant. That is, Woper
1 (a) computes the 1-instanton

correction to the Nekrasov-Shatashvili effective twisted superpotential, up to a
“spurious” factor that does not depend on the Coulomb parameter a.
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So far we have hidden the dependence on ε, but let us now reintroduce this by
scaling all parameters a and mk as a 7→ a

ε and ml 7→ ml
ε , respectively. It follows that

the ε-expansion of Woper
1 (a) is simply

Woper
1 (a, ε) =

1
ε2

a4 + (m2
0 −m2)(m2

∞ −m2
1)

4a2 (6.5.28)

+
∞

∑
k=0

ε2k (m
2
0 −m2)(m2

∞ −m2
1)

4a2k+4 .

In particular, it does not have any odd powers in ε.

6.5.2 Superconformal SU(3) theory with N f = 6

Comparing the monodromy traces Moper
α of the generalized Heun’s opers around

the pants curve α, given in equation (6.4.92), to the monodromy traces Mα in terms
of the higher length-twist coordinates L1, L2, T1, T2, given in equation (5.4.39), yields
the identifications

L1 = eπi`1 , L2 = eπi`2 . (6.5.29)

Equating the eigenvalues of the local monodromies at the punctures, by compar-
ing equations (5.4.28) to (6.3.60) for maximal punctures and (5.4.29) to (6.3.74) for
minimal punctures, yields the identifications

M0,i = eπim0,i , M = −eπim, M1 = −eπim1 , M∞,i = eπim∞,i . (6.5.30)

Next, we want to find the twists T1 and T2 as a function of the lengths L1 and
L2 on the locus of generalized Heun’s opers.

Leading order contribution

To leading order in q we need to equate equations (5.4.41) and (5.4.42), which
capture the monodromy along the 1-cycle β on C in terms of the twist coordinates
T1 and T2 as

Tr Mβ = N◦ + N(L1, L3)T1 + N(L2, L3)T2 + N(L1, L2)
T1

T2
(6.5.31)

+ N(L2, L1)
T2

T1
+

N(L3, L2)

T2
+

N(L3, L1)

T1
,

Tr M−1
β = N◦ + N(L1, L3)T1 + N(L2, L3)T2 + N(L1, L2)

T1

T2
(6.5.32)

+ N(L2, L1)
T2

T1
+

N(L3, L2)

T2
+

N(L3, L1)

T1
,
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to equations (6.4.106) and (6.4.107), respectively, which capture the monodromy of
the generalized Heun’s equation to the leading order in q as

Tr Moper,0
β = D◦ + D(`1, `3) q

`3−`1
2 + D(`2, `3) q

`3−`2
2 + D(`1, `2) q

`2−`1
2

(6.5.33)

+ D(`2, `1) q
`1−`2

2 + D(`3, `2) q
`2−`3

2 + D(`3, `1) q
`1−`3

2

Tr
(

M(oper,0
β

)−1
= D◦ + D(`1, `3) q

`3−`1
2 + D(`2, `3) q

`3−`2
2 + D(`1, `2) q

`2−`1
2

(6.5.34)

+ D(`2, `1) q
`1−`2

2 + D(`3, `2) q
`2−`3

2 + D(`3, `1) q
`1−`3

2

and solve T1 and T2 as a function of L1 and L2.
With the identifications (6.5.29) and (6.5.30) we can check that N◦ equals D◦

and that N◦ equals D◦.
Furthermore, since

N(Lk, Ll)

N(Lk, Ll)
=

D(`k, `l)

D(`k, `l)
= M1M4, (6.5.35)

it is sufficient to solve the equation

Tr Mβ = Tr Moper,0
β (6.5.36)

for T1 and T2.
By repeatedly using the identity (6.5.7) we can simplify the quotient

D(`k, `l)

N(`k, `l)
= D̃↑(`k)D̃↓(`l)D̃∗(`k, `l), (6.5.37)

to a product of gamma functions.
Here,

D̃↑(`k) :=
8π3i

D↑(`k)N(`k)
=

3

∏
j=1

√√√√√√Γ
[

1+m+m0,j−`k
2

]
Γ
[

1−m1+m∞,j−`k)
2

]
Γ
[

1−m−m0,j+`k
2

]
Γ
[

1+m1−m∞,j+`k)
2

] , (6.5.38)

whereas

D̃↓(`k) =
8π3i

D↓(`k)N�(`k)
= D̃↑(`k)

−1. (6.5.39)
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Furthermore,

D̃?(`k, `l) :=
D?(`k, `l)N?(`k, `l)

16π4 (6.5.40)

=
Γ
[
1 + `k−`l

2

]
Γ
[
`k−`l

2

]
Γ
[
`l−`k

2

]
Γ
[
1 + `l−`k

2

]
√√√√√√Γ

[
1 + `k +

`l
2

]
Γ
[
`k +

`l
2

]
Γ
[
1− `k

2 − `l)
]
Γ
[
− `k

2 − `l

]
Γ
[
− `k − `l

2

]
Γ
[
1− `k − `l

2

]
Γ
[
`k
2 + `l)

]
Γ
[
1 + `k

2 + `l

] .

It follows from the last four equations that

D(`k, `l)

N(`k, `l)
=

N(`l, `k)

D(`l, `k)
(6.5.41)

and also that

D(`1, `3)

N(`1, `3)

N(`2, `3)

D(`2, `3)
=

D(`1, `2)

N(`1, `2)
. (6.5.42)

This implies that equation (6.5.36) is solved by the coupled system of equations

T1 =
D(`3, `1)

N(`3, `1)
q
`1−`3

2 (6.5.43)

T2 =
D(`3, `2)

N(`3, `2)
q
`2−`3

2 .

The generating function Woper(`1, `2) of the locus of generalized Heun’s opers
is defined as

1
2

log T1 = ∂`1Woper(`1, `2) (6.5.44)

1
2

log T2 = ∂`2Woper(`1, `2),

so that for instance

∂`1Woper(`1, `2) =

1
4

log
Γ
[
1 + `3−`1

2

]2
Γ
[
`3−`1

2

]2

Γ
[
`1−`3

2

]2
Γ
[
1 + `1−`3

2

]2

Γ
[
1 + `3−`2

2

]
Γ
[
`3−`2

2

]
Γ
[
1 + `2−`1

2

]
Γ
[
`2−`1

2

]
Γ
[
`2−`3

2

]
Γ
[
1 + `2−`3

2

]
Γ
[
`1−`2

2

]
Γ
[
1 + `1−`2

2

] (6.5.45)

1
4

3

∑
j=1

log
Γ
[

1−m−m0,j+`1
2

]
Γ
[

1+m+m0,j−`3
2

]
Γ
[

1+m1−m∞,j+`1)
2

]
Γ
[

1−m1+m∞,j−`3)
2

]
Γ
[

1+m+m0,j−`1
2

]
Γ
[

1−m−m0,j+`3
2

]
Γ
[

1−m1+m∞,j−`1)
2

]
Γ
[

1+m1−m∞,j+`3)
2

] .
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To leading order in q, in terms of the function Υ(x) defined in equation (6.5.13),
we thus find that

Woper(`1, `2) =
`2

1 + `2
2 + `1`2

2
log q + Woper

anti−hyp(`1, `2, m, m0,1, m0,2) (6.5.46)

+ Woper
vector(`1, `2) + Woper

hyp (`1, `2, m1, m∞,1, m∞,2) + O(q)

where

Woper
vector(`1, `2) = −

1
2

3

∑
j=1

Υ
[`j − `j+1

2
]
− 1

2

3

∑
j=1

Υ
[`j+1 − `j

2
]

(6.5.47)

Woper
anti−hyp(`1, `2, m, m0,1, m0,2) =

1
2

3

∑
j,k=1

Υ
[1−m−m0,k + `j

2
]

(6.5.48)

Woper
hyp (`1, `2, m1, m∞,1, m∞,2) =

1
2

3

∑
j,k=1

Υ
[1 + m1 −m∞,k + `j

2
]
, (6.5.49)

up to an integration constant that is independent in `1 and `2.
If we identify the length coordinates `i with the Coulomb parameters ai, the

above expressions agree with the classical and 1-loop contributions to the Nekrasov-
Shatashvili effective twisted superpotential W̃eff for the SU(3) gauge theory cou-
pled to six hypermultiplets. Precisely, we find the 1-loop contribution in agreement
with the “Liouville scheme” regularization method as explained earlier.

Instanton contributions to Woper may be obtained by computing the monodromies
of the generalized Heun equation up to a higher order in q, following the strategy
of §6.4.1. We leave this for future work.

6.6 WKB asymptotics

In this section we remark on the relation of our approach, exact in ε but ex-
panding in q, to another approach used in the literature where one expands in ε

instead.
Given an ε-oper ∇oper

ε there is yet another method to compute its monodromy
representation, called the “exact WKB method” [83, 71, 84]. We will review this
approach in §6.6.1, following [71].

In §6.6.2 we compare the monodromy representation for the oper ∇oper
ε ob-

tained from the exact WKB method to that obtained from the abelianization map-
ping. We conclude ∇oper

ε is abelianized by the Borel sums (defined below) in the
direction ϑ = arg ε of its WKB solutions.

154



As a consequence, this implies that the spectral coordinate Xγ(∇oper
ε ) has an

asymptotic expansion in the limit ε→ 0 given by

Xγ(∇oper
ε ) ∼ exp

(∮
Sodd(ε)dz

)
, (6.6.1)

where Sodd(ε) is a solution to the Riccati equation (6.6.7). These WKB-asymptotics
relate the Nekrasov-Rosly-Shatashvili correspondence to the approach of com-
puting the ε-asymptotics of the effective twisted superpotential W̃eff(a, q, ε) using
quantum periods (pioneered in [72] for the pure SU(2) gauge theory).

In §6.6.3 we conclude that while the ε-asymptotics of the effective twisted su-
perpotential may be found by computing quantum periods, the analytic result is
found by computing the Borel sums of the quantum periods in a critical direction
ϑ0 corresponding to a Fenchel-Nielsen network.

Whereas we restrict ourselves to K = 2 in this section, a similar discussion
holds for higher rank.

6.6.1 Monodromy representation from exact WKB

We start off with a brief review of the exact WKB method, following [71, 84].
We rephrase some of the previously introduced notions in the language commonly
used in the exact WKB literature.

Let ε be a small complex parameter with phase ϑ. Fix an SL2 ε-oper∇oper
ε on C

locally given by the differential operator

D(ε) = ε2∂2
z −Q(z, ε), (6.6.2)

where Q(z, ε) = ∑N
j=0 Qj(z)εj is a polynomial in ε with coefficients Qj(z) that are

meromorphic on C, satisfying conditions outlined in [84]. The principal part Q0(z)
of Q(z, ε) defines a meromorphic quadratic differential ϕ2 = Q0(z)(dz)2 on C.

The zeroes and poles of ϕ2 on C are called turning points and singular points,
respectively. Stokes curves are paths on C emanating from the turning points such
that

e−iϑ√ϕ2(v) ∈ R (6.6.3)

for every nonzero tangent vector v to the path. We orient the Stokes curves such
that the real part of e−iϑ ∫ z√

ϕ2 increases along the trajectory in the positive direc-
tion. We assign signs + and − to the singular poles so that the trajectories with
positive directions flow from − to +.
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Stokes curves oriented away from turning points are called dominant, while
those oriented towards turning points are called recessive. The Stokes curves, the
turning and the singular points form a graph on C which is called the Stokes graph
Gϑ(ϕ2).

The WKB ansatz for the solutions to the differential equation(
ε2∂2

z −Q(z, ε)
)

ψ(z) = 0 (6.6.4)

is by definition the series

ψ±(z) =
1√

Sodd
exp

(
±
∫ z

z0

Sodd dz
)

, (6.6.5)

with base-point z0. Here

Sodd =
∞

∑
n=0

ε2n−1S2n−1 (6.6.6)

is the odd part of the formal solution S = ∑∞
k=−1 εkSk of the Riccati equation

S′(z) + S2 = ε−2Q0(z). (6.6.7)

Note that S−1 =
√

Q0.
Now, recall that a formal power series f (ε) = ∑∞

k=0 fkεk is said to be Borel
summable in the direction ϑ if

fB(y) =
∞

∑
k=1

fk
yk−1

(k− 1)!
(6.6.8)

converges in a neighbourhood of y = 0, can be analytically continued to some
connected open Ω containing the ray eiϑR≥0, and satisfies the bound

| fB(y)| ≤ C1eC2|y| (6.6.9)

on Ω. The Borel sum in the direction ϑ of f is then

Sϑ[ f ](ε) = f0 +
∫ e−iϑ∞

0
e−

1
ε y fB(y)dy, (6.6.10)

and this is an analytic function of ε whose asymptotic expansion in a sufficiently
small sector Sϑ = {ε ∈ C | |argε| <

π
2 , |ε| < const} is given by the original formal

series f .
Suppose that the differential ϕ2 is generic, such that there are no saddle trajec-

tories. Then the WKB solutions ψ± are Borel resummable in the direction ϑ in each
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connected region of C\Gϑ(ϕ2) [85]. The Borel sums of ψ± give analytic solutions
to the differential equation (6.6.4).

Any solution ψRb,± obtained upon Borel resummation in a region R can be an-
alytically continued into a neighbouring region R′. It is related to the solution
ψR

′
b,± obtained upon Borel resummation in the region R′ by a so-called connection

formula.
Say that we cross a dominant Stokes line clockwise with regard to the turning

point b that it emanates from. Then the Borel sums ψRb,± and ψR
′

b,± of

ψ± =
1√

Sodd
exp

(
±
∫ z

b
Sodd dz

)
, (6.6.11)

on either side of the Stokes line are related by the transformation

ψRb,− = ψR
′

b,− (6.6.12)

ψRb,+ = ψR
′

b,+ + iψR
′

b,−,

Indeed, ψRb,+ is dominant in this region, and hence is allowed to pick up a recessive
contribution without changing the WKB asymptotics.

Say that we cross a recessive Stokes line clockwise with regard to the turning
point b that it emanates from. Then the Borel sums ψRb,± and ψR

′
b,± on either side of

the Stokes line are related by the transformation

ψRb,+ = ψR
′

b,+ (6.6.13)

ψRb,− = ψR
′

b,− + iψR
′

b,+,

Indeed, in this situation ψRb,− is dominant, and hence is allowed to pick up a reces-
sive contribution without changing the WKB asymptotics.

With the above data we can produce the monodromy representation for the
SL2 oper ∇oper

ε . Suppose that we want to compute the monodromy matrix along
a path C0 with begining and end point at z0 with respect to the Borel sums of the
WKB solutions ψ±. Label the Stokes regions that the path C0 crosses as Ul (with
l increasing) and say that ψl

± is the Borel sum in Stokes region Ul. Then we can
determine the monodromy matrix along C0 by computing the basis transformation
that relates ψl+1

± to ψl
±.

Let b be the turning point that the Stokes line emanates from. The connection
formulae tell us how to relate the (local) Borel sums ψRb,± in the neighbouring re-
gions Ul across Stokes lines. The transformation is of the form

(ψRb,+, ψRb,−) = (ψl+1
b,+ , ψl+1

b,− )V l,l+1, (6.6.14)
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where the matrix V l,l+1 is determined by equation (6.6.12) or (6.6.13). It depends
on the type of the Stokes line and the direction of crossing.

We would like to know the transformation in terms of the Borel sums ψR± , which
are defined with respect to the base-point z0. Now ψR± differs from ψRb,± by the
transformation

(ψR+ , ψR− ) = (ψRb,+, ψRb,−) Db
z0

, (6.6.15)

where Db
z0

is the Borel sum of the matrix exp
(
+
∫ b

z0
Sodd dz

)
0

0 exp
(
−
∫ b

z0
Sodd dz

)  . (6.6.16)

(Note that since the integrals do not depend on the position z, the Borel summed
Db

z0
does not depend on the Stokes region.)

Hence we find that ψl+1
± and ψR± are related by the transformation

(ψR+ , ψR− ) = (ψl+1
+ , ψl+1

− ) Ṽ l,l+1
z0

, (6.6.17)

with connection matrix

Ṽ l,l+1
z0

= (Db
z0
)−1 V l,l+1 Db

z0
. (6.6.18)

The monodromy matrix along the path C0 is then found by multiplying all connec-
tion matrices Ṽ l,l+1

z0 along it.
If the differential equation (6.6.4) is Fuchsian, the resulting monodromy repre-

sentation may be expressed in terms of the characteristic exponents at the regular
singular points and the Borel sums (in the direction ϑ) of the contour integrals

exp (Vγ) := exp
(∮

γ
Sodd dz

)
(6.6.19)

along 1-cycles γ on the covering Σ. The exponent Vγ is called the Voros symbol for
the cycle γ.

So far we have kept the phase ϑ = arg ε fixed. The connection formulae (6.6.14)
describe the analytic continuation of the Borel sums ψb,± of the WKB solutions in
the z-plane. Let us now consider what happens if we vary the phase ϑ. We make
the dependence on ϑ explicit in the notation by writing ψϑ

b,±.
Suppose a Stokes line crosses a point z ∈ C at a critical phase ϑ0. Then the Borel

sums ψϑ0−δ
b,± and ψϑ0+δ

b,± are not equal, but related by connection formulae similar

158



to (6.6.14) in a neighbourhood of the point z, for small enough δ. This is the so-
called “Stokes phenomenon”. The Borel sums ψϑ

b,± do have the same asymptotic
expansion, given by ψb,±, in the whole sector {ε ∈ C | |θ − ϑ0| < π/2, |ε| � 1}.

The Borel sums of the Voros symbols Vγ are affected by the Stokes phenomenon
as well. The Voros symbol Vγ is Borel summable (in the direction ϑ) if the cycle γ

does not intersect with a saddle trajectory of the Stokes graph Gϑ(ϕ2). This Borel
summability is broken if a saddle trajectory appears, say at the phase ϑ0. The
Borel sums of the Voros symbol Vγ in the directions ϑ0 ± δ are related by ”jump
formulae”, for sufficiently small δ (see for instance [84] for explicit expressions).
Of course, both Borel sums do have the same asymptotic expansion in the limit
|ε| → 0, given by the Voros symbol Vγ itself.

6.6.2 Relating exact WKB to abelianization

The above procedure of finding the monodromy representation using the exact
WKB method is very similar to finding the monodromy representation of a flat
SL2 connection ∇ using the abelianization mapping. In fact, in this section we
show that the resulting monodromy representations are equivalent on the locus of
opers.7

Fix an ε-oper∇oper
ε locally given by (6.6.2), with fixed phase ϑ = arg ε. It is easy

to see that the corresponding Stokes graph Gϑ(ϕ2) and spectral network Wϑ(ϕ2)

are equivalent notions. Indeed, the Stokes curves of the Stokes graph Gϑ(ϕ2) have
the same definition as the walls of the spectral networkWϑ(ϕ2). Furthermore, the
labels of the walls determine the orientations of the Stokes curves and vice versa.
In particular, notice that the labels of the walls in the spectral network are chosen
in such a way that the recessive (or small) section si of the flat connection ∇oper

stays invariant across a wall.
Let us remind ourselves how we compute the monodromy along the path C0

for any flat SL2 connection ∇ using the abelianization method with respect to the
spectral networkWϑ(ϕ2) (see §5.3, or for some more detail §6 and §7 of [4]). Sup-
pose the flat SL2 connection∇ is abelianized with respect toWϑ(ϕ2) by the equiv-
ariant connection ∇ab. To find the monodromy of ∇ along C0 we cut the path C0

into a collection of smaller paths ℘ that do not cross any walls nor branch-cuts of

7While finalizing this work we heard about an alternative argument from A. Neitzke, proved
by N. Nikolaev [86].

159



Wϑ(ϕ2). The monodromy along C0 is then given by the product of abelian paral-
lel transport matrices D℘ over all paths ℘, where we splice in a branch cut matrix
when crossing a branch cut and a unipotent matrix Sw when crossing a wall.

As is shown in [4], and reviewed in §5.3, the abelianization mapping is unique
for any K = 2 Fock-Goncharov or (resolution of a) K = 2 Fenchel-Nielsen spectral
network. Furthermore, the unipotent matrices Sw are of a rather special form.
They have 1’s on the diagonal, and the only nonzero off-diagonal component of
Sw can be written as the abelian parallel transport of ∇ab along an auxiliary (or
detour) path that starts at a lift of the basepoint w, follows the wall in the opposite
orientation, circles around the branch point b, and returns to the other lift of the
basepoint w.

More precisely, the previous description is valid if we choose the branch cut
matrix (

0 1
−1 0

)
, (6.6.20)

as is conventional. If instead we choose the branch cut matrix to be the quasi-
permutation matrix (

0 i
i 0

)
, (6.6.21)

the nonzero off-diagonal component of Sw is multiplied by an additional factor±i.
Let us now decompose the connection matrix Ṽ l,l+1

z0 from equation (6.6.18) as

Ṽ l,l+1
z0

= (Dw
z0
)−1 Sw Dw

z0
. (6.6.22)

Then the matrix

Sw = (Db
w)
−1 V l,l+1 Db

w. (6.6.23)

has as only nonzero off-diagonal component the Borel sum of

exp
(
±
∫ b

w
Sodd dz

)
(±i) exp

(
∓
∫ w

b
Sodd dz

)
, (6.6.24)

where two signs in the exponentials are opposite and depend on the orientation of
the Stokes curve, whereas the sign in front of the factor i depends on the direction
of crossing the Stokes curve.

It follows that the monodromy representation for the oper∇oper
ε obtained using

the exact WKB method can be brought in the form of a monodromy representation
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obtained using the abelianization mapping. In fact, it shows that ∇oper
ε is abelian-

ized in each region l by the Borel sums ψR± (in the direction ϑ) of the WKB solutions
ψ± of the differential equation (6.6.4).

Indeed, with respect to this basis the abelian parallel transport matrix is the
Borel sum of the matrix

D℘ =

 exp
(
+
∫
℘ Sodd dz

)
0

0 exp
(
−
∫
℘ Sodd dz

)  , (6.6.25)

while the branch cut matrix is of the non-conventional form (6.6.21), due to the
square-root

√
Sodd in the denominator of the definition of ψ±, and the nonzero

off-diagonal component of the unipotent matrix Sw is the Borel sum of the expres-
sion (6.6.24).

Thus we conclude the monodromies obtained from the exact WKB method are
equivalent to the monodromies obtained through the abelianization mapping on
the locus of ε-opers.

In particular, this relation shows that the spectral coordinates logXγ(∇oper
ε )

are equal to the Borel sums (in the direction ϑ) of the Voros periods Vγ. As an
immediate consequence it follows that the spectral coordinates Xγ(∇oper

ε′ ) have
the WKB asymptotics

Xγ(∇oper
ε′ ) ∼ exp

(∮
γ

Sodd(ε
′) dz

)
(6.6.26)

in the limit ε′ → 0 with | arg ε′− ϑ| < π/2. (This was already shown by a different
argument in [1].) We emphasize that while the spectral coordinates Xγ are thus
rather sensitive to the choice of the phase ϑ, their WKB asymptotics are not. For
example, the spectral coordinates for the two resolutions of a Fenchel-Nielsen net-
work generated by a Strebel differential differ, but their WKB asymptotics in the
limit ε→ 0 agree.

The right-hand side of equation (6.6.26) is also known as a quantum period

Πγ(ε) = exp
(∮

γ
Sodd(ε) dz

)
. (6.6.27)

6.6.3 Quantum periods and non-perturbative corrections

In the main part of this chapter we computed the generating function of the
space of ε-opers on the four-punctured sphere P1

0,q,1,∞, with respect to the com-
plexified length-twist coordinates (`, τ), by computing the monodromy represen-
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tations and comparing with the formula in terms of the coordinates. The complex-
ified length-twist coordinates were realized as spectral coordinates

L = − exp(πi`) (6.6.28)

T = − exp(2τ)

by abelianizing with respect to a Fenchel-Nielsen network W . The discussion in
§6.6.2 indicates an alternative way of computing this generating function.

Fix the phase ϑ0 and the mass parameters ml such that e−2iϑ0 ϕ2 is a Strebel
differential, generating a Fenchel-Nielsen network isotopic toW . This is certainly
possible in the weakly coupling limit q→ 0 where

u =
a2

0
2
+O(q), (6.6.29)

with a0 =
∮

A
√

ϕ2.
According to the discussion in §6.6.2, the length-twist coordinates (`, τ±) re-

stricted to the space of ε-opers may be computed as the Borel sums of the Voros
symbols VA and VB, respectively, in the direction arg ε = ϑ0 ± δ for sufficiently
small δ. Let us denote these Borel sums as V±A and V±B , respectively.

The generating function of ε-opers is found by inverting the relation

`

2
= V+

A (H, q, ε) = V−A (H, q, ε), (6.6.30)

where H denotes the accessory parameter, and substituting the result into the ex-
pression for V±B (H, q, ε), to find

∂Woper(`, q, ε)

∂`
=

V+
B (`, q, ε)

4
+

V−B (`, q, ε)

4
. (6.6.31)

By construction, this generating function agrees analytically with the generating
function of opers as computed in §6.5 (after reintroducing the ε-dependence in the
latter).

The ε-asymptotics of the generating function Woper(`, q, ε) are simply obtained
by computing the Voros symbols VA and VB in an ε-expansion as quantum peri-
ods. This relates the Nekrasov-Rosly-Shatashvili correspondence to the approach
of computing the ε-asymptotics of the NS superpotential W̃eff(a, q, ε) using quan-
tum periods [72].

The exact NS superpotential W̃eff(a, q, ε) is found by Borel resumming its asymp-
totic expansion in a critical direction ϑ0 corresponding to a Fenchel-Nielsen net-
work. In particular, we find that in this critical direction the NS superpotential
does not acquire any non-perturbative corrections.
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Chapter 7

Uniqueness of abelianization for
Grassmannian networks

In Chapter 5 we showed that the higher length-twist networksW induce unique
abelianizations of flat connections∇ once equipped with an appropriate notion of
framing at the punctures and/or annuli. In this chapter we consider another class
of networks W equipped with appropriate framing data and consider whether
there is a uniqueW-abelianization compatible with this data.

The relevant moduli spaces will be essentially Grassmannians, and the corre-
sponding spectral coordinates are expected to be cluster coordinates in some sense
— we leave a detailed study of this structure to future study and here focus on the
more basic problem of existence and uniqueness of abelianization in this setting.

We will be interested in using a spectral network W to study certain mero-
morphic flat connections on P1 with an irregular singularity at infinity, and no
singularities elsewhere. In particular, the monodromy is trivial. This means that
only the Stokes geometry remains, and the connections are characterized by their
Stokes data. The main question we would like to answer, motivated below, is

Given an abelianization “at infinity”, to what extent does it extend uniquely, up to
equivalence, to an abelianization over the whole surface?

By “at infinity” here we simply mean that the isomorphism ι is specified on the
componenets of C \W adjacent to ∞, but not given to us completely.

In this chapter we study this problem and give some partial results that the
author has obtained thus far, focusing on examples. We hope to develop these
results further and continue studying the many questions which follow.
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7.1 Motivation and setup

It is important to establish the basic properties of various classes of spectral
networks such as their geometry, the properties their of abelianizations, etc. On
the other hand, the particular class of networks we will study here appears “in real
life” in a conjecture of A. Neitzke describing an application of the GMN integral
operators [1] to compute certain invariants describing the asymptotics of harmonic
maps

g : C→ SO(3)\SL(3, R) (7.1.1)

It is thus important to ensure that the spectral coordinates always exist are well-
defined in this problem.

Furthermore, it turns out the moduli spaces in this context are essentially Grass-
mannians Gr(3, n + 3). The spectral coordinates are expected to be cluster vari-
ables in the corresponding cluster structure on the homogeneous coordinate ring,
with topological changes in the network corresponding to mutations. We expect
the abelianization should be unique, at least when n ≤ 5, which corresponds pre-
cisely to the Grassmannians whose known cluster structure [87] contains finitely
many clusters.

7.1.1 Geometric setup

Fix some integer n ≥ 2, and let Di = (n− 3+ i) ·∞, and let B = ⊕3
i=2H0(C, K⊗i

C (Di))

denote the corresponding Hitchin base with “wild” singularities at ∞ and no sin-
gularities elsewhere.

Fix a point ϕ = (ϕ2, ϕ3) ∈ B, and write ϕi = Pi(z)dz⊗i for the i-differential
so that P2, P3 are polynomials with deg P2(z) < n and deg P3(z) = n. We will
sometimes set ϕ2 = 0 (this is motivated by the desire for the corresponding wild
Higgs bundle moduli space to be hyperkähler, see [88]). From this data and for
each choice of angle ϑ, we can produce a WKB spectral networkW , which we will
call the “Grassmannian networks”.

We will study meromorphic connections on the trivial rank 3 bundle E over P1,
with connection matrix A(z), holomorphic everywhere except ∞. We assume that
the characteristic polynomial of the leading term A0(z) in the expansion around ∞
is

λ3 + zn = 0. (7.1.2)

Let λi denote the eigenvalues of A0(z). It will be useful to define

164



Definition. Let∇ be a meromorphic connection as above. The Stokes rays of type
ij of the connection are given by ∫ z

λi − λj > 0, (7.1.3)

and the anti-Stokes rays of type ij are given by

e−iπ/2
∫ z

λi − λj > 0. (7.1.4)

An example of the kind of network we will study is Figure 7.1 below. In this figure
Stokes and anti-Stokes rays are the asymptotes of the walls going out to infinity.
They divide the plane into 2(n + 3) equal sectors.

Figure 7.1: A network with n = 3, with walls asymptoting to (anti)-Stokes rays.

We will use W to study connections ∇ on P1 with irregular singularity at in-
finity, and no singularities elsewhere. Furthermore, we will fix the (anti-)Stokes
ray structure up to rotation, but not the Stokes data itself. In particular, we will
denote by A3,n+3 the space of all connections with the characteristic polynomial
(7.1.2) and whose Stokes rays are of the same type as the network. The detailed be-
haviour of the network is not easy to predict, but the asymptotic structure is quite
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simple: if n is the degree of the polynomial, we have n + 3 Stokes and anti-Stokes
rays each, and all nondegenerate walls of the network asymptote to these rays, up
to rotation. We will call the collection of walls asymptoting to a given ray a cable.

7.1.2 Flags and framings

Generically, away from the Stokes and anti-Stokes lines, there is a canonical
ordering of the eigenvalues by “dominance”:

Reλ1 � Reλ2 � Reλ3 (7.1.5)

and thus eigenlines, yielding a flag FR associated to each sector. Intuitively, the
flag orders the (generically distinct) eigenlines according to the decay rate of the
corresponding formal solutions. A framing of ∇ is simply a flag in each sector,
so that we have a canonical framing associated to each ∇ ∈ MdR. Thus, we don’t
need to considerW-framed connections at all.

These eigenlines form a line decomposition E =
⊕3

i=1 Li. Furthermore, when
crossing a Stokes line only two lines are interchanged, meaning if we choose ar-
bitrary elements (s1, s2, s3) in adjacent regions R1,R2 separated by a wall of type
(ij), the transition matrices are of the “abelianization form” (5.3.1). In particular,
given two bases (sR1 , sR2 , sR3 ), (sR

′
1 , sR

′
2 , sR

′
3 ) associated to adjacent regionsR,R′,

Sc = diag + const ∗ Eji =

 ∗ 0 ∗
0 ∗ 0
0 0 ∗

 (7.1.6)

This is the structure we want to extend:
We will call such a structure (that is, a flag of line decompositions in each of the

2(n+ 3) Stokes regions satisfying the transition property (7.1.6)) an abelianization
of ∇ near infinity.

7.1.3 Grassmannians and cluster structures

It turns out that the moduli spaces of the connections we are studying are essen-
tially Grassmannians (up to a certain quotient). Roughly speaking, the canonical
flags produce n+ 3 distinct lines in the 3-dimensional E , which can dually be iden-
tified as 3-planes in n + 3 space. We avoid giving the details here for brevity, since
our concern is primarily in motivating interest in these networks and making the
link to cluster algebras.
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Recall the Grassmannian of k-planes in Cn Gr(k, n) is the set of k-planes up to
change of basis. It is well-known that Gr(k, n) is a smooth, compact, projective
variety. Recall the Plücker embedding

Gr(k, n) ↪→ P(∧kCn) (7.1.7)

is given by sending (v1, . . . , vk) 7→ v1 ∧ . . . ∧ vk. The Plücker coordinates xI

associated to an ordered k-tuple I = {i1, . . . , ik} is the homogeneous coordinate in
∧kC associated to I.

The homogeneous coordinate rings C[Gr(k, n)] for are known to possess cluster
structures [87]. The structure is simplest in the case of Gr(2, n). In that case one
draws an n-gon labelled clockwise from 1 to n. To each diagonal one associates
the Plücker coordinate xij. The clusters are the Plücker coordinates associated to
the edges of a triangulation, and the Plücker relations correspond to flips of a tri-
angulation. This specifies the cluster structure on C[Gr(2, n)]. For k = 3, it is
more complicated in general, but at least for Gr(3, 5) the k = 2 case suffices since
Gr(k, n) ' Gr(n− k, n).

We will in fact focus our attention exclusively on the case k = 3. The reason for
this is that, apart from the relatively simple case of k = 2, a theorem of Scott [87]
shows that the only Grassmannians (in the non-redundant range 2 < k ≤ n) whose
cluster algebra is of finite type1 are precisely the cases Gr(3, 6), Gr(3, 7), Gr(3, 8).
There is nothing stopping us from considering other values of k and n too, but for
these reasons we focus our attention on rank 3 connections here.

Each networkW produces a collection of spectral coordinatesXγ ∈ C[Gr(3, n+

3]. It is known in some examples that these coordinates always coincide exactly
with a cluster from the known cluster structure. Thus, one expects there should be
a canonical way to identify isotopy classes of spectral networks with the clusters
of the Grassmannians. We do not investigate the cluster structure here explicitly,
but it is one of our main motivations for considering this problem.

7.2 Abelianization

Recall from Chapter 4 the notion ofW-pairs and abelianization. All flat bundles
below are assumed to be SLK.

A W-pair (E,∇, ι,L′,∇ab) for a network W subordinate to the branched cov-
ering π : Σ→ C is the collection of data:

1that is, possessing finitely many clusters
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(i) A flat rank K bundle (E,∇) over C

(ii) A flat rank 1 bundle (L′,∇ab) over Σ′

(iii) An isomorphism ι : E|C′\W → π∗L′|C′\W

such that

(a) the isomorphism ι takes (the restrictions of) ∇ to π∗∇ab

(b) at each single wall w ⊂ W , ι jumps by a map Sw = 1 + ew ∈ End(π′∗L′|C′\W )

where ew : L′i → L′j if w carries the label ij. At each double wall w′w ι jumps
by a map Sw′Sw, with the ordering determined by the resolution.

Then an abelianization of some (E ,∇) is simply the remaining data (ι,L′,∇ab)

needed to form aW-pair.
Given some ∇, we would like to abelianize it. As usual, this can depend on

various data attached to punctures/annuli, but in our case there is a particular
canonical choice of this ”framing” data given by the eigenflags ordered by the
dominance of the eigenvalue. The appropriate notion of framing is given here by
the eigenflags attached to each asymptotic region. Equipped with this data, we can
ask the question,

Given an abelianization “at infinity”, to what extent does it extend uniquely, up to
equivalence, to an abelianization over the whole surface?

To answer this question we should think about what it boils down to. The
most nontrivial part of an abelianization is the isomorphism ι. One may think of
it as a collection of local trivializations of E given over each component R of the
complement of the network. This amounts to a collection of K sections of E given
over each component. Condition (b) then tells us what the change of basis matrix
should be between frames over cells with a common wall as a boundary. Since in
our case the flat sections are globally defined, we have a global trivialization and
we can identify the fibres of E with a single vector space E (abusing notation) and
have no bundles etc. to worry about. So we can work concretely by thinking of
abelianization as a collection of bases {sR1 , sR2 , sR3 } for E , one assigned to each R,
with this transition property. Then the question is about producing unique bases
satisfying the abelianization condition on the whole of C \W .

At first glance, it does not look like we are done yet. We have produced ι,
and have (E ,∇), but need to find (L′,∇ab) to complete theW-pair. However, we
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can take L′ to be the trivial bundle (as it must be trivializable) and use ι to define
∇ab := ι∗∇ which is well-defined away from the (preimages of the) walls. Then
by Proposition 4.2.1, ∇ab extends uniquely across the walls, and (E ,∇, ι,L′,∇ab)

is the uniqueW-pair as desired.
For the purpose of stating our solution, we will henceforth say ∇ is generic if

no two flags associated to adjacent regions near infinity are equal — that is, if no
cable matrix is strictly diagonal.

With this in mind, we provide a solution to the above question first in some
examples for the case of n = 2, 3, corresponding to Gr(3, 5) and Gr(3, 6), below,
before turning to the question of how to generalize these somewhat ad-hoc meth-
ods to the whole class of networks of interest.

7.3 Particular examples

7.3.1 Gr(3,5) network

The simplest of all the networks involved is the one related to Gr(3, 5):

12

32

31

21

23

12

13

31

13
21

(123) (123)

Figure 7.2: An n = 2 network.
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Our problem is to determine whether the abelianization at infinity arising from
the asymptotics of the connection is sufficient to determine a bona fideW-abelianization.
Given a generic connection ∇, a W–abelianization at infinity amounts to the fol-
lowing. On each of the ten “big” domainsR, we have a collection of bases (sR1 , sR2 , sR3 )

of the vector space E of global flat sections of∇ and the matrix that goes (sR
′

1 , sR
′

2 , sR
′

3 ) =

(sR1 , sR2 , sR3 ) · Sc between adjacent domains via a cable c should be of the form (say,
for a cable of type (ij) = (31))

Sc = diag + const ∗ Eji =

 ∗ 0 ∗
0 ∗ 0
0 0 ∗

 (7.3.1)

where Eij is the elementary matrix with 1 in the (i, j)th position. We may rescale
any of the bases without changing theW–abelianization up to equivalence. So for
any wall (again say of type (31)), one can bring it into the “nice” form

Sc = 1 + sc · Eji =

 1 0 sc
0 1 0
0 0 1

 (7.3.2)

To extend this to a trueW–abelianization, we need a basis on all of the domains,
with each jump Sw at the walls (not just the cables) with the above property. Let
us consider here the uniqueness of such an extension.

Proposition 7.3.1. Let W be the network in Figure 7.2, and let ∇ ∈ A2,5 be generic.
Given aW–abelianization at infinity of ∇, there is a uniqueW-abelianization which re-
stricts to it.

Proof. Suppose there is an abelianization, so that we are given bases on all of the
domains, each basis depicted by a dot in Figure 7.3. Consider the one in the center,
(sR1 , sR2 , sR3 ), where the grey dot is.
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1
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12
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Figure 7.3: Making as many walls as possible nice.

Follow the blue paths in either direction, each time entering a new domain and
rescaling the basis in this domain to trivialize (put into the nice form) the wall just
crossed. The walls which are now in the “nice” form are shown in yellow. Now
consider the joints at which no birthing takes place. We know 3 of of the 4 walls are
nice, but it follows from triviality around a loop that a) the fourth wall is also nice
(shown in dotted-yellow), and b) the incoming and outgoing walls of the same
type actually have the same S-matrix.

So now all yellow and dotted-yellow walls are nice, and the distinct walls we
wish to solve for with are actually those depicted in colour (which are nice), plus
a, b, c, d (which are not necessarily nice) in Figure 7.4:
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Figure 7.4: All walls are nice except those in black.

(the single-wall-cables on the sides were part of the initial data, so we don’t
need to solve for them).

Now we can impose the condition that loops not encircling the origin should
give the identity. First we check triviality around each branch point. Since every
emanating wall except b, c are nice, they just have one nontrivial entry, and the
condition forces each corresponding sw to be certain very simple ratios of s1,9,10,18

corresponding to the black walls, uniquely. The result for b and c is

Sb =

 −
s9
s10

1
s10

0
0 1

s9
0

0 0 −s10

 , Sc =

 − s1
s18

0 0
0 −s18 0
1

s18
0 1

s1


Triviality at the lower joint implies Sd is nice and its nontrivial entry is the prod-

uct sd = s14 = −s12s16 = −(s10s18)
−1.

Finally, we are left with the upper joint, which should satisfy

ScS3SaS7Sb = 13 (7.3.3)

which forces

Sa =


s10s18
s1s9

0 0
0 − s9

s18
0

0 1 − s1
s10


In particular, there is only one possible solution.
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7.3.2 Gr(3,6) network

A similar but more complicated argument can be made for the network:

31 3121 21

32

12

23131323

12

32

32

12

12
23 23

12

21

23

21

23

21

32 32
21

(12)

(12) (12)

(23) (23)

(23)

Figure 7.5: A particularly symmetric looking n = 3 network.

Proposition 7.3.2. Let W be the network of Figure 7.5, and let ∇ ∈ A3,6 be generic.
Given aW–abelianization at infinity of ∇, there is a uniqueW-abelianization which re-
stricts to it.

We omit the proof, but it is similar to the previous case with more steps.
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7.3.3 Gr(3,9) network

Here is one example of a Gr(3,9) network to illustrate the more complicated
behaviour when n > 5 , though we do not attempt to solve it:

Figure 7.6: A network with n = 6 (we omit labels and orientations).

It would be interesting to find an example explicitly demonstrating the appear-
ance of either infinitely many walls or infinitely many network topologies upon
varying the phase, both of which are expected to occur.
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7.4 A Cleaner Proof

We can do away with the issue of niceness by making the following observa-
tion. Consider the connection∇ab, but restricted to the complement of branch cuts
going off to infinity, preferably not intersecting a wall. Then this∇ab

cut is necessarily
the trivial connection, and we can find a gauge in which all its parallel transport
matrices are simply the identity. This ensures that all the S-matrices are nice, at
the expense of turning the permutation matrix at the branch cut into a ”quasi-
permutation” matrix which has nontrivial parameters. The uniqueness problem
becomes a question of solving for the S-walls in terms of these parameters.

The constraints determining the isomorphism ι, via the matrices Sw, are now

31

 

31

13

13

 

 

 
31

 

13

31

31

 

 

which has a unique solution. Thus we see that to each branch point we can asso-
ciate one parameter λ and assume all the walls emanating are nice, at the cost of
introducing a so-called “monodromy cut”, replacing the permutation matrix with
a quasi-permutation matrix.

In principle one can resolve each network into one with simple branch points
by perturbing ϕ, but it is sometimes preferred to deal explicitly with networks
whose branch points have cyclic monodromy. We can also compute the local
model for this behaviour, which looks as follows:
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(123)

12

12

12 32
31

21
2313

Figure 7.7: The local behaviour around a 3-cyclic branch point.

Next, we write down the constraint around a joint — when all walls are nice,
it is constrained so that the birthed wall has s-parameter equal to (±1 times, de-
pending on the labeling) the product of the s-parameters of the incoming walls,
depicted below:

Finally, we check the constraint whenever a wall intersects a branch cut (we
have picked some labels, but any other situation is related by relabelling):
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31 31

31 31

Figure 7.8: The various configurations crossing a branch cut.

In particular, we have again an explicit expression for the monomial attached
to a wall even after it crosses a branch cut.

As a result of the above local computations, we see that all walls can be taken
to be nice, and the nontrivial entry for every Sw depends on a set of parameters
{λi}, one associated to each branch point. Thus, the (Laurent) monomials attached
to the walls near infinity are fully determined in terms of the parameters associ-
ated to the branch points, which coincide with the off-diagonal terms of certain
S-matrices. Furthermore, we can very easily determine the expressions by start-
ing at a branch point bi, where all emanating Sw and Pbi have an explicit form in
terms of λi, following the walls and modifying the associated (Laurent) monomial
whenever a branch cut is crossed, or multiplying two monomials at the birth from
a joint. This is clearly a well-defined procedure that yields a single monomial in
the λi’s associated to each wall near infinity.

Now, the data we are given is that of constants ci associated to every cable, and
the constraints imply the sum of terms associated to the walls of a cable must equal
ci. Clearing denominators on these pi − ci, we call the ideal IW generated by the
resulting polynomials the abelianization ideal IW associated toW .
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The question thus becomes to show the existence and uniqueness of a solution
to the set of polynomial equations given by IW has a unique solution. In other
words, that the corresponding affine variety is a point.

7.4.1 Gr(3,5) examples

Let us first go back to our original network which we previously solved, Figure
7.2. Applying the new approach using our rules, we can obtain the terms associ-
ated to each cable:

Figure 7.9: Monomials attached to each wall at infinity.

The abelianization ideal IW is:

IW =〈1− c1x,−c2y− wy− 1,−c3y + wxy + wyz + 1, (7.4.1)

− c4z− xz + 1, 1− c5wz, 1− c6z,−c7w− wy− 1, (7.4.2)

− c8w + wxy− wyz + 1,−c9x− xz + 1,−c10xy− 1〉 (7.4.3)

where ci is the s-parameter of the corresponding cable transformation. Accounting
for the constraints between the ci arising from the triviality of traversing a large
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circle, one can readily verify the solution is unique and furthermore must exist for
generic (as defined above) initial data:

x =
1
c1

, y =
3
c3

, z =
1
c1

, w =
3
c3

(7.4.4)

Another example, this time with P2 6= 0, is the network of Figure 7.10 below.
We can depict our process of deducing the monomial attached to a wall visually
by letting a solid colour denote an s-parameter of λi and a dotted line of the same
colour denote − 1

λi
, and drawing an additional colour on the wall when necessary

due to birthing or crossing a branch cut. Then we have:

Figure 7.10: Another example using the rules to evaluate the cable terms, P2 6= 0.

This time, the abelianization ideal is:

IW = 〈−c1v− 1, y− c2,−c3 + vy + xz,−c4y + vy + xy− xz, (7.4.5)

−c5yz− y− z,−c6 − x, 1− c7xz,−c8vyz− vy− xz, (7.4.6)

−c9vxy− vy− xy− xz,−c10 + y + z〉 (7.4.7)
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One can again verify readily that there exists a unique solution to these equa-
tions whenever ci come from an abelianization at infinity of a generic connection.

7.4.2 Gr(3,6) examples

For n = 3 we find again that existence and uniqueness holds in examples, such
as the one depicted below.

Figure 7.11: Computing the polynomials for a randomly chosen n = 3 network.

Existence and uniqueness of solutions has held true in every example the au-
thor checked. In principle for n ≤ 5 this can be proved by brute force since there
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are expected to be a finite number of network topologies, but it would be much
more satisfying to find a more conceptual proof.

7.5 Towards a general proof

As we have seen in examples above, it is fairly straightforward, if tedious, to
check whether uniqueness holds for a given network. However, it is not so easy
to see why this should always be the case, or to check it individually for the large
(perhaps infinite) number of isotopy classes of networks that can be generated in
situations of interest.

Since we are dealing with solutions to systems polynomial equations, the the-
ory of Gröbner bases seems like a natural weapon of choice to try to get a better
hold on the problem. To that end, we provide here a lightning review of only the
elements of this theory that we need.

7.5.1 Gröbner bases

We end up with numerous examples of systems of polynomial equations in nb

variables, and we would like to conclude that the solutions are unique in each case.
The most natural systematic way to approach this question seems to be via the the-
ory of Gröbner bases. Given a polynomial ideal I = 〈 f1, . . . , fn〉 ⊂ C[x1, . . . , xN],
a Gröbner basis is essentially a “normal form” for writing this ideal – that is, a
particularly nice collection of polynomials (g1, . . . , gm) such that I = 〈g1, . . . gm〉.
The fundamental theorem of Buchberger is that these always exist, and are unique
once a particular monomial ordering is fixed.

The idea is that from the point of view of algebraic geometry, we can study a va-
riety with ideal I by studying an equivalent but simpler generating set (g1, . . . gm).
The crucial point is that it turns out one can read off many of the properties of the
variety, often by inspection!

In particular, the Gröbner basis (once computed) gives us an easy method to
check if the number of solutions is finite and how many there are. To state this, we
need to we fix a monomial ordering so that we can unambiguously say what the
initial term of a given polynomial f is. Then we define

Definition. The ideal generated by the initial terms of all the fi is called the initial
ideal of I. A monomial h ∈ C[x1, . . . , xN] is called standard if it is not contained in
the initial ideal.
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Then we have:

Proposition 7.5.1. The variety V(I) is a finite set if and only if the number of standard
monomials nstd is finite. In this case the number of solutions, counted with multiplicity, is
given by nstd.

Using this criterion, following the Buchberger algorithm explicitly ought to
show us exactly how the uniqueness properties arise in practice, i.e. what start-
ing property of the polynomial ends up propagating throughout the calculation to
give us the uniqueness.

In order to understand this, we will need examples to understand the pattern,
especially for higher values of n. The rules we have worked out in the previ-
ous subsection provide us with a simple algorithm for producing the polynomial
equations associated to a given network. We are thus able to easily generate a large
number of examples, whose properties will be studied in the future.

7.5.2 Future considerations

In summary, we have recast our original problem as follows

Problem. What can be said about the ideals IW , how do they depend on ϕ, and how
are these properties felt by the Buchberger algorithm?

An answer to this question will most likely require some understanding of the de-
pendence of geometry of the networks on our initial data, so we are led to consider:

Problem. What can we prove about the behaviour of the rays and the shape of the
spectral network by looking at the differentials ϕ?

If we are able to establish in full generality the basic properties we have studied
here, there are several questions that naturally follow. Can we compute the spec-
tral coordinates explicitly? Do spectral coordinates always yield cluster variables?
Roughly speaking, each network should correspond to a cluster — can we deter-
mine in general which cluster a given network’s spectral coordinates belong to?
The computations we have made along the way in this chapter should allow us to
go beyond the question of existence and uniqueness and actually examine these
questions in practice.

We hope to explore many of these questions and others in the future.
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Appendix A

Perturbation theory for the
generalized Heun equation

In this appendix we sketch the argument of [69] and its generalization to higher
rank equations. This result is crucial in establishing rigorously the lowest-order
asymptotics of the monodromy traces in Chapter 6. While the result is effectively
present in [69], it is not entirely clear there what the general statement should be.
Thus, we give a sketch following that article with some more general notation that
may serve as a reference.

A.1 Statement

The result will hold for equations with regular singularities

zr1(z + q)r2 ∂K
z w + P1(z, q)∂K−1

z w + . . . + PK(z, q)w = 0 (∗)

where Pi(z, q) are rational functions with singularities outside some small disc con-
taining 0 and q, and for which the limiting equation as q→ 0:

zr1+r2 ∂K
z w + P1(z, 0)∂K−1

z w + . . . + PK(z, 0)w = 0 (∗∗)

also has regular singularities (that is, for which all Pi(z, 0) are divisible by zr1+r2−K

— we can check that this is true in our situation). For simplicity, take r1 = K − 1,
r2 = 1.

The main idea is to rescale the equation (∗) by z = q t and prove the validity of
variation of parameters.
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Throughout, we assume z0 is a “basepoint” lying outside the closed disc 0 <

|q| < q0, and that z0 is a regular point of (∗) and (∗∗). We will usually assume it is
at z0 = 1

2 .

Applying the rescaling, we arrive at the rescaled versions of (∗), (∗∗):

tK−1(t + 1)∂K
t v(t) +

P1(qt, q)
qK−1 ∂K−1

t v(t) . . . + PK(qt, q)v(t) (?)

tK−1(t + 1)∂K
t u(t) + p1(t)∂tu(t)K−1 . . . + pK(t)u(t) (??)

where
pi(t) := lim

q→0

Pi(qt, q)
qK−i (A.1.1)

is required to exist.

Exponents will be denoted by the convention that the exponents of the equation
(∗) at the point p are denoted by ν

(p)
k . It is not too hard to check that (∗),(∗∗),(?),

and (??) all have the same exponents except that when the singularities coalesce
in (∗∗), the new exponents at 0 are modified– call them µ

(0)
k – and the ones at −q

disappear (obviously), and for (??) likewise but at ∞ instead. Furthermore,

µ
(0)
k = −µ

(∞)
k (A.1.2)

so we drop the superscripts and just define µk := µ
(0)
k . In summary, we have

unscaled scaled
q 6= 0 ν

(p)
k ν

(p)
k

q = 0 µk, p = 0 −µk, p = ∞
(A.1.3)

The main statements are (with some notations introduced momentarily):

Proposition A.1.1. To lowest order, we have

T0(q) ∼ V0(q) Γ U−1(q)Tl (A.1.4)

where Γ is the connection matrix going from ∞ to 0 for the hypergeometric equation with
exponents µk, ν

(0)
k at ∞, 0.

Theorem A.1.2. Suppose Re q > 0 and that the coefficient functions Pi(z, q) satisfy
zm1+m2−K | P(z, 0). Then the connection matrices have the asymptotic behaviour:

T∞(q)T−1
0 (q) = U(q) (Γ + q log q O(1))V−1

0 (q) (A.1.5)
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where Γ (which depends on µ
(0)
k = αk/2πi + (K− 1)/2) is the connection matrix from 0

to 1 for the limiting equation (??), O(1) means a matrix with components which are O(1),
and

U(q) = diag (qµ1 , . . . , qµk) , V0(q) = diag
(

qν
(0)
1 , . . . , qν

(0)
k

)
(A.1.6)

Theorem A.1.3. We have

T0(q)T−1
s (q) = V0(q)

(
M
(
I + q Q(q)

))
V−1

s (q) (A.1.7)

where Vp(q) = diag(qν
(s)
1 , . . . qν

(s)
K ), and Q(q) = O(1). Furthermore, the correction

Q(q) is a power series in q converges in some 0 < |q| < q0 and so may be determined
iteratively.

Thus the monodromy around, say, the A-cycle encircling 0 and −q is (denoting
S := T0T−1

s )

MA = diag(e2πiν(s)1 , . . . , e2πiν(s)K )S−1(q)diag(e2πiν(0)1 , . . . , e2πiν(0)K )S(q) (A.1.8)

recalling that M depends on α. Then we can impose that tr(M)A = −2 cosh(α)
to get conditions on Q(q), from which we can then determine MB.

Conventions, normalizations, etc.

Let the solutions of (∗) be normalized as

w(0)
k = zν

(0)
k Tk(z, q) (A.1.9)

w(q)
k = (z + q)ν

(s)
k T̃k(z, q) (A.1.10)

where Tk (resp. T̃k) is holomorphic at 0 (resp. −q) and satisfy Tk(0, q) = T̃k(0, q) = 1

We will always assume that z0 is a regular point of (∗) and therefore (∗∗) as
well, and that the only singularities within the disc |z| < |z0| are 0 and −q. Then
we define solutions at z0 by:

w(z0)
1 = 1 + (z− z0) r1(z, q) (A.1.11)

w(z0)
2 = (z− z0) + (z− z0)

2 r2(z, q) (A.1.12)
... (A.1.13)

w(z0)
K =

(z− z0)

(K− 1)!

K−1

+ (z− z0)
K rK(z, q) (A.1.14)
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for rk(z, q) some functions holomorphic in a neighbourhood of z = z0. This ensures
that w(z0)

i satisfy the initial conditions ∂
j
zwi(z0) = δi,j for 0 ≤ j < K.

Assume, furthermore, that yk(z) are solutions of (∗∗) with the same normaliza-
tion at z0. Then we also define solutions in a neighbourhood of 0:

y(0)k = zµk Xk(z), k = 1, 2, . . . , K (A.1.15)

where Xk(z) are holomorphic in a neighbourhood of 0 with Xk(0) = 1. The expo-
nents are assumed to be nonresonant i.e. no two µk differ by an integer—as is the case
for us .

In summary, notationally we have that w(s) denotes local solutions around a
singular point s of the perturbed equation (to avoid confusion, the solution at
z = −q will be denoted with superscript (s), for the “singularity” that we are vary-
ing), and w(z0) denotes local (holomorphic) solutions around the (regular) base-
point z0 = 1

2 .

Local solutions are related by the connection matrices w(s)
1 (z, q)

...
w(s)

K (z, q)

 = Ts(q)

 w(z0)
1 (z, q)

...
w(z0)

K (z, q)

 (A.1.16)

 w(0)
1 (z, q)

...
w(0)

K (z, q)

 = T0(q)

 w(z0)
1 (z, q)

...
w(z0)

K (z, q)

 (A.1.17)

where the connection matrices T0,s(q) and Tl are defined by picking a contour
for analytic continuation. In particular, we pick
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Figure A.1: Contours defining T0, Ts.

for T0 and Ts. Finally, Tl is defined as the connection matrix from z0 to 0 for the
equation (∗∗):  y(0)1 (z)

...
y(0)K (z)

 = Tl

 y(z0)
1 (z)

...
y(z0)

K (z)

 (A.1.18)

Near a regular point

Around a regular point z0, we have the usual theorem describing the behaviour
of the solutions:

Proposition 1. Let wk(z, q), yk(z) be solutions of eq and eq, respectively. In some fixed
neighbourhood of z = z0,

w(z0)
k (z, q) = y(z0)

k (z)[1 + q dk(z, q)] (A.1.19)

where dk(z, q) k = 1, . . . , n functions holomorphic and bounded in U

A.2 Rescaled equation

The crucial strategy for the perturbation theory is to rescale the variable as z =

qt, so that the equation (∗), (∗∗) become (?), (?):

tK−1(t + 1)∂K
t v(t) +

P1(qt, q)
qK−1 ∂K−1

t v(t) . . . + PK(qt, q)v(t) (?)
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and the rescaled limiting equation (∗∗) becomes

tK−1(t + 1)∂K
t u(t) + p1(t)∂tu(t)K−1 . . . + pK(t)u(t) (??)

where

pi(t) := lim
q→0

Pi(qt, q)
qK−i (A.2.1)

In particular we need this limit to exist.

The equations (∗) and (?) have the same exponents, since they are just rescal-
ings of one another. However, (∗∗) and (??) have different exponents (since the
singularities don’t collide in the limit (??). We will always denote by µ

(0)
i the ex-

ponents of the rescaled limiting equation (??), and likewise µ
(∞)
i at infinity.

Since the singularities at 0,−q are regular, the Frobenius method assures us that
there exist bases of linearly independent local solutions of the form

v(0)k = tν
(0)
k fk(t, q) (A.2.2)

v(s)k = tν
(0)
k gk(t, q) (A.2.3)

where fi, gi are holomorphic in a neighbourhood of t = 0, t = −1, respectively,
and we may single out the normalization fi(0, q) = gi(0, q) = 1 for i = 1, 2, 3.

It is easy to see we can recover the original solutions of (∗) from the scaled
solutions of (?) via

v(0)k (z/q, q) = q−ν
(0)
k w(0)

k (z, q) (A.2.4)

v(s)k (z/q, q) = q−ν
(s)
k w(s)

k (z, q) (A.2.5)

Define the functions u(0)
k to be the solutions to (??) guaranteed locally by Frobe-

nius satisfying

u(0)
k = tµ

(0)
k Φk(t) (A.2.6)

where Φi(t) are holomorphic on D1 and Φi(0) = 1 for i = 1, . . . , n. Likewise define

u∞
k (t) = tµ

(∞)
k (1 + xk(t)/t).

We proceed by making an ansatz that the local solution v should be of the form

v(t, q) =
K

∑
i=1

Ci(t, q)ui(t) (A.2.7)
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and impose further the conditions that

K

∑
i=1

Ċi(t, q)∂j
tui = 0 (A.2.8)

for all j = 0, 1, . . . , K − 1, where again ˙ denotes derivative with respect to t. This
condition ensures that

∂k
t v(t, q) =

K

∑
i=1

Ci∂
k
t ui (A.2.9)

for all but the higher derivative ∂K
t v.

With these definitions we find that after imposing (1.9) and using the fact that
ui satisfy (??), we have the remaining equation

tK−1(t + 1)
K

∑
i=1

Ċi∂
K−1
t ui = −

(
K

∑
j=1

hj(t, q)

(
K

∑
i=1

Ci∂
K−j
t ui

))
(A.2.10)

where hi(t, q) := Pi(qt, q)/qK−i − pi(t) i.e. Pi(qt, q)/qK−i = pi(t) + hi(t, q), hi are
the perturbations.

For each i, we will do the following (but for notational purposes we will always
assume i = 1). Define mi by:

C1(t, q) = 1 + qm1(t, q), Ck(t, q) = qmk(t, q), k 6= 1 (A.2.11)

We can then rewrite (1.9) and (1.10) together as
u1 . . . uK
...

...
∂K−2

t u1 . . . ∂K−2
t uK

∂K−1
t u1 . . . ∂K−1

t uK


 ṁ1

...
ṁK

 =


0
...
0

Fu1

+


0 . . . 0
...

...
0 . . . 0

Fu1 . . . FuK


 m1

...
mK


(A.2.12)

where we have defined

(Fu)(t) := −1
q

1
tK−1(t + 1)

(
h1(t, q)∂K−1

t u(t) + . . . + hK−1(t, q)∂tu(t) + hK(t, q)u(t)
)

(A.2.13)
Or as an inhomogeneous linear sytem for mi:

 ṁ1
...

ṁK

 =

 R1
...

RK

+ M

 m1
...

mK

 (A.2.14)
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with 1

M = J−1F (A.2.15)

R = J−1F1 (A.2.16)

Notation: W(t) is the Wronskian of the solutions (u1, . . . uK), i.e. det J. Note
by Abel’s identity, since our particular equation has PK−1(z, q) vanishing, W(t) is
a nonzero constant (with no q dependence either) for any choice of linearly inde-
pendent solutions.

To solve this system of differential equations for m, we convert them into a
system of integral equations: m1

...
mK

 =


∫ t

0 R1
...∫ t

0 RK

+
∫ t

0
M

 m1
...

mK

 (A.2.17)

Here one should keep in mind that M(q) depends on q, though by assumption it
goes to 0 as q→ 0.

A.3 Existence

First we show that our ansatz works for the solutions near z = 0. Let Dr here
and throughout denote the closed disk of radius r. We will start off by looking for
solutions on D2/3 which are holomorphic and bounded.

Theorem A.3.1. Suppose Re ν
(0)
k < 0, k = 1, . . . K. Then there exist functions λk(t, q),

holomorphic and bounded in D2/3, such that

v(0)k (t, q) = u(0)
k (1 + q λk(t, q)) (A.3.1)

for k = 1, . . . , n

Proof. Follow the same method as [69] making the substitutions above. Sketch as
follows: Let L = [Reν

(0)
k ].

m1(t) = l1, mi(t) = tν(0)

(
L−1

∑
j=0

cj,itj + tLli

)
(A.3.2)

1Note: this is the transpose of what is used in [70]
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Consider our equations on the space

X =
{
(l1(t), . . . , lK(t), {ci,j}) : li are holomorphic and bounded on D2/3, ci,j ∈ C

}
.

(A.3.3)
X is a Banach space when equipped with the sup-norm. Our integral equations
are now mapping T : X → X. Choose q small enough to make this a contraction
mapping and the result follows from the Banach fixed point theorem.

Remark. In particular, the proof shows that for sufficiently small q, the solutions
w actually converge in q. We can use this to actually calculate the corrections as a
convergent power series in q, though it may not be that the integrals are tractable.
Menotti [70] uses a trick to do this for the first order correction when computing
the A-cycle monodromy.

Continuing, we can essentially follow the same proofs as [69] and end up with
the final formulas given at the beginning.

A.4 Rank 2 worked out

We use the fact that the formulas above hold even when the basepoint is the
singularity z = 1. So we have

T1,0(q) = V · Γ ·U−1 · Tl,s (A.4.1)

where U = diag(q2πν, q−2πν).
Letting

Dpt :=

(
e2πiν(pt)

1 0

0 e−2πiν(pt)
1

)
(A.4.2)

the trace around the B-cycle is thus

tr MB = tr
(

D(1) T−1
l U Γ−1 V−1 D(0) V Γ U−1 Tl

)
(A.4.3)

= tr
((

TlD1T−1
l

)
·U ·

(
Γ−1 D0 Γ

)
·U−1

)
(A.4.4)

but recall that Tl is simply the change of basis from solutions around 1 to solutions
around 0 of the limiting, unrescaled equation (∗∗). So the structure is clear: take the
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monodromy of the first pants (the “z-pants”) in a basis at 0 and go around 1, use the
transition matrix U to cross the pants curve, and then take the monodromy of the
second pants (the “t-pants” ). This justifies the procedure employed by Nekrasov-
Rosly-Shatashvili heuristically, and (what amounts to the same) that of Teschner-
Vartanov [65], which uses CFT.
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de l’IHÉS 75 (1992), no. 1, 5–95.

195

http://www.arXiv.org/abs/0810.2076
http://www.arXiv.org/abs/1402.4203


[35] N. Nitsure, “Moduli space of semistable pairs on a curve,” Proceedings of the
London Mathematical Society 3 (1991), no. 2, 275–300.

[36] O. Biquard and P. Boalch, “Wild non-abelian hodge theory on curves,”
Compositio Mathematica 140 (2004), no. 1, 179–204.

[37] S. Gukov and E. Witten, “Rigid Surface Operators,” Adv. Theor. Math. Phys.
14 (2010), no. 1, 87–178, 0804.1561.

[38] I. Kra, “Horocyclic coordinates for riemann surfaces and moduli spaces. i:
Teichmuller and riemann spaces of kleinian groups,” Journal of the American
Mathematical Society 3 (1990), no. 3, 499–578.

[39] Y. Kabaya, “Parametrization of psl(2,c)-representations of surface groups,”
Geometriae Dedicata 170 (2014), no. 1, 9–62.

[40] O. Takayuki, “Effects of a change of pants decompositions on their
fenchel-nielsen coordinates,” Kobe journal of mathematics 10 (1993), no. 2,
215–223.

[41] L. Hollands and A. Neitzke, “BPS states in the Minahan-Nemeschansky E6

theory,” Commun. Math. Phys. 353 (2017), no. 1, 317–351, 1607.01743.

[42] A. Beilinson and V. Drinfeld, “Opers,” math/0501398.

[43] A. Beilinson and V. Drinfeld, “Quantization of Hitchins integrable system
and Hecke eigensheaves.” preprint (c. 1995),
http://www.math.uchicago.edu/ mitya/langlands/hitchin/BD-hitchin.pdf.

[44] P. Di Francesco, C. Itzykson, and J.-B. Zuber, “Classical w-algebras,” Comm.
Math. Phys. 140 (1991), no. 3, 543–567.

[45] D. Gallo, M. Kapovich, and A. Marden, “The monodromy groups of
schwarzian equations on closed riemann surfaces,” Annals of Mathematics 151
(2000), no. 2, 625–704.

[46] H. Zoladek, The monodromy group, vol. 67. Springer Science & Business
Media, 2006.

[47] E. Cattani, “Three lectures on hypergeometric functions.” Notes for a course.

196

http://www.arXiv.org/abs/0804.1561
http://www.arXiv.org/abs/1607.01743
http://www.arXiv.org/abs/math/0501398


[48] F. Beukers, “Notes on differential equations and hypergeometric functions.”
unpublished notes.

[49] F. Beukers and G. Heckman, “Monodromy for the hypergeometric function
nfn-1.,” Inventiones mathematicae 95 (1989), no. 2, 325–354.

[50] L. Molag, “Monodromy of the generalized hypergeometric equation in the
frobenius basis,” Indagationes Mathematicae 26 (2015), no. 3, 495–518.

[51] H. Williams, “Toda systems, cluster characters, and spectral networks,”
Communications in Mathematical Physics 348 (2016), no. 1, 145–184.

[52] L. Hollands and A. Neitzke in preparation.

[53] J. Liu, “Jenkins–strebel differentials with poles,” Commentarii Mathematici
Helvetici 83 (2008), no. 1, 211–240.

[54] M. Gabella, P. Longhi, C. Y. Park, and M. Yamazaki, “BPS Graphs: From
Spectral Networks to BPS Quivers,” JHEP 07 (2017) 032, 1704.04204.

[55] P. Longhi, “Wall-Crossing Invariants from Spectral Networks,” 1611.00150.

[56] Goldman, William M., “Invariant functions on Lie groups and Hamiltonian
flows of surface group representations,” Inventiones mathematicae 85 (1986),
no. 2, 263–302.

[57] S. Wolpert, “The Fenchel-Nielsen Deformation,” Annals of Mathematics 115
(1982), no. 3, 501–528.

[58] S. Wolpert, “On the Symplectic Geometry of Deformations of a Hyperbolic
Surface,” Annals of Mathematics 117 (1983), no. 2, 207–234.

[59] W. M. Goldman, “The symplectic nature of fundamental groups of surfaces,”
Advances in Mathematics 54 (1984), no. 2, 200 – 225.

[60] W. M. Goldman, “Trace coordinates on Fricke spaces of some simple
hyperbolic surfaces,” 0901.1404.

[61] T. Dimofte and S. Gukov, “Chern-Simons Theory and S-duality,” JHEP 05
(2013) 109, 1106.4550.

[62] R. Donagi and E. Witten, “Supersymmetric Yang-Mills theory and integrable
systems,” Nuclear Physics B 460 (1996), no. 2, 299–334.

197

http://www.arXiv.org/abs/1704.04204
http://www.arXiv.org/abs/1611.00150
http://www.arXiv.org/abs/0901.1404
http://www.arXiv.org/abs/1106.4550


[63] A. Neitzke, “Hitchin Systems in N = 2 Field Theory,” in New Dualities of
Supersymmetric Gauge Theories, J. Teschner, ed., pp. 53–77. 2016. 1412.7120.

[64] V. Pestun, “Localization of gauge theory on a four-sphere and
supersymmetric Wilson loops,” Commun. Math. Phys. 313 (2012) 71–129,
0712.2824.

[65] J. Teschner and G. S. Vartanov, “Supersymmetric gauge theories,
quantization ofMflat, and conformal field theory,” Adv. Theor. Math. Phys. 19
(2015) 1–135, 1302.3778.

[66] D. Gaiotto, “Opers and TBA,” 1403.6137.

[67] O. Dumitrescu, L. Fredrickson, G. Kydonakis, R. Mazzeo, M. Mulase, and
A. Neitzke, “Opers versus nonabelian Hodge,” 1607.02172.

[68] W. Lay and S. Y. Slavyanov, “Heun’s equation with nearby singularities,”
Proceedings of the Royal Society of London A: Mathematical, Physical and
Engineering Sciences 455 (1999), no. 1992, 4347–4361.

[69] A. Y. Kazakov, “Coalescence of two regular singularities into one regular
singularity for the linear ordinary differential equation,” Journal of Dynamical
and Control Systems 7 (2001), no. 1, 127–149.

[70] P. Menotti, “On the monodromy problem for the four-punctured sphere,” J.
Phys. A47 (2014), no. 41, 415201, 1401.2409.

[71] T. Kawai and Y. Takei, Algebraic Analysis of Singular Perturbation Theory.
No. 227 in Translations of Mathematical Monographs. American
Mathematical Society, 2005.

[72] A. Mironov and A. Morozov, “Nekrasov Functions and Exact
Bohr-Zommerfeld Integrals,” JHEP 04 (2010) 040, 0910.5670.

[73] A.-K. Kashani-Poor and J. Troost, “Pure N = 2 super Yang-Mills and exact
WKB,” JHEP 08 (2015) 160, 1504.08324.

[74] E. Frenkel and C. Teleman, “Geometric Langlands Correspondence Near
Opers,” 1306.0876.

[75] T. Okuda and V. Pestun, “On the instantons and the hypermultiplet mass of
N=2* super Yang-Mills on S4,” JHEP 03 (2012) 017, 1004.1222.

198

http://www.arXiv.org/abs/1412.7120
http://www.arXiv.org/abs/0712.2824
http://www.arXiv.org/abs/1302.3778
http://www.arXiv.org/abs/1403.6137
http://www.arXiv.org/abs/1607.02172
http://www.arXiv.org/abs/1401.2409
http://www.arXiv.org/abs/0910.5670
http://www.arXiv.org/abs/1504.08324
http://www.arXiv.org/abs/1306.0876
http://www.arXiv.org/abs/1004.1222


[76] O. Dumitrescu and M. Mulase, “Quantization of spectral curves for
meromorphic Higgs bundles through topological recursion,” ArXiv e-prints
(Nov., 2014) 1411.1023.

[77] M. Matone, “Instantons and recursion relations in N=2 SUSY gauge theory,”
Phys. Lett. B357 (1995) 342–348, hep-th/9506102.

[78] L. F. Alday, D. Gaiotto, S. Gukov, Y. Tachikawa, and H. Verlinde, “Loop and
surface operators in N=2 gauge theory and Liouville modular geometry,”
JHEP 01 (2010) 113, 0909.0945.

[79] N. Drukker, J. Gomis, T. Okuda, and J. Teschner, “Gauge Theory Loop
Operators and Liouville Theory,” JHEP 02 (2010) 057, 0909.1105.

[80] S. K. Ashok, M. Bill, E. Dell’Aquila, M. Frau, R. R. John, and A. Lerda,
“Non-perturbative studies of N=2 conformal quiver gauge theories,” Fortsch.
Phys. 63 (2015) 259–293, 1502.05581.

[81] E. Frenkel, Langlands Correspondence for Loop Groups. Cambridge University
Press, 2007.

[82] A. Its, O. Lisovyy, and A. Prokhorov, “Monodromy dependence and
connection formulae for isomonodromic tau functions,” 1604.03082.

[83] A. Voros, “The return of the quartic oscillator,” Annales de l’Institut Henri
Poincare, Section A, Physique Theorique (1983), no. 39(3), 211–338.

[84] K. Iwaki and T. Nakanishi, “Exact wkb analysis and cluster algebras,” Journal
of Physics A: Mathematical and Theoretical 47 (2014), no. 47, 474009.
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