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Abstract

In this thesis we study a number of geometric structures arising in the
study of four-dimensional supersymmetric quantum field theories.

We study properties and applications of so-called “spectral networks”
on Riemann surfaces C, focusing in particular on the “abelianization
map” which we use to produce special coordinate systems on mod-
uli spaces of local systems on C. We generalize the classical Fenchel-
Nielsen coordinates and utilize these coordinates to compute super-
potentials, following and generalizing a conjecture of Nekrasov-Rosly-
Shatashvili.

Our first result is a computation of the higher rank spectral coordinates
associated to certain “generalized Fenchel-Nielsen” networks, yielding
explicit formulas for the trace functions on the moduli space with two
“minimal” and two “maximal” punctures. We use this result to verify
the NRS conjecture at the lowest order asymptotics for a prototypical
SU(3) theory, and furthermore compute the 1-instanton correction in
the SU(2) case, extending previous results. In the final chapter we in-
clude some partial results the author has obtained on the existence and
uniqueness of abelianizations for certain classes of networks related to
Grassmannians.






“All problems in mathematics are psychological.”
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Chapter 1

Introduction

In this thesis we study a number of aspects of the geometry of meromorphic
connections on Riemann surfaces in relation to four-dimensional N' = 2 supersym-
metric quantum field theories (QFTs), focused around geometric objects known as
“spectral networks”. To help the reader orient themselves as to what this means,

let us give some context.

1.1 Context

Connections on vector bundles are among the most fundamental mathemati-
cal objects used in the basic description of reality. Indeed, connections are every-
where — they govern the curvature of spacetime in general relativity, and describe
the three fundamental forces (weak, strong, and electromagnetic) of the Standard
Model; not to mention the shape of the Earth and other everyday geometries. Our
connections will be slightly more abstract than these — meromorphic, and on holo-
morphic vector bundles over Riemann surfaces — but as we will see, still very
much intertwined with physics.

One of the most important special cases is that of flat connections — these are
constrained enough to be tractable, but retain enough information to tell us some-
thing interesting about the underlying space. Given some space X, we can then
assemble all the possible flat connections on vector bundles over X into a single,
reasonably well-behaved, de Rham moduli space M 4r — a space parameterizing all
of the flat connections, up to equivalence, on (say, a fixed rank K bundle over) X.

On the other hand, the moduli space of flat connections, somewhat amazingly,

appears in the study of four-dimensional N’ = 2 supersymmetric QFTs from a



totally different perspective as well. Here it arises as part of a hyperkéhler fam-
ily (owing to the supersymmetry) describing the low energy dynamics of the the-
ory and the vacua of its reduction to three dimensions. From this fact, numerous
constructions from physics can be reinterpreted as geometric structures on Mgg.
One such structure is the “abelianization map” arising from a “spectral network”
[1, 2, 3, 4]. The abelianization map is a machine for producing very special co-
ordinate systems on Mg, by relating connections on rank K bundles over C to
connections on line bundles over a related “spectral” curve X.

We are going to study some of the properties, structure, and physical applica-
tions of various classes of these coordinates.

1.2 Motivation

Spectral networks were introduced by Gaiotto, Moore, and Neitzke [1, 2, 3] for
the purpose of counting “BPS states” in four-dimensional ' = 2 QFTs. These are
certain collections of paths drawn on a surface with some additional data; they
have been shown to have a number of interesting applications, both physical and
mathematical, especially to moduli spaces arising in geometry. We will use them
to obtain a generalization of “complexified Fenchel-Nielsen coordinates” on Mgg,
and then use these coordinates as a tool for obtaining “effective twisted superpo-
tentials” for certain kinds of supersymmetric QFTs. Let us elaborate.

The main physical problem in this thesis consists of studying and generaliz-
ing a conjecture of Nekrasov, Rosly, and Shatashvili regarding a geometric ap-
proach to computing “effective twisted superpotentials”. In the course of studying
this conjecture, we are interested in generalizing the classical Fenchel-Nielsen co-
ordinates on Teichmiiller space (though of as embedded in the moduli space of
flat connections) to higher rank bundles. In [4] it was shown that (complexified)
Fenchel-Nielsen coordinates arise as spectral coordinates at a special real locus of
the Coulomb branch. By similarly studying networks arising from a special locus
in higher rank, we find these coordinates.

Let us describe the NRS conjecture in slightly more detail. In recent years,
Nekrasov and collaborators have studied the relationship between quantum in-
tegrability and four-dimensional gauge theories. In the process, it was found that
one could obtain crucial physical information by studying a certain geometric ob-

ject, the “brane of opers” sitting inside a moduli space of flat connections. The



brane of opers is conjectured to contain essentially all the information of the low-
energy physics of a certain reduced theory, provided we study it in the “right”
coordinates. This is interesting in its own right, but also leads to the prospect of
allowing access to the superpotential for theories not possessing a Lagrangian de-
scription, which are not amenable to traditional methods of analysis, and whose
superpotential is not known. We should mention that there are numerous exam-
ples known of such QFTs, so the problem is quite important from the physical per-
spective. By mapping the physical problem to a purely geometric one, we can gen-

eralize to cases even when we have no Lagrangian from which to extract physics.

Let us describe this “effective twisted superpotential” in further detail. In gen-
eral, one of the main problems in quantum field theory is to evaluate the partition
function Z of a given theory T. A major advance in the case of four-dimensional
N = 2 supersymmetric theories came with the advent of the Nekrasov partition
function [5, 6], which is the partition function of a two-parameter (traditionally de-
noted €; and €;) deformation of the theory which regularizes the IR divergences
arising from instantons running off to infinity. When defined, this can be under-
stood as a perfectly well-defined formal series in the instanton parameter q with
rational coefficients in the remaining parameters, and can be written explicitly for
theories with a Lagrangian description. However, in general, it is not known, par-
ticularly for the so-called non-Lagrangian theories that have attracted much atten-
tion from physicists in recent years. Here, one might seek alternative approaches
to the definition that generalize more easily. This motivates understanding the
following proposed equivalence.

Let us first simplify the situation slightly — take the Nekrasov-Shatashvili limit,
resulting in

Weff(a, m,e,q) = lim0 exlogZ(a, m,€,€,9) (1.2.1)
€r—>

called the effective twisted superpotential associated to T; here a, m denote some ad-
ditional parameters. Weff can be thought of as a two-dimensional shadow of the
original Z. Furthermore, consider only those theories of “class S”, which are a
large class of theories arising from a choice of simple Lie algebra g, and a punc-
tured Riemann surface equipped with some extra data at the punctures. It will be
important that this is just the data needed to define M 4R.

Nekrasov, Rosly, and Shatashvili [7] proposed a geometric description of this
superpotential Weff, Specifically, they propose to study the opers sitting inside an



Mgr associated to the data we started with. These form a complex Lagrangian
subvariety, and so given a Darboux coordinate chart {«;, 8;}, possess a local gener-
ating function WOP®", defined by the property that d,, W°P®" = B;. The main claim is
that, if the Darboux chart is chosen judiciously,

W(a,m,q,e) = WP (a, 11,4, €) (1.2.2)

where one identifies the appropriate parameters on the left with the a coordinates
on the right, and m, 71 are parameters related in a simple way. NRS verified this
when K = 2 using “complexified Fenchel-Nielsen” coordinates, but the right co-
ordinate choice was not at all apparent for K > 2. Our goal is to study the higher
rank case, find these coordinates, and use them to compute the superpotential.

1.3 Outline

In this thesis we present a number of results related to spectral networks and
the NRS conjecture. After some preliminary material, the first step is to define
and compute the higher length-twist coordinates that we will need. Chapter 5 de-
scribes this part of the joint work [8] with L. Hollands. We first strengthen the
K = 2 result of [4] by observing that a certain “averaged” spectral coordinate pre-
scription fixes ambiguities otherwise present in the definition of the twist coordi-
nate, whose utility carries over to K > 2 as well. The main result of this chapter
is a computation of these spectral coordinates arising from K = 3 “generalized
Fenchel-Nielsen networks of length-twist type”, yielding a formula for the trace
functions on Mgy in terms of these coordinates.

In Chapter 6, we use our coordinates to generalize the NRS calculation and give
a proposal for the coordinates in which equality holds. More precisely, we find that
our higher length-twist coordinates do indeed reproduce, at the lowest asymptotic
order in g, the superpotential in the case of the simplest nontrivial K = 3 exam-
ple (“SU(3), Ny = 6 theory”). We also improve on previously known results for
SU(2), computing the first “instanton correction” which provides further evidence
for the conjecture. Furthermore, we were able to put some of the heuristic approx-
imations employed by physicists on firm footing using a slight generalization of
known perturbation theory results, summarized in Appendix A. From a mathe-
matical perspective, we have given a description of the monodromy representa-

tion of opers on a punctured curve C in a series expansion in its complex structure



parameters and verified a prediction for the generating function of a particular

interesting Lagrangian subspace inside the moduli space of flat connections.

In the last chapter of this thesis, we move on to study some purely mathemat-
ical properties of spectral coordinates in some specific cases — in particular, we
study some special classes of spectral networks whose associated coordinates are
essentially the cluster coordinates for Grassmannians introduced previously in the
literature. We study a question of the uniqueness of the abelianization construc-
tion, posed to the author by A. Neitzke. We prove uniqueness in several nontrivial
examples, and outline an approach to deal with the problem more generally (with-
out looking at the specific network, of which there are many).

The thesis is organized as follows. Chapters 2 and 3 contain review of back-
ground material from both physics and mathematics related to 4d A/ = 2 theories
and moduli spaces of flat connections. Chapter 4 contains an introduction to the
basics of spectral networks and abelianization and sets the stage for the main con-
tent of the thesis. Chapters 5 and 6 cover the results outlined above of the joint
work with L. Hollands “Higher length-twist coordinates, generalized Heun’s op-
ers, and twisted superpotentials” [8] — they are essentially a modified version of
this preprint, made to fit better the structure of the thesis. In Chapter 7 we move on
to study the uniquness problem for “Grassmannian networks”, and record some

partial results on our work-in-progress.

This work lies at the boundary between pure mathematics and theoretical physics.
As such, I have tried to make it understandable to both physicists and mathemati-
cians. For this reason, we include two separate chapters of prerequisite material,
trying to assume as little as possible from the reader (which is still probably a lot!).
For the preliminary material, we have organized the physics to come before the
mathematics for motivational and narrative purposes, though we will make free
use of definitions and facts mentioned in the latter. The reader may wish to read

the mathematics preliminaries separately.

1.4 Notational conventions

Throughout, by punctured curve we will mean either the compact curve C
equipped with the corresponding divisor of poles (perhaps even enhanced to the

data of defects), or the noncompact C* (i.e. C with points removed) - it should



be clear from the context which is meant. D will always denote the divisor of
poles/punctures on C. The number n always refers to the number of punctures.

So-called “mass parameters” m will usually be omitted from notation, but are
present in many places and assumed fixed as part of the initial data, satisfying
necessary genericity assumptions.

We will sometimes shorten the surface equipped with defects (C, D) to Cy,,...z,,
leaving masses implicit, and underlining so-called “minimal” punctures.

K¢ will always denote the canonical bundle of the compact curve, and when-
ever necessary we assume from that we have fixed a choice of ch/ 2,



Chapter 2

Preliminaries: Physics

In this chapter we give a basic introduction to four-dimensional N' = 2 su-
persymmetric QFTs, particularly the theories of “class S” that we will be primar-
ily concerned with. These are the fundamental physical theories which we are
interested in studying, from which geometric structures will unravel. We keep
prerequisites to a minimum, and try to explain things in a way that a mathemati-
cian might understand them. On the other hand, we do not attempt to give a
comprehensive treatment, so one should think of this as a “lightning review” for

orientation.

2.1 4d N = 2 supersymmetric field theories

2.1.1 N =2 SUSY Lagrangians

Consider everything on R*, with either the Minkowski or Euclidean (”Wick-
rotated”) metric. Fix some compact simple Lie group G, the gauge group.

The d = 4, N = 2 super Poincaré algebra is the super Lie algebra
spoin 1= 59 B 51 := [poin® C] ©[(2,1) & (1,2)]

where s is the even-graded part and s, is the odd-graded part. Here poin denotes
the 4d Poincaré algebra, and (i, j) label its spinor representations by dimension in
the usual way. The extra C summmand is the “central charge”. Our theories will
be invariant under an infinitesimal action of this super Lie algebra on the space of
tields. With this purpose in mind, the field content is chosen so that the fields take

values in various representations of this algebra, as in what follows.

N = 2 supersymmetry is a special case of N' = 1 supersymmetry, so it’s useful
to describe the field content in terms of N = 1 superfields. The basic fields in

7



N = 1SUSY field theory, written in superfield notation (which can be found in

any textbook on the subject, with conventions usually following [9]) are:
o V=—00"0A, +i6?0A — i0?0A + 16%6°D “N = 1 vector multiplet”
o ® = ¢+ /209 + 00F + ... “chiral multiplet”

where the “...” denotes terms involving derivatives of ¢, , F. Here A € Q' (R%, g)

is a connection over the trivial G-bundle over spacetime,
e A € O%(R?, g) an “adjoint-valued Weyl-spinor”
e ¢ € O°(R* R) an “R-valued scalar”
o ¥ € OY(R4, TIS; ® W ® R) an “R-valued Weyl spinor”

where R is some chosen “matter” representation of G (this can be any complex
representation equipped with a hermitian form), S is the usual left-handed spinor
module (2,1), W is a two-dimensional complex vector space, and IT denotes parity
reversal of super vector spaces. The D and the F are just (g or R-valued) functions
called “auxiliary fields” — in a sense, they only exist to make the supersymm-
metry formulas work out; their equations of motion are algebraic so they can be
solved for in terms of the other fields. One often simply writes and thinks of these
superfields as tuples written (A, A, D) and (¢, ¢, F).

In A/ = 2 SUSY we will not bother introducing superfield notation (though we
could), and simply list the field content as a tuple:

e (V,®)=((AAD),(¢,9,F))“N = 2vector multiplet”

* (QQ) = ((9.¥q Fy), (4,3 Fy)) “hypermultiplet”
where now, denoting the complex conjugate representation by R,
e (9,4) € O°(R* R & R) two scalars, valued in R and R

o (g, P7) € QO°(R%,TIS; ® W ® R® R) one left and one right-handed Weyl-
spinor in R and R



and F; and F; are R-valued functions.
Assuming familiarity with A" = 1 superfield notation and Berezin integration,

we assemble these into a Lagrangian as follows:
Imt , i
Lomute = - — / d*g ofelV 1o — a7 / d20 Tr W, W* + c.c. (2.1.1)

where W, := A, + F(aﬁ)eﬁ + D6y ..., with Fg := %UzﬁﬁﬁPyy the SUSY analogue
of the Yang-Mills field strength. Here we have written the complexified coupling
constant 9 dmi

T=5- T re (2.1.2)
where g is the usual Yang-Mills coupling constant and ¢ is another (real) param-
eter, the coefficient of the “topological term” [TrF A F. Classically this is just
a fancy way of writing a constant, so it doesn’t affect the classical equations of
motion, but it plays an important role in the quantum theory, since it affects the

weighting of different topological sectors of the field space in the path integral.

The Lagrangian Ly by itself is the Lagrangian for the N' = 2 analogue of
pure gauge theory. We observe that by taking fields valued in representations
of spoin, merely having a gauge field in our theory in a natural way necessitates

certain other terms and fields, even without putting fermions in by hand.

Writing the Lagrangian out in components, we can get an idea of what’s actu-

ally going on under the notation:

1 1
['vmult = ?Tr - ZFyVPW/ + gZ

~ + . Y

—ipo" Dy — iV2[A, yloT —iV2[A, Pl — %WW] (21.3)

Similarly, we can put hypermultiplets, which represent matter, in the theory by
adding terms of the form:

N
Lmatter = Zf / d*d (Q;re_ZVQi + QieZVQD + / d*6 <\/§©iq’Qi + P‘i@iQi) + h.c
= (2.1.4)
where we have N copies (or “flavours”) of the representation R (so really, R is their
direct sum), and y; are some complex (“bare mass”) parameters. More generally,
we can add terms for different choices of R to introduce various species of particle
in the theory.



We can see that there are only a few building blocks for our Lagrangian SUSY
theories, namely:

(i) A choice of the gauge group G
(ii) A choice of matter representation(s) R

(iii) The values of the parameters: the coupling constant 7; associated to each
simple factor of G, and the masses y; of the hypermultiplets.

Terminology: the representation R is often given as a direct sum of irreducible rep-
resentations, some of which may appear multiple times. Physicists might thus re-
fer to a theory containing “Ny fundamental hyper(multiplet)s”, which then means

that R includes as a summand fund’/.

Example 1. Pure N = 2 super-Yang-Mills theory. Here we have
e G=5U(2)
e R = triv (no matter multiplets)

This is the theory that Seiberg and Witten famously solved exactly in the low en-
ergy limit (described below).

Example 2. SU(2), “Ny = 4” theory. Here we have
e G=5SU(2)
e R= (fund)*
This is the theory that Gaiotto generalizes to produce his network of S-dual theo-
ries in [10]. It is a fundamental building block of the theories we study.
2.1.2 Vacuum moduli space

Quantum field theory is usually “defined” via the path integral. That is, the
expectation value of an observable O is (schematically) defined to be
(0) = DO Oe° (2.1.5)
fields
One must specify what exactly one means by integrating over the “space of fields”—
specifically, on a noncompact spacetime, boundary conditions on the fields to sin-

gle out a class to integrate over. This can be viewed as a special case, relevant to
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our theories, of the general principle that we must compute observable quantities
relative to a particular choice of quantum vacuum. We will see in a moment that
the supersymmetric Lagrangians above possess a continuum of vacua, so that a
N = 2 supersymmetric theory automatically produces, by passing to the IR limit,
a family of theories determined by the choice of vacuum. The parameter space of

this family is called the moduli space of vacua or vacuum moduli space.

How can we characterize these vacua? We can evaluate the expectation values
of various operators in the theory on a given vacuum state to get some numbers,
which will serve as coordinates. For example: u = (tr CI>2>, where we are abus-
ing notation in a standard way'. On fairly general grounds, and certainly for the
theories we will be interested in — those of “class S” — it can be argued that
the vacuum expectation values (vevs) of non-scalar fields all vanish, so only the
scalars” are relevant, and thus the equations describing vacua are written purely
in terms of ¢, g;, and §;

We begin by studying the classical moduli space of vacua. We take the La-
grangian £ = Lynut + Lmatter and seek to minimize the “potential”, i.e. the part
of the Lagrangian polynomial in the scalar fields. A simple calculation yields the

following equations:

1 . iy
g_2[4)+’¢] + (qiql+ - qj-ql) |traceless = 0 (2.1.6)
¢qi + pigi = §'p + pidi = 0 2.17)
Qiqi|traceless =0 (2.1.8)

where X |iraceless := X — %trX for an m x m matrix X. This locus, modulo conjuga-
tion by elements of G and the action of the Weyl group W, is known as the classical

moduli space of vacua.

The moduli space can be divided into three “branches” with different behaviour:

e ¢ = 0is known as the “Higgs branch”. By general considerations, it is always
hyperkéhler.

e q; = §; = 01is known as the “Coulomb branch” or the “vector multiplet
moduli space”. It is always Kéahler.

IRather than thinking of the classical superfield ® we mean the corresponding operator that
ought to exist in the quantum version of the theory.
2That is, the lowest components ¢ or g, § in the multiplets of §2.1.1
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e If neither ¢ nor all g;, §; vanish, it is called the “mixed branch”.

We will be interested in the Coulomb branch, so let us set the hypermultiplets
to zero. This means minimizing the potential amounts to the single equation:

tr[¢pt, 9> =0 (2.1.9)

The left hand side is clearly hermitian, so this equation is equivalent to ¢ commut-
ing with its adjoint. Hence ¢ is diagonalizable and can be taken to lie in the Cartan
subalgebra, ¢ € t. Thus the Coulomb branch B is

B=t/W

Let us focus on the case of SU(2) now for simplicity, though everything gener-
alizes to higher rank and other gauge groups.
In this case any ¢ € t has some eigenvalue Ja, and is of the form

1/a 0
¢:§<0 —a)

So that we can parametrize inequivalent vacua using

1
u:ﬁ&:if. (2.1.10)

In the quantum theory, ¢ is promoted to an operator in some appropriate sense,
and u is now defined as the expectation value (tr ¢?). The relationship (2.1.10) is
thus modified, but can be thought of as a first approximation that holds asymptot-
ically at weak coupling.

Now, a general fact: generically (away from a lower-dimensional “singular lo-
cus” Bsing), the low energy behaviour of the theory corresponding to the vacuum
u € B\ Bging is described by a pure and abelian N' = 2 gauge theory; that is, with
G = U(1)", where r is the rank of the original gauge group, and with no matter
(R = triv). This follows from integrating out massive modes: the matter multi-
plets go away, and only the components of the vector multiplet scalars contained
in the Cartan, which are massless, remain as they cannot be integrated out. This
description breaks down at Bging because at this locus some of the particles inte-

grated out actually become massless, which invalidates the argument.
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Returning to the SU(2) case, the most general physically reasonable’ low-energy

effective action for a U(1)", N = 2 gauge theory with at most two derivatives is:

2
Seff——Im/d4 (/d4 @*af + [ @ za;@z waw“) (2.1.11)

where F is holomorphic. Thus all the data about the low-energy theory is con-
tained in a single holomorphic function F (for example, the metric on the moduli
space is computed as Im(%%l-dadd)). Thus to “solve” the theory in the low-energy
limit is to determine this function, i.e. which pure U(1) theory, of all the possible
choices of F in (2.1.11) describes the low energy behaviour of our theory?

Now, for physical reasons (positive-definiteness of the kinetic energy), it turns
out a(u) cannot be globally defined on the whole quantum moduli space — it is
multivalued. Thus we need to introduce a new coordinate,

oF

ap == (2.1.12)

Furthermore, (a,ap) must satisfy certain monodromy constraints (they form a
section of a local system over B \ Bgjng). We are looking for locally defined func-
tions (a,ap) with such properties. Seiberg and Witten produced an answer to this
as follows.

Introduce an auxiliary curve ¥, and a one-form A on that curve , both of which
must be derived somehow via physical insight. In our case of pure SU(2) theory,
Seiberg and Witten proposed the curve X,

= (x+1)(x—1)(x —u)

and the one-form

Yy
)\—xz_ldx

defined for u € B = C, with singular locus Bging = {£1}. X, is called the Seiberg-
Witten curve of the theory and A is called the Seiberg-Witten differential.

Now, choose a symplectic basis {A, B} of H'(X,,Z). We claim that

:/A)L aD(u):/B)L

3There is more freedom here in the Lagrangian than suggested earlier because we are now only
talking about an effective theory rather than a fundamental theory — renormalizability doesn’t
concern us.

13



satisfies all the necessary properties (for higher rank there will be ¢ A;’s and B;’s
and corresponding (a;, ap ;)). This has the desired monodromy and a correct SL(2, Z)
ambiguity corresponding to a change in the symplectic basis, and turns out to pass
many “tests” of its physical correctness.

Given a symplectic basis, a general cycle can be decomposed as y = n,A + n,,B,
where n,, n,, are thought of as the “electric” and “magnetic” charge of the particle

corresponding to y. Thus in general, the central charge can be written:

1 1 1
Zy(u) = p AA = Ae(u) A+ ) A =nea(u) +npmap(u) (2.1.13)

Let us give an indication of what happens in general. Given a four-dimensional
N = 2 theory, there is an algebraically integrable system over a base B which

describes its low-energy behaviour away from a singular locus Bgjng. In particular

1. We have a holomorphic symplectic manifold M, and a holomorphic map
7 : M — Bsuch that if u € B\ Bging, then 771 (u) is a compact complex
Lagrangian torus of dimension r. Integration along the cycles of these tori
gives the coordinates a;, ap ;.

2. The IR physics at u € B\ Bgjng is given by pure abelian U(1)" gauge theory
in accordance with the above. The complex dimension of B is r, the rank of
the gauge group.

At the singular locus, the tori degenerate and the physics is in general more com-
plicated.

2.2 Theories of class S

221 Class S

One fairly general method of constructing four-dimensional N' = 2 theories
is by compactifying from higher dimensions — six, in our case. More precisely,
one considers the conjectured “6d (2,0) theory” associated to a Lie algebra g and a
punctured Riemann surface C with certain “defects” D associated to the punctures,
by taking the spacetime to be

M=XxC, (2.2.1)

where X is a (pseudo-)Riemannian 4-manifold and assuming C to be small. Com-
bining this with a so-called “partial topological twist”, we produce a 4d N/ = 2 the-
ory. When X = IR*, we denote the resulting theory by S[g, C, D], orwhen g = Ax_;
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as will often be the case, Tx[C, D]. Theories of this form are called theories of class

S.

As we mentioned in the previous section, every 4d N/ = 2 theory is expected to
have an integrable system associated to it governing its low-energy behaviour. In
the case of theories of class S, it turns out that this is the Hitchin system M = My
(described in detail in §3.3). The Coulomb branch is identified with the Hitchin
base

B = (P H(C,KEY)
1
and the projection 7t : My — B is the Hitchin map. The Seiberg-Witten curve is
then the spectral curve > C T*C

det(x —¢) =0 (2.2.2)

where ¢ is the Higgs field. The Seiberg-Witten differential A is then the restriction
of the tautological one-form on T*C.

Remark. Further compactification on S! leads to a three-dimensional theory whose
low-energy effective Lagrangian is that of a supersymmetric sigma model into
Mp. The vacua of a sigma model are simply the constant maps, so we identify
the moduli space of vacua as M, the total space of the Hitchin system. So we can
see that the Hitchin system not only arises in field theory as an associated inte-

grable system, but also as a vacuum moduli space.

Without going into the precise details of the construction, let us summarize the
data and some properties of a class S theory. Fix a positive integer K, which we call
the “rank”* and a punctured Riemann surface C. We equip the Riemann surface
with a collection

D ={Di}1=1,.n (2.2.3)

of “regular defects” associated to each puncture z;. Physically, these are objects fill-
ing up the entire R* factor of spacetime, thus appearing as a point in the remaining
two dimensions, which modify the path integral along their extent. From a physics
perspective, defects in QFT are a subject of intense study, and we will content

ourselves below with a somewhat restricted definition which will suffice for our

4This is the rank of the bundles we will later be studying, rather than the rank of the Lie algebra
which is K — 1 in our usual case of Agx_q
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purposes. To each choice of such data (K, C, D) corresponds a four-dimensional
N = 2 superconformal field theory S[Ak_1,C, D] of type Ax_1 with defects D of
“regular” type.

A slightly more precise though less flexible way of saying these things, suffi-
cient for our purposes is as follows. Let C be a Riemann surface equipped with
some marked points, or punctures.

Definition. A regular defect at a puncture z; is the data (Y;, m;) consisting of a
Young diagram Y; with K boxes and a collection of compatible “mass” parameters
my = (m;;)i=1, xk satisfying Trm; = YK, m;; = 0. The height of each column in
the Young diagram encodes the multiplicities of coincident mass parameters in the

obvious way.

We will use the notation that the divisor D = ) }'_; 1 - z; keeps track of the locations
of the defects. We will only have occasion to deal with regular singularities, so this
is all we need, but we could encode “irregular” punctures as well in an analogous
fashion. We will call any compact Riemann surface equipped with defects at a

finite number of points a punctured Riemann surface (C, D).

Definition. Let g be a complex semisimple Lie algebra, C a compact Riemann sur-
face, and D = {(Y;, m;)} a collection of (regular) defects at some choice of punc-

tures. We will call a tuple T = (g,C, D) a tuple of class S data.

Given class S data, we can associate a number of objects that are part of the
corresponding physical theory. The Seiberg-Witten curve (or spectral curve) corre-
sponding to the point ¢ = (¢», ... ¢x) € Bis the curve ¥ C T*C

AL A2, 4 =0 (2.2.4)

and the Seiberg-Witten differential is the pullback of the tautological one-form to
2.

Definition. The mass parameters of the theory are the residues of the Seiberg-
Witten differential A,
mp; = reszA; (2.2.5)
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Thus whenever we specify class S data, we are implicitly fixing the residues of the

Seiberg-Witten curve in accordance with our choice of mass parameters.

The data of the defects determines the Coulomb branch. To state this, we de-
fine the space of allowed translations of the Hitchin base given by restricting the

allowed poles of the subleading terms of ¢ at each puncture z;, as follows:

(1)

1. Starting from the topmost row of the Young diagram, write integers p;,”” =
0, pfz) =1,... pl(rl) = r1 from left to right in each box until reaching the last

(r1th) box in the row.

(r1+1) (r1+2)

2. In the next row, write integers p; =11, P, =rn+1,... p(m

=1t
1
until reaching the last (rpth) box in the row, and repeat this process until all

K boxes are filled

3. Ignoring the irrelevant case of k = 1, the order of the pole of ¢; at the punc-
(k)

ture z; is p; .

Thus, the allowed translations are H°(C, K?k(z p,({i) -z;). In particular, for the
case of a maximal puncture, we can just write D = Y"1 -z;, and H°(C, Kc(D)®X.
For example, when K = 2 there is only one choice, leading ¢, having a pole of
order 1. When K = 3 we have two choices, giving either ¢;, ¢3 both with a pole of
order 1 (minimal) or ¢, of order 1, ¢3 of order 2 (maximal).

Definition. The Coulomb branch of a class S theory T with regular defects is the
affine subspace of the full Hitchin base

K
B = B(T) C @ H(C,Kc(D)®) (2.2.6)
i=2
where the masses are fixed to have residues m; ; and the subleading terms are al-

lowed translations.

“Definition”. The theory of class S associated to the class S data (g, C, D) is the
partially twisted compactification T = Slg, C, D] described above.

This is a four-dimensional N’ = 2 supersymmetric QFT which, like almost any
other QFT, has no precise mathematical definition at present. But unlike many
other QFTs, it does not even have a satisfactory physical definition, owing to the
mysterious and conjectural nature of the 6d (2,0) theory it came from. Nonethe-
less, many of its expected properties can be determined and studied.
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2.2.2 Generalized quiver gauge theories

In [10] Gaiotto studies generalized quiver gauge theories. These are theories Ty,
associated to trivalent graphs with g loops and n external legs. Such graphs (once
equipped with a cyclic ordering of edges at each vertex) are equivalent to pants
decompositions of a Riemann surface C,, of genus ¢ with n punctures. Pick an
integer K > 2 specifying that our theories will have gauge groups which are prod-
ucts of SU(K). Each weakly coupled Lagrangian description of T, corresponds
to a pants decomposition of Cg , (though not conversely!), with the “plumbing pa-
rameter” g = ¢>™'7 (see §3.4.1) identified with the exponentiated coupling of the

gauge group at the ith pants curve. For K = 2, the construction is:

e Assign to each external leg a hypermultiplet in the representation R = fund,
so that the flavor group is SU(2)".

e Assign to each internal edge a gauge group SU(2) so that the total gauge
group is G = SU(2)38 3+,

e Assign to each vertex with two internal edges hypermultiplet in the “bifun-
damental” representation 21 ® 2, where the subscripts denote the two adja-

cent gauge groups.

e Assign to each vertex with three internal edges the “trifundamental repre-
sentation” 21 ® 2 ® 23 where the subscripts denote the three adjacent gauge
groups.

Speaking in terms of pants decompositions, what this means is that (in the case
of weak coupling) we have a collection of three-punctured spheres connected by
long thin tubes. Each tube adds a factor of SU(2) to the gauge group, each puncture
gives a hypermultiplet, and bi- or tri-fundamentals are put between adjacent gauge
groups. Physically one should think of these theories as obtained from pairs of
pants (which correspond to the theory of four free hypermultiplets) by “weakly

gauging a flavour symmetry”.

The quiver gauge theories are exactly the weakly coupled Lagrangian descrip-
tions of theories of class S. The theory came from C = C; which has a complex
structure 7, and the moduli space of complex structures Mg ,,(C) is identified with
the parameter space of gauge couplings. If T is not near a degeneration there is no

weakly coupled description of the theory.
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Duality. Recall that S-duality in pure N' = 4 super Yang-Mills is a “quan-
tum symmetry” of the theory which conjectures the equivalence of theories (that
is, that various properties like correlation functions, Coulomb branch, etc. are the
same or related in some prescribed way) under the usual SL(2,Z) action on the
coupling constant T € H by fractional linear transformations. A similar symme-
try, still called S-duality, exists for the Ny = 4 SU(2) theory mentioned earlier, but
the group is actually SL(2,Z) x S3 which permutes the flavour symmetries asso-
ciated to the hypermultiplets (via triality i.e. the outer automorphisms of Spin(8),
i.e. permuting its three irreducible representations). Gaiotto extends this to an
S-duality on any SU(2) quiver gauge theory.

Claim: (generalized) S-duality acts transitively on the set of pants decomposi-
tions. Here by “generalized” we mean the group is actually SL(2,Z) x S3 which
permutes the flavour symmetries associated to the hypermultiplets (via triality i.e.
the outer automorphisms of Spin(8), i.e. permuting its three irreducible repre-
sentations). This depends on the fact that all SU(2) theories in class S have a La-

grangian description.

In the SU(3), Ny = 6 theory, there is another duality, called Argyres-Seiberg
duality [11], replacing S-duality, but which no longer necessarily takes Lagrangian
theories to Lagrangian theories. The constructions above generalize to this case,
but now we can have two types of punctures (“maximal” and “minimal”), cor-
responding to two different possibilities for the defects in the 6d theory. These
place constraints on the Coulomb branch (the allowed orders of poles in the dif-
ferentials). As in the SU(2) case, Gaiotto extends the known duality to a duality
on any SU(3) quiver gauge theory. However, the claim about the transitive ac-
tion no longer holds, since we often get so-called “non-Lagrangian” theories. The
basic example of this phenomenon is Argyres-Seiberg duality itself, which sends
the weakly coupled SU(3), Ny = 6 theory to an SU(2) theory coupled to a non-
Lagrangian Eg theory, the so-called “Minahan-Nemeschansky Eg theory”.

Similar constructions with a few more elaborations can also be generalized to
SU(N) for arbitrary N. One refers to this as “Gaiotto duality” in general.

We can summarize the identifications described above in the following table, a
“dictionary” between the geometry and the physics:
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Physics Geometry
UV curve Punctured Riemann surface C
Seiberg-Witten curve Branched covering 7 : X — C
Coulomb branch Base of the integrable system B
Duality frame Symplectic basis of Hj(X)
S-duality group Mapping class group MCG(C)
Gauge coupling T Complex structure T
Space of gauge couplings Mg n(C)
Weakly-coupled Lagrangian description Pants decomposition of C

2.2.3 Examples and zoology

In the same way that any punctured Riemann surface C can be glued out of
three-punctured spheres, the basic building blocks of theories of class S are those
corresponding to three-punctured spheres. The possible building blocks are spec-
ified by the integer K and the choice of defects.

Some building blocks have a standard field theory description in terms of the
usual matter multiplets of the N’ = 2 SUSY algebra in §2.1.1, whereas others are
much more mysterious, described as intrinsically strongly coupled (non-Lagrangian)
SCFTs.

As per the construction via quiver gauge theories above, none of these building
blocks involve vector multiplets. These are only introduced when gluing the three-
punctured spheres. On the level of the NV = 2 theory this corresponds to “gauging”
the corresponding flavour symmetry groups associated to punctures.

As a result, one can in some sense build up an understanding of complicated
theories by studying theories on four-punctured spheres, thought of as being glued
together from two such building blocks. The generalization to more gluings should
be relatively straightforward, at least conceptually, once this basic case is under-
stood. For this reason, our main examples in Chapters 5 and 6 will be the theories
Tk[C, D] where (C, D) is the four-punctured sphere Py, ., with g € C\ {0,1},
with the rank either K = 2 or K = 3. In the following we briefly review their ge-
ometry. For a complete classification of the class S theories of type Ax_1 for small
K, see [12].

Examples, K = 2

When K = 2 there is only one possible regular defect, labeled by the Young dia-

gram

1] (2.2.7)
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[ 1] [ 1]

Figure 2.1: The UV curve for the theory T, []P(l), 41,000

consisting of one row with two boxes. The mass parameters corresponding to
this defect are taken to be generic, with m;, = —m; ;. In the corresponding four-
dimensional quantum field theory this defect corresponds to an SU(2) flavour
symmetry group. In particular, there is only a single building block T []Pal’oo].

Example. The theory T, [113(1)11/00] describes a half-hypermultiplet in the trifunda-
mental representation of SU(2)g x SU(2); X SU(2)«. Its Coulomb branch B is a
single point corresponding to the quadratic differential

m3,z> — (m%, + mj — m3)z + m3

#2(2) = = 472(z —1)?

(dz)?, (2.2.8)

for fixed values of the parameters m, m; and me. The combinations w

correspond to the (bare) masses.

Gauge fields are introduced by gluing three-punctured spheres. The corre-
sponding complex structure parameters g are identified with the gauge couplings
¢?™T. The limit g — 0 corresponds to the weakly coupled description of the gauge
theory at a cusp of the moduli space. For every pants cycle « there is a Coulomb
parameter ag, which is defined as the period integral ag = §, A along a lift A of the
pants cycle.

Example. The theory T, []P(l),q’l’oo] corresponds to the superconformal SU(2) gauge
theory coupled to four hypermultiplets, see Figure 2.1. Its Coulomb branch B is
1-dimensional and parametrized by the family of quadratic differentials

2 2 2
_ [ Mg m
¢2(Z) - (422 +

-
2 4(z—1)?

2.2.9
iz—q) 2.29)

2 2 2 2
mg + m* + mj — mg, u

4z(z —1) B z(z—q)(z—1)>(dz)2'
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where the parameter u is free and the mass parameters mg, m, m; and ms are

motm and ml:gmoo

fixed. The combinations —5 correspond to the bare masses of the

four hypermultiplets.

The corresponding Seiberg-Witten curve X is a genus one (after compactifying)

1
0,9,1,00

« going counterclockwise around the punctures at z = 0 and z = g; then the

covering of IP with four simple branch points. Let A be the lift of the 1-cycle

Coulomb parameter ay = ag(u) is defined as the period integral ag = f 4 A

Examples, K = 3

The case K = 3 is the first in which we encounter different types of punctures.
The two types will be referred to as “maximal” and “minimal” punctures’. For a
maximal puncture z; the mass parameters m; ; are generic with m; 1 # m;,, whereas
for a minimal puncture m; 1 = m; ;. In particular:

A maximal puncture is labeled by the Young diagram
L[] (2.2.10)

consisting of one row with three boxes. In the corresponding quantum field theory
this defect corresponds to an SU(3) flavour symmetry group.
A minimal puncture is labeled by the Young diagram

L] (2.2.11)

consisting of one row with two boxes and one row with a single box. In the corre-

sponding quantum field theory this defect corresponds to a U(1) flavour symme-

try group.
In terms of the Seiberg-Witten differential, a maximal puncture at z = z; turns

into a minimal puncture if it satisfies two requirements:

(i) Two of the masses at the puncture coincide:
mpq = mpy = m. (2.2.12)
(i) The discriminant of
Nt (z—2) 2 A+ (2 — 2) 93 (22.13)

should vanish up to order (z — z;)2. This enforces two simple branch points
of type (ij) of the covering to collide with the puncture at z = z;.

5Some use the terminology “full” and “simple” instead, respectively.
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Figure 2.2: Left: the UV curve for the free bifundamental hypermultiplet T3 []P(lj,l,oo]'
Right: the UV curve for the non-Lagrangian E¢ theory T3 []Pcl),l,oo]'

Example. The theory T3 [11’5’1100] with three maximal punctures (Figure 2.2, right),
is the so-called Es Minahan-Nemeschansky theory [13]. Microscopically (via the
class S construction) its flavour symmetry group is SU(3); x SU(3), x SU(3)3, en-
hanced in the low energy limit to E¢. It is a non-Lagrangian theory.

The Coulomb branch B of the theory T3 [lP(l)’l/oo] is described by the 1-dimensional
tamily of differentials

Cooz? — (o — €1 + Coo)z + €

_ 2
P2 = 2z 1) (dz) (2.2.14)
Aoz +uz? + (dg+d; —deo —u)z —d
03 = (Z3O(Z _11)3 )z2—do (dz)°, (2.2.15)

where u is a free parameter, whereas the parameters c; and d; are fixed and can
be written as combinations of SU(3); x SU(3), x SU(3)3 mass parameters. If we

choose

(—mFy — myymyp —m3,) (2.2.16)

o
|

dy = g (myymyp(myg +myp)) (2.2.17)

Q| = x| =

. m m —mp1—m .
then the residues at the punctures z = [ are { =+, 52, —“5—2}, respectively.

The Seiberg-Witten curve ¥ defines a 3-fold ramified covering over the UV
curve IP%)’LOO, with generically six simple branch points. This implies that X is a
punctured genus one Riemann surface. In contrast to weakly coupled gauge theo-
ries, the Seiberg-Witten curve has no distinguished A-cycle.

Recall that we sometimes write (C, D) as C,,. z,, and denote a minimal punc-
ture by underlining the position of the puncture. Mass parameters are left implicit.
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Example. The theory T3 []P(l)’L ) With two maximal and one minimal puncture (Fig-
ure 2.2, left), corresponds to a free hypermultiplet in the bifundamental represen-
tation of SU(3)p x SU(3)e. We find its Coulomb branch by applying the con-
straints (2.2.12) and (2.2.13) to the family of T3 [H’(l)llloo]—differentials described in
equation (2.2.14) and (2.2.15) at z = 1. The latter constraint cuts down the only
parameter we had:

= (%)3 —dy — 2de + %(co o) (2.2.18)

bif — (@bif bify,

so that the Coulomb branch is just a single point ¢ 3", 93

These two examples provide the possible building blocks for K = 3 theories
[10, 12]. Vector multiplets are introduced by gluing three-punctured spheres at
maximal punctures (gluing elsewhere is not allowed). The (exponentiated) gauge
coupling corresponds to the complex structure parameter g, where the gluing is
performed in a standard way according to the transition z1z; = g (see §3.4.1).

Example. The theory T3 [lP(l),q’Loo] is the superconformal SU(3) gauge theory cou-
pled to Ny = 6 hypermultiplets. It may be obtained by gluing two three-punctured
spheres with two maximal and one minimal puncture. Its Coulomb branch B is
parametrized by two parameters 11 and u;.

The explicit form of the differentials ¢, and @3 can be obtained as before. First
we write down the most general quadratic and cubic differential with regular poles
at the punctures. Eight of the twelve parameters are fixed by writing the residues at
each punctures in terms of the mass parameters. Two more parameters are fixed by
additional requirements at both minimal punctures, analogous to equation (2.2.12)

and (2.2.18). The resulting differentials are written down explicitly in Chapter 6.

2.3 Instanton counting

2.3.1 Nekrasov partition function

Formally, the partition function of a quantum field theory with action S is given
by the path integral

Z = DP e (2.3.1)

where & is shorthand for all of the fields involved, and D® is the heuristic (non-
existent) measure on the space of fields.
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For theories whose classical solutions are instantons, this expression can be fac-
tored as follows:
Z = ZpertZinst (2-3-2)

Here Zpert is the perturbative (classical/tree and loop contributions coming from
Feynman calculus), and Zj,g represents the nonperturbative contributions coming
from the existence of instantons. In the 4d, N’ = 2 theories we are interested in, it

turns out that only 1-loop corrections occur, so in fact we can write:

Z= chasszlfloopzinst

The method for making sense of and evaluating these expressions in our set-
ting was pioneered by Nekrasov [5]. The classical and 1-loop contributions had
been known for some time, but it was not known was how to make sense of the
seemingly infinite contributions from instantons. Nekrasov’s answer to this was to
introduce the so-called )-deformation, a two-parameter deformation of the theory.
Without going into precise details, these are theories on spacetimes possessing a
T = U(1) x U(1) isometry group that allow us to render finite the integrals over
instanton moduli spaces. The Nekrasov partition function (or instanton partition
function) is then defined by

Zinst(a,m, g,€1,62) = Y_ ¢ / 1 (2.3.3)
k=0 Mk
where 1 is interpreted as the equivariant cohomology class 1 € Hj (M), and M
is a certain compactification of the moduli space of instantons on R* with instan-
ton number k. Here a collectively denotes the Coulomb branch parameters, m the
mass parameters of the matter representations, and 7 the coupling constants. One
often writes g = 27 due to its occurrence in formulas, but really g should be in-
terpreted formally here since we do not know if Z;,s converges. The integrals can
be interpreted as certain explicit rational functions in a,m, €1, € (see [14]), so that

Zinst is a well-defined formal series with coefficients in C(a, m, €1, €3).

The fundamental claim (proved in [14, 6]) is that the Nekrasov partition func-
tion of a 4d, N/ = 2 theory contains the information of the prepotential of the

low-energy effective theory. In particular, it is obtained as the following limit:

F(a,m,q) = lim ejelog Z(a,m,q,€1,€2) (2.3.4)

€1,€2—>0
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Thus the ()-deformation and Nekrasov partition function give a two-parameter
deformation of the physical setup we started with. In the limit as €1, — 0,
we amazingly recover the information of Seiberg and Witten’s low-energy theory
despite Z ostensibly having no knowledge at all about periods, differentials, etc.,
which convinces us of the correctness of their solution.

The Nekrasov partition function can also be understood as a field theory limit
of topological strings, where the €1, €, are interpreted as certain deformation pa-
rameters in the refined topological string (see e.g. [15]).

2.3.2 Localization

In the presence of supersymmetry, it is often possible to argue that the “infinite
dimensional” path integral actually reduces to a finite dimensional integral over
some “supersymmetric locus”. Let V[®] denote a fermionic functional, and Q an
odd element of the supersymmetry algebra such that QV has positive-semidefinite
bosonic part, and Q*V = 0. Suppose, furthermore, that T is a topological quantum
field theory®, which means that the observables have no dependence on the metric
of spacetime. Then one can argue (e.g. [16]) that

7 = / D[®le 51V (2.3.5)

is independent of t and therefore can be evaluated in the limit as t — oo to compute
Z = Zyp. In particular, the exponential is suppressed unless QV = 0, i.e. unless we
are are on the locus where these equations are satisfied. So we expect that in fact the
partition function should become an integral over the moduli space of solutions,

which in our case are instantons:

z=Y 4] 1 (2.3.6)
=0 Mk
This is how we can justify the indirect definition given above as correctly comput-

ing the path integral.

Terminology. The “semiclassical approximation” refers to summing over pertur-
bations around all critical points of the action i.e. classical extrema. The point is
that the semiclassical approximation is exact when we have supersymmetry in a

topological theory as above.

®This phrase means different things to different people. A quantum field theory that is topolog-
ical (“topological quantum field theory” to physicists) is as above. A topological QFT (or TQFT) to
topologists is a certain kind of functor from a “bordism category” to the category of vector spaces.
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The only obstruction to the above procedure for us is that the theory as for-
mulated is not actually topological. Nekrasov circumvented this and applied lo-
calization by first using Witten’s classic trick of “topological twisting” — roughly
speaking, this is a method of modifying the theory by exploiting the R-symmetry
group Hy (outer automorphisms fixing the even part) of spoin. The possible twists
are classified by homomorphisms p : Spin(4) — Hpg, and in particular Nekrasov
chose a particular one known as the “Donaldson twist”. The localization applied
to the Donaldson twist of our original theory then gives the Nekrasov partition

function as above.

2.3.3 Explicit formulas

It turns out that for U(N) or SU(N) gauge theories (or more generally, any
theories with an explicit Lagrangian description) the partition function can be ex-
plicitly evaluated. We will need these expressions to derive the superpotential for
the theory we will eventually study. The conventions for the expressions given

here are among the most standard in the literature, and can be found in [17].

The classical part is just

Z das = €XP _E Z (27ti) a? logg; (2.3.7)

The only further perturbative corrections arise at one loop, so we only need:

1-1
ZVEC&OIP Hexp Ve, €2( — a4 — €1) — 'Y€1/€2(ai —aj— €)]

i<j

1-1
qunc(l)op a,p 1—[ eXp r)/el €2 ( H)]

1 1 —)
Zantl(f)tcl)rlzd Hexp Ter 62( a; + H + €+)]
1-1 -
blfu(r)lzlp(a b Hexp Ve €2( b - )]

i

Here e = €1 + €3, and we have used ¢, ¢, (x) = logl'z(x + €4, €1, €2) where

]- ®© dt tse_tx
s=0 F(S) /0 t_Z (1 —_ e—€1f)(1 - e_€2t) (238)

Finally, the instanton pieces look as follows. It is known that U(N) instanton

d
I'y(x,€1,€2) = exp I

configurations centred at the origin of IR* can be labelled by an N-tuple of Young

diagrams whose total number of boxes is the instanton number. The instanton
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partition function is expressed as a sum over instantons, and thus as a sum over
N-tuples of Young diagrams. For linear quivers, they look like (recall that fund
and antifund are different for U(2), so both must be included):

Zinst = Z (H q; ZVec’tor Zi Y; )) Zantifund (ﬁlr Yl/ H1 )Zantifund (ﬁlr er ]’l2)
1. Yy

N-1
X (H Zbifund (@i, Yi;ﬁi+1,Yi+1)> Zeund (AN, YN, 13) Zfund (AN, YN, Ha)
=1

So, for example, in the U(2) N =4 theory we have:

U(2),N;— ,
inst - Zq| |ZVector( aY)

—

Y

Z.

— — — —

Zantifund (4, Y, #1) Zantifund (4, Y, 42) Zfund (@, Y, 43) Zund (@, Y, pa).

The individual pieces are given by certain simple rational expressions involv-
ing the “arm length” and “leg length” of the Young diagram. We refer the reader
to [17] for the expressions.

To obtain formulas for SU(N) gauge groups, we take the U(N) results and
simply impose the condition of tracelessness: axy = —a; —... —ay_1.

2.4 Nekrasov-Shatashvili limit and the twisted super-
potential

2.4.1 The cigar theory

So far, all of the constructions above were done on IR* equipped with the Minkowski
or Euclidean metric; in particular, the theory Tx|C, D] was defined on this space-
time. Let us for a moment consider a slightly different setup, in which instead of

R*, we take as our spacetime
X =D?>xR? (2.4.1)

where D? is topologically a disk with a cigar metric ds?> = dr? + f(r)d¢? — this
means that f(r) ~ r? for r — 0 and f(r) ~ R? for r — oo, for some constant R > 0.
We should think of D? as a “cigar”, a degenerate S! fibration over the nonnegative
real axis R>(, parametrized by r > 0.

28



The ()-deformation still makes sense in this setup, with one of the planar ro-
tations (say, corresponding to €1) replaced by the rotation of the cigar generated
by 0/d¢. Furthermore, we consider the limit in which we turn off the remaining
parameter €5, so the resulting theory T¢ is deformed by only one parameter (which
we drop the subscript for and call €). It can be shown that T, is invariant under a
N = (2,2) super-Poincare algebra, and its low-energy behaviour turns out to be
characterized by a 2d supersymmetric sigma model. Analogous to the prepoten-
tial F in four dimensions, this low energy theory is then characterized by a single
holomorphic function, the “(effective) twisted superpotential” Weft (a,m,q,€). This
is the quantity we will be interested in computing — we can think of it as a kind

of two-dimensional shadow of the four-dimensional partition function.

2.4.2 Effective twisted superpotential

It is argued in [18] that the effective twisted superpotential governing the low-
energy limit of the cigar theory should be given by the expression (“the Nekrasov-
Shatashvili limit”):

Wt (a,m,q,€) = lim e)logZ(a,m,q,€1,€) (2.4.2)

e,—0
Since Z is a formal series in g and the first term of Zj,¢ is 1, we can define the
log of this formally without trouble, and we see immediately that we have:

Wett(a,m,e) = W (a,m, €)logqg + Wt

clas

loop a,m,e) Z eff (a,m,€) qk (2.4.3)
as a formal series in 4. Hence, in order to keep things mathematically well-defined,
we will define Weff to be this limit.

Definition. Let (g, C, D) be a tuple of class S data. The effective twisted superpo-
tential associated to (g, C, D) is the Nekrasov-Shatashvili limit

Wdf(a, m,q,€) = lim e;logZ(a, m,€,€,9) (2.4.4)

er—0

Since it will be important for us later, we record the explicit expressions for the
SU(2), Ny = 4 theory up to one instanton. While the classical and instanton parts
we give next are simply the NS limit of the previous section up to a normalization
of a;, the 1-loop part is more subtle due to the possible differences in regularization

scheme one can use to define it. It turns out that only the magnitude of Z; 4, is
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canonically defined, leaving an ambiguity in the phase. For agreement with the
generating function, we choose to use the 1-loop factor coming from the so-called
“Liouville” scheme. Then the expressions are:

L5

Wetas(a,m,€) = a (2.4.5)
I;\71 loop(a m, 6) = erct(ﬂ 6) + Whyp(ll, m,e) (2.4.6)
4 4
(a+m+e€) (a—m;—e)
— 247
Wila,m,e) 111 16a(a +€) +II} 16a(a —€) 24.7)
(2.4.8)
with

~ 1 1

erct(a/ 6) = ) Y(_a) 5 Y(ll) (2.4.9)

~ 13 €et+a+m 1 & €—a+m
Whyp(a,m,e) =5 ZY (T) + EZZ{Y (—) , (2.4.10)

where the special function Y is given by

_ /f dulog % (2.4.11)

2.4.3 The NRS conjecture

If compactified to three dimensions along the S!-fibre of the cigar D?, the result-
ing theory may be studied in the low-energy limit as a three-dimensional N' = 4
sigma model 7 with worldsheet R, x R? into the Hitchin moduli space M. The
boundary condition at r = 0 is known to be specified by the “brane of opers” L
[19]. In §3.5 we describe in detail what these are; for now we simply mention they
form a certain distinguished complex Lagrangian subvariety of the moduli space
of flat connections. As a result, they possess a generating function in any Darboux
coordinate chart, defined by y; = d,, W°P¢". Nekrasov-Rosly-Shatashvili proposed

that, as a consequence of the physical picture above,

Wetf(a,m,q,€) = WP (a, 11, g, €) (2.4.12)

when we identify the Darboux coordinates x; with the two-dimensional scalars 4;,

and 111, m are related in a simple prescribed way [7].

’That is, with bosonic part a 3d sigma model whose target space metric is hyperkéhler
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More precisely, they studied this conjecture for K = 2, where they introduced
a particular Darboux coordinate system on MgR(C, SL,), which we will refer to
as the NRS Darboux coordinates and coincide with the “complexified Fenchel-
Nielsen coordinates” of Tan [20] and Kourouniotis [21]. They found that the cor-
respondence (2.4.12) holds provided the generating function of the Lagrangian of
SLy-opers is expressed in the NRS Darboux coordinates. Chapters 5 and 6 are de-
voted to the study and generalization of these coordinates and the NRS conjecture.
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Chapter 3

Preliminaries: Mathematics

In this chapter we will review some basic facts about the mathematics of con-
nections and moduli spaces, which will play a fundamental role in the rest of the
thesis. We will necessarily be cursory in our treatment — the reader is encouraged

to consult the original papers in the bibliography for a complete understanding.

Notation. We will adhere to the notation that sheaves A% refer to sheaves of
smooth k-form valued sections of various objects, and (x to sheaves of holomor-
phic k-form valued holomorphic sections. If F is a sheaf, then 7 (U) where U is an
open set always denotes sections over U. For smooth (resp. holomorphic) sections
of a smooth (resp. holomorphic) vector bundle E, we define A% (E) := AL ® E
(resp. Q% (E) := Q% ® E). Throughout, all our Lie groups G will be linear alge-
braic groups G C GLg(C) or PSL.

3.1 Flat connections

Our main objects of study will be moduli spaces of flat connections on vector
bundles over Riemann surfaces. Let us give some of the basic setup before pro-

ceeding, to fix notation and orient the reader.

Definition. Let E be a smooth complex vector bundle over a smooth manifold X.

A connection on E is a C-linear map
D : Ax(E) — AL(E)
satisfying the Leibniz rule:
D(fs) =df ® s+ fDs (3.1.1)

32



fors € Ax(U)(E), f € Ax(U). If X is a complex manifold, then a holomorphic
connection over a holomorphic vector bundle £ is one in which Ay is replaced
with Qx, the holomorphic sections.

Definition. The curvature of a connection D is the map
DoD: Ax(E) — A%(E)

which can be thought of as a two-form taking values in End(E). In the holomor-

phic case, again replace A with Q).

It follows immediately that a holomorphic connection on a holomorphic vector
bundle over a Riemann surface is automatically flat, since the curvature is neces-

sarily a (2,0)-form, of which there are none.

Monodromy Given a flat connection V, and a basepoint, xo, we can define the

parallel transport map around any loop 7y based at x:

The fact that this map always exists and is well-defined amounts to the existence
and uniqueness theorem for ODEs. Since V is flat, it can be shown that the par-
allel transport map is independent of the precise curve, and depends only on its
homotopy class. Thus, a flat connection yields representation

p: (X, x0) = GL(Ey,)
called the monodromy representation of V.
We are interested in studying the space of all connections, up to an appropriate
notion of equivalence (that is, up to the action of bundle automorphisms or “gauge

transformations”). We define the de Rham moduli space or moduli space of flat

connections on E to be
Mgr = {(£,V) | V a connection on £ and Fy =0} /G

where G is the group of gauge transformations i.e. holomorphic sections of End(£).
As written, this space is a quotient of an infinite-dimensional affine space by an
infinite-dimensional group. While it is possible to treat this analytically, it turns

out that it has a more algebraic avatar as well.
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Definition. Let G be a reductive algebraic group. The character variety or Betti

moduli space is the GIT quotient
M3z(C,G) = Hom(m(C),G)//G (3.1.2)
where the action of G is by conjugation:

(8 0)(x) = gp(x)3™"

This space is an algebraic variety. To see this when G C GLg(C), pick a set of
generators {71, ...}, allowing us to identify Hom(7r1(C), G) with a subvariety
of G¥. If we restrict to certain nice representations, then the categorical quotient is
the same as the quotient by conjugation, so that Mp is an algebraic variety. This
algebraic structure can be shown to be independent of the choice of generators and
embedding.

There is a correspondence between the character variety for the structure group
of a bundle G and the moduli space of flat connections. One direction simply takes
a connection to its monodromy: V — Hol,(V) where p is a “basepoint”. This
map is invertible as follows. Given a representation p : 711(C) — G, consider the
principal G-bundle P = C X (c) V where 711(C) acts on C by deck transforma-
tions, and on V via p. There is a canonical flat connection which one obtains from
this. One can then check that the map descends to the quotient. The corresponding
holomorphic vector bundle equipped with a flat connection is denoted V,,. We will
blur the distinction between Mg and Mg as a result of this correspondence, and

almost always simply stick to the notation M gg.

Definition. Let X be a complex manifold. A (complex, rank K) local system on X
is a sheaf that is locally isomorphic to the constant sheaf CX. Local systems on X,
with morphisms the usual morphisms of sheaves, form a category, which we will
denote Loc(X).

There is a categorical equivalence between local systems and holomorphic bun-
dles equipped with holomorphic connections over a Riemann surface. Given a lo-
cal section of V, write s = }_ f;e;. Define a connection on the bundle defined by
YV = O®cVby Vs =Y df;®e;. Conversely, a holomorphic connection is flat
on a Riemann surface and so we can define the sections over U to be the parallel
sections Vs = 0.
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It is not hard to see that the category of rank K local systems and the category of
representations of 711 into GLk are equivalent. Thus we can see the moduli space
of local systems is just the same thing as M.

3.1.1 Singularities

We will mostly be concerned with the more interesting case in which connec-

tions can have singularities. The object we will be interested in is:

Definition. Let D be an effective divisor. A meromorphic connection with poles
bounded by D is a C-linear morphism of sheaves

V:E—=E20%D) (3.1.3)

The points in D will be called singularities of the connection. As before, a mero-
morphic connection on a curve is automatically flat since dim C = 1. Restricting
the connection to the complement C \ |D|, we still get a monodromy representa-
tion, but this time it is not enough data to classify them up to isomorphism. The
Riemann-Hilbert correspondence in the next section tells us how to restrict our at-
tention so as to keep the classification by monodromy data even when there are
singularities’.

If V has simple poles at p (this is well-defined) we say it is logarithmic at p.
If all the poles of V are simple, then we call the connection itself logarithmic or
Fuchsian. We can define a notion of residue at such points:

Definition. Let V be a connection on a holomorphic vector bundle &, logarithmic
at a singularity p. The residue at p, denoted Res, V, is the linear map

res,V : E, — Ep (3.1.4)
given by writing in V a local chart

V:d—A:d—(%;+Awhﬁbhu)M (3.1.5)

and setting Res, (V) = A_j. It is easy to check that this is well-defined, indepen-
dent of the choice of chart.

The following is not hard to verify:

More generally, one should consider Stokes data which gives us additional information about
asymptotics near the singularities to distinguish between distinct meromorphic connections with
the same monodromy.
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Proposition 3.1.1. Let V be a meromorphic connection on &, logarithmic at p. Then
the monodromy of V around a small counterclockwise loop <y around p is conjugate to
exp(27iRes,(V)). In particular, the eigenvalues of Hol, V are exp(27ti -) of the eigen-
values of Res, (V).

3.1.2 The Riemann-Hilbert correspondence

The Riemann-Hilbert correspondence relates flat connections to their monodromy
data, and also deals with the case of singularities if they are sufficiently nice. DDe-
note by Conn (Conn'®) the category whose objects are meromorphic connections
(with regular singularities along D) and whose morphisms are Ox (D)-linear maps
satisfying Vo ¢ = (1® ¢) o V. We have:

Theorem 3.1.2. [22] Suppose X is a complex manifold, D is a divisor, and Y := X \ D.

Then there is an equivalence of categories
Conn™&(X, D) = Conn(Y) (3.1.6)
induced by the restriction functor (£,V) — (€, V)ly

Then, from the earlier correspondence, we conclude the following equivalence
between regular (flat) meromorphic connections and monodromy data:

Corollary 3.1.3. There is an equivalence of categories
Conn™8(X, D) = Loc(X \ D) (3.1.7)
In particular, this yields the analytic isomorphism between My ~ Mg that

we will need.

3.2 The relative moduli space

Let C be a compact Riemann surface, and let {zy,...,z,} be n marked points,
or punctures. Furthermore, assume for each z; we are given a Young diagram Y;.

Let 1y = m1(C\ {z1,...,2n}) denote the fundamental group of the punctured
surface. Recall that the SLg-character variety is the GIT quotient

MB(C, SLK) = Hom (ﬂl,SLK)//SLK (321)
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It is an affine variety with smooth locus given by the irreducible representations.
We may take a standard presentation of the fundamental group by generators so
that we can identify

Hom (7’(1, SLK) =

{(Al,...,Ag,Bl,...,Bg,Gl,...,Gn)ESL?(g+n|[Al,Bl].. [ ]G1 n—l}
(32.2)

and if we restrict to reductive or irreducible representations, M§(C,SLk) is the
usual geometric quotient by simultaneous conjugation.

The character variety is a holomorphic Poisson manifold on its smooth locus,
but the Poisson structure is in general degenerate [23, 24, 25, 26]. If we fix the
conjugacy classes of the monodromy around punctures, which we will collectively
denote by C = (Cy,...,Cy), we end up on a symplectic leaf. This leaf, the relative

character variety (with the boundary conjugacy classes C) is denoted
MER(C,SLk) (3.2.3)

We will study relative character varieties where all C; are semisimple and with
multiplicities of the eigenvalues encoded by the Young diagram in the obvious
way. We can write these as a tuple y = (y1 ..., un) of partitions of K, y; =
(ygl), e ygri)) with %(1) > ],1( ") and Zrl . ;tl(j) = K.

Condition 3.2.1. [27] A tuple of semisimple conjugacy classes (Cy,...,Cy) in SLg sat-
isfy the genericity condition if there are no nonzero proper vector subspaces V.C CX
stable under some X; € C; for all i with the property that

ﬁdet (Xi|y) = 1. (3.2.4)

A moment of thought should convince the reader that this is a genuinely ”generic”
condition, and it is true in any case that generic conjugacy classes of any type al-
ways exist [27]. We can guarantee that we have no singularities to worry about in

this case:

Theorem 3.2.2. [27]IfC = (Cy,...,Cy) is of type y and satisfies the genericity condition,
then MGy is a smooth affine variety of pure dimension (whenever nonempty)

dime M (C,SLy) = (23 — 2+ n)K? — (2g — 2) Z i (3.2.5)

where for a partition y; = (ym,. . 'sz ) of K, we set |u;|? := Z]r.izl(ylg))z.
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Finally, let us define the notion of maximal and minimal punctures for the rel-

ative character variety:

Definition. A puncture/conjugacy class is called maximal if all eigenvalues are
distinct, and minimal if all but one eigenvalue coincide. In other words, they cor-
respond to partitions with Young diagram consisting of either a single row of K

boxes, or one column of K — 1 boxes and one column with one box.

Perhaps the simplest example we can give is the case where K = 2 and there
are three punctures, all (necessarily) maximal. Then MgR(C, SL) is a single point,
the unique local system arising from the unique hypergeometric equation (up to
meromorphic equivalence) with specified monodromy conjugacies at the punc-
tures. This generalizes when K > 2 to the well-known fact that the generalized

hypergeometric equation is rigid:

Example. Let K > 2, and C = P!, with punctures at 0,1, oo, and let Cy, C be of
maximal type, C; minimal (no eigenvalues of which are Kth roots of unity). Then
M¢Ei (C,SLk) contains a single point, and this point corresponds to the Kth order
generalized hypergeometric equation with appropriate exponents.

Example. Let K = 2, and C = P!, and g € C\ {0,1}. Take punctures at p =
0,4,1, 00, with C, all of one (the only) type u = (1, 1)1-:1,“_/4, C1. Then the dimension
formula gives dim¢ ./\/lgR(C, SLg) = 2, which is the number of NRS coordinates as

expected.

Example. Let K = 3, and C = P!, with punctures at 0, g, 1, co0, and let Cp, Coo be of
maximal type (1,1,1), Cy,C; of minimal type (2,1). Then the dimension formula
gives dim¢ MgR(C, SLk) = 4, which is the number of coordinates we will need to

construct later on in the thesis.

The following proposition will be useful to us:

Proposition 3.2.3. Suppose M € SLx(C), has eigenvalues A1 ... A, and assume none
of the A; are Kth roots of unity. Then M has K — 1 coincident eigenvalues if and only if M
is a a scalar multiple of a complex reflection matrix, that is, tk(A~'M — 1) = 1 for some
AeC”.
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Proof. If M has K — 1 coincident eigenvalues, say Ay = ... = Ag_1 = A, Ax =
A== then tk(A™'M — I) = rk (diag {1,...,1,A7X} — I) which is 0 if AK = 1,
and 1 under the assumption.

Conversely, if thereis A € C* withrk (A™!M —I) = 1 then diag {% -1,... M}(l —

1,2} has at most one nonzero column, so all but one eigenvalue must coincide

and equal A. O

Thus with our semisimplicity assuption, minimal punctures are characterized
exactly by having a multiple of a complex reflection for their local monodromy.
In §3.6.4 we will see that a single minimal puncture is essentially the condition

characterizing the generalized hypergeometric equation.

3.2.1 Trace functions

The definition of the GIT quotient defining the character variety is such that the
coordinate ring
C[M5(C,SLx)] = Clxy, ..., x, ] (3.2.6)

is precisely the set of invariants of the monodromy matrices associated to the
curves . It turns out that by a theorem of Procesi [28], this ring is generated
by the trace functions. That is, the monodromy traces

tI'rYIMdR(C,SLK) — C (327)
o]  — trp(y) (3.2.8)

form a generating set for the algebraic (holomorphic) functions on Mpg(C,SLk),
with or without conjugacy classes fixed. Thus, algebraically speaking anything we
can study about our character variety can be understood by relating it to the trace
functions. Later on, we will do precisely that and find formulas expressing the
trace functions in terms of our generalized Fenchel-Nielsen coordinates.

3.3 Hitchin systems

3.3.1 Moduli of Higgs bundles

Higgs bundles were introduced by Hitchin [29] in the study of the dimension-
ally reduced Yang-Mills equations over a Riemann surface C. Since then, the study

of their moduli spaces and related geometry has been a rich source of interest to
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both physicists and mathematicians. While we will not use Higgs bundles explic-
itly, they are deeply linked to our story both mathematically and physically. In
particular, the Hitchin base of tuples of k-differentials will play an important role
in the rest of the thesis. Thus we will give a brief summary to the reader here. For a
fuller understanding, we direct the reader to original references and recommended
reviews such as [29, 30, 31, 32, 33].

The following objects will be important throughout the rest of the thesis:

Definition. Let D be an effective divisor on C. A meromorphic k-differential with
poles bounded by D is a section ¢ € H°(C,Kc(D)®*), where K¢ is the canonical
bundle of C. If D = 0, we say ¢ is a holomorphic k-differential.

Locally, a meromorphic k-differential can be written as ¢y = u(z)dz* where u is a
meromomorphic function. If D is reduced, so that ¢, has a pole of at most order k,

we will say @i has regular singularities.

Definition. A hyperkihler manifold is a 4n dimensional Riemannian manifold
possessing 3 covariantly constant orthogonal endomorphisms I, J, K of the tangent
bundle, satisfying the quaternionic relations:

P=P=K=IK=-1
Note: all hyperkdhler manifolds are Ricci-flat and therefore Calabi-Yau.

Definition. A Higgs bundle over a Riemann surface C is a pair (£, ®) where 7 :
& — C is a holomorphic vector bundle and ® € H°(C,End (&) ® Kc).

These arise from the Hitchin equations:

Fp+ [®,®*] =0 (3.3.1)
AP = (3.3.2)

where A is a unitary connection, F4 € QZ2(End(€)) is its curvature, and ® an
adjoint-valued (1,0)-form, and the adjoint is taken with respect to the hermitian
metric & making A into its Chern connection. A Higgs pair is a solution (A, )
of the Hitchin equations. There is a one-to-one correspondence [29, 34] between
irreducible Higgs pairs and “stable” Higgs bundles — that is, between irreducible
solutions of Hitchin’s equations and what turn out to be the smooth points in the

moduli space. If we drop the condition of irreducibility, we arrive at “semistable”
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Higgs bundles, which are still points in the moduli space but correspond to singu-

larities.

The defintion of stability is as follows. Define the slope of a holomorphic vector
bundle £ to be u(&) := degf /rkE. Then & is stable if for every proper holomor-
phic subbundle F,

u(F) < u(€) (3.3.3)

For Higgs bundles (£, @), we have the same definition verbatim, except that we
demand only that (3.3.3) hold for ®-invariant holomorphic subbundles. So a Higgs
bundle might have an unstable underlying holomorphic bundle &, but still be sta-
ble as a Higgs bundle by excluding the subbundles not preserved by ®.

Then, fixing the determinant of the bundle, the moduli space of stable Higgs
bundles (with fixed determinant) is the space

My =A/G

where A is the space of all irreducible solutions (A, ®) and G is the group of gauge
transformations. This space is also called the Hitchin moduli space after its dis-
coverer, or the Dolbeault moduli space to emphasize its close relation with the

complex structure of C2.

Some of the most important facts about Mp are:
(i) Itis noncompact.
(ii) It is hyperkdhler.
(iii) Itis a quasiprojective algebraic variety.
(iv) It is smooth away from reducible solutions.

(v) There is a fibration p : My — B with p proper, making it into an integrable
system.

(vi) When G = SU(K), it contains T*N as a natural open dense submanifold,
where N is the moduli space of (stable) holomorphic bundles of rank K and

trivial determinant.

2In contrast, the Betti moduli space is actually independent of the complex structure of C, and
encodes topological information in that sense.
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If there are no punctures, then dime¢Mpy = (2¢ — 2)dimG.
The Hitchin moduli space is a noncompact hyperkéhler manifold. To see this,
one considers the description as a quotient of the infinite-dimensional affine space

W = {(A,cp) | A a connection, ¢ € Q}:’O(End(é’))}

This is a symplectic affine space when equipped with any of the three symplectic

structures:
1
= ——T 0ANOA — 6 0
wj in r/c N ¢ No¢p
1
wp =5 Tr/c (dz25¢s A 6 A + 5 A S As
1
= — Tro 0A
WK Zn/c rop A

where A € Q!(Z, g) denotes a tangent vector to the infinite-dimensional affine
space of connections. One also defines three complex structures I, J, K on this space

in a similar way (we omit the formulas). Now, define a flat metric on WV by:

1
4 = — /C 22 Tr (5A2 © 6As + 5As ® 6 A, + 66 © 0= + 0= @ 5¢.)  (3.3.4)

The Hitchin equations can be written as the the vanishing of three moment
maps (with respect to each of the symplectic structures).

1
Hy = _E/CTM(FA —PAP)

1
b= =5 [ 1dz Tre(Dag: + Dog)
1

—E c |dZ|2 TI'G(DZ(PZ — DZ4)Z)

HK =

collectively denoted as ji, where € is an infinitesimal gauge transformation. The
hyperkéhler quotient i~1(0)/G is clearly My, and it is a theorem that this con-
struction makes Mg into a hyperkdhler manifold itself. The complex structures
on W descend to complex structures on My, which we continue to denote by
I, ], K. In complex structure I, it is the moduli space of Higgs bundles.

How can we interpret the other complex structures? It turns out that any suf-
ficiently nice (say, reductive) flat G¢ connection V (or .A), where G¢ denotes the

complexification of G, can be decomposed as
V=D+®+ " (3.3.5)
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where D (or A) is a unitary flat connection, and ® a Higgs field, such that (A, )
solves the Hitchin equations. Thus (slightly glossing over stability considerations
and precise details), the Hitchin moduli space is also the moduli space of flat G¢
connections. The complex structures | (©), ¢ € C* are all equivalent, and equal to
the one arising from this description. For notation, in the future we parametrize
these complex structures with a point { € CP! so that the case { = 0, corre-
sponds to Higgs bundles, and { € C* corresponds to flat connections. This corre-
spondence is known as the nonabelian Hodge correspondence due to Hitchin and

Simpson, and has been developed and extended in many ways since [29, 34, 35, 36].

3.3.2 Integrable systems

What makes the Hitchin moduli space so interesting is that, in addition to the
properties above, it is (in the complex structure I) also an algebraically integrable
system, which is a complex integrable system with some extra conditions we will

omit. In particular, we consider the map

p: My — @HCKE) =B (3.3.6)

where d; are the degrees of the invariant polynomials on g, and B is called the
Hitchin base. Equipping Mg with the holomorphic symplectic form Q) = wj +
iwg gives it the structure of a holomorphic symplectic manifold. Then p is a proper
holomorphic map whose generic fibre is a Lagrangian abelian variety (in particu-

lar, a compact complex torus), making it into an algebraically integrable system.
As a concrete example, we can consider the case of G = SU(2), C compact with
g > 2. In this case the Hitchin map p : My — H°(C, KZ?) is just

(&, @) > tr ¢?. (3.3.7)

More generally one may choose a basis {61‘}1‘:1_“38_3 for the quadratic differentials

and expand
3¢g—3

p(E,9) = ) Hib; (3.3.8)
i=1

yielding 3¢ — 3 holomorphic functions H;, sometimes called Hitchin’s Hamiltoni-

ans, which Poisson commute, exhibiting the structure of an integrable system.
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3.3.2.1 Singularities

So far, we have considered holomorphic Higgs bundles on compact Riemann
surfaces. For our purposes, we will need to consider meromorphic Higgs bundles

on punctured Riemann surfaces.

Given an effective divisor D, passing to meromorphic Higgs bundles requires a
few modifications. The Higgs fields are now sections ® € H°(C,End (&) ® K¢ (D)),
the Hitchin base is now B = @; H(C, K¢ (D)®%). A more in-depth description of
Higgs bundles with values in any line bundle can be found in original references
such as [30, 31].

It is also possible to arrive at these spaces by considering the Hitchin equations

with delta function sources [1, 37], though we do not take that point of view here.

3.4 Teichmiiller space and Fenchel-Nielsen coordinates

3.4.1 Teichmiiller space

The Teichmtiller space is the geometric space arising from the study of all of
the complex structures on a fixed topological surface S of genus g. By the uni-
formization theorem, this is equivalent (whenever x(S) < 0, as will always be
the case for us) to studying hyperbolic metrics of constant curvature —1 on the
surface. Usually, we will have a particular punctured Riemann surface C in mind,
with underlying topological surface S. Then the Teichmiiller space of C is the space
of hyperbolic structures on S modulo equivalence by diffeomorphisms isotopic to
the identity:

T (S) = {hyperbolic structures on S} /Diffy(S) (34.1)

The Teichmiiller space can be given a topology either via coordinates, or more
directly as follows. Let U(X, €) be the set of [X] € T(S) such that for every sim-
ple closed curve ¢y C S with marking ¢ : X — S, |logl,(X) —logl,(C) | < e.
These form a basis for the topology, which coincides with the one coming from the

Fenchel-Nielsen coordinates defined in the next section.

There is a crucial link between flat connections and Teichmiiller space. In
particular, there is an embedding of the Teichmiiller space 7 (S) as a connected
component of Myg(C,PSL(2,R)) (for any C with underlying surface S). Since
Mgr(C,PSL(2,R)) can be viewed as a real slice of M4r(C,PSL(2,C)), we can
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thus make the link between the original “Fenchel-Nielsen” coordinates on the Te-
ichmiiller space and the restrictions of coordinates on the moduli space of flat rank
2 connections on C.

Kra’s plumbing construction

Let us mention a procedure due to Kra [38] for gluing together three-holed
spheres to construct Riemann surfaces. Fix g with |g| < 1. Take two copies Dy,
D, of P'\ {0,1, 0}, and consider coordinates z;, z; around 0. Let A;, A be annuli
given by:

Ai={zeD; : |ql} <[zl < g3} (3.4.2)

Given two points P; € Aj and P, € A, identify them if

z1(P1)z2(P2) = q

This gives a Riemann surface with transition function z; = g/z; on the overlap.
We can view g as a holomorphic coordinate on the Teichmiiller space in a small
punctured disk around 0, with 0 corresponding to the nodal curve in the boundary.
One may iterate this process with more spheres or different values of g to construct
Riemann surfaces of any topological type and any complex structure (at least in a
neighbourhood of the nodal curve).

Fenchel-Nielsen coordinates

There is a well-known set of coordinates on the Teichmiiller space which arises
from a considering the surface as a collection of three-holed spheres. Suppose that

C has genus g and n boundary components.

Definition. A pants decomposition of a Riemann surface C is a collection of mu-
tually nonintersecting closed curves P = {cj, ... C3g,3+n} whose complement is a
disjoint union of pairs of pants.

A fundamental and well-known fact is the following;:

Proposition 3.4.1. The hyperbolic (and thus conformal) structure of a pair of pants S is
uniquely determined by the lengths of its three boundary curves cq, ca, c3. Conversely, for
any ly,1p, 13 > 0 there exists a pair of pants S with boundary curves cq,ca,c3 of these
lengths.
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So a pair of pants is determined entirely by the lengths of its boundary circles.
This underlies the idea that we can (and should) study the hyperbolic (or complex)

structure of Riemann surfaces by decomposing them into pairs of pants.

It can be shown that each pants curve is homotopic to a unique closed geodesic.
The lengths of these geodesics are called the Fenchel-Nielsen length coordinates,
which evidently tell us something about the hyperbolic metric on C. Intuively, we
can imagine then that knowing these numbers will help specify which point in
the Teichmiiller space C represents. This information is not enough however (as
is obvious from the dimensions); it also matters how the pairs-of-pants are glued
together.

The other half of the coordinates, called twist coordinates are given by mea-
suring the deviation or “twisting” of geodesics from one pair of pants to another.
These involve choosing another, complementary set of 3¢ — 3 + n curves. The de-
tails can be found in e.g. [39]. One consequence of the fact that the Fenchel Nielsen
coordinates form a global coordinate system is

Theorem 3.4.2. The Teichmiiller space T (S) is homeomorphic to (IR )38 73+ x (R5)38 73",
In particular, it is contractible.

3.4.2 The Teichmiiller component in Mg

Let C be a point in 7(S). Given its corresponding hyperbolic metric 1 =
e2?dzdz, we write V = V' + V”
2_ 732 =
V' =a+ ( ; (9:¢) . % > v/ — 3. (34.3)
which gives us a flat bundle on S. Conversely, given a flat PSL(2,C)-bundle on S,
the hyperbolic metric can be reconstructed from the solution to Vs = 0. As a result,
there is a canonical connected component in M 4g (C,PSL(R)) € Mygr(C,PSL,(C))

identified with the Teichmiiller space 7 (C). It is the set of all representations
p : 11(C) — PSLy(R) such that H/p is homeomorphic to C.

3.4.3 Complexified Fenchel-Nielsen coordinates

The classical Fenchel-Nielsen coordinates defined above were defined on the
Teichmidiller space. It turns out they can be found as the restriction of a set of holo-
morphic Darboux coordinates on the PSL, character variety. These coordinates
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were constructed by Tan [20] and Kourouniotis [21] and were studied by others as
well [40, 39]. These are the coordinates found by Hollands-Neitzke [41] to arise as
spectral coordinates, and which we will generalize in this thesis. Explicit formulas
for them are written down later in §5.2.2.

3.5 Opers

A central object of our study will be a special subspace of the moduli space of
flat connections, the space of so-called “opers” L C MgR(C, SLk) (we leave C, C
etc. implicit in the notation).

Let C be a compact Riemann surface. Throughout, we will fix a square root

of the canonical bundle K(%: (also known as a spin structure or theta-characteristic).
There are 2% possibilities for this choice (which is equivalent to choice of canonical
lift of representations from PSL,(C) to SL,(C)), and the connected components of
L will labelled by this discrete data.

Definition. Let D be an effective divisor on C. A meromorphic SLg-oper (€,{&;},V)
with poles bounded by D is a rank K vector bundle £ over C, equipped with a flat
meromorphic connection V and a filtration0 = & C & C .. C k-1 C &k = €&
satisfying:

(i) V& C &1 ®QE(D)
(ii) The induced maps V : &/&_1 — (Ei41/&) ® QL (D) are isomorphisms.

(iii) &€ has trivial determinant (with fixed trivalization) and V induces the trivial

connection on it.

One may generalize this defintion to GLk by dropping the third condition, or
more generally to any algebraic group using principal bundles as in [42]. We will
however be only concerned with SLx-opers, in particular with K = 2,3.

Not all bundles with connection admit an oper structure, but it can be shown
that those which do admit a unique such structure®. Therefore if we fix the un-
derlying bundle and the conjugacy classes we can think of the space of opers L as
embedded into M&; (C,SLk).

The defining conditions imply that locally one may always choose a trivializa-
tion so that SLx-opers can be put in the following form, uniquely:

3 A proof in the compact (holomorphic) case can be found in [33], and with singularities in [43].
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e T (3.5.1)

It is thus clear that locally an oper is equivalent to an Kth order linear ODE, whose
(K — 1)th derivative term vanishes in the SLx case. However, the relation between
the coefficients t; in different coordinate charts is not nice. There is an alternative
“canonical form” one may give which results in nice transformation laws. First we

need the notion of a differential operator between (line) bundles:

Definition. Let £, 7 be holomorphic vector bundles over C. A linear map
D:&— F (3.5.2)

is a k-th order (linear) differential operator if forany s € £ and p € C, ji(s)(p) =0
implies (Ds)(p) = 0, where ji(s) denotes the k-jet of s. The sheaf of vector spaces
of all such operators is denoted Diffy (£, F).

It is not hard to see that the map which sends T € Hom(J*(E), F) to s + T (ji(s))
is an isomorphism of vector spaces Hom(J*(E), F) ~ Diff, (&, F). The restriction

o : Diff(E, F) — Hom (K ® E, F) (3.5.3)

is called the principal symbol of D.

Now we introduce the notion of a “local system realized in a line bundle L”.

By definition this is a local system V and an exact sequence

0—v-2 P

y LROKE — 0

where D is a Kth order differential operator. Then we may observe that there is a

correspondence between opers and local systems realized in K(leK)/ %

0 — v L gkU7K/2 By gtz g

To be precise, we may state the following ([44, 33]):

Theorem 3.5.1. Let D : K(Cl*K)/ 25 KéKH)/ > be a C-linear differential operator, locally
of the form
Dy =y + Qoy* "V + ..+ Qky (3.5.4)
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Then X K2 0
ear combmatzons of Qi (j = 2,...,k), and their derivatives, with coefficients polynomials

Qo transforms as a projective connection, and for k > 3, there exist wy, lin-

in Qo, such that wy, transform as k-diﬁferentials. Conversely, given one such operator and

k-differentials wy, k = 2,...,n, these conditions uniquely determine the operator D.

The map from opers to differential operators in this theorem is explicitly given
as follows. If V is an oper and given y locally of the form y(z)dz®(1=K)/2, let
{¢1 ... ¢} be a set of linearly independent local flat sections of V. Then define

P $2 y
Dy := det z : : (35.5)

from which the transformation properties follow. The proof allows for an explicit
calculation of wy in terms of Q; and vice-versa, which we write down for k = 2,3

as these are the cases we will need:

Q2 =wy (3.5.6)

K-2
Q3 =ws3 + 3 wh (3.5.7)

In particular, the above theorem implies the following “oper transformation
law” for the nontrivial component t, of an SL,-oper, whenever y and w are local

holomorphic coordinates with overlapping domains:

Hy) = (3 () PH{y(w)) + 5y, w) (358)

where {y, w} (also written S(y)) is the Schwarzian derivative of y:

o= (535

Any collection of local expressions related in this way are in fact a known geo-
metric object — this is precisely the defining condition for a projective connection
on a Riemann surface. In particular, while it is not a quadratic differential, any
two SLy-opers differ by a quadratic differential. We can take a fixed projective con-
nection Py and write any other one as P = Py + Z?i 1_3+n H;0;. The H; are called
accessory parameters. Thus, the space of SLy-opers is an affine space modelled on
the quadratic differentials. From this result and the above theorem, it follows that
(each connected component of) L is an affine space modelled on the Hitchin base
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B = &K, H'(C, KL). More generally, when singularities along a divisor D are
present, we simply tensor with Ox (D) and restrict the residues at each puncture if
desired.

In fact, it turns out that for an oper the bundle £ is always just a jet bundle in
K

1-K
disguise. If we let £ := K-> = £/&x_1 be the top graded piece of the filtration,
we will have, given an element ¢ € B (and some additional choices, including a

choice of principal sl yielding a grading g = ©V}) a canonical isomorphism Fy:

L) — g

N lml

L

where pr is is the projection onto the 0-jet , and 7tx_1 is the quotient map.
The choices are as follows. Assume we have made a choice of Cartan subalge-

bra and positive roots {«;} for g = slk, so we have a Cartan decomposition
g=n_oOhodny, (3.5.9)

and n_, n; are spanned by the so-called Cartan generators { f; }, {e; }, respectively.
To see the isomorphism, we put the oper in the canonical local form

o+ p_1+v(z) (3.5.10)

where p_; is the lower-triangular element of an slp-triple, and v(z) € V" =
eBle_ll VR, Here V" is the space of adpj-invariants in n = n_ @ ny, with V"
determined by the principal grading.

Let us write a choice of ¢; and f; out in the case of sl3 with the usual decompo-
sition into upper- and lower- triangular and diagonal subalgebras:

(3.5.11)

) (3.5.12)

e1 = Ep = ep =Ey3 =

o O O
O O =
o O O
o OO
o OO
S = O

for ny, and f; their transposes. Then

o = O
_ O O
o O O

PlZfi(

The grading, having chosen our principal sl5, is

50



0
1 , V3% = span

01
Vi = span 00
000 0

0 1
00]|%. (3513
00

The choices correspond to a basis element of each of these 1-dimensional V"

in the K = 3 case can be written as

0 pne2 vek
o+ 1 0 puge (3.5.14)
0 1 0

so that we have some additional freedom beyond what the earlier theorem sug-
gests — setting u = 1/2,v = 1 we recover the previous isomorphism. The only
remaining non-canonicity is in the choice of principal sl, subalgebra.

It is instructive to note some of the different incarnations of projective connec-

tions.

Definition. A projective structure on C is an atlas of holomorphic charts for C
whose transition functions consist entirely of restrictions of Mébius transforma-

tions.

Note that a projective connection and a projective structure are equivalent data,
as follows: given a projective structure we simply take the projective connection
to be 92 in all coordinate charts. Since Mébius transformations are killed by the
Schwarzian derivative, this is well-defined. Conversely, given a projective connec-

tion S and a point p € C, consider the equation

<a§ + %s) ¢ = 0. (3.5.15)

Let ¢1, ¢ be linearly independent solutions in some small neighbourhood U. Then
the coordinate y := ¢ /¢, is a chart in the atlas. The union of all such charts yields

a projective structure.

Thus, once we have chosen a projective structure or projective connection, we
may identify (the chosen connected component of) the space of opers with the
Hitchin base, as the Schwarzian derivative term in the transformation law drops
out, leaving us with an identification of t; with a quadratic differential. In partic-
ular, we may use the projective structure coming from Fuchsian uniformization —
that is, if w is the uniformization coordinate, the corresponding projective connec-

. . 2
tion is 9.
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Remark. For compact C, the variety Hom(7r1(C), PSL,(C))//PSLy(C) splits into
two irreducible connected components: those which lift to a representation of
SL,(C), and those which do not. The monodromy of projective structures always
lift, and there are precisely 228 choices of such a lift. In fact, a theorem of Gallo,
Kapovich, and Marden [45] identifies precisely the representations which arise as
monodromies of projective structures: they are the “non-elementary” representa-
tions which lift to an SL, representation.

3.5.1 Generating function

It turns out that the opers (with fixed boundary monodromy) form a smooth,
complex Lagrangian subvariety of MgR(C, SLk) with respect to the holomorphic
symplectic structure (); [43]. The half-dimensionality follows from the isomor-
phism with the Hitchin base described above, whereas the vanishing of the sym-
plectic form follows from the infinite-dimensional Atiyah-Bott description and
noting the integrand vanishes in the “oper gauge” (3.5.1).

In this thesis we will be interested in computing the generating function of the

Lagrangian of opers. Let us explain what this means precisely:

Definition. Let C be a punctured curve, and C a collection of conjugacy classes at
the punctures. Suppose we have holomorphic Darboux coordinates {«;, 8;} on a
neighbourhood U C MY;(C,SLk), and let L be the complex Lagrangian subvari-
ety of opers. Suppose furthermore that all d/0p; are transverse to L. A generating
function for L, relative to the the coordinate system {«;, B;}, is a (unique up to ad-
ditive constant) holomorphic function W°P" : LN U — C such that if V is an oper
in the domain of W°P¢', then

a oper
Bi(V) = vg; (V) (3.5.16)

for all i.

3.6 Monodromy of linear ODEs in the complex do-
main
3.6.1 Connections on P!

Consider vector bundles equipped with flat connections (£, V) on P!; the par-
allel transport condition defines a system of ODEs, and if V is an oper it gives a
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scalar equation whose monodromy is the holonomy of the connection. Conversely,
given a linear ODE on C with coefficients whose singularities lie at at z; ...z, we
can consider its sheaf of solutions, which is locally free and thus corresponds to a
vector bundle with flat connection over C \ {z; ...z, }. The corresponding connec-
tion is locally just the ODE written in “companion matrix” form.

Because of this equivalence, we are interested in studying the monodromy of
some particular ODEs that will be of importance to us. In particular, since all our

bundles are holomorphic, we are interested in the equation
Lw := ag(2)w™ + a;(2)w &V + ... +ag_1(2)w + ax(z)w = 0 (3.6.1)

defined on IP* \ {z; ...z, } where 4; are all holomorphic and ag vanishes only at the
{z1...2,}, called the singular points or singularities of the equation. A singular
point is called regular singular if the solutions grow at most polynomially in every
sector around it, or irregular otherwise. An equation whose singularities are all
regular is called Fuchsian (an important point is to note that this is true only for
equations, and the word “Fuchsian” takes on different meaning for systems that are
not equations). We can characterize the equations on IP* with this property with
the following proposition [46].

Proposition 3.6.1. Let z € P!, Then

1. The system Z—’Z‘ = Ax has finite singularities zy, . . . zy, which are reqular singular if

and only if
4

Z—Z]'

A(z) =),

2. The equation x&) + by (2)xK=Y 4 | bx(z)x = 0 has singular points t1, ..., ty
that are reqular singular if and only if

_ B2
Qi(z)

where Q(z) = (z — z1) ... (z — zm) and P; are polynomials of degree < (m — 1)].

bj(z)

Viewing the equation as a connection on P! \ {z; ...z,}, the holonomy of the
connection yields a representation of the fundamental group of C, p : m;(C) —
GLk(C) where we have chosen a basis for the fibre above the basepoint p. The
representation is called the monodromy representation, and its image is called the
monodromy group of the equation.
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A basic tool for both studying solutions of these equations, as well as their

monodromy, is the indicial equation, defined as follows. Write

L=r,0"+...110+rg (3.6.2)
where we have defined the operator 6 := z%. Then the indicial polynomial is

p(x) = r,(0)x™ ...+ 7r1(0)x + 79(0) and the indicial equation at the singularity 0
is p(x) = 0. Its solutions are called the local exponents of the equation at the sin-
gularity 0. Their exponentials (after first multiplying by 27ti), are the eigenvalues
of the monodromy around 0. Similar definitions can be made at any singularity by
Mobius transforming its position to 0.

The next important observation is that, as long as we are restricted to regular
singularities, the monodromy of such equations can be built up from the mon-
odromy of the functions z} and log z (e.g. [47]):

Theorem 3.6.2. Let zq be a singular point of the equation
ao(z)w(”) + al(z)w(”_l) +.ta, 1) +ay(z)w =0 (3.6.3)

Then the following are equivalent:

1. The functions by(z) := Z’; Ei% have at worst a pole of order k at zy.

2. The vector space of multivalued holomorphic functions in a sufficiently small punc-
tured disk {0 < |z — zg| < 8} which are solutions of (3.6.3), has dimension n and
is generated by functions of the form

(z —20)" (log(z — 20))/f (2)

where A € C,j € Z,0 < j<n—1,and f(z) is holomorphic in the disk {|z — zo| <
0} and f(zo) # 0.

In particular, if all the exponents modulo integers are distinct, then there are no
logs in the solutions.

In general, we are interested in more than just the eigenvalues of the mon-
odromy; we want to know the entire monodromy group. To do this explicitly
requires computing the change of basis matrix between the solutions near singular
points. This is in general highly nontrivial, but can be done in some special cases,

as we will see next.
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3.6.2 The hypergeometric equation

When n = 2 and we have exactly three singularities, at (0,1, 00), we arrive at
the study of the hypergeometric equation. Up to Mdébius transformations, this is
the most general Fuchsian ODE with three singularities, up to a minor subtlety

(see below). The hypergeometric equation is written:

2
<z(z—1);—22+('y—(a-l—ﬁ—i—l)z)%—aﬁ)fzo (3.6.4)

where «, 8,7 € C are parameters. It is easy to check that the exponents around
0,1,00 are (0,a), (0,B), (0,7 — « — B) respectively. The solutions can be written in
terms of Gauss’s hypergeometric function:

Fi(a fyle) = 3 BelPlaZ (365

where the Pochhammer symbol is (a); := r(%;)k) =aa+1)...(a+k—-1). In

particular, a basis of solutions around 0 is given by

{2F1 (“/ ;B/ rY|Z)/Zl_’YZF1 (lX +1- ,)//ﬁ +1- 7/2 - ,)/’Z)} (366)

For the main applications in this thesis , we will also need to consider the third
order analogue of this equation. This is the so-called generalized hypergeometric

equation:
[z(0 —a1)...(0 —an) — (0 —PB1+1)...(6 —Bu+1)]f=0 (3.6.7)

Assuming f; are distinct mod 1, which we always will (see below), the solutions

around 0 can be given by

Zl_ﬁinFn—l(l +oar =B 1t an—Bi; 14+ p1—Bi Y, 1+ B — Bilz)  (3.68)

fori = 1,...n, where  denotes the omission of 1+ B; — B;, and ,,F,_1 is the
generalized hypergeometric function

L > (Oél)k...(lxn)k Z_k
nPn—l((Xlr- . .,Dén,ﬁl,. . .,,3,1_1‘2) = kg) (ﬁl)k — (an_l)k Il (369)

It is important to note that all three singularities are not equivalent for the gen-
eralized hypergeometric equation. In particular,
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Proposition 3.6.3. The generalized hypergeometric equation (3.6.7) has n — 1 linearly
independent holomorphic solutions in a neighbourhood around 1.

So that in particular the monodromy around 1 only has one eigenvalue that

isn’t 1.

3.6.3 The Riemann equation

The hypergeometric equation is almost the most general second order mero-
morphic differential equation with three regular singular points (by a Mdbius trans-
formation, the singularities can always be assumed to be at (0,1,0). However, one
of the local exponents of the hypergeometric equation vanish at 0 and 1. The most
general second order meromorphic linear equation with three regular singularities,
however, may have arbitrary exponents oy, 02, 03, 71, T2, T3 satisfying the “Fuchs re-
lation” Y (0; + 7;) = 1. Fortunately, the solutions to such an equation are easily

expressed in terms of the hypergeometric equation. Introduce the notation

ap az 4as
Pl @ oo 03 z
T T T3

denoting the set of solutions to the Riemann equation. In particular,

z%(z—1)9F (3.6.10)

is a solution of the Riemann equation with the desired exponents whenever F
solves the corresponding hypergeometric equation. The same idea generalizes

straightforwardly to higher order equations.

3.6.4 Monodromy of the generalized hypergeometric equation

It will be crucial for our calculations that we have explicit expressions for the
monodromy of opers on the three-punctured sphere. For the generalized hyperge-
ometric equation, these expressions are well-known [48, 49, 50]. We simply quote
their results here.

Proposition 3.6.4 ([48], Cor 3.2.2). The monodromy of the generalized hypergeometric
equation (3.6.7) is irreducible if and only if a; — B; are all non-integral for every i, j.

We will always be interested in the irreducible case, and so when linear com-
binations of mass parameters are later identified with «;, B;, our results will hold

away from the corresponding locus.
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Proposition 3.6.5 ([49]). An irreducible representation p : 711(C \ {0,1}) — GLg(C)
is the monodromy of a hypergeometric equation if and only if the monodromy around z = 1
is a complex reflection matrix.

Let us stick to the notation of the third order equation to avoid clutter. In the

Frobenius basis of solutions around 0 given by
{Zl_'BlPl, Zl_ﬁze, Zl_’B3F3}

where F; are holomorphic, the monodromy around 0 is diagonal:

e 7P 0 0
My = 0 e 27mh 0 (3.6.11)
0 0 e—ZTEiﬁ3

There is another basis, the Mellin-Barnes basis, in which it is possible to com-
pute the monodromy around all three punctures explicitly. For details of the com-
putation, see [50]. We quote the result:

Proposition 3.6.6 (Levelt). Suppose ay differ from B; modulo 1 forall 1 < k,1 < n. The
monodromy matrices in the Mellin-Barnes basis are

0 1 0
Ac=| 0o o 1
-Y; =Y, —-Y;
XioYs Xo-Y, Xi—Y
1 + 3Y3 3 2Y3 2 1 - 1
A= 0 1 0
0 0 1
X X X, 1
% % % o 1 0
A = 1 0 0 = 0 0 1
0 1 0 —X3 =X —Xj

where t3 + Y112 + Yot + Y3 and 3 + X112 + Xot + X3 are the polynomials with roots
e~ 2Pk and =2, k = 1,2, 3, respectively.

It turns out the change of basis between the two is explicitly known, e.g. [48,
50]. As a result, we have all the information we need to write the monodromy

down explicitly. Setting our notation back to arbitrary n, we have:
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Theorem 3.6.7 ([50], Theorem 2.8). Suppose a1, ...,an, B1, ..., Bn are distinct modulo

1. Write
I(eg —Bi+1)...T(ayp —Bi +1)

T —Bit1).. . T(By— i+ 1)

and let ¢ = 2ie™ (F1—t1-Pn=an) " [ the Frobenius basis at z = 0, the monodrony matrix

Ci

around 1 is given by:

N 59' nosin(rt(B; — am))
(M7 )i = 6u + C, ﬂ S (7B B (3.6.12)

wherek,1 =1,2,...,n,and the term sin(7t(B; — B;)) denotes 1.
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Chapter 4

Spectral networks and abelianization

With the preliminaries out of the way, we are ready to introduce the central
tools of this thesis. The mathematical objects we will use to study M4 are known
as spectral networks. These are certain collections of oriented paths on a punctured
Riemann surface C equipped with some extra data. Spectral networks were intro-
duced by Gaiotto, Moore, and Neitzke [1, 2, 3] as a geometric tool for counting BPS
states in theories of class S, though they also appeared previously in the literature
on the “exact WKB method” as ”Stokes graphs”. For us, their primary use will be
to construct certain nice coordinate systems on Mgg. In this chapter we summa-
rize the relevant definitions for spectral networks and describe the abelianization
construction for obtaining spectral coordinates which plays a crucial role through
the rest of the thesis.

4.1 Spectral networks

We begin by defining a spectral network. More precisely, we will describe a
class of networks known as “WKB spectral networks” which can be generated in
a canonical way from a tuple of k-differentials. A more general definition, which
abstracts the holomorphic data we will use into a purely topological notion, but
which we will not need, can be found in [2, 51].

Consider a compact curve C equipped with an effective divisor D, and let the
structure group (of the bundles we will study) be G = SLg for some fixed integer
K > 2. Fix some phase ¢ € R/27Z and a tuple ¢ = (¢2,..., ¢x) € B. Write the
corresponding spectral curve X in terms of a tuple (Aq,...,Ag) of meromorphic

1-differentials on C as
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K
Zz{AeTT:AK+WA“Q+HAWW:IIM—Aﬂ=O}CTYI (4.1.1)

j=1

where we choose a collection of branch cuts for the projection and label the sheets
away from them.

Define an ij trajectory of phase ¢, fori # j € {1,...,K}, as an open path on C
such that

(A — 7)) (v) € e’R, (4.1.2)

for every nonzero tangent vector v to the path. In other words, an ij trajectory of
phase ¢ is a curve z(t) satisfying the differential equation

(xi(z(1)) — xj(z(1))) 2 () = €”. (4.1.3)

where x; are the coordinate expressions for A;. The WKB spectral network Wy(¢)
consists of a collection of such ij-trajectories on C, together with some labels, as
follows.

Call any ij-trajectory that has an endpoint on a branch point of the covering
2 — C a wall, and orient the wall so that it starts at the branch point. Any other
ij-trajectory that has its endpoint at the intersection of previously defined walls is
another wall. We orient this wall such that it starts at the intersection. The set of
walls of the spectral network Wy(¢) is the union of all walls defined iteratively in
this manner.

We label the walls as follows. The two sheets i and j of £ over a wall correspond
to the two differentials A; and A;. Given a positively oriented tangent vector v to
the wall, the quantity e~"?(A; — A;)(v) is real. If it is positive we label the wall by
the ordered pair ji, and if negative we label the wall by ij.

What do spectral networks look like? Apart from the case of K = 2, where
it amounts to the classic subject of trajectories of quadratic differentials, little is
known rigorously about the kinds of paths generated. Globally, the most straight-
forward way to examine the shape is to simply plot solutions, but we can make
some local observations too. Generically, the spectral network in the neighbour-
hood of a simple branch point of the covering > — C looks as in Figure 4.1. In a
neighbourhood of a simple intersection of walls the spectral network is illustrated
in Figure 4.2. Generically, each wall ends at a puncture of C.
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(i)

tj

Figure 4.1: Configuration of walls around a simple branch point.

Figure 4.2: A wall with label ik is born at the intersection of two walls with label ij
and jk.

We decorate a puncture with incoming walls as follows. Each root A; has a
simple pole at the puncture with residue m;. We decorate the puncture with an
ordered tuple ij . ..ig such that Re(e_iﬁmij) > Re(e "m;, ) for each j < k. One then
checks that the only walls which fall into the puncture are the ones whose labeling
(read left-to-right) agrees with the cyclic ordering given by the decoration.

At special values for the differentials ¢ and the phase ¢ it might happen that
two walls with labels ij and ji, with opposite orientations, overlap. This is illus-
trated in Figure 4.3. We say that the locus where the two walls overlap is a double
wall. If there is at least one double wall, the spectral network must be further
equipped with a choice of a resolution, which is either “British” or “American”.
We think of the resolution as telling us how the two constituents of a double wall
are infinitesimally displaced from one another, and draw the walls as such.
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Figure 4.3: Local configuration with a double wall in the American resolution.

There is a natural notion of equivalence of spectral networks. Even though
in the above we have fixed a complex structure on C and described a spectral
network in terms of the tuple ¢ of differentials, we will later only be interested in
the isotopy class of the spectral network on the topological surface underlying C.
We thus define two spectral networks W and W’ to be equivalent if one can be
isotoped into the other.

4.1.1 Examples, K =2

When K = 2, there can be no birthing and intersections (since that requires at
least three distinct labels), so the possible spectral networks are somewhat con-
strained. It turns out they are the same thing as a well-known construction with
quadratic differentials, arising as the so-called critical graph of an associated folia-

tion.

Let ¢, be a meromorphic quadratic differential on C, holomorphic away from

the punctures z;. Locally such a differential is of the form
@2 = u(z)(dz)? (4.1.4)

It is well-known that given a phase 9, the differential ¢, canonically determines a
singular foliation Fy(¢,) on C. By definition, its leaves are real curves on C such
that, if v denotes a nonzero tangent vector to the curve,

e 2%, (v?) € R, (4.1.5)

A generic ¢, will yield a spectral network looking something like this:
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Figure 4.4: A Fock-Goncharov network. The punctures are at £1 and =+i, depicted
in blue.

All walls eventually fall into the punctures. These types of networks are known
as “Fock-Goncharov”, since they were shown [3] to induce the well-known Fock-
Goncharov coordinates associated to (dual) ideal triangulations via their abelian-
ization. On the other hand, one can find for special parameter values networks
with double walls, which play an essential role in the original motivation for spec-
tral networks, the counting of BPS states, and will be crucial to us. Furthermore, it
can occur that there are no single walls at all, which leads to the so called “Fenchel-
Nielsen” networks introduced by Hollands and Neitzke in [4]. The two main ex-
amples are:

Figure 4.5: Fenchel-Nielsen networks on the three-punctured sphere. Left:
“molecule I”, Right: “molecule II”. The blue dots are the punctures, and the or-
ange crosses are branch points of the covering ¥ — C. All walls are double walls.

Using their terminology, we can say

Definition. [4] A K = 2 spectral network W is Fenchel-Nielsen if it consists of only
double walls and respects some pants decomposition of C; that is, the restriction
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to every three-punctured sphere in the decomposition is itself a network of only
double walls.

In particular, for such networks each wall both begins and ends on a branch point
of the covering ¥ — C, and there are no incoming walls at any puncture. We will
discuss the decoration at such punctures, as well as along the pants curves, later in
this section.

Since by definition a Fenchel-Nielsen network respects a pants decomposition,
we can glue it from Fenchel-Nielsen networks on the individual pairs of pants.
In the next chapter, we will review the possible Fenchel-Nielsen networks on the

three-punctured sphere for K = 2 and detail the gluing procedure.

4.1.2 Examples, K > 2

When K = 3 much more interesting behaviour can occur. We will simply give
some examples here to give the reader some minimal intuition of what can happen.
A slightly more systematic approach to a particular class of K = 3 networks will
be seen in Chapter 7.

One relatively simple-looking K = 3 network with a joint phenomenon occur-
ring only when K > 2 is depicted below:

A\
7

Figure 4.6: Behaviour possible when K = 3 but not when K = 2. Labels have been
omitted.

In general, spectral networks can be much more complicated when K > 2.
Apart from the additional sheets, the “birthing” in phenomenon Fig 4.1 is now
possible. One such K = 3 network on P! (with irregular singularity at o) that we
will study later on is depicted below:
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23 13 (23) 13 23

21 31 12) 31 21

Figure 4.7: A “Grassmannian” network. The only singularity is at co.

On punctured spheres, choosing some generic parameter values, we can find
networks that look like below:

=) [
<7/
\\ /

Figure 4.8: A K = 3 network on the three-punctured sphere. Punctures lieat 1, —1,
and oo, and we have omitted labels and cuts.
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These are the K = 3 analogue of the Fock-Goncharov networks above. These
can be thought of as generalizing the notion of an ideal triangulation [3]. On the
other hand, the case we will be most interested in is the opposite, in which all walls

are double walls, so that we have networks like:

13

Figure 4.9: A “generalized Fenchel-Nielsen” network.

This particular network will be studied in much greater detail in the next chapter.

4.2 Abelianization and spectral coordinates

One of the most interesting applications of spectral networks is that they in-
duce holomorphic Darboux coordinate systems on moduli spaces of flat connec-
tions, called spectral coordinates [2]. These are very special coordinate systems,
subsuming a range of previously known examples, and will serve to produce new
examples for us. In particular, in [3] it was found that for certain types of spectral
networks the resulting coordinates are the same as coordinates introduced earlier
by Fock and Goncharov. In [4] this was detailed in the special case of rank K = 2,
and it was found that other types of spectral networks, namely the Fenchel-Nielsen
networks, lead to (complexified) Fenchel-Nielsen length-twist coordinate systems.
In this section we review the definitions and constructions, to be used in the fol-

lowing chapter to construct the higher length-twist coordinates.
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In the following and throughout the sequel we replace all maximal punctures

in a generalized Fenchel-Nielsen network by holes, to facilitate gluing.

4.2.1 Abelianization and nonabelianization

The key to the construction of spectral coordinate systems is the notion of
“abelianization” and “nonabelianization” [4, 2]. Let C be a compact real oriented
surface with some marked points, or singularities, C* = C\ {s1...sx} (say, a
punctured Riemann surface). Fix a branched covering 7 : ¥ — C and a spectral
network W “subordinate”! to this covering. Given a flat SLg-connection V on a
complex vector bundle E over C, a WW-abelianization of V is a way of putting V in
almost-diagonal form, by locally decomposing E as a sum of line bundles, which
are preserved by V. Let C’ and ¥’ denote C and X respectively with the (preimages
of) branch points removed.

Starting from a line bundle (£, V) over ¥, to nonabelianize, we begin with
the crudest approximation to the bundle we want, 7, L', which takes £’ to E re-
stricted to C’' \ W (this is the definition of E away from the branch points and
the network). Going the other way, when we abelianize we aim to get as close
to this situation as possible. Precisely, we may define W-abelianization and V-
nonabelianization in terms of WW-pairs [4].

Definition. A W-pair (E,V,1, L/, V2b) for a network W subordinate to the branched
covering 7 : & — C is the collection of data:

(i) A flat rank K bundle (E, V) over C
(ii) A flat rank 1 bundle (£, V) over X'
(i) Anisomorphism ¢: E[cnyy — 7L |cnyy
with the properties

(a) the isomorphism ¢ takes (the restrictions of) V to 7, vab

'Here, we simply mean that JV is a WKB network arising from a tuple ¢ = (¢, ..., px) whose
spectral curve is 2. — C, where C is endowed with a complex structure. This definition makes sense
verbatim in the context of general spectral networks [1, 4], in which case the word subordinate is
defined without reference to a complex structure, but agrees with this definition when W is of WKB

type.
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(b) at each single wall w C W, 1 jumps by a map S, = 1 + e, € End( niﬁ’]c/\w)
where e, : £ — L} if w carries the label ij, e, 7 0 (here by £} we mean the
summand of 71, £’ associated to sheet i; relative to diagonal local trivializations
of 71, L, this condition says &y, is upper or lower triangular). At each double
wall w'w ¢ jumps by a map SySw, with the ordering determined by the reso-

lution.

We call two W-pairs equivalent and write (Eq, V1,11 L], V"i‘b, ) ~ (E2, V2,12, L}, ng),
if there exist bundle isomorphisms ¢ : £; — £} and ¢ : E; — E; making
the obvious diagrams commute. In particular, in this case we have equivalences
(L], V) ~ (£5,V3P) and (Eq, V1) ~ (Ea, V2) as flat bundles. Denote the moduli
space of W-pairs by Mi: (W) (this depends on both 7t and W), leaving the rank
K implicit.

Definition. Given a flat SLx-connection V on a complex rank K bundle E over C,
a W-abelianization of V is any extension of (E, V) to a W-pair (E,V, 1, L', Vab).

Definition. Given an equivariant almost-flat GL;-connection V2 on a complex
line bundle £’ over ¥/, a W-nonabelianization of V2" is any extension of (£, V3P)
to a W-pair (E,V, 1, L/, Vab).

In fact, to W-abelianize a flat SLg-connection V, it is sufficient to define the
flat GL{-connection V2 on L' restricted to X'\71~'(W). Then V2 automatically
extends from X'\ =1 (W) to ¥':

Proposition 4.2.1. Suppose P = (E,V, 1, L, V) satisfies all the conditions for being
a W-pair, except that V2 is a connection on the restriction to ¥/ \ w=1(W). Then V2

extends uniquely across the walls, extending P to a VW-pair.

Proof. Straightforward extension of [4], section 5.1. O

4.2.2 Boundary

If C has boundary, it is useful to consider connections and WV-pairs with extra
structure. We fix a marked point on each boundary component of C. Then, a WW-
pair with boundary [4] consists of

e AWh-pair (E,V,, L, vab),
e abasis of E, for each marked point z,
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e abasis of L] for each preimage z; € 71-1(z) for each marked point z,

e atrivialization of the covering X over a neighbourhood of each marked point

Z,

such that : maps the basis of E; to the basis of 71, L] induced from those of £} and
2.

Given two surfaces C;, C; with boundary we can glue along a boundary com-
ponent, in such a way that the marked points are identified. Suppose that we have
a Wj-pair with boundary on C; and a W, pair on C;, and that the monodromies
around the glued component are the same (when written relative to the given triv-
ializations at the marked points). Then using the trivializations we can glue the
Wi -pair to the WV,-pair to obtain a WW-pair over the glued surface.

4.2.3 Equivariant GL(1) connections

The abelianization of a flat SLx-connection V amounts to choosing a basis
(s1,...,sk) of E at any point in C\W, with respect to which V is diagonal, sat-
isfying certain constraints ensuring the correct transition across walls. As a result,
any GL; connection V2 obtained by JV-abelianizing a flat SLg-connection V au-
tomatically carries some additional structure. We will capture this by saying that
the GL; connection VP is equivariant on X [4]:

Definition. An equivariant line bundle over X (subordinate to the covering ) is
a line bundle with connection (£’, V) over ¥/, equipped with a flat trivialization
of det 7. L'. We say V" itself is an equivariant connection.

We denote the moduli space of all equivariant line bundles on X up to equiv-
alence by Meq(Z, GL1) (note that this depends not just on X as a surface but also
on the branching structure of 7).

An equivariant connection cannot be extended to a flat connection over the
whole of 2, but we will sometimes say it is almost-flat on X, due to the next propo-

sition.

Proposition 4.2.2. Suppose all branch points of 7t are cyclic permutations of order r, and
Vb is an equivariant connection. Then (Holv(g Vab)r = 1, where 'yél) is the ith lift of a
b

small loop encircling a branch point b € C.
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Suppose we are given a W-pair (E, V, 1, L/, Vab) with V a flat SLg-connection.
The isomorphism ¢ identifies the basis (s1,...,sx) with a basis (73, ..., T) of the
pushforward bundle 77..£’, where T; = ((s;). The determinant line bundle det(7r. L)
is trivialized by the product

(B A ... ANTK). (4.2.1)

The triangular property of the jumps S, shows that this trivialization extends over
71 (W). Furthermore, the trivialization is parallel with respect to the induced
connection on the determinant line bundle det(7,. L’).

Equivariance just says that the parallel transport of a local frame (T, ..., Tx)
over a path in C\W (not crossing a branch cut) is given by a diagonal matrix with
determinant 1. Tt also implies that the holonomy of 77, V3 around a simple branch
point of type (ij) can be represented by the matrix whose only vanishing diagonal,
and whose only nonvanishing off-diagonal, entries are

d;; dl]) ( 0 d)
= _ . (4.2.2)
(dﬁ di) = \-a o

This implies that the holonomy of V2" around a simple branch point of type (if)
is diagonal with entry —1 corresponding to the two sheets interchanged, and 1
elsewhere . A connection V2 with this property is called an almost-flat connection
over X in [4].

The GL; connection V2P furthermore carries additional structure at the punc-
tures, characterized by the type of the puncture. In particular, since the mon-
odromy of V around a minimal puncture is a multiple of a reflection matrix, this
implies that the monodromy of 7,V around a minimal puncture is given by a

diagonal matrix with K — 1 equal eigenvalues.

4.2.4 Framing
Let xo denote the chosen base point of the fundamental group 7.

Definition. Let p be a maximal ? puncture/boundary, and £, V a flat bundle over
the punctured surface C. A W-framing of V at p is a filtration of the fibre &, by
eigenspaces of the monodromy around p.

2The reason for only fixing a framing at the maximal punctures and maximal boundaries of C
will become clear in §5.3, where we also discuss framings at other types of punctures and bound-
aries.
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We define a WW-framed connection V on C to be a flat SLx connection on C together
with a framing of V at each maximal puncture and maximal boundary. The fram-
ing is just an ordered tuple of eigenlines (I, .. ., ly; ) of the monodromy M (in the
+ direction) around the maximal boundary or maximal puncture. As a genericity
condition, we require furthermore that [,, # la]. for i # j and also that each of I,
for any puncture or boundary is distinct from each of /; for any adjacent puncture
or boundary (that is, a puncture or boundary belonging to the same pair of pants).
Note that a WW-framing of V exists only if all of the M. are diagonalizable.

4.2.5 Moduli spaces

Consider the following moduli spaces:

o M4r(C,SLk; W), the moduli space parametrizing flat WW-framed SLg-connections
over C, up to equivalence,

o Meq(Z,GLy), the moduli space parametrizing equivariant GL{-connections
over X, up to equivalence,

o Mopair(W), the moduli space parameterizing VV-pairs, up to equivalence.

The abelianization and nonabelianization constructions lead to the following
diagram relating these spaces:

v Mpair(W)
1 [
Meq(Z,GLl) MdR(C,SLK,' W)

where 71 and 71, are the forgetful maps which map a W-pair to the underlying
equivariant GL;-connection or W-framed flat SLg-connection respectively, whereas
1 is the VW-nonabelianization map and i, the WW-abelianization map. From this
description it is evident that 711 o ¢; and 715 o ¢, are the identity maps.

To avoid notational clutter we have not explicitly mentioned the restricted bound-
ary monodromies in the above. Yet, all remains true if we consider flat WW-framed
SLk-connections with fixed conjugacy classes at the boundaries and punctures,
and interpret their eigenvalues as the boundary monodromies for the equivariant
GL; connections.

In [4] it was established that all of these mappings are bijections for K = 2
Fenchel-Nielsen networks V. In particular, it was established that JV-abelianizations
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are in one-to-one correspondence with W-framings for Fenchel-Nielsen networks
W, and that there is there is a unique nonabelianization for any equivariant GL1-
connection. In particular, this shows that the mapping ¥ = 711 o ¢ is a bijection
(in fact a diffeomorphism).

In the next section we will show that this result extends to K = 3 Fenchel-
Nielsen networks W of length-twist type. We expect it to hold for any generalized
Fenchel-Nielsen networks of length-twist type. W-abelianizations for arbitrary
generalized Fenchel-Nielsen networks (not of length-twist type) are more subtle,

however, and are discussed in [52].

4.2.6 Spectral coordinates

Let X denote X with the preimages of branch points removed. Given an equiv-
ariant GL; connection V2" we can construct the holonomies

X, = Hol,(V®) € C* (4.2.3)

where v € H;(X/,Z). Together these form a coordinate system on the moduli
space of equivariant GL; connections (because of the equivariance, we will really
only need a sublattice of ¢’s). Through the abelianization map, these complex
numbers also determine a coordinate system on the moduli space of WW-framed
flat connections®. The resulting coordinates are called spectral coordinates.
Spectral coordinates have a number of good properties. First, they are multi-
plicative in the sense that
Xy Xy = X,y (4.2.4)

for any two 7,9 € H1 (¥, Z).

Furthermore, they are “Darboux” coordinates with respect to the holomorphic
Poisson structure on the moduli space of flat rank K connections over C (that is,
holomorphic on the punctured curve or equivalently considered over the compact

C with logarithmic singularities at the punctures):

{X ’ X’)/} = <’)// ’)’/>X,)/+,),/, (425)

where (.,.) denotes the intersection pairing on Hy (X', Z). In particular, for a sym-
plectic basis {A;, B;} of Hi(X/,Z), {log X4, 1log X} form Darboux coordinates in

the usual sense. This fact will be essential to us in the coming chapters.

3We discuss framings at general regular punctures in §5.3
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Chapter 5

Higher length-twist coordinates from
abelianization

This chapter is based on the joint work [8] with L. Hollands, arXiv:1710.04438.

In this chapter we study the geometry of the moduli spaces of flat connections
over a punctured Riemann surface C using the machinery of spectral networks
and abelianization. Given class S data with only minimal or maximal punctures,
we define and compute a generalization of (complexified) Fenchel-Nielsen coordi-
nates on Mgr. In the next chapter we utilize these coordinates to compute super-
potentials associated to the class S theory.

In §5.1 we define the higher rank generalization of Fenchel-Nielsen networks
and relate this to a generalized Strebel condition on the differentials. We use this to
generate examples of generalized Fenchel-Nielsen networks on the four-punctured
sphere. If the Riemann surface C is built out of three-punctured spheres with one
minimal and two maximal punctures, by gluing the maximal punctures, there is an
essentially unique (up to certain “moves”) generalized Fenchel-Nielsen network.
We call this a generalized Fenchel-Nielsen network of length-twist type.

The relevant moduli space MgR(C, SLk) is the moduli space of flat connections
on C with fixed conjugacy classes at each puncture. We require that each conjugacy
class is semisimple, with K distinct eigenvalues for a maximal puncture and K —
1 equal eigenvalues for a minimal puncture (or more generally, a partition of K
eigenvalues corresponding to a puncture labeled by any Young diagram).

In §5.3 we show how to realize the higher rank length-twist coordinates as
spectral coordinates through the abelianization method, focusing on our two main
examples. In particular, we show that the abelianization and non-abelianization

mappings are bijective. We then collect the resulting monodromy representations
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in terms of higher rank length-twist coordinates in §5.4, giving explicit formulas

for the trace functions.

5.1 Generalized Fenchel-Nielsen networks

Fix a pants decomposition P = (a, ... (Xg,g_3+n) of the punctured curve C. In
this section we define and study examples of a type of spectral network on C that
respects this pants decomposition, called a generalized Fenchel-Nielsen network
when K > 2. To be precise, recall that a network respects the pants decomposition P
if the walls and pants curves are disjoint; in other words, the network is glued out
of networks on three punctured spheres. We can then define:

Definition. We say that a K > 2 spectral network Wy(¢) is a generalized Fenchel-
Nielsen network if it consists only of double walls and respects some pants decom-

position of C.

In particular, for such networks each wall both begins and ends on a branch
point of the covering . — C, and there are no incoming walls at any puncture. We
will discuss the decoration at such punctures, as well as along the pants curves,
later in this section.

In [4] the case K = 2 was studied in detail and it was observed that the cor-
responding differential ¢, satisfies the Strebel condition. In the following we will
argue that for K > 2 there is a natural generalization of the Strebel condition which
generates generalized Fenchel-Nielsen networks.

Since by definition a Fenchel-Nielsen network respects a pants decomposition,
we can glue it from Fenchel-Nielsen networks on the individual pairs of pants. We
analyze the possible Fenchel-Nielsen networks on the three-punctured sphere for
K =2 and K = 3 and detail the gluing procedure.

Even though in the above we have fixed a complex structure on C and de-
scribed a spectral network in terms of the tuple ¢ of differentials, we will later
only be interested in the isotopy class of the spectral network on the topological
surface C. We thus define two spectral networks YV and W' to be equivalent if one
can be isotoped into the other.
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511 K=2

Let ¢ be a meromorphic quadratic differential on C, holomorphic away from
the punctures z;. Locally such a differential is of the form

@2 = u(z)(dz)? (5.1.1)

As we described in the previous chapter, given a phase ¢, the differential ¢, canon-
ically determines a singular foliation Fg(¢,) on C. The differential e~/ ¢, is called
Strebel if all leaves of the foliation Fy(¢y) are either closed trajectories or saddle
connections (i.e. trajectories that begin and end at a simple zero of ¢»).

Suppose that the singular foliation Fy(¢,) respects a given pants decomposi-
tion of the surface C. That is, suppose that each pants curve &y is homotopic to a
closed trajectory of Fy(¢2). Then the Strebel condition implies that the period of
\/— @2 around each pants curve ay as well as around a small loop <; around each
puncture z; has phase ¢, that is

e_w?{ vV—¢2 € R and e_w]{ V=92 € R (5.1.2)
1195 "

Conversely, given any pants decomposition P = {«y,..., a3, 34} consisting
of simple closed curves of a punctured Riemann surface C and arbitrary h; > 0,
k=1,...,33 —=3+mnand m; > 0,1 = 1,...n, there is a unique Strebel differen-
tial ¢» whose foliation consists of punctured discs centered at the punctures and
characteristic annuli homotopic to aj, such that

j{ v/ —@2=h; and —@p = my, (5.1.3)
A

"

for a suitable choice of branch of the root \/—¢, [53].

As explained in [4] a rank K = 2 spectral network Wy(¢,) can be obtained from
the critical locus of the singular foliation Fy(¢2). The resulting network Wy (¢2) is
Fenchel-Nielsen if and only if the foliation respects a given pants decomposition of
C, has no leaves ending on punctures and only compact leaves. This is equivalent
to saying that e~ %% ¢, is a Strebel differential.

Example. Recall that any meromorphic quadratic differential ¢, on the three-punctured
sphere Py 1 «, with regular singularities and prescribed residues —m? can be writ-

ten as ) 5 ( ) ) 2) )
Mgz™ — (Mg + my — my)z + my 2
= — dz)~. 514
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The above differential is a Strebel differential if and only if all parameters m; have
the same phase ¢ — 7. Without loss of generality we can assume all i, are real and
= 7.

The isotopy class of the corresponding spectral network Wx (¢2) depends on
the precise values of the parameters my, m; and m«. The spectral network changes

its isotopy class when one of the four hyperplanes defined by the equations
Meo = Tmg £ my (5.1.5)

in parameter space is crossed, which is when two branch-points of the covering
2 — C collide. The spectral networks on either side of such a hyperplane are
related by a “flip move” (in the terminology of [54]), where two branch points
approach each other, collide and then move away in perpendicular directions, as

N, S\ \‘/

/NN
N

Figure 5.1: Flip move: when varying a real parameter f in ¢ from a small negative
value to a small positive value two branch points come closer until they collide
and then move away from each other in a perpendicular direction. All walls in
this figure are double walls.

is illustrated in Figure 5.1.

If we do not distinguish the three punctures on [Py o, there are only two in-
equivalent spectral networks, named “molecule I” and “molecule II”, which are
plotted in Figure 5.2 for me = 1 and my = m; = 045 and me = mg = m; = 1,
respectively. The illustrated molecules are related by varying the parameter t =
mo + my — Mo from t = —0.1 to t = 1 (while keeping me > —mg + my).
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12)21

)
it
°

Figure 5.2: Fenchel-Nielsen networks on the three-punctured sphere. On the left
is molecule I with me = 1 and my = m; = 0.45. On the right is molecule II with
Me = mp = my = 1. The blue dots are the punctures, and the orange crosses are
branch points of the covering ¥ — C. All walls are double walls.

In applications we often need to study the two limits & — 0%. These corre-
spond to the two “resolutions” of the network. In each of the two resolutions each
double wall is split into two infinitesimally separated walls. The two resolutions
of molecule I are shown in Figure 5.3. By drawing the branch cuts in this figure we
have moreover fixed a local trivialization of the covering 2 — C.

(12) (12)

(12)
21@ @21 12@ .

Figure 5.3: The two resolutions of molecule I: on the left the American resolution
and on the right the British one. The wavy orange lines illustrate a choice of branch
cuts of the covering > — C.

A Fenchel-Nielsen network on a general Riemann surface C is defined with
respect to a pants decomposition of C and can be constructed by gluing together
molecules (in the same resolution) on the individual pairs of pants. The molecules
are glued together along the boundaries of the pairs of pants, with marked points
on the boundary identified, and inserting a circular branch cut around each pants
curve.

Any puncture in a molecule is surrounded by a polygon of double walls. The
decoration at a puncture is an assignment of an ordering of the sheets of the spec-
tral curve X over the puncture to each direction around the puncture, compatible
with the labelings of the double walls surrounding it, in such a way that reversing

the direction reverses the ordering. In Figure 5.3 we have chosen the branch cuts
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such that the 12-walls run in the clockwise direction around each puncture. The
decoration thus assigns the sheet ordering 12 to the clockwise orientation.

Similarly, any pants curve in a Fenchel-Nielsen network is surrounded on either
side by a polygon of walls. We thus also associate a decoration to each pants curve.
This is an assignment of an ordering of the sheets to each direction around the
pants curve, compatible with the labelings of the double walls surrounding it, in
such a way that reversing the direction reverses the ordering.

512 K=3

We generalize the Strebel condition to K > 2 as follows.

Definition. A tuple of differentials ¢ = (¢2,..., k) is generalized Strebel (at
phase 9) if there exists a symplectic basis for the compactified spectral cover X,
i.e. a choice of A-and B-cycles on ¥, such that

e@¢d AeR and e P AeER, (5.1.6)
Ay M
for each A-cycle Ay and each lift 7; of a small loop around each puncture z; to %,
where A is the tautological 1-form on X.

We say that the generalized Strebel tuple ¢ respects a pants decomposition P of C
if the generalized Strebel condition (5.1.6) holds for a basis whose A-cycles are the
lifts of each pants curve &« € P to X.

Recall that a spectral network Wy(¢) is called a generalized Fenchel-Nielsen
network if it respects some pants decomposition and consists of only double walls.
We use generalized Strebel tuples to generate our examples of Fenchel-Nielsen
networks throughout the thesis, though we do not have a proof of why this must

happen. Based on this, we propose

Conjecture 5.1.1. Suppose P is a pants decomposition of C and ¢ is a generalized Strebel
tuple at some phase © which respects P. Then the WKB spectral network Wy (@) is a
generalized Fenchel-Nielsen network respecting P.

(In [54, 55] a related class of networks, called BPS graphs, were given an inter-
pretation in terms of BPS quivers. In the terminology of [4] they would be called
generalized fully contracted Fenchel-Nielsen networks. In particular, they do not
respect any pants decomposition.)

78



Example. The differentials ¢, ¢3 on the three-punctured sphere lP(l)’L « With two
maximal and one minimal puncture were discussed in §2.2.3. Applying an auto-
morphism of P! to move the punctures toz; = 1, z, = w and z, = w?, where w is
the third root of unity, these differentials can be written explicitly as

i —9m? 3(1 — z)?

3@ = Ty T <§ = 2352 (1 + 111052 1 ) 6-17)
. 9(1 +z)m3 9(1—2)%(1+z

93'(2) = (1 _(z)(l )_23)2 A 1 _> 2(3)3 )mb,lmb,Z(mb,l +mpp),  (5.1.8)

where m, is the single mass parameter at the minimal puncture at z = 1, and where
we have set the mass parameters m;, ; and my, ; at the maximal puncture at z;, = w
to be minus the ones at z, = w?.

The spectral network (@Pf, 8) is a generalized Fenchel-Nielsen network if and
only if all mass parameters m,, my; and m;, have the same phase & — 7. This is
precisely when the corresponding tuple ¢Pf is generalized Strebel. Without loss of
generality we can assume that the mass parameters are real and ¢ = 7.

Just as in the previous example, the different isotopy classes generated by ¢°'f
are classified by the connected components of the complement of the hyperplanes
corresponding to the collision of two or more branch points of the covering > — C.
We refer to any of these isotopy classes as a K = 3 generalized Fenchel-Nielsen
molecule with two maximal and one minimal puncture. Any two such molecules
are related by a sequence of elementary local transformations, such as the flip

move. Some molecules are shown in Figure 5.5.

112 31 31 12

13 13 21
32 32 32 32
23 23 23 23
31 12 12 31
13 21 21 13

Figure 5.4: The two possible joints in which six double walls can intersect.

The generalized Fenchel-Nielsen molecules with two maximal and one min-
imal puncture share a number of features. They are built out of two (rank 2)
Fenchel-Nielsen molecules, intersecting each other in (both of) the 6-joints illus-
trated in Figure 5.4. Maximal punctures are surrounded by a polygon of double
walls, whereas minimal punctures lie on top of a double wall.
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> ®
Figure 5.5: Examples of non-isotopic generalized Fenchel-Nielsen molecules with
two maximal and one minimal puncture, symmetric about the horizontal. All
walls are double walls.

Each K = 3 molecule comes with two resolutions, in which each double wall is
split into two infinitesimally separated walls. For instance, the two resolutions of
the molecule at the top-left in Figure 5.5 are illustrated in Figure 5.6. Note that a
minimal puncture is in between two single opposite walls. In Figure 5.6 we have
also chosen a local trivialization of the spectral cover .

Each K = 3 molecule can be represented with several choices of wall labelings.

For instance, for the K = 3 molecule in Figure 5.6 the wall labelings are completely
determined if we fix the labels for the double wall surrounding the maximal punc-
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ture at z = w as well as one of the two possible combinations of joints around the
minimal puncture at z = 1. All different choices can be obtained from the represen-
tation in Figure 5.6 by introducing additional branch cuts around the punctures.
Each choice of wall labelings determines a decoration at the punctures and
along the pants curves. As before, the decoration assigns an ordering of the sheets
of the spectral curve X over the puncture or over the pants curve to each direction,
in such a way that reversing the direction reverses the ordering. For instance, for
the K = 3 molecule in Figure 5.6 the decoration at the maximal puncture at z = w
assigns the sheet ordering (123) to the clockwise direction and (321) to the coun-
terclockwise direction, whereas the decoration at the maximal puncture at z = w?
assigns the sheet ordering (321) to the clockwise direction and (123) to the coun-
terclockwise direction. The decoration at the minimal puncture at z = 1 assigns
the sheet ordering (31;2) to the clockwise direction and (13;2) to the counterclock-
wise direction, where 2 is the distinguished sheet that does not appear in the label

of the double wall intersecting the minimal puncture.

21
12 12 21
[ ] [ ]
12 21
21 12
21
12
13 31
® X
31 13
32
23
32 23
(23) (23)
[ ] [ ]
2332 2

32

Figure 5.6: The two resolutions of the generalized Fenchel-Nielsen molecule at the
top-left in Figure 5.5 together with a choice of local trivialization of the spectral
cover .

Example. Equations (2.2.14), (2.2.15) from Chapter 2 describe the 1-dimensional
family of tuples (¢, ¢3) on the three-punctured sphere ]P%),L<>C> with three maximal
punctures. Each tuple defines a spectral cover X over C whose compactification
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has genus 1. This implies that the possible generalized Strebel tuples are labeled
by a choice of A-cycle on . The generalized Strebel condition (5.1.6) fixes the
parameters u and m; j relative to the choice of the phase ¢.

Generalized Fenchel-Nielsen networks on the three-punctured sphere ]Pé’l’Oo
with three maximal punctures were classified in [41] in the special case when all
parameters m; ; vanish. It was found that there is a single generalized Fenchel-
Nielsen network at each phase 8, ;) with

V34

= , (5.1.9)
pA) q—2p

tan 19[

for any pair of coprime integers (p, q). Each generalized Fenchel-Nielsen network
corresponds to a generalized Strebel differential ¢, with

iy A ER. (5.1.10)
APr‘i

e

where Ay, ; = py1 + q72, for a certain basis of 1-cycles 71 and 7, on X.

Generalized Fenchel-Nielsen networks on a punctured Riemann surface C are
defined with respect to a pants decomposition of C and can thus be found by glu-
ing together generalized Fenchel-Nielsen “molecules” on the individual pairs of
pants. Allowed gluings require that not only the type of the punctures match,
but also the decorations along the pants curves (possibly by inserting additional
branch cuts).

In the following we restrict ourselves to Fenchel-Nielsen networks obtained
from gluing Fenchel-Nielsen molecules with two maximal and one minimal punc-
ture along maximal boundaries. We call this class of generalized Fenchel-Nielsen
networks of length-twist type. Figure 5.14 gives an example of such a length-twist
type network on the four-punctured sphere (where we have replaced the two max-

imal punctures by boundaries).

5.2 Higher length-twist coordinates

Let V be a flat SLg-connection on a punctured curve (C, D) with a fixed semi-

simple conjugacy class
Cl = diag{Mlll, cen Ml,K} (521)
at each puncture with M;; € C*.
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The partition of the K eigenvalues can be read off from the Young diagram
assigned to the puncture: the height of each column in the Young diagram encodes
the multiplicities of coincident eigenvalues. In particular, for generic! values of
the eigenvalues, a conjugacy class at a minimal puncture is a scalar multiple of a
complex reflection matrix.

We denote the (relative) moduli space of such flat connections by
Mg (C,SLk), (5.2.2)

where C = {C;} is the collection of conjugacy classes.

We will restrict ourselves to Riemann surfaces C that can be obtained by gluing
spheres with two maximal and one minimal puncture, where gluing is permit-
ted only along maximal boundaries®. Since a generic flat SLg-connection on the
sphere with two maximal and one minimal puncture is completely specified (up
to equivalence) by the eigenvalues of the monodromy around the punctures, the
moduli space of flat SLg-connections on any such surface Cis (K —1)(6g — 6+ 2n)-
dimensional, where 3¢ — 3 + n is the number of pants curves.

In this section we define a generalization of the standard Fenchel-Nielsen length-
twist coordinates on the moduli space

MS(C,SLi; W)

of W-framed flat SLx connections, where C is built by gluing as above. In sec-
tion 5.3 we show that these coordinates are realized as spectral coordinates through
the abelianization method. The WW-framing will be crucial in picking out a canoni-

cal abelianization of V.

5.2.1 Higher length-twist coordinates

A flat SLg connection V on C with fixed boundary conjugacy classes is specified
(up to equivalence) by 2K — 2 parameters at each pants curve «;.

Half of this set of parameters, say ¢4, ..., {x_1, are simply the (logs of) eigenval-
ues of the monodromy M;. The indexing of these parameters is determined by the

decoration as well as the framing data. If the decoration at the boundary assigns

1Ml,1 = ... = M; g_1 not equal to a K-th root of unity
2This constraint is natural from the physical point of view, where it corresponds to “gauging the
flavor symmetry” associated to the punctures.
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the sheet ordering (i, ..., ix) to the + direction and the framing of V at the bound-
ary in the + direction is given by the ordered tuple of eigenlines (lu,, ..., ls, ), then

we define
Li=—e i (5.2.3)

as the eigenvalue corresponding to the eigenline Z‘Xj.3

The other half of the parameters, say T, ..., Tx—1, have a more indirect defini-
tion. One approach is in terms of their transformation under the following modi-
fication of the connection V. Suppose we cut the surface C into two pieces along
a pants curve a.* We obtain two surfaces with boundary, say C; and C; carrying
flat connections V; and V5, as well as an isomorphism ¢ that relates V1 to V5. Let
us now change V1 by a gauge transformation x that preserves the monodromy M
around &, and then glue C back along the boundary «.

If the monodromy M is diagonalized by the gauge transformation g, then the

transformation x can be written as
x = g ! odiag (e/\l,. : .,e)‘K> og 5.2.4)

with YK | A; = 0. After gluing back we thus obtain a 1-parameter family of modi-
fied connections V(A). This operation is sometimes called the (generalized) twist
flow (see for instance [56] in the real-analytic setting, which builds on [57, 58, 59]).
Any choice of parameters 1y, . . ., Tx—1 with the property that they change under
the twist flow as
)\] )\K

5 7ol = (5.2.5)

are called twist parameters. The twist parameters T; are thus only defined up to an
additive function in the length parameters ¢4, ..., (k.

This definition of the length-twist coordinates ¢4, ..., {x_jand 7y, ..., Tx_1 guar-
antees that they are Darboux coordinates on the moduli space of (VV-framed) flat
SLk connections. We refer to them as (complex) higher length and twist coordi-
nates, respectively.’ In §5.3 we will realize these coordinates explicitly as spectral
coordinates associated to the generalized Fenchel-Nielsen network W of length-
twist type, and obtain coordinate formulas for the trace functions on Mgg.

3 A rationale for the slightly odd conventions is given in §6.3.

“Here we suppose that a is a separating loop, a similar discussion holds if it is nonseparating.

SThis is a rather straightforward higher rank generalization of the definition of Fenchel-Nielsen
length-twist coordinates in [4].
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5.2.2 Fenchel-Nielsen twist coordinate

Let K = 2, so there is only one pair of coordinates (¢, T) associated to each pants
curve. The twist coordinate defined as above is only determined up to a canoni-
cal transformation T = T + f(¢). However, certain other constructions yield a
distinguished choice for the twist, given by the so-called complex Fenchel-Nielsen
twist TN [20, 21, 60, 61]. This twist parameter is identical to the NRS Darboux
coordinate /2 [7].

1
0,9,1,00

mental group as illustrated in Figure 5.7, generated by the paths 7, 7, 71 and yeo

Example. On the four-punctured sphere P fix the presentation of the funda-

with the relation

(70,7 Y1, Yoo Y0¥ Yoo 71 = 1). (5.2.6)

If the conjugacy class around the path 7 is semisimple with eigenvalues M; and
M, !, we have that the traces of the monodromy matrices M, = M, M, and M g =
M, M, are given by

TTM,=L+L7}, (5.2.7)
TrMy = /N(L) (T n T*l) + No(L), (5.2.8)
where
L+ L= —2cos(mntf),
T+ T 1 = —2cosh(27™), (5.2.9)
M; +Ml_1 = —2cos(mtmy),
and
L)C1eo(L
N(L) = M, (5.2.10)

sin(7t/)
i = cos(7tl)? + cos(rmy)? 4 cos(rrmy)? + cos (7l wmy, wm;) — 4,
_cos(mtl) (cos(rtmg, my) + cos(7tm, e, )) + cos(rm, tmy) + cos(7mg, i)

No(L) %sinz(r(ﬁ)

7

where we defined cos(x, y) = cos(x) cos(y). We realize the Fenchel-Nielsen length-
twist coordinates £ and TN as spectral coordinates in §5.4.2 by averaging over the

two resolutions of a Fenchel-Nielsen network.
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Figure 5.7: Generators for the fundamental group 71 (C, *) of the four-punctured

1
sphere IPj ;-

5.2.3 Higher length-twist coordinates as spectral coordinates

The coordinate system one obtains from abelianization depends in general on
the isotopy class of the spectral network W. The spectral coordinates for general-
ized Fenchel-Nielsen networks of length-twist type are higher length-twist coor-
dinates, in the sense that they satisfy the twist flow property described in §5.2.1.
The proof of this is a straightforward generalization of the argument in [4], where
it was shown that the spectral coordinates corresponding to Fenchel-Nielsen net-
works are Fenchel-Nielsen length-twist coordinates.

Indeed, let us fix an annulus A, corresponding to a glued maximal boundary,
and construct the corresponding basis of equivariant 1-cycles A; and B;, corre-
sponding to a choice of A and B-cycles on the cover 2.

Suppose that the decoration at the annulus A in the + direction is (iy, ... ik)
and that the framing of V in the + direction is (la,, ..., ls ). Fix a path p going
around the annulus A in the + direction. Consider the lift A; € H; (X, Z) of p onto
sheet j. The spectral coordinate X, is equal to the eigenvalue corresponding to
the eigenline l,xj, with ij/ = j, which according to §5.2.1 equals the higher length
coordinate L;.

Fix a 1-cycle B; that crosses the j-th and K-th lift of the annulus A. Under the
twist flow parametrized by (Aq, ..., Ak) the section (sq, ..., sx) — (A151, ..., AkSk).
This shows that the twist flow acts on X’ B; as

-1
XBj — (AK) A] XB]-/
which according to §5.2.1 implies that Ap, is a higher twist coordinate.
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The 1-cycles A; and B; satisfy
(Aj, Br) = jx

and thus indeed correspond to a choice of A and B-cycles on the cover .

5.2.4 Representations

Instead of working directly with flat connections, we use the Riemann-Hilbert
correspondence and work with the corresponding parallel transport maps. As in
§6 of [4] we replace flat SLg-connections of C by SLk-representations of a groupoid
Gc of paths on C and equivariant GL{-connections by equivariant GL;-representations
of a groupoid Gy, of paths on X'. The objects of the groupoid G are basepoints on
either side of a single wall in the spectral network W, whereas the objects of the
paths groupoid Gy are lifts of these basepoints to the cover ¥’. Morphisms of
the groupoid G¢ (and Gy/) are homotopy classes of oriented paths g which begin
and end at basepoints on C (and their lifts to ¥’ respectively). Examples of such
path groupoids are given in Figure 5.9 and 5.11. In figures, paths that do not cross
any walls are coloured light-blue, whereas paths that connect the two basepoints
attached to a single wall are coloured red.

5.3 Abelianization for higher length-twist networks

Let C be a punctured surface together with a pants decomposition into pairs of
pants with two maximal and one minimal puncture. Furthermore, choose a gener-
alized Fenchel-Nielsen network WV of length-twist type on C respecting the pants
decomposition. Our aim in this section is to show that the VW-nonabelianization
mapping 11 as well the VW-abelianization mapping 1, both are bijections. We use
the following strategy.

Fix a length-twist type network WV and a W-framed flat SLx connection V.
Suppose that we are given a W-abelianization of V. That is, suppose that we are

given local bases

(s?,...,s}?)

on all domains R of C\W, and that the transformation S;, that relates the bases in
adjacent domains, divided by a wall of type ij is of the form

Sw — ]. + Ew, (5.3.].)
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where e, lies in the 1-dimensional vector space Hom(Z;, £;).

The transformations e, are not arbitrary, as they must satisfy some constraints.
Encircling a (simple) branch point of the covering ¥ — C, due to almost-flatness,
yields a constraint on their coefficients, as does encircling each joint of the spectral
network W (which must give the identity). We show that these constraints admit
a unique solution for the transformations Sy, up to abelian gauge equivalence, if
we demand the local bases around maximal punctures agree with the choice of
Wh-framing of V.

Recall that the W-framing of V is specified by a choice of framing at the maxi-
mal punctures and boundaries (see §4.2.4). Rather than requiring any similar data
at the minimal puncture, we find that the constraints impose that the local basis at
each minimal puncture may be expressed uniquely in terms of the transformations
Sy and the framing data at any one of the maximal punctures or boundaries.

We conclude that there is a unique WW-abelianization of V for every choice
of W-framing of V. But at the same time we deduce that there is a unique WW-
nonabelianization of the corresponding equivariant GL(1) connection V2. Fur-
thermore, we find that all JW-abelianizations of V are obtained in this way: if we
have an abelianization of V, then the K lines L_l(ﬁi) for1 < i < K at each max-
imal puncture or maximal boundary must all be eigenlines of the monodromy of
V around that maximal puncture or maximal boundary. The only freedom is the
choice which of these lines is which eigenline, i.e. the choice of framing. Hence we
find that both mappings 1; and ¢, (from §4.2.5) are bijections.

In the following we first spell out the details for a Fenchel-Nielsen and a gen-
eralized Fenchel-Nielsen molecule. We then use the gluing formalism to complete
the argument for Fenchel-Nielsen and generalized Fenchel-Nielsen networks of
length-twist type on any surface C.°

5.3.1 K = 2 molecule

Fix the Fenchel-Nielsen molecule )V from Figure 5.8 on the three-holed sphere
C. This was one of the examples from [4] (although we discuss the JV-abelianization
in a slightly different way). Say that V is a W-framed flat SL(2) connection on C;

the framing is a choice of eigenlines [, and [_ at each annulus A. Say that M is the

®To be precise, we show uniqueness only for networks glued from the molecule illustrated
in Figure 5.10, but we expect it to hold for any network built from the K = 3 Fenchel-Nielsen
molecules of length-twist type.
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eigenvalue corresponding to the eigenline /. and M~! the eigenvalue correspond-
ing to the eigenline /_.

Figure 5.8: Length-twist network on the three-holed sphere together with a choice
of + direction around each hole.

Choose a trivialization of the covering 7 : £ — C, and suppose that V admits
a VV-abelianization. We require that the corresponding }V-abelianization singles
out the basis of eigenlines /; = I and [; = [_ if the decoration in the + direction is
ij. We will now show that this uniquely determines the JV-abelianization.

The W-abelianization corresponds to choosing a basis (s1,52) € Iy & I in each
annulus, such that the bases in adjacent domains are related by a transformation
Sp. Choose basepoints and generators of the path groupoids G¢ and Gy as in
Figure 5.9. The section s; changes by a constant when parallel transporting it along
a light blue path that does not cross a branch cut. If the path does cross branch
cuts it furthermore changes sheet accordingly. We encode the parallel transport of
the basis (s1,5s2) along light blue paths @ in matrices D, and along red paths w,
connecting the red dots across walls, in matrices Sy.
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Figure 5.9: Length-twist network on the three-punctured sphere together with a
choice of basepoints (the red dots) and a choice of paths (in light-blue and red).
The red paths are admittedly barely visible in this figure, but connect the red dots
across walls.

The matrices Dy, are not arbitrary, as they encode the parallel transport coeffi-
cients of the equivariant flat connection V2. When going around the boundaries
we find the constraints

D3 = diag(Mo, M, 1) (5.3.2)
D = diag(My, M; 1) (5.3.3)
D;D5D4D; = diag(Mz!, Me). (5.3.4)

When traversing around the branch points we find the almost-flatness constraints

(D3D,D1)* = —1 (5.3.5)
(D¢DsD4)* = —1. (5.3.6)

Together, these abelian flatness constraints determine the matrices D, up to
transformations G, = diag(gz,g- ) at the basepoints z that act on the matrices D,,

by

Dp — Gf(p)Dp G (5.3.7)

-1
i(p)
where i(p) is the initial point of the path p and f(g) its end point. That is, up
to abelian gauge transformations, WV-abelization determines a unique equivariant
GL(1) connection V2 on the cover .

It remains to check that there is a unique solution to the transformations Sy, (up

to an abelian gauge transformation). The transformations Sy, are constrained by
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the requirement that following any contractible loop on the base C should result in

the identity. Traversing around either branch point gives the constraints

D5 Sw, D18, D3 Sy, =1 (5.3.8)
D4 Sy, D58, Do Sw, =1, (5.3.9)
where
o 1 0 1 (o8]
sa= (2 0Y (1) sa10
. 1 Co 1 0
sa= (1) (21 0) sa
o 1 0 1 C3
so=(10)(19) 512
Indeed, this has a unique solution up to equivalence, with for instance,
€] = = ———5——5 3.
(1-MZ) gi(1 - Mg)

where g is a coefficient of the abelian gauge transformation at basepoint 1. As ex-
plained in [4], the s-parameters c, and ¢, have an interpretation as abelian parallel
transport along so-called “detour paths” which follow a wall back to its emanating
branchpoint and return to a different preimage on .

Note that that the unique solution to the branch point constraints crucially de-
pends on the chosen framing at each of the annuli, but in a simple way: changing
the framing at any one of the annuli A; corresponds to replacing M; — M, Lin the
expressions for the transformations Sy.

5.3.2 K = 3 molecule

Fix the length-twist type network W from Figure 5.10 on the sphere C with two
(maximal) holes and one minimal puncture, and suppose that V is a VW-framed
flat SL3 connection on C. As before, the framing corresponds to an ordered tuple
of three eigenlines around each boundary component. That is, an ordered tuple
(lo,a,lo,p, o,y ) at the top annulus and an ordered tuple (leou, loo g, lo,) at the bottom
annulus. We will show that there is a unique JV-abelianization of this V that agrees
with the framing.

One might ask why we did not introduce framings for minimal punctures. Sup-

pose for the moment that we needed a “framing” at a minimal puncture, given by
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any ordered tuple (I1,4,11,;11,,) of eigenlines, where the eigenline 1 , corresponds
to the distinguished eigenvalue of the monodromy. It seems like this would intro-
duce a continuous family of abelianizations, but in fact we find in the following
that the abelianization constraints determine the tuple (4,11 4;11,,) uniquely in
terms of the framings at the maximal punctures.

12 +
&
21
12
12
21
23
32
31
13
13
31
13
31 i
O
+

Figure 5.10: Rank 3 Fenchel-Nielsen molecule together with a + direction at each
puncture and hole.

Choose a trivialization of the covering 7 : ¥ — C, and suppose that V admits
a VW-abelianization. Around each hole A; we require that the corresponding V-
abelianization has eigenlines /;; = I;, and [, ; = [, g and [; x = I, , if the decoration
in the + direction is (ijk). Around the minimal puncture we require that the corre-
sponding WV-abelianization has eigenlines Iy ; = 14, I1; = 1 g and Iy x = 11, if the
decoration in the + direction is (ij; k).

The W-abelianization corresponds to the data of a basis (s, sX, s¥) on all do-
mains R of C\W, such that the bases in adjacent domains are related by a transfor-
mation S;,. Choose basepoints and generators of the path groupoids G¢ and Gy as
in Figure 5.11. As before, we encode the parallel transport of V in “abelian gauge”
along light blue paths p in matrices D, and along red paths w in matrices S.

The matrices D, are not arbitrary, as they encode the parallel transport coeffi-

cients of the equivariant connection V2 on the cover X'. For instance, when going
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around a loop encircling the top branch point twice we find the constraint
(D3D1D,)? = diag(—1, —1,1). (5.3.14)

The abelian holonomies in the 4+ direction around the holes, labeled by 0 and oo,

and around the puncture labeled by 1 are given in terms of the monodromy eigen-

values as
Holg V3 = diag(My 1, Moy, (Mg1Mgz) ™), (5.3.15)
Holeo V3 = diag(Mu, 1, Moo 2, (Meo1Mao2) 1), (5.3.16)
Hol, V3 = diag((M;) 2, M1, My). (5.3.17)

Note that, whereas the framing at each annulus fixes the ambiguity of which
eigenvalue corresponds to which sheet, for the puncture there is no such ambigu-
ity. The abelian holonomy around a puncture must have coefficient M; 2 for the
distinguished sheet, and the coefficient M; for the two other sheets is the same.

ome

13

Figure 5.11: Rank 3 Fenchel-Nielsen molecule together with a choice of basepoints
(the red and purple dots) and a choice of paths (in light blue and red). The purple
basepoints should be identified. Even though we have only oriented and labeled
a few paths to avoid cluttering of the picture, all paths are oriented and labeled.
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Solving for all abelian flatness constraints one finds that the matrices D, are
uniquely determined up to abelian gauge transformations. In other words, there
is a unique equivariant GL(1)-connection V2 on the cover X.

It remains to check that there is a unique solution to the transformations S,
which are constrained by nonabelian ”“branch point constraints” and “joint con-
straints”. The former impose that V has trivial monodromy around the branch
points, and the latter that V has trivial monodromy around the joints. For instance,

encircling the top branch point gives the constraint (see Figure 5.11)
D3 Suw, D1 Suw, D2 S} = 1. (5.3.18)

Furthermore, we need to enforce the boundary conditions at the punctures. For

instance, going around the minimal puncture gives the constraint (see Figure 5.12)
Sw;, D4 D5 S, Dg Dy Swy, = Holy VA, (5.3.19)

Where 8104 - 8w4/b8w4,a.

23 u‘gAb 1 . ? ’U,‘44b

32 w3,a § & W4,

Figure 5.12: A close-up of Figure 5.11 near the minimal puncture labeled by 1. The
red short paths w3 and wy are split in half, labeled by the letters 2 and b.

Solving all these constraints shows that the matrices Sy, have a canonical solu-
tion, which (just like for K = 2 abelianizations) have an interpretation as parallel
transport along auxiliary paths.

The resulting expressions for the matrices Sy, depend on the choice of framing
at the (maximal) holes through the choice of ordering the eigenvalues in the abelian
holonomy matrices Holovab and Hole V2. In contrast, the particular choice of
eigenlines (11 4, h,p; l,,) at the minimal puncture doesn’t play any role in comput-
ing the Sy.

Yet, the unique solution for the transformations &, implies that the basis in
any region C\W, and in particular near the minimal puncture, is uniquely deter-
mined in terms of the choice of eigenlines at the boundary components. That is, the
abelianization of V canonically determines the choice of eigenlines (114,11 ,4;11,1) at
the minimal puncture. In particular, there is no framing ambiguity at the minimal

puncture after all.
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Note that this is consistent with the interpretation of the framing data in terms
of the S matrices. Indeed, whereas a change in framing at an annulus A; corre-
sponds to a permutation of the mass parameters M, ;, the permutation group of
mass parameters at the minimal puncture is trivial. Generalizing this argument
to any regular puncture, we expect that the framing ambiguity at a regular punc-
ture with Young diagram Y is given by the group S, x ... x Sy, where ny, ..., n
counts columns of Y with the same height and S, is the permutation group with n
elements.

5.3.3 Gluing

Fix a length-twist type network W built out of two molecules. (The same argu-
ment can be extended to more molecules.) Say that V is a W-framed flat connec-
tion on C and suppose that V admits a JV-abelianization.

Choose a pants cycle « relative to VW and fix a marked point z, on «. The
monodromy V along « is diagonal in the “abelian” gauge. Cut the surface C along
« into two pair of pants C; and Cy. Say V| is the restriction of V to Cy, and V; the
restriction to Cp. V7 and V5 are both flat SLg-connections with trivialization at the
marked point z,.

The W-abelianization of V4 (as well as V) is almost the same as described in
the previous subsection. In particular, we still find the same unique solution to
the S matrices Sy. The only difference that we have to introduce an additional
path p, 1 connecting the basepoint z, with z,. The parallel transport matrix Dy,
along this path is diagonal and determined by V;. This uniquely fixes the V-
abelianization on C; (and similarly on Cy).

If we glue back together the three-holed spheres C; and Cy, we can glue the two
Wh-abelianizations on C; and C; to obtain a unique JV-abelianization of V. Since
we need to divide out by (diagonal) gauge transformations at the marked point z,,
the resulting equivariant GL; connection V?° on C is characterized by its parallel
transport along the lifts of the path p, 1 o p;% to 2.

We conclude that the W-framed connection V admits a unique W-abelianization
and that the corresponding V2 admits a unique YW-nonabelianization. Moreover,
as before, different VV-abelianizations of V (without the JV-framing) correspond

to different WW-framings.
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5.4 Monodromy representations in higher length-twist
coordinates

In the previous section we have explicitly constructed }V-abelianizations as
well as W-nonabelianizations. With the resulting description of V in terms of the
parallel transport matrices D and transformations &y, it is a straightforward matter
to write down the monodromy representation for V in terms of the spectral coor-
dinates X’,. In this section we summarize these monodromy representations in a
few examples.

Recall that any length-twist type network carries a resolution, which can ei-
ther be American or British. The spectral coordinates X, corresponding to either
resolution are generalized Fenchel-Nielsen length-twist coordinates. The spectral
length coordinates are the same in either resolution, while the spectral twist coor-
dinates differ (corresponding to the ambiguity in the Fenchel-Nielsen twist coor-
dinates).

In this section we will see that the NRS Darboux coordinates (i.e. the standard
complex Fenchel-Nielsen length-twist coordinates) are only obtained by averaging
over the two resolutions. More precisely, we define the average higher length-twist

coordinates as’

L= XXi =X, (5.4.1)

T; =/ X5 X, (5.4.2)

where A; and B; constitute a choice of A and B-cycles on the cover %, as defined in
64.2.6, and + and — refer to the American and the British resolution, respectively.
Indeed, we find that the average length and twist agree with the standard length
and twist of §5.2.2.

The only left-over ambiguity in the spectral coordinates is an ambiguity in
defining the B-cycles on the cover X and a choice of (generalized) Fenchel-Nielsen
length-twist network. Resultingly, we find that the higher length-twist coordinates
are determined up to a multiplication by a simple monomial in the (exponentiated)

mass parameters.

7We thank Andrew Neitzke for this suggestion.
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5.4.1 Strategy

Let us spell out our strategy for computing the spectral coordinates of the
length-twist network WV on the four-holed sphere C illustrated on the left in Fig-
ure 5.13.

First we cut the four-holed sphere C into two three-holed spheres C; and C;
along the pants cycle . Say that C; is the upper and C; the lower three-holed
sphere. Any flat SLy-connection V restricts to flat connections V; on C; and V»
on C, with fixed trivialization at a marked point z, at the boundary. The W-
abelianization of V; is outlined in §5.3.1. The W-abelianization of V5 is similar,
but with opposite wall labels.

Then we can construct a monodromy representation for V; with base point zy,
from the matrices

My = Sy, D1Ds, (5.4.3)
M; = DsD4S,,} (5.4.4)
M, = diag(Mx!, Mw) (5.4.5)
with
M, -M;-My = 1. (5.4.6)

Recall that the matrices D, encode the parallel transport coefficients along the
paths g illustrated in Figure 5.9.

Applying the same recipe to VV, yields a monodromy representation of V; on
C», generated by the three matrices My, My and M,s with the constraint M, - My -
My = 1. We have that

M, = diag(Me, M!). (5.4.7)

Now glue the three-holed spheres C; and C; along « together again, while in-
troducing the matrix

P = diag(p,p 1), (5.4.8)

describing the parallel transport of V along the annulus A (from basepoint w) to
basepoint w;). Then we can construct a monodromy representation for V in terms
of the matrices My, M1, My, My, My, M, and P. For instance,

Mg =M;-P-My -P L. (5.4.9)
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Since ¥ is a torus, the monodromy representation depends on two spectral vari-
ables: the abelian monodromy along an A-cycle on ¥, which can be expressed in
terms of M, and the abelian monodromy along a B-cycle on X, which can be ex-
pressed in terms of p.

In the next section we give explicit expressions for invariants constructed from

this monodromy representation.

5.4.2 K = 2, four-punctured sphere

Consider the K = 2 Fenchel-Nielsen network on the sphere Py ;1. with four
(maximal) punctures that is illustrated on the left in Figure 5.13 (where we have
replaced all punctures by holes). We choose counter-clockwise abelian holonomies
around the punctures and holes as

1
M® = diag(M;,

M), (5.4.10)

and two spectral coordinates X4 and Xy as the abelian holonomies along the 1-
cycles A and B that are illustrated on the right in Figure 5.13. These 1-cycles form
a symplectic basis of H; (%, Z).

Figure 5.13: Left: Fenchel-Nielsen network on the four-holed sphere (in the British
resolution). Right: basis of 1-cycles A and B on the compactified cover .

With the WW-abelianization construction the monodromy representation of a
generic flat SL, connection V can be expressed in terms of the spectral parame-
ters X4, Xp and the mass parameters My, M, M1, M. Choose generators 7o, 7y, 1
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and e for the fundamental group of the four-punctured sphere as in Figure 5.7.

The corresponding monodromy matrices M, M,,, M, and M, with

whose conjugacy classes at the punctures are fixed such that

1
Tr Mr)/l = M] + Ml (5412)
Here we focus on the monodromies M, = M, M, and Mg = M, M, (al-
though other monodromies are just as easy to compute).

In the British resolution, with spectral coordinates

L=X; (5.4.13)
T = —XfxF, (5.4.14)

we find that
TrM, = L+ % (5.4.15)
TrMg=NT" + N, + % (5.4.16)

with

N(L) = LTS+~ fufof —( 21) _(ff)j fAfa—fifife=4) 5417
No(L) = filfo fi +f](foLo)_—%2)(2ff1 +f0Lfoo), (5.4.18)

and where f; = L + % and f; = M; + MLI
On the other hand, in the American resolution, with spectral coordinates

L=24&, (5.4.19)
T- =-X, &%, (5.4.20)
we find that
TTM, =L+ l (5.4.21)
L
TrMg =T + No + T—I\i (5.4.22)
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Hence, in terms of the average spectral coordinates

L=2X, (5.4.23)
T =Xa\/ X5 X5, (5.4.24)
we have that
TTM, =L+ % (5.4.25)
TrMg = /N(L) (T + %) + No(L), (5.4.26)

Later, it will be useful that N can be rewritten as

ey (DM — LiMg M) (LEMiML — 1 3my M)
N = (L= b |
(5.4.27)

Note that the monodromy invariants expressed in terms of the average length-
twist coordinates agree with those in §5.2.2. This is our first new result. That is, the
average length-twist coordinates L and T are the standard exponentiated complex
Fenchel-Nielsen length-twist coordinates (which are equal to the NRS Darboux
coordinates & and f), removing the ambiguity (up to constants arising from the
choice of network and cycles, monomials in the M; ;) otherwise present in the twist
coordinate.
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5.4.3 K = 3, sphere with two minimal and two maximal punctures

Ul

\ 2, 21 1, 12 13
B 21 31
31
13
12 12
) > ———— R

1 21

13 21 “ e 2112

31

13

1
Olllqloo

with two minimal and two maximal punctures (in the American resolution). The
complete network on C is found by identifying the endpoints of all vertical double
walls.

Figure 5.14: Fenchel-Nielsen network on an open region on the sphere P

Next, consider the K = 3 Fenchel-Nielsen network on the sphere Py;1, with
two minimal and two maximal punctures that is illustrated in Figure 5.14. We

choose counterclockwise abelian holonomies around the punctures and holes as

. 1
M3 = diag(Mo1, M2, m) (5.4.28)
M — diag(#,M,M) (5.4.29)
M = diag(Mi%,Ml,Ml) (5.4.30)
M2 = diag(Meu 1, Mo, m) (5.4.31)

We choose four spectral coordinates X4, Xa,, X', X, as the abelian holonomies
along the 1-cycles Aj, Ay, By, By, respectively, that are illustrated in Figure 5.15.
These 1-cycles form a basis of 1-cycles on the compactified cover X.
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G &

Figure 5.15: Illustrated in green and red are fo_ur 1-cycles Aq, Ay, By, B, which form
a basis of 1-cycles on the compactified cover X.

Nonabelianization with respect to the spectral network in Figure 5.14, in ei-
ther the American or British resolution, yields a family of SL3 flat connections,
depending on the spectral parameters X4 , X4,, Xp,, X, and the mass parame-
ters Mo1, Moo, M, M1, M1 and M. Their monodromy representations can be
expressed in terms of M, M,,, M, and M, with

M, -M,-M,_ M, =1 (5.4.32)

whose conjugacy classes at the punctures are fixed such that

1
TM,, =M M _— 4.
Moy 01+ Moo + MoxMop (5.4.33)
M, = 2 +2M (5.4.34)
1
Tr M'}’l = W + 2M1 (54:35)
1
1

TrM,,., = Muo1 + Mooy + (5.4.36)

Moo,l Moo,Z .

Here we focus on the monodromies M, = M,, M, and Mg = M, M, (al-
though other monodromies are just as easy to compute). In terms of the average

generalized length and twist coordinates

Li=Xy  Ti=/MoaMon\ /X X5 (5.4.37)

X
Ly=Xy, To=+/MysMes X—;‘l X5 X, (5.4.38)
2
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we find

TTM, =L1+ L+ L3, (5.4.39)
1 1 1
TM, = —+— 4+ — 5.4.40
rM, L + L + L ( )
T
Tr Mlg = MO —I—M(Ll, L3)T1 —|—M(L2, L3)T2 —I—M(Ll, Lz)T1 (5441)
2
T, N(L3 Lp)  N(Ls L)
L[>, L1)=—
+ N(Lo, 1)T1+ Lt P
— = — — T
Tr Mlgl = No + N(Ll, L3)T1 + N(Lz, L3)T2 + N(Ll, Lz)T1 (5.4.42)
2
— T, N(L3, L) N(Lz Lq)
N(L,y, L1)= .
+ N(Ly, 1)T1+ L + T
where we introduced Lz = 1/(L1Lp). Furthermore,
1 N(Lg)N(L)
N(Lg, L;) = 5.4.43
N b) = UG N (L 1) RES
— N(L.)N(L
N(Lg, L)) = \/Mle (5.4.44)
N*(Lk/ Ll)

are symmetric in Ly and L;, whose numerators are defined by

N(Ly) = M- 1M LM
k) =M M, (LkMMoq — 1) (LiMMpp — 1) | ——— —1
MO,1M0,2

MM 1 MiMeu 2 M;
— 1 — 1 1 4.4
s \/( L, ) ( L, ) (LkMoo,lMoo,z ) bAS)

and whose denominators are defined as

_5__5
Ni(Lg, Ly) = L, 2L; 2 (L — Ly)*(1 — LgLy) (1 — LeL). (5.4.46)
Finally, we write the T;-independent term (for Tr Mg — the other is similar) as

(Mo,l + MO,Z + Mo,ﬁ%)

N = 5.4.47
— MMiMy1MopMeo 1Moo ( :

The formulas for the three terms are displayed on the following page.
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Chapter 6

Twisted superpotentials from opers

This chapter is based on the joint work [8] with L. Hollands, arXiv:1710.04438.

In this chapter we study our main physical application of the higher length-
twist coordinates developed in the previous chapter. Given the data of a class
S theory we utilize these coordinates, following and generalizing a conjecture of
Nekrasov-Rosly-Shatashvili, to compute the effective twisted superpotentials as-
sociated to the class S theory by examining how the Lagrangian subvariety of op-
ers looks in them. These superpotentials can be interpreted as a two-dimensional
shadow of the generating series for equivariant volumes of the instanton moduli

spaces in four dimensions.

6.1 Introduction and summary

Let (g,C, D) be a tuple of class S data — a complex (semi)simple Lie algebra
g and a punctured Riemann surface C with defects D. We can obtain a four-
dimensional ' = 2 quantum field theory T from this data via partially twisted
compactification of the six-dimensional (2,0) theory of type g on C — this pro-
duces a theory of class S. Throughout, we will assume g = Ag_1.

The low energy dynamics of T is described in terms of the Seiberg-Witten pre-
potential Fy(a; m, q), aholomorphic function of the Coulomb modulia = (ay,...,ax_1),
the mass parameters m = (my, ..., m,) and the UV gauge couplings g = (q1, .. .,q3¢-3+nu)-

As we reviewed in §2.1.2, the prepotential Fy(a;m, q) is in general related to a
classical algebraically integrable system [62]. It may be interpreted as a generating
function of a Lagrangian submanifold Ly relating the Coulomb parameters a to
the dual Coulomb parameters aP = 9,F. For theories of class S this integrable
system is a Hitchin system associated to C [1, 10, 63].
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Consider T as usual with spacetime
R* =R}, ®R3, (6.1.1)

and with the ()-deformation with complex parameters €; and €, corresponding to
the two isometries rotating the planes IR%,2 and ]R%/ 4+ respectively. The low energy
dynamics of the resulting theory T¢, ¢, is described in terms of the €1, €,-deformed
prepotential F(a;m,q,€1,€2). Then e€162F (a;m,q,€1,€2) is analytic in €1, €2 near
zero and becomes the prepotential Fy(a;m,q) in the limit €1, e, — 0[5, 6, 14]. That

is,
1
F(a;m,q,€1,€) = —Fola;m,q) + ..., (6.1.2)
€1€2

with . .. denoting terms regular in €; and e5.

6.1.1 Effective twisted superpotential

Recall the cigar theory of §2.4.2, where instead T is considered on D X R?,
where D is a cigar. We only turn on the ()-deformation with parameter €; = € cor-
responding to the rotation of the cigar, corresponding to the Nekrasov-Shatashvili
limit. The resulting theory T, turns out to preserve a two-dimensional N' = (2,2)
super-Poincare invariance.

In [18] it is proposed that, at low energy, T, is described by a supersymmetric
sigma model, whose fields in two dimensions are abelian gauge multiplets coupled
to an effective twisted superpotential Wet (a;m,q,€) for the twisted chiral fields
in the abelian gauge multiplets. This effective twisted superpotential should be
obtained from the four-dimensional partition function as

Weff(a; m,q,€) = lim e;logZ(a;m,q,€1 = €,€2), (6.1.3)

er—0

where we denote the complex vevs of the twisted chiral fieldsby a = (a3, ...ax_1).
Recall that mathematically, this limit interpreted term by term in g is our definition
of Weff,

Since the (deformed) prepotential is given by

F(a;m,q,e1,€) =logZ(a;m,q,€1,€), (6.1.4)
we have that

W (a;m, q,€) = éfo(a; maq)+ ..., (6.1.5)
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where ... are terms regular in €, and Fy is the usual Seiberg-Witten prepotential of
the undeformed theory.
Recall that the effective twisted superpotential weft (a;m, g, €) can be written

a;m,€) + welf

inst

Weff(a;m,q, ) = welt (a;m,e)logqg + fff

clas

loop ( (a;m,€).  (6.1.6)

The first two terms — the “perturbative part” — consist of a classical contribution,
proportional to log g, and a 1-loop-term, which is independent of 4. The instanton
part is a (formal) series in powers of g of the form
We (a;m, q, € Z Wett(a;m, €) . (6.1.7)

For theories T with a known Lagrangian description, these terms have been com-
puted explicitly, and the effective twisted superpotential Weft (a;m,q,€) hasaknown
expression.

Note that for the theories we are interested in, which are superconformal, the
function Weff (a;m, g, €) can simply be recovered from Weff(a ;m,q,1) by scaling the
Coulomb and mass parameters with e #, where # is their mass dimension. In the

following we often leave out € from the notation, knowing that we can simply

reintroduce it by scaling the Coulomb and mass parameters.

Example. Let T be the four-dimensional N = 2 superconformal “SU(2), N =4
in the partial ()-background with parameter €.

The classical contribution to its effective twisted superpotential is simply

2

a
WeEE (a;m,€) = o (6.1.8)

The 1-loop contribution exp Wfff loop

nants of differential operators. There is a certain freedom (though there are a num-

may be computed as a product of determi-

ber of natural choices) in its definition due to the regularization of divergences,
which implies that it is only determined up to a phase [64, 65]. For a distinguished

choice of phase exp Wfff may be identified with the square-root of the prod-

loop
uct of two Liouville three-point functions in the Nekrasov-Shatashvili (or ¢ — o)

limit. In this “Liouville scheme” the 1-loop contribution is of the form
Wleff

a,m;e) = ngfctor(;e)+weff (a;m,€) (6.1.9)

loop < hyper
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with

WE o (a;€) = —% Y(—a) -5 Y(a) (6.1.10)

1 & €+a+m 1& €—a-+m
I=1

_ /f dulog % (6.1.12)

The instanton contributions may be written as a sum over Young tableaux [5, 6].

In particular, the 1-instanton contribution is given by

a—m—e
Weffﬂme 1 )
ﬂ—é‘

e (6.1.13)

ﬁ a+ml—|—e
1 16a(a +€)

4
=1

The effective twisted superpotential Weff(a;m, g, €) turns out not only to char-
acterize the low energy physics of the theory T¢, but is part of a larger correpon-
dence still under investigation. According to the philosophy of [18], it may also be
identified with the Yang-Yang function governing the spectrum of a quantum inte-
grable system. This quantum integrable system is the quantization of the classical
algebraic integrable system describing the low energy effective theory of the four-
dimensional N = 2 theory T, with the deformation parameter € playing the role
of the complexified Planck constant. For theories of class § it is thus a quantization
of a Hitchin system associated to C.

The corresponding moduli space of flat connections M4g(C, SLk) is holomor-
phic symplectic, and furthermore supports a distinguished complex Lagrangian
subspace L, the space of SLg-opers on C [43]. The definition and some properties
were given in 3.5, though we will be a little more concrete in this chapter since we
will be interested in making some explicit computations. Recall that any SLx oper
can locally be written as a Kth order linear differential operator

D=0 +1(2) 052 ... +tx(2), (6.1.14)

whose subleading ((K — 1)th derivative) term vanishes. More precisely, we con-
sider families of SLg-valued e-opers whose coefficients are dependent on the com-
plex parameter €. These may be obtained in the conformal limit R,{ — 0, while
R/T = € is kept fixed, of a certain family of flat connections coming from the non-
abelian Hodge correspondence [66, 67].
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Let us choose a Darboux coordinate system on M4r(C,SLk), say x;, y; with

Since the opers on C define a complex Lagrangian submanifold of Mggr(C,SLg),
we can guarantee they posses a generating function in this coordinate chart. This
function WP is defined through the equation

_ OWOP(x,€)

yi= g (6.1.16)

and determined uniquely up to a constant in x.

6.1.2 Summary of results

We refine the methods to verify the NRS correspondence for SU(2) gauge the-
ories and find the ingredients to extend the NRS correspondence to any supercon-
formal theory of class S. That is, using our generalization of the NRS Darboux
coordinates, we describe the relevant spaces of opers, and compute the generat-
ing functions of these spaces of opers in some prototypical examples. Our main
two examples are the superconformal SU(2) theory with four hypermultiplets and
the superconformal SU(3) theory with six hypermultiplets. In these cases we cal-
culate the generating function WP (4;m, q) as a perturbation in g and verify its
agreement with the known superpotential Weft (a; m, q).

We find that the opers associated to a theory of class S with regular defects are
described as certain Fuchsian differential operators with fixed semisimple conju-
gacy classes (with a certain “mass shift”) at the punctures. Whereas for a surface
C with only maximal punctures there are no further constraints, the space of opers
on a surface C with other types of regular punctures is obtained by restricting the
local exponents at the punctures, while keeping the conjugacy classes semisimple.
This is analogous to the way that the space of differentials for a surface C with
arbitrary regular punctures may be obtained from the space of differentials for the
surface C with only maximal punctures, although the condition is different.

In particular, this implies that the locus of opers for the superconformal SU(2)
theory coupled to four hypermultiplets is described by the family of Heun'’s op-
ers, given by the differential equation (6.3.31), whereas the locus of opers for the
superconformal SU(3) theory coupled to six hypermultiplets is described by the
tamily of what we call “generalized Heun'’s opers”, given by the differential equa-
tion (6.3.80). These families reduce in the limit 4 — 0 to the hypergeometric and
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generalized hypergeometric oper, respectively, which we will see gives us a handle
on explicitly describing their monodromy.

We describe how to calculate the monodromy representation explicitly for the
family of (generalized) Heun’s opers as a perturbation in the parameter g, and
compute the result up to first order corrections in 4. This is a generalization of
the leading order computations of [68, 69], and a nontrivial extension of the work
of [70] which computes the monodromy matrix around the punctures at z = 0
and z = g in a perturbation series in 4. The computation may be in principle
generalized to any family of opers that depends on a small parameter.

We then calculate the generating function WOP'(¢;m, q) in the (generalized)
NRS Darboux coordinates by comparing the monodromy representation for the
opers to the monodromy representation in terms of the spectral coordinates. For
SU(2), Ny = 4 theory we find

WP (a;m,q) = ngser(a;m) log g+ Wf_pf(r)op(a;m) + Wloper(a;m) g+ (’)(qz),
(6.1.17)

where the classical and the 1-loop contribution are computed in equation (6.5.16),
and the 1-instanton contribution in equation (6.5.25). For the SU(3), N¢ = 6 theory
we find a similar expansion, where the classical and the 1-loop contribution are
computed in equation (6.5.46).

We find that W}’ Op(a ;m) in the SU(2) example equals the field theory expres-
sion (6.1.9). This computation is similar to and in agreement with the computation
in [65]. Furthermore, we find that the 1-instanton correction W' (a;m) is equal
to (6.1.9), the four-dimensional 1-instanton correction in the Nekrasov-Shatashvili
limit e, — 0.

The interpretation of the generating function WP (a,m, q) in the SU(3) ex-
ample is similar. In particular, exp W} p(a ;m) computes the square-root of the
product of two Toda three-point functions with one semi-degenerate primary field
in the Nekrasov-Shatashvili limit.

We conclude that our computation of the generating function of opers WP (a; m, q),
expressed in the generalized Nekrasov-Rosly-Shatashvili Darboux coordinates, in-
deed agrees with the known effective twisted superpotential Weff(a; 1, q) with the
above “Liouville scheme” convention. Particularly interesting is that, while our
computation of the generating function WP (a; m, q) is a perturbation series in g,

it is exact in €.
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Given an SL; e-oper VP (¢) there is another method to compute its mon-
odromy representation, called the “exact WKB method” (see [71] for a good intro-
duction). In the last section of the chapter we compare abelianization to the exact
WKB method.

We argue that the monodromy representation for the oper VP (¢) computed
using the abelianization method is equal to its monodromy representation com-
puted using the exact WKB method, when the spectral network is chosen to co-
incide with the Stokes graph, and with an appropriate choice of framing data. In
this correspondence the so-called Voros symbols are identified with the spectral
coordinates.

As a consequence it follows that the spectral coordinates X,, when evaluated
on the e-oper V°P¢'(¢), have good WKB asymptotics in the limite — 0. In this limit
X, is computed by what is sometimes called the quantum period IT, (€) associated
to VOP¢'(¢). The asymptotic expansion in € of the generating function WP (¢)
may thus be simply found from the equation

OWPOPeI(T1y, €)
dlogll,

logIlp = (6.1.18)
This relates the Nekrasov-Rosly-Shatashvili correspondence to other approaches
for computing the effective twisted superpotential [72].

We emphasize though that while the quantum periods are not particularly sen-
sitive to the choice of Stokes graph, the exact resummed expressions are. In [73]
it was found that there are “non-perturbative corrections” to the superpotential
computed using quantum periods, but these corrections are ambiguous depend-
ing on the resummation process. In particular, the exact expression for the twisted
effective superpotential Weff(a,¢) can only be found by applying the exact WKB
method to the oper V°P'(e) where the phase of € (and of other parameters) is
chosen such that the corresponding Stokes graph is of Fenchel-Nielsen type. The
results (6.1.17) then show that there are no non-perturbative corrections to Weff(e),

in agreement with [6].

This chapter is organized as follows.

We start in §6.2 by briefly recalling the geometric setup of §2.2.3 and writing
down explicitly some families of differentials for various theories. In particular, we
introduce our two main examples, the superconformal SU(2) theory with Ny = 4

and the superconformal SU(3) theory with N = 6.
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Section 6.3 starts off with some explicit treatment of opers, in contrast with
the more abstract treatment in §3.5, after which we introduce the relevant fam-
ilies of opers to our main examples. This is the family of Heun’s opers for the
superconformal SU(2) theory and the family of generalized Heun's opers for the
superconformal SU(3) theory. We then define the moduli space of flat connections
/\/lgR(C, SLk) with fixed conjugacy classes C at the punctures associated to the the-
ory of class S. In particular, we specify these conjugacy classes for the different
kinds of punctures relevant to this chapter.

In §6.4 we detail the main calculation of the chapter, computing the monodromies
of these opers in a perturbation series in the complex structure parameter q. While
the computation of the instanton correction is based on the formal expansion of
[68], perturbation theory for the lowest-order asymptotics can be justified by the
results described in Appendix A (generalizing [69]), so that we have the lowest-
order piece of a convergent expansion in 4.

The final computations of the generating function of opers are contained in
§6.5. Indeed, we find that in our two examples the generating function agrees
with the effective twisted superpotential in an expansion in the parameter g, at the
lowest order asymptotics for both SU(2) and SU(3) examples, and furthermore to
1-instanton level for SU(2).

In §6.6 we comment on the relation of the abelianization method with the exact
WKB method and relate the NRS conjecture to other proposals for computing the
effective twisted superpotential.

6.2 Class S geometry

Let us quickly review the geometry and notations described in §2.2.3. Fix a
positive integer K and a tuple of class S data (Ax_1,C, D). To each such choice
corresponds a four-dimensional N = 2 superconformal field theory T = Tx|[C, D]
of type Ag_1 with regular defects D.

Each puncture has an associated flavor symmetry attached to it. The flavour
symmetry associated to a puncture with defect labelled by the Young diagram Y is

S[U(ny) % - - x U(my)], (6.2.1)

where 1y, ..., 1 count columns of Y with the same height.
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The Coulomb branch B = B(T) of the theory T is equal to the corresponding
Hitchin base, parametrized by tuples

K
(¢2,-..,9x) € B=EP H(C,Kc (D)) (6.2.2)
i=2
of k-differentials @i on C, with regular singularities of the appropriate pole struc-
ture at the punctures. Here D = }}! ; 1 z; denotes the divisor of punctures, and
the residues are fixed at each puncture as specified by the data D.
Thus, B is an affine space for the space of differentials with strictly lower order
poles (possibly with restrictions as described in §2.2.3). Concretely, @i is given
locally by

Pr(z) = up(z)dz"* (6.2.3)

where the function u;(z) has at most a pole of order k at each puncture.
To each tuple (¢, ..., ¢x) we can associate the corresponding spectral curve
2 C T*C, defined by the equation

AL AR 20, 4 49 =0, (6.2.4)

where A is the tautological 1-form on T*C, locally given by A = wdz.

The spectral curve X is the Seiberg-Witten curve, and the restriction of A to X is
the Seiberg-Witten differential. The K residues of A at each puncture z; are fixed to
be the mass parameters mi,;.

In §2.2.3, we described some building blocks of class S theories, particularly for
theories we will be interested in what follows. Our main examples in this chapter
are the theories Tx[C, D] where C is the four-punctured sphere ]P(l),q’lloo, with g €
C\ {0,1}, and the rank is either K = 2 or K = 3. Let us recall these examples, and
parameterize explicitly the points in their Coulomb branches.

621 K=2

Recall when K = 2 there is only one possible regular defect, labeled by the
Young diagram consisting of a single row with two boxes, and the mass parameters
are generic, with m;, = —m ;. In the corresponding four-dimensional quantum
field theory this defect corresponds to an SU(2) flavour symmetry group. Since
there are no other possible diagrams, there is a single building block T, []P%),Loo].
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Example. The theory T [Il’(l),lloo], describing a half-hypermultiplet in the trifunda-
mental representation of SU(2) x SU(2); X SU(2)«. Its Coulomb branch B is a
single point corresponding to the quadratic differential

m2,z* — (m3, + mj — m3)z + m3 2
7

¢2(z) = — 1220 1) (6.2.5)

where the values of the mass parameters myg, m; and mq are fixed from the outset.

Recall that gauge fields are introduced by gluing three-punctured spheres, and
the corresponding complex structure parameters g are identified with the gauge
couplings 2. The limit g — 0 corresponds to the weakly coupled description
of the gauge theory at a cusp of the moduli space. For every pants cycle a there
is a corresponding Coulomb parameter a4y, which is defined as the period integral
a9 = §, A along a lift A of the pants cycle.

[ 1] L[]

[ 1] [ 1]

Figure 6.1: The UV curve for the theory T, []P(ljl 41,000

Example. The theory T,[IPy 4,1,00) corresponds to the superconformal SU(2) gauge
theory coupled to four hypermultiplets, see Figure 6.1. Its Coulomb branch B is the
space of quadratic differentials with at most second order poles and fixed residues
— it is 1-dimensional and parametrized by the family of quadratic differentials

2
__[" m

2 N m%
4(z—1)2

(6.2.6)

2 2 2 2
my +m” 4+ my — mg, u

_ 2)2
4z(z —1) z(z—q)(z—1)>(d)'

where the parameter u is free and the parameters my, m, m; and me, are fixed from

the outset.

The corresponding Seiberg-Witten curve X is (after compactifying) a genus one
covering of ]P(l), 41,00 With four simple branch points. Let A be the lift of the 1-cycle
« going counterclockwise around the punctures at z = 0 and z = g; then the
Coulomb parameter ay = ag(u) is defined as the period integral ag = 55 4 A
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Figure 6.2: Left: the UV curve for the free bifundamental hypermultiplet T3 []P(lj,l,oo]'
Right: the UV curve for the non-Lagrangian E¢ theory T3 [I[)(l),l,oo]'

622 K=3

Recall that for K = 3 there are two types of punctures, of “maximal” and
“minimal”. For a maximal puncture z; the mass parameters m; ; are generic with
m; 1 # m », whereas for a minimal puncture m; = m;,.

As described in §2.2.3, a maximal puncture at z = z; turns into a minimal punc-
ture if it satisfies two requirements:

(i) Two of the masses at the puncture should coincide:
my1 = mjp = mj. (627)

(i) The discriminant of
)\34- (Z—Zl)zq)z)\-l- (Z—Zl)3([)3 (628)
should vanish up to order (z — z;)?.

We can use this condition to write down explicitly the differentials in the Coulomb
branch in examples.

Example. The theory T3 [IP%/L ] with two maximal and one minimal puncture, see
on the left of Figure 6.2, corresponds to a free hypermultiplet in the bifundamental
representation of SU(3)p x SU(3)e. We find its Coulomb vacua by applying the
constraints (6.2.7) and (6.2.8) to the family of differentials for T3[Pj ; .,] described
in equation (2.2.14) and (2.2.15) at z = 1. Concretely, the latter constraint implies
that

3
u= (—) —dy—2de + %(co — Co0)- (6.2.9)
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where d;, ¢c; are symmetric polynomials in the mass parameters given in §2.2.3.
Thus the Coulomb branch is a single point P = (@bif, pbif).

The resulting Seiberg-Witten curve X determines a 3-fold ramified covering of
the UV curve IP(l),1 « With four simple branch-points. It is therefore a punctured

genus zero surface.

This is the K = 3 building block in the case that we will primarily be interested
in (the E4 theory is another possible choice, but we do not pursue it here). Once
again, gauge fields are introduced by gluing three-punctured spheres at (maximal)
punctures, so that this covers all cases in which we have n punctures, with n — 2 of
minimal type. The gauge coupling associated to the ith pants curve corresponds
to the complex structure parameter q;, where the gluing is performed according to
the plumbing construction. The fundamental example we will be interested in is:

Example. The theory T3[IP) g,1,00) 1S the superconformal SU(3) gauge theory cou-
pled to Ny = 6 hypermultiplets. It may be obtained by gluing two three-punctured
spheres with two maximal and one minimal puncture. Its Coulomb branch B is
parametrized by two parameters 11 and u5.

The explicit form of the differentials ¢, and @3 can be obtained as before. First
we write down the most general quadratic and cubic differential with regular poles
at the punctures. Eight of the twelve parameters are fixed by writing the residues at
each punctures in terms of the mass parameters. Two more parameters are fixed by
additional requirements at both minimal punctures, analogous to equation (2.2.12)

and (2.2.18). The resulting differentials can be written in the form

__Co c (o] Coo—C)—C— (1 [Z5]

R MR CE VAt R e eV
me Rt e T (621
B e e B

_ z(z—l)uzl(z—q)z (Ge-—n+5(E-1) (6.2.13)

where ¢, d are the symmetric polynomials in the mass parameters as in §2.2.3.

The resulting Seiberg-Witten curve X is a genus two (after compactifying) cov-

1
091,00

and a3 are defined as the period integrals aj = ¢,1)A and a3 = §,., A along two

ering of IP with eight simple branch points. The two Coulomb parameters a}

independent lifts of the pants cycle a to the Seiberg-Witten curve.
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6.3 Opers from slass S

The moduli space ./\/lgR(C, SLk) of flat SLg connections has a distinguished
complex Lagrangian submanifold

L ¢ M&(C,SLk) 6.3.1)

of “SLk-opers”, known to physicists as the “brane of opers”. These objects were
tirst formalized in [42], and play an important role in the geometric Langlands pro-
gram [43, 74]. They also appeared in a conjecture of Gaiotto [66] as the “conformal
limit” of a certain canonical family of flat connections in the moduli space, which
was recently proved in [67].

An SLg oper is essentially a special kind of SLg flat connection, which can lo-

cally be written in the form of a (single, scalar) differential equation

Dy(z) = 1 (2) + Y k(2 E () =0, 632)
i=2

where globally y(z) is not a function on C, but rather the local expression for a
(—%51)-differential. The latter ensures that the differential equation is globally
well-defined after specifying the transformation laws for the coefficients. So D is
really a differential operator between line bundles

D: k! N2 L k20 0k D), (6.33)

which in our SLg case must have vanishing subprincipal symbol (K — 1th order
term in the local form). This definition is equivalent to the one given in other parts
of thesis, and the most convenient for our purposes.

With the assumption we are acting on K(Cl_K)/ 2 imposing that the differen-
tial equation (6.3.2) stays invariant under holomorphic coordinate transformations
yields the transformation properties of the coefficients t;(z). As we spell out in

detail below,

12

—K(K2 -y ty (6.3.4)

transforms as a projective connection, whereas there exist linear combinations wy
of t; (j < K) and its derivatives, such that the wy transform as k-differentials. The
SLk flat connection is obtained from the oper equation (6.3.2) by writing it instead

as a linear rank K differential equation.
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We begin by characterizing the space of opers L associated to any type A the-
ory Tx[C, D] of class S with regular defects. The fact that the defects are regular
suggests that we should take the associated opers to be Fuchsian (i.e. have regular
singularities at the punctures of C). Our recipe for obtaining L is similar to the
recipe for obtaining the space of differentials associated to Tx[C, D], as explained
in §2.2.3. That is, we first describe the space of opers on C with only maximal punc-
tures, and then impose appropriate restrictions at the punctures to obtain the space
of opers on C with minimal punctures (or more generally, any regular punctures)
associated to Tx|[C, D].

An important point is to note that the conjugacy classes are not simply the
exponentiated mass parameters, but acquire a slight shift: the relevant space of
opers associated to the theory Tx[C, D] sits inside MY (C,SLk), where the C; are
such that

My,; = e¥milmit55h) (6.3.5)

This corresponds to the most symmetric choice of local exponents for an SLg oper,
and is necessary to ensure the desired equality between the generating function
and the superpotential.! We will sometimes call these the shifted masses

= my;+ Xle, (6.3.6)

where we have reinserted €. Let us stress, then:

Henceforth in this chapter, whenever MSR(C, SL) is written, we are taking the C;
at punctures to be C; = [diag(e*™#11,. .., e?"1K)], having started with class S data

(Ak—1,C, D) containing masses my ;.

In particular, our characterization leads to a concrete description of the space of
opers on any three-punctured sphere with regular punctures. These spaces may be
seen as the building blocks for the space of opers. For instance, we find that opers
on the three-punctured sphere with two maximal and one minimal puncture are

characterized by the (generalized) hypergeometric equation. Furthermore, we find

1

0,9,1,00 are characterized

that the space of SLx opers on the four-punctured surface I
by the (generalized) Heun equation.
Although in the following we will only spell out the details for K = 2 and

K = 3, it should be straightforward how to generalize the discussion to find the

LA related mass shift has been observed in the context of the AGT correspondence, see for in-
stance [75].
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space of SLx opers associated to any building block, and more generally any theory
Tx[C, D] of class S with regular punctures.

The locus of opers L may be interpreted as a quantization of the Coulomb mod-
uli space B (or equivelantly, the spectral curves sitting above)in the sense of asso-
ciating to each point a differential operator (see e.g. [76] for details). Indeed, the
internal Coulomb parameters u as well as external mass parameters m carry mass
dimensions. It is natural to introduce an additional parameter € with mass dimen-
sion one such that all terms in the oper equation have the same mass dimension.
In the semi-classical limit € — 0 the family of opers then limits to the family of

spectral curves over Coulomb moduli space B.

6.3.1 SL, opers

An SL, oper is locally described by a scalar differential equation of the form
Dy =y"(z) + t2(z)y(z) =0, (6.3.7)

where y(z) is a (—3)-differential on C. It is an instructive exercise to determine
the transformation properties of the coefficient t5(z) directly, so we will consider
what happens to the differential equation (6.3.7) under a holomorphic change of
coordinates.

Under the holomorphic coordinate change z ~— z(w) the (—4)-differential y(z)

transforms into

i) = y(x() (55 - 639

This implies that

y'(w) = (2'(w))

NI

(/) = 3 (w2} ylatw)) ) 639)

where the brackets {-, -} denote the Schwarzian derivative

" " 2
{w,z} = Z:U/((ZZ)) - ; (Z/((ZZ))) = —{z,w}/Z (w)? (6.3.10)

Under a holomorphic coordinate change z — z(w) the differential equation (6.3.7)

thus transforms into

0=7"(w)+ f(w) y(w) (6.3.11)

= () () + 3 {2} y(a(e0)) + (2 () o) y(aw) )
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where we have not specified yet how the coefficient t;(z) transforms.
Now, demanding the differential equation (6.3.7) be invariant under the holo-
morphic coordinate change z — z(w), we find that

B(w) = (2 (@)? (ta(e(w)) - 51,2 ) 6312
= (/@) b(z(w)) + 5 {20}

In other words, the coefficient ¢, should transform as a so-called projective connec-
tion on C.

Observe that the transformation properties (6.3.12) of the coefficient ¢, show
that the difference between any two SL; opers is a quadratic differential on C. Thus
the space of SL; opers L is an affine space modelled on the quadratic differentials.

SL, flat connection
The differential equation
Dy =y"(z) + t2(2)y(z) =0, (6.3.13)

can be put in the form of an SL; flat connection

VOPErY = 4y + AY = dl;(zz) dz+ A.dzY(z) =0 (6.3.14)
where
Y(z) = ( _yy(lz(f) ) and A, — ( (1) _%(Z) ) (6.3.15)

While under a change of variables z — z(w) we have that

i) = y(ate)) () = vl@)ste), (6316
the section Y transforms as
Y(w) = ( s(w)™! —s'(w) ) Y(z(w)) = U (w)Y(2(w)), (63.17)

and hence obeys

dY + AY = dégz") dw + Ay dwY(w) =0, (6.3.18)
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with
A=UYU+ U AU = A, dw. (6.3.19)

Since the new connection form is

_ bzw) | &w) -
A, — < 0 =i t 5w ) _ ( 0 —t2(w) > (6.3.20)

1 0

we find that the SL, oper D defined locally by equation (6.3.13) is equivalent to the
SL; flat connection V°P¢" defined locally by equation (6.3.14).
More invariantly, the transformation property (6.3.17) says that Y transforms as

a 1-jet, and says that we have converted the oper D into the flat connection V°P¢"
1

on the rank 2 vector bundle E = J!(L) of 1-jets of sections of £ = K, 2.

Fuchsian SL;, opers

The space L of SL, opers on any surface C with regular punctures consists of
Fuchsian SL; opers on C, which are locally defined by a Fuchsian differential equa-
tion of order 2. We require that the local exponents of these SL, opers at each

puncture z; are given by

1 m
-+ — 3.21
E (6:3.21)

in terms of the mass parameters m,;. This implies that the Fuchsian SL, opers are
SL, flat connections with a fixed semisimple conjugacy classes

C; = diag (—e*mm’, —e"iml> ) (6.3.22)

at each puncture z;. For reference, recall that we fixed the residues of the differen-
tials ,/@; in B at each puncture z; to be £7L.

Example. Locus of opers for T, []P(l),l,oo]'
Recall that for a fixed choice of residues £+, the three-punctured sphere ]13(1),1,00

admits the unique quadratic differential

2 2 2 2 2

#2(2) = 422 4(z—1)2 4z(z—1)

(6.3.23)

2Fuch’s theorem necessitates that the exponents of an SL, oper add up to 1 at each puncture,
hence (6.3.21) is the most symmetric choice.
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with at most second-order poles at all punctures. The corresponding SL, oper is

given by

Dy(z) =" (z) + b(2)y(z) =0, (6:3.24)

with

. 50 51 Joo — 50 - 51

fa(z) = 5 + CEE - SRS (6.3.25)

and

1-— ml2

o = T (6.3.26)

This is equivalent (after a simple and standard transformation) to the classical
Gauss” hypergeometric differential equation. Note that the local exponents of the
SL, oper (6.3.24) are indeed given by 3 + !, and that € t5(z) reduces to ¢»(z) in
the semi-classical limit € — 0 discussed in §6.3.3.

The hypergeometric oper (6.3.24) with vanishing masses m; = 0 corresponds
to a distinguished projective structure, namely the one induced by the Fuchsian
uniformization of P} ; ... Indeed, the three-punctured sphere IP} , ., is uniformized

by the modular lambda function

AiH =Py, (6.3.27)

w— z = Aw),

invariant under the discrete group I'(2) C PSL,(IR). The uniformization oper D¢

on the three-punctured sphere is thus represented by the differential operator

1 Z, W
Dynif = a%v = a% + E{wr Z} = ag - 2{2/(7/052 (6.3.28)
1—z+ 22 1 1 1
—x4 =T 524 - _ )
Z_|-422(z—1)2 e +4(z—1)2 4z(z—1)

where in the first line we have used the transformation law for projective connec-
tions. Both its local exponents are equal to %
Note that the hypergeometric oper (6.3.24) itself is of the form

D it + @2 (6.3.29)
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Example. Locus of opers for Tp[IPg q,l,oo]'

1

The four-punctured sphere P admits the 1-dimensional space of quadratic

0,g9,1,00
differentials
(2) = m3 m2 m3 m%o—m%—mz—m%_i_ u
P22 = T 4(z—q)? 4(z—1)2 4z(z — 1) z(z—q)(z—1)

(6.3.30)

with regular singularities at all punctures.
The corresponding 1-dimensional family of SL, opers are defined by the differ-
ential equation

Dy(z) = y"(z) + ta(2)y(z) = 0, (6.3.31)

b o 01 oo — 00— 0 — 01 H

tz(z)—z—2+(2_q)2+(2_1)2+ 2z 1) +Z(Z_q)(z_1), (6.3.32)

where H is a free complex parameter, the so-called accessory parameter, and

1-— ml2
o) = i (6.3.33)

The differential equation (6.3.31) is known as Heun’s differential equation. It is the

most general Fuchsian equation of order 2 with four singularities.

As before we may write the Heun'’s opers in the form
D = Do + ¢ (6.3.34)

with respect to the base oper

1 1 1 1 const
Dyp=032+ -+

2 i =g a1 21 Tie—=1) (6.3.35)

but unlike before we are not forced to fix the arbitrary constant.

1
0,g,1,00

erating into two three-punctured spheres. In the same limit, the family of Heun’s

In the limit g — 0 the four-punctured sphere IP can be thought of as degen-

opers degenerates into a pair of hypergeometric opers.
More precisely, if we define ¢ through
H=6—-0—-06+0(), (6.3.36)

with §; = 1’4—52 in the limit 4 — 0, the family of Heun’s opers (6.3.31) has two

interesting limits:
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1. In the limit g — O the family reduces to the hypergeometric oper (6.3.24) with

parameters (¢, m1, Meo).

2. If we first map z — gt and then take the limit g4 — 0, the family reduces to
the hypergeometric oper (6.3.24) with parameters (mg, m, ().

The definition of ¢ through equation (6.3.36) will be justified in §6.4, where it will
be the eigenvalue of the monodromy around the pants curve enclosing 0 and 4.
Using the AGT correspondence, the effective twisted superpotential for the su-
perconformal SU(2) theory can be found as a series expansion of the accessory pa-
rameter H in g, through a generalized Matone relation [77, 78, 79, 80]. This is how-
ever not the route that we take here. Instead, we aim to find the effective twisted
superpotential directly from the oper monodromies. (Our strategy might be useful
though for establishing similar generalized Matone relations beyond SU(2) theo-

ries.)

6.3.2 SL3 opers

An SL3 oper is locally described by a differential equation of the form
Dy = y"(2) + t2(2)y'(2) + t3(2)y(z) = 0, (6.3.37)

where y(z) is now the local expression for a section of K ! ie.a (—1)-differential
on C. Again, we work out the transformation properties of the coefficients f;(z)
and t3(z), so let us consider again what happens to the differential equation (6.3.37)
under a holomorphic change of coordinates.

Under a holomorphic coordinate change z +— z(w) the (—1)-differential y(z)

transforms as

-1
i) = y(=(w) () = s (), (6:338)
This implies that

¥ (w) =y (2(w)) + 5" (w) y(z(w)). (6.3.39)
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Under the holomorphic coordinate change z — z(w) the differential equa-

tion (6.3.37) thus transforms into

0 = 7" (w) + ba(w) ¥ (w) + t3(w) §(w) (6.3.41)
= Sy (0" (ele0)) + (s()*Tafe) + 25(00)s () = o (w0)?) y'(2(w))+ (6342
+ (s(w)3?3(w) +5(w)% (w) B (w) + s(w)zs”’(w)> y(z(w))), (6.3.43)

where we have not specified yet how the coefficients t,(z) and #3(z) transform.
Now, since the differential equation (6.3.37) must be invariant under the holo-
morphic coordinate change z +— z(w), we find that

To(w) = (s(w)) 2 (tz(z(w)) — 2s(w)s" (w) + s’(w)z) (6.3.44)
= (Z'(w))? ta(z(w)) + 2{z, w}. (6.3.45)

and
B(w) = tSS sz)wgg)) - SS/((:)’)) h(w) — S:;éu“;) (6.3.46)

Equation (6.3.44) says that the coefficient t;(z)/4 transforms as a projective con-
nection.
To find how #3(z) transforms, we read off from equation (6.3.44) that

1., ~ 10;t2(z(w)) s'(w) ~ s""(w)
Substituting this into equation (6.3.46) yields
B(w) - juba(w) = (@) (nE0) - JnG@)) . 634

In other words, the combination t3(z) — 1t}(z) transforms as a 3-differential.

SL;3 flat connection
Note that the differential equation
Dy = y"(z) + t2(2)y'(z) + t3(2)y(2) = 0, (6.3.49)

can be put in the form of an SL; flat connection

VOPY = JY 4+ AY = dl;(zz) dz+ A,dzY(z) =0 (6.3.50)
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where

//( ) 0 —t2 t3(Z)
Y(z)=| -V (z) and A;=11 0 . (6.3.51)
y(z) 0 0
While under a change of variables z — z(w) we have that
) = yie(@) (£2) " = ytatwso), (6352
the section Y transforms as
B S(w)fl _SS/((ZZ;’)) s w)
Y= o 17 s |Ye@)=u"@yiw), 6353
0 0 s(w)
and hence obeys
a¥ + AV = Xy 4 &y Viw) =0, (6.3.54)
with
A=UYU+UTAU = Ay dw. (6.3.55)

Since the new connection form is

N (0 —t2(w) ?3(50))
Ao=11 0 o |, (6.3.56)
0o 1 0
with
z(w s’ (w)? s (w
b (w) = tzs((zf))z)) + - ((w))2 — 25 (E(U)) (6.3.57)
t3(z(w))  s'(w)ty(z(w)) §'(w)? 25 (w)s"(w) " (w)
B =20 s s T swR sy 63

in agreement with equations (6.3.44) and (6.3.48), we find that the SL3 oper defined
locally by equation (6.3.49) is equivalent to the SL;3 flat connection defined locally
equation (6.3.50).

More invariantly, the transformation property (6.3.53) says that Y transforms as
a 2-jet, and says that we have converted the oper D into the flat connection VP
on the rank 3 vector bundle & = J?(L) of 2-ets of sections of £ = K.
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Fuchsian SL; opers

The space L of SL3 opers on a surface C with regular punctures consists of
all Fuchsian SL3 opers on C, which are locally given by a Fuchsian differential
equation of order 3, with various possible restrictions at each puncture depending
on the type of the puncture.

Maximal punctures

Suppose that the surface C has only maximal punctures. The corresponding
space of SL3 opers on C consists of all Fuchsian SL3 opers on C, where we require
that the local exponents at each such puncture z; are given by®

ma mi My Mmip
1+ —,14+—==,1-—=—-—=, 6.3.59
L 2 2 ( )
in terms of the mass parameters n1;; and m; 5. This implies that the resulting SL3

opers have fixed semisimple conjugacy class
C, = diag (em'ml,l, e”fmm,e—”“’”lrﬁml,z)) ) (6.3.60)
at each maximal puncture z;.

Example. Locus of opers for T3 []13(1),1,00]-
As summarized in equations (2.2.14) and (2.2.15), the three-punctured sphere
]13(1),1,00 with three maximal punctures admits a 1-dimensional family of differentials

Cooz? — (o — €1+ Coo)z + o

_ 2

P2 = 217 (dz) (6.3.61)
dooz® +uz? + (do +dy — deo —u)z — d

03 = (230(2 _11)3 )2 =40 4,9, (6.3.62)

The 1-dimensional family of Fuchsian SL3 opers on 1[’(1),1,00 with three maximal

punctures may be parametrized as

y"(z) + t2(2)y'(2) + t3(2)y(z), (6.3.63)

with coefficients

(14 coo)z? — (1 +co— 1 + Coo)z + (1 +cp)

b = 2C1P (6.3.64)
dooz® +uz? + (do+dy —de —u)z—dg 1,
by = A1 + 5t (6.3.65)

31t is a simple exercise to check that the exponents of an SL3 oper add up to 3 at each puncture,
hence (6.3.59) is the most symmetric choice.
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Its local exponents are given by

—0- mo,1 Moo . M1 Moo
z=0: 1+ 5 ,14+ > ,1 > >
mq1 mq o mq1q mq o
=1: 1+ 241+ 21— 4 =k 3.
z + = 1=, 5 5 (6.3.66)
Mo 1 Moo 2 Moo 1 Moo 2
f— : 1 7 1 2 1_ 7 _ /.
zZ =00 +—2 , +—2 , S T o

The Fuchsian SL3 oper (6.3.63) may be written in the form

y"(2)+ (48" + 92(2) ) ¥ (2) + (zaztami%z) +20:9a(2) + qo3) y(z), (63.67)

where

- 1—z+ 22
f
tgnl (Z) = —ZZ(Z — 1)2

is the coefficient of the Fuchsian uniformization oper (6.3.29). The Fuchsian SL3

(6.3.68)

oper (6.3.63) thus again has an interpretation in terms of Fuchsian uniformization.
In fact, in the limit m;; — 0 it is equal to a lift of the Fuchsian uniformatization
oper.

This is most easily seen by rewriting the SL3 flat connection defined locally by
equation (6.3.50) in the form*

dY (2) 0 —3t(z) ta(z) —3d:hal(z) \
rEmC B —3t2(2) dzY(z) = 0. (6.3.69)
z 0 1 0

Indeed, in this form it is clear that the SL3 oper defined locally by

1
v (z) + ta(2) ¥ (z) + 59:02(2)y(2) =0, (6.3.70)
is the lift of the SL, oper defined locally by

1
y'(z) + th(z) y(z) =0, (6.3.71)
using the homomorphism p : sl — sl3 given by the spin 1 representation of sl5.
The lift of the Fuchsian uniformization oper

D) =02 + 41500, +2 (5,15) (6:3.72)

unif

has all three exponents equal to 1.

More generally, if the underlying surface C has complex structure moduli, such

as for instance for lP(l), g1,00- the SL3 base oper D(()3) may be described as the lift (using

the homomorphism p : sl — sl3 given by the spin 1 representation) of the SL; base

1

oper Dy, which in the example of 11)0,5,,1,00

is written down in (6.3.35).

4This is the “canonical form” as in e.g. [42, 81], which makes the g-action more obvious. This is
also the form in which it plays a role in [67], in the scaling limit of Hitchin section.
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Minimal punctures

Suppose that C has minimal punctures as well. We may obtain the space of
Fuchsian SL3 opers on C with minimal punctures from the locus of Fuchsian SL3
opers on C with only maximal punctures, by simply enforcing the monodromy
around the minimal punctures to be diagonal with two equal eigenvalues, i.e. a
multiple of a reflection matrix.

This requires tuning two of the local exponents at each minimal puncture as
well as tuning one internal parameter for each minimal puncture. These con-

straints can be expressed in terms of the differential equation (6.3.37) as follows:
(i) We set the mass parameters at the minimal puncture z; equal to m; £ 1.

(ii) We require that if we multiply the differential equation

1-m

Dy(z) = D(z — zl)%y(z) =0 (6.3.73)

14m;

by a factor (z — z;) 2, such that the leading coefficient has an order 1 zero at

z = zj, the resulting differential equation has analytic coefficients at z = z;.

This second condition implies that two of the solutions of the diffential equation
Dy(z) = 0 are holomorphic at z = z; (see for instance [49]). In return, that implies
that the local monodromy of the SL3 oper defined by the differential operator D

around the puncture z; is a multiple of a reflection matrix.

Example. Locus of opers for T3[IP}; .].
Suppose that z = 1 is a minimal puncture. This imposes the constraints

mi =my —1 (6.3.74)
mll’lé =my +1,
as well as

4 1
bl = 5 (my = 1) my (my +1) = do — 2dee + (60 — o). (6:3.75)

on the family of Fuchsian SL3 opers defined by the coefficients (6.3.64) and (6.3.65).

This fixes the oper uniquely.
The resulting differential equation

Dby (z) =0 (6.3.76)
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can be written in the form of the generalized hypergeometric differential equation

[2(0+a1)(0+a2) (6 +a3) = (04 B1 — 1) (6 + B2 —1)(0+ B3 — 1)|§(2) = 0

(6.3.77)
where 0 = zd,, with coefficients
a1 = 5(—Meoy +my 4+ mo3 —1+2B3),
ty = 3(—Meop +my +mo3 —142p3),
a3 = %(—moo,;; +mqy +moz —1+42pB3), (6.3.78)
B1 = 3(—mp1 +moz+2B3),
B2 = 3(—mop + moz +2B3),
where mo3 = —Mpy — Mp2, M3 = —Meo,1 — Moo 2 and
. B1+B2+B a1 +ay+a3—p1—Pp—p3+3
y(z) =z~ S R R e y(z). (6.3.79)

Finally, comparing the constraint (6.3.75) on the opers with the constraint (2.2.18)
on the differentials, we notice a “quantum” difference. This implies that the gen-
eralized hypergeometric oper cannot be written in the form (6.3.67) for any choice

of the coefficient t5mif,
Example. Locus of opers for T3[IPj g 100)"

The space of SL3 opers on the four-punctured sphere P}

Olg/lloo
punctures at z = 0 and z = oo and two minimal punctures atz = gand z = 1

with two maximal

is 2-dimensional. It may be obtained from the 4-dimensional family of Fuchsian

1
0,g,1,00

imposing the conditions for a minimal puncture atz = gand z = 1.

SL3 opers on the four-punctured sphere IP with four maximal punctures by

The resulting family of opers may be written down as the differential equations

Dy(z) =y"(z) + t(2)y'(z) + t3(z)y(z) =0, (6.3.80)
with coefficients
; _1—|—c0+ 1+c 14+ cw—co—c—c1—2+ H;
2T Tz z-1)2 z(z—1) z2(z—q)(z—1)
(6.3.81)
_do d dq Ao —do—d —dy
t3—z—3+ (z—q)3+ (2_1)3+ 2G—q)(z 1) (6.3.82)
N (1—q)(4co — 3m?> — 3m? — dcoo + 6)1m1y H,
8z(z —1)%(z — q) z2(z—q)(z—1)

Cz(z— 1;21(2 —q)? <%(z )t %(Z B 1)> + %tlz
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We call this family (6.3.80) the family of generalized Heun’s opers. For any
member of this family the monodromy around either minimal puncture is semisim-
ple with two equal eigenvalues.

Note that the coefficients ¢, and t3 — %t’z from equations (6.3.81) and (6.3.82)
only differ with the differentials (6.2.10) and (6.2.11) in terms that have a smaller
mass dimension. This difference goes to zero in the semi-classical limit € — 0
discussed in §6.3.3.

1

In the limit 4 — 0 the four-punctured sphere ]PO,q,l,oo

degenerates into two
three-punctured spheres. In the same limit, the family of generalized Heun’s opers
degenerates into a pair of generalized hypergeometric opers.

If we assume that

Hi=1+4c¢+c—c/+0O(gq) (6.3.83)

Hy, =do—d,+ %(CQ —cp) — %(m —1)m(m+1)+ O(q) (6.3.84)

in the limit g — 0, the family of generalized Heun'’s opers (6.3.80) has two interest-

ing limits:

1. In the limit g4 — 0 the family reduces to the generalized hypergeometric
oper (6.3.77) with coefficients (1 ; — £;), m1; and M ;.

2. If we first map z — gt and then take the limit g — 0, the family reduces to the
generalized hypergeometric oper (6.3.77) with coefficients myg;, (my; — m;)
and (moo,,' — —Ei).

The assumptions (6.3.83) will be justified in §6.4.

6.3.3 Semiclassical limit

It is natural to introduce an additional parameter € with mass dimension 1 such
that all terms in the Fuchsian differential equations have the same mass dimension.
The corresponding locus of e-opers L¢ is a complex Lagrangian subspace of the
moduli space of flat e-connections. In the semiclassical limit € — 0 the locus L,
limits to the space of quadratic (and higher if K > 2) differentials B, or equivalently
the spectral curves sitting above them.

In the following we often leave out the € to avoid notational clutter, but at any
stage it is a simple matter to reintroduce the e-dependence.
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6.4 Monodromy of opers

We now study the monodromy representation of the opers in the locus L in our
main examples. For the superconformal SU(2), Ny = 4 theory this is Heun's dif-
ferential equation (6.3.31), while for the superconformal SU(3), N = 6 theory this
is its generalization (6.3.80) to K = 3. Since both are families of opers on a punc-
tured sphere, there are no complications due to tricky coordinate transformations,
and the monodromy representation is simply found as the fundamental system of
solutions to the respective differential equations.

The relevant differential equations are too complicated for one to write down
the monodromy representation explicitly in g. We use the fact that the underlying
Riemann surface is the four-punctured sphere lP(l), 41,00 and write down the expres-
sions in a series expansion in g, following and expanding arguments of [68, 69, 70].°
We are helped by the fact that the leading contribution when g — 0 is described
by the (generalized) hypergeometric differential equation, whose monodromy has
been explicitly computed [48, 50, 49].

The same method may be applied in principle to compute the monodromy rep-
resentation of any family of opers of class S in a perturbation series in the complex
structure parameters g, whenever exact expressions are known for the oper mon-
odromies in the limit g — 0.

6.4.1 Heun’s differential equation

In this subsection we compute the monodromy representation of the Heun
equation (6.3.31) in a perturbation series in g.

To compare to the monodromy representation (5.4.23) of any flat SL, connection

1

on the four-punctured sphere IP; 01,00

in terms of average length-twist coordinates,
we fix the monodromy M, around the punctures z = 1 and z = oo such that it

has trace
TrMP" = —2cos(7tl), (6.4.1)

with £ non-integer. The parameter ¢ will later play the role of the Coulomb param-

eter a.

SWhile finishing this work we noticed a seemingly related strategy for calculating the Painlevé
VI tau-function for small g in [82].
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As computed in [70], fixing the monodromy My’ in this way determines a

series expansion of the accessory parameter H in g

H=)Y q4H, (6.4.2)
k=0
with for instance
Hy=06;,—96y—9 (6.4.3)

and

6p — 60+ 6) (8¢ — beo + 61)

(
H, =
! 25,

— Hj. (6.4.4)
It remains to compute the monodromy szer of the Heun equation (6.3.31)
around the punctures at z = 0 and z = oo in a perturbation series in q. Our

strategy for this is as follows:

1. We define the rescaled Heun equation by substituting z = gt in Heun’s equa-
tion itself. We construct solutions v; (t) and v (t) of the rescaled Heun equa-

tion in a neigbourhood of t = 0, in a perturbation series in 4.

2. We analytically continue the solutions v1 (f) and v, (t) to t = oo while keeping
z = gt finite, but very small. We re-organize the functions w(z) = v1(t/9q)
and wy(z) = vy(t/q), which are solutions of the Heun equation itself, around

z = 0 in a perturbation series in g.

3. We analytically continue the solutions wy (z) and w;(z) to z = oo.

These three steps together determine the connection matrix Si,1(¢9) that relates
the local solutions of Heun'’s differential equation near the puncture at z = 0 to the
local solutions near the puncture at z = oo. Say that My and M are the local
monodromies around z = 0 and z = oo, respectively. Then the monodromy matrix
of Heun’s equation around the punctures z = 0 and z = o is found as

szer - MO Stotal(q) Moo (Stotal(q))_l . (6-4-5)

The computation is illustrated in Figure 6.3 and the result is summarized in equa-
tion (6.4.85).
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1
0,9,1,00

into four paths corresponding

1
0,9,1,00

Figure 6.3: Decomposition of the cycle g on IP

to the computation of the monodromy matrix Mg on IP as in equation (6.4.5).

Step 1: Perturbation of the rescaled Heun'’s differential equation

We first define the rescaled Heun’s differential equation by substituting z = gt
in equation (6.3.31) and expand it in a perturbation series in 4. We also expand its

solutions v(t,¢) in q as
o(t,0) = Y gFoW(t,0). (6.4.6)
k=0

The leading contribution v(?) (¢, ¢) is determined by the hypergeometric differ-

ential equation

70O (t,) + Qo(t,0) v (t,0) =0, (64.7)
with
Do — (Ap— A+ D)t + At
Qo(t,¢) = P17 : (6.4.8)
We find the two independent solutions
Ugo)(tlg) _ tlfzmo (1 _ t)HTmZFl (1 —/ -|-2m — mol 1 + 14 -I-2m — moll —my, t)
(6.4.9)
o0 (t,0) = £ 72 (1 — 1) 5", (1 —¢ +2m tmo 144 +2m Mo g4 mO,t) ,
(6.4.10)
where >F; (a,b, ¢, t) is the Gauss hypergeometric function
_ > @)t
oF (a,b,c,t) = kg) Or K (6.4.11)
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with (x)g := x(x +1)... (x + k — 1) the Pochhammer symbol.
The subleading contribution v(!) (¢, £) is determined by the equation
97 vV (1, 0) + Qo(t, ) v (1, €) + Q1(t,£) 0O (1, 0) = 0, (6.4.12)

with
(5g + 61 — 500)(5g 4+ 61 — 00 — 25gt)
26t (1—1t) .

Qi(t, £) =

Its solutions can be found in two ways.

(6.4.13)

First, we may use general perturbation theory (following [69] and appendix A)

to write the solution in the form

ol (t,0) =S40 (1, 0) + S0 (1, 0) (6.4.14)
with
1 1t o 0
S1= o /O o\ (s, 0)Q1 (s, )oY (s, £)ds (6.4.15)
t
5, = _mi 0% (s, 0)Q1 (s, 0)0”) (s, £)ds. (6.4.16)
0 /0

In a perturbation series in t we find

Sii=—t(c+O(t))  Syp= 7m0 ( + O(t )) (6.4.17)

m0—1

Sy = — o (L + O(t)) Syp = —t (0'+ O(t)) (6.4.18)

(6.4.19)

Note that there is the freedom of adding any multiple of ¥ (t,0) to oY) (t,0).

This only changes the boundary conditions of v,(t,¢) at t = 0. The choice made in
equation (6.4.14) fixes

oWt =0,0) =0. (6.4.20)
This choice implies that the t-expansion of vgl) (t,0) starts off with a term propor-
tional to t 7", and that the t- -expansion of Ué )( t, £) starts off with a term propor-
tional to ¢ 2 0:
m 02 2 mz —1
oVt 0) = —t" (4 mig = m® = 1)( 4y —mg, — 1)
8(¢% = 1)(mo — 1)

o, ) = s+mo<(52+m —m? —1)( +m} —mZ —1)

+ O(t)) (6.4.21)

8@ 1)y 7 1) +O(t)> (6.4.22)
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Alternatively, we could make an ansatz of the form (following [68]):

3 (t,0) = AN 0 (1,04 2) + AV (1, 0) + AN (1,0 —2).  (64.23)

r/

This ansatz confirms the value (6.4.4) for H; and fixes

a _ (EEtm—my+1)(+mi—mgz —1)
A= 16000+ 172 (6.4.24)
W (Cxm+mg—1)(2+m}—md —1)
Al = - Gy (6.4.25)
1 _(Zim+m0+1)(€2+m%—m§o—1)
AV, = TSy (6.4.26)
W (xm—mg—1)(2+mi—md —1)
Al =+ ISy , (6.4.27)

where (¢ +b) = (£ +b)(¢ — D).
The coefficient Aﬁ,lo) is left underdetermined, corresponding to the freedom of

adding a multiple of vgo)(t,ﬁ) to vﬁl)(t,ﬁ). Comparing to equation (6.4.14) we

choose
A =-A - A (6.4.28)
to fix the boundary condition o) (t =0,¢) = 0. Indeed, we then find that
Wt 0) = oM (t, 0). (6.4.29)

The expansion of v(1)(t,£) in terms of hypergeometric functions as in equa-
tion (6.4.23) will be useful to analytically continue to t = co.

We can continue this perturbation to any order in 4 by expanding [68]

o0y = Y AW O (10— 2j), (6.4.30)
j=—k

and find for instance that

2 Ctm—myg+3)LEm—mg+1)(LEm £me+1
A2, = 512)5((5 1200+ 2)22zE +3) R
(Ctm—mo+3)(lEm—mg+1)(m3—1)
1280(¢ +1)(£ +2) (£ +3)
@) _ (CEmtmy —3)(0£m +mo—1)(0£m +me — 1)
12 5120(¢ —1)2(¢ — 2)2(¢ — 3)
(Ctm+mg—3)(lEm+mg—1)(m3—1)
1280(¢ —1)(£ —2) (£ —3)

(6.4.32)
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Step 2: Solutions for |z| < 1

We have just seen that the solutions v,(t, £) of the rescaled Heun equation may

be expanded in g as

ot 0) =0l (t, 0) (6.4.33)
+q (A, o (1 04+2) + A5 001, 0) + AN 0 (1,0~ 2))

2.0
+ ¢ Y. Af o (t € —2Kk)
k=—-2

+0(g%)

Instead of considering the solutions v, (¢, ¢) around t = 0, we now want to analyti-
cally continue them to |¢| > 1.
For [t| > 1 the hypergeometric functions Ugo) (t) and vgo) (t) may be expanded

as
0Ot 0= 2j) = (—1) = (=)' T+, [0 — 2] (6.4.34)
(0—2)24+m? —mj—1 _, )
(H Wi—2+1) ! +0(172)
(1) (=) B - 2] (6.4.35)
(0—2)24+m*—mg—1 _, )
<1 Wi—2-1) ! +0(17?)
with
[[—£]T[1 — my) T[¢]T[1 — my]
B r 1—€+m—m0]1—\[1—ﬂ—m—m0 1-' 1+€+m mo r 1+€ ;’l’l mo
Bilf] = TT—0T[1 + mq] I 4 mo] (6.4.36)
I—-[l—f—i-éﬂ-l-mo]r[l—f—;n—&-mo] F[l—&-ﬁ—i—;ﬂ—i-mo]r[l—&-f—;n-l-mo]

This implies that the solutions v,(t, £) have the expansion

o) = (1) HZ(iBt[ﬁ—Zl]rl All(—2®+0 (1)) (6437)
=0
H)TE )T (LBl + 22 A7, ()R + 0 (7).

I=0

for |t| > 1, yet |z| = |gt] < 1.
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Leading order in g

Write the solutions w,(z, £) = v, <§' E) to the unrescaled Heun equation (6.3.31)

In a g-expansion as

=) 7 w® (z,0). (6.4.38)
k

Equation (6.4.37) implies that the leading contribution wr (z, ?) is given by
)
1

1t (I
0 ) = (1) 2o (22 2 Bl —2lnA; g
a0 = (<175 (<2) T Bl (2: L ("] (6439)

1=0
10 (1
1-2m+my z\ 2 © By [ﬁ + 21]7’2 Ar —1 R
+ _1 2 —_ B g T - —Z '
(- (-2 Ah(g Bl )
(6.4.40)
The coefficients in front of (—z) are
B[l —2 . A(l) 2 2 2
Al In i (62 +m7—mg —1) (6.4.41)
Bt[g]rl 4(5_ 1)

Bilt+2]2 A, _ (P+m—mE 1) (6.4.42)

Bld.  Al+) -

whereas the coefficients in front of (—z)2 are

Bill—4ln A (0= my tme—3)(—my+me —1) (6.4.43)

Bldn 2= (-2) R

(mq+1)(€ —my £me — 1) n (m—1)
8(¢ —1) 8

Bt +4]2 A%, (Lt myEme +3)(L+my £ meo+1) (6.4.44)

B:[{]2 - 32(0+1)(£+2) N

CmA )t Eme 1) | (1)
8(0+1) O
This suggests that wﬁo) (z,£) can be rewritten in the form
0 O
( @)z ) BT ( N ) (6.445)
wy " (z,0) vy (z,4)
with
-1
_ ( gz 0 > , (6.4.46)
0 qT



and

Y00 = ()T (1 —2) T () (6.4.47)
F, (1—€+72n1—mooll—€+g11+moo,1_£lz)

Yz, 0) = (—1) T (1—2) 7 (—2)F (6.4.48)
JF, <1+£—|—Z11—mm,1+€+g11+moo,1+glz>,

which is a basis of solutions to the unrescaled Heun equation (6.3.31) at g = 0.
Indeed, since wﬁo) (z,¢) is a solution to the unrescaled Heun equation at ¢ = 0,
and since we have verified equation (6.4.45) up to order z?, equation (6.4.45) must

hold to any order.

subleading order in g
To find the subleading contribution wﬁl) in g we substitute the ¢ ~!-expansion (6.4.34)

of vﬁo) into the g-expansion (6.4.33) of v,. The resulting expansion is

Lt
wV(z,0) = (—1) 5" <_§> T W (6.449)
1—-2m+myy z % o (1)
+ (1) (7) Yy, Wy, 2" (6.4.50)
m=-—1
with
2 2 2
1 02 +m* —my—1
W21 = Bil{]n Oy (6.4.51)
/)2 2 _ 2 1
Wi = = Bil¢ — 2] A} Lt J/i ) M 1A (6452
2 4m?—m2—1
1
WZ(,—)l = —Bi[{]2 = 1)0 (6.4.53)
1 1 (€—|—2)2—|—m2—m2—1 1
Wiy = Bilt +2]2 A, 0 T) 0" 4 B[] ALY (6.4.54)
and so forth.
This expansion is consistent with the closed form
1 1
( w%li(Z’g) ) = B[] T < y%i(z’@ ) , (6.4.55)
w, " (z,4) Yy '(z,0)



where
Wz ) = 0z 0 +2) + Yy, 0 + VY (z, 0 -2),  (6.456)

with coefficients

1 1—£2+m%—m2
Gl = 0+ (6.4.57)
M _ L (m} — m3,) (m§ — m?)
Cro =3 (1+ ESVOS (6.4.58)
_(mf —m%)(mg —m?)  (mf—mg,)(1—mog) mg
4(z+1) (E 1)2 A0r(—1) 4
2 _
ey = Eam?—mp ~1)(Em o ~ 1) 6459)

640(1 —1)3(0 —2)

and C}}) (¢) = 11k ( 0).

Indeed, since 3/1 (z 0) +qyy () (z,£) + O(g?) is a solution of the unrescaled Heun
equation in a perturbation series in g, and since we can verify equation (6.4.55) up
to second order in z, it must hold to any order in z.

Step 3: Solutions at z = ©

Analytically continuing to z = oo gives

(0) E _1 1-2m+mg _ 1—oo
(y%()) (Z, ) ) ~ BZ[E] ( ( )172n21+m0( Z) 1+ilw ) (6460)
Yo (2, 0) (=1)77 (=2) 2
with
T[1 — )T —meo] I[1— )T [1e0]
l—v[l—ﬁ—ml—mw]l—v[l—ﬁ—&-ml—mo@] T[1 {— m1+moo]1—-[1 €+m1+moo]
B 4] 71+ O]T [—1oo] T[1+ )T [11co]
r[1+€fn2117mm]r[l+€+11211 moo] l—v[1+€ n211+moo]l—~[l+€+fg1+moo]
(6.4.61)
This implies that
(1) 6 1 1-2m+mg B 1—1oco
( y%l)(z’ ) ) ~ S, [/ ( ( )Hﬁmo( Z)Hiw ) (6.4.62)
Y (2, 0) (1) 7 (=2) 2
where
S:[ss = C | Ba[0 4 2]ys + CLY) Ba[l]s + C') B[ — 2], (6.4.63)
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Hence

wi(z0) ) (—1) 7 (—z)
( 2,0) ) ~ Siotal (9) ( ( )172m+mo( )HMW ) (6.4.64)
with

Stotatla] = Bl TB:[() (14 qB:[0)'S:[0) + O(%)) . (6:4:65)

Step 4: Monodromy

Say that
e7ti(1—my) 0
My = ( 0 Jri(1+m) > (6.4.66)
and
eT[i(l-Fﬂ’loo) O
Mo = ( 0 (1) ) (6.4.67)

are the local monodromy matrices at zero and infinity, respectively. Then the mon-
odromy matrix of Heun’s differential equation around the punctures z = 0 and

z = o0 is given by

M3 = Mo Stora[4] Moo Stora7] ™" (6.4.68)

We compute the inverse of Mg using that

Bz[f]_l = B[] e (6.4.69)
and that
Stotatlg] ! = (1= B=[() 7" S:[¢)) (B[] T B=[¢)) ! + O (). (6:470)
We then find
MFPe = MPO 4 gt 4 o(g?) (6:471)
with
M) — Mo Bi[(] T B[] Moo B2[€] 7 T B[] ™. (6:4.72)
and

MY = Mo B[] T B.[(] (BZ 0] 1 8.[£] Moo — Moo B[(] 1S, [e]) (6.4.73)
B.[¢] P T B¢ L. (6.4.74)
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Leading order monodromy

In the limit g — 0 the four-punctured sphere ]P(l)l 41,00 MAY be approximated by
gluing two three-punctured spheres 1[’(1),1,0o using the plumbing construction. In
the same limit Heun’s differential equation (6.3.31) may be approximated by the
two hypergeometric differential equations (6.3.24), one on each three-punctured
sphere. It is well-known that B;[¢] and B.[¢]! are the connection matrices for
these hypergeometric differential equations, respectively. Equation (6.4.72) shows
that the leading order contribution in g to the monodromies of Heun’s differential
equation may simply be found from the monodromies of the hypergeometric dif-
ferential equation by splicing in the gluing matrix T (see [68, 69] for an alternative
proof, whose generalization is described in the appendix).

To leading order in g we calculate that

Tr Mgper,O — D_ q—g _|_ DO + D+ qgl (6.4.75)
where
T[1 + ¢]2T[¢]?
D=t [i+ /] 1 €] — (6.4.76)
motm My Mo
T|§+ optnr|] 4 Lompne |
D, = —ar? [1 - T[] (6.4.77)
rli_ Z:I:moztm}r[l _ Zimlimw}
(R
and

D. — cos(7tl, tmyg, 7tmy) 4 cos(7tl, 7Tm, e ) + cos(7Tmy, T ) + cos(7tm, 7Tmy )
° 3 sin?(7tl) ’

(6.4.78)
where we defined
cos(x1,...,Xxy) = cos(xq) - - - cos(xy). (6.4.79)
subleading order monodromy
At subleading order in g we find
_ _ 0 M
B[(] 71 S.[{] Mo — Moo Bz [¢] 1 S.[(] = ( SM. 0 ) (6.4.80)
with
- (1) (1)
i 2i72 (€L = C0) 11 + ma 1 6481)
+ = sin[7t/] I'[1 — meo] T [&E:I:m%] 4.
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and

. 1 1
oM = : (6.4.82)
sin[7t/] T'[14 me] T [H:Zinzn-&-mm]
This leads to
Tr szer,l =D_ (Célo) - Cgo) > q—e + D+ (C§10) - ng ) qg- (6.4.83)
with
2 2 2 2
1 A1) 1 (m7 — mg,) (mg —m”)
Cig—Cp = 5 <1 + TT1)2 -1 : (6.4.84)
The result

Up to order g4 we thus find that

M =D g7 (1-c1ig + O(%)) + Do + D g’ (1+ 19+ O(¢?)) , (6:485)

with
2012
D_ = —4n?— Zir[jlf 4 1F[€] — 6.4.86)
m, m m Moo
F[Z"’TO}F[Z"‘—E }
_ 21 [_p12
Dy = —4n” fi - g : (6.4.87)
rli— Ctmotm rll_ (myE£me
[2 2 2 7
whereas
D. — cos(7tmy, Ties) + cos(7tm, tmy ) + cos(7tl, tmg, 7tmy ) + cos(7tl, 7Tm, T )
’ % sin? (/) ’
(6.4.88)
and
14 (m3 — m%,)(m3 — m?)
=5 |1 : 4.89
“ 2( T -1y (6.4.89)

Using the same techniques one can in principle compute the oper monodromies to
any order in g.

We rewrite this result in terms of perturbative and instanton corrections to the
effective twisted superpotential of the superconformal SU(2) theory coupled to
four hypers in §6.5.1.
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6.4.2 Generalized Heun’s equation

The monodromies of the generalized Heun equation (6.3.80) may be computed
perturbatively in an expansion in g in the same way,. Here we content ourselves
with the leading contribution in 4.

Again, we start with fixing the coefficients in the expansion

Hy =Y q'Hy, (6.4.90)
k=0

Hy =Y q'Hy; (6.4.91)
k=0

of the accessory parameters H; and H; in equation (6.3.80), by requiring that the
monodromy M,’*" around the punctures z = 1 and z = oo has traces

fl €2

TeMmoPer = 2ri(1+3) | 2ri(1+3) | 2mi(1-4-2) (6.4.92)

Tt (Moper)fl _ ezm'(1—%1) N ezm'(1—%2) N ezni(1+%+%)’

o

for some fixed complex numbers ¢; and ¢;. This determines the leading coeffi-
cients (6.3.83), i.e.

Higp=1+cy+c—cy (6.4.93)
(m—1)m(m+1)
3 .

m

Hyo=do—d;+ >

(co—cy) — (6.4.94)

Recall that, on the one hand, the generalized Heun’s equation (6.3.80) limits to
the generalized hypergeometric oper (6.3.77) with coefficients my;, (my; — m;)
and (ms; — ¢;) if we first replace z — gt and then take the limit 4 — 0. A
basis of three independent solutions of the limiting generalized hypergeometric

differential equation at ¢t = 0 is given by the generalized hypergeometric functions

0
o (£) = 503 Fy (w1, 00,003, Brjy Bro ) (6.4.95)

_ (1+mo, - (“r,l)n(ar,z)n(ocrlg,)nﬁ
- n;() (,Br,j)n(ﬁr,k)n n!’

with j # r and k # r, and with coefficients

1+m+mg, — ¥
2

0r — Mo,j

m
=1 4.
7 ﬁr,] + 2 7 (6 96)

DC,,/]' =

where €3 = —51 — fz and mp3 = —Mmop1 — Mo2.
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The analytic continuation of the solutions 0¥ (t) fromt = 0 tot = oo is de-

scribed by the connection matrix with coefficients

r[ejgfl]l—v[l + mo,i;mo,k]

Billli =T1I1 p——
k7é1 17&] 1—.[17€1+g1+m0’11|1—.[1+€] Zl mo’k]

. (6.4.97)

On the other hand, the generalized Heun'’s equation (6.3.80) limits to the gen-
eralized hypergeometric oper (6.3.77) with coefficients (m; — ¢;), my ; and mq ; if

we just take the limit g — 0.
(0)

The analytic continuation of its solutions y; ’(z) from z = 0 to z = o is thus

determined by the connection matrix

r[mm,j_mw,l]r[l + fiffk]
B.[0lii =T1I1 2 __ 2 - (6.4.98)
i 1 T[E ettty T ey 2 Zh

Similar to equation (6.4.69) the connection matrices B;[¢] and B, [/] are related by

B[]} = B[] ‘ . (6.4.99)

m=mi,my=——Meo

Going through the same steps as for the Heun’s differential equation in the pre-
vious subsection, we find that the leading contribution to the monodromy matrix
of the generalized Heun's equation around the punctures z = 0 and z = o is

computed by the expression

M = Mo B[] T B.[¢] Mo B.[¢) ' T~ By[(] 7, (6.4.100)
where now
N l3
T = diag <q2,q2,q_2> , (6.4.101)
. mp 1 . 7@ . 7@
M, = diag (ez’” (1-731) 2rif1-792) 2ri(1-73 >) , (6.4.102)
Moo = diag <e27“'<”?),ez”i@*%ﬂ),ez”i(”?a)) : (6.4.103)
oper,0

We break the computation of M g upin smaller pieces. We find that

(Bz [f] Mg B, M}—l)ﬁ — e%i(2m1*2+€i+€/) ((Si,j+ (6.4.104)

) TTiq cos (s ) TR T[S T[4

TR G S RS T e

3mi

ie— "2 (m—1
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whereas
<Bt[£]_1 Mo Bt[ﬁ])“ = <BZ[—£] Meo BZ[—E]_1> . (64.105)
ij {my—m,mer——my},ij

oper,0

Substituting these expressions into M g s we tind that the leading order con-

tribution to the traces is given by®

Tr szero =D, +D(€1,€3)q +D(€2,£ )q[3 +D(£1,gz),/2/1
(6.4.106)
—
Dl 61) g 22 + D (s, £) 427 +D(l3,01) g 2"
—1 _ V4 7Z Z ly—1
Te (MEP) ' = D+ D6y, 65) "7 + D(ta, ) g7 + D1, 02)
(6.4.107)
ﬂ 2t 143
+D({2,41)q D(¢3,62) q D(¢3,41) q
where
g mAm =2 D (6 E)
D(ly, 0;) = —4rm2e (™ )*—k’l, 6.4.108
o m+m1—2 D (( f)
D({y, ¢ —471% (™ >*—"”, 6.4.109
(k l) DT(gk)DJ((El) ( )
and
B Ce — 0721l — 4172 Uk
D*(ek,el)_r[u . } r[ . } r[1— l—ﬂ (6.4.110)
2 2 0
xT[1+ bt 5 T+ 5T -5 -],
whereas
3 1—m—1’I10,]'+£k 1+m1—moo,j—|—€k
ek :gr[ . ]r[ . ] (6.4.111)
and
S l4mmy;— by 1—my+me; — U
D, () :]‘[r[ — }r[ — ] (6.4.112)

We rewrite this result in terms of perturbative corrections to the effective twisted
superpotential of the superconformal SU(3) theory coupled to six hypers in §6.5.2.

The expression for D, is given by the same formulas as N, from the previous chapter, after
identifying e~ with L;, M; with e2™H  and Ml,]- with €21 Tt thus drops out in what follows,
and we omit rewriting the unwieldy expression.
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6.5 Generating function of opers

The locus of (framed) opers forms a complex Lagrangian subspace inside the
moduli space of (framed) flat connections MgR(C, SLg). Given any set of Dar-
boux coordinates {x;,y;} on My (C,SLk) we can thus define a generating func-
tion WP (x, €) of the space of opers by the coupled set of equations

OWPOP (x, €)

V= (6.5.1)

In this section we find the generating function of opers W°P¢'(x, €) in our two
main examples, the superconformal SU(2) theory with four flavors and the super-
conformal SU(3) theory with six flavors, with respect to the length-twist coordi-
nates L' and T; defined in Chapter 5. We do this by comparing the formulae for
the oper monodromies in §6.4 to the formulae for the monodromies in terms of the
length-twist coordinates L and T; in §5.4.

Since the spectral twist coordinates T; are only determined up multiplication
by a simple monomial in the (exponentiated) mass parameters, due to the ambi-
guity in the choice of a Fenchel-Nielsen spectral network, the generating function
WPOP€T(x, €) that we find in this section is determined up to a linear factor of the

form mx.

6.5.1 Superconformal SU(2) theory with Ny = 4

Comparing the monodromy traces M, of the opers around the pants curve
« to the monodromy traces M, in terms of the length-twist coordinates L and T,

gives the identifications

M, = —e™m, (6.5.2)
L=—¢"" (6.5.3)
These identifications in particular imply that the constant term N, in equation (5.4.26)
agrees with the constant term D, in equation (6.4.85).

Next, we want to find the twist T as a function of the length L on the locus of

opers.
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Leading order contribution in g

Comparing the leading order contribution in g to the oper monodromy szer

as computed in equation (6.4.75), to the monodromy Mg in terms of the length-
twist coordinates L and T, as computed in equation (5.4.26), shows that up to lead-

ing order in g
T4+2— D+ g + -, (6.5.4)

where

l+mmytm Tl 7rmy £ TMeo
16 cos (f) COS (f)

N(¢) = e ETL . (6.5.5)

and D_ = D4 |,—_, with

I[1—{°T[-()?
D, (¢) = —4m? [1— 47T . (6.5.6)
T 1 _ {tmo+m T 1 _ {tmytme
[2 2 2 2
Repeatedly using the identity
TTX 1 x73.11 x
cos (7) F[E + ﬂ r [5 - E} =T, (6.5.7)
we find that
Do _ | Tlp+ 24205 + S22 11 — (][] 658)
\/N F[% _ Eimzoim]r[% _ (imlzimoo] F[] +€]F[€] ’ .
and hence that
D _ @ (6.5.9)
VN D+
This implies that equation (6.5.4) is solved by
o |TIb+ 2 + S T - 0] 65.10)
r[% i Eimzoim]r[% i éimlzimoo] 1"[1 _‘_g]r[g] q .

up to leading order in g.
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Classical and 1-loop contribution

Since the generating function of opers WOP¢' (¢, q) is defined by

1 B awoper(& q)
FlogT = ———" (6.5.11)
on the locus of opers, we find that
awoper(glq) B / 1 [% Kﬂ:mzoj:m] 1 1—‘[% 4 é:l:mlzztmoo]
— Elogq + Zlog i MTOM] + Zlog i gimlzim (6.5.12)
1, T[1—4 1, T[4
+§log T +§ ogr[1+€]+(’)(q)

To make contact with known formulae, we write the last equation in terms of

the special function

_ [ I'(u)
Y(x) = /% dlog o (6.5.13)
which has the property that
J _ T[B+ vx]
EY([S +7x) = vlog i (6.5.14)
as well as
Y[1—x] =Y][x]. (6.5.15)
We thus find
WOPE (£, q) = Webe' (£,T) + WP, (6) + O(q) (6.5.16)
with
oper 0?
Wc]as (E, T) - Z 108 q/ (6517)
and

WPT (0) = WP (0, mg,m) + Wobe (£) + WP (4, my, meo) (6.5.18)

1—loop anti—hyp vector hyp
with
oper 1 1

erctor(g) = _E Y[—ﬂ] - E Y[E] (6.5.19)

1,1 lEtmgEtm

oper . 0

Wantifhyp(é’ mo, m) = 5 Y [5 + #} (6.5.20)

1,1 lEtmEtm

oper . 1 o)

Whyp (L1, o) = 5 Y [5 — |, (6.5.21)
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up to an integration constant that is independent of /.

If we identify the length coordinate ¢ with the Coulomb parameter 4, and com-
pare to the expression for the Nekrasov-Shatashvili effective twisted superpoten-
tial for the SU(2) gauge theory coupled to four hypermultiplets, given in equa-
tions (6.1.8), (6.1.9) and (6.1.13), we find that

Wb (a,7) = W (a,T) (6.5.22)
ff
Wi oop () = Wil oo (a). (6.5.23)

In particular, W, )" (/) is equal to half the classical Liouville action on the nodal

1—-loop
four-punctured sphere.

This computation is similar to and agrees with that in [65].

1-instanton correction

The 1-instanton correction Wf P'(¢, ) in the generating function of opers,

WOPS(£,q) = WS () log g + WEPe, (6) + WP (0) g + O, (6524)

clas 1—loop
is computed by the subleading order correction in g in equation (6.4.85) as

| (mg—m?)(mg, — m7)

WP (1) = 3 SN (6.5.25)
_ (Etmy+m+1)(l+my£me+1)
N 164(0+1) (6:526)
(ltmy—m—1)0 —mqy £me —1)
+ 16000 —1)

1 1
— 5 (= i, — 1) = (1 m) (1 m),

up to an integration constant that is independent of /.
Comparing this to the l-instanton contribution to the Nekrasov-Shatashvili
effective twisted superpotential for the SU(2) theory with four hypermultiplets,

given in equation (6.1.13), we conclude that
WP (a) = Wif(a), (6.5.27)

after setting the integration constant. That is, W;** (a) computes the 1-instanton
correction to the Nekrasov-Shatashvili effective twisted superpotential, up to a
“spurious” factor that does not depend on the Coulomb parameter 4.
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So far we have hidden the dependence on ¢, but let us now reintroduce this by
scaling all parameters a and my as a — £ and m; — =L, respectively. It follows that

the e-expansion of W;**" (a) is simply

1a*+ (m% —m?)(m%, — m%)

WP (a,€) = = 1 (6.5.28)
00 2 2 2 2
ok (my — m?) (mg, — m7)
+ kZO € 4,2k 14

In particular, it does not have any odd powers in €.

6.5.2 Superconformal SU(3) theory with Ny = 6

Comparing the monodromy traces My of the generalized Heun’s opers around
the pants curve &, given in equation (6.4.92), to the monodromy traces M, in terms
of the higher length-twist coordinates L1, Ly, T, T, given in equation (5.4.39), yields

the identifications
Ly =™, L[, =M, (6.5.29)

Equating the eigenvalues of the local monodromies at the punctures, by compar-
ing equations (5.4.28) to (6.3.60) for maximal punctures and (5.4.29) to (6.3.74) for

minimal punctures, yields the identifications
My; = e™™i, M= —¢™", M =—e™", My;=e""i, (6.5.30)

Next, we want to find the twists T1 and T; as a function of the lengths L; and
L, on the locus of generalized Heun’s opers.

Leading order contribution

To leading order in g we need to equate equations (5.4.41) and (5.4.42), which
capture the monodromy along the 1-cycle B on C in terms of the twist coordinates
T1 and T as

T
TrMg = N, + N(Ly, L3) Ty + N(Lp, L3) o + N(Ly, L2)T1 (6.5.31)
2
T, | N(Ls, Lp)  N(Ls L)
+M(L2/ Ll)?1 + Tz + Tl ,
N LN - — T
TrM;"' = No + N(Ly, Ls)T1 + N(Lg, L3) T2 + N(Ly, LQ)T1 (6.5.32)
2
N TZ N(LC’)/ LZ) N(LCJ,, Ll)
Lo, Li)=2
+ N(Lo, 1)T1+ T + T
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to equations (6.4.106) and (6.4.107), respectively, which capture the monodromy of
the generalized Heun’s equation to the leading order in g as

oper,0 (30 3Ly =
TrM‘B ’ :Qo +Q(£1/£3)q 2 +Q(£2/£3)q 2 (61162)(7 2
(6.5.33)
bt fh—L3 */3
D(ly,01)g 2 +D(l3,62)g 2 +D(l3,¢1)q
(oper0\ 1 = — -ty 302 6H-0
Tr (MP"Y) = Do+ D(t1,63)q 7 +D(ls,45)q 2 +D(by,b2)q 7
(6.5.34)

/1742

—}—E(fz,fl) q 2

— by —L lq1—4
+D(l3,6) 32 +D(l3,0)q 2
and solve Ty and T; as a function of L1 and L.

With the identifications (6.5.29) and (6.5.30) we can check that N, equals D
and that N, equals D..

Furthermore, since

) M; My, (6.5.35)

it is sufficient to solve the equation

TrMp = Tr My (6.5.36)

for T; and T».

By repeatedly using the identity (6.5.7) we can simplify the quotient

D(l, b)) = PP
2t 00, 5.37
Nl 6) D4(€x)D, (€1)Ds(€x, £;) (6.5.37)
to a product of gamma functions.
Here,
) 1+m+m0,jf€k 17m1+moo,jf€k)
D () = __8mi ﬁ F[l 2 : }r[l 2 : } (6.5.38)
DT(gk)N(Ek) ]:1 1"|: _m_’zﬂo,j‘l‘ k:|1-v|: +my— 72”oo;+ k):|
whereas
~ 8731 ~
D (4) = —————=Dy(t) L. 6.5.39)
i( k) Di(gk)No(gk) T( k) (
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Furthermore,

D (€x, £1) Nuc (£, £1)

D, (4, b)) = e (6.5.40)
U1+ 58] |558] |1+ 40+ §]T[6c+ 4]T[1- % —0)|T[ - % - 4]
I 5] r[1+ 4%\ 1| -6 - §]r[1-6 - 3]r [fk +o)|r[i+%+a]
It follows from the last four equations that
Dl 41) _ N(4, b)
N(G. )~ Dl 1) (o541
and also that
D(l1,63) N(f2,43) _ D(41,6)
N(E1,£3) Dits, ) ~ N(Ey &) (6542

This implies that equation (6.5.36) is solved by the coupled system of equations

B 2(53,51) H—-13
T = N(fs, El)q 2 (6.5.43)
D({3,0y) 13
T f— 2
27 N(#, ﬁz)q

The generating function WP ({4, £;) of the locus of generalized Heun'’s opers

is defined as
Slog Ty = 2, WP (61, £2) (6.5.44)
% log T, = 9, WP ({4, {5),

so that for instance

A WP (lq, £p) =

LR O G L e LD
F[ﬂl zg,} r[1+%] r[%]r[przz es}r[/zl }F[1+ 52}

1—m—mq i+ 1+m+mg;—L3 1411 — oo j+41) 1—my+me j—€3)
S G s I s Ll G e S S
ZL ];1 og I [1+m+g10,]-—£1 ] T |:1_m_210’j+£3:| T [1—1111—1—72?100,]-—61)] r |:1+ml—g1m,j+f3):| .
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To leading order in g, in terms of the function Y(x) defined in equation (6.5.13),
we thus find that

02+ 02+ 010,
WOper(ﬁl, Ez) = % logq —+ W&?Eteiihyp(gl’gz’ m,mo,, molz) (6546)
+ Wkttor (€1, £2) + Wb o (6, £, 11, e 1, o) + O(q)
where
13 E'_E'l 13 gl_g
WS (0, 0) = == Y Y[ - Y Y [ZE ) (6547)
2= 2 2= 2

1—m—m0lk+€j
2

WoRe oy (01, 2, m, g1, 1m0 2) = ] (6.5.48)

anti—hyp

1—1—m1—moo,k—i—€]-

oper
W, P (61162/ my, moo,llmOO,Z) — 2

hyp

], (6.5.49)

up to an integration constant that is independent in ¢; and /5.

If we identify the length coordinates ¢; with the Coulomb parameters 4;, the
above expressions agree with the classical and 1-loop contributions to the Nekrasov-
Shatashvili effective twisted superpotential Weff for the SU(3) gauge theory cou-
pled to six hypermultiplets. Precisely, we find the 1-loop contribution in agreement
with the “Liouville scheme” regularization method as explained earlier.

Instanton contributions to WP may be obtained by computing the monodromies
of the generalized Heun equation up to a higher order in g, following the strategy
of §6.4.1. We leave this for future work.

6.6 WKB asymptotics

In this section we remark on the relation of our approach, exact in € but ex-
panding in g, to another approach used in the literature where one expands in €
instead.

Given an e-oper V&' there is yet another method to compute its monodromy
representation, called the “exact WKB method” [83, 71, 84]. We will review this
approach in §6.6.1, following [71].

In §6.6.2 we compare the monodromy representation for the oper V™ ob-
tained from the exact WKB method to that obtained from the abelianization map-
ping. We conclude V¢P® is abelianized by the Borel sums (defined below) in the
direction ¢ = arg e of its WKB solutions.
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As a consequence, this implies that the spectral coordinate X, (V™) has an

asymptotic expansion in the limit e — 0 given by

X, (VP ~ exp ( ]{ Sodd(e)dz) , (6.6.1)

where S,q4(€) is a solution to the Riccati equation (6.6.7). These WKB-asymptotics
relate the Nekrasov-Rosly-Shatashvili correspondence to the approach of com-
puting the e-asymptotics of the effective twisted superpotential Wef(a, g, €) using
quantum periods (pioneered in [72] for the pure SU(2) gauge theory).

In §6.6.3 we conclude that while the e-asymptotics of the effective twisted su-
perpotential may be found by computing quantum periods, the analytic result is
found by computing the Borel sums of the quantum periods in a critical direction
o corresponding to a Fenchel-Nielsen network.

Whereas we restrict ourselves to K = 2 in this section, a similar discussion
holds for higher rank.

6.6.1 Monodromy representation from exact WKB

We start off with a brief review of the exact WKB method, following [71, 84].
We rephrase some of the previously introduced notions in the language commonly
used in the exact WKB literature.

Let € be a small complex parameter with phase . Fix an SL; e-oper Ve~ on C
locally given by the differential operator

D(e) = €202 — Q(z,¢€), (6.6.2)

where Q(z,¢€) = ZjI\LO Qj(z)ej is a polynomial in € with coefficients Q;(z) that are
meromorphic on C, satisfying conditions outlined in [84]. The principal part Q(z)
of Q(z, €) defines a meromorphic quadratic differential ¢, = Qq(z)(dz)? on C.

The zeroes and poles of ¢, on C are called turning points and singular points,
respectively. Stokes curves are paths on C emanating from the turning points such
that

e /92(v) € R (6.6.3)

for every nonzero tangent vector v to the path. We orient the Stokes curves such
that the real part of e ¢ [* /@2 increases along the trajectory in the positive direc-
tion. We assign signs + and — to the singular poles so that the trajectories with
positive directions flow from — to +.

155



Stokes curves oriented away from turning points are called dominant, while
those oriented towards turning points are called recessive. The Stokes curves, the
turning and the singular points form a graph on C which is called the Stokes graph

Go(92).
The WKB ansatz for the solutions to the differential equation

(ezag — Q(z,e)) P(z) =0 (6.6.4)
is by definition the series
Pi(z) = exp ( / Sodd dz) (6.6.5)
with base-point zy. Here
Sodd = i " 1S4 (6.6.6)
n=0

is the odd part of the formal solution S = Y ;> kS, of the Riccati equation

S'(z) + 5% = € *Qu(2). (6.6.7)
Note that S_1 = 1/Qp.
Now, recall that a formal power series f(e) = Y2, fkek is said to be Borel
summable in the direction O if
00 yk—l
) = ko (6.6.8)
4 k;f (k—1)!

converges in a neighbourhood of ¥ = 0, can be analytically continued to some
connected open Q) containing the ray ¢’*R>0, and satisfies the bound

|fB(y)] < 12! (6.6.9)

on Q). The Borel sum in the direction ¢ of f is then

= fo+ / e eny y)dy, (6.6.10)

and this is an analytic function of € whose asymptotic expansion in a sufficiently
small sector Sy = {€ € C||arg,.| < 5, |e| < const} is given by the original formal
series f.

Suppose that the differential ¢, is generic, such that there are no saddle trajec-
tories. Then the WKB solutions ¢+ are Borel resummable in the direction ¢ in each
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connected region of C\Gy(¢p2) [85]. The Borel sums of ¢+ give analytic solutions
to the differential equation (6.6.4).

Any solution 1/)2/z , obtained upon Borel resummation in a region R can be an-
alytically continued into a neighbouring region R'. It is related to the solution
ybz’z/i obtained upon Borel resummation in the region R’ by a so-called connection
formula.

Say that we cross a dominant Stokes line clockwise with regard to the turning
point b that it emanates from. Then the Borel sums 1pi , and zpzlzi of

1 z
= — + Soqqdz |, 6.6.11
llfi m exp ( /b odd Z) ( )

on either side of the Stokes line are related by the transformation

P =y (6.6.12)
R R iR
Vo4 = Y, 4 195,
Indeed, QDZQ ', is dominant in this region, and hence is allowed to pick up a recessive
contribution without changing the WKB asymptotics.
Say that we cross a recessive Stokes line clockwise with regard to the turning

point b that it emanates from. Then the Borel sums §/*, and IPZ};[ on either side of

the Stokes line are related by the transformation

PR, =Y, (6.6.13)
Vi = Vb il
Indeed, in this situation 1,01757 is dominant, and hence is allowed to pick up a reces-
sive contribution without changing the WKB asymptotics.

With the above data we can produce the monodromy representation for the
SL, oper VP, Suppose that we want to compute the monodromy matrix along
a path Cp with begining and end point at zy with respect to the Borel sums of the
WKB solutions 1. Label the Stokes regions that the path Cy crosses as U; (with
| increasing) and say that ¢, is the Borel sum in Stokes region U;. Then we can
determine the monodromy matrix along Cy by computing the basis transformation
that relates /1! to ¢, .

Let b be the turning point that the Stokes line emanates from. The connection
formulae tell us how to relate the (local) Borel sums 1,02? . in the neighbouring re-

gions U; across Stokes lines. The transformation is of the form

(o 9i) = (1L g Vi, (6.6.14)
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where the matrix V**! is determined by equation (6.6.12) or (6.6.13). It depends
on the type of the Stokes line and the direction of crossing.

We would like to know the transformation in terms of the Borel sums zpﬁ, which
are defined with respect to the base-point zgp. Now ¢F differs from 1}7175 | by the

transformation

(W 9%) = (v, wie ) D, (6.6.15)

where Dé’o is the Borel sum of the matrix

exp <+ leg Sodd dz) 0
0 exp (— lez) Sodd dz)

(Note that since the integrals do not depend on the position z, the Borel summed

(6.6.16)

DQO does not depend on the Stokes region.)
Hence we find that (/1! and ¢} are related by the transformation

(T, =) = ('L ) v 6.6.17)
with connection matrix
Vit = (D) v Dy (6.6.18)

The monodromy matrix along the path Cj is then found by multiplying all connec-
tion matrices 1721[’)1“ along it.

If the differential equation (6.6.4) is Fuchsian, the resulting monodromy repre-
sentation may be expressed in terms of the characteristic exponents at the regular

singular points and the Borel sums (in the direction @) of the contour integrals

exp (V) :=exp (}{Y Sodd dz) (6.6.19)

along 1-cycles 7y on the covering .. The exponent V,, is called the Voros symbol for
the cycle +.

So far we have kept the phase ¢ = arge fixed. The connection formulae (6.6.14)
describe the analytic continuation of the Borel sums 1, + of the WKB solutions in
the z-plane. Let us now consider what happens if we vary the phase ¢. We make
the dependence on ¢ explicit in the notation by writing lpg -

Suppose a Stokes line crosses a point z € C at a critical phase #. Then the Borel

sums lpgoi—é and 1,0290;5 are not equal, but related by connection formulae similar
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to (6.6.14) in a neighbourhood of the point z, for small enough 6. This is the so-
called “Stokes phenomenon”. The Borel sums l/Jg, , do have the same asymptotic
expansion, given by ¢, 1, in the whole sector {e € C | |0 — &y| < /2, |e| < 1}.

The Borel sums of the Voros symbols V., are affected by the Stokes phenomenon
as well. The Voros symbol V,, is Borel summable (in the direction @) if the cycle
does not intersect with a saddle trajectory of the Stokes graph Gy(¢2). This Borel
summability is broken if a saddle trajectory appears, say at the phase ¥. The
Borel sums of the Voros symbol V., in the directions &y + J are related by “jump
formulae”, for sufficiently small ¢ (see for instance [84] for explicit expressions).
Of course, both Borel sums do have the same asymptotic expansion in the limit
le| = 0, given by the Voros symbol V., itself.

6.6.2 Relating exact WKB to abelianization

The above procedure of finding the monodromy representation using the exact
WKB method is very similar to finding the monodromy representation of a flat
SL, connection V using the abelianization mapping. In fact, in this section we
show that the resulting monodromy representations are equivalent on the locus of
opers.”

Fix an e-oper V¢ locally given by (6.6.2), with fixed phase ¢ = arge. It is easy
to see that the corresponding Stokes graph Gy (@) and spectral network Wy (¢2)
are equivalent notions. Indeed, the Stokes curves of the Stokes graph Gy(¢,) have
the same definition as the walls of the spectral network Wy (¢,). Furthermore, the
labels of the walls determine the orientations of the Stokes curves and vice versa.
In particular, notice that the labels of the walls in the spectral network are chosen
in such a way that the recessive (or small) section s; of the flat connection V°P¢"
stays invariant across a wall.

Let us remind ourselves how we compute the monodromy along the path Cy
for any flat SL; connection V using the abelianization method with respect to the
spectral network Wy(¢2) (see §5.3, or for some more detail §6 and §7 of [4]). Sup-
pose the flat SL, connection V is abelianized with respect to Wy(¢2) by the equiv-
ariant connection V2. To find the monodromy of V along Cy we cut the path Cy

into a collection of smaller paths p that do not cross any walls nor branch-cuts of

"While finalizing this work we heard about an alternative argument from A. Neitzke, proved
by N. Nikolaev [86].
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Wy(@2). The monodromy along Cy is then given by the product of abelian paral-
lel transport matrices D, over all paths o, where we splice in a branch cut matrix
when crossing a branch cut and a unipotent matrix S;, when crossing a wall.

As is shown in [4], and reviewed in §5.3, the abelianization mapping is unique
for any K = 2 Fock-Goncharov or (resolution of a) K = 2 Fenchel-Nielsen spectral
network. Furthermore, the unipotent matrices S, are of a rather special form.
They have 1’s on the diagonal, and the only nonzero off-diagonal component of
S can be written as the abelian parallel transport of V2" along an auxiliary (or
detour) path that starts at a lift of the basepoint w, follows the wall in the opposite
orientation, circles around the branch point b, and returns to the other lift of the
basepoint w.

More precisely, the previous description is valid if we choose the branch cut

matrix
0 1
(o0, 6620
as is conventional. If instead we choose the branch cut matrix to be the quasi-
permutation matrix
0 1
( i 0 >, (6.6.21)

the nonzero off-diagonal component of Sy, is multiplied by an additional factor =+i.
Let us now decompose the connection matrix VZI(’)ZH from equation (6.6.18) as

Vil = (DY)l S, DY. (6.6.22)
Then the matrix
Sp = (D2~ tyh+1Ipl (6.6.23)

has as only nonzero off-diagonal component the Borel sum of

exp< /Sodddz> (i) exp( / Sodddz> (6.6.24)

where two signs in the exponentials are opposite and depend on the orientation of
the Stokes curve, whereas the sign in front of the factor i depends on the direction
of crossing the Stokes curve.

It follows that the monodromy representation for the oper V' obtained using
the exact WKB method can be brought in the form of a monodromy representation
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obtained using the abelianization mapping. In fact, it shows that VP is abelian-
ized in each region by the Borel sums ¢ (in the direction @) of the WKB solutions
Y+ of the differential equation (6.6.4).

Indeed, with respect to this basis the abelian parallel transport matrix is the
Borel sum of the matrix

exp (—1— fp Sodd dz) 0
0 exp (— fp Sodd dz)

while the branch cut matrix is of the non-conventional form (6.6.21), due to the

D, = ) (6.6.25)

square-root \/Syqq in the denominator of the definition of i+, and the nonzero
off-diagonal component of the unipotent matrix Sy, is the Borel sum of the expres-
sion (6.6.24).

Thus we conclude the monodromies obtained from the exact WKB method are
equivalent to the monodromies obtained through the abelianization mapping on
the locus of e-opers.

In particular, this relation shows that the spectral coordinates log X, (VF)
are equal to the Borel sums (in the direction &) of the Voros periods V.. As an
immediate consequence it follows that the spectral coordinates Xv(Vz,per) have

the WKB asymptotics

Xy (VI ~exp ( 757 Sodd(€) dz) (6.6.26)

in the limit ¢’ — 0 with |arge’ — 8| < 7r/2. (This was already shown by a different
argument in [1].) We emphasize that while the spectral coordinates X', are thus
rather sensitive to the choice of the phase ¢, their WKB asymptotics are not. For
example, the spectral coordinates for the two resolutions of a Fenchel-Nielsen net-
work generated by a Strebel differential differ, but their WKB asymptotics in the
limit e — O agree.

The right-hand side of equation (6.6.26) is also known as a quantum period
I, (€) = exp ( }[ Soaal(€) dz) . (6.6.27)
7

6.6.3 Quantum periods and non-perturbative corrections

In the main part of this chapter we computed the generating function of the

1

space of e-opers on the four-punctured sphere IPy .,

with respect to the com-
plexified length-twist coordinates (¢, T), by computing the monodromy represen-
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tations and comparing with the formula in terms of the coordinates. The complex-

ified length-twist coordinates were realized as spectral coordinates

L = —exp(mil) (6.6.28)
T = —exp(27)

by abelianizing with respect to a Fenchel-Nielsen network WW. The discussion in
§6.6.2 indicates an alternative way of computing this generating function.

Fix the phase ® and the mass parameters m; such that e=%%¢, is a Strebel
differential, generating a Fenchel-Nielsen network isotopic to W. This is certainly
possible in the weakly coupling limit g — 0 where

2

"= ”2—0 +O(g), (6.6.29)

withag = §, /92

According to the discussion in §6.6.2, the length-twist coordinates (¢, 7%) re-
stricted to the space of e-opers may be computed as the Borel sums of the Voros
symbols V4 and Vg, respectively, in the direction arge = ¢y + J for sufficiently
small é. Let us denote these Borel sums as V; and Vj, respectively.

The generating function of e-opers is found by inverting the relation

14 .
5= Vi(H,q,¢) =V, (Hqe), (6.6.30)
where H denotes the accessory parameter, and substituting the result into the ex-

pression for Vgt (H,q,€), to find

aWOper(gl q/ e) o Vg_ (6, q, e) VB_ (£/ q/ €)
« _Vilbad), V(bao) (6.6.31)

By construction, this generating function agrees analytically with the generating

function of opers as computed in §6.5 (after reintroducing the e-dependence in the
latter).

The e-asymptotics of the generating function WP (/, g, €) are simply obtained
by computing the Voros symbols V4 and Vp in an e-expansion as quantum peri-
ods. This relates the Nekrasov-Rosly-Shatashvili correspondence to the approach
of computing the e-asymptotics of the NS superpotential Weff(a, g, €) using quan-
tum periods [72].

The exact NS superpotential W (g, g, €) is found by Borel resumming its asymp-
totic expansion in a critical direction ¥y corresponding to a Fenchel-Nielsen net-
work. In particular, we find that in this critical direction the NS superpotential

does not acquire any non-perturbative corrections.
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Chapter 7

Uniqueness of abelianization for
Grassmannian networks

In Chapter 5 we showed that the higher length-twist networks W induce unique
abelianizations of flat connections V once equipped with an appropriate notion of
framing at the punctures and/or annuli. In this chapter we consider another class
of networks W equipped with appropriate framing data and consider whether

there is a unique Y-abelianization compatible with this data.

The relevant moduli spaces will be essentially Grassmannians, and the corre-
sponding spectral coordinates are expected to be cluster coordinates in some sense
— we leave a detailed study of this structure to future study and here focus on the

more basic problem of existence and uniqueness of abelianization in this setting.

We will be interested in using a spectral network W to study certain mero-
morphic flat connections on P! with an irregular singularity at infinity, and no
singularities elsewhere. In particular, the monodromy is trivial. This means that
only the Stokes geometry remains, and the connections are characterized by their
Stokes data. The main question we would like to answer, motivated below, is

Given an abelianization “at infinity”, to what extent does it extend uniquely, up to

equivalence, to an abelianization over the whole surface?
By “at infinity” here we simply mean that the isomorphism ¢ is specified on the
componenets of C \ W adjacent to oo, but not given to us completely.

In this chapter we study this problem and give some partial results that the
author has obtained thus far, focusing on examples. We hope to develop these

results further and continue studying the many questions which follow.
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7.1 Motivation and setup

It is important to establish the basic properties of various classes of spectral
networks such as their geometry, the properties their of abelianizations, etc. On
the other hand, the particular class of networks we will study here appears “in real
life” in a conjecture of A. Neitzke describing an application of the GMN integral
operators [1] to compute certain invariants describing the asymptotics of harmonic
maps

g:C —SO(3)\SL(3,R) (7.1.1)
It is thus important to ensure that the spectral coordinates always exist are well-

defined in this problem.

Furthermore, it turns out the moduli spaces in this context are essentially Grass-
mannians Gr(3,7n + 3). The spectral coordinates are expected to be cluster vari-
ables in the corresponding cluster structure on the homogeneous coordinate ring,
with topological changes in the network corresponding to mutations. We expect
the abelianization should be unique, at least when n < 5, which corresponds pre-
cisely to the Grassmannians whose known cluster structure [87] contains finitely

many clusters.

7.1.1 Geometric setup

Fix some integern > 2, and let D; = (n —3+1i) -0, and let B = &7 ,HY(C, K?i(Di))
denote the corresponding Hitchin base with “wild” singularities at co and no sin-
gularities elsewhere.

Fix a point ¢ = (¢, 3) € B, and write ¢; = P;(z)dz®" for the i-differential
so that P, P; are polynomials with deg P,(z) < n and degP3(z) = n. We will
sometimes set ¢, = 0 (this is motivated by the desire for the corresponding wild
Higgs bundle moduli space to be hyperkihler, see [88]). From this data and for
each choice of angle ¢, we can produce a WKB spectral network W, which we will

call the “Grassmannian networks”.

We will study meromorphic connections on the trivial rank 3 bundle £ over P!,
with connection matrix A(z), holomorphic everywhere except co. We assume that
the characteristic polynomial of the leading term Ay(z) in the expansion around co
is

A3 2" =0. (7.12)

Let A; denote the eigenvalues of Ay(z). It will be useful to define
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Definition. Let V be a meromorphic connection as above. The Stokes rays of type

ij of the connection are given by
z
/ Ai— A >0, (7.1.3)
and the anti-Stokes rays of type ij are given by
. zZ
o=in/2 / Ai—A; >0, (7.1.4)

An example of the kind of network we will study is Figure 7.1 below. In this figure
Stokes and anti-Stokes rays are the asymptotes of the walls going out to infinity.
They divide the plane into 2(n + 3) equal sectors.

21 23

13

23

21 4

32

31 21
Figure 7.1: A network with n = 3, with walls asymptoting to (anti)-Stokes rays.

We will use W to study connections V on P! with irregular singularity at in-
finity, and no singularities elsewhere. Furthermore, we will fix the (anti-)Stokes
ray structure up to rotation, but not the Stokes data itself. In particular, we will
denote by A3 ,+3 the space of all connections with the characteristic polynomial
(7.1.2) and whose Stokes rays are of the same type as the network. The detailed be-
haviour of the network is not easy to predict, but the asymptotic structure is quite
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simple: if n is the degree of the polynomial, we have n + 3 Stokes and anti-Stokes
rays each, and all nondegenerate walls of the network asymptote to these rays, up
to rotation. We will call the collection of walls asymptoting to a given ray a cable.

7.1.2 Flags and framings

Generically, away from the Stokes and anti-Stokes lines, there is a canonical

ordering of the eigenvalues by “dominance”:

Rel; > Rel, > Rely (7.1.5)

and thus eigenlines, yielding a flag F™® associated to each sector. Intuitively, the
flag orders the (generically distinct) eigenlines according to the decay rate of the
corresponding formal solutions. A framing of V is simply a flag in each sector,
so that we have a canonical framing associated to each V € Mgr. Thus, we don’t

need to consider WW-framed connections at all.

These eigenlines form a line decomposition & = @2 , L;. Furthermore, when
crossing a Stokes line only two lines are interchanged, meaning if we choose ar-
bitrary elements (s1,sy,53) in adjacent regions R1, R, separated by a wall of type
(if), the transition matrices are of the “abelianization form” (5.3.1). In particular,

. i ! i . . .
given two bases (s{z, s?, ng)’ (s{2 , s? , s;z ) associated to adjacent regions R, R/,

* 0 %
Sc =diag+constxE; = | 0 * 0 (7.1.6)
0 0 =
This is the structure we want to extend:
We will call such a structure (that is, a flag of line decompositions in each of the
2(n + 3) Stokes regions satisfying the transition property (7.1.6)) an abelianization
of V near infinity.

7.1.3 Grassmannians and cluster structures

It turns out that the moduli spaces of the connections we are studying are essen-
tially Grassmannians (up to a certain quotient). Roughly speaking, the canonical
flags produce n + 3 distinct lines in the 3-dimensional £, which can dually be iden-
tified as 3-planes in n 4- 3 space. We avoid giving the details here for brevity, since
our concern is primarily in motivating interest in these networks and making the

link to cluster algebras.
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Recall the Grassmannian of k-planes in C" Gr(k,n) is the set of k-planes up to
change of basis. It is well-known that Gr(k,n) is a smooth, compact, projective
variety. Recall the Pliicker embedding

Gr(k,n) — P(AFC™) (7.1.7)

is given by sending (v1,...,v¢) — v1 A ... Avg. The Pliicker coordinates xp
associated to an ordered k-tuple I = {i, ..., i} is the homogeneous coordinate in
AKC associated to I.

The homogeneous coordinate rings C|[Gr(k, n)| for are known to possess cluster
structures [87]. The structure is simplest in the case of Gr(2,1). In that case one
draws an n-gon labelled clockwise from 1 to n. To each diagonal one associates
the Pliicker coordinate x;;. The clusters are the Pliicker coordinates associated to
the edges of a triangulation, and the Pliicker relations correspond to flips of a tri-
angulation. This specifies the cluster structure on C[Gr(2,n)]. For k = 3, it is
more complicated in general, but at least for Gr(3,5) the k = 2 case sulffices since
Gr(k,n) ~ Gr(n — k,n).

We will in fact focus our attention exclusively on the case k = 3. The reason for
this is that, apart from the relatively simple case of k = 2, a theorem of Scott [87]
shows that the only Grassmannians (in the non-redundant range 2 < k < n) whose
cluster algebra is of finite type' are precisely the cases Gr(3,6), Gr(3,7), Gr(3,8).
There is nothing stopping us from considering other values of k and n too, but for
these reasons we focus our attention on rank 3 connections here.

Each network W produces a collection of spectral coordinates X, € C[Gr(3,n+
3]. It is known in some examples that these coordinates always coincide exactly
with a cluster from the known cluster structure. Thus, one expects there should be
a canonical way to identify isotopy classes of spectral networks with the clusters
of the Grassmannians. We do not investigate the cluster structure here explicitly,

but it is one of our main motivations for considering this problem.

7.2 Abelianization

Recall from Chapter 4 the notion of WW-pairs and abelianization. All flat bundles
below are assumed to be SL.

A Wh-pair (E, V,1, L, V) for a network W subordinate to the branched cov-
ering 7t : 2 — C is the collection of data:

lthat is, possessing finitely many clusters
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(i) A flat rank K bundle (E, V) over C
(ii) A flat rank 1 bundle (£’, V) over &’
(iii) Anisomorphism ¢: E|cnyy — 7L [cn
such that
(a) the isomorphism ! takes (the restrictions of) V to 7, vab

(b) at each single wall w C W, 1 jumps by a map Sy = 1+ ew € End(7,L[cny)
where ¢, : L; — L} if w carries the label ij. At each double wall w'w 1 jumps
by a map S,y Sw, with the ordering determined by the resolution.

Then an abelianization of some (£, V) is simply the remaining data (1, £', V)
needed to form a W-pair.

Given some V, we would like to abelianize it. As usual, this can depend on
various data attached to punctures/annuli, but in our case there is a particular
canonical choice of this “framing” data given by the eigenflags ordered by the
dominance of the eigenvalue. The appropriate notion of framing is given here by
the eigenflags attached to each asymptotic region. Equipped with this data, we can
ask the question,

Given an abelianization “at infinity”, to what extent does it extend uniquely, up to
equivalence, to an abelianization over the whole surface?

To answer this question we should think about what it boils down to. The
most nontrivial part of an abelianization is the isomorphism ;. One may think of
it as a collection of local trivializations of £ given over each component R of the
complement of the network. This amounts to a collection of K sections of £ given
over each component. Condition (b) then tells us what the change of basis matrix
should be between frames over cells with a common wall as a boundary. Since in
our case the flat sections are globally defined, we have a global trivialization and
we can identify the fibres of £ with a single vector space £ (abusing notation) and
have no bundles etc. to worry about. So we can work concretely by thinking of
abelianization as a collection of bases {sF, s}, s} for £, one assigned to each R,
with this transition property. Then the question is about producing unique bases

satisfying the abelianization condition on the whole of C \ W.

At first glance, it does not look like we are done yet. We have produced ¢,
and have (&£, V), but need to find (£, V) to complete the W-pair. However, we
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can take L’ to be the trivial bundle (as it must be trivializable) and use ¢ to define
Vab .= 1,V which is well-defined away from the (preimages of the) walls. Then
by Proposition 4.2.1, V3 extends uniquely across the walls, and (€, V, 1, £/, V2b)
is the unique W-pair as desired.

For the purpose of stating our solution, we will henceforth say V is generic if
no two flags associated to adjacent regions near infinity are equal — that is, if no
cable matrix is strictly diagonal.

With this in mind, we provide a solution to the above question first in some
examples for the case of n = 2,3, corresponding to Gr(3,5) and Gr(3,6), below,
before turning to the question of how to generalize these somewhat ad-hoc meth-
ods to the whole class of networks of interest.

7.3 Particular examples

7.3.1 Gr(3,5) network

The simplest of all the networks involved is the one related to Gr(3,5):
23

21
13

31

13

31

32

Figure 7.2: An n = 2 network.
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Our problem is to determine whether the abelianization at infinity arising from
the asymptotics of the connection is sufficient to determine a bona fide JV-abelianization.

Given a generic connection V, a JW-abelianization at infinity amounts to the fol-

lowing. On each of the ten “big” domains R, we have a collection of bases (s?, s%z, 5;2)

of the vector space £ of global flat sections of V and the matrix that goes (s?, s;y, s;z/) =

(s?, s?f, s;z) - Sc between adjacent domains via a cable c should be of the form (say;,

for a cable of type (ij) = (31))

S¢ = diag + const * Ej; = (7.3.1)

S O %
S *x O
* O *

where E;; is the elementary matrix with 1 in the (i, j)th position. We may rescale
any of the bases without changing the VV-abelianization up to equivalence. So for
any wall (again say of type (31)), one can bring it into the “nice” form

1
0
0

S

o

0
S.=1+s.- E]'i = 1 (7.3.2)
0

_ O

To extend this to a true YW—-abelianization, we need a basis on all of the domains,
with each jump &, at the walls (not just the cables) with the above property. Let

us consider here the uniqueness of such an extension.

Proposition 7.3.1. Let W be the network in Figure 7.2, and let V € Aj 5 be generic.
Given a VW-abelianization at infinity of V, there is a unique VV-abelianization which re-
stricts to it.

Proof. Suppose there is an abelianization, so that we are given bases on all of the

domains, each basis depicted by a dot in Figure 7.3. Consider the one in the center,

(RRR

s1%,85",53°), where the grey dot is.
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10 . 1 18

17
11
12 16

13, |y 15

Figure 7.3: Making as many walls as possible nice.

Follow the blue paths in either direction, each time entering a new domain and
rescaling the basis in this domain to trivialize (put into the nice form) the wall just
crossed. The walls which are now in the “nice” form are shown in yellow. Now
consider the joints at which no birthing takes place. We know 3 of of the 4 walls are
nice, but it follows from triviality around a loop that a) the fourth wall is also nice
(shown in dotted-yellow), and b) the incoming and outgoing walls of the same
type actually have the same S-matrix.

So now all yellow and dotted-yellow walls are nice, and the distinct walls we
wish to solve for with are actually those depicted in colour (which are nice), plus
a,b,c,d (which are not necessarily nice) in Figure 7.4:
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d

Figure 7.4: All walls are nice except those in black.

(the single-wall-cables on the sides were part of the initial data, so we don’t

need to solve for them).

Now we can impose the condition that loops not encircling the origin should
give the identity. First we check triviality around each branch point. Since every
emanating wall except b, c are nice, they just have one nontrivial entry, and the
condition forces each corresponding s, to be certain very simple ratios of 5191018
corresponding to the black walls, uniquely. The result for b and c is

_s5 1 -3 0 0
510 510 518
Sy = 0 + 0 , Sc = 0 -—s18 0
4 1 g 1
0 0 —510 S18 51

Triviality at the lower joint implies S; is nice and its nontrivial entry is the prod-

_ _ _ 1
uct sy = s14 = —512516 = —(510518) -

Finally, we are left with the upper joint, which should satisty

5c5354575 = 13 (7.3.3)
which forces
5108
w00
S, = 0 -5 0
S
0 1 =gk
In particular, there is only one possible solution. O
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7.3.2 Gr(3,6) network

A similar but more complicated argument can be made for the network:

23 13 (23) 13 23

12) .. 12

21 31 (12) 31 21

Figure 7.5: A particularly symmetric looking n = 3 network.

Proposition 7.3.2. Let W be the network of Figure 7.5, and let V € A3z¢ be generic.
Given a YW—-abelianization at infinity of V, there is a unique VW-abelianization which re-
stricts to it.

We omit the proof, but it is similar to the previous case with more steps.
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7.3.3 Gr(3,9) network

Here is one example of a Gr(3,9) network to illustrate the more complicated
behaviour when n > 5, though we do not attempt to solve it:

/,_—\—_%-

/\ \“7 )
RN
29

e
\ 7
X V4

LA

— e WY
= .‘.\f"‘:"

S —

»\\\4‘ -V-

' N v‘ —
“A\\A'Zgl‘ﬁ?"/

NNy
RN /XS
/ i \'

Figure 7.6: A network with n = 6 (we omit labels and orientations).

It would be interesting to find an example explicitly demonstrating the appear-
ance of either infinitely many walls or infinitely many network topologies upon
varying the phase, both of which are expected to occur.
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7.4 A Cleaner Proof

We can do away with the issue of niceness by making the following observa-
tion. Consider the connection V°, but restricted to the complement of branch cuts
going off to infinity, preferably not intersecting a wall. Then this V2°, is necessarily
the trivial connection, and we can find a gauge in which all its parallel transport
matrices are simply the identity. This ensures that all the S-matrices are nice, at
the expense of turning the permutation matrix at the branch cut into a ”“quasi-
permutation” matrix which has nontrivial parameters. The uniqueness problem
becomes a question of solving for the S-walls in terms of these parameters.

The constraints determining the isomorphism ¢, via the matrices Sy, are now

>/Or—l
oS = O
_ o O
[=a
o = O

|
=

o
—_

o
> O =
o = O

o
o
S O =
O = O

|
= O >l=
\_/

o

S O =
>—AO>/\>-'

1
1()
)\(]

which has a unique solution. Thus we see that to each branch point we can asso-

S =

ciate one parameter A and assume all the walls emanating are nice, at the cost of
introducing a so-called “monodromy cut”, replacing the permutation matrix with
a quasi-permutation matrix.

In principle one can resolve each network into one with simple branch points
by perturbing ¢, but it is sometimes preferred to deal explicitly with networks
whose branch points have cyclic monodromy. We can also compute the local

model for this behaviour, which looks as follows:
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12

A1

_)\2

31
32

Figure 7.7: The local behaviour around a 3-cyclic branch point.

Next, we write down the constraint around a joint — when all walls are nice,
it is constrained so that the birthed wall has s-parameter equal to (£1 times, de-
pending on the labeling) the product of the s-parameters of the incoming walls,

depicted below:
ij ik Jk ij ik Jk
SL* SR —SL * SR
SR SL SR SL
SL SR SL SR
(sz,sr) — (5,51 SR, SR) (sz,8r) — (SL, —SL" SR, SR)

Finally, we check the constraint whenever a wall intersects a branch cut (we

have picked some labels, but any other situation is related by relabelling):
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23 21 1 -3 0 21 23 1 0 0
0 1 0 0 1 0
0 0 1 0 Asy 1
1
sw'_>_x'5w sw»—)/\-sw
1 sy O 1 0 0
0 1 0 0 1 0
0 0 1 0 sy 1
.Y .Y .Y ALY
32 12 1 0 0 12 32 1.0 0
“Asy 10 01
0 0 1 00 1
1
Sw’—>7)"5w Sw > 7 " Sw

A

Figure 7.8: The various configurations crossing a branch cut.

In particular, we have again an explicit expression for the monomial attached
to a wall even after it crosses a branch cut.

As a result of the above local computations, we see that all walls can be taken
to be nice, and the nontrivial entry for every S, depends on a set of parameters
{Ai}, one associated to each branch point. Thus, the (Laurent) monomials attached
to the walls near infinity are fully determined in terms of the parameters associ-
ated to the branch points, which coincide with the off-diagonal terms of certain
S-matrices. Furthermore, we can very easily determine the expressions by start-
ing at a branch point b;, where all emanating S;, and P, have an explicit form in
terms of A;, following the walls and modifying the associated (Laurent) monomial
whenever a branch cut is crossed, or multiplying two monomials at the birth from
a joint. This is clearly a well-defined procedure that yields a single monomial in
the A;’s associated to each wall near infinity.

Now, the data we are given is that of constants c; associated to every cable, and
the constraints imply the sum of terms associated to the walls of a cable must equal
¢;. Clearing denominators on these p; — c;, we call the ideal Iy generated by the
resulting polynomials the abelianization ideal Iy associated to W.
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The question thus becomes to show the existence and uniqueness of a solution
to the set of polynomial equations given by Iy has a unique solution. In other
words, that the corresponding affine variety is a point.

7.4.1 Gr(3,5) examples

Let us first go back to our original network which we previously solved, Figure
7.2. Applying the new approach using our rules, we can obtain the terms associ-
ated to each cable:

ry
—w— 2 —y
z

Figure 7.9: Monomials attached to each wall at infinity.

The abelianization ideal Iy is:

Iy =(1 —c1x, —coy —wy — 1, —c3y + wxy + wyz + 1, (7.4.1)
—cz—xz+1,1 —cswz, 1 — cez, —cyw — wy — 1, (7.4.2)
—csw + wxy —wyz + 1, —cgx — xz + 1, —coxy — 1) (7.4.3)

where c; is the s-parameter of the corresponding cable transformation. Accounting
for the constraints between the ¢; arising from the triviality of traversing a large
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circle, one can readily verify the solution is unique and furthermore must exist for
generic (as defined above) initial data:
x:l, y:i, z:l, w:i (7.4.4)
€1 3 il 3
Another example, this time with P, # 0, is the network of Figure 7.10 below.
We can depict our process of deducing the monomial attached to a wall visually
by letting a solid colour denote an s-parameter of A; and a dotted line of the same
colour denote _Al,-' and drawing an additional colour on the wall when necessary
due to birthing or crossing a branch cut. Then we have:

Figure 7.10: Another example using the rules to evaluate the cable terms, P, # 0.

This time, the abelianization ideal is:

Iy = (—c1v — 1,y — o, —c3 + vy + x2, —c4y + vy + xy — x2, (7.4.5)
—C5Yz — Y — 2, —C6 — X, 1 — cyxz, —Ccgvyz — vy — X2, (7.4.6)
—CoUXY — VY — XY — Xz, —C190 + Y + 2) (7.4.7)
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One can again verify readily that there exists a unique solution to these equa-

tions whenever c¢; come from an abelianization at infinity of a generic connection.

7.4.2 Gr(3,6) examples

For n = 3 we find again that existence and uniqueness holds in examples, such

as the one depicted below.
12

31

.31

32

Figure 7.11: Computing the polynomials for a randomly chosen n = 3 network.

Existence and uniqueness of solutions has held true in every example the au-
thor checked. In principle for n < 5 this can be proved by brute force since there
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are expected to be a finite number of network topologies, but it would be much

more satisfying to find a more conceptual proof.

7.5 Towards a general proof

As we have seen in examples above, it is fairly straightforward, if tedious, to
check whether uniqueness holds for a given network. However, it is not so easy
to see why this should always be the case, or to check it individually for the large
(perhaps infinite) number of isotopy classes of networks that can be generated in
situations of interest.

Since we are dealing with solutions to systems polynomial equations, the the-
ory of Grobner bases seems like a natural weapon of choice to try to get a better
hold on the problem. To that end, we provide here a lightning review of only the
elements of this theory that we need.

7.5.1 Grobner bases

We end up with numerous examples of systems of polynomial equations in 1,
variables, and we would like to conclude that the solutions are unique in each case.
The most natural systematic way to approach this question seems to be via the the-
ory of Grobner bases. Given a polynomial ideal I = (fy,..., fu) C C[x1,...,xn],
a Grobner basis is essentially a “normal form” for writing this ideal — that is, a
particularly nice collection of polynomials (g1,...,gm) such that I = (g1,...gm)-
The fundamental theorem of Buchberger is that these always exist, and are unique

once a particular monomial ordering is fixed.

The idea is that from the point of view of algebraic geometry, we can study a va-
riety with ideal I by studying an equivalent but simpler generating set (g1, ... gm)-
The crucial point is that it turns out one can read off many of the properties of the

variety, often by inspection!

In particular, the Grobner basis (once computed) gives us an easy method to
check if the number of solutions is finite and how many there are. To state this, we
need to we fix a monomial ordering so that we can unambiguously say what the

initial term of a given polynomial f is. Then we define

Definition. The ideal generated by the initial terms of all the f; is called the initial
ideal of I. A monomial i € C[xy,...,xn] is called standard if it is not contained in
the initial ideal.
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Then we have:

Proposition 7.5.1. The variety V(I) is a finite set if and only if the number of standard
monomials ngy is finite. In this case the number of solutions, counted with multiplicity, is
given by ngy.

Using this criterion, following the Buchberger algorithm explicitly ought to
show us exactly how the uniqueness properties arise in practice, i.e. what start-
ing property of the polynomial ends up propagating throughout the calculation to

give us the uniqueness.

In order to understand this, we will need examples to understand the pattern,
especially for higher values of n. The rules we have worked out in the previ-
ous subsection provide us with a simple algorithm for producing the polynomial
equations associated to a given network. We are thus able to easily generate a large

number of examples, whose properties will be studied in the future.

7.5.2 Future considerations

In summary, we have recast our original problem as follows

Problem. What can be said about the ideals Iy, how do they depend on ¢, and how
are these properties felt by the Buchberger algorithm?

An answer to this question will most likely require some understanding of the de-

pendence of geometry of the networks on our initial data, so we are led to consider:

Problem. What can we prove about the behaviour of the rays and the shape of the
spectral network by looking at the differentials ¢?

If we are able to establish in full generality the basic properties we have studied
here, there are several questions that naturally follow. Can we compute the spec-
tral coordinates explicitly? Do spectral coordinates always yield cluster variables?
Roughly speaking, each network should correspond to a cluster — can we deter-
mine in general which cluster a given network’s spectral coordinates belong to?
The computations we have made along the way in this chapter should allow us to
go beyond the question of existence and uniqueness and actually examine these

questions in practice.

We hope to explore many of these questions and others in the future.
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Appendix A

Perturbation theory for the
generalized Heun equation

In this appendix we sketch the argument of [69] and its generalization to higher
rank equations. This result is crucial in establishing rigorously the lowest-order
asymptotics of the monodromy traces in Chapter 6. While the result is effectively
present in [69], it is not entirely clear there what the general statement should be.
Thus, we give a sketch following that article with some more general notation that

may serve as a reference.

A.1 Statement

The result will hold for equations with regular singularities
2" (z+ )2 w0 + Py (z,9)05 1w + ... 4 Px(z,q)w =0 (%)

where P;j(z, q) are rational functions with singularities outside some small disc con-

taining 0 and g, and for which the limiting equation as g — 0:

L1172 a§w+P1(ZIO)a§_1w+ —{—PK(Z,O)ZU =0 ()

also has regular singularities (that is, for which all P;(z,0) are divisible by z"1+72—K

— we can check that this is true in our situation). For simplicity, take ry = K —1,

1’2:1.

The main idea is to rescale the equation (*) by z = gt and prove the validity of

variation of parameters.
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Throughout, we assume zj is a “basepoint” lying outside the closed disc 0 <
|9] < g0, and that zg is a regular point of (x) and (xx). We will usually assume it is

atzg = %

Applying the rescaling, we arrive at the rescaled versions of (x), (xx*):

(4 1)980(t) + L 1;I‘Zf’1‘7 JaK=1o(t) ... + P(qt, q)o(t) )
e+ Daku(t) + pr (o)X L+ pr(Hu(t) (k)

where P(at, )
pi(t) == %13%1‘71’1—_1‘7 (A.1.1)

is required to exist.

Exponents will be denoted by the convention that the exponents of the equation
(*) at the point p are denoted by VIEP). It is not too hard to check that (x),(xx),(x),

and (xx) all have the same exponents except that when the singularities coalesce

in (%), the new exponents at 0 are modified— call them yl(co)— and the ones at —g

disappear (obviously), and for (xx) likewise but at co instead. Furthermore,

ul® = =) (A12)
so we drop the superscripts and just define py := pt](co). In summary, we have

unscaled scaled

g#£0 vV v (A.1.3)
=0 p,p=0 —pp,p=o0

The main statements are (with some notations introduced momentarily):

Proposition A.1.1. To lowest order, we have
To(q) ~ Vo()) TU ' (q) Ty (A14)

where T is the connection matrix going from oo to O for the hypergeometric equation with

exponents ., 1/]50) at 00, 0.

Theorem A.1.2. Suppose Req > 0 and that the coefficient functions P;(z,q) satisfy
z™M+m=K | P(z,0). Then the connection matrices have the asymptotic behaviour:

Teo(q)Ty ' (q) = U(q) (T +qlogg O(1)) V' (q) (A.1.5)

184



where T (which depends on Vl(c()) = wy/2mi + (K —1)/2) is the connection matrix from 0
to 1 for the limiting equation (%), O(1) means a matrix with components which are O(1),

and
U(q) = diag (¢,...,q"),  Vo(q) = diag <qvi°),...,qV£°)) (A.1.6)
Theorem A.1.3. We have
To(9)T5(9) = Vo(q) (M(1+9Q(9)) ) Vi (9) (A17)

where V,(q) = diag(qvf),...q”f&s)), and Q(q) = O(1). Furthermore, the correction
Q(q) is a power series in q converges in some 0 < |q| < qo and so may be determined

iteratively.

Thus the monodromy around, say, the A-cycle encircling 0 and —g is (denoting
S:=ToT; 1)

(s)

( eZnivls (s)

v (0 (0)

M, = diag )S~1(q) diag(e*™ ,...,e¥™k )S(q)  (A.1.8)

Jee oy

recalling that M depends on a. Then we can impose that tr(M) 4 = —2 cosh(«)
to get conditions on Q(g), from which we can then determine Mp.

Conventions, normalizations, etc.

Let the solutions of (x) be normalized as

w = 24 Ti(z,9) (A.1.9)
wy = (z+ D% T(z,q) (A.1.10)
where Tj (resp. Tk) is holomorphic at 0 (resp. —¢) and satisfy T;(0,q) = Tk((), q) =1

We will always assume that zg is a regular point of (x) and therefore (xx) as
well, and that the only singularities within the disc |z| < |zg| are 0 and —g. Then

we define solutions at zg by:

wgz‘)) = 1 +(z—2z0)r1(z9) (A.1.11)
Wi = (z - 20) + (2 — 20)? 12(2,9) (A.1.12)
' (A.1.13)

() (z2—20) 7"

- (K—-1)!

+ (z—20)" rk(z,9) (A.1.14)
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for r¢(z, 9) some functions holomorphic in a neighbourhood of z = zj. This ensures
that w ' satisfy the initial conditions oLw;(zp) = 6;; for 0 < j < K.

1

Assume, furthermore, that y;(z) are solutions of (*:*) with the same normaliza-

tion at zg. Then we also define solutions in a neighbourhood of 0:

v\ = 24X(z), k=12,...,K (A.115)

where Xj(z) are holomorphic in a neighbourhood of 0 with X (0) = 1. The expo-
nents are assumed to be nonresonant i.e. no two py differ by an integer—as is the case

for us.

In summary, notationally we have that w(*) denotes local solutions around a
singular point s of the perturbed equation (to avoid confusion, the solution at
z = —q will be denoted with superscript (s), for the “singularity” that we are vary-
ing), and w'#) denotes local (holomorphic) solutions around the (regular) base-

point zp = %

Local solutions are related by the connection matrices

0 (z,9) 0\ (z,q)

: = Ts(q) : (A.1.16)
0 (z,9) 0 (z,q)
0¥ (z,q) 0l (z,q)

: = To(q) : (A.1.17)
0 (z,q) 0@ (z,9)

where the connection matrices Tos(q) and T; are defined by picking a contour

for analytic continuation. In particular, we pick
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1
2
Figure A.1: Contours defining Ty, Ts.

for Tp and T;. Finally, T; is defined as the connection matrix from zg to 0 for the

equation (x*):

=T, : (A.1.18)

Near a regular point

Around a regular point zg, we have the usual theorem describing the behaviour

of the solutions:

Proposition 1. Let wy(z,q), yx(z) be solutions of eq and eq, respectively. In some fixed
neighbourhood of z = z,

0 (z,9) = v (2)[1 + g di(z,9)] (A.1.19)

where di(z,q) k =1, ..., n functions holomorphic and bounded in U

A.2 Rescaled equation

The crucial strategy for the perturbation theory is to rescale the variable as z =
qt, so that the equation (x), (+*) become (%), ():

e+ 1)Ko (t) + qu(gf'ﬂ) K Lo(t)... + Px(qt, q)v(t) (*)
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and the rescaled limiting equation (*x*) becomes

e+ Doku(t) + pr (D)o (D)X L+ pr(Hu(t) (k)
where
o Dilgt q)
pi(t) :== ;lg%qK—_ (A.2.1)

In particular we need this limit to exist.

The equations (*) and (x) have the same exponents, since they are just rescal-

ings of one another. However, (x*) and (x*) have different exponents (since the

(0)

singularities don’t collide in the limit (xx). We will always denote by .~ the ex-

(o)

ponents of the rescaled limiting equation (xx), and likewise y; " at infinity.

Since the singularities at 0, —q are regular, the Frobenius method assures us that

there exist bases of linearly independent local solutions of the form

(
?JIEO) — fr(t,q) (A2.2)
(0)
v](cs) — % <k(t,q) (A.2.3)
where f;, g; are holomorphic in a neighbourhood of t = 0, t = —1, respectively,

and we may single out the normalization f;(0,q) = £;(0,9) = 1fori =1,2,3.
It is easy to see we can recover the original solutions of (*) from the scaled
solutions of (*) via

(0)
o) (z/q,9) = 4% w (z,q) (A.2.4)
s v (s
o (2/9,9) = 7% w(z,9) (A2.5)

Define the functions u,(co) to be the solutions to (xx) guaranteed locally by Frobe-

nius satisfying o
ul®) = 5 Dy (t) (A.2.6)

where ®;(t) are holomorphic onID; and ®;(0) = 1fori = 1,...,n. Likewise define
(e0)
u(t) =t (14 xi(t)/t).

We proceed by making an ansatz that the local solution v should be of the form
K

u(t,q) = Y Ci(t, q)ui(t) (A27)
i=1
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and impose further the conditions that

K .
Y Ci(t,q)9u; =0 (A.2.8)
i=1

forallj = 0,1,...,K — 1, where again " denotes derivative with respect to t. This

condition ensures that

K
dHo(t,q) = Y Ciofu; (A.2.9)
i=1

for all but the higher derivative dXv.

With these definitions we find that after imposing (1.9) and using the fact that
u; satisfy (%%), we have the remaining equation

i=1

K K K .
o t+1) Y Gof Ty = — <Z hi(t,q) (Z Cioy ul-) > (A.2.10)
j=1 i=1

where hi(t,q) := Pi(qt,q)/q" " — pi(t) i.e. Pi(qt,q)/q%" = pi(t) + hi(t,q), h; are
the perturbations.

For each i, we will do the following (but for notational purposes we will always

assume i = 1). Define m; by:

Ci(t,q) =1+qm(t,q), C(tq)=qgme(t,q), k#1 (A2.11)
We can then rewrite (1.9) and (1.10) together as
u . Uk . 0 0 e 0
. . ml . . . m]‘
; : : _ : + : :
af_zul N af_ZuK m 0 0 N 0 m
af_lul af_luK K Fuq Fu; ... Fug K
(A.2.12)
where we have defined
11 K-1
(Fu) (1) 1= — ey (hl(t,q)at u(t) + ... + hq (£, q)0uu(t) + h(t, q)u(t))
(A.2.13)
Or as an inhomogeneous linear sytem for m;:
11 R1 mq
= : +M : (A.2.14)
1k Rk mg



with !

M =] 'F (A.2.15)
R=J'F (A.2.16)

Notation: W(¢) is the Wronskian of the solutions (u,...ug), i.e. det]. Note
by Abel’s identity, since our particular equation has Px_1(z,q) vanishing, W(#) is
a nonzero constant (with no g dependence either) for any choice of linearly inde-
pendent solutions.

To solve this system of differential equations for m, we convert them into a
system of integral equations:

my f(; Rq ;
S I e / M| (A2.17)
t O
mg Jo Rk mg
Here one should keep in mind that M(g) depends on g, though by assumption it
goestoOasqg — 0.

A.3 Existence

First we show that our ansatz works for the solutions near z = 0. Let D, here
and throughout denote the closed disk of radius r. We will start off by looking for

solutions on D, /3 which are holomorphic and bounded.
Theorem A.3.1. Suppose Re 1/,50) < 0,k =1,...K. Then there exist functions \i(t,q),

holomorphic and bounded in 1D, /3, such that

oV (t,q) = ul” (1+ g Ai(tq)) (A3.1)
fork=1,...,n

Proof. Follow the same method as [69] making the substitutions above. Sketch as
follows: Let L = [Revlgo)].

L-1
my(t) = I, my(t) = 7" ( > cjit + t%) (A3.2)

j=0

INote: this is the transpose of what is used in [70]
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Consider our equations on the space

X = {(L(t),...,Ix(t),{ci;}) : I; are holomorphic and bounded on D, 3, ¢;j € C}.

(A.3.3)
X is a Banach space when equipped with the sup-norm. Our integral equations
are now mapping T : X — X. Choose g4 small enough to make this a contraction
mapping and the result follows from the Banach fixed point theorem. O

Remark. In particular, the proof shows that for sufficiently small g, the solutions
w actually converge in q. We can use this to actually calculate the corrections as a
convergent power series in g, though it may not be that the integrals are tractable.
Menotti [70] uses a trick to do this for the first order correction when computing
the A-cycle monodromy.

Continuing, we can essentially follow the same proofs as [69] and end up with
the final formulas given at the beginning.

A.4 Rank 2 worked out

We use the fact that the formulas above hold even when the basepoint is the
singularity z = 1. So we have

Tio(g) =V -T-U 1Ty (A4.1)
where U = diag(g>™,q~2™).
Letting
27ivPY)
e~ 0
Dyt := ( 0 e_zm,v{pt) ) (A4.2)

the trace around the B-cycle is thus

trMp = tr (D(l) T, 'UT 'V D VI U™ Tl> (AA4.3)

— tr ((TZDl Tl—l) U (r—l Dy r) : U—1> (A.44)

but recall that T; is simply the change of basis from solutions around 1 to solutions
around 0 of the limiting, unrescaled equation (). So the structure is clear: take the
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monodromy of the first pants (the “z-pants”) in a basis at 0 and go around 1, use the
transition matrix U to cross the pants curve, and then take the monodromy of the
second pants (the “t-pants” ). This justifies the procedure employed by Nekrasov-
Rosly-Shatashvili heuristically, and (what amounts to the same) that of Teschner-
Vartanov [65], which uses CFT.
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