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Abstract In this work we propose a novel approach to inte-
grate the Lane—Emden equations for relativistic anisotropic
polytropes. We take advantage of the fact that Gravitational
Decoupling allows to decrease the number of degrees of free-
dom once a well known solution of the Einstein field equa-
tions is provided as a seed so after demanding the polytropic
equation for the radial pressure the system is automatically
closed. The approach not only allows to extend both isotropic
or anisotropic known solutions but simplifies the computa-
tion of the Tolman mass whenever the Minimal Geomet-
ric Deformation is considered given that the g;; component
of the metric remains unchanged. We illustrate how the the
method works by analyzing the solutions obtained from Tol-
man IV, Durgapal IV and Wymann Ila isotropic systems as
a seed for the integration.

1 Introduction

Polytropic equations of state have played a long and remark-
able role in astrophysics (see [1,2] and references therein),
and have been extensively used to study the stellar structure
under a variety of fundamental astrophysical problems. For
example, anisotropic white dwarfs have been modeled con-
sidering a general formalism to study Newtonian polytropes
for anisotropic matter [3,4], while for more compact con-
figurations (e.g. neutron stars, super Chandrasekhar white
dwarfs) see [5-7]. In the general relativistic regime, poly-
tropes also have been extensively studied (see, for example,
[8-15] and the references therein. For more recent works see
[16-18], for example).
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The theory of polytropes is based on the polytropic equa-
tion of state, which can be written, in the case of a Newtonian-
isotropic fluid like,

1+1
P=Kp) =Kpy ", (1)

where P denotes the isotropic pressure, pg stands for the
mass (baryonic) density and K, y, and n are usually called
the polytropic constant, polytropic exponent, and polytropic
index, respectively. Once the equation of state (1) is assumed,
the whole system is described by the Lane—Emden equation
that may be numerically solved for any set of the parame-
ters of the theory. When the constant K is calculated from
natural constants, the polytropic equation of state may be
used to model a completely degenerate Fermi gas in the
non-relativistic (n = 5/3) and relativistic limit (n = 4/3).
In this case, Eq. (1) provides a way of modeling compact
objects such as white dwarfs and allows to obtain in a rather
direct way the Chandrasekhar mass limit. Otherwise, if K is
a free parameter, the models can be used to describe either an
isothermal ideal gas or a completely convective star. These
models related to isothermal ideal gas are relevant in the so-
called Schonberg—Chandrasekhar limit [2].

Although local pressure isotropy is a very common
assumption in the study of stellar objects, it is well known
that many physical processes can produce deviations of the
isotropy and/or fluctuations of the local anisotropy in pres-
sure. These facts may be caused by a large variety of physical
phenomena of the kind we expect to find especially in com-
pact objects, so we find strong evidence that suggests that for
certain ranges of density, a large number of physical phenom-
ena can cause local anisotropy and therefore we must take
it into account to describe realistic models. Among all the
possibilities we would like to mention a few which might be
particularly related to our primary interest. A possible source
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of anisotropy is related to intense magnetic fields observed
in compact objects such as white dwarfs, neutron stars or
magnetized strange quark stars [19-21]. Another source con-
stitutes the high indexes of viscosity expected to be present
in neutron stars, in highly dense matter produced by opac-
ity of matter to neutrinos in the collapse of compact objects
[22,23], and the superposition of two isotropic fluids. It is
important to note that, although the degree of anisotropy may
be small, the effects produced on compact stellar objects may
be appreciable [24-27]. So, the assumption of an isotropic
pressure is a very stringent condition, specially in a situation
in which the compact object is modeled as a structure with
high density (as neutrons stars, for example). Besides, the
isotropic pressure condition becomes unstable by the pres-
ence of physical factors such as dissipation, energy density
inhomogeneity and shear as it has been recently proven in
[28]. These facts explain the renewed interest in the study
of fluids not satisfying the isotropic pressure condition and
justify the interest of extending the theory of polytropes to
anisotropic compact fluids.

Thus, after assuming that the fluid pressure is anisotropic,
the two principal stresses (say P- and P, ) are unequal and
the polytrope equation of state reads

P, =Kpl =Kpy"'". 2)
As it happens in the Newtonian case, the introduction of the
tangential pressure P) leads also in the relativistic case to
an underdetermination of the problem requiring to impose
an additional condition. Thus, in order to decrease the num-
ber of degrees of freedom the introduction of an additional
condition is mandatory. In this regard, we can impose cer-
tain conditions on the metric variables as the vanishing of
the Weyl tensor [29], implemented in [6] to obtain the con-
formally flat polytrope for anisotropic matter. This condi-
tion has its own interest, since it has been seen that highly
compact configurations may be obtained with the specific
distribution of anisotropy created by such a condition [29].
Other approaches as the Randall-Sundrum model [30] or
5-dimensional warped geometries have served as an inspi-
ration for other type of conditions, relating radial deriva-
tives of the metric functions in spherically symmetric space-
times, that produce self-gravitating spheres embedded in a
5-dimensional flat space-time (embedding class one). Even
more, models embedded in five dimensional spacetimes sat-
isfy the so-called Karmarkar or class I condition [31] (for
recent developments see, [15,32—45], for example) which
allows to choose one of the metric functions as the one which
generates the total solution. We can also consider an extra
equation of the state as polytropic equation of state for the
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tangential pressure as reported in [17,46]. Alternatively, the
use of a new concept of complexity based on the scalar Yrr
appearing in the orthogonal splitting of the Riemann tensor
has increased in recent years [47]. It is important to mention
that, very recent studies have considered stellar anisotropic
models with a certain complexity (or fulfilling the vanishing
complexity condition Y7r = 0) and it has been established
a relationship between families of solutions that have dif-
ferent complexities with the possible occurrence of cracking
[48,49].

In this work we take an alternative route to integrate the
Lane-Emden equation which consists of considering stellar
interiors supported by anisotropic fluids fulfilling the poly-
tropic equation of state for the total obtained radial pres-
sure in combination with the Gravitational Decoupling (GD)
[50] through the Minimal Geometric Deformation approach
(MGD) (see [51-84] for recent developments). It is worth
mentioning that the GD has been used in order to extend
know solutions of Einstein field equations by coupling dif-
ferent sources, to decoupling a complex energy momentum
tensor in simpler components, to find new solutions in theo-
ries beyond general relativity, and to find both static and sta-
tionary black hole solutions. In this work, we have demanded
that the interaction between both the perfect (“seed”) and
the decoupling fluids (the 6 extra sector) is such that the
total effective source fulfills a polytropic equation of state.
As we shall explain later, the use of GD by MGD allows to
extend well-known solutions (the so-called “seed” sector) by
deforming the seed metric and adding an unknown source to
the matter sector in a suitable manner. The advantage of such
a procedure is that instead of providing two conditions to
close the system of three differential equations in the static
and spherically symmetric case, only one extra condition is
required (because from the start it must be provided the seed
solution). This procedures is clearly convenient in the inte-
gration of the relativistic Lane—Emden equation in the sense
that it is sufficient with supplying the polytropic equation of
state for the radial pressure to close the Einstein’s system of
field equations. More precisely, it is not necessary to propose
any ansatz for the anisotropy or give some geometric condi-
tion but only a well-known stellar interior configuration.

This work is organized as follows. In the next section we
study the basic equations of general relativity as well as a
summary of the theory of relativistic polytropes. In Sect. 3,
we review the main aspects of GD through the Minimal Geo-
metric Deformation (MGD) formalism. We dedicate Sect. 4
to obtaining the Lane—-Emden equations for polytropes by
gravitational decoupling and study some specific models.
Finally, the last section is devoted to final remarks and con-
clusions.
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2 The general relativistic polytrope for anisotropic
matter

2.1 The field equations and conventions

Let us consider a static and spherically symmetric distribu-
tion of anisotropic matter which metric, in

Schwarzschild-like coordinates, is parametrized as
ds® = e'dt> — e*dr? — r?(d6* + sin® d¢?), (3)

where v and A are functions of 7. The metric (3) has to satisfy
Einstein field equations!

Gl = —8n TP @)

The matter content of the system (describing an anisotropic
fluid) is represented by the energy—momentum tensor

T/w =(p+ PJ.)“/,L“U - PLguv + (P — PJ_)S/LSIM (5)
where p is the total energy density,
ut = (7"/2,0,0,0), ©)

is the four velocity of the fluid which satisfies u, u" =1,
and s* is defined as

st =(0,e7,0,0), @)
with the properties s*u,, = 0, sts, = —1.
Replacing (3), (5), (6) and (7) in (4), we obtain
1 1 1 A
N=p=-—r—-—= === 8
0=° 87 [ r2 te (r2 r ) ] ®)
l=p LI (LY ©)
— = = -\ —=—8€ —_ —_ .
! " 8m | r? r2 r
1 —A
_ 22 =P = g[% (21),/4—1)/2—)»/1)/
Y
) ) ] (10)
r

where primes denote derivative with respect to r.

Furthermore, we shall consider that outside the fluid distri-
bution the space-time is given by the Schwarzschild solution,
namely

oM oM\ !
ds? = <1 - —) dr? — <1 - —) dr?
r r

—r2(d?* + sin® dp?), (11

where M represents the total energy of the system. In order
to match the two metrics smoothly on the boundary surface
r = ry = constant, we require continuity of the first and

! We are assuming natural units G = ¢ = 1.

second fundamental forms across that surface. As a result of
this matching we obtain the well known result,

oM
s =12, (12)
ry
. oM
e =1 -2 (13)
ry
Py =0, (14)

where the subscript X indicates that the quantity is evaluated
at the boundary surface.
From the radial component of the conservation law,

V. TH =0, (15)

one obtains the generalized Tolman—Oppenhei-
mer—Volkoff equation for anisotropic matter which reads,

v/

2
Pl==(p+P)+ 2 (PL— Py (16)
Alternatively, using

AT} 17)
r(r —2m) ’

where the mass function m is as usually defined by
et =1-=2m/r (18)

we may rewrite Eq. (16) in the form

, m+ 4nr3 P, 2
Pl=-"" (o4 P+ A, (19)
r(r —2m) r
where
A=P — P, (20)

measures the anisotropy of the system.
For the physical variables appearing in (19) the following
boundary conditions apply

m(0) =0, m(rg) =M, P.(rg) =0, 2n

which corresponds to a stellar configuration surrounded by
the Schwarzschild vacuum [85] As already mentioned in the
introduction, in order to integrate equation (19), we shall need
additional information. In this work we propose a novel sce-
nario; namely, we satisfy Einstein’s system of field equations
using the polytropic equation of state for the radial pressure
together with the Gravitational Decoupling [50], by means
of the Minimal Geometric Deformation approach (once the
seed solution is given). In the next section we will imple-
ment the polytropic equation of state to construct the gener-
alized anisotropic Lane—-Emden equation which will arrive
after introducing the polytropic equation of state in the TOV
equation given by (19) followed by some redefinitions of the
parameters involved.

@ Springer
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2.2 Relativistic anisotropic polytropes

When considering the polytropic equation of state within the
context of general relativity two different possibilities arise
leading to the same equation in the Newtonian limit [5]. The
first one, preserves the original polytropic equation of state
(1) and the second case allows another (natural) possibility
that consists in assuming that the relativistic polytrope is
defined by,

P = Kp” = Kp'*i. (22)

In this case the baryonic density py is replaced by the total
energy density p in the polytropic equation of state. The
general treatment is very similar for both cases and therefore,
for simplicity, we shall restrict here to the case described by
(22). It can be shown that the relationship between the two
densities is given by [5],

= £0
__m
(1= xeg'")

As it is well known from the general theory of polytropes,
there is a bifurcation at the value y = 1. Thus, the cases
y = 1 and y # 1 have to be considered separately. In the
context of our work we want to focus in bounded (fluid)
compact star models so the y = 1 will not be considered.

Let us define the variable ¢ by

p=pY", (24)

where p. denotes the energy density at the center (from now
on the subscript ¢ indicates that the variable is evaluated at
the center). Now, we may rewrite (22) as

(23)

P = pr = Kpc)‘/l/fn_H = Prcwn-Hv (25)

with P, = sz. Replacing (22) and (24) in (19), the TOV
equation can be written as

4 Prc n+1.3 1
= _<m+r(j:—zli) : )5(1 tay)
2A 2%
+rRm’ (26)

where o = P./pe.
Let us now introduce the following dimensionless vari-
ables

r:%, (27)
AZ = ﬂ’ (28)
a(n+1)
yr =2 (29)
Pe
3
n@):m@yx’ (30)
47 pc
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from where (26) reads (see [5,7] for details)

Ldy |:l —2a(n + l)g

3 n+l
dE Itay }+"+“§w

2AE |:1—2a(n+1)gi|
- =0, 31)
Prey(n+1) l+ay
with
n =EY" (32)

Equation (31) in combination with (32) corresponds to the
generalized Lane—-Emden equation for an anisotropic fluid
characterized by a polytropic equation of state.

3 Gravitational decoupling

In this section we introduce the GD by MGD (for more
details, see [50]). Let us start by considering the Einstein
field equations (4) sourced by certain T,Etvw) which can be
written as

TS =T) + O, . (33)

where T,Ef,) represents the matter content of a known solution,
namely the seed sector, and 6,,,, describes an extra source cou-
pled through the parameter . It is essential to point out that
the additional term 8®,, is not considered a perturbation,
i.e., the coupling parameter 8 could indeed be larger than
unity (such coupling is introduced in order to control the
effect of the unknown anisotropic source). Note that, since
the Einstein tensor fulfills the Bianchi’s identities, the total
energy—momentum tensor satisfies the conservation equation

vV, TH =0. (34)
so that, whenever VMT“”(‘Y) = 0, the condition
V0 =0, (35)

is automatic and as a consequence, there is no exchange of
energy-momentum between the seed solution and the extra
source O*V (the interaction is entirely gravitational).

We are restricting ourselves to the spherically symmet-
ric static anisotropic fluid case with internal metric (in
Schwarzschild coordinates) given in (3). In this case the
source can be expressed like,

T = diag(p®), — P, =P, =P, (36)
0} = diag(65. 61, 63, 6). (37)
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Note that, given the symmetry of the system, the compo-
nents of the extra source, 6,,,, depend on the radial coor-
dinate only. To be more precise, although we are assuming
anisotropic systems, it means that both the radial and the
tangential pressures are different so that 611 # 62 = 633.
Even more, although an explicit dependence on the angular
coordinates could represent an anisotropic systems too, this
break our assumption that the model we are considering here
is a spherically symmetric one.

Then, Egs. (4), (33), (36) and (37) lead to the fact that the
total energy-momentum tensor (T,E'ft)) satisfies the system
of field equations (8), (9) and (10), where now, in the left
hand side we have

p=p+ 860, (38)
P =PY — o}, 39)
P =P —po}. (40)

Because, in general, 011 #~ 922, we find that the system rep-
resents an anisotropic fluid. Is clear that the non-linearity of
Einstein’s equations avoids that the decomposition (33) leads
to two sets of equations; one for each source involved. Nev-
ertheless, the decoupling is possible in the context of MGD
as we shall demonstrate in what follows.

Let us introduce a geometric deformation in the metric
functions given by

e — e r=e M4 Bf, (41)
where f is the so-called decoupling function and g is the
same free parameter that “controls” the influence of 6,,, on
T,ﬁ,). Itis worth mentioning that although a general treatment
considering deformation in both components of the metric is
possible, in this work we shall concentrate in the particular
case where the deformation is only implemented on the g"”
component. Now, replacing (41) in the system (8)—(10), we
are able to split the complete set of differential equations
into two subsets: one describing a seed sector sourced by the
conserved energy-momentum tensor Téf,),

171 A
() — — | _ (= - 42
p 87 |:r2+e <r r2>i|’ 42)
1 1 v/ 1
PO = — = e H—4+ =), 43
r 871|: r2+e <r+r2>i| (43)
P(S) _ Le—u 0+ l)/2 M/V/ +2 " — /1“/
L 327 r ’
44)

and the other set corresponding to quasi-Einstein field equa-
tions sourced by 6,,,,

o_ B (S T
p= 871(r2+r)’ (45)
o _PL (V1
=t (r +r2>, (46)

o _ PIS (o2 (e
PJ'_87T|:4 (21} +v +2r>+4(v +r>i|’
47

where we have defined p? = B6?, P,@ = —/3911 and Pf =
— ,8022. Note that, as the seed sector is sourced by a conserved
energy—momentum tensor, namely V, T*"®) = 0, the the
components of 6,,, satisfy the conservation equation V,, o) =
0, given by
v/
2
Remarkably, although the quasi-Einstein equations differ
from Einstein equations, the expression given in (48) is com-
pletely analogous to the anisotropic Tolman-Opphenheimer-
Volkoff (TOV) equation. Next, to complete the process, we
require to satisfy the matching conditions (12), (13) and (14)
on the boundary surface X.

To conclude this section, we would like to emphasize the
importance of GD by MGD as a useful tool to find solu-
tions of EFE. As it is well known, in static and spheri-
cally symmetric spacetimes sourced by anisotropic fluids,
EFE reduce to three equations and five unknowns, namely
{v, X, p, P, P1}.Inthis sense, two auxiliary conditions must
be provided: metric conditions, equations of state, complex-
ity of the system, etc. However, in the context of MGD a
seed solution is given, namely, a metric {v, u} that solve
Egs. (42)-(44). Now, note that as we are only deforming the
radial metric by Eq. (41), the decoupling sector system given
by Eqgs. (45)-(47) has a metric given by the pair {v, f}. In
this regard, it worth emphasising that through the MGD the
number of degrees of freedom automatically reduces from
five to four, namely { f, 98, 6‘11 , 922}, given that both the seed
and the decoupling sector share the same temporal metric
so that only one extra condition is required. In general, this
condition is implemented in the decoupling sector given by
Egs. (45), (46) and (47) by some equation of state (or con-
dition) which leads to a differential equation for the decou-
pling function f. For example: (i) the mimic constrain for
the density, namely 98 = p®, which ensures that both sec-
ctors (seed and decoupling) have the same energy density
profile. (ii) The mimic constrain for the pressure, namely
—911 = Pr(s), which ensures that both sector have the same
profile for the radial pressure. Another possibility is to sup-
ply a condition for the total solution (which of course entails
arelation between the two sectors). For example, if we con-
sider the simple barotropic condition P, = p, this encodes
the relation

(PY + =’ + P)) - %(Pf_ — P))=0, (48)

PP — ol = p® + g6y (49)

so in the context of GD the system is closed enough. In this
work we propose the polytropic equation of state

P, = Kp”, (50)

@ Springer
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which encodes the relation

P — o} = K0 + p6§) (51)

between both sectors. As we shall see later, we demonstrate
that this strategy allows to write the Lane—-Emden equation
and the anisotropy present in the total solution in terms of the
pair (n, &), defined in (27) and (30), and the metric variables
of the seed sector.

4 Gravitational decoupling and anisotropic polytropes

In this section we will outline the procedure to obtain the
structural Lane—Emden equations by means of the GD. In
order to do so, we note that integration of Egs. (31) and (32)
provides (¥, ) as a function of & whenever the anisotropy
A = P, — P, is supplied. In this work we take advantages
of the GD to write A in terms of (1, &) and the seed metric
functions (v, ) as we shall explain in what follows.
First, note that the total anisotropy can be written as

A=A® 4 A? (52)

with A® = P® — p® and A% = P — PY. Now, by
replacing (43), (44), (46) and (47) in (52) we obtain
2

_ V4o 4 4
,3 2 1 2 U/ 4
P a2 (2 L
30n [f VY Tir T e

f/A <V/ ) 5

where, from now on, primes indicate derivation respect to
the variable &. Next, from (18) and (41) and using (27), (28)
and (30), the decoupling function f and its derivative can be
written as

f:%l:l—Za(n+1)g—€_u:|a 54

(n—n'&)

/ A /o~
f - E[,w +za<n+1)§—2] (55)

with 1 given by (30). Finally, replacing (54) and (55) in (53)
we arrive at

A TP
a(n+ 1)8r
X |: (,u/e“ +2a(n + 1)—(7] _5277 S)> (\/ + g)

4 (1 —2a(n + 1)? _ e_”)

P 2 v 4
x| 2v" 4+ v —2———2 ,
& &

@ Springer

(56)

where we have used the dimensionless variables defined by
Egs. (27)—(30). Note that, the final expression of the total
anisotropy only depends on (1, &) (dimensionless mass—
function and radius) and the known metric functions of the
seed sector (v, i), as expected. At this point, it is worth
emphasizing the system is closed in the following sense. As
we stated before, for any anisotropic and spherically sym-
metric system, the problem reduces to solving three Einstein
field equations for five unknowns, namely the metric func-
tions {v, A} and the variable of the matter sector {p, P, P }.
In this regard, two additional conditions are required in order
to close the system. In this work, one of this conditions
is supplied by the polytropic equation of state relating the
radial pressure with the energy density given by Eq. (22).
The other condition corresponds to that the temporal metric
v is a known function once a seed solution is specified.

To complement the discussion, we proceed to calculate
the Tolman—Whittaker mass [86], m, which in the context
of GD is a simple task and this fact in itself reinforces the use
of this tool novelty linked to the study of polytropes. Indeed,
using the definition of the active gravitational mass,

1
= ZeWN/2)p2

3 (57)

mr
it is noted that the only relevant information that should be
provided is the mass function that is encoded in e~*. This
is so, given that the g;; metric component is known since it
corresponds to the metric function of the seed solution. Thus,
replacing (18) in (57) and using (30), we arrive at

1, . 2na@m+1) 7% &2
mT=§|:e (1—”7)} v%, (58)
from where

En+ 1, 2na(n + 1)\ 12

> T - 5
"= 2mpear? [ £ &%)
with
m

nr = 4in&3. (60)

For the numerical calculations it is convenient to change to
the following dimensionless variables

LT E & o
rg  rsA  &x
M
=" =am+ D, (62)
rs éx
in terms of which the Tolman mass can be written as
2 / 1/2
1 2
pp = S DV (2o | (63)
2(4mp )2 xns



Eur. Phys. J. C (2022) 82:703

Page 7of 13 703

We observe from (62) that each anisotropic polytropic model
is characterized by a unique y.

In what follows we shall proceed to integrate the Lane—
Emden equations by considering different seed sectors and
be able to obtain, through the MGD formalism, relativis-
tic anisotropic polytropes as the total solution. To achieve
this, we will introduce the final anisotropy function given in
(56) into the generalized TOV or Lane—-Emden equation for
an anisotropic fluid characterized by a polytropic equation,
given by (31).

4.1 Tolman IV

In this section we shall use the well known Tolman IV solu-
tion [87] as a seed so we can close the system and find an
anisotropic total solution that also complies with the fact
of satisfying a polytrope equation of state, this, carried out
within the framework of GD by means of MGD, as was pre-
viously explained. Then, we have

2
e = b2 (1 n ’—2> (64)
a

(@ =rH@ +r?)
Ho_—
¢ 2@ +2r2 7 (65)

where a, b and c are constants, that have the same dimensions
of r. In order to describe our model, we have fixed the values
of a = 1.41421, b = 2.23607 (in dimensions of a length)
after a numerical probing in the parameters space.

In Fig. 1 we perform the integration of system of equa-
tions (31) and (32) for the values of the parameters indicated
in the figure legend where we represent i (energy density)
as a function of the dimensionless variable & for different
values of the polytropic index n for the polytrope model
obtained with the Tolman IV seed-solution. We observe that
Y is monotonously decreasing, as expected for well behaved
general relativistic polytropes and the radial pressure P, van-
ishes at the surface as required by the continuity of the second
fundamental form.

InFig. 2 it is shown the mass-function 7 as a function of the
variable & for different values of the index n. The results also
depends on the “rigidity parameter” (@« = P../p.) related
with the relativistic limit of the Lane—Emden equation (o« —
0 corresponds to the Newtonian limit). Note that for each
polytrope model (given by n), 1 is an increasing function
that grows until the numerical evaluation stops at the surface
of the compact object (£x), where naturally coincides with
the total Schwarzschild mass M.

In Fig. 3 its shown the “surface potential* y which mea-
sures the degree of compactness as a function of the poly-
tropic index n for different values of «. The parameter y is
a relevant variable since it measures the compactness of the
configuration, it is related with the redshift and it will also

1.0 1

0.8 1

0.6
0.4

0.2

n

0.0 T T T T T
0.0 0.5 1.0 1.5 2.0 2.5

13 x1074

Fig. 1 v as a function of & for @ = 0.5 and different values of n

x10-6
141
121
10
0.8
0.6 1 N
— 150
041 — 200
0 ] — 250
— 300
004 — 350
0.0 0.5 1.0 1.5 2.0 2.5
¢ X104

Fig. 2 7 as a function of & for « = 0.5 and different values of n

be useful in the analysis of the behavior of the active gravi-
tational mass (Tolman-mass).

Figure 4 displays the Tolman mass (normalized by the
total mass), for the Tolman IV seed-solution, as function of
& for the selection of values of the parameters indicated in the
legend. The behaviour of the curves is qualitatively the same
for a wide range of values of the parameters. Note that to pro-
duce the numerical behaviour for 1/ns, (represented in Fig.
4) we must feed the data of y obtained from previous Fig.
3. We see that by increasing the index of the polytrope, the
Tolman mass generally increases and is concentrated towards
the outer surface of the object. In terms of stability, and keep-
ing in mind the physical meaning of the Tolman mass, it may
be said that more stable configurations correspond to smaller
values of the Tolman mass concentrated towards the center of
the sphere, since these are associated to a sharper reduction
of the active gravitational mass in the inner regions, thereby
providing a clear physical picture of the described scenario.

Figure 5 shows the dependence of the local pressure
anisotropy with the dimensionless radial variable & and the
polytrope index. Note that A starts at zero, where P, = P,

@ Springer
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is a monotonically increasing function as expected, and the
radial pressure P, vanishes at the surface as required by the
continuity of the second fundamental form. It is observed
that the anisotropy function decreases with the increase of the
polytrope index n, and this fact can be related to the Tolman
mass distribution, existing a relationship between the stabil-
ity of compact objects and their local pressure anisotropy, an
issue that has been widely reported [5,7]

4.2 Durgapal IV

Now, we apply the procedure described in Sect. 4 to the Dur-
gapal IV [88] interior solution as a seed in the GD framework.
The starting point is

e’ =a(er’+ D* (66)
7 —10cr? — ¢t ber?
= T 1 @l DA+ 52
(67)

e M

@ Springer

Fig. 5 Local anisotropy A as a function of £ for « = 0.5 and different
values of n

where a, b (with units of the inverse of a length squared)
and c¢ (dimensionless) are constants. In this case, the fixed
constant values used in the Durgapal IV seed are a = 0.6254,
b =2.1479. and ¢ = 1.37228]1.

In Fig. 6 it is shown the integration of Egs. (31) and
(32), with previous use of the anisotropy function (56),
for the Durgapal IV seed-solution, plotted for the values
of the parameters indicated in the figure. Note that i is
monotonously decreasing as expected. Again, the numeri-
cal analysis depends on, both, the polytropic index n and the
“rigidity” parameter o (related to the ratio of pressure and
density at the center of the compact object). Each n defines a
specific stellar object that, for this model (Durgapal IV seed-
solution) presents different boundaries, £y, consistent with
the fact that the radial pressure P, vanishes at the surface
(%) as required by the continuity of the second fundamental
form. However as we have mentioned, the ensuing qualita-
tive behaviour, namely, larger values of ¢ (for bigger n) for
smaller values of A (everywhere throughout the sphere), is
maintained for a wide range of values. It is straightforward
to obtain this behavior by comparing with Fig. 10. Similar
behaviors have been reported in [5].

The mass-function n as function of & for different val-
ues of n is presented in Fig. 7. The numerical evaluation
has been stopped when 7 reaches £y, where the mass func-
tion, the Tolman mass, and the total mass become equal. Of
course, each polytrope model, with different boundary (fact
observed in Fig. 6) in turn also present a different total con-
tained energy. The mass function 7, related with the radial
metric function A, constitutes a parameter that allows us to
analyze the energy contained within the sphere, although the
Tolman mass has been shown to be more useful to describe
the active gravitational mass [5,24].

The parameter y is plotted in Fig. 8 as function of n for
different o and the normalized Tolmann mass /1, is shown
in Fig. 9. Again, the active gravitational mass increases from
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Fig. 9 Normalized Tolman-Whittaker mass /7y, as a function of x
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the center to the surface, showing some peculiar behaviors
for some values of the polytropic index (orange line: n = 3).
This fact has been reported before (see references [7] for a

more detailed discussion).
Finally, Fig. 101s dedicated to exposing the behavior of the

local anisotropy of the pressure as a function of the dimen-
sionless parameter &. For this anisotropy function we obtain
the usual behavior. We note that the anisotropy is an increas-
ing function and when the index of the polytrope increases the
anisotropy given in some layer of the stellar object decreases.

4.3 Wyman Ila

In this section we use the Wyman Ila solution [89] as a seed,
namely
(63)

e’ = (a — br?)?
(69)

e m =14 cr’(a—3brr)~23,

with a, b and ¢ are constants. For this model, the fixed con-
stant values are a = 1.5297, b = 1.0. and ¢ = 2.148.
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Fig. 10 Local anisotropy A as a function of § for @ = 0.5 and different

values of n

In Fig. 11 we show the behavior of the matter sector
through integration of the Lane—Emden equation and we get
Y as function of & for the polytropic model represented by
Wyman Ila seed-solution. Note that the density is positive
inside the compact star, reaches its maximum at the center
and decreases monotonously outwards, as expected. Unlike
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the two previous models, it is observed that all the configu-
rations obtained for different values of the polytropic index,
have the same boundary surface where P,y = 0.

In Fig. 12 we plot the n-mass as function of & for differ-
ent values of n which grows appropriately from zero to its
total limit value and larger values of the mass-function are
obtained for smaller values of n.

The surface potential y and the normalized Tolman mass,
for a selection of values of the parameters are plotted in
Figs. 13 and 14 respectively. Also, the conclusions extracted
from these figures are basically the same as the ones reached
from the previous models. At any rate, maximal values of y
correspond to bigger values of «, which represents a consis-
tent and expected result for all models.

InFig. 15 we show the behavior of the anisotropy function
A as a function of the redefined variable (&) for different val-
ues of the duplet of parameters (n, ) indicated in the caption
of the corresponding figure. An increasing behavior is mani-
fested and the A-function decreases with increasing n. In its
turn, more compact configurations correspond to smaller val-
ues of the anisotropy and smaller values of the Tolman mass
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in the inner regions. In other words, for this case, smaller
values of n (corresponding to more compact configurations)
reach stability by reducing the active gravitational mass in
the inner regions. Therefore, it may be inferred from this
figure that more stable configurations correspond to smaller
values of n since they are associated to a sharper reduction
of the Tolman mass in the inner regions. In the same way,
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smaller polytrope indices imply an increase in the local pres-
sure anisotropy, so that this function generates more stable
situations for more compact spheres.

5 Discussion

In order to obtain a general relativistic polytrope model we
must integrate the hole system of EFE. If we are assuming
that the fluid pressure is anisotropic, we need to provide fur-
ther information about the anisotropy inherent to the prob-
lem under consideration. The introduction of a new variable
yields an additional degree of freedom and therefore Eq. (2) is
not enough to integrate the Lane—Emden equation. For doing
that, there are different ways to deal with this problem. It can
be assumed an ansatz for the anisotropy allowing a specific
modeling [5]. Certain physical conditions can be imposed on
the metric variables such as the vanishing of the Weyl tensor
(conformally flat polytrope models) [6] and the Karmarkar
Class I polytrope [15]. Also, the vanishing complexity poly-
trope model has been developed [47].

Since polytropes represent a variety of fluid systems with
a wide range of applications in astrophysics (e.g. Fermi flu-
ids), we have described hereby a general framework for
modeling general relativistic polytropes (with local pressure
anisotropy), by means of the Gravitational Decoupling pro-
cess, through the Minimal Geometric Deformation approach.
Thus, we have built another method to obtain the general-
ized Lane—-Emden equations, that allows us to find a spe-
cific model. Assuming the polytropic equation of state for
the radial pressure allows us to obtain an expression for the
total anisotropy of the system in terms of the dimensionless
defined mass-function (), given in (30), and the metric vari-
ables of the seed sector. This represents an enormous advan-
tage, since now we are able to obtain a great variety of general
relativistic polytropes models choosing well-behaved known
solutions as seeds. In this work we have studied three poly-
trope models considering the Tolman IV, Durgapal IV and
Wyman Ila seed-solutions. For each case we have found and
integrated numerically the full set of equations; the gener-
alized Lane—Emden equations for anisotropic matter. Such
extensions of the polytrope solutions to the general relativis-
tic case are mandatory if one has to deal with ultra com-
pact objects such as neutron stars, where general relativistic
effects cannot be neglected. However it should be stressed
that the above mentioned models are presented here with
the sole purpose to illustrate the method. The natural way to
obtain models consists in providing the specific information
about the kind of anisotropy present in each problem, but hav-
ing said this, it is important to emphasize that the obtained
models exhibit some interesting features which deserve to be
commented.

Thus, we observe in Figs. 1, 6 and 11 that bounded config-
urations exist for a range of values of the parameters involved
and only in the Wyman Ila seed-solution model all the radii
of the border coincide. However due to the existence of a
larger number of parameters than in the isotropic case, the
conditions for the existence of finite radius distributions are
more involved than in the latter case.

Figures 3, 8 and 13 show the behavior of the “surface
potential” and for all the models considered, y grows as n
increases and has bigger values for bigger rigidity parameter
(). It should be emphasized that the relationship between
the maximal values of y (maximal surface redshift) and the
local anisotropy of pressure, has been discussed in detail in
the past [90-92]. The explanation for such interest is eas-
ily understood, if we recall that the surface redshift is an
observable variable, which thereby might provide informa-
tion about the structure of the source, that is related with the
polytrope model (the index n) that describes the fluid and also
its degree of anisotropy. This is so, since each anisotropic
polytropic model is characterized by a unique y as can be
seen in Eq. (62). The polytropic models favoring higher red-
shifts are clearly exhibited in the Fig. 13, for the Wyman Ila
solution, where a peculiar behavior is observed for the high-
est value of «. This “anomalous” behavior could be related
to the extreme (maximal) value of this parameter (¢« = 1),
that corresponds to the stiff equation of state P = p, which
is believed to describe ultradense matter [93].

The correspondence mentioned above, between the y-
parameter and the polytropic index n, suggests that a relation-
ship can be established between compactness and the local
anisotropy distribution of the fluid, which in turn is linked to
interesting facts that appear in the search for the stability of
the system, except for particular cases where such a corre-
spondence is broken. In order to delve deeper into this feature,
in Figs. 4,9 and 14 we have investigated the behaviour of the
Tolman mass (that could be related with the stability) within
the sphere for each model. These facts have been extensively
reported in [5-7,24,94] where is discussed the efficiency to
diminish the Tolman mass in the inner regions and to con-
centrate it in the outer ones depending on the anisotropic
factor which brings out the role played by the anisotropy in
the stability of the fluid configuration.

In principle, a somewhat speculative argument, states that
it could be possible to investigate the characteristics of the
fluid of the star by determining n by means of the surface
potential. This would be valid for such configurations where
the general relativistic effects as well as the inclusion of pres-
sure anisotropy, are unavoidable, and are modeled resorting
to a polytropic equation of state. So, a potential application
of the approach presented here could apply to the study of
super-Chandrasekhar white dwarfs that have masses of the
order of 2.8 M. Nevertheless, care must be exercised with
the fact that some of the physical phenomena present in such
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configurations (e.g. intense magnetic fields) could break the
spherical symmetry.
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