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Abstract

The 2020s are an exhilarating era for modern cosmology, particularly in the field of weak
gravitational lensing science. With the completion of Stage-III imaging surveys such as the
Dark Energy Survey (DES), the Subaru Hyper Suprime-Cam (HSC), and the Kilo-Degree
Survey (KiDS) in the first half of the decade, weak lensing science has entered the realm
of precision observation. These surveys have enabled us to meticulously observe the po-
sitions and shapes of hundreds of millions of galaxies, enabling weak gravitational lensing
observation with high significance. Combined with other probes such as the cosmic mi-
crowave background (CMB), weak lensing allow us to test the standard A-CDM model for
the universe.

In the latter half of the decade, various survey telescopes, both ground-based like the
Vera Rubin Observatory and space-based like the Roman Space Telescope, will become
operational. These telescopes will provide datasets with larger coverage areas, deeper optical
depths, and higher resolutions. Leveraging the statistical power of these telescopes, we
can theoretically achieve higher precision in constraining the large-scale structure and dark
energy, thus offering a stress testing to the A-CDM model. By measuring the large-scale
structure at different redshifts, we can distinguish between models with different parameters
wy for the dark energy equation of state, including A-CDM, which assumes wy = —1, i.e.,
a constant dark energy density. These scientific objectives drive the current weak lensing
observations and have the potential to reshape modern cosmology.

However, the success of the Stage-IV imaging survey crucially relies on effectively address-
ing systematic errors in observation and analysis. As the statistical uncertainty decreases
with the data volume of these surveys, the tolerance for systematic errors diminishes as
well. All sources of systematic uncertainty increase in importance, and even those previ-
ously considered subdominant now attain statistical significance. Weak lensing encompasses
a wide range of systematic sources, including astrophysical and observational systematics,
and systematic effects introduced by analysis and modeling methods.

This thesis will specifically address two of the aforementioned systematics. The first focus
is on the systematics arising from the Point Spread Function (PSF). The PSF represents the
probability distribution that characterizes the response of an imaging system to a point
source in the observed sky scene. Accurate modeling and correction of the PSF are essential
in weak lensing observations. While the influence of the second moments of the PSF on
weak lensing shear is widely recognized, research on the impact of higher moments of the
PSF remains limited. My study initiates and expands the investigation of weak lensing
systematics stemming from the higher moments of the PSF. I developed a software suite
called PSFHOME, which encompasses image simulation, error propagation, and modeling
with regard to the PSF higher moments. Combining with real data from the Hyper-Suprime
Cam (HSC), I study the multiplicative and additive bias induced by the PSF higher moments,
as well as modeling and propagating such error to the downstream cosmological probes.
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Based on this understanding, I further proposed a methodological framework to detect,
model, and mitigate the contamination of higher moments on the shear two-point correlation
function £.. This framework is applied to investigate the Year-3 shear catalog from the
HSC. Using this new framework, I show that previously unidentified systematic biases in
weak lensing shear arising from the PSF fourth moments can be effectively modeled and
mitigated.

The second topic of focus in this study revolves around systematic errors associated with
photometric redshift estimation, commonly referred to as photo-z. To achieve reliable con-
straints on cosmological parameters in weak lensing shear analyses, it is essential to effectively
and accurately marginalize the nuisance parameters of the redshift distribution n(z) of the
observed sample. I propose a Bayesian statistical approach, called Bayesian resampling, to
fully marginalize the redshift uncertainty in the shear catalog during cosmic shear analysis.
This method is compared to existing approaches described in the literature, specifically in the
context of a mock cosmic shear analysis for the HSC Year-3 shear catalog. The comparison
demonstrates that the new method and the existing approaches yield statistically consistent
error bars for the cosmological parameter constraints in the HSC three-year analysis. But
the difference will increase for future surveys.
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horizontal axis, and white trend-lines showing the median of the horizontal

properties binned by the vertical properties. One-dimensional histograms of

individual properties are shown on top. The color of the plot represents the

number of galaxies on a logarithmic scale. The single Sérsic profile fitted to

the COSMOS galaxy is parameterized by the halt light radius and the Sérsic

index shown. The relationships between parameters can be used to explain

the redshift-dependent shear biases. | . . . . . . .. ... ... ..., ..

34

22

Average second moments residual (comparing the moments of the PSF model

to those measured in the postage stamp image) for bright stars in the HSC

survey, binned by the blendedness of the star. When the blendedness 1s larger

than 0.001, we see significant residuals in the second moments. The y-axis

1s symmetric-log scaled with a linear threshold = 0.003. The linear region is

shaded. | . . . .
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Here we show the galaxy shape bias as a function of PSE kurtosis bias for

a Gaussian galaxy and Gaussian PSF, with re-Gaussianization (dot-dashed)

and metacalibration applied to re-Gaussianization (solid) for three different

size ratios of the galaxy and PSE. Dashed lines indicate the zero value for

both plotted quantities. As shown, the galaxy shape bias depends linearly

on the PSFE kurtosis bias, and depends in a more complex way on the galaxy

versus PSF size ratio. The kurtosis bias is defined in Eq. (2.6). [ . . . . . ..

43
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This plot illustrates the relationship between the slope of the lines from F'ig. [2.3]

(ratio of galaxy shape bias to kurtosis bias) and the size ratio between the

galaxy and PSF. The colors of the lines indicate the tfunctional form for the

true PSF (indicated in the legend). Dot-dashed lines show the results when us-

ing metacalibration, and the solid lines show the results for re-Gaussianization.

The stacked HSC PSF' are only measured in re-Gaussianization. As shown,

the trends 1in the dependence on the galaxy versus PSE size ratio are quite

similar for all four PSE models and shape measurement methods. | . . . . . .
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[2.5  Left: The relationship between the ratio of galaxy shape bias to PSF kurtosis
bias and the galaxy-to-PSE size ratio, simulated with a Sérsic galaxy profile
and Gaussian PSF. Right: Same as the left panel, but for the ensemble shear
bias (rather than galaxy shape bias), measured using 90-degree rotated pairs
and a Gaussian PSF. The measurements in both panels are made using re-
Gaussianization. As shown, both the galaxy shape and weak lensing shear
bias are only mildly dependent on the Sérsic index, with the minor differ-
ences between the curves for different Sérsic indices being subdominant to the
dependence on galaxy-to-PSF sizeratio. | . . . . . ... ..o 000 45

[2.6  Left: Multiplicative bias per PSF kurtosis bias for subsamples of galaxies from |
the COSMOS parametric catalog, binned by the size ratio R galaxy / Ry, psr,
including all Sérsic indices, for two runs with PSF FWHM = 0.63 and 0.71.

| Right: The same quantities as on the lett, shown separately for three ranges of |

| A

| significantly less than the variation with galaxy size, just as for single galaxy |
L simulations. The horizontal errorbars show the standard deviation within |
| each bin, while the vertical errorbars show the uncertainty on the mean value, |
generated by bootstrap resampling from the fixed subsample of the COSMOS |
catalog 10% times. | . . . . . . . . ... 46

[2.7  Ratio of weak lensing shear bias and PSF' kurtosis bias when binning the |

| COSMOS parametric galaxies by their photometric redshift. T'he effect can |
|

|

| by explained by the fact that galaxies at higher redshift tend to be smaller in
| apparent size, which results in a more negative shear bias for a given value

D Q

mean value, generated by bootstrap resampling from the redshift bin 10*
| times. The dashed-line shows the linear model specified by Eq. (2.12).| . . . 50

2.8  HSC PSFE kurtosis as a function of position in the GAMAISH field: true
| kurtosis (top), and residual of the model B[p¥] (bottom). Each point in the
plots represents one star we choose to measure kurtosis. The value for the
truth and the model is the weighted radial kurtosis p®, and the residual is
the fractional error B[p™)]. The results in the true PSF kurtosis contain shot
noise in the image. However, in Sec. [2.4.1] we show that stars with SNR
exceeding 10 have 0B[pY] < 0.001, thus our results here are not heavily
| affected. | . . . . . . o1

[2.A.1(a): 1D distributions of the true and model PSF kurtosis. (b): 2D distribu-
tion of the kurtosis bias B[p™] and PSF size op; (c): 2D distribution of the
true kurtosis p™ and the PSF size op; (d): 2D distribution of the kurtosis
bias B[p™] and the PSF size op. For the three 2D distribution plots, the me-

| dian values of the quantities on each axis are shown with dashed lines. The |

| color scales of the distributions are linear in the density. | . . . . . . . . . .. 54




Xlil

LIST OF FIGURES

[3.2.1 The first 15 unique real and imaginary parts of the shapelet basis functions

in Eq. (3.13). We plot the first 5 orders of this basis, i.e., p + ¢ = 0 through
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boxes showing the interquartile range, and the bars showing the median. The
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[3.5.1 An estimate of the weak lensing shear multiplicative biases, aimed at un-

derstanding which PSE higher moments are most important in generating

multiplicative biases. This plot is based on ensemble shear biases for a sim-

ulated COSMOS galaxy sample, given the average error on individual higher

moments of the PSEF model in HSC PDR1. The orange areas are the even

moments and the white areas are the odd moments. Both components ot the

multiplicative bias show the same set of 7 moments that contribute signif-

icantly. The y-axis 1s symmetrical log-scaled, with the grey area being the

linear region. | . . . . . . . ...

[3.5.2 The total additive bias on the weak lensing 2PCF ¢, for the simulated galax-

| les used for dimensionality reduction. The expected shear-shear correlation
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in the analysis, the additive shear biases caused by errors in the PSFE higher
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postage stamp 1mages of the difference in PSEF with only one moment being

changed. The bottom row shows the first 25 shapelet bases, as the bases for

the moment modification. We rank the shapelet coefficients by increasing the
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| oection 4.5.20 Note that a box within another box does not imply that one is |
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|4.3.2 The whisker plots of the true and residual spin-2 components ot the PSE sec-
ond (top) and fourth moments (bottom) in the XMM field. There is an obviously
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nents of the PSF second and fourth moments, as defined in Section 4.4.3 are
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4.5.2 The correlations functions of galaxy shapes with PSF quantities (left panel,
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| explained by the overfitting of the PSF model. | . . . . . ... ... ... .. 128
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moments increases the estimated A¢, on some angular scales by almost an
order of magnitude compared to when we fit to second moments only. And
the A&, predicted by the fiducial model on par with the statistical uncertainty
of the first and second bin’s auto correlation function, which is a significant
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|
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‘T'his 1s the primary reason that the PSE parameters for the 4 tomographic
bins need to be jointly fitted, rather than individually fitted. | . . . . . . .. 156
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[4.5.7 Galaxy-PSE correlation functions with galaxy samples subdivided into four

tomographic bins as defined for the HSC Y3 cosmic shear analysis. 'T'he first

row shows the correlations with the PSE truth terms, and second row with the

PSF residual terms. The four columns correspond to the four tomographic

bins. The stars are the best-fitting values for the redshift-dependent model,

the dashed lines are the best-fitting values for the redshift-independent model.

The shaded regions are excluded from the fits because the model 1s not able
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distributions and the resulting difference in sensitivity to PSE systematics.
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{4.5.9 The additive bias on the auto-correlations of the cosmic shear 2PCE ¢, for

the redshift-dependent models and redshift-independent model. We compare

the A&, (0) with the statistical uncertainty of &, (). To avoid overcrowding,
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the 1d marginal posterior distributions, while the lower panel shows the 1d
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Chapter 1

Introduction

In this chapter, I am going to describe a few topics that constitute the bedrock of this thesis.
Section consists of modern physics and cosmological background that motivate this study
scientifically. There are also a few key concepts that are crucial to this thesis. Section
introduce the technique that this thesis focuses on — weak gravitational lensing. The section
describes the formalism and challenges of modern weak lensing observation. Most cosmology
research requires statistical techniques, so Section introduces number of key statistical
concepts that are crucial throughout the entire thesis. Section lays out the structure of
the thesis.

1.1 Contemporary Cosmology

Cosmology is a field of study dedicated to exploring the nature and characteristics of the uni-
verse we inhabit. It is an ancient discipline that has existed throughout history, although our
current understanding differs significantly from the interpretations held by ancient civiliza-
tions (For a read of the evolution of cosmology, see (10])). The development of cosmological
theories has historically relied heavily on the observational techniques available to scientists
during each era. Modern cosmology follows this pattern, as it is built upon a variety of ob-
servational evidence obtained from advanced astronomical instrumentation and techniques.

The first fundamental evidence is the expanding universe, which can be attributed to the
pioneering observations of redshift by Vesto M. Slipher (I1)) and Edwin Hubble (12), as well
as the theoretical contributions of Alexander Friedmann (13) and Albert Einstein (14) in the
early 20th century, which forms a foundational pillar of modern cosmology. Advancements
in the late 20th century further solidified this understanding, particularly with the discovery
of the accelerated expansion of the universe through observations of Type-la supernovae
(15; 16). The former evidence supports the prevailing theory that our universe originated
from the "big bang," while the latter evidence points to the existence of a mysterious force
referred to as "dark energy" that is responsible for driving the accelerated expansion of space.

The second fundamental evidence is homogeneity and isotropy on a very large scale and
the inhomogeneity and structure formation at the small scales. The universe is, at large
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scales, homogeneous and isotropic (I7)), and is in a flat space-time. At small scales, inho-
mogeneity and anisotropy form because of gravity. Extragalactic surveys reveal significant
inhomogeneity and anisotropy in the distribution of galaxies (I8) on the small-scales, which
is in stark contrast with our observations of an earlier version of the universe through the
Cosmic Microwave Background (CMB), which appears predominantly smooth, except for
minor fluctuations in the temperature field at a fraction of approximately 1075 (19)). For
these fluctuations to evolve into the structures we observe in the present-day universe, the
existence of “dark matter" is crucial for several reasons. The presence of dark matter is also
supported by various observational evidence, including weak gravitational lensing.

1.1.1 The Expanding Universe

In this section, I will provide an overview of the fundamental framework of the modern
standard cosmological model. It is widely accepted that our universe is in a state of expan-
sion. According to the standard cosmology model, the universe originated from a singularity
called the big bang, where matter and radiation existed in an incredibly dense state. Shortly
after the big bang (approximately 1073? seconds), our universe underwent a phase of rapid
and exponential expansion known as "inflation." (We will revisit inflation in Section [I.1.3])
Following inflation, the universe has continued to expand, with successive phases driven by
radiation, matter, and dark energy.

Edwin Hubble made a significant contribution by confirming the expansion of the uni-
verse through his observations of the velocity-distance diagram, commonly referred to as the
Hubble diagram (12]). Hubble observed that galaxies appeared to be moving away from our
own galaxy, and the velocity of recession v, increased with their distance D from us.

Vreo( D) = HoD. (1.1)

The expansion rate Hy is known as the Hubble constant. The expansion of the universe
can be understood as the expansion of space itself. To illustrate this, imagine two galaxies
positioned at opposite ends of an incredibly long ruler, with no relative motion between
them. In an expanding universe, these galaxies would still appear to move away from each
other because the ruler itself is expanding along with the space it occupies. In cosmology,
we employ the scale factor denoted by a(t) to quantify the size of the space. We define the
scale factor at the present age of the universe to be 1.

The currently prominent standard cosmology model based on a composite of cold dark
matter (CDM), baryons, radiation, and cosmological constant A outlined that the universe
must expand in a certain manner. During the early stages of the universe, when radiation
dominated, the scale factor followed a relationship of a o t'/2. As time progressed, the
universe transitioned into a phase dominated by matter, where the scale factor evolved as
a o< t?/3. In the current epoch, we are witnessing a departure from the matter-dominated
phase and entering a period of accelerated expansion. This acceleration is suggested by
observations of type Ia supernovae(15} [16]) , which revitalized Einstein’s concept that there
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is a dark energy in the universe that act as a cosmological constant, which is later broadly
supported by other early and late universe probes.

To quantify the rate of expansion of the universe, we introduce the Hubble rate, defined
as the derivative of the scale factor with respect to time divided by the scale factor itself:

H(t) = daé at. (1.2)

The Hubble rate, denoted as H(t), provides a measure of how rapidly the universe’s scale
factor changes over time. At the present epoch, H(t) = Hy. Determining the value of
Hj requires observations from either the early universe or the late universe. Measurements
of Hy in the early universe predominantly rely on observations of the Cosmic Microwave
Background (CMB) (e.g., (20; 21)). In the late universe, the most precise determinations
of Hy involve the observation of distant Cepheid variable stars and Type-Ia supernovae
(e.g., (22))). Currently, a tension exists between measurements of H, obtained from these
two distinct cosmic stages. This tension presents a significant challenge to the standard
cosmological model (for a review, see (23))).

1.1.2 Geometry of the Universe

In this section, I will delve into one of the fundamental theories that modern cosmology is
built upon, namely general relativity. Specifically, I will direct our attention to the geometry
of the universe, exploring the metrics that describe its structure and investigating methods
for defining distances within the universe. Additionally, I will introduce a key concept in
astronomy, redshift, which serves as a crucial tool for measuring distances on cosmological
scales.

A metric establishes a relationship between the coordinates of space-time and the distance
between two events. For a four-dimensional space-time, the metric is defined as:

3
ds* = Z Gudxtdz”. (1.3)

H,v=0

Building upon the previous section, where we discussed the large-scale homogeneity and
isotropy of the universe, our universe has a total density that equals the critical density,
and our universe is flat. The flatness means that two parallel lines in space-time will never
cross, instead of diverging (in an open universe) or converging (in a closed universe). In this
case, a suitable metric that captures these characteristics is the Friedmann-Robertson-Walker
(FRW) metric. For the FRW metric in comoving coordinates, we have:

10 0 0
o a2 0 o0
Iw=10 0 a@t)? o0 (1.4)
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Here, a(t) represents the scale factor, which quantifies the expansion of the universe over
time. The coordinate x is fixed within an expanding universe and is referred to as the
“comoving distance”. Note that we are using the natural units, i.e., h = ¢ = kg = 1. As the
universe expands, the physical distance d,, expands in proportion to the scale factor, and it
is known as the “proper distance”:

d, = a(t)x. (1.5)

One important concept of a distant object in astronomy is the redshift. Redshift, denoted
by z, is quantified as the fractional shift of a specific emission or absorption line’s wavelength,
relative to its intrinsic wavelength, A;,;. Observationally, it is expressed as:

)\obs
)\int

z= — 1, (1.6)
where A, represents the observed wavelength of the emission or absorption line. There are
two physical origins to the redshift of a galaxy. The first is the intrinsic motion of a galaxy
relative to the reference coordinate system, commonly referred to as the Doppler redshift.
The second type arises from cosmic expansion, known as the Hubble low. When light from
a distant galaxy reaches us, it was emitted at a time when the universe had a certain scale
factor, denoted by a. The redshift is connected to the scale factor through the relation:

1
z=—-—1 1.7
: (1.7
One classic way to quantify distance in astronomy is to measure the angular size 6 of an
object with known physical size [, i.e., the standard ruler. The distance to that object is

called the “angular distance” du,

l
= —, 1.
dA 9 ( 8)

The comoving size of the standard ruler, when the light is emitted, is [/a. In an expanding
universe with no curvature, i.e., a Euclidean universe, the angular diameter of that object is
l/(ax(z)). Using[L.7] and [1.8| we get the angular distance as a function of the redshift,

X
A== (1.9)

Another important definition of distance in astronomy is the distance measured by the
observed flux of an object with known luminosity, i.e., a standard candle. In a static space-
time, the observed flux F' of an object with luminosity L at the luminosity distance dj,
is

__L (1.10)
 dwd” '
Again, in an expanding Euclidean universe, [L.10| only holds up in the comoving coordinate,
or
L
JAey) (1.11)

B 4my?’
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The challenging task in deriving the luminosity distance is to express L(x) in terms of the
scale factor. For a light source with luminosity L emitted at the age of a, the energy per
photon has become a times the original energy. Additionally, the comoving speed of the
photon also becomes a times the original comoving speed. Therefore, we have L(x) = La®.
By equating Equation [1.10] and Equation [1.11, we can derive the luminosity distance as

follows:
dp = 2. (1.12)

By measuring the flux and using this relation, astronomers can estimate the luminosity
distance and thereby determine distances to objects based on their known luminosity. Lu-
minosity distance plays an important role in the conversion of the apparent magnitude m,pp
and the absolute magnitude M,

dr,
M = mapp — 510%10(@) — Keonr- (1.13)
Here K. is a correction term due to the different rest-frame SED for galaxies at different

redshifts.
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Figure 1.1: Distances in an expanding Euclidean universe as a function of redshift (Image
taken from (2))). The comoving distance x is in the black line, the angular distance d4 in
the red dashed line, and the luminosity distance dj, in the green dashed line.

In Fig. [1.1] I show all three distances mentioned here as a function of the redshift(2). It
is important to note that when calculating these distances, we make the assumption that
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the universe is flat and characterized by a specific H(z) function, which depends on other
cosmological parameters.

1.1.3 Structure Formation and Power Spectrum

In this section, I provide a simplified overview of how structures form in the universe and
introduce the important concept of the power spectrum. For a more comprehensive under-
standing, I refer to (24).

While the universe is homogeneous on large scales, it exhibits significant inhomogeneities
on smaller scales, with structures ranging from superclusters to globular clusters. Cosmol-
ogists focus on studying the large-scale structure (LSS) of the universe. The amplitude
of the LSS, which describes the distribution of matter, is quantified using the power spec-
trum, which is measured through imaging and spectroscopic survey techniques like galaxy
clustering and weak lensing.

When discussing structure formation, it is often advantageous to work in Fourier space.
Perturbations at different wave numbers k£ are mathematically independent. This enables
the use of perturbation theory for analytical derivations of structure formation in the linear
regime.

The amplitude of perturbations on different scales is also characterized in Fourier space
through the power spectrum. We define the matter density fluctuation as 6,,(x) = (p(x) —
p)/p, where p(x) is the matter density at position x, and p is the mean matter density. The
matter power spectrum P, (k) is defined as

(0 ()55 (K')) = (27)%65) (k — K') P (K), (1.14)

where 6,,,(k) is the Fourier transform of d,,(z), the angled bracket denotes an average over
an ensemble, and 5g)(k — k') is the Dirac delta function, which is nonzero only when k = k'.
In the case of a Gaussian random field, the power spectrum is sufficient to describe the
statistics of the field. However, the power spectrum does not capture higher-order statistics
or the non-Gaussianity of the matter density field, which occurs after the overdensities grow
over the linear regime.

In Fig. (3), an example of the growth of a perturbation at a scale equivalent to
the size of the Milky Way is shown. The evolution of dark matter and baryonic matter
is treated separately due to their distinct physical processes. During the grey area, the
perturbation is outside the horizon of the universe, undergoing superhorizon growth due to
the difference in expansion rate at different densities. Subsequently, as the perturbation
enters the horizon, the universe is in a radiation-dominated era. At this stage, the universe’s
expansion counteracts the gravitational contraction. Consequently, the amplitude of the dark
matter perturbation remains constant, a phenomenon also known as "stagnation". Following
the time of matter-radiation equivalence ¢, the universe transitions into a matter-dominated
epoch. During this period, gravity becomes more influential than cosmic expansion, leading
to a prolonged phase of linear growth for the dark matter perturbation.
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Figure 1.2: The amplitude of the fluctuation with a scale Ay equal to the size of the
Milky Way with the scale factor (Image taken from (3)) in Equation [I.7, The grey area
represents the epoch where the perturbation is super-horizon. t., is the time of matter-
radiation equality, t4.. is the time of decoupling, otherwise known as recombination. The
amplitude is considered linear when log(dymw) < 1, and nonlinear otherwise.

The early evolution of baryonic matter is more complex compared to dark matter. Prior
to decoupling (t4e.), the universe consists of a high-pressure plasma formed by coupled pho-
tons and electrons. The pressure of the plasma prevents the growth caused by perturbations,
resulting in oscillations of the perturbation amplitude. This phenomenon is known as “Bary-
onic Acoustic Oscillation” and is observed in both the cosmic microwave background (CMB)
(25) and galaxy surveys (26).

As the universe cools down, electrons combine with protons during recombination, caus-
ing them to decouple from photons. At this stage, CMB photons begin free streaming. This
free streaming process also smoothes out the baryon fluctuations, known as “silk damping”.
Following recombination, baryons fall back into the gravitational potential wells of dark
matter and start their phase of linear growth.

When the perturbation amplitude d,,(\) reaches approximately unity, the linear per-
turbation theory becomes inadequate, and the process of structure formation enters the
nonlinear regime. In this regime, dark matter overdensities collapse and undergo virializa-
tion, a process where the gravitational potential energy of the system is balanced by the
kinetic energy. This leads to the formation of clumps of dark matter known as “dark matter
halos”.

For baryonic matter, the collapse of structures generates significant heating. However,
various cooling processes, such as cooling via radiation and molecular formation, lower the
temperature of the baryons. This cooling process enables the formation of stars within the
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gas cloud.

The theory of structure formation links the power spectrum at different ages, or redshifts,
to a few cosmological parameters in the A-CDM model. Probes that are sensitive to the power
spectrum in the late universe will have constraining power over the cosmological parameters,
such as the ratio of matter in the current universe €2,,, the mass dispersion of the linear
power spectrum on 8Mpc/h, also known as og. Therefore, probes such as weak lensing that
are sensitive to the LSS can be used to constrain the cosmological parameters. Since the
same set of cosmological parameters also predict the early universes probes such as CMB,
the combination of CMB and weak lensing enables a test to the A-CDM model. In the next
section, I will introduce the formalism and challenges of weak lensing, a promising probe to
constrain cosmology by measuring the power spectrum at the late universe.

1.2 Weak Gravitational Lensing

According to general relativity, the path of light is deflected when it passes near a massive
object. This phenomenon is known as gravitational lensing. When a foreground mass,
referred to as the lens, has a high mass density, the gravitational lensing effect can be strong
and visible, leading to arcs or multiple images of the background galaxy. This is known as
strong gravitational lensing. (I refer to (27) and (28) for reviews. ) In most cases, however,
the lensing effect is relatively weak, resulting in subtle changes in the size and shape of the
background galaxies. This is known as weak gravitational lensing, or simply weak lensing
(see (29) for a review on weak lensing). Weak lensing provides valuable information about
the distribution of matter in the universe and is a powerful tool for studying the large-scale
structure and properties of dark matter.

With approximately 80% of the matter content in the universe being dark matter, weak
gravitational lensing has emerged as a valuable technique for studying LSS (30). By analyzing
the correlation of shapes of background galaxies, known as cosmic shear, we can measure
the power spectrum of the large-scale structure, as discussed in Section [I.1.3]

Additionally, by studying the correlation between the shapes of galaxies and the positions
of massive galaxies, known as galaxy-galaxy lensing (e.g., (31)(32)), we can infer the mass
distribution of dark matter halos. This provides insights into the properties and distribution
of dark matter, and can also constrain the halo mass function. These scientific applications,
along with the formalism for weak gravitational lensing, are further described in Section [I.2.1]

To ensure accurate cosmological constraints using weak lensing, it is crucial to address
and control systematic errors. (For a review, see (33)) Weak lensing relies on imaging sur-
veys that observe millions, if not billions, of galaxies to trace the distortion of their shapes
caused by foreground matter. However, various systematics can arise at different stages of
the observation and analysis process. Astrophysical systematics such as intrinsic alignment
and the effects of baryonic physics can introduce complex and challenging biases to the weak
lensing signal, requiring careful modeling. At the observation level, instrumental effects like
the Point Spread Function (PSF) of telescopes, survey window effects, and galaxy overlap-
ping can also impact the weak lensing measurements. Furthermore, at the analysis level,
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uncertainties in photometric redshift estimation, accuracy of galaxy shape measurement, and
statistical inference methods can introduce additional systematic errors.

Given the importance of addressing these systematics, a significant portion of weak lens-
ing research, including this thesis, is devoted to understanding, quantifying, and mitigating
such errors. Section will provide a concise overview of the various systematic effects in
weak lensing studies.

1.2.1 Lensing formalism

In this section, I will give a quantitative description of the weak lensing formalism, and how
lensing is connected to the standard cosmology we described in the last section. For the
general lensing formalism, I refer to (27) for a detailed read.

For the lensing formalism, I will limit the scope of this discussion to the linear region.
This means that I will only keep the Oth-order solution of the light deflection of lensing (See
(34) for more detail), which is called the Born approximation. In this formalism, we use the
Jacobian A = 93/09, where ¥ is the 2-d coordinate system of the lensed coordinate, and 3
is the unlensed coordinate. We parameterize A by the convergence x and shear v = v, + i,

as
l—k—=m —2
A= . 1.15
( —72 1—/1—1—71) (1.15)

The cosmological quantity related to the weak lensing signal is the 2D projected gravita-
tional potential ¢ (¢}), which can be calculated by integrating the 3D gravitational potential
¢ along the line-of-sight,

2 [P Dis
Y(0) = D_S/o dDLng_L' (1.16)

Here Dy is the distance to the source, Dy, is the distance to the lens, Dyg is the distance
between the lens and source. The convergence and shear are related to the second derivative

P(9),

1 1
KR = 5(8181 -+ 8282)77/1 == §V2¢ (117)
1
"= 5(3181 — 0a00) 1 (1.18)
Yo = 01029 (1.19)

Here, we denote 0y = 0/0v; and 0y = 0/005. It is mathematically convenient to express
shear by a complex number v = ~y; + iy, = |7y| exp(2i¢), where ¢ is the polar angle between
the two components. The shear is a spin-2 quantity, which means that a rotation of 7 radians
restores the shear, and a rotation of 7/2 radians negates it .

Cosmologists utilize the shape of galaxies to probe the weak lensing shear. Assume the
galaxy is centered at ¢ = (0,0), the galaxy shape is measured using the second moments of
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the galaxies, denoted by M;;,

ap. = S d01d02 00, w(9)1(9)
T Ay w(0)1(0)

(1.20)

where I(¢) is the intensity profile of the object in the image coordinates ¢, and w(?) is a
weight function used to suppress pixels with low signal-to-noise ratio. The complex ellipticity
of the galaxy is represented by two components, e = e; + iey, and the trace of the second
moment, 7', is given by

T = My + M (1.21)
My — My
o — M — Mo 1.22
! My + Moy ( )
2M;o
g = —————. 1.23
? My + My ( )

After the weak lensing shear, the observed ellipticity of the galaxy, denoted as e°®®, can be

expressed as
; 27y 1 . 27y
obs int int
e =e + Relt 4 ——. 1.24

1—rk14+P?/(1-k) 1—k (1.24)
Here €™ represents the intrinsic shape of the galaxy before lensing, and 2v;/(1— k) represents
the change in shape caused by weak lensing shear. This term is often defined as the reduced
shear g; = v;/(1—k). Generally, weak lensing makes an assumption that the intrinsic shape
of the galaxies is random, and weak lensing signals can be extracted by the average shape of
an ensemble of galaxies.  However, this assumption is broken by the presence of intrinsic
alignment between the galaxies. Despite this, we can infer the shear of a galaxy ensemble

¢™ in a flat shear field using the average observed ellipticity

g™ = (™). (1.25)

7

In practice, Eq. [I.25] is not what cosmologists do. Instead, a quantity that weak lensing
analyses often use is called the two-point correlation function (TPCF), or two-point function.
For cosmic shear measurement, we care about the product of the shapes of the galaxy pairs
with a certain angular vector 6 with a polar angle ¢. (For a review of cosmic shear, see (34)).)
We first define the tangential and the cross term of the shear with regard to 6,

7= —R(ye™*?) (1.26)
VY = —I(’ye*%d’). (1.27)

v; correspond to the shear parallel or perpendicular to 6, while vy correspond to the shear
at a 45 degree angle to #. The cosmic shear two-point functions are then defined as

E+(10]) = (vevi e + (<) el (1.28)
E-(101) = (vt e — (rxVx)e)- (1.29)
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Here the bracket (-)g denotes the average of all galaxy pairs with distance at |0]. £.(]0]) are
commonly measured in leading wide-field imaging surveys to study the cosmic shear signal.
In Fig.[1.3] I show an example of £, measured by the HSC Year-3 high-redshift shear catalog
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Figure 1.3: The measurement of the cosmic shear correlation function &1 for the HSC Year-3
high-redshift shear catalog (Image taken from (4)). Data points within the blue region are
taken into account in the cosmology analysis. The errorbars of the data points are estimated
by 1404 mock shear catalogs.

Cosmic shear provides valuable information about the power spectrum of the universe’s
large-scale structure. When galaxies are divided into redshift bins, i.e., tomographic bins,
the angular power spectrum between bin ¢ and bin j , C is directly linked to the matter

power spectrum (35)(36) in Eq. by
i [ dx _ N
G = FP(E/X&(X))Q )e’ (). (1.30)

Notice that here the wave number is converted to ¢/y and the redshift is expressed as a
function of the comoving distance. ¢'(y) and ¢/(x) are the lensing efficiency function for
tomographic bins ¢ and j. They are expressed as

i 3QmHg X /Xh YN X — X
(x) = ————— dx'n'(x'(z —. 1.31
00 =St 25 [T (1.31)

Here n'(x(2)) is the redshift distribution of the tomographic bin i. The shear-shear two-
point correlation function can be calculated by the Hankel transform of the angular power

spectrum,

7(0) = % / dLECT Jo=o(£0), (1.32)
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where J, is the n-th order Bessel function of the first kind. The set of equations explicitly
shows that the shear-shear TPCFs are related to the matter power spectrum via the red-
shift distribution of the ensemble of galaxies. As a result, the uncertainty in the redshift
distribution can impact the weak lensing analysis. We will see more on this topic in §5

In Fig. [[.4] the HSC Year-3 cosmic shear analysis using the TPCF is shown, yielding
constraints on €2, and Sg, which quantifies the fraction of matter in the universe and the
clumpiness of the large scale structure, assuming the universe is governed by the A-CDM
model. The plot also includes measurements from other surveys like DES-Y3 and KiDS-
100, as well as the constraint from Planck 2018. Notably, there appears to be a potential
tension between cosmic shear and CMB measurements regarding Sg, posing a challenge to
the A-CDM model in modern cosmology.

—HSC-Y3 &
| .-+ DES-Y3
N —-KiDS-1000

4 == Planck-2018

Figure 1.4: The cosmological constraints derived from the cosmic shear two-point correlation
functions (2PCFs) (Image taken from (5)) of the HSC-Y3 survey are depicted by the blue
solid line. These constraints are compared to the results obtained from the Planck-2018
survey, represented by the orange dashed line. Additionally, the constraints from the DES-
Y3 survey are shown in green with a dotted line, while the KiDS-1000 survey results are
represented by the red dash-dotted line.
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Another important technique in weak lensing is galaxy-galaxy lensing, which involves
observing the tangential shear around a galaxy or cluster center. Instead of correlating
galaxy shapes with each other as in cosmic shear, galaxy-galaxy lensing correlates the shapes
of background galaxies with the positions of lens galaxies. The tangential shear ~; is directly
related to the excess surface mass density AY(R), which represents the difference between
the average surface mass density ¥ (R) within a radius R and the surface mass density $(R)
at that radius

Ye(R)Eerit (21, 2s) = AX(R) = X(R) — X(R). (1.33)
Here ¥(R) is the surface mass density at R, and X(R) is the average surface mass density
within the radius R. v;(R) is the tangential shear defined in Eq. [1.26] Notice that when the
angle 6 is pointing from a point mass to a source galaxy, the weak lensing does not generate
any 7. Therefore, 7, is often used as a signal for the systematics. Y (z;, 25) is the critical
surface density for given redshifts of the lens and source galaxy,

G da(zs)
- e dA(Zl)dA(Zh Zs)(l + 212)

Here da(z) is the angular diameter distance from redshift z to the earth, and da(z, z;) is
the angular diameter distance from z to z;.  In Figure [I.5] I show an example of the
measurement of excess surface mass density using the HSC Year-3 source galaxies and the
BOSS LOWZ lens galaxies (4)).

Galaxy-galaxy lensing is a powerful cosmological tool that complements galaxy clustering
by providing different sensitivities to galaxy bias (31)). By combining galaxy-galaxy lensing,
galaxy clustering, and cosmic shear, researchers can break the degeneracies between galaxy
bias and the power spectrum amplitude, leading to more robust cosmological constraints.
Several studies(e.g., (7; 137; [38))) have already combined these probes to enhance their con-
straining power. In the 2020s, upcoming surveys like the Vera C. Rubin Observatory and
Nancy Grace Roman Space Telescope will provide rich datasets for weak lensing analysis
(39; 140), allowing for even tighter constraints on the A-CDM model, and explore models be-
yond that. These advancements have the potential to challenge our current understanding
of dark matter and dark energy.

Terit (21, 25) (1.34)

1.2.2 Systematics in Weak Lensing

Understanding and mitigating the systematics in weak lensing measurements is crucial in
current research. In this section, we will explore the motivation behind unbiased weak lensing
measurements and the increasing challenges associated with them (For a detailed review, see
(33)). We will examine various sources of weak lensing systematics and discuss the ongoing
efforts to address them.

Motivation

There are two main drivers for studying the systematics of weak lensing. Firstly, the precise
measurement of cosmological parameters, particularly the €2,,-Ss space, is a key scientific goal
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Figure 1.5: Measurement of the excess surface mass density with BOSS LOWZ volume
limited lens sample and HSC Year-3 high-redshift source samples (Image taken from (4)).
The orange shaded region is the range used for the small-scale analysis (6)), the purple shaded
region is the range used for the large-scale analysis (7).

of weak lensing. The tension between weak lensing and cosmic microwave background (CMB)
measurements in Figure challenges the A-CDM model, making it crucial to understand
and address the systematics of weak lensing.

Secondly, there is a technological driver due to the exponential growth of data volume
in weak lensing studies. The number of galaxies observed in cosmic shear surveys has been
rapidly increasing, as shown in Figure [[.6] In the early 2000s, cosmic shear generally only
involves tens to hundreds of thousands of galaxies (e.g., (41} 42; 43} [44))). In the 2010s, the
stage-II1 surveys push the number to tens to hundreds of millions (e.g., (45; [46; [47)). In
the next decade, the emerging Stage-IV surveys will push this number over a billion (e.g.,
(48; 49; 50) ). We can clearly see that the number of galaxies we observe in the galaxy survey
is undergoing exponential growth. In fact, the number of galaxies observed doubles every
1.9 years.

This exponential growth leads to a decrease in statistical uncertainties by about ~ 1/ V/'N.
This has significant implications to the study of systematics for the weak lensing science.
First, the budget for mitigating known systematic errors decreases, potentially causing pre-
viously effective models to break down. Secondly, previously subdominant systematics may
become statistically significant due to the increased statistical precision, motivating the dis-
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Figure 1.6: The number of galaxies involved in cosmic shear studies in the past, in recent
years, and in the future. We can clearly tell that the number follows an exponential increase.
The increase in data volume for the weak lensing science decreases the statistical uncertainty
of the measurement, making systematics study more important over time.

covery of new systematics.

In summary, understanding and mitigating weak lensing systematics is essential for pre-
cise cosmological measurements, given the tension with CMB measurements, as well as the
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challenges posed by the exponential growth of data volume.

Sources of systematics

Intrinsic Alignment

Weak Lensing

Analysis Pipeline PSF systematics

/

‘@ Measurement N
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\ " j E F/:_‘ D |
Image processing Summary

.

Image coaddition Photometric Redshift +
Distribution

Figure 1.7: A flowchart of the weak lensing analysis pipeline. The data go through the stages
of single-exposure images, coadded images, catalogs, summary statistics, and cosmological
parameters. Different kinds of systematics error emerge at different stage of the analysis

In this section, I provide a summary of key sources of systematics that need to be con-
sidered for precise cosmological analysis using weak lensing measurements. In Figure [I.7] I
illustrate the data flow in a typical weak lensing analysis. The data exist in different forms
in the pipeline, from single visit exposure to coadded images, to catalog of sources, to sum-
mary statistics such as TPCF, and finally to cosmological parameters. In this section, I will
summarize systematics that emerges in different stages of the analysis.

At the single exposure or single visit level, detector effects can cause systematics errors.
For example, detector effects such as charge transfer inefficiency (CTI), and brighter-fatter
effect (51} [52) can cause shear bias. Additionally, the process of stacking exposures into a
coadded image also requires careful treatment to avoid shear bias (53).

The process of generating a shear catalog from the coadded images requires detecting the
galaxies and estimating their shape and shear. Point Spread Function (PSF) is the response
from the imaging system to a point source. The PSF changes the size and shape of the
observed galaxies. Therefore, shape correction for PSF is an important part of every shear
estimation method. The modeling error of the shape and size, as well as the higher moments
of the PSF can also cause shear bias. See § [2}{4] for more detail about PSF systematics.
Multiplicative bias in shear is a challenging systematics introduced at the shear estimation
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process due to its difficulty of detection. One approach to quantifying the multiplicative bias
of the galaxy ensemble is through image simulation (e.g., (54;55)). Other methods construct
unbiased estimators during the shear estimation through perturbation-based methods (e.g.,
(565 57 58 595 [60) ).

During the stage of measuring summary statistics from the catalog, Selection bias is
a systematic error that can occur due to the dependence of galaxy selection on the shear.
When the selection of galaxies is influenced by the shear, it introduces a bias in the measured
shear. One example of selection bias is the detection process, where galaxies are typically
selected based on their signal-to-noise ratio. Another example is tomographic binning, which
involves selecting galaxies based on their photometric redshift.

Another significant systematics in this stage is the inference of the photometric redshift
distribution and the proper handling of its uncertainty (61)). The redshift distribution, de-
noted as n(z), plays a crucial role in modeling the cosmic shear signal, particularly due to its
strong degeneracy with the amplitude of the power spectrum, as we saw in Section [I.2.1} In
order to obtain reliable statistical constraints on the parameters, it is important to properly
account for the uncertainty associated with the redshift distribution. This entails marginal-
izing the uncertainty in the cosmological analysis. For more detailed information on the
marginalization of redshift distribution uncertainty in cosmic shear analyses, see §b]

In the analysis level, two significant challenges in modeling astrophysical effects on weak
lensing can introduce bias in the cosmological parameters. Firstly, intrinsic alignment refers
to the coherence in galaxy shapes that is not caused by lensing effects (62; [63} 64} 65). The
weak lensing analysis assumes that galaxy shapes are independent, but intrinsic alignment
violates this assumption. Secondly, the modeling of baryonic physics introduces another
astrophysical source of systematics. Studying the impact of galaxy formation on the matter
power spectrum requires hydrodynamical simulations with high resolution, large box lengths,
and realistic galaxy formation models. While challenging, addressing these systematics is
feasible in the current era.

1.3 Statistics

Statistics plays a fundamental role in cosmology, providing the mathematical framework for
analyzing and interpreting observational data. Many of the physical quantities used to char-
acterize the cosmological model are described in statistical terms, e.g., the power spectrum
mentioned in Section and two-point correlation function mentioned in Section [I.2.1] In
cosmological analyses, the likelihood function is employed to determine the most probable
values for the cosmological parameters that best fit the data. It is also utilized to account
for systematic errors through the process of marginalization.

Accurate formulation of statistical formalism is vital for ensuring the robustness and
reliability of weak lensing analyses. Bayesian statistics, in particular, is commonly employed
in cosmology. In this section, I will provide a brief overview of statistical formalism, with a
focus on Bayesian statistics, to highlight its significance in the field of weak lensing analysis.
For a more detailed read about Bayesian statistics and data analytics, see (66; [67).
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Let us start by defining the probability of statement X to be true as P(X) and the

probability of X being false being P(X). The constraint on the probabilities will then be

P(X)>0 (1.35)
P(X)+ P(X)=1. (1.36)
The first equation means that the probability of an event has to be non-negative, and the
second equation means that the sum of the probability of all outcomes of an event has to be
1. The scenario can be generalized to the probability of a continuous quantity. Assume z
can take any value from —oo to co. Then the constraints on the probability density function

p(z) is
p(z) >0 (1.37)
/_00 p(z)dr = 1. (1.38)

[e.e]

Now let us introduce another variable Y, which can also take true or false as its value.
The joint probability of X and Y can be expressed in terms of conditional probability in two
different orders,

P(X,Y)=PX|Y)P(Y)=PY|X)P(X). (1.39)

Here P(X|Y) is the conditional probability, which is the probability of X given the value
of Y. The conditional probability gives rise to the most profound equation in Bayesian
statistics, the Bayes theorem. For a set of parameter €2,

P(DIQ)P(9)

P(OID) = =

(1.40)
which is identical to Eq. [I.39] except we have the quantity §2 that we would like to infer.
The left-hand side of Eq. is called the posterior on (2 inferred by the data D. On the
right-hand side, P(D|{2) is called the likelihood function, P(£2) is called the prior of €2, and
P(D) is called the evidence of the data.

Let us show a common likelihood function used in cosmological analyses, the Gaussian
likelihood. In the weak lensing analysis that uses high dimensional data vector D to infer a set
of cosmological parameters 2, it is often assumed that the observed data vector is drawn from
a Gaussian distribution (The Gaussian assumption and cosmological parameter-independent
assumption are meticulously studied in (68)). The likelihood function is written as

(2w>k/21¢m expl—5(D — (), (D - T(@). (1.41)

Here k is the dimension of the D, ¥p is the covariance matrix of D, and det(-) is the deter-
minant of the matrix. 7(€2) is the theoretical value of the data vector given the cosmological
parameters, which involves multiple layers of forward modeling.

£ = P(D|Q) =
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An important concept of probability is marginal probability. Consider two continuous
random variables z and y. The marginalization rule is

o) = [ play)dy (1.42)
In Bayesian statistics, one important application of the marginalization rule is to compute
the evidence. In analyses to get the confidence interval of 6 given D, the evidence P(D) is
unimportant to the outcome. However, when comparing the likelihood for different Ds, the
evidence becomes important. It is calculated by

mm:/mmam:/mmmmmm (1.43)

An example of the usage of marginalization in cosmology is to incorporate the uncertainty in
the nuisance parameters v, e.g., photometric redshift parameters and multiplicative biases,
etc, into the cosmological parameters €2. To achieve that, we first need the joint distribution
P(€,v). The marginalized probability of the cosmological parameters are calculated by

mmm:/ﬁmwmm:/@mmmmmm, (1.44)

where P(v) is the prior on the nuisance parameters. In , we will see that Eq. is used
to marginalize over the redshift distribution uncertainties under the guidance of Bayesian
statistics.

1.4 Structure of the Thesis

Apart from the introductory chapter, this thesis primarily presents the outcomes of four
research projects aimed at enhancing our comprehension of weak gravitational lensing sys-
tematics for the advancement of weak lensing science in the 2020s. Chapters 2 to 4 form a
trilogy that focuses on investigating an essential weak lensing systematic known as the Point
Spread Function (PSF). These chapters extend our understanding of PSF systematics be-
yond second moments, employing techniques like image simulation, Bayesian inference, and
forecasting to analyze higher moments. In Chapter 5, I examine a crucial step in weak lens-
ing analysis — the modeling and marginalization of redshift distribution uncertainty. I also
propose a statistics-principled method for marginalizing high-dimension redshift distribution
uncertainties, called Bayesian resampling.

Chapter 2 serves as the opening part of my PSF systematics trilogy in weak lensing. In
this pathfinder investigation, we employ image simulations to demonstrate that inaccuracies
in modeling the PSF’s radial fourth moments, or kurtosis, result in multiplicative shear bias.
To assess the magnitude of this issue, we analyze image data from the HSC Public Data
Release 1 (69). We establish the significance of the shear bias caused by modeling errors
in the PSF’s radial fourth moments, particularly for future stage-IV weak lensing surveys.
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This work resulted in the publication of the paper “Impact of point spread function higher
moments error on weak gravitational lensing”, published in the “Monthly Notices of the Royal
Astronomical Society, Volume 510, Page 1978-1993" (7).

Building upon the path-finding study, Chapter 3 presents a more comprehensive study
into the impact of PSF higher moments modeling errors. This study expands the analysis
beyond kurtosis to include all higher moments M,,. To achieve this, we develop advanced
numerical techniques that enable precise generation of specific residuals in higher moments
during image simulation. By doing so, we establish a direct connection between shear bias
and PSF higher moments modeling residual. Utilizing the HSC PDRI1 data, we quantify
the realistic modeling errors in PSF higher moments and generate synthetic PSF higher
moments residual maps for the LSST DC2. To assess their implications for cosmology,
we employ Fisher forecast methods to predict the bias on cosmological parameters. This
comprehensive study provides valuable insights into the influence of PSF higher moments
modeling errors on weak lensing analyses. This work resulted in the publication of the paper
“Impact of point spread function higher moments error on weak gravitational lensing - IT. A
comprehensive study”, published in the “Monthly Notices of the Royal Astronomical Society,
Volume 520, Page 2328-2350"(71)).

In Chapter 4, a solution is presented to address the issues identified in Chapters 2 and
3. The proposed method expands the traditional null tests, which typically focus on the
PSF second moment, to include the PSF fourth moments and other higher-order terms.
By applying this extended method to the HSC Year-3 shear catalog, the method revealed
that the catalog is affected by PSF fourth moment leakage at a statistically significant level.
Importantly, the effectiveness of the proposed method in mitigating this impact on cosmology
is demonstrated. The findings of this chapter have played a crucial role in guiding the choice
of PSF systematics models in the HSC Year-3 cosmic shear analysis (B [72). This work
resulted in the publication of the paper “A General Framework for Removing Point Spread
Function Additive Systematics in Cosmological Weak Lensing Analysis”, published in the
“Monthly Notices of the Royal Astronomical Society, (in press)” (73]).

Chapter 5 proposes a statistics-based approach to effectively handle the challenge of
marginalizing the uncertainty associated with the redshift distribution in cosmic shear anal-
ysis. The high dimensionality of the redshift distribution uncertainty makes its mitigation
complicated in a Markov Chain Monte Carlo (MCMC) inference. Conventional analysis typ-
ically reduces the dimensionality by only modeling the shift of the distribution. We proposed
a novel statistical method that can take the entire high dimensional uncertainty into account,
by sampling the probability density of the n(z), analyzing individual samples, and combining
the samples. We compare our method to traditional methods and other novel methods. The
results indicate that, for the HSC Year-3 cosmic shear analysis, the traditional shift model
is sufficient. However, it is demonstrated that as the statistical uncertainty decreases, the
bias between the shift model and the proposed method increases. This work resulted in the
publication of the paper “Photometric redshift uncertainties in weak gravitational lensing
shear analysis: models and marginalization”, published in the “Monthly Notices of the Royal
Astronomical Society, Volume 518, Page 709-723"(74).
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In Chapter 6, I discuss the implication of the work described in this thesis. I specifically
focus on the lesson learned in these systematics focusing study, and the path forward for
preparing the weak lensing analysis of the stage-IV surveys.



Chapter 2

Impact of point spread function higher

moments error on weak gravitational
lensing — I. The Path-Finding Study

Tianqging Zhang', Rachel Mandelbaum®, The LSST Dark Energy Science Collaboration.

"McWilliams Center for Cosmology, Department of Physics, Carnegie Mellon University,
5000 Forbes Ave, Pittsburgh, PA 15213.

Abstract

Weak gravitational lensing is one of the most powerful tools for cosmology, while subject
to challenges in quantifying subtle systematic biases. The Point Spread Function (PSF) can
cause biases in weak lensing shear inference when the PSF model does not match the true
PSF that is convolved with the galaxy light profile. Although the effect of PSF size and shape
errors — i.e., errors in second moments — is well studied, weak lensing systematics associated
with errors in higher moments of the PSF model require further investigation. The goal
of our study is to estimate their potential impact for LSST weak lensing analysis. We go
beyond second moments of the PSF by using image simulations to relate multiplicative bias
in shear to errors in the higher moments of the PSF model. We find that the current level
of errors in higher moments of the PSF model in data from the Hyper Suprime-Cam (HSC)
survey can induce a ~ (.05 per cent shear bias, making this effect unimportant for ongoing
surveys but relevant at the precision of upcoming surveys such as LSST.

2.1 Introduction

Gravitational lensing is the deflection of light from distant objects due to the gravitational
effects of more nearby objects on the geometry of the Universe. Weak gravitational lensing,
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or weak lensing, is what occurs in the limit that the lensing deflections are sufficiently weak
that they only lead to modest changes in the object’s observed shape, size, and flux rather
than dramatic phenomena such as Einstein rings or multiply-imaged sources. Its sensitivity
to the gravitational potential along the line-of-sight makes weak lensing one of the most
powerful tools for probing dark matter, dark energy and the growth of large-scale structure
of the Universe (75} 76} [77). Among all the effects on the galaxy caused by weak lensing,
the change in shape, also called shear, is the most accessible signal up-to-date.

The requirements on removal of systematic biases and control of systematic uncertainties
in the measurement become tighter as the statistical errors decrease to sub-percent levels,
starting with the ongoing or recently completed “Stage III” cosmological surveys (78) such
as the Dark Energy Survey (DES;) (79)), the Kilo-Degree Survey (KiDS)(80), the Hyper
Suprime-Cam survey (HSC)(8I), and the future “Stage IV” ground-based surveys such as
the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST)(48} 82), and
space-based surveys such as the Nancy Grace Roman Space Telescope (49; 83) and Fuclid
(50).

The Point Spread Function (PSF) is a distribution function that is commonly used to
describe the blurring effects of the atmosphere, telescope optics, and pixelization, which
convolves the light profiles of the stars and galaxies in the images. The PSF therefore
changes the observed shape and size of the galaxy. To measure the true galaxy shape despite
the convolution with the PSF, one must model the PSF at the galaxy position, based on
the images of stars around it; a variety of methods exist for doing so, e.g., PSFEX (84) and
PIFF (PSF in Full FOV; (85)).

Upon obtaining the PSF model at the position of a given galaxy, one can use a variety
of methods to measure the shape of the galaxy or its response to weak lensing shear e.g.,
(56; 57). A mismatch between the PSF model and the true PSF can cause a systematic bias
in the weak lensing measurement. Previous work in this field has focused on the impact of
the errors in the second moments of the PSF model, i.e., differences between the size and
shape of the true and model PSF, on the weak lensing shear measurement (86; 87 [88; [89).
Control of residual systematic uncertainties in the shear due to second-moment errors in
PSF modeling is considered one of the main systematics in weak lensing shear inference for
both previous surveys such as the HSC survey (54) and for upcoming surveys such as LSST
(@0).

The formalism derived in the aforementioned papers on this topic would predict zero
systematic bias in shear inference as long as the second moments of the PSF model completely
match those of the true PSF, neglecting any differences between the higher moments of the
PSF model and true PSF. When the PSF is unweighted, the weak lensing shear is only
associated with the second moments of the galaxy and PSF. However, a weight function is
necessary for shear inference in order to reduce the impact of pixel noise. (91)) shows how
the lensing shear inference is affected by PSF higher moments when weighted PSFs are used.
(92) point out that mismatches between the higher moments of the PSF and the true PSF
induce additional multiplicative and additive shear biases on top of those predicted by the
second moment formalism in (87). In this paper, we investigate the impact of the higher
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moments error — later as HME — on the galaxy shear measurement with image simulations
generated using GALSIM]| (03) and real data from the HSC Public Data Release 1 (PDR1)
(81)). We simplify the problem by only investigating round PSFs and only considering their
radial fourth moments, and the associated multiplicative biases. The goal of this paper is to
investigate whether the HME of the PSF model is a significant contributors to systematic
biases and uncertainties in the weak lensing shear measurement for LSST.

The structure of this paper is as follows. In Section [2.2] we describe relevant background
material about weak lensing shear estimation and PSF modeling. We introduce the simula-
tion methods and our analysis of real data in Section In Section [2.5] we show the results
of our analysis of the simulations and real data. Based on the results, we derive conclusions
about the significance of shear biases caused by the HME of the PSF model in Section

2.2 Background

In this section, we summarize background material related to weak lensing shear (Sec-
tion [2.2.1]), and the impact of the PSF and PSF modeling (Section [2.2.2)).

2.2.1 Weak Lensing Shear

Weak gravitational lensing occurs when light from background objects gets mildly deflected
by the intervening matter in the Universe (for a review, see34). The scientific significance of
weak lensing is by no means “weak”: because of its sensitivity to the gravitational potential of
the large-scale structure of the Universe, it is a powerful probe of the dark matter distribution
and the growth of cosmic structure with time.

Quantitatively, weak lensing is a local linear transformation between the pre-lensing and
post-lensing light-ray. The relation between the post-lensing position (x,y) and the pre-
lensing position (2’,%’) can be expressed as

(@) -a-n (22 200 2.)

where the reduced weak lensing shear g = ¢g; + igo is a complex number that describes the
anisotropic distortion of the galaxies, i.e. the shape distortion, and the convergence « is a
scalar that describes the isotropic distortion (magnification or contraction) of the observed
galaxy. The convergence changes the observed flux and size of the galaxy, while the reduced
shear changes the shape of the galaxy, e.g., turning round galaxies into elliptical galaxies.
The first component of the reduced shear, gy, is responsible for the stretch along the x- and
y-axes, while the second component, g, describes the stretch along the diagonal axes at 45°
to the x- and y-axes. In this paper, we will not consider the convergence effect (k = 0), so
the shear is the same as the reduced shear.

'https://github.com/GalSim-developers/GalSim
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The mild distortions of galaxy shapes induced by weak lensing, i.e., shear, can only be
detected through statistical measurements, often including millions of galaxies (54} 04 95]).
Typically the coherent shape distortions induced by weak lensing are measured either via
cross-correlation with the positions of galaxies in a massive nearby lens sample (galaxy-
galaxy lensing), or via auto-correlation of pairs of galaxy shapes (cosmic shear; [1i [47; 96]).
The statistical and systematic uncertainties in the shear signal are the main obstacles in
making precise cosmological measurements using weak lensing (77). There are two primary
sources of statistical uncertainty in the shear signal (97)): The first one is caused by the
dispersion in the galaxy intrinsic shapes, i.e., shape noise. The second source of statistical
uncertainty is due to the large-scale structure that causes various weak lensing signal among
the Universe, surveys that observe part of the Universe get a sampling uncertainty, also
known as the cosmic variance (98)).

There are multiple source of systematic biases that affect the measurement of the weak
lensing shear (for a review, see[33)). A common approach to systematic biases is to estimate
and remove them, either by subtraction from the observed measurement or by modeling the
physical processes that generate the biases. Since this correction is in general not perfectly
known, even after the correction there will still be some residual systematic uncertainty.
Generally, we want the systematic uncertainties to be sub-dominant compared to the statis-
tical uncertainties. Upcoming surveys with reduced statistical uncertainties therefore require
more stringent control of systematic uncertainty in the weak lensing shear measurement pro-
cess.

2.2.2 PSF Modeling and Systematics

The Point Spread Function (PSF) describes the blurring of astronomical images due to the
atmosphere and telescope optics. In practice, we work with the effective PSF, which also
includes the pixel response function of the detector. The effective PSF convolves the light
profiles of the stars and galaxies in the image, which changes the observed size and shape of
the stars and galaxies.

Inferring the weak lensing shear distortion using information about the pre-PSF galaxy
shape given the convolved image and PSF model is a substantial challenge. In the GREAT3
challenge (99), numerous shape measurement methods are tested and compared using sim-
ulations. Some of the methods shown there have been used in weak lensing survey science
since then, e.g., re-Gaussianization in HSC (54)), metacalibration and im3shape in DES
(94), and shear calibration using pixel-level simulation (lensfit) in CFHTLenS and KiDS
(100; 101 102). However, several principled shear inference methods have been developed
which should work to very high precision by avoiding the sources of bias in earlier methods
(57 58 103) at least for isolated galaxies — but they do rely on an accurate PSF model.

There are two main categories of PSF modeling methods: empirical approaches that rely
on the data in the images, and analytical approaches that simulate the physical processes of
the PSF (33). The analytical approach is more commonly used in analysis of the space-based
telescopes due to deterministic light propagation, e.g., the Hubble Space Telescope (HST)
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and its COSMOS weak lensing analysis ((104)); see also (1I05) for methods to assess model
fidelity). Analysis of data from ground-based telescopes has tended to utilize empirical PSF
models due to the stochastic nature of the atmosphere, e.g., the DES Y1 catalog (94)), the
KiDS-1000 catalog (95) and the first-year HSC catalog (54). The PSF profiles for space-
based and ground-based telescopes are usually very different, because of the existence of the
atmospheric PSF for the ground-based telescopes. For the purpose of this paper, we focus
on the ground-based telescope PSF. The first step is to measure the effective PSF from a
set of stars (typically isolated and with high signal-to-noise ratio) in the image — we refer to
these as the PSF stars. Then the PSF at other positions is obtained by interpolation of the
PSF model inferred from the PSF stars. Out-of-focus wavefront sensing has been recently
developed to model the optical PSF (e.g., 106} 107; 108; 109) and a composite PSF model
with wavefront modeling of the optical PSF component is planned to be used in future DES
releases (85). The coadded image is a combination of several images at a given point on
the sky, which has implications for its PSF. For example, in the HSC pipeline, the coadded
PSF is generated in a principled way through weighted averaging of individual exposures,
resulting in a well-defined PSF model also based on weighted averages (110).

The limited information on the spatial and temporal variation of the PSF for ground-
based telescopes leads to some intrinsic limitations in the PSF model fidelity. Moreover,
errors in modeling some detector effects, such as the brighter-fatter effect (51)) and the in-
terpixel capacitance of the complementary metal-oxide-semiconductor (CMOS) detectors
(111, 112)), can also drive errors in PSF models. Most of the commonly-used tests to de-
termine the quality of PSF modeling rely on estimates of PSF and star sizes and shapes,
mathematically defined using the observed second moments of the images, e.g., most tests
in (I10). The weighted second moment @);; of a light intensity profile f(z) is defined as

1
Qij = m/dxidxj(xi — i) (1 — 257") f(z)w(). (2.2)

Here w(x) is the adaptive Gaussian weight that has a size and shape matched to that of the
light intensity profile, centred at the centroid of the profile (86). The weight is introduced
to reduce the effect of noise in real images; however, it is the reason that the PSF higher-
moments affect shear measurement (9I). F©, the normalization factor, is the total flux
of the light profile weighted by w(x). 2% is the weighted centroid in the i"* dimension,
calculated as

e = % /dxida:ja:if(w)w(w). (2.3)

The weighted second moments radius of the light profile can be defined as o :\/ (Qu +Qxn)/2 =
/T /2, where T is the trace of the second moment matrix. The ellipticity can be defined
as e; = (Qu — Q2)/(Qu + Q22) = (Qu — Q22)/T and e; = 2Q12/(Q11 + Q) = 2Q12/T.
The e; and ey are related to the axis ratio and position angle of the galaxy ellipse. Like the
reduced shear g = g1 + 192, the shape is also a spin-2 quantity. Therefore, for the rest of the
paper, we denote shape as e = e; + ies and the amplitude of the shape as |e| = /e*e.
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(87) explored the systematic biases in weak lensing shear measurement associated with
errors in modeling the second moments of the PSF. The bias in the measured ellipticity of
the galaxy de™* is

o §(R3qr) Rpgr\~
0€%° ~ (€ga1 — € PSE. ( depsr, 2.4
(€gal — €pPSF) Rzal Row PSF (2.4)

where Rg, and Rpgr are the radius of the pre-PSF galaxy and the PSF, respectively. The
two error terms, 0(R3¢p) and depgr, are typically referred to as the PSF size and shape
error, respectively. Eq. is usually used to place requirements on the quality of the PSF
model, given some requirement on the control of systematic biases in the weak lensing shear
depap- Based on the formalism above, requirements can be placed on tolerance for systematic
uncertainty in second moments of the PSF model for weak lensing (e.g., Section 3 of[54)). This
formalism is exactly correct when the weight w(x) = 1 or when both the galaxy and the PSF
are Gaussian with a Gaussian weight. In a realistic scenario, neither of these conditions will
be met. Therefore, this formalism cannot be used to predict precise numerical values for the
shear biases caused by PSF second moment errors, though it still provides an approximate
estimate of their magnitude and trends with galaxy size.

The formalism described above for estimating weak lensing systematic biases and uncer-
tainties induced by PSF modeling errors only considers the PSF second moments, not any
of the higher moments of the PSF model.

In this paper, we explore shear biases directly associated with the higher moments mod-
eling error of the PSF, by conducting image simulations with deliberated added HME to the
PSF model, and by comparing real PSF model images to star images. In our approach, we
focus on PSFs in ground-based observations. We will show that the HME of the PSF model-
ing (at least given current PSF modeling algorithms) contributes non-negligible systematic
error for Stage IV ground-based weak lensing surveys.

In this paper, we demonstrate methodology and project shear biases due to higher mo-
ment errors of the PSF using a PSF modeling method called PSFEX (84). This method has
been used in practice for weak lensing science in HSC (54}, 110) and DES Y1 (47). Although
Rubin’s LSST science pipelines are unlikely to use PSFEX for LSST itself, assessing the
status of algorithms that are currently in use can help us understand the current level of
PSF modeling error and its impact on weak lensing science, and place requirements on future
performance.

2.3 Methods

In this section, we describe key analysis methods used for this work. The first approach we
take to quantifying the relationship between weak lensing shear systematics and the HME of
the PSF model uses image simulations. Before diving in the simulation step, we first define
the quantities we measure for the higher moments in Section [2.3.1] and explore the shear
measurement methods that we are taking in Section In Section we introduce the
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inputs and steps for producing the image simulations. Section describes the approach to
inspecting the PSF and its model in real data from the HSC survey. While the simulations
enable us to relate the HME of the PSF model to a shear bias, the real data provides an
estimate for the current level of HME in PSF models in real data.

2.3.1 Higher Moments

In this subsection, we introduce how the moments of light profiles are defined and computed
in practice.

In principle, carrying out our study requires a method for measuring any higher moment
of PSF light profiles (beyond second moments), and for introducing a controlled variation in
individual higher moments while preserving the second moments. However, for this initial
pilot study we consider a simplification, and quantify the impact of deviations only in the
weighted radial fourth moment (defined below). In practice, we recognize that other higher
moments may be relevant, but we defer a detailed decomposition to future work, focusing
here on a rough order-of-magnitude estimate of the importance of the higher moments of
the PSF for weak lensing.

In practice, we measure the standardized weighted radial 4" moment, or kurtosis p®,
using GALSIM (93). For a light profile f(x), this quantity is defined as

@) = J(r/o)* f(x)w(x)dx
[ f@)wx)dx

where r = [x| and w(x) is the adaptive Gaussian weight we used in Eq. ([2.2), o is the
second moment radius. The superscript of p® is a notation for the kurtosis, rather than
the 4"" power. The denominator is a normalization factor. The weighted radial kurtosis
for some common PSF profiles is listed in Table 2.1l The Airy PSF has an undefined
second moment ¢ and kurtosis when calculated without a weight function, and the weighted
moments depend strongly on the choice of weight function. The kurtosis value we show
in Table is calculated with an adaptive Gaussian weight function with oy, = 0.41\/D,
where D is the diameter of the aperture. This algorithm-generated weight function has
the size proportional to the PSF size, and keeps the Airy profile well-sampled for moment
measurements. For the rest of the paper, we define the fractional kurtosis bias B[p(4)] as

(P — p)
@

(2.5)

B[p"] = (2.6)

where p® is the model kurtosis and p® is the true kurtosis.

Again, to reiterate, while we quantify the impact of higher moments error (HME) of the
PSF using the radial weighted kurtosis, in general not only the kurtosis but rather all higher
radial moments are perturbed. All higher moments referred to throughout this paper are
the scale-independent standardized weighted moments.
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['ht]
Profile o™
Gaussian 2.00
Kolmogorov 2.09
Moftat, g = 3.5 2.11
Sérsic, n = 1 2.35
Sérsic, n = 4 2.74

Airy PSF, A = 750nm, D =8m 1.91

Table 2.1: The weighted radial kurtosis value p® for commonly-used light intensity profiles.
The kurtosis is measured using images with gradually decreasing pixel scale to the point
that the kurtosis value converges to the second decimal place. Note that these are the radial
kurtosis values for the named profiles themselves, without any additional pixel response
function. The Airy profile is that for an 8-meter aperture telescope at A = 750 nm. The
kurtosis is calculated with a Gaussian weight function with o, = 0.41\/D, proportional to
the scale of the Airy profile.

2.3.2 Shape and Shear Measurement

When measuring cosmological weak lensing, there are methods that measure the shape of
individual galaxy and then take the average shape to measure shear. There are also methods
that directly act on galaxy ensembles to measure shear. For the first category, the shape
measurement method is a crucial element in the pipeline. For this reason, we investigate the
bias on the outcome of shape measurement, for single galaxies, as a step toward understand-
ing the impact of HME on weak lensing shear. It is important to notice that the shape biases
we investigate are not induced by intrinsic limitations of the shape measurement methods,
and we are expecting to get different responses from different methods. One commonly used
shape measurement method is the re-Gaussianization (86) method implemented in the HSM
module (113) in GALSIM (93). To test for different responses to errors in the higher mo-
ments of the PSF model, we also carried out limited testing with the linear (86; 114) and
KSB (I15) methods as implemented in GALSIM.

To ensure that our results reflect galaxy shape or ensemble shear biases due to errors
in the higher moments of the PSF model, rather than reflecting limitations in the shape
measurement methods, we perform each measurement twice. The first measurement e or
g uses the true effective PSF, and the second measurement € or § uses the model effective
PSF. The difference between the two measurements, é — e or § — g, is the shape or shear
bias we are interested in, denoted as de or dg.

In real weak lensing observations, very large galaxy ensembles are typically measured to
beat down the intrinsic shape noise. However, in the image simulations, we can bypass this
problem using the approach from (I16) of creating a 90-degree rotated counterpart for each
galaxy before applying the cosmological lensing shear. We refer to a galaxy and its rotated
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counterpart as a 90-degree rotated pair; the galaxies in each pair have opposite values of
e; and ey in the absence of lensing shear, so (especially in simulations without pixel noise
added) a very small number of galaxy pairs can be used to efficiently assess the level of
ensemble shear estimation bias. The shear bias of the 90-degree rotated pair is calculated
by

(é + égg) — (6 —f- 690)

_ 2,
g 5 : (2.7)

where é and égy are the shape of the original and the rotated galaxy, measured using the
model PSF, and e and egy are measured using the true PSF. When we have more than one
galaxy and its pair, which we will call a galaxy ensemble, the ensemble shear is the average
over different galaxy shear (g). The ensemble shears (g) and shear biases d(g) are estimated
in an analogous process, with é replaced by the average shape (¢) in Eq. (2.7).

While significantly increasing the efficiency of the simulation and decreasing the statis-
tical uncertainty on the ensemble shear, this approach using 90-degree rotated pairs has its
limitations. For example, it limits our ability to measure selection bias; however, this is not
the focus of this paper.

In addition to these older battle-tested methods whose limitations are well-understood, we
also use metacalibration (56} 57), a state-of-the-art method that self-calibrates multiplicative
and additive bias in the ensemble shear inference. The goal of doing so is to check how
sensitive our results are to the choice of shear inference method. We use the implementation
of metacalibration in the publicly-available N GMIXE] package.

2.3.3 Image Simulation

Here we describe the image simulation procedure used in this paper. The objects we simulate
are postage stamp images of PSF-convolved galaxies and PSFs. For each step, we first explain
the general settings for all simulations, and then provide details of different simulations. The
parameters used in some of the simulations are tabulated in Table [2.2]

For all of the image simulations, we will need to generate two types of postage stamp
images with GALSIM objects: the observed image of the isolated galaxy convolved with true
PSF, and the image of the PSF, with or without kurtosis error. All images are generated
with a pixel scale of 0.2arcsec, similar to the pixel scale of the LSST camera. The images are
rendered using the Fourier Transform method in GALSIM, and include the pixel response
function. The PSF-convolved galaxy and true PSF images are then used to estimate the
single galaxy shape e, 90-degree rotated pair shear g and the ensemble shear (g). The
PSF-convolved galaxy and model PSF images are used to estimate the single galaxy shape
¢, 90-degree rotated pair shear g and the ensemble shear (§). No noise is included in the
images.

The galaxy profiles that we simulate as specified in Section [2.3.4] and the PSF profiles
specified in Section [2.3.5] exhibit a gradual increase in complexity and realism. We provide
a general roadmap to our simulations in Section [2.3.6] There we describe how the simpler

’https://github.com/esheldon/ngmix
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simulations help us develop intuition about the main parameters that determine shear biases
for a given PSF kurtosis bias, while the complicated simulations provide a more realistic
estimate of ensemble shear biases due to PSF kurtosis bias for LSST.

2.3.4 Galaxy Profile

The first step of the image simulation process is to define the galaxy profiles that we are
going to simulate. Our approach is to generate simulations that include galaxy profiles with
increasing complexity. First we generate a single (non-round) Gaussian galaxy, then we add
complexity to the model to include Sérsic profiles. We generate 90-degree rotated galaxy
pairs, as described in Sec. to certify the results we get from single galaxy experiments.
Finally, we generate ensembles of galaxies that include a range of profiles, sizes, and shapes,
similar to that found in real data. We also generate 90-degree rotated pairs for the galaxies
from the catalog, to eliminate the shape noise. To gain intuition, we start by quantifying
shape measurement biases for single galaxy experiments. We later proceed to study ensemble
shear biases.

The first and simplest galaxy profile we generate is a 2d Gaussian profile, specified by
its size o and ellipticity e. We alter the parameters of the Gaussian galaxy to see its impact
on the kurtosis induced shape/shear bias. The size of the Gaussian galaxies range from
FWHM = 1.2” to 12.0”, and the ellipticity of the Gaussian galaxies are altered between
le] = 0.0 to 0.5.

A more realistic and commonly-used (117) galaxy model is the Sérsic profile (I18]). A
round Sérsic profile fsgsic(R), is given by

R\
fSérsic(R) = exp [_bn (R_h)

where Rj, is the half light radius of the single Sérsic profile, and n is the Sérsic index. b,
is a scaling factor to make sure the profile has the correct half light radius; its value is
pre-determined for a fixed Sérsic n. We first carry out experiments that simulate individual
Sérsic galaxies with a chosen value of Sérsic index and R}, along with their 90-degree rotated
pair, to examine the relation between shear bias and Sérsic profile parameters. After that
point, we proceed to simulate galaxy ensembles with realistic size, shape, and Sérsic index
distributions.

To study the shear biases of galaxies with a realistic distribution of sizes, shapes and Sérsic
indices, we use a sample of galaxies from COSMOS with Sérsic ﬁtﬂ (99), for which GALSIM
has a class defined so as to efficiently use the sample for image simulations. The COSMOS
parametric galaxy catalog that we use includes Sérsic profile fits to the real galaxy images in
the COSMOS HST survey (119) for galaxies down to a limiting magnitude of F814W= 25.3.
Without any cut on the galaxy population, we have ~ 50,000 galaxies and its 90-degree
rotated-pair to work with. We use the fits to single Sérsic profiles with the Sérsic index

) (2.8)

3https://github.com/GalSim-developers/GalSim/wiki/RealGalaxy-Data
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Figure 2.1: One- and two-dimensional histograms of galaxy properties including redshift,
half light radius, F814W magnitude and Sérsic index in the COSMOS parametric catalog,
with the pink trend-lines on each panel showing the median of the properties on the vertical
axis when binned by the properties on the horizontal axis, and white trend-lines showing
the median of the horizontal properties binned by the vertical properties. One-dimensional
histograms of individual properties are shown on top. The color of the plot represents the
number of galaxies on a logarithmic scale. The single Sérsic profile fitted to the COSMOS
galaxy is parameterized by the half light radius and the Sérsic index shown. The relationships
between parameters can be used to explain the redshift-dependent shear biases.
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allowed to vary to generate the Sérsic galaxy samples using the COSMOSCatalog module
in GALSIM. The centroids of the generated galaxies are randomly displaced (by a uniform
distribution) within one pixel from the centre of the images. We have confirmed that this
displacement does not affect the overall results. To generate a galaxy population similar
to what LSST may use for weak lensing shear inference, we impose a cut on the resolution
factor Ry defined by
Tp

Ry=1 T (2.9)
where Tp is the second moment trace of the PSF and 77 is the trace of the PSF-convolved
image. The galaxy is well-resolved when Ry ~ 1 and poorly-resolved when Ry ~ 0. As
suggested by (54), we use galaxies with Ry > 0.3. After the cut, we are left with ~ 41,000
galaxies and their 90-degree rotated-pairs. By drawing randomly from this catalog, we hope
to mimic the observed galaxy light profiles for a sample of galaxies such as would be used for
an LSST cosmology analysis. While Sérsic profiles do not include some of the more complex
features of realistic light profiles, we will observe that the simulations with Gaussian versus
more general Sérsic light profiles do not exhibit very different behavior with respect to shear
biases due to errors in the higher moments of the PSF. For that reason, we consider the
omission of more complex light profiles to be acceptable in this pathfinder study. After we
create the 90-degree rotated pairs, we apply the same amount of shear to these galaxies as
the signal we are measuring.

Since there is statistical uncertainty due to cosmic variance, the COSMOS galaxies are not
fully representative of the full distribution of galaxy properties (120). This is particularly an
issue when binning the galaxies by redshift, so that an even smaller volume is being sampled
than when using the entire COSMOS volume. However, even if they were a representative
sample, we would still need to determine how many galaxies we must sample from the
COSMOS parametric catalog so as to reduce the statistical uncertainty due to the limited
number of samples necessary level. We do this based on the statistical uncertainty in the
shear bias measured using subsamples of galaxies from the catalog and their 90-degree rotated
pairs in the absence of pixel noise. Since the systematic shear biases that we are interested
in constraining are at the 0.1% level, we want shear biases to be measured at least one order
of magnitude more precisely than that. We determine the ensemble shear uncertainty by
bootstrap resampling the same size of subsamples of galaxies within the ensemble for 10*
times, and adopt the standard deviation of these re-sampled ensemble shear as the errorbar
on the shear. When doing so, we confirm that the statistical uncertainty scales like n’%,
where n is the number of 90-degree rotated pairs in the subsample. To reduce the statistical
uncertainty of multiplicative bias m below 107%, we need at least 10? galaxy pairs randomly
drawn from the ensemble. The results we show in Section are derived from galaxy
ensembles with at least 250 galaxy pairs, so the statistical uncertainty on the shear bias is
well below our requirements.

In Fig. 2.1, we show one- and two-dimentional distributions of galaxy properties for the
COSMOS parametric dataset, so as to better understand the population and associated
simulation results. The median trend lines in Fig. show that with increasing redshift,
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the galaxies become smaller in apparent size and fainter in magnitude, as expected for a
flux-limited population. There is no strong trend in Sérsic index as a function of redshift.

2.3.5 PSF Profile

To simulate errors in the higher moments of the PSF model, we first need to define a base
PSF (which we will refer to as the true PSF). In this work, we generate simulations with
three parametric base profiles: Gaussian, Kolmogorov, and Moffat PSF with 8 = 3.5. [f
Notice that these are the base PSFs rather than the base effective PSFs, which involve the
pixel-response function. We have another non-parametric PSF': the stacked HSC PSF, which
helps us validate the results from the parametric simulations.

In each simulation, there are two types of PSFs, the model PSF and the true PSF, which
are defined using the base PSF with and without any additional kurtosis error. To generate
the final image, the galaxy profile is convolved with the effective true PSF. Both the base
true PSF and the base model PSF are round, and have the same weighted second moments,
given by Eq. , The shape/shear of the convolved image is estimated separately using the
effective true and model PSF. The shear bias - the difference between these two - is solely
caused by the higher moments of the PSF model.

We define model PSFs that differ only in higher moments (not second moments) by per-
turbing the PSF model differently depending on the original base PSF. For the Gaussian
base PSF, we define the model PSF using a Sérsic profile with index n close to (but not pre-
cisely) 0.5, since the Sérsic profile reduces to a Gaussian when n = 0.5. For the Kolmogorov
base PSF, we construct the model PSF by summing (with equal weights) two Kolmogorov
functions with slightly different sizes, parameterized by the ratio of the size of second Kol-
mogorov to the first. For the Moffat PSF with 5 = 3.5, we define the model PSF by varying
B. We are not expecting the results from different types of PSF to be the same, since the
higher-moments other than kurtosis are all perturbed differently.

All three these modifications have two free parameters: one of them (Sérsic index, Kol-
mogorov size ratio, or beta) is adjusted to explore different modifications to the higher
moments of the PSF, while the other is a resizing parameter (Sérsic and Moffat Ry, and
the size of the first Kolmogorov) that can be adjusted to achieve our goal of matching the
second moments of the model PSF to those of the true PSF. The actual process of adjusting
the resizing parameter to match the observed second moments of model and true PSF is as
follows:

Step 1: Create the base PSF profile and the initial guess for the model PSF profile, without
adjusting the size of the model PSF profile.

Step 2: Convolve both PSFs with the pixel response function and render each into an image
with the adopted pixel size.

4We fit the HSC PSFs with Moffat profiles, and find that the 3 parameter is typically 3.5. This value is
also adopted in (121)) on HSC-like simulation.
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Step 3: Measure the observed second moment size ¢ of the effective true PSF 6,4 and of
the effective model PSF 6,040 Notice that the .. will be slightly different from
the assigned o for the base PSF, because of the convolution with the pixel response.

Step 4: Dilate the model PSF base profile by f'(2') = f/(Gtrue®/Fmodel), using the expand
transformation in GALSIM, and replace the old model PSF profile with it.

Steps 24 are repeated until Gmodel — Otrue < 107% arcsec. Note that with a round base
PSF and a model PSF that only differ in the radial moments, the shear bias can only be
multiplicative. Therefore, in the rest of the paper, we focus on analyzing the multiplicative
bias caused by such modeling error, though future analysis should also consider non-round
PSFs and change non-radial moments of the PSF to investigate the additive bias. In the
case that the pixel size is comparable to the scale of the PSF, the radial kurtosis values are
slightly different when we re-scale the PSF size in Step 4, changing by a few percent. As
a result, we cannot strictly control the kurtosis of our model PSF, and we re-measure the
actual kurtosis of the model PSF p) after the transformation to calculate B[p*] by Eq. .

Additionally, we test the shear biases using the stacked HSC PSF directly (these data will
be described in Section . To do so, we interpolate star images and PSFEx models, and
stack them with a common centroid, as the true and model PSF respectively. We transform
all PSFs so that their shape is round, and they have the same second moment ¢ as the true
PSF. We bin the HSC stars by their kurtosis biases B[p¥)], producing a true and model PSF
for each bin, and measure the shape biases of Gaussian galaxies with different sizes.

Although the image simulations in this paper do not include noise, an adaptive weight
function that matches the size of the PSF is still applied to the PSF when measuring galaxy
shape. This is crucial because (a) it matches how weak lensing shear inference is done in real
data, (b) the weight function is the reason why PSF higher moment errors can cause weak
lensing shear biases (91]). The choice of the weight function can affect the connection between
PSF higher moment errors and shear biases. Therefore, we use the adaptive Gaussian weight
function, which adjust its size and shape depending on the PSF, as it is similar to what is
effectively used in many moment-based and model-fitting (e.g., 122) shear measurements.
However, we do not explore this nuance in detail as it is beyond the scope of this paper.

2.3.6 Simulation Roadmap

In this section, we describe the flow of the simulations in this paper. We start with simula-
tions with only one galaxy, in order to isolate the primary factors that determine the shear
bias caused by higher moments error of PSF model. Then, we simulate galaxy ensembles
with realistic distributions of size, shape and Sérsic indices to understand the impact on real
galaxy surveys.

The experiments we conduct with single galaxies and parametric PSFs are defined in
Table 2.2] and the results are shown in Section [2.5.1] We gradually increase the complexity
of both galaxies and PSFs. First, we simulate a Gaussian galaxy and a Gaussian true PSF,
while modifying the galaxy shape to see if the shape bias is multiplicative or additive. We also
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change the kurtosis biases of the PSF, with several sizes of the galaxies, to check dependency
of the galaxy shape biases on the kurtosis biases, described in row 1 of Table 2.2l We then
explore the galaxy size-dependence in greater depth, as described in row 2 of Table[2.2] Next,
we increase the model fidelity for both the galaxies and the PSFs, and conduct the same tests
of galaxy size-dependence. For the PSFs, we change the model to Kolmogorov and Moffat,
in row 3 and row 4 of Table[2.2] For the galaxies, we change the model to Sérsic profiles, and
experiment with several values of Sérsic indices, in row 5 of Table 2.2 Finally, we conduct
experiments with Sérsic galaxies and Kolmogorov PSFs, in row 6 of Table For rows 26,
we also use the 90-degree rotated pair method described in Section [2.3.4] to check whether
we can translate the conclusions from shape biases to shear biases. These experiments help
us understand the fundamental factors that determine how PSF kurtosis bias translates into
galaxy shape and shear bias, which is essential for understanding experiments with higher
model fidelity.

Next, we simulate the galaxy ensemble with a realistic distribution of sizes, shapes and
Sérsic indices, obtained using the COSMOS catalog described in Section [2.3.4] with results
shown in Section [2.5.2] The PSF model we use in this experiment is a Kolmogorov profile,
with a fixed FWHM of 0.7 arcsec. We first conduct basic experiments, including changing
the kurtosis bias of the PSFs, and the shear of the galaxies, to test the validity of conclusions
from the previous, simpler experiments. We also change the size of the galaxy ensembles
to understand the errorbars of the shear biases. We investigate the parameter-dependence
of the shear bias by creating sub-ensembles binned by particular parameters. We bin the
galaxies by their half light radii R, grouping with/without Sérsic index. We also explore
the redshift-dependence of the induced shear bias by binning the galaxies in redshift bins.
We further discuss the consequence of these results for cosmological weak lensing shear
measurements in Section 2.5.4

2.4 HSC Data

In this work, we inspect real data from the Hyper Suprime-Cam (HSC; BI) to understand
how the current level of PSF modeling is doing in recovering higher moments, in specific,
the radial kurtosis p®. The dataset we are utilizing is the HSC star catalog of the first
HSC public data release (PDR1;69). The HSC pipeline (I10) uses a modified version of the
PSFEX (84)), part of the LSST Data Management (DM; [123) codebase, for PSF modeling.
We use the coadded image of the selected bright stars, for which selection criteria will be
described in Section [2.4.1] as the true effective PSF. These are compared with the coadded
PSF models at the same locations as the stars. The details of the PSF modeling and their
coaddition in HSC PDR1 can be found in Section 3.3 of (L10).

Below we describe the two key analysis steps applied to HSC data: star selection and
kurtosis measurement.
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2.4.1 Star Selection

The first step of utilizing the HSC star catalog is to select objects that are suitable for
radial kurtosis measurement. First, we apply the first 11 “basic flag cuts" in table 3 of
(54), and change the iclassification extendedness to 0 to include only non-extended objects.
These flags cuts ensure that the coadded images of the objects in our catalog do not include
artifacts such as exposure edges, bad pixels, saturation or cosmic rays. The iclassification
extendedness cut is meant to omit extended objects. While our sample may still include
small galaxies that are classified as non-extended, (I10]) showed that the classification works
well for objects brighter than ¢ ~ 24, which describes the star sample we are using.

We also determine the minimum signal-to-noise ratio (SNR) cut on the stars so as to
ensure the measurement of the radial weighted kurtosis has a reasonable statistical precision
for our purposes. To set a SNR threshold, we simulate stars with 10* noisy realizations of the
same profile with a certain SNR with GALSIM. We then measure the radial kurtosis of all
realizations to estimate the relationship between statistical uncertainty on radial kurtosis and
SNR. The results of this exercise suggest that to achieve a statistical uncertainly § B[p¥] <
0.1% in the radial weighted kurtosis, the SNR should exceed 800. Therefore, we set the
minimum SNR to 1000. The 0.1% threshold still leaves us with a reasonably-sized sample
while ensuring sufficiently high-precision measurements.

The final step in generating a star catalog is removing objects whose light profiles are
contaminated by light from other objects. Given the sensitivity of the radial kurtosis to
the outer part of the light profile, this step is particularly important. We do this using two
methods: removing double stars and removing blended stars. To remove double stars, we
detect them by scanning through the entire catalog of objects flagged as unique detections
with the idetect is primary flag using a k-d tree structure. With a k-d tree, we can detect
any two objects in the entire catalog that are located within some chosen tolerance (here we
choose 2 arcsec), and call them “objects with near neighbor(s)". We then remove any stars
with such near neighbor(s) detected from our star catalog.

To remove the blended objects, we utilize the parameter iblendedness abs flux, which
describes how much flux of the object is potentially from other objects, and set an upper
limit based on tests to determine when blending may be affecting the image enough to
noticably impact the second moments. We use the residuals (difference between PSF model
and moments measured from the image) of the second moment o, e; and es for this purpose.
In Fig. we show the PSF model residuals of stars in our catalog before applying a cut
to remove blended objects, binned by the blendedness of the stars. We can see that when
the blendedness exceeds 1073, the second moments of the bright stars measured from the
images differ noticeably from the moments of the PSF model. Therefore, we exclude stars
with iblendedness abs flux > 1073. We also notice a positive bias on second moment o
across all blendedness bins. This is likely connected to the brighter i-band magnitude of the
stars we have selected: (110) shows that brighter PSF stars tend to have positive do/o.

With these two methods, we remove stars that are too close to other (likely compact)
objects, or are contaminated by a potentially extended background light profile. Out of the
six fields in the HSC dataset, we chose to analyse a field with better-than-typical seeing,
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PSF Second Moment Residual vs. Blendedness
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Figure 2.2: Average second moments residual (comparing the moments of the PSF model to
those measured in the postage stamp image) for bright stars in the HSC survey, binned by
the blendedness of the star. When the blendedness is larger than 0.001, we see significant
residuals in the second moments. The y-axis is symmetric-log scaled with a linear threshold
= 0.003. The linear region is shaded.

Steps Criteria Number of Objects
1 Basic flags cuts 2.7 x 10°
2 Signal-to-noise > 103 8.0 x 10*
3 Blendedness < 1073 7.0 x 10*
4 Nearby object detection 6.8 x 10*

Table 2.3: The number of stars remaining after each operation in our star selection on the
HSC GAMA _15H field. The details and reasoning for the cuts are explained in Section [2.4.1]

since the better-seeing fields generally have worse PSF modeling quality (54), and are better
samples for testing the PSF model. We choose GAMA 15H, since it has the best seeing
among the fields that pass the nominal cuts on PSF modeling quality in (54)). The number
of stars remaining after each cut is applied to the catalog is shown in Table[2.3] At the end
of the selection process, we have ~ 68,000 star samples for investigating the PSF modeling
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quality.

We use the same flag cuts for stars as in (54); however, the SNR cut that we add to
the flag cuts results in selection of a star population that is brighter than that in (54). Our
selected stars have i-band magnitudes ranging from 18-20.5. As a result, the second moment
distribution is slightly larger than that in (54)), but the dataset can still serve the purpose of
this paper.

2.4.2 Analysis of HSC stars

After we select the stars to create the catalog, we retrieve postage stamp images of the
stars (which we consider as representing the true PSFs), and the model PSFs reconstructed
at the positions of the stars. We are using the coadded images rather than the original
individual exposures, to which CCD-level processing was applied. The PSF models are also
appropriately weighted coadditions of the individual exposure PSF models. We measure the
second moments and radial kurtosis of the stars and model PSFs to obtain a catalog of stars
with moments of their true and model PSF, as a function of their position on the sky.

cwrThe magnitude distribution of the selected stars is within but at the brighter side of
the i-band magnitude distribution for PSF stars in (54). We also inspect the second moment
modeling quality of our selected stars. We use

o — 0
f(Sg _ model true (2 10)
Otrue

to measure the size model quality. We bin our selected star by their i-band magnitude into
10 bins, and find that the average fs, values for each bin do not exceed the requirement on
fso for HSC, 0.004, reproducing the results of Fig. 6 in (54]).

This catalog enables us to determine the mean value and standard deviation of the true
and residual PSF kurtosis, where the residual PSF kurtosis is defined by Eq. (2.6).

For a given sample of galaxies used to measure the weak lensing shear, the shear field
depends on the position on the sky x; so does the kurtosis bias, and therefore the associatd
shear multiplicative bias. The observed shear §(x) = [1 + m(x)]g(x), where the g(x) is the
true shear. When |m| < 1, the observed shear correlation function is

(9(x)g(x +0)) =(1 + 2(m))(g(x)g(x + 0)).

The mean multiplicative bias of a galaxy ensemble (m) can be calculated by the average
multiplicative bias of the galaxies in it, (m) = (m(B[p™)])), when there is no other source
of systematics. Since the shape and shear biases are proportional to the kurtosis bias, as we
later find out, we can estimate the shear bias by taking the first term of Taylor expansion

om

m(B[p"]) ~ BB[p™]

B[pW]. (2.11)

The first factor in the equation above is determined primarily by the galaxy population and
the second factor by the PSF. So, they are independent random variables and the averages
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can be separately calculated. We have tested this linear approximation and found it to be
accurate at the level of ~ 0.1% of the measured shear bias, within the B[p®] range of HSC
data.

For a galaxy ensemble, based on the assumption of Eq. , (m) = (0m/OB[pW])(B[p")]).
Functionally, this means that we can simply calculate the average of B [p(4)] over the PSF
model across the survey, and average Om/9B[p] over the galaxy population. Those two
separate results can be combined to estimate an average weak lensing shear bias for galaxy
populations that resemble those that will be used for measurements of weak lensing surveys

such as LSST.

2.5 Results

In this section, we show the results of carrying out the measurements described in Sec. [2.3]
First, we show the results of the image simulation — simulations with simpler galaxy popu-
lations in Section and using the full COSMOS catalog in Section Next, we show
the results of analyzing the moments of the HSC PDRI1 star sample in Section [2.5.3] Finally,
we estimate the redshift-dependent weak lensing shear bias caused by errors in the higher
moments of the PSF in Section [2.5.4] combining the simulation and HSC results.

2.5.1 Single Galaxy Experiments

Here we show the results of controlled numerical experiments that test the impact of errors
in the higher moments of the PSF model on the shape measurement of a single galaxy.

First, we check the behavior of the shape measurement bias de = é —e caused by the PSF
kurtosis bias. We simulate a Gaussian galaxy convolved with a round Gaussian PSF, which
has kurtosis p® = 2, as shown in Table . The model PSF is generated using a Sérsic
profile with index slightly different from n = 0.5 (Gaussian case) as mentioned previously
in Section We simulate several galaxies with different ellipticities and find out that
the shape error de is proportional to the galaxy shape e, which means that the shape error
caused by kurtosis is a multiplicative bias. We also carried out a test with e = 0 to verify
that the additive bias on the shape is zero under PSF kurtosis bias, for the round PSF
configurations used in this experiment. Since the shape bias is multiplicative, in future
experiments regarding shape error, we only simulate one value of e = (0.28,0.0), i.e. the
intrinsic galaxy shape dispersion, and use de/e as the multiplicative bias.

In the second experiment, we simulate Gaussian galaxies with a single value of e and
o, and convolve them with a Gaussian PSF, of which the values are shown in row 1 of
Table We then measure the shape of the galaxy using the PSF model that has a
perturbing Sérsic index around 0.5, and with the same second moments as the true PSF,
explained in Section [2.3.5] Compared to the last experiment, we are changing the amount
of kurtosis error in our model PSF, to determine the relationship between galaxy shape
bias and PSF kurtosis error. In Fig. 2.3] we show that the multiplicative galaxy shape bias
for a single galaxy is linearly proportional to the kurtosis bias, for both re-Gaussianization
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and Metacalibration. In later image simulations, we focus quantifying dm/0B[p™®], so that
we can predict the shear bias for the HSC dataset by combining the simulation with the
measurement of B[p¥], as shown in Eq. . This constant of proportionality depends
on the ratio of the size of the galaxy to the size of the PSF (and, notably, is not monotonic
in that ratio). Our next goal is to explore the potentially complex dependency on the ratio
of galaxy-to-PSF sizes.

Gaussian galaxy, Gaussian PSF
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Figure 2.3: Here we show the galaxy shape bias as a function of PSF kurtosis bias for a
Gaussian galaxy and Gaussian PSF, with re-Gaussianization (dot-dashed) and metacalibra-
tion applied to re-Gaussianization (solid) for three different size ratios of the galaxy and
PSF. Dashed lines indicate the zero value for both plotted quantities. As shown, the galaxy
shape bias depends linearly on the PSF kurtosis bias, and depends in a more complex way
on the galaxy versus PSF size ratio. The kurtosis bias is defined in Eq. .

The results of exploration of the relationship between the galaxy shape bias and the kur-
tosis bias, expressed in terms of the derivative (9é¢/e)/(0B[p*")]), are shown in Fig. . In
this test, we simulate Gaussian galaxies cwrwith three parametric PSFs: Gaussian PSFs
(blue), Kolmogorov PSFs (orange), Moffat PSFs (green), with shear estimation via re-
Gaussianization (solid) and metacalibration (dot-dashed). The main parameters of this
experiment are specified in rows 2-4 of Table 2.2l In addtion, we also measure the shear
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Figure 2.4: This plot illustrates the relationship between the slope of the lines from Fig. [2.3
(ratio of galaxy shape bias to kurtosis bias) and the size ratio between the galaxy and
PSF. The colors of the lines indicate the functional form for the true PSF (indicated in
the legend). Dot-dashed lines show the results when using metacalibration, and the solid
lines show the results for re-Gaussianization. The stacked HSC PSF are only measured in
re-Gaussianization. As shown, the trends in the dependence on the galaxy versus PSF size
ratio are quite similar for all four PSF models and shape measurement methods.

estimation with a non-parametric PSF: the stacked star images and PSFs from the HSC
data. The galaxies have a shape of e; = 0.28 and e; = 0. We find that the shape biases
respond to different PSFs with a similar trend. We tested other cwrmoment-based shape
measurement methods, and we found that cwrthe responses from these shape measurements
follow the same trend as a function of the size ratio, though potentially differing in magni-
tude by a factor up to 2 for small galaxies. cwrln (92), shape measurement methods seem
to have very different responses to the HME. However, there are a few differences between
the two studies: (a) the tests in (92) are for a space-based telescope, while we study a
ground-based telescope; (b) (92) also explore more complicated PSF model residuals, while
we have controlled experiments that only have radial moment residuals; cwrand (c) the shear
measurement methods in (92) also have more fundamental differences from each other, while
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Figure 2.5: Left: The relationship between the ratio of galaxy shape bias to PSF kurtosis
bias and the galaxy-to-PSF size ratio, simulated with a Sérsic galaxy profile and Gaussian
PSF. Right: Same as the left panel, but for the ensemble shear bias (rather than galaxy
shape bias), measured using 90-degree rotated pairs and a Gaussian PSF. The measurements
in both panels are made using re-Gaussianization. As shown, both the galaxy shape and weak
lensing shear bias are only mildly dependent on the Sérsic index, with the minor differences
between the curves for different Sérsic indices being subdominant to the dependence on
galaxy-to-PSF size ratio.
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Figure 2.6: Left: Multiplicative bias per PSF kurtosis bias for subsamples of galaxies from
the COSMOS parametric catalog, binned by the size ratio R}, galaxy/RrpsF, including all
Sérsic indices, for two runs with PSF FWHM = 0.63 and 0.71. Right: The same quantities
as on the left, shown separately for three ranges of Sérsic index. The variation between the
curves with different Sérsic indices is significantly less than the variation with galaxy size, just
as for single galaxy simulations. The horizontal errorbars show the standard deviation within
each bin, while the vertical errorbars show the uncertainty on the mean value, generated by
bootstrap resampling from the fixed subsample of the COSMOS catalog 10* times.
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the shape measurement methods compared in this study are relatively similar.

Next, we compare the metacalibration results to those for re-Gaussianization; both are
shown in Fig. 2.4l cwrMetacalibration applied to re-Gaussianization has a similar results
as re-Gaussianization alone for the Gaussian PSF. However, for the Kolmogorov PSF, we
do see differences between the two methods of up to a factor of 2, despite the fact that the
qualitative trends with galaxy-to-PSF size ratio are similar.

In Fig. we also add complexity to the PSF model in the simulation, specified in
row 3 and row 4 of Table 2.2 We use a Kolmogorov profile as the true PSF, and the
double-Kolmogorov as a perturbed model PSF, again with preserved second moments. We
also use the Moffat PSF with 5y = 3.5 as the true PSF, and vary the 3 as the perturbed
PSF. This figure therefore provides a comparison among results with Gaussian, Kolmogorov,
Moffat PSF and stacked HSC PSF — in all four cases, with a Gaussian galaxy. We find that
compared to a Gaussian PSF, kurtosis residuals in the model for the Kolmogorov PSF and
Moffat cause slightly more shape bias given the same kurtosis bias, for larger galaxies. While
it may seem that the shape bias in the case of a Kolmogorov and Moffat PSF converges to
a positive constant, this is not the case: we have confirmed that the shape bias converges
to zero for sufficiently large galaxies with og/op > 20. It is expected that the results from
different types of PSF are different by a factor-of-a-few, since a fixed kurtosis bias corresponds
to different perturbations of the other higher moments. This is especially true for the real
stacked PSF, as kurtosis biases might be correlated with other higher-moments biases in real
data. However, the goal of this paper is to provide an initial order-of-magnitude estimate of
the impact of errors in the higher order moments of the PSF. At that level, all our results
show a consistent magnitude and dependence on galaxy and PSF size ratio, which points
to kurtosis bias as the most important higher moment for determining the weak lensing
multiplicative shear bias.

Next, we extend our results to greater complexity in the galaxy model by using Sérsic
profiles, which have one more parameter than Gaussian profiles. Since the galaxy shape
bias is multiplicative and is directly proportional to the PSF kurtosis bias, we present the
results in the same form as Fig. The parameters of this experiment are specified in row
4 of Table 2.2l The left panel of Fig. shows the results of simulating a series of Sérsic
profile galaxies with Sérsic indices n ranging from 0.5-3.5, and with galaxy-to-PSF size ratio
ranging from 0.5-3. We use the half light radius (R;) to define the size ratio between the
galaxy and PSF in this case. The Sérsic galaxy with n = 0.5 is simply a Gaussian galaxy,
and the result for that case is the same as in Fig. As shown, the Sérsic index plays a
relatively minor role in determining the galaxy shape bias for a given level of PSF kurtosis
bias. However, this result would not hold if we had plotted the results as a function of
second moment size, since galaxies with the same ¢ and different Sérsic indices have quite
different half light radii. If we use the second moment o as the scale parameter, the different
Sérsic index curves would unify at large size ratios (0gataxy/opsr > 2), but would be highly
discrepant for small size ratios. Since most of the galaxies that we are interested in have a
small size ratio, we choose to use the half light radius Ry, as the scale parameter.

Our final step in this section is to switch to measuring the ensemble weak lensing shear
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bias (rather than galaxy shape bias) due to errors in the PSF higher moments. We simulate
a galaxy with e; = 0.28 and its 90-degree rotated pair. Again, we check that the additive
bias is zero when g = 0. We then apply non-zero shear to check the multiplicative biases. In
the right panel of Fig. we simulate Sérsic galaxy pairs convolved with a Gaussian PSF,
with the shear of the 90-degree rotated pair measured as described in Section 2.3.2] The
shape measurement method used in this experiment is re-Gaussianization. This plot shows
that the ensemble shear bias induced by PSF kurtosis bias is nearly the same as the induced
galaxy shape bias, indicating that we can generalize the results from earlier in this section to
shear bias. We also test with Kolmogorov PSF, and receiving results cwrwith similar trend
to Gaussian PSF. In the rest of this work, we will focus on tests of ensemble shear recovery
with galaxy ensembles, using the ensemble shear multiplicative bias m.

2.5.2 Experiments with Realistic GGalaxies

Here we extend the results from Section [2.5.1] on weak lensing shear bias due to PSF model
kurtosis bias for individual galaxies (as a function of their properties) to consider a galaxy
population with a realistic distribution of galaxy sizes, shapes, and Sérsic indices. The
galaxy population we use is based on the COSMOS parametric catalog, the galaxy cut is
described in Section For the following tests we use a Kolmogorov PSF, run twice with
FWHM = 0.63 arcsec and FWHM = 0.71 arcsec, and the PSF model is a double-Kolmogorov
PSF as described in Section [2.3.5] We impose a cut on the resolution factor Rs, according
Section [2.3.4L The ensemble shears are measured by Metacalibration.

Before proceeding based on the assumptions from single galaxy experiments, we confirmed
the following conclusions from the previous subsection carry over to ensembles of galaxies
with varying sizes and shapes: the weak lensing shear bias generated by PSF kurtosis bias
is multiplicative (proportional to the shear) and proportional to the kurtosis bias. We test
these conclusion for shear |g| < 0.01 and for kurtosis bias |B[p¥]| < 0.004 . This enables us
to continue quantifying our results in terms of the multiplicative shear bias per PSF kurtosis
bias, or 9m/0B[p™)]. In the later simulations, both shear and kurtosis bias are kept constant
with (g1,92) = (0.01,0.0) and B[p™] = 0.0015. The vertical errorbars of the results in this
section is determined by the bootstrap resampling method discussed in Section [2.3.4] and
the horizontal errorbars are the standard deviation of the binned properties.

We want to confirm that the dependence of the ensemble shear bias on the size ratio of
galaxy and PSF still holds for the ensemble. On the left panel of Fig. 2.6 we bin the entire
catalog in equal number of galaxies by the half light radius size ratio of the galaxy over PSF,
and show the relationship between multiplicative shear bias per kurtosis bias and the size
ratio for both FWHM = 0.63 arcsec and FWHM = 0.71 arcsec. We show that the primary
determining factor for shear bias induced by PSF kurtosis bias is the size ratio between the
galaxies and the PSFs, as previously shown in the simpler experiments in Sec. We
further confirm that the results in Section [2.5.1] can be generalized to galaxy ensemble shear
by splitting the galaxies in the COSMOS catalog based on their Sérsic indices, shown in the
right panel of Fig. 2.6] For this test, we only plot the results from FWHM = 0.63 arcsec run.
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The three sets of galaxies have similar shear biases despite the fact that the Sérsic indices
differ significantly for the three groups — a similar conclusion as from Fig. (right panel).

Since weak lensing cosmology analyses typically involve tomography, i.e., binning by
redshift, we have a strong motivation to investigate what happens to the ratio of shear bias
and PSF kurtosis bias when binning the COSMOS parametric galaxies by other properties
such as redshift. The results of this experiment are shown in Fig. 2.7 We show that
Om/OB[p™] becomes more strongly negative at higher redshift. This can be explained in
terms of the trend in Fig. 2.1, which showed that galaxy sizes are smaller at higher redshift,
and Fig. , which showed that smaller galaxies have a more negative value of dm/dB[p™].
As (124)) noted, the inferred dark energy equation of state is relatively insensitive to a
constant multiplicative bias mg. Rather, redshift-dependent multiplicative bias m(z) can
more directly mimic changes in the dark energy model (105). This means that we need
to properly model the redshift-dependent shear bias caused by kurtosis to ensure unbiased
cosmological parameter constraints.

2.5.3 HSC PSF Modeling

So far, we have developed an understanding of the weak lensing shear bias for a given level
of PSF kurtosis bias, with increasingly complex galaxy populations. In this subsection, we
now change direction to assess the typical level of PSF kurtosis bias in one ongoing weak
lensing survey, using the HSC star catalog described in Sec. 2.4l Doing so will enable us to
assess the resulting level of weak lensing shear bias, and eventually place requirements on
PSF model quality for upcoming surveys such as LSST. Our assessment involves measuring
the moments of coadded i-band star images and the i-band PSF model at their positions
(see Sec. for more details).

In Fig. , we show maps of the true PSF radial kurtosis and the residual kurtosis B[p(*¥]
for one of the six fields in the HSC PDR1. The total range of variation in the truth and model
kurtosis is around 5%, with an average around 2.16. According to Table [2.1], the HSC PSF
typically has a slightly higher radial kurtosis than Kolmogorov and Moffat PSF, meaning
that it has relatively larger tails. There is some spatial structure in the true PSF kurtosis,
which is captured well by the PSF model. The kurtosis bias of the PSF model is typically less
than 0.5 per cent of the true PSF kurtosis, and also exhibits spatial structure. The average
kurtosis bias is (B[p®]) = 0.0011. In Sec , we show that the two point statistics of
weak lensing shear are only impacted by the mean multiplicative bias. This mean kurtosis
bias is the key result we need in order to estimate the mean multiplicative bias in shear. As
an aside to understand this result, we discuss the one- and two-point functions of these PSF
model moment residuals in Appendix [2.A] In general, the second moment properties of our
PSF samples matches what is found in (I10) and (54)).
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Figure 2.7: Ratio of weak lensing shear bias and PSF kurtosis bias when binning the COS-
MOS parametric galaxies by their photometric redshift. The effect can by explained by the
fact that galaxies at higher redshift tend to be smaller in apparent size, which results in a
more negative shear bias for a given value of PSF kurtosis bias. The horizontal error bar
shows the standard deviation within each redshift bin, while the vertical errorbar shows the
error on the mean value, generated by bootstrap resampling from the redshift bin 10* times.
The dashed-line shows the linear model specified by Eq. (2.12).

2.5.4 Redshift Dependent Bias

Our final step is to synthesize the results from Subsec.[2.5.2|and [2.5.3| to estimate the level of
redshift-dependent shear bias due to errors in the higher moments of the PSF for HSC-like
PSF modeling quality. According to The LSST Dark Energy Science Collaboration Science
Requirements Document version 1 (hereafter referred to as the DESC SRD;[00), the redshift-
dependent multiplicative shear bias should not exceed 0.013 for Y1 or 0.003 for Y10. This
requirement is determined based on a quantity mg defined by a linear parameterization,

m(z) = mo (M> + 1, (2.12)

Zmax
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Figure 2.8: HSC PSF kurtosis as a function of position in the GAMA15H field: true kurtosis
(top), and residual of the model B[p®] (bottom). Each point in the plots represents one star
we choose to measure kurtosis. The value for the truth and the model is the weighted radial
kurtosis p®, and the residual is the fractional error B[p®]. The results in the true PSF
kurtosis contain shot noise in the image. However, in Sec. 2.4.1] we show that stars with
SNR exceeding 10° have § B[p¥] < 0.001, thus our results here are not heavily affected.

where m is a constant multiplicative bias, which is removed beforehand and omitted in
the definition of the DESC SRD. Our prediction is based on the image simulation with
COSMOS-based Sérsic profile galaxies and a Kolmogorov PSF, and kurtosis bias measured
by HSC PSF. Notice that we approximate the impact of the HSC PSF model residuals in
simulations with a simple Kolmogorov PSF, which means we expect some uncertainty on the
order of tens of per cent for our prediction in this Section, as our previous results show this
is the level of difference between results with a Gaussian versus a Kolmogorov PSF. This is
an acceptable uncertainty for this initial pathfinder uncertainty to estimate the approximate
level of ensemble shear bias from errors in PSF higher moments.

More quantitatively, the multiplicative bias of a tomographic source bin can be estimated
by multiplying the average kurtosis bias (Subsec. by the ratio of shear bias to PSF
kurtosis bias at the redshift of the tomographic bin (Fig. . From this figure, we can
approximate mg using Om(z)/0B[p™] and the average PSF kurtosis bias (B[p®]) in HSC.
Setting zZmax = 2.4, Omo/OB[pW] = —0.46 £ 0.05. Adopting (B[p™]) = 0.0011 as in Sec-
tion [2.5.3] we get a redshift-dependent multiplicative bias parameter mg = —0.0005+0.0001.
However, the requirements on multiplicative shear bias mentioned above are meant to cover
all sources of shear biascwr, and there might be multiplicative bias caused by other higher
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moments as well. For consistency with the method of allocating the systematic error budget
in the DESC SRD, since there are many sources of systematic biases when estimating weak
lensing shear, we can only allocate ~ 1/3 of the above budget to errors in the PSF-related
systematics. Therefore, while this is a factor of four below the goal for Y1 results, it is
comparable to the error budget for Y10, motivating further improvements in PSF modeling
methodology and incorporation of tests of higher moments of the PSF model during the
course of the survey. Notice that this prediction is carried out with PSFEx, which is not the
planned PSF modeling algorithm for either LSST Y1 or Y10. Therefore, we expect different
modeling quality and shear bias in the actual LSST survey.

Our fitting to the redshift-dependent multiplicative biases is subject to cosmic variance
within the COSMOS dataset, as discussed in (120). This source of uncertainty will not be
reflected in bootstrap errorbars or other internal uncertainty estimates, which means that
the fit residuals may noticeably exceed the errorbars. However, this does not affect the
conclusions of this paper. Furthermore, our results are based on the shear response to the
Kolmogorov PSF, and can be different for the other PSF models we explored in Fig. [2.4]
Based on our run of the COSMOS dataset on the Moffat PSF, we observe a shift and a ~ 50%
change to the slope, compare to the redshift-dependent multiplicative biases dm(z)/0B[p™*)]
of the Kolmogorov PSF in Fig. 2.7 Considering that the shear responses to all kinds of
PSFs follow the same trend, we do not expect the redshift-dependent multiplicative biases
of them to be significantly different in the order-of-magnitude.

Finally, we emphasize that the galaxy population we adopt is not a fully realistic real-
ization of what LSST will observe at full survey depth. This introduces some additional
uncertainty on our predictions of shear bias due to PSF higher moments error. However, our
results illustrate at the order-of-magnitude level that errors in modeling the higher moments
of the PSF modeling are a non-negligible source of systematic uncertainty for weak lensing

with LSST.

2.6 Conclusion

In this paper, we carried out an initial exploration of the impact of errors in the higher
moments (beyond second moments) of PSF models on weak lensing shear measurement. We
used image simulations with parametric galaxies (at various levels of complexity) and PSF
models produced using GALSIM to study how errors in the higher moments of the PSF
impact galaxy shape measurement and ensemble weak lensing shear measurement. We used
images of stars and the associated PSF models in the HSC PDR1 data to measure the bias
in PSF model kurtosis for real PSFs estimated with PSFEX. Combining the simulation and
the HSC results, we found that the current level of errors in the cwrkurtosis of the PSF
model in HSC can cause ~0.05% multiplicative bias in shear measurement.

There are a number of simplifications associated with our work. In this paper, we only
quantified errors in the radial kurtosis of the PSF model. The resulting galaxy shape and
lensing shear systematics are purely multiplicative as a result (shear error proportional to
input shear) and are also directly proportional to the kurtosis difference between the model
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and true PSF. We found that the derivative of the linear relationship between shear bias and
kurtosis bias depends primarily on the size ratio of the galaxy to the PSF; this relationship
is not monotonic. We conduct tests of such effect on three different parametric PSFs and a
non-parametric PSF, and find similar trends among all results. Dependencies on the galaxy
Sérsic index and the galaxy shape measurement method are significantly weaker. cwrCom-
paring to the findings of (92)), we did not see significant shape measurement dependence for
the shear bias induced by errors in the higher moments of the PSF. Since the PSF higher
moment residuals in (92) are more complicated than our radial moments residual, further
simulation on other moments is needed to understand the difference. Furthermore, (92)
studies the PSF of space-based telescope, while we are focusing on ground-based PSF': the
difference between the base PSF might also induce a different response from certain shape
measurement methods. cwrLastly, the shape measurement methods compared in this pa-
per are less different than those compared in (92), which could easily explain the different
findings.

We used stars with high signal-to-noise ratio in HSC coadded images, together with the
PSF model at the star positions, to measure the errors in the radial weighted kurtosis of the
HSC PDR1 PSF models. We found that the kurtosis error of the PSF model is on average
~0.1 per cent, but can be as large as ~1 per cent of the true kurtosis value. The PSF model
kurtosis tends to be overestimated for smaller PSFs.

Finally, we used the COSMOS parametric catalog to simulate the impact of PSF model
kurtosis biases on weak lensing shear measurement with a galaxy population that has a re-
alistic distribution of galaxy sizes, shapes, and Sérsic indices. Our results suggest that the
resulting shear biases are redshift-dependent, primarily due to the shear biases depending on
the galaxy apparent size (which is redshift-dependent). The redshift-dependent multiplica-
tive bias my, defined in Eq. (2.12]), which can affect cosmological parameter constraints, is
estimated as being roughly 0.05%, at the level of Y10 requirements for LSST.

While our results show that the ensemble weak lensing shear bias caused by errors in PSF
higher moments are not a concern for the current generation of ground surveys, e.g. DES,
HSC and KiDS, it is large enough that future surveys such as LSST will need to address
this challenge. We see several implications from this study. First, the development of
future PSF modeling algorithms should include tests of the fidelity of recovering PSF higher
moments, rather than just the second moments. Second, future surveys should explicitly test
the modeling quality of PSF higher moments as part of their science verification process.
Finally, this paper also motivates future work on more detailed and rigorous analysis on the
shear bias associated with errors in the higher moments of the PSF model. One limitation of
the analysis carried out in this pathfinding work is that we are changing multiple moments
at a time, while using the radial kurtosis as a single proxy for the impact of higher moments.
A more rigorous future analysis requires consideration of individual higher moment and
analysis of their impact to weak lensing, as well as a guidelines for placing requirements on
the modeling fidelity for these moments.
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2.A Statistics of the HSC PSF

In Fig. we show the 1D histogram of PSF true p® and model kurtosis p¥ , and 2D
histogram of the true kurtosis p¥), its bias B[p¥], and their connection to the PSF size.
0.1% larger than the true PSF kurtosis in panel (a). The width of the true PSF kurtosis
distribution is slightly larger than the width of the model PSF kurtosis. A smaller PSF
generally has a smaller kurtosis. This is likely caused by a more substantial contribution
from the Airy PSF, for smaller PSFs, as Table suggests that Airy PSFs have a smaller
kurtosis than Kolmogorov PSFs. Also, when the PSF is small, the PSF model tends to
overestimate the kurtosis. Note that there is shot noise in the images we measure. However,
its impact on this figure is negligible, since our simulation in Sec. 2.4.1] shows that the
uncertainty in B[p™®] due to shot noise is < 0.001, and the effect on the average B[p™)] is
< 0.001/4/n, orders of magnitude smaller than our average bias measured.
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Figure 2.A.1: (a): 1D distributions of the true and model PSF kurtosis. (b): 2D distribu-
tion of the kurtosis bias B[p®)] and PSF size op; (c): 2D distribution of the true kurtosis
p¥ and the PSF size op; (d): 2D distribution of the kurtosis bias B[p¥] and the PSF size
op. For the three 2D distribution plots, the median values of the quantities on each axis are
shown with dashed lines. The color scales of the distributions are linear in the density.
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Abstract

Weak lensing is one of the most powerful probes for dark matter and dark energy sci-
ence, although it faces increasing challenges in controlling systematic uncertainties as the
statistical errors become smaller. The Point Spread Function (PSF) needs to be precisely
modeled to avoid systematic error on the weak lensing measurements. The weak lensing
biases induced by errors in the PSF model second moments, i.e., its size and shape, are
well-studied. However, (70)) showed that errors in the higher moments of the PSF may also
be a significant source of systematics for upcoming weak lensing surveys. Therefore, this
work comprehensively investigate the modeling quality of PSF moments from the 3'¢ to 6
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order, and propagate the PSFEX higher moments modeling error in the HSC survey dataset
to the weak lensing shear-shear correlation functions and their cosmological analyses. The
overall multiplicative shear bias associated with errors in PSF higher moments can cause a
~ (.10 shift on the cosmological parameters for LSST Y10, while the associated additive
biases can induce 1o uncertainties in cosmology parameter inference for LSST Y10, if not
accounted. We compare the PSFEX model with PSF in Full FOV (P1FF), and find similar
performance in modeling the PSF higher moments. We conclude that PSF higher moment
errors of the future PSF models should be reduced from those in current methods, otherwise
needed to be explicitly modeled in the weak lensing analysis.

3.1 Introduction

Weak gravitational lensing, or weak lensing, is the slight deflection of the light from distant
objects by the gravitational effect of nearby objects. Weak lensing leads to a mild change in
the object’s shape, size and flux, and it is a powerful probe of the dark matter distribution
of the Universe due to its sensitivity to the gravitational potential along the line of sight
(75; [76} [77). To date, the most promising way of measuring weak lensing is to measure
its coherent effects on the galaxy shape, i.e., the weak lensing shear. Weak lensing can be
caused by a nearby massive galaxy or cluster, i.e., as measured using galaxy-galaxy lensing
(e.g., 32 [45} 125)); or by the large-scale structure of the Universe, as measured using cosmic
shear (e.g., [I} 126}, 127).

The coherent galaxy shape distortions caused by weak lensing are currently measured
using millions, in the future even billions, of galaxies in large astronomical surveys. The
“Stage III” cosmological surveys (128) that started in the previous decade provided weak
lensing observation that moved the field forward substantially; these include the Dark Energy
Survey (DES; [79), the Kilo-Degree Survey (KiDS; [80), and the Hyper Suprime-Cam survey
(HSC; 8I)). In the near future, “Stage IV” surveys will begin to observe at greater depth
and /or area than the previous generation; the Stage IV surveys include the Vera C. Rubin
Observatory Legacy Survey of Space and Time (LSST; 48} 82), the Nancy Grace Roman
Space Telescope High Latitude Imaging Survey (49; 83)) and Fuclid (50]). These new surveys
will provide greater statistical precision in the measurements, and therefore demand greater
control of systematic uncertainties in weak lensing.

The Point Spread Function (PSF) is the function that describes the atmospheric turbu-
lence, telescope optics, and some detector effects (129} [130) on a point source image. PSF
modeling algorithms reconstruct the PSF at the position of the stars, and interpolate the
model to arbitrary positions on the image, e.g., PSFEX (84)), or to positions on the sky, e.g.,
Pirr (PSF in Full FOV; (85)).

The raw light profile of the galaxies is convolved with the PSF, changing their observed
shapes and sizes. Since measuring weak lensing signals relies heavily on measuring the co-
herent galaxy shape distortions, modeling the PSF correctly is fundamental for controlling
weak lensing systematics. Failure of the PSF model to represent the true PSF causes sys-
tematic errors in the inferred galaxy shapes and weak lensing shears. Previous studies have
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developed a formalism that cleanly describes how the errors in modeling PSF second mo-
ments, i.e., the shape and size, affect the galaxy shape measurement and weak lensing shear
inference (e.g., 86; 87} [88; [89). There is also a formalism that describes how the PSF second
moment errors further propagate to the weak lensing observables (shear-shear correlations),
using the “p-statistics” (88}, [89).

However, the aforementioned formalism, which is commonly used for quantifying the
quality of PSF modeling, does not consider the impact on weak lensing shear caused by
errors in the higher moments, i.e., moments with order higher than the second, of the PSF
model. In (92)), excess multiplicative and additive shear bias is found in addition to the
predictions of the second moment formalism, for Fuclid’s PSF. A previous study by (70)
(hereafter ZM21) explored this topic by carrying out shape measurement experiments, with
the radial kurtosis of the PSF intentionally mis-modeled, while preserving the PSF second
moments. They found that errors in the PSF radial kurtosis can induce a multiplicative
bias in the inferred weak lensing shear. They also found that for parametric galaxy models
based on the COSMOS survey, and for PSF radial kurtosis errors as in the HSC public data
release 1 (PDR1;169) PSF models from PSFEX (84)), the PSF radial kurtosis error can cause
a redshift-dependent multiplicative shear bias at the level of the LSST Y10 requirement (90),
thus motivating further research on this topic.

In this paper, we want to extend the understanding from ZM21 in several ways: (a)
include a wider range of PSF higher moments, which might induce both multiplicative and
additive shear biases; (b) propagate the biases into the common weak lensing data vector,
the two-point correlation function (2PCF) &, and to cosmological parameter estimates; (c)
include PIFF, which might provide some estimate of how algorithm-dependent the errors in
PSF higher moments are, and might serve as a better example of an algorithm that will be
used for LSST.

We introduce background material, including the weak lensing shear, PSF higher mo-
ments, and shapelet decomposition in Section [3.2] In Section we describe the HSC
datasets in this work for measuring the PSF higher moments, and show the results of the
PSF modeling quality on the second and higher moments for two PSF models, PSFEX and
P1rF. In Section we describe the methodology of single galaxy simulations, including
simulation workflow, galaxy and PSF profiles, and how we change the PSF higher moments
with the aid of shapelet decomposition. We also show the results based on these single galaxy
simulations. In Section we combine the results from Section [3.3| and [3.4] to further prop-
agate the systematics induced by PSF higher moment errors to the weak lensing 2PCF,
and its associated cosmology analyses by Fisher forecasting. In Section [3.6] we discuss the
implications of our results for weak lensing with future imaging surveys.

3.2 Background

In this section, we describe the background of this paper. In Section [3.2.1] we introduce the
formalism to quantify the weak lensing shear. In Section we introduce the method for
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measuring the higher moments of PSFs. We then introduce the radial shapelet decomposi-
tion, used as a basis in which we expand any given PSF light profile, in Section [3.2.3]

3.2.1 Weak Lensing

Weak gravitational lensing, or weak lensing, is the coherent gravitational distortion on the
background (source) galaxy flux, size, and shape by foreground (lens) objects. The lens
can be any massive object, e.g., a galaxy cluster, or a cosmic large-scale structure. Weak
lensing is a powerful observable because of its sensitivity to the matter distribution along
the line of sight (75} [76; [77)). In this paper, we are interested in cosmic shear, which is the
coherent distortion of the source galaxy shapes by the large-scale structure of the Universe,
resulting in a nonzero two-point correlation function of galaxy shapes. The distortion of the
galaxies by the weak lensing shear is determined by the reduced shear g = g1 + 792, which is
a combination of the shear and the convergence (33)). g; describes the shear along the x- or
y-axes, while g, describes the shear along an angle 7/4 defined by growing counterclockwise
from the x-axis on the image. Here the x-y axes are aligned with the local (RA, Dec) axes
on the sky.

For a cosmological weak lensing analysis, it is useful to measure the weak lensing two-point
correlation function (I31)), also referred to as the 2PCF. We can calculate the shear along a

chosen angular vector @ connecting two galaxies, with polar angle ¢, by g, = —R(ge %),
and 7/4 to 0 by g, = —Z(ge ?%). The shear 2PCF is computed by
£ (0) = (9:90)(0) £ (gx9x)(6). (3.1)

Since the weak lensing shear is isotropic (statistically speaking), the . (6) is integrated over
the polar angle ¢ and presented as a function of the angular distance 6 = |6).

The weak lensing shear 2PCF as measured through . is sensitive to the coherent change
in galaxy shapes due to large-scale structure (97), though it is contaminated by intrinsic
alignments (e.g., [62; [63; [64; [65), i.e., the correlated galaxy alignments due to local effects
such as tidal fields.

Estimating shear accurately is a key step in any cosmological analysis of weak lensing
data. Shear biases are commonly modeled as two terms, the multiplicative bias m and the
additive bias ¢ (116} 132), which enter the estimated shear as

g=(1+m)g+ec, (3.2)
where ¢ denotes the estimated shear. Systematic biases in the estimated shear must not
exceed a certain portion of the statistical error to avoid substantial biases in the reported
constraints on the cosmological parameters compared to those that would ideally be recov-
ered. We are particularly interested in a redshift-dependent multiplicative bias; as suggested
in (124)), a redshift-dependent multiplicative bias can bias the inferred dark energy equation
of state parameter from weak lensing. This is motivated since ZM21 found that the shear
response to the PSF higher moment errors depends on the galaxy properties, which means
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that the galaxy ensemble in each tomographic bin will respond differently to the same PSF
higher moment error. In (90), the redshift-dependent multiplicative bias is parameterized
by myg in

m(z) = mo (QZZA) +im, (3.3)
where m is a non-zero average multiplicative bias over redshift. Error budget requirements
are placed on the upper bound of the absolute value of multiplicative biases for weak lensing
surveys (54; R9)). Taking LSST Y10 as an example (90), the requirement on the redshift-
dependent multiplicative bias, which is the difference in m across the full source redshift
range, is 0.003. This motivates detailed studies on the connection between weak lensing shear
systematics and other factors, including the PSF higher-moment modeling error (ZM21 and
this work). Note that we only discuss the PSF-induced multiplicative shear biases in this
work, without other sources of redshift-dependent multiplicative biases (e.g., [55]).

3.2.2 Moment Measurement

In this section, we introduce the methods for measuring higher moments of the PSF. Firstly,
we define the adaptive second moment M for a light profile,

Mo Jdxdya? yTw(z,y) I(x,y)
P [dedyw(z,y) H(z,y)

(3.4)

where (p,q) = (2,0), (1,1), or (0,2). Here I(z,y) is the image intensity, where x = (x,y)
is the image coordinate with origin at the centroid of I(z,y). w(z,y) in Eq. is the
adaptive Gaussian weight, which has the same second moments as the light profile I(z,y)
(86), defined by

w(x) = exp[-x' M 'x]. (3.5)

The second moment size ¢ and shape e; and ey can then be calculated from the second
moments M using

o = [det(M)]7 (3.6)
M20 - M02
= 3.7
“ Moo + Moy (3.7)
2My
= 3.8
© Mo + Mo (38)

Here det(M) = Mgy Moy — M3, is the determinant of the second moment matrix. From
Egs. (3.6)—(3.8), we can solve for the weighted second moments M;; given the weighted
shape (e1, e2) and size o, which are measured using the HSM moduld'] (86; 113) in GALSIM
@3).

'https://galsim-developers.github.io/GalSim/_build/html/hsm.html


https://galsim-developers.github.io/GalSim/_build/html/hsm.html

CHAPTER 3 60

Based on the second moments, we also define a standardized coordinate system (u,v) in
Eq. ; this is the coordinate system where the profile I(u,v) has zero second moment
shape e; = e; = 0, defined in Egs. —, and second moment size 0 = 1, defined in
Eq. . The standardized coordinate system can be determined via a linear transformation
of the image coordinate system as follows:

x
(). o

u _1 (T MQO M11 a
et M 2 e
(U> (?/) (Mll MO?)
The standardized adaptive higher moment, M, is then defined by

Mo - [ dzdy [u(z, )] [v(z,y)] w(z,y) I(2,y)
P [dzdyw(z,y) I(z,y) '

For the n'® moments, p takes any value between 0 to n, and ¢ = n—p. We choose to measure
PSF higher moments in the standardized coordinate system (u,v) instead of (z,y), as such
quantities are scale and shape independent, assuming the PSF is well-sampled. The weight
w is applied to suppress image noise at large radii during the measurement process. The
denominator is the normalizing factor, such that the higher moments will not depend on the
amplitudes of the weight and the image.

Throughout this paper, we define the biases on the moment M,,, as

B[Mpq] = Mpq7model - Mpq,truea (311)

N

(3.10)

where M4 model is the moment of the model PSF, and M, e is the moment of the true PSF.
Note that we refer to the standardized higher moments as the “higher moments” throughout
this paper.

3.2.3 Shapelet Decomposition

The shapelet decomposition is an expansion of a two-dimensional image with the eigenfunc-
tions of the 2D quantum harmonic oscillator as the basis functions. This basis function is
also referred to as the Laguerre Function with Gaussian weight. This method was used to
expand the galaxy and PSF profile in (133)) and used to measure weak lensing shear in (134]).
For detailed explanations of shapelet expansions, see also (114). In this study, we use the
shapelet decomposition implemented in GALSH\/JE] (@3).

The shapelets basis functions are parameterized by a single parameter: the length scale
L. After determining the value of L for the image, the image can be decomposed into a series
of shapelet coefficients b, indexed by j and k. We also defined two more indices, i.e., the
order N = j + k and the spin number m = j — k. The PSF image I(r,0) can be expanded
by the basis functions of the shapelet coefficients bjy,

I(r,0) = % ijk: Yjk (%,9> : (3.12)
ik

Zhttps://github.com/GalSim-developers/GalSim
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Figure 3.2.1: The first 15 unique real and imaginary parts of the shapelet basis functions in
Eq. . We plot the first 5 orders of this basis, i.e., p+ ¢ = 0 through 4. The color scale
for each base covers [—A, A, where A is the maximum of the absolute value of that basis
function.

where 1, (%,9) is the Laguerre Function with Gaussian weight, i.e., the radial shapelet
basis in a polar coordinate system with radius r» and polar angle 6,

_1q ‘ 1 _ﬁ m
Vunlr6) = —= %rme”"ee s L (r). (3.13)



CHAPTER 3 62

10 : :
| | | :h
1072 II 1 1 EJII IJE- |
10—37 1 | E_ E
= ’ i i i
s o [H il H ' i i
@ ' ' i i
-10°} i i i i I
-102} | [ PSFExon PDRI ﬂ H
- 1 PIFF on RC2 i i
-1 L | R S R TR SN R SR \:\\\\\\:\\ L L
- R I RS
d g dd S i dSyfaadi g v o ds g

Figure 3.3.1: Box plot showing the PSF moment biases from the 2" to the 6" moments,
with the whiskers showing the 20 range (from 3rd to 97th percentile), the boxes showing
the interquartile range, and the bars showing the median. The PSFEX and PIFF results
are shown side-by-side. The y-axis is symmetrical log-scaled, with the linear region shown
in grey. Although PSFEX and PIFF were used to model two different HSC datasets, we
observe a comparable order of magnitude in PSF model residuals for the two methods.
However, PIFF’s median residuals on My, Moy, Mgy and Myg are a few times larger than
those of PSFEX. These are the main contributing higher moments to the shear biases, thus
motivating further development of PIFF.

The L,(Cm) (r?) is the Laguerre Polynomial. Fig. shows the first 15 basis images of 1,
that we used to decompose the PSF. For a given order N, there are 2N + 1 shapelet basis
functions. Due to conjugate pairings, N of the shapelet coefficients bj; are identical to by;.
Therefore, to expand a real image, we have N + 1 distinct shapelet basis functions for order
N that satisfy j > k.

To determine the length scale L, we carried out the following experiment: We decom-
posed the PSF with different length scales L; kept the 40 leading bj;xs of the shapelet series;
reconstructed the image using the first forty b;,; and measured the residual of this recon-
struction. We found that to minimize the absolute value of the residual of the reconstruction,
the length scale L should be set to the weighted second moment o of the PSF defined in
Eq. . This rule was found to be true on both the Gaussian and Kolmogorov profiles.
We therefore adopted this approach throughout this work.

3.3 Data

In this section, we introduce the data from the Hyper Suprime-Cam survey (HSC; B1) to
study how well current PSF models recover PSF higher moments. We inspected two datasets,
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one for PSFEX and one for PIFF. For both datasets, we used the coadded images of bright
stars as the true effective PSF, and compared them with the PSF model at the bright stars’
positions. The PSFEX and PIFF star catalogs are described in Sections |3.3.1] and [3.3.2]
respectively.  We describe the measurement results of the PSF higher moments error in

Section [3.3.3

3.3.1 PSFEX Dataset

The dataset for quantifying the modeling quality of PSFEX is the star catalog of the first
HSC public data release (PDR1;[69). The PSFEX model in this study was generated by
the HSC pipeline (I10) with a modified version of PSFEX (84); see Section 3.3 of (I10)) for
more details. We used all six fields in the PDR1 survey to inspect the PSF higher moments,
instead of just the GAMA 15H field as in ZM21. Our star selection process for the PSFEX
is detailed in Section 3.4.1 in ZM21, so we only summarize it briefly here.

We adopted the “basic flag cuts” from Table 3 of (54)), with ICLASSIFICATION _EXTENDEDNESS
set to 0 to identify non-extended objects. These flag cuts eliminate objects that are con-
taminated or affected by exposure edges, bad pixels, saturation or cosmic rays, and reduce
the number of selected stars to 1.1 x 107. We adopted a signal-to-noise ratio (SNR) cut
SNR > 1000 to reduce noise in the PSF higher moments measurement, which further re-
duced the sample size to 3.1 x 10°. The SNR cut was determined so that the statistical
uncertainty in the PSF radial fourth moments of the star images is < 0.1% (ZM21), avoid-
ing a scenario where the higher moments are dominated by the image noise. The i-band
magnitudes of the selected stars are between 18 to 20, a regime in which the correction
for the brighter-fatter effect (I10) is highly effective as shown in Section 4.2 of (54). The
SNR selections are only done for our PSF modeling inspection, not when running the PSF
modeling step.

ZM21 identified the need for a cut IBLENDEDNESS ABS FLUX> 0.001 to address the
fact that the moment measurements of blended objects are biased. In this work, that cut
reduced the sample size to 2.6 x 10°. Finally, we also excluded stars with a close neighbor
within 2 arcmin of their centroids using a k-d tree. At the end of the selection process, we
had 2.4 x 10° stars, around four times the amount in ZM21 since we used all six HSC fields.
The number density of the PSFEX star dataset is 0.62 arcmin~2. Examples of moment
residual maps for PSFEX are shown in Appendix [3.A]

3.3.2 PIFF Dataset

We measured the performance of P1rF (85) on the HSC data in order to compare with PS-
FEX. PIFF was used as the PSF modeling algorithm for the DES Y3 dataset and performed
better than previous DES PSF models, especially at modeling continuous trends across mul-
tiple detectors. PIFF has been run on the HSC Release Candidate 2 (RC2)P|, which consists
of two HSC SSP-Wide tracts and one HSC SSP-UltraDeep tract. We used version 1.1.0

3Detailed description of the RC2 dataset can be found in https://dmtn-091.1sst.io/v/DM-15448/.
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of PIFF. It modeled PSFs in the image coordinate system, instead of in the WCS coordi-
nates, with pixel scale equal to the native pixel scale (0.168 arcsec). The model kernel size
is 21 x 21 pixels. The PSF was interpolated with a second order polynomial. We used x?
outlier rejection with nsigma= 4.0 and max_remove= 0.05. We refer the readers to (85) for
a detailed explanation of these settings. The RC2 dataset is reprocessed biweekly using
the latest version of Rubin’s LSST science pipelines (123). We inspected the PSF modeling
quality on the two wide-field tracts, which correspond to an area of ~ 6 deg? (each tract of
the HSC data is roughly 3 deg ?).

The star selection differs from that used for the PSFEX dataset: we used the pre-selected
PIFF candidate stars with SNR> 1000, without the need for the blending flux and close-
neighbor cut. By this criterion, we had in total 11366 stars and PSF models to compare.
The number density of the PIFF dataset is 0.55 arcmin~!, about 13 per cent lower than that
for PSFEX. Examples of moment residual maps for PIFF are shown in Appendix [3.A]

3.3.3 Measuring PSF Higher Moment Error

Correlation Matrix (PSFEx) 1.00 Corre.laligl Matrix (PIFF) 1.00
0.75 0.75
+0.50 0.50
r0.25 r0.25
r0.00 r0.00
r—0.25 r—0.25
r—0.50 r—0.50
—-0.75 —-0.75
—1.00 —1.00

Figure 3.3.2: The correlation matrix of PSFEX (upper) and PIFF (lower) moments from the
274 to the 4" moments, where “t” denotes the true values of the moments and “r” denotes
the moment residuals.

We used the postage stamp images of the selected stars as measures of the true PSF. We
obtained the PSF models evaluated at the position of the stars, as the model PSF. We used
coadded star images, for which the PSF models are a weighted coaddition of the PSF model
in each exposure (110). We measured the 22 higher moments, defined in Eq. , from
the 3" to the 6" order with the method described in Section [3.2.2l We also measured the
weighted second moments with the HSM (113)) module of GALSIM.

We measured the moment biases B[M,,] by subtracting the star PSF moments M, true
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from the model PSF moments M, model, as in Eq. . In Fig. , combining the
measurements of the PSF higher moments for all of the selected stars in these datasets, we
show the distributions of the PSFEX and PIFF moment errors B[M,,| with box plots side
by side. The whiskers of the plot show the 20 ranges of the distributions, the boxes show the
interquartile ranges, and the bars show the median. We can see from the box plots that the
two PSF models have similar PSF second moment residuals, and the PSF sizes are positively
biased in both models, as observed for PSFEX in (54)). We listed the mean of the moment
residual (B[M,,]) for PSFEX and PIFF in Table [3.4.2]

We calculated the “bias fluctuation” field B[M,,](x) by

B[Myg)(x) = B[Mpq](x) — (B[Myqg](x))- (3.14)

We then used the two-point correlation function (2PCF) to measure the cross-correlation of
the bias fluctuations B[M,,|(x) and B[M,,](x),

€70 (8) = (B[Mpq)(x) B[M.,](x +6)). (3.15)

When p = u and ¢ = v, Eq. becomes the auto-correlation function of B [M,,](x). We
measured the 2PCFs of the PSF higher moment errors using TREECORR] (8).

Because of the relatively small area of the PIFF dataset, we only measured its one-point
statistics (mean, covariance matrix, etc.), not its two-point statistics. Therefore, we can only
compare PIFF with PSFEX at the early analysis stage, rather than propagating to the weak
lensing data vector contamination and biases in cosmological parameter estimates.

The version of PIFF used for this work produces similar order-of-magnitude PSF moment
residuals as PSFEX from the 2" to the 6" moments. However, its median residuals on My,
Moy, Mgy and Mg are several times larger than those for PSFEX, which is important because
those are the primary moments contributing to the shear bias. This finding is not surprising
because the implementation of PIFF integrated with Rubin’s LSST Science Pipelines has not
been thoroughly tuned, and in particular, none of its testing has focused on its optimization
for accurate recovery of PSF higher moments. The results for PIFF in Fig. motivate
further algorithm development and tuning, by providing additional metrics toward which to
optimize in addition to the 2°¢ moments. In Appendix , we show an apples-to-apples
comparison between PIFF and PSFEX on the RC2 dataset; the results further motivate the
optimization of PIFF toward minimizing PSF higher moment residuals.

In Fig. [3.3.2] we show the correlation matrix between the true PSF moments and their
residuals for PSFEX (upper) and P1FF (lower panel). We see a chequered-flag pattern in the
correlation matrices. The true moments with the same parity for both p and ¢ are usually
positively correlated, and likewise for the residuals. This results in a chequered pattern
within the same order n = p + ¢ — the (p,q) and the (p £ 2, ¢ F 2) moments are correlated
— as well as a bigger chequered pattern across the orders — between n and n + 2 orders,
though the latter cannot be seen in our plots, since we are only showing n = 3 and n = 4

‘https://github.com/rmjarvis/TreeCorr
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moments. There is an even larger scale pattern: the true moments and residuals for a given
(p,q) are typically anti-correlated with each other due to the impact of noise on the true
moments. We also observe a significant anti-correlation between “to” and “r04”/ “r40” for
PSFEX. This indicates that My, and M,y are preferentially overestimated in areas of the
survey with good seeing. This result is consistent with the findings of ZM21, but it is not
seen in the PIFF results because it does not perform oversampling for good-seeing images.
However, the correlation matrix of PIFF shows stronger anti-correlations between the true
and the residual moments, which suggests that the model is relatively unresponsive to the
true values.

There are some caveats regarding the results presented in this section: (a) Due to the
way that HSC PDRI1 reserves PSF stars randomly for each exposure, 97% of the stars in
the PDR1 dataset were used to generate PSF models in more than one exposure before the
coadding process (I10), so we are potentially underestimating the systematic uncertainties
from the PSF interpolation process. (b) The results in this paper may overestimate B[My,]
and B[Myo] compared to the real HSC cosmic shear catalog, as the anti-correlation between
B[My,] and B[Mjp] and seeing suggested that PSFEX severely overestimated B[My,] and
B[Myo] in good-seeing parts of the survey, which were eliminated from the shear catalog
(54). Later HSC releases (I35) showed that the updated HSC coaddition method using
the fifth-order Lanczos kernel did considerably better at modeling the PSF in good-seeing
regions than the third-order Lanczos kernel in the first data release. Therefore, the modeling
errors in the good-seeing fields are reduced for the later HSC three-year shear catalog (136]).
Given this resolution, we will not further investigate this particular issue.

3.4 Image simulation

In this section, we introduce the image simulations used in this study. The main purpose
of the image simulation is to understand the shear response to the PSF higher moments
modeling error, of which the methods and results are presented in this section.

We will briefly cover the parts that are similar to the image simulation process in Sec-
tion 3.3 of ZM21 and focus on the details that are different from the previous paper. The
general simulation workflow is introduced in Section [3.4.1], the galaxy profiles in Section [3.4.2]
In Section [3.4.3] we introduce our method of manipulating PSF higher moments by chang-
ing the coefficients of the shapelet decomposition, and the PSF profiles used in this work in
Section [3.4.4] We show the results of the shear response to the PSF higher moment errors
with image simulations in Section [3.4.5

3.4.1 Simulation Workflows

Fig. introduces the general image simulation workflow. The top part of the figure shows
the steps of the image simulation process for one parametric galaxy and PSF. We started
with a galaxy profile and its 90-deg rotated pair (I16), an approach we used to reduce
simulation volume by nullifying shape noise, for which the parameters will be introduced in
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Figure 3.4.1: The workflow of the image simulation for one parametric galaxy and PSF
model with one of the higher moment biased compared to the true PSF. The top part shows
this workflow, while the bottom orange box shows the process that generates the true and
model PSF.

Section|3.4.2l The two galaxy profiles were convolved with the true effective PSF, introduced
in detail in Section m it includes the convolution with a pixel response function (0.2
arcsec). The convolved profiles were then sampled at the centers of pixels, generating the
postage stamp images. The image set for the rotated galaxy pair was fed into the shear
measurement algorithm, which is the re-Gaussianization (86) method implemented in the
HSM module (I13) in GALSIM (93). We do not use Metacalibration (56;57) as ZM21 showed
that systematic biases in shear due to PSF modeling errors do not strongly depend on shear
estimation methods. We used the average of the measured shears for the galaxy and its
90- deg rotated pair as the shear estimate for a given PSF. Finally, the difference between
the two shear estimates Ag, measured by the true PSF and the model PSF, provides the
shear bias associated with the PSF higher moment bias B[M,,].

The additive shear response to the higher moment error M,, was estimated at g = 0 by

dcpg  Ag
OM,;  B[My]

(3.16)

To estimate the multiplicative shear bias generated by the PSF higher moment errors, we
introduced another shear ¢ = g + 0.01. Its estimated values ¢’ for the true and model PSF,
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and their difference Ag’, were used to estimate the multiplicative biases as

omy,  Ag —Ag
OM,,  0.01B[M,,]’

(3.17)

There are some general settings that apply to all of our image simulations: we used
GALSIM (93)) to render the simulated images, all of which are noise-free postage stamp

images with a pixel scale of 0.2 arcsec, similar to the pixel scale of the Rubin Observatory
LSST Camera (LSSTCam).

3.4.2 Galaxy Profile

Two types of galaxy profiles were used in this study. The simpler galaxies were simulated
as elliptical Gaussian light profiles. Gaussian galaxies were used in preliminary tests to
develop basic intuition about the shear biases induced by errors in the PSF higher moments.
The more complex galaxy model was a bulgedisc galaxy, consisting of a bulge and a disc
component. The bulge+disc model was used for more sophisticated tests that attempt to
represent a more realistic galaxy population as in the cosmoDC2 catalog (137).

The Gaussian profiles were parameterized by their size o and ellipticity (e, e2). We used
them for initial tests to understand the relationship between shear bias and PSF higher mo-
ment bias (linear or non-linear?), the type of induced shear bias (multiplicative or additive?),
and to determine which PSF higher moments actually contribute to weak lensing shear bi-
ases. The galaxy and PSF parameters for these preliminary single galaxy simulations are
shown in Table with results shown in Section [3.4.5] All base PSFs used in these initial
simulations were Gaussian profiles, except for the last row, which is a Kolmogorov PSF.

A more sophisticated galaxy profile we used is the bulge+disc galaxy, a classic model used
by many studies (e.g., 138, [139). The bulges and disks in this work have common centroids.
The bulge component was a de Vaucouleurs profile (140)), a Sérsic profile (T18) with n = 4,
which means the surface brightness is proportional to exp(—Rl/ 1), where R is the distance
from the centroid in units of its scale radius. The disk component was an exponential
profile, i.e., the surface brightness is proportional to exp(—R), or the n = 1 Sérsic profile.
Both components have independent size and shape parameters. The luminosity profile of
the components of the bulge+disc galaxy was governed by two parameters: total luminosity
and the bulge fraction (B/T'). The bulge+disc simulations allowed us to estimate the shear
response to error in the PSF higher moments as a function of galaxy properties, which is an
important input to the catalog-level simulations later in Section [3.5.3

3.4.3 Moment-Shapelet Relation

Before introducing the PSF profile, we need a way to generate light profiles that differ
in higher moments, introduced in Section [3.2.2] from the base PSF in ways that we can
specify. Unfortunately, we do not know an analytical expression for a basis that has a
one-to-one mapping with the higher moments. However, since the shapelet basis and the
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Figure 3.4.2: The moment responses for a Gaussian PSF. We only show the second to fourth
moments here, with index (p, ¢) in Eq. labelled in each box. We use ey, €2, and o to
represent the second moments. The color scale for each base covers [—A, A], where A is the
maximum of the absolute value of the basis function.

unknown moment response can be used to describe the same linear space, we can reconstruct
the unknown basis through linear combinations of the known shapelet basis, described in
Section

To do so, we defined the Jacobian matrix

oM,
Tpq gk = ob .qu
j

(3.18)

which is the generalized gradient of the moments M,,, with respect to the shapelet coefficients
bjr defined in Eq. . We ranked the shapelet coefficients and PSF higher moments
according to the orders in Fig.[3.2.1] and Fig. We then directly estimated the change in
moment AM,, given the change in all shapelet coefficients bj,

OM,,
C by

Abj = AM,,. (3.19)

Since bj, converges to zero at large j + k for Gaussian-like profiles including ground-based
PSFs, we were able to truncate the shapelet expansion at some finite order, making Abj;
and T}, i finite-sized vectors and matrices.
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To numerically measure T}, j; of the PSF with higher moment M,,,, we first decomposed
the PSF into a set of shapelet coefficients bj.. Then we perturbed V), = b, + Abj, and
measured the higher moment M;  after the perturbation. The Jacobian element was then
estimated by

/
T — g — Moo,
Abjy,

In Appendix [3.B] we show a visualization of the Jacobian matrix that describes how PSF
moments can be modified through changes in the shapelets coefficients.

In the next section, we introduce the PSF profiles in this paper, and describe how we use
the Jacobian T}, j; defined in this section to precisely change the PSF higher moments.

(3.20)

3.4.4 PSF Profile

In the image simulations, we created the true and model PSF based on a “base PSF”. We
considered two base PSFs: Gaussian and Kolmogorov. Note that the base PSFs do not
include the pixel response function, but the model and true PSFs do include it. The process
to create the true and model PSF is shown in the orange box in Fig. 3.4.1]

To change the PSF moments using the technique described above, we first rendered an
image of the base PSF including convolution with the pixel response function, and expanded
that image by the shapelet decomposition implemented in GALSIM (93]). We carried out the
shapelet decomposition up to order 10, which corresponds to determining 66 shapelet basis
coefficients. To test that the shapelets decomposition is effectively representing the higher
moments of the PSF profile, we confirmed that the fractional kurtosis error measured using
the adaptive moments of the shapelets-reconstructed PSF compared to the original image is
10~° for Kolmogorov and 10~Y for Gaussian, which is an acceptable precision for this study.
The kurtosis is a good quantity for comparing higher moments, since (a) it is a combination
of three moments (Myy, Mae, and Myp); (b) many other higher moments are zeros, and are
not suitable for comparing fractional differences.

After representing the true PSF as an order 10 shapelet series, we calculated the Jacobian
T that links the 66 shapelet coefficients with the PSF higher moments. The Jacobian is
defined by Eq. and estimated by Eq. . In this study, we investigated the higher
moments from 3' to 6" order, corresponding to 22 moments. Together with the three second
moments, the Jacobian is a 25 x 66 matrix. As an example, the Jacobian for the first 15
moments and first 15 shapelet modes is shown in Fig. 3.B.1]

Before describing how to use T' to construct images with precisely modified higher mo-
ments, we first define our notation. The true and model PSF are represented as vectors of
shapelet expansion coefficients b and b’. The corresponding moment vectors are M and M’.

Ideally, we only change one higher moment of the PSF at a time, by solving for Ab in
Eq. . However, because of the non-linearity of the moment-shapelet relationship, the
higher moments will not change exactly according to B[M] when we add b and Ab. There-
fore, we introduced multiple iterations until the target moment biases B[M] are achieved,
specified in Algorithm [ We defined AM as the difference between our target moment
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vector and the current moment vector, which is the quantity we want to minimize. We used

the L2 norm to quantify the magnitude of AM, i.e., ||[AM]||; = VAM’ - AM.

Algorithm 1: Moment Change
Initialize: b, T';
Target moment bias: B[M];
Target final moment vector: M’ <— M + B[M];
AM < BM];
while ||AM]||; > t, do
Solve TAb = AM for Ab ;

Generate new model PSF: b = b + Ab, measure its moments vector M :
Update the AM: AM «+ M' — M ;
Update Jacobian: T <+ 88—1%4

end

We used this algorithm to ensure that the moments of the new PSF model approach the
target moments M + B[M], so the new PSF model has moment biases that differ from those
of the true PSF by B[M]. We set the default threshold ¢, for the error in moment change to
be 1079, and the algorithm usually took less than 5 iterations to converge for Gaussian and
Kolmogorov PSFs. Note that we included the second moments in the moment bias vector
B[M] and set them to zero. In this way, we actively verified that the model and true effective
PSF have the same second moments.

Introducing one component of B[M] at a time enabled us to inspect the moment response
from second to sixth order by taking the difference between the images before and after one
moment is slightly biased, in Fig.[3.4.2] This also enabled us to quantify the impact on weak
lensing shear associated with errors in the PSF model for a specific moment.

3.4.5 Shear Response to PSF Higher Moments

In this section, we show the results of the image simulation and shear measurement experi-
ments described in Sections to [3.4.4] using Gaussian PSFs and 90- deg rotated galaxy
pairs. Using the single galaxy simulations, we can learn the following: (a) the form of the
shear response to PSF higher moment errors — are they linear, quadratic, or even more
complicated; and (b) the pattern of shear biases associated with PSF higher moment errors,
including magnitude of the biases and symmetry in the response to particular moments.
Item (b) is particularly useful as it permits dimensionality reduction to focus on only the
key PSF moments in later experiments.

ZM21 found only multiplicative biases associated with the radial kurtosis error of the
PSF model. In this study, we cannot assume that all biases will be multiplicative, since
we introduced other moment errors. In Fig. we show the additive shear biases due
to B[M,,] in the 3" and 4™ moments of the PSF model, with (p,q) shown on top of each
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Figure 3.4.3: The additive shear bias generated by errors in the 3" and 4" moments of the
PSF. Both the galaxy and PSF have constant sizes. The shear biases for odd moments are
well-fitted by a quadratic function, while those for even moments are linear. The quadratic
fits are shown as lines, while individual simulation results are shown by dots. The quadratic
terms for the 4™ moments are ~ 0, so the fitting functions appear to be linear. As indicated
in the y-axis labels, the order-of-magnitude difference in the additive shear biases between
the 3' and 4 moments is 103.
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Figure 3.4.4: Additive (top) and multiplicative (bottom) bias responses to errors in the 3
and 4" PSF moments as a function of the ratio of the galaxy and PSF half light radii
R%al JRPSE. We show results for both Gaussian galaxies and Sérsic galaxies with n = 3.0,
both with a Gaussian PSF. The size ratio is the primary factor determining the response,
and the Sérsic index of the galaxy is an important secondary parameter. As indicated in the
y-axis labels, the order-of-magnitude differences in the additive (multiplicative) shear biases
between the 3™ and 4'® moments are 103 (10?).
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sub-plot. The galaxy and PSF parameters are given in row 1 of Table B.4.1 Fig. 3.4.3
shows that the 4" moments induce shear biases that are linear in the moment residuals,
while 3'% moments induce shear biases that are non-linear in the moment residuals across
the range of higher moment residuals seen in real data. We found that these curves can fit
with a quadratic form. The shear response to the even moments is 2-3 orders of magnitude
higher than to the odd moments, at a fixed B[M,,]. We also note that the shear responses
to conjugate higher moments, such as M5 and My, have opposite signs. This is expected
since the two moments are related through a 90- deg rotation, causing an opposite effect on
the shear. The symmetries in the shear responses to PSF higher moment errors are further
discussed in Appendix . To reduce the size of the figure, we omitted the 5" and 6
moments, but they exhibit the same trends as the 3' and 4" moments in terms of parity
symmetry and different order of magnitude between shear biases for odd and even moments.

Next, to measure both additive and multiplicative shear biases, we used the same galaxy
and PSF sizes as in Fig. 3.4.3] but we varied the lensing shear applied to the galaxies
(specified in row 2 of Table . In Table , we show the multiplicative and additive
shear biases per unit of PSF higher moments biases my,/B[M,,] and c,,/B[M,,] for the
3'd to 6" moments, at the average PSF higher moment biases. Similar to Fig. , the
shear responses to the odd moments are at least two orders of magnitude smaller than the
responses to the even moments. All even moments generate multiplicative shear biases,
and they also strongly determine the additive biases. Notice that since the shear responds
nonlinearly to the odd moments, the values for those moments in Table [3.4.2] depend on the
PSF moment residuals. Based on the results from Section [3.3.3] we can simply estimate the
order of magnitude of m and c for a typical galaxy as being on the order of 1072 to 1072, A
more precise estimate of the systematic biases for ensembles of galaxies will be provided in

Section [3.5.3

ZM21 showed that the galaxy-to-PSF size ratio is the most important factor that de-
termines the shear response to the errors in modeling the PSF radial kurtosis. Here we
checked the sensitivity of the additive and multiplicative shear biases induced by individual
PSF higher moment errors to that size ratio. We explored this relationship by simulating
Gaussian and Sérsic galaxies with various sizes, specified in rows 3 to 6 in Table In
Fig. [3.4.4] we show the additive (multiplicative) shear biases in the upper (lower) panel, as
a function of the galaxy-to-PSF size ratio measured by the half light radii R&'/RPSF. We
can see that the size ratio plays an important role, but the Sérsic index also affects the shear
responses significantly, especially for large size ratios. This is consistent with the findings in
ZM21. In Fig.[3.4.4] we note that the shear responses of Gaussian galaxies to the PSF third
moments are non-monotonic, crossing the 0 reference line multiple times. The simulations
in Fig. [3.4.3] corresponded to a galaxy-PSF size ratio of 0.7, for which the third moment
responses of g; and g happen to have the same sign. As seen in Fig. the signs of
the shear biases for the third moment residuals in Fig. [3.4.3| are not representative of many
galaxy-to-PSF size ratios, and should not be over-interpreted. However, the small magnitude
of the additive shear biases caused by third moment modeling errors in Fig. [3.4.3] are more
generally applicable.
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Moment ?]'{f’[;q] B[C]\’Zq} (B[M,,]) x 103
0.3)  (0.009,0.001) _ (0.000,0.000) _ -0.21(0.24)
(1,2)  (-0.005,0.000)  (0.000,0.000)  0.13(-0.04)
(2,1)  (0.004,0.005)  (0.000,0.000)  -0.07(-0.02)
(30)  (0.002,0.000)  (0.000,0.000)  0.34(-0.09)
(04)  (2223,1.550)  (—0.255,0.002)  1.35(2.52)
(1,3)  (-0.216,-0.166) (—0.005,0.376)  -0.01(-0.06)
(2,2)  (1.940,5.367)  (0.000,0.000)  -0.19(-0.16)
(31)  (0.193,0.219)  (—0.002,0.377)  -0.0(-0.04)
(40)  (2.248,1.543)  (0.255,-0.002)  1.02(3.67)
(05  (0.002,0.000)  (0.000,0.000)  -0.96(0.86)
(14)  (0.001,0.000)  (0.000,0.000)  0.34(-0.13)
(2,3)  (0.003,0.005)  (0.000,0.000)  -0.2(0.09)
(32)  (—0.001,0.005)  (0.000,0.000)  0.33(-0.11)
(41)  (0.001,0.002)  (0.000,0.000)  -0.2(-0.13)
(500  (0.000,0.000)  (0.000,0.000)  1.5(-0.08)
(6,0)  (—0.360,—0.078) (0.110,—0.007)  3.42(11.77)
(5,1)  (0.477,0480)  (—0.003,—0.206) -0.05(-0.18)
(42)  (0.072,-1.266)  (0.105,0.028)  -0.16(0.49)
(33)  (0.029,0.012)  (0.064,—-0.413)  -0.02(-0.13)
(24)  (0.060,—1.95)  (-0.105,—0.028) -0.3(0.96)
(1,5)  (—0.479,0.478)  (—0.002, —0.206) -0.02(-0.18)
(0,6)  (—0.358,—-0.071) (—0.110,0.008)  1.6(16.72)

Table 3.4.2: Table of multiplicative and additive shear biases per unit of PSF higher moment
residuals, m,,/B[M,,| and c,,/B[M,,] , for the 3" to 6" moments. Since the shear biases
respond nonlinearly to the odd moment errors, values in this table are computed with the
average PSF higher moment error of PSFEX, shown in Section [3.3.3] We also list the mean
of B[M,,] of the PSFEX (PIFF) in the last column for reference.

In the next section, we will combine the findings in this section and in Section to
estimate the systematic error in weak lensing observable and cosmology analyses associated
with PSF higher moment errors.

3.5 Weak Lensing and Cosmology Analyses

In this section, we discuss the propagation of errors in shear to the weak lensing 2PCF,
and further into cosmology. We first provide a general derivation of our approach in Sec-
tion[3.5.1] and then describe an important practical issue — reducing the number of moments
— in Section [3.5.2] We introduce the mock galaxy catalog we use for estimating systemat-
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ics, the cosmoDC2 catalog (141)), in Section We further propagate the weak lensing
shear systematics to cosmological parameter analysis using Fisher forecasts as described in

Section [3.5.41

3.5.1 General Error Propagation

Our discussion of how errors in the PSF higher moments affect the weak lensing 2PCF is
based on two assumptions: (a) Each PSF higher moment may produce additive shear biases
¢pq and multiplicative biases my, on the observed shear, 4 = (1 + my,)y + ¢pq- (b) The total
multiplicative and additive bias mygta and cyopa produced by simultaneous errors in multiple
higher moments of the PSF can be expressed as the sum of the individual multiplicative and
additive biases m,,,,

Miotal & Y D Mg (3.21)
p q

Crotal X Y D Cpo (3.22)
p q

with uncertainties that are negligible for this work. The assumption (a) was illustrated
in Section , and (b) was confirmed with an image simulation test, where 100 galax-
ies sampled from cosmoDC2 were assigned random PSF higher-moments residuals. That
test showed that the absolute value of the differences between the two sides of Egs.
and for individual galaxies are < 10%. We have explicitly confirmed that for ensemble
shear estimation, the error due to assumptions of linearity is further reduced to < 2%. For
the multiplicative biases, since m,, < 1, we can ignore the high-order correlations, and just
focus on the first order expansion of the observed 2PCF of weak lensing shear. Additive
biases can be written as the sum of their averages and fluctuations, c,,(X) = copq + Cpg(X).
Combining the additive and multiplicative terms, we get the full expression for the observed
weak lensing 2PCF between bins ¢ and 7,

<’?Z’?]> :(1 + mtotal<zi) + mtotal<zj))<'7i7j> (323)

+ § § <épqéuv> + €0,pgC0,uv>
pq

uv

where Myoar(2;) is the multiplicative bias defined in Eq. (3.3). Throughout this work, we
ignored the spatial variation of the multiplicative bias, which as shown by (142)) can enter
the shear power spectrum at a lower level than the mean multiplicative bias.

As shown in Eq. , the additive shear bias terms have two effects. First, the observed
2PCF is shifted by a constant cp.Couy. Second, it is also shifted by the scale-dependent
auto-correlation function of the zero-mean additive bias field (¢(x)é(x + 6)). We explore the
impact of these changes in subsequent sections.
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3.5.2 Dimensionality Reduction for PSF Higher Moments

There are 22 correlated PSF moments from 3™ to 6" order, and the high dimensionality of
this dataset can pose challenges in understanding the main issues determining the weak lens-
ing systematic biases. Therefore, dimensionality reduction to only the PSF higher moments
that induce substantial shear biases is an important first step. Since this task is based on a
rough estimate of the importance of individual PSF higher moments, we used simple models
for this: both the galaxy and PSF in the dimensionality reduction process are Gaussian
profiles.

Multiplicative Bias
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Figure 3.5.1: An estimate of the weak lensing shear multiplicative biases, aimed at under-
standing which PSF higher moments are most important in generating multiplicative biases.
This plot is based on ensemble shear biases for a simulated COSMOS galaxy sample, given
the average error on individual higher moments of the PSF model in HSC PDR1. The orange
areas are the even moments and the white areas are the odd moments. Both components of
the multiplicative bias show the same set of 7 moments that contribute significantly. The
y-axis is symmetrical log-scaled, with the grey area being the linear region.
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Eq. shows that multiplicative bias affects the weak lensing 2PCF through its total
Miotal, Which is a summation over all m,,. We used the methods described in Section
to calculate Omy,,/OM,,(04a1) as a function of the galaxy’s second moment og,. To roughly
estimate m,q, we used the o4, of 44386 COSMOS galaxies with magnitude < 25.2, and
galaxy resolution factor Ry > 0.3 (later defined in Eq. as the input galaxy sizes. The
second moments were computed after convolving with the Hubble PSF, but before convolving
with our Gaussian PSF. The Gaussian PSF size was fixed at a Full Width at Half Maximum
(or FWHM) of 0.78 arcsec. Assuming the shear bias is proportional to the PSF moment
bias, the multiplicative bias should be proportional to the moment bias as well. Therefore,
we estimated the multiplicative bias (m,,) associated with B[M,,] as

1 & Omyp,
Mpg) = | — Ooal i B(M,,|), 3.24
< pq> <NizlaMpq( gl,)) < [ pq]> ( )
where the COSMOS galaxies are indexed by ¢, and (B[M,,]) is the average moment bias of
M,, in the HSC data, as described in Section [3.3.3] The method to estimate 9my,/0My,
was described in Section [3.4.1] We ranked the magnitude of the values of (m,,) to estimate
the importance of individual PSF moments. The importance is expected to be different for
g1 and g, given different spatial patterns are involved in different moments.

The resulting multiplicative biases from this simplified simulation are shown in Fig. [3.5.1]
Both the myota11 and Mmyetar 2 results indicate that PSE higher moments with both p and ¢
even (seven in total) determine the multiplicative shear bias. The total multiplicative biases
are Miotal,1 = 0.0017 and Myt 2 = 0.0019, dominated by the contributions of 7 PSF higher
moments.

The additive biases are more complicated as shown in Eq. , since we must calculate
the weak lensing 2PCF ¢, ,_ to understand the importance of the moments. We designed
the preliminary tests for the additive biases as follows: We used the PSF higher moments
and their errors as a function of position in the HSC PDR1 from Section [3.3] and for the
positions of bright stars in the PDRI1 fields, we simulated a synthetic Gaussian galaxy with
the average size and shape of the population from COSMOS catalog. We then measured
the shear biases of the Gaussian galaxies with the PSF higher moments biases at these
positions. We obtained the biases on the shear 2PCF directly from the shear bias at position

X, estimated by
Ocpq

Cpo(X) = B{M,,|(x). 3.25

pq(X) o, [Mpq) (%) (3.25)

As shown in Fig. , the additive bias on &, has a magnitude ~ 1077 on tens of ar-

cmin scales, which corresponds to a ~ 1 per cent additive systematics contribution at small

scales, and a few per cent at large scales, which is significant enough to potentially affect

cosmological inference. The sharp decrease at § ~ 100 arcmin suggests that physical effects

associated with the HSC field of view (FOV) are the cause of structural PSF systematic
biases. However, A¢_ is effectively zero.

Since each term in the additive biases on the 2PCF is associated with two different PSF

moments (Eq.[3.23)), the ranking of importance for the PSF moments is more complex in this
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Total Additive Bias
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Figure 3.5.2: The total additive bias on the weak lensing 2PCF £ for the simulated galaxies
used for dimensionality reduction. The expected shear-shear correlation functions & for our
fiducial cosmological parameters (across all redshift bins combined) are shown as dashed
lines. While A&, is positive on all scales shown, A¢_ is consistent with zero.

case. We designed two different ranking system: (a) the front-to-back approach and (b) the
back-to-front approach. In the front-to-back approach, we calculated the contribution
of each (cp,cuw) term to the total additive bias A(gg), by integrating over 6 from 1 to 200
arcmin. We ranked the contribution of a given moment M, by the total reduction in additive
bias if we removed all terms that involve M,,. After removing the highest-contributing PSF
moment, we performed the same calculation and removed the next highest-contributing
moment, until only one moment remains.

Similarly, for the back-to-front approach, we removed the least-contributing PSF mo-
ment first, after performing the same contribution calculation described above. We then re-
moved the next least-contributing moment, until we were left with only one moment. These
two approaches provided two rankings of the PSF moments that contribute from most to
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least to the weak lensing additive shear bias. We expect to obtain a reasonably consistent
set of PSF moments from these two approaches. If the two results were to disagree, the
conservative approach would be to use the inclusive set of moments considered important
by either method.

We ranked the moments separately for (g1g1) and (gags). In Fig. [3.5.3] we show the
results of executing the dimensionality reduction process for additive shear bias outlined in
Section In the upper and middle panel, we show the ranking of the PSF moments’
contribution to (g1g1) and (g2g2). We show both the “front-to-back method” and “back-to-
front method”, described in Section [3.5.2] The relative rankings given by the two methods
are slightly different, but the methods agreed about which moments we should discard. The
moments that contribute the most strongly are four of the five 4 moments: (4,0), (3,1),
(1,3), (0,4), and all seven 6" moments. We further separated those 11 moments into two
groups depending on which shear component they affect (¢; or go). The moments in the g;
(g92) group are those with even (odd) values for both p and ¢. In the bottom panel, we show
the additive biases on (g;¢1) and (g2g2) contributed by all PSF higher moments, compared
to just the contributions of the ‘g; group’ and the ‘gs group’. The plot shows that the ‘g,
group’ and ‘gy group’ moments dominate the total additive shear biases, and therefore we
can focus on just these higher moments.

After the dimensionality reduction of PSF higher moments, we only propagate the errors
on the reduced moment set to the lensing signal in the analysis in subsequent sections. In
other words, from this point on we only consider errors in 7 (11) PSF higher moments for
the multiplicative (additive) biases.

3.5.3 Mock Catalog Simulations

To connect PSF higher moment errors with weak lensing systematics, we need a realistic
galaxy catalog with galaxy properties and positional information. For this purpose, we used
the cosmoDC2 catalog (137), as it is designed to match the galaxy population LSST is going
to observe, with multiple validation tests against real datasets (143]), and has sufficient area
(~440 deg ?) for our purposes. We accessed the cosmoDC?2 catalog using GCRCATALOGSﬂ
(144).

We estimated the multiplicative and additive shear biases for each individual galaxy in
cosmoDC2 using two pieces of information: shear response to PSF higher moment errors,
and a synthetic catalog of PSF higher moment errors, both described below.

Shear Response

The shear response to errors in PSF higher moments, 0g/0M,,, depends on the galaxy and
PSF properties. We used a bulge-+disc decomposition model for the galaxy, and determined
the shear response as described in Section [3.4] To reduce the computational expense, we
carried out simulations for a grid of bulge+disc model parameters that cover the majority

Shttps://github.com/LSSTDESC/gcr-catalogs
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of the cosmoDC2 galaxies, discarding < 1 per cent (large galaxies that do not contribute
significant shear bias) outside of the grid. The free parameters in the grid are the half-light
radius of the bulge Ry, the half-light radius of the disc Ry 4, and the bulge fraction B/T,
and the grid is linear in all three dimensions. We used the same bulge and disc shapes for all
galaxiesﬂ We set the size and shape of the Kolmogorov PSF to be constant. The pixel size
is 0.2 arcsec, like that of the Rubin Observatory LSST Camera. The range of bulge-+disc
parameters in the image simulation is in Table |3.5.1]

Parameter Range
Bulge Ry 0.1 ~ 1.0 arcsec, interval = 0.1 arcsec
Disc Ry 4 0.2 ~ 2.0 arcsec, interval = 0.2 arcsec
Bulge-to-total ratio B/T 0.0 ~ 1.0, interval = 0.2
Bulge shape e; = £0.05,e5 = +0.05
Disc shape e1 = +0.16,e9 = +0.16
PSF FWHM 0.6 arcsec

Table 3.5.1: The parameters used in the bulge-+disc image simulation. The top three rows
define the parameter grid used for the simulation, while the bottom three rows are fixed
parameters. We use the average absolute values of ellipticity for the bulges and disks. The
=+ signs indicate that the ellipticities of the galaxies in the 90- deg rotated pairs have opposite
signs. The PSF FWHM shown is the size for the effective true and model PSFs.

After estimating a multiplicative and additive shear response to PSF higher moment
errors B[M,,| at each grid point, we then used multi-dimensional linear interpolation from
ScIPY[| to estimate the multiplicative and additive shear biases for galaxies in cosmoDC2
using this grid. The SCIPY routine performs a piece-wise interpolation in the 3-D parameter

spacd’|

PSF Moment Biases

Given the position for each galaxy in cosmoDC2, we need to assign PSF higher moment
biases that reflect the average PSF higher moment biases and their correlation functions in
the PSFEX dataset. Since cosmoDC2 is larger in area than any of the six HSC fields, it is
impossible to directly cover the cosmoDC2 area with HSC fields. Therefore, we generated a
synthetic PSF moment residual field B[M,,|(x) with the same statistical properties as the
PSFEX dataset, specifically the average moment residuals and auto- and cross-correlation
functions. The averages of the residuals are important for determining the multiplicative

60ur tests showed that using the same ellipticity for all galaxies generates <1 per cent error on the
prediction of the ensemble shear biases, while saving tremendous computational time.

"https://www.scipy.org/

80ur tests compared predictions for the ensemble shear bias of a sample of 100 simulated galaxies as
estimated with the linear interpolation and with direct image simulations. We found no significant numerical
difference between the two methods.
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shear biases, and the correlation functions are important for the additive biases (see Sec-
tion [3.5)).

As is described in Section , the biases of PSF moments M,, and M, are described
by the average of the moment biases: (B[M,,]), (B[M.y,]), and the correlation function of
the fluctuation £P%"¥(f). For the PSF moments that are of interest, we fit the correlation
functions in the PSFEX dataset to parametric models and Hankel transformed them to get
the angular power spectrum using SKYLENY’| (145), by computing

CPI — o / d6 0 €77 (9) Jo(4, ), (3.26)

where Jy(¢, 6) is the Bessel function of order 0. Assuming the residual field is a Gaussian field,
we generated the n-d correlated Gaussian field using these n(n+1)/2 angular power spectra.
We used the python package HEALPYIT_UI (146)), a python wrapper of the HEALP1X softwareE-I
(147), to generate a synthetic spherical harmonic decomposition ag, with £y, = 3072 and
—{ < m < {. With the ag,, we generated an n-d Gaussian Random Field (GRF) evaluated
at the centers of HEALPIX pixels with Ngq. = 2048, which corresponds to a pixel size of
1.7 arcmin. The details of the GRF generation process are described in Appendix [3.D] We
then added the average moment biases for the PSFEX dataset to the GRF fluctuations to
generate the total PSF higher moment bias fields. The PSF moment biases of any cosmoDC2
galaxy are the values for the HEALPIX pixel that the galaxy sits in. The disadvantage of this
method is that we cannot accurately evaluate (¢,,(x)Cu(x + 6)) for angular bins below the
HEALPIX pixel size, i.e., 0 < 1.7 arcmin, though those scales make a negligible contribution
to biases in cosmological parameters.

Galaxy Selection and Weak Lensing Measurement

The process outlined in the previous sections provided the galaxy responses 9g/0M,,, and the
correlated PSF higher moment biases B[M,,|(x) for each galaxy in the cosmoDC2 catalog.
However, not all of galaxies in this catalog will be used for lensing science in LSST. Similar
to the practice in ZM21, we cut on how well-resolved a galaxy is based on its resolution

factor Ry, which is calculated by
Tp
Ry=1—— 3.27
2 TI ; ( )
where Tp and 17 are the trace of the second moment matrix for the PSF and the galaxy,
respectively. The galaxy is well resolved when Ry — 1, and poorly resolved when Ry — 0.
Consistent with the approach used by the HSC survey (54)), we only retained galaxies with

Ry > 0.3, eliminating ~9 per cent of the sampld™? We excluded galaxies fainter than an

Yhttps://github.com/sukhdeep2/Skylens_public/tree/imaster_paper/

Ohttps://github.com/healpy/healpy

HUhttp://healpix.sourceforge.net

12Since we did not simulate each cosmoDC2 galaxy, we estimated their resolution factors by interpolation
from the galaxies on the grid.
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i-band magnitude of 25.3 for similar magnitude distribution as the LSST-‘gold’ samples (82]),
and those outside the bounds of our grid of size values in Table 3.5.1] The lower limit of
the size cut did not exclude any galaxies after the resolution factor cut, and the upper limit
excluded ~ 1 per cent of the galaxies. After the cuts, the total number density of the catalog
is 31.8 arcmin~*.

The bias on the 2PCF of the weak lensing shear A{,,_ was measured by

A, () = (g'(2)d (x + 0)) — (g'(2)g (z + 0)), (3.28)

where ¢ and j are the tomographic bin index. In our measurement, we split the galaxies
based on their true redshifts into three tomographic bins, centred at 0.5, 1.06, and 1.85. The
ensemble biases on the weak lensing 2PCFs Af’ij /_(#) were measured using TREECORR (8).
In the next section, we use Fisher forecasts to understand the impact of these shear biases
on cosmological parameter constraints.

Systematics on Shear 2PCF

In Fig.[3.5.4] we show the total multiplicative biases of the cosmoDC2 galaxies in redshift bins
after including all relevant PSF higher moment errors. We used a quadratic function to fit the
10 data points, and overplot the best-fitting curve as the dashed line. As suggested by (124)),
a linear form for the redshift dependence of the multiplicative biases affects the estimate of
the dark energy equation of state using weak lensing. The linear coefficient of our best-fitting
m(z) suggests that mg in Eq. is 0.0015, which is about half of the error budget in the
LSST Y10 requirement (90). Since the linear term of m(z) can potentially cause significant
cosmological parameter biases, and the impact of the quadratic term is unclear, we carried
out a Fisher forecast for the impact of the redshift-dependent multiplicative biases, defined
in Eq. (3.3)), on the inferred cosmological parameters, using the full quadratic m(z).

For the additive biases, we measured the difference in the weak lensing 2PCF, i.e.,
ALy =2 0 2w (Cog(X)Cun (X + 0)) + €o,pgCouv, derived in Eq. (3-23). In Fig. , we show
the additive biases A&, , with galaxies split into three tomographic bins. Similar to the pre-
liminary test, the additive biases on £, are positive, with magnitudes increasing at higher
redshifts. A&_ is consistent with zero everywhere. We parameterized A¢, as a double-
exponential function, A&, = ae*1? + aze2?, as shown in orange.

In the next section, we propagate the estimated multiplicative and additive on the shear
2PCF, parameterized by the double-exponential function, to the cosmological parameter
analysis using Fisher forecasts.

3.5.4 Fisher Forecast

The goal of assessing the impact of PSF higher moment errors is to quantify their impact
on a cosmological analysis using weak lensing shear, assuming that they are not explicitly
accounted for in the analysis through modeling and marginalization. Since we only need an
approximate estimate of the magnitude of induced cosmological parameter biases, we carried
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out a Fisher forecast on shear-shear data with 5 tomographic bins for the full LSST dataset
(Y10).

In practice, we computed the Fisher information matrix elements I;; using the following
equation: .
8C£ COV_lﬁ —+ 6ij(0iaj)_17 (329)
Ipi Ip;
where i and j are indices of the vector of parameters p (including both cosmological and
nuisance parameters), Cy is the angular power spectrum of the cosmic shear, and Cov™! is
the inverse covariance matrix. The prior on each parameter p; was added to its diagonal
element in the Fisher information matrix as 1/0?, where o; is the standard deviation of
the Gaussian prior. We used the DESC Science Requirements Document (SRD) covariance
matrix (90).

The forward model in this forecast includes 7 cosmological parameters (€2, the matter
density, €2, the baryonic matter density, h the Hubble parameter, n, the spectral index, the
power spectrum normalization parametrized as og and the dark energy equation of state
parameters wy and w,), 4 intrinsic alignment (IA) parameters of the non-linear alignment
model (NLA;[I48)), i.e., the IA amplitude Ay, redshift-dependent power-law index 7;, redshift-
dependent power-law index at redshift z > 2 7, and luminosity dependent parameter .
The Fisher forecast code and setup was adapted from and explained more thoroughly in
Almoubayyed, et al., in prep. The fiducial values and priors of all parameters are shown in

Table B.5.2

Iz'j =

Parameter Value Prior ¢ Parameter Value o

QO 0.3156 0.2 A, 50 2.0
o3 0.831  0.14 m 0.0 2.0
QO 0.049  0.006 ™ 0.0 2.0
h 0.6727  0.063 38 00 20
N, 0.9645 0.9645

Wa 0.0 2.0

wo 1.0 0.8

Table 3.5.2: The fiducial values of and priors on the cosmological and intrinsic alignment
parameters we use as the baseline of the Fisher forecasting.

Derivatives of the angular power spectrum with respect to these parameters were taken
using numdifftools (149) with an absolute step-size of 0.01, which was validated to be
stable through a convergence test in Almoubayyed, et al., in prep, and for the cosmological
parameters, was also shown to be stable in (I50).

The C, values were computed in 20 ¢ bins, consistent with the binning used in the
DESC SRD, using the Core Cosmology Library (I51)). The additive shear 2PCF biases for
the tomographic weak lensing signal for redshift bins ¢ and 7 measured in cosmoDC2 were
parameterized by

AEY(0) = e+ aje (3.0
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where the parameters aij , aéj , s’ij , and sgj are linear functions of z; + z;, the sum of the mean
redshifts of the tomographic bins being correlated. This fitting function was empirically
selected based upon visual inspection, and all fractional fitting residuals are within 3% of
the true values. Using the fitting function in Eq. enables us to calculate the 2PCF
additive biases for any tomographic binning.

The model for the additive biases associated with PSF higher moment errors has in total
8 parameters. The multiplicative biases were modeled for each tomographic bin, using a
quadratic function to fit m(z). Our model for the 2PCF with multiplicative biases is

V= (1 m'(2) + m? (%))€Y, (3.31)

where ffﬂ and 52 are the observed and true cosmic shear 2PCFs. Since the multiplicative
shear biases for individual bins were determined from a quadratic fitting formula, only 3
parameters are needed to model the multiplicative biases. The 2PCF additive biases for
the 15 tomographic bin-pairs were calculated using the best-fitting parameters for the linear
functions of z;4+2;. Next, they were Hankel transformed to obtain biases in the angular power
spectra, ACy. The forecasted biases on the cosmological and intrinsic alignment parameters
p; were calculated using (152)
-1 aCéT -1

Blp;] = ;(1 )ij o, Cov 'AC,. (3.32)
We compared the bias Blp;] on each parameter with its forecasted lo uncertainties from
the Fisher matrix formalism in order to determine the relative importance of the system-
atic biases on cosmological parameter constraints due to PSF higher moment errors, if not
corrected or removed.

In Fig.[3.5.6] we show the cosmological parameter shifts induced by failure to account for
the additive shear biases caused by PSF higher moment residuals when interpreting cosmic
shear measurements at the level of LSST Y10 (90). In this forecast, we marginalized over
the intrinsic alignment parameters Ay, 3, 7, and 7. The shifts in cosmological parameters
Blp;] caused by errors in the PSF higher moments correspond to ~ 60 to ~ 100 per cent of
their 1o uncertainties.

Next, we applied redshift-dependent multiplicative biases m(z), shown in Fig. to the
cosmic shear &, in the Fisher forecasts. For LSST Y10 (90), we found that these multiplica-
tive biases only shift the cosmological parameters by a few per cent of their 1o uncertainties.
As discussed in Section , the linear coefficient of m(z) suggests that we have my = 0.0015
in Eq. , which corresponds to around 50 per cent of the systematic error budget for this
parameter. This prediction overestimates the impact of the redshift-dependent multiplica-
tive biases on the cosmological parameter estimates compared to our Fisher forecasts. The
most likely reason for this finding is that our m(z) is dominated by the quadratic term rather
than the linear term, and therefore the redshift-dependent multiplicative shear bias is less
degenerate with structure growth than the linear shear bias in Eq. (3.3).

We repeated the Fisher forecast analysis for LSST Y1, incorporating differences in its
redshift distribution and covariance matrix. The LSST Y1 forecast yielded a larger o for
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all of the parameters p;. For the additive biases, our analysis predicted that the average
| B[pi]|/o for LSST Y1 is 0.21, compared to 0.73 for LSST Y10, over the parameters that the
cosmic shear constrains, i.e., €2,,, wp, w,, and og. For the multiplicative biases, our analysis
predicted that this average | B[p;]|/o for LSST Y1 is 0.039, compared to 0.062 for LSST Y10.
In general, the PSF higher moment errors affect the results for LSST Y1 less so than LSST
Y10, but they still must be accounted for in the Y1 analysis, if the PSF modeling is not
improved.

In summary, our Fisher forecast analysis showed that the PSF higher moment errors of
PSFEX as applied to HSC PDRI1 (if not reduced in magnitude or marginalized over in the
analysis) can cause up to a 1o shift in the cosmological parameter estimates in an LSST Y10
cosmic shear analysis. This result is dominated by additive biases; the multiplicative biases
only shift the estimated cosmological parameters by ~ 0.1¢ according to the Fisher forecast.

3.6 Conclusions and Future Work

In this paper, we have presented the results of a comprehensive study of the weak lensing
shear biases associated with errors in modeling the PSF higher moments (beyond second mo-
ments) for ground-based telescopes, following the previous path-finding paper that identified
the potential for non-negligible weak lensing systematics due to this effect for LSST (ZM21).
We have quantified the additive and multiplicative shear biases due to errors in the 3™ to
6" moments of the PSF, including 22 moments in total, including estimating the typical
magnitude of these errors when using current PSF modeling algorithms, and propagating
them to the impact on cosmological parameter estimation.

To carry out this study, we developed an iterative algorithm that uses a shapelet expan-
sion to modify individual PSF moments in our image simulations while preserving the other
moments. Using this approach, we measured the multiplicative and additive shear responses,
Omyq/OM,, and Oc,y/OM,,, to the individual PSF moment errors. We identified trends in
these quantities with the galaxy-to-PSF size ratio and the Sérsic index of the galaxy. The
behavior of the shear responses can be summarized as follows:

1. Given the typical magnitude of modeling errors in PSF higher moments, the amplitude
of the shear biases due to errors in the odd moments of the PSF is 2-3 magnitude smaller
than those caused by the even moments, which means that they can be ignored.

2. For the even moments, the multiplicative and additive shear biases are linear functions
of the moment biases B[M,,], and the responses primarily depend on the galaxy-to-PSF
size ratio and Sérsic index.

3. Other galaxy parameters, e.g., bulge fraction B/T and galaxy shapes, play a more
minor role in determining the shear biases due to PSF higher moment errors.

As an example of the current state of the art, we have measured the modeling quality of
the PSF higher moments with two different PSF modeling algorithms (PSFEX and PIFF)



CHAPTER 3 38

applied to the HSC survey dataset. We used high-SNR star images as the true PSF, and the
interpolated PSF model at the stars’ position as the model PSF. To focus on the impact of
errors in the PSF higher moments, we measured the true and model PSF higher moments
in a regularized coordinate system, where e; = e5 = 0, and the second moment ¢ values are
the same for the model and true PSF. Overall, the PSF modeling quality is comparable for
these methods. Our findings suggest there is value in further tuning and optimizing the PSF
modeling performance for the 4" and 6., moments for future versions of PIFF.

To reduce the dimensionality of the higher moment data vector and develop a basic
understanding of the impact of the PSF higher moments on weak lensing, we began with
preliminary tests. We put an artificial Gaussian galaxy at each HSC bright star position to
determine the leading PSF higher moments that affect shear measurement. Through these
tests, we put 6 (5) moments into ‘g; group’ (‘g, group’), which generate additive biases on
g1 (g2). These 11 moments also include the 7 leading moments that generate multiplicative
shear biases.

We then used the mock galaxy catalog cosmoDC2 to propagate PSF modeling errors to
the weak lensing shear 2PCF. We used Gaussian Random Field to generate realizations of
PSF higher moments error of the 11 aforementioned leading moments, based on their means
and correlation functions measured in the HSC PSFEX dataset. We adopted the bulge-+disc
model that cosmoDC2 provides, and interpolated the shear bias for each galaxy based on
their bulge size, disk size, and B/T ratio. We subdivided the cosmoDC2 galaxies into three
tomographic bins to measure redshift-dependent shear biases, and found that PSF higher
moment errors only generate non-zero biases in £,.. Both the multiplicative and additive
biases are redshift dependent, as they all depend on the galaxy property distributions at
that redshift.

Finally, we have propagated the PSF higher moments error to systematic biases in inferred
cosmological parameters using Fisher forecasting. We find that additive shear biases due to
PSF higher moment errors can cause a 1o systematic shift on key cosmological parameters,
such as §2,,, og and wy, at the LSST Y10 level — implying that either PSF higher moment
errors must be reduced from current levels for LSST Y10, or this effect must be explicitly
modeled in the cosmological parameter analysis. In contrast, the multiplicative shear biases
only cause cosmological parameter shifts of at most 0.1¢. The forecast shows that the impact
of the PSF higher moment errors on LSST Y1 is smaller than that on LSST Y10, but the
effect is still not negligible even for Y1.

This work motivates several future studies:

e The results of this paper imply that future surveys, including LSST and the High Lat-
itude Survey of the Roman Space Telescope, need to design null tests to ensure that
the additive shear biases due to PSF higher moment errors do not cause an unaccept-
able level of contamination of the weak lensing shear data vectors. Requirements on
PSF higher moment modeling quality, and /or mitigation methods, are needed for these
surveys to recover credible cosmological constraints from the weak lensing shear data.

e Modeling the PSF higher moment residuals is needed in the cosmological analyses.
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By cross correlating PSF higher moments residual with the estimated shear, one can
measure the systematics in 2PCF associated with the PSF higher moments error, and
marginalize over it in the cosmological analyses. However, the high dimensionality of
this source of systematic uncertainty remains challenging, even though this work has
reduced the dimensionality by a factor of 2, encouraging future development.

e This work also motivates the inspection of PSF higher moment modeling quality to
drive the further development of new PSF modeling algorithms. This includes in-
specting whether the reconstruction, interpolation, as well as the coadding process
can generate errors in the PSF higher moments. Careful attention to this issue could
greatly simplify the points mentioned above about modeling the impact of this system-
atic in future surveys. Because of the size dependence we find in both the additive and
multiplicative biases, we recommend further development in redshift-dependent addi-
tive and multiplicative biases PSF systematics modeling in the cosmological analyses
for the cosmic shear.

3.A Moment Residual Maps in HSC

In this appendix, we show the moment residual results that are not included in the main
text. In Section [3.A.T] we show two maps of PSF truth and residual in the HSC PDR1 data.
In Section [3.A.2] we show the PSF residual distribution in the HSC RC2 dataset comparing
PIFF and PSFEX.

3.A.1 PSF Residuals by Fields

In Fig.[3.A.1] we show two examples of the PSF moment maps that we measure in the 6 HSC
fields. We show maps for the true moments and the residual B[M,,]. We can see that the
true PSF higher moments and their residuals clearly have real spatial structure, as is found
in ZM21 for the radial kurtosis. The residuals are both correlated with the true moments,
showing that PSFEX performs differently depending on the true underlying PSF, which
suggests that one opportunity for improvement in future algorithms is greater performance
stability. Comparing to figure 1 in (54)), we observe that the better seeing parts of the area
have PSF higher moment biases that are higher than other areas, especially for the 4™ and
6™ moments. Many of these good-seeing areas are eliminated from the HSC first-year shear
catalog, described in section 4 of (54)), due to them failing various PSF modeling tests. This
is confirmed both visually and by the correlation matrix in Fig. for PSFEX.

3.A.2 Comparison between PIFF and PSFEX in RC2

In Figure [3.A.2] we show an apples-to-apples comparison between PIFF and PSFEX on the
RC2 dataset. This is in addition to the comparison made in Section [3.3.3] Due to their
settings, PSFEX and PIFF have opposite signs in many key moments for the weak lensing
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systematics. However, PSFEX shows lower moment residuals compared to PIFF. This
further motivates the development and optimization of PIFF, which when properly tuned
should improve in performance.

3.B Shapelet-Moment Relation

In Section we explained that the key to changing the PSF moments through a shapelet
decomposition is to compute the Jacobian matrix using Eq. (3.20). In Fig. 3.B.1] we show
an example of the Jacobian matrix 7" for PSF higher moment errors B[M,,| with respect
to the shapelet modes b;;, for a Kolmogorov PSF. There is a block diagonal structure that
shows the PSF second moments depend on the 4% to 5 shapelet modes. The PSF third
moments depend on the 6" to 9" shapelet modes. The PSF fourth moments depend not
only on the 10*" to 14" shapelet modes, but also on the shapelet modes that determine the
second moments. This means that the n'® PSF higher moments basis can be approximately
decomposed into shapelets components with the same order n.

With the Jacobian matrix shown in Fig. and the Algorithm [I we modify the
individual PSF higher moments with moment error threshold ||AM]||, = 1075. This precision
is sufficient for exploring systematic shear biases associated with errors in the PSF higher
moients.

3.C Symmetry in the response to PSF higher moments

In Fig. 3.4.3] it is clear that the shear response to the PSF higher moments exhibits sym-
metries among the different higher moments. In this section, we explore and explain this
symmetry. We start by proposing four lemmas, and derive the symmetry of the shear re-
sponse based on these four lemmas.

Lemma 1: For any two PSF modeling residual basis functions B[M,,](z, y) and B[M,,|(x,y)
such that B[M,,](x, y) can be obtained by rotating B[M,,|(x,y) by £90 deg, the correspond-
ing shear biases Ag(B[M,,]) and Ag(B[M,,]) satisfy the following constraint:

AQ(B[Mpq]) = _AQ(B[MW]) (3-33)

Note that this Lemma is also the basis for the fact that a 90 deg rotated galaxy pair has
an average shape of 0, a fact that we use in the single galaxy simulations. We also stress
that the B[M,,|(z,y) in this section is a functional basis of the higher moments error (see
Fig. for examples), different from the moment biases B[M,,] elsewhere.

Lemma 2: The PSF modeling residual function B[M,,](z,y) has the form

B[My,|(z,y) = B[Mp](—z,y) if p is even (3.34)
B[M,,)(x,y) = —B[My|(—z,y) if p is odd. (3.35)

This is due to the symmetry (asymmetry) in the even (odd) functions used in the moment
measurement.
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Lemma 3: Similar to Lemma 2, the PSF modeling residual function B[M,,](x,y) has the
form:

Myy(x,y) = Mpyy(z, —y) if q is even (3.36)
M,y (z,y) = —Mpy(z, —y) if q is odd. (3.37)

Lemma 4: For any p and ¢, the PSF modeling residual function satisfies the relationship
B[My|(z,y) = B[Myg)(y, x). (3.38)

This is easily proved by substituting y for x and vice versa.

With these lemmas, we can identify symmetry relationships between different moments,
as long as the moment responses are rotations of each other. But first, we must define the
rotation operators R and R/,

o R(B[Myy)(z,y)) = B[Myy](y,—x) — a function that rotates the moment response by
90 deg clockwise.

o R'(B[Mpy|(z,y)) = B[M,y,](—y,x) — a function that rotates the moment response by
90 deg counter-clockwise.

Fig. [3.4.3| shows that the symmetry between results for different moments depends on
the parity of the moment index p and ¢q. Therefore, we consider four scenarios with different
parities.

Case 1: If both p and ¢ are even:

B[qu] (z,y) = B[Mpq](y,x) (3.39)
= B[My)(y, —x) = R(B[My](z,y))

The first two steps use Lemma 4 and Lemma 3, respectively. The last step relies on the
definition of R. Using Lemma 1 on the very left-hand-side (LHS) and very right-hand-size
(RHS) of this equation, we infer that Ag(B[M,,]) = —Ag(B[M,,]), which is consistent with
the results for (p,q) = (0,4) in Fig. |3.4.3l This case also implies that for even values of
p = q, Ag must be 0, as is seen for the (p,q) = (2,2) case in Fig.|3.4.3

Case 2: If p is even and ¢ is odd:

B[Mgp)(z,y) = B[Mp|(y, v) (3.40)
= B[Mpq](—y,x) = R/(B[Mpq](xa Y))-

The first two steps utilize Lemma 4 and Lemma 2, respectively. The last step relies on
the definition of R’. With Lemma 1 applied to the very LHS and RHS, we infer that
AGB[(M,,]) = —Ag(B[M,,]) for this case. This finding is consistent with the results for

(p,q) = (0,3) and (2,1) in Fig. 3.4.3]
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Case 3: If p is odd and q is even, the only difference from Case 2 is to flip x instead of y
in the second step:

B[Mgp|(z,y) = B[Mpy|(y, v) (3.41)
= B[Mpq] (y, —x) = R(B[Mpq] (z,9)).

The first two steps utilize Lemma 4 and Lemma 3. The last step relies on the definition of R.
With Lemma 1 applied to the very LHS and RHS, we infer that Ag(B[M,,]) = —Ag(B[M,,)).
Case 4: If both p and ¢ are odd:

B[Mgy)(z,y) = B[Mp(y, ) (3.42)
= _B[Mpq](ya —z) = —R(B[Mpq](x,y)).

The first two steps use Lemma 4 and Lemma 3. The last step relies on the definition of R.
Applying Lemma 1 to the very LHS and RHS, we infer that Ag(B[M,,]) = Ag(B[M,)).
This finding is consistent with the results for (p,q) = (1, 3) in Fig.

In conclusion, only when both p and ¢ are odd will we get Ag(B[M,,]) = Ag(B[M,,)).
Otherwise, Ag(B[M,,]) = —Ag(B[M,]), implying that pairings with even values of p =
q produce zero shear bias. As described above, these symmetry patterns are displayed
in Fig. [3.4.3] While not shown in the plot, we have explicitly confirmed that the above
conclusions apply to the 5" and 6 moments as well, and they should hold beyond that as
well.

3.D Generating the Gaussian Random Fields

In Fig. we show the correlation functions of the PSF higher moment residual maps,
described in Eq. (3.15)), of the two groups of moments that determine the additive shear
biases, defined in Section [3.5.2] These two groups of PSF higher moments are later used to
propagate PSF higher moment error to the cosmoDC2 galaxies in Section [3.5.3] The blue
dots are the measurements based on the HSC bright stars and PSFEX in Section [3.3.3]

We have devised empirical fitting formulae to describe the measurements of the cor-
relation functions shown as blue dots. We fit the ‘g; group’ correlation functions with a
power-arctan function,

1 tan™(0 — Ocutofr)
o b cutoff
fﬁt<9) = (19 5 -

(3.43)

This model is chosen because the correlation function takes the form of a power law on small
scales (or a linear function when plotted on a log-log plot), and then rapidly drops to zero.
The part in the parenthesis is designed to produce the rapid drop to zero on scales beyond
Ocutor = 1.7 deg, a scale that is comparable to the size of the Subaru FOV. For the ‘gs group’
correlation functions, we use a power law,

ae(0) = ad ™", (3.44)
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as correlation functions in the ‘gy group’ moments are visually consistent with a power law.

Since the cosmoDC2 catalog has an area larger than any field in the HSC data we measure,
we need to generate artificial PSF moment residual maps to cover the cosmoDC2 area.
We convert the above fitting functions to angular power spectra by carrying out a Hankel
transform, using SKYLENﬂT_g] (145)), and use the power spectra to generate artificial Gaussian
Random Fields (GRF) using HEALPY (146;[147). To ensure the integration is stable and bug-
free, we do a round-trip transformation test, where we transform the power spectrum back to
real space, shown in the orange curves in Fig. The round-trip transformations match
the original data well in all cases, as a validation of the fitting function and the numerical
accuracy of these transformations. The GRF is generated on the HEALPIX sphere with
Ngqe = 2048, with a pixel size ~ 1.7 arcmin. We measure the correlation function of the
GRF, shown as the green curves in Fig. 3.D.1I] Except for the angular bins that are below
the resolution of the HEALPIX grid, the GRF is shown to match the original field well in
terms of the two-point statistics.

13https://github.com/sukhdeep2/Skylens_public/tree/imaster_paper/
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Figure 3.5.3: The estimate of the additive shear biases given the PSFEX modeling quality

in the HSC

PDRI.

The upper and middle panels show the rankings of the cumulative

contribution to the A{gig1) and A(gage) (respectively) from 2 to 200 arcmin, from both
the front-to-back and back-to-front methods described in Section The light yellow
region indicates the ‘g; group’ moments that are most relevant to the A{g;¢;) term, and
the pink region indicates the ‘g, group’ moments that are most relevant to the A(gag2)
term. The bottom panel shows the additive biases on (g1¢1) and (g2g2) from all PSF higher
moments, compared to just the ‘g; group’ and the ‘go group’ — confirming that these two
groups dominate the additive shear biases.
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Figure 3.5.4: The redshift-dependent multiplicative shear biases for cosmoDC2 galaxies, due
to PSF higher moment residuals comparable to those in HSC PDR1, in 10 redshift bins. We
fit the data points to a quadratic function, shown as the dashed line.
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Figure 3.5.5: The additive biases on the weak lensing 2PCF &4 for the cosmoDC2 galaxies
when subjected to PSF higher moment residuals comparable to those in HSC PDR1. The
galaxies are split into three tomographic bins based on their true redshifts, centred at z = 0.5,
1.06, and 1.85. The tomographic bin combination is labeled by the central redshifts of the
corresponding pair of bins at the center of each panel. The y-axis uses a symmetric-log scale,
with linear scale = 3.0 x 10~7; the linear region is shaded grey. A{_ is still consistent with
zero, as for the preliminary results. We fit A, with a double-exponential function, shown
as orange lines.



97 3.D. GENERATING THE GAUSSIAN RANDOM FIELDS

0.850} "

0]
0 0.825¢

0.975}

Ns

0.950}

—0.75}

Wo

—1.00}

—1.25H

— Fiducial
Biased

0.06}

Qp

0.04}

0.70¢

0.65}

. . . . . . . ; . . L L
u u u u u u u u u u

dlolox]ole
Zlieinelle

L

L

NG

L

%%

.\))e\)‘ |

Q- Q
Qm 08 ns

OSNN 5 & B N S N
Vv o) o) N Q0 A s
NN N N NN

Wa
Wo

Q

> ©
S S
Qp

Figure 3.5.6: The lo constraint contours from the Fisher forecast for the fiducial (black)
and shifted by additive shear biases (orange) cosmological parameters for LSST Y10. The

centroids of the forecasts are shown by the “x”.

If not accounted for in the analysis, the

additive shear biases caused by errors in the PSF higher moments at the level produced by
PSFEX for HSC PDR1 are predicted to shift the inferred cosmological parameters by ~ 1o,

at the LSST Y10 level.
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Figure 3.A.1: Two examples of the maps of PSF higher moments for the HSC PDR1 data,
as modeled by PSFEX. For both examples, we show the true value and the moment residual
B[M,,]. The top panel shows a map of the (0,4) moment measured in the GAMAO9H field,
and the bottom panel shows the (4,2) moment measured in the GAMA15H field. There
is coherent structure in both the true moments and their residuals, suggesting that the
measurement is not noise dominated.
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Figure 3.A.2: Box plot showing the PSF moment biases from the 2°¢ to the 6 moments,
with the whiskers showing the 20 range (from 3rd to 97th percentile), the boxes showing the
interquartile range, and the bars showing the median. The PSFEX and PIFF results, both
runned on the RC2 dataset described in Section [3.3.2] are shown side-by-side. The y-axis is
symmetrical log-scaled, with the linear region shown in grey.
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Figure 3.B.1: The Jacobian of PSF moments with respect to the shapelet coefficients, T}, jx =

%JZI—:’ for a Kolmogorov PSF. We show the first 12 PSF moments starting from the second
J

moments (i.e., 3 second moments, 4 third moments, and 5 fourth moments) and the first
25 shapelet components starting from n = 2 for the shapelets decomposition. The numbers
that overlap the circle are the values of T, jx, with each row normalized by the L?-norm

> ik T;?q,jk: = 1. The sizes of the circles reflect the magnitude of the entry, and colors

reflect the sign (blue for positive and yellow for negative). The column on the left shows the
postage stamp images of the difference in PSF with only one moment being changed. The
bottom row shows the first 25 shapelet bases, as the bases for the moment modification. We
rank the shapelet coefficients by increasing the order n. For each n, we start with the real
part of j = n, then its imaginary part, and decrease j until 7 = k or j = k + 1. The labels
on the shapelet basis functions should be interpreted as follows: jk is equivalent to Re[t;x],
Jk* is equivalent to Im[t;x]. We can see that the Jacobian matrix is very close to being a
block-diagonal matrix, which means that the PSF higher moments are linear combinations
of the shapelet components with the same order n.
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Figure 3.D.1: The original correlation function of the PSF higher moment residual fields
measured from all six HSC PDRI fields combined (blue dots), the “round-trip transforma-
tion” of the original correlation functions (orange curve), and the PSF moments residual
correlation functions of the generated GRF. The upper panel shows the ‘g; group’ moments,
and the lower panel shows the ‘g group’ moments that we defined in Section [3.5.2] The
2PCFs of the GRFs generally match those in the HSC data, except at angular scales < 1.7
arcmin, corresponding to the scale of the HEALPIX grid.
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Abstract

Cosmological weak lensing measurements rely on a precise measurement of the shear two-
point correlation function (2PCF) along with a deep understanding of systematics that affect
it. In this work, we demonstrate a general framework for detecting and modeling the impact
of PSF systematics on the cosmic shear 2PCF, and mitigating its impact on cosmological
analysis. Our framework can detect PSF leakage and modeling error from all spin-2 quantities
contributed by the PSF second and higher moments, rather than just the second moments,
using the cross-correlations between galaxy shapes and PSF moments. We interpret null tests
using the HSC Year 3 (Y3) catalogs with this formalism, and find that leakage from the spin-2
combination of PSF fourth moments is the leading contributor to additive shear systematics,
with total contamination that is an order of magnitude higher than that contributed by PSF
second moments alone. We conducted a mock cosmic shear analysis for HSC Y3, and find
that, if uncorrected, PSF systematics can bias the cosmological parameters €2, and Sg by
~0.30. The traditional second moment-based model can only correct for a 0.1¢ bias, leaving
the contamination largely uncorrected. We conclude it is necessary to model both PSF second
and fourth moment contamination for HSC Y3 cosmic shear analysis. We also reanalyze the
HSC Y1 cosmic shear analysis with our updated systematics model, and identify a 0.070 bias
on €2, when using the more restricted second moment model from the original analysis. We
demonstrate how to self-consistently use the method in both real space and Fourier space,
assess shear systematics in tomographic bins, and test for PSF model overfitting.

4.1 Introduction

In the past two decades, weak gravitational lensing, the slight distortions of the shape and
size of the background (source) galaxies due to deflection of light rays by the foreground
matter distribution, has become one of the most powerful probes to study the distribution
of dark matter in the Universe due to its sensitivity to the matter density field along the
line of sight (75} [76} [77). Measurements of cosmic shear, the coherent shape distortions of
the source galaxies quantified via two-point correlation functions of galaxy shear estimates,
are one of the most effective ways to measure the Large Scale Structure (LSS) and constrain
the cosmological model. Stage-III imaging surveys (128) such as the Hyper Suprime-Cam
survey (HSC; 81)), the Dark Energy Survey (DES; [79)), and the Kilo-Degree Survey (KiDS;
80) all conduct cosmic shear analysis (e.g., [I; O6; 153; [154; 155). Future galaxy surveys such
as the Vera C. Rubin Observatory Legacy Survey of Space and Time (LSST) (LSST; 48; 82),
the Nancy Grace Roman Space Telescope High Latitude Imaging Survey (49; 83) and Euclid
(50)) will measure cosmic shear with smaller statistical uncertainties by increasing the survey
area, and in some cases by increasing the depth, and thus the number of galaxies, therefore
putting more stringent requirements on controlling and modeling the systematic biases and
uncertainties that affect cosmic shear measurements (33). Another major motivating factor
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for improving our ability to control systematic uncertainties in weak lensing is the potential
tension in the lensing amplitude, Sy (I56]), an important parameter of the A-CDM cosmo-

logical model, between the weak lensing cosmology and the Cosmic Microwave Background
(CMB) cosmology (20).

The Point Spread Function (PSF) describes the image response to the light of a point
source, after passing through atmospheric turbulence and the telescope optics (129; [130]).
The PSF effectively acts as a convolution on the images of all observed objects, including
galaxies. Therefore, the PSF is a major source of systematic biases and uncertainties in the
measured galaxy shape, from which the weak lensing shear information is extracted. Biases
in the estimated PSF size can give rise to multiplicative biases in the weak lensing shear
signal as well, because the biases in PSF size result in an incorrect estimate of how much the
PSF has rounded the observed galaxy shape (an effect for which we implicitly or explicitly
correct). The PSF shape (ellipticity) can contaminate cosmic shear in two different ways:
First, “PSF leakage” arises when the shape of the PSF coherently contaminates the inferred
shear even when the PSF model is perfect. This effect originates from an imperfect shear
estimation method. Second, when the PSF model inaccurately describes the actual PSF
shape (“PSF modeling error”), the inferred shear can get an additive systematics term (e.g.,
157). This second effect arises even for principled shear inference methods that should
be unbiased with a perfect PSF model (e.g., 103} 158, 159). In many previous cosmic
shear analyses, coherent biases in the PSF second moments (i.e., the shape and size) were
monitored through the p statistics (88} 189). Null tests designed to identify potential additive
shear systematics are typically conducted by cross-correlating the galaxy shapes, the PSF
shape, and its modeling error (e.g.,[85;[160)), so that corresponding corrections can be made to
the cosmic shear two-point correlation function (2PCF) through forward modeling. However,
these PSF systematics formalisms have been limited to PSF second moments only.

(I70; [71)) showed that modeling error in PSF higher moments causes additive and multi-
plicative shear bias. (70) found sub-percent level multiplicative shear bias due to biases in a
single PSF higher moment (radial kurtosis), while (71)) provided a formalism for measuring
PSF higher moments more generally, and studied the shear additive bias and its impact
on cosmology analysis based on the HSC Public Data Release 1 (69). (71) suggested that
the higher moments of the PSF can cause additive shear biases on a comparable level to
the second moments, thereby motivating null tests involving PSF higher moments, and the
development of a PSF systematics forward modeling formalism that considers PSF higher
moments for current Stage-III surveys.

In this study, we develop a more rigorous and self-consistent framework for testing and
modeling PSF systematics in the cosmic shear analysis. We generalize how PSF moments
contaminate weak lensing shears by introducing the concept of a “spin-2 PSF quantity”.
Specifically, we derive the spin-2 quantities associated with PSF higher moments, which
affect the inferred galaxy shears. We make a star catalog including PSF higher moment
measurement, and inspect the overfitting issue of the PSF model. We articulate and carry
out a more comprehensive set of null tests by correlating galaxy shapes in the HSC three-year
(later referred to as HSC Y3, or Y3) shape catalog (160) with the PSF second and higher
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moment spin-2 quantities that impact the galaxy shapes. We compare different models for
modeling the additive shear biases associated with the PSF second and higher moments,
provide a method to select models based on its complexity and level of impact on the cosmo-
logical probe, and propose the best-suited model for the HSC Y3 cosmic shear analysis. More
importantly, we provide general guidelines for inspecting and modeling PSF systematics in
future cosmic shear analyses. We demonstrate the impact of the new PSF systematics model
on cosmological weak lensing analysis by re-analysing the HSC first-year (later referred to
as HSC Y1) cosmic shear data and conducting a mock analysis of Y3, comparing models
with or without the inclusion of the PSF higher moments. Finally, we investigate several as-
pects that complicate the PSF systematics model, including the redshift dependency of how
PSF systematics affect galaxy shape measurements, a constant systematic shape, impact on
&_, and second order spin-2 terms. While this paper focuses on the real space analysis of
weak lensing, we also provide a PSF formalism for the Fourier space analysis using cosmic
shear power spectra, and study the internal consistency between the real and Fourier space
formalisms.

The layout of this paper is as follows: we review the background of shear estimation
and the associated PSF systematics in Section 4.2l We describe the HSC Y3 galaxy shape
and mock galaxy catalogs, which we use to demonstrate the methods introduced in this
work, in Section [£.3] We describe the HSC Y3 star catalog, the moment measurements
we conducted, and the spin-2 quantities associated with the PSF, an important concept
throughout the paper, in Section We describe the methodology and results of modeling
the PSF higher moments in shear, conducting cross-correlation null tests, and tests for
potential redshift dependency of the model in Section 1.5 We demonstrate the impact on
cosmological parameter analysis due to these PSF systematics by conducting a reanalysis of
the HSC Y1 cosmic shear data vectors and an HSC Y3 mock analysis in Section [£.6] Our
method is summarized with a concise list of steps in Section 4.7 In Section (.8 we draw
conclusions from the results of this paper and discuss its future implications and applicability
to other weak lensing shear surveys.

4.2 Background

In this section, we briefly review the background to this study. In Section [4.2.1] we introduce
cosmic shear: how it is estimated from the galaxy shapes, and how the likelihood analysis is
carried out to extract cosmological information from the data. In Section we introduce
PSF-related systematic effects on weak lensing shear estimation.

4.2.1 Cosmic Shear

Cosmic shear is a way of measuring cosmological weak lensing, the coherent distortions
of large ensembles of background galaxies by the foreground Large Scale Structure (LSS)
of the Universe (For a review, see [34)). Since these distortions are induced by all matter
along the line of sight, cosmic shear is a powerful probe of the dark matter distribution,
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which is otherwise challenging to observe. Cosmic shear was first measured in the early
2000s (e.g. 41: [42F 16T 162 163) and consolidated in the late 2000s to early 2010s (e.g.
46; 104 164) with larger volumes of survey data, improved redshift estimation (e.g., 104 [165])
and statistical analysis (e.g. [166). Multiple ongoing and recently completed surveys have
conducted successful cosmic shear analyses (e.g., [Il 96 153} [154; [155). Future imaging
surveys such as LSST (48), Euclid (50), and Nancy Grace Roman Space Telescope (49) will
provide unprecedented statistical constraining power for cosmic shear observation, making
requirements for controlling systematic biases and uncertainties more stringent. The decrease
in statistical uncertainties and improvement in control of systematics may provide insights
into the apparent Sg tension between the cosmic microwave background and weak lensing
(156).

In this section, we briefly describe how weak lensing shear is measured in imaging surveys
(Section and is used to constrain cosmological parameters (Section [1.2.1)).

Shear Estimation

Galaxy ellipticity is widely used to quantify the spin-2 aspect of galaxy shape and infer the
weak lensing shear distortion. We adopt the ‘distortion’ definition of ellipticity,

1—(b/a)’

Tb/a)z(cos 2¢,sin 2¢), (4.1)

(e1,€9) =

where a and b are the major and minor axes and ¢ is the position angle of the galaxy major
axis with respect to the x-axis of the sky coordinates taking the flat-sky approximation (with
North being +y and East being +z). Here we use this ellipticity definition as an example,
but we note that other spin-2 observables (with two components) can also be used for shear
inference, e.g., moments or derivatives of a galaxy’s light profile (I67; 168)), projections of a
galaxy’s light profile onto basis functions (59 [169) or parameters used to fit a galaxy’s light
profile (1705 [171)).

For an isotropically-oriented galaxy ensemble distorted by a constant shear, the shear
can be estimated as a weighted average of the distortion of all galaxies:

~

Jo = <eoc> s (42)

1
2
where the shear responsivity (R) is the linear response of the average galaxy ellipticity to
a small shear distortion (172} I73)), and o = 1,2 are the indices for the two components
of the ellipticity. Note that shear g, in this work is sometimes referred to as the “reduced
shear”, corresponding to the part of the shear that only changes the galaxy shape rather
than the size. Since the galaxy detection and selection are dependent on the underlying
shear distortion, an accurate shear responsivity should include the shear response of galaxy
detection (I58) and galaxy sample selection (I74)). In addition, since galaxy images are noisy,
noise bias from the nonlinearity in the ellipticity and responsivity should be estimated and
corrected for an accurate shear estimation (I75]). These biases can be corrected empirically
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by shearing each observed galaxy and adding artificially sheared noise to galaxy images
(158 [176; [177)); analytically by correcting for the perturbations from shear and noise on the
galaxy number distribution in the space of galaxy properties (59; [60; [159); or by calibrating
the shear estimates with artificially sheared galaxy image simulations that are representative
of the observed galaxy sample (55; 160} [178)).

Moreover, in order to eliminate shear estimation bias due to PSF smearing, one can
deconvolve the PSF from the galaxy image in Fourier space (59 168} [176} [179); construct
the PSF correction term based on analytic formalisms that connect this term to second
moments of the galaxy and PSF (169 172} [I80)); or convolve models fitted to each galaxy
with the PSF (I70; 171 [I81). This paper focuses on the PSF-related systematics (including
PSF leakage and PSF modelling error, see Section for more detail) after the PSF
correction step in the shear estimation and the shear calibration with image simulations.

Throughout this work, we will use the terms “additive bias” and “multiplicative bias” to
quantify shear systematics. The observed shear ¢ can be generally expressed by

g=(1+m)g+ec. (4.3)

Here g represents the true shear, m is called the multiplicative bias, and c is called the additive
bias. Generally, any source of systematics that correlates with the shear or the galaxy shapes
would contribute to the multiplicative bias, and systematics that are independent of the
galaxy shape would enter as an additive bias.

Cosmic Shear Analysis

In this section, we describe how cosmic shear analyses allow one to constrain cosmological
parameters starting from a galaxy catalog. The steps include measuring summary statistics
of the shear catalog, forward modeling the summary statistics based on cosmology and
systematics, and conducting likelihood analysis. The PSF systematics model described in
this work is an integrated part of the forward model in the likelihood analysis, therefore
impacting the overall results of the cosmological analysis.

A common method to extract summary statistics from a galaxy catalog is to measure
the shear-shear two-point correlation function (2PCF) f and €7 of the galaxy shape (for
reference, see [34), where i and j are the indices of the tomographic redshift bins used for
the analysis (36). The shear-shear 2PCF is used in real-space cosmic shear analyses (e.g.,
1t 154]; 182). Other works use Fourier space and measure angular power spectra Czj as the
summary statistics (153} [183; [184)); we discuss the formalism relevant to power spectra in
Appendix . To increase statistical constraining power, the fzi] (#) measurements are
averaged within angular bins with a range of separations 6 for the galaxy pairs. The angular
bins and tomographic bin-pairs form a cosmic shear data vector, which we denote D,,.

The next stage of the cosmic shear analysis is the likelihood analysis (see, e.g., [185),
where the cosmic shear data vector Dy, is compared with a theoretical data vector T,.
T,, is computed using a forward model that predicts the data vector based on cosmological
parameters and any needed nuisance parameters, including PSF parameters, which will be
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discussed in Section [£.5.1] The log-likelihood is defined as
1 _
log(ﬁ(ﬂngg)) = _§(Dgg - ng(ﬂ))nggl(Dgg - ng(ﬂ)), (4-4)

where 2 is a set of parameters, and }:;gl is the inverse of the covariance matrix of Dg,.
A sampling algorithm, e.g., EMCEE (I86) or MULTINEST (I87; [188; [189)), traverses the
parameter space to approximate the likelihood function across the parameter space, and
eventually provides parameter constraints from the data vector. Models for additive shear
systematics induced due to the PSF enter in the likelihood analysis; typically these are
informed by null tests that reveal what types of systematics may be present, with priors on
model parameters determined using those tests.

In Section [4.6] we describe the forward cosmological model we used to reanalyze the
HSC Y1 cosmic shear data vector and to conduct a HSC Y3 mock analysis. Our new model
for additive PSF systematics and their impact on weak lensing shear, which is part of the
forward model, is described in Section [4.5.1]

4.2.2 PSF-related systematics

For a ground-based imaging survey telescope, e.g., the HSC and LSST, the PSF describes the
smearing of the image by the turbulent atmosphere and the telescope optics. In this paper,
the PSF also involves the pixelization effect in the CCD, described as a convolution by a
unit-square function; the PSF including this effect is referred to as the “effective” PSF. The
single exposures within the survey footprint are combined to produce a “coadded” image,
as are the PSF models (I10). For the HSC survey, shear estimation is carried out on the
coadded image, making the coaddition procedure and production of the coadded PSF a
crucial step that can affect shear estimation (53).

After convolution with the PSF, the observed size and shape of the galaxy differ from the
true values, in a way that depends on the galaxy and PSF properties (157)). Since almost
all weak lensing science heavily relies on the precise measurement of the galaxy shape or
some other spin-2 quantity based on galaxy second moments (33), it is crucial to precisely
model the PSF and correct for its impacts on the galaxy shear estimate during the shape
measurement phase of the image processing. Imperfections in PSF modeling cause a PSF
modeling bias in shear (see Appendix A in[I57), even for principled shear estimation methods
that should be unbiased. If the shear estimation method is imperfect, it causes PSF leakage
bias in shear (54]). Typically, it is prudent to test for both leakage and modeling error, even
when using a shear estimation method that should not have any leakage.

Weak lensing shear systematics related to the PSF second moments are well-studied in
previous work. The PSF leakage of the second moment-based reGauss method is charac-
terized in (180; 190). In (I57), expressions for the additive shear systematics due to PSF
modeling errors are derived under the assumption that both the galaxy and PSF profiles are
Gaussian. In (88; 89), the propagation of the previously mentioned leakage and modeling
error to the cosmic shear 2PCF is quantified using the “p statistics ”.
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Recent cosmic shear analyses made different choices for how to model these additive shear
systematics due to the PSF. In (IJ), the additive bias on &, in HSC Y1 due to PSF second
moment leakage and modeling error were modeled and marginalized with two parameters
apgr and Ppsr (see Eq. , which are taken to be the same across all tomographic bins.
The additive bias on ¢_, and any mean shear, are neglected after confirming that the mean
shear in each survey region was consistent with zero within the uncertainty due to cosmic
variance. In (I54), the PSF second moment leakage, shape modeling error, and size modeling
error were investigated. However, the additive bias on shear was not included in the fiducial
analysis because the p statistics were within the survey requirement (191). In Section 3 of
(192), the PSF contamination on &; was modeled by a leakage term, a modeling error term,
and a constant term.

In (70), multiplicative bias induced by the modeling error of the PSF fourth radial mo-
ments, or kurtosis, were found using image simulations and the HSC Y1 dataset. The
multiplicative bias predicted for the cosmic shear due to this effect is on the order of 1073,
which is sub-dominant to other sources of multiplicative bias (e.g., the PSF size modeling
error). For this reason, directly modeling it in the HSC Y3 analysis is not urgent. In (7T,
additive biases from the PSF higher moments modeling error were found to be of a similar
magnitude to the second moment additive biases in the HSC Y1 data. Therefore, testing
for and modeling additive biases due to PSF higher moment modeling errors in cosmic shear
analyses is necessary. These two previous works are the main motivation for developing a
framework to self-consistently identify and model PSF additive systematics to higher order
than those caused by second moments. Crucially, our method includes a step to limit the
model to only those terms that turn out to be present at a significant level in a given dataset,
enabling different data-motivated choices of what terms to model in different datasets.

4.3 HSC Shape Catalog

In this section, we describe the galaxy catalog we used to explore PSF systematics modeling
in HSC Y3 cosmic shear analysis. In Section [4.3.1] we describe the HSC Y3 shape catalog
(160)). In Section 4.3.2] we describe the mock catalogs we used for uncertainty estimation.

4.3.1 HSC Y3 Shape Catalog

In this section, we summarize the HSC three-year (Y3) (160) shear catalog for weak lensing
science. In the HSC shear catalog, galaxy ellipticities are estimated from i-band coadded
images with the re-Gaussianization (reGauss) shear estimator and PSF correction method
(1I80), which is implemented in GalSim (193), an open-source package for image simulation
and image processing. reGauss has been developed and used extensively on data from the
Sloan Digital Sky Survey (SDSS;B1; 190) and the first HSC shape catalog (54). The reGauss
estimator measures the two ellipticity components for each galaxy using its spin-2 elements
in the second-order moment matrix.
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Figure 4.2.1: Schematic diagram describing the selection of the PSF and non-PSF star
catalogs in this work. The selection on the i-band extendedness, magnitude and signal-to-
noise ratio are done at the coadd level, while the selections of PSF used stars and reserved
stars are done on the single visit level. The green region is the PSF star catalog, while
the pink region is the non-PSF star catalog. We can see that the PSF and non-PSF stars
are selected using different criteria, resulting in different results for the PSF systematics
parameters (see Section . However, the impacts on cosmology are similar, as shown in
Section [4.5.2] Note that a box within another box does not imply that one is a subset of the
other; instead, it indicates a sequence of selections we imposed on our samples.

reGauss also computes the resolution factor, R, which is used to quantify the extent to
which the galaxy is resolved compared to the PSF. The resolution factor is defined for each
galaxy using the trace of the second moments of the PSF (Tpsr) and those of the observed
galaxy image (Tza1):

Tpsr
Ry=1-— . 4.5
2 T (4.5)
The inverse variance weights to be used while performing the ensemble average are the
galaxy shape weights (w;) defined as

1

2 2 ’
Oe;i + 6RMS;i

(4.6)

w; =

where 7 is an index over galaxies, o, is the per-component lo uncertainty of the shape
estimation error due to image noise, and egygs denotes the per-component root-mean-square
(RMS) of the galaxy intrinsic ellipticity{l] (often referred to as ‘shape noise’). The parameters

"'While the RMS ellipticity is ostensibly associated with the entire sample, it does depend on the particular
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erms and o, are modeled and estimated for each galaxy using image simulations (160} [178]).
The shear responsivity for the source galaxy population is estimated as

D wie2RMS;i
dwi
The measured shears are calibrated with realistic image simulations downgrading the

galaxy images from COSMOS Hubble Space Telescope (104) to the HSC observing con-

ditions (I78). The calibration removes the galaxy property-dependent (galaxy resolution,
galaxy SNR, and galaxy redshift) estimation bias and the detection and selection bias due
to the correlation between detection/selection and the underlying shear distortion. The
image simulation used for calibration includes the blending of light from neighboring galax-
ies; therefore, the calibration removes biases related to blending. The resulting systematic

uncertainties in the shear estimation are below 1% after the calibration (160).

With conservative selection cuts on each galaxy’s i-band magnitude (brighter than 24.5)
and resolution (greater than 0.3), the full galaxy shear catalog has a raw (effectiveﬂ) number
density of 23 arcmin™2 (20 arcmin™?) covering 417 deg?, after removing a 20 deg? region
that failed the cosmic shear B-mode test (more information found in Appendix [4.B]). The
full galaxy catalog is divided into 4 tomographic bins by selecting galaxies within redshift
intervals of (0.3,0.6], (0.6,0.9], (0.9,1.2] and (1.2, 1.5] using the best point estimate (195)
of the Deep Neural Net Photometric Redshift (dNNz; Nishizawa et. al in prep.) conditional
density estimates of individual galaxy redshift posteriors, where dNNz is a template based
inference method. We found that some mizuki (195) and dNNz photometric redshift posteri-
ors have a secondary peak at z = 3.0. These photometric redshift posteriors are difficult to
calibrate using spatial cross-correlations, since the secondary peak lies outside the redshift
coverage of the CAMIRA sample (Cluster finding algorithm based on Multi-band Identifi-
cation of Red-sequence gAlaxies; (196))), which we use as a reference sample and which is
limited to z < 1.2. In order to prevent the secondary solution from biasing the sample
redshift distribution inference, we remove galaxies with double solutions in the estimated
photo-z posteriors (see Rau et. al in prep. for details). The cuts that are used to remove
the galaxies with secondary peaks reduce the number of galaxies in the first (second) bin
by 30% (8%). After the region cut and double solution cut, we have 5,889,826, 8,445,233,
7,023,314, and 3,902,504 galaxies in the corresponding four redshift bins, respectively. The
corresponding raw (effective) galaxy number densities are 3.92 (3.77), 5.63 (5.07), 4.68 (4.00)
and 2.60 (2.12) arcmin™?2, respectively.

R=1- (4.7)

4.3.2 HSC Mock Catalogs

We use the HSC three-year mock shear catalog to accurately quantify the uncertainties of
our measured 2PCFs due to cosmic variance, galaxy shape noise, measurement errors due

subpopulation within the catalog. To enable division of the catalog into subsamples (e.g., for tomographic
analysis), information is provided on this variation to enable a correct estimate of the RMS ellipticity for
the selected subsample.

2See (194) for the definition of effective number density.
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to photon noise, and photometric redshift uncertainties. The mock catalogs are created
following (197), but with updates to incorporate the survey footprint, galaxy shape noise
and shape measurement error of the three-year HSC shear catalog.

The mock shear catalog uses full-sky lensing simulations generated by (198) with 108
full-sky simulations. To increase the number of total realizations of the mock catalogs, we
extract 13 separate regions from each full-sky simulation, obtaining 108 x 13 = 1404 mock
catalogs in total.

These realizations of the lensing simulations are combined with the observed photometric
redshifts, angular positions, and shapes of real galaxies (160) to generate mock shear catalogs.
To be more specific, source galaxies are populated on the light-cone of the lensing simulations
using the original angular positions and “best-fit" redshifts of the galaxies (estimated with
dNNz) in the HSC three-year shear catalog. Each galaxy is assigned a source redshift estimate
in the mock following the posterior distribution of photometric redshift estimated by the
dNNz algorithm. The shape noise on each galaxy is generated with a random rotation of
the galaxy’s intrinsic shape according to the intrinsic shape dispersion estimated in the HSC
shear catalog, and the measurement error is generated as a zero-mean Gaussian random
number with the standard deviation measured in the HSC shear catalog (see Section 4.2 in
197).

4.4 Star Catalogs and Moments Measurements

In this section, we introduce the HSC Y3 star catalogs with the measurements of higher
moments. In Section [4.4.1] we describe how the star sample is selected. In Section [4.4.2] we
summarize the measurement of the PSF second and higher moments. In Section [4.4.3] we
introduce a key concept in the paper: how to identify the PSF higher moments that form
“spin-2” quantities, which will be included in the PSF systematics formalism in Section [£.5.1]

4.4.1 Sample Selections

In this section, we describe the star catalogs used in this work. The overall selection processes
are shown in Figure 4.2.1] in which the PSF and non-PSF star catalogs are marked in green
and pink, respectively. We describe each of these selections in this subsection.

The HSC Y3 star catalog used in this work is selected from the sample of point sources
based on the star samples in Section 5.1 of (160) covering the same footprint as the galaxy
shape catalog described in Section . Unlike (71), we measure the star moments on
postage stamp images after deblending, as described in (I10)). Therefore, we did not apply
any selection criteria to omit stars based on their blendedness.

The HSC data processing and PSF modeling is carried out independently in multiple
exposures. Fach exposure has a different random subset of the stars used for PSF model
estimation. The exposures are then stacked to make the coadded image (see 110)). In
each exposure, a set of candidate PSF stars is selected using the k-means clustering algo-
rithm in the magnitude-size plane. A randomly-selected 80% of the candidate stars is used
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Figure 4.3.1: The image response to the spin-2 quantities of the second moments e; and
€2, and fourth moments M1(4 and M2(4). The fourth moment spin-2 quantities are sensitive
to scales larger and smaller than those to which the second moment spin-2 quantities are
sensitive, as the dashed reference lines show. The color scale for each base covers [—A, A],
where A is the maximum of the absolute value of the basis function.

for PSF modeling, with the random selection carried out independently for each exposure.
On the coadd level, the stars with i_calib_psf_used==True are those that were used as
PSF stars in more than 20% of the contributing i-band exposures, while those labelled as
i_calib_psf_reserved==True were used as PSF stars in fewer than 20% of the contributing
exposures. Because the random selection of stars for PSF modeling in single exposures is
carried out independently, the i_calib_psf_reserved==True stars in the coadded image
are very rare.

To mitigate the scarcity of the PSF reserved stars, we use a more lenient i_extendedness==False
& i_mag<22.5 cut on the coadd catalog to pre-select a star catalog. Within that catalog,
those with i_calib_psf_used=True are defined to be the “PSF star” catalog. Stars with
i_calib_psf_used=False are candidates for the “non-PSF stars”. In addition, we find that
the low SNR non-PSF stars have larger sizes and lower ellipticities to a statistically signifi-
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Figure 4.3.2: The whisker plots of the true and residual spin-2 components of the PSF
second (top) and fourth moments (bottom) in the XMM field. There is an obviously coherent
pattern in the whisker plots for the true moments, while the pattern is less visible in the
moment residuals (later, we will see that the correlation length of the residual field is smaller,
which makes the coherence less visible in the whisker plots). The spin-2 pattern of the true
fourth moments is clearly different from that of the second moments, which indicates that
contamination in the PSF higher moments must be separately modeled in cosmic shear, as
we explore in Section
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cant degree, making them unrepresentative samples of the true PSF. This could potentially
be caused by the increasing fraction of galaxy contamination at low SNR, which only affects
non-PSF stars because the PSF stars have a preliminary SNR cut in the image processing
pipeline. Therefore, we applied an empirical SNR cut to the non-PSF sample, requiring flux
SNR> 180, so that the non-PSF star sample has a nearly identical size distribution as the
PSF star sample. Although the PSF star catalog also has low SNR samples, those samples
have a similar size and ellipticity distribution to the rest, due to the strict star-galaxy sep-
aration done on the single visits for the PSF stars. This eliminated 23% of the potential
non-PSF star sample. After these selections, of the coadd star samples, about 6% of the
stars are “non-PSF” stars.

We also removed an area of 20 deg® (at RA € [132.5,140], Dec € [1.6,5]) in the GAMAOSH
field that generated a strong B-mode shear signal, as will be described in Li et al. in prep.
We explored this region of the sky and found a significant PSF fourth moment modeling
error, described in Appendix [4.B]

After the previously mentioned cuts, there are 2,118,183 PSF stars and 132,687 non-PSF
stars in our sample, where the former has an average density of 1.42 arcmin—2 and the latter,

0.09 arcmin—2.

4.4.2 Second and Higher Moments

In this section, we briefly review the measurement of the PSF second and higher moments
from a pixelized i-band postage-stamp image. This formalism follows the one in (71)). We
define the adaptive second moment matrix M of a light profile I(x, y) in the image coordinate
system with origin at the centroid of I(x,y) as

Mo J dady 2Py w(z,y) (2, y)
M [dadyw(a, y)(z,y)

Here (p, q) take the values of (2,0), (1,1),and(0,2), and w(z,y) is the adaptive Gaussian
weight (180), defined as

e = (-3 1l [ 3] ). n

The second moment trace Tpsr and shape epgp = epgp 1 + iepsr 2 are defined based on M

(4.8)

TPSF - M20 + M02 (410)
Moy — Moo
4.11
CPSF.1 Moo + Moy (411)
2My,
= 4.12
€PSF,2 Moo + Moy ( )

Notice that there is a different definition for the PSF second moment size opsp, which
approximates the standard deviation of the Gaussian that best fits the PSF profile. It is
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defined by

=

OpPSF — [det(M)] (413)

A natural way to define the higher moments is to integrate over zPy?, as in Eq. .
However, the resulting higher moments will depend on the size and shape of the PSF. There
are two approaches to disentangling the higher moments from the second moments: one is
through a combination of the higher and second raw moments as defined above; the other is
to define the higher moments in a transformed coordinate that normalizes second moments.
In this work, we discuss both approaches, although the second approach is used in most
parts of this work. To connect the two approaches, we describe the formalism of raw and
standardized higher moments in Appendix [4.C] including the Gaussian and non-Gaussian
parts of the raw moments. We also demonstrate empirically for the HSC survey data that
you can use the raw moments to track PSF additive bias in shear-shear 2PCF, and get
consistent results from the results using standardized moments, in Section [£.C.3|

In the “normalizing approach”, the higher moments are defined by integrating over the
image using u” v?, where (u,v) is a standardized coordinate defined by

m ~M: m . (4.14)

In the (u,v) coordinate system, the second moment shapes of I(z,y) are | = e, = 0,
and the second moment size ¢/ = 1. The higher moments, defined using the standardized
coordinates, are

v Jdedyurviw(z,y) Iz, y)
w Jdrdyw(z,y) I(z,y)

Note that here integrating in da dy is the same as in du dv since the M~ factor cancels out
between the denominator and the numerator. The connection between the standardized and
raw higher moments is described in Appendix [4.C.2

For the nth moments, p takes integer values from 0 to n, while ¢ = n — p. Therefore,
there are n + 1 nth moments. The standardized higher moments are not sensitive to any of
the lower moments from n = 0 to 2 (the flux, centroid, size, or shape). They describe the
non-Gaussian morphology of the PSF profile.

The HSC Y3 star catalog in this work contains second to sixth moments, 25 in total,
measured using the i-band deblended coadded images of the stars and PSF model. The PSF
model is a modified version of PSFEX (84), initially described in (I10) and later updated
in (I35). We measure the moments of the PSF model images evaluated at the star positions
as the model moments.

The residual for the moment M,,, is defined as

(4.15)

AMpq = {¥pg,model — Mpq,*? <4~16)

where M, model is the moment of the PSF model, and M, . is the true moment measured
on the star image.
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Figure 4.4.1: The modeling errors, defined in Eq. (4.16)), in the spin-2 and spin-0 components
of the PSF second and fourth moments, as defined in Section [4.4.3] are shown in the top and
bottom rows, respectively. The results using the PSF (non-PSF) stars are in blue (orange).
Text labels on each panel show the mean and standard deviation of the distributions with
matching color. The PSF stars have a narrower residual distribution than the non-PSF
stars, especially in the spin-0 components. We concluded that this is caused by PSF model
overfitting, as described in Section [4.4.3]
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4.4.3 Spin-2 and Spin-0 PSF Moment Combinations

The image simulations in (7I) provide early evidence that (a) PSF even moments are far
more important for weak lensing shear than PSF odd moments, and (b) the shear response to
PSF higher moments exhibits symmetries in moment indices. In this section, we show that
one linear combination of all higher moments at a given even order represents the “spin-2”
contribution of those moments to the first order; and we prove that only the even moments
can combine to form spin-2 moments in Appendix [£.Al This demonstration is important,
because spin-2 PSF quantities are assumed to be the main contributor to the additive shear
systematics (given that shear is spin-2). Additionally, the product of a spin-0 and spin-2
quantity is also a spin-2 property (89). Therefore, it is also relevant for us to define the
spin-0 combinations of the second and higher moments of the PSF.

A spin-2 complex quantity, e.g., weak lensing shear, negates when coordinates are rotated
by 7/2 (see, e.g., Appendix A of (I59))). We are interested in the spin-2 components of the
PSE’s fourth moments. Therefore, we find the spin-2 component of the 4th order complex
polynomials in polar coordinates (r, ¢):

r1e?® =r*[cos(2¢) + isin(2¢)]
=r" [cos*(¢) — sin*(¢)]
+ ir* [2sin(¢) cos®(¢) + 2sin’(¢) cos(¢)]
= (2* — y*) +i(22%y + 229°). (4.17)

The first parenthetical polynomial leads to the combination of two moments, Myo— Mys, while
the second parenthetical polynomial leads to an imaginary combination of two moments,
2Mi3 + 2M35, . We therefore define the spin-2 combination of the PSF 4th moments as

M9 = (Mo — Mos) + i(2M + 2Mz)). (4.18)

In support of this definition, Figure 6 of (7I) provides numerical evidence that My, and
My are the only fourth moments that impact g, and Msz; and M3 are the only ones that
impact ¢go . In Fig. [4.3.1] we show the image responses to the spin-2 quantities of second and
fourth moments. The image responses show the variation of a Gaussian PSF when only a
specific spin-2 quantity is changed, while other moments remain constant. It is computed
by PSFHOM B (71). Fig. shows that the ]\/[F(fls)F values are sensitive to pixels with
radius both larger and smaller than the pixels to which the epgp values are sensitive. The
sensitivities of MngLS)F to smaller and larger radii with the same polar angle have opposite
signs, which means Mf(fs)F is sensitive to the difference in spin-2 between pixels with small
and large radii.

As shown in Appendix there will in general be a spin-2 combination of even moments
at any order. For example, for the 6th moments, we can expand 7%¢*? as in Eq. to
define the spin-2 combination of the PSF 6th moments as M©) = (Meo+ My — Moy — Mog) +

https://github.com/LSSTDESC/PSFHOME


https://github.com/LSSTDESC/PSFHOME

119 4.4. STAR CATALOGS AND MOMENTS MEASUREMENTS

i(2Ms1 + 4Ms3 + 2Mi5) . In Appendix [1.E.3| we demonstrate that sixth moments do not
need to be modeled in the PSF systematics for the HSC analysis in practice, since they are
noise dominated and highly correlated with fourth moments.

In Fig. [4.3.2] we visualize the spin-2 combination of PSF second moments, i.e., the shape
(upper panel), and of the PSF fourth moments, i.e., M (lower panel), in one of the six
HSC fields. In both cases, we show the true moments measured using star images and their
residuals defined in Eq. . We can see distinctive patterns in the true second and fourth
moment distributions, which suggest that they must both be modeled in the weak lensing
shear analysis. The pattern in the residuals is less visible, mainly because they are coherent
on a smaller angular scale than the resolution of these whisker plots, as we will see later in
Section through the two-point correlation functions.

As stated previously, the product of a spin-0 and spin-2 quantity is also spin-2. Therefore,
it is relevant for us to define the spin-0 quantities of the PSF moments. We can find the
spin-0 components of the second and fourth moments by doing a similar exercise for r? and
r* instead of r*¢*? as in Eq. (4.17)). For the second moments, that process yields the trace
of the second moment matrix M,

For the fourth moments, it yields the radial kurtosis,
ngS)F = M40 —+ 2M22 -+ M04. (420)

In Fig. 4.4.1] we show the residual distributions of the spin-2 and spin-0 moment combina-
tions (for the second and fourth moments) for the PSF and non-PSF stars in the Y3 star
catalog. We see that the non-PSF stars have a wider spread in all moments, which can be
caused by either overfitting of the PSF model, or different SNR distributions of the PSF
and non-PSF stars. To rule out the SNR explanation, we inspected the moment residuals
for SNR in the range [300, 500], where the PSF and non-PSF stars have very similar SNR
distributions, and also found a similarly wider spread for the non-PSF stars compared to the
results shown in Fig. Therefore, we conclude that the PSF model is overfitting the
PSF, which means that the PSF stars have underestimated PSF model residuals compared
to other locations (such as those where we expect to find galaxies).

The noise in the image can cause noise bias in the PSF higher moments for low signal-
to-noise samples. We conducted a simple numerical test with an HSC-like PSF profile to
ensure that the multiplicative noise bias to our higher moments measurement is on or below
the order of 1073 within the SNR range of the star samples used here. Due to this finding,
we do not expect noise to cause significant bias in the higher moments measurement.

The identification of spin-2 combinations of PSF higher moments is a powerful tool to
reduce the dimensionality of the data vector of PSF higher moments that must be considered
as potential contaminants to weak lensing shear, which can greatly simplify the cosmic
shear analysis while still allowing for effective mitigation of all relevant PSF systematics.
In Section [£.5.1] we will build the PSF systematics model including spin-2 higher moment
combinations.
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Figure 4.4.2: The PSF-PSF correlation functions between [epsr, Aepsr, Méfgw AMF()LLS)F] of
the PSF stars (solid lines) and the non-PSF stars (dashed lines) in all six HSC Y3 fields.
The 10 correlation functions are divided into truth-truth (left panel), truth-residual (middle
panel), and residual-residual (right panel). The PSF and non-PSF stars have identical truth-
truth correlations, as expected since they trace the same survey area in consistent ways. The
truth-residual and residual-residual correlations of the non-PSF stars are all larger than those
for PSF stars. This result is consistent with the evidence for PSF model overfitting that was
identified in Figure [{.4.1] We use the symmetrical-logarithmic scale on the y-axes, with
the linear region shaded in grey. All errorbars are obtained by the jackknife in TREECORR
(®) after dividing the entire HSC Y3 fields into 20 patches using k-means. Note that the
truth are orders of magnitude larger than the residual, therefore the three panels have very

different scale in y-axis. The errorbars on the correlation functions for PSF (non-PSF) stars
have (do not have) caps.
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4.5 PSF Systematics in Cosmic Shear

In Section[4.5.1], we present our formalism for describing PSF systematics in cosmic shear. In
Section , we describe the process for model selection (demonstrating it by determining
our fiducial model for HSC) and for determining the priors on the corresponding parameters.
In Section [4.5.3] we describe the process for accounting for how PSF systematics may affect
tomographic bins in different ways due to evolution in galaxy properties and shear with
redshift.

We have also confirmed that a number of factors are subdominant and need not be
included in our model. These aspects include the PSF systematics impact on £_, PSF sixth
order spin-2 quantity, and impact of second-order systematics terms. These are discussed in
Appendix [f.E| These outcomes are specific to the HSC Y3 dataset, and we recommend that
other surveys carry out these tests when determining their PSF systematics model as well.
This section derives the PSF systematics models in the real space cosmic shear analysis. We
provide the equivalent formalism in Fourier space and discuss the consistency between the
real and Fourier space analyses in Appendix [£.G]

4.5.1 Formalism

The observed galaxy ellipticity can be expressed as

ggal = (Jgal + g + Gsys- (421)

Here gga1 = €ga1/(2R) is the shear of the intrinsic shape of the galaxy, ¢ is the cosmic shear,
introduced in Section {.2.I, R is the responsivity of the shape to shear, and g is the
additive systematic shear due to the PSF. In this formalism, the multiplicative bias, which
normally is a pre-factor of the shear, is absorbed in the responsivity matrix. The spin-2
quantities related to the PSF, described in Section , contribute to the additive bias ggys.
Note that in some literature, the additive shear bias gy is referred to as egys (47; [153).

The past treatment of PSF systematics due to second moments in gsys has included two
terms: PSF leakage and PSF shape modeling error. The PSF leakage refers to the imperfect
correction for the shear estimation method, which correlates the galaxy shape gy with the
PSF shape epsp. For example, it is found in previous studies that reGauss is susceptible to
PSF leakage (I;[564)). The PSF modeling error term originates from the residual in PSF shape
modeling and therefore the unavoidable bias in the galaxy shape estimation (157), which
correlates the galaxy shape gza with the PSE shape residual Aepgp = €psp model — €PSF +-
Previous work often used o and [ as prefactors for the leakage and modeling error terms
(1; 154 192). When only considering the PSF second moments,

Gsys = aepsr + fAepgr. (4.22)

Note that in (I)), instead of (A)epsr, (A)gpsr = (A)epsr/2 is used. We decided to use the
distortion (epgp) directly throughout the paper so that second and higher moments would be
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treated consistently. This choice only results in a factor of 2 difference in the second moment
PSF parameters, and do not impact the cosmological prediction.

We found a spin-2 quantity consisting of PSF fourth moments in Section Therefore,
a logical generalization of the PSF systematics formalism is to add and test for fourth moment
leakage and modeling error terms as part of gss. We also want to check the necessity of
including a constant ellipticity parameter e. = e.; + ie.2 in the formalism, to model the
systematics from other sources that generate a non-zero mean shape in the catalog, other
than that from the cosmic variance. Therefore, the full model for gy is

gsys = Oé(2)€PSF -+ B(Q)Aepsp + Oé<4) MIE,ZLS)F -+ B(4)AM1£>48)F + Ce. (423)

Here o® and $® are leakage and modeling error coefficients for second moments, and a®
and B are comparable quantities for fourth moments. This formalism could in principle
extend to all spin-2 quantities, including PSF sixth moments, and product of spin-0 and
spin-2 quantities, etc. However, higher moments and higher order terms are increasingly
noise dominated. In Appendix we show that extending to sixth moments does not
increase the overall estimated additive bias significantly, and therefore is not needed for
HSC Y3. Similarly, we show in Appendix that second order terms do not significantly
contribute to additive shear biases for HSC Y3. However, we recommend that other surveys
with more stringent requirement on systematics also test for the impact of these quantities
when defining their PSF systematics model.
Since gsys and gga1 + g are uncorrelated, the 2PCF of the observed galaxy shape is

@galggal) = <(9ga1 +9) (ggal +9)) + <gsysgsy8> . (4.24)

We focus on the last term, which is the additive shear contamination due to the PSF in
the shear-shear 2PCF. To efficiently express (gsysgsys), we define the parameter vector p =
(), 32 o 3@ ¢ and define the PSF moments vectors S = [epsr, Aepgr, MP()Z;)F, AMF(,Z’LS)F,
Here p is a parameter set defined for the galaxy ensemble, while S is a set of PSF quantities
that varies across the position on the sky. We include e. in the PSF parameter vector to
simplify the formalism for likelihood analysis. The expansion of (gsysgsys) from Eq.
becomes

5 5
(GsysGsys) = Z Zpkpq<SkSq> (4.25)
k=1 g=1
Here the double summation includes the impact of (a) the 10 unique PSF-PSF correlation
functions (p-p correlations), (b) the product of the mean shape systematic term e, and mean
PSF moments, and (c) the mean shape systematic term e, itself. When two complex numbers
are multiplied together, the complex conjugate must be used for one of them.

In Fig. f.4.2] we show the p-p correlation functions between all PSF moment pairs in S,
for the PSF stars (solid lines) and non-PSF stars (dashed lines). We denote the moments
of the PSF as “truth”, and the difference expressed in Eq. as “residual”. The PSF
and non-PSF samples are similar in truth-truth correlations. However, because the moment
residuals are much larger for the non-PSF samples, all of the truth-residual and residual-
residual correlations are significantly larger for the non-PSF stars.
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Figure 4.5.1:  We show the correlation matrix of Dy, as defined in Eq. in the left
panel, and the correlation matrix of K(p)D,, in the right panel. We see that D,, values
at different angular scales are highly correlated, and there are significant anti-correlations
between (ggaiepsr) and (ggalMéé)F>. KD,, across angular bins are also highly correlated for
the correlation with the PSF truth. These significantly affect the outcome of the maximum-
likelihood fitting process by penalizing cases where the theory data vector is such that the
sign of D, — Ty, differs across angular bins, or where the sign of D, — T, is the same for

(Geamepsr) and <gga1M1§‘§F). Notice that the correlation matrix of the p-p correlation is more
noisy than that of the g-p data vector, because the former is calculated using the jackknife
method, while the latter is calculated using a large number of the mock catalogs. We use the
best-fitting parameters of the “4+¢” model (listed in Table to construct the correlation
matrix of K(p)D,,. On average, the covariance matrix from the p-p correlation contributes
about 20% of ¥, to the total covariance matrix ¥,,(p) at the best-fitting parameters of the
fiducial model, introduced in Section [£.5.2]
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Figure 4.5.2: The correlations functions of galaxy shapes with PSF quantities (left panel,
Egs. and and with PSF modeling residuals (right panel, Egs. and and
the best-fitting PSF systematics models for the PSF stars. The correlations between the Y3
star catalog and shape catalog are shown as “x”, with the shaded region representing the
lo uncertainty. The best-fitting correlations from the models are shown in the solid and
dashed lines, where the quantity being modelled is reflected by the color. “2” means that
the model only includes second moments leakage and modeling error terms, “4c¢” means that
the model includes the constant galaxy shape term, and “4” stands for the fiducial model,
which includes both the PSF second and fourth moments. All models are fitted to all four
galaxy-PSF correlation functions and to the average galaxy shape, except for “fit-second”,
which only fits to (geaiepsr) and (Jgalepsr).

4.5.2 Building a Data-Driven PSF Systematics Model

In this section, we use data-driven approaches to define the PSF systematics model. In
Section [4.5.2] we use the galaxy-PSF correlation as an observable to infer the posterior of the
PSF parameter, by building models to predict galaxy-PSF correlations with the formalism
in Section [4.5.1] In Section [1.5.2] we define the full models and their submodels, as well
as the traditional second-moment-only model for comparison. In Section [1.5.2] we discuss
the difference between PSF and non-PSF results. In Section [4.5.2] we show the impact
on cosmological observable by the PSF systematics.In Section [£.5.2] we describe our model
selection criteria.
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Figure 4.5.3: The dot shows the average galaxy shape (Jga11) and (gga12) , and its 1o contour
estimated using the Y3 mock catalog. The crosses and triangles show the best-fitting (Gga11)
and (Jga2) predicted by Eq. (4.30), for the models labeled using the same notation as in

Fig. [4.5.2}

Galaxy-PSF Cross Correlation and Model Fitting

Cross correlating galaxy and PSF spin-2 components is a common approach to identifying
and quantify additive PSF systematics. When used for identifying systematics, these calcu-
lations are referred to as “null tests” (e.g., [64; 89). The PSF-PSF correlations are referred
to as the p statistics. Here we employ galaxy-PSF correlation (g-p correlation) for two
purposes: (a) identifying the contamination from PSF leakage and modeling error on weak
lensing shears, and (b) quantifying the prior on any PSF systematics parameters that need
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to be included in the cosmological likelihood analysis.

We cross-correlate galaxy shapes with the PSF spin-2 quantities and their residuals,
both from second and fourth moments, and the constant systematics term. Since the true
correlation between the galaxy’s intrinsic shape and shear with any PSF moment Mpgp
should be zero, we can assume that (GzaMpsr) = (gsys Mpsr). Therefore, the cross-correlation
between gy in Eq. and PSF moments in Eq. becomes

<ggalePSF> @) (epsrepsr) + B (Aepspepsr) + a(4)<M1§‘§)FePSF>
<A PSFGPSF> + e.{epsr) (4.26)
(ggalAepsp> = a®(epspAepsr) + B2 (AepspAepsr) + o (M Aepsr)
(A MPSFAQPSF> + ec(Aepsr) (4.27)
<9ga1MPSF> = a <€PSFMPSF> + B (Aepse Mige) + o (Mige Mge)
D(AMIGe Mige) + e Mige) (4.28)
<ggalAMPSF> — o (epsp AMSE) + 8P (Aepsr AMYD) + oD (ML AMED)
(A PSFAMPSF> <AM1(>43)F>‘ (4.29)

Here the correlation functions on the left-hand-side (LHS) of the equations are what we
call “galaxy-PSF correlations” (g-p correlations), and the correlation functions on the right
are “PSF-PSF correlations” (p-p correlations). Additionally, we check if the average galaxy
shape in the catalog follows the model

(Ggal) = a(2)<€PSF> + 5(2)<A6PSF> + a(4)<MF(>45)F>
+ BD(AMSL) + e.. (4.30)

In this work, we measure the p-p and g-p correlations in 20 angular bins from 1-200 ar-
cmin. The range of angular bins was defined so that it covers the scales used from the HSC Y1
cosmic shear analyses, while also ensuring the small scales are not affected by blending. The
upper scale cuts are extended to 200 arcmin to provide more constralnlng power on the PSF
parameters. The data vector Dy, = [(Jgaiepse), (Jgalepsr), (Gga Mbge), (Gl AMgp), (Ggan)].
with 82 data points in total, is fitted by the theory data vector Ty,(p) predicted from
Eqgs. —, by maximizing the log-likelihood function

log(L(p|Dyy) o —5x° — 5 los(det (£,,)), (4.31)
where
= (Dyy — Tp())"E,, (p)(Dyy — Ty (). (4.32)

o1 . . . . . . .
Here X (p) is the parameterized inverse covariance matrix that includes the Gaussian
covariance matrix of the p-p correlation functions

igp@) =2+ K(p)prK(p)T. (4.33)
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X, is the covariance matrix of D, computed using the HSC Y3 mock catalog described in
Section , Z;pl is the covariance matrix of the p-p correlation vector D,,,, which consists
the p-p correlation functions ordered in the reading order of the RHS of Eq. —.
K(p) is the linearized transformation matrix of the RHS of Eq. —. By having
a parameterized covariance matrix in the likelihood, we effectively marginalize over the
uncertainty of the p-p correlation function (199). In Eq. , the second term comes from
the normalizing factor in the Gaussian likelihood, which changes during the fitting because
of the parameterized covariance matrix.

In Fig. |4.5.1] we show the correlation matrix Cor(Dy,) of D,,, where

Cor(Dyy)i][j] =

?’EW _ (4.34)

in the left panel, and the correlation matrix of K(p)D,, at the right panel. The elements in
the covariance matrix contributed by the p-p correlation K(p)X,,K(p)? are typically 20% of
¥, at the best-fitting parameters of fiducial model, introduced in Section [£.5.2 Therefore
these are not negligible in the model fitting.

By maximizing Eq. (£.31)), we get the best-fitting value of the parameters p. We also
used Markov Chain Monte Carlo (MCMC), implemented in EMCEE (I86), to measure the
posterior of the PSF parameters P(p|Dy,). The priors on all PSF systematics parameters
are flat from —oo to +oo.

Model Definition

Now we define the models we included in the model fitting and selection, assuming the PSF
parameters are independent of the tomographic bins. The full model (“4-+c”) includes all 6
parameters in p. We define sub-models by setting some parameters in p to zero while still
fitting the entire data vector Dg,. The fiducial model (“4”) is a sub-model that only includes
the first four parameters in p; later in this section, we explain the statistical criteria used
to identify this model as the fiducial one. The second-moments-only model, denoted as “2”,
only has the first two parameters in p. The “2+c” model adds the e, parameters to the
second-moments-only model. The “4”, “2” and “2+4c” are all sub-models of the full model
“4+¢”", defined in Eq. (4.26)—(4.30).

The “fit-second” model is not a sub-model of the full model: in particular, this corresponds
to taking the “2” model and only fitting it to the second moment g-p correlations. The “fit-
second” model is a logical choice if the fourth moment g-p correlation is ignored in the null
testing. We introduced “fit-second” because it mirrors what was done in past shear analyses
that did not consider fourth moments.

We validated our statistical inference on the PSF parameters by adding PSF shear bias to
the mock catalog with known PSF parameters, and attempted to recover the PSF parameters
through our inference. This process is described in Appendix [4.D]
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PSF and non-PSF stars

We carried out the same analysis, now using the non-PSF stars. Since the PSF star sample
shows that the models with only second moment leakage and modeling error cannot predict
the galaxy shape correlations with PSF fourth moments, and the constant terms are later
deemed unnecessary, we only used the fiducial model and the fit-second model. The p-values
of these models as applied to the non-PSF star correlation functions are also included in
Table The fiducial model still performs well for the non-PSF star sample, as well as
the fit-second model fitted to the g-p correlations with the second moments of the non-PSF
stars.

— PSF

N
o

Figure 4.5.4: The posterior of the PSF systematics model parameters for the fiducial model,
using the PSF and non-PSF stars as indicated in the legend. The PSF stars provide signifi-
cantly larger estimates for both 8 and f®, which could be explained by the overfitting of
the PSF model.

In Fig. [1.5.4) we show the PSF parameter posteriors for our fiducial model, for the PSF
and non-PSF stars. The best-fitting parameters and their errorbars are shown in Table [4.5.1]
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We see that the results from the two datasets provide statistically consistent values for /¥,
but inconsistent ones for o'?, 5 and . Overall, the inconsistency between the PSF and
non-PSF results is 8.20, ignoring the correlation between the two results. The mismatch of
the [ values can be explained by the overfitting of the PSF model: Fig. shows that the
second moment residual is overfitted by a factor of ~ 2, which means the Aepgr of the PSF
stars are underestimated by a factor of 2. To compensate for this in the model fitting, the
underestimation of Aepgr gives rise to a ) for PSF stars ~ 2 times larger than the one for
non-PSF stars, as gsys is ultimately the source of the inferred 3 values. In other words, we are
fitting to correlation functions that carry information about the true systematic uncertainties
in the galaxy shears, and hence using a star sample that underestimates the magnitude of
Aepsr leads to a correspondingly higher value for § but effectively the same actual A&,
(which is the product of the two factors). The inconsistency in the a?) values is roughly
1.70, without considering the potential correlation between the two results. Next we will
directly demonstrate that the two samples nonetheless predict a consistent impact on cosmic
shear.

Impact on Cosmic Shear

With the best-fitting value and uncertainty contour for p for each model, we can also predict
the impact on cosmic shear by the PSF systematics as a whole, expressed in Eq. . In
Fig. , we show the additive bias on cosmic shear A¢, , defined in Eq. , predicted by
these models. In the upper panel, we compare the A&, predicted by different models fitted
to the galaxy shape correlations with PSF star moments. The traditional “fit-second” model
omits the g-p correlation functions with PSF fourth moments and residuals, and its A&, is
therefore underestimated by up to an order of magnitude, which is significant. Although
“27 and “24c” predict a similar magnitude for A&, as “4” and “4+c”, they fail to fit the
g-p correlations, according to Fig. and Table and thereby are suboptimal. The
difference between the full model and the fiducial model is insignificant in terms of A&,
compared to the statistical uncertainty of the shear-shear 2PCF. Therefore, we can drop the
e. parameters in the HSC Y3 cosmic shear analysis. In the lower panel, we compare the A&,
predicted using PSF versus non-PSF stars, for the fiducial and fit-second model. We notice
that the A&, predicted by the fiducial model is very similar for both star samples, while there
is a larger discrepancy between A, predicted using the fit-second model fits to the PSF
and non-PSF stars. This is because, when including fourth moments, the PSF and non-PSF
stars’ predicted A&, is dominated by the fourth moment leakage, which (unlike second order
modeling error terms) is less affected by the difference between PSF and non-PSF stars.

For reference, we also plotted the statistical uncertainty of the shear-shear auto-correlation
function predicted for the HSC Y3 cosmic shear analysis, and computed the statistical sig-
nificance of the PSF systematics bias by

b= /AT TAL,. (4.35)

Here ;" is the estimated covariance matrix of the shear-shear auto correlation function of
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bin 7. We find the statistical significance of the additive shear systematics for our fiducial
model from bins 1 — 4 to be 1.74,1.10,0.66, 0.42 for the PSF stars, and 2.03,1.27,0.75,0.49
for the non-PSF stars. Overall, the statistical significance for all 10 mfﬁ is 2.00 for the
PSF stars, and 2.30 for the non-PSF stars. Note that the statistical significance here might
not directly correspond to the bias on the cosmological parameters. Rather, serves as an
approximate indicator for the significance of the PSF systematics.

Model Comparison

Here we show the model fitting results and describe the methodology to select among the
models.

In Fig. [4.5.2] we show the galaxy-PSF correlation functions (LHS of Eq. (4.26)-(4.29))
with their 1-0 uncertainties. The correlations with PSF quantities are shown in the left panel
(second and fourth moments in blue and red, respectively), and the correlations with PSF
model residuals are shown. Fig. shows the average galaxy shape in the right panel.
The 1-0 uncertainty of D, as assessed using mock catalogs (including cosmic variance) is
shown with shaded regions for the correlation functions and an ellipse for (ggal)-

The best-fitting theory vectors Tgp in Fig. show that both the full model (“44-¢”)
and the fiducial model (“4”) can fit the data vectors within 1-o in the full angular range from
1-200 arcmin. The models involving only second moments (“2” and “2+c”) cannot fit the g-p
correlations with PSF second moments and residuals nearly as well. The “fit-second” model
also fits the second moment correlations well. All the models fit the average shape (§ga1)
within 1-0, as shown in Fig.

We measure the goodness of fit using p-values, assuming the number of degrees of freedom
is 82 — k, where k is the number of model parameters, and 82 is the length of D,,. The
p-values are shown in Table [L.5.1] A p-value over 0.05 is considered a good fit to the data,
and our results show that we need to include the fourth moments explicitly (“4” or “4+c”)
to fit all g-p correlations.

Ultimately, we use the impact on the cosmic shear data vector to select which model we
should use. The most efficient model should include the minimum number of parameters
needed to capture most of the contamination to £,. In our case, the statistical significance
of the estimated contamination changed from 0.70 for the second-moment model to 2.0c for
the fiducial model, with only two additional parameters. Therefore, the fiducial model is
our preferred choice, so as to avoid underestimating the additive systematics by more than a
factor of two. In Appendix[4.E.2Jand Appendix [4.E.3| we will see that none of the sixth-order
moments or second-order terms can contribute enough additive bias to be worth using.

4.5.3 Redshift Dependency

In this section, we discuss the necessity of including redshift dependence in our PSF system-
atics model. In principle, a dependence on redshift could arise because the PSF leakage and
modeling error parameters [a?, 33 o™ B3*%] may depend on the ensemble galaxy proper-
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Sample Bin o®i L a®i ien p-value
1 0.014 £0.002 —-0.540.1 0.16 & 0.01 0.1£0.7

PSF stars 2 0.023 £ 0.002 —-0.84+0.2 0.18 £ 0.01 —0.7+£0.6 0.91
3 0.014 +£0.003 —1.0£0.2 0.17 £ 0.02 —0.9+£0.5
4 0.0144+0.004 —-1.340.3 0.20 £ 0.02 —0.3£0.75

all  0.018:0.002 —-0.86=+0.06 0.176 £0.007 —0.24+0.1 0.28

1 0.023 £0.004 —-044+0.1 0.16 £0.013 0.24+0.3
non-PSF stars 2 0.028 £0.004 —-0.340.1 0.16 £0.013 054+0.2 0.63

3 0.018 £0.005 —-0.0£0.1 0.144+0.016 0.94+0.3

4 0.020 £0.007 —-0.14+0.2 0.174+0.021 144+0.3

all  0.022+£0.002 —0.174+0.06 0.156 £0.008 0.57+0.1 0.12

Table 4.5.2: The best-fitting parameters, p-values of the models fitted to the set of g-p
correlation function across all tomographic bins. The first section shows the best-fitting pa-
rameters and the p-values using the PSF stars, while the second section shows the results for
the non-PSF stars. The last line of each section shows the results for a redshift-independent
model that was fitted to the tomographic data vector. The results show a mild preference
for the redshift-dependent model, but the redshift-independent model cannot be ruled out.

ties, e.g., galaxy size, Sérsic index distribution (70]), which vary across tomographic bins.
In past work in DES (154), the redshift dependence of the PSF systematics model param-
eters was investigated for the second moments model. Although the overall level of PSF
systematics in that work is small, the redshift dependence of the parameters was found to
be statistically significant.

We investigated the redshift dependency of our model by joint fitting all the g-p correla-
tions and average galaxy shape per bin by defining one set of parameters p' = [a®, 3@ o1 3]
for each tomographic bins, where ¢ stands for the tomographic bin index from 1-4. The
redshift-dependent data vector D}, = [(j3..€psF); - - - ; <gg1alAMlg45)F>, (20€psE);s - -

(GRaAMSG) s (G AMSE), (L) - -, (3], which has a total length of 4x4x20+4x2 =
328. The parameter set p* = [a® ... g1 @2 gW2 3WA] wwhich has a total
length of 16. We call this the “redshift-dependent fiducial model”. We conducted the joint
fitting rather than fitting the data separately in each tomographic bin to account for the
covariance between the tomographic bins. In Fig. [£.5.6] we showed the correlation matrix
of D, and found the correlation between the tomographic bins are significant. For the
redshift-dependent model, we use angular scales from 2-200 arcmin, because including the
smaller angular scales will result in the model fits to non-PSF stars failing the p-value test.
In comparison, we also fit a “redshift-independent” model to the same data vector D7, by
enforcing the PSF parameters to be the same across the 4 tomographic bins.

In Fig. [4.5.7, we show the g-p correlations of the four tomographic bins of the HSC Y3
shape catalog (160)), and their best-fitting values according to the redshift-dependent fiducial
model, using the PSF stars. The 1d marginal posteriors for the PSF parameters are shown
in Fig. [4.5.8] The best-fitting parameters, p-values fitted using both PSF and non-PSF stars
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are listed in Table [1.5.2] We sce a slight statistical significance in the redshift-dependency in
the PSF parameters, especially with the decreasing trend of 3®* with redshift. However, the
redshift-independent model also has an acceptable p-value, while significantly decreasing the
number of parameters needed to model PSF systematics, which is a practical issue of some
importance. For this reason, we will want to use mock cosmic shear analyses to quantitatively
assess the model performance for the simpler model and determine whether it is acceptable,
even if not statistically preferred.

The impact on the cosmic shear 2PCF in bin-i and bin-j predicted by the redshift-
dependent model is

4 4
AET =" Pipi(SiS,) (4.36)

k=1 q:l

In Fig. we show the impact on the cosmic shear auto-correlation functions in to-
mographic bins due to the PSF systematics, fitted by PSF stars, comparing the redshift-
dependent model (colored lines) versus the redshift-independent model (black points). We
also show the statistical uncertainty of the HSC Y3 cosmic shear &, , which is predicted by
the covariance matrix used in Section [£.6.2] We also show the redshift-independent model
fitted to the tomographic g-p correlations in black circles for PSF stars and black triangles
for the non-PSF stars. The A from bin 1 to 3 are statistically consistent with each other,
but the bin 4 correlation is significantly higher than the others (in absolute value, not in its
ratio to the cosmic shear signal). For the non-PSF stars, the predictions for A¢Y increase
gradually with redshift from bin 1 to 3, and likewise increase quite sharply for bin 4, proba-
bly due to the fact that bin 4 has the largest a® and 8. To avoid overcrowding the plot,
we do not show the lines for non-PSF stars. The redshift-independent models predict equal
A&, for all tomographic bin-pairs. Evaluating the model at its best-fitting parameters yields
to a prediction for A¢, comparable to the amplitude of the redshift-dependent prediction
from bin 1 to bin 3, while underestimating the A&, for bin 4 by a factor of ~ 2.

Overall, the prediction of A&Ys by the redshift-dependent model are not statistically
consistent with each other across tomographic bins. However, modeling the redshift depen-
dence by assigning a separate set of parameters to each tomographic bin will significantly
increase the number of PSF parameters from 4 to 16. While the redshift-independent model
remains competitive in terms of p-value (see Table , we think the redshift-independent
is still a potentially acceptable model of choice for the HSC Y3 analysis. Whether model-
ing the redshift dependency is worth increasing the number of nuisance parameters by 12
should be determined based on the impact on the cosmological results, which is inferred in
Section [4.6.2]

An option to model the redshift dependence of the PSF systematics in shear without a
drastic increase in the number of model parameters is to introduce parametrized models for
the redshift dependence of selected PSF parameters. For example, based on our results for
HSC Y3 analysis, a reasonable choice might be to model 3 (2?) as 582)]”1(2), where fi(z)
is a simple single-parameter function of redshift. Another option is to subtract the mean
redshift-dependent Aéfﬁ the cosmic shear data vector, and model a few principal components
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of the uncertainty of the parameters. However, this approach relies on the assumption that
the uncertainties of the PSF parameters are highly correlated with each other, so that a
principal component analysis can be effective.

4.6 Cosmological Impact

In this section, we test the impact of the new PSF systematics model described in Section [4.5]
in cosmological analyses. In Section [4.6.1] we present a re-analysis of HSC Y1 cosmic shear,
using the Y1 cosmic shear data vector, covariance matrix, and redshift distribution from ().
In Section we present a mock cosmological analysis for HSC Y3 cosmic shear using a
noiseless mock data vector and covariance, and the galaxy-PSF correlations from the real
HSC Y3 star and shape catalogs described in Section and Section [4.3]

4.6.1 HSC Y1 Re-analysis

For the re-analysis of HSC Y1 cosmic shear, we adopted the cosmic shear 2PCF &, its
covariance matrix 2vy1, and the redshift distribution of the four tomographic bins from (1)@
We built the forward model for the data vectors, including cosmological and astrophysical
modeling choices, in CosMOSIS (200).

The choices of the cosmological model and the priors on the parameters are made to
be as close as possible to those of (I}). The only difference is that we marginalize over the
multiplicative bias for each tomographic bin, instead of using one nuisance parameter for
m. Here we briefly review the settings. We used CAMB (201} 202} 203)) to compute the
linear matter power spectrum, and HALOFIT (204]) to compute the non-linear matter power
spectrum. The optical depth 7 was set to 0.0561, and neutrino mass was set to 0.06eV. The
priors on the cosmological parameters are listed in the first section of Table [4.6.1

Regarding the astrophysical and nuisance parameters of the re-analysis, we use the non-
linear alignment model (NLA 205} 206) to model the intrinsic alignments (see 148, for the
specification of the model). The prior on the NLA parameters Ajx, n and z, are listed in
the second section of Table [4.6.1 The priors on the multiplicative biases m!-m?* and the
redshift uncertainty parameters Az'-Az* are listed in the third section of Table We
use the same redshift distribution, astrophysical and systematics models and priors as (1)).

We validate our forward modeling inference and model choices by comparing the cosmo-
logical parameter results when applying the same PSF systematics model as in (I). In (I)),
the fiducial model, which used the second-moment-only PSF systematics, results in the 68%
confidence intervals{ﬂ of 0.237 < €, < 0.383 and 0.795 < Sy < 0.855. Our second moment
model reports the 68% confidence interval of 0.253 < ,, < 0.394 and 0.795 < Sg < 0.855.
There is a very small offset (~0.10) on our €, confidence interval, and the Sg interval

4http://th.nao.ac. jp/MEMBER/hamanatk/HSC16aCSTPCFbugfix/index . html
°Slightly updated from the original version in an erratum, (207).
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Parameter Fiducial Prior (Y1) Prior (Y3)
log(4, x 10°) 0.322  U[—1.5,2.0] U[=1.5,2.0]
Q 0.0489 U1]0.038,0.053]  U[0.038,0.053]
Ng 0.967 U1]0.87,1.07] U1]0.87,1.07]
ho 0.677 U10.64,0.82] U10.64,0.82]
Qun 0.311 U1]0.039,0.953]  U[0.039,0.953]
T 0.0561 const,. const,.

Q, 0.06 const. const.

w —1.0 const. const.

Wq 0.0 const. const.

Aa 1.0 Ul-5,5] Ul-5,5]

n 0.0 Ul-5,5] Ul-5,5]

20 0.62 const. const.

m! 0.0 N(0.0086,0.01) const.

m? 0.0 N(0.0099,0.01) const.

m3 0.0 N(0.0241,0.01)  const.

m* 0.0 N(0.0391,0.01) const.

Azt 0.0 N(0,0.0374) N(0,0.012)
Az? 0.0 N(0,0.0124) N(0,0.01)
A3 0.0 N(0,0.0326) N(0,0.018)
Azt 0.0 N(0,0.0343) N(0,0.021)

Table 4.6.1: The fiducial parameter values used to generate the mock data vector for the
HSC Y3 cosmic shear mock analysis (described in Section [£.6.2)), and priors for both the
HSC Y1 re-analysis (described in Section and Y3 mock analysis. Ula, b] indicates a
uniform distribution from a to b, while A'(u, o) indicates a Gaussian distribution with mean
4 and standard deviation o.

matches perfectly. We therefore conclude that our forward model is validated for the pur-
pose of comparing the PSF systematics model.

In the re-analysis, we compared the original and our fiducial model PSF models for
marginalizing the PSF systematics. We tested the model in (1)) by adopting its prior and
p-p correlations (PP, &P, and £97). We use our fiducial model to determine another set of
priors for a®, f® a® and B using the HSC Y1 high-SNR star catalog described in (71).
Both models lack a constant term. The priors used for both models are listed in Table 4.6.2]
In addition, for the sake of comparison, we run another analysis with no correction for PSF
systematics in shear.

In Fig. [4.6.1] we show the 2d contour and 1d errorbars in the (2,,-Ss plane for the
HSC Y1 cosmic shear re-analysis. Our fiducial model reports €, = 0.3197097 and Sg =
0.82475:059. The analysis without any correction for PSF systematics shows that €, would
have been biased by 0.2¢ if the PSF systematics is not modelled at all. The analysis using
the PSF second moment-based model was able to remove 0.13¢ from the bias, leaving 0.07¢
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Param. Original Fiducial

a® N(0.015,0.05)  N(0.035,0.05)
B@ N(=0.7,0.6)  N(—0.67,0.05)
ol N(0,0) N(0.17,0.02)
BW N(0,0) N (=0.32,0.10)

Table 4.6.2: The prior on the PSF parameters for the HSC Y1 re-analysis. The “Original”
column presents the priors adopted in the original HSC Y1 cosmic shear analysis (1I); when
fitting with these priors, we also used the p-p correlations from that work. The ‘Fiducial’
column presents the priors on our extended PSF systematics model, which was applied to
the p-p and p-q correlations for the HSC Y1 high-SNR star sample.

uncorrected. We use the effective number of parameters defined in (208))
neg = 2InL(6,) — 2(InL)y, (4.37)

where £(6,) is the posterior of the mean parameter 6,, and (InL)y is the average posterior
over the parameter space 8. The x? values of the “no correction”, second moment correction,
and fiducial model correction are 160.3,156.9, 143.7, respectively. The effective degrees of
freedom, 170 — neg, are 159.5,159.4,156.3, respectively. The p-values are 0.47,0.54,0.76,
respectively — meaning that all models are nominally acceptable, presumably because the
PSF systematics in shear are only a small contributor to the data vector that is being fit.
Still, fiducial model obtains a substantially better fit while only increasing the number of
parameters by ~ 2.

4.6.2 HSC Y3 mock analysis

Param. Second moment Fiducial
a® N(—0.007,0.002) N(0.016,0.002)

5@ N(—0.85,0.05) N(-0.91,0.05)
a@® N(0,0) N(0.17,0.01)
B4 N(0,0) N(-0.6,0.2)

Table 4.6.3: The priors on the PSF systematics model parameters for the HSC Y3 mock
analysis. “Second moment” model only fits the second moments galaxy-PSF correlations,
setting the fourth moment parameters to zero. The fiducial model fits all the galaxy-PSF
correlations with both second and fourth moments leakage and modeling error.

To study the impact of the PSF systematics modeling on the HSC Y3 cosmic shear
analysis, we conducted a mock analysis that mimics the analysis scenario. The noise-free
cosmic shear data vector is generated using the Planck cosmological parameters from (20)
and astrophysical values listed in Table without PSF contamination. We refer to this
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parameter set the “fiducial cosmology”. Then, mock PSF systematics are generated using the
best-fitting parameters of the redshift-dependent fiducial model, described in Section [4.5.3]

4 4
AL =3 " prpi(SiS;), (4.38)
i=1 j=1
where p! takes the best-fitting values in Table This PSF contamination term is added
to the original noise-free data vector to generate a Y3 mock data vector. The priors on
the cosmological, astrophysical, and nuisance parameters are listed in Table The
priors on the Y3 cosmological and astrophysical parameters are set to the same ranges as
for Y1. The multiplicative biases are set to 0, while the photometric redshift uncertainty
parameters take the Gaussian priors given in (209). We use the same scale cuts as the
Y1 analysis, i.e., 7-56 arcmin for &, and 28-178 arcmin for £_. The covariance matrix is
estimated using Xy3 = Xv;/3 to approximately account for the increase in survey area, while
neglecting changes due to differences in survey edge effects. We use the redshift distributions
and their priors estimated in (210), for which the marginalization method was validated in
(209). Although the redshift distributions and their uncertainties are estimated in an earlier
version of (210]), and are likely to be slightly different in the actual Y3 analysis, they do not
significantly impact our conclusion here. In the HSC Y3 cosmic shear analyses (5} [72)), the
scale cuts, covariance and some modeling choices are slightly different from the choice used
for this test. However, they carried out the same mock analysis as was done here and found
the same conclusion regarding the choice of the PSF systematics model.

In Fig. we compare the results of using two different PSF systematics models in the
Y3 mock analysis. The second moment correction model (in blue) only fits the Egs.
and using two free PSF parameters (04(2) and 3®), setting the other parameters in
those equations to 0. The fiducial model (in orange) uses the first four PSF parameters in
p, setting e, to zero, and fits all of Egs. (4.26)—-(4.29). The priors on the PSF parameters,
which are determined by carrying out our fitting process on the HSC Y3 shear and star
catalogs, are listed in Table [£.6.3] Both models use the PSF stars for determining the prior
and p-p correlations, as it is the better-understood sample of this work, with a larger sample
size. In addition, we include the following two analyses: one with no PSF systematics
added to the cosmic shear data vector and no attempt at PSF systematics correction, as
a baseline; and one with PSF systematics added to the cosmic shear data vector, but with
no attempt at correction, as the worst-case scenario. The input values of €2, and Sg are
shown as the dashed lines. The mean parameters of the analysis with no PSF systematics
added to the data vector are shown in the solid vertical lines. The mean value of €2, in
the “No Systematics” case is biased low compared to the true input value, even though this
constraint is meant to be bias-free. We attribute this difference to the “projection effect” of
the non-Gaussian posterior (e.g., see Section IV of 21T]).

To fully account for the uncertainty in the PSF systematics parameters, the fiducial
model in this test accounts for the correlation between those parameters, by assuming the
prior to be a 4D multivariate Gaussian. The details of modeling the correlated prior on
PSF parameters are described in Appendix [{.F] We find no significant difference between
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using an uncorrelated versus correlated prior. But for the sake of fully propagating the PSF
systematic uncertainties, we recommend that the HSC Y3 analysis should use the correlated
prior for the PSF parameters.

We can see that the second moments-only model barely corrected for the PSF systematics
in shear, because it missed the leakage from the PSF fourth moments. The fiducial model
comes closer to the baseline (“No Systematics”), although the correction overshoots the truth
for €2,,. This imperfect correction is likely because the fiducial model does not consider the
redshift dependency in the real contamination. Compared to the “No Systematics” run, the
PSF contamination causes a +0.360 bias on (2,,,, which the second moments correction does
not remove; and the fiducial model over-corrects, resulting in a —0.060 bias. For Sg, these
effects are smaller: PSF systematics cause a bias of +0.060, while the second moment model
overcorrects, resulting in a bias of —0.03c0, and the fiducial almost perfectly corrects the bias
on Sg.

Regarding the errorbar size, the choice between the models shown here only affects the
errorbars at the few-percent level, so this is not a significant factor in model selection.

We did not use the non-PSF stars to determine the contamination in this mock analysis,
since the PSF stars provide better statistics for the p-p correlation functions. In a real
analysis, if one uses the non-PSF stars to determine the prior and p-p correlation, the
correction made by the second moment-only model will be even smaller than it was here,
since A, is smaller for the non-PSF stars with the second moments model. For the fiducial
model, we do not expect the cosmological results to change by much because the predicted
A&, for the PSF vs. non-PSF stars are similar for the fiducial model, shown in Fig. [£.5.2]

due at least in part to the dominance of leakage rather than PSF modeling error.

4.7 Summary of Methodology

In this section, we summarize the process of building and selecting a PSF systematics model
for a given cosmic shear survey, while we developed and tested this model with HSC Y3
data. This is a general approach that we recommend for any weak lensing survey, rather
than being HSC-specific.

1. Build a star catalog with measured and residual moment measurements from second
to higher moments, as described in Section [£.4.2] Care should be taken to ensure the
purity of this sample, along with adoption of flag cuts and measures to avoid moment
contamination due to blending in the images.

2. Derive the true and residual spin-2 combinations of those moments, as described in
Section [4.4.3] (These can either be first order spin-2 quantities, or second order spin-2
quantities such as spin-0x spin-2, described in Section [1.E.3)

3. Cross-correlate the spin-2 quantities in the star catalogs with the shear catalog, and
conduct a likelihood analysis, including the following steps:
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(a) Estimate covariances through some method that includes relevant sources of un-
certainty, including cosmic variance in the shears, and systematic variations in
PSF properties across the sky.

(b) Build the systematics model by assigning a parameter to each PSF spin-2 quantity,
as explained in Section

(¢) Define sub-models can be defined by putting very constraining priors on the parent

model (Section {4.5.2)).

All models should be applied to the same set of galaxy-PSF cross correlations, as
described in Section £.5.2]

4. Define statistical criteria to distinguish the models. The preferred model should capture
all of the additive systematic contamination to A&, that is significant compared to their
statistical uncertainty. This implies that, if a more complex model only changes the
inferred A&, insignificantly compared to the error budget, the simpler model should
be selected. This is described in Section [4.5.2]

5. Test the robustness of the fiducial model by complicating it. These tests include:

(a) testing and understanding the consistency between PSF and non-PSF stars (Sec-

tion

(b) the redshift dependency of the model (Section {4.5.3])

(c) other spin-2 quantities (Section and Section 4.E.3))
(d) impact on &_ (Section |4.E.1]).

6. Conduct a mock cosmological analysis and confirm that the fiducial PSF systematics
model can correct the bias to a level that satisfies the requirement of the given survey

(Section 4.6.2)).

4.8 Conclusions

The overall goal of this paper was to provide a general framework for describing additive weak
lensing shear systematics due to the impact of PSF leakage and modeling error on inferred
weak lensing shears. To do so, we defined a key concept underlying the PSF contamination
in cosmic shear: this contamination is driven by spin-2 combinations of PSF moments (Sec-
tion . In addition to PSF second moments, all even moments, e.g., fourth moments,
contribute to PSF spin-2 quantities. The overall outline of our method is summarized in
Section 4.7, To apply our method in a real-world scenario, we generated an HSC Y3 star
catalog with higher moment measurement of the PSF and its modeling residuals, applying
cuts to avoid contamination by galaxies and provide valid PSF and non-PSF star samples.
We compared the moment residuals of the PSF and non-PSF stars, and concluded that the
PSF model is overfitted for the HSC Y3 catalog.



CHAPTER 4 140

Next, we defined a full PSF systematics model that considers PSF spin-2 quantity leak-
age from second and fourth moments, along with a constant shear systematics term (Sec-
tion . Using the HSC Y3 galaxy and mock catalogs (Section and the HSC Y3 star
catalog with measurements of higher moments measurement (Section , we quantified the
level of PSF contamination in cosmic shear data vector in Section [4.5.2] using that model.
The full model can be considered to have nested models, each of which has a subset of the
full model parameters set to zero. Our statistical metrics showed that a constant is not
necessary in our particular case, but the second and fourth moments leakage and modeling
errors are all impactful for cosmic shear. Therefore, our recommended fiducial model for
the PSF systematics for HSC Y3 cosmic shear is a four parameters formula (Eq. with
e. =0).

In addition to the direct leakage and modeling error of the PSF fourth moments, we also
investigated other possible contamination terms to &1 from the PSF. These additional tests
include the redshift dependency of the PSF contamination (Section [4.5.3), contamination to
¢_ (Appendix , contamination caused by moments higher than the fourth order (Ap-
pendix , and contamination caused by the second-order systematics (Appendix .
These effects and additional contamination from the PSF are demonstrated to be subdomi-
nant in HSC Y3. Therefore, we do not recommend directly modeling them in the HSC Y3
cosmic shear analyses. However, we suggest that future surveys with different shear estima-
tion methods and PSF modeling algorithms check for the importance of these effects, in case
they become a significant contribution in a different setting.

Last but not least, we conducted a cosmological analysis to assess the impact of PSF
systematics model selection on the cosmological results. We conducted a re-analysis on the
HSC Y1 cosmic shear using our fiducial PSF systematics model, and obtain an cosmological
results of ,, = 0.3197097 and Sy = 0.8247393%. Both parameter are shifted from the
original mean posterior by < 0.10. We produced a Y3-like mock data vector with redshift-
dependent PSF systematics. This introduce a +0.360 bias on €,,, and +0.060 bias on Sg.
After the correction by the fiducial PSF model, the bias is —0.060 bias on €2,,, and no bias
on Sg, which means fiducial model is sufficient for HSC Y3. The second moment model is
insufficient because the bias on €2, is +0.360 after correction.

There are several caveats in this work that are worth mentioning: (a) The cosmological
mock analysis of the HSC Y3, which drives some of our conclusions, includes simple assump-
tions about the model for cosmological parameters and astrophysical systematics, redshift
distributions, covariance, and scale cuts in relation to those from HSC Y1. These assump-
tions may not hold in the real Y3 analysis, though we do not think it will impact the overall
conclusion. (b) In our prior for PSF systematics parameters for the mock and re-analysis, we
do not consider correlations between the parameters. We leave such development to future
work. (c) We do not consider a redshift-dependent PSF systematics model in the cosmo-
logical analysis, which might explain the imperfect correction made by the fiducial model in
the mock analysis. We leave this implementation and its testing to future work. Note that
these features do not affect the framework for modeling additive shear systematics that we
have developed, and are simply limitations of how we applied it to HSC Y3.
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This work motivates a few future studies: (a) This motivates other ongoing (DES, KiDS)
and future (LSST, Roman, Euclid) weak lensing surveys to investigate the potential contami-
nation by the PSF higher moments. As the survey area grows larger with the next generation
of photometric surveys, the statistical uncertainties of both the shear-shear 2PCF (the error
budget for the cosmological measurement) and the PSF-PSF /galaxy-PSF 2PCF (the de-
tectability of systematics) will go down with the area, so the method will remain powerful
for detecting the spin-2 leakage in shear signal. The depth increase of the Stage-IV surveys
over the current surveys will increase the galaxy number density faster than the star number
density, which can benefit this framework, as the uncertainty in the galaxy-PSF correlation
functions for HSC Y3 is limited by the shape noise and cosmic variance. (b) Although we
found that the PSF model of HSC Y3 is overfitting the PSF, we did not account for it by
using non-PSF stars only, because there were too few of them to enable a study with reason-
able uncertainties. A self-consistent selection of PSF stars in all exposures in the future data
release will slightly increase the fraction of non-PSF stars in the catalog. (c) An extensive
study of the PSF leakage from different shear estimation methods will be of interest for
future weak lensing surveys, e.g., LSST and Euclid. Furthermore, a list of typical values of
a®, 2 o™ and f® will help translating the requirements on additive shear biases to the
requirement on the image processing pipeline and PSF models, which is normally developed
at an earlier stage of the survey, to increase the chances of meeting the ever more stringent
requirement on shear systematics.

A final lesson learned from this work is that a systematic approach to null testing, includ-
ing reliable uncertainty estimates, is a really important part of the validation for weak lensing
analysis. The leading contributor to the PSF systematics in our case — the fourth moment
leakage — was not previously considered as a potentially significant factor until the results
of this work. With that said, any factor characterized as “minor” in this study, whether it is
A&, sixth moments, redshift dependency of the PSF contamination, or second-order spin-2
terms, could become a leading factor in a specific setting and silently bias the cosmological
results. Therefore, the main future work that this work motivates is a comprehensive set of
null testings that is used to make principled decisions about the model for PSF systematics
in cosmological weak lensing analyses in any surveys.
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4.A Moments that contribute to spin-2 quantities

In this section, we prove that only the even moments with n = p + ¢ > 2 has the spin-2
property, which supports our choice to only consider those moments in Section £.4.3, A
spin-2 moment negates under image rotation by 7/2. As a result, it is invariant under
rotation of nm (for integer values of n) and negates under the rotation of (2n+ 1)7/2. The
moments M, defined in Eq. is the projection of the image onto the basis polynomial
function of zPy? (or uPv? depending on whether it is defined in standardized coordinate).
Note that the moment has the same spin property as the basis polynomial function zPy?.
To be more specific, if the basis polynomial function negates under 7/2 image rotationﬁ, the
corresponding moment negates under 7/2 rotation (159). Therefore, we focus on the spin-2
component of basis function 2Py? by projecting it onto the m = 2 spinor — e%¢:

/ / dx dy xPyde’®®
_oo - 2

:/ rp““dr/ 7rd¢cosp(<b) sin?(¢)e??

0 0
00 27

:/ rp+q+1dr/ de[27P(e + e *)P][(20) 71" — 7)1 e??
0 0

P q 00
=2 P=4;—4 E E / Tp+q+1d7"
0
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27
de(—1)4—7 p) (q) i(2k+2j—p—q+2)¢ ‘
[ (1) (%) (4.39)

The last step uses the binomial theorem, and p, k, ¢, and j are all integers. Since fo% deeim? =
0 if the integer m # 0. Therefore, Eq. (4.39)) can only be nonzero if 2k +2j —p—q+2 = 0.
This means the order n = p + ¢ must obey

n =2k +2j+2. (4.40)

Since k (j) takes any natural number between 0 to p (¢), n must be an even number that is
greater than or equal to 2.

We further notice that M, contributes to the real part of the spin-2 quantity if ¢ is even,
and contributes to the imaginary part if ¢ is odd, due to the i7¢ factor in Eq. (and
that the rest of the integral is real).

Alternatively, one could derive the moment combinations with a specific spin number by
expanding (x + iy)*(z — iy)'. Under this definition, the order N = k + [, and spin number
s = k — [. For the fourth moment spin-2 combination, one can derive Eq. with £ =3
and [ = 1. One can also derive the sixth moment spin-2 with £ = 4 and [ = 2, and show
that there is no spin-2 combination for odd number moments.

6Note, we rotate the image but do not rotate the basis polynomial function (see Appendix A of (159)). This
is consistent with real observations, where we fix the basis polynomial function in the moment measurement
and galaxy images are randomly orientated.
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4.B Problematic Region in GAMAO9H

In Fig. 4.B.1] we show a region within the GAMAO9H field that has a particularly large PSF
fourth moment residual. This region is also found to be responsible for a strong B-mode
cosmic shear signal in Li et al. in prep. The region has a good seeing, and significant
proportion of visits are lost due to the overflowing the warning flag maxScaledSizeScatter,
which sets a maximum scatter in the PSF size residual allowed for a visit. As a results, this
region has an lower visits, higher galaxy number density (due to good seeing, thus better
resolution), and a significant B-mode signal on cosmic shear. In the HSC Y3 cosmic shear
analysis and this work, we remove this region from the star and shear catalog.

It is worth noticing that the PSF modeling residual in this region only manifested itself in
the fourth moment, rather than the second moment residual. We search through all six fields
in the HSC Y3 star catalogs, and found a few other spots with a similar pattern, but the
condition in Fig. is the most severe. Understanding any potential causal connection
between these fourth moment residual hot-spots and the B-mode in the cosmic shear signal
is left for future work.

4.C Alternative Definition for Higher Moments

In this work, the higher moments are defined in a transformed coordinate system where the
second moments are standardized, hereafter referred to as the standardized moments. There
is an alternative way to define the higher moments, i.e., measuring the higher moments in
the image coordinate, hereafter referred to as the raw moments. The raw moments are
what functionally affect the raw second moments used for shear inference, but in practice
we find it useful to measure standardized moments to separate out the contributions of
moments at different orders. In Section[d.C.I] we define the raw higher moments, and discuss
how to separate their Gaussian and non-Gaussian parts. In Section [4.C.2] we establish the
analytical connection between the raw higher moments and standardized higher moments,
which are used in the main text of this work. In Section [{.C.3] we use the raw higher
moments to capture the PSF systematics using the same framework introduced in Section [4.5]
and compare the impact on the cosmological probes between the two definitions of higher
moments.

4.C.1 Raw Moments

The raw moments are measured in the image coordinates. In our case, we use coadded
images, which are aligned with the equatorial coordinate system. In this work, we define the

raw moments to be
M. Jdedyayt (e, y) I(z,y)
e Jdzdyw(z,y) I(z,y)

Again, I(x,y) is the image profile, and w(z,y) is the adaptive Gaussian weight defined in
Eq. (4.9). The raw higher moments defined here are measured by PSFHOME. We cross-

(4.41)
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checked our code with the functionality that measures raw higher moments in PIFFﬂ and
find consistent results.

Similar to the standardized moments, there is a combination of the raw moments that
forms a spin-2 quantity. We call that M®.

MW = My — Moy + 2i(Mys + Ms)) (4.42)

Because of how raw moments are defined, M® not only carries non-Gaussian information
but also Gaussian information. In order to use the raw moments for capturing the spin-2
components of the PSF systematics, we need to find the Gaussian part of the M®. It
turns out that M@ of an elliptical Gaussian PSF profile is just 3epgpT 2op, Where epgr is the
ellipticity of the PSF, and TpgF is the trace.

This relationship can be proved by analytically finding the fourth moments of the Gaus-
sian distribution. We start by defining the Moment Generating Function (MGF) of a two-
dimensional Gaussian distribution

Mx(t) = D%3t"M7't, (4.43)

Here, t* = [tl, tg} is the two-dimensional dummy variable of the MGF. M~ is the inverse
of second moment matrix

-1
Moy M 1| M —M
M-! — 20 11 _ L 02 11 444
{Mn Mo D |—My1  Mps. ( )
And D is the determinant of M.
The fourth moments are the fourth derivative of the MGT evaluated at ¢ = 0. One can
show that

d*Mx(t) d*Mx(t)
My — Moy = ——— -—— (4.45)
dtil t1=t2=0 dt% t1=t2=0
= 3(Mjy — Mg,) = 3e; T (4.46)
Similarly, for the imaginary part,
d*Mx(t) d*Mx(t)
2 = —" - 4.47
M + Mar) dtdsd |,y dBdts |, g (4.47)
= 6M11(M20 + MQQ) = 3€2T2. (448)

We confirmed using our PSF star catalog that the raw fourth moments mostly consist
of the Gaussian part. In Fig. [4.C.1] we show the 2-d histogram of the real and imaginary
parts of M@ and 3eT?. The two quantities match closely, which justifies our choice to
use standardized fourth moments for our analysis, as the raw fourth moments are so highly

"https://github.com/rmjarvis/Piff
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correlated with the second moments. However, an alternative approach using raw moments
is to construct a dimensionless quantity that only carries non-Gaussian spin-2 information

(4)
m¥ = A;Q — 3e. (4.49)

We will call m® the reduced raw fourth moment spin-2 quantity. In Section 4.C.3| we
demonstrate that m® can be effectively used to track down PSF systematics in cosmic
shear.

4.C.2 Connection between the Raw and Standardized Moments

In this section, we analytically derive the connection between the raw and standardized
moments. This is a useful formalism in the circumstance that one wants to calculate one
definition from the other.

We start by deriving the standardized moments from the raw moments. The standardized
coordinates (u,v) in Eq. can be expressed in terms of (z,y) using the second moments

of the image,
m —M: H . (4.50)
v )

where
_1 1 M02 + \/5 —MH :|
M:2=— . 4.51
N { — My, My + /D ( )
Here D is the determinant of M and ¢ = D(Mayy + Mgy + 2V/D).
We can express u and v as linear functions of x and vy,
M, D M
u— 02+\/_$_ Hy (4.52)
V¢ V¢
My My ++VD
V= ——=T+ y. (4.53)
V¢ V¢
Let’s denote
M, D
A=202"Y7 +vD (4.54)
V<
My
B=—+ (4.55)
V¢
M- D
o= Mot VD (4.56)

V<
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The standardized fourth moments are then

My =A*Myy + 4A3BMs; + 6 A2 B> Moy

+4AB* M3+ B* My, (4.57)
Msy =A*BMyg + (AC + 3A2B*) M3, + (3A*BC + 3AB?*) My,
+ (3BAB*C + BY M3 + B*C Mo,. (4.58)

My =A*B* My + (2A2BC + 2AB*) M3

+ (A2C?* + 4AB*C + B*Y) My,

+ (3AB*C + BY M3 + B*C Mo,. (4.59)
M3 =AB?* My + (3AB*C + B*) M3,

+ (3ABC? 4+ 3B*C) My,

+ (AC® + 3B*C?*) M3 + BC? My, (4.60)
Moy =B*Myg + 4B3*C M3+
6B2C? Moy + 4BC* M3 + C* Mo,. (4.61)

Here M, are the raw higher moments. PSFHOME has the functionality to carry out this
transformation. We compared the standardized higher moments measured on the image and
predicted by this formalism, and found the fractional difference to be on the order of 1071,
which is an exquisite consistency. This formalism shows that given the second moments, the
5 raw fourth moments can be remapped to standardized fourth moments. Using a similar
formalism, one can remap in the other direction, but we will not derive those equations.

We confirmed that changing the higher order spin-2 quantity in the raw moments will
not only change the standardized spin-2 quantity, but also the standardized spin-0 quantity,
and vice versa. This was implied by the above equations and can be demonstrated easily
with image simulations as well.

4.C.3 Raw Moments for Capturing PSF Systematics

In this section, we demonstrate that one can use raw moments to measure the PSF systemat-
ics contamination in the cosmic shear 2PCF using our HSC catalog. Further, we empirically
show that despite the complex mapping between the standardized and raw moments shown in
Section [4.C.2] using raw moments to trace PSF systematics gives results for the cosmological
contamination that are no different from using the standardized moments.

To remove the contribution from the second moments, we use the reduced raw higher mo-
ments spin-2 mg‘s)F defined in Eq. to model the higher moments leakage and modeling
error. Namely, Eq. is modified to be

gsys = @Pepgp + @ Aepgr + a(4)mgls)F + 5(4)Am§345)F. (4.62)

With the raw moments, we only conducted cross-correlations using the PSF star catalog,
and implemented the 4-parameter fiducial model. By cross-correlating with galaxy shapes
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(described in Section and maximizing the likelihood function defined in Eq. ({.4), we
get a® = —0.024 £ 0.003, ) = —0.72 £ 0.06, o' = —0.15 £ 0.01, and B® = —0.6 £0.2.
The reduced higher moments are still correlated with the second-moment shape. As a result,
the correlation coefficient between o? and a* is 0.85, higher than the value of 0.62 found
with standardized moments.

The most important quantity that we want to compare between standardized moments
and raw moments is the impact on the shear-shear 2PCF. In Fig. {.C.2] we show that the
AE, calculated using the reduced raw moments is highly consistent with the one calculated
using the standardized moments. This means that both choices can effectively capture the
additive bias due to second and higher PSF moments, as long as the data-driven procedure
is followed.

Although we successfully demonstrated that the two approaches toward defining the PSF
higher moments yield the same cosmological impact for HSC Y3, this is still an empirical
demonstration that may be contingent on the moment distribution of the PSF in HSC Y3.
We leave the study of the potential mathematical origin of this equivalence to future work.
Before that, we suggest that future surveys conduct higher moments null tests using both
definitions.

4.D Mock Catalog Test

We conducted a mock catalog test to validate the inference of the PSF systematics model
parameters (as defined in Section [4.5.1)). The crucial element of this test is to generate mock
star and galaxy catalogs with systematics that we know follow our model on all scales. The
steps for generating the mock star and galaxy catalogs are as follows:

1. Populate a healpix map (147) with nside=512 with stars from the HSC Y3 star catalog

(Section . Compute the average values of epgp, Aepsr, Ml(f‘s)F and AM}(,?F using all
stars within each pixel. Assign the average PSF moments in a pixel to the stars in
that pixel to produce the mock star catalog.

2. Compute shear bias from Eq. (4.23)) using the average PSF moments in the healpix

pixel, and a set of input PSF parameters o = 0.04, f® = —1, o/ = 0.19, and
B = —0.5. Assign the shear bias to the mock galaxy catalogs (see Section [4.3.2))

based on their corresponding pixels in the map to produce the mock shear catalog.

We use these mock star and shear catalogs to infer the PSF parameters using the pipeline
developed for inference from the real data, to ensure that the pipeline is able to recover
the input parameters. In doing so, we use the covariance matrix measured using the real
data (as described in Section . We produced 10 mock catalogs with shear biases, and
individually inferred their PSF systematics model parameters. Over the 10 mocks, we retrieve
the averaged PSF parameters o?) = 0.040 +0.001, 3® = —1.10 £ 0.02, o = 0.185+0.01,
and B = —0.53 4+ 0.01. Although there appears to be a statistically significant bias on
the 8 and ™ parameter, the differences are within +10% of the true PSF parameters.



149 4.E. SUBDOMINANT EFFECTS

Further investigation is needed for understanding the discrepancy between the inferred and
true modeling error parameters in the mock catalog tests. We inspected the A&, s predicted
by the true PSF parameters and by the inferred PSF parameters, and seeing no significant
difference between the two.

4.E Subdominant effects

In this section, we discuss different aspects of the PSF systematics that could complicate the
model. We implemented these extra terms on top of the fiducial model from Section 4.5.2]
which describes the PSF systematics as an additive bias on &, including the leakage and
modeling error caused separately by the PSF second moments and fourth moments. Most
of these complications to the model do not significantly contribute to the HSC Y3 PSF
systematics. However, they might be significant in other cosmic shear surveys with different
shear estimation methods and PSF modeling algorithms. Therefore, we elaborate on these
phenomena below.

In Appendix [f.E.T| we generalize the formalism in Section [4.5.1 and [£.5.2] from £, alone
to include £_ as well. In Appendix[4.E.2|and 4.E.3| we considered other spin-2 quantities—the
PSF sixth moments and second order spin-2 quantities (product of spin-2 and spin-0, etc.),
and proved it is unnecessary to model these quantities for HSC Y3.

4E1 Ac

In this section, we discuss the additive PSF systematics in £_. Previous studies have shown
that the impact on £_ from PSF second moment contamination is sufficiently small that it
can be ignored in the cosmic shear analysis (e.g., I} 85). (71)) also found the additive bias on
¢_ due to PSF fourth moment contamination to be consistent with zero. Here, we simply
repeat the formalism in Section [4.5.1}and [4.5.2] and take £_ for all the correlation functions.
In Fig. {.E.I] we present the A{_ in comparison to the cosmic shear signal predicted by
the fiducial cosmology. We found the A{_ to be below 1 per cent of the predicted shear
signal in all of the tomographic bins, with a total statistical significance equal to 0.22¢ and
it therefore can be safely ignored.

4.E.2 Sixth Moment Terms

In Section we pointed out that not just the second and fourth moments can combine
to form a spin-2 quantity, but rather all even moments can do so (proof in Appendix [4.A)).
So a natural question is whether even higher order PSF moments need to be considered.
In this section, we expand our model to accommodate the spin-2 combination of PSF sixth
moments, which can be expressed as

M) = (Mgo + Mys — Moy — Mog) + i(2Msy + 4Mss + 2M35). (4.63)
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Similarly, we included <ggalM§;)F> and <§galAMF(,GS)F> in the data vector and added sixth mo-
ments leakage and modeling error terms to the model (a(ﬁ) and )| respectively). In this
expanded framework, the data vector has a length of 122 and the parameter space grows to
6 from the fiducial model’s 4.

In Fig. [£.E.2] we show the additive bias A¢, with and without the sixth moment leakage
and modeling error, and the difference, which is the contribution of AM®). We see that the
additional additive bias induced by the PSF sixth moments is < 10% of that from the fiducial
model. The increase in statistical significance is only 0.10. We therefore neglect the spin-2
combination of PSF sixth moments, M(® due to its subdominant impact.

We speculate that the reason that PSF sixth moments do not add much more additive
bias to the overall A&, is that (a) they are more susceptible to noise, which increases their
statistical error; (b) they are shown to be highly correlated with the fourth moments (71).
Most likely this correlation would be reduced if the sixth moments are measured on images
with standardized second and fourth moments, instead of only standardized second moments.

4.E.3 Second Order Terms

So far, we limited our discussion to the first order terms of the PSF moments, which means
they are either a single moment like epsp, or a moment residual like Aepgp. In this section,
we discuss the second-order spin-2 quantities, which can take the form of a spin-2 quantity
multiplied by a spin-0 quantity, e.g., epsp ATpsr/Tpsr, wWhich gives rise to the higher-order
p statistics (89). Another possibility is a spin-4 quantity multiplied by a spin-2 quantity, or
a spin-1 multiplied by a spin-1 quantity, which could arise from the product of two N = 3
moments; we will leave that for future work.

Since the first order spin-2 quantities epsp, Aépsr, Mgls)F, AM, AT are defined such that
they are <1, their second-order terms should be negligible (given that their pre-factors are
of order 1). Therefore, we focused on first-order terms in the model. In this section, we
discuss the potential impact of the second-order terms in PSF systematics.

The spin-2 combination of PSF fourth moments that serves as a counterpart to epsp is
MngLS)F, defined in Eq. (4.18). The spin-0 combination of PSF fourth moments that serves
as a counterpart to Tpsp (trace, defined in Eq. is called the radial kurtosis, defined in
Eq. (4.20). Errors in modeling either of these spin-0 quantities in the PSF can be a source of
multiplicative bias in shear. As a demonstration, we show the image response to one of the
second-order terms, epspATpsr/Tpsr, and compare that to the image response to M 1(34S)F in
Fig. {.E.4 Because of the multiplication by Tpsr, epsr ATpsr/Tpse now has a very similar
pattern to M }(;43 =, but is sensitive to pixels with different radii compared to M 1(34; P

If we were to include Mf(fls)F and ,ogls)F to form second order spin-2 terms, this would
give rise to 3 more terms beyond the second-order term that is already in the p statistics
(epseATpsr/Tosr): epseAppdp/Paps MigpApbap/pbde, and Mg ATpsp/Tpsp. We define
these four spin-2 quantities as ¥; for j = 1...4, and define their corresponding pre-factors
in v*° to be ;.

Including all four of these expands the total number of PSF spin-2 quantities from 4 to
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8, which in principle generates 8 x 9/2 = 36 p statistics for which we want to know their
impact on the overall A{,. We quantify the impact of the second order terms by adding
four (Ge¥;) to the g-p correlation data vector, and adding four n;¥; terms, for j =1...4,
to gsys in addition to the fiducial model terms. The ¥; and 7; are defined in the previous
paragraph. We conducted a joint fitting process that considers all the second-order terms,
their g-p correlations, and their auto- and cross-correlation with other PSF first-order terms.
The additional additive bias in &, is shown in Fig. [f.E.3] We observe that the impact of the
second-order spin-2 xspin-0 terms is subdominant, only increasing the statistical significance
of A&, by 0.020. We include them in this work for completeness, even though they do not
need to be modelled in the HSC Y3 analysis, and we recommend future cosmic shear surveys
consider these possible sources of contamination to the cosmic shear.

4.F Correlation in PSF parameters

It is visually evident from Figure that the fourth moment spin-2 M}()A‘S)F and the second
moments epgp are anti-correlated. This correlation is also manifested in the correlation
matrix in Figure [£.5.6] and the posterior of the PSF parameters in Figure [£.5.4]

To account for the correlation in the PSF parameters p, we sample a standard multivariate
Gaussian distribution p = [@®, 3@ a® 3@], drawn from N(0,1), where the null vector
0 € R* and | is a 4 x 4 identity matrix. We then transform p to get p in the fiducial model,
by

p=AUY%p + p. (4.64)

Here A is the eigenvalue vector of p—p, U2 is the eigenvector matrix of p— p, both inferred
from the prior distribution of PSF parameters.

In Figure 4.F.1] we show that including the correlation of the PSF parameters in the
cosmological parameter analysis does not cause a significant difference to the HSC Y3 mock
analysis. Nonetheless, we recommend including the correlation for the completeness of the
error propagation.

4.G Fourier Space Cosmic Shear Analysis

Cosmic shear are probed and analyzed in the configuration space by two-point correlation
function, and also probed and analyzed in Fourier space using pseudo-Cy (e.g., 153, 212). In
this section, we discuss the PSF systematics formalism in Fourier space (Section [£.G 1)), and
the real-Fourier space consistency for the PSF additive bias modeling (Section .

4.G.1 PSF systematics formalism in Fourier Space

We also investigated the impact of PSF systematics on cosmic shear power spectra, Cys, in
addition to the above analysis using two-point correlation functions. In doing so, we use the
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model for gy given by Eq. (4.23), without the mean ellipticity parameter, e., as the analysis
with 2PCFs has shown that this parameter has negligible impact for HSC Y3:

Jsys = Oé(Z)GPSF + 5(2)A€PSF + (1/(4)M1g4é)F + 5(4)AM1£,4§)F (465)

Upon adding gss to the observed galaxy ellipticity, the measured cosmic shear power
spectrum becomes:

4 4
Cy— Co+ Z Zpiijfisj. (4.66)

i=1 j=1

where, as before, we define the parameter vector p = [a®, 2 a®, 1] and the PSF mo-
ments vectors S = [epsr, Aepsr, MS‘S)F, AMP(’48)F]' We refer to the additive term in Eq.
as ACY.

To get the best-fitting values of the parameters p, we repeat the process carried out with
2PCFs, measuring the p-p power spectra and the g-p power spectra (Dg,), in 6 £ bins, from
300 < ¢ < 1800 (the provisional scale cuts for the Fourier space cosmology analysis). We use
the pseudo-Cy code NaMaster (213) to measure the power spectra. Although the pseudo-
Cy method requires subtracting a noise spectrum from auto-correlations (212)), this term is
negligible for the PSF moments (unlike the case of galaxy shape auto-correlations). We then
predict the theory data vector (T,) for the g-p power spectra, given the p-p power spectra,
which is equivalent to the real space fiducial model in Eq. — with e. = 04 05:

CIe1PsE () gerswerse g cilersrerse 4 o () o poperse 5(4)0AMP3>F6PSF (4.67)
C«f’galAePSF _ (2)06PSFAepsp +ﬂ(2)0AePSFAePSF+ (4)Oéw1£’S)FA€PSF +B AMPSFAePSF (4.68)
o Mige _ a(z)C§PSFMéSF + @ AePSFMpsp n (4)CMPSFM§>SF + W AMfas)FMés)F (4.69)

AN Migde _ Q@AM G 5(2)0A6PSFAMPSF n ()CMés)FAMPSF +BOCE CAMESAME
(4.70)

We find the values of the parameters o?, 3 o™ and B® which maximize the log-
likelihood function given by Eq. . The covariance matrix of D, for the Fourier space
analysis is computed from the HSC Y3 mock catalog, described in Section [£.3.2] Note that
the covariance for the Fourier space cross power spectra does not include the uncertainty of
the p-p power spectra, which is different from the real space analysis. The best-fitting Ty,
as well as the measured g-p correlations, Dg,, are shown in Fig. @ As in the case of the
2PCF analysis, we also ran a Markov Chain Monte Carlo (MCMC) to measure the posterior
of the PSF parameters P(p|D,,), using a flat prior for the PSF parameters from —oo to
+00. These posteriors are shown in Figure [{.G.2l We validate the parameter inference using
the mock catalog test, described in Appendix [4.D]

Finally, we use the best-fitting values of the PSF parameters to compute the bias in the
cosmic shear power spectra, ACY, for the parameter values estimated from both PSF and
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non-PSF stars. As shown in Figure [f.G.3] the additive biases inferred from the two star
catalogs are consistent with one another.

4.G.2 Consistency between Real and Fourier Space

In this section, we discuss the internal consistency between the PSF systematics manifested
in the real and Fourier space analyses. By checking that the real space and Fourier space
analysis provide consistent results across different stages of the analysis, we further validate
our PSF systematics treatmentﬂ

Sample  Parameter Real Space Fourier Space
a® 0.016 +0.002 0.032 & 0.004

PSF oIS —0.844+0.03 —0.4540.04
a® 0.174+0.01  0.20 £0.02
e —0.6+0.10 —0.21+0.08
a® 0.020 £ 0.004 0.040 £ 0.005

non-PSF 3 —0.57+0.07 —0.2640.06
a® 0.17£0.01  0.20+0.02
£® 0.11+0.12  0.18+0.12

Table 4.G.1:  The best-fitting parameters of the fiducial model in real space and Fourier
space analysis, for both PSF and non-PSF stars. The dominant contributor to the additive
bias in the power spectra/2PCFs, the fourth moment leakage parameter oY) matches well
between real space and Fourier space, while a®, 5 and f® are inconsistent between the
two analyses.

In Table we compare the best-fitting parameters of the fiducial PSF systematics
model in real space and Fourier space, for both PSF and non-PSF samples. a®, 3 and
B® appear to be inconsistent, although the dominant contributor to the additive bias, ¥,
is consistent between the two analyses, for both the PSF and non-PSF samples. As a result
of the consistency in o?, we expect the additive bias on the data vectors inferred from
both methods to be roughly consistent. We compute the predicted ACy by inverse-Wigner
transforming the shear-shear contamination A&, (9) (145)

27
AC, =27 / dfsin(6)ds5 ,(0) A& (6). (4.71)
0

Here df , is the Wigner matrix for two spin-2 fields at the given ¢ (214). We fit the A&, (6)
predicted by the real space fiducial model in the range [1,200] arcmin using a double expo-
nential model (determined empirically), while setting the value outside the angular range to

81f the model is not sufficient to describe the data, we expect results to differ in real space and Fourier
space, because they implicitly weight scales differently, which can affect how the model mismatch manifests
in the fits. If the model is sufficient, however, they should agree within the uncertainties.
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Z€ero:
AE, = are " + age . (4.72)

The best-fitting parameters of the double exponential model are a; = 1.33 x 107°, ay =
2.19 x 1076, s; = 54.3 deg™!, 5o = 1.38 deg™!. We show the predicted AC, using the 1o
uncertainty on the PSF systematics model parameters with the blue region in Fig. 4.G.3|
Despite having different o?, 5 and $®, the impact on the cosmological observable still
marginally matches, due to the fact that the fourth moment leakage is the largest contributor
to the additive bias. The AC, predicted from the real space A&, matches the ACys predicted
by the PSF and non-PSF stars of the Fourier space fiducial model, expressed in Eq. ,
within 20.

To demonstrate that the difference in Fourier and real space for the PSF systematics
parameters will not significantly impact the cosmological results, we run an additional mock
cosmological analysis on the Y3-like data vector and covariance. In Fig. [4.G.4] we show the
1-d ,,,-Ss constraints of the Y3 mock cosmological analysis. In addition to the green, red
and orange lines that were shown in Fig. [1.6.2] we include another fiducial correction with
the PSF parameters obtained in the Fourier space analysis. The difference results in a bias
on €2, of about 0.150, and a 0.01c bias on Sg. We conclude that these remaining systematics
are subdominant for the Y3 cosmological results.

These results suggest that our PSF systematics model may not be fully sufficient to
describe the data, but the real versus Fourier space comparison suggests this is not a problem
for an analysis at our current level of precision. We therefore leave this issue for future work;
with a larger area catalog it will be more important to understand this issue, if it persists.
Since most image systematics are tied to particular physical scales (such as the size of the
image focal plane, the typical correlation length of the atmospheric PSF anisotropies, etc.) we
suspect that the issue could arise because the adopted range of ¢ values include information
from values of 6 on which our model does not include all relevant physics.
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Figure 4.5.5: The additive bias on the cosmic shear 2PCF &, for the redshift-independent
models. The statistical uncertainties on the shear-shear auto correlation are shown as the
black dashed lines, with an index for the tomographic bin. =~ The upper panel shows the
A&, of the different nested models of “4+c” using their best-fitting parameters. The model
naming convention follows Fig.[4.5.2 We can see that including the galaxy shape correlations
with the PSF fourth moments increases the estimated A&, on some angular scales by almost
an order of magnitude compared to when we fit to second moments only. And the A&,
predicted by the fiducial model on par with the statistical uncertainty of the first and second
bin’s auto correlation function, which is a significant contamination level. The bottom panel
shows the comparison of the estimated A&, for just two of the models using the PSF stars
(solid lines) and non-PSF stars (dashed lines).
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The correlation matrix of the data vector in the redshift-dependent model

fitting. The quantity of the section in the data vector are shown in the x- and y-axis. Due
to the correlation between the shear in different tomographic bins, g-p correlation functions
across tomographic bins are also highly correlated. This is the primary reason that the PSF
parameters for the 4 tomographic bins need to be jointly fitted, rather than individually

fitted.
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Figure 4.5.7: Galaxy-PSF correlation functions with galaxy samples subdivided into four
tomographic bins as defined for the HSC Y3 cosmic shear analysis. The first row shows the
correlations with the PSF truth terms, and second row with the PSF residual terms. The
four columns correspond to the four tomographic bins. The stars are the best-fitting values
for the redshift-dependent model, the dashed lines are the best-fitting values for the redshift-
independent model. The shaded regions are excluded from the fits because the model is not
able to fit the data there, as assessed using p-values.



CHAPTER 4 158

[ zind.
2001 Bin 1
Bin 2
100F Bin3r
Bin 4 B
0—g00 002 0.0
ol
5.0
2.5
M
00— =+ i
3(2)
A0t
20t L
1 J = L 1
0010 015 020 025 050
e

Figure 4.5.8: Marginalized 1D posterior distributions of the PSF systematics parameters
for the redshift-dependent analysis. The parameters corresponding to different tomographic
bins are color coded. The differences in the distributions for different tomographic bins may
be caused by the differences in galaxy property distributions and the resulting difference
in sensitivity to PSF systematics. The posterior of the redshift-independent model, shown
in grey, corresponds roughly to the average of the distributions of the redshift-dependent
model.
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Figure 4.5.9: The additive bias on the auto-correlations of the cosmic shear 2PCF &, for the
redshift-dependent models and redshift-independent model. We compare the A&, (0) with
the statistical uncertainty of £, (#). To avoid overcrowding, we only show the model fitted to
the PSF stars. The black triangle line shows the A&, () redshift-independent model fitted
to PSF stars. We discuss the redshift dependency of the model in Section 4.5.3]
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Figure 4.6.1: The (2,,-Sg constraints of the HSC Y1 cosmic shear re-analysis. The upper
panel shows the 2d contours of the 68% and 95% confidence interval and the 1d marginal
posterior distributions, while the lower panel shows the 1d marginalized 1o errorbars. The
vertical lines are the mean values of the posterior of the fiducial correction method, while,
the shaded areas indicate the marginalized 1o errorbars of the fiducial correction. Compared
to the case of no correction for PSF systematics, the fiducial model correction shift the mean
Sg by 0.20. However, the correction based on only PSF second moments shifts €2,, by 0.05¢,
resulting a 0.150 bias on 2, compared to our fiducial model. The impact on Sg is more
modest.
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Figure 4.6.2: The €2,,-Ss constraints of the HSC Y3 mock cosmic shear analysis. The upper
panel shows the 2d contours of the 68% and 95% confidence interval and the 1d marginal
posterior distributions, while the lower panel shows the 1d marginalized 1o errorbars. The
dashed lines show the true input cosmological parameters. The green line shows the results
of analyzing the data vector with no PSF systematics added, as a baseline. The vertical lines
indicate the mean values of the posterior for the fiducial correction analysis, while the shaded
areas indicate the 1o errorbar when applying the fiducial correction. Due the skewness of
the Q,, posterior distribution, the mean ), value in the “No Systematics” case is biased
low. The red shows the worst-case scenario, where a realistic level of redshift-dependent
PSF systematics are added but no attempt is made to correct for them. The blue shows
the results of analysis using the redshift-independent second moments-only PSF systematics
model, and the orange shows the results of analysis using the fiducial redshift-independent
PSF systematics model. We see that the second moment-only model provides very similar
results to applying no correction at all. The fiducial model is more successful at correcting
the PSF systematics.
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Figure 4.C.1: 2-d histograms of the raw higher moments M® versus their Gaussian part
— 3eT?. Since the Gaussian part dominates over the non-Gaussian part, the distribution is
sharply peaked along the grey dashed y = x lines.



CHAPTER 4 164

—}— Standardized Moments
—}— Raw Moments

A&+ (0)

10 10°

6 [arcmin]

Figure 4.C.2: Total impact on shear-shear 2PCF caused by the PSF additive bias. The
statistical uncertainty of the shear-shear auto correlations are plotted as dashed lines. We
can see that the A&, calculated using raw and standardized higher moments matches very
well across all angular scales shown in this plot.
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Figure 4.E.1: The additive bias on the cosmic shear 2PCF £_. We find the A{_ to be below
10% of the predicted statistical uncertainty of £&_ for all the tomographic bins, and therefore
it can be ignored.
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Figure 4.E.2: The additive bias on cosmic shear £, if the PSF sixth moments leakage and
modeling error are considered. We include the PSF six moments as an extension to the
fiducial model, which has the second and fourth moments. The PSF six moment contributes
< 10% to the overall A&, as well as to the statistical uncertainty, therefore is subdominant.
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Figure 4.E.3: The additive bias on cosmic shear &, considering all second-order spin-2x
spin-0 systematics. We included four spin-2 x spin-0 systematics described in Section
as an extension to the fiducial model, which has first-order contributions from the spin-
2 combinations of PSF second and fourth moments. The second-order systematic biases
induced by spin-2 x spin-0 terms are subdominant compared to those from the first order
terms.
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Figure 4.F.1: Comparison between the HSC Y3 mock cosmological analysis using an un-
correlated prior (green) versus correlated prior (red) for the two @ parameters. We find no
significant change in the cosmological constraints due to this difference in model choices.



CHAPTER 4

170

P 108

g
L

C'

00 +1)/(2m)

10.0

C} " with PSF Truth

C% " with PSF Model Residual

—5.0

—7.5

—10.0

o (Goal€PSF)

~ 4
* (oM P(’S)F>

*  (ggulepsr)
X 4
* (GeAM, P(’S)F>

107
¢

107
¢

Figure 4.G.1: The measured Fourier space g-p angular power spectrum D, and the bestfit
T,, for the fiducial PSF systematics model. The left panel shows the g-p power spectra with

the PSF truth terms expressed by Egs. (4.67) and (4.69), and the right panel shows the

power spectra with the PSF model residual expressed by Egs. (4.68)) and (4.70). We only
use scales between 300 < ¢ < 1800 in our fit (unshaded region).
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Figure 4.G.2: The posterior probability distribution of the fiducial PSF systematics model
parameters applied to the angular power spectra, using the PSF and non-PSF stars.



CHAPTER 4 172

-3
10
1 Wigner(AE )
—f— PSF
non-PSF
—4
10 F
)
O
< _
T T
] Y, e
S0 T e
>\ -mmmmmmmTTTT __________—_—:::::: ———————
N % pmmomoIIIIEEEETTTT
+ -
S ]
N _6 I
= 10 F
| T )
=7
10 F

10°
/

Figure 4.G.3: The additive bias in cosmic shear power spectra from PSF systematics (see
Eq. (4.66))), based on the best-fitting values of p (red for PSF stars, yellow for non-PSF),
compared to the expected bias based on an inverse-Wigner transform of the bias in the
cosmic shear 2PCF predicted by the fiducial model in real space A&, (blue). The theory
cosmic shear power spectra in each tomographic bin, based on the fiducial cosmology (see

Table 4.6.1]), are shown in black. This figure is the Fourier space equivalence to Fig.
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Figure 4.G.4: The 1d constraints on €2, and Sg in the HSC Y3 mock cosmic shear analysis.
The green and red lines are the same as in Fig. [£.6.2] The orange lines are the parameter
constraints using the fiducial model with PSF parameters inferred in real space, while the
blue lines are the parameter constraints using the PSF systematics parameters obtained
in the Fourier space. The difference between the correction using real and Fourier space
parameters with the fiducial model causes a 2, bias around 0.150, which is subdominant.
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Abstract

Recovering credible cosmological parameter constraints in a weak lensing shear analy-
sis requires an accurate model that can be used to marginalize over nuisance parameters
describing potential sources of systematic uncertainty, such as the uncertainties on the sam-
ple redshift distribution n(z). Due to the challenge of running Markov Chain Monte-Carlo
(MCMC) in the high dimensional parameter spaces in which the n(z) uncertainties may
be parameterized, it is common practice to simplify the n(z) parameterization or combine
MCMC chains that each have a fixed n(z) resampled from the n(z) uncertainties. In this
work, we propose a statistically-principled Bayesian resampling approach for marginalizing
over the n(z) uncertainty using multiple MCMC chains. We self-consistently compare the
new method to existing ones from the literature in the context of a forecasted cosmic shear
analysis for the HSC three-year shape catalog, and find that these methods recover sta-
tistically consistent errorbars for the cosmological parameter constraints for predicted HSC
three-year analysis, implying that using the most computationally efficient of the approaches
is appropriate. However, we find that for datasets with the constraining power of the full
HSC survey dataset (and, by implication, those upcoming surveys with even tighter con-
straints), the choice of method for marginalizing over n(z) uncertainty among the several

3
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methods from the literature may modify the 1o uncertainties on €2,, — Sg constraints by
~4%, and a careful model selection is needed to ensure credible parameter intervals.

5.1 Introduction

Over the past decade, wide-field imaging surveys, e.g., the Dark Energy Survey (DES; [79),
the Kilo-Degree Survey (KiDS;R0)), and the Hyper Suprime-Cam Subaru Strategic Program
(HSC SSP; [81)), became increasingly powerful, reaching fainter magnitudes and larger areas,
and employing improved methods for controlling systematic biases and uncertainties (for a
review, see [33)). Future surveys such as the Vera C. Rubin Observatory Legacy Survey of
Space and Time (LSST; 48}, [82)), the Nancy Grace Roman Space Telescope High Latitude
Imaging Survey (49; 83) and Euclid (50) will provide even larger data volumes and require
more stringent control of systematic errors. With these developments, cosmic shear, the
coherent weak gravitational lensing effect on the light from the distant galaxies caused by
the large scale structure, becomes one of the most powerful probes to test the standard model
of cosmology (I} [75; [76} 126}, 154} [155)).

The prevalent method of cosmological parameter analysis based on cosmic shear currently
relies on tomographic binning (36) and measuring the two-point correlation function (2PCF)
of the source galaxy shapes (e.g.,I;[154; [155; 215]). For this approach to cosmological analysis,
the distribution of the source galaxy distances along the line-of-sight, commonly known as
the sample redshift distribution n(z), is an important quantity for forward modeling the
auto- or cross-2PCF of cosmic shear within or between tomographic bins, respectively (e.g.,
216)).

Due to the expense of spectroscopic observations for galaxy samples at the depths of
current imaging surveys, weak lensing measurements typically rely on multi-band photomet-
ric redshifts as their initial source of redshift information, having only limited and typically
not representative training samples with spectroscopic redshifts. There two primary cate-
gories of photometric redshift estimation methods (for a review, see 217) are as follows: (a)
template fitting, which is based on finding the best-fit spectral energy distributions (SED)
template by fitting to the broad-band photometry; and (b) machine learning methods, which
use the training sample to learn a relationship between redshift, photometry, and potentially
other information, e.g., morphological parameters. The outputs of these photo-z methods
are normally probability density functions for individual galaxies, which we will call p(z).

Deriving the aforementioned sample redshift distributions n(z) based on uncertain and
potentially biased individual galaxy p(z) is highly non-trivial (e.g., 218)), as doing so properly
requires deconvolution of the uncertainties and correction for any biases. Methods for recon-
structing properly calibrated n(z) include direct calibration based on magnitude re-weighting
to match a reference sample with known redshifts (DIR; 219) and cross-correlating spectro-
scopic samples and photometric samples (CC; 220} 221}, 222). Additionally, some methods
aim to estimate n(z) directly from photometric observables instead of using photometric red-
shifts (see, e.g.,223), with the latter branching into machine learning and related approaches
in recent years (224; 225). More recent work permits the combination of the p(z) with a
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regularized deconvolution of their uncertainty, in combination with the CC method (226)) —
a method that is being applied in practice by Rau et al., in prep. to data from the HSC
survey.

Since the cosmic shear signal is sensitive to the sample redshift distribution, it is necessary
to carefully model the uncertainties on n(z) and marginalize over them for the current and
upcoming surveys (6I). The marginalization is not a trivial task, since the uncertainties
on n(z) are often modeled in a high dimensional space, making attempts to run a full
MCMC extremely computationally intensive. Therefore, several methods have been used to
approximately marginalize over the redshift distribution uncertainties. This includes allowing
just a shift in the mean redshift of the n(z) for each tomographic bin, a method that has
been adopted in many cosmology analyses (e.g., I, 154; 155} [182). In other cases, methods
have been developed to marginalize over realistic uncertainties on n(z), for example by (a)
combining 750 MCMC chains each run with a different random realization sampled from the
prior for n(z) (227), (b) analytically approximating the likelihood function on the redshift
nuisance parameters (228; 229), and (c) ranking n(z) realizations in a lower dimensionality
latent space to reduce the number of nuisance parameters (230).

In this study, we develop and apply methodology to systematically compare the per-
formance of methods of n(z) uncertainty marginalization for cosmic shear. Our goal is to
quantify tradeoffs such as systematic bias, credible uncertainty estimation, and computa-
tional costs. For this purpose, we start by presenting the new resampling approaches for
marginalizing over uncertainties in the sample redshift distribution n(z). We apply the new
method and compare it with several existing approaches in the literature, in the context of
cosmic shear with the three-year HSC shear catalog (HSC Y3;231)). We consider the above-
mentioned tradeoffs and make a recommendation for methodology that would be appropriate
for cosmology analysis of the HSC Y3 shear catalog.

The structure of this paper is as follows. In Section [5.2] we provide brief background
on n(z) uncertainty modeling and the tomographic 2PCF cosmological analysis of cosmic
shear. In Section [5.3) we outline the approaches we will explore for marginalization over
ensemble redshift uncertainties, including the new method and several pre-existing methods
in the literature. We also explain the specific setup for the cosmological analysis we use for
comparing these methods. In Section[5.4] we show the results for the cosmological parameter
inference using multiple approaches for redshift uncertainty marginalization. In Section [5.5]
we summarize our findings in this paper and discuss their practical implications.

5.2 Background

In this section, we provide the background that motivates this study. In Section [5.2.1] we
introduce the weak lensing shear analysis paradigm of this paper, and describe the mod-
eling and marginalization of redshift distribution uncertainties in previous shear analyses.
Section describes our flexible parametrization for the sample redshift distribution and
discusses our choice of prior on the associated sample redshift distribution model parameters.
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5.2.1 Weak Lensing Shear Analysis

In this work, we discuss marginalization over the n(z) uncertainties in a tomographic weak
lensing shear analysis (36) based on the two-point correlation function (2PCF;e.g., 46; 161},
232; 233). In this section, we provide a brief background of this analysis paradigm. We
define terms, e.g., the data vector (observable) and its covariance matrix, and the forward
model that predicts the theoretical value of the observable given cosmological and nuisance
parameters. Among nuisance parameters, we emphasize the parameterization of the redshift
distribution uncertainties, which is the focus of this paper.

The goal of the weak lensing shear analysis is to extract information about the cosmolog-
ical model from the shear 2PCF. The cosmic shear observable that is commonly measured in
real space analyses (e.g., [I; 1545 (155} [182) is the correlation functions of the observed galaxy
shears £ (0), where 6 is the angular separation of the galaxies, and 7 and j are the indices of
the tomographic bin pair. The data vector is obtained by concatenating 533 (0) from different
tomographic bin pairs across all angular bins used for the measurement.

The observed data vector D is compared to the theoretical data vector T', which is
predicted by a forward modeling pipeline that considers the cosmological parameters and
systematic biases and uncertainties, e.g., the uncertainties on the redshift distribution, and
the intrinsic alignment of galaxy shapes due to gravitational tidal effects (IA; 62} [63). The
log-likelihood of a model parameter vector €2 is computed by

log(L(2|D)) = (D - T(Q)X (D - T(Q))", (5.1)

where X is the covariance matrix of D. MCMC samplers such as MULTINEST (187 188} [189))
are used to efficiently sample over the parameter space and provide parameter inferences
based on the likelihood in Eq. and the prior information on the parameters.

An important step to forward model the shear-shear 2PCF in tomographic bin pairs is
to project the 3-D matter power spectrum P(k, z) to the 2-D angular shear power spectrum
Céj . Under the Limber approximation, the angular shear power spectrum (35} [36) between
bins ¢ and j is

cy = /%P(E/X;Z(X))qi(x)qj(x% (5.2)

where P(¢/x; z(x)) is the matter power spectrum at z. ¢*(x) and ¢’(x) are the corresponding
lensing efficiency function for tomographic bins ¢ and j. ¢'(x) is directly determined by the
underlying redshift distribution n(z):

« 30, HE X /Xh s i w X T X
? _= —_— d_ nZ Z 9 53
q'(x) 27 a() ), xX'n'(x'(2)) 7 (5.3)

where €2, is the matter density parameter, H, is the Hubble constant, x is the comoving
radial distance, a is the scale factor, and c is the speed of light (e.g., 148} 234]). Here we have
used the formalism for a flat geometry. We can see that n'(z) is a key factor determining
the angular shear power spectrum, which itself directly determines the shear-shear 2PCF 53{
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(235; 236]). Under the flat-sky approximation, ffﬁ is expressed as

ij 1 ij
0)= - / AU0CT Jyos (06), (5.4)

where J, is the n-th order Bessel function of the first kind. This deep connection between
the redshift distribution and the cosmic shear observables is the reason why it is important
to marginalize over the uncertainties on n(z) to recover credible cosmological parameter
constraints.

The sample redshift distribution n(z) is often modeled as arrays of histogram bin heights
@nz, as is further described in Sec. [5.2.2] Since sampling in high dimensional parameter
spaces is very computationally expensive, it may not be possible to model the sample redshift
distribution uncertainties in every redshift bin that n(z) is estimated on. A majority of
previous shear analysis (e.g., [} 154}, [155; [182]) parameterized the redshift distribution of bin
1 by allowing its mean redshift to shift,

n'(z) = n'(z — AzY). (5.5)

With the shift model, the number of free parameters is equal to the number of the tomo-
graphic bins. The priors on these parameters are determined by the prior distributions of the
calibrated n(z). The shift model tremendously reduces the number of parameters compared
to use of all histogram bin heights ¢,,,, though it suffers from a limited number of degrees of
freedom compared to the realistic n(z) uncertainties. With cosmic shear analysis becoming
increasingly systematics-dominated as the statistical uncertainties become smaller, various
methods have been introduced to marginalize over a more realistic estimate of the n(z)
prior. In (215), 750 realizations were drawn from the n(z) prior, after which cosmic shear
analyses were run on each realization. The chains were then directly concatenated to derive
constraints on the cosmological parameters, including their uncertainties. (229)) applied the
Laplace approximation to the prior of the redshift parameters and assumed the likelihood
function is a multivariate Gaussian, thereby analytically marginalizing over the redshift pa-
rameter using the self-calibration algorithm. In (230)), realizations of n(z) were drawn from
the prior distribution, then mapped into a lower-dimensional latent space, within which the
likelihood function is smooth.

In this paper, we revisit some of the methods mentioned above to marginalize over the
n(z) uncertainties, carrying out tests on mock cosmic shear analyses. We propose a new
method of marginalizing over the n(z) uncertainties based on statistical principles. By
comparing the new method to other options, we aim to provide the optimal approach for
the HSC Y3 cosmic shear analysis.

5.2.2 Prior Specification on the Sample Redshift Distribution

In this section, we briefly summarize how a prior on the sample redshift distribution was
specified. For a discussion on the n(z) inference methodology we refer to Rau et al. (in

prep.).
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As shown in Eq. (5.2), the sample redshift distribution enters the modelling of two point
functions via the transfer function in Eq. (5.3)). The entire redshift range is subdivided into
Npins histogram bins, and the sample redshift distribution in the i-th tomographic bin is

parametrized as
Nbins

(2 h,) = Y Dhail(z € 21, 28], (5.6)
k=1

where [z}, 25;] denotes the left /right edges of histogram bin k. ¢!, is the k-th histogram
bin height in the i-th tomographic bin. 1 is the indicator function. The distinction between
‘histogram bin’ and tomographic bin is as follows: the former denotes the bins of the his-
togram parametrization, the latter denotes the selection bins of the tomography. Eq.
defines the histogram heights vector ¢’ as the parameters of a linear basis function model
for the sample redshift distribution with tophat basis functions.
The prior p(¢?,), i.e., uncertainties on the sample redshift distribution histogram bin
heights in the i-th tomographic bin, is inferred using an extension of the methodology de-
veloped in (226). It combines information from both spatial cross-correlations of a reference
sample with spectroscopic redshifts and a sample with photometric redshift information.
We reiterate that a future publication will provide more details of the inference methodology
(Rau, et al, in prep.). The method utilizes the ‘SI6A CAMIRA-LRG sample’ (237)), a sample
of Luminous Red Galaxies selected using the CAMIRA algorithm (238) from the HSC data
observed in the first observing season of 2016, as a reference sample. This choice can be
motivated by the accurate photometric redshift estimates that are available for the LRGs
(relative to the photometric redshift errors in the full HSC S16A sample), and a sufficiently
high number density.

The spatial cross-correlation between the CAMIRA-LRG sample (c¢) and a photometric

sample (p) can be predicted as

Wse X ¢nz,p bp bc WpM , (57)

where ¢,,, denotes the parameters of the sample redshift distribution, (b,/b.) denote the
galaxy-dark matter bias parameters of the (photometric/CAMIRA-LRG) samples in each
redshift bin and wpyn denotes the dark-matter contribution to the cross-correlation signal.
We present a simplified vector notation, where the elements in Eq. correspond to the
cross-correlation measurements in each redshift bin, obtained by measuring the correlation
amplitude within a spatial annulus of physical distance as described in (239). Using the auto-
correlation of the CAMIRA-LRG galaxies the method fits the linear bias model b.(z) = bo(1+
z), where by = 1.0640.03, consistent with previous measurements from (240). The covariance
of the cross-correlation likelihoods is estimated using bootstrap resampling and approximated
to be diagonal. This is done for simplicity and can be an inaccurate approximation due to
the high correlation of neighboring bins. The method uses THE—WIZZEI (239) for the cross-
correlation measurements, and selects a scale annulus of 1.5 — 5.0 Mpc in analogy to (241]).

"https://github.com/morriscb/The-wiZZ/
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We include information from the photometry into the inference by combining the indi-
vidual galaxy redshift uncertainties of a set of models. Our model set consists of a template
fitting code M1zUKI (242)) that defines a likelihood, empirical codes MLZP| (243) and EPHOR
(195)) that define a conditional probability density function obtained on a training set and
FRANKEN—ZE] (244) that uses a flux-error weighted score function to map training set ob-
jects to galaxies in the photometric dataset. We refer to (195)) for a summary of the different
methodologies that are available to us. We note that the machine learning-based algorithms
do not produce likelihoods (unlike SED fitting techniques). However we will treat their esti-
mates as likelihoods within this framework and refer to a future publication for a description
of the technical details.

Following the methodology developed in (226]), we infer posteriors of sample redshift
distributions as shown in Fig. using information from both the cross-correlation data
vector and the photometry of galaxies. The horizontal axis shows the redshift, the vertical
the normalized sample redshift distribution. The legend lists the redshift ranges selected
on the best fitting redshift derived using the MIZUKI template fitting code that we use to
define the tomographic bins. The error contours correspond to the 68% confidence intervals.
The aforementioned posteriors of sample redshift distributions constructed using the joint
likelihood of spatial cross-correlations and photometry is then used as the prior distribution
on the sample redshift distribution in the following analysis. We neglect here the covariance
between the spatial cross-correlations and the lensing observables.

In this work, we assume that the uncertainties in the ensemble redshift distribution for
the HSC three-year and full analysis do not significantly decrease compared with those for
the first-year HSC analysis. Constraints on the sample redshift distribution are limited by
(a) practical issues such as the redshift range of the LRG sample and our knowledge of
the galaxy-dark matter bias; (b) the model uncertainty between photometric redshift codes,
estimated using the COSMOS2015 field (245). The modeling uncertainty is limited by the
cosmic variance, and is independent of the survey area, therefore will not decrease for the
HSC three-year analysis compared with the first-year analysis. As a result, the redshift
uncertainties are expected to decrease much more slowly than the cosmic shear covariance
matrix as the survey area grows.

5.3 Methods

In this section, we describe the methods used to carry out this work. In Section [5.3.1]
we describe our parameter inference pipeline, implemented using CosmoSIS (200). In Sec-
tion [p.3.2] we describe the methods to marginalize over the n(z) uncertainties during the
cosmological parameter inference. In addition to employing existing approaches from the
literature, we also propose a new method for marginalizing n(z) uncertainties for cosmic
shear analysis: a statistically accurate formulation for sampling from the n(z) covariance.

Zhttps://github.com/mgckind/MLZ
3https://github.com/joshspeagle/frankenz
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Terminology Symbol Description
n'(z) prior P(¢',|at) The prior on the n‘(z) histogram bin heights in

Average n'(z)

Mean redshift

Data vector

Covariance (matrix)

Inference posterior

Log evidence

(@)

¥

P(Q|D)

log(P(D|nss))

the i-th tomographic bin. Specifically, we adapt
the posterior in Rau et al. (in prep.) P(¢! |at)
parameterized on the Dirichlet parameter o for
the i-th tomographic bin, as the prior, which is
described in Section [5.2.2l We sometimes refer to
this as n(z) prior, when the tomographic bin is
not specified.

The average histogram bin heights for n'(z) in
the i-th tomographic bin, averaged over 10000
realizations of ¢! sampled from the n(z) prior.

The mean redshift of the i-th tomographic bin,
calculated by (2') = [zP(¢,|at)dz, where
P(¢' |a') is the n'(2) prior of the samples in the
1-th tomographic bin.

Shear data vector D = [ﬁfﬁ,ﬁz_]], where 75 is or-
dered in [11,12,13, 14,22, 23,24, 33,34, 44]. The
generation of data vector is described in Sec-

tion @

Covariance matrix of the data vector D, ¥;; =
(D;D;). The covariance matrix used in this work
is described in Section [5.3.1}

The posterior distribution on the cosmological
and astrophysical parameters €2 after marginaliz-
ing over the nuisance parameters. In this paper,
we specifically consider the n(z) parameters as
the nuisance parameters.

The log-evidence of a particular realization of the

Pnzs, expressed in Eq. (5.12)).
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Terminology Symbol

Description

Number of tomographic bins  Niomo

Number of resampling ¢, Nsample

Number of histogram bins N}iins

The number of tomographic bins, which results
in the number of nuisance parameters for the
multiplicative bias and shift model. In this work,
Niomo = 4

The number of realizations sampled from the
n(z) prior for the direct and Bayesian resampling
methods, described in Sec. [5.3.2 For the full

analyses in this work, Ngample = 250.

Number of histogram bin heights in the i-th to-
mographic bins. This is the same as the length
of ¢!,. In this work, N}, = = 18(18,25,20) for
tomographic bins 1(2,3,4), respectively.

Table 5.2.1: Table of the redshift distribution and statistics terminologies used for quantities
throughout Section[5.3] We also provide a short description of each quantity and the specific
values used in this work or a reference to the section where they are described.
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Figure 5.3.1: The sample redshift distribution estimated by cross correlation with 4 tomo-
graphic bins, for HSC S16A (Rau, et al., in prep.) The shaded regions represent the 68%
confidence intervals of the distributions.

The key terminology used for redshift distribution and statistical inference throughout
this section, their mathematical symbols, and description are listed in Table

5.3.1 Cosmological forward modeling

In this section, we describe the cosmic shear forward modeling process, including the cos-
mological model, the astrophysical model, and other nuisance parameters, for computing
the mock data vector and parameter inference. For an initial exploration, we considered a
2-parameter A-CDM model that only varies €2, and og. We then considered a full analysis
with 5 A-CDM parameters, 2 astrophysical nuisance parameters, Niomo = 4 multiplicative
bias parameters and 2 PSF systematics parameters, for a total of 13 parameters. Niomo = 4
additional parameters were added for marginalizing over n(z) uncertainties for the shift
model. The modeling pipeline used CosmoSIS (200)), which is a well-tested and validated
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platform for cosmological inference (e.g., in [37)).

The cosmological model is described in Section [5.3.1], while the astrophysical and other
nuisance parameters are described in Section . The analysis setup (tomographic bins,
angular scales, etc.) and mock data vector are described in Section . The sampler and
covariance matrices are described in Section [£.3.11

Cosmological Model

We adopted a A-CDM cosmological model throughout this work. We computed the lin-
ear matter power spectrum using CAMB (201}, 202} 203), and the nonlinear matter power
spectrum using the updated HALOFIT (204]) from the original version (246). The neutrino
mass {2, was fixed to zero, since the weak lensing shear is relatively insensitive to it. The
cosmological parameters in our model are provided in Table [5.3.1] including their fiducial
values, priors, and whether they are varied or fixed in our analysis.

Astrophysical and Nuisance Parameters

Throughout the analysis, we used the nonlinear alignment model (NLA [148)) to model the
intrinsic alignment (IA) signal (see also 205} 200, for the development and further extension
of the NLA model). In this paper, we adopted the NLA model with an additional term that
includes redshift evolution of the alignment amplitude, namely,

(5.8)

A(Z)ZAIA[NFZF,

1+ 2
where the fiducial values and priors of the parameters Aja, 7, and zy are shown in Table[5.3.2]
In practice, the redshift evolution parameter may absorb some evolution of the source sample
properties with redshift, since intrinsic alignments depend on galaxy properties.

Since the IA model in this work has redshift evolution, the intrinsic alignment model
parameters may have some degeneracy with the redshift distribution n(z), which motivates
marginalizing over the n(z) uncertainty in the analysis.

We computed the shear-shear angular power spectrum from the matter power spectrum
and the input n(z), using the formalism in Section [5.2.1] We then added the NLA model
shear-IA and TA-IA angular power spectrum to the shear-shear angular power spectrum.
Next, we included a per-bin multiplicative shear bias into the observed shear power spectrum
using

C =1 +m 4+ m))CY, (5.9)

where m® and m/’ are the multiplicative biases of bins 7 and j, respectively. We used Eq.
to compute the shear-shear correlation function fzij .

Finally, we employed a simple model for the additive shear biases at the correlation
function level. We included the PSF leakage term a and PSF shape error term [, using
the same model as in (I). Our model of the shear-shear correlation function with PSF
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systematics is
ij,model __ ~ij 2
£ = &+ (epsrepsr)
+ af{epspdepsr) + 52<5€PSF5€PSF>, (5.10)

where epsp and depgp are the PSF shape and the modeling error of the PSF shape, respec-
tively.

Table lists the astrophysical and other nuisance parameters, with their fiducial
values, priors, and whether they are varied or fixed in our analysis.

Analysis settings and mock data vector

In this work, we used 4 tomographic bins, resulting in 10 tomographic bin pairs. We adopted
the angular binning used in the real-space cosmic shear analysis of the first-year HSC catalog
(1), i.e., 9 angular bins between 8.06 arcmin and 50.89 arcmin for ., and 8 angular bins
between 32.11 arcmin and 160.93 arcmin for £_. Our data vector D, which includes &, and
¢_, has a length of 170.

We generated mock data vectors using the forward modeling pipeline described above.
To be able to compare the recovered parameter values with their true values, we did not add
noise to the data vectors.

We used the Planck results in (20) for the fiducial cosmological parameters in Table|5.3.1]
For the IA parameters in Table we adopted typical integer values for the amplitude
Ara and redshift power 7, and 2y = 0.62 for the pivot redshiﬂﬂ (1 47). We adopted the prior
on a and S from (1), and set the fiducial values to zero.

Our mock shear data vector was generated by averaging the £, over 1000 realizations of
n(z) sampled from its prior. Note that the auto-correlation % ((n(z))) # (¢%(n(z))), with
up to 0.75% difference, as is demonstrated in Appendix ??. Therefore, we cannot simply
use the mean value of the n(z) prior to generate the mock data vector.

Sampler and Covariance Matrices

We sampled the parameter space and estimate the Bayesian evidence using MULTINEST
(I87; [188; 189), due to its rapid speed for relatively accurate evidence evaluation in constant
efficiency modd’] We fixed the efficiency to 0.1, which is the default value for MULTINEST,
throughout this work. The log-likelihood of the model is computed by Eq (5.1)), with the
corresponding covariance matrices.

In this work, we carried out our analyses with two covariance matrices: (a) We estimated
the covariance matrix for cosmic shear using the HSC three-year shear catalog. For this

4We have used zy = 0.62 for consistency with previous analysis. However, as described in (247), this
choice does not affect the results much; choosing the mean redshift for the HSC survey gives consistent
results.

°In (248), it is shown that varying the efficiency can bias the model evidence for MULTINEST, therefore,
we fixed the efficiency of MULTINEST to eliminate this bias and for its speed over POLYCHORD (249} 250)
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Parameter Fiducial Prior 2-p full analysis
of 0.824 Ul0.4,1.2] v Vv

Q 0.0489 U10.03,0.07] v

N 0.967 U10.87,1.07] v

ho 0.677 U1]0.55,0.9] v

Qm 0.311 U1[0.1,0.8] v v

T 0.0561 const.

Q, 0.0 const.

w —1.0 const.

Wy, 0.0 const.

Table 5.3.1: Fiducial values and priors of the cosmological parameters used in this paper,
along with whether or not they are varied (v') or not (blank) in the two-parameter (2-p)
and full analysis. Ula, b] represents a uniform distribution from a to b.

Parameter Fiducial Prior 2-p full analysis
Ara 1.0 Ul-5,5] v

n 0.0 Ul-5,5] v

20 0.62 const

my 0.0 N(0,0.01) v

Mo 0.0 N(0,0.01) v

ms 0.0 N(0,0.01) v

my 0.0 N(0,0.01) v

Q@ 0.0 N(0,0.01) v

153 0.0 N(0,1.11) v

Table 5.3.2: Fiducial values and priors of the astrophysical and nuisance parameters used in
this paper, along with whether or not they are varied (v') or not (blank) in the two-parameter
(2-p) and full analysis. Ula,b] represents a uniform distribution from a to b, while N'(y, o)
represents a Gaussian distribution with mean value y and standard deviation o.

purpose, we divided every element in the HSC first-year covariance X,; (L) by 3, since the
survey area is roughly 3 times larger. We denote this covariance matrix as X3 = X,;/3.
(b) We estimated the covariance matrix for cosmic shear with the full HSC survey, which
is roughly 10 times the area of the first-year catalog. We denote this covariance as g =
% ,1/10. There are several significant limitations of this approximation to the future HSC
analyses: (a) We decreased the covariance by a factor of the increase in survey area, without
considering that the survey footprint has become considerably more contiguous, so the survey
edge effects become less important. (b) We adopted the same angular binning and scale cuts
as for the HSC first-year analysis, while those cuts are likely to be different for the upcoming
three-year analysis and future analyses.
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However, we used the covariance matrix of the n(z) prior from the first-year HSC shape
catalog when analyzing the three-year and full data vector. In the real analyses, the co-
variance of the n(z) for the three-year and full catalogs is likely to decrease. However, it is
a systematics-dominated quantity, so its uncertainty will not decrease with area as rapidly
as does the cosmic shear data vector. Our choice to keep it fixed represents a conservative
assumption regarding our ability to understand and control systematic biases and uncer-
tainties in the photometric redshift estimation and the cross-correlation calibration of n(z).
As a result of this choice, the impact of n(z) uncertainty on the cosmological parameter
constraints gets worse as the dataset grows.

5.3.2 Marginalizing over n(z) uncertainty

In this section, we introduce the different approaches for marginalizing over uncertainty
in the ensemble n(z) that are implemented on the mock cosmic shear analysis described
in Section [5.3.1] In Section [5.3.2] we introduce the shift model’s parameterization. In
Section [5.3.2] we introduce the resampling approach, i.e., marginalizing over the sample
redshift distribution uncertainties by running many chains with different realizations drawn
from the n(z) prior. We propose a new technique for weighting the chains when combining
them, based on model evidence, motivated by Bayes theorem.

The n(z) prior that is marginalized over in this work is specified by the histogram bin
heights fmk at the center redshift of the histogram z; for tomographic bin i. respectively,
modeled by 4 independent Dirichlet distributions. The Dirichlet distributions are parame-
terized by arrays o, with length equal to the number of histogram bins in the corresponding
tomographic bin, specified in Section [5.2.2]

Shift Model

The shift model is a simple and approximate model for representing uncertainties in n(z). It
allows the sample redshift distribution to shift coherently in redshift space following Eq. .
It is used to marginalize over n(z) uncertainties in many cosmic shear analysis (e.g., [I}; 154}
155t 215). For this model, we use the average histogram bin heights (¢! ) as the fiducial
redshift distribution, specified in row 2 of Table [5.2.1 We let the (¢%,) of each tomographic
bin shift individually. Therefore, using this model involves introducing Niomo = 4 nuisance
parameters. We determined the prior on the Az' by computing the distribution of the
mean redshift (z) of the tomographic bin 7 over 10000 realizations of histogram bin heights
drawn from the n‘(z) prior. We used a Gaussian distribution for the prior, with zero means
and standard deviations determined by the distributions of (z%). The priors on the shift
parameters for the four tomographic bins are listed in Table[5.3.3

In Fig. , we show a comparison of the n(z) uncertainty included by the shift model (in
dark shaded regions), versus the total uncertainty of the n(z) prior (in light shaded regions).
The uncertainty of the shift model is generated by shifting (n(z)) with Az’ sampled from the
prior listed in Table Compared to the full n(z) prior, the shift model underestimates
the uncertainties at most redshifts, especially for redshifts where (n’(z2)) is relatively flat. The
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Figure 5.3.2: The 68% confidence intervals of the n’(z) uncertainties of the fiducial n(z)
prior (light shaded regions) and the shift model (dark shaded regions). The shift model
generates an unrealistic distribution of n(z) uncertainties, underestimating the uncertainty
at most redshifts but overestimating it around the edges of bins 2, 3 and 4.

shift model also overestimates the uncertainties in the wings of the redshift distribution for
some the tomographic bins. At the n(z) level, the shift model is an inaccurate representation
of the real uncertainty:.

Parameter Fiducial Prior

Azl 0.0 NT(0,0.012)
A2 0.0 N(0,0.01)

A3 0.0 N(0,0.018)
Az 0.0 N(0,0.021)

Table 5.3.3: Fiducial values and priors used for the shift model parameterization of n(z)
uncertainties. The standard deviation of the Gaussian prior is calculated from the o of (%)
from 1000 draws from the n(z) prior.
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Resampling Approaches

A different approach for marginalizing over the n(z) uncertainty, with fewer approximations,
is to sample many realizations of histogram bin heights from the n(z) prior, and run the
cosmological parameter estimation process on each realization as if there are no n(z) un-
certainties. To incorporate the n(z) uncertainties in the cosmological parameter estimates,
the final step is to combine the results from the different MCMC chains. We refer to this
approach as the “resampling approach”.

In this work, we propose a resampling method that is based on Bayes’ theorem to
marginalize over the n(z) uncertainty. We start by deriving the posterior on the cosmo-
logical and astrophysical parameters, P(€2|D), after marginalizing over the uncertainty in
the n(z) histogram bin heights, which we denoted ¢,,. Here D is the observed cosmic shear
data vector D = [£,,€_], see row 4 of Table. This posterior is as follows:

P(QlD) = /d(ﬁnzp(ﬂa(an’D) = /d¢nzP(Q|D7¢nZ>P<¢nZ|D)

. L/d¢nZP(Q|D,qan)P(qubnz)P(qbnz)' (5.11)

P(D)
The first line of the equation is based on conditional probability, and the second line is based
on Bayes’ theorem. Here P(Q|D, ¢,,) is the posterior on € with a specific realisation of
the redshift distribution ¢,,. P(¢yn,) is the n’(z) prior, for which we chose to use P(¢n,|cx),
the posterior probability distribution for the redshift distribution derived using an extension
of the methodology from (226)). P(D)|¢,,) is the Bayesian evidence of the data given ¢,
evaluated by integrating the joint conditional probability over €2,

P(D|¢n,) = / IQP(D|Q, $0,) P(S). (5.12)

We rely on the MULTINEST estimation to the log-evidence, which is shown to have a constant
bias from the truth in (248)), if the efficiency is kept fixed. This is fine for our purpose: the
constant bias on the log-evidence results in a constant factor in the evidence, which is
normalized out for the Bayesian weight wy.

We now describe how we utilize the resampling approach to estimate P(£2|D) in Eq. (5.11)).
We sampled Ngampie realizations of the redshift distribution ¢y, s, where s = 1... Ngample, is
the index of a particular realization from the n(z) prior, i.e., P(¢n,|ar). We combined
the inferred posterior distributions for each one (as represented by the MCMC chains),
P(Q|D, ¢n,s). By doing so, we effectively evaluated the integral of Eq. (5.11]), which can be
written the form of a summation,

N

Z P(Q’D’ ¢HZ:S)P(D|¢HZ,S)7 (513)

s=1

where ¢y, is the sth sample of the redshift distribution. Based on Eq. (5.13)), we designed
a Bayesian weight ws for combining the posteriors P(Q|D, ¢,,s) that satisfies the following

1

PQD) = ————
( ’ ) Nsamplop(D)
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two conditions:

ws X P(D|¢,5) (5.14)

Nsamplc

> wo=1. (5.15)

Finally, the marginalized posterior of £ from the Bayesian resampling can be expressed as
N

P(QID) = P(QID, ¢uys)w.. (5.16)
s=1

Note that the constant 1/(NeampleP(D)) in Eq. is absorbed in wy since summation of
ws is normalized to 1. This weight w,, which is proportional to the Bayesian evidence shown
in Eq , preserves Bayes’ theorem, effectively downweighting the n(z) realizations that
are not likely to generate the cosmic shear data vector D. A similar resampling approach
was used in (215]); however, the MCMC chains were concatenated with equal weights, which
does not preserve Bayes’ theorem. We therefore call our approach “Bayesian resampling”,
and call the method from (215)) “direct resampling”, throughout the paper.

In principle, with enough samples of the redshift distribution, the Bayesian resampling
approach should accurately marginalize over the full prior on n(z) in the cosmic shear anal-
ysis, giving more credible parameter constraints than simplified parameterizations, e.g., the
shift model. However, it does have its drawbacks: (a) it is computationally intensive to run
the full analysis for Ngample times, where Ngmpie is the number of redshift distribution sam-
ples, (b) it requires the sample redshift distribution n(z) to have a well-defined probability
distribution from which samples can be drawn, which might not be the case for some surveys
depending on how they infer the ensemble n(z).

Methods Summary

In this section, we briefly summarize the methods for marginalizing over n(z) uncertainty in
this work, including the notation and terminology of the marginalization methods.

e No n(z) Uncertainty: We use the average histogram bin height of the n(z) prior, (¢’ ),

as the sample redshift distribution, without marginalizing over any n(z) uncertainties.
This is the baseline that other methods are compared to.

e Direct Resampling: We sample Ngumple realizations of ¢, s from the n(z) prior and run
cosmological parameter inference on each realization without explicitly accounting for
the evidence of the ¢,,s. The chains for different ¢,,s are then combined with equal
weights, implicitly incorporating the n(z) uncertainties into the resulting parameter
constraints.

e Bayesian Resampling: This method begins as does direct resampling, but the chains
for different ¢, s are weighted by their Bayesian evidence, as described in Section[5.3.2]
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Figure 5.3.3:

Parameter constraints for the full analyses, with the three-year covariance
matrix ¥ 3 (top), and the full-data covariance matrix ¢,y (bottom), with parameters listed
in Table and , and with n(z) uncertainty marginalized using three different ap-
proaches. The green contour shows the results using the average n(z) with no uncertainties,
while the red and blue contours show the results using the direct and Bayesian resampling
approaches described in Section [5.3.2] The orange contours use the shift model parameter-
ization, with Nyome = 4 nuisance shift model parameters, described in Section [5.3.2, The

dashed lines are the true values used to generate data vector. This plot is made using CHAIN-
CONSUMER (9)
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Figure 5.3.4: Top row: the distributions of the log-evidence log(P(D|¢y,s)), defined in
Eq. . Bottom row: the Bayesian weight, wy, defined in Eq. and applied to the
chains in the Bayesian resampling approach. The vertical dashed line in the bottom panel
is the constant weight applied to each chain in the ‘direct resampling’ method, w. = 1/250.
The distributions of log-evidence and Bayesian weight are broader for Xy than for Xy,
because the same amount of n(z) uncertainty has a larger impact on the more statistically
powerful dataset, i.e., the full HSC dataset.

e Shift Model: The average histogram bin heights (¢",) is allowed to shift on redshift
individually for each tomographic bins, resulting in Ny, = 4 nuisance parameters for

marginalizing over redshift uncertainty, as described in Section [5.3.2
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5.3.3 Probability Integral Transformation

In this section, we introduce our validation method for the parameter inference results.
We note that validating the probability calibration of inference results is an integral part
of testing novel inference methodology. Since the ‘true value’ of a parameter of interest is
viewed in the Bayesian picture as a random variable, the posteriors derived using an inference
methodology have to present an accurate estimate of that unknown distribution.

A necessary requirement is that our inference adheres to Bayes theorem, which forms the
basis of the statistical test presented in the following. To test this, we perform a statistical
test based on the probability integral transformation (PIT; 251 252) to test the validity of
the inference statistics. We perform PIT on the cumulative density function (CDF) of Ss,
as it is the parameter that the cosmic shear constrains most precisely. The true posterior of
the inferred Sg can be yielded by Bayes’ theorem:

D|5s) P(Ss)
P(D)

pss|D) = 2 (5.17)

We define the CDF of Sg to be
Sg
Fa(Si) = | dSiP(syD). (5.15)
0

According to the PIT theorem, a random variable Y drawn from the distribution of Fg,(Ss)
in Eq. (5.18)), has a range of [0, 1], and the CDF of Y follows

Fy(y) =, (5.19)

where y is a specific value of Y between [0, 1].

To test the credibility of our inference pipeline, we estimate the CDF of Sg, namely,
ng (y), by generating pairs of data vectors D* and S, where u=1,2... Npit, and Npir =
50. For each u, we sample a pair of (QF ok) with the uniform prior Ug,, [0.2,0.4] and
U,,[0.7,1.0], and compute the corresponding S§ = o&'+/,/0.3. We first produce a noiseless
data vector using the average n(z), and then add a random noise realization generated using
2 3. The noisy data vector is denoted D*.

We run the full inference pipeline on each pair of D* and S%, which generates a posterior
PH(Sg|D*). For each p, we estimate

V= R (S5) (5.20)

where Fg is the CDF of the Sy posterior for the y-th sample. We compare the CDF of Y
with the expected uniform distribution in Sec. [5.4.2]

By conducting the PIT test, we are checking that the posterior distribution of the cosmo-
logical parameters inferred in the inference pipeline is statistically consistent with the true
posterior given by Bayes’ theorem. This is a crucial validation test for the results of this
work, since our conclusion that compares marginalization methods relies on accurate poste-
rior errorbars of the inferred parameters. Crucially, this test must be done using data vectors
with noise added according to the covariance matrix, since that noise is what broadens the
parameter distribution that we are trying to infer.
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5.4 Results

In this section, we show the results of forecasting cosmic shear analyses with different
marginalization approaches, following the methods outlined in Sec. [5.3] In Section [5.4.1]
we show results of the full analyses, where 5 cosmological parameters, 2 IA parameters, 4
multiplicative biases, 2 PSF systematics parameters, and any parameters used to parametrize
uncertainty in n(z) are jointly fit. In Section , we show the PIT validation on noisy
data vectors. In Section [5.4.3] we compare the results in this work to that of other work.

5.4.1 Full analysis

In this section, we show the results of the full cosmic shear analysis on the noiseless mock
data vector using the redshift marginalization methods listed in Section [5.3.2l We consider
5 cosmological parameters, listed in Table [5.3.1] and explained in Section [5.3.1 Addition-
ally, we consider 2 TA parameters, Ni,mo, = 4 multiplicative biases, and 2 PSF systematics
parameters, listed in Table [5.3.2] and explained in Section [5.3.1]

We ran a baseline analysis with the average n(z) and no marginalization for comparison,
and three marginalization approaches: the direct and Bayesian resampling, described in
Section [5.3.2] and the shift model, described in Section [5.3.2] For the resampling approach,
we ran Ngampie = 250 chains for both X3 and X, covariance matrices. There are Nygm, = 4
nuisance parameters for the shift model, for which the fiducial values and priors are listed
in Table £.3.3

In the top row of Fig. [5.3.3] we show the 2-d posterior contours and their 1-d projections
on the 2,,-Ss plane for all four analyses, for the X5 covariance (left), and Xy, covariance
(right). For the three-year HSC analyses, the different methods of redshift marginalization do
not make a visible difference in the contour plot. However, the contours are visibly different
for the future full data set of HSC. For X3, the number of resampling for both covariances
are Nsample,y?) = Nsample,full = 250.

In Fig. we show the distribution of log-evidence log(P(D|¢y,s)) and the Bayesian
weight w,, defined in Eq. and Eq. , of the chains in the resampling approach. The
direct resampling method applies uniform weights, while the Bayesian resampling method
applies the Bayesian weights ws. Since the HSC full data-set has a three-times smaller
covariance matrix than the three-year data-set, the same n(z) uncertainty causes a more
significant scatter in both the log-evidence and Bayesian weight. This means that Bayesian
resampling will become increasingly favoured over direct resampling as the dataset becomes
more statistically powerful. In practice, the Bayesian resampling approach is assigning more
weight to realizations of the n(z) that produce data vectors that are more consistent with
the expected one, while down-weighting realizations with less evident n(z).

In Fig. [5.4.1], we show the uncertainty for individual cosmological parameters from the
full analysis chains in Fig. [5.3.3] We used the mean parameter value as the point estimation
and the 68% confidence interval as the error bars of the “No n(z) uncertainty" run for the
reference. We also show the true value of the parameters in dashed line, as a comparison.
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For the three-year analyses, shown on the left, marginalizing over the redshift distribution
uncertainty does not noticably increase the error bars on either €2, and Sy, except when
using the “Direct resampling" method. Since the Bayesian resampling method provides
a principled approach to incorporation of redshift distribution uncertainties, we take the
consistency between that method and the no marginalization method as a sign that the
uncertainty in the cosmic shear data vector dominates the uncertainties on cosmological
parameters. Therefore, the “Direct resampling" may be introducing spurious uncertainty by
failing to down-weight n(z) realizations that are inconsistent with the data vectors, and is
not recommended. For the full HSC dataset analyses, shown on the right, we can see that
the conclusion of the three-year analyses holds, though the differences between the methods
are more visible. The mean posteriors of the €2, are systematically lower than the true input
value across different methods. We suspect that the banana-shaped €2, — og degeneracy that
occurs in the full analysis skews the projected distribution of €2, to the lower end, which
also causes the underestimation of €2, in Fig. [5.4.3

We further computed the Figure of Merit (FoM) in the €2,,-Ss plane (or £2,,-Ss-Ara space)
to compare the methods, defining the FoM as

1
F

FoM =

, (5.21)

T

where F is the Fisher matrix of [€2,,, Ss](or [, Ss, A1a]). F is calculated by taking the in-
verse of the covariance matrix of [Q,,, Sg] (or [, Ss, A1a]), approximating the MULTINEST
posterior as a 2(3)-d Gaussian distribution. This approximation effectively marginalizes
over the other parameters that are varied during the parameter inference. The FoM is pro-
portional to the reciprocal of the contour area. In Fig. [5.4.2] we plot the FoM of all the
marginalization methods, divided by the FoM value of the “No n(z) Uncertainty". The two
oranges lines correspond to the full analyses in this section. Unsurprisingly, the direct resam-
pling method provides more conservative parameter constraints compared to the Bayesian
resampling method, since it does not downweight the outlier n(z) realizations even though
they are unlikely to produce the observed shear data vector. The shift model is slightly con-
servative for X, and slightly optimistic for 3, compared to the Bayesian resampling. The
errorbars on the FoM values are obtained by bootstrapping the chains. As a cross-check on
our errorbars, we also ran 10 chains using the shift model for the Y3 analysis, with different
sampling seeds. The errorbars obtained using the standard deviations of the inferred cos-
mological parameters using these 10 chains is within 5% of those from bootstrapping, which
suggests that seeding noise cannot explain the differences in FoM between the methods.
Additionally, we report the ratio of FoMs to the fiducial one in the 3D €2,,-Ss-Aja space
using the full covariance matrix Xg,y. Since the amplitude of intrinsic alignment is also
sensitive to the redshift distribution, different marginalization methods also impact its con-
straints. The FoM in the €2,,,-Ss-Ara space (purple line) follows the same trend as the orange
dashed lines in Figure [5.4.2] however, the difference between Bayesian resampling and shift
model decreases from 3% to 1% of 1-o, while the difference between the Bayesian resampling
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Figure 5.4.1: The 68% confidence intervals (bars) and mean values (dots) of the 1-d projec-
tion for the n(z) marginalization approaches compared to the ‘No n(z) uncertainty’ run, for
the X3 covariance matrix (top), and Xgy covariance matrix (bottom), for the full analysis.
The solid reference lines and the shaded area are the mean values and the 68% confidence
intervals of the “No n(z) uncertainty” run. The dashed lines are the parameter truth in Ta-
ble [5.3.1] We find that the mean values of Q,, are systematically lower than the true input
across different methods. The could be caused by the skewness of the posterior distribution.

and direct resampling decreases from 4% to 3.3% of 1—0@. This further strengthens the con-
clusion that the Bayesian resampling method behaves comparably to the shift model in HSC
Y3 cosmic shear analyses, while direct resampling tends to overestimate the uncertainty in
the parameter constraints.

Finally, Fig. [5.4.2] also shows a FoM comparison for an analysis with only two free cos-
mological parameters, og and §2,,, rather than with all cosmological parameters free. For

6 AFoM/FoMO is proportional to —2Ac /o for two parameters, while AFoM/FoMO is proportional to
—3A0 /oy for three parameters, where o is the < 68% confidence range of ‘no marginalization’
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more details of this analysis, see Appendix [5.B] For this more limited analysis, the direct
resampling method overestimates the uncertainties in the (£2,,, Ss) plane compared to the
Bayesian resampling, and therefore is not recommended. The shift model is slightly conser-
vative in this more limited analysis for the full dataset, and slightly optimistic for the three
year analysis.

In Fig. .4.3] we show the 1-d mean posterior points of 250 chains in the resampling
approach, run with Xz;. The color of the points are coded by the Bayesian weight w of
the chain, which is proportional to the model evidence P(D|¢,,). We can see that drawing
different samples from the n(z) posterior introduces scatter in the mean values in the €2,,-
Sg plane, but generally the samples with mean closer to the centre of the cluster receive
a higher weight, while the n(z) samples that generate outliers are down-weighted. This
plot demonstrates the necessity of considering whether a given n(z) sample is likely to have
generated the data vector that we are observing during the resampling process — as is done
in the Bayesian resampling approach, but not direct resampling. We notice that there are
nzs samples that generate mean posterior at the centre of the cluster, but receive a very low
weight. There are two possible explanations: (a) the realization nz, has a best-fit data vector
that is on average unbiased compared to the mock data vector D, but for certain redshifts or
0 values there are significant deviations (with opposite signs, so they compensate on average);
(b) the best-fit data vector deviated from that for the true cosmological parameters in a way
that is compensated by biases in other cosmological parameters besides €2, and Sg. The
mean values of the €2, are systematically lower than the true value of the input, as we
explained earlier in this section.

Following the above presentation of the analysis results, we also compare the computa-
tional performance of each redshift distribution marginalization method. In Table [5.4.1] we
show the MULTINEST settings used for each method, and the computational expense of the
full analysis in CPU-hours. The resampling approaches are two orders of magnitude slower
than the shift model. While the Bayesian resampling and shift methods lead to comparable
uncertainties, as is shown in Fig. the tremendous computational efficiency of the shift
model compared to the Bayesian resampling makes it the recommended choice for the HSC
three-year analyses.

For the full HSC three-year cosmic shear analysis, our results suggest that the shift model
will produce uncertainties on cosmological parameters that are consistent with the principled
Bayesian resampling method to within 3% of 1-o. Considering that the orders of magnitude
difference in computational expense, we recommend the shift model as a well-understood
and sufficiently accurate approach for the HSC three-year analysis.

5.4.2 Inference Validation

In this section, we present the inference validation by performing the probability integral
transformation (PIT), as described in Sec. [5.3.3] We will focus our analysis on the shift
model since it represents the simplest methodology that is appropriate for our data as de-
scribed in the previous sections. While computationally more expensive, we could also
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Figure 5.4.2: The Figure of Merit (FoM) comparison in the €2,,-Sg plane for each marginal-
ization method. The uncertainties on the FoM are computed by bootstrapping the MCMC
chains 100 times. All FoMs are divided by the FoM of the “No n(z) uncertainty" run. The
purple line shows FoM ratio for the 3D 2,,-Ss-Ara space, while other lines shows the FoM
in the €2,,,-Sg space. The direct resampling method is clearly the most conservative method
of those tested in this work. The shift model shows similar performance to the Bayesian
resampling method. The errorbars on the FoM are given by bootstrapping the chains, which
matches the errorbars given by running the analysis with different sampling seeds.
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Figure 5.4.3: A scatter plot showing the mean posterior values for the Ngmple = 250 chains
with different samples drawn from the n(z) prior, analyzed with all 17 parameters (using
the shift model) and with X¢,;. The colors indicate the Bayesian weight w, that the chain
receives, determined by its evidence P(D|¢y,), defined in Eq. (5.12)). The solid line represents
the mean statistics of the ‘No n(z) uncertainties’ run, while the dashed line represents the
true input parameters.

perform the same test for the Bayesian and direct Resampling methods. Given that the
three aforementioned methods perform similarly in the context of HSC Y3 analysis, we defer
a more detailed investigation to future work and concentrate here on the shift model case.

We sample Ny, = 50 €2,,-05 pairs, generate a corresponding noisy data vector, obtain the
marginalized Sg posterior from the full inference with shift model, and compute the CDF of
the corresponding true Sy values.

In Fig. , we compare the CDF of Y, the CDF of Sg evaluated at the true Ss, with
the CDF of an expected uniform distribution, shown in the black dashed line. On visual
inspection, the estimated CDF follows the expected y = x line nicely. We also conduct
an Kolmogorov—Smirnov (K-S) test, which computes the maximum difference between the
CDF and the expected CDF. The K-S results is D = 0.094, with a p-value of 0.737. This
means that Y is highly consistent with the uniform distribution, which validates our inference
pipeline.
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Figure 5.4.4: The CDF of }7, defined in Sec. If the statistical inference preserves Bayes’
theorem, the CDF of ¥ should follow y = x, which is plotted as the black dashed line. This
plot shows a high level of consistency between the estimated and expected distribution of Y.

5.4.3 Literature Comparison

In this section, we compare our Y3 results with the results of marginalizing over n(z) un-
certainties in other cosmic shear analysis works. This comparison necessarily excludes the
Bayesian resampling approach outlined in this paper, as to the authors’ knowledge it has
not previously been applied.

In (227), direct resampling marginalization is tested using 3 different n(z) uncertainty
distributions: weighted direct calibration (DIR; 223), angular cross-correlation calibration
(CC; 220), and a recalibration of p(z) estimated by BPz (BOR; 253). Compared to ‘no
n(z) marginalization’, the DIR, CC, and BOR approaches increase the uncertainty on Sg
by 14%,90%, and 19% of 1-o, respectively. In comparison, we find that direct resampling
increases the Sg errorbar by 5.8% of 1-0 for X3 , and 15.3% of 1-0 for Xgy. This smaller
increase in uncertainty is likely due to the larger covariance matrix and a tighter n(z) prior
for the HSC Y3 analysis.

In (1)), the shift model is adopted as the fiducial approach to marginalizing over n(z)
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uncertainty, and is compared with ‘no n(z) marginalization’. The uncertainty on Sg increased
by 1.4% of 1-0 after marginalizing over the n(z) uncertainties with the shift model, with a
wider prior than the one in this work. In this work, the errorbar on Sy increased by 2.0% of
1-0 after marginalizing using the shift model. Given that (I]) has a larger covariance on the
shear data vector, as well as a larger prior on the shift model parameters, the results should
not agree exactly, and there is no reason to believe they are inconsistent.

In (47), the shift model is compared with ‘no n(z) marginalization’. The prior on the
shift model parameters are comparable to this work, while the covariance matrix of (47)
is smaller than this work. (47) found a 4.4% of 1-o increase in the Sg uncertainty, which
slightly larger than this work. Given the differences in the data covariance for the analyses,
the fact that marginalization had a greater impact in (47)) is consistent with expectations.

In (I54)), the shift model is compared with a more sophisticated n(z) marginalization
method, called HYPERRANK (230)). The shift model is found to be sufficient for cosmic shear
analyses for DES Y3, as validated by HYPERRANK. The fact that a current survey found
the shift model to be sufficient is consistent with our finding for HSC Y3.

In (229)), a self-calibrated method that models the histogram bin heights ¢,, as a series
of comb Gaussian functions is used to analytically marginalize over the n(z) uncertainties.
The results are compared to the analysis in (254]), which uses a shift model. There are
only 1% differences in y? between the results from the self-calibration method and the shift
model, though there is a 10% of 1-o difference in the intrinsic alignment amplitude Aj,4.
This once again shows that the shift model is sufficient for the current generation of cosmic
shear analysis for the purpose of cosmological parameter inference, which is consistent with
our conclusion.

5.4.4 Summary of results

Overall, our results show that the shift model is a computationally efficient and credible
marginalization method for the HSC three-year analysis. Therefore, we recommend that the
HSC three-year analysis adopt the shift model for marginalizing n(z) uncertainty.

For the resampling approaches, we find that using the direct resampling approach consis-
tently results in larger contours compared to the Bayesian resampling, as expected. There-
fore, we suggest future cosmological analysis adopt the Bayesian resampling method, if re-
sampling is necessary.

For cosmic shear analyses with a substantial uncertainties on the sample redshift distri-
bution, we recommend comparing any candidate marginalization methods for n(z) with the
results from the Bayesian resampling method, as the Bayesian resampling method provide a
statistically-principled posterior on the marginalized parameters.

5.5 Conclusions

The goal of this work was to understand the performance of methods for incorporating
uncertainty in the ensemble redshift distribution in cosmological weak lensing shear analyses,
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including their impact on computational expense and on the estimated uncertainties on
cosmological parameters.

We proposed a statistically-principled method, called Bayesian resampling, for marginal-
izing over the uncertainties of the sample redshift distribution n(z) in the cosmic shear
analysis. By adding a weight proportional to the model evidence of each n(z) realization,
Bayesian resampling effectively down-weights those realizations that are unlikely to generate
the observed cosmic shear data vector. The Bayesian resampling method can be applied
to any n(z) uncertainties that can be modeled by a probability distribution, even if such
parameterization is at a high dimensionality that makes it impossible to model in MCMC.

We ran mock analyses for the HSC three-year and full-data cosmic shear, with 3 n(z)
marginalization methods: (a) the newly developed Bayesian resampling method; (b) the
direct resampling, for which the weights of all n(z) realizations are the same; (c) the shift
model, the most prevalent parameterization used in cosmic shear analyses. Additionally, we
ran analyses without marginalizing over the n(z) as a comparison. Our mock data vector is
the average cosmic shear signal from the fiducial cosmology, and its covariance is estimated
by reducing the covariance compared to that in (1)) to account for survey area increases, for
the three-year analysis and full analysis correspondingly. Our full theoretical model consists
5 A-CDM parameters, 2 intrinsic alignment parameters, 4 multiplicative biases and 2 PSF
systematics parameters, plus the 4 redshift parameters when the shift model is adopted.

We compared the 3 marginalization methods and the analysis without marginalization in
terms of their impact on the €2,,-Sg contours, their 1-d errorbars, the figure of merit (FoM),
and computational cost. Here is a high-level summary of how the methods compared to each
other.

e Marginalizing over n(z) uncertainties yields larger errorbars on both €2, and Sy for all
methods.

e Bayesian resampling yields significant tighter errorbars than direct resampling, imply-
ing that the direct resampling is overly-conservative for marginalization.

e The shift model produces consistent errorbars to the Bayesian resampling for HSC Y3.
Given that the computational cost for the shift model is ~ 100 times less, it is the
recommended method for the upcoming HSC Y3 cosmic shear analyses. For the HSC
full analysis, the shift model can yield errorbars that differ by ~ 3% of 1-0 compared
to Bayesian resampling, so it is unclear even in that case whether alternative methods
are worthwhile.

e Although the differences between the marginalization methods are statistically evi-
dent, the visual differences in the parameter constraint contours are not particularly
noticeable.

To test the credibility of our inferred posterior probability distributions of cosmological
parameters, we conducted the probability interval transformation (PIT) test on noisy data
vectors generated with a range of cosmological parameters, to ensure the applicability of our
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results to real cosmic shear analyses. We sampled 50 pairs of €2,,-0s-D, and compare the
CDF distribution of Ss at the true S§ values with a uniform distribution. Our estimated
CDF distribution passes the K-S test, thus validating our inference pipeline using the shift
model.

These results have a few implications for future cosmic shear analyses. First, our results
suggest that the shift model should be compared with Bayesian resampling for specific survey
scenarios (statistical constraining power, etc.) to assess whether the shift model performs
sufficiently well to be usable, given its far lower computational expense. The shift model is
fundamentally a different n(z) uncertainty model from the original n(z) distribution. Second,
when using the resampling approach to marginalizing over n(z) uncertainties is necessary for
a weak lensing measurement, the Bayesian resampling approach is preferred over direct re-
sampling, because of its consistency with Bayesian statistics. Moreover, Bayesian resampling
does require an accurate estimate of the ratio of the Bayesian evidences between realizations
of redshift distributions.

There are several caveats in this work. (a) We reach the conclusion that a sophisticated
marginalization method is going to be increasingly preferred based on the assumption that
lensing measurements become more powerful as survey area increases, but the uncertainty
on n(z) is presumed to be systematics dominated. The reason for this assumption is that the
n(z) uncertainties are limited by the cosmic variance of the COSMOS2015 field, which we
used to assess the modeling uncertainties. If this assumption changes, then the comparison
needs to be revisited. This assumption is discussed in detail in Section [5.2.2]  (b) We use
the same angular and tomographic binning for the mock analyses in this paper, though the
actual analyses of HSC Y3 and full data are likely to have different binning strategies. We
also make very simple estimates of the covariance matrices in the mock analyses, ignoring the
evolving footprint shape of the HSC survey. (¢) The assumption in this work is that we can
place a prior on the source redshift distribution that is statistically independent of our data
vector. That was a good approximation in this case, for n(z) calibration based on photometry
and cross-correlations, and for the data vector involving shear-shear only. However, future
analyses with more complex data vectors (e.g., including large-scale structure clustering)
and/or n(z) posteriors may violate this assumption in our formalism, which would require
additional efforts to take into account.

We conclude by mentioning some avenues for future investigations. First, the cosmic
shear data vector is sensitive to the mean redshift of the tomographic bin, which is likely
the reason why the shift model is sufficient for current surveys in practice. However, galaxy
clustering is sensitive to other statistics of the ensemble redshift distribution, such as its width
(e.g., 37). Therefore, the validity of the shift model in galaxy-galaxy lensing, clustering and
3x2pt analyses should be directly tested.

Finally, the resampling approach for the n(z) marginalization requires thousands of CPU-
hours. Importance sampling methods can be added to the method to reduce the number
of realizations needed. However, importance sampling faces other challenges: since n(z)
distributions normally are parameterized with high dimensionality, the importance weights
are easily dominated by a few samples. It might also be extremely challenging to perform
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importance sampling on some n(z) priors. It would be valuable to identify solutions to this
problem and demonstrate how to effectively accelerate n(z) resampling approaches using
importance sampling.

5.A  Impact of &L((¢n,))
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Figure 5.A.1: The fractional error of the £ ((n(z))) compared to (¢7(n(z))). The x-axis is
the index of the value in the data vector, with 9 angular bins for each tomographic 5? bin
pair, and 8 angular bins for each £” bin pair. There is a statistically significant sub-percent
difference between the auto-correlations, which shows that taking the average of n(z) does
not commute with computing the 2PCF. Therefore (€7 (n(z))) should be used to avoid sub-
percent bias when this level of precision matters. This fractional difference is largest at low
redshift because the uncertainties in the mean redshifts are comparable in magnitude for all
bins, but the 2PCF is lower at low redshift.

In Figure 7?7, we demonstrate that generating the auto-correlation of the mock data vector
using the average n(z) is different from the taking the average of data vectors generated by
random draws from the posterior for n(z). Therefore, for this work, in which the conclusion
is sensitive to bias at the sub-percentage level, we choose to use (£%(n(z))) from 1000 n(z)
samples to generate the mock data vector in Section [5.3.1]

The reason that only the auto-correlation is affected in Figure [5.A.1] can be explained by
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Egs. (6.2)) and (5.3). Since n’(x(z)) is independent of n’/(x(z)) if i # j, the transfer functions
¢'(x) and ¢’ (x) are thus independent. As a result, when i # j,

€)= [ P00 00) (5.2

Notice that Eq. only holds when n’(x(z)) is independent of n/(x(z)). Otherwise, both
auto- and cross-correlations in the mock data vector will be affected by using the average
n(z). Also note that in the case that some overall source of uncertainty was to lead to
correlations between the uncertainties in the redshift distributions for different bins, both
auto- and cross-correlations would be affected.

5.B Two-Parameter Analyses

In this work, we also carried out the cosmological parameter inference for a case where only
Q,, and oy, along with n(z) marginalization nuisance parameters, are freed. This scaled-down
test is initially designed for testing and sanity-checking our inference and analysis software.
The constant values for other cosmological and nuisance parameters, and the priors for €2,
and og, are listed in Tables [5.3.1] and [5.3.2]

We carried out cosmological parameter estimation for the three marginalization methods
in the 2-parameter cases, along with the “no n(z) uncertainty” run for comparison. The
contour plots in the €2, and Sg plane are well-behaved, and the results lead to similar
conclusions as for the full analyses, so we do not show them in the paper. The Figure-of-
Merit ratio of the three marginalization methods to that of “no n(z) uncertainty” is shown
in green lines in Figure [5.4.2] and the conclusion based on the 2-parameter cases is similar
to ones drawn from the full analyses.
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Conclusion and Discussion

In the past two decades, weak lensing has witnessed exponential growth in the available
data volume. This trend is set to continue in the next two decades with deeper and wider
extragalactic surveys, e.g., Vera C. Rubin Observatory LSST and the High-Latitude Survey
on the Roman space telescope. The rapid increase in data volume will significantly increase
the figure-of-merit that the weak lensing measurement has on constraining the dark energy.
It also posts harder challenges in understanding its systematics in image processing, data
analysis, and astrophysical modeling stages. This thesis improves the understanding of
two sources of systematics in weak lensing, the Point Source Function (PSF) and redshift
distribution uncertainty. The methods I developed guided corresponding model selection in
the HSC Year-3 cosmological analysis, and are projected to provide valuable insights into
the future cosmological analyses of HSC, DES, Rubin Observatory, and Roman HLS.

§ [2| to § [4] is a sequence of three projects that study the impact of the PSF higher
moments on weak lensing. § [2| is a proof-of-concept demonstration that the PSF higher
moments modeling residuals are coupled with shear bias. In particular, I demonstrated that
the residual in modeling PSF radial fourth moments can cause multiplicative shear bias, and
the level of the multiplicative bias is comparable that of the PSF second moments, revealing
its underestimated significance.

§ [3] builds upon § 2| by extending the scope of interest to the modeling error of the entire
PSF higher moments space. I developed a numerical method that is based on basis expansion
and gradient descent for generating PSF images given input moments. This technique enables
us to connect the PSF higher moments bias to the shear bias quantitatively. I utilize the
Gaussian random map to generate HSC-like mocks for the higher moments residual and
use Fisher forecasts to predict the level of multiplicative and additive bias for the LSST
Y1 and Y10 analysis. Our results show that the PSF higher moments can cause significant
systematics to the weak lensing observables if not actively monitored and modeled.

§ M takes the understanding of § [2]and §[3to a real shear catalog and cosmic shear analysis.
It demonstrates the benefit of active monitoring proposed in § [3| by conducting extensive
null tests with the dataset. The null tests revealed an otherwise undetected leakage by the
PSF fourth moments. I demonstrate that our new model can fully mitigate the additive
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contamination that PSF cause on the shear-shear TPCF in mock tests. This work guided
PSF systematics modeling choice in the HSC Year-3 cosmic shear analysis (5} [72)).

With continuous effort in open software development, I expect the PSF higher moments
effects in weak lensing will be closely monitored and modeled in the upcoming analysis and
surveys. This can be achieved by improving multiple steps in the data analysis pipeline of
weak lensing. Firstly, higher moments measurement of the star samples should be done in
the measurement pipeline, at least for the moments that are deemed critical. Secondly, p-
statistics for the higher moments should be calculated in the quality check software. Lastly,
the higher moments null tests should be conducted after the shear catalog is produced for
each analysis.

There are other aspects of the PSF systematics problem that we need to improve our
understanding of. One example is how null tests are conducted given a chromatic PSF model
since it breaks the assumption that the star catalog shares the same PSF field as the galaxy
catalog. Another challenge is how to generate a more realistic and complex mock catalog
for stress testing the mitigation model — as a simplified mock catalog might obscure the
downside of the model. Such generation likely requires advanced statistical and machine
learning techniques.

§ [5| shifts the focus to another very important source of systematic to weak lensing, the
redshift distribution uncertainty. The redshift distribution n(z) of the weak lensing source
sample is an important part of the modeling of the weak lensing signal since it is directly cou-
pled with the amplitude of the correlation function of a galaxy ensemble pair. However, the
high dimensionality of the n(z) uncertainty makes it computationally infeasible to marginal-
ize in an MCMC inference. We proposed a statistically principled method for marginalizing
the full uncertainty of the n(z), by resampling the n(z) distribution and recombining the
posterior from each n(z) realization weighted by their Bayesian evidence. We compare our
methods to a traditional method and a slightly different resampling method, and show that
while our method is computationally expensive, it provides a feasible way to marginalize over
the full n(z) uncertainty in a cosmic shear analysis. For the current surveys, the difference
between our model and the traditional model is still negligible, but we show the gap will
increase for future surveys.

There is much future work in the realm of redshift distribution treatment in weak lens-
ing. For the Bayesian resampling method, an extension of the method to the joint analysis
of clustering and weak lensing is valuable, since the joint analysis will be sensitive to more
modes in the redshift distribution. Another important aspect is to speed up the algorithm.
Currently, the resampling marginalization requires hundreds of independent MCMC runs to
produce one posterior, which is very expensive. A resampling method that utilizes impor-
tance sampling is a promising pathway to achieve this goal. Further work is also required
to study the impact of double counting in cases where the spectroscopic samples are used as
both lens and redshift calibration samples.

Looking at a broader picture, photometric redshift uncertainty is likely one of the most
complicated systematics in wide-field imaging surveys for the future decade. Extensive work
is needed to understand and develop a pathway to compare and combine different methods
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of the photometric redshift, along with incomplete spectroscopic redshift datasets at a scale
of billions of galaxies. Wider and deeper spectroscopic datasets from instruments such as the
Dark Energy Spectroscopic Instrument and the prism survey of Roman HLS bring exciting
assets to improve the redshift calibration on the high redshift end and faint end.

The next decade will be an exciting era for weak lensing science amid various challenges of
understanding the systematics error. However, the weak lensing community is not lacking in
ideas to tackle these challenges or lacking in motivation. End-to-end validation for the science
analysis pipeline can systemically catch modeling bias and bugs in software. Additionally,
the call for open software makes the scientific results less prone to human error. Novel
analysis methods such as higher-order statistics or machine learning-based inference aim
at extracting more information from the datasets, but the systematics error specific to the
new probes will need additional attention. With a collaborative international weak lensing
community, weak lensing has a promising future in providing precise measurements on the
large-scale structure and nature of dark energy, providing impetus for the advancement of
modern physics and cosmology.
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