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Abstract
Algorithms for designing quantum circuit architectures are important steps toward practical quantum
computing technology. Applying agent-based artificial intelligencemethods for quantum circuit
design could improve the efficiency of quantum circuits.We propose a quantumobservableMarkov
decision process planning algorithm for quantumcircuit design.Our algorithmdoes not require state
tomography, and hence has low readout sample complexity. Numerical simulations for entangled
states preparation and energyminimization are demonstrated. The results show that the proposed
method can be used to design quantum circuits to prepare the state and tominimize the energy.

1. Introduction

Quantumcomputers are attracting attention as computers with computing power that surpasses that of classical
computers [P18, AAB19]. In fact, algorithms that efficiently solve specific problems such asGrover’s algorithm
[G96] and Shor’s algorithm [S94] have been proposed. In recent years, variational quantumalgorithms [C21]
have been actively researched, and quantum technology has been applied to various fields such as chemistry
[PMS14, KMT17] andmachine learning [DB18,MNK18, SK19,HCT19]. However, the design of a quantum
circuit for solving a specific task under hardware constraints requires efforts
[SBM06, FM17, LSJ15, SSP14,MFM08, AAH16,HNYN11], sometimes including empirical rules and domain
knowledge as well.

Reinforcement learning (RL) [SB18, RN21] has been successful in the areas such as robot control [KCC13]
and games [MKS15, SSS17]. Since there is a possibility that RL can solve complicated control problems, research
has been conducted to apply RL to the control of quantum systems in recent years
[BSK21, SEL21,NBS19,NY17,HWN21].Most of these studies consider low level control at the hardware
(Hamiltonian) level. But it is also important to control at the circuit level [NMM18], which is a higher level of
abstraction [AU22], in order to perform concrete quantum computation. For simple circuits, it is demonstrated
that the closed-loop control can lead to better control performance for trapped-ion quantumprocessors
[NMM18]. State-of-the-art ion trap qubits have coherence timemore than 10 min [WUZ17,WLQ21], which
provides enough running time for on-line decision process on a classical computer.

In this paper, we consider applying RL tomore general quantum feedback control at the circuit level. The
basic RL algorithms solve forMarkovDecision Process (MDP), where the current state of the agent can be
exactly known from the observation of the environment. But for a quantum system, the Born rule asserts that an
observation result is drawn from a probabilistic distribution over the state space. Therefore, it is necessary to
formulate the problem as a partially observable problem.QuantumObservableMarkovDecision Process
(QOMDP) [BBA14, C16, YY18, YFY21]was proposed as a quantum extension of the PartiallyObservable
MarkovDecision Process (POMDP) framework for the classical partially observable problems [PT87, RN21],
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but no specific application ofQOMDPwas proposed. OurQOMDPplanning approach is Bayesian, and does
not rely on state tomography [NC11, YC21, KFC21] or expectation evaluation [ZHZY20, PT20,MLWEV21].
Hence it improves the quantummachine sample complexity per time step from ( )-O Nobs

2 (or
( ( ) ( ))-O Nlog log 2obs

n4 4 with shadow tomography [A18]) to ( )O 1 for number of observables Nobs and accuracy
 .However, our approach still requires exponentially expensive classical planning.

In this study, we formulate quantum control at the circuit level as aQOMDP reinforcement learning
problem to solve for the quantum circuit design problem [K22]. The exactQOMDPBellman equation for value
iteration is derived. As a concrete algorithm, we propose aQOMDPplanning algorithmwith reference to
planning in POMDP. In the exact POMDPplanning for quantum state, there are three computational
intractable parts. Firstly, the size of history set grows exponentially in time. Secondly, theHilbert space is an
uncountable set. Thirdly, theHilbert space dimension grows exponentially with respect to the circuit width.We
introduce the point-based value iteration (PBVI) algorithm fromclassical POMDP tomake the approximating
planning tractable and resolve the first and second issues. For the quantumHilbert space, we perform exact
filtering and do notmake any approximation.Hence the calculations involving the belief state scale
exponentially with respect to the number of qubits.We further consider circuit design problem for two types of
applications: the problemof state preparation and energyminimization. The proposed algorithmwas able to
make Bell state andGHZ state [GHZ89] for state preparation. Regarding energyminimization, it was able to
discover a low energy statewith respect to theH2 andH-He+. The experimental results show the applicability of
QOMDP to quantum control at the circuit level. Comparing to variational quantum eigen solver (VQE)
[PMS14,MRB16, KMT17, C21] approachwhere the variational ansatz has to be chosen empirically, the
QOMDP approach allows automatic search over a wide range of possible ansatzes.

This paper is organized as follows. Relatedworks are reviewed in section 2. The POMDPplanning algorithm
is introduced in section 3. Numerical experiments are presented and analyzed in section 4, followed by a
concluding section.

2. Relatedwork

Quantumcircuit synthesis has been addressed inmanyworkswithout using RL [SBM06, FM17, LSJ15, SSP14,
MFM08, AAH16,HNYN11]. In recent years, RL has been applied to quantum control problem in various
settings. The applications to physical design at theHamiltonian level is studied in various literatures [BSK21,
SEL21, B18,MDW21, ZWA19, BAHH21]. RL has also been used for optimization of quantum circuit
architecture [YC21, KFC21, ZHZY20, PT20,MLWEV21]. Ourwork is different from theseworks regarding the
sample complexity (the number ofmeasurement shots) from the real quantummachines. The RL approaches
based on state tomography or the expected cost function [YC21, KFC21, ZHZY20, PT20,MLWEV21] requires

( )-O 4n 2 or ( )-O Nobs
2 shots for reward evaluation, where Nobs is the number of observables in the cost

function. Better scaling ( ( ) ( ))-O Nlog log 2obs
n4 4 could be obtained by using shadow tomography [A18]. Our

method takes only ( )O 1 shots for online decisionmaking, at the expense of exponentially expensive classical
pre-computing. On the other hand, variational quantum algorithmhas been also applied to RL. For example,
variational quantum circuit has been applied to value function approximation [C20,MK21, LS20, SJD22, LS21,
CHHGK21, KSCS21][SJD22] and policy approximation [J21, K21] in RL. Value iteration algorithm for classical
POMDPplanning has a long history andmany variants [SS73, KLC98, PGT03, TBF05, SV10]. Variational
quantum eigen solver (VQE) formolecule energyminimization is studied in [PMS14,MRB16, KMT17, C21].

3.Methods

The overview of ourQOMDP-PBVImethod is depicted infigure 1. The offline planning is computedwith a
classical simulator. The output of the offline planning is amatrix set h which approximates the value function.
The set η is then stored in a classical agent, and the agent is able tomake online decision in a hybridQuantum–

classical computer. The theory and algorithm are explained in the following sections.

3.1.Quantumobservablemarkov decision process
QOMDP[BBA14] is defined by { ∣ ⟩}g= A R sQ , , , , , .0S O S is theHilbert space of the system.

{ }∣ ∣= o o, ,1O O is the set of observations, where ∣ ∣X denotes the cardinality of a set X. { }∣ ∣=A A A, ,a a A1
is the

set of transition operators, and each operator { }∣ ∣=A A A, ,a
o
a

o
a

1 O has ∣ ∣O Krausmatrices. The conditional

probability of getting the observation owhen executing the action a in the state | ⟩s is

( ∣∣ ⟩ ) ⟨ ∣ ∣ ⟩ ( )†=o s a s A A sPr , . 1o
a

o
a

2
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The state transition is defined by

∣ ⟩(∣ ⟩ ) ∣ ⟩

⟨ ∣ ∣ ⟩
( )

†
¢ ¬s s a o

A s

s A A s
, , . 2o

a

o
a

o
a

{ }∣ ∣=R R R, ,a a A1 is the set of operators for rewards. The reward of executing action a in state | ⟩s is calculated
by

(∣ ⟩ ) ⟨ ∣ ∣ ⟩ ( )=r s a s R s, . 3a

g is the discount rate. ∣ ⟩s0 is the initial state. Regarding the interaction between the agent and the environment
inQOMDP, the agent selects an action according to the policy and executes the action for the environment. The
operation Ao

a corresponding to the action a performed in the environment is executed, and the observation o is
fed back to the agent. The agent also receives a reward according to the equation (3). The above action-
observation-reward sequence is for a single time step, and this is repeated until the end of the episode. The
agent’s goal is tomaximize expected future rewards. Note the relationship between POMDP andQOMDP. The
state inQOMDP corresponds to the belief state in POMDP, and the formula (2) corresponds to the belief state
update in POMDP. Therefore, it is natural to think that it is possible to extend the planningmethod in POMDP
and devise a planningmethod to solveQOMDP. In the next section, we propose a planning algorithm in
QOMDPbased on this idea.

Firstly, we derive the value function ofQOMDP. Let ∶ [ ]p ´ A 0, 1S be the policy in aQOMDP
described by { ∣ ⟩}g= A R sQ , , , , , ,0S O and the policy is defined by | |( ∣ ⟩) ( ∣ ⟩)p =a s a sPr .The value function
for Q is calculated by

(∣ ⟩) (∣ ⟩ ) ∣ ⟩ ∣ ⟩ ( ) ( )å g p= =p
=
¥V s r s a s s, , Q . 4q t

t
t t0 0⎡⎣ ⎤

⎦
The Bellman equation is

(∣ ) ( ∣∣ ) (∣ ) ( ∣∣ ) (∣ ) ( )å åp gñ = ñ ñ + ñ ñp pV s a s r s a o s a V s, Pr , . 5q
a o

q
⎧
⎨⎩

⎫
⎬⎭

Since it is known that the value function can be expressed in a simple formof piece-wise linear and convex
function in the classical POMDP, it seems that the value function can be expressed in some simple form in
QOMDP aswell. In the following paragraph, we derive the expression of value function inQOMDP.

Let Îht tH be the history up to time step t and the history is expressed by

{ } ( )= ¼ -h a o a o a o, , , , , , . 6t t t0 1 1 2 1

Figure 1.The setting of the point-based value iteration (PBVI) for quantum circuit planning. (a). Offline planning is executed in a
classical computer based on classical simulation of the quantum circuit. The output of the PBVI algorithm is a set ηwhich is used for
approximating value functions. (b). The classical agent then uses η for efficient online decisionmaking to control a real quantum
machine.
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Let ∶ ´ S Ht S S be themapping from the initial state | ⟩s and the history ht to the transitioned state
|( ⟩)S h s, .t This function can be calculated by

( ∣ ⟩)
∣ ⟩

∣ ⟩
( )( ∣ ( ∣ ⟩) )=

=





= - +
-

= - + - -


S h s
s t

s t
,

, 1

, 0
. 7t

A

Pr o S h s a, ,

i
t

ot i
at i

i
t

t i t i t i

1 1

1 1

⎧

⎨
⎩

The probability of obtaining the history ht given the initial state | ⟩s is calculated by
( ∣∣ ) ( ∣ ∣ ) ( ∣∣ )ñ = ñ- - -h s a o h s h sPr Pr , , Prt t t t t1 1 1

( ∣ ∣ ⟩)=
=

- - + -a o h sPr , ,
i

t

t i t i t i
1

1

( ∣ ∣ ) ( ∣ ∣ )= ñ ñ
=

- + - - - -o h s a a h sPr , , Pr ,
t

i

t i t i t i t i t i

1

1

( ∣ ( ∣ ) ) ( ∣ ( ∣ )) ( ) p= ñ ñ
=

- + - - - -o S h s a a S h sPr , , , 8
t

i

t i t i t i t i t i

1

1

Value function is calculated using equations (3), (7), and (8). The detail derivation is presented in appendix. The
result is

(∣ ⟩) ⟨ ∣ ( ) ∣ ⟩ ( )p= ¡pV s s s , 9q

where ( ) ( ∣ ( ∣ ⟩))( )†p g p¡ = å å å   = - - = =- +
-

- +
-a S h s A R A, .t a h

t
i
t

t i t i i
t

o
a

a i
t

o
a

0 1 1t t t i
t i

t t i
t i

1 1
Equation (9) shows that

inQOMDP the value function can be expressed in the formof the expectation value of ¡matrix with respect to
state. Since the optimal value function (∣ ⟩)*V sq is themaximumvalue function,

(∣ ⟩) (∣ ⟩) ⟨ ∣ ( ) ∣ ⟩ ( )p= = ¡
p

p

pÎP ÎP
*V s V s s smax max , 10q q

using the set of ¡matrix { ( )∣ }h p p= ¡ Î P ,all equation (10) is represented by

(∣ ⟩) ⟨ ∣ ∣ ⟩ ( )= ¡
h¡Î

*V s s smax . 11q
all

3.2. Point-based value iteration algorithm
Since the policy p has continuous parameters, ¡ also has continuous parameters. Therefore hall becomes an
uncountably infinite set. Since the equation (11) cannot be calculated for an uncountably infinite set, the optimal
value function in equation (11) is approximated as follows using afinite set of ¡matrix { }h = ¡ ¡, , .l1

(∣ ⟩) ⟨ ∣ ∣ ⟩ { } ( )h= ¡ = ¡ ¡
h¡Î

V s s smax , , , . 12q 1 l

Aswe have confirmed that the value function can be expressed as equation (12), next wewill explain how to
update this value function.Whenwe update the value function, we update the ¡matrix set { }h = ¡ ¡, , .l1 The
value function can be calculated fromprevious value function by Bellman equation as follows.

{ }(∣ ⟩) (∣ ⟩ ) ( ∣∣ ⟩ ) (∣ ⟩)

(∣ ⟩ ) ( ∣∣ ⟩ ) ⟨ ∣ ∣ ⟩ ⟨ ∣ ∣ ⟩∣ ⟩
( ∣∣ ⟩ )

†

g

g g

= + å ¢

= + å = + å ¡
h¡Î

V s r s a o s a V s

r s a Pr o s a V s R s s A A s

max , Pr ,

max , , max max

q
a

o q

a
o q

A s

o s a a
a o o

a
o
a

Pr ,
o
a⎧

⎨⎩
⎛
⎝

⎞
⎠

⎫
⎬⎭

⎧
⎨⎩

⎫
⎬⎭

⟨ ∣ ∣ ⟩ ( )
∣ ⟩

= ¡
h¡Î

s smax , 13
s

where

{ } ( )∣ ⟩ ∣ ⟩ ∣ ⟩∣ ∣h = ¡ ¡, , , 14s a s a s, ,A1

∣ ∣ ( )∣ † †åg¡ = + ¡
h¡Î

R A s A A s Aargmax . 15a s
a

o
o
a

o
a

o
a

o
a,

⎜ ⎟
⎛

⎝

⎞

⎠

The ¡matrix set h will be updated by

∣ ∣ ( )
∣ ∣
Èh¢ = á ¡ ñ

hÎ ñ ¡Î ñ
s sargmax . 16

s sS

However, it should be noted here that equation (16) cannot be calculated becauseS is an uncountably
infinite space. Therefore, it is necessary to update the ¡matrix sets h without using equation (16). In this
research, we propose an algorithmupdating ¡matrix sets h based on point-based value iteration [PGT03]
classical POMDPplanningmethod for this problem.
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In this section, we propose ourQOMDPplanning algorithmbased on the classical POMDPplanning
algorithmPBVI [PGT03]. In the point-basedmethod, the problem that the union in equation (16) cannot be
calculated is dealt with by approximating the uncountable state space. Since the state spaceS is aHilbert space
and the number of elements is infinite, we consider approximating this with a set of afinite number of state

˜ {∣ ⟩ ∣ ⟩ ∣ ⟩}= s s s, , , .v0 1S As a result, the calculation of equation (16) can be performed and the ¡matrix set h
can be updated as follows.

∣
(∣ ) ( )Èh¢ =

ñ Î
ñ

~s
sbackup 17

S

(∣ ) ∣ ∣ ( )
{ }∣ ∣

ñ = á ¡ ñ
h¡Î = ¡ Î

backup s s sargmax 18
s a s

a
,

A

∣ ∣ ∣ ( )∣ åg¡ = + á ¡ ñ
h

ñ

¡Î
R s sargmax 19a

a s

o

,

a o,

{ } ( )†h h= ¡ ¡ ÎA A : 20a o
o
a

o
a,

The approximation state set ˜S is expanded alternately with the update of the value function in each iteration.
Let ˜ {∣ ∣ }= ñ ñs s, ,0 1S be the state set before the expansion. Each action is executed for each state ∣ ˜Îs .S
One observation is sampled, and a new state set {∣ ⟩ ∣ ⟩ }¢ ¢s s, ,a a1 2 is generated. The new state ∣ ⟩¢s a is discarded if
∣ ⟩ ˜¢ Îs .a S For each generated state ∣ ⟩¢s ,ai get the shortest distance to the state belonging to the state set before
expansion ˜ {∣ ⟩ ∣ ⟩ }= s s, , .0 1S For the distance, the L2 norm ∣ ⟨ ∣ ⟩ ∣= ¢d s sa j a

2i is used in this work. The state
with the largest distance among the obtained shortest distances is added to ˜S as a new state. Since the state set is
expanded by executing the above process for all the states belonging to the state set before the expansion, the size
of the set become doubled atmost. The initial condition for thematrix set is { }h = ´02 2n n where ´02 2n n is the
zeromatrix with dimension ´2 2 .n n The initial condition of the point set is ˜ {∣ ⟩}= s .0S The value function is
updated asmany times as the number of horizons, then the state set is expanded. These value function update
and state set expansion are executed alternatively. The pseudocode is shown infigure 2 Algorithm1 for state set
expansion andAlgorithm2 for value function update.

3.3. Policy for decisionmaking
In this section, we explain the policy of how to decide an action based on the updated value function. Let h be the
¡matrix set after executing point-based value iteration algorithm. The value function is represented by

|( ⟩) ⟨ ∣ ∣ ⟩= ¡
h¡Î

V s s smax .q

In equations (17)–(19), there is an action corresponding to each ¡matrix. The optimal action *a is decided as
the action corresponding to the highest valued ¡matrix:

(∣ ) ∣ ∣ ( )∣ ⁎

∣ ∣
¡ = ñ = á ¡ ñ

h h

ñ

¡ Î ¡ Îñ ñ

*

* * * *

V s s sargmax argmax , 21max
a s

q
,

a s a s, ,

where { }|
|

⟩
⟩ ˜h = ¡ ¢ ¢
¢ Î .a s

s
,

S Notice that the elements are only indexed by ∣ ¢ñs , so the size of the set is ∣ ∣ ∣ ˜∣h = .S
For a real quantumdevice, the agent updates value function by point-based value iteration using only

classical computer, and then executes the action decided by the policy in the real device. The agent executes an
action calculated by the policy and gets an observation from real device, updates belief state by equation (2) using
the action and the observation, and calculates a next action based on the updated belief state.

3.4. Complexity analysis
In this section, we explain the computational complexity of point-basedmethod.Wefirst notice the sample
complexity advantage of ourmethod over traditional state tomography-basedmethods [KFC21]. The state

tomography of n qubit system ( )år rs s s s= Ä¼Ä Ä¼Ä
=

Tr
i i

i i i i
1

2
3

,.., 0

n

n

n n

1

1 1
costs ( )O 4n Paulimeasurements

[NC11], and eachmeasurement costs ( )( )O 1 2
shots. However, in ourQOMDPmethod it only costs one single

shot for each time step.
For the analysis of computational complexity, we assume that all thematrix operations are naïvematrix

operations, so thematrixmultiplication for ´m n matrix and ´n r matrix has time complexity ( )O mnr .We
first notice the intractability of the exact planning algorithm: (1)The size of history set is ∣ ∣ ∣ ∣ ∣ ∣=h A ,t

t tO which
grows exponentially in time. (2)TheHilbert spaceS is infinitely uncountable. (3)TheHilbert space dimension
is ∣ ∣ = 2nS for n qubits.We usefinite set approximation to tackle the first two intractability.We employ the
notation that ∣ ∣A is the number of actions. ∣ ∣O is the number of observations. ∣ ∣h is the number of ¡matrices in
the previous update step. ∣ ˜∣S is the number of states in the state set. Equation (20) creates ∣ ∣∣ ∣∣ ∣hA O items in
time (∣ ∣ ∣ ∣∣ ∣∣ ∣)hO A .3S O Equation (19) calculates ∣{ }∣ ∣ ∣∣ ˜∣∣¡ = Aa s, S items in time (∣ ∣ ∣ ∣∣ ∣∣ ∣∣ ˜∣)hO A .2S O S
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Equations (17) and (18) gets ∣ ∣ ∣ ˜∣h¢ = S items in time (∣ ∣ ∣ ∣∣ ˜∣)O A .2S S Wenotice that the overall time
complexity of the algorithm is polynomial in (∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ∣ ˜∣)hA, , , , ,S O S and theworst part of the planning
algorithmhas time complexity (∣ ∣ ∣ ∣∣ ∣∣ ∣∣ ˜∣)hO A .2S O S Also notice that the size of the point set growth
exponentially with respect to the planning horizon ∣ ˜ ∣ ( ∣ ˜∣)= O 2 .T

T
0S S However, this exponential growth could

Figure 2.Pseudocode for ourQOMDP-PBVI planning algorithm.

6
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be easilyfixed by imposing a truncation threshold in the expansion subroutine Algorithm1. For the on-line
decisionmaking, the time complexity is (∣ ∣ ∣ ˜∣)O 2S S for equation (21) and (∣ ∣ )O 2S for equation (2).

3.5. Applications: quantum circuit design
Wedefine the quantum circuit design as a RL problemusingQOMDP.Quantum circuit design is a task to
arrange the gates and bits in a circuit in order to solve a specific problem in a quantum computer.When trying to
formulate this quantum circuit designwith the framework of RL, it is necessary to pay attention to the partially
observability in the quantum system. Therefore, it is appropriate to use theQOMDP,which can handle partially
observability.

Wewill implement the quantum circuit design usingQOMDP as follows.We prepare two subsystems,
‘System’ and ‘Ancilla’, and apply a unitary to thewhole system as an action. An observation is ameasurement
outcome of ‘Ancilla’. The circuit is designedwith an action sequence thatmaximizes the sumof rewards defined
based on the state of ‘System’. ‘System’ is amain system and ‘Ancilla’ is an auxiliary system for indirectly
acquiring ‘System’ information. Since the quantum state would collapse if ‘System’ ismeasured, it is a partially
observable problem inwhich the state of ‘System’ is inferred bymeasuring ‘Ancilla’withoutmeasuring ‘System’.

The specific flow is as shown infigure 3(a). The agent is classically implemented, and the environment
contains the quantum circuit. At each step, the agent selects a quantumgate to be executed in the circuit as an
action from the action set, and then executes the action in the environment. The operations performed for a
given action include the selected quantum gate in the circuit,measuring ‘Ancilla’ and obtaining the
measurement result. The reward is calculated from the state of ‘System’, and themeasurement result and the
reward are fed back to the agent. The agentmakes a classical update based on the obtainedmeasurement result
and performs the next action based on it. The above flow is repeated until the evaluation result of the task reaches
the threshold value or the number of steps reaches themaximumnumber of steps.

In this quantum circuit design, each itemofQOMDP is as follows.S is theHilbert space of
‘System+Ancilla.’ { }= 0, 1O is the set ofmeasurement outcome of ‘Ancilla’. The unitary applied for an
action is shown infigure 3(b). Each action unitary ( )U a consists of three parts: (1)Aunitary ( )U aa t acting on the
‘System’ part. (2)Another unitaryUancilla acting on the ‘Ancilla’ part. (3) Some entanglers between ‘System’ and
‘Ancilla.’While ( )U aa t is action-dependent,Uancilla and the system-ancilla entanglers are treated as tunable
hyperparameters. An action at determines the unitary ( )U aa t applied for ‘System’ from the action set .A The

Figure 3.Quantum circuit design. (a)The overall circuit structure. Each decision-making step for the classical agent consists of some
unitary ( )U a and ameasurement on the Ancilla qubit. (b)The unitary ( )U a can be decomposed intoU ,ancilla ( )U a ,a t and some
ancilla-system entanglers.
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action setA is defined by
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where ( )qRx ,i ( )qRy ,i and ( )qRzi are Rx, Ry, andRz gates of the rotation angle θ applied to the i-th qubit, and Hi

is theHadamard gate applied to the Ã°ÂÂ–-th qubit. CXi j, is the controlledNOTgatewhose control bit is the i
-th qubit and target bit is the j -th qubit.

At the end of each action, anmeasurement is performed on the ancilla and hence the correspondingKraus
operator Ao

a is defined by

( ∣) ( )( ∣ ) ( )= Ä á Ä ñA I e U a I 0 , 23o
a

system o system

where Isystem is identity gate of ‘System’ and ∣ ñeo is an orthonormal basis vector of state space of ‘Ancilla’. R is
defined for each task so that the reward can be calculated. g is the discount rate. ∣ ñs0 is ∣ ñ0 .Wenote that this
approach requires fast resetting of qubits, which could be done for superconducting qubits [YT21]. In this paper,
we demonstrate two quantum circuit design examples: state preparation and energyminimization. Each task is
explained as follows.

3.6. Task 1: state preparation
State preparation is a task to design a quantum circuit to generate a target state ∣ ñs .Target This task is implemented
by using fidelity as the reward in above quantum circuit design.When fidelity is used for reward, the reward is
calculated by

(∣ ) [ ] ( ∣∣ ) ∣ ∣∣ ∣ ∣ ∣ ∣ ∣
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Target Target

Target Target Target Target

2 2

InQOMDP, the reward is calculated by equation (3). Equation (3) becomes equation (24)when R is set as
follows.

∣ ∣ ( )†å= ñáR s sA A 25a
o

o
a

o
a

Target Target

3.7. Task 2: energyminimization
Energyminimization is a task to design a quantum circuit to generate a statewhich has a lowest energy of a
molecule.When the state of amolecule is ∣s and theHamiltonian of amolecule is H , the energy is calculated by
∣ ∣s H s.Tominimize this energy, reward is calculated by

(∣ ) [ ]
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InQOMDP, as reward is calculated by equation (3). Equation (3) becomes equation (26)when R is set as follows.

( )†å= -R A HA 27a o o
a

o
a

4. Results and discussions

4.1. Task 1: state preparation
We show the results where the target state ∣sTarget is the Bell state or theGHZ state. The simulations are
conducted by usingQiskit library [A21]. The experiments were averaged over 10 different random seeds. The
hyperparameters were set as follows. Themaximumnumber of steps in circuit design is 100, the threshold of
fidelity to end an episode is 0.99, the hyperparameters for the value iteration algorithm inAlgorithm2 are 10 for
horizonH, 9 for number of iterations I, and 10 for theminimum initial size of the state setN. To evaluate the
results, state generation is executed 100 times using the obtained policy after the update is completed for each
iteration. The evaluation is performed by averaging the obtained fidelity and the number of steps taken.Higher
fidelity and fewer steps are better.
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First, we describe the casewhere the target state is a Bell state. The planning result is shown infigure 4. The
experiment was performed by changing theU_ancilla gate, applied for ‘Ancilla’ infigure 3(b), to {Rx, Ry, Rz}
gates with the rotation angles {π/3,π/2.5,π/1.6,π/1.5}. The horizontal axis shows the number of iterations of
the value iterationmethod, and the vertical axis shows thefidelity gotten and the number of steps takenwhen the
circuit designwas executed by the policy obtained from the iterations. Figures 4(a)–(c) show the results when the
U_ancilla gate is changed to the Rx, Ry, andRz gates with various rotation angles. One example of the circuit
obtained by performing theQOMDPplanning algorithm is shown in figure 5(a). The state obtainedwhen the
circuit was executed is shown infigure 5(b).

Second, we describe the case where the target state is theGHZ state and the number of qubits of ‘System’ is 3.
Planning result is shown infigure 6. The experiment was performed by changing theU_ancilla gate infigure 3(b)
to {Rx, Ry, Rz} gates with the rotation angles {π/3,π/2.5,π/1.6,π/1.5}. The horizontal axis shows the number
of iterations of the value iterationmethod, and the vertical axis shows the fidelity gotten and the number of steps
takenwhen the circuit designwas executed by the policy obtained from the iterations. Figures 6(a)–(c) show the
results when theU_ancilla gate is changed to theRx, Ry, andRz gates and various rotation angles. One example
of the generated circuits is shown infigure 7(a). The state obtainedwhen the circuit was executed is shown in
figure 7(b).

Third, we describe the casewhere the target state is the 4-qubit GHZ state. The presentation is similar to that
of the 3-qubit case. The data is depicted infigure 8. The circuit and the generated densitymatrix are depicted in
figure 9.

Infigures 4(c), 6(c), and 8(c), we observe that the learning curves for Bell-GHZ states are constant functions
and are independent of the ancilla rotation angle f if ( ) ( )f f=U R .ancilla z Wealso observe similar behavior in
figure 6(a) for the case when ( ) ( )f f=U Rancilla x and number of systemqubits =n 3,s but not for =n 2s and

=n 4.s To explain these observations, we introduce a lemma. The proof for the lemma is provided in appendix.

Figure 4.Planning result when the target state is the Bell state. Thefinalfidelity and the number of steps to reach the goal are plotted
with respect to the number of planning iterations. The error bar stands for one standard deviation over 10 random seeds. (a). U_ancilla
is an Rx rotation. (b). U_ancilla is anRy rotation. (c). U_ancilla is an Rz rotation.
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Figure 5.Execution result of state preparation for Bell state. (a). The quantum circuit. (b). The cityscape diagrams for the real and the
imaginary parts of the densitymatrix.

Figure 6.Planning result when the target state is theGHZ state and the number of qubits of system is 3. The finalfidelity and the
number of steps to reach the goal are plottedwith respect to the number of planning iterations. The error bar stands for one standard
deviation over 10 random seeds. (a). U_ancilla is anRx rotation. (b). U_ancilla is an Ry rotation. (c). U_ancilla is anRz rotation.
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Figure 7.Execution result of state preparation for 3-qubits GHZ state. (a). The quantum circuit. (b). The cityscape diagrams for the
real and the imaginary parts of the densitymatrix.

Figure 8.Planning result when the target state is theGHZ state and the number of qubits of system is 4. The finalfidelity and the
number of steps to reach the goal are plottedwith respect to the number of planning iterations. The error bar stands for one standard
deviation over 10 random seeds. (a). U_ancilla is anRx rotation. (b). U_ancilla is an Ry rotation. (c). U_ancilla is anRz rotation.
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4.2. Lemma
Weuse the notations ( )= ¼I i i, ,n 1s

for a system ns-bit string and ( ) ⨁ ⨁= ¼f I i in 1s
for the parity function,

where ⨁ is the XORoperation. ∣ ∣= ¼I i i, ,n 1s
denotes the ns-qubit system state in the computational basis.

Consider the circuit infigures 3(a) and (b). For any iteration time step t and any history sequence
{ }= ¼ -h a o a o a o, , , , , , ,t t t0 1 1 2 1 themid-circuit observation probability is
( )
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where ( )r ts is the systemdensitymatrix fromprevious time step.Notice that ( )r ts is well-defined because of the
measurement and resetting operation on the ancilla.

With the Lemma,we could explain the observed learning curves. If the ancilla rotation is ( )fR ,z then the
observation probability is independent of f.This explains why the learning curves for ( ) ( )f f=U Rancilla z are
independent of f infigures 4(c), 6(c), and 8(c).We further notice that if thefirst action is oneHadamard gate H
acting on any one of the systemqubits (which is the standard first step to generate Bell-GHZ state), then

( ) ( ) ( ) ∣ ⟩ ⟨ ∣† ⨂ ⨂r =U a U a H H0 0 0a s a i
n n

i0 0
s s and hence ( ) =+oPr

1

2
.t 1 Hence the observation provides no

information regarding the system, and the agent can learn nothing about the systemwith the observation. This
explains why the learning curves are constant infigures 4(c), 6(c), and 8(c).

To explain figure 6(a), notice that if ∣ ( ) ( ) ( )∣†rI U a t U a Ia t s a t has equal weight for odd-parity sector and even-

parity sector, then the observation probability is ( ) =+oPr
1

2
t 1 for ( ) ( )f f=U R .ancilla x Furthermore, n-qubit

Figure 9.Execution result of state preparation for 4-qubits GHZ state. (a). The quantum circuit. (b). The cityscape diagrams for the
real and the imaginary parts of the densitymatrix.
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Bell-GHZ states are equal superpositions of all-zero state ∣ ⟩⨂0 ns and all-one state ∣ ⟩⨂1 .ns All-zero state always
has even parity, while all-one state has the same parity as the number of systemqubit n .s This implies that for

=n 3,s the target Bell-GHZ state is an equal superposition of odd-parity state and even-parity state. The agent
would not be able to distinguish the target state from the system ( ) ( ) ( ) ∣ ⟩ ⟨ ∣† ⨂ ⨂r =U a U a H H0 0 0a s a i

n n
i0 0

s s

after the action of oneHadamard gate when =n 3.s This problemdoes not exist for =n 2s and =n 4s cases.

4.3. Task 2: energyminimization
We show the experimental results ofH2 andH-He+. TheHamiltonians of themolecules are derived using
OpenFermion [BM]. In these experiments, the orbital basis is STO-3G and the Fermion-qubit transformation is
Jordan-Wigner. Since theminimumenergy of themolecule is not known in advance in the energyminimization
experiment, it is difficult to set the threshold value. Therefore, in this experiment, the episode endswhen the
number of steps reaches themaximum step.

The hyperparameters were set as follows. Themaximumnumber of steps in circuit design is 10. The
hyperparameters for the value iteration algorithm inAlgorithm2 are 10 for horizonH, 9 for number of
iterations I, and 10 for theminimum initial size of the state setN. The energy unit isHartree for all the
experiments. Regarding the threshold value of the energy expectation value that is the condition for the end of
the episode, asmentioned above, theminimumenergy is not known in advance and it is difficult to set it.
Therefore, we set this threshold value to a value that can never be reached. The episode ends onlywith the
maximumnumber of steps. The set thresholdswere−2 forH2 and−10 forH-He+.

To evaluate the results, the energyminimization circuit design is executed 100 times using the obtained
policy after the update is completed for each iteration. The evaluation is performed by averaging the obtained
energy expectation values. The smaller energy expectation value is better.

First, we describe the energyminimization circuit design experiment forH2. The planning result forH2with
bond length 1.0Å is shown infigure 10. The experiment was performedwith theU_ancilla gate infigure 3(b) as
Ry gate and the rotation angles are {π/3,π/2.5,π/1.6,π/1.5}. The horizontal axis shows the number of
iterations of the value iterationmethod, and the vertical axis shows final energy expectation valuewhen the
circuit designwas executed by the policy obtained from the iterations. Figure 10 demonstrate that our algorithm
can solve simple quantum circuit design problem if suitable ancilla unitary is chosen.One example of the
generated circuit is shown infigure 11(a). The change of energy expectation valuewhen the circuit was executed
is shown infigure 11(b). Infigure 11(b), the horizontal axis shows the number of steps in the episode, and the
vertical axis shows the energy expectation value.

Next experiment was conductedwith the bond length spaced by 0.1 Å from0.2Å to 3.0 Å. The result is
shown infigure 12. The experiment was performedwith theU_ancilla gate infigure 3(b) as Ry gate and the
rotation angles changed to {π/3,π/2.5,π/1.6,π/1.5}. The horizontal axis shows the bond length, and the
vertical axis shows the energy value. Since the policy can be obtained at each rotation angle and each iteration,

Figure 10.Planning result when themoleculeH2with bond length 1.0Å. Final energy expectation value (Hartree) is plottedwith
respect to the number of planning iterations. Average results of 100 executions are reported.
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the best policy is the onewith the smallest average energy expectation value over four possible angles and nine
iterations. Infigure 12, the average andminimumenergy expectation valuewhen the circuit design is executed
100 times using the best policy are plotted. The exactminimumenergy obtained by diagonalizing the
Hamiltonian ofH2 is also plotted infigure 12. Infigure 12, theminimumenergy obtained by ourmethod is
represented by black dots, and the exactminimumenergy is represented by orange line. A kink is observed
around 1.5Å ofQOMDP curve. Similar phenomena appear inVQE calculation for LiHmolecule [KMT17].

Figure 11. Single execution result of energyminimization forH2bond length 1.0Å. (a). The quantum circuit. (b). Energy expectation
value (Hartree) is plottedwith respect to the number of steps.
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Thismight due to incorrectness of the spinwavefunction [STS20], whichmight be improved bymodifying the
QOMDP action space.Notice that VQE algorithmhas polynomial complexity with respect to number of qubits,
while our algorithm requires exponentially large classical planning. VQE simulation achieving chemical
accuracy (0.0016Hartree) forH2molecules has been reported [KMT17]with<10 circuit depth and<10000
function calls. Our algorithm fails to reach high accuracy around bond length 1.5Å. The potential advantage of
our algorithm is that the agent could automatically search for the ansatz instead of human-design ansatz based
on prior knowledge. However, there is no guarantee that theQOMDP agent can alwaysfind the global
minimum.

Second, we describe the case where themolecule isH-He+. The presentation is similar to that of theH2. The
planning result and the execution result are depicted infigures 13 and 14. Theminimumenergy is depicted in
figure 15. Figure 15 shows that for all bond lengths, theminimumenergy gotten byQOMDP, represented by the
black dots, is almost the same as the exactminimumenergy represented by orange line.

Figure 12.Minimum energy ofH2. Energy value (Hartree) is plottedwith respect to the bond length. Blue line is energy expectation
value gotten by the best policy. Black dot is theminimumvalue of executions. Orange line is the exactminimumvalue. Error bar
denotes one standard deviation over 100 executions.

Figure 13.Planning result when themoleculeH-He+with bond length 1.0Å. Final energy expectation value (Hartree) is plottedwith
respect to the number of planning iterations. Average results of 100 executions are reported.
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5. Conclusion

In this work, aQOMDPbased planning algorithm is designed to solve for the problemof quantum circuit
architecture search. Point-based approximation is used to resolve the intractability due to the planning history
and the continuousHilbert space.We implement the algorithm, and the simulation results suggest that the
algorithm can successfully find circuits to produce entangled states and tominimize energy functionals for
simplemolecules. Our algorithmonly requires small number of readouts fromquantum circuits for online
decisionmaking. However, it costs exponentially large classical resources in the planning stage of the algorithm.
One possible approach to scale up ourmethod is to equip the classical agent with a tensor network simulator
[CHHGK21] to tackle the exponentially scalingwith respect to the circuit width. Future investigations are
required tomake themethod suitable for large scale quantum computations.

Figure 14. Single execution result of energyminimization forH-He+bond length 1.0Å. (a)The quantum circuit. (b)Energy
expectation value (Hartree) is plottedwith respect to the number of steps.
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Appendix

The derivation for value iteration equation (9) is provided here.
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The Lemma is presented and proved here.

Figure 15.Minimum energy ofH-He+. Energy value (Hartree) is plottedwith respect to the bond length. Blue line is energy
expectation value gotten by the best policy. Black dot is theminimumvalue of executions. Orange line is the exactminimumvalue.
Error bar denotes one standard deviation over 100 executions.
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Lemma
We use the notations ( )= ¼I i i, ,n 1s

for a system ns-bit string and ( ) ⨁ ⨁= ¼f I i in 1s
for the parity function,

where ⨁ is the XOR operation. | ⟩ ∣ ⟩= ¼I i i, ,n 1s
denotes the ns-qubit system state in the computational basis.

Consider the circuit in figures 3(a) and (b). For any iteration time step t and any history sequence
{ }= ¼ -h a o a o a o, , , , , ,t t t0 1 1 2 1 , themid-circuit observation probability is
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where ( )r ts is the systemdensitymatrix fromprevious time step.Notice that ( )r ts is well-defined because of the
measurement and resetting operation on the ancilla.

Proof:
Weuse the convention that theHilbert space is the tensor product ⨂system ancilla,where the systempart

has ns qubits and the ancillary part has one qubit. The total densitymatrix from the previous time step is
( )⨂∣ ⟩⟨ ∣r t 0 0 .s The system and ancillary unitary is ( )⨂ ( ) ( )⨂ ( )f f= aU a U U a R ,a t ancilla a t where { }a Î x y z, , .
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