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Abstract

Algorithms for designing quantum circuit architectures are important steps toward practical quantum
computing technology. Applying agent-based artificial intelligence methods for quantum circuit
design could improve the efficiency of quantum circuits. We propose a quantum observable Markov
decision process planning algorithm for quantum circuit design. Our algorithm does not require state
tomography, and hence has low readout sample complexity. Numerical simulations for entangled
states preparation and energy minimization are demonstrated. The results show that the proposed
method can be used to design quantum circuits to prepare the state and to minimize the energy.

1. Introduction

Quantum computers are attracting attention as computers with computing power that surpasses that of classical
computers [P18, AAB19]. In fact, algorithms that efficiently solve specific problems such as Grover’s algorithm
[G96] and Shor’s algorithm [S94] have been proposed. In recent years, variational quantum algorithms [C21]
have been actively researched, and quantum technology has been applied to various fields such as chemistry
[PMS14, KMT17] and machine learning [DB18, MNK18, SK19, HCT19]. However, the design of a quantum
circuit for solving a specific task under hardware constraints requires efforts

[SBMO6, FM17,LSJ15, SSP14, MFMO08, AAH16, HNYN11], sometimes including empirical rules and domain
knowledge as well.

Reinforcement learning (RL) [SB18, RN21] has been successful in the areas such as robot control [KCC13]
and games [MKS15, SSS17]. Since there is a possibility that RL can solve complicated control problems, research
has been conducted to apply RL to the control of quantum systems in recent years
[BSK21,SEL21,NBS19,NY17, HWN21]. Most of these studies consider low level control at the hardware
(Hamiltonian) level. But it is also important to control at the circuit level [NMM18], which is a higher level of
abstraction [AU22], in order to perform concrete quantum computation. For simple circuits, it is demonstrated
that the closed-loop control can lead to better control performance for trapped-ion quantum processors
[NMM18]. State-of-the-art ion trap qubits have coherence time more than 10 min [WUZ17, WLQ21], which
provides enough running time for on-line decision process on a classical computer.

In this paper, we consider applying RL to more general quantum feedback control at the circuit level. The
basic RL algorithms solve for Markov Decision Process (MDP), where the current state of the agent can be
exactly known from the observation of the environment. But for a quantum system, the Born rule asserts that an
observation result is drawn from a probabilistic distribution over the state space. Therefore, it is necessary to
formulate the problem as a partially observable problem. Quantum Observable Markov Decision Process
(QOMDP) [BBA14,C16,YY18, YFY21] was proposed as a quantum extension of the Partially Observable
Markov Decision Process (POMDP) framework for the classical partially observable problems [PT87, RN21],
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but no specific application of QOMDP was proposed. Our QOMDP planning approach is Bayesian, and does
not rely on state tomography [NC11, YC21, KFC21] or expectation evaluation [ZHZY20, PT20, MLWEV21].
Hence it improves the quantum machine sample complexity per time step from O (¢ ~2N,y,) (or

O (e *(logN,ps)* log(2™) with shadow tomography [A18]) to O(1) for number of observables N, and accuracy
€. However, our approach still requires exponentially expensive classical planning.

In this study, we formulate quantum control at the circuit level asa QOMDP reinforcement learning
problem to solve for the quantum circuit design problem [K22]. The exact QOMDP Bellman equation for value
iteration is derived. As a concrete algorithm, we propose a QOMDP planning algorithm with reference to
planning in POMDP. In the exact POMDP planning for quantum state, there are three computational
intractable parts. Firstly, the size of history set grows exponentially in time. Secondly, the Hilbert space is an
uncountable set. Thirdly, the Hilbert space dimension grows exponentially with respect to the circuit width. We
introduce the point-based value iteration (PBVI) algorithm from classical POMDP to make the approximating
planning tractable and resolve the first and second issues. For the quantum Hilbert space, we perform exact
filtering and do not make any approximation. Hence the calculations involving the belief state scale
exponentially with respect to the number of qubits. We further consider circuit design problem for two types of
applications: the problem of state preparation and energy minimization. The proposed algorithm was able to
make Bell state and GHZ state [GHZ89] for state preparation. Regarding energy minimization, it was able to
discover alow energy state with respect to the H2 and H-He+. The experimental results show the applicability of
QOMDP to quantum control at the circuit level. Comparing to variational quantum eigen solver (VQE)
[PMS14, MRB16, KMT17, C21] approach where the variational ansatz has to be chosen empirically, the
QOMDP approach allows automatic search over a wide range of possible ansatzes.

This paper is organized as follows. Related works are reviewed in section 2. The POMDP planning algorithm
is introduced in section 3. Numerical experiments are presented and analyzed in section 4, followed by a
concluding section.

2. Related work

Quantum circuit synthesis has been addressed in many works without using RL [SBM06, FM 17, LS]15, SSP14,
MFMO08, AAH16, HNYN11]. In recent years, RL has been applied to quantum control problem in various
settings. The applications to physical design at the Hamiltonian level is studied in various literatures [BSK21,
SEL21,B18, MDW21, ZWA19, BAHH21]. RL has also been used for optimization of quantum circuit
architecture [YC21, KFC21, ZHZY20, PT20, MLWEV21]. Our work is different from these works regarding the
sample complexity (the number of measurement shots) from the real quantum machines. The RL approaches
based on state tomography or the expected cost function [YC21, KFC21, ZHZY20, PT20, MLWEV21] requires
O (4"¢~%) or O(e 2N,y,) shots for reward evaluation, where N, is the number of observables in the cost
function. Better scaling O (e ~*(logN,;,)* log(2")) could be obtained by using shadow tomography [A18]. Our
method takes only O (1) shots for online decision making, at the expense of exponentially expensive classical
pre-computing. On the other hand, variational quantum algorithm has been also applied to RL. For example,
variational quantum circuit has been applied to value function approximation [C20, MK21, 1LS20, SJD22, LS21,
CHHGK21, KSCS21][S]D22] and policy approximation [J21, K21] in RL. Value iteration algorithm for classical
POMDP planning has along history and many variants [SS73, KLC98, PGT03, TBF05, SV10]. Variational
quantum eigen solver (VQE) for molecule energy minimization is studied in [PMS14, MRB16, KMT17, C21].

3. Methods

The overview of our QOMDP-PBVI method is depicted in figure 1. The offline planning is computed with a
classical simulator. The output of the offline planning is a matrix set 77 which approximates the value function.
The set n)is then stored in a classical agent, and the agent is able to make online decision in a hybrid Quantum—
classical computer. The theory and algorithm are explained in the following sections.

3.1. Quantum observable markov decision process

QOMDP[BBA14]isdefinedby Q = {7, 0, A, R, 7, | so) }. ¥ is the Hilbert space of the system.

O = {0',---,01!'} is the set of observations, where | X | denotes the cardinality of aset X. A = (A7 ... A"V is the
set of transition operators, and each operator A” = {A4,---,A ¢, } has || Kraus matrices. The conditional
probability of getting the observation o when executing the action 4 in the state Is) is

Pr(o|| s), a) = (SIAZTAZ]s). €]




I0OP Publishing J. Phys. Commun. 6 (2022) 075006 T Kimura et al

(a) Offline planning on a classical computer ~ Model

s . iti Aa
Point-based Value Iteration: Transition operator 4,
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Figure 1. The setting of the point-based value iteration (PBVI) for quantum circuit planning. (a). Offline planning is executed in a
classical computer based on classical simulation of the quantum circuit. The output of the PBVI algorithm is a set 7y which is used for
approximating value functions. (b). The classical agent then uses 7 for efficient online decision making to control a real quantum
machine.

The state transition is defined by
Al ls)

V(slAFTAls)

R = {R,,--+,R a1} is the set of operators for rewards. The reward of executing action a in state |s) is calculated
by

(@)

| 5/>(| 5>r a, 0) <

r(ls), @) = (sIRals). 3

~y is the discount rate. | sy) is the initial state. Regarding the interaction between the agent and the environment
in QOMDP, the agent selects an action according to the policy and executes the action for the environment. The
operation A, corresponding to the action a performed in the environment is executed, and the observation o is
fed back to the agent. The agent also receives a reward according to the equation (3). The above action-
observation-reward sequence is for a single time step, and this is repeated until the end of the episode. The
agent’s goal is to maximize expected future rewards. Note the relationship between POMDP and QOMDP. The
state in QOMDP corresponds to the belief state in POMDP, and the formula (2) corresponds to the belief state
update in POMDP. Therefore, it is natural to think that it is possible to extend the planning method in POMDP
and devise a planning method to solve QOMDP. In the next section, we propose a planning algorithm in
QOMDP based on this idea.

Firstly, we derive the value function of QOMDP. Let m: A x % — [0, 1]be the policy ina QOMDP
describedby Q = {&, O, A, R, v, | so) },and the policy is defined by 7 (alls)) = Pr(alls)). The value function
for Q is calculated by

Vi) = B[S s a) [ls) =19 Qm |, @

The Bellman equation is
Vids) = Z?T(a||5>){r(|5>) a) + ) _Pr(olls), a)V,;r(IS">)}- (©)

Since it is known that the value function can be expressed in a simple form of piece-wise linear and convex
function in the classical POMDP, it seems that the value function can be expressed in some simple form in
QOMDP as well. In the following paragraph, we derive the expression of value function in QOMDP.

Let h; € A, be the history up to time step t and the history is expressed by

ht = {a0) 01, a, 025..05 A1 Ot}' (6)
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Let S:H, x ¥ — % be the mapping from the initial state |s) and the history A, to the transitioned state
S(hy, Is)). This function can be calculated by

i, Agi
: 1770—i+1 | S), t > 1
S(hy, | s)) = { V= Preocisa | Su_is| s))ari) . (7)

[s),t=0

The probability of obtaining the history h; given the initial state Is) is calculated by
Pr(h,| |5>) = Pr(a;—1, olhi—1, |s)Pr(h,_ |5>)

t
:H Pr(a;—i, oriv1lhi—i, | 's))

—_

i=1

Pr(ot—i+1|ht—i, |5>, at—i)Pr(at—Aht—i, |5>)

-~

i=1
:H Pr(Ot,i+1|S(ht,,‘, |5>): at,,')ﬂ'(a,,AS(ht,,‘, |5>)) (®)

Value function is calculated using equations (3), (7), and (8). The detail derivation is presented in appendix. The
result is

Vi(ls)) = (s| T(m) |s), 9)
where Y(m) = 32,37, >, ' [Ty m(arilSChei | S)NTE, AZ:L)TRa, I, Agi . Equation (9) shows that

i
in QOMDP the value function can be expressed in the form of the expectation value of Y matrix with respect to

state. Since the optimal value function V;< (| s)) is the maximum value function,

VE( $) = max V(I s)) = max (s] T(m) | 5), (10)
mell mell
using the set of T matrix n,; = {Y(7)|r € 11}, equation (10)is represented by
Vils) = max {s| T | 5). (11)
il

3.2. Point-based value iteration algorithm

Since the policy 7 has continuous parameters, T also has continuous parameters. Therefore 7,; becomes an
uncountably infinite set. Since the equation (11) cannot be calculated for an uncountably infinite set, the optimal
value function in equation (11) is approximated as follows using a finite set of T matrix n = {1, --,1;}.

As we have confirmed that the value function can be expressed as equation (12), next we will explain how to
update this value function. When we update the value function, we update the T matrixset = {1},---,;}. The
value function can be calculated from previous value function by Bellman equation as follows.

Vy(l's)) = maax{ru s), @) + YS,Prioll s),  a)Vy( )}

_ Agls) _ at a
_m:lx {r(| s), a) + >, Pr(olls), a)\/q(%m)} = maax {(SIRQIS) + 7201;123]( (s|ASTYTA; |5)}

=max {(s|Y|s), (13)
TEnM
where
s = {Tal,IS),...,Ta""»IS)}, (14)
Tols =R, + > A%T| argmaxs|ASTYAZ|s |AS. (15)
0 Ten
The T matrix set 7 will be updated by
n' = | argmax (s| T[s). (16)
[ses) YTen

However, it should be noted here that equation (16) cannot be calculated because . is an uncountably
infinite space. Therefore, it is necessary to update the T matrix sets ) without using equation (16). In this
research, we propose an algorithm updating T matrix sets 1) based on point-based value iteration [PGT03]
classical POMDP planning method for this problem.

4
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In this section, we propose our QOMDP planning algorithm based on the classical POMDP planning
algorithm PBVI [PGT03]. In the point-based method, the problem that the union in equation (16) cannot be
calculated is dealt with by approximating the uncountable state space. Since the state space & is a Hilbert space
and the number of elements is infinite, we consider approximating this with a set of a finite number of state
S~ = A{ls0)> | s1)>++5| sv) }. Asaresult, the calculation of equation (16) can be performed and the T matrix set 7
can be updated as follows.

n = U backup(|s)) (17)
sy € ™
backup(|s)) =  argmax  (s| Y|s) (18)
Tenl={T}e
Tl =R, + 7Y argmax (s| Y|s)| (19)
o TYen*°
n® = {ASTTAS: T € n} (20)

The approximation state set &~ is expanded alternately with the update of the value function in each iteration.
Let &~ = {|so), |s1), -+~ } be the state set before the expansion. Each action is executed for each state [s € F~.
One observation is sampled, and a new state set {| s’;1), | s’,2),} is generated. The new state | s’,) is discarded if

| s'a) € 9~ Foreach generated state | s/}, get the shortest distance to the state belonging to the state set before
expansion ¥~ = {| ), | 51),--- }. For the distance, the L2 norm d, = | (sjls’;7) *is used in this work. The state
with the largest distance among the obtained shortest distances is added to %~ as a new state. Since the state set is
expanded by executing the above process for all the states belonging to the state set before the expansion, the size
of the set become doubled at most. The initial condition for the matrix setis 7 = {0y} where 0,1 is the
zero matrix with dimension 2" x 2". The initial condition of the point setis #~ = {| s¢) }. The value function is
updated as many times as the number of horizons, then the state set is expanded. These value function update
and state set expansion are executed alternatively. The pseudocode is shown in figure 2 Algorithm 1 for state set
expansion and Algorithm 2 for value function update.

3.3. Policy for decision making
In this section, we explain the policy of how to decide an action based on the updated value function. Let 1) be the
T matrix set after executing point-based value iteration algorithm. The value function is represented by

V,(Is)) = max (s|T]s).
Ten

In equations (17)—(19), there is an action corresponding to each Y matrix. The optimal action a* is decided as
the action corresponding to the highest valued T matrix:

Tl = argmax V,(|s)) = argmax (s| Y|s), (21)
T“*"‘*>67] T“”-"“en
where n = {T“”'S')}h/)eya. Notice that the elements are only indexed by |s'), so the size of the setis || = |.9~].
For areal quantum device, the agent updates value function by point-based value iteration using only
classical computer, and then executes the action decided by the policy in the real device. The agent executes an
action calculated by the policy and gets an observation from real device, updates belief state by equation (2) using
the action and the observation, and calculates a next action based on the updated belief state.

3.4. Complexity analysis
In this section, we explain the computational complexity of point-based method. We first notice the sample
complexity advantage of our method over traditional state tomography-based methods [KFC21]. The state

ity =0

tomography of n qubit system p = zi E Tr(poi® ... ®0;,)0;,® ... @0;, costs O (4") Pauli measurements
3

2
[NC11], and each measurement costs O ( (%) ) shots. However, in our QOMDP method it only costs one single

shot for each time step.

For the analysis of computational complexity, we assume that all the matrix operations are naive matrix
operations, so the matrix multiplication for m X n matrixand # X r matrix has time complexity O (mnr). We
first notice the intractability of the exact planning algorithm: (1) The size of history setis |i;| = |A|'|O|', which
grows exponentially in time. (2) The Hilbert space % is infinitely uncountable. (3) The Hilbert space dimension
is || = 2" for n qubits. We use finite set approximation to tackle the first two intractability. We employ the
notation that |A | is the number of actions. | (7] is the number of observations. |7 | is the number of T matrices in
the previous update step. |.¥~| is the number of states in the state set. Equation (20) creates |A ||| || items in
time O(|.Z]|A||@||n]). Equation (19) calculates | {7*!*} |=| A ||.%~ | items in time O (| *|A||O||n]|.~]).

5
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Algorithm 1
Define Q = {S, 0, A, R, v,|so)}
Define horizon H
Define maximum iteration I
def expand(s~, Q)
§T {3}
for |s) in S~
forain A
Sample observation o according to probability Pr(o||s), a) = (S|AZTA3|S)
A3ls)
(sf5"45]s)
1. Calculate minimum distance d, between |s’,) and §~
12. Amax = argmax d,
a

13§ <87 Uu{lse. )]
return S~ U S’

Algorithm 2

Define Q={S, 0, 4, R, v,|so)}

Define horizon H

Define maximum iteration I

Define minimum number of point set N

1. def point_based_update(S~,7n, Q)

e A ol

,_.
e

|s'a) <

2. n' <« {}
3. n%°={AsTyal:Y en}
4. for |s) in §~
5. Y%I9) = R, +y Y, argmax(s|Y|s)
Yenao
6. backup(|s)) = argmax (s|Y|s)
S U
7. if not backup(|s)) inn'
8. n' < n' U {backup(|s))}
9. return n'
10. def plan(Q)
1. 87« {|so)}
12.  While |§~| <N do
13. S~ « expand(S~,Q)
14.  Initialize n
15. for iteration =0, 1, -=-, I = 1 do
16. [f iteration >0
17. S~ « expand(s~,Q)
18. for horizon =0, 1, ---, H-1 do
19. n « point_based_update ($~,7n, Q)
return n

Figure 2. Pseudocode for our QOMDP-PBVI planning algorithm.

Equations (17) and (18) gets || = |%~|itemsin time O(|.¥|*|A||.%~|). We notice that the overall time
complexity of the algorithm is polynomial in (||, |A|, | O], |n], |-¥~]), and the worst part of the planning
algorithm has time complexity O (| |*|A||O]|n||.%~]). Also notice that the size of the point set growth
exponentially with respect to the planning horizon | 93| = O(2T|.%5|). However, this exponential growth could
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(a)
Quantum circuit environment
Ancilla |0y — ~ A N T — — T T TR —— O} —een
| 1
W(ag) WUae) s U(agss)
System |0) _l‘- __ II ....... ._l‘- _~ ’I ............
0 R 0;41 =00rl1
i .
Classical agent
Ao, Ie)
« State estimation [St+1) <
(Sr As::."g:n s‘)
v
* Decision making  @¢+1 = Policy(|s¢+1).7)
(b)
- Uanriua C) \3
U(a,) -
_| Uala,) i s
— ——'—

Figure 3. Quantum circuit design. (a) The overall circuit structure. Each decision-making step for the classical agent consists of some
unitary U (a) and a measurement on the Ancilla qubit. (b) The unitary U (a) can be decomposed into Ui, U, (a;), and some
ancilla-system entanglers.

be easily fixed by imposing a truncation threshold in the expansion subroutine Algorithm 1. For the on-line
decision making, the time complexity is O(|.% |?| #~|) for equation (21) and O(|.¥|?) for equation (2).

3.5. Applications: quantum circuit design

We define the quantum circuit design as a RL problem using QOMDP. Quantum circuit design is a task to
arrange the gates and bits in a circuit in order to solve a specific problem in a quantum computer. When trying to
formulate this quantum circuit design with the framework of RL, it is necessary to pay attention to the partially
observability in the quantum system. Therefore, it is appropriate to use the QOMDP, which can handle partially
observability.

We will implement the quantum circuit design using QOMDP as follows. We prepare two subsystems,
‘System’ and ‘Ancilla’, and apply a unitary to the whole system as an action. An observation is a measurement
outcome of ‘Ancilla’. The circuit is designed with an action sequence that maximizes the sum of rewards defined
based on the state of ‘System’. ‘System’ is a main system and ‘Ancilla’ is an auxiliary system for indirectly
acquiring ‘System’ information. Since the quantum state would collapse if ‘System’ is measured, it is a partially
observable problem in which the state of ‘System’ is inferred by measuring ‘Ancilla’ without measuring ‘System’.

The specific flow is as shown in figure 3(a). The agent is classically implemented, and the environment
contains the quantum circuit. At each step, the agent selects a quantum gate to be executed in the circuit as an
action from the action set, and then executes the action in the environment. The operations performed for a
given action include the selected quantum gate in the circuit, measuring ‘Ancilla’ and obtaining the
measurement result. The reward is calculated from the state of ‘System’, and the measurement result and the
reward are fed back to the agent. The agent makes a classical update based on the obtained measurement result
and performs the next action based on it. The above flow is repeated until the evaluation result of the task reaches
the threshold value or the number of steps reaches the maximum number of steps.

In this quantum circuit design, each item of QOMDP is as follows. & is the Hilbert space of
‘System + Ancilla.” @ = {0, 1} isthe set of measurement outcome of ‘Ancilla’. The unitary applied for an
action is shown in figure 3(b). Each action unitary U (a) consists of three parts: (1) A unitary U, (a,) acting on the
‘System’ part. (2) Another unitary U, acting on the ‘Ancilla’ part. (3) Some entanglers between ‘System’ and
‘Ancilla.” While U, (a,) is action-dependent, Ui, and the system-ancilla entanglers are treated as tunable
hyperparameters. An action a, determines the unitary U, (a,) applied for ‘System’ from the action set .o7. The

7
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action set .o/ is defined by

(2 () (5 (5 () )

n—1
x Ul CXi,jii}

j=0

(22)

where Rx;(0), Ry(0), and Rz;(0) are Rx, Ry, and Rz gates of the rotation angle ) applied to the i-th qubit, and H;
is the Hadamard gate applied to the A°’AA—th qubit. CX; ; is the controlled NOT gate whose control bit is the i
-th qubit and target bit is the j -th qubit.

Atthe end of each action, an measurement is performed on the ancilla and hence the corresponding Kraus
operator A, is defined by

Aou = (Isystem ® <eD|)U(a)(Isystem X |0>)) (23)

where Iy, is identity gate of ‘System’ and |e,) is an orthonormal basis vector of state space of ‘Ancilla’. R is
defined for each task so that the reward can be calculated. + is the discount rate. |s¢) is |0). We note that this
approach requires fast resetting of qubits, which could be done for superconducting qubits [YT21]. In this paper,
we demonstrate two quantum circuit design examples: state preparation and energy minimization. Each task is
explained as follows.

3.6. Task 1: state preparation

State preparation is a task to design a quantum circuit to generate a target state | spyrger) . This task is implemented
by using fidelity as the reward in above quantum circuit design. When fidelity is used for reward, the reward is
calculated by

T(IS, a>) = Eo[ﬁdehty] = Z PT(OHS, a>) |<S)| |5Target> |2 = Z |<5| AoaTISTa.rget> IZ

= Z <5| A:+|5Target> <5Target| Ag|5> = <5|Z Aaa TlsTarget> <5Target| Aoa|5>- (24)

o [

In QOMDP, the reward is calculated by equation (3). Equation (3) becomes equation (24) when R is set as
follows.

R, = ZA; TISTarget> <5Target| Aou (25)

[

3.7.Task 2: energy minimization

Energy minimization is a task to design a quantum circuit to generate a state which has a lowest energy of a
molecule. When the state of a molecule is |s and the Hamiltonian of a molecule is H, the energy is calculated by
s|H| s. To minimize this energy, reward is calculated by

r(|s), a) = —1 x E,[Energy]
=—1x ZPr(olls), a)(s'|H|s")
=—1x Y (sl AJTHA[|s) = (s| — > AJTHASs)

0o 0

(26)

In QOMDP, as reward is calculated by equation (3). Equation (3) becomes equation (26) when R is set as follows.
R, = —Zo ASTHAS (27)

4, Results and discussions

4.1. Task 1: state preparation

We show the results where the target state |st,.gc( is the Bell state or the GHZ state. The simulations are
conducted by using Qiskit library [A21]. The experiments were averaged over 10 different random seeds. The
hyperparameters were set as follows. The maximum number of steps in circuit design is 100, the threshold of
fidelity to end an episode is 0.99, the hyperparameters for the value iteration algorithm in Algorithm 2 are 10 for
horizon H, 9 for number of iterations I, and 10 for the minimum initial size of the state set N. To evaluate the
results, state generation is executed 100 times using the obtained policy after the update is completed for each
iteration. The evaluation is performed by averaging the obtained fidelity and the number of steps taken. Higher
fidelity and fewer steps are better.
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Figure 4. Planning result when the target state is the Bell state. The final fidelity and the number of steps to reach the goal are plotted
with respect to the number of planning iterations. The error bar stands for one standard deviation over 10 random seeds. (a). U_ancilla
is an Rx rotation. (b). U_ancilla is an Ry rotation. (c). U_ancilla is an Rz rotation.

First, we describe the case where the target state is a Bell state. The planning result is shown in figure 4. The
experiment was performed by changing the U_ancilla gate, applied for ‘Ancilla’ in figure 3(b), to {Rx, Ry, Rz}

gates with the rotation angles {7/3, /2.5, /1.6, w/1.5}. The horizontal axis shows the number of iterations of
the value iteration method, and the vertical axis shows the fidelity gotten and the number of steps taken when the
circuit design was executed by the policy obtained from the iterations. Figures 4(a)—(c) show the results when the
U_ancilla gate is changed to the Rx, Ry, and Rz gates with various rotation angles. One example of the circuit
obtained by performing the QOMDP planning algorithm is shown in figure 5(a). The state obtained when the
circuit was executed is shown in figure 5(b).

Second, we describe the case where the target state is the GHZ state and the number of qubits of ‘System’ is 3.
Planning result is shown in figure 6. The experiment was performed by changing the U_ancilla gate in figure 3(b)
to {Rx, Ry, Rz} gates with the rotation angles {7/3, 7/2.5, 7/1.6, w/1.5}. The horizontal axis shows the number
of iterations of the value iteration method, and the vertical axis shows the fidelity gotten and the number of steps
taken when the circuit design was executed by the policy obtained from the iterations. Figures 6(a)—(c) show the
results when the U_ancilla gate is changed to the Rx, Ry, and Rz gates and various rotation angles. One example
of the generated circuits is shown in figure 7(a). The state obtained when the circuit was executed is shown in
figure 7(b).

Third, we describe the case where the target state is the 4-qubit GHZ state. The presentation is similar to that
of the 3-qubit case. The data is depicted in figure 8. The circuit and the generated density matrix are depicted in
figure 9.

In figures 4(c), 6(c), and 8(c), we observe that the learning curves for Bell-GHZ states are constant functions
and are independent of the ancilla rotation angle ¢ if U, .11, (¢) = R,(¢). We also observe similar behavior in
figure 6(a) for the case when Ui, (¢) = R, (¢) and number of system qubits n; = 3, butnot for n, = 2 and
ns = 4. To explain these observations, we introduce alemma. The proof for the lemma is provided in appendix.
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Figure 5. Execution result of state preparation for Bell state. (a). The quantum circuit. (b). The cityscape diagrams for the real and the
imaginary parts of the density matrix.
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Figure 6. Planning result when the target state is the GHZ state and the number of qubits of system is 3. The final fidelity and the
number of steps to reach the goal are plotted with respect to the number of planning iterations. The error bar stands for one standard
deviation over 10 random seeds. (a). U_ancilla is an Rx rotation. (b). U_ancillais an Ry rotation. (c). U_ancilla is an Rz rotation.
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Figure 7. Execution result of state preparation for 3-qubits GHZ state. (a). The quantum circuit. (b). The cityscape diagrams for the
real and the imaginary parts of the density matrix.
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Figure 8. Planning result when the target state is the GHZ state and the number of qubits of system is 4. The final fidelity and the
number of steps to reach the goal are plotted with respect to the number of planning iterations. The error bar stands for one standard
deviation over 10 random seeds. (a). U_ancilla is an Rx rotation. (b). U_ancillais an Ry rotation. (c). U_ancilla is an Rz rotation.
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Figure 9. Execution result of state preparation for 4-qubits GHZ state. (a). The quantum circuit. (b). The cityscape diagrams for the
real and the imaginary parts of the density matrix.

4.2.Lemma

We use the notations I = (i,,...,i) for asystem n;-bit stringand f (I) = i, ... €y for the parity function,
where @ is the XOR operation. [I = [i,,..., denotes the n;-qubit system state in the computational basis.
Consider the circuit in figures 3(a) and (b). For any iteration time step ¢ and any history sequence

h, = {ag, 01, a;, 0y, ..., a,_1, 0,},themid-circuit observation probability is

Pr(o,1) =
ST U a) p () UL @), if Upneinia (9) = R, (¢)
{I:f D=011}
2[1= (01 ®f ()] 2(0p1®f (1) ,
> 1Uy(a) p () U (at)ll(cos %) (sin %) , if Upneitia (9)
I

where p,(¢) is the system density matrix from previous time step. Notice that p,(¢) is well-defined because of the
measurement and resetting operation on the ancilla.

With the Lemma, we could explain the observed learning curves. If the ancilla rotation is R, (¢), then the
observation probability is independent of ¢. This explains why the learning curves for U,,,.i. (¢) = R, (¢) are
independent of ¢ in figures 4(c), 6(c), and 8(c). We further notice that if the first action is one Hadamard gate H
acting on any one of the system qubits (which is the standard first step to generate Bell-GHZ state), then

. 1 . .
Ui (ap) p,(0)U, (ag) = H; | 0)®(0 |®" H;and hence Pr(o,, ) = > Hence the observation provides no

information regarding the system, and the agent can learn nothing about the system with the observation. This
explains why the learning curves are constant in figures 4(c), 6(c), and 8(c).
To explain figure 6(a), notice that if I|U, (a,) p,(t) U; (a;)|I has equal weight for odd-parity sector and even-

parity sector, then the observation probability is Pr(o, ) = % for Uppeina (¢) = R, (¢). Furthermore, n-qubit

12
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Figure 10. Planning result when the molecule H2 with bond length 1.0A. Final energy expectation value (Hartree) is plotted with
respect to the number of planning iterations. Average results of 100 executions are reported.

Bell-GHZ states are equal superpositions of all-zero state | 0)®" and all-one state | 1)®":. All-zero state always
has even parity, while all-one state has the same parity as the number of system qubit #,. This implies that for

ns = 3, the target Bell-GHZ state is an equal superposition of odd-parity state and even-parity state. The agent
would not be able to distinguish the target state from the system Uj (ao) p,(0) U;L (ap) = H;| 0)®7:(0 |®" H;
after the action of one Hadamard gate when n; = 3. This problem does not exist for #n;, = 2 and n; = 4 cases.

4.3. Task 2: energy minimization

We show the experimental results of H2 and H-He+. The Hamiltonians of the molecules are derived using
OpenFermion [BM]. In these experiments, the orbital basis is STO-3G and the Fermion-qubit transformation is
Jordan-Wigner. Since the minimum energy of the molecule is not known in advance in the energy minimization
experiment, it is difficult to set the threshold value. Therefore, in this experiment, the episode ends when the
number of steps reaches the maximum step.

The hyperparameters were set as follows. The maximum number of steps in circuit design is 10. The
hyperparameters for the value iteration algorithm in Algorithm 2 are 10 for horizon H, 9 for number of
iterations I, and 10 for the minimum initial size of the state set N. The energy unit is Hartree for all the
experiments. Regarding the threshold value of the energy expectation value that is the condition for the end of
the episode, as mentioned above, the minimum energy is not known in advance and it is difficult to set it.
Therefore, we set this threshold value to a value that can never be reached. The episode ends only with the
maximum number of steps. The set thresholds were —2 for H2 and —10 for H-He+.

To evaluate the results, the energy minimization circuit design is executed 100 times using the obtained
policy after the update is completed for each iteration. The evaluation is performed by averaging the obtained
energy expectation values. The smaller energy expectation value is better.

First, we describe the energy minimization circuit design experiment for H2. The planning result for H2 with
bond length 1.0A is shown in figure 10. The experiment was performed with the U_ancilla gate in figure 3(b) as
Ry gate and the rotation angles are {7/3, /2.5, /1.6, 7/1.5}. The horizontal axis shows the number of
iterations of the value iteration method, and the vertical axis shows final energy expectation value when the
circuit design was executed by the policy obtained from the iterations. Figure 10 demonstrate that our algorithm
can solve simple quantum circuit design problem if suitable ancilla unitary is chosen. One example of the
generated circuit is shown in figure 11(a). The change of energy expectation value when the circuit was executed
is shown in figure 11(b). In figure 11(b), the horizontal axis shows the number of steps in the episode, and the
vertical axis shows the energy expectation value.

Next experiment was conducted with the bond length spaced by 0.1 A from 0.2 A to 3.0 A. The result is
shown in figure 12. The experiment was performed with the U_ancilla gate in figure 3(b) as Ry gate and the
rotation angles changed to {7/3, /2.5, /1.6, w/1.5}. The horizontal axis shows the bond length, and the
vertical axis shows the energy value. Since the policy can be obtained at each rotation angle and each iteration,
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Figure 11. Single execution result of energy minimization for H2 bond length 1.0A. (a). The quantum circuit. (b). Energy expectation
value (Hartree) is plotted with respect to the number of steps.

the best policy is the one with the smallest average energy expectation value over four possible angles and nine
iterations. In figure 12, the average and minimum energy expectation value when the circuit design is executed
100 times using the best policy are plotted. The exact minimum energy obtained by diagonalizing the
Hamiltonian of H2 is also plotted in figure 12. In figure 12, the minimum energy obtained by our method is
represented by black dots, and the exact minimum energy is represented by orange line. A kink is observed
around 1.5 A of QOMDP curve. Similar phenomena appear in VQE calculation for LiH molecule [KMT17].
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Figure 13. Planning result when the molecule H-He + with bond length 1.0A. Final energy expectation value (Hartree) is plotted with
respect to the number of planning iterations. Average results of 100 executions are reported.

This might due to incorrectness of the spin wavefunction [STS20], which might be improved by modifying the
QOMDP action space. Notice that VQE algorithm has polynomial complexity with respect to number of qubits,
while our algorithm requires exponentially large classical planning. VQE simulation achieving chemical
accuracy (0.0016 Hartree) for H2 molecules has been reported [KMT17] with <10 circuit depth and < 10000
function calls. Our algorithm fails to reach high accuracy around bond length 1.5 A. The potential advantage of
our algorithm is that the agent could automatically search for the ansatz instead of human-design ansatz based
on prior knowledge. However, there is no guarantee that the QOMDP agent can always find the global
minimum.

Second, we describe the case where the molecule is H-He+. The presentation is similar to that of the H2. The
planning result and the execution result are depicted in figures 13 and 14. The minimum energy is depicted in
figure 15. Figure 15 shows that for all bond lengths, the minimum energy gotten by QOMDP, represented by the
black dots, is almost the same as the exact minimum energy represented by orange line.
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Figure 14. Single execution result of energy minimization for H-He + bond length 1.0A. (a) The quantum circuit. (b) Energy
expectation value (Hartree) is plotted with respect to the number of steps.

5. Conclusion

In this work, a QOMDP based planning algorithm is designed to solve for the problem of quantum circuit
architecture search. Point-based approximation is used to resolve the intractability due to the planning history
and the continuous Hilbert space. We implement the algorithm, and the simulation results suggest that the
algorithm can successfully find circuits to produce entangled states and to minimize energy functionals for
simple molecules. Our algorithm only requires small number of readouts from quantum circuits for online

decision making. However, it costs exponentially large classical resources in the planning stage of the algorithm.
One possible approach to scale up our method is to equip the classical agent with a tensor network simulator
[CHHGK21] to tackle the exponentially scaling with respect to the circuit width. Future investigations are

required to make the method suitable for large scale quantum computations.
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Error bar denotes one standard deviation over 100 executions.
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Appendix

The derivation for value iteration equation (9) is provided here.
Vids) = B y'r(l s, adll so) = 1s)]

=5 AElr (s anll so) = I5)]
_Zt ’Ytza,Z Pr(ht’ at“ 50> - |$>)T’(S(l’lt, |S>), at)
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H Pr(o;—is1 | S(he_is |5))»“r—i)
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Or—i+1 Or—it1
i=1 i=1

NI (A1)

The Lemma is presented and proved here.
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Lemma

We use the notations I = (iy,...,) for asystem n-bit stringand f (I) = i, €D ... @i, for the parity function,
where €D is the XOR operation. |I) = | i,,...,i) denotes the n,-qubit system state in the computational basis.
Consider the circuit in figures 3(a) and (b). For any iteration time step t and any history sequence
hy = {ag, 0, ay, 02, ... ,a;_1, 0,}, the mid-circuit observation probability is

> U@ p O U @)D, if  Uneita(9) = Ro(9)
{I:f D=0r11}

S (1) p. () U (@) 1) (cos i Uneita(#) = Re(@)
I

where p,(¢) is the system density matrix from previous time step. Notice that p,(¢) is well-defined because of the
measurement and resetting operation on the ancilla.

Proof:

We use the convention that the Hilbert space is the tensor product system@@ancilla, where the system part
has 1, qubits and the ancillary part has one qubit. The total density matrix from the previous time step is
£.(6))] 0)(0 |. The system and ancillary unitary is U, (a) Q) Upncitia (¢) = Up(a) QR (¢), where v € {x, y, z}.
The entangleris ) II) (Il @ X/ D, The measured density matrix can be calculated to be

Prior1) = )zllf(oweaf(l))] (Sin¢>2(a,+1®f @)

2

1
p = (Z | I)(I | QX' <’>)(Ua<at)ps(t> Ul (a)@Ra(9) [ 0)0 | RE (&) D 11 IQX/D
1 ]

=S 1D Upla) p () UL (an) | 1) T IQX DR, (¢) | 0)(0 | RI()X/D. (A2)
L]

Hence the observation probability is
Pr(oi1) = TrlL, Q| or11) {01 | p']

= > U@ p () US@ae) [ 1) | {orsr | XX DR4(8) | 0) [ (A3)
I

If R, (¢) = R,(#), then| (0,1 | XI DR($) | 0) > = &0, 1)
If R, (¢) = R.(9),
then | <0t+1 |Xf(I)Rx(¢) | 0) |2 = | <0t+1 | Rx(¢)|f(1)> |2 = (COSf

2

2[1= (o1 DF N1 ¢ [} 2(0r11Df (D)
) (sin2 )@

2 Q.E.D.
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