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Abstract. The 4+1 formalism in general relativity expresses the Einstein equations as a
manifestly covariant initial value problem, resulting in a pair of first order evolution equations
for the metric vy, and intrinsic curvature K, of spacetime geometry (u,v = 0,1,2,3). This
approach extends the Stueckelberg-Horwitz-Piron (SHP) framework, a covariant approach to
canonical particle mechanics and field theory employing a Lorentz scalar Hamiltonian K and
an external chronological parameter 7. The SHP Hamiltonian generates t-evolution of spacetime
events x¥ (T) or ¢ (x, T) in an a priori unconstrained phase space; standard relativistic dynamics
can be recovered a posteriori by imposing symmetries that express the usual mass shell constraint
for individual particles and fields as conservation laws. As a guide to posing field equations
for the evolving metric, we generalize the structure of SHP electrodynamics, with particular
attention to O(3,1) covariance. Thus, the 4+1 method first defines a 5D pseudo-spacetime as
a direct product of spacetime geometry and chronological evolution, poses 5D field equations
whose symmetry must be broken to 4D, and then implements the implied 4+1 foliation to
obtain evolution equations. In this paper, we sharpen and clarify the interpretation of this
decomposition by introducing a fixed orthonormal quintrad frame and a 5D vielbein field that
by construction respects the preferred 4+1 foliation. We show that for any diagonal metric, this
procedure enables the evolution equation for the metric to be replaced by an evolution equation
for the vielbein field itself, simplifying calculation of the spin connection and curvature.

1. Introduction
In general relativity (GR) the problem of time [1, 2] generally refers to the conflicting roles
assigned to time in relativity: on the one hand, the chronological parameter required for posing
equations of motion, and on the other hand, one of four spacetime coordinates, themselves
dynamical quantities to be determined by equations of motion. This conflict became apparent
to Stueckelberg [3,4] in his work on classical and quantum electrodynamics. In seeking to
interpret antiparticles as particles whose trajectory reverses time direction, he saw that neither
coordinate time nor the proper time of the motion could serve as the parameter of chronological
evolution. He was thus led to introduce an evolution parameter 7, independent of phase space
and external to the spacetime manifold.

In the Stueckelberg framework, a particle worldline is the trajectory of an event x/ (7) or
Y (x, T) generated by a Lorentz scalar Hamiltonian K, establishing a canonical system familiar
from nonrelativistic physics. In a suitable potential, the velocity component %* = dx?/dt and
energy E = Mx? may change sign, producing a trajectory observed in the laboratory as a
particle/antiparticle interaction. Such pair processes are classically prohibited by the phase
space relation x#x, = —c?, which is here demoted in status from constraint to conservation
law, applicable to systems governed by a Hamiltonian satisfying 9:K = 0. Clearly, if %? can
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change sign, the proper time of the motion ds = v/ —x2dt will not be a well-behaved evolution
parameter.

Stueckelberg’s work was extended by Piron and Horwitz [5] who constructed a relativistic
canonical many-body theory [6-10], later generalized to a gauge theory of interacting spacetime
events that recovers Maxwell electrodynamics in T-equilibrium [11-14]. By including 7 in the
U(1) gauge function (but not the spacetime manifold), SHP electrodynamics requires five gauge
potentials, whose interaction suggests a 5D symmetry such as O(3,2) or O(4,1). But to preserve
the observed Lorentz invariance of spacetime, any higher symmetry must be broken to tensor
and scalar representations of O(3,1) by choosing an appropriate structure for the matter kinetic
term in the action. An analogy may be seen in classical acoustics, where the pressure wave
equation appears to be invariant under Lorentz-like transformations, but no relativistic effects
are expected as an observer approaches the speed of sound.

Extending the Stueckelberg-Horwitz-Piron (SHP) framework to curved spacetime, one
obtains a classical and quantum theory of event evolution [15, 16], leading to a scalar event
density p(x, T) and energy-momentum tensor T, (x, 7). Following Wheeler’s summary [17]
of Einstein gravity as “spacetime tells matter how to move; matter tells spacetime how to
curve,” the T-evolution of the mass/energy/momentum distribution associated with these
events entails the T-evolution of spacetime curvature [18-21], described by a local metric
Y (%, 7). To find appropriate field equations for this metric, we generalize the 3+1 formalism in
geometrodynamics [22-25] to 4+1, regarding the spacetime manifold M as a 4D hypersurface
embedded in a 5D pseudo-spacetime Ms. Writing 5D field equations on Ms, the 4+1
decomposition leads to a pair of manifestly covariant first order T-evolution equations for the
local metric 7, (x,T) and an extrinsic curvature Ky, (x, 7), along with a set of propagating
constraints [19].

In [20, 21] we studied the linearized SHP theory and showed that consistency with the
phenomenology of weak gravitation requires that any 5D symmetry implied in the matter
terms of the field equations must be explicitly broken to tensor and scalar representations
of O(3,1), as previously seen in SHP electrodynamics. This strategic symmetry breaking also
insures that the standard 4D Einstein equations are recovered in T-equilibrium.

In this paper, we present a vielbein field theory approach to the 4+1 formalism, permitting
us to construct the O(3,1) symmetric SHP field equations in a systematic way. In analogy
to Einstein’s quatrad method [26] we define a constant orthonormal quintrad basis for the
pseudo-spacetime M3, so the inner products of basis vectors are the components of a 5D flat
Minkowski pseudo-metric. The vielbein field transforms the constant basis to a local coordinate
basis whose inner products provide a 5D local metric that induces the v, (x, T) of 4D spacetime
by projection. By specifying a 5D vielbein field that respects the preferred foliation of M5, we
find that the spacetime part (a vierbein field) contains the dynamic evolution, while the normal
part propagates forward, enforcing the constraints. We may thus take the 4D vierbein field
as the fundamental geometrical object, from which we obtain the spin connection, covariant
derivative, and curvature. This foliation of the vielbein simplifies the formulation of evolution
equations whose symmetry is limited to O(3,1), and their interpretation in terms of standard
approaches to GR. We show that for any diagonal metric we may replace the evolution equation
for the metric with an evolution equation for the vielbein field, simplifying calculation of the
spin connection and curvature.

In Section 2 we briefly review the previous work in SHP GR and the considerations
associated with constructing coordinate and vielbein frames. The foliation of M5 and the
associated decomposition of the vielbein field is described in Section 3. In Section 4 we
generalize the Einstein field equations to the 5D pseudo-spacetime and obtain the symmetry
broken form, exhibiting tensor and scalar representations of standard O(3,1) covariance.
Section 5 reviews the intrinsic and extrinsic geometry of spacetime, posed as an embedded 4D
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hypersurface of M5, and the resulting decomposition of the Riemann tensor. These pieces are
assembled to write the evolution equations for the 4D spacetime metric and extrinsic curvature.
We also obtain evolution equations for the vielbein field, permitting the formulation of initial
value problems in the quintrad frame. An example is given in Section 6.

2. The pseudo-spacetime M5
We briefly review previous work generalizing SHP electrodynamics to general relativity. For
additional details, see the references mentioned above.

2.1. SHP electrodynamics
In flat Minkowski spacetime, with 7 W= diag (—1,1,1,1), the free particle Hamiltonian

K= ﬁp”m (1)
leads to the action .
s— [dr yMis, @)
made maximally U(1) gauge invariant [11,27] by introducing five gauge fields as
Sshp = /dT %M}'c"xﬂ + Sx’*ay (x,7) + §C5a5 (x,7) (3)
= /dT %M:&"fcy - Sxﬁaﬁ (x,7) (4)

where we partition the Greek indices as

«pB,7v6=0123,5 Auwv,p...=0,1,2,3 (5)

and write x> = ¢57 in analogy to the notation ¥’ = ct. Because xtxy,, x'ay,, and as are

O(3,1) scalars, the action is 4D Lorentz invariant as required. But we emphasize that Ssyp
enjoys the 5D gauge invariance a, (x, T) — a4 (x, T) + d.A(x, 7). For a pure gauge potential
ay = 0 A(x, T), the interaction term is seen to be a total 7-derivative. We may regard (4) as a
standard 5D action with a symmetry-breaking matter term

1 , 1

X% = c5

associated with the constraint ¥°> = c5 that restricts the phase space to (x#,%"). In developing
the field equations for the metric we will similarly break 5D symmetry when combining
geometrical terms representing 5D gauge invariance with matter terms limited to 4D Lorentz
symmetry.

Variation of the SHP action with respect to x* provides the Lorentz force [28]

. e . e .
My == (¥ fuv + cs5f5) = Exﬁfyﬁ )
d 1. .. e e,
Ir (—zMx”xV> = C5Exﬁf55 = C5Ex7*f5” (8)
where the dynamics of the field strength

fzx/S = aaaﬁ - aﬁauc )
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are determined by including the kinetic term

Sﬁeld = /de4xf“/3(x, T)f,xlg(x, T) (10)

in the total action, where f,, is the usual second rank tensor, while f5, is a vector field
strength. Therefore, SHP electrodynamics differs in significant ways from Maxwell theory
in 5D. In particular equation (8) permits mass exchange between particles and fields,
setting the condition for non-conservation of proper time. Nevertheless, the total mass,
energy, and momentum of particles and fields are conserved [28]. Compatibility of SHP
electrodynamics with Maxwell theory requires cs < ¢ and we will neglect (c5/c)? where
appropriate.
Formally raising the five-index of f,5 in (10) suggests a 5D flat space metric

Nap = diag (-1,1,1,1,0) (11)

where 0 = £1. But regarding the kinetic term as

FPC ) fap(,0) = f1(2,T) fun (3, T) + 205 (%, T) fus (%, T) (12)

we see that ¢ is simply the choice of sign for the vector-vector term.

2.2. Curved spacetime

In the parameterized SHP framework, we regard x#(7) as an irreversible physical event,
occurring at time T and spacetime coordinates x*. Then, M(T) represents the spacetime
manifold of general relativity, a 4D block universe at 7. The scalar Hamiltonian K that generates
evolution of the events of spacetime is thus said to evolve M(7) to an infinitesimally close
4D block universe M (T + dt). The structure of spacetime, including the past and future
of coordinate time x°, may change infinitesimally during the interval d, and so the metric
structure 7y, (x, T) of M(7) will be T-dependent. A T-independent 4D metric would thus have
the character of an absolute background field, violating the goals of general relativity.

In [19] we introduced a pseudo-spacetime M5 as the image of an injective mapping

P:M — Ms=MxR X =®(x,7) = (x,657) (13)

allowing us to characterize 4D spacetime M as a hypersurface embedded in M5 and borrow
the mathematical tools of 3+1 geometrodynamics. The interval

dX = X3 — Xp = (x1,¢5T1) — (x2,¢572) (14)

for X € Ms refers to an event x; € M(711) and an event x, € M(72). This notion of
5D separation combines the geometrical distance dx* between arbitrary points in M(t) with
the dynamical distance between events separated by the evolution M(t) — M(7 + 7).
Taking the small variation x, = x; + éx and T, = 71 + J7, the 5D invariant interval between
X1, Xy € Ms becomes

12 v
5X* = Yuv (536” + dxdir)&> <5x” + dxdir) §T> +ockor? = Sup (X, T) Sx*oxf  (15)

referred to x1 coordinates at T = 71, where the spacetime metric 1y, must depend on x and T
in some manner to be determined. This interval suggests the free particle Lagrangian

L= %Mgaﬁ(x, T) 2% 3P (16)
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where we must remove x° from the dynamical variables by asserting %> = cs. This constraint
breaks the symmetry of the geodesic equations from

y g 1
EY 4 TP = 0 Tl = Eg”"s (0a&op + 9p&ox — 958pu) (17)
to
B ThpxtiP = &4 4+ Th %1% 4 2¢5TE %7 + c3T55 = 0 P =0 (18)

with I® g playing no role in the particle dynamics.

As in 4D relativity [29] the 5D Ricci tensor is invariant under translations x'* = x* +
A" (x,7), leading to the Bianchi identity

1
Va <R“/3 -5 g’*ﬂR> =0 VoXP = 9, XP + X7TE, . (19)

By constructing a description of matter satisfying V/;T”‘ﬁ = 0, we may write Einstein field
equations in 5D, although we must break their 5D symmetry to O(3,1) at the interface between
field terms expressed through R, and matter terms expressed through T*.

2.3. Mass-Energy-Momentum Tensor
We define 1(x, T) to be the number of events per spacetime volume, so that

j* (x,7) = p(x, 7)x*(T) = Mn(x, T)x"(7) (20)

is the five-component event current. The continuity equation in flat space is

" . . L9
I = Ayt + 3s° = 9yj + ﬁ =0 (21)

and is generalized for a local metric to

Vaj* =0 (22)
where again
oXP
V. XP = o+ x'Té, (23)

is the covariant derivative of a vector. Since j° is a scalar (1 is scalar on physical grounds) for
which the covariant derivative is the partial derivative, we have

d
5 [
v 4
P @9
and the continuity equation becomes

Jp o
5T Vit =0. (25)

For non-interacting particles (non-thermodynamic dust under zero pressure), we write the
mass-energy-momentum tensor [30] as

TH = pxhx

TS,B — C5]';B (26)

T = px*xp — {
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combining the 4D components T*' with the current density T = #°xfp = cs5jP.
The conservation equation is

0= VT = Vg (pF ) = 4V () + pef Vit = VP +pifVys*  (27)
which vanishes by virtue of the continuity and geodesic equations

Dx*
Dt

Vaj* =0 PVt = (28)

Since the Bianchi relations are independent of dimension, the Einstein equations in 5D are

1 811G
Rap — 58upR = — 5 Tup (29)

with Ricci tensor R, and Ricci scalar R obtained from g,4. The apparent 5D symmetry of (29)
must be broken to 4+1, most conveniently achieved in a quintrad frame.

2.4. Quintrad frame
The standard basis vectors for the tangent space 7 (Ms5) in a coordinate (differential) frame
are

ad

Su = aoc = W (30)

and the basis 1-forms for the dual space 7* (Ms5) are
gt =dXx" (31)

so that
8" (8s) = 8" 85 =Jj 8u - 88 = 8up g* gl =g". (32)

Extending to 5D the vierbein formalism as presented in [26] and modifying the notation
slightly, we define the quintrad frames {e,} for 7 (Ms5) and {e"} for 7* (M5) such that

e, e, =1, e’-e’ =y d.ep = 9,67 =0 (33)
where by convention the Latin letters
ab,c---=0,1,273,5 7, = diag(—1,1,1,1,0) (34)

indicate reference to the quintrad. The vielbein field provides the position-dependent
components of the coordinate bases with respect to the quintrad as

g.=E/(X)e, gt =E" (X)e" (35)

invertible as
e, =", (X) g« e =¢"(X)g" (36)

which for consistency requires

e’y (X) Eg" (X) = 05 ¢y (X) E (X) = ¢, (37)



IARD 2022 IOP Publishing
Journal of Physics: Conference Series 2482 (2023) 012006  doi:10.1088/1742-6596/2482/1/012006

with similar relations for E*, and ¢,”. The duality relations impose the conditions

Oy = e ey = gg" - gp = 01 0 = 0, (38)
6% = g% gy = E%e" - E e, = EYE V5) = E*E}
which combined with (37) put the transformation equations into the form
B b M )
ga = e" e° el = E“agzx
and so using (35) and (36) the metric is induced through
Sap = 8a 88 = Nup EauEﬁb gaﬁ =g gﬁ = ﬂ“b eaaeﬁb (40)
Hap = €a-€p = gzxﬁelxaeﬁb Wﬂb —e%. eb — g“ﬁEa”Eﬁb .
Since any vector can be written
V =Vig, =[V*ES (X)]es = Ve, (41)
we may view
Xf = E"e,” X3 X4 = ", E S X{ (42)

as transformations between the coordinate frame and the vielbein frame.
For a tensor given with components in the vielbein frame, the covariant derivative is defined
as
V“XZ = al’ng + w(xaCXlCJ - waCbX? (43)

where w,” is the spin connection. Writing the covariant derivative in a coordinate frame as
VX = (aaxﬁ + F£7X7> g ®gp (44)
and transforming between frames, we are led to
wl = e, (aaEﬁ”) + Ege"Th, (45)
providing a relationship between the coordinate and spin connections. Acting with E§ we find
0sEs" —TE" + w Es* = V4Es" =0 (46)

expressing compatibility of the vielbein field. Using the known symmetries of the Christoffel
connection

1
16 = 58" (948ps + 9pgys — 0u8py) = 8" Tos (47)
in (45) it is straightforward to demonstrate the antisymmetry of (wa)’lb
(o)™ = — (wa)™ where (W)™ = 4w, . (48)

It will prove convenient to transform the coordinate index « to a quintrad index as

)ba

(we)™ = e, (wa)b“ ) (49)
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Inserting the induced metric (40) into the coordinate connection (47) we are led to
1
b =5 (eﬁafabEﬂ” +e79y Egy + ¢f 0 Eg' + P9y Egy — ¢, 9" Egy — eﬁbaaEﬁ”'> (50)

where
Tg, = eyl BT, (51)

and using (45) we express the spin connection in terms of the vielbein field as
1
(wb)”u, = 5 (eﬁ“abEﬁa/ - eﬁa,abEﬁ“ + eﬁbaa/Eﬁ“ + Eﬁuaa/E/gh — Eﬁa,aaEﬁb - eﬁba“Eﬁa/) (52)
from which we may derive the useful relation
(wp)", — (we)y = e0cES — P dpEy" (53)

The 5D curvature for M5 in the quintrad frame is written

[V, Va] X = X4RY, (54)
where / /
R?ab = aﬂwbdc - abwadc + c‘)adc’wbcc - C‘)bdc’wucc (55)

which in light of (52) contains only the vielbein field and its derivatives.

3. Foliation

3.1. Coordinate frame

By defining the scalar field S(X) = X°/c5 = 7, the pseudo-spacetime M5 constructed in
Section 2.2 admits the natural foliation defined by its level surfaces

To = {X*|S(X)=X"/cs =10} . (56)
The unit normal to the hypersurface X, was given in [19] as
1 1
0.5(X) =0 5
V18%! VIgt "

where 5(X) = constant for X € X, insures orthogonality. We similarly used this foliation to
construct a coordinate frame {g,} for 7 (Ms). For the hypersurface 7 (X,) C T (Ms5), we
choose the four (5-component) vectors

Ny =0 g"‘ﬁnanﬁ =0 (57)

0X"
o o o
g.) =0,0" = ( ) =0 . (58)
( V) H dxH - 12
We may choose as the fifth basis vector for 7 (Ms) the linear combination
g5 = N'g, + Nn (59)

often called the ADM parameterization [25]. Here, the 4-vector N¥ generalizes the shift 3-vector
in 3+1 formalisms and N is the lapse function with respect to 7. Designating

Yy = uv = B~ 8v (60)
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we find ,
S5u = 8u 85 = ’}/W/‘,NV = Ny
) ) (61)
gs5 = (N¥gy, + Nn) - (N?‘ g+ Nn) = 7, N'NI + N2
These expressions generalize the 3+1 ADM metric decomposition to
N Y+ ULN”NV —O'LNV
- r)/yv 1z b _ N2 N2
Sup = > NV g = 1 1 (62)
and put the unit normal into the form
o 1 NH a_ 1 NHS® 4 5%
= gy (N ) = (N 3)
(63)

where the second expression is implicit in parameterization (59) through 1, = g,pn*.

3.2. Quintrad frame

We may perform the 4+1 decomposition through the vielbein field, without direct reference to
the coordinate map @ or the scalar field S(X). We partition the quintrad indices, as we did for
the coordinate indices, so that the index convention is now

«pB,v6=01273,5 Auv,p...=0,1,23

(64)
ab,c,d,=0,1,2,3,5 kl,mmn,...=0,1,23

where the five index with respect to the quintrad frame will be denoted 5 when necessary to
avoid confusion. In this notation we expand the frame transformations as

g = Efex + Ees e = ¢’y gy + %8s (65)
g5 = Esfe + Es’es es = e g, + ¢85

and
gl =\ ef el ed e = Efg' + Esfg’ .
g’ = ¢ ek + o5 e e5 = E,5g" + E;5g°

for the dual basis, where once again the orthogonality relations (37) are required for consistency.
In the quintrad we expect the spacetime hypersurface to be spanned by {e;} and normal to es,
and so assign the unit normal vector and 1-form as

n=es i =ce’ (67)
with normalization

n’=es e5 =15 =0 i’ =c%-e=n"=0¢. (68)
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Combining this assignment with the general parameterization (59) provides

1
e =1n= (—N'gy + g5) e =0i=0’Ng’=Ng’ (69)

so that comparison with (65) and (66) determines four vielbein components

1 1 5 5

85 N

The orthogonality of the quintrad frame provides two additional conditions

1 /
0= €y - e5 = (eﬂkgy + eSkg'j) . N <—NV gﬂ/ + g5>
1 /
= N (—e”kN# + e”kgy5 — eSkg#/5NV + e5kg55> (71)

and
0= o7 = (Efg" + Es'g’) - N g’ = N (Ef¢° + Es'g™) (72)

which combined with metric components from (62) provide the components
S, =0 Es* = E/NF. (73)
Inserting e°, = 0 into (65) leads to
er =\ g+ e gs =e, (Eyk/ek/ + Efe5> (74)
from which we conclude that

ES=0 M EF =05 (75)

Finally, the transformations between coordinate and quintrad frames take the form

g« = E e, = 5ZEykek + (52 (EHkNP‘ek + Ne5>

. (76)
eg — e“aga = 5§eykgy + (SEN (—Nﬂg],{ + 85)
and we may summarize the vielbein field as
E,S = 0LSIE )} + 6 (Eykz\wcsz + Nég)
1 1 (77)
e, = Sponel’, — Sadung N + 8205 5

which provides a quintrad basis for 7 (Ms5) with a 4+1 foliation built-in by construction. It
was shown in [19] that the lapse and shift propagate with 7, enforcing the constraints on g,z
associated with the Bianchi relations, but are not subject to second order evolution equations.
Since ¢/, = E", by orthogonality, the dynamical content of the Einstein equations is entirely

contained in the spacetime vierbein E k where uk=0,1,23.

10
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3.3. Projection onto the hypersurface
The 4+1 decomposition of the Einstein equations is found by application of the projection
operator P which acts on a vector as

VeT (Ms)—V, =P[V]eT (X)) CT (Ms) (78)
and in component form is
P[V] = (PaV") g = V¥ (Piga) PV] = (PIV")er=V" (Phes) . (79)
Using (63) for n,, the components of P in the coordinate and quintrad frames are

Ps = 8 — onny = 64 — 53 (8 — N¥5)

(80)
P = e, e%, PY = 6% — 5255
and we identify the expressions on the RHS as the component form of vectors
8y = 8 — 0y (85 — N''gy) = Piga &)
ej =ey — 5g/e5 = Ple,.
These can be rewritten
g+ = 8udh + N'g,0) = (0 +N'e3 ) g, el = dhex (2)
showing that g;- and e lie in the hypersurface 7 (£;), and that
Vi=vigh v = (o4 Nrel ) v )

V, = Ve, — Ve = stk ve .

Because V| has four independent components we have the pull-back and push-forward
relationships
ot = kv € T (M) Vi =80t e T (Xo) (84)

where v € T (M (1)) is the spacetime four-vector homeomorphic to V|, € T (£;). More
generally, writing
ol = OV = ohet, VT = et PIVT = gLV

) ) (85)
Uy = 5;’;VD(L = 5ﬁEa” Vi = 5;‘2Ea“ P;‘,VaL = c‘)ﬁVaL
and using (80) and (77) we define the composed pull-back operators
EY = ohe" T = ke, E£1 = 6%E," P% = 0{E,f (86)

which map a vector in a quintrad frame for 7 (Ms5) to a vector in a coordinate frame for 7 (M),
using only the spacetime part of the vielbein field. Because the projector is idempotent, we see
that

ghpr = gl Pl = E8. (87)

Defining the normal basis components

g1 = 8x — 8 = 0, (85— N'gy) e = en ey = Jes (%)

11



IARD 2022 IOP Publishing
Journal of Physics: Conference Series 2482 (2023) 012006  doi:10.1088/1742-6596/2482/1/012006

we easily verify
g - 8 = ON?6.0;

81 - 8F = VyuuwOudy + OaNudly + SFNS + 7, NN 6,63 (89)
[

8 85 =0
which decomposes the coordinate frame into tangent and normal components, and recovers
the metric (62) through
Sup =8 85 =8 8+ 8r 8j - (90)
Rearranging (80) we have the completeness relations

o

g =Pg+on"ng Sup = Pup +omang (91)

which are useful in the 4+1 decomposition of objects defined on M. On the X; hypersurface,
the projection operator P,z acts as the induced metric, as can be seen through

Y = upds0h = (Pup + onang) 6365 = Py (92)
where we used naé‘; = 0'N52 =0.

4. Field equations

Decomposition of the 4D Einstein equations into evolution equations requires an expression
that isolates and projects the Ricci tensor into the hypersurface. In the 3+1 formalism, one
starts from the Einstein equations

1 8G
G;w = Ryv - Eg;wR = CTT}M/ (93)
and takes the trace . G
7T
8" Ry = 58" 8w R = =37 8" T 64

using ¢" ¢, = 4 to obtain the trace-reversed form
871G 1
Ryy = A <Tyv - zgva> (95)

expressing the relationship of spacetime geometry on the LHS and the distribution of matter
on the RHS. But in 5D we have g*fg,5 = 5 # 4 leading to the trace-reversed form

871G 1o . 871G 1
szﬁ = CT (Taﬁ + %g’ﬂs T7/5,> = CT (szﬁ — 3g¢xﬁT> . (96)

In [21] we studied the linearized SHP theory, and showed that this issue similarly appears when
solving the wave equation for a weak gravitational perturbation. Unsurprisingly, consistency
with standard phenomenology requires that we replace 77, g— 1, p= (—=1,1,1,1,0) as the flat
background metric. This replacement recalls the observation in Section 2.1 that #7755 = ¢ can be
understood as the choice of sign for certain field terms, but should play no role in matter terms.
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Therefore, we similarly require the substitution g,s — Zap satisfying $*f ,5 = 4 among the
matter terms, which permits us to recover the form

871G 1. =~
Rlxﬁ = A <Ttxﬁ - ZgocﬁT> 97)

in 5D, where T = g Top-
To obtain g, we write unbroken 5D Einstein equations in the quintrad frame

1 871G 871G 1 o
Rap = 51aR=—3"Tay — Rap = —3 <Tab + 1%’7”1 Tc’d’> (98)
-2 cd

i i 1 cd
¢ e

where the metric 7,, is flat, while R;, and T, are related to the coordinate frame tensors
through the vielbein field. We break the 5D symmetry in the matter terms by replacing

Nay — Tap = (=1,1,1,1,0) = 838}, 1 )

on the RHS of (98), leaving the Ricci tensor R,, unchanged. The SHP Einstein equations now
take the form 870G
T

R
ab A

1. ~
(Tab - anbT> (100)

where T = ﬁ“bTab = 17]‘1 Ti- Using the vielbein field (77) we may transform (100) back to a
coordinate frame, leading to

81G 1. 5
RIXIB = 76‘4 <T06‘13 - zglxlBT> (101)
providing the symmetry-broken local metric as

§a5 = EﬂéaEle;]\ab — gﬂlﬁ — 525%0—1\]2 — ng‘B — U’nan'g = P(Xﬂ . (102)

The breaking of 5D symmetry can thus be understood as replacing the metric in the matter
terms of the field equation with the projector onto the 4D hypersurface. We recall from (92)
that restricted to the ¥; hypersurface, the projection operator P, acts as the induced metric.
Using the completeness relation (91), we decompose the mass-energy-momentum tensor
into
T = Ty (Pg’ + Una’nu) (Pé;’ 4 0'1’lb,1’lb> =S, — 20‘napb + nanpK (103)

Where ! / / / / !
Sap = Ty P P ppy = —n"PIT., K =n"n" Ty (104)

representing the 4D energy momentum tensor S,,, a momentum vector p;, describing the flow
of mass into spacetime, and a scalar mass density x. The trace of T, is

T=n%T,=5+0x (105)
but the symmetry broken trace is
T = g”‘ﬁTaﬁ = PaﬁTaﬁ — pp (Saﬁ +2(7nap,5 + ﬂa”ﬁK) =385 (106)

where we used P*n, = 0. The SHP field equations now take the form

8tG 1
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in a coordinate frame. In the unconstrained 8D phase space of SHP kinematics, mass
is most readily understood through the independence of energy and 3-momentum in the
dynamical quantity —p? = —M?#"%, associated with the motion of matter events. As in
SHP electrodynamics, the dynamical evolution of an event in curved space may involve a
variation in particle mass, with mass transferred to the gravitational field and transferred across
spacetime through field momentum p, and mass density «.

5. Initial value problem

5.1. Review of 4+1 decomposition

In [19] we generalized the 3+1 formalism in geometrodynamics [24,25] to 4+1 to obtain a pair
of first order evolution equations for the metric 7, and intrinsic curvature Ky, of spacetime
geometry (u,v = 0,1,2,3). Regarding the spacetime manifold as homeomorphic to the
hypersurface > embedded in the 5D pseudo-spacetime, the differential geometry of M is
expressed in terms of projections of the corresponding structures for Ms5. By extension of 3+1
geometrodynamics, the initial value problem is found in the following steps:

(i) The covariant derivative D, for 7 (Z.) is found by using P,z to project the covariant
derivative V, for Ms,
(i) The extrinsic curvature K,z is defined by projecting the covariant derivative of the unit
normal 7,
(iif) The projected curvature R‘Swﬁ on 7 (X;) is defined through the non-commutation of

projected covariant derivatives D, and Dy,

5 B
ya
in terms of Rfmﬁ and K,g,

(iv) Writing the explicit form of P,g in the definition of R? , leads to the Gauss relation that

5
rap

(v) Projecting the 5D curvature R‘fm g on the unit normal n, leads to the Codazzi relation
providing a relationship between K,g and p,,

(vi) Lie derivatives of P,g and K, along the unit normal — the direction of T evolution — are
combined with these ingredients, along with the trace-reversed field equation, to obtain
T-evolution equations for 7, and Ky, and a pair of constraints on the initial conditions.

decomposes the 5D curvature R

5.2. Intrinsic and extrinsic curvature in the quintrad frame
In Section 2.4 we wrote the covariant derivative (43) and curvature tensor (54) for M5 in
a quintrad frame. Here we review some details of Steps (i) to (vi) where derivation in the
quintrad frame helps clarify the content of the procedure.

The 4+1 projected derivative D, is defined as

(DX)gsy., = PLPY - P (VX)) (108)
and because
VaPye = Vo (11, — onpne) = —0 [(Vany) ne + ny, (Vane)] (109)
we have .
(DP),,, = PYPYPY VuPyo =0. (110)

Since the P, acts as the metric on the hypersurface 7 (X;), we see that D, is the unique
covariant derivative compatible with P, (and hence ). Pulling back the projected covariant
derivative to 7 (M) we find

Do, = ERELPIPY (9aVi — w0,V ) = ESE) (Vi = w0 \Vi — w1 V5)

= <8yvv — Fﬁﬂh) — wfVVB = Vgl)vv — wf,/Vg (111)
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where V;‘l) contains only 4D components of the connection associated with a T-independent

spacetime. The additional wy , term suggests how D), retains information on the T-evolution
of the spacetime geometry. This point is sharpened by writing the extrinsic curvature

Ky = — (Dn)ab = —P:,ngb/ﬂa/ = —P},’/Vbrna (112)
where the last equality follows from
0= Vb/U = Vh/nz = 271“, (Vb/na/) . (113)

Expanding the projector Pé’/ we find

/ 1
Kab = —Vbna + ony (nb Vb/na> = —Vbl’la +ony <—NDaN> (114)

which using 1, = ¢d and n? = 6% provides

Vn, = opn, — wb“;nu/ = _waga n?' Ny, = —ws’, (115)

leading to
Koy = 0w,>, — 08ws’, = 0656, Ky = 0080l w;’, (116)
where w555 0 by antisymmetry. Like the projected covariant derivative D, the extrinsic

(4)

curvature K, contains 5-components of the connection wj . not present in V,
the general expression (52) for wj . we may evaluate

. Returning to

= 5 wsd, = o akN (117)

in agreement with (114) and find the expression

1

1

for K, that depends on the lapse, shift, and spacetime part of the vielbein field.
The projected Riemann tensor R, is defined through the non-commutation of projected
covariant derivatives

[Dy, D] Xe = X4R? (119)

and describes the curvature of the hypersurface X;. Because D, contains projected
5-components of the connection, these components will also be present in the pull-back Rf, w to

M differing from the 4D curvature Rﬁw associated with V ,(44).

cab

Decomposition of the 5D Riemann tensor R , into projected components R, and K,, may
be understood by contracting with the completeness relation (91)

dab = (P,f, + ongn ) (Pb +onyn ) (P +on nc) (Pd +ongn )Rd, by (120)
to obtain the sum of three projections

(PP PPy ) Ry (PEPEPY ) n REyy (PP ) nn' RYye  (120)

15



IARD 2022 IOP Publishing
Journal of Physics: Conference Series 2482 (2023) 012006  doi:10.1088/1742-6596/2482/1/012006

where 1% n¢'n? Rg’h, « = 0 from the antisymmetry of Rfab. The first of (121) is found in Step (iv)
above as the Gauss relation

R"

— RH 4 14
hho = Ry, — 0 (KiKpy — KJKy,) - (122)

vAp

In its original context, this shows that a curved surface embedded in a flat 3D space with
R;kl = 0 will derive its relevant curvature R;kl entirely from the K;; associated with the gradient
of the normal to that surface.

In Step (v) above we write the definition (54) of Rj,, while taking X; = n, to obtain explicit
expressions for the second and third of (121). Projecting the three remaining indices onto
T (%) provides the Codazzi relation

(P;’Pb’Pg’) ng RY ;= DyKae — DoKpe (123)
while projecting twice onto 7 (£.) and once onto ' leads to
(P,m,pg”) nn? RY,, = —K°Kq — U%DbDaN + PYPY 1V Ky (124)
which we will combine with the trace-reversed field equation (107) to eliminate Rg/b, o

5.3. Evolution equations in a coordinate frame
In Step (vi) above we construct an initial value problem for the T-evolution of the metric and
extrinsic curvature. This construction is naturally performed in a coordinate frame, because
the metric in the quintrad frame is the constant #7,,. The T-derivatives are found by evaluating
the Lie derivatives of Tuv and K, in the direction of system evolution. Defining the normal
evolution vector m, = Nn, we use the ADM parameterization (59) to write the Lie derivative
along g5 as

gs=Nlg, +Nn=N+m — Ly=Lg —LN (125)

where the Lie derivative acts as
Lp Azxﬁ = BVVﬂ,Aa,g + AWﬁVaB”V + AMVI;BV . (126)
From the definition (gs)” = 62 the T-derivative is found as

Lo Awp = 610, Anp + Aypdadd + Apy0p) = 95A,5 = C1531Aa5 (127)
and the derivative along the normal evolution vector
Ly Agp = m”’VVA,Xﬁ + Avﬁvanﬂ + vaﬁm”’ (128)
can be evaluated by rearranging (114) to write
Vang = —Kgp — na%DﬁN — Vpm" = —NK% —ngD*N +n"VgN . (129)
Inserting (129) into (128) we easily evaluate

Lo Pop = —2NKyp LyPf=0 (130)
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where again (92) permits the substitution 7,5 — Pyg. For the extrinsic curvature we find

which by projecting with Py, PP l; and recalling (122) and (124) becomes

PYPPR,

1 1 _
= O35 Lm Kap + 05 DaDpN + Ryp — oKKip + 20K Kps . (132)

In light of (125) we see that equations (130) and (132) provide a pair of coupled evolution
equations for Vv and Ky, of first order in d-, in which all terms except the 5D Ricci tensor Ry
are derived from the projected covariant derivative. These equations become an initial value
problem for general relativity by replacing R,z with the Einstein equations, which by projection
on (107) take the form

4 1B 1 1
PYPL R,y = PY P (Ta,ﬁ/ — 2P,x,ﬁ/s> = Sap — 5PapS - (133)
Pulling back to M and using (125) to expand L, in (130) these expressions become

1
aaww = LNV — 2NKyy (134)

1
9Ky = ~DyDyN + LnKyy
5

- 8nG 1
+N {—URW + KKy — 2K Ky + o (sw - 2PW,S> } (135)

which differ from the expression found in [19] using unbroken field equations by the symmetry

breaking replacement g, (S + ox) — Py,S.
To find the constraint equations, we first contract indices in the Gauss relation

R —20R,pnnf = R—o <K2 - K“ﬁK,xﬁ) (136)
and use the completeness relation to evaluate the trace of Ry
R = g*FR,p = P*PRyp + oRypn*nP (137)

to obtain
PRy — oRypnnf = R — o (K2 = KKy ) - (138)

Projecting the SHP field equations onto the hypersurface and the unit normal provides

c
139
R aﬁ_87rG T 1P aﬁ_87tG (139)
lx‘Bnn—CT “‘B_E “:BS nn—CTK

from which we obtain the Hamiltonian constraint

R—o (K* = K"Ky) = —87;—4(; (S+ox) . (140)
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This expression differs from the expressions found in [19] using unbroken 5D field equations

by the replacement

lenG 871G
—a KT T a (S+ox) . (141)

Contracting the Codazzi relation (123) to

PP,

o1" Ry = DgK — DK} (142)

and evaluating the mixed projection of the field equations

g 8mG 1 g 871G g 8nG
R,Xﬁn“P ,B — CT <T04ﬁ/ — ZP[X’S/S> n“P ,B — CTTﬂﬁ,anP ‘B — _CTpﬁ (143)
we find the momentum constraint
8tG
DK} — D,K = —a P (144)

in the same form found in [19]. Together, equations (134), (135), (140), and (144) decompose the
SHP field equations into an initial value problem for the metric and extrinsic curvature.

5.4. Evolution of the vielbein field

In the quintrad the metric 7, remains constant while the vielbein field that connects the
quintrad to a coordinate frame evolves with 7. To obtain a pair of coupled evolution equations
for E,* and K,;, we restrict our attention to line elements of the form

dx? = —goo(dx0)2 + gn(dxl)2 + gzz(dx2)2 + g33(dx3)2 + (Tg55(dx5)2 (145)
in rectilinear coordinates and
dx? = —goodxg + gndrz + g22d92 + ¢33 sin? 0d<p2 + Ug55dx2 (146)

in spherical coordinates. Following the prescription described in Section (2.4) we find the
coordinate frames and vielbein fields to be

Eaa = diag (Ao, Al,AZ, A3, A5) (147)
in the rectilinear case, and
Ao 0 0 0 0
0 Ajsinfcos¢ Ajsinfsing Ajcosf 0
ESf = 0 Axcosficos¢ Azcosfsing —Arsinf 0 (148)
0 —Aszsinfsing Azsinfcos¢ 0 0
0 0 0 0 As
in the spherical case, with gy, = (A,x)2. We may write (148) as
ES = A(R)Ra” (149)

where (&) indicates no summation and R0 = 69, Ry = 6>, and R,? is a standard 3D rotation
matrix for o, a = 1,2,3. We easily confirm that this vielbein also leads to the diagonal metric

Top = N EaE’ = A AT R R’ = Ay Ap)ap = Alw)lap (150)
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by virtue of its orthogonality.
For any diagonal metric we have N* = 0, for which (118) simplifies to

1 1
Ko = Ecsﬁ(sg (Eu0se”, + E,udse’y) = —55’;55, (¢",05E .k + €",05E ) (151)
where we used
e”laaEyk + Eykaae”l =9, (e”lEVk) = 041 = 0. (152)
Writing the inverse vielbein field as
¢y = [(E_l)T] - R%, (153)
b A
which we verify by
e ES" = Al R"‘bA(,X)R,X” =R% R, =9} (154)
()
we obtain
& o.E  — L) a __ 1 L) a’_aSA(D‘) o a’
€ p05Laa = Now€'p SEa - ﬂau’mR b SA(“)RN - A( ) ﬂau’R leX . (155)
14 [
Swapping the indices a and b we see that
a‘A / a'A / a_A "
eaaagEab — Mﬂba’RaaRtxa — 5 (01) ﬂba/Rlxa Rlxa — 5 ((X) naa//RtxbRaa — eabaSEtxa (156)
Aw) Aw) Aw)

from which

1
Kkl = _E (eylaSEyk =+ eykaSEyl) = —eylagEyk (157)
permitting us to rewrite (151) as
dsE,S = —E,/K} . (158)
Using (77) as the explicit form of the vielbein field we have
95 = 3, — |hote" — 521 (s2Nr —52) | 0w = ~2 159
5 =650 = |050,€ — SN(V —5) v =39 (159)

where we used 5l§ = 0 and N¥ = 0. Expression (158) now becomes the evolution equation
dsE,‘ = —NE,/K} (160)
which we compare with the evolution equation for the metric (134)
1
<C5aT - /:N> Y = —2NKyy — 357, = —2NKp (161)

in the case that N¥ = 0.
We now consider the coordinate evolution equation for N¥ = 0

_ 8tG 1

c4
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found as the pullback to M of an expression derived on the hypersurface ¥.;. We rewrite this
as a pullback from the quintrad using

En = ExE," = % |0 GBS + 8% (ESNVof + Nog) | = ofE f (163)
where N¥ = 0 and 5}54 =0, to obtain
95 (E4EIK) = —E4DoELDN
+ELEIN {—aRab + KKy — 2KEKpe + 087;—4(; (sab — ;nab5> } . (164)
The push forward similarly reduces to
Vi = e oho, = [5"5"‘,(3 - 52% (o8N — 5@)} Shv, = sket v, (165)
and writing &} = d%e”, we have
Ered = skog el EF = okor . (166)
Applying & to the evolution equation we are led to

= _ 8 G 1
51145;/85 (EZESKab) = —-DyD;N+ N {—(TRkl + KKy — ZK K[] + 00— i <Skl Z’Yle)} (167)

where we used the compatibility relation (46) to write D, 55 = 0, and expand

KeKje = (;7“’55,’5{ qu/) (5’“”5”1<k~,~) — KK . (168)
On the LHS
gl =gk, =, (169)
and
LYKy = (5,1,15”"’) (55’,15]) (5’;5’ka1) = EE/Ky (170)
so that
El'EDs (5;551@;,) =", <85Eyk/> Ky + ¢ (a5Evl’) Ky + 95Ky 171)

and using (160) to replace 95 Eyk we find
ElEras (5;551@;,) = —2NKN Ky + 95Ky - (172)

Inserting this into (164) leads us finally to a slightly simplified evolution equation for the
extrinsic curvature

8tG 1
05Ky = —DyD;N + N{ Ry + KKy + O’L <Skl 277k15> } . (173)

We mention that the equilibrium condition for this system is found by taking N = 1 and
d:E,f = 0, which by (160) entails Kj; = 0. Now (173) becomes

871 G 1
0=—Ry+ — <Sk1 — 277le> (174)

which we recognize as the trace-reversed form of the standard 4D Einstein field equations in
the vielbein.
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6. Example — evolving Schwarzschild metric

In [19] we considered an event evolving with T-varying squared mass —ptp, = —(Mzx)?,
and showed, using the weak field approximation, that it induces a T-dependent metric. This
metric, in turn, induces motion in a test particle whose mass varies similarly with 7, suggesting
a transfer of mass carried by the gravitational field across spacetime. We also considered a
generalized Schwarzschild solution with 5D metric

gup = diag (—B, A, 7*,r*sin’6,0N) (175)

with B = B(r,7), A = A(r,7), and N = 1. The spacetime components of the Christoffel
connection and Ricci tensor are thus T-dependent, but their functional form is unaffected, and
so under boundary conditions

B(r,1) —— 1 Alr,t) —— 1 (176)
r— 0 r— o0

for all 7, a solution satisfying R,, = 0 leads to

AB =1 p—14 /(™ _q, 2MGC

. 2, T(T) (177)

which recovers the standard Schwarzschild solution for the function T(7) = 1. Solving the
field equations to obtain T (1) for given sources S, p, and x will generally require numerical
integration, but to gain a sense of the formalism we may calculate the sources for a given T.
Using the unbroken 5D field equations in a coordinate frame we found

1 1. MG . 1
K;,”/ — _TCSBT’Y}W — —ET (T) Wdlag <1, ﬁ,o, 0) — K — O (178)
2 2M ..

500 = BZSH = —0

%167‘(1’T(T) 5222533:0 — S=0 (179)
along with x ~ 0.

In the quintrad frame, comparison of the metric (175) with (148) and (150) provides the
vielbein field in the form

VB 0 0 0 0
0 +VAsinfcos¢ +Asinfsing Acosd 0
Ef=1 0 cos 6 cos ¢ cos 0sin ¢ —sinf 0 (180)
0 —sinfsin¢ sin 6 cos ¢ 0 0
0 0 0 0 1
where we have taken
1
Ay =VB Al =VA=—— Ay = A3 =As=1. 181
0 1 75 2 3 5 (181)
leading to
allAO aaB auAl 1 aaB
_ - 3 A=— 182
Ag 2B Ay 2Aa” 2B (182)

as in the standard Schwarzschild solution.
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With N = 1, and thus D;D;N = 0, the evolution equations (160) and (173) are somewhat
simplified. In (178) we found K, by inverting the metric evolution equation, and here we
similarly use (155) to invert the vielbein evolution equation (160) and write

05A

!’ aSB !
Kig = —€' 0sEy = — A((?)szfRykRul =5 <5Ok’710 - sz’leRll) (183)
"
from which we again find the vanishing trace as
J5B
K=MKy = === (8- o1) = 0. (184)

We notice that the coefficient R?,, is the m-component of the 3D unit vector

? = (sinf cos ¢, sin O sin ¢, cos ) (185)
so that 3B
5 A
K== (5,25? n rkrl) (186)

“points” in the kl-direction.
In the weak field approximation we neglected terms quadratic in K, but here we readily

evaluate

AL A () "\ 1/[3B)*

KMK,, = <_ () ;7kk R" R l) <_ Wll’Rkavl _ 1 () _ (187)
Aw Aw) 2\ B

Inserting (186) into the second evolution equation leads to nonlinear second order equations,
as we expect to find from field equations for gravitation. Splitting (173) and the constraint
equations into 3D space (m,n = 1,2,3) and 0-components, these become

JsB 8G o J5B 87G
—85 <B> = U'CTSOO Yy 85 <B> = U'CTSmn (188)
1 /3B\> 8nG
2 (g) s at (159
J5B 811G 5B, . 81tG
—Dy (B) =—a P Dy, <Brm1‘n> =~ Pn (190)
from which we again find S = nMSy = 0. As for Ky, we see that the spacetime energy

momentum tensor Si; “points” in the kl-direction. The previously neglected quadratic term
(189) indicates that this solution requires a negative local mass density x < 0. In [21] we
showed that x can be expressed as a cosmological term

Alx,T) =0—xK (191)

that is not constant, but scalar and independent of Sy;. For a weak field solution, it is seen that
this term must be very small in magnitude.
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7. Conclusion

As in SHP electrodynamics, a particle worldline is the trajectory over T of the irreversible
physical event x*(7), whose evolution is generated by a scalar Hamiltonian K. The spacetime
manifold of general relativity is then M(7), a 4D block universe occurring at T and evolving
under K to an infinitesimally close 4D block universe M (T + d7). The local metric structure
Vv Of M(7), including the coordinate past and future, must therefore be T-dependent, and
appropriate field equations must be determined to specify its evolution.

The field equations of standard general relativity (GR) express the reciprocal relationship
between 4D geometry and the energy-momentum of matter present in spacetime, embodying
O(3,1) covariance, general diffeomorphism invariance, and the translation invariance of the
Ricci tensor that guarantees the Bianchi identity as a 4D gauge symmetry. The 3+1 formalism
decomposes the field equations into a pair of coupled t-evolution equations for the geometry of
3D space, along with constraints among the initial conditions. As articulated by Wheeler [31],
“A decade and more of work by Dirac, Bergmann, Schild, Pirani, Anderson, Higgs, Arnowitt,
Deser, Misner, DeWitt, and others has taught us through many a hard knock that Einstein’s
geometrodynamics deals with the dynamics of geometry: of 3-geometry, not 4-geometry.”

In SHP GR we proceed in the reverse direction, guided by SHP electrodynamics. Beginning
with T-evolution, we determine field equations possessing O(3,1) covariance and a 5D gauge
symmetry associated with a Bianchi identity that obtains for the 5D Ricci tensor R, constructed
on the pseudo-spacetime Ms5. This structure admits the natural foliation into 4D hyperspaces
%~ homeomorphic to M, leading to the desired evolution equations for 7, (x, T) and Ky (x, T)
as (nearly) canonically conjugate fields [19].

The basic structure of the 4+1 formalism, generalizing the geometrical arguments of the
3+1 method to the SHP framework, was presented in [19]. In [20, 21] the linearized theory
was explored, and it was shown that the evolution equations retain a 5D symmetry, possibly
0O(4,1) or O(3,2), that leads to deviation from standard gravitational phenomenology. As in
SHP electrodynamics, the fields (geometry) may exhibit the higher symmetry in a vacuum,
but the matter parts must be restricted to O(3,1). In this paper, we broke the symmetry at the
interface between the field and matter parts of the field equations. To this end, we constructed
the tangent space 7 (M) and its foliation in a quintrad frame, for which the flat metric and
its symmetry-broken form are easily chosen. Using the vielbein field, we transformed the
symmetry-broken flat metric to its local form in a coordinate frame, leading to the desired
coordinate frame field equations for the 5D metric g,5. Since the quintrad metric is constant
and the T-dependence is contained in the vielbein field, we obtained in an evolution equation
for E,* that applies to any diagonal metric, and showed that it simplifies the evolution equation
for K,,. Thus, initial value problems for gravitational fields may be solved in the quintrad
frame.

It follows from the 5D Bianchi identity [19-21] that the SHP field equations (107) split into

8nG 1 8nG
R;w = CT (T;u/ - Pyvs> Rsy = CTTSa (192)

2
where the spacetime components are ten unconstrained field equations corresponding to the
T-evolution equations for Yy and K, and the 5-components are constraints among the initial
conditions that propagate forward with T but do not evolve under second order differential
equations. This decomposition was also seen [21] in the linearized SHP theory by expanding
the Ricci tensor R,z for a weak perturbation to the flat metric, so that equations (107) become a
5D wave equation. This wave equation similarly splits into spacetime components from which
we find the linearized evolution equations, and 5-components that become the constraint
equations. In this paper we saw that the vielbein field splits into a spacetime part that contains
the dynamical content, and a 5-part that embodies the constraints. The natural separation of the

23



IARD 2022 IOP Publishing
Journal of Physics: Conference Series 2482 (2023) 012006  doi:10.1088/1742-6596/2482/1/012006

field equations into unconstrained evolution equations and non-evolving constraints underlies
the 4+1 formalism in SHP gravitation.
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