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Abstract. The 4+1 formalism in general relativity expresses the Einstein equations as a
manifestly covariant initial value problem, resulting in a pair of first order evolution equations
for the metric γµν and intrinsic curvature Kµν of spacetime geometry (µ, ν = 0, 1, 2, 3). This
approach extends the Stueckelberg-Horwitz-Piron (SHP) framework, a covariant approach to
canonical particle mechanics and field theory employing a Lorentz scalar Hamiltonian K and
an external chronological parameter τ. The SHP Hamiltonian generates τ-evolution of spacetime
events xµ (τ) or ψ (x, τ) in an a priori unconstrained phase space; standard relativistic dynamics
can be recovered a posteriori by imposing symmetries that express the usual mass shell constraint
for individual particles and fields as conservation laws. As a guide to posing field equations
for the evolving metric, we generalize the structure of SHP electrodynamics, with particular
attention to O(3,1) covariance. Thus, the 4+1 method first defines a 5D pseudo-spacetime as
a direct product of spacetime geometry and chronological evolution, poses 5D field equations
whose symmetry must be broken to 4D, and then implements the implied 4+1 foliation to
obtain evolution equations. In this paper, we sharpen and clarify the interpretation of this
decomposition by introducing a fixed orthonormal quintrad frame and a 5D vielbein field that
by construction respects the preferred 4+1 foliation. We show that for any diagonal metric, this
procedure enables the evolution equation for the metric to be replaced by an evolution equation
for the vielbein field itself, simplifying calculation of the spin connection and curvature.

1. Introduction
In general relativity (GR) the problem of time [1, 2] generally refers to the conflicting roles
assigned to time in relativity: on the one hand, the chronological parameter required for posing
equations of motion, and on the other hand, one of four spacetime coordinates, themselves
dynamical quantities to be determined by equations of motion. This conflict became apparent
to Stueckelberg [3, 4] in his work on classical and quantum electrodynamics. In seeking to
interpret antiparticles as particles whose trajectory reverses time direction, he saw that neither
coordinate time nor the proper time of the motion could serve as the parameter of chronological
evolution. He was thus led to introduce an evolution parameter τ, independent of phase space
and external to the spacetime manifold.

In the Stueckelberg framework, a particle worldline is the trajectory of an event xµ (τ) or
ψ (x, τ) generated by a Lorentz scalar Hamiltonian K, establishing a canonical system familiar
from nonrelativistic physics. In a suitable potential, the velocity component ẋ0 = dx0/dτ and
energy E = Mẋ0 may change sign, producing a trajectory observed in the laboratory as a
particle/antiparticle interaction. Such pair processes are classically prohibited by the phase
space relation ẋµ ẋµ = −c2, which is here demoted in status from constraint to conservation
law, applicable to systems governed by a Hamiltonian satisfying ∂τK = 0. Clearly, if ẋ2 can
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change sign, the proper time of the motion ds =
√
−ẋ2 dτ will not be a well-behaved evolution

parameter.
Stueckelberg’s work was extended by Piron and Horwitz [5] who constructed a relativistic

canonical many-body theory [6–10], later generalized to a gauge theory of interacting spacetime
events that recovers Maxwell electrodynamics in τ-equilibrium [11–14]. By including τ in the
U(1) gauge function (but not the spacetime manifold), SHP electrodynamics requires five gauge
potentials, whose interaction suggests a 5D symmetry such as O(3,2) or O(4,1). But to preserve
the observed Lorentz invariance of spacetime, any higher symmetry must be broken to tensor
and scalar representations of O(3,1) by choosing an appropriate structure for the matter kinetic
term in the action. An analogy may be seen in classical acoustics, where the pressure wave
equation appears to be invariant under Lorentz-like transformations, but no relativistic effects
are expected as an observer approaches the speed of sound.

Extending the Stueckelberg-Horwitz-Piron (SHP) framework to curved spacetime, one
obtains a classical and quantum theory of event evolution [15, 16], leading to a scalar event
density ρ(x, τ) and energy-momentum tensor Tµν(x, τ). Following Wheeler’s summary [17]
of Einstein gravity as “spacetime tells matter how to move; matter tells spacetime how to
curve,” the τ-evolution of the mass/energy/momentum distribution associated with these
events entails the τ-evolution of spacetime curvature [18–21], described by a local metric
γµν(x, τ). To find appropriate field equations for this metric, we generalize the 3+1 formalism in
geometrodynamics [22–25] to 4+1, regarding the spacetime manifold M as a 4D hypersurface
embedded in a 5D pseudo-spacetime M5. Writing 5D field equations on M5, the 4+1
decomposition leads to a pair of manifestly covariant first order τ-evolution equations for the
local metric γµν(x, τ) and an extrinsic curvature Kµν(x, τ), along with a set of propagating
constraints [19].

In [20, 21] we studied the linearized SHP theory and showed that consistency with the
phenomenology of weak gravitation requires that any 5D symmetry implied in the matter
terms of the field equations must be explicitly broken to tensor and scalar representations
of O(3,1), as previously seen in SHP electrodynamics. This strategic symmetry breaking also
insures that the standard 4D Einstein equations are recovered in τ-equilibrium.

In this paper, we present a vielbein field theory approach to the 4+1 formalism, permitting
us to construct the O(3,1) symmetric SHP field equations in a systematic way. In analogy
to Einstein’s quatrad method [26] we define a constant orthonormal quintrad basis for the
pseudo-spacetime M5, so the inner products of basis vectors are the components of a 5D flat
Minkowski pseudo-metric. The vielbein field transforms the constant basis to a local coordinate
basis whose inner products provide a 5D local metric that induces the γµν(x, τ) of 4D spacetime
by projection. By specifying a 5D vielbein field that respects the preferred foliation of M5, we
find that the spacetime part (a vierbein field) contains the dynamic evolution, while the normal
part propagates forward, enforcing the constraints. We may thus take the 4D vierbein field
as the fundamental geometrical object, from which we obtain the spin connection, covariant
derivative, and curvature. This foliation of the vielbein simplifies the formulation of evolution
equations whose symmetry is limited to O(3,1), and their interpretation in terms of standard
approaches to GR. We show that for any diagonal metric we may replace the evolution equation
for the metric with an evolution equation for the vielbein field, simplifying calculation of the
spin connection and curvature.

In Section 2 we briefly review the previous work in SHP GR and the considerations
associated with constructing coordinate and vielbein frames. The foliation of M5 and the
associated decomposition of the vielbein field is described in Section 3. In Section 4 we
generalize the Einstein field equations to the 5D pseudo-spacetime and obtain the symmetry
broken form, exhibiting tensor and scalar representations of standard O(3,1) covariance.
Section 5 reviews the intrinsic and extrinsic geometry of spacetime, posed as an embedded 4D
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hypersurface of M5, and the resulting decomposition of the Riemann tensor. These pieces are
assembled to write the evolution equations for the 4D spacetime metric and extrinsic curvature.
We also obtain evolution equations for the vielbein field, permitting the formulation of initial
value problems in the quintrad frame. An example is given in Section 6.

2. The pseudo-spacetime M5
We briefly review previous work generalizing SHP electrodynamics to general relativity. For
additional details, see the references mentioned above.

2.1. SHP electrodynamics
In flat Minkowski spacetime, with ηµν = diag (−1, 1, 1, 1), the free particle Hamiltonian

K =
1

2M
pµ pµ (1)

leads to the action
S =

∫
dτ

1
2

Mẋµ ẋµ (2)

made maximally U(1) gauge invariant [11, 27] by introducing five gauge fields as

SSHP =
∫

dτ
1
2

Mẋµ ẋµ +
e
c

ẋµaµ

(
x, τ
)
+

e
c

c5a5
(
x, τ
)

(3)

=
∫

dτ
1
2

Mẋµ ẋµ +
e
c

ẋβaβ

(
x, τ
)

(4)

where we partition the Greek indices as

α, β, γ, δ = 0, 1, 2, 3, 5 λ, µ, ν, ρ . . . = 0, 1, 2, 3 (5)

and write x5 = c5τ in analogy to the notation x0 = ct. Because ẋµ ẋµ, ẋµaµ, and a5 are
O(3,1) scalars, the action is 4D Lorentz invariant as required. But we emphasize that SSHP
enjoys the 5D gauge invariance aα (x, τ) −→ aα (x, τ) + ∂αΛ(x, τ). For a pure gauge potential
aα = ∂αΛ(x, τ), the interaction term is seen to be a total τ-derivative. We may regard (4) as a
standard 5D action with a symmetry-breaking matter term

S5D =
∫

dτ
1
2

Mẋα ẋα +
e
c

ẋαaα −−−−−→
ẋ5 ≡ c5

SSHP =
∫

dτ
1
2

Mẋµ ẋµ +
e
c

ẋαaα (6)

associated with the constraint ẋ5 = c5 that restricts the phase space to (xµ, ẋµ). In developing
the field equations for the metric we will similarly break 5D symmetry when combining
geometrical terms representing 5D gauge invariance with matter terms limited to 4D Lorentz
symmetry.

Variation of the SHP action with respect to xµ provides the Lorentz force [28]

Mẍµ =
e
c
(
ẋν fµν + c5 fµ5

)
=

e
c

ẋβ fµβ (7)

d
dτ

(
−1

2
Mẋµ ẋµ

)
= c5

e
c

ẋβ f5β = c5
e
c

ẋµ f5µ (8)

where the dynamics of the field strength

fαβ = ∂αaβ − ∂βaα (9)
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are determined by including the kinetic term

Sfield =
∫

dτ d4x f αβ(x, τ) fαβ(x, τ) (10)

in the total action, where fµν is the usual second rank tensor, while f5µ is a vector field
strength. Therefore, SHP electrodynamics differs in significant ways from Maxwell theory
in 5D. In particular equation (8) permits mass exchange between particles and fields,
setting the condition for non-conservation of proper time. Nevertheless, the total mass,
energy, and momentum of particles and fields are conserved [28]. Compatibility of SHP
electrodynamics with Maxwell theory requires c5 ≪ c and we will neglect (c5/c)2 where
appropriate.

Formally raising the five-index of fαβ in (10) suggests a 5D flat space metric

ηαβ = diag (−1, 1, 1, 1, σ) (11)

where σ = ±1. But regarding the kinetic term as

f αβ(x, τ) fαβ(x, τ) = f µν(x, τ) fµν(x, τ) + 2σ f µ
5(x, τ) fµ5(x, τ) (12)

we see that σ is simply the choice of sign for the vector-vector term.

2.2. Curved spacetime
In the parameterized SHP framework, we regard xµ(τ) as an irreversible physical event,
occurring at time τ and spacetime coordinates xµ. Then, M(τ) represents the spacetime
manifold of general relativity, a 4D block universe at τ. The scalar Hamiltonian K that generates
evolution of the events of spacetime is thus said to evolve M(τ) to an infinitesimally close
4D block universe M(τ + dτ). The structure of spacetime, including the past and future
of coordinate time x0, may change infinitesimally during the interval dτ, and so the metric
structure γµν(x, τ) of M(τ) will be τ-dependent. A τ-independent 4D metric would thus have
the character of an absolute background field, violating the goals of general relativity.

In [19] we introduced a pseudo-spacetime M5 as the image of an injective mapping

Φ : M −→ M5 = M× R X = Φ(x, τ) = (x, c5τ) (13)

allowing us to characterize 4D spacetime M as a hypersurface embedded in M5 and borrow
the mathematical tools of 3+1 geometrodynamics. The interval

dX = X1 − X2 = (x1, c5τ1)− (x2, c5τ2) (14)

for X ∈ M5 refers to an event x1 ∈ M(τ1) and an event x2 ∈ M(τ2). This notion of
5D separation combines the geometrical distance δxµ between arbitrary points in M(τ) with
the dynamical distance between events separated by the evolution M(τ) −→ M(τ + δτ).
Taking the small variation x2 = x1 + δx and τ2 = τ1 + δτ, the 5D invariant interval between
X1, X2 ∈ M5 becomes

δX2 = γµν

(
δxµ +

dxµ(τ)

dτ
δτ

)(
δxν +

dxν(τ)

dτ
δτ

)
+ σc2

5δτ2 = gαβ (x, τ) δxαδxβ (15)

referred to x1 coordinates at τ = τ1, where the spacetime metric γµν must depend on x and τ

in some manner to be determined. This interval suggests the free particle Lagrangian

L =
1
2

Mgαβ(x, τ)ẋα ẋβ (16)
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where we must remove x5 from the dynamical variables by asserting ẋ5 = c5. This constraint
breaks the symmetry of the geodesic equations from

ẍγ + Γγ
αβ ẋα ẋβ = 0 Γγ

αβ =
1
2

gγδ
(
∂αgδβ + ∂βgδα − ∂δgβα

)
(17)

to
ẍµ + Γµ

αβ ẋα ẋβ = ẍµ + Γµ
λσ ẋλ ẋσ + 2c5Γµ

5σ ẋσ + c2
5Γµ

55 = 0 ẍ5 ≡ 0 (18)

with Γ5
αβ playing no role in the particle dynamics.

As in 4D relativity [29] the 5D Ricci tensor is invariant under translations x′α = xα +
Λα (x, τ), leading to the Bianchi identity

∇α

(
Rαβ − 1

2
gαβR

)
= 0 ∇αXβ = ∂αXβ + XγΓβ

γα . (19)

By constructing a description of matter satisfying ∇βTαβ = 0, we may write Einstein field
equations in 5D, although we must break their 5D symmetry to O(3,1) at the interface between
field terms expressed through Rαβ and matter terms expressed through Tαβ.

2.3. Mass-Energy-Momentum Tensor
We define n(x, τ) to be the number of events per spacetime volume, so that

jα (x, τ) = ρ(x, τ)ẋα(τ) = Mn(x, τ)ẋα(τ) (20)

is the five-component event current. The continuity equation in flat space is

∂α jα = ∂µ jµ + ∂5 j5 = ∂µ jµ +
∂ρ

∂τ
= 0 (21)

and is generalized for a local metric to

∇α jα = 0 (22)

where again

∇αXβ =
∂Xβ

∂xα
+ XγΓβ

γα (23)

is the covariant derivative of a vector. Since j5 is a scalar (n is scalar on physical grounds) for
which the covariant derivative is the partial derivative, we have

∇5 j5 =
∂ρ

∂τ
(24)

and the continuity equation becomes

∂ρ

∂τ
+∇µ jµ = 0. (25)

For non-interacting particles (non-thermodynamic dust under zero pressure), we write the
mass-energy-momentum tensor [30] as

Tαβ = ρẋα ẋβ −→
{

Tµν = ρẋµ ẋν

T5β = c5 jβ
(26)
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combining the 4D components Tµν with the current density T5β = ẋ5 ẋβρ = c5 jβ.
The conservation equation is

0 = ∇βTαβ = ∇β

(
ρẋα ẋβ

)
= ẋα∇β

(
ρẋβ
)
+ ρẋβ∇β ẋα = ẋα∇β jβ + ρẋβ∇β ẋα (27)

which vanishes by virtue of the continuity and geodesic equations

∇α jα = 0 ẋβ∇β ẋα =
Dẋα

Dτ
= 0 . (28)

Since the Bianchi relations are independent of dimension, the Einstein equations in 5D are

Rαβ −
1
2

gαβR =
8πG

c4 Tαβ (29)

with Ricci tensor Rαβ and Ricci scalar R obtained from gαβ. The apparent 5D symmetry of (29)
must be broken to 4+1, most conveniently achieved in a quintrad frame.

2.4. Quintrad frame
The standard basis vectors for the tangent space T (M5) in a coordinate (differential) frame
are

gα = ∂α =
∂

∂Xα
(30)

and the basis 1-forms for the dual space T ∗ (M5) are

gα = dXα (31)

so that
gα
(
gβ

)
= gα · gβ = δα

β gα · gβ = gαβ gα · gβ = gαβ . (32)

Extending to 5D the vierbein formalism as presented in [26] and modifying the notation
slightly, we define the quintrad frames {ea} for T (M5) and {ea} for T ∗ (M5) such that

ea · eb = ηab ea · eb = ηab ∂aeb = ∂aeb = 0 (33)

where by convention the Latin letters

a, b, c, · · · = 0, 1, 2, 3, 5 ηab = diag (−1, 1, 1, 1, σ) (34)

indicate reference to the quintrad. The vielbein field provides the position-dependent
components of the coordinate bases with respect to the quintrad as

gα = E a
α (X) ea gα = Ēα

a (X) ea (35)

invertible as
ea = eα

a (X) gα ea = ē a
α (X) gα (36)

which for consistency requires

eα
a (X) E a

β (X) = δα
β eα

a (X) E b
α (X) = δb

a (37)
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with similar relations for Ēα
a and ē a

α . The duality relations impose the conditions

δa
a′ = ea · ea′ = ē a

α gα · eβ
a′gβ = ē a

α eβ
a′δ

α
β = ē a

α eα
a′

δα
α′ = gα · gα′ = Ēα

aea · E b
α′ eb = Ēα

aE b
α′ δa

b = Ēα
aE a

α′

(38)

which combined with (37) put the transformation equations into the form

gα = E a
α ea ea = eα

agα

gα = eα
aea ea = E a

α gα
(39)

and so using (35) and (36) the metric is induced through

gαβ = gα · gβ = ηab E a
α E b

β gαβ = gα · gβ = ηab eα
aeβ

b

ηab = ea · eb = gαβeα
aeβ

b ηab = ea · eb = gαβE a
α E b

β .
(40)

Since any vector can be written

V = Vαgα = [VαE a
α (X)] ea = Vaea (41)

we may view
Xa

b = E a
α e β

a Xα
β Xα

β = eα
aE b

β Xa
b (42)

as transformations between the coordinate frame and the vielbein frame.
For a tensor given with components in the vielbein frame, the covariant derivative is defined

as
∇αXa

b = ∂αXa
b + ω a

α cXc
b − ω c

α bXa
c (43)

where ω a
α c is the spin connection. Writing the covariant derivative in a coordinate frame as

∇X =
(

∂αXβ + Γβ
αγXγ

)
gα ⊗ gβ (44)

and transforming between frames, we are led to

ω b
α a = −eβ

a

(
∂αE b

β

)
+ E b

β eγ
aΓβ

αγ (45)

providing a relationship between the coordinate and spin connections. Acting with Ea
δ we find

∂αE b
δ − Γγ

αδE b
γ + ω b

α aE a
δ = ∇αE b

δ = 0 (46)

expressing compatibility of the vielbein field. Using the known symmetries of the Christoffel
connection

Γα
γβ =

1
2

gαδ
(
∂γgβδ + ∂βgγδ − ∂δgβγ

)
= gαδΓγβδ (47)

in (45) it is straightforward to demonstrate the antisymmetry of (ωα)
ab

(ωα)
ba = − (ωα)

ab where (ωα)
ab = ηbb′ω a

α b′ . (48)

It will prove convenient to transform the coordinate index α to a quintrad index as

(ωc)
ba = eα

c (ωα)
ba . (49)
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Inserting the induced metric (40) into the coordinate connection (47) we are led to

Γa
ba′ =

1
2

(
eβ

a′∂bE a
β + eβa∂bEβa′ + eβ

b∂a′E a
β + eβa∂a′Eβb − eβ

a′∂
aEβb − eβ

b∂aEβa′
)

(50)

where
Γa

ba′ = eγ
beβ

a′E
a

α Γα
γβ (51)

and using (45) we express the spin connection in terms of the vielbein field as

(ωb)
a

a′ =
1
2

(
eβa∂bEβa′ − eβ

a′∂bE a
β + eβ

b∂a′E a
β + eβa∂a′Eβb − eβ

a′∂
aEβb − eβ

b∂aEβa′
)

(52)

from which we may derive the useful relation

(ωb)
a
c − (ωc)

a
b = eβ

b∂cE a
β − eβ

c∂bE a
β . (53)

The 5D curvature for M5 in the quintrad frame is written

[∇b,∇a] Xc = XdRd
cab (54)

where
Rd

cab = ∂aω d
b c − ∂bω d

a c + ω d
a c′ω

c′
b c − ω d

b c′ω
c′

a c (55)

which in light of (52) contains only the vielbein field and its derivatives.

3. Foliation
3.1. Coordinate frame
By defining the scalar field S(X) = X5/c5 = τ, the pseudo-spacetime M5 constructed in
Section 2.2 admits the natural foliation defined by its level surfaces

Στ0 =
{

Xα | S (X) = X5/c5 = τ0
}

. (56)

The unit normal to the hypersurface Στ0 was given in [19] as

nα = σ
1√
|g55|

∂αS(X) = σ
1√
|g55|

δ5
α gαβnαnβ = σ (57)

where S(X) = constant for X ∈ Στ0 insures orthogonality. We similarly used this foliation to
construct a coordinate frame {gα} for T (M5). For the hypersurface T (Στ0) ⊂ T (M5), we
choose the four (5-component) vectors

(
gµ

)α
= ∂µΦα =

(
∂Xα

∂xµ

)
τ0

= δα
µ . (58)

We may choose as the fifth basis vector for T (M5) the linear combination

g5 = Nµgµ + Nn (59)

often called the ADM parameterization [25]. Here, the 4-vector Nµ generalizes the shift 3-vector
in 3+1 formalisms and N is the lapse function with respect to τ. Designating

γµν = gµν = gµ · gν (60)
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we find
g5µ = gµ · g5 = γµµ′ Nµ′

= Nµ

g55 =
(

Nµgµ + Nn
)
·
(

Nµ′
gµ′ + Nn

)
= γµµ′ NµNµ′

+ σN2 .
(61)

These expressions generalize the 3+1 ADM metric decomposition to

gαβ =

 γµν Nµ

Nµ σN2 + γµνNµNν

 gαβ =

 γµν + σ
1

N2 NµNν −σ
1

N2 Nµ

−σ
1

N2 Nµ σ
1

N2

 (62)

and put the unit normal into the form

nα =
1
N
(
−Nµgµ + g5

)α
=

1
N

(
−Nµδα

µ + δα
5

)
nα = σ

1√
|g55|

δ5
α = σN δ5

α = σN
(
g5)

α

(63)

where the second expression is implicit in parameterization (59) through nα = gαβnβ.

3.2. Quintrad frame
We may perform the 4+1 decomposition through the vielbein field, without direct reference to
the coordinate map Φ or the scalar field S(X). We partition the quintrad indices, as we did for
the coordinate indices, so that the index convention is now

α, β, γ, δ = 0, 1, 2, 3, 5 λ, µ, ν, ρ . . . = 0, 1, 2, 3

a, b, c, d,= 0, 1, 2, 3, 5 k, l, m, n, . . . = 0, 1, 2, 3
(64)

where the five index with respect to the quintrad frame will be denoted 5̄ when necessary to
avoid confusion. In this notation we expand the frame transformations as

gµ = E k
µ ek + E 5̄

µ e5 ek = eµ
kgµ + e5

kg5

g5 = E k
5 ek + E 5̄

5 e5 e5 = eµ

5̄gµ + e5
5̄g5

(65)

and
gµ = eµ

kek + eµ

5̄e5 ek = E k
µ gµ + E k

5 g5

g5 = e5
kek + e5

5̄e5 e5 = E 5̄
µ gµ + E 5̄

5 g5
(66)

for the dual basis, where once again the orthogonality relations (37) are required for consistency.
In the quintrad we expect the spacetime hypersurface to be spanned by {ek} and normal to e5,
and so assign the unit normal vector and 1-form as

n = e5 n̄ = σe5 (67)

with normalization

n2 = e5 · e5 = η55 = σ n̄2 = σ2e5 · e5 = η55 = σ . (68)
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Combining this assignment with the general parameterization (59) provides

e5 = n =
1
N
(
−Nµgµ + g5

)
e5 = σn̄ = σ2N g5 = N g5 (69)

so that comparison with (65) and (66) determines four vielbein components

eµ

5̄ = − 1
N

Nµ e5
5̄ =

1
N

E 5̄
µ = 0 E 5̄

5 = N . (70)

The orthogonality of the quintrad frame provides two additional conditions

0 = ek · e5 =
(
eµ

kgµ + e5
kg5
)
· 1

N

(
−Nµ′

gµ′ + g5

)
=

1
N

(
−eµ

kNµ + eµ
kgµ5 − e5

kgµ′5Nµ′
+ e5

kg55

)
(71)

and
0 = ek · e5 =

(
E k

µ gµ + E k
5 g5

)
· N g5 = N

(
E k

µ gµ5 + E k
5 g55

)
(72)

which combined with metric components from (62) provide the components

e5
k = 0 E k

5 = E k
µ Nµ . (73)

Inserting e5
k = 0 into (65) leads to

ek = eµ
kgµ + e5

kg5 = eµ
k

(
E k′

µ ek′ + E 5̄
µ e5

)
(74)

from which we conclude that

E 5̄
µ = 0 eµ

kE k′
µ = δk′

k . (75)

Finally, the transformations between coordinate and quintrad frames take the form

gα = E a
α ea = δ

µ
α E k

µ ek + δ5
α

(
E k

µ Nµek + Ne5

)
ea = eα

agα = δk
aeµ

kgµ + δ5
a

1
N
(
−Nµgµ + g5

) (76)

and we may summarize the vielbein field as

E a
α = δ

µ
αδa

kE k
µ + δ5

α

(
E k

µ Nµδa
k + Nδa

5

)
eα

a = δk
aδα

µeµ
k − δ5

aδα
µ

1
N

Nµ + δ5
aδα

5
1
N

(77)

which provides a quintrad basis for T (M5) with a 4+1 foliation built-in by construction. It
was shown in [19] that the lapse and shift propagate with τ, enforcing the constraints on gαβ

associated with the Bianchi relations, but are not subject to second order evolution equations.
Since eµ

k = Eµ
k by orthogonality, the dynamical content of the Einstein equations is entirely

contained in the spacetime vierbein E k
µ , where µ, k = 0, 1, 2, 3.
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3.3. Projection onto the hypersurface
The 4+1 decomposition of the Einstein equations is found by application of the projection
operator P which acts on a vector as

V ∈ T (M5) −→ V⊥ = P [V] ∈ T (Στ) ⊂ T (M5) (78)

and in component form is

P [V] =
(

Pα
α′V

α′
)

gα = Vα′ (Pα
α′gα) P [V] =

(
Pa

a′V
a′
)

ea = Va′ (Pa
a′ea) . (79)

Using (63) for nα, the components of P in the coordinate and quintrad frames are

Pα
α′ = δα

α′ − σnαnα′ = δα
α′ − δ5

α′

(
δα

5 − Nµδα
µ

)
Pa

a′ = e a
α eα′

a′P
α
α′ = δa

a′ − δa
5δ5

a′

(80)

and we identify the expressions on the RHS as the component form of vectors

g⊥
α′ = gα′ − δ5

α′
(
g5 − Nµgµ

)
= Pα

α′gα

e⊥a′ = ea′ − δ5
a′e5 = Pa

a′ea .
(81)

These can be rewritten

g⊥
α = gµδ

µ
α + Nµgµδ5

α =
(

δ
µ
α + Nµδ5

α

)
gµ e⊥a = δk

aek (82)

showing that g⊥
α and e⊥a lie in the hypersurface T (Στ), and that

V⊥ = Vαg⊥
α −→ Vα

⊥ = δα
µ

(
δ

µ
α′ + Nµδ5

α′

)
Vα′

V⊥ = Vae⊥a −→ Va
⊥ = δa

kδk
a′V

a′ .
(83)

Because V⊥ has four independent components we have the pull-back and push-forward
relationships

vµ = δ
µ
αVα

⊥ ∈ T (M) Vα
⊥ = δα

µvµ ∈ T (Στ) (84)

where v ∈ T
(
M (τ)

)
is the spacetime four-vector homeomorphic to V⊥ ∈ T (Στ). More

generally, writing
vµ = δ

µ
αVα

⊥ = δ
µ
αeα

aVa
⊥ = δ

µ
αeα

a′P
a′
a Va = Eµ

a Va

vµ = δα
µV⊥

α = δα
µE a′

α V⊥
a′ = δα

µE a′
α Pa

a′V
⊥
a = E a

µV⊥
a

(85)

and using (80) and (77) we define the composed pull-back operators

Eµ
a = δ

µ
αeα

a′P
a′
a = δk

aeµ
k E a

µ = δα
µE a′

α Pa
a′ = δa

kE k
µ (86)

which map a vector in a quintrad frame for T (M5) to a vector in a coordinate frame for T (M),
using only the spacetime part of the vielbein field. Because the projector is idempotent, we see
that

Eµ
a′P

a′
a = Eµ

a E a′
µ Pa

a′ = E a
µ . (87)

Defining the normal basis components

g∥
α = gα − g⊥

α = δ5
α

(
g5 − Nµgµ

)
e∥a = ea − e⊥a = δ5

ae5 (88)
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we easily verify

g∥
α · g∥

β = σN2δ5
αδ5

β

g⊥
α · g⊥

β = γµµ′δ
µ
αδ

µ′

β + δ5
αNµδ

µ
β + δ5

βNµδ
µ
α + γµµ′ NµNµ′

δ5
αδ5

β

g∥
α · g⊥

β = 0

(89)

which decomposes the coordinate frame into tangent and normal components, and recovers
the metric (62) through

gαβ = gα · gβ = g∥
α · g∥

β + g⊥
α · g⊥

β . (90)

Rearranging (80) we have the completeness relations

δα
β = Pα

β + σnαnβ gαβ = Pαβ + σnαnβ (91)

which are useful in the 4+1 decomposition of objects defined on M5. On the Στ hypersurface,
the projection operator Pαβ acts as the induced metric, as can be seen through

γµν = gαβδα
µδ

β
ν =

(
Pαβ + σnαnβ

)
δα

µδ
β
ν = Pµν (92)

where we used nαδα
µ = σNδ5

µ = 0.

4. Field equations
Decomposition of the 4D Einstein equations into evolution equations requires an expression
that isolates and projects the Ricci tensor into the hypersurface. In the 3+1 formalism, one
starts from the Einstein equations

Gµν = Rµν −
1
2

gµνR =
8πG

c4 Tµν (93)

and takes the trace
gµνRµν −

1
2

gµνgµνR =
8πG

c4 gµνTµν (94)

using gµνgµν = 4 to obtain the trace-reversed form

Rµν =
8πG

c4

(
Tµν −

1
2

gµνT
)

(95)

expressing the relationship of spacetime geometry on the LHS and the distribution of matter
on the RHS. But in 5D we have gαβgαβ = 5 ̸= 4 leading to the trace-reversed form

Rαβ =
8πG

c4

(
Tαβ +

1
2 gαβ

1 − 1
2 gγδgγδ

gγ′δ′Tγ′δ′

)
=

8πG
c4

(
Tαβ −

1
3

gαβT
)

. (96)

In [21] we studied the linearized SHP theory, and showed that this issue similarly appears when
solving the wave equation for a weak gravitational perturbation. Unsurprisingly, consistency
with standard phenomenology requires that we replace ηαβ −→ η̂αβ = (−1, 1, 1, 1, 0) as the flat
background metric. This replacement recalls the observation in Section 2.1 that η55 = σ can be
understood as the choice of sign for certain field terms, but should play no role in matter terms.
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Therefore, we similarly require the substitution gαβ −→ ĝαβ satisfying ĝ αβ ĝαβ = 4 among the
matter terms, which permits us to recover the form

Rαβ =
8πG

c4

(
Tαβ −

1
2

ĝαβT̂
)

(97)

in 5D, where T̂ = ĝαβTαβ.
To obtain ĝαβ we write unbroken 5D Einstein equations in the quintrad frame

Rab −
1
2

ηabR =
8πG

c4 Tab −→ Rab =
8πG

c4

(
Tab +

1
2 ηab

1 − 1
2 ηcdηcd

ηc′d′Tc′d′

)
(98)

where the metric ηab is flat, while Rab and Tab are related to the coordinate frame tensors
through the vielbein field. We break the 5D symmetry in the matter terms by replacing

ηab −→ η̂ab = (−1, 1, 1, 1, 0) = δk
aδl

b ηkl (99)

on the RHS of (98), leaving the Ricci tensor Rab unchanged. The SHP Einstein equations now
take the form

Rab =
8πG

c4

(
Tab −

1
2

η̂abT̂
)

(100)

where T̂ = η̂ abTab = ηklTkl . Using the vielbein field (77) we may transform (100) back to a
coordinate frame, leading to

Rαβ =
8πG

c4

(
Tαβ −

1
2

ĝαβT̂
)

(101)

providing the symmetry-broken local metric as

ĝαβ = E a
α E b

β η̂ab = gαβ − δ5
αδ5

βσN2 = gαβ − σnαnβ = Pαβ . (102)

The breaking of 5D symmetry can thus be understood as replacing the metric in the matter
terms of the field equation with the projector onto the 4D hypersurface. We recall from (92)
that restricted to the Στ hypersurface, the projection operator Pαβ acts as the induced metric.

Using the completeness relation (91), we decompose the mass-energy-momentum tensor
into

Tab = Ta′b′
(

Pa′
a + σna′na

) (
Pb′

b + σnb′nb

)
= Sab − 2σna pb + nanbκ (103)

where
Sab = Ta′b′Pa′

a Pb′
b pb = −na′Pb′

b T′
a′b′ κ = nb′na′Ta′b′ (104)

representing the 4D energy momentum tensor Sab, a momentum vector pb describing the flow
of mass into spacetime, and a scalar mass density κ. The trace of Tab is

T = ηabTab = S + σκ (105)

but the symmetry broken trace is

T̂ = ĝαβTαβ = PαβTαβ = Pαβ
(
Sαβ + 2σnα pβ + nαnβκ

)
= S (106)

where we used Pαβnα = 0. The SHP field equations now take the form

Rαβ =
8πG

c4

(
Tαβ −

1
2

PαβS
)

(107)
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in a coordinate frame. In the unconstrained 8D phase space of SHP kinematics, mass
is most readily understood through the independence of energy and 3-momentum in the
dynamical quantity −p2 = −M2 ẋµ ẋµ associated with the motion of matter events. As in
SHP electrodynamics, the dynamical evolution of an event in curved space may involve a
variation in particle mass, with mass transferred to the gravitational field and transferred across
spacetime through field momentum pa and mass density κ.

5. Initial value problem
5.1. Review of 4+1 decomposition
In [19] we generalized the 3+1 formalism in geometrodynamics [24, 25] to 4+1 to obtain a pair
of first order evolution equations for the metric γµν and intrinsic curvature Kµν of spacetime
geometry (µ, ν = 0, 1, 2, 3). Regarding the spacetime manifold as homeomorphic to the
hypersurface Στ embedded in the 5D pseudo-spacetime, the differential geometry of M is
expressed in terms of projections of the corresponding structures for M5. By extension of 3+1
geometrodynamics, the initial value problem is found in the following steps:

(i) The covariant derivative Dα for T (Στ) is found by using Pαβ to project the covariant
derivative ∇α for M5,

(ii) The extrinsic curvature Kαβ is defined by projecting the covariant derivative of the unit
normal nα,

(iii) The projected curvature R̄δ
γαβ on T (Στ) is defined through the non-commutation of

projected covariant derivatives Dα and Dβ,

(iv) Writing the explicit form of Pαβ in the definition of R̄δ
γαβ leads to the Gauss relation that

decomposes the 5D curvature Rδ
γαβ in terms of R̄δ

γαβ and Kαβ,

(v) Projecting the 5D curvature Rδ
γαβ on the unit normal nα leads to the Codazzi relation

providing a relationship between Kαβ and pα,
(vi) Lie derivatives of Pαβ and Kαβ along the unit normal — the direction of τ evolution — are

combined with these ingredients, along with the trace-reversed field equation, to obtain
τ-evolution equations for γµν and Kµν and a pair of constraints on the initial conditions.

5.2. Intrinsic and extrinsic curvature in the quintrad frame
In Section 2.4 we wrote the covariant derivative (43) and curvature tensor (54) for M5 in
a quintrad frame. Here we review some details of Steps (i) to (vi) where derivation in the
quintrad frame helps clarify the content of the procedure.

The 4+1 projected derivative Da is defined as

(DX)ab1···bn
= Pa′

a Pb′1
b1

· · · Pb′n
bn

(
∇a′Xb′1···b′n

)
(108)

and because
∇aPbc = ∇a (ηbc − σnbnc) = −σ [(∇anb) nc + nb (∇anc)] (109)

we have
(DP)abc = Pa′

a Pb′
b Pc′

c ∇a′Pb′c′ = 0 . (110)

Since the Paa′ acts as the metric on the hypersurface T (Στ), we see that Da is the unique
covariant derivative compatible with Pαβ (and hence γµν). Pulling back the projected covariant
derivative to T (M) we find

Dµvν = E a
µE b

ν Pa′
a Pb′

b

(
∂aVb − ω a′

a bVa′
)
= E k

µ E l
ν

(
∂kVl − ω l′

k lVl′ − ω 5̄
k lV5̄

)
=
(

∂µvν − Γλ
µνvλ

)
− ω 5̄

µ νV5̄ = ∇(4)
µ vν − ω 5̄

µ νV5̄ (111)
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where ∇(4)
µ contains only 4D components of the connection associated with a τ-independent

spacetime. The additional ω 5̄
µ ν term suggests how Dµ retains information on the τ-evolution

of the spacetime geometry. This point is sharpened by writing the extrinsic curvature

Kab = − (Dn)ab = −Pa′
a Pb′

b ∇b′na′ = −Pb′
b ∇b′na (112)

where the last equality follows from

0 = ∇b′σ = ∇b′n2 = 2na′ (∇b′na′) . (113)

Expanding the projector Pb′
b we find

Kab = −∇bna + σnb

(
nb′∇b′na

)
= −∇bna + σnb

(
− 1

N
DaN

)
(114)

which using na = σδ5
a and na = δa

5 provides

∇bna = ∂bna − ω a′
b ana′ = −σω 5̄

b a nb′∇b′nb = −ω 5̄
5̄ b (115)

leading to
Kab = σω 5̄

b a − σδ5̄
bω 5̄

5̄ a = σδk
aδl

b Kkl = σδk
aδl

b ω 5̄
l k (116)

where ω 5̄
5̄ 5̄ = 0 by antisymmetry. Like the projected covariant derivative Dµ the extrinsic

curvature Kµν contains 5-components of the connection ωa
bc not present in ∇(4)

µ . Returning to
the general expression (52) for ωa

bc we may evaluate

ω 5̄
5̄ b = δk

b ω 5̄
5̄ k = δk

b
1
N

∂kN (117)

in agreement with (114) and find the expression

Kab =
1
2

δk
aδl

b

[
Eµk

(
1
N

∂l Nµ + ∂5̄eµ
l

)
+ Eµl

(
1
N

∂kNµ + ∂5̄eµ
k

)]
(118)

for Kab that depends on the lapse, shift, and spacetime part of the vielbein field.
The projected Riemann tensor R̄d

cab is defined through the non-commutation of projected
covariant derivatives

[Db, Da] Xc = XdR̄d
cab (119)

and describes the curvature of the hypersurface Στ. Because Dµ contains projected
5-components of the connection, these components will also be present in the pull-back R̄ρ

λµν to

M differing from the 4D curvature Rρ
λµν associated with ∇(4)

µ .
Decomposition of the 5D Riemann tensor Rd

cab into projected components R̄d
cab and Kab may

be understood by contracting with the completeness relation (91)

Rc
dab =

(
Pa′

a + σnana′
) (

Pb′
b + σnbnb′

) (
Pc

c′+ σncnc′
) (

Pd′
d + σndnd′

)
Rc′

d′a′b′ (120)

to obtain the sum of three projections(
Pa′

a Pb′
b Pc

c′P
d′
d

)
Rc′

d′a′b′

(
Pc

c′P
a′
a Pb′

b

)
nd Rc′

da′b′

(
Paa′Pb′

b

)
nc′nd Ra′

db′c′ (121)
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where nb′nc′nd Ra′
db′c′ = 0 from the antisymmetry of Rd

cab. The first of (121) is found in Step (iv)
above as the Gauss relation

Rµ
νλρ = R̄µ

νλρ − σ
(
Kµ

λKρν − Kµ
ρ Kλν

)
. (122)

In its original context, this shows that a curved surface embedded in a flat 3D space with
Ri

jkl = 0 will derive its relevant curvature R̄i
jkl entirely from the Kij associated with the gradient

of the normal to that surface.
In Step (v) above we write the definition (54) of Rc

dab while taking Xd = nd to obtain explicit
expressions for the second and third of (121). Projecting the three remaining indices onto
T (Στ) provides the Codazzi relation(

Pa′
a Pb′

b Pc′
c

)
nd Rd

c′a′b′ = DbKac − DaKbc (123)

while projecting twice onto T (Στ) and once onto nc′ leads to(
Paa′Pb′

b

)
nc′nd Ra′

db′c′ = −Kc
aKcb − σ

1
N

DbDaN + Pa′
a Pb′

b nc′∇c′Ka′b′ (124)

which we will combine with the trace-reversed field equation (107) to eliminate Ra′
db′c′ .

5.3. Evolution equations in a coordinate frame
In Step (vi) above we construct an initial value problem for the τ-evolution of the metric and
extrinsic curvature. This construction is naturally performed in a coordinate frame, because
the metric in the quintrad frame is the constant ηab. The τ-derivatives are found by evaluating
the Lie derivatives of γµν and Kµν in the direction of system evolution. Defining the normal
evolution vector mα = Nnα we use the ADM parameterization (59) to write the Lie derivative
along g5 as

g5 = Nµgµ + Nn = N + m −→ Lm = Lg5 −LN (125)

where the Lie derivative acts as

LB Aαβ = Bγ∇γ Aαβ + Aγβ∇αBγ + Aαγ∇βBγ . (126)

From the definition (g5)
γ = δ

γ
5 the τ-derivative is found as

Lg5 Aαβ = δ
γ
5 ∂γ Aαβ + Aγβ∂αδ

γ
5 + Aαγ∂βδ

γ
5 = ∂5Aαβ =

1
c5

∂τ Aαβ (127)

and the derivative along the normal evolution vector

Lm Aαβ = mγ∇γ Aαβ + Aγβ∇αmγ + Aαγ∇βmγ (128)

can be evaluated by rearranging (114) to write

∇αnβ = −Kαβ − nα
1
N

DβN −→ ∇βmα = −NKα
β − nβDαN + nα∇βN . (129)

Inserting (129) into (128) we easily evaluate

Lm Pαβ = −2NKαβ Lm Pα
β = 0 (130)



IARD 2022
Journal of Physics: Conference Series 2482 (2023) 012006

IOP Publishing
doi:10.1088/1742-6596/2482/1/012006

17

where again (92) permits the substitution γαβ → Pαβ. For the extrinsic curvature we find

Lm Kαβ = Nnγ∇γKαβ − 2NKαγKγ
β − KαγDγNnβ − KβγDγNnα (131)

which by projecting with Pα
α′ Pβ′

β and recalling (122) and (124) becomes

Pα′
αPβ′

βRα′β′ = σ
1
N
Lm Kαβ + σ

1
N

DαDβN + R̄αβ − σKKαβ + 2σKδ
αKβδ . (132)

In light of (125) we see that equations (130) and (132) provide a pair of coupled evolution
equations for γµν and Kµν, of first order in ∂τ, in which all terms except the 5D Ricci tensor Rαβ

are derived from the projected covariant derivative. These equations become an initial value
problem for general relativity by replacing Rαβ with the Einstein equations, which by projection
on (107) take the form

Pα′
α Pβ′

β Rα′β′ = Pα′
α Pβ′

β

(
Tα′β′ − 1

2
Pα′β′S

)
= Sαβ −

1
2

PαβS . (133)

Pulling back to M and using (125) to expand Lm in (130) these expressions become

1
c5

∂τγµν = LN γµν − 2NKµν (134)

1
c5

∂τKµν =−DµDνN + LNKµν

+N
{
−σR̄µν + KKµν − 2Kλ

µKνλ + σ
8πG

c4

(
Sµν −

1
2

PµνS
)}

(135)

which differ from the expression found in [19] using unbroken field equations by the symmetry
breaking replacement gµν (S + σκ) → PµνS.

To find the constraint equations, we first contract indices in the Gauss relation

R − 2σRαβnαnβ = R̄ − σ
(

K2 − KαβKαβ

)
(136)

and use the completeness relation to evaluate the trace of Rαβ

R = gαβRαβ = PαβRαβ + σRαβnαnβ (137)

to obtain
PαβRαβ − σRαβnαnβ = R̄ − σ

(
K2 − KαβKαβ

)
. (138)

Projecting the SHP field equations onto the hypersurface and the unit normal provides

PαβRαβ =
8πG

c4 Pαβ

(
Tαβ −

1
2

PαβS
)
= −8πG

c4 S

Rαβnαnβ =
8πG

c4

(
Tαβ −

1
2

PαβS
)

nαnβ =
8πG

c4 κ

(139)

from which we obtain the Hamiltonian constraint

R̄ − σ
(
K2 − KµνKµν

)
= −8πG

c4 (S + σκ) . (140)
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This expression differs from the expressions found in [19] using unbroken 5D field equations
by the replacement

−σ
16πG

c4 κ −→ −8πG
c4 (S + σκ) . (141)

Contracting the Codazzi relation (123) to

Pβ′

βnαRαβ′ = DβK − DαKα
β (142)

and evaluating the mixed projection of the field equations

RαβnαPβ′

β =
8πG

c4

(
Tαβ′ − 1

2
Pαβ′S

)
nαPβ′

β =
8πG

c4 Tαβ′nαPβ′

β = −8πG
c4 pβ (143)

we find the momentum constraint

DµKµ
ν − DνK =

8πG
c4 pν (144)

in the same form found in [19]. Together, equations (134), (135), (140), and (144) decompose the
SHP field equations into an initial value problem for the metric and extrinsic curvature.

5.4. Evolution of the vielbein field
In the quintrad the metric ηab remains constant while the vielbein field that connects the
quintrad to a coordinate frame evolves with τ. To obtain a pair of coupled evolution equations
for E a

α and Kab we restrict our attention to line elements of the form

dX2 = −g00(dx0)2 + g11(dx1)2 + g22(dx2)2 + g33(dx3)2 + σg55(dx5)2 (145)

in rectilinear coordinates and

dX2 = −g00dx2
0 + g11dr2 + g22dθ2 + g33 sin2 θdϕ2 + σg55dx2 (146)

in spherical coordinates. Following the prescription described in Section (2.4) we find the
coordinate frames and vielbein fields to be

E a
α = diag (A0, A1, A2, A3, A5) (147)

in the rectilinear case, and

E a
α =


A0 0 0 0 0
0 A1 sin θ cos ϕ A1 sin θ sin ϕ A1 cos θ 0
0 A2 cos θ cos ϕ A2 cos θ sin ϕ −A2 sin θ 0
0 −A3 sin θ sin ϕ A3 sin θ cos ϕ 0 0
0 0 0 0 A5

 (148)

in the spherical case, with gαα = (Aα)
2. We may write (148) as

E a
α = A(α)R

a
α (149)

where (α) indicates no summation and R 0
α = δ0

α, R 5
0 = δ5

α, and R a
α is a standard 3D rotation

matrix for α, a = 1, 2, 3. We easily confirm that this vielbein also leads to the diagonal metric

γαβ = ηabE a
α E b

β = A(α)A(β)ηabR a
α R b

β = A(α)A(β)ηαβ = A2
(α)ηαβ (150)
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by virtue of its orthogonality.
For any diagonal metric we have Nµ = 0, for which (118) simplifies to

Kab =
1
2

δk
aδl

b
(
Eµk∂5̄eµ

l + Eµl∂5̄eµ
k

)
= −1

2
δk

aδl
b
(
eµ

l∂5̄Eµk + eµ
k∂5̄Eµl

)
(151)

where we used
eµ

l∂aEµk + Eµk∂aeµ
l = ∂a

(
eµ

lEµk
)
= ∂aηlk = 0 . (152)

Writing the inverse vielbein field as

eα
b =

[(
E−1

)T
]α

b
=

1
A(α)

Rα
b (153)

which we verify by

eα
bE a

α =
1

A(α)
Rα

b A(α)R
a

α = Rα
bR a

α = δa
b (154)

we obtain

eα
b∂5̄Eαa = ηaa′e

α
b∂5̄E a′

α = ηaa′
1

A(α)
Rα

b∂5̄A(α)R
a′

α =
∂5̄A(α)

A(α)
ηaa′R

α
bR a′

α . (155)

Swapping the indices a and b we see that

eα
a∂5̄Eαb =

∂5̄A(α)

A(α)
ηba′R

α
aR a′

α =
∂5̄A(α)

A(α)
ηba′R

a′
α Rα

a =
∂5̄A(α)

A(α)
ηaa′′R

α
bR a′′

α = eα
b∂5̄Eαa (156)

from which
Kkl = −1

2
(
eµ

l∂5̄Eµk + eµ
k∂5̄Eµl

)
= −eµ

l∂5̄Eµk (157)

permitting us to rewrite (151) as
∂5̄E k

µ = −E l
µ Kk

l . (158)

Using (77) as the explicit form of the vielbein field we have

∂5̄ = eα
5̄∂α =

[
δk

5̄δα
µeµ

k − δ5
5̄

1
N

(
δα

µNµ − δα
5

)]
∂α =

1
N

∂5 (159)

where we used δk
5̄ = 0 and Nµ = 0. Expression (158) now becomes the evolution equation

∂5E k
µ = −NE l

µ Kk
l (160)

which we compare with the evolution equation for the metric (134)(
1
c5

∂τ −LN

)
γµν = −2NKµν −→ ∂5γµν = −2NKµν (161)

in the case that Nµ = 0.
We now consider the coordinate evolution equation for Nµ = 0

∂5Kµν = −DµDνN + N
{
−σR̄µν + KKµν − 2Kλ

µKνλ + σ
8πG

c4

(
Sµν −

1
2

γµνS
)}

(162)
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found as the pullback to M of an expression derived on the hypersurface Στ. We rewrite this
as a pullback from the quintrad using

E a
µ = Eα

µ E a
α = δα

µ

[
δ

µ′

α δa
kE k

µ′ + δ5
α

(
E k

µ′ Nµ′
δa

k + Nδa
5

)]
= δa

kE k
µ (163)

where Nµ = 0 and δ5
µ = 0, to obtain

∂5

(
E a

µE b
ν Kab

)
=−E a

µDaE b
ν DbN

+E a
µE b

ν N
{
−σR̄ab + KKab − 2Kc

aKbc + σ
8πG

c4

(
Sab −

1
2

ηabS
)}

. (164)

The push forward similarly reduces to

V⊥
a = eα

aδ
µ
αvµ =

[
δk

aδα
µ′eµ′

k − δ5
a

1
N

(
δα

µ′ Nµ′ − δα
5

)]
δ

µ
αvµ = δk

aeµ
kvµ (165)

and writing Ēµ
a = δk

aeµ
k we have

Ēµ
a E a′

µ = δk
aδa′

k′ e
µ
kE k′

µ = δk
aδa′

k . (166)

Applying Ēµ
a to the evolution equation we are led to

Ēµ
k Ē

ν
l ∂5

(
E a

µE b
ν Kab

)
= −DkDl N + N

{
−σR̄kl + KKkl − 2K j

kKl j + σ
8πG

c4

(
Skl −

1
2

γklS
)}

(167)

where we used the compatibility relation (46) to write DaE b
ν = 0, and expand

Kc
kKlc =

(
ηcc′δk′

c′ δ
l′
k Kk′ l′

) (
δk′′

l δl′′
c Kk′′ l′′

)
= K j

kKjl . (168)

On the LHS
Ēµ

k = δk′
k eµ

k′ = eµ
k (169)

and
E a

µE b
ν Kab =

(
δa

k′E
k′

µ

) (
δb

l′E
l′

ν

) (
δk

aδl
bKkl

)
= E k

µ E l
ν Kkl (170)

so that
Ēµ

k Ē
ν
l ∂5

(
E a

µE b
ν Kab

)
= eµ

k

(
∂5E k′

µ

)
Kk′ l + eν

l

(
∂5E l′

ν

)
Kkl′ + ∂5Kkl (171)

and using (160) to replace ∂5E k
µ we find

Ēµ
k Ē

ν
l ∂5

(
E a

µE b
ν Kab

)
= −2NKk′

k Kk′ l + ∂5Kkl . (172)

Inserting this into (164) leads us finally to a slightly simplified evolution equation for the
extrinsic curvature

∂5Kkl = −DkDl N + N
{
−σR̄kl + KKkl + σ

8πG
c4

(
Skl −

1
2

ηklS
)}

. (173)

We mention that the equilibrium condition for this system is found by taking N = 1 and
∂τE k

µ = 0, which by (160) entails Kkl = 0. Now (173) becomes

0 = −R̄kl +
8πG

c4

(
Skl −

1
2

ηklS
)

(174)

which we recognize as the trace-reversed form of the standard 4D Einstein field equations in
the vielbein.
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6. Example — evolving Schwarzschild metric
In [19] we considered an event evolving with τ-varying squared mass −pµ pµ = −(Mẋ)2,
and showed, using the weak field approximation, that it induces a τ-dependent metric. This
metric, in turn, induces motion in a test particle whose mass varies similarly with τ, suggesting
a transfer of mass carried by the gravitational field across spacetime. We also considered a
generalized Schwarzschild solution with 5D metric

gαβ = diag
(
−B, A, r2, r2 sin2 θ, σN

)
(175)

with B = B (r, τ), A = A (r, τ), and N = 1. The spacetime components of the Christoffel
connection and Ricci tensor are thus τ-dependent, but their functional form is unaffected, and
so under boundary conditions

B (r, τ) −−−−→
r→∞

1 A (r, τ) −−−−→
r→∞

1 (176)

for all τ, a solution satisfying R̄µν = 0 leads to

AB = 1 B = 1 +
f (τ)

r
= 1 +

2MG
c2r

T(τ) (177)

which recovers the standard Schwarzschild solution for the function T(τ) = 1. Solving the
field equations to obtain T(τ) for given sources Sµν, pµ, and κ will generally require numerical
integration, but to gain a sense of the formalism we may calculate the sources for a given T.
Using the unbroken 5D field equations in a coordinate frame we found

Kµν = − 1
2c5

∂τγµν = − 1
c5

Ṫ (τ)
MG
c2r

diag
(

1,
1

B2 , 0, 0
)

−→ K = 0 (178)

S00 = B2S11 = −σ
c2

c2
5

2M
16πr

T̈ (τ) S22 = S33 = 0 −→ S = 0 (179)

along with κ ≈ 0.
In the quintrad frame, comparison of the metric (175) with (148) and (150) provides the

vielbein field in the form

E a
α =


√

B 0 0 0 0
0

√
A sin θ cos ϕ

√
A sin θ sin ϕ

√
A cos θ 0

0 cos θ cos ϕ cos θ sin ϕ − sin θ 0
0 − sin θ sin ϕ sin θ cos ϕ 0 0
0 0 0 0 1

 (180)

where we have taken

A0 =
√

B A1 =
√

A =
1√
B

A2 = A3 = A5 = 1 . (181)

leading to
∂a A0

A0
=

∂aB
2B

∂a A1

A1
=

1
2A

∂a A = −∂aB
2B

(182)

as in the standard Schwarzschild solution.
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With N = 1, and thus DkDl N = 0, the evolution equations (160) and (173) are somewhat
simplified. In (178) we found Kµν by inverting the metric evolution equation, and here we
similarly use (155) to invert the vielbein evolution equation (160) and write

Kkl = −eµ
k∂5̄Eµl = −

∂5A(µ)

A(µ)
ηll′R

µ
kR l′

µ = −∂5B
B

(
δ0

kηl0 − ηll′R
1

kR l′
1

)
(183)

from which we again find the vanishing trace as

K = ηklKkl = −∂5B
B

ηkl
(

δ0
0 − δ1

1

)
= 0 . (184)

We notice that the coefficient R1
m is the m-component of the 3D unit vector

r̂ = (sin θ cos ϕ, sin θ sin ϕ, cos θ) (185)

so that
Kkl =

∂5B
B

(
δ0

kδ0
l + r̂k r̂l

)
(186)

“points” in the kl-direction.
In the weak field approximation we neglected terms quadratic in Kµν but here we readily

evaluate

KklKkl =

(
−

∂5A(µ)

A(µ)
ηkk′Rµ

k′R
l

µ

)(
−

∂5A(ν)

A(ν)
ηll′R

ν
kR l′

ν

)
=

1
2

(
∂5B
B

)2

. (187)

Inserting (186) into the second evolution equation leads to nonlinear second order equations,
as we expect to find from field equations for gravitation. Splitting (173) and the constraint
equations into 3D space (m, n = 1, 2, 3) and 0-components, these become

−∂5

(
∂5B
B

)
= σ

8πG
c4 S00 r̂m r̂n ∂5

(
∂5B
B

)
= σ

8πG
c4 Smn (188)

−1
2

(
∂5B
B

)2

=
8πG

c4 κ (189)

−D0

(
∂5B
B

)
=

8πG
c4 p0 Dm

(
∂5B
B

r̂m r̂n

)
=

8πG
c4 pn (190)

from which we again find S = ηklSkl = 0. As for Kkl , we see that the spacetime energy
momentum tensor Skl “points” in the kl-direction. The previously neglected quadratic term
(189) indicates that this solution requires a negative local mass density κ < 0. In [21] we
showed that κ can be expressed as a cosmological term

Λ(x, τ) = σ
4πG

c4 κ (191)

that is not constant, but scalar and independent of Skl . For a weak field solution, it is seen that
this term must be very small in magnitude.
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7. Conclusion
As in SHP electrodynamics, a particle worldline is the trajectory over τ of the irreversible
physical event xµ(τ), whose evolution is generated by a scalar Hamiltonian K. The spacetime
manifold of general relativity is then M(τ), a 4D block universe occurring at τ and evolving
under K to an infinitesimally close 4D block universe M(τ + dτ). The local metric structure
γµν of M(τ), including the coordinate past and future, must therefore be τ-dependent, and
appropriate field equations must be determined to specify its evolution.

The field equations of standard general relativity (GR) express the reciprocal relationship
between 4D geometry and the energy-momentum of matter present in spacetime, embodying
O(3,1) covariance, general diffeomorphism invariance, and the translation invariance of the
Ricci tensor that guarantees the Bianchi identity as a 4D gauge symmetry. The 3+1 formalism
decomposes the field equations into a pair of coupled t-evolution equations for the geometry of
3D space, along with constraints among the initial conditions. As articulated by Wheeler [31],
“A decade and more of work by Dirac, Bergmann, Schild, Pirani, Anderson, Higgs, Arnowitt,
Deser, Misner, DeWitt, and others has taught us through many a hard knock that Einstein’s
geometrodynamics deals with the dynamics of geometry: of 3-geometry, not 4-geometry.”

In SHP GR we proceed in the reverse direction, guided by SHP electrodynamics. Beginning
with τ-evolution, we determine field equations possessing O(3,1) covariance and a 5D gauge
symmetry associated with a Bianchi identity that obtains for the 5D Ricci tensor Rαβ constructed
on the pseudo-spacetime M5. This structure admits the natural foliation into 4D hyperspaces
Στ homeomorphic to M, leading to the desired evolution equations for γµν(x, τ) and Kµν(x, τ)
as (nearly) canonically conjugate fields [19].

The basic structure of the 4+1 formalism, generalizing the geometrical arguments of the
3+1 method to the SHP framework, was presented in [19]. In [20, 21] the linearized theory
was explored, and it was shown that the evolution equations retain a 5D symmetry, possibly
O(4,1) or O(3,2), that leads to deviation from standard gravitational phenomenology. As in
SHP electrodynamics, the fields (geometry) may exhibit the higher symmetry in a vacuum,
but the matter parts must be restricted to O(3,1). In this paper, we broke the symmetry at the
interface between the field and matter parts of the field equations. To this end, we constructed
the tangent space T (M5) and its foliation in a quintrad frame, for which the flat metric and
its symmetry-broken form are easily chosen. Using the vielbein field, we transformed the
symmetry-broken flat metric to its local form in a coordinate frame, leading to the desired
coordinate frame field equations for the 5D metric gαβ. Since the quintrad metric is constant
and the τ-dependence is contained in the vielbein field, we obtained in an evolution equation
for E a

α that applies to any diagonal metric, and showed that it simplifies the evolution equation
for Kµν. Thus, initial value problems for gravitational fields may be solved in the quintrad
frame.

It follows from the 5D Bianchi identity [19–21] that the SHP field equations (107) split into

Rµν =
8πG

c4

(
Tµν −

1
2

PµνS
)

R5α =
8πG

c4 T5α (192)

where the spacetime components are ten unconstrained field equations corresponding to the
τ-evolution equations for γµν and Kµν, and the 5-components are constraints among the initial
conditions that propagate forward with τ but do not evolve under second order differential
equations. This decomposition was also seen [21] in the linearized SHP theory by expanding
the Ricci tensor Rαβ for a weak perturbation to the flat metric, so that equations (107) become a
5D wave equation. This wave equation similarly splits into spacetime components from which
we find the linearized evolution equations, and 5-components that become the constraint
equations. In this paper we saw that the vielbein field splits into a spacetime part that contains
the dynamical content, and a 5-part that embodies the constraints. The natural separation of the
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field equations into unconstrained evolution equations and non-evolving constraints underlies
the 4+1 formalism in SHP gravitation.

References
[1] Isham C 1992 Canonical quantum gravity and the problem of time Tech. Rep. Imperial/TP/91-92/25 Blackett

Laboratory, Imperial College lectures at the NATO Summer School in Salamanca URL https://arxiv.org/

abs/gr-qc/9210011

[2] Kiefer C and Peter P 2022 Universe 8 36 ISSN 2218-1997 URL http://dx.doi.org/10.3390/universe8010036

[3] Stueckelberg E 1941 Helv. Phys. Acta 14 321–322 (In French)
[4] Stueckelberg E 1941 Helv. Phys. Acta 14 588–594 (In French)
[5] Horwitz L and Piron C 1973 Helv. Phys. Acta 48 316–326
[6] Horwitz L and Lavie Y 1982 Phys. Rev. D 26 819–838
[7] Arshansky R and Horwitz L 1989 J. Math. Phys. 30 213
[8] Arshansky R and Horwitz L 1988 Phys. Lett. A 131 222–226
[9] Arshansky R and Horwitz L 1989 J. Math. Phys. 30 66

[10] Arshansky R and Horwitz L 1989 J. Math. Phys. 30 380
[11] Saad D, Horwitz L and Arshansky R 1989 Found. Phys. 19 1125–1149
[12] Horwitz L P 2015 Relativistic Quantum Mechanics (Dordrecht, Netherlands: Springer)
[13] Horwitz L P and Arshansky R I 2018 Relativistic Many-Body Theory and Statistical Mechanics 2053-2571 (Morgan

& Claypool Publishers) ISBN 978-1-6817-4948-8 URL http://dx.doi.org/10.1088/978-1-6817-4948-8

[14] Land M and Horwitz L P 2020 Relativistic classical mechanics and electrodynamics (Morgan and Clay-
pool Publishers) URL https://www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?

products_id=1489

[15] Horwitz L P 2019 Journal of Physics: Conference Series 1239 012014 URL https://doi.org/10.1088%

2F1742-6596%2F1239%2F1%2F012014

[16] Horwitz L P 2019 The European Physical Journal Plus 134 313 ISSN 2190-5444 URL https://doi.org/10.1140/

epjp/i2019-12689-7

[17] Wheeler J A 2000 Geons, Black Holes and Quantum Foam: A Life in Physics (W. W. Norton & Company)
[18] Land M 2019 Astronomische Nachrichten 340 983–988 URL https://onlinelibrary.wiley.com/doi/abs/10.

1002/asna.201913719

[19] Land M 2020 Symmetry 12 ISSN 2073-8994 URL https://www.mdpi.com/2073-8994/12/10/1721

[20] Land M 2021 Journal of Physics: Conference Series 1956 012010 URL https://doi.org/10.1088/1742-6596/

1956/1/012010

[21] Land M 2022 Universe 8 ISSN 2218-1997 URL https://www.mdpi.com/2218-1997/8/3/185

[22] Gourgoulhon E 2007 3+1 formalism and bases of numerical relativity Tech. rep. Laboratoire Univers et
Theories, C.N.R.S. lectures given at the General Relativity Trimester held in the Institut Henri Poincare
(Paris, Sept.-Dec. 2006) and at the VII Mexican School on Gravitation and Mathematical Physics (Playa del
Carmen, Mexico, 26. Nov. - 2 Dec. 2006) URL https://arxiv.org/abs/gr-qc/0703035

[23] Bertschinger E 2002 Hamiltonian formulation of general relativity Tech. Rep. Physics 8.962 Massachusetts
Institute of Technology URL http://web.mit.edu/edbert/GR/gr11.pdf

[24] Blau M 2020 Lecture notes on general relativity Tech. rep. Albert Einstein Center for Fundamental Physics,
Universität Bern URL http://www.blau.itp.unibe.ch/GRLecturenotes.html

[25] Arnowitt R L, Deser S and Misner C W 2004 General Relativity and Gravitation 40 1997–2027 URL https:

//arxiv.org/abs/gr-qc/0405109

[26] Yepez J 2011 (Preprint 1106.2037)
[27] Land M, Shnerb N and Horwitz L 1995 J. Math. Phys. 36 3263
[28] Land M and Horwitz L 1991 Found. Phys. Lett. 4 61
[29] Weinberg S 1972 Gravitation and Cosmology: Principles and Applications of the General Theory of Relativity (New

York, NY: Wiley) URL https://cds.cern.ch/record/100595

[30] Land M 2019 Journal of Physics: Conference Series 1239 012005 URL https://doi.org/10.1088%2F1742-6596%

2F1239%2F1%2F012005

[31] Wheeler J A 1969 pp 615-724 of Topics in Nonlinear Physics. Zabusky, Norman J. (ed.). New York, Springer-Verlag
New York, Inc., 1968.

https://arxiv.org/abs/gr-qc/9210011
https://arxiv.org/abs/gr-qc/9210011
http://dx.doi.org/10.3390/universe8010036
http://dx.doi.org/10.1088/978-1-6817-4948-8
https://www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?products_id=1489
https://www.morganclaypoolpublishers.com/catalog_Orig/product_info.php?products_id=1489
https://doi.org/10.1088%2F1742-6596%2F1239%2F1%2F012014
https://doi.org/10.1088%2F1742-6596%2F1239%2F1%2F012014
https://doi.org/10.1140/epjp/i2019-12689-7
https://doi.org/10.1140/epjp/i2019-12689-7
https://onlinelibrary.wiley.com/doi/abs/10.1002/asna.201913719
https://onlinelibrary.wiley.com/doi/abs/10.1002/asna.201913719
https://www.mdpi.com/2073-8994/12/10/1721
https://doi.org/10.1088/1742-6596/1956/1/012010
https://doi.org/10.1088/1742-6596/1956/1/012010
https://www.mdpi.com/2218-1997/8/3/185
https://arxiv.org/abs/gr-qc/0703035
http://web.mit.edu/edbert/GR/gr11.pdf
http://www.blau.itp.unibe.ch/GRLecturenotes.html
https://arxiv.org/abs/gr-qc/0405109
https://arxiv.org/abs/gr-qc/0405109
1106.2037
https://cds.cern.ch/record/100595
https://doi.org/10.1088%2F1742-6596%2F1239%2F1%2F012005
https://doi.org/10.1088%2F1742-6596%2F1239%2F1%2F012005

