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Abstract We use a combination of effective field theory and the renormalization group to determine the impact
of radiative corrections on the nucleon–nucleon potential and the binding energy of the deuteron. In order to do
so, we present a modified version of pionless effective field theory inspired by earlier work in nonrelativistic
quantum electrodynamics. The renormalization group improvement of the deuteron binding energy leads to a
shift on the order of a few percent and is consistent with the experimental value. This work serves as a starting
point for a dedicated study of radiative corrections in few-body systems relevant for precision tests of the
Standard Model in an effective field theory framework.

1 Introduction

Modern experiments that rely on few-nucleon systems such as β-decay [1,2], μ-capture [3,4], and muonic atom
spectroscopy [5–10] are reaching subpercent-level precision. Thus, these experiments can provide stringent
tests for the Standard Model in low energy systems and possibly shed light on new physics. However, a correct
interpretation of the experimental results requires a thorough theoretical understanding and delineation of the
different effects involved.

In particular, these experiments are sensitive to radiative corrections from electrodynamics. In the context
of muonic atom spectroscopy, a subset of these effects has been the subject of significant theoretical interest
[11–13]. It is customary to include radiative corrections through finite nuclear size effects and the exchange
of two or more photons between the nucleus and the bound muon. The nuclear wavefunctions and currents,
however, only include electromagnetic effects implicitly by fitting the parameters of the nuclear Hamiltonian
and currents to data. Because of this, there is no way to distill how much of an observable comes from
quantum chromodynamics (QCD) as opposed to electroweak interactions.

In the case of β-decays, this topic has received renewed interest in recent years with respect to single-
neutron β-decay [14–21]. Interestingly, Ref. [15] finds a percent level shift in the nucleon axial coupling
gA due to radiative corrections that shifts the lattice QCD determination of gA closer to the more precise
experimental value. This represents a significant step towards disentangling the myriad of effects involved in
neutron β decay in terms of Standard Model parameters.

The goal of this work is to begin bridging the gap in few-nucleon systems with effective field the-
ory (EFT) techniques. We use a combination of pionless effective field theory (EFT/π ) [22–30] and the
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velocity renormalization group (vRG) [31] developed for nonrelativistic QED (NRQED) [32]. This theory
is valid for momenta p � mπ , where mπ is the pion mass, which is in the regime relevant for many of these
experiments. Certain aspects of this work can also be applied in chiral EFT [30,33–36], which has a larger
radius of convergence. On the other hand, the entire framework can immediately be applied in an EFT for halo
nuclei [30,37–39] with trivial modifications.

In this work, we use the renormalization group to sum the leading logarithm series in α, where α = e2/4π
is the fine structure constant, into the coefficients of the neutron-proton potential. The running couplings that
follow from the vRG equations can in principle be embedded in ab initio calculations using few- or many-body
methods. The electromagnetic renormalization of this potential will generate isospin breaking contributions
in the electroweak processes already described (see, e.g., Refs. [40–43] in the context of nuclear β-decays).

To illustrate the impact of the running induced by the radiative corrections, we use renormalization group
improved perturbation theory to calculate the deuteron binding energy and compare the result to the fixed
order calculation. In order to generate numerical results, the vRG equations require a boundary condition to
fix the final value of low energy coefficients (LECs). Ideally, the LECs in a nuclear EFT in the absence of
electroweak effects would be determined by lattice QCD rather than data. However, available few-nucleon
lattice calculations have greater than physical mπ and the uncertainties are quite large. In the meantime,
we make use of the scattering parameters of the phenomenological Argonne v18 (AV18) potential without
electromagnetic interactions found in Table VIII of Ref. [44] (also see Ref. [45]). Here, we find that vRG
improvement drives a percent level shift in the deuteron binding energy. This observation is consistent with
the AV18 potential, but it recasts the impact of electromagnetic corrections to the nucleon-nucleon (NN )
interactions in terms of a modern EFT with the full machinery of the renormalization group.

2 Reorganizing Pionless Effective Field Theory

Now, we recast EFT/π in the language of velocity NRQED (vNRQED) [31]. In EFT/π it is typical to count
powers of the momentum p, but in NRQED powers of velocity v = p/MN , where MN is the nucleon mass,
are counted. However, some care is needed in judging the scaling of electromagnetic interactions relative to the
strong NN interaction; we revisit this at the end of this section. The relevant (energy, momentum) scales are
then expressed as hard (mπ ,mπ), soft (MNv, MNv), ultrasoft (MNv2, MNv2), and potential (MNv2, MNv).
Power counting issues are avoided by splitting the photon into multiple modes describing the soft and ultrasoft
regions and multipole expanding the ultrasoft modes [46–51]. The potential photons can be integrated out
because they are far off-shell; their effects are encoded in the coefficients of four-nucleon operators.

After performing a nonrelativistic reduction, the four-momentum of the nucleon is decomposed as

P = (0,p) + (k0,k) , (1)

where p ∼ MNv is the soft component of the momentum and k ∼ MNv2 is the residual four-momentum on
the ultrasoft scale. The on-shell condition becomes k0 = p2/2MN . The nucleon field is now written as Np(x)
where p is a soft label, x is the Fourier conjugate of the residual momentum k, and N is an isodoublet of the
proton and neutron.

The photon field is also split into a soft field Aμ
p(k) with soft label four-momentum p and a residual four-

momentum k and an ultrasoft field Aμ. Conservation of energy excludes interactions of the type AqN
†
pNp,

i.e., only vertices with two soft photon lines are allowed. The kinetic term of the photon field is split into

L ⊃ − 1

4
FμνF

μν +
∑

p

∣∣∣pμAν
p − pν Aμ

p

∣∣∣
2

, (2)

where the field strength tensor Fμν contains only ultrasoft photons.
Reparameterization invariance implies that derivatives acting on the nucleon fields appear in the combina-

tion ip + D, where p acts on the soft label and D is a covariant derivative acting on the residual piece of the
nucleon field. In the kinetic term for the nucleon, the term (p − iD)2 should be expanded, which is equivalent
to the multipole expansion, and only the p2 should be kept in the leading order propagator. Therefore, the
nucleon propagator will be

S(k0,p) = i

k0 − p2

2MN
+ iε

. (3)
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Terms containing factors of p · ∇ or ∇2 are treated as perturbations.
While EFT/π is usually formulated in an isospin basis, we find it more convenient to study the ultrasoft

renormalization of the potential in terms of physical neutron and proton fields n and p, respectively. The LECs
can of course be translated into the isospin basis after the renormalization has been carried out. In this basis,
the proton–neutron potential is written as

Vpn =
∑

v=−1

∑

p′,p
V (v,pn)
abcd (p′,p)p†

p′,a pp,bn
†
−p′,cn−p,d , (4)

where v tracks the order in the velocity expansion of each coefficient, and a, b, c, and d are spin indices for the
neutron and proton fields. The leading order (LO), next-toleading order (NLO), and next-to-next-to-leading order (N2LO)
potential coefficients in the S-wave are given by

V (−1,pn)
abcd = C (3S1)

0,pn P
(1)
ab,cd + C (1S0)

0,pn P
(0)
ab,cd , (5)

V (0,pn)
abcd = 1

2

(
p′2 + p2) [

C (3S1)
2,pn P

(1)
ab,cd + C (1S0)

2,pn P
(0)
ab,cd

]
, (6)

V (1,pn)
abcd = 1

4

(
p′2 + p2)2

[
C (3S1)

4,pn P
(1)
ai,bj + C (1S0)

4,pn P
(0)
ab,cj

]
, (7)

where the projection operators are given by

P(1)
ab,cd = 1

4

(
3δabδcd + σ i

abσ
i
cd

)
, (8)

P(0)
ab,cd = 1

4

(
δabδcd − σ i

abσ
i
cd

)
. (9)

Note that our definition of C4 is a linear combination of C4 + C̃4 that appears in the literature (see for example
Refs. [26–28]). The V (0) potential should also be supplemented with a correction to the Coulomb potential
that arises from a potential photon coupled to the proton charge and the neutron charge radius as well as a
term that couples the neutron and proton magnetic moments; however, these terms are also suppressed by a
factor of α bringing the overall sizes to O(αv0). Therefore, the velocity power counting suggests that these
contributions are higher order than what we will consider.

The neutron-neutron potentials have an identical structure with respect to the purely strong interactions. The
part of the potential that arises from potential photon exchange is O(αv2). The strong part of the proton–proton
potential is also identical to the proton–neutron potential. However, we have to add the Coulomb potential to
the leading order term.

V (−1,pp)
abcd ⊃

∑

p′,p

4πα

(p′ − p)2 δabδcd . (10)

In the remainder of this work we will only consider the proton–neutron channel, so we only retain Vpn from
Eq. (4). All together, the Lagrangian we will work with is

L =
∑

p

N †
p

(
i D0 − (p − iD)2

2MN

)
Np − 1

4
FμνF

μν +
∑

p

∣∣∣pμAν
p − pν Aμ

p

∣∣∣
2 − Vpn

− 4πα

2MN

∑

q,q ′,p,p′
Aq ′ · Aq N

†
p′QNp + e

2MN
εi jk

(
∇ j Ak

) ∑

p

N †
pσ i [κ0 + κ1τ

3] Np , (11)

where we have reverted to the nucleon isodoublet Np in the single-nucleon terms to condense the notation,
Q = (1 + τ3)/2 is the nucleon charge matrix, and Vpn is the neutron-proton potential defined in terms of
neutron and proton fields in Eq. (4) with coefficients from Eqs. (5)–(7).

Counting powers of velocity in Feynman diagrams is fairly straightforward. Nucleon and soft photon
propagators count as 1/v2 while ultrasoft photon propagators count as 1/v4. The purely NN potentials follow
the standard power counting of EFT/π where Q ∼ MNv [23,24]. Finally, a soft loop has an integration measure
that scales as v4, a potential loop scales as v5, and an ultrasoft loop scales as v8.
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Fig. 1 O(α/v) diagrams that contribute to the anomalous dimension of the potential

In order to implement the vRG, we determine the O(α/v) counterterms and obtain the soft and ultrasoft
anomalous dimensions from [31,52]

μU
dV

dμU
= γU , (12)

μS
dV

dμS
= γS , (13)

where μS is the scale introduced in dimensional regularization for the potentials and soft interactions and μU
is the scale introduced for the ultrasoft interactions. Through these scales we introduce the subtaction velocity
ν as μS = MNν and μU = MNν2 so that the vRG equation is

ν
dV

dν
= γS + 2γU . (14)

In NRQED, this procedure is fairly easy because the fine structure constant α does not run and the LO Coulomb
potential is not renormalized [53]. Moreover, the α and v expansions are identical since the average velocity in
a Coulomb bound state is O(α). As we will see below, because the α and v expansions are not strictly linked
in the nuclear EFT and because α runs due to the fact that the electron mass is not integrated out of the theory,
there is a much richer structure that arises from the vRG.

Before proceeding to the calculation of the anomalous dimensions, we comment further on the power
counting in this EFT. As previously mentioned, the v and α expansions are not identical as they are in pure
NRQED. However, we can estimate the relative importance of O(α) corrections to the strong sector. The typical
relative momentum in the deuteron is p ∼ 50 MeV, so that the the expansion in the purely strong sector is in
powers of Q = p/mπ which is roughly 1/3. For α ∼ 1/137, a conservative estimate in this regime suggests
α ∼ Q4. Thus, through N2LO in the potential sector, we can safely neglect the finite contributions from the
diagrams when we calculate the binding energy of the deuteron below and encode the effects from radiative
correction in the running couplings via the solutions of the vRG equations. We expect that these contributions
should be included explicitly around next-to-next-to-next-to-leading order (N3LO). Indeed, these contributions
are already probed through the variation of the subtraction velocity. For other processes such as proton–proton
fusion where the typical momentum or velocity is somewhat smaller, the explicit radiative corrections will
enter at even lower orders.

In the remainder of this work, we will focus mainly on the neutron-proton sector at O(α/v). The neutron–
neutron potential will be renormalized at higher orders in the v expansion. Renormalizing the proton–proton
potential is much more involved. The Coulomb interaction will generate a nonzero soft anomalous dimension
for C0 [54] leading to a faster running. Thus, we expect the vRG to lead to interesting results in this channel.

3 Renormalization

The renormalization procedure in this theory is reminiscent of the role of radiation pions in EFT [55]. How-
ever, there are several important differences. First, we can treat both ultraviolet and infrared divergences in
dimensional regularization, which simplifies the loop integrals. Second, the neutron has no coupling to A0
photons at the order we are working.

With this set-up, the basic topologies that renormalize the potential are shown in Fig. 1. In Feynman gauge,
the dominant contribution, which is O(α/v), comes from an A0 photon coupled to the proton on both the
incoming and outgoing lines with insertions of the C0 potential. Inside the ultrasoft loop, an arbitrary number
of NN bubbles with only C0 vertices will contribute at the same order; therefore, the internal bubble diagrams
must be summed to all orders.
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This infinite sum of diagrams often makes explicit renormalization of the series intractable. The argument
in the case of radiation pions is that the bubble sum should be performed before the ultrasoft integration
[55]. However, it should really be understood that the finite parts of the bubbles are being summed, i.e., all
divergences are canceled by the appropriate counterterms and the remainder is resummed. In this case, we can
actually perform this renormalization to all orders in C0.

In the bubble series, each graph is divergent. However, each graph with an odd number of NN bubbles is
ultraviolet finite and the divergence is purely infrared. Each graph with an even number of NN bubbles has both
ultraviolet and infrared divergences which must be separated. Specifically, a graph with l = 2 j bubbles, where
j is an integer, requires a counterterm that renormalizes the 2 j-derivative potential. For example, the diagram
with 0 NN bubbles renormalizes the V (−1) potential while the diagram with 2 NN bubbles renormalizes the
V (0) potential. For arbitrary j , the appropriate counterterm in minimal subtraction is

δC2 j = αC0

2π

(
iMNC0

4π

)2 j 1

j + 1

1

ε
. (15)

For the LO potential, we find γS,0 = 0 while

γU,0 = 1

2π
α(MNν2)C0 , (16)

which leads to the vRG equation

ν
dC0

dν
= 1

π
α(MNν2)C0. (17)

For j ≥ 1, we find

γS,2 j ⊃ α

π

2 j

j + 1
C0

(
iMNC0

4π

)2 j

, (18)

γU,2 j ⊃ α

2π

3 + 4 j

j + 1
C0

(
iMNC0

4π

)2 j

. (19)

There is also a contribution to the ultrasoft anomalous dimension of the 2 j-derivative operator from an insertion
of the operator itself into the one-loop diagram, i.e., the first diagram on the right hand side of Fig. 1. This
contribution is identical to that for C0 though only with C2 j appearing instead. Dressing the potential vertex
with additional C0 interactions leads to diagrams of the same order in v, which will also generate contributions
to the soft anomalous dimension of higher-derivative operators. However, these contributions are still be
suppressed relative to the anomalous dimensions presented here. Retaining only the leading contribution to
the anomalous dimension leads to the vRG equation

ν
dC2 j

dν
= α

π

3 + 6 j

j + 1
C0

(
iMNC0

4π

)2 j

. (20)

Integrating the vRG equation gives

C0(ν) = C0

(
mπ

MN

)(
α(MNν2)

α(m2
π/MN )

)3/4

, (21)

C2(ν) = C2

(
mπ

MN

)
− 3

2

(
MN

4π

)2

C3
0

(
mπ

MN

) [(
α(MNν2)

α(m2
π/MN )

)9/4

− 1

]
, (22)

C4(ν) = C4

(
mπ

MN

)
+

(
MN

4π

)4

C5
0

(
mπ

MN

)[(
α(MNν2)

α(m2
π/MN )

)15/4

− 1

]
. (23)

In Fig. 2, we show the running of the potential LECs normalized as

Ĉ2 j (ν) = C2 j (ν)

C2 j (mπ/MN )
, (24)

where the normalization condition is discussed below in Eqs. (32) through Eq. (37). The zero-derivative
potential runs very slowly while Ĉ2 differs by several percent from its value at the hard scale when ν < 0.06.
The running of Ĉ4 is significantly faster; it changes by nearly 50% when ν ∼ 0.06
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Fig. 2 The running of the potential coefficients. The blue line is the running of Ĉ0, the orange line is the running of Ĉ2, and the
green line is the running of Ĉ4

4 Impact in the Deuteron

The two-point correlation function for the deuteron is given by [56]

G(Ē) = �(Ē)

1 + iC0�(Ē)
, (25)

where � is the self-energy of the deuteron and consists of irreducible diagrams in the sense that they do not
fall apart when cut at a C0 vertex. The self-energy is expanded as

�(Ē) = �1(Ē) + �2(Ē) + �3(Ē) + · · · (26)

where Ē is the center-of-mass energy and the dots stand for higher order terms. The subscript indicates the
order of the contribution in the velocity expansion.

On one hand, the two-point function has the form

G(Ē) = i Z̃

Ē + B̃
, (27)

where Z̃ and B̃ are the wave-function renormalization and binding energy in the full theory, respectively. The
perturbative corrections lead to shifts in the wave function renormalization Z̃ = Z + δZ and the binding
energy B = B + δB, where Z and B are the LO results for the wave-function renormalization and binding
energy, respectively. Expanding the two-point function leads to

G(Ē) = i (Z + δZ)

Ē + B

[
1 − δB

Ē + B
+ · · ·

]
. (28)

The energy shift δB can now be identified as the coefficient of −i Z/(Ē + B)2 (see for instance Ref. [57]).
On the other hand, the two-point function can be expanded as

G(Ē) = �1

1 + iC0�1
+ (−iC2)(MN Ē)�2

1

(1 + iC0�1)
2 + (−iC4)(MN Ē)2�2

1

(1 + iC0�1)
2 − C2

2 (MN Ē)2�3
1

(1 + iC0�1)
3 + · · · , (29)

where each coupling is a function of the subtraction velocity ν. In the sector of the theory with only potential
terms, this is equivalent to time independent perturbation theory in ordinary quantum mechanics. Thus, the
shift in the binding energy can be obtained by inserting the LO expression of the self-energy and manipulating
the denominators of the second and third terms until reaching the form of Eq. (28). The last term requires more
care. This term corresponds to a second-order perturbation theory calculation with the C2 interaction, so we
must explicitly separate the contribution of the deuteron in this term. This is equivalent to calculating

〈ψ | V (0) 1

E − H
V (0) |ψ〉 − 1

E + B

∣∣∣〈ψ | V (0) |ψ〉
∣∣∣
2

, (30)
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Fig. 3 The deuteron binding energy as a function of the subtraction velocity. The solid black line is the experimental value. The
blue (orange) dashed line is the fixed order NLO (N2LO) result while the blue (orange) solid line is the renormalization group
improved NLO (N2LO) result

where H is the full LO Hamiltonian containing V (−1). All together the binding energy to N2LO is

B = 1

MN

(
4π

MNC0

)2

+ 1

2π
C2

(
4π

MNC0

)5

+ 7

16π2 MNC
2
2

(
4π

MNC0

)8

− 1

2π
C4

(
4π

MNC0

)7

(31)

We use the scattering length and effective range of the AV18 potential [44] without the electromagnetic
interaction as the boundary value (i.e. at ν = mπ/MN ) of the vRG equations. Electromagnetic corrections
to the shape parameter P are also expected to be small, so we use the Nijmegen value [58]. In the deuteron
channel, these are

anp = 5.402 fm , (32)

rnp = 1.752 fm , (33)

Pnp = 0.040 fm−3 . (34)

The LECs at ν = mπ/MN are given in terms of these parameters according to

C0(mπ/MN ) = 4πanp
MN

, (35)

C2(mπ/MN ) = 4π

MN

a2
nprnp

2
, (36)

C4(mπ/MN ) = 4π

MN
a3
np

(
1

4
r2
np + Pnp

anp

)
. (37)

The result for the deuteron binding energy at NLO and N2LO is shown in Fig. 3. First, we can compare
the values of the renormalization group improved binding energies at each order in the EFT to the values at
the hard scale ν = mπ/MN . When the subtraction velocity is ν ≈ 0.04 (corresponding to momenta around
38 MeV), there is a shift in the binding energy of about 2.5% at NLO. At N2LO, the improvement shifts the
binding energy by about 7%. Moreover, the improvement at N2LO causes the predicted binding energy to
intersect the experimental value B = 2.224575 MeV around ν ≈ 0.04. Second, we can compare the shift in
the predicted binding energy at different orders in the EFT for the same subtraction velocities. At the hard
scale ν = mπ/MN , the binding energy at N2LO is about 10% larger than the result at NLO. At ν ≈ 0.04, the
N2LO is around 17% larger than the NLO result.

5 Summary

In this work, we have performed an analysis of the role of radiative corrections in the NN system. Using EFT
techniques helps to organize the role of different strong and electromagnetic effects in a systematic expansion.
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Additionally, we performed the first direct application of the vRG in a nuclear EFT. This allows us to sum
the leading logarithm series into the potential coefficients. We then provided evidence that the vRG generates
a percent level shift in the binding energy of the deuteron. It is possible that similar corrections will play an
important role in other light nuclei. This prediction will be more robust when reliable NN observables can be
calculated in lattice QCD at the physical pion mass in order to match the couplings of this EFT.

The ultrasoft renormalization of the leading order potential in chiral EFT can be analyzed with similar
techniques. First, the one-pion exchange potential will be written as a four-fermion operator where the LEC
is determined by the axial coupling gA and the pion decay constant Fπ at the breakdown scale of chiral EFT
in the absence of electroweak effects. Then the tree-level potential will be dressed with an ultrasoft photon
that leads to an anomalous dimension similar to Eq. (16), only C0 is replaced by (gA/Fπ)2 up to a factor of
2. Also, the contact potential proportional to C0 will acquire a nonzero soft anomalous dimension driven by
pion exchange. Renormalizing the potential at higher orders will be significantly more difficult.

The running couplings obtained in this work can also be incorporated into other EFT/π calculations or in ab
initio methods for nuclear physics that make use of EFT/π potentials derived with dimensional regularization.
In this way, this renormalization group study can impact a variety of theoretical work relevant for ongoing
experiments including β-decay, μ-capture, and muonic atom spectroscopy.
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