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1. General introduction

The study of the soft limit of scattering amplitudes is a well established topic in
QFT since the pioneering works of Low! in quantum electrodynamics, and Wein-
berg?, Gross and Jackiw?® in Einstein gravity. Recently, this subject has raised
renewed attention due to the discovery? of its connection with the B2MS large
diffeomorphisms invariance of general relativity for asymptotically flat spaces® 2.
Soft theorems have been derived for a wide class of QFTs and strings from the
examination of scattering amplitudes at tree and loop level > 22, Concretely, if we
consider color-ordered gluon amplitudes, the soft theorem relates the n+1 ampli-
tude Ay41(k1, ..., kn; knt1) to the n-points one A, (k1, ..., ky,) through a differential
operator depending on the momentum and the polarization of the (n+1)-th external
leg, when k11 = 5l%n+1 and 6 — 0; in formulae

an—i—lkl an-i—lkn fn—i-l:Jl fn—i-l:*]n)
An k 7akn7kn = - + - A’n k 7"'7kn )
+lks +1) (knﬂkl Foiion | Eaky  Eark ) 2 )(
1)

up to terms of order O(4°). In Eq. (1) we introduced the field-strength f,, =
auk,—a,k,, and the angular-momentum operator J,,,. A stronger statement holds

for gravity amplitudes: the soft behavior is “universal” up to terms of order O(4),
instead of order O(4°) as for the Yang-Mills case

Mn+1(k1, kn, kn+1) =

kihpy1k; kihn+1Jikn+1 knt1Jihng1Jikng1
A(ys k). (2
Z( kikn1 kikn1 2kikn i1 M (ks ) )

For open superstring and bosonic string theories, Eq. (1) describes the soft behavior

of massless string amplitudes, notwithstanding the presence of an interaction term
o' F3 in the bosonic case, that in principle could spoil the validity of Eq. (1). Closed
superstring amplitudes satisfy Eq. (2), while closed bosonic strings don’t because
at order O(9) there is a mixing between the graviton and the dilation, due to the
interaction term o/ R2.
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2. Soft theorems in QFT and strings

In this section we sketch in some detail the proof of Eq. (1) for color-ordered gluon
amplitudes in QFT — see Ref.!? for a more complete discussion, and compare this

approach to the one relying on the OPE expansion presented in Ref. 4.

2.1. Gluon amplitudes in QFT

The singular soft behavior of the tree level color ordered amplitude
Api1(k1, ..., kn; ks), when ks becomes soft, arises from the propagators in the chan-
nels k1+ks and k,+ks, in formulae

An+1(k1, ceey kn, ks) =
V#(knv ks)
(ks+kn)?

V#(ksv kl)

(heytha, o by
<k5+k1)2 A’ﬂ( i )+

Aﬁ(kh RxD) kn+ks)+Rn+1(klv vy o ks)
(3)

The Yang-Mills vertex for incoming momenta kg, k;, ky, with k;=—Fk;—ks, can be

written as
Vi(ks, ki) = Vu(?i) + Vu(,li) = 2a! ask; + 2kY asa; — 2a¥ a;ks, (4)
0
0 1
VO=V,(0,k)=2d" ask;  and  V)=k, o Vi 0, i) =244 as0i =20l aik,.

(5)

The expansion of the n-point amplitude A,, around k; yields

l%lzkl—i— R

(6)
Combining it with Eq. (4) produces the full soft expansion of Eq. (3). Imposing
gauge invariance order by order in the soft parameter §, we can determine the
leading term of the unknown contribution R,,11(k1, ..., kn; ks). At leading order
(0)

4 v asky  ask
w,1 pu(0)  Vpm n(0) _ shl — Qshn k k as—ks 0 7
Dkl ML Dkgky (kskl kskn>An( b ) 00

At sub-leading order, it is possible to recognize a manifest gauge invariant contri-

o .
ALy bty )= AED L A D = A (K, )R o A )

7

bution

(1) (1) v ] v ul
le AMO) Vin A#g):fﬁ al[l’a/aal A%O)_fsu a"[l’a/aan A%O) as ks 0, (8)

2ksky " ™ 2kk, T 2ksk1 2kskn,
which reconstructs the action of the spin part of the angular momentum, and a non
gauge invariant part
V@ v _
TSV CO NI TTICY R k ko k=0
2k n,1 2k, n,n +as ’ﬂ+1< 1y-es Rny Rs )
as—k 0 0
ks —A, — ks —
0ky A ok,

An + ksénﬂ(ks = O) = 0. (9)
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Solving Eq. (9) for R,,+1(ks=0) allows us to recover the action of the orbital part
of the angular-momentum.

2.2. Gluon amplitudes in string theory

The above analysis, performed for a QFT, can be reproduced as well by the OPE of
vertex operators in string theory. To compute and n+1 superstring gluon amplitude,
we need two operators in the g=—1 super-ghost picture and n—2 vertices with ¢=0.
Let us suppose the soft vertex operator to be integrated and in the g=0 super-ghost
picture, and the adjacent operators to be in the g=—1 picture. The leading order
in ks, when z, approaches z,41, is given by

Zs+11 . .
/ dzs agi0X elksx(zs) as+1z/ie_“’elk”1x(zs+1). L~

as ks+1

Zs+11 bk
/ dzs asksi1(zs—zsq1) "t~
ksks+1

(10)
Taking the sub-leading order in the soft expansion of Eq. (10), it happens that
BRST invariance is responsible for reproducing the action of the orbital part of the
angular momentum, as well as gauge invariance does in Eq. (9)'4. The OPE of the
manifestly BRST invariant sub-leading term %w“ fub” e X reproduces the action
of the spin part of the soft operator. The above analysis is remarkable because can
be easily generalized when the OPE is performed between the soft operator and a
massive higher-spin string belonging to the leading Regge trajectory.

2.3. Soft behavior of disk scattering amplitudes with massive states

In the open bosonic string, at the first massive level, we have only one BRST-
invariant state given by the vertex operator

Vig=H,,i0 X"id X" ¢PX 11
I

with p#*H,,=0, symmetric and traceless. Conversely, in the open superstring we
have two different states interpolating in the g=—1 picture by

Vi=H,, idX")" e % X and  Vo=C,,p' " yP e ¢ X, (12)

with p*C,,,=0 and completely antisymmetric. In Ref.?* we have shown that string
disk-amplitudes with the insertions of the aforementioned vertex operators satisfy
Eq. (1). Following the steps outlined in Sec. 2.2, it is straightforward to show that

also amplitudes with the insertion of massive higher-spin strings like
Vige = Hyyy o i0XM QX Pemtqphes 70 ePX (13)

satisfy the soft theorem.
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3. Massive string amplitudes from Yang-Mills

In Ref. 23 it is shown that open string disk-amplitudes can be expressed in terms
of Yang-Mills tree-amplitudes covered by suitable generalized hypergeometric func-
tions
AT n)= > F(L 26,00 (0=2)6],n—1,0) AY M (1,24, ..., (n=2)4],n—1, n).
o€ES,_3
(14)
For n =5 Eq. (14) yields
AST(12345)=F(1[23]45) A M (1[23]45)+ F (1[32]45).AY M (1[32]45).  (15)
As we suggested in Ref 24, it is possible to get 4-point amplitudes with massive

states taking the residue at the massive pole in some 2-particle channels of the
5-points amplitude with massless strings

lim (s124+1)A5" (1,2,..,n)=>_ A5"(1,2,8) ® A, -1(5',3,....,n).  (16)
S/

s12——1

3.1. Dimensional reduction at D = 4

Before showing an explicit example, let us briefly review the content of the first
massive level of the superstring theory in the bosonic sector. The first massive
super-multiplet in D = 10 yields a long multiplet of N' =4 in D = 4

{HMNaCMNP} — {HHV,8’(/JH,27ZH,48X,42§0}. (17)
The bosonic degrees of freedom are related to the 10-dimensional vertex operators
as follows?*
HMV <_HMV 27ZM <—6Hu7i,15CH,ij,6CW,i 42g0<—2lHij,2OCijk,CWp.
(18)

Among these states, only three of them are R-symmetry singlets in D = 4: the
spin—2 H,,,,, the pseudo-scalar Co=¢,,,pop” C*** /M and the scalar Hy coming from
the fact that the BRST-invariant string state Hy;ny is traceless only in D=10,
therefore after dimensional reduction we are left with the partial trace H;j=Hd;;/2.

3.2. Massive string amplitudes in D = 4

In D = 4 there are only MHV or anti-MHYV 5-points gluon amplitudes. For example,
fixing the helicity of the gluons, Eq. (15) yields

o B (12)3 (12)4
AT (172 3+4+5+)fWF(1[23]45)+ <13><32><24><45><51>F(1[32]45).
(19)
Taking the residue at the pole s12+1, we get
. 1131(312+1)A§T(1*2*3+4+5+)=B(1—a’s, 1—a't)x
(12)° (12)*
T A I Te2 [T S A
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It is remarkable to notice that a totally symmetric and traceless state, as H,,,,, or any
other spin—s state S, ..., couples only to vector bosons with opposite helicity, let’s
say fli and f5~. Conversely, a scalar state couples only to vector bosons with the
same helicity f1jE and f2jE This can be easily understood looking at the properties
of the ’t Hooft symbols which form a basis for the selfdual or anti-selfdual 4 x 4
matrices

(1) (f2)70 o<, = S, (21)
(f+)u1/<f2+)yp o nZuT/pr _ (Sabéz +5abc77cup- (22)

This observation allows us to disentangle the contribution due to the polarization

—

H** or H~~ from those due to the propagation of Hy or Cp2*

2

AST (1727 3t4+5t) 22yt <1J\24> xB(la’s,la’t)m Co/Hy (23)
2 3

AST(12t3-4-51) 122571 % x B(1—a's, l—a’t)% Co/Hy (24)

ST (14+09—aq—4+=+) S12—=1 o 7 <13>4[35] ++ -

AP (1727374757) TS x B(1—a's, 1 at)M<12>2<34><45> H /H( )

25

Using SO(3) little group transformations that leave unchanged the momentum of
the massive particle p = uu+wvo, it is straightforward to get the expression of the
amplitude for all the other polarizations of the tensor H. Defining

(u+v) v = (—u+w) (26)

i
Ll V)

L, : u=—(u+iv) v = 75(iu+v), (27)
L.— Ly

and noticing that HTT+H ~ hogo, grt_g—— Lo (H-—H")/2, and
Ht-g— Iy i(H +H')/2, we get the full amplitude rotating the polariza-
tions using linear combinations of the operators in Eq. (27)

> en A2 3T H"=B(1 - /s, 1 - o't)
h

X

[13](14)%(15)? < (14)2 (14)2 (14)2 4
B} C++< Co—

(14)2 (14)?
M (12)(23)(45) 152 2 +6c00 (15)2 > :

(15)2 " (15)2

4. Closed superstring amplitudes

We conclude with some few comments about the soft behavior of closed string
amplitudes with gravitons and massive states studied in detail in Ref. 25. Using
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the amplitudes computed in Ref.?*, and the KLT formula 2%

/

t
Muy(&r,E2,E3, KatLa+Us)=5sin < ) Aar(1,2,3, Hi+Cy)®A4r(1,3,2, Hi+Cy).

Ty
(29)
We checked the correct soft behavior up to the sub-sub-leading order in D = 4 using
the spinor-helicity formalism for amplitudes involving gravitons, dilatons, and the
massive states K and H

My(172,2%2 3F2 ) My(1°,2°,372 K51 Ma(1°,272, 372 1), (30)

when the graviton with momentum ks becomes soft. While for bosonic closed
string amplitudes we have found a discrepancy at sub-sub-leading order due to o/
dependent terms in agreement with Ref. 27.
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