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1. General introduction

The study of the soft limit of scattering amplitudes is a well established topic in

QFT since the pioneering works of Low1 in quantum electrodynamics, and Wein-

berg2, Gross and Jackiw3 in Einstein gravity. Recently, this subject has raised

renewed attention due to the discovery4 of its connection with the B2MS large

diffeomorphisms invariance of general relativity for asymptotically flat spaces5–12.

Soft theorems have been derived for a wide class of QFTs and strings from the

examination of scattering amplitudes at tree and loop level13–22. Concretely, if we

consider color-ordered gluon amplitudes, the soft theorem relates the n+1 ampli-

tude An+1(k1, ..., kn; kn+1) to the n-points one An(k1, ..., kn) through a differential

operator depending on the momentum and the polarization of the (n+1)-th external

leg, when kn+1 = δk̂n+1 and δ → 0; in formulae

An+1(k1, ..., kn; kn+1) =

(
an+1k1
kn+1k1

−an+1kn
kn+1kn

+
fn+1:J1
kn+1k1

−fn+1:Jn
kn+1kn

)
An(k1, ..., kn),

(1)

up to terms of order O(δ0). In Eq. (1) we introduced the field-strength fμν =

aμkν−aνkμ, and the angular-momentum operator Jμν . A stronger statement holds

for gravity amplitudes: the soft behavior is “universal” up to terms of order O(δ),

instead of order O(δ0) as for the Yang-Mills case

Mn+1(k1, ..., kn; kn+1) =
n∑

i=1

(
kihn+1ki
kikn+1

+
kihn+1Jikn+1

kikn+1
+

kn+1Jihn+1Jikn+1

2kikn+1

)
Mn(k1, ..., kn). (2)

For open superstring and bosonic string theories, Eq. (1) describes the soft behavior

of massless string amplitudes, notwithstanding the presence of an interaction term

α′F 3 in the bosonic case, that in principle could spoil the validity of Eq. (1). Closed

superstring amplitudes satisfy Eq. (2), while closed bosonic strings don’t because

at order O(δ) there is a mixing between the graviton and the dilation, due to the

interaction term α′ϕR2.
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2. Soft theorems in QFT and strings

In this section we sketch in some detail the proof of Eq. (1) for color-ordered gluon

amplitudes in QFT – see Ref.13 for a more complete discussion, and compare this

approach to the one relying on the OPE expansion presented in Ref.14.

2.1. Gluon amplitudes in QFT

The singular soft behavior of the tree level color ordered amplitude

An+1(k1, ..., kn; ks), when ks becomes soft, arises from the propagators in the chan-

nels k1+ks and kn+ks, in formulae

An+1(k1, ..., kn; ks) =

Vμ(ks, k1)

(ks+k1)2
Aμ

n(k1+ks, ..., kn)+
Vμ(kn, ks)

(ks+kn)2
Aμ

n(k1, ..., kn+ks)+Rn+1(k1, ..., kn; ks).

(3)

The Yang-Mills vertex for incoming momenta ks, ki, kI , with kI=−ki−ks, can be

written as

Vμ(ks, ki) = V
(0)
μ,i + V

(1)
μ,i = 2aμi aski + 2kμs asai − 2aμs aiks, (4)

V
(0)
μ,i =Vμ(0, ki)=2aμi aski and V

(1)
μ,i =ks

∂

∂ks
Vμ(0, ki)=2kμs asai−2aμs aiks.

(5)

The expansion of the n-point amplitude An around ki yields

Aμ
n(..., ks+ki, ...)=Aμ(0)

n,i +Aμ(1)
n,i +...=Aμ

n(..., ki, ...)+ks
∂

∂k̂i
Aμ

n(..., k̂i, ...)|k̂i=ki
+... ,

(6)

Combining it with Eq. (4) produces the full soft expansion of Eq. (3). Imposing

gauge invariance order by order in the soft parameter δ, we can determine the

leading term of the unknown contribution Rn+1(k1, ..., kn; ks). At leading order

V
(0)
μ,1

2ksk1
Aμ(0)

n,1 −
V

(0)
μ,n

2kskn
Aμ(0)

n,n =

(
ask1
ksk1

− askn
kskn

)
An(k1, ..., kn)

as→ks−→ 0. (7)

At sub-leading order, it is possible to recognize a manifest gauge invariant contri-

bution

V
(1)
μ,1

2ksk1
Aμ(0)

n,1 − V
(1)
μ,n

2kskn
Aμ(0)

n,n =
fμν
s a1[ν∂/∂a

μ]
1

2ksk1
A(0)

n −fμν
s an[ν∂/∂a

μ]
n

2kskn
A(0)

n
as→ks−→ 0, (8)

which reconstructs the action of the spin part of the angular momentum, and a non

gauge invariant part

V
(0)
μ,1

2ksk1
Aμ(1)

n,1 −
V

(0)
μ,n

2kskn
Aμ(1)

n,n +asR̃n+1(k1, ..., kn; ks=0)

as→ks−→ ks
∂

∂k1
An − ks

∂

∂kn
An + ksR̃n+1(ks = 0) = 0. (9)
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Solving Eq. (9) for Rn+1(ks=0) allows us to recover the action of the orbital part

of the angular-momentum.

2.2. Gluon amplitudes in string theory

The above analysis, performed for a QFT, can be reproduced as well by the OPE of

vertex operators in string theory. To compute and n+1 superstring gluon amplitude,

we need two operators in the q=−1 super-ghost picture and n−2 vertices with q=0.

Let us suppose the soft vertex operator to be integrated and in the q=0 super-ghost

picture, and the adjacent operators to be in the q=−1 picture. The leading order

in ks, when zs approaches zs+1, is given by∫ zs+11

dzs asi∂X eiksX(zs) as+1ψe
−ϕeiks+1X(zs+1). . . ∼∫ zs+11

dzs asks+1(zs−zs+1)
ksks+1 . . . ≈ asks+1

ksks+1
. . . (10)

Taking the sub-leading order in the soft expansion of Eq. (10), it happens that

BRST invariance is responsible for reproducing the action of the orbital part of the

angular momentum, as well as gauge invariance does in Eq. (9)14. The OPE of the

manifestly BRST invariant sub-leading term 1
2ψ

μfμνψ
ν eikX reproduces the action

of the spin part of the soft operator. The above analysis is remarkable because can

be easily generalized when the OPE is performed between the soft operator and a

massive higher-spin string belonging to the leading Regge trajectory.

2.3. Soft behavior of disk scattering amplitudes with massive states

In the open bosonic string, at the first massive level, we have only one BRST-

invariant state given by the vertex operator

VH=Hμνi∂X
μi∂Xν eipX (11)

with pμHμν=0, symmetric and traceless. Conversely, in the open superstring we

have two different states interpolating in the q=−1 picture by

VH=Hμν i∂X
μψν e−ϕ eipX and VC=Cμνρψ

μψνψρ e−ϕ eipX , (12)

with pμCμνρ=0 and completely antisymmetric. In Ref.24 we have shown that string

disk-amplitudes with the insertions of the aforementioned vertex operators satisfy

Eq. (1). Following the steps outlined in Sec. 2.2, it is straightforward to show that

also amplitudes with the insertion of massive higher-spin strings like

VHs = Hμ1...μsi∂X
μ1 . . . i∂Xμs−1ψμs e−ϕ eipX (13)

satisfy the soft theorem.
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3. Massive string amplitudes from Yang-Mills

In Ref. 23 it is shown that open string disk-amplitudes can be expressed in terms

of Yang-Mills tree-amplitudes covered by suitable generalized hypergeometric func-

tions

AST
n (1, ..., n)=

∑
σ∈Sn−3

F (1, [2σ, ..., (n−2)σ], n−1, n)AY M
n (1, [2σ, ..., (n−2)σ], n−1, n).

(14)

For n = 5 Eq. (14) yields

AST
5 (12345)=F (1[23]45)AYM

5 (1[23]45)+F (1[32]45)AYM
5 (1[32]45). (15)

As we suggested in Ref 24, it is possible to get 4-point amplitudes with massive

states taking the residue at the massive pole in some 2-particle channels of the

5-points amplitude with massless strings

lim
s12→−1

(s12+1)AST
n (1, 2, ..., n)=

∑
S′
AST

3 (1, 2, S′)⊗An−1(S
′, 3, ..., n). (16)

3.1. Dimensional reduction at D = 4

Before showing an explicit example, let us briefly review the content of the first

massive level of the superstring theory in the bosonic sector. The first massive

super-multiplet in D = 10 yields a long multiplet of N = 4 in D = 4

{HMN , CMNP } → {Hμν , 8ψμ, 27Zμ, 48χ, 42ϕ}. (17)

The bosonic degrees of freedom are related to the 10-dimensional vertex operators

as follows24

Hμν ← Hμν 27Zμ ← 6Hμ,i, 15Cμ,ij, 6Cμν,i 42ϕ← 21Hij, 20Cijk, Cμνρ.

(18)

Among these states, only three of them are R-symmetry singlets in D = 4: the

spin−2 Hμν , the pseudo-scalar C0=εμνρσp
σCμνρ/M and the scalar H0 coming from

the fact that the BRST-invariant string state HMN is traceless only in D=10,

therefore after dimensional reduction we are left with the partial traceHij=H0δij/2.

3.2. Massive string amplitudes in D = 4

In D = 4 there are only MHV or anti-MHV 5-points gluon amplitudes. For example,

fixing the helicity of the gluons, Eq. (15) yields

AST
5 (1−2−3+4+5+)=

〈12〉3
〈23〉〈34〉〈45〉〈51〉F (1[23]45)+

〈12〉4
〈13〉〈32〉〈24〉〈45〉〈51〉F (1[32]45).

(19)

Taking the residue at the pole s12+1, we get

lim
s12→−1

(s12+1)AST
5 (1−2−3+4+5+)=B(1−α′s, 1−α′t)×

〈12〉3
〈23〉〈34〉〈45〉〈51〉 [s23s35+(s34+s35)s24]− 〈12〉4

〈13〉〈32〉〈24〉〈45〉〈51〉s13s24. (20)
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It is remarkable to notice that a totally symmetric and traceless state, asHμν , or any

other spin−s state Sμ1...μs couples only to vector bosons with opposite helicity, let’s

say f±
1 and f∓

2 . Conversely, a scalar state couples only to vector bosons with the

same helicity f±
1 and f±

2 . This can be easily understood looking at the properties

of the ’t Hooft symbols which form a basis for the selfdual or anti-selfdual 4 × 4

matrices

(f+
1 )μν(f

−
2 )νρ ∝ ηaμν η̄

bνρ = Sabρ
μ (21)

(f+
1 )μν(f

+
2 )νρ ∝ ηaμνη

bνρ = δabδρμ + εabcηc ρ
μ . (22)

This observation allows us to disentangle the contribution due to the polarization

H++ or H−− from those due to the propagation of H0 or C0
24

AST
5 (1−2−3+4+5+) s12→−1−→ 〈12〉2

M
× B(1−α′s, 1−α′t)

M [35]

〈34〉〈45〉 C0/H0 (23)

AST
5 (1+2+3−4−5+) s12→−1−→ [12]2

M
× B(1−α′s, 1−α′t)

〈34〉3[35]
M3〈45〉 C0/H0 (24)

AST
5 (1+2−3−4+5+) s12→−1−→ M × B(1−α′s, 1−α′t)

〈13〉4[35]
M〈12〉2〈34〉〈45〉 H++/H−−.

(25)

Using SO(3) little group transformations that leave unchanged the momentum of

the massive particle p = uū+vv̄, it is straightforward to get the expression of the

amplitude for all the other polarizations of the tensor H . Defining

Lx : u′ =
1√
2
(u+ v) v′ =

1√
2
(−u+ v) (26)

Ly : u′ =
1√
2
(u+ iv) v′ =

1√
2
(iu+ v), (27)

and noticing that H+++H−− Lx−Ly−→ H0, H++−H−− Lx−→ (H−−H+)/2, and

H++−H−− Ly−→ i(H−+H+)/2, we get the full amplitude rotating the polariza-

tions using linear combinations of the operators in Eq. (27)∑
h

chA(1−2+3+Hh)=B(1− α′s, 1− α′t)

× [13]〈14〉2〈15〉2
M〈12〉〈23〉〈45〉2

(
c++

〈14〉2
〈15〉2−4c+0

〈14〉2
〈15〉2+6c00

〈14〉2
〈15〉2−4c0−

〈14〉2
〈15〉2+c−−

〈14〉2
〈15〉2

)
.

(28)

4. Closed superstring amplitudes

We conclude with some few comments about the soft behavior of closed string

amplitudes with gravitons and massive states studied in detail in Ref. 25. Using
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the amplitudes computed in Ref.24, and the KLT formula26

M4(E1, E2, E3,K4+L4+U4)= sin

(
π
α′t
4

)
A4L(1, 2, 3, H4+C4)⊗A4R(1, 3, 2, H4+C4).

(29)

We checked the correct soft behavior up to the sub-sub-leading order in D = 4 using

the spinor-helicity formalism for amplitudes involving gravitons, dilatons, and the

massive states K and H
M4(1

−2, 2+2, 3+2,K+4
4 ) M4(1

0, 20, 3+2,K+4
4 ) M4(1

0, 2+2, 3+2,H+2
4 ), (30)

when the graviton with momentum k3 becomes soft. While for bosonic closed

string amplitudes we have found a discrepancy at sub-sub-leading order due to α′

dependent terms in agreement with Ref. 27.
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