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Abstract: The Janis–Newman–Winicour spacetime corresponds to a static spherically symmetric

solution of Einstein equations with the energy momentum tensor of a massless quintessence field. It is

understood that the spacetime describes a naked singularity. The solution has two parameters, b and

s. To our knowledge, the exact physical meaning of the two parameters is still unclear. In this paper,

starting from the Janis–Newman–Winicour naked singularity solution, we first obtain a wormhole

solution by a complex transformation. Then, letting the parameter s approach infinity, we obtain the

well-known exponential wormhole solution. After that, we embed both the Janis–Newman–Winicour

naked singularity and its wormhole counterpart in the background of a de Sitter or anti-de Sitter

universe with the energy momentum tensor of massive quintessence and massive phantom fields,

respectively. To our surprise, the resulting quintessence potential is actually the dilaton potential

found by one of us. It indicates that, by modulating the parameters in the charged dilaton black hole

solutions, we can obtain the Janis–Newman–Winicour solution. Furthermore, a charged wormhole

solution is obtained by performing a complex transformation on the charged dilaton black hole

solutions in the background of a de Sitter or anti-de Sitter universe. We eventually find that s is actually

related to the coupling constant of the dilaton field to the Maxwell field and b is related to a negative

mass for the dilaton black holes. A negative black hole mass is physically forbidden. Therefore, we

conclude that the Janis–Newman–Winicour naked singularity solution is not physically allowed.

Keywords: Janis–Newman–Winicour solution; wormholes; Einstein–Maxwell-dilaton theory

1. Introduction

The Janis–Newman–Winicour (JNW) naked singularity solution describes the most
general, static, spherically symmetric, and asymptotically spatially flat spacetime in the
Einstein-massless quintessence systems [1]. The solution was first discovered by Fisher [2]
in 1948. It was then rediscovered by Janis, Newman, and Winicour in an isotropic coor-
dinate system in 1968. Thereafter, Wyman [3] discovered once again the solution in the
Schwarzschild coordinate system. Later, the equivalence of the Wyman solution with the
JNW spacetime was proved by Virbhadra [4] in 1997. Agnese and Camera [5] rewrite the
Wyman solution in a more compact expression. Roberts [6] proved that the most general
static spherically symmetric solution to the Einstein equations with the source of massless
scalar field is asymptotically flat and this is exactly the Wyman solution. Bronnikov and
Khodunov [7] studied the stability problem of JNW spacetime. Chew and Lim utilize a
symmetric scalar potential to make the JNW spacetime regular, and a gravitational soliton
solution is numerically constructed [8]. In short, a lot of work on JNW spacetime has
been conducted in various research fields, such as gravitational lensing and relativistic
images [9–13], black hole accretion and shadows [14–18], and so on [19–29].

The important claim here is that, actually, Sadhu and Suneeta [30] proposed that the
JNW spacetime can be obtained from a class of charged dilaton black hole solutions [31,32].
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In practice, they argue that the JNW spacetime is obtained from the charged dilaton black
hole solutions in [32] by setting r+ = 0 but with r− ̸= 0 in Equations (20)–(23) of that paper.
However, we now point out that one cannot set r+ = 0 naively because r+ has a definite
physical meaning and it is always positive. If one arbitrarily lets r+ = 0, that means we
must assume that the black hole has a negative mass. Then, it is not a surprise that we
shall obtain a naked singularity. This is just like if we merely mathematically, while not
physically, assume that the mass parameter M in the Schwarzschild metric is negative:

ds2 = −
(

1 − 2M

r

)

dt2 +

(

1 − 2M

r

)−1

dr2 + r2dΩ
2 . (1)

Then, the well-known Schwarzschild singularity becomes naked to us. The reason that
the JNW solution brings us a naked singularity is that we have assumed a negative mass
in advance. Therefore, from the point of view of dilaton black hole solutions, the JNW
naked singularity solution is unphysical. As is known, the JNW spacetime is asymptotically
flat in space. In other words, the naked singularity is embedded in the background of
Minkowski spacetime. Recognizing this, the initial motivation of this work is in fact to
embed the naked singularity in the background of a de Sitter or anti-de Sitter universe
(DAU). However, we finally realize that the JNW solution is unphysical.

The paper is organized as follows. In Section 2, we rewrite the JNW solution in the
Schwarzschild coordinate system in a desirable expression. The initial parameter b is
replaced by 2M/s, with M standing for the mass of the singularity. In Section 3, by using a
complex transformation method on the quintessence field for the JNW solution, we achieve
an exact wormhole solution. The reason for the naked singularity transforming into a
wormhole is that the quintessence field becomes a phantom field [33]. In Section 4, we let
the parameter s approach positive infinity, and then the well-known exponential wormhole
solution is produced [34]. In Section 5, we embed the naked singularity and wormhole in
the background of a de Sitter universe in an isotropic coordinate system. In Section 6, via
coordinate transformations from isotropic coordinates to Schwarzschild coordinates, we
construct the naked singularity or wormhole in the background of DAU. We find that the
corresponding spacetime structure is very interesting. For example, there are both black
holes and wormholes in the same spacetime. In Sections 7 and 8, in the framework of a
massive quintessence field and phantom field, we derive their scalar potentials with respect
to the metric. To our surprise, the resulting quintessence potential is exactly the dilaton
potential derived by one of us [35]. We shall show this point in Section 9. Subsequently, this
motivates us to investigate whether there exists a relation between the JNW solution and
the dilaton black hole solution, just as proposed by Sadhu and Suneeta [30]. In Section 10,
we are inspired to seek for the charged wormhole solutions from the charged dilaton
counterpart. During this process, we realize that the JNW naked singularity solution is
unphysical because nature does not allow the dilaton black hole to have a negative mass.
Section 11 gives the conclusion and discussion. Throughout the paper, we adopt the system
of units in which G = c = h̄ = 1 and the metric signature (−,+,+,+).

2. A Useful Expression for the JNW Metric

When a massless quintessence field is minimally coupled to gravity, the associated
Einstein equations are given by

Rµν = −∇µφ∇νφ , (2)

where Rµν is the Ricci tensor. Subsequently, the equation of motion for the quintessence
field is

∇2φ = 0 , (3)
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where ∇2 is the four-dimensional Laplace operator. Janis, Newman, and Winicour (JNW) [1]
have shown that the metric

dl2 = −
(

1 − b

r

)s

dt2 +

(

1 − b

r

)−s

dr2 + r2

(

1 − b

r

)1−s

dΩ
2 , (4)

with

dΩ
2 = dθ2 + sin2 θdϕ2 , (5)

and the field

φ =

√
2

2

√

1 − s2 ln

(

1 − b

r

)

, (6)

satisfy the Einstein equations and the equation of motion for the quintessence field. The so-
lution is popularly known as the JNW spacetime in the literature. Here, r represents the
radial coordinate and s is a dimensionless integration constant. s runs over the range of

0 ≤ s ≤ 1 . (7)

In particular, when s = 1, the scalar field vanishes and the Schwarzschild solution is
recovered. In general, we should require that

r ≥ b , (8)

in order to obtain a physical spacetime. The physical significance of b and s is unclear.
The Ricci scalar of the spacetime is

R =
b2
(

s2 − 1
)

2r2+s(r − b)2−s
. (9)

It reveals that when s ̸= 1, there is a curvature singularity at r = b provided that b > 0.
Since the singularity is not cloaked by an event horizon, this metric represents a naked
singularity. Therefore, we confine ourselves in the region r > b. By expanding the metric
in the order of b/r , we find that the parameter b is related to the physical mass of the
spacetime M by

b =
2M

s
. (10)

When s = 1, it is exactly the Schwarzschild radius. Then, the JNW solution becomes
the following expression:

dl2 = −
(

1 − 2M

sr

)s

dt2 +

(

1 − 2M

sr

)−s

dr2 + r2

(

1 − 2M

sr

)1−s

dΩ
2 , (11)

and the field is

φ =

√
2

2

√

1 − s2 ln

(

1 − 2M

sr

)

. (12)

In the following sections, we shall see how the above parameterized expression for
the metric is useful to us.
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3. A New Traversable Wormhole

3.1. The Solution

In this subsection, we show how we will obtain a new traversable wormhole by starting
from the JNW spacetime. To illustrate this point, we make the following complex transformation:

φ −→ ei π
2 φ , (13)

where i is the imaginary unit. Then, the Einstein equations turn out to be

Rµν = ∇µφ∇νφ , (14)

and the equation of motion for the massless scalar field is invariant

∇2φ = 0 . (15)

Now, the scalar field appears as a phantom field. We find the metric

dl2 = −
(

1 − 2M

sr

)s

dt2 +

(

1 − 2M

sr

)−s

dr2 + r2

(

1 − 2M

sr

)1−s

dΩ
2 , (16)

and the field

φ =

√
2

2

√

s2 − 1 ln

(

1 − 2M

sr

)

, (17)

that solve both the Einstein equations and the phantom field equation. The argument under
the root-sign is always non-negative. Therefore, we should now require

s > 1 . (18)

We see that the expression of the metric is the same as JNW spacetime. However,
we shall find sooner that it denotes not a naked singularity but a wormhole, provided
that s > 2. As indicated by the Ricci scalar and other curvature invariants (for example,
the Kretschmann quadratic invariant), when

s ≥ 2 , (19)

the sphere r = b or r = 2M/s is no longer a curvature singularity. We note that the
method of complex transformation, i.e., Equation (13), is attractive because one can obtain
new solutions from the known ones with the source of quintessence fields. For example,
we would most likely find new phantom hairy black hole solutions from the known
quintessence ones. In practice, Nozawa1 and Torii have developed a considerable family of
exact solutions to the Einstein phantom theories [36] by using this method.

In order to show that when s > 2, it leads to a wormhole, we consider the area of the
spherical surfaces of constant r coordinate following Ref. [37]:

A = 4πr2

(

1 − 2M

sr

)1−s

. (20)

Then, we find

dA

dr
= 8πrs(sr − 2M)−sss−1[sr − (1 + s)M] , (21)
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d2 A

dr2
= 8πrs−1(sr − 2M)−s−1ss

(

sr2 − 2rM − 2srM + 2M2 + 2M2s
)

. (22)

Noting that the domain for the r-coordinate is r ∈
(

2M
s ,+∞

)

, we see that we

always have

d2 A

dr2
> 0 , (23)

in this domain, provided that s > 2. Namely, the area is a concave function of the r
coordinate. On the other hand, the equation dA

dr = 0 gives the throat (minimum) at

rT =
(1 + s)M

s
, (24)

where it satisfies the “flare out” condition A
′′
r=rT

> 0. We observe that all the metric
components are finite at the throat. So it is now enough to guarantee that the surface
r = rT is a traversable wormhole following the definition of Morris and Thorne [38–41].
The geometry described by the wormhole metric clearly has no horizons, since when

r ∈
(

2M
s ,+∞

)

, we have

g00 ̸= 0 . (25)

Here, (0, 1, 2, 3) denote (t, r, θ, φ). As already demonstrated, there is a traversable
wormhole throat located at r = rmin, where the area of the spherical surfaces is minimized,
and the “flare out” condition is satisfied. All of the curvature components and the invariant
Kretschmann scalar are finite everywhere in the wormhole spacetime. As an example, we
consider s = 3. We provide a coordinate transformation as follows:

r =
1

2
x +

1

6

√

9x2 − 24xM . (26)

The metric is

ds2 = −
[

1 − 4M

3x +
√

9x2 − 24xM

]3

dt2 +

(

1
2 + 3x−4M

2
√

9x2−24xM

)2

[

1 − 4M
3x+

√
9x2−24xM

]3
dx2 + x2dΩ

2 . (27)

The domain for the x-coordinate is x ∈
[

8M
3 ,+∞

)

; we see that xmin = 8M
3 corresponds

to the throat of the wormhole. In all, when s > 2, we obtain a traversable wormhole with

the throat at r = M(s+1)
s .

3.2. Stability Analysis

We have proven that the wormhole solution is traversable by considering the flaring-
out condition near the throat. In this subsection, we address the stability problem by firstly
studying the adiabatic sound speed [42]. The square of adiabatic sound speed is defined by

v2
s =

δ⟨p⟩
δρ

, (28)
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where ⟨p⟩ represents the average pressure across the three spatial dimensions, namely

⟨p⟩ = (pr + 2pt)/3. The energy density ρ, and the radial and the tangential pressures, pr

and pt, are deduced from Equation (16) as follows:

ρ = pr = −pt =
M2
(

1 − s2
)

8πr4s2

(

1 − 2M

sr

)s−2

. (29)

Thus, we have the radial squared sound speed v2
sr, the tangential squared sound speed vst,

and the average squared of sound speed:

v2
sr =

δpr

δρ
= 1 , v2

st =
δpt

δρ
= −1 < 0 , v2

s =
δ⟨p⟩
δρ

= −1

3
< 0 . (30)

In this sense, the solution is unstable because of the negative of the sound speeds. However,
from the perspective of metric perturbations, the solution is stable. Actually, Kobayashi
et al. [43] have explored the metric perturbations to static spherically symmetric spacetime
for odd parity in the Horndeski theory, which covers the Einstein massless scalar system
studied in this paper. Following their conventions, we find

F = 1 , G = 1 , H = 1 , (31)

for the Einstein massless scalar system. In order to avoid gradient instability, Kobayashi
et al. [43] show that

F > 0 . (32)

On the other hand, in order to avoid the presence of ghost, they show

G > 0 . (33)

It is obvious that the two conditions are satisfied for the Einstein massless system. The
squared speeds of gravitational waves along the radial direction, c2

r , and the tangential
direction, c2

t , are found to be

c2
r =

G
F = 1 , c2

t =
G
H = 1 . (34)

They are exactly the square of the speed of light. The above conditions on F ,G, and H
are necessary for the stability of wormholes. The sufficient condition for the stability of
wormholes is that the effective potential Ve f f ,odd [44] satisfies the condition

Ve f f ,odd =
U

f 2
[l(l + 1)− 2] + f U∂r

(

U∂r
1

f

)

≥ 0 , (35)

with

U =

(

1 − 2M

sr

)s

, f = r

(

1 − 2M

sr

)
1−s

2

, (36)

outside the wormhole throat. We find that it is indeed the case when l ≥ 2 and s ≥ 2.
Therefore, in this sense, the wormhole is stable to metric perturbations except for l = 0, 1.
In Figure 1, we plot the effective potential Ve f f ,odd in terms of r. The potential is positive
everywhere and tends to zero at both infinity and the throat when l ≥ 2. As a comparison,
a potential well appears for l = 0 and l = 0, which implies the instability of wormholes to
metric perturbations in this situation.
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2 4 6 8 10 12 14 16 18 20
r

Figure 1. The effective potential of odd parity Ve f f ,odd with the radius r assuming M = 1 , s = 2

for four different cases l = 0, 1, 2, 3, from down to up, respectively. The potential is asymptotically

vanishing at both the wormhole throat and infinity.

4. The Exponential Wormhole Spacetime

In this section, we show that the well-known exponential wormhole spacetime turns
out to be a special case of the above wormhole solution. To show this point, let s approach
positive infinity, and then we obtain, by putting s → +∞ in Equation (16),

dl2 = −e−
2M

r dt2 + e
2M

r dr2 + r2e
2M

r dΩ
2 . (37)

In the same way, by putting s → +∞ in Equation (17), we obtain

φ = −
√

2M

r
. (38)

We have checked that the above metric and the phantom field do solve the Einstein
equations and the scalar field equation. The metric is novel because it describes a non-
singular spacetime. Specifically, the Ricci scalar and the Kretschmann invariant are all
finite. The metric is known as Yilmaz “exponential metric” in the literature [45–48]. But we
point out that it appeared for the first time in Ref. [34] by Papapetrou. The metric has
attracted wide attention in the literature [49–64] ever since it was found. However, to our
knowledge, the energy momentum tensor for this solution has never been found. Here,
we find a suitable one. Namely, it is sourced by a massless phantom field. Very recently,
Boonserm et al. [37] showed that the Yilmaz exponential metric represents a traversable
wormhole. We point out that the traversable wormholes have been studied in many aspects,
such as the stability analysis of wormholes [65–67], the resolution to the horizon problem
in cosmology [68,69], the wormhole solutions in the modified gravities [70–79], and so
on [80–83].

5. Naked Singularity and Wormhole in de Sitter Universe

We have seen both the JNW (with naked singularity) solution and the wormhole
solution described by Equation (16). The only difference is that 0 < s < 1 for the former
and s > 1 for the latter. The metric is static and asymptotically flat in space. In this section,
we construct its counterpart in the de Sitter universe. To this end, we transform them from
the Schwarzschild coordinate system to an isotropic coordinate system. So we let

r = x

(

1 +
M

2sx

)2

. (39)
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Then, we have

dl2 = −

(

1 − M
2sx

)2s

(

1 + M
2sx

)2s
dt2 +

(

1 + M
2sx

)2s+2

(

1 − M
2sx

)2s−2

(

dx2 + x2dΩ
2
)

. (40)

The metric is now in the isotropic coordinate system. Once the metric is written in the
isotropic coordinate system, we are ready to reach the counterpart in the de Sitter universe.
Following the method developed by us [35], we obtain

dl2 = −

(

1 − M
2sax

)2s

(

1 + M
2sax

)2s
dt2 + a2

(

1 + M
2sax

)2s+2

(

1 − M
2sax

)2s−2

(

dx2 + x2dΩ
2
)

, (41)

where

a = eHt , (42)

is the scale factor of the universe. H is the Hubble constant. When M = 0, we obtain the de
Sitter universe. When H = 0, we obtain the JNW or wormhole solution. Therefore, it repre-
sents a naked singularity or a wormhole in the de Sitter universe. We shall see in Section 7
that the metric does satisfy the massive scalar field equation and the Einstein equations.

Letting s −→ +∞ in Equation (41), we obtain

dl2 = −e−
2M
ax dt2 + a2e

2M
ax

(

dx2 + x2dΩ
2
)

. (43)

It describes an exponential wormhole in the background of an exponential expanding
de Sitter universe.

Does the throat of the wormhole expand with the universe? The answer is no. The rea-
sons are as follows. Consider the physical area of a spherical sphere A, which is given by

A = 4πa2x2

(

1 + M
2sax

)2s+2

(

1 − M
2sax

)2s−2
. (44)

The throat of the wormhole is determined by dA/dx = 0 for any scale factor a. So,
the throat is located at

xT =
M

2as

(

s +
√

s2 − 1
)

. (45)

We emphasize that it is a coordinate length, not a physical length. The physical length of
the radius of the throat is

lT = axT =
M

2s

(

s +
√

s2 − 1
)

. (46)

It is obviously a constant, not growing with the expansion of the universe. Substituting
Equation (45) into the formula of physical area, we find that the physical area of the
wormhole throat is

AT =
πM2

(

s +
√

s2 − 1 + 1
)2s+2

(

s +
√

s2 − 1 − 1
)2s−2(

s +
√

s2 − 1
)2

s2

. (47)

It tells us that the physical area of the wormhole throat is a constant. It does not
expand with the expansion of the universe.
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6. Naked Singularity and Wormhole in DAU

6.1. Solutions in DAU

In this section, we look for the naked singularity and wormhole in an anti-de Sit-
ter universe. To achieve this, let us start from their counterpart in the de Sitter universe,
Equation (41), by making a coordinate transformation as follows:

y = ax . (48)

Then, we obtain

dl2 = −

(

1 − M
sy

)2s

(

1 + M
sy

)2s
dt2 +

(

1 + M
sy

)2s+2

(

1 − M
sy

)2s−2
·
[

(dy − Hydt)2 + y2dΩ
2
]

. (49)

By letting

y = z − M

s
+

√

z2 − 2M

s
z , (50)

we obtain

dl2 = −
[

(

1 − 2M

sz

)s

− 4H2z2

(

1 − 2M

sz

)1−s
]

dt2 − 8Hz2

(

1 − 2M

sz

)1−s

dtd ln y

+4z2

(

1 − 2M

sz

)1−s
[

(d ln y)2 + dΩ
2
]

. (51)

Rescaling t, H, and l as follows:

t → 2t , H → H

2
, l → 2l . (52)

we have

dl2 = −
[

(

1 − 2M

sz

)s

− H2z2

(

1 − 2M

sz

)1−s
]

dt2 − 2Hz2

(

1 − 2M

sz

)1−s

dtd ln y

+z2

(

1 − 2M

sz

)1−s
[

(d ln y)2 + dΩ
2
]

. (53)

Introducing a new time coordinate T and setting

dt = dT −
Hz2

(

1 − 2M
sz

)1−s
d ln y

(

1 − 2M
sz

)s
− H2z2

(

1 − 2M
sz

)1−s
, (54)

we obtain

dl2 = −
[

(

1 − 2M

sz

)s

− H2z2

(

1 − 2M

sz

)1−s
]

dT2 +

[

(

1 − 2M

sz

)s

− H2z2

(

1 − 2M

sz

)1−s
]−1

dz2

+z2

(

1 − 2M

sz

)1−s

dΩ
2 . (55)
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Now, the metric functions are only dependent on the radial coordinate z. That is to
say, we obtain a static spacetime. Replacing H2 by Λ/3 with Λ, the cosmological constant,
we obtain

dl2 = −
[

(

1 − 2M

sz

)s

− 1

3
Λz2

(

1 − 2M

sz

)1−s
]

dT2 +

[

(

1 − 2M

sz

)s

− 1

3
Λz2

(

1 − 2M

sz

)1−s
]−1

dz2

+z2

(

1 − 2M

sz

)1−s

dΩ
2 , (56)

i.e., the naked singularity for s < 1, the Schwarzschild black hole for s = 1, and the
wormhole for s > 1 in DAU. When Λ = 0, we recover the JNW spacetime or wormhole
spacetime. When Λ > 0, it is for the de Sitter universe and Λ < 0 for the anti-de Sitter
universe. On the other hand, when s = 1, we recover the Schwarzschild–de Sitter (or
anti-de Sitter) spacetime. Finally, when

s −→ +∞ , (57)

we have

dl2 = −
(

e−
2M

z − 1

3
Λz2e

2M
z

)

dT2 +

(

e−
2M

z − 1

3
Λz2e

2M
z

)−1

dz2 + z2e
2M

z dΩ
2 . (58)

When M = 0, we obtain the de Sitter or ani-de Sitter spacetime. When Λ = 0, we have
the exponential wormhole spacetime. So it is the static form for an exponential wormhole in
de Sitter or anti-de Sitter spacetime. In the background of anti-de Sitter spacetime, there are
no horizons except for the throat of the wormhole at r = M. However, in the background
of de Sitter spacetime, the structure of spacetime is nontrivial.

6.2. Spacetime Structure of JNW in DAU

When s = 1, we have the Schwarzschild–de Sitter (or anti-de Sitter) solution. As
is well known, there are generally two horizons, the black hole horizon and the cosmic
horizon, together with a physical singularity in the Schwarzschild–de Sitter spacetime.
When 0 < s < 1, we have the JNW–(anti-)de Sitter solution. Like the Schwarzschild–
de Sitter solution, there are also generally two horizons, the black hole horizon zb and
the cosmic horizon zc (zb,c are determined by g00(z = zb,c) = 0)), and a physical singularity
zs =

2M
s in this spacetime. When the black hole horizon and the cosmic horizon coincide,

we have

g00 = 0 ,
dg00

dz
= 0 . (59)

They lead to a critical value Λc for Λ:

Λc =
3s2(2s − 1)2s−1

M2(2s + 1)2s+1
, (60)

It is obvious that s = 1
2 is a special value. So we conduct a discussion in three different

situations, i.e., 1
2 < s < 1, s = 1

2 , and 0 < s < 1
2 ,

6.2.1. 1
2 < s < 1

In this case, we have the following conclusion.
α. When

Λ ≤ 0 , (61)
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we always have g00 < 0 and g11 > 0. Therefore, there are no horizons in this spacetime and
the singularity zs =

2M
s is naked.

β. When

0 < Λ < Λc , (62)

there are two horizons, zb,c; one of them is the black hole horizon, zb, and the other is the
cosmic horizon, zc. Now, the singularity is hidden by the black hole horizon, zb.

γ. When

Λ = Λc , (63)

the black hole horizon and the cosmic horizon coincide and the singularity is hidden by
the overlapping horizons.

δ. When

Λ > Λc , (64)

both the black hole horizon and the cosmic horizon disappear. Since g00 > 0 and g11 < 0 in
this case, the singularity remains hidden.

6.2.2. s = 1
2

s = 1
2 corresponds to the critical value Λc.

Λc =
3

16M2
. (65)

We have the following results.
α. When

Λ ≤ 0 , (66)

there is only a naked singularity at zs = 4M.
β. When

0 < Λ < Λc , (67)

there is no black hole horizon and we are left with a cosmic horizon at zc =
√

3
Λ

and a

naked singularity at zs = 4M.
γ. When

Λ = Λc , (68)

the cosmic horizon and the naked singularity coincide.
δ. When

Λ > Λc , (69)

the cosmic horizon disappears while the singularity is hidden in the patch of a de Sitter
spacetime. The patch between the de Sitter horizon and infinity behaves as a one-way
membrane, which is just like inside a black hole.

6.2.3. 0 ≤ s < 1
2

In this case, we have the following conclusions.
α. When

Λ > 0 , (70)
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there is no black hole horizon and we are left with a cosmic horizon and a naked singularity.
β. When

Λ ≤ 0 , (71)

there is neither a black hole horizon nor a cosmic horizon. We are left with only a naked
singularity.

6.3. Spacetime Structure of Wormhole in DAU

The spacetime for a wormhole in DAU is given by Equation (56) under the condition
that s > 1. From the metric, we can calculate the Ricci scalar

R =
2M2

(

s2 − 1
)

z4s2

(

1 − 2M

zs

)s−2

− 2Λ

z2s2

(

1 − 2M

zs

)−s−1
[

2z2s2 −
(

4sM + 4s2M
)

z + 4sM2 + M2 + 3s2M2
]

. (72)

The domain of z is z ∈
[

2M
s ,+∞

)

. It is apparent that the Ricci scalar is divergent at

zs =
2M

s . Thus, zs =
2M

s is a physical singularity.

Let
dg22
dz = 0; we find that the wormhole throat is located at

zt =
M(1 + s)

s
. (73)

We note that the throat is determined by the mass and the coupling constant s. It has
nothing to do with the cosmological constant Λ. Then, we have the following conclusions.

α. When

Λ < 0 , (74)

we have

g00 < 0 , g11 > 0 , (75)

for arbitrary z within the domain z ∈
(

2M
s ,+∞

)

. Therefore, the spacetime corresponds

to a traversable wormhole and a naked singularity in the background of anti-de Sitter
spacetime. We note that Lu et al. [84] find that the wormhole solutions in the background of
an anti-de Sitter universe can be constructed in the context of the higher derivative gravity.

β. There are two critical values, Λc1 and Λc2.
Λc1 is determined by

g00 = 0 ,
dg22

dz
= 0 . (76)

Then, we have

Λc1 =
3s2(s − 1)2s−1

M2(s + 1)2s+1
. (77)

Λc2 is determined by

g00 = 0 ,
dg00

dz
= 0 . (78)
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Thus, we have

Λc2 =
3s2(2s − 1)2s−1

M2(2s + 1)2s+1
. (79)

We have Λc1 < Λc2 because s > 1.
In general, there are two horizons in this spacetime for positive Λ. One of them is the

black hole event horizon zb and the other is the cosmic horizon zc. They correspond to the
two real and positive roots of the following equation:

g00 = 0 . (80)

Thus, in this case, we have both a black hole and a wormhole throat. Then, when

0 < Λ < Λc1 , (81)

we have

zb < zt < zc . (82)

It reveals that the throat is outside of the black hole. A free-falling observer far away
from the black hole first goes through the wormhole throat and then passes through the
black hole event horizon, and eventually, he/she disappears at the black hole singularity
zs. On the other hand, if we split the spacetime into two parts at z = zt and glue the two
identical parts z ∈ [zt,+∞) together at z = zt, we arrive at a traversable wormhole.

γ. When

Λ = Λc1 , (83)

the black hole horizon and the wormhole throat coincide. Like for the Schwarzschild
wormhole, this wormhole is not traversable.

δ. When

Λc1 < Λ < Λc2 , (84)

we have

zt < zb < zc . (85)

This reveals that the throat is inside of the black hole.
ϵ. When

Λ = Λc2 , (86)

the black hole horizon and the cosmic horizon coincide.
ζ. When

Λ > Λc2 , (87)

we have

g00 > 0 , g11 < 0 , (88)

for arbitrary r. Therefore, there are no horizons in this spacetime.

6.4. Spacetime Structure of Exponential Wormhole in DAU

The spacetime for a wormhole in DAU is given by Equation (56) under the condition
that s > 1. From the metric, we can calculate the Ricci scalar
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R =
2M2

(

s2 − 1
)

z4s2

(

1 − 2M

zs

)s−2

− 2Λ

z2s2

(

1 − 2M

zs

)−s−1
[

2z2s2 −
(

4sM + 4s2M
)

z + 4sM2 + M2 + 3s2M2
]

. (89)

The domain of z is z ∈
[

2M
s ,+∞

)

. It is apparent that the Ricci scalar is divergent at

zs =
2M

s . Thus, zs =
2M

s is a physical singularity.

Let
dg22
dz = 0; we find that the wormhole throat is located at

zt =
M(1 + s)

s
. (90)

We note that the throat is determined by the mass and the coupling constant s. It has
nothing to do with the cosmological constant Λ. Then, we have the following conclusions.

α. When

Λ < 0 , (91)

we have

g00 < 0 , g11 > 0 , (92)

for arbitrary z within the domain z ∈
(

2M
s ,+∞

)

. Therefore, the spacetime has a traversable

wormhole and a naked singularity in the background of anti-de Sitter spacetime.
β. There are two critical values, Λc1

and Λc2 . Λc1
is determined by

g00 = 0 ,
dg22

dz
= 0 . (93)

Then, we have

Λc1 =
3s2(s − 1)2s−1

M2(s + 1)2s+1
. (94)

Λc2 is determined by

g00 = 0 ,
dg00

dz
= 0 . (95)

Thus, we have

Λc2 =
3s2(2s − 1)2s−1

M2(2s + 1)2s+1
. (96)

We have Λc1 < Λc2 because s > 1.
In general, there are two horizons in this spacetime for positive Λ. One of them is the

black hole event horizon zb and the other is the cosmic horizon zc. They correspond to the
two real and positive roots of the following equation:

g00 = 0 . (97)

Thus, in this case, we have both a black hole and a wormhole throat. Then, when

0 < Λ < Λc1 , (98)
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we have

zb < zt < zc . (99)

It reveals that the throat is outside of the black hole. A free-falling observer far away
from the black hole first goes through the wormhole throat and then passes through the
black hole event horizon; eventually, he/she disappears at the black hole singularity zs.
On the other hand, if we split the spacetime into two parts at z = zt and glue the two
identical parts together z ∈ [zt,+∞) at z = zt, we arrive at a traversable wormhole.

γ. When

Λ = Λc1 , (100)

the black hole horizon and the wormhole throat coincide. Like for the Schwarzschild
wormhole, this wormhole is not traversable.

δ. When

Λc1 < Λ < Λc2 , (101)

we have

zt < zb < zc . (102)

This reveals that the throat is inside of the black hole.
ϵ. When

Λ = Λc2 , (103)

the black hole horizon and the cosmic horizon coincide.
ζ. When

Λ > Λc2 , (104)

we have

g00 > 0 , g11 < 0 , (105)

for arbitrary r. Therefore, there are no horizons in this spacetime.

7. The Scalar Potential for the Quintessence Field

Both the JNW naked singularity solution and the JNW wormhole solution satisfy the
Einstein equations with the massless scalar field (with respect to quintessence and phantom,
respectively). Embedding them in the background of DAU, the Λ term is present in the
metric. We expect that the solutions obey the Einstein equations with a massive scalar
field. To be specific, we require a scalar potential. But we do not want other unnecessary
coupling constants to be present in the potential except for Λ and s. In this section, we
demonstrate that the JNW naked singularity in DAU, Equation (56), satisfies the Einstein
equations with the massive quintessence field

Rµν = −∇µφ∇νφ − gµνV(φ) , (106)

and the equation of motion for quintessence

∇2φ − V,φ = 0 . (107)
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Here, V is the quintessence potential to be determined. Substituting Equation (56) into
the field equations, we obtain the scalar field

φ =

√
2

2

√

1 − s2 ln

(

1 − 2M

sz

)

, (108)

and the quintessence potential

V =
Λ

6

[

(

2s2 + 3s + 1
)

e−
φ
√

2−2s2

1+s +
(

4 − 4s2
)

e
sφ
√

2√
1−s2

+
(

2s2 − 3s + 1
)

e−
φ
√

2−2s2

s−1

]

. (109)

The potential has the desirable feature that it has only two coupling constants, Λ and s.
It is interesting to conduct a discussion on the behavior of the potential with respect to the
parameter s. In particular, when s = 0, we have

V =
Λ

6

(

4 + e−φ
√

2 + eφ
√

2
)

, (110)

while when s = 1/2, we have

V =
Λ

2

(

e−φ
√

6
3 + eφ

√
6

3

)

. (111)

They are positive defined and symmetric with respect to φ. In the more general case,
0 < s < 1/2, the potential is always positive defined. On the contrary, if 1/2 < s < 1,
the potential goes to negative infinity when φ = +∞. This is forbidden by the quantum
theory of fields. Finally, when s = 1, we have V = Λ, which is just the cosmological
constant. To sum up, the parameter s is constrained to be

0 ≤ s ≤ 1/2 , (112)

and

s = 1 . (113)

In Figure 2, we plot the quintessence potential V for Λ = 1 and s = 0.1, 0.5, 0.7, 0.95
from top to bottom, respectively. When 0 ≤ s ≤ 1/2, the potential is always positive
defined. In contrast, if 1/2 < s < 1, the potential goes to negative infinity at φ = +∞.

0.5

1

1.5

2

V

3

–2 –1 phi 1 2

Figure 2. The quintessence potential V for Λ = 1 and s = 0.1, 0.5, 0.7, 0.95 from top to bot-

tom, respectively. When 0 ≤ s ≤ 1/2, the potential is always positive defined. On the contrary,

if 1/2 < s < 1, the potential goes to negative infinity at φ = +∞.
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8. The Scalar Potential for the Phantom Field

Following the same method in Section 7, we demonstrate in this section that the
wormhole solution in DAU satisfies the Einstein equations with massive phantom field

Rµν = ∇µφ∇νφ − gµνV(φ) , (114)

and
∇2φ + V,φ = 0 . (115)

Here, V is the phantom potential to be determined. Substituting Equation (56) into the
field equations, we obtain the expression of the phantom field

φ =

√
2

2

√

s2 − 1 ln

(

1 − b

z

)

, (116)

while the scalar potential for the phantom is

V =
Λ

6

[

(

2s2 + 3s + 1
)

e
φ
√

2s2−2
1+s +

(

4 − 4s2
)

e
sφ
√

2√
s2−1

+
(

2s2 − 3s + 1
)

e
φ
√

2s2−2
s−1

]

. (117)

The potential is always positive for s > 1. When φ = −∞, the potential is asymp-
totically vanishing, and when φ = +∞, it approaches positive infinity. There is a local
maximum at φ = 0 and a local minimum at

φ =

√
2

2

√

s2 − 1 ln

(

2s + 1

2s − 1

)

. (118)

As an example, we plot the potential with respect to φ for Λ = 1 and s = 2 in Figure 3.

There is a local maximum at φ = 0 and a local minimum at φ =
√

6
2 ln 5

3 .

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

V

–2 –1 0 1 phi

Figure 3. The phantom potential V for Λ = 1 and s = 2. The potential is asymptotically vanishing at

φ = −∞ and approaches positive infinity at φ = +∞. There is a local maximum at φ = 0 and a local

minimum at φ =
√

6
2 ln 5

3 .

In the case of s = +∞, we obtain the metric

dl2 = −
(

e−
2M

z − 1

3
Λz2e

2M
z

)

dT2 +

(

e−
2M

z − 1

3
Λz2e

2M
z

)−1

dz2 + z2e
2M

z dΩ
2 , (119)
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the phantom field

φ = −
√

2M

z
, (120)

and the phantom potential

V =
Λ

3
e
√

2φ
(

3 − 3
√

2φ + 2φ2
)

. (121)

We have checked that the above solution does satisfy the Einstein equations, Equation (114),
and the phantom field equation, Equation (115). In Figure 4, we plot the potential with respect
to φ for Λ = 1. The potential is asymptotically vanishing at φ = −∞ and approaches positive

infinity at φ = +∞. There is a local maximum at φ = 0 and a local minimum at φ =
√

2
2 .

0

0.2

0.4

0.6

0.8

1

1.2

V

–6 –4 –2 0 phi

Figure 4. The phantom potential V for Λ = 1 and s = +∞. The potential is asymptotically vanishing

at φ = −∞ and approaches positive infinity at φ = +∞. There is a local maximum at φ = 0 and a

local minimum at φ =
√

2
2 .

9. Quintessence Potential Is Exactly the Dilaton Potential

Observing the quintessence potential, Equation (109), and the phantom potential.
Equation (117), we find that they look very similar to the dilaton potential. This is not a
coincidence, and in fact the quintessence potential turns out to be the dilaton potential after
redefinition of the coupling constants. To illustrate this point, we let

s = 1 − 2α2

1 + α2
, φ −→

√
2φ , Λ −→ 2Λ . (122)

Then, we obtain

V =
2Λ

3(1 + α2)
2

[(

3 − α2
)

e2φα + 8α2eφα+φ/α

+
(

3α4 − α2
)

e−2φ/α
]

. (123)

It is exactly the dilaton potential. On the other hand, with the replacement of φ
with −iφ, the quintessence potential becomes the phantom potential. This motivates us
to look for the charged phantom wormholes or charged phantom black holes from the
Einstein–Maxwell dilaton black holes by complex transformations.

10. Charged Phantom Wormholes and Black Holes

10.1. JNW Naked Singularity Solution Is Unphysical

The charged dilaton black hole solution in the background of DAU is given by [35]
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dl2 = −
[

(

1 − r+
r

)(

1 − r−
r

)
1−α2

1+α2 − 1

3
Λr2

(

1 − r−
r

)
2α2

1+α2

]

dt2

+

[

(

1 − r+
r

)(

1 − r−
r

)
1−α2

1+α2 − 1

3
Λr2

(

1 − r−
r

)
2α2

1+α2

]−1

dr2 + r2
(

1 − r−
r

)
2α2

1+α2
dΩ

2
2 . (124)

where r+, r− are two constants and they are given by [31,32]

r+ = m +
√

m2 − (1 − α2)Q2 , r− =
1 + α2

1 − α2

[

m −
√

m2 − (1 − α2)Q2

]

. (125)

Here, the constant α governs the strength of the coupling between the dilaton and the
Maxwell field. m and Q stand for the mass and charge of the black hole. Λ is understood
as the cosmological constant. The action leading to the metric is

S =
∫

d4x
√

−g
{

R − 2∂µφ∂µφ − e−2αφF2

−2

3
Λ

1

(1 + α2)
2

[

α2
(

3α2 − 1
)

e−2φ/α +
(

3 − α2
)

e2φα + 8α2eφα−φ/α
]

}

. (126)

Corresponding to the metric, the dilaton field and the Maxwell field are

e2αφ =
(

1 − r−
r

)
2α2

1+α2
, F01 =

Q

r2
. (127)

Comparing the dilaton black hole solution in DAU, Equation (124), with the JNW
solution in DAU, Equation (56), and we perform the following transformations:

Q = 0 , m = −m̄ , α2 =
1 − s

1 + s
, (128)

in Equation (125) under the condition that m̄ is positive; then, Equation (124) becomes

dl2 = −
[

(

1 +
2m̄

sr

)s

− 1

3
Λr2

(

1 +
2m̄

sr

)1−s
]

dt2

+

[

(

1 +
2m̄

sr

)s

− 1

3
Λr2

(

1 +
2m̄

sr

)1−s
]−1

dr2 + r2

(

1 +
2m̄

sr

)1−s

dΩ
2
2 . (129)

Let
m̄ = −M , (130)

and the above metric turns out to be the JNW solution in DAU. Now, we realize that the
constant s is actually related to the dilaton coupling constant α and the parameter M is the
negative of mass for the dilaton black hole. In brief, the JNW solution is actually the neutral
dilaton black hole solution but with a negative mass. A negative mass is not physically allowed.
Therefore, we are unable to generate the JNW solution from the dilaton one. If we insist
on performing the above transformations in Equation (128), the JNW solution would not
be physical.

10.2. Two Double-Horizon Spacetimes Connected by a Timelike Wormhole

In order to obtain phantom wormholes from the above dilaton black hole solution, we let

φ → ei π
2 φ , α → ei π

2 α , (131)
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with i the imaginary unit. With these substitutions, the action and the metric become

S =
∫

d4x
√

−g
{

R + 2∂µφ∂µφ − e2αφF2

−2

3
Λ

1

(1 − α2)
2

[

α2
(

3α2 + 1
)

e−2φ/α +
(

3 + α2
)

e−2φα − 8α2e−φα−φ/α
]

}

, (132)

and

dl2 = −
[

(

1 − r+
r

)(

1 − r−
r

)
1+α2

1−α2 − 1

3
Λr2

(

1 − r−
r

)
−2α2

1−α2

]

dt2

+

[

(

1 − r+
r

)(

1 − r−
r

)
1+α2

1−α2 − 1

3
Λr2

(

1 − r−
r

)
−2α2

1−α2

]−1

dr2 + r2
(

1 − r−
r

)
−2α2

1−α2
dΩ

2
2 , (133)

with

r+ = m +
√

m2 − (1 + α2)Q2 , r− =
1 − α2

1 + α2

[

m −
√

m2 − (1 + α2)Q2

]

. (134)

Now, the identity of the dilaton field changes from dilaton to phantom:

e−2αφ =
(

1 − r−
r

)
−2α2

1−α2
, (135)

while the expression of the Maxwell field remains unchanged.
This is exactly a charged wormhole in the background of DAU. We note that the

charged Einstein–Maxwell phantom wormholes in the absence of potential were addressed
by Nozawa [85]. The throat of the wormhole is located at

rT =
r−

1 − α2
=

1

1 + α2

[

m −
√

m2 − (1 + α2)Q2

]

. (136)

It is then required that the coupling constant satisfy

α2 ≤ 1 , (137)

in order that r− be physical. We see that

rT < r− < r+ . (138)

Therefore, the throat is always inside the inner horizon and it is timelike such that the
wormhole is traversable. Observations tell us that the cosmological constant is extremely
small and the resulting cosmic horizon is of the order of the Hubble scale. So in general,
we can safely neglect the effect of the cosmological constant for local physics. This means
that we can neglect the Λ term in the metric. Then, we are left with two horizons; one of
the them is the black hole event horizon r+ and the other is the black hole inner horizon r−.
The throat is located inside the inner horizon. By splitting the spacetime into two parts at
rT and gluing the two identical parts of r ∈ [rT ,+∞) at r = rT , we arrive at a traversable
wormhole. A free-falling observer approaching the black hole first passes through the outer
event horizon, then through the inner horizon, wormhole throat, replicated inner horizon,
replicated outer horizon, and finally, he/she reaches another replicated universe. Now, two
double-horizon spacetimes are connected by a timelike wormhole.
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10.3. Two Black–White Hole Spacetimes Connected by a Spacelike Wormhole

When α = 0, the solution reduces to the standard Reissner–Nordström–de Sitter
solution of Einstein–Maxwell theory. However, when

α = 1 , ⇐⇒ s = +∞ , (139)

we have

dl2 = −
[(

1 − r̄+
r

)

e−
r̄−
r − 1

3
Λr2e

r̄−
r

]

dt2

+

[(

1 − r̄+
r

)

e−
r̄−
r − 1

3
Λr2e

r̄−
r

]−1

dr2 + r2e
r̄−
r dΩ

2
2 , (140)

with

r̄+ = m +
√

m2 − 2Q2 , r̄− = m −
√

m2 − 2Q2 , (141)

and the phantom field,

φ = − r̄−
2r

. (142)

The expression of the Maxwell field is unchanged. The corresponding potential is

V =
2

3
Λ

(

3 + 6φ + 4φ2
)

e−2φ , (143)

by letting α → 1 in the phantom potential of action Equation (132). It is exactly the phantom
potential given by Equation (121) after the following transformations:

φ −→ −φ/
√

2 , Λ −→ 1

2
Λ . (144)

As mentioned earlier, the cosmological constant is extremely small. So we neglect
the Λ term in the metric. Then, we are left with only one black hole event horizon r̄+ in
spacetime. There is a throat located at

rT =
r̄−
2

. (145)

Because

rT < r̄+ , (146)

we see that the throat is always inside the black hole and it is spacelike. We realize that
this is an example that Simpson and Visser [86] and Nojiri, Odintsov, and Folomeev [87]
discussed very recently. In order to show this point, we make the coordinate transformation
r → x as follows:

r2e
r̄−
r =

e2

4

(

x2 + r̄2
−
)

, (147)

such that when x = 0, we have r = r̄−
2 , and when x = ±∞, we have r = ∞. Namely, x = 0

corresponds to the wormhole throat. The domain of x is x ∈ (−∞ ,+∞). Then, we obtain

dl2 = −
(

1 − r̄+
r

)

e−
r̄−
r dt2

+

(

1 − r̄+
r

)−1(

1 − r̄−
2r

)−2
(

1 +
r̄2
−

x2

)−1

dx2 +
(

x2 + r̄2
−
)

dΩ
2
2 , (148)
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after re-scaling the time t and the line element l as follows:

t → 1

2
et , l → 1

2
el , (149)

There are two event horizons in this spacetime, x = ±
√

4r̄2
+e

r̄−
r̄+

−2 − r̄2
−. One of them

is a white hole, instead of a black hole in another universe. An observer falling into the black
hole in our universe first goes through the black hole event horizon, then the wormhole,
and then the white hole event horizon, eventually arriving at another universe. One can
consider the inverse process, that is, an observer falling into the black hole in another
universe would eventually appear in our universe from the white hole. The Penrose
diagram for the spacetimes of a black–white hole connected by a wormhole can be found
in Ref. [86].

11. Conclusions and Discussion

Starting from the well-known JNW naked singularity solution, we obtain a new
traversable wormhole provided that s > 2 by using a complex transformation method.
The method is so interesting that we can expect some other new phantom black holes or
phantom wormholes to be derived from the known quintessence black holes. On the other
hand, when s → +∞, we obtain the well-known exponential metric. To our knowledge,
no one has ever found the corresponding energy momentum tensor. Now, we find that
it can be contributed by a massless phantom field. Then, we embed both the JNW naked
singularity and the wormhole solution in the background of DAU in an isotropic coordinate
system and in a static coordinate system, respectively. The resulting spacetime structure is
very rich. For example, there exist both black holes and wormholes in the same spacetime.
We construct the quintessence potential and the phantom potential, respectively, for the
solutions. It is found that the phantom potential is obtained if we perform a complex
transformation on the quintessence potential. By observing the quintessence potential and
the dilaton potential, we find that they are very much similar to each other. On closer
inspection, the quintessence potential proves to be the dilaton potential. This arouses our
pursuit of the JNW solution from the charged dilaton metric. We find that in order to
obtain the JNW naked singularity, we must assume that the mass of the dilaton black hole
is negative. This is of course forbidden, just as one cannot arbitrarily assume the mass in
the Schwarzschild metric to be negative. Then, it tells us that the parameter b should be
negative just like the parameter M in the Schwarzschild metric is positive. Based on the
above reasons, we think that the JNW naked singularity solution is unphysical. However,
it is important to take this point with a grain of salt. In fact, Mann has demonstrated that,
under certain circumstances, regions of negative energy density can undergo gravitational
collapse. Then, the resultant black hole spacetimes have a negative mass but non-trivial
topology [88]. On the other hand, Hull and Mann show that a negative mass black hole in
de Sitter universe is allowed in the context of Lovelock gravity [89].

Carrying out the complex transformation on the charged dilaton metric in DAU,
we obtain charged two-horizon spacetimes and black–white hole spacetimes, both being
connected by a wormhole. The spacetime structure of two-horizon spacetimes in DAU is
very interesting. It can have four important components, the cosmic horizon, the black
hole event horizon, the black hole inner horizon, and the wormhole throat. It is found that
the wormhole throat is always inside the black hole inner horizon. Therefore, the throat is
timelike and traversable. As for the black–white hole spacetimes, we find that the throat
is always inside of the black hole event horizon. By cutting the spacetime into two parts
along the throat and gluing the domains of x ∈ (−∞ , 0) and x ∈ (0 ,+∞) together at
x = 0, we arrive at a regular spacetime with two horizons, one of which is the black hole
horizon, and the other is the white hole horizon.
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Note Added

When the paper appeared on arXiv, we were told by Masato Nozawa that the solution
in Equation (47) has already been derived in Ref. [90] (Equation (31a)) by the same method.
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