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Abstract

In this thesis, novel corrections to B — X~ and B — XITI~ decays, where X is a pseu-
doscalar or vector meson, are presented. These are the chromomagnetic matrix element, weak
annihilation in a general four-quark operator basis and a long-distance charm loop contribution.

The calculation of the chromomagnetic matrix element completes the calculation of matrix
elements for all relevant effective weak operators in B — V' decays, removing an infrared
divergence which previous computations had treated in a very approximate way. It also en-
counters an interesting technical obstacle not previously seen in sum rule calculations, which
is likely to be encountered regularly in future once higher order loop diagrams are calculated.
The potential for this term to contribute to the C'P asymmetry in D — V' in the presence of
new physics is discussed.

The improved computation of weak annihilation diagrams is applied to the analysis of isospin
asymmetries in radiative and semi-leptonic B — (p, K*)) decays, and the computation of long-
distance charm bubble terms is applied to produce an improved prediction for time-dependent

CP asymmetries in various B — V'~ decays.
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Chapter 1

Introduction

One of the goals of science is to explain the behaviour of complex systems in terms of simpler
components, and to infer underlying principles which explain as wide a range as possible of
observations. The pursuit of ever simpler building blocks led to the discoveries that chemicals
are comprised of atoms, atoms of electrons and nuclei, and nuclei of protons and neutrons.
Subsequently a number of other particles which are not constituents of normal matter were
discovered, and the study of these, along with the smallest building blocks of normal matter,
is what came to be known today as elementary particle physics.

Elementary particle physics was undoubtedly hugely successful throughout the second half of
the 20" century, culminating in the introduction of the Standard Model (SM) in the 1960s and
"70s [1-9], which explained all observations in particle physics at that time as well as predicting
the existence of a number of then unobserved fundamental particles. Subsequent experiments
have identified all of the predicted particles, although some at considerably different masses to
those expected, culminating in the experimental discovery of the Higgs boson in 2012 [10,11].
In all this time, the only modification made to the SM has been the inclusion of neutrino mass
following the observation of solar neutrino oscillation at the Sudbury Neutrino Observatory and

Kamiokande experiments in the 1990s [12,13].

For all of this success, the SM still leaves a number of questions unanswered. Unification with
general relativity has been a long-standing goal of theoretical physicists but has so far proven
technically difficult, and since the reach of particle physics experiments is unlikely to allow
small scale observation of gravitational effects for the foreseeable future, this is likely to remain
a largely mathematical exercise. Aside from this, the SM itself contains several open problems,
most notably the hierachy problem and the puzzle of its matter content and couplings. The
hierarchy problem is enticing since it suggests that the Higgs boson mass should be unstable
against quantum corrections, and therefore it is hoped that new particles exist at masses not

much larger than that of the Higgs to resolve this problem. The leading theoretical candidate

11



12 James Lyon

for these new particles today is supersymmetry, although lack of experimental discovery so
far at the Large Hadron Collider (LHC) has somewhat dampened optimism that it should be
within easy reach.

As for the particle content and couplings of the SM, there are two essentially orthogonal
puzzles. First, the cancellation of gauge anomalies between quarks and leptons within a fam-
ily, which would seem to imply that the SM charge assignments arise from some underlying
structure. Second, the question of why there are three families and why they appear to have a
hierarchical mass structure. Experiments at the Large Electron-Positron collider indicated that
if a fourth family exists, it is unlike the three already known since the Z boson only appears
to decay to three types of neutrino [14]. As for the mass hierarchy, although much theoretical
work has been done [15], there is presently no conclusive evidence of physics beyond the SM.

So then, what is B physics and what role does it play in all of this? The answer to the first
question is straightforward: B physics studies the decays of the b quark, which are measured
indirectly through the decays of heavy mesons containing b quarks. As for the second, these
decays are particularly interesting because they probe the flavour sector of the SM, which
contains the only known CP violating phase. Thorough experimental understanding of this
sector is therefore desirable since it is believed that the amount of C'P violation in the SM is
not nearly sufficient to account for the observed baryon asymmetry of the universe [16,17].

Aside from the top quark, the b is the heaviest quark in the standard model, but unlike
the top it is sufficiently long lived to hadronise. Still, the fact that the b quark mass is much
larger than the scale of quantum chromodynamics (QCD) means that perturbation theory
remains an effective tool for computing B meson processes; non-perturbative effects can be
separated from short distance physics and grouped by inverse powers of the B meson mass.
Since the QCD aspects of B mesons can be handled well within perturbation theory, decay
rates can be predicted directly in terms of the SM electroweak sector and a small number of
non-perturbative QCD parameters, allowing indirect tests of the electroweak sector. The large
number of different decay channels enables many independent tests of the SM to be performed,
and likewise many independent constraints on its parameters, and deviations in any channel
would be a likely indication of new physics. This complements the results of high energy
collision experiments which aim to produce new particles on or near the mass shell. The study
of B meson decays has been ongoing since the exclusive lifetime was measured at the Large
Electron-Positron collider [18,19]; subsequently the dedicated B physics experiments BaBar and
Belle were performed, and today the LHCb experiment is continuing to provide more precise
measurements of B decays as part of the LHC experimental programme [20]. As with the other
LHC experiments, although some tantalising hints of non-SM physics have been seen [21,22],
it is still likely as not that better statistics will confirm the SM picture.

This thesis will focus on semi-leptonic heavy-to-light B meson decays. Various new contri-

butions to these decays are computed, and their importance to isospin and C'P asymmetries
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Rare semi-leptonic B meson decays 13

will be analysed. The remainder of this thesis is organised as follows:

Chapter 2 General theoretical background and methods used to perform calculations in B
physics are discussed, and conventions are established. The ultra-relativistic approxi-
mation is introduced and evaluated in light of the results for the isospin asymmetry in

Chapter 5.

Chapter 3 The contribution of the chromomagnetic operator to semi-leptonic B decays is
calculated. The differences between the light cone sum rules and QCD factorisation ap-
proaches are highlighted, and the infrared singularities are discussed. This calculation
runs into a significant technical obstacle due to the need to separate states with B me-
son quantum numbers from light states in the sum rule. The details of this problem
are presented, and the resulting implications for constructing multi-loop sum rules are

pondered.

Chapter 4 A scenario for sizeable C'P asymmetry in D meson decays, through the chromo-

magnetic operator whose matrix elements are calculated in Chapter 3, is presented.

Chapter 5 The isospin asymmetry in B — (K, K*, p)ITi™ is calculated using light cone sum
rules (LCSRs) for all four-quark operators up to dimension 6. This is applied to the SM
operator basis to obtain a prediction for this asymmetry and loose constraints on beyond-
SM operators. Selection rules for operators in each process are discussed which allow
deviations from the SM prediction to appear much more strongly in specific channels if

beyond-SM physics does not couple to V' — A currents.

Chapter 6 The contribution of charm loops with soft gluon emission to B — VITI~ decay
is calculated. It is analysed in the context of other non-factorisable charm bubble terms
and its contribution to the right-handed decay amplitude in the SM, where it appears
to dominate since the parity conserving and violating amplitudes are not related in this

case.

Chapter 7 A summary of the results of each chapter is given, along with concluding remarks

on how the calculations in this thesis may be further improved in future.

13
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Chapter 2

Preliminaries

In this chapter the basic techniques used throughout this thesis to compute heavy meson decays

will be discussed.

2.1 Conventions

The process of writing down a quantum field theory usually involves a certain amount of freedom
of choice, where signs and basis conventions can be changed without affecting any observables
of the theory. It is rather unfortunate although perhaps inevitable that some of these choices
have not developed universally accepted conventions, and so comparison between results of
different papers can occasionally be rather laborious if it is not made clear what the effects of
conventions are.

In this thesis, the covariant derivative is taken to be
. AT L
D, =0,—1ieQA, — 29714# , (2.1)

which leads to interaction vertices with fermions of the form +iey* and igv“%a, where A\ are
the Gell-Mann matrices and @ is the particle charge, either +2/3 or —1/3 for quarks and —1 for
leptons. The gauge charges e and g are both taken to be positive. This agrees with [23]*.

The totally antisymmetric Levi-Civita tensor is defined to satisfy €125 = +1, which follows

[24] but not [23]. This enters Dirac traces through
Tr{y"y" 7775} = 4ie"?7 . (22)

Note that this definition is only meant to imply the sign of the traces involving 75 and not its

ISomewhat confusingly [23] sometimes absorbs the electron charge @ = —1 into this definition to give
D, =0y +ieAy.
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16 James Lyon

D-dimensional extension, which will be discussed in Section 2.4. This convention also disagrees

with the default choice of FeynCalc? [25].

2.2 The Standard Model (SM)

The SM is the long standing and highly successful model underpinning the current state of
theoretical particle physics developed during the 1960s and *70s [1-9]. Its basic ingredients are
well known: it has three generations of fermions, each containing quarks and leptons, and a
single scalar Higgs field, which interact via Yukawa couplings and a gauged SU(3) x SU(2)L x
U(1)y symmetry. Putting all of these ingredients together (e.g. [23]), the Lagrangian density

for the matter and Higgs sectors may be written

L= —iFﬁyFﬁy + Z iQ% PQY + Z [ialy Duly + id Dy + (D, H)' (D" H)

i i (2.3)

+p?HTH — N(H'H)? - Z QY [y}j]jfug% + yzledg%] + h.c. + leptons
0,J

where Q% = (u},d?) are left-handed SU(2) quark doublets and ur, dr are right-handed quark
fields, H* = ¢* [ ;r is the Higgs field transformed to the SU(2) anti-fundamental representation,
and the covariant derivative D, implies inclusion of all gauge fields necessary for the field it
acts on. The lepton sector has not been written out in full since its dynamics will play no role in
this thesis. The “Mexican hat” shape of the Higgs potential \|H|*—u?|H|? implies a non-trivial
minimum of the effective action and therefore that (H) # 0 in the vacuum. For interactions at
scales small compared to the Higgs vacuum expectation value (VEV), the basis of fields used
in (2.3) is therefore inappropriate as there will be large bilinear mixing terms. This is of course
the scenario of interest for B meson decays.

Rewriting (2.3) accounting for the non-zero Higgs VEV has several consequences. The first
of these is that the quarks, leptons and W and Z bosons become massive. Since the solar
neutrino oscillation experiments of the '90s, neutrinos are also known to have mass [12,13], but
their masses are too small to have an effect in accelerator experiments. The mass terms for the

quarks are then given by

Qryd (H) ufy = yd motig,uj, Qryg (H)dy = moyy didy, (2.4)
where the up/down type of the left-handed quarks is defined by the direction of the Higgs VEV.
The mass basis for the quarks is given by the singular value decomposition (e.g. [26]) of the
matrices Yy 4 as

Yu,d = Uu,dzu,dwid . (25)

2This convention can be changed; see appendix A.
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Rare semi-leptonic B meson decays 17

The diagonal matrix mg, q then gives the quark masses. The W, 4 matrices can be absorbed
into the definitions of the right-handed fields ug,dr without affecting any other terms in the
SM Lagrangian and are thus unphysical. The same cannot be said of the U matrices: after the

change of basis

uy, = Uuu/L dL == Udd/L 5 (26)

the gauge interaction with the SU(2);, field, labelled B,,, after expanding the Pauli matrix

components becomes

3 1 - 122
1, b Tt B B, —iB, Uy,
uLUu dLUd ’y/“ 1 -2 3
V2 B, +iB: B} Uad,,
3 1 -2 /
= (@ @ )w Do VBIBD ) ()
V2 V(B +iB2) -B} d,

where V' = UfUy is the Cabibbo-Kobayashi-Maskawa (CKM) matrix [27,28]. Two of the
SU(2)r, boson degrees of freedom therefore induce transitions between up- and down-type
quarks, while the other is diagonal. The matrix V is unitary since it is the product of two
unitary matrices. A 3 x 3 unitary matrix has nine degrees of freedom: five of these may be
eliminated by phase rotations on the six quark flavours (the sixth global phase has no effect)

leaving four physically relevant parameters.

Both the fact that the CKM matrix does not appear in the B? interaction term and its
unitarity are important in the SM. The B3 component of the SU(2);, gauge field mixes with
the U(1)y gauge field to form the photon and the Z boson, and the absence of the CKM
matrix here means that there are no tree-level flavour-changing neutral currents (FCNCs) in
the SM, so any FCNC process is loop suppressed and expected to be small. Although neutral
current decays are rare in comparison with charged current decays and thus correspondingly
more difficult to measure precisely, they are interesting objects of study since it may be the case
that contributions from beyond-SM physics are significant. The unitarity of the CKM matrix
again leads to a suppression of flavour-changing neutral processes: neutral flavour-changing
loop processes will take the form VMV as seen in Figure 2.1, and thus would be flavour-
diagonal were it not for the fact that the interaction matrix M depends on the mass of the
intermediate quark. This is known as the Glashow—Iliopoulos—Maiani (GIM) mechanism [29].
It leads to a rather different structure of FCNC decays for heavy up- and down- type quarks
since the top quark is so much heavier than the bottom: b — s and b — d decays contain
large logarithms ~ logm?/ m% but the corresponding logarithms for the charm quark are much

smaller ~ logm?/m?. This point will be returned to in Chapter 4.

17



18 James Lyon

Figure 2.1: Example of a flavour-changing neutral loop process. The appearance of the CKM matrix
twice in this diagram in the form V'V would mean that off-diagonal flavour-changing terms such
as b — s transitions would be zero were it not for the different masses of the up-type quarks.

The standard choice for parametrisation of the CKM matrix is in terms of three Euler angles
and a C'P violating phase [30]. In this thesis a widespread alternative parametrisation due to
Wolfenstein [31] and its all-order extension [32] will be employed. The full expressions are
rather lengthy so are not reproduced; however the approximate expression for the CKM matrix

in this parametrisation is

V=1 Ve Ves Ve |= - - AN2 , (2.8)
Via Vis Vw AN (1 —p—in) —AN? 1

which is accurate up to O(A*) corrections. This expansion in a small parameter A ~ 0.23
reveals that the CKM matrix exhibits some structure; it is nearly diagonal and the coefficients
for transitions between different quark generations have considerably different magnitudes. The

origin of this structure is not yet well understood, though many proposed models exist [15].

2.3 The Renormalisation Group (RG)

As is well known, calculations beyond tree-level in quantum field theory often lead to the
appearance of divergent integrals. In order to produce finite predictions, the procedure of
renormalisation was developed, where the divergent parts are absorbed into unphysical param-
eters of the theory. The problem then is that it is not clear that absorbing divergences of all
possible diagrams is possible when there are only a finite number of parameters into which to
absorb them. In fact the divergences can only be absorbed for a specific class of renormalisable
theories — non-renormalisable theories are also common such as the effective electroweak theory,
which will be described in Section 2.4, but in that case calculations must be restricted to a fixed
perturbative order.

The problem of renormalisation was largely solved by the Bogoliubov—Parasiuk—Hepp—
Zimmermann (BPHZ) scheme [33-35] which gives an algorithm for systematically subtract-
ing the divergences of a given Feynman graph. It does not however solve a second problem:

quantum field theories usually contain symmetries, notably, as far as the SM is concerned, Yang-

18



Rare semi-leptonic B meson decays 19

Mills theory, and symmetries are easiest to deal with when they are manifestly preserved. The
situation with regard to non-Abelian gauge theories was vastly improved by the introduction
of dimensional regularisation under which the gauge symmetry is preserved [36]. This is not
entirely without a price: Lorentz invariance must be broken to deal correctly with chiral gauge
theories in this approach, although problems in chiral gauge theories are virtually inevitable

owing to the Adler-Bell-Jackiw anomaly [37, 38].

The effect of regularisation and renormalisation is that the couplings of a quantum field
theory acquire a dependence on the regularisation parameter. Since the goal of renormalisation
is to eliminate that parameter it is replaced by another parameter using some renormalisation
conditions. This parameter is massive, which is in general unavoidable since as it will turn
out the divergent integrals correspond to anomalous breaking of scale invariance [39,40]. The
introduction of a new parameter raises the question of whether the theory indeed has more
parameters than originally intended or not. In fact, the original coupling and the newly intro-
duced mass scale can be related to each other, and this relation is known as the renormalisation
group.

Since at hadronic scales the QCD gauge coupling is much larger than the electromagnetic
coupling, it is most common to deal only with loop corrections in as and to neglect those in
Qem and the Fermi coupling G. In this case in dimensional regularisation the bare coefficient

of an operator ¢y may be written (e.g. [41])

co(€) = =" Ze(&, g(w)e(p) (2.9)

where € = % and n is found by fixing ¢ to its engineering dimension in the Lagrangian and Z
to be dimensionless. ¢ can be a mass, or more usefully in the case of weak decays the coeflicient
of an effective operator. The renormalisation constant Z. only depends on the renormalisation
scale p indirectly through the gauge coupling g(x) in minimal schemes®. The independence of
the left-hand side of (2.9) on p can be exploited to eventually give

dc dg

M= [Ve(g) + ne] i =9 [B(g) +¢€| (2.10)

where the definition of the § function for the running of the gauge coupling has also been
included. It is interesting to note that in order for (2.10) to hold it must be the case that the
residue of the 1/e pole in Z.(¢,g(n)) carries all information about the scale dependence of c¢;
all more singular poles must be defined in terms of this one, which can provide a non-trivial
check on the formalism. (2.10) is, without a perturbative expansion, as much as can be done

for the gauge coupling g; however in the case of ¢ it is usual to remove the dependence of ¢ on

3The extension to theories with multiple gauge couplings is straightforward since the scale p can be chosen
separately for each coupling.
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w1 entirely in favour of a dependence on g, which gives

@ =— 7e(@) c reani? /o 7%0) ¢ (2.11)
da 208(a) ~ Bla)—~afo/dm 260 | o’ :

where a change of variables to o = % has been introduced, and this is the form of the renor-
malisation group equation useful in dealing with effective theories. The factor —vo/203, is the
result of definitions used to reach (2.10) and this convention shall be used to define the one
loop anomalous dimension 7y of an operator in this thesis*, but it is not a universal convention.

The leading order solution to (2.11) is then

o —7£0)/2/30
c(pur) = <OZEZQ;> c(uz) . (2.12)

The question that has not yet been addressed is the usefulness of (2.11) and (2.12), which
allow the renormalisation scale p to be varied without affecting physical observables since the
bare coupling is held fixed. In practice this relation is not exact since, as in (2.12), it is usual
to work at a finite order of perturbation theory and therefore changing the renormalisation
point only keeps the physical results fixed up to a certain perturbative order. Although the
behaviour of uncalculated terms is in principle unknown, the RG can be exploited to choose
the renormalisation point such that the perturbative series should be expected to converge as
rapidly as possible. In practical terms loop calculations in quantum field theory result in the
appearance of logarithms of the ratio of the external scale ¢2, as well as particle masses, to the
renormalisation point, that is ~ log ¢?/u?. An RG improved calculation will then set u? ~ ¢2,

so that such logarithms are small.
In a theory with multiple couplings the situation is slightly more complicated: (2.10) must
be replaced by
dci
M@ =7ij(9)c; (2.13)
in order to account for mixing between different operators. <;; is known as the anomalous

dimension matrix (ADM). If the convention ~;; = a’yfjo) /47 is adopted at leading order following

(2.11), (2.13) can then be rewritten as

(0)
de; Vij Ci

=— . 2.14
dos 20500 ( )

In order to extend the solution (2.12) to the case of multiple couplings the ADM is diagonalised
by

0 —
el = Vije; N = Vik%il)vzj ! (2.15)

4 Anomalous dimensions are listed for some relevant operators in appendix B.5.

20



Rare semi-leptonic B meson decays 21

and then the solution takes a very similar form to (2.12):

Ly (alun) ) T
ci(p) =) Vi Viker(uz) (2.16)
=2 (as(ﬂz)> e

For higher order calculations it is necessary to solve the flow equation (2.13) beyond the
leading order in ay; sadly in this case an exact analytic solution cannot be found and the
differential equation may either be solved numerically or by an expansion in a(p1) — as(p2).
The expansion in the latter case is given in the appendix of [42] and this is the method that

will be employed to compute the effective Wilson coefficients for b — s decays below.

2.4 Effective Hamiltonian for b — si™[~

The scale of B meson decays is ~ 5 GeV, far below the electroweak scale characterised by My, ~
80 GeV. A description of electroweak interactions in terms of W bosons and including the top
quark will therefore lead to large logarithms in the resulting calculations ~ log mf /M3, when
loop corrections are included. The appearance of large logarithms indicates that a perturbative
series is likely to show poor convergence. In cases where large logarithms are due to a choice of
the renormalisation scale far from the interaction scale, the appropriate solution is to use the
RG to change the renormalisation point and re-sum the leading large logarithms. In the present
case, the large scale is due to the presence of heavy particles rather than a large renormalisation
scale, so this cannot immediately be done.

The way to avoid this problem however is simple: since the W boson mass is large compared
to the momentum scales being studied, an expansion in 1/M ‘%V can be performed. In the simplest

case, a W boson exchange between two quark lines can be replaced by a four-quark operator

2 _ v _ 2
Gw iy, - L= g _ 1=, Gro.., - P
= VesVerdnu— o v b= —ﬁVcchbS’Yu(l—%)C ey (1=75)b+0 ML)
(2.17)
as illustrated in Figure 2.2. The implication of (2.17) is that an effective Hamiltonian
GF e, _ _
Heg = —=V Vep57,(1 — v5)c ey (1 — v5)b (2.18)

V2

will produce the same results as the full theory at low momentum scales. In fact owing to the
structure of the CKM matrix (2.8) this is the largest flavour-changing neutral term.

This illustrates the general procedure rather well: all operators below a certain dimension
consistent with the symmetries of the full theory are written down and then their coupling con-
stants are fixed, so that their effect matches that of the full ultraviolet theory up to corrections
suppressed by heavy masses, e.g. [43]; in this case, the W and Z boson masses and the top

quark mass. The Higgs boson mass is in fact not relevant because the Higgs boson does not
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Figure 2.2: Replacement of W boson by a local four quark effective operator

mediate flavour-changing processes, although the Z manages to circumvent this for technical
reasons.

So far, the question of renormalisation has not been addressed. It is well known that the
Fermi theory of weak interactions is non-renormalisable; since Gy has negative dimension, an
infinite number of dimensionless operators can be constructed. In contrast to the case of a
renormalisable field theory, multiple insertions of a four-quark operator would be renormalised
by a higher dimension operator appearing at a higher power of G which must be separately
matched to the ultraviolet theory. In practice however the higher dimension operators associated
with higher powers of G are expected to be heavily suppressed since they would carry more
powers of 1/ MI%V and thus a calculation at leading order is sufficient.

By contrast, loop corrections in the strong coupling constant « are crucial, since these will
generate large logarithms that must be resummed to get accurate results. Integrating out the
heavy degrees of freedom is done with the renormalisation scale u? ~ M2, so that logarithms
appearing in the couplings of the effective theory are small. Since the heavy particle masses
have been traded for a large renormalisation point in the effective theory, renormalisation
group evolution may then be used to bring that scale down to the interaction scale of interest,
and only small logarithms appear. This is the power of the effective theory approach: it
allows interactions with heavy particles to be computed accurately, where the corresponding
calculation in the full ultraviolet theory could require high order loop corrections to achieve the
same results.

The inclusion of « loop corrections in constructing the effective theory for b — siti~
processes introduces a number of new operators. The relevant infrared symmetry constraint is
unitarity of the CKM matrix (2.8). Since renormalisation constants are purely a property of
the theory at short distances particle masses do not appear, and thus GIM cancellation in the
divergent parts of loop diagrams is exact, which reduces the number of operators required. The

full effective Hamiltonian needs ten operators, given by [44]

2

6 10
Hep = ig S OGO+ 0,C08) - A S S ot - A S o (2.19)
i=1 q i=3 =7

where the index ¢ runs over all active quark flavours (u, d, s, ¢, b), and Ay = Vs Vb is a commonly
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used shorthand for CKM matrix elements. The operators appearing in the effective Hamiltonian

are:

Current-current operators

Of = (8:qj)v—a(@jbi)v-a 0 = (5i¢;)v-a(qjbj)v_a ;

QCD penguin operators

O3 = (5:bi)v-a Z(Qij)V—A Of = (5ibj)v-a Z(QjQi)V—A
q q

Of = (8ibi)v-a ¥ _(Ga)v+a Of = (8ibj)v-a > _(@G%)via ;
q q

Magnetic penguin operators

emy _ gsMy _ .
(’)7:—@30-F(1+’)’5)b Os =~ 3 50-G(1+v5)b
Semileptonic operators
_aem*M — _aem*H —
Oy = ﬁ(h D (57,(1 —5)b) O = ?(17 ¥51) (57, (1 — 75)b)

The notation for quark currents is ggv+a = §y*(1 £ 75)q, where the vector index is implicitly
contracted. Small corrections proportional to the s-quark mass that appear in O; and O,
which are identical to the terms given under the replacement my(1 + v5) — mg(1 — ~5), have
been neglected. The operator Oy arises due to intermediate Z bosons, which might seem
to be forbidden because the relevant diagram contains both a W and Z boson; however, this
is circumvented because the Z boson coupling is a mixture of the weak and electromagnetic
couplings and thus it can appear at O(aemGr). To include higher order loop corrections in
as properly, it turns out to be convenient to go over to an alternative basis containing fewer
instances of 75 [45]; closed loops with odd numbers of 5 matrices complicate loop calculations
in dimensional regularisation since 75 is strictly a four-dimensional object.

A particular issue that arises in electroweak interactions is the presence of ~5. It is well
known that the extension of the v5 matrix away from D = 4 is not straightforward, because it

is not possible simultaneously to satisfy [46]

Tr{ys7"'7" 7777} oc eP? and {5} =0 (2.20)

in D # 4. There are two well-known schemes for dealing with occurrences of 75, known as the 't

Hooft—Veltman (HV) scheme [36] and the naive dimensional regularisation (NDR) scheme [47],
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defined through

i v g
V5 = gremrot VY and {75, 7} =0 (2.21)

respectively. Both schemes have significant difficulties: the HV scheme breaks D-dimensional
Lorentz invariance and thus the counterterms needed to renormalise the theory do not respect
gauge symmetry [47]. The NDR scheme is internally inconsistent, since it can be shown without

assumptions on 5 that

Tr[{Va, V537 VYo Vo] = 2(D = 4) Tr[vs7u 1 7070) (2.22)

which is obviously inconsistent with {7,,75} = 0 in D # 4 dimensions, and therefore closed
fermion loops with odd numbers of 5 matrices cannot be calculated [48]. However it turns out
that b — s decays do not require computing closed loops with odd numbers of 5 matrices, and

in this situation the NDR scheme is perfectly consistent and far simpler than the HV scheme.

In the context of the effective Hamiltonian (2.19), the choice of v5 scheme affects the Wilson
coefficients (WCs) C7 g9, because these operators at tree level are at the same order of « or
Qem as loop corrections arising from the four-quark operators O _g. It is therefore common to
absorb these loop corrections into effective coefficients C’?fg [49], which are scheme independent

at leading order. They are given, for the effective Hamiltonian (2.19) in the NDR, scheme, by:
eff eff
Z Z = + = - = . 2.2
07 =Cy 903 3C4+905+306, CS Cs 303 305 ( 3)

The situation with Cy is slightly different: the corrections from the four-quark operators are
not local. However, since Cg couples to a lepton pair which does not couple to gluons at leading
order in Qem, b — sl through Cy can be factorised, and therefore it makes sense to include
the complete one-loop corrections into an effective operator C§f(¢?), which can be combined
with the exclusive form factors. The relevant form factors will be described in Section 2.9. The

function C§%(¢?) is given in the NDR scheme by
Cs™(q®) =Co+Y () (2.24)
where the loop corrections Y (¢?) are [50]:

Ac
Y(¢?) =h(q*, mc) <_At (3C) 4 Cy) +3C5 + Cy + 3C5 + CG)

2
- M (4C5 + 4C4 4 3C5 + Cg) (2.25)

Au 1 4
— h(q%,0) (/\t (3C1 + C) + 3 (Cs + 304)> + 77 (C3 +3C4 + 8Cs)
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H=mp = VmyAg
CMM BBL CMM BBL
C; | -0.2622 -0.1311 | -0.5636 -0.2818
Oy 1.0087 1.0524 1.0299 1.1238
Cs -0.0051 0.0110 | -0.0175 0.0194
Cy | -0.0778 -0.0316 | -0.1718 -0.0524
Cs 0.0003  0.0087 | 0.0012 0.0132
Cs 0.0009 -0.0371 | 0.0042 -0.0775

Ccsft -0.2975 -0.3351
cst -0.1569 -0.1828
Cy 4.0354 4.4207
Cho -4.2496 -4.2496

Table 2.1: WCs at = my and p = /mpA g at NNLL order for my, = 4.7GeV, My, = 80.4GeV,
sin? = 0.23, m; = 177GeV, Ay = 0.5GeV and ASL, = 214MeV in two different bases.
Three-loop running for « is used. The BBL basis used is that defined in [42]; it is equivalent to the
traditional basis defined in [44] at leading order. The CMM basis [45] is used for loop calculations;
however, all results are presented in the BBL basis and all references to WCs C'_¢ elsewhere in the
text are in that basis.

The function h is the standard quark vacuum polarisation function (this form from [51])

1
arctan z>1
4 22 A\ 4 Vz—1
h(s,m)z—g(og%—3—z—(2+z)2>—9(2+z)\/|z—1| . -
log +\/E_Z—E z<1
(2.26)

where z = % and the renormalisation scheme dependent term A [52] has been included for
later convenience. It is given by

2

which is set to zero in the MS scheme.

2.4.1 Wilson coefficients (WCs) for b — s~

The calculation of the WCs of the Hamiltonian for b — s decay is rather involved, so this
intermediate result of the calculations in chapters 5 and 6 is included so that the results can
be more easily reproduced. The renormalisation group flow procedure is applied as described
in Section 2.3 up to three-loop order, specifically using the solution of the flow equation to
this order in the appendix of [42]. Rather than the operator basis defined below (2.19) this
calculation is done in the CMM basis [45] since it is in this basis that the higher order anomalous
dimensions have been computed, as its construction was designed to ease automated calculation.

The complete ADM to three loops is taken from [53], and the expressions for the Wilson
coefficients C; at the electroweak scale are take from [54] for C;_¢ and Cyg 19 and [55] for C’%fg.

These are always employed at p = My to set the initial conditions for the RG flow; that is
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to say the uncertainty owing to a? terms at this scale is ignored, although uncertainty of the
masses of the W boson and top quark is accounted for. Since ays(Mw ) =~ 0.11 is small this
should have a negligible effect on the overall uncertainty of our calculations.

After computing coefficients at the chosen low scale in the CMM basis, they are then trans-
formed into the pseudo-BBL basis defined in [42, eq. 79], which is equivalent to the BBL basis

at leading order in a,. The results of this procedure are given in table 2.1.

2.5 The Operator Product Expansion (OPE)

Perturbation theory in the SM is expected to be valid at short distances, or equivalently at
energies large compared to the masses of hadronic resonances arising from QCD. An important
question in addressing SM phenomenology is therefore how pure perturbation theory breaks
down and whether longer distance correlations can be addressed. The OPE provides a means
to address these problems.

The OPE, introduced by Wilson [56], proposes that at short distances a product of two
operators A and B may be expanded

A@@)B(0) = > ci(2)0;(0) (2.28)

i
where O; are local operators and ¢;(z) are c-number coefficient functions, and the sum in
principle runs over all operators O; whose quantum numbers are the same as those of the
product AB. Under perturbation theory at sufficiently short distances it might be hoped from

dimensional analysis that

AQA2)B(0) =) ei(Ax)0;(0) A0, > adoimda=dn e, (2)0;(0) (2.29)
i i
holds, where do is the engineering dimension of the operator O, up to logarithmic corrections.
Since fields in a quantum field theory in more than two dimensions will have positive dimension
it would then be expected that only a finite number of operators O, with dop, < d,, for some d,
can be written down. This would imply that at sufficiently short distances only a finite number
of terms in the OPE (2.28) need to be considered, as higher dimension operators are suppressed
by powers of the distance. The claim of the OPE [56] is that this holds quite generally: as
A — 0 in (2.29), only a finite number of coefficient functions are more singular than A for
some d,, even beyond perturbation theory.

Of course, the practical utility of the OPE arises from the fact that the coefficient functions
¢i(x) can be computed within perturbation theory, and then the expectation values of local
operators in vacuum and on different particle states can be derived from experiment. Rigorously

it has been shown that coefficient functions can be derived by computing divergences in L + 1
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loop graphs [57], which amounts to considering the action of the Callan-Symanzik equation
on both sides of (2.28) [41]. This procedure is rather cumbersome, however, since it involves
computing diagrams involving one more loop than the final result and is not what is normally
done, rather the usual interaction—picture perturbation theory using a Dyson series is performed
followed by Wick contraction, e.g. [23]. In contrast to the usual perturbative approach, in which
normal ordered operator products are dropped because their expectation values are zero in the
perturbative vacuum, all terms are retained since the same cannot be guaranteed for the full
vacuum. It then follows that the most singular short distance term in the OPE is exactly the
perturbative part, since it is associated with the dimension 0 identity operator.

This procedure can be somewhat better justified by considering the Dyson—Schwinger equa-
tions (DSEs) [58-60], which provide genuinely non-perturbative constraints between different
time-ordered operator products®. In the usual case, this means starting from the Gaussian
solution to the free field theory and recovering standard perturbation theory. In the OPE
case as discussed above, the recovery of the coefficient functions of operators whose perturba-
tive expectation value is zero is also sought. The appropriate zero order solution is given by
Wick’s theorem [61] followed by Taylor expanding the x coordinates on the normal ordered

operators [41], e.g.
1
T{A@)B(0)} = A#P(x) - T + > Oy A)Br (2.30)

where I is the identity operator, A48 (z) the bare Feynman propagator and : AB : a normal
ordered local operator. It has been assumed that A and B are fields rather than composite
operators which would necessitate the inclusion of many more operators arising from commuting
the constituent fields.

This naturally raises the question of the connection of the operators on the right-hand side
of (2.28) to those in (2.30). Wilson’s argument for (2.28) [56] constructs the right-hand side
by systematically extracting the most singular part of A(xz)B(0) at short distances, subtracting
this singularity and then repeating. At each step in such a construction only the most singular
term in the most singular remaining coefficient function is recovered, and for subsequent steps
an extension of that coefficient function away from x = 0 must be made. This means that
the operators appearing on the right-hand side of (2.28) in general are expected to be scheme
dependent. The right-hand side of (2.30) however is scheme independent, except insofar as
an arbitrary scale A could have been introduced and A2z? terms included in the coefficient
functions. These was no reason to do this, however, as is well known divergences occur in
interacting quantum field theories which must be regularised by the explicit introduction of an
arbitrary mass scale and renormalisation conditions. The extension of normal ordered products

to all perturbative orders of an interacting field theory was solved by Zimmermann through the

5See appendix C for a brief discussion.
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BPHZ regularisation scheme [62].

Further, in contrast to the case of renormalisable local actions, OPE calculations may con-
tain infrared divergences [63-65]. Since the SM is infrared finite, it is expected that infrared
divergences should cancel in observable processes in the spirit of the Kinoshita—Lee-Nauenberg
theorem [66,67]. Infrared divergences in Feynman diagrams with massless particles are ex-
pected, however, and in OPE calculations must be absorbed into operator expectation values;
in particular for external bound states in QCD, infrared divergences must cancel between short
and long distance physics in order for perturbation theory to be useful. Separation of scales in
this way is the subject of factorisation theorems [68]. In principle this means that OPE con-
densates can depend on a separate UV and IR renormalisation point; however, under normal
circumstances they would be fixed to the same value since the usual goal of RG running is to
make logarithms small and both the IR and UV renormalisation scales are compared to the

same hard scale.

It might be wondered whether in calculating OPE coefficient functions perturbatively crucial
non-perturbative information might be missed. Given the practical impossibility of performing
non-perturbative OPE calculations on phenomenologically interesting theories, this question
cannot truly be answered; however, it has at least been shown that the coefficient functions
respect all symmetries of the underlying theory [69], that is to say all symmetry-breaking contri-
butions must come from expectation values of local operators. Since the OPE is an expansion in
terms of operators rather than correlation functions this is rather to be expected, as symmetry-
breaking terms would usually be dependent on external parameters such as temperature and
density which the OPE cannot see. Indeed, although the OPE is practically useful where there is
a substantial difference between the interaction scale and the scale of non-perturbative physics,
conceptually it is a separation between the behaviour of a theory arising from commutation
relations of operators and that from external states.

Finally, there is the question of what role symmetries and equations of motion play in the
OPE. Since the coefficient functions are nothing but Feynman diagrams with certain external
kinematics, there must be relations between some of them. In order to produce consistent
results, symmetry constraints must therefore be satisfied by OPE expectation values such that
the combination of the short and long distance parts is free of residual gauge dependence. The

simplest example of such a constraint is in the quark condensate

(WD —m)y) =0 = i{Ypdy) = m(Yy) + O(as) , (2.31)

and generalisations of this equation of motion constraint play a crucial role in the construction
of light meson distribution amplitudes (DAs) [70]. The equation (2.31) also has an additional
implication: the OPE may not be strictly truncated at a given external operator dimension

since equations of motion may relate condensates of different dimension. The higher dimension
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condensate may be excluded by other means, however, as in this case neglecting the light quark
mass implies (@) ~m — 0.

Of course, none of this necessitates that the OPE actually converges for a particular process,
that is to say that the coefficient functions relevant to a particular process at physical external
momenta will in fact suppress higher dimension condensates. It turns out that in common cases

this cannot be guaranteed, and this is the subject of the next section.

2.6 Correlation functions near the light cone

The mathematical objects of interest to particle physics are S-matrix elements, which, as is well
known, may be related to Fourier transforms of correlation functions via Lehmann—Symanzik—
Zimmermann (LSZ) reduction [71]. This means that the behaviour of a correlation function at
all spatial coordinates is used in computing a physical result and it must be shown that the use
of an expansion such as (2.28) is justified, i.e. that the short distance contribution is dominant.

The dominant contribution is best illustrated by way of example. A scattering process
producing a pion will, after evaluating the operator product expansion for the short distance

part, contain a contribution from the two quark operator, which may be generally expressed as

d
M= [ s [ e S 0@ 0 )b O:l(r) (232

P

where I'p are projections of the short distance part onto the basis of Dirac matrices, g; are
the external momenta of the process and k is some linear combination of ¢;. From Lorentz

invariance it follows that the required pion expectation values are

(O (@) Le(0):|m(p)) = r(p - z,m7a?) (2.33)

where T is a specific component of a Dirac projector. Plugging this into (2.32) and removing

the z-coordinate via a Taylor expansion gives

(2.34)

0,
M = Z¢Fp w - aa_mﬂﬁ FP(l7Ql)
P

l=—k

The key to whether or not the OPE converges is now held by I'p. These derivatives may be

rewritten in terms of Lorentz scalar quantities as:

P P P , 0
P20 Dam T 2P g g 239
02 0 02 0? 0
2Y 2 oD~ 4 4]2 A1 ¢;) ———— Qi ———————— + ...
i g = 2030+ g + ) g b )

(2.36)
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where the dots are all terms including invariants in p and are identical in structure to those
in g¢;, since p is not singled out in (2.36), unlike in (2.35). In order to proceed further, it is
necessary to assume that the action of the derivatives on the short distance function I'p is to
suppress it by a large scale. This will typically be the case except in the vicinity of singularities
of I'p, and in perturbative correlation functions amounts to the requirement that propagators

are off-shell.

If the hard scale of the interaction is Q2, the scaling assumptions

0 0 0 1
~ ~ ~ —— Z2NZ iN . iN 2 2.37
o) "ol -q) o(-p) Q2 U@ (2:37)

combined with (2.35) and (2.36) lead to the conclusion that

0 5 02 m2

o ™ om ~ G (2.38)

and hence it would seem that the expansion in terms of powers of the derivative (2.36) is
convergent but the expansion in terms of (2.35) is not. It is also possible to reach this conclusion
by considering the oscillation of the exponential e?*** appearing in (2.32) in a certain reference
frame, e.g. [41]. It should be mentioned at this point that particle masses have largely been
ignored in this argument: the presence of very massive particles does not spoil light-cone
convergence since derivatives will introduce additional powers of 1/M? and it is assumed that
M? > @2 and in fact were this always the case then (2.35) would scale as Q?/M? and be a
valid basis for expansion.

Since the derivative (2.36) corresponds to a series expansion in x2

, a process is light-cone
dominated when this expansion converges, as is expected to be the case when the short distance
kernel T'p is away from any thresholds. However a# (through p - x) is not a good expansion

parameter, and therefore the full p - z dependence must be retained.

The final step in treating external hadrons is then to characterise the function @r (2.33)
near 22 = 0. The classic OPE would expand the left-hand side of (2.33) in terms of operators

of increasing dimension

H@YO) = O [0 D 1] (2.39)

>
where D, = 3 w— B u» and characterise the pion state in terms of expectation values of these
local operators. Unfortunately such an approach will lead to sums which do not converge [72],

and in fact the correct approach is to keep the full p - x dependence and write

Mwmwwwmzﬁ¢mwmwu. (2.40)

The function ¢r is then known as a distribution amplitude (DA). It is somewhat interesting

that the integral is over the range [0, 1]; physically the interpretation is that a configuration in
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which one of the quarks has negative energy is extremely unlikely. Mathematically, however,
it has an entirely different origin: in a non-interacting conformal theory (which QCD) is at

leading order) the free OPE may be explicitly summed to give a result of the form [73]
~ 1
U (x)T1p(0) ~ / > fulu,p-2,2°)0p (uz)du (2.41)
0 n

and hence in a perturbative construction of the OPE it follows that the general form (2.40) has
the correct momentum flow structure. In contrast to the local OPE discussed in the previous
section, this leads to a situation where an infinite number of parameters may enter into the
function ¢r without any suppression in the hard scale of the process. This then presents the
problem of how to capture an infinite number of parameters in a useful way. This problem is
solved by exploiting the approximate conformal symmetry of QCD and categorising operators
on the light cone in terms of twist rather than dimension [74], and then the contribution of

higher twist operators are expected to be suppressed by the Borel parameter in sum rules [75].

An issue that has not been discussed throughout this section is gauge invariance of distri-
bution amplitudes such as (2.40). The solution to this problem is usually to construct DAs in
the Fock-Schwinger gauge x - A = 0 so that a matrix element 1(0)t)(z) may be interpreted in
a gauge invariant way by joining the two quark operators with a straight Wilson line. In other
gauges infinite resummations must be performed in order to separate “physical” gluon emission

from terms purely associated with cancelling gauge dependence [76].

2.7 Calculating with distribution amplitudes

The light-cone OPE in non-vacuum external states manifests itself through DAs, which provide a
systematic way of approximating non-perturbative states through a small number of parameters.
The full listing of DAs used in this thesis is given in appendix B; in this section some details of

performing calculations with these objects will be discussed.

Light-cone distribution amplitudes are developed in terms of a conformal basis at light-
like distances, e.g. [75]. As discussed in Section 2.6, for S-matrix elements knowledge of the
correlation functions away from the light cone is also required. This can be recovered by
matching Lorentz invariant structures order by order in the external state mass, which implies
that the light-cone expansion is also a small mass expansion, and that results must be truncated
at a certain order in light-external meson masses in order to be consistent. This does not apply
to B meson distribution amplitudes in which light-cone dominance arises via a rather different

mechanism due to the 1/m; expansion, which will be discussed in Section 5.4.5.

A nice example to illustrate the above point occurs in weak annihilation (WA), which con-

tributes to the isospin asymmetry and will be discussed in Section 5.3. In that case, the matrix
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element

(P + @) (K" (2, )7 (0)157"¢|0) = (K*(p,m)7"(¢)]i0,.[57"4]|0) (2.42)

must be computed. Owing to the derivative operator acting on the weak current this matrix
element may be computed exactly using a Ward identity, up to light quark mass corrections
O(mgs, mg). This was the procedure used in the first sum rule calculations of WA [77,78] and
expounded in more detail in [79].

The Ward identity procedure gives

(0 0 (K 3[97al0) =ie(p -+ ahyes | & (I [T5y7(2) 2, 0)0)

T

—iee, L e~ PP (K10, {T57" q(2) T3 (0)}0) (2.43)

:e(Qq - Qs)eu <K* (p, 77)\57'/(1(0)|0>
=e(Qq — Qs)fx=mp~(n-€)

and indeed the hadronic part of the matrix element only requires the identity (K*(p, n)|57”¢(0)|0) =
frmg+n" and no knowledge of the K* Bethe—Salpeter wave function is necessary. Indeed, the
result (2.43) is accurate to all orders in QCD subject to neglecting the quark masses.

The result (2.43) may also be computed using the K* DA, although the calculation is rather

more involved. The relevant terms in the K* DA are [80]

1 L
(5 .0) |5l 00 0) = [ dwer= {6 (0,0
P (00 (01000 = 0700) + (oo (@) + G 95" (P00 |

(2.44)

where [z, 0] indicates a Wilson line to make the expression gauge invariant. A fuller version is
given in appendix B. A curious property of this expression is that an odd number of powers of
the K* mass appears on the right-hand side, which implies that it cannot obviously be expected
to be suppressed by m%./Q? with respect to the first term. As an example, it in fact turns
out that in the leading electromagnetic penguin amplitude for B — K*~, all terms in (2.44)
occur at the same order in the 1/my, expansion, e.g. [81]. This situation can arise because the
binding energy of the initial state B meson in that process is ~ mp —myp ~ 0.5GeV, providing a
scale comparable to m g+, and would presumably also be the case in many other processes with
external QCD bound states. The form of the DA also presents a problem which does not occur
in normal perturbation theory: how to deal with the presence of coordinates when working in
momentum space is preferable? Fortunately the answer is straightforward, since
i 0

u
gheluP® — ___— plupw —1 e = Z/ P Ty + 71 (2.45)
u Opu p-x 0 p-x
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and for practical purposes the DA (2.44) is rewritten

s A<
(K () | ol Oha 00 [ 0) = [ du 3 35 (s ()

. (a)
L <Fisd [(?)ba P(u) 7 9, (Mbag’” (w) — 2 1P (1 75) g (w) a] } e

4N, U ”8pu 4 u  Op®
(2.46)
where the function ®(u) is defined as
B(u) = / o1(0) — g (W)dv . (2.47)
0

Thus all coordinates are removed from (2.44) at the expense of the introduction of derivatives
in the external momentum. Unfortunately the computer algebra package FeynCalc has no
facilities to deal with vector derivatives, so a certain amount of creative trickery is required if
one does not wish to perform all calculations by hand; performing the derivative manually by
introducing an additional vector and Taylor expanding in its coefficient works, provided that it

does not exhaust the computer’s memory.

The coefficient functions ¢, jj(u) and gf’a)(u) are somewhat confusingly also known as

distribution amplitudes. The functions ¢ j(u) are expanded in terms of Gegenbauer polyno-
mials [80,82]

¢ (u) = 6uu (1 + i a3/ (2u — 1)) , (2.48)

n=1

which is directly connected to the fact that QCD is conformally invariant, although the specific
form arises because Gegenbauer polynomials Ci/ *(2u — 1) form an orthogonal basis on [0, 1]
with the weight @u [83], so the coefficients of the DA are the expectation values of operators of
specific collinear twist acting on the K* state [73]. The functions gf’a)(u) are not independent

but are are given in terms of other DAs by equations of motion [75].

Finally, the matrix element (2.42) can be evaluated using (2.46) and taking into account

the equation of motion® [70,84]

(a)r (@)
D(u) = u (gf)(u) e w) G (2.49)

6This equation is derived from (4.15/16) of [70], and a nearly identical equation with u ¢+ @ appears in [84].
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and the result is

(P + @)u (K*(p,m)7v(q, €)|57"q|0)

1 , 2,2 ) 1
= cerficmic | du{czq [nv (0@ - ot (4700 + 10700 ) )

_ L 2up®(n - q) L () .
— (ap +q) W (@(u) + ya (u)) ] —Qsa <+ ul } , (2.50)

f)(u)du =1 up to factors of p*> = m%.. These terms must

which agrees with (2.43) since fol g
be neglected since they occur at a higher order in m%.. than the DA (2.44) is complete to, that
is to say they are identified with twist-4 terms and would cancel with terms arising from the
twist-3 and twist-4 DAs, which are detailed in [85]. However, the requirement to truncate to a
certain order in mg~ to get consistent results is not strictly connected to the twist expansion;
higher Gegenbauer moments in DAs also have higher twist but are in no way connected to

the expansion in mg~, rather the equations of motion link terms at different powers of my~,

appearing in the meson DA whose lowest twist part is different.

2.8 Sum rules

The principal tool used to compute B meson transitions in this thesis is light cone sum rules
(LCSRs). This is really two distinct techniques, the combination of which is sufficiently advan-
tageous to merit its own name. The light cone part of this method refers to the light cone OPE
and is described in Section 2.6; this section will describe the calculation of hadronic processes

through sum rules.

A typical matrix element for a semi-leptonic B meson decay is
(1"l M|H.%|B(ps)) - (2.51)

This may be related to a matrix element with the external B meson replaced by a local operator

with appropriate quantum numbers:

(Il M|Heg|B(pg))(B(ps)|J5(0)]0)
m¥ — py

+...
(2.52)
This is nothing other than the LSZ reduction formula [71]. The dots include both poles at

M(ps) = i / =75 (141~ M| Hog J (2)|0) =

masses other than mp and the continuum contribution arising from multi-particle states. The

current Jp is given by
Jp = impbysq (B(pp)|J(0)[0) = my fp . (2.53)
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The correlation function IT cannot be perturbatively computed at p% = m% since QCD pertur-

bation theory is not reliable near resonances, which is hardly surprising as bound states are an
intrinsically non-perturbative effect. It can however be reliably computed sufficiently far below
the perturbative threshold, i.e. p% < (my — Aqep)?. The method of sum rules [86,87] then
relies on the following observation: in the region in which II(p%) may be reliably computed,

Cauchy’s theorem can be used to say that

) = 5 fr SH(;)QB ds . (2.54)
The integration contour I' separates the point p% from all other singularities and branch cuts
in TI(s) in the complex plane. If the function II(s) falls off sufficiently quickly for |s|]— oo in
all directions then the contour I' may be taken to infinity, so that only parts of the contour
surrounding the singularities remain. If it does not vanish sufficiently quickly at infinity then
subtractions may be performed so that the function to which Cauchy’s theorem is applied has
the right asymptotic properties. A common example which does not converge is given by the
two point Passarino—Veltman function By [88]. Importantly these subtractions will drop out of

the final form of the sum rule, as will be shown shortly.

(2.54) is already a sum rule; however, it is not yet of a form useful to estimate the contri-

bution of a single particle. To do this, (2.52) and (2.54) are combined to give

2
k) = 5 SH_(;)% ds = mJ;Tf;QB @Ml Bow) + 5 f ) SH_(Z)% ds . (259)
where the contour I'c encloses all complex singularities except the B meson pole, and the inte-
gral term may therefore be considered to arise from excited and multi-particle states. At this
stage the equation (2.55) is exact. For the integral over the contour I' the correlation function
I1(s) may be computed perturbatively, and provided p% is sufficiently far from thresholds QCD,
perturbation theory will produce an accurate result. This is known as global duality between
the hadronic and partonic pictures and it is exact owing to Cauchy’s theorem. In order to
calculate the transition matrix element, an estimate of the continuum contribution I'¢ is there-
fore required. The approximation used [87] is again to calculate II(s) perturbatively inside this
integral and take the contour I'c to enclose all complex singularities above Re(s) = so on the
real line. Singularities off the real line may also occur; these will be discussed in Section 3.2.4.
This is known as the semi-global duality approximation. sy is an effective threshold parameter
and is chosen somewhere in the vicinity of the lowest-lying multi-particle state in the same
channel, which in the case of the current Jp implies a B meson with either two pions or a rho

meson, 8o so ~ (mp + 2m;)? ~ (mp +m,)?. Applying this approximation to (2.55) gives

femb e, Ly
—~ BB _ (M~ M|He|B(pp)) = — ¢ ——2ds 2.56
e (U MU HalBlos)) = 5 S (2.56)
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Figure 2.3: lllustration of contours used in a B meson sum rule. The left-hand diagram shows the
complex structure of the full theory, and the right-hand diagram shows the structure of the pertur-
bative approximation. The semi-global duality approximation relies on the continuum contribution
I'c computed perturbatively being a good approximation to the contour I in the full theory, and
therefore the contour I'p in a perturbative calculation is a good approximation to the pole residue
in the full theory.

where the contour I'p is the difference between the contours I' and I'c and therefore encloses
the B meson pole. This process is illustrated in Figure 2.3. Note that although this formula
is approximate and the contour integral is exactly over the low-lying resonance region in which
perturbation theory cannot be trusted, the exactness of global duality implies that this approx-
imation is reasonable provided that perturbation theory is reliable over the contour I'¢, which
surrounds higher resonance and multi-particle contributions. Finally, a Borel transform in the
variable p%, related to the inverse Laplace transform is applied. Since the dependence of (2.56)
on p% has a simple functional form, only a single formula for the Borel transform is required

By e L_lpé] - %e—S/W , (2.57)
and thus p% is eliminated in favour of a mass M2, known as the Borel parameter. The Borel
transform eliminates subtractions required in constructing the relation (2.54), since terms which
are polynomial in p% transform into §(M?) and its derivatives, and such terms do not contribute
for M? > 0. The final form of the sum rule is therefore:

1 1 m2 — s
M| Ha|Bpa) = o e (1;4) e (s)ds
I'p

1 50 m% — s
= Fam? /2 exp (ﬁ/ﬂ) p(s)ds
B Jmy

The function p(s) arises since it is assumed that the contour I'p lies along the real line and

(2.58)

therefore the contour integration can be traded for an integral of a density function p(s). The
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Borel parameter in this formula must be selected to satisfy two requirements simultaneously:
that the OPE (either the local or light-cone version) converges, i.e. that contributions from
operator condensates of higher dimension or twist are suppressed, and that the contribution
from the continuum is small; or to put it another way, that the sensitivity to sq is minimized [86].
If these conditions cannot both be fulfilled, then the sum rule estimate of the matrix element

(2.58) cannot be trusted.

Although the use of sum rules as they are applied to B meson decays has been illustrated,
their original development was in the context of two-point Green’s functions [86], where they
have a very clean theoretical interpretation owing to the Kéllén—Lehmann spectral representa-

tion [89,90], which states that for a general two-point function

ds

— 2.59
or ( )

(T{o(x)6w)}) = / RPN

where A(xz — y,s) is the Feynman propagator for a free particle of mass /s, and a Fourier
transform will take this exactly to the form (2.55). Therefore in the case of two-point functions
Figure 2.3 is completely general and there can be no branch cuts except on the positive real axis.
The optical theorem and Cutkosky cutting rules [91] rather imply that this can be generalised
to 2n-point forward scattering amplitudes. It cannot however be extended to three- and higher

n-point functions as will be seen in Chapter 3.

2.9 Decomposition of B — V and B — P matrix elements

Matrix elements for B — V and B — P transitions are expanded in terms of scalar functions;
in order to do this the basis tensors must be specified to fix the normalisation of these functions.
The B — P case is simple since there is only a single meson polarisation and hence only the
normalisation is required, whereas in the B — V case the presence of three polarisations means

that the optimal way to separate these must also be taken into account.

Following the conventions of [92], the matrix elements of B — MIT{~ in either the vector
or pseudoscalar final state case may be written at leading order in .y, i.e. assuming single

photon exchange, as

out (M(P)I (1)1 (12)|B(p + )i,

C"YF Qem My

=—=A <ﬂ(ll)%ﬂ)(12) prﬂv(qz) + a(l1)vuy5v(l2) prﬂA(f)) s (g=h—ls)

V2l gt
(2.60)

where ); is as defined below (2.19), and @ and v are lepton polarisation spinors of mass dimension

37



38 James Lyon

1/2. The case B — V' is closely related and given by:

G em
o (VN (@ )|Bo))iy = ENTETE S PLTY 0000 —p—a) . (261)

The corresponding pseudoscalar decay B — P~y does not exist owing to angular momentum
conservation. For the same reason, only two of the three possible vector meson polarisations oc-
cur in the decay B — V' since angular momentum conservation requires that the vector meson
and photon helicities are the same, and the physical photon has no longitudinal polarisation.

The tensors P; are the standard choice for penguin form factors, e.g. [81,93]:

Plll ZQEMVPGUVPU dp

Pl =i [(m% —mi )" — (n-q)(2p + q)"]

. q
Py =i(n - q) = 5o (2r+ )"
B 1%
1
n—_ = [(m%4 —m3)g" — ¢ (2p+ )" . 2.62
T mB+mP[( 5 —mp)d" — > (2p + q)"] (2.62)

The functions 7; are usually broken down into contributions from each operator in (2.19),
although this is only valid at leading order in aj, since at higher orders the scale dependence of
the Wilson coeflicients in (2.19) partially cancels the scale dependence of the matrix elements
of each individual operator, and hence only matrix elements which may be factorised in a scale-
independent way can be truly considered separate contributions to (2.60). The contribution
of the semi-leptonic operators Og and Oy are conventionally written in terms of the form

factors [81,93]

5 m2 — m?2 m2 — m2
(P(p)|57,0|B(pB)) =f+(d*) ((pB +p), — Bq2pqﬂ> n %Fo((f)qﬂ
_ Ly - V(q2)
V(0 0)|59bl BP)) =€upo Py - ==

As(q?)

(V(p, 7))|§’Y;ﬂ5b\B(PB)> :im(mB + mv)A1(q2) —i(pB +P)u(77 'PB)M ( )
2.63

i 7o) 22 (As(a”) ~ Aola®)

where ¢ = pg — p, and

mp+ my
2mv

mp—my

As(q?) = Ai(q) As(q) . (2.64)

2mV

The additional relations A3(0) = A¢(0) and f1(0) = Fp(0) ensure that the matrix elements

are free of kinematical singularities at ¢> = 0. Likewise, the electromagnetic operator O
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contribution is written in terms of the form factors

o, : fr(g®
(P(0)[50,00 B (ps)) =i (b1 + Pt — g (my —m3)) 2L (2.65)
mp -+ mp
(V(p,)|50,4"b| B(pB)) =2i€umpon” pip’T1(q%) (2.66)
(V(p,n)[50,4" 50| B(pr)) =T2(q”) (n.(m% —m3) — (n-p5) B +),)
) e (2.67)
+T5(¢°)(n - pB) (QM - M(?B +P)u) )
and Dirac algebra implies that 77(0) = 72(0).
The matrix element parametrisation in (2.60) is chosen such that 7;‘/ ~ C;T; +.... The

axial lepton amplitude 74 arises entirely from the Oy operator, and in terms of the standard

form factors (2.63) is
7—1’74273 = C10H123(¢%) T# = Ciohr(¢*) (2.68)

where the functions H; and hr are defined to capture the conversion factors

217 (12
2A 2

(") = M(I(W;% Hs(q*) = _%A3(q2)
2 .2

ho(q?) = —%T%WDJCO(QZ) h(g?) = mBQ;TI-meP £l (2.69)

for later convenience. The vector lepton amplitudes 7V are expanded as:

T (q%) = C§™(®)Hi(¢?) + CSMT3(q%) + C§Gi(q?) + Wi(q®) + Si(¢®) + Li(¢®) i=1,2,3

TY (¢) = C§T () hr(¢?) + C5 fr(a®) + C§" G (a®) + Wr(¢?) + Sr(d?) (2.70)

For readers unfamiliar with this particular subject area, T;, fr and all functions appearing on
the right-hand side of (2.69) are standard: the functions 7; defined here are similar in spirit
and notation to those used in [42] but are not equivalent owing to Og 19 contributions being
included here but treated separately there, and the remaining functions G;, W;, S; and L; are
not used outside this thesis and the papers on which it is based.

The form factor functions T;, fr and those in (2.69) are taken where required from [81,93].
The functions G; were calculated in [94] and this calculation is detailed further in Chapter 3.
The functions W; and S; arise from the four-quark operators, and are an arbitrary separation
convenient for examining the isospin asymmetry in B — K*[l. These functions were calculated
in [92] and this calculation is described in Chapter 5. The functions L; arise from a charm
bubble emitting a soft gluon into the final state meson and are calculated in Chapter 6 [95].

The effective Wilson coefficients C$f§,9 are explained in Section 2.4.
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The standard choice of basis tensors (2.62) is however less than ideal in the vector meson
case, because it does not uniquely separate the contribution of longitudinally polarised mesons.
It is advantageous to separate this contribution for two reasons: first, it clearly separates the
terms that do not appear at ¢?> = 0, and second, the vector meson distribution amplitudes nicely
separate into transverse and longitudinal terms at leading and next-to-leading twist. In [92],

the basis used was

P\}/L = QGHW)Gnuppqa

7

Ph = \/T (5\\/sz77“ —2(n-q) ((1 — fn%/ — )+ — 27%%/‘1“))
v
dim R N R
Py = ———=(n-q) [2¢*p" — (1 =} — *)¢"] | (2.71)

where hatted quantities are dimensionless and normalised to the B meson mass (§* = ¢*/m%

and 7hy = my /mp), and
A = AL, ) = (14 iw)? — )((— 1w )? — ) (2.72)

is the Kallén function, again with normalised entries. Py and P4 are the tensors associated
with transverse meson polarisations since p - Py 4 = 0, and Py is the longitudinal, or zero
helicity, polarisation. Py and P4 are labelled as such since they arise from the vector and axial
vector part of the weak current respectively; it is also convenient to define positive and negative

helicity coefficient tensors by
1

V2

since the left-handed structure of weak decays means that 7_ is expected to be zero up to

P:lé = [P\l; + PX] ) (2.73)

quark mass-type corrections’. Subscripts attached to T, 7 and other functions defined in
(2.70) indicate that the subscripted symbol is the coefficient of that tensor, so that there are

three possible bases:

Ti(@) P! + To(®) Py + T3(a*) Py = Tv (¢*) Pl + Tala®) Py + To(q*) Py

=T+ (¢*) P + T_(¢*)P" + To(¢*) PY

(2.74)

"Specifically, either non-zero quark masses or chiral odd vacuum condensates such as (4q), (§Gq), etc.
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The conversion formulae between these bases are:

To(d?) = \%m(q% = Ta(@)] (2.75)
oo 1 f@[143mE - o Vv o,

76(61 ) = fniv 3 \/% B(q ) m%(q ) (276)

Tv(g®) =T (2.77)

Tal®) = =02 (2.78)

Vv
Note that for my — 0 this reproduces the heavy quark form factors, for example comparing to

the notation 77 | of [42]

Tval@®) 225 Ti(e?) Tolg?) =0 — |1 - )T (2:79)

where Ty (¢?) = Ta(g?) in the heavy quark limit [96,97].
Writing the decay rate in terms of the 7; functions leads to simple expressions for the total

B — V and B — P decay rates:

dar 4= _5\?\’//2 Qem 2 i 2|2 i 2Y]2 i(,2Y2
aplP V= S (5=) w3 ([T @] + T3 + 1T @] (2380)
E[B N Pl‘i’l*] — -L/Q (O[em)2 Z |7-z( 2)‘2 (2 81)
dq? a | 2(mp +mi)? |\ 4m o i=V,A e '
3. Com 2 2
T[B - V4] = _4/\%,/2} (52 en [TV O + 1TV O] (2.82)
where
2 [\ 120273
cH = G\ mymiy (2.83)

1273

arises from the weak effective Hamiltonian and meson phase space factors and the lepton mass
has been neglected. The normalisation of the tensors (2.71) is chosen such that each of the
T functions has the same effect on the decay rate (2.80). The decay rates (2.80) and (2.81)
have had the integration over the final state angular distribution performed, since that was
the quantity of interest in studying the isospin asymmetry in Chapter 5. However, a set of
optimized angular observables for B — VITI~ has been developed in [98-100], one of which

will be discussed in Chapter 6.

2.10 The ultra-relativistic approximation

There is a well-known approximation in light-cone physics relating longitudinally polarised

vector meson results to those for pseudoscalar mesons. The reason for this arises from a term
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in the K* DA [81]®

M fic-
AN,

(K () () OJaO)]0) = [ e ooy +... (280)

which is strikingly similar to the leading twist term in the K DA [93]

1
— up-x fK

(K W)ls(a)alo. 0a(0ul0) = [ due™ i (prs)aicw) + .. (285)
0 c

apart from the Z%ﬁ term and having opposite parity. The fact that it has opposite parity is

normally irrelevant for weak decays since the 5 matrix can usually be eliminated by ~v5(1—5) =
—(1 — 75) up to quark mass-type corrections, which are expected to be small. For a two-body
decay, the polarisation vector may be separated into n* = n// + ”ﬁ , where 1, - ¢ = 0 gives
the transverse component perpendicular to the plane of the decay. This is done fully in 5.12;

however, in the limit m2%.. — 0, it is straightforward to show that

p
ny =
M=

+0(my) (2.86)

which allows the inconvenient factor % to be eliminated in this limit. It therefore follows that

(K™ () 15(2)alz, 0g(0)5]0) ~ (K (p)[5(2)alz, 0](1754(0))]0) + O(mi k) (2.87)

subject to replacement of masses, decay constants and Gegenbauer moments in the DA. This
replacement will be used in Chapter 3 to calculate the chromomagnetic form factor of longitu-
dinally polarised mesons.

The conventional wisdom that longitudinally polarised vector mesons are equivalent to pseu-
doscalar mesons is however incorrect. Aside from the fact that it is dependent on the V — A
structure of SM weak interactions to eliminate the parity difference, which invalidates the ap-
proximation beyond the SM, it also does not hold beyond the leading twist DA. It is apparent
from (2.86) that O(m?.) corrections to the approximation should be expected, however in fact
there are also corrections at the first subleading order O(mg-). This can be seen from the
selection rules for WA in table 5.1, since the pseudoscalar meson couples to an operator that
the vector meson does not, which is what brought it to our attention [92].

At next-to-leading order in m -, there are two types of new term appearing in the K* DAand
one in the K DA. In the case of the gf’a) DAs in the K*, the ultra-relativistic approximation
holds, because these contribute to the perpendicular polarisation amplitude at O(mg~) and
thus do not interfere with the longitudinal polarisation. An example of this is given by the
operators OgV)SA in WA in Section 5.3. The other new terms at O(m g-) are the hﬁs’t) and ¢, »

in the K* and K respectively. These do not respect the ultra-relativistic approximation and

8See appendix B for more complete DAs and an explanation of terms involved
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thus it breaks down at O(m x~).

Two points about this breakdown are worth noting: first, it is small in heavy-to-light decays
owing to power counting in 1/mpg: the ¢, and gf’a) terms are both leading in 1/mp for
perpendicular polarisations so are both included [101]; however, for longitudinal polarisation
only ¢ is leading and so the effects of hl(ls’t) can be neglected. This means that the violation of
the ultra-relativistic approximation is small. The second point is the origin of the breakdown:
the K and K* are fundamentally different particles and in fact the subleading twist DAs ¢, , and
h‘(ls’t) have entirely different origins. The twist-3 K* DAs hl(‘s’t) are related by Wandzura-Wilczek
type equations of motion to ¢, ? [70] and are thus not independent degrees of freedom. The
twist-3 K DAs ¢, , are also constrained by equations of motion but there is no equivalent to ¢
for the K, and in fact the leading contribution to ¢, , is from chiral symmetry breaking [93].

This can be seen from the appearance of the coefficient u?, = fxm% /(ms + mg,), which is

approximately p2% ~ (qq) /fx according to the Gell-Mann—Oakes—Renner relation [102].

9Neglecting three particle contributions.
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Chapter 3

The chromomagnetic operator in heavy-to-

light FCNCs

This chapter will describe the calculation of the matrix elements

(M(p)v*(9)|Os|H(pr)) (3.1)

where pg = p+q. The operator Og is the chromomagnetic operator of the electroweak effective

Hamiltonian discussed in Section 2.4, given by:

Os = ——Lmys0 - G(1 + 75)b

2 [ gmb} Os . (3.2)

82

This operator also contains a small term proportional to the strange quark mass which couples
to the right- rather than left-handed s quark, but this will be neglected as the strange quark
mass is neglected throughout this calculation. H is a pseudoscalar heavy meson, principally
the B meson, but results will also be provided for the D meson albeit with considerably larger
uncertainty. M is a pseudoscalar or vector meson and ~* is a photon, which may be off-shell
so that both the decays to a photon and a lepton pair can be accessed.

The calculation of the chromomagnetic matrix elements has been previously published in

[103)].

3.1 Matrix element and sum rule

For definiteness, throughout this chapter the initial state meson shall be taken to be a B meson
and the final state meson shall be taken to be a vector meson. The replacement of B with D

is straightforward and the replacement of the final state vector meson with a pseudoscalar is
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in this case closely related to the longitudinal degree of freedom of the vector, as discussed in

Section 2.10. The amplitude of the transition induced by the chromomagnetic operator reads:
A*(V) = (*(a,p)V(p,n)|0s|B(ps)) = Z/ (VITj8n(2)0s(0)|B) €d e + ... (3.3)

The dots stand for higher twist contributions not captured by perturbation theory; in the case
of the on-shell photon the leading twist photon DA will be discussed in Section 3.4.1. For
a sufficiently off-shell photon the local OPE would be more appropriate; however, only the
leading perturbative term will be considered here as higher dimension operators should be
substantially suppressed for ¢2 > 1 GeV?. The intermediate region 0 < ¢2 < 1 GeV? is too close
to the vicinity of the p meson intermediate state to be computable perturbatively. The external
momenta are pg = p+ ¢ and 7 is the vector meson polarisation. The photon polarisation is left
as the uncontracted index p here. The operator Og = 50 - G(1 + 5)b is the operator Og (3.2)
after dropping the constant prefactor.

Four scalar functions are defined corresponding to the three polarisations of the vector meson

and the one of the pseudoscalar:

ey A*P(V) = ke (G1(¢®)P{ + Ga(¢®) Py + G3(¢*) PY)

A(P) = ke (Gr(q*)Pf) (3.4)
The Lorentz structures P/ are defined in Section 2.9, and importantly are the same as those
used in the definition of the standard B — V and B — P tensor form factors. The factor ¢y
is included to absorb factors arising from coupling only to one valence state of a meson, which
occurs in the case of p° ~ (du — dd)/v/2 and w ~ (G + dd)/+/2, where a b — d transition will
only couple to the dd component. This means that ¢y, = —v/2 for B — p°, ¢y = V2 for B = w
and ¢y = 1 in all other transitions. The constant kg = —2e/g is chosen so that the functions

G, parallel the standard form factors T; and fr':

(7" (g, )V (0, )| Hegt|B) o< Y (CrTi(a?) + CsGi(a?)) Pl + ..

?

(v*(q,p)P(p)|Her| B)  (C7 fr(q*) + CsGr(q®))Ph + ... (3.5)

For semi-leptonic decays, the physical domain of these functions is 4m? < ¢* < (mp —
mp,y)?; however, lepton masses do not directly enter this calculation except through q?. The
validity of these results will be futher discussed in Section 3.4.1.

Since the weak interaction is localised through the effective Hamiltonian, the transition
matrix element for Of, which is Og with opposite chirality (1 4+ «5) — (1 —75) can be inferred

directly. Under exchange of chirality (1+v5) — (1—75) in Og (3.2), the G,-functions transform

1See Section 2.9 for their definitions.
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as follows:

1 5 1—75
{G1, G, Gy, G} L220) v Gy~ Gy, Gr} (3.6)

Note however that this calculation cannot be used to compute the effect of Of in the SM since
it is proportional to ms which is taken to be zero. Beyond-SM applications where O} has a
larger coefficient are the intended use of (3.6), and one such application will be discussed in

Chapter 4.

3.1.1 The sum rule

The matrix elements (3.1) are extracted from the correlation function
V(¢%, p}) = €2 (ML) (¢, ) = z/ (Y (@)V ()T T (x)0s(0)|0) e~ 7> *d'x (3.7)
where the B meson figures as an interpolating current:
Jp = impbysq , (B(pp)|JB|0) = m%fp . (3.8)

In the equation above ¢ = u, d are light flavoured quarks and fpg is the standard B meson decay
constant. The techniques for extracting the matrix element (3.3) from (3.7) are discussed in
Section 2.8. In the present case, however, a major complication will arise: it will not be possible

to write the perturbative computation of (3.7) in the form

) = [ A (39)
m? S—Dh
as in (2.54), where the integral is taken along the real line. The situation that will occur is
depicted in Figure 3.5, which shows the presence of a complex singularity off the real line.
As will be shown later, the presence of this singularity is the result of analytic continuation
from the Euclidean momentum region to the physical one and cannot be avoided by a different
choice of Riemann sheet. This complex singularity is the result of an anomalous threshold in
the three-point Green’s function (3.7) and the key point in relation to constructing a sum rule in
the presence of such an anomalous threshold is that its real part is above the duality threshold.
Therefore, the anomalous threshold and the associated branch cut are taken to be part of the
continuum of excited and multi-particle states, and thus the final sum rule will still be in the
form of an integral along the real line and may be interpreted as a density function in the sense

of the Kallén-Lehmann spectral representation [89,90] below the duality threshold.

47



48 James Lyon

up

As

Figure 3.1: Chromomagnetic spectator scattering diagrams. V' (p) is the external meson distribution
amplitude, which may be a vector or pseudoscalar meson. The pseudoscalar meson case is related
to the longitudinal polarisation of the vector meson when using the ultra-relativistic approximation
so no additional computation is required. See Section 2.10 for discussion.

3.2 Computation of G,

At leading order in a; there are twelve graphs contributing to GG,. They can be separated into

two groups as shown in figures 3.1 and 3.2:
G(d®) =GP (@) + G () . (3.10)

GE”S) contains six graphs in which the gluon from the chromomagnetic operator connects to
the b- or s-quark line, henceforth known as non-spectator graphs. GES) contains four graphs in
which the gluon connects to the light quark line, known as spectator graphs. The two remaining
graphs in which the gluon connects to the heavy quark line and the photon is radiated from the

spectator quark line are neglected; they are expected to be suppressed since none of the energy

from the heavy quark decay is transferred to the light quark.

The non-spectator graphs (Figure 3.1) may be computed in an inclusive approach [104] and
then convoluted with vector and magnetic penguin form factors to produce an exclusive result.
This procedure is described in Section 3.2.5. The main part of this chapter is devoted to the
computation of the spectator graphs GES) and a discussion of the complications outlined in

Section 3.1.1.
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Figure 3.2: Non-spectator contributions to GG,. The contribution from these graphs can be computed

via a convolution of the inclusive result of [104] with the vector and magnetic penguin form factors
described in 2.9.

Y

Q

up

Figure 3.3: Cuts in the presence of the extended external momentum configuration. The momentum
insertion k at the weak operator introduces the new momentum invariant P? = (pg — k)2. The cut
in P2 should not be included in the dispersion representation since, as is clear from the diagram, it
cuts the s rather than the b quark line and hence has the wrong quantum numbers for a B meson
state. The two cuts in p% both have the right quantum numbers and indicate that this sum rule
includes both two- and three- particle B meson states, and thus both hard gluon scattering and
contribution from initial state soft gluons are included.

3.2.1 Parasitic cuts

The discussion of sum rules in Section 2.8 does not touch upon the technical details of the
analytic structure of correlations such as (3.7). The analytic structure of two-point functions
is known from the Kéllén-Lehmann spectral representation [89,90], and correspondingly sum
rules derived from correlation functions with the same initial and final state are expected to
have simple structure. This situation arises for example in the case of the cross-section for
ete” — hadrons, e.g. [105], and such sum rules are known as diagonal.

The correlation function (3.7) is however non-diagonal. The analytic structure of this corre-
lation function can be partially examined through Cutkosky rules [91]. The cuts corresponding
to the momentum from the Jp current insertion are shown for diagram A, in Figure 3.3. Of the
three cuts shown, only two cut the b quark line. The third instead cuts the s quark line: this
cut should not enter the sum rule for a B meson initial state since it has the wrong quantum

numbers and it also leads to a cut starting at pZB = 0 rather than p2B = mﬁ, as would be
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expected from a perturbative approximation to a B meson state. This additional cut may be
considered to arise from alternative time orderings in (3.7), since the matrix element may be

written

i (v (Q)V (p)|TJ5(2)0s(0)[0) e=P5*
=3~ [(" @V @O ) (¥15(x)[0) 6(=a0) + (v @V (B)1) (1T () Os(0)[0) (o) .
Y

(3.11)

with appropriate normalisation of the complete set of inserted states [¢). For zy < 0 only those
states [¢) with bg quantum numbers contribute, whereas for zo > 0 only those with 5¢ do so.
Unfortunately this observation, while interesting, does not lead to an apparent method to select
only the B meson-like cuts, since inserting the Heaviside step function into the expression (3.7)

breaks manifest Lorentz invariance, which it would seem wise to avoid.

The method used to circumvent this problem was introduced by Khodjamirian for B —
7 in [106]; similar approaches have also been used previously outside B physics [107, 108].
The approach is to consider the three external momenta pg, p and ¢ to be independent, or
equivalently to introduce a spurious momentum k flowing into the chromomagnetic operator
Og. The sum is then based on a four-point rather than a three-point correlation function, so

there are three additional momentum invariants which are taken to be the squares of the vectors
P=pp—k Q=q—-Fk (3.12)

and the spurious momentum k itself. The effect of this modification on the diagram Ay is
shown in Figure 3.3, where it can be seen that the sq state now has momentum P rather than
pp and therefore does not contaminate the analytic structure in p%. To recover the correlation
function (3.1) from the sum rule with the extended external momentum configuration, the five

invariants P2, ¢2, Q?, p?, k? are set on-shell:
P?=mj ¢ =0Q? k> =0 pP=mip . (3.13)

The approximation m%/, p = 0 is used throughout this calculation, which is required for con-
sistency with the level of twist approximation of the final state meson?. This choice is not
unique: as is well known the kinematics of a four-point function may be described in terms
of Mandelstam variables [109], and the seven kinematic invariants that can be constructed are
reduced to six by a constraint. In the present case the invariant (p+k&)? = (pgp — Q)? = p% — P?

may be considered the seventh momentum square, and under the choice (3.13) it is not on shell

where it would be zero. However p% — P? = O(myAqcp) is in fact not off-shell in the dispersion

2Corrections due to the non-zero mass of the vector or pseudoscalar meson first enter at twist 4.
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integral by more than the width of the duality window, and hence this problem should be con-
sidered part of the intrinsic uncertainty of the semi-global duality approximation. The quantity
p% — P? does however contain the invariant p% used to construct the dispersion relation where
it arguably should not, and hence this may be expected to affect the complex structure of the
dispersion representation, which, as it turns out, is what happens.

The addition of an external momentum k& means that the P, basis described in Section 2.9
is no longer adequate. Instead an extended basis with an additional tensor structure in each
of the pseudoscalar and vector meson cases is used. The correlation function (3.7) is expanded
in terms of functions g,, where ¢ € {0,1,2,3,4} for the vector meson and ¢ € {0,7,T} in the

pseudoscalar case:
4
IV =" gi(q*)e(Q) - pi 7= 3 g(@®e@) pi - (3.14)
i=0 i€{0,T,T}

The basis tensors are a straightforward extension of the standard basis (2.62) and are given by

p) =2¢"*Pn,p5Q.

ph =i[((pB +p)- Q)" — (n-Q)(ps +p)’]

=i [0 Q@ = (1 Qon + 1 ]

Q- (ps+p)
=i - Qi — (- Qo+ ] 3.15)
in the vector case and
P _ P 7 P
pp =(mp —mp) [Q - m(?fﬁ +p) }
£ = - m p_ & P
ps =(mp —mp) [k T on+7) (pB +p) } (3.16)

in the pseudoscalar case. The final tensor pfj = Q” is expected to have coefficient zero due to
gauge invariance. Similarly to the kinematics (3.13), this extension is not unique, since the pairs
of vectors (pg, P), (¢,Q) and (p,p + k) are not distinguished when the external momenta are
on shell (k = 0). The choices (3.15) and (3.16) maintain p, - @ = 0, since away from k = 0 the
external photon momentum is ) rather than ¢. To return to the original basis without &, the
matrix elements G172,3’T(q2) are computed from the dispersion representations of 91)2’37T(q2)

and the functions g, 7(¢?) are discarded.

3.2.2 Spectator graphs

The graphs A;-Ay4 (q.v. Figure 3.1) can be straightforwardly evaluated. The light-cone OPE

is used to treat the final state meson, and the calculation was performed using FeynCalc [25]
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to perform Dirac traces, Passarino—Veltman reduction and basis projection. Following this
automated calculation, the functions g, are expressed in terms of polynomials of the external

momentum squares and eight Passarino—Veltman functions [110], which are:

B, :BO(u(p2B_P2)70am127) Bb:BO(pQB_P2’O’m127)
B. = By(up% + ug*,0,m?) By = Bo(p%.,0,mj})

Ca = CO(pQBaU(pQB - P2)7QP2 + Uq2707m570) Cb = CO(pQBaPQB - P27q270um270)
Cc = CO(usz + aq2au(p2B - P2)7q27m§707mg) Cd = CO(p2Bap2B - P27q27m§707ml2))
(3.17)

Note that the functions in the right-hand column are simply those in the left-hand column at
u = 1, so dispersion representations will not be given for these separately®. To give explicit
results, the vector meson amplitudes are broken down into the contribution from longitudinal

and transverse polarisations:

9:i(a®) =g + V() . (3.18)

At twist-2 the transverse and longitudinal polarisations are identified directly with the dis-
tribution amplitudes ¢ (u) and ¢ (u). For the perpendicular polarisation the result may be
written:
1L
95" (¢ as

1
(L)2y — (L) 2y _ 1,2 (1)
91(q%) =95 '(¢°) = - 2/P? —_ngCFfvmb/O o1 (u)ty (w)du . (3.19)

The relations between ggé)?) are not accidental, rather the gij‘)fgéj‘) relation is a result of the

left-handed structure of the Og operator inherited from the W boson interaction combined with
the leading twist approximation for the vector meson, and the géj')fgéj') relation arises because
the parity-violating perpendicular polarisation corresponds to a specific linear combination of

p2 and ps, with the orthogonal combination being the longitudinal polarisation, as discussed in

Section 2.9. The integrand kernel tg{l) is given by

W),y QqBa+ QuyBe+2(Qq + Qy) By
ty (u) = w2 1P —2Qq¢Cs — QpCo+ ... (3.20)
where Qp = —1/3 is the b quark charge and @ = *2/3 or —1/3 is the light quark charge

which depends on the heavy meson under consideration. The dots represent additional finite
terms which do not contribute to the dispersion representation (they disappear under Borel
subtraction) and are dependent on the exact treatment of 5 in dimensional regularisation

owing to the issues touched on in Section 2.4. The longitudinal polarisation will be dealt with

3For definiteness the parameter convention used is the same as that used in FeynCalc [25], LoopTools [111]
and Denner’s review [52].
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momentarily. The pseudoscalar function gr(q?) is given by

1
~ShoCrspmt [ orty) wdu (3.21)
0

1
9P = &

however, in this case the integrand is considerably more complicated and thus the expression

for t1(u) is deferred to appendix D.1.

The longitudinally polarised vector meson contribution can be computed from gr(q?) us-

4

ing the ultra-relativistic approximation®. In the limit of the meson mass going to zero, the

longitudinal polarisation vector may be written:

n=——40(my) . (3.22)

my

Inserting this into the DA (B.3) yields an expression identical in structure to (B.1) at leading
twist-2, aside from the presence of 5 in the latter. The (1 4 75) in the Og operator can be
commuted to the pseudoscalar DA insertion and then the 75 is annihilated by (1 + v5)vs =
(14 ~5). Note that for the operator Of of opposite chirality this relation will include a minus

sign. Under the replacement (3.22) the tensor p§ becomes

- D2 2
p N—p/mv i(P*—q°) ) 3.93
p3 (va(mB o mP) pT . ( . )

The remaining differences between the vector and pseudoscalar DAs can be taken care of by

the substitutions ¢p(u) — ¢j(u) and fp — ify. Combining these replacements with (3.23)
gives the identity

_fl 2mv(m3 — mp)
fp mj—¢?

d@ =gV =0, (3.25)

95" (¢?) = 91(@) 4, s, (3.24)

which is valid up to O(my ) corrections arising at twist-3. It should be noted that there is a
similar relation to (3.23) for the tensor ps, the reason that the longitudinal polarisation con-
tributes to gs3(q?) rather than gs(q?) is that for a perpendicularly-polarised final-state meson
1-@Q = 0 which leads to p3 — 0, in contrast to the case of ps which remains non-zero for perpen-
dicular polarisation vectors. The coefficient g» of ps is therefore a mixture of perpendicular and
longitudinal terms but the coefficient g3 of ps relates to longitudinal terms only, and therefore

longitudinal terms computed using the ultra-relativistic approximation belong there.

4See Section 2.10.

93



54 James Lyon

3.2.3 Dispersion representations of Passarino—Veltman functions

The procedure to construct dispersion representations of Passarino—Veltman functions is in
principle rather straightforward; the principal difficulty which may arise is analytic continuation.
This procedure will be illustrated in the case of the function B, (3.17), where it is indeed simple,

before proceeding to the rather trickier case of C,. By definition of Bj:

_ _(2mp)*e a’k
B, = Boy(u(py — P?),0,mj) =-— / (k2 4 i€)((k + u(p% — P2))2 — m2 + ie)

——/110g {m(mz —EuQ(pQB; — P?)?) —ie 7
0 H

(3.26)

where T =1 — x. The final form of the expression is taken from [52] fixing the constant A =0
as per the MS scheme, and may be straightforwardly derived from the definition in terms of
a loop integral by the standard procedure of Feynman parametrisation to render the integral
spherically symmetric, as described in any quantum field theory textbook, e.g. [23].
Construction of the dispersion representation is usually done most straightforwardly via the
following two observations: firstly, that the Feynman parameter representation (3.26) does not
contain any complex singularities for Imp% > 0, since the imaginary part of the logarithm
argument cannot be zero anywhere in the integral region. This generalises to the three-point
representation, provided that the imaginary part of all three invariants is positive; however, for
the four-point function the Feynman parametrisation is rather more complex and the situation
not so clear [88]. Secondly, B, is real for p% < 0, i.e. for real p% below any thresholds. It
follows from these two observations and the Schwarz reflection principle that there are also
no complex singularities in the lower half of the complex plane, and thus the entire complex
structure of this function consists of a single cut along the real line, as illustrated in Figure 2.3.
As By is related to two-point functions this was the only possible outcome since it is the complex
structure implied by the Kéallén-Lehmann spectral representation [89,90] which exists for any
two-point function. In the case of dispersion representations, however, the two observations are
more general; n-point correlation functions are generally real when all external momenta are
space-like since they are related to correlation functions of a Euclidean field theory by Wick
rotation. A dispersion representation valid for space-like external momenta can therefore be

constructed straightforwardly. In the case at hand it is:

ds

pQB/"" Im, Bo(u(s = P2),0.m5) y 3 o0y

B, 2 7P2 2 _ B 2 —_ B
o(u(pp ),0,my) 0(0,0,my) 7 Jnd s(s — p%)

u

where a single subtraction has been performed to render the right-hand side finite. The spectral

density is given by:

2

pp, (5) = %Ims Bo(u(s — P?),0,m2) = <1 - U(S”ijQ)> &) (1 - udﬁ%) . (3.28)
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The Borel transform in this case gives:

1 [ o2

Bpz, s n2 [Bo(u(ph — P?),0,m})] = ;/m% . e¥M Im, Bo(u(s — P%),0,m2)ds . (3.29)
2+

Having constructed a dispersion representation for space-like external momenta by taking the

imaginary part, the dispersion representation for time-like external momenta is recovered by

analytic continuation in the Lorentz invariants. This is the procedure most commonly used for

B physics sum rules, e.g. [75,105,106,112]. All spectral densities (3.17) except for C, may be

derived by this method and the remaining two are:

m2 m2 — fig>
=(1——2 _Jo(s— 2> "1
re: ( us + uq2> (s u >

A—XM1VAs
pe, EUR) fo ((_mi=y g, mh_pa)
‘ VAs u u

s ((Bear) (A0)) (c-mm)

Vs u

(3.30)

+

where

A=2miq* —u(q® — P?) (mf + ug® + us)

B =u (¢~ P?) (m} +u (s — P?)) —2¢° (s — P*))
A\ =m — us — uq*

Ay =mi — u(s — P?)

)\3 =)\ (u5+ﬂq2,u(5*P2)aq2) )

and \(z,y,2) = (x — (y+2))? — 4yz is the Kéllén-function. In fact, the function C. does indeed
suffer some of the same difficulties as Cy, but they only occur for ¢ above a high threshold

and can be ignored in this analysis.

3.2.4 Dispersion representation of C,

Before addressing the dispersion representation of C, specifically, it is worthwhile to analyse
its complex singularity structure. For real external momentum invariants, C, is given by its

Feynman parameter representation

+ uq2, (sz - P2)amg7070)

Co(pp,uP
/ / dz (l—z—y—2)
2(xp% + yu(ph — P?) —m?) + zy(aP? + ug?) + ie
/ / 1 — ) (xp% + (1 — 2)y u(py — P?) —m?) + zy/ (aP? + ug®) + ierl ,

(3.31)
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where in the second line a standard substitution y = (1 — x)y’ has been used to linearise the
denominator in z. The procedure for identifying singularities arising in complex integrals is
described in [113]. In the case of a Feynman integral it boils down to identifying points where
the denominator, henceforth identified as F, is zero, and one of the following holds for each

Feynman parameter x;:

1. Either x; = 0, so that z; is on the integration boundary

2. or % = 0, so that there is a stationary point at the zero of F'.

These conditions are known as the Landau equations®. Normal thresholds in p% can be read
2

off from cuts in the triangle diagram and are given by p% = mj and p} = =& + P?. These
thresholds correspond to the solutions g—i = 0,y = 0 and %—5 = 0,z = 0 of the Landau
equations, respectively. A third singularity is at @P? + ug®> = 0, but that is of no interest
here since it does not involve p%. Since these singularities correspond to momentum cuts in a
Feynman diagram, they correspond to the Cutkosky rules method of computing the imaginary
part of a diagram.

OF _ 9F
t s =

2= = ( which does not correspond to an identifiable

There is an additional solution a oy

momentum cut in the triangle diagram. This type of singularity is known as an anomalous
threshold. This corresponds to all three propagator momenta going on-shell simultaneously in

the loop integral, and in the case of C, this occurs at

(1 +u)ym? +uP? £ \/(uP? — um?)? — 4u2m?q? — ie
2u ’

Ph = s+ (3.32)
where the —ie indicates that analytic continuation when the argument of the square root be-
comes negative is such that Ims; < 0.

Unfortunately, the Landau conditions only identify the location of potential complex singu-
larities; they do not give an indication on which Riemann sheets they are actually present. In
the case of the three-point function, the complex structure was analysed in the framework of
axiomatic quantum field theory by Kéllén and Wightman [114] and shown to be divisible into
octants according to the signs of the imaginary parts of the external momenta. The anomalous

cuts in this approach are given by [115]
(p5 — ) (u(py — P?) —7) +r(@P? +ug®) =0 (3.33)

which reproduces (3.32) after the identification r = m?. Construction of integral representations
of three-point functions was also considered in [116]. Unfortunately the results there are not
suited for constructing sum rules because complex anomalous thresholds are avoided through

taking the cut to lie along the negative real axis.

5Note that these conditions are written expecting that the § function is present; in the case of (3.31) this
means that z = 0 corresponds to « + y = 1 which would otherwise also have to be considered.
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In the present case however, the simplest way to proceed is rather more straightforward.
Since the Feynman parameter representation is correct for Imp% > 0 and there are therefore
no complex singularities in the upper half plane, the contour required for a dispersion repre-
sentation there lies just above the real line. This therefore suggests that applying the usual

dispersion representation construction (3.28) may be useful:

%Im C, = —/0 dy/o dxd ((1 — ) (uy(p% — P%) —m3) .
+a(y((1—uy)P? +ug®) + (1 —y)(1 —uy)p}))
B /1 0(py; — mj + 724, (aP? + ug?®)) — O(uy(py — P?) — mi)
o Y y((1—uy) P2+ ug?) + (1 — y)(1 — uy)p%

where the imaginary part is applied under the integral using the well known identity

lim Mdm = ][ (iwé(w) + i) flx)dz (3.35)

e—0 T — 1€

where { denotes a Cauchy principal value integral. To study the integral (3.34), the restrictions

imposed by the Heaviside step functions must be analysed. The two constraints lead to

2 2 Y 0 2 1 1 uP? + ug?
2 —m2 4 (@P? +ug®) >0 = - < — =z =14 — "L (3.36)
BT Ty y o ur m? —p%
1 2 _ p2
wy(ph — P?) —m2 >0 = 7<“(p372) (3.37)
Yy my

The second of these (3.37) is not satisfied for p% < mTﬁ + P2 for any y in the range 0 < y < 1.
It therefore does not lead to any difficulties in the complex structure of C,,, since for p% — —o0
it induces no imaginary part and the Schwarz reflection principle applies. The first condition
(3.36) is rather more interesting because for P? > 0 and ¢*> > 0, values which they will take
when put on-shell, 2z, > 1 for p4 — —oo and hence the representation (3.34) implies a cut

along the negative real axis as well as the positive one.

The first thing to note in this situation is that the analytic structure in p% appears to be
rather different for P? < 0 and ¢? < 0 than for the physical case P? > 0 and ¢? > 0. This sug-
gests that the traditional approach of starting with space-like external momenta, constructing
a dispersion representation and analytically continuing the spectral density function may not
be straightforward. Since the Feynman parameter representation already provides an analytic
continuation to time-like external momenta for Imp% > 0 it is possible to take an alternative
approach: start from the known behaviour of C; in the upper complex half-plane at physical
P? and ¢® and analytically continue to the lower complex half-plane in such a way that there
is no cut for p% — —oo, which is the choice of complex structure that must be made in order

to construct a physical dispersion representation.
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Figure 3.4: Analytic continuation of C, from the upper half-plane, covered by the Feynman pa-
rameter integral representation, to the lower half-plane. The zigzag lines indicate choice of branch
cuts. Solid dots represent branch points. The dotted zigzag line represents a discontinuity present
in the Feynman parameter integral, which is analytically continued across to produce a dispersion
representation. The open circle shows the location of a branch point which is not present on the
principle Riemann sheet of the function.

This representation is constructed as follows

Ca p2 Imp2 >0
Ca(ph) = ) o : (3.38)

Co(p%)* +0C,(p%) Imp% <0

where C,(p%) in the upper complex half plane is taken to be defined by the Feynman parameter
integral. Since there are no complex singularities in this region a dispersion representation will
only need its imaginary part on the real line. For the present calculation, this was worked out
directly in terms of logarithms and the result is given in appendix D.2; however, the same result
can be obtained from LoopTools [111]. The function §C, is a stitching function; it corrects for
the effects of a non-zero imaginary part along the section of the real axis across which the
analytic continuation is done. The benefit of the construction (3.38) is that the correction 6C,
is considerably simpler than the full function C, but carries all of the difficult complex structure;
since it is related to the imaginary part of C, on the real axis, it only contains logarithms rather

than the dilogarithms in the full formula for C,, e.g. [52].

The analytic continuation across the real axis is illustrated in Figure 3.4. For the segment
of the real axis to the left of any branch points the branch cut is to be eliminated via the choice
of 6C, (3.38), and in order to do this the formulae for C, must match just below and just above

the real axis in this region. It therefore follows that for real p% < m?:

6Ca(py) =2iImCo(py),  pp <mj . (3.39)
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In this region only the first © function appearing in (3.34) contributes and

3C.(p) = _u(pzjmpz) /yi (yfy:)l?(Jyfy_) - _177231'/1“ (z — ijz —z_)
- e () (50)) (.40
-2 (s (172) e (222))

where

A = Ap%, @P? + ug?, u(p% — P?)) (3.41)
1 2, — P2 —ug®+ V)
g = L WOPh — P2 £ VA (3.42)
2u(py — P?)
1 2, — P2 —ug?+ V)
Zy = 0+ v 3 u & V2 (3.43)
2pB

and \(z,y,2) = (v —y — 2)? — 4yz is the Killén function, as usual. The integral substitution
z =y ! was used in (3.40) to avoid the singularity at p% = P2. The final step of rearranging
logarithms in (3.40) is not guaranteed to preserve the branch structure of the function; however,
this step reproduces the correct result on the real axis for p3 — —oo and that is all that is
required, since the analytic continuation to other regions must be recovered by a more careful

analysis, performed below.

It is worth noting immediately that the solutions to z1 = 2z, are given by p% = s, and
hence a branch point must exist at p% = sy, because none of the other logarithm branch
points coincide with it and thus it cannot be cancelled. There are however no finite solutions
to z4+ =1, so the first logarithm does not introduce any branch points. The branch cuts of C,
may therefore be chosen as shown in Figure 3.4, and the full dispersion relation follows from

(3.38)

Culvh) = Cwh) + [ o (pols) + prc(s)) (3.44)
where
pols) = 2%l (3.45)
s:il og (2L J 1o 1 = ! 0 — log 64 .
psc(s) ) (1 g <Z_ _ZL> log (z_ _1>> o ) (logfr, —log 1) (3.46)
Resy s
CAp%) = —27ri/ Siip% [\% . ] (3.47)

Computation of (3.45) is entirely standard and outlined in appendix D.2. The function C:4(p?%)
gives contribution due to the anomalous threshold, which owing to the choice of branch cuts

goes to zero when s, is real. The form of C2(p%) follows from (3.46) and the fact that the
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Figure 3.5: Comparison of analytic structure of C, (3.17) (right) and the expected analytic structure
of the matrix element (3.7) in the full theory. The complex branch point s is considered part of
the continuum of multi-particle and excited states, identified by I'c in both diagrams, and since
Resy > sg, the associated branch cut can be safely connected directly to the real line via a
vertical cut. The contribution of the B meson state to the perturbative matrix element is given
by the contour I'p, which by semi-global duality is still expected to approximate the pole residue
at p% = m% in the full theory. Note that the location of the branch point s, associated with the
anomalous threshold is not expected to be the same in the full theory; however, according to the
analysis of Kallén & Wightman [114,115] the branch structure is expected to be the same, i.e. there
should only be a single branch point in the lower complex half-plane in the full theory.

discontinuity across the branch cut of a logarithm is constant regardless of its location, and
equal to 2mi. The appearance of the factor 27 can also be viewed as a consequence of the
fact that the integrand of (3.47) is the discontinuity of a discontinuity, and hence originates
in a dilogarithm rather than a logarithm where the 27 would cancel with the factor from
Cauchy’s formula. The relation between the perturbative analytic structure (3.40) and the

analytic structure of the full theory is shown in Figure 3.5.

It now remains to solve the problem of selecting the correct branches of the logarithms
appearing in different (3.46) for real s. First, it is useful to define the analytic continuation of

the square root of the Kallén function A to the complex plane, given by

AS) = U/ Ay — sV A —s (3.48)

where A4 are the zeros of A

uP? 1 2 4 2u+/q? (u P2 2
/\i:“ +u(l +u)g - uy/g*(ub? + ug?) ) (3.49)

a2

Note that A+ > P2, with the equality holding for P? = ¢2, so these zeros are not encountered
below s = m?. The analytic continuation (3.48) follows from observing that v/A > 0 for s < A_
implies that v/A < 0 for s > Ay, since far from the roots the function must appear to be linear

because it is the square root of a quadratic, so y/A(s) x s for s going to infinity in any direction.
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It can also be seen from this argument that Im \/A(s) > 0 in the lower complex half-plane.

The analytic structure for p% < m? < A_ can now be understood straightforwardly. It
follows from the fact that there are no finite solutions to z+ = 1 and that z_ < z;y < 1 for
p% — 0T, that 24 < 1 for s < A_. However, z_ diverges at s = 0 and the argument of the
logarithm changes sign. Since there is no branch point below s = m? on the real line it must
be the case that Re dC,(s) = 0 for s < m} according to (3.39), and therefore the correct result
can be obtained by taking the magnitude of both logarithms in (3.46). The arguments to both
logarithms in (3.46) can therefore be taken to be real and the logarithms are on the principal
branch for 0 < s < m? in accordance with the requirement that 6C, is purely imaginary in
this region, since this is the easiest place from which to construct the analytic continuation to

2
s>mb.

The key to understanding the analytic continuation of the logarithms (3.46) is then to
understand how their arguments behave in the complex plane for A_ < s < Ay, that it to
say when A(s) < 0. In this region, the argument to each logarithm is a pure phase since the
numerator and denominator of the arguments are complex conjugates of each other. The second
logarithm is the simpler of the two so it will be analysed first. Its phase is given for A(s) < 0
by

-1 Im v u —2A0) Ay —
arg aa = —2arctan ——— m /A = —2arctan u\/ES JO+ = 5)
Zz_—1 us + P? + uq? us + P2 + ug?

(3.50)

The second equality holds because it is the branch where Im v/A > 0 that is being considered®.
Near p% = A4, the phase is known to be zero. The sign of this expression near s = A_ can be

obtained by expanding s = A\_ + e:

— U/ e/ Ay — A
Li = —2arctan <W> . (3.51)

are aA_ + P2 + ug?

Expanding near the other root s = Ay — € produces the same expression with A_ — A, in the
denominator. As the phase cannot go to zero between these points and does not diverge, it can
be seen whether the logarithm has switched branches (the argument has circled the origin) by
checking the sign of the denominator at either end. Since A+ > P2, the phase is positive for
all A(s) < 0, so it may be concluded that the first logarithm does not change branch and the

imaginary part of this logarithm should always be taken to be positive. In order to simplify the

6The function §C, is only defined below the real line and the sign of Im /A(s — i¢) follows from (3.48)
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Figure 3.6: Location of the roots of the Kallén function AL and the real part of the anomalous
threshold s+ over the u integration range. si have the same real part where they are complex.
The vertical dotted lines show a tricky region in the integration range where the values of s+ and
A+ do not indicate on which sheet the logarithm arguments should be taken; for example at the
left-most dotted line s = A_ but in order to achieve the desired analytic continuation all the way
touw =1, s_ and A_ must be taken to orbit each other rather than just to approach and recede,
thereby picking up a factor of 27i. The same thing occurs with s; and A_ at the last dotted line.

notation, two alternative logarithm functions with different branch choices are introduced:

log x Imax =0
log, x =
log(—x) +imr Imx #0
log_ x =log(—x) —in (3.52)

which are the same as the standard logarithm on the real line, but the imaginary parts have
known sign, i.e. Imlog, x > 0 and Imlog_ x < 0 on the principal branch of each function. The
replacement log6; — log, 61 in (3.46) implements the analytic continuation of this logarithm
along the entire real line. Further, since it only has an imaginary part when v/X is also imaginary,
the imaginary part of the result comes entirely from the principal branch of Im C, and the second

logarithm.

Following the same line of reasoning for the other logarithm, the quantity whose sign gives

the sign of the phase of that logarithm near s = AL is

2

2
r(s) = (14+u—2z1)s—P?—uqg® = . m;;LQ (uP? 4 ug®) —[s — u(s — P*) — (uP* + ug®)] (3.53)
-y
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and the notation ry = r(A4) shall be used. It is much simpler to explain the analytic contin-
uation of this logarithm with reference to a diagram of the branch points, which is shown in
Figure 3.6. If sgn(ry) = sgn(r_), then the sign of the imaginary part is taken to be sgn(r_) and
the analytic continuation is the appropriate logarithm definition in (3.52). Examining (3.53)
reveals that % < 0fors > m% and P2, ¢? > 0, so the only remaining case that is relevant for the
dispersion relation at physical external momenta is r— > 0 and r4 < 0; the sign change in the
other direction does not arise in this calculation. The logarithms are not expected to produce
an imaginary part below the relevant thresholds Res_ or A_ and likewise they cannot produce
an imaginary part for s — oo, because then Im C,(p%) would be logarithmically divergent for
any value of p%, and this is not the case. The first logarithm in (3.46) must therefore be on the
principal branch for both s < min(A_,Res_) and s > max(\;,Res;)”. It can thus be seen
that the branch choice for this logarithm may be discontinuous across Re st but since this can
only introduce a factor of 27, that is to say it can only jump between neighbouring Riemann
sheets of the logarithm, there are no further complications due to 6, circling the origin more
than once. The only slight catch in writing down the complete analytic continuation on the
real line is now that A_ < Resi < Ay holds nearly but not quite everywhere when Im s, # 0,
as shown in Figure 3.6, and the ranges where this fails are easy to miss. Putting all of these
constraints together the first logarithm is given, on the real line, for all relevant values of the

external parameters, by:

ry >0A7T_ >0 log, 0f

s <Res; log, 0

A<0
s> Resy log_0p
s<A_ log_#0yp
0, <0
log; 0, =<ry <OAT_ >0 s>\ log, 0 (3.54)
A>0 Resy <s< A_ logfr —2mi

0L >0 qX; <s<Resy logfy +2mi

otherwise log 81,

ry <0Ar_ <0 log_#0;

(3.46) is now replaced by:

psc(s) = \/ﬁ (logy, 0 —log, 61) . (3.55)

The correctness of this equation has been verified by comparing the results of computing C,

through (3.44) to the results of LoopTools. This completes the calculation of GES)(q2) (3.10).

"The fact that the real part of s+ is taken is due to the choice of cut structure in Figure 3.4.
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3.2.5 Non-spectator graphs

The non-spectator scattering contribution GE"S)(qQ), given by the inclusive graphs shown in
Figure 3.2, is computed using a local expansion of these graphs in 1/m?2, performed in [104],

combined with the form factor calculations of [81,93]. The result is

ngs)(qQ) _ <_ Oésirb)) <_le/3) (Féﬂ Ty(?) + FS(Q)Hi(q2)) i=1. .3
67 = (-2 ) (L) (RO gty + E0neta?)) (3.56)

where Ti(¢%), fr(q?), H; and h, are defined in (2.69). The functions F. ' (¢2) are given
in [104].

3.3 Comparison with QCD factorisation

The matrix element (3.1) has previously been computed at ¢? = 0 using QCDF in [84], or rather
its isospin violating part has. This is in fact the most interesting part to compare with this
calculation because it is infrared divergent, so the comparison reveals how the LCSR method,

which incorporates hard and soft initial-state gluons on equal footing, resolves this divergence.

The specific comparison is of diagrams A; and A, in Figure 3.1. Since G1(0) = G2(0) (3.19)

the quantity of interest may be written:

s a, C fof _
G (0) = | o 12m” g | (Qu XL+ @ XL) (3.57)
c B
~ 52
b

where the large m,, scaling of the bracket is indicated. The quantity X | corresponds to photon

emission from the spectator quark line and has the same normalisation as in [84],
1
Xo = [ortwetwan (3.59)
0
and likewise for X and z,. The QCDF result for = (u) is [84]:

.
2¥PF () = L1 (3.59)

The LCSR result derived in Section 3.2 simplifies considerably at ¢?> = 0, primarily owing to
the absence of problems with the anomalous threshold, but remains rather more complex than
the QCDF result

21 OR () = /SO ds e%p(s, u) (3.60)
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and :EEJ_CSR has the same relation to p. The integrands are given by:

B as(m2+P2—s)
2 log (| —pz2o——=~ 2
mbNC < P2(m?—us) ) s —my,
= — 3.61
Pl = onapz P2 —us P2 (3:61)
~—— L
~m3d
2 [ 2 log (2% 2
_ my N, oy | us —my (mg) 5 —mj
= —— |0(us — — . 3.62
pls;u) 1272 f2 (us —m3) 2u2s P2 + 2uP? usP? (3.62)

The large m;, scaling of the prefactor arises from fg ~ mljl/ 2 [117]. There are several obvious

differences between the QCDF and LCSR results which are to be explained:

1. The integral (3.58) contains an endpoint divergence for z, (u) — J:ECDF

LCSR result is finite.

(u), whereas the

2. The LCSR integrand (3.61) contains an imaginary part absent in the QCDF case.

3. Since the LCSR result incorporates soft initial-state radiation and the QCDF result does

not, are the two calculations directly comparable?

The answers to all of these questions are closely related. To begin with, it is worthwhile
discussing the problem of the endpoint divergence in QCDF and its traditional resolution.

Taking the DA to be its asymptotic value,
o1 (u) — 6uu (3.63)
the divergent part of the integral (3.58) can be evaluated:
QCDF ' du
X9 (u):2/ = (3.64)
0 u

Corrections to (3.63) are expressed in terms of a sum of Gegenbauer polynomials; these could
in principle soften the endpoint behaviour to ~ %2 and thereby remove the endpoint divergence
if there is a conspiracy amongst the coefficients, but there is no reason to believe that this
is the case. The presence of this infrared divergence can be understood from Figure 3.7 as
resulting from a pair of massless propagators going on-shell in the 4 — 0 limit. This also
hints at the origin of the problem and its resolution; the gluon propagator in Figure 3.7 (right)
carries momentum, which is the difference between the shaded quark propagator and the light
quark in the B meson, and this momentum from the initial-state quark is neglected to leading
order in 1/mp. The infrared divergence is then expected to be softened for & < Agcp/mp but
also implies that a Taylor series in 1/mp cannot be expected to converge. It will later be seen
explicitly that this is what occurs in the LCSR calculation, where the 1/mp expansion is not

assumed. In view of this problem, it was proposed in [118] for a similar problem in B — 7w

65



66 James Lyon

Figure 3.7: Origin of infrared divergences in both LCSR (left) and QCDF (right) calculations. The
shaded propagators behave as @~ ! near & — 0 at ¢> = 0. In the QCDF case two propagators
go on shell simultaneously and the resulting #~2 behaviour is too singular to be cancelled by the
asymptotic vector meson DA (3.63). By contrast in the LCSR case the loop cannot produce a
singularity worse than logu leading to an overall (logu)/u4 behaviour, which is integrable when
convoluted with (3.63).

that the divergent propagators be replaced according to 1/(am%) — 1/((u + €)m%), where
€ ~ Ay /mp parametrises the softening, and that a correction term should be added to account
for strong phases which might occur in a full calculation of the endpoint behaviour. The exact

approach used in [51] is to replace

1 ] 1-Ap/mp
XSCDF = /0 (Z)J_(U).’L'%CDF(U)d’U/ — (14 pew)/o qu_(u)x?CDF(u)du , (3.65)

where p, ¢ are real and it is expected that |p|< 1 [84]. The strong phase arising in the LCSR
result has therefore already been anticipated and this difference between the two approaches
does not indicate a problem so much as a benefit of the LCSR method that the strong phase
can be estimated.

As for the LCSR solution, two points are worth mentioning. First, it is not possible for the
diagram of Figure 3.7 (left) to contain a @2 singularity since infrared singularities in QCD are
at worst logarithmic, e.g. [41]. Combining this with the light-quark propagator it can be seen
that the allowed singularities are:

LOSR log u

1
~ 7/{2 + B log(a) + ’YL% , (366)

although as can be seen from (3.61), «; = 0. The fact that the leading singularity in the
4 — 0 limit is not present does not have an obvious explanation; it is already apparent from
the intermediate result (3.20) that a; = 0 and this suggests that it is a result of the simplifying
effect of the leading twist vector meson DA®. It would therefore appear that a; = 0 will not

hold in a higher twist calculation.

Second, the interpretation of the LCSR and QCDF calculations is rather different. In

8See appendix B
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Figure 3.8: Origin of the strong phase in B — V'~ through the chromomagnetic operator in the
diagram A;. Other diagrams contain similar strong phases. A strong phase appears because a
second cut can be made in addition to the B meson cut required for the sum rule. The use of the
momentum insertion k is necessary to achieve this result since it separates B meson cuts that are
used to construct the sum rule from other cuts that lead to a strong phase in the amplitude.

the QCDF case, the gluon momentum is fixed by the external DAs, and for u ~ O(1) the
gluon is far off shell and therefore said to be hard. The soft gluon contribution is expected
to be subleading in 1/mp, since it corresponds to an exceptional configuration of the external
momentum fraction @, although as it has already been shown this interpretation fails due to
the endpoint singularity. In contrast the LCSR approach integrates over all gluon momentum
configurations without any kinematical approximation and therefore large contributions from
the soft gluon region can be properly accounted for. Strong phases are allowed in this case
because soft gluons can form intermediate three-particle states as shown in Figure 3.8, which
in a hadronic picture correspond to excited states in the pseudoscalar 3¢ channel. The LCSR
calculation therefore appears to include the complete QCDF result since hard gluons are fully
accounted for, and the difference between the two arises from LCSR also properly accounting

for soft gluons which are neglected in the QCDF scheme.

3.3.1 Heavy quark limit and m; scaling

Further support for the point of view that the LCSR calculation includes the QCDF result
can be obtained by an explicit heavy quark expansion. It was proposed in [117,119] that the

heavy-quark scaling of a correlation function can be recovered from the sum rule using

mp =mp + A sozmg—l—mewo
M? = 2myr fo=f5m, 12 (3.67)

and taking the large my limit. The key statement is that the B meson “binding energy”

A = mp — my is independent of the b quark mass. The scaling of sy is expected according to

so ~ (mp —|—mp)27 as argued in Section 2.8, and the Borel parameter scaling is chosen so that the

67



68 James Lyon

exponential argument is dimensionless. Explicit use of the fp scaling will not be made, since
fB only appears in overall proportionality constants and would therefore clutter the notation.
If the asymptotic DA ¢, (u) = 6@u is used in (3.58), both integrals may be performed exactly.

Doing so and performing the large m; expansion (3.67) gives:

XLOSE {Jéﬁ} {fn‘”: <<log <;Z’;> - m) (22) = (2* logz>) +0 (m,;z)} (3.68)
s [0 @) me) o) o

B7T2 my mpg

where (f(z)) = fol exp (%) f(2)dz. The presence of a logmy term in (3.68) means that the
Taylor expansion around my — oo does not exist; the logarithm must be subtracted before the
Taylor expansion can be performed.

The scaling of the two expressions (3.68) and (3.69) lead to G scaling of
GY(0) ~ m, *? G1(0) ~ m, **(logmy + O(1)) (3.70)

where the superscript indicates the quark from which the photon is emitted. This scaling agrees
with [42,84,120]. Despite the fact that GY is the leading term, GY is more phenomenologically
interesting because it contributes to the isospin asymmetry, since it is proportional to the
spectator quark charge, and can lead to measurable C'P asymmetries owing to the strong
phase.

It is apparent from (3.68) that the real and imaginary parts of G%(0) are of the same order
in mp. This signals the breakdown of the QCDF approximation, since the large imaginary
part implies the presence of long distance dynamics which are neither associated to the initial
nor final meson states and are therefore non-factorisable. It is also possible to understand
the breakdown of QCDF in a more mechanical way by performing the my expansion under
the s integral (3.60). To start with, it is useful to replace the s integration in (3.60) with an

integration over a dimensionless integral z via s = sg + 2mpwpz, that is:
LCSR g C 2
TP w) =2mpwo | e 7 p(my + 2mpwoz, u)dz . (3.71)
0

Expanding the density (3.61) in these new variables gives:

_20w8z2 14+u

my u?

mp=—22"g (2“’02 - a> , (3.72)

Rep

u my

where ¢ = N../(127% f3my) ~ mj. The real part recovers the QCDF result (3.59). Although the
my, scaling of the imaginary part appears to be different to the real part here, the narrowness of

the integration region owing to the step function compensates for this. In fact, the expressions
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Figure 3.9: (Left) my; scaling behaviour of X (3.57) according to LCSR. (Right) Ratio of full
LCSR result to the asymptotic expression (3.68). Clearly at the physical value of m; the large m;
approximation (3.68) is inaccurate; a much larger value of my is required to reach the large m;
regime of this quantity. In particular, there are significant cancellations in Re X | at the physical
value of my, and as a result it is smaller than the imaginary part, even though in the m;, — oo limit
the real part is the larger of the two.

for imaginary and real parts in (3.72) are not really comparable since the operations of large
my expansion and taking the real and imaginary parts do not commute; taking the large my
limit on (3.61) and subsequently taking the imaginary part would give Im p = 0. Likewise, the
endpoint singularity arising from the real part (3.72) can be eliminated by splitting the integral
into two regions @ ~ 1 and @ ~ m;l, and then Rep(a ~ m;l) ~ my in accordance with the
imaginary part.

Given the difficulties in the 1/my expansion, it is worth examining whether the approxi-
mation (3.68) is a good one, and the comparison between the leading term (3.68) and the full

X ECSR is shown in Figure 3.9. It is apparent from this comparison that

numerical evaluation of
considering my, to be large as in (3.68) does not produce an good approximation at the physical

value of my.

3.4 @, results

In order to get numerical results for GES)(qz) (3.4) from I (3.7):

Y (¢.0h) = 2L (V) OulBlpe) + .. (3.73)

bp —Mp
The procedure for separating the term of interest from the continuum in IIV has been described
in Section 2.8; however, this in fact leads to an estimate of [m%fz] (v*(¢)V (p)|Os|B(pg)).
Although fp is known quite accurately from lattice calculations, in sum rule estimates of
matrix elements it has been proposed that the appropriate strategy [121] is to take the sum
rule estimate of fg. This would certainly seem to be a sensible approach since the cuts with

B meson quantum numbers in Figure 3.3 can be identified with terms in the fp sum rule, and
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H | s M?*[G] M?*[fu] mpg | fu || cond. value | mass  value
B, | 36(15)  9(2) 5005 537 |0.162 | (70 (—0.24(1)% [ mp 170
B, | 35(15)  9(2) 5.0(5) 5.28 | 0.142 | (3s) 0.8(1) (ga) || me 1.3(1)
D, | 67(7)  6(2)  1.5(2) 1.96 | 0.185 || (9,qGq) (0.8(1)%(qq) | ms  0.094(3)
D, | 62(7)  6(2) 15(2) 186 |0.156 | (9.5Gs) (0.8(1)) (ss)

Table 3.1: Input parameters to sum rules, as well as OPE condensates and quark masses. All
quantities are in units of GeV to the appropriate power. The specified values for fy are the heavy
meson decay constants as computed from (3.74) and should not be compared with the actual values
since radiative corrections are sizeable. The values M?2[G] and M?[fy] are the Borel parameters
used in the sum rules for G, and fg respectively; they need not be the same as described below
(3.74). The tree-level heavy-quark masses are chosen to satisfy mpg ~ mj, + A with A ~ 0.6GeV
approximately. This approach is consistent with previous heavy meson decay calculations, e.g. [42].
The strange quark mass in the MS is given at tws = 2GeV. Note that the strange quark mass is
neglected in the G, sum rule to avoid significant complications in the calculation.

it might be expected that the sensitivity of the final result to the duality approximation would
be reduced if the sensitivity to the duality threshold in fz and IV is correlated. The sum rule
for fp is given at O(a?) by [122]:

m2 — m?2 3 5o m2—s\ (s—m?)?2 B
(m%fp)* = mj exp (B”> ( exp ( ’ ) ( . 2 s — m, (@9),,
(3.74)

2
mp mj _
- 1- We
207, ( 2M}B> {950 q>~>

Radiative corrections in ay were excluded because the calculation of II is also at leading

order, so subleading terms in the « series of the ratio would not be not fully accounted
for were a higher order approximation to fp used. The parameter sy should be chosen to
be the same in both the fp and Og sum rules, since it is a physical parameter separating
perturbative states identified with the B meson from those which are not; clearly this only
makes sense because the B meson cuts in both calculations are the same as already discussed.
On the other hand, the Borel parameter M? may be chosen differently, since the sum rule
should in principle be independent of this parameter and deviations from this are indications of
semi-global duality violation, although in a practical perturbative calculation the ideal of M?
independence is replaced by low M? sensitivity over a reasonable range, in which both higher
dimension OPE condensates and the continuum contribution are effectively suppressed. The

necessary numerical inputs for these results are shown in tables 3.1 and 3.2.

The calculation has already been split into terms where the gluon from the Og operator
connects to the spectator quark and those where it does not (3.10). It is further useful to
separate the spectator scattering contribution for the vector meson final state into two parts

depending on the polarisation of the final state meson, as for the correlation functions (3.18):
G =6 @)+ @) (8.75)
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| /I[GeV]  f[GeV] d} a3 a} at
p | 0.216(1)(6) 0.160(11) 0.17(7)  0.14(6)
w | 0.187(2)(10) 0.139(18) 0.15(12) 0.14(12)
K* | 0.211(7) 0.163(8)  0.16(9)  0.10(8)  0.06(4) 0.04(3)
¢ | 0.235(5) 0.191(6)  0.23(8)  0.14(7)

Table 3.2: Light vector meson distribution amplitude parameters. Mesons with odd G-parity have
vanishing odd Gegenbauer moments. The scale dependent quantities f, a!:;‘ are evaluated at
= 1GeV. The computation of these values is described in [103], using experimental values taken
from [123], lattice calculations [124,125] and sum rules from [80,126-128]. The values for the w
meson are taken to be the same as the p with double the uncertainty, since theoretical calculations
are unavailable. The decay constants are the same as in [129], subject to updated experimental

inputs.

The relations between the correlation functions (3.19) also carry over to the matrix elements

G (g?), so

1
NG U
1—¢%/m%

a"¢?) =cP(? =0 | (3.77)

(e =G5 () (3.76)

from which it follows that only G(ll) (¢°) and G:(SH) (¢°) need to be specified. Likewise the relation
between the longitudinal polarisation of vector mesons and the equivalent pseudoscalar meson

(3.24) carries over:

fp___mb—¢ (2
Gr(¢®) = — G : 3.78

7(¢°) fv 2my (mp — mp) 3 (g )|¢H—>¢P ( )
Results for pseudoscalar decays are therefore qualitatively the same as those for Gé”) and will

not be displayed explicitly. For the sake of completeness the expression for GgJ‘)(qg) is

1 S0
(L) 2 A 1o 1
e — _Sopfimi—— [ 4 d
(g 87TCFfV meBfB /0 udu(u) /mg i

(3.79)

mp s [quBu, + prBC + 2(Qq + Qb)de

X e Mm? qu + ﬂPz - 2quca - prcc 9

which follows from (3.19), (3.20) and the standard sum rule procedure. The density functions p;
are given in sections 3.2.3 and 3.2.4. The expression for GgH) (¢?) is not displayed explicitly owing
to the fact that it is exceedingly complex; its derivation, however, is in principle straightforward
once the dispersion representation of C, is known and the resulting polynomials are given in
appendix D.1. It has been verified that the expressions in appendix D.1 do not introduce
any additional poles in p% in the expression for ggl)(q2), hence only the cuts arising from
the Passarino—Veltman functions need to be accounted for. There are however poles in the

individual coefficient functions which are cancelled in the total and some care is required in

the numerical integrals in order to get accurate results. Numerical treatment of integrals with
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plr]t  plr]®w  plr]” KF[K]* K*[K|° K*[K]- K'[K]° ¢

du au + dd ud su sd Uus ds ss

B~ | ub - - b—d - - b—s - -

B° | db - b—d - - - - b—s -
Bs | sb - - - - b—d - - b—s

DY | @c - c—u - - - - - -

Dt |de | c—u - - - - - - -

D, | sc - - - c—u - - - -

Table 3.3: Heavy-to-light FCNC transitions into vector and pseudoscalar mesons. Valence quark
content of each meson is shown and the main table body indicates the FCNC transition type. The n

and 7’ are not considered. The chromomagnetic transition amplitudes GES)(O) are shown in table 3.4
for vector mesons.

local difficulties is something of a standard problem and in this calculation GSL [130], which
provides a range of good numerical integration routines, was used.

The list of transitions to which this calculation is applicable is shown in table 3.3. Results
for B — V7~ type decays are shown in table 3.4. Plots for the key G; functions are shown
in Figure 3.10 for the decay B — K*I*1~. Tabulated results for these graphs were published
in [103]. In spite of some effort, a numerical fit of the graphs in Figure 3.10 with a small number
of parameters did not prove effective in contrast to the Oy case [81], and it appears that in the
present case simple interpolation using generic Chebyshev or spline approximation methods is
most effective.

The calculation of uncertainties in table 3.4 was done as follows: input parameters are
varied according to their uncertainties given in tables 3.1 and 3.2. This leaves three remaining
sources of uncertainty: higher-twist and higher-order corrections in ay, the semi-global duality
approximation and renormalisation scale uncertainty, although scale uncertainty and higher-
order corrections are related. Violations of the duality approximation are accounted for by
variation of the duality threshold sg, as shown in table 3.1. The effect of neglecting higher twist
is assigned an error of 15%. The renormalisation scale uncertainty is accounted for by varying
p around g = /Agm, with Ay = 0.8(2) GeV and rescaling running quantities? using their
one-loop anomalous dimensions, which are listed in appendix B.5. All of these sources of error

are added in quadrature since there is no reason to expect strong correlations.

3.4.1 Qualitative remarks

The previous section only gave explicit results for the spectator scattering parts of the chro-
momagnetic transition amplitude. A comparison between the spectator and non-spectator
scattering amplitudes is presented in table 3.5. This reveals that the non-spectator amplitude
is rather the larger of the two; however it is worth noting that only the spectator scattering

part contributes to the isospin asymmetry.

9Note that the heavy quark mass does not run in this calculation since the PS mass rather than the MS mass
has been used.
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G 0) x 102 unc.% G 0) x 102 une.%
B~ = p v 029—-0.39%  25% | D" — p¥y —7.0 —5.0i 32%
B~ = K* v 029-040i 26% | D°— wy —6.1 —4.3i 34%
BY — pO 0.22 4 0.19¢ 2% | DT — pty —1.9+2.5¢ 32%
B — wy 0.19+4+0.17i  33% | Df - K*ty  —1.842.1i 33%
BY — K*0y  020+0.20i  28%
B, — K*0 0.21 +0.18i 27%
B, — ¢y 0.26 + 0.23i 26%

Table 3.4: Ggs)(O) for b — d, b — s and ¢ — u type transitions. This gives the contribution of the
diagrams A;_4 (see Figure 3.1) to (B, D) — V'~ processes. There appear to be four qualitatively
distinct cases, depending on whether the initial state is either a B or D meson and whether it
is charged or neutral. Charge conjugate transitions follow from multiplication by —1 since every
transition is proportional to valence quark charges. The total contribution of the chromomagnetic

operator to B — V' also required the non-spectator amplitude ngs); the two are compared in
table 3.5. Pseudoscalar meson decays are not listed since the B — P+ transition is forbidden.

B~ — K*~ : G{")(q?) x 102

2.5 .

04l 5L Re .
03 |~ — _ | Im oo
02t — | 154 i
01 1 ' 1
0 05 \\ ]
-01 + 0 ~_
02 ¢ Re 05 | -
03 | m o }
_04 e Il Il Il Il Il Il Il _1 Il Il Il Il Il Il
0 2 4 6 8 10 12 14 0 2 4 6 8 10 12 14
o?/Gev? o?/Gev?
BY — K*0: G{"(¢?) x 107 BY — K*0: Gy (c?) x 107
0.25 T T T T IR T T 0.4 T T T T T T
e S 4
0.2 i Im e 0'3 - o T~
0.15 '\\ 02} /// |
0.1+ \ 0.4 /T -
0051 . {08y ]
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-1 ‘+ Im e B
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q°/GeV? 0?/Ge\?

Figure 3.10: Plots of G\ (¢2) and G{" (¢?) for charged and neutral B mesons. The B, meson will
be qualitatively similar to the B°, and likewise the replacement of the b quark with a charm quark
leads to qualitatively similar results after accounting for the smaller ¢? range in that case.
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type B~ =p vy B =p% Dt pty DY p0y
()(0) x 102 029—0.39 022+0.19i —1.9+25 —7.0— 5.0

G( (0) x 1072 090+1.3i 090+1.3i —85—12 —85—12
( )>< 102 124091  11+15i —10—95i —16— 17
=)(0)/G$") (0)| [%] 31 18 21 58
><o>/T1<o>| %] 2 ! 4 12
1G1(0) /T3 (0)] [%] 6 7 20 33

Table 3.5: Comparison of spectator and non-spectator parts of G, functions, and the leading form
factor Ty in B — V. For the T1(0) form factors the reference values 77 (0) = 0.27 [81] for B — p

and T7(0) = 0.7 for D — p are used. The ratio of Ggm) to T1(0) can be inferred directly from the
method used to compute ngs) described in Section 3.2.5 and is therefore a result of [104].

Os

Figure 3.11: Additional contribution from the photon DA at ¢> = 0. These diagrams are in fact
zero due to Dirac algebra and only the perturbative photon interaction contributes.

A reader familiar with the WA contribution to B — V'~ might ask why the contribution
of the photon DA has not been raised at all. As will be discussed further in Chapter 5, the
photon DA accounts for the susceptibility of the quark condensate to a background photon
field and may be viewed as predominantly originating from an intermediate off-shell p meson
state. The diagrams in Figure 3.11, which are the only two possible arrangements which satisfy
kinematical constraints imposed by the DAs, were in fact computed but it transpires that if
the meson mass is neglected, as it must be at leading twist, both of these diagrams are zero
owing to Dirac algebra. They are, however, non-zero if ¢? # 0 is allowed; though this does not
make sense for an on-shell photon, it is worth mentioning since the vanishing of the photon
DA contribution appears to be an accident and this result does not imply that the p meson
resonance is somehow invisible to G;(¢?) at leading order.

Since results have been computed for both B and D mesons, the effect of heavy-quark scaling
may be re-examined numerically. The electromagnetic form factor T3 (0) scales as m;?’/ 2 [117]

(n.s)( )

and this carries over to the scaling of G , since the F7 g functions used to compute it in

Section 3.2.5 clearly scale as m{ [104]. As discussed in Section 3.3.1, the scaling of ngs) (0) can

be split into two parts according to the emitting quark charge

G1(0) = QuG™ ™ (0) + QG (0) (3.80)
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and then G?’(S)(O) ~ mb_3/2 and G?’(S)(O) ~ mb_5/2 up to logarithmic corrections. Photon

3/ 2, regardless to which quark line

emission from the heavy-quark line therefore scales as m,
the gluon connects. Numerical investigation of the heavy-quark scaling of G gns) (0) is not within
the scope of this investigation, since it is nothing but the scaling of 77 (0). The numerical scaling
of the spectator-quark scattering parts may be examined in terms of a pair of ratios using the

decomposition (3.80):

G2 (0)[B = pv]
Gy 0)[D — p]

_ GI™M(0)[B — ]

Ry, =
G (0)[D — p]

=014 R —0.05+0.04i .  (3.81)

From the heavy-quark scaling behaviour the expected values of these ratios are

|Rh| ~ 045( V chH)/as( V mbAH)(mc/mb)3/2 =0.2 (382)
Ry| ~ as(vV/meA )/ as(v/myAg) (me/my)*? = 0.06 (3.83)

which are really quite close to those in (3.81), in view of the problems with heavy-quark scaling
described in Section 3.3.1. It would appear that there is some correlation between the non-
leading terms in the heavy-quark mass in the b and charm quark cases, since according to
Figure 3.9 the heavy-quark limit is not an especially good approximation in the present case.
Finally the validity of this calculation in ¢? must be discussed. The principle for determining
whether this kind of sum rule calculation is valid is that the results cannot be trusted when
either full or perturbative QCD predict production of particles. In the case of the Og operator,
the most problematic region is 0 < ¢? < 1 GeV?, where the strong p meson resonance will
appear. The photon case ¢ = 0 can however be accounted for correctly, since the influence of
non-perturbative contributions may be accounted for using the photon DA, and this procedure
will be discussed in the calculation of WA contributions in Section 5.3.6; however, as explained
earlier in this section, in the Og case it happens that these contributions are zero. There are
also resonances due to 5b, db and bb vector meson states, i.e. the Bj ; and the T. These heavy
states only impose the restriction ¢? < m%, so the validity of this calculation covers the vast

majority of the physical parameter range.

3.5 Concluding remarks on G,

This calculation has resolved a long-standing unknown term in heavy-to-light FCNC decays.
The resulting values of the “form factors” G, are small and so they are not relevant to the
overall branching fractions (B, D) — Vil or (B, D) — V+~; however, they are large enough to
contribute significantly to C'P and isospin asymmetries as will be seen in chapters 4 and 5. The
large strong phase of this amplitude is an important feature for C' P asymmetry contribution.

The comparison between the LCSR and QCDF calculations of G, is itself rather interesting,
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since it reveals that in this instance the large my expansion fails due to the endpoint singularity,
and the full m; dependence must be retained in order to regulate this. More sophisticated ap-
proaches to factorisation might, however, allow endpoint divergences to be treated consistently.
One approach has been put forward in [131] and extended in [132]. The Og contribution was
calculated using this method in [133]; however, this does not generate the imaginary part.
Perhaps the most interesting feature of this calculation is the unexpected appearance of a
complex anomalous threshold in the dispersion relation. Although this is not the conceptual
problem it might appear to be since the anomalous threshold can be considered part of the
continuum of multi-particle states, it does present some technical difficulty in the calculation.
The presence of this anomalous threshold is associated with the introduction of the momentum
insertion k& which then requires an additional analytic continuation in P2. This insertion is not
usually required at leading order in «y for B — VIl processes, because for WA the amplitude
can usually be factorised and for the electromagnetic operator the photon momentum plays the
same role. As will be shown in Chapter 5, the same difficulty can also arise in WA beyond
leading twist, and it would appear that beyond leading order the momentum £ will be required
in most cases and the anomalous threshold problem should be expected to be generic. A
complete next-to-leading order calculation of B — VI using LCSR can therefore be expected
to involve considerably difficult analytic continuations unless a systematic method is found.
Finally, it should be remarked that an alternative approach to calculating the chromomag-
netic form factor was proposed in [134] shortly before the publication of this calculation. In
this approach, the B meson external state is treated using a light-cone DA and a sum rule is
used for the light meson, although only the soft initial-state gluon contribution is computed, so
questions of 1/m;, expansion difficulties do not arise. This approach avoids the complications
brought about by the k insertion since the parasitic cuts are near m?, which is far above the
duality threshold of any light vector meson, and thus the resulting dispersion relations can be
expected to be simpler. The problem of endpoint divergences and the 1/m; expansion are likely
to be difficult to address properly in this approach, however, since the B meson DA assumes

that the 1/my expansion works.
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Chapter 4

C' P violation in D — V'~ through the

chromomagnetic operator

Last year, experimental results from LHCb and CDF indicated a significant direct C'P asym-
metry in D® — 77 and D° — KK decays [22,135]. This was something of a surprise because
the C'P asymmetry in charm decays is expected to be small; it is proportional to the weak
phase difference between the current-current and penguin operators, and thus is suppressed by
four powers of the Cabibbo angle. The naive expectation is therefore that the C P asymmetry

should be of order ~ 10~%. The C'P asymmetry measured in experiment, however, was [135]
AAcp = AESK™ — AT.™ = —0.65(18) x 1072 | (4.1)

where . .
;o _TD" = f]-T[D° = f]
Ace = L[D° — f]+T[DO — f] (42)

This is at least an order of magnitude higher than expected. Two brief remarks should be made
about this measurement: first, in the limit of exact SU(3) flavour symmetry, AKS K~ = —AZ ™
would hold. Second, both Agg K™ and Ag;f should be small separately; the quantity AAcp
is preferred because some experimental errors cancel. It is also expected that the pollution
from indirect, i.e. time-dependent, C P asymmetries is negligible [22]; thus (4.1) appears to be

a true indication of direct, i.e. time-independent, C'P asymmetry in D meson decays.

If the value (4.1) is confirmed, the question of why it is so much larger than expectations
must be addressed: it could be due to new physics [136-139], or alternatively unexpected strong
dynamics [140-143]. Fortunately transitions of the Al = 3/2 type, which could lead to sizeable
CP violation [144], can be tested with isospin sum rules [145], so the problem is reduced to

AI = 1/2 operators.
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Since this calculation was originally published [94], LHCb have published updated data [146],
which along with the updated global average is [147]:

AAcplao13 Lo = (+0.49 £ .30(stat.) 4 0.14(sys.)) x 1072

AAcploo1s urac = —0.33(12) x 1072 . (4.3)

This has significantly shifted the world average asymmetry towards zero in comparison to (4.1),
and perhaps therefore the SM is set to prevail again. This chapter will continue to use (4.1) as
indicative of the magnitude of C'P violation in D meson decays, and further comments will be
made in the conclusions Section 4.4.

If the C' P asymmetry is due to new physics rather than the aforementioned strong dynamics,

it turns out that the chromomagnetic operators

A\ Me — v A
EU“VGZV7(1 +75)c 0 = _987r2 aot G“V?(l —5)c (4.4)

gme
82

Og = —

are good candidates, since they do not violate any existing constraints [148]. It should be
emphasised that these operators are of the AI = 1/2 type and therefore avoid isospin tests. It
should also be noted that C§ = (m,,/m.)Cs is negligible in the SM. The reference value for the
Cs Wilson coefficient following, e.g. [149], is taken to be

Im[C{"V") =04 x 1072 | (4.5)

which is two orders of magnitude larger than its value in the SM!.
The contribution of chromomagnetic operators to C'P violation (4.1) can be estimated using
QCDF [150] to be
AAcp|nr~ —1.8(ImCs — Im Cg)sind (4.6)

where § is the strong phase difference in the B — KK and B — 77 systems?, which is unknown
but expected to be ~ O(1), although the sign is not known and hence the sign of Im Cy is not
determined. It can be seen that (4.6) is proportional to Im Cs —Im C§, because the parity of the
D and nr/KK states implies that these transitions are induced by a parity-violating operator
and hence the ~5 part of the Oé/) operators, which have opposite signs. The proposed value
(4.5) would therefore account for the observed C'P violation (4.1), if indeed sind ~ 1.

The unfortunate presence of unknown phases in D — 7w and D — KK decays means that
it is desirable to study C'P violation in other D meson decays which are theoretically more
accessible. Another system was therefore chosen in which new physics in the Cy coefficient

would induce sizeable C'P violation, D — (p° w)~. This follows previous work which proposed

1See Section 4.1.1 for the definition of Cg used here.
2That is to say, the difference between the chromomagnetic amplitude and the leading amplitude which
should be approximately equal in both systems assuming SU(3) flavour symmetry.
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a scenario for observable C'P violation in this channel through new physics in C7 [149]; the
scenario proposed here differs in that the strong (C P-even) phase difference necessary to observe
direct C'P violation arises in the chromomagnetic matrix element rather than the leading order

matrix element, which, it will be argued, in fact has a small strong phase.

4.1 Thedecay D — V¥~

The size of contributions of D — V'~ decays is very different to those in B — V'~ decays,
due to the different quark masses and CKM hierarchy involved. The implications of this for
theoretical calculations of the D — V'~ rate will be discussed in this section. Unfortunately
owing to the large renormalisation scale sensitivity and the comparatively small mass of the
charm quark relative to the QCD scale and hence poor convergence of the 1/m. expansion, the
situation is not at present completely clear. Nonetheless, the argument will be made that the

decay D — V'~ is dominated by weak annihilation and thus has a small strong phase.

4.1.1 The effective Hamiltonian for ¢ — u decays

The effective Hamiltonian for ¢ — wu decays is structurally the same as for b — s decays.

Following [148], it is written as:
HT = NgHa + ANHa + MHpeng , Ao = VinVup , D =d,s,b (4.7)
where

Gr <&
H, :ﬁ;cgog, g=d,s

of =(uL,q)(qL"c) , 03 = (taLyqp)(qsltca)
G

Ao Hpeng :7; (C7O7 4 CLOL + CsOg + CLOL + .. (4.8)
and L, = v,(1 —v5). a and /8 are colour indices. The CKM factor A, has been absorbed into
the coefficients C7 g, since it cannot be assumed that they are relevant for beyond-SM operators.
The dimensionful coupling G is retained. The electromagnetic penguin operators are exactly
analogous to (4.4)
€My _ EMe _

g2 00" Fur(1+75)c 07 = =25 us" Fu(1—7s)c (4.9)

O = —
7 82

and have the same chirality structure as the chromomagnetic ones, that is C, = (m,,/m.)C7.
The crucial difference from b — s decays arises from the fact that the penguin operators

O3_¢ are only generated in the absence of GIM cancellation in the RG running. In b decays,
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the heaviest quark in the up-sector is the top which is above the electroweak scale; thus the
penguin operators are generated starting at a very high scale and WCs are expected to be

approximately proportional to logm?/m?. In the case of charm decays, this role is played by
2

c’

the bottom quark and thus the relevant logarithm is log mg /mz, so the operators Os_g thus
generated are expected to be small in the SM. Furthermore, the penguin operators Os_g are
proportional to the CKM factor )\, which is O(A%) and thus much smaller than in the B
meson case. As a result, the operators Oy 2 are expected to dominate D meson decays and the

four-quark penguin operators Os_g in (4.7) have not been included.

The scenario for sizeable observable CP violation will be through transitions induced by
the chromomagnetic operator Og computed in Chapter 3. The definitions and amplitudes are
briefly recapitulated here. The amplitude of the chromomagnetic operator (4.9) is parametrised
as

Gr

Ails= (V[HT|s| D) = 2 (

emc> 1 (Cs +C)G1(0) i=1

— , (4.10)
2
20 ey | (g — C)Ga(0) i =2

where Hf|g= %(Cg@g + CL{Oy), cf. (4.8). The factor cy is inserted to absorb trivial factors
due to the w ~ (@u+dd)/v/2, p° ~ (au — dd)/+/2 wave functions, and thus ¢y = v/2 for p° and
w and cy = 1 in all other cases. This factor will drop out in the CP asymmetry. Eliminating

trivial factors, the definition (4.10) combined with (4.8) implies

em.
472

(VA1O1D) = (T5) - (GLOP £ Ga(O)P) (411)
which, as explained in Chapter 3, is designed to be analogous to the definitions of the standard
penguin form factors T 2(0), discussed in Section 2.9. At twist-2 accuracy it was found that
G1(0) = G3(0), which implies that Og and Of generate solely left- and right-handed amplitudes
respectively. It can be seen from table 3.5 that Gf)o_“’o'y(o) ~ G?O_M’Y(O), G?j_m*m(()) ~
G?Jrﬂp +7(0) to an accuracy sufficient for the present purpose, and therefore no distinction
will be made between them?®. The imaginary part, which is the value relevant for the C'P

asymmetry, is
Im[GP°(0)] ~ —0.20(8) Im[GP"(0)] ~ —0.10(4) (4.12)

where numbers were rounded. The values in (4.12) are sizeable compared to typical estimates
TlD0 (0) ~ TP (0) ~ 0.7 of the O7 operator [149]. The difference between the neutral and
charged matrix elements in (4.12) originates from the charges of the valence quarks of the

mesons.

3The dominant effect of the final state meson is in the decay constants fxmx and fj(- for WA and G1(0)
respectively, and thus the correction due to this approximation is expected to be given by R = r,/r., ~ 1.01

where rx = (f)J(')/(me)H() in the p — w case, for instance.
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Lr - Lr

Figure 4.1: The three diagrams whose contributions are expected to be potentially dominant in
D — V-~ decays. They are WA (left), a factorisable quark loop (middle) and a quark loop with
gluon exchange (right). The middle diagram vanishes for an on-shell photon by gauge invariance.
The right-hand diagram has a large strong phase, which can be seen from the inclusive calculation
in [151]. The question of whether the leading amplitude has a large strong phase or not is then
essentially the question of whether the left- or right-hand diagram is the dominant amplitude.

4.1.2 The leading amplitude in D — V'~ decays

There are two candidates for the leading amplitude in D — V' decays: weak annihilation and
quark loops, as shown in Figure 4.1. The quark-loop contribution has been calculated in an
inclusive approach in [151] and found to dominate all other inclusive contributions; obviously,

however, this does not include weak annihilation.

The amplitude will be parametrised as in the B meson case (2.62) as*:

P, P.
A[D = V4] = (VA[H| D) = Al?l + Agg

(PP, P —P

(4.13)

where

Pr = 26000’ Py =2i[(p-q)(n-¢)— (n-q)(p-e)] (4.14)

and 7(p) and ¢(q) stand for the vector meson and photon polarisation tensors. The amplitudes

Ar r will be further parametrised as:
AL,R = lL’Rei5L,Rei¢L,R =+ gL’ReiAL,Rei‘I’L.R , (4.15)

where the terms are separated according to their weak (CP-odd) phases, ¢r r and @1, r. Two
weak phases are sufficient to parametrise decays in the SM, since the three relevant CKM

coefficients are related by unitarity, and thus one of them can be eliminated in favour of the

4The amplitudes A; 2 are often denoted by Apc,pv in the literature (up to phases), e.g. [149,152]. PC and
PV stand for parity-conserving and -violating respectively.
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other two. In terms of these amplitudes, the partial width for D — V'~ is given by:

L3 my ’ 2 2
LD — VA= 35D ( — m2D) (AP +[A2]?) (4.16)
z[V]
where x[V] = | A1 |*+|A2|? has been defined for later convenience.

With these definitions of the amplitude, the C P asymmetry (4.2) may be re-written as

—23 1 rligisin(A; — 6;) sin(®; — ¢;)
Yoier.r i + 97+ 20igi cos(A; — 8;) cos(®; — ¢)]

Acp[D® — f] = (4.17)
which exposes the need for both sizeable C'P-odd and C'P-even phase differences in order to

produce an experimentally measurable C' P asymmetry.

Weak annihilation (WA) contribution

The scenario for C'P violation will rely on the leading-order strong phase being small. It will be
argued that it is reasonable to believe that the WA contribution to D — V'~ decay is dominant,
and indeed this amplitude has no strong phase at leading order in «z. The question of the size
of the strong phase in subleading corrections will be addressed thereafter.

The contribution of weak annihilation in A[D — V+] will be estimated using sum rules
computed in [77,78], and these estimates will be compared to experimentally measured rates.
Unfortunately the rate for the process under consideration, D — p, has not yet been measured.
The calculation of these matrix elements in B physics including several extensions will be
discussed in Chapter 5; however, in the case of SM charm physics, the coefficients of the
four-quark penguin operators O3_g are negligible as described in Section 4.1.1 and thus the

additional terms computed for that case are irrelevant.

The measured rates of the D° — Vy-type are [123]:
B(D° — K*0) =3.27(34) - 10~* B(D° — ¢y) =2.70(35) - 107° | (4.18)

which are Cabibbo allowed and singly Cabibbo suppressed, respectively. The total amplitude

in the z[V] normalisation (4.16) for these decays can therefore be inferred:

T[K*ex = 1.8-1071(10%)GeV 2 Z[Plex = 2.0 - 1071°(10%)CGeV 2 . (4.19)

The relation between A; o (4.13) and Apcpyy of reference [77] for a D — V7 decay is

G m
Ai2)lwa,o@o)= — (\/g)\dth) <fVCV V> Apcppv) (4.20)
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where a; = C1 + Cq/3 ~ —0.5 is the colour suppressed WC?, and the constant ¢y is defined
below (4.10). The ratio of the LCSR prediction to the experimental value is

W ~05 (4.21)
which translates into a factor of ~ v/2 for the amplitudes. Thus the LCSR prediction accounts
for 60% of the experimental result. This result is considered rather good in view of the antici-
pated uncertainty, which is expected to be largely due to omission of higher order corrections,
or equivalently renormalisation scale error, and the use of semi-global quark-hadron duality in
the sum rule. Following (4.21), predictions shall be constructed for other D — Vv decay rates
by scaling the corresponding LCSR, predictions [77] by a factor of two. This entails scaling the

amplitude by v/2, and it is assumed that LCSR accurately predicts the phase, resulting in
Ai)lLp= 1.4 X Ay 2)lwa,0m0) (4.22)

then using the notation ;o) = Ajy(2)|LD:

—-3.7-10"8 a —2.1-10"8 a
Iy ~ ( 2 > lo ~ ( 2 ) {D° = (°,w)}

Cy Mmp —0.5 Cy Mp —0.5
—13.2-107% s ay ~11.8-107° / ay
! 27(*) 27(*) D = (pt,K*T)} . (4.23
! Cy mp 1.0 2 cy mp 1.0 { (d,s) (p )} ( )

Since WA has no strong (C P-even) phase at leading order, I;, g = I £l3 in (4.15), and therefore
in the left-right basis:

—5.8-1078 —1.6-10"8

l Y — l o — DO 0
L Cy mp R cy mp { _>(P ,w)}
12.5-1077 0.7-10~° . R
= Ceymp p e Ccymp {DGs = (7 K} . (4.24)

The corresponding estimates for branching ratios are:

B(D® = (0%, w)7)| (4,22~ 0.6 - 107 (4.25)

2B(Df — K**v) ~ B(D* — pt)|(on~1.3-107°

It should be noted at this point that the processes in (4.18) are charged rather than neutral
current processes and thus do not have a quark loop contribution since the spectator quark
also changes flavour, and therefore would be strongly expected to be WA dominated, which

enhances the credibility of the estimates (4.23) as the likely value of the WA amplitude.

To cross-check, the estimated branching fraction B(D° — (p° w)v) above is compared with

5Note that in [77] the colour structures of the operators O1 2 are switched in the effective Hamiltonian, and
thus C1,2 are switched in the formula for a:.

83



84 James Lyon

the measured rate in B(D® — ¢y)ppag (4.18) and it is noted that the former is down by about
a factor of four. A factor of two comes from the p° and w valence quark contents which imply
¢} = 2, in contrast to the ¢ for which ¢} = 1. Another factor 1.2 comes from phase space
factors and the my fy prefactor in (4.16). The remaining discrepancy might be partly due to
neglecting the strange quark mass; it might be questioned whether 2m,, which results from
the axial current, is really so small a parameter. A quick order-of-magnitude estimate based
on [70] would suggest that such corrections should be on the level of (f3-/ fs)(2ms/mg) ~ 20%°,
which is certainly not negligible. It therefore seems that the estimate (4.25) is plausible and
at present this will have to suffice, as it is far below the present experimental upper bound of

2.4-107% [123].

Weak annihilation (WA) versus quark loops (QL)

Having estimated the size of the WA contribution, the size of quark loop matrix elements will
be estimated next, the leading order contributions to which are illustrated in Figure 4.1. The
distinguishing characteristic of the two types of contribution is that in WA the spectator quark
also connects to the four-quark operator from H°% and is thus a ¢§ — ug-type transition,
whereas in quark loop-type contributions the additional quarks scatter into the final state
photon and it is thus a ¢ — ugq transition. The WA contributions have been computed in
1995 for B — Vy and D — Vv in [151] and B® — (p° ,w)y in [77,78] at O(a?), and the QL
contribution was computed in [151]. This QL calculation was performed in a 1/m, expansion,
whose convergence is rather questionable, but it is expected that it should give a reasonable
estimate.

It is argued that the WA amplitude dominates that of QL:

1. Generic argument: QL and WA are generated by the same four-quark operator, (’)f;
and Of, (4.8) respectively. The QL contribution has two more loops than the WA
contribution since the middle diagram in Figure 4.1 is zero due to gauge invariance and
thus only diagrams with an additional gluon contribute. From a general point of view it

would therefore be expected that WA > QL due to these suppressions’.

2. Test case in B physics: The same line of reasoning can be applied to B — p decays to
check its validity in that case, which is on a rather more secure theoretical footing. Taking
numbers from [129] results in® |Aqr/Awalp-—,-~ 21072 The QL contribution in

this case is taken to come from the diagram where the gluon is radiated into the final-

6ms(2GeV) = 95MeV has been used, and RG running has been applied to 2 GeV of féL in table 3.2. The RG
running itself accounts for a 5% shift. This estimate could easily be out by a factor of two were the calculation
done fully since the hard scattering kernel will have an end-point singularity. However, the corresponding FSR
terms will have a small strong phase and thus the basis of this argument is not spoiled.

"In principle there is a GIM suppression of the QL in addition, though this is not very effective for the matrix
elements [151] owing to ms > my, 4.

8In case the reader is wondering, these numbers do not include CKM matrix coefficients, which lead to a
Cabibbo suppression of WA in B physics.
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state meson. The QL numbers are of comparable magnitude for both charm and light
quarks. The reason that this comparison is done for the charged rather than the neutral
channel is that WA in B® — pv is accidentally small owing to cancellations between the
current-current operators 01 2 and the penguin operators Oz_g [129]. Such cancellations
cannot be expected in D° — p°y because the coefficients of penguin operators are tiny,

as discussed in Section 4.1.1.

3. The D physics case: The question is then whether the hierarchy which is indeed present
in B physics carries over to D physics. Taking the contribution of QL from [151] and
the estimates of [77] for WA, it can be estimated that |Agr/Awal~ 21072, whose
closeness to the B meson result is most likely accidental. From another point of view, any
differences between the B and D physics cases would be expected to be suppressed by
powers of the heavy-quark mass and thus the breakdown of the heavy-quark expansion
may be estimated in the charm-quark case. In the heavy-quark limit it is expected that
A1 = As, ie. Ag = 0, and therefore the breakdown of the heavy-quark expansion can
be estimated from the results in [77]. These results indicate that the 1/my . expansion
holds to the level of 70% and 57% in the B and D meson cases respectively, which does
not indicate that the 1/m, expansion exhibits sufficiently poor convergence to overcome
the difference of two orders of magnitude that is estimated to separate the WA and QL

amplitudes.

Thus analysis suggests that WA dominates QL by roughly two orders of magnitude. The op-
posing viewpoint should be mentioned: an alternative approach to calculating D meson decays
has been to model the transitions with hadronic data [152]. In the long-distance contributions
calculated there, WA diagrams correspond to pole contributions and QL contributions to the
vector meson dominance (VMD) mechanism. In that paper, comparable numbers were found
for the pole and VMD terms, which conflicts with the expectation based on the analysis above.
There are, however, two deficiencies in this approach: first in the pole part Az = 0, which
contradicts the sum rule calculation [77,78]. Second, couplings in the VMD approach must
be taken from experiment and therefore have unknown phase, and thus this approximation is
not able to capture strong cancellations, which would appear to be likely in this case owing to
the vanishing of the factorisable QL contribution due to gauge invariance. One of the authors

of [152] has made a similar point in [153, 3.1.3].

Strong phases in weak annihilation

It has been argued that the QL contribution, which has a large strong phase, is small compared
to WA; however, in order to complete the argument that the overall strong phase of the leading
amplitude in D — V' is small, the strong phase in WA must also be estimated.

At leading order O(a?), the strong phase is zero. This is certainly the case, from the results
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in [77,78], when the light-quark mass is neglected; however, it should also hold for non-zero
quark masses because the decay remains factorisable. Details of this factorisation are given in
Section 5.3.2, and the argument that the strong phase is zero is essentially that the initial-state
radiation matrix element (vy|J{;_,|B) will be far below threshold at the weak current vertex,
and the final-state radiation matrix element (py|Ji;_ ,|0) is well approximated by the light cone

OPE, which gives no strong phase at leading order.

Unfortunately the relevant non-factorisable loop corrections to WA, which would contain
the strong phase, have not been computed. The size of QCD corrections will therefore be
studied in a generic way through the O; operator. The corrections due to the chromomagnetic
operator Og can be viewed as radiative corrections to the leading decay terms and it may be

inferred from table 3.5 that they are around the 15% level.

Final remarks

Aside from the question of the suitability of the heavy-quark expansion in D decays, there is also
some question over whether the o, perturbation series converges. In fact, this should not be a
problem in D — V'~ decays because the D meson mass mp = 1.86 GeV and the photon “mass”
¢*> = 0 are far from other perturbative and hadronic thresholds’. The vacuum polarisation
plot, R(s) «x o(ete™ — hadrons) [123,154]'°, indeed indicates that there are no significant
thresholds in either region and in fact the closest threshold is the w meson pole. Although
the electromagnetic current relevant to that cross-section is certainly not the same as the weak
current relevant to WA, it should be sufficiently closely related that the non-perturbative effects
have similar magnitude. At mp, the ratio of the leading order partonic cross-section to the
measured hadronic cross-section indicates a 15% correction'! and the three-loop perturbative
QCD result is in-between the two. It therefore seems that the non-perturbative corrections in

this region should not be expected to be very large.

In view of the discussion above, 25% will be taken as a conservative estimate of the size of
radiative corrections. If it is assumed that the real and imaginary part have similar magnitude
then the strong phase of WA is taken to be 10°, that is |dy|~ |dg|~ 10° in (4.15). Of course,
a computation of the non-factorisable radiative correction would be preferable to this sort of
estimate. In particular, the sign of the strong phase of such a correction is significant, since RG
running will mix a beyond-SM correction to C§f into CSf, and thus the sign of the phase of
radiative corrections will determine whether the resulting C'P asymmetries cancel or augment

each other. This will be discussed in Section 4.3.

9The next charmed J = 0 meson candidiate listed in PDG [123] is at 2.4 GeV.

10Chapter 46, under “Plots of cross sections and related quantities” on pdgLive [123].

M R(s) ~ 2 at leading order for ms < 1/5/2 < mc, hadronic data is available from pdgLive [123] under “Data
files and plots of cross-sections and related quantities”.
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4.2 (P violation scenario

A scenario will be proposed where a sizeable C'P asymmetry is generated by a large C'P-odd
imaginary part in the Cg WC, generated by beyond-SM physics. The amplitudes in (4.15) in

this scenario are given by

lo(r) =lli+l|, dr=0¢Lr=0
. G em 1
iry _ GF c )
JrL(r)€ 7 (QWQ ) po |Cs1(2G1(0))

G1(0) =[G1(0)]e”, Cs=|Csle™™, Cg=|Cgle™ (4.26)

with {4 o given by (4.23) and A = Ay = Ag. The amplitudes G1(0) and their phases are given
in table 3.5; the leading twist result derived there has been used so that G1(0) = G2(0), and
thus that Og and O} solely contribute to the left- and right-handed amplitudes respectively,
and that the two have identical strong phases A;, = Ap.

Exploiting these simplifications and assuming that |g; g|< |1 g| , the CP asymmetry may
be written (4.17) as

ACP [DO — V’y] ~ (ngL bln(A — 6L) sin(@L) + gRlR sin(A - 6R) sin((DR)) . (427)

2 2
17+ 1%
Since the leading order strong phases dr, g are presently unknown, as discussed earlier, they are
set to zero, and then the formulae in (4.26) may be used to write a more explicit formula for

this scenario:

Acp[D® = Vr] = L or (

B+1%V2 (I Tm[Cs] + [p Tm[Cg]) . (4.28)

eme ) Im[G1(0)]

272 Cy

Numerically, with m. = 1.3GeV and plugging (4.23), (4.5) and the values in table 3.5 into

(4.28) the C'P asymmetry in the neutral transition may be estimated as

Acp(D® = (p°,w)y) = (—3.84Im[C3'"] — 1.04Im[C{]) ¢

- Im[CYP) Im[C{P] (4.29)

with an estimated uncertainty of about 45%, which will be discussed below, and where

% 10-5 1/2
0.6 x 10 )7>> (4.30)

5= <B(D° — (p%,w

is included so that the branching fraction B(D° — (p°,w)y) may be easily updated when
measurements or improved theoretical determinations become available. In going from (4.28)

to (4.29) the fact that the imaginary part of C$™, which is suppressed by four powers of the
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Cabibbo angle, is negligible with respect to the value (4.5), has been used.

In the charged case the result is

Acp(D( o = (p7 K*H)7) = (9.71Im[C{'] + 0.60Im[CE" ) e

= (3-9% (hn[cm) +0.2% (hn[CéNP]» . (4.31)

)
0.4-10—2 04-10—2

again with an estimated uncertainty of 45%. The dominance of the Og contribution over the
Oj contribution in both cases is a remnant of heavy-quark symmetry, which indicates that i
is 1/m. suppressed w.r.t. l;. In this particular case, a sizeable difference between Iz /l;, in the
charged and neutral decays could in principle allow extraction of Im Cg and Im C{§ separately,
given sufficient experimental sensitivity.

The significant sources of uncertainty in this calculation are listed below:

e The largest source of uncertainty is in the calculation of Og matrix elements, which are

estimated to have an error of around 35%; see table 3.5.

e The strong phase of the leading WA contribution §;, r was estimated to be on the order

of 10° in Section 4.1.2, which leads to a 20% uncertainty.

e The magnitude /3 + (% is not assigned an uncertainty, because it is assumed that it is
taken from experiment; however, the ratio I /lr is not determined in this way and has
therefore been inferred from the results of [77]. This procedure is assigned an uncertainty

of 20%.

Combining these three sources of uncertainty in quadrature leads to an overall uncertainty
estimate of 45%. There is no reason to expect that they would be correlated. Uncertainty due

to C'P violation from Im C'; has not been included, and will be discussed in the next section.

4.3 C'P violation through Im C~

In [149], a sizeable value of Im CN¥ was proposed as a possible source of C'P violation in
the charm system. This effect would however be distinct from the effect in the D — 77 and
D — KK systems, because it is aiep, suppressed and therefore expected to be small in hadronic
processes. Since the O7 operator emits the photon in a short-distance process with no strong
phase, the strong phase difference necessary for observable C' P violation must in this case come
from the leading matrix element. According to the arguments of Section 4.1.2, this strong phase
is in fact small, on the order of 10°. The ratio of the magnitude of C'P violation from C7 and

Cy can be estimated to be

T1(0)sindy, o Im Cy
ImG1(0)  ImCy

Im 07
Im Cg

’ACP|7
Acpls

SO.GX‘

, (4.32)
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where values G1(0) =~ 0.2 (4.12), T1(0) ~ 0.7 [149] and 01 =~ 10° were used. It is therefore
apparent that if Im C; is comparable to Im Cg, they may both give a similar contribution
to the CP asymmetry, which could either stack or cancel. However, as explained in Section
4.1.2, the estimate 07, ~ 10° is expected to be conservative and thus (4.32) is also likely to be
pessimistic. A substantial cancellation between the two cannot however be ruled out without
proper calculation of dy,.

In fact, the beyond-SM contributions from C7 and Cg are connected, since RG running
mixes Cg into C7. As such it was proposed in [149] that this mixing would lead to C'P violation
in D — V. As mentioned in the introduction, this calculation depends on a large strong
phase in the leading decay amplitude which is expected to be absent according to this analysis,
however the mixing of C7 and Cg along with (4.32) implies that the combination of these effects
should be examined. This case will be illustrated by assuming that the scale of new physics
Mpyp = 1TeV and that only SM degrees of freedom exist below this scale. In that case, the

resulting new physics contributions to the WCs at the charm scale [149, (6)-(9)] are

CYF (me) = 0.42C5F (1TeV) (4.33)

CYF(m.) = 0.37CHF (1TeV) — 0.26C5* (1TeV) ~ 0.37CYT (1TeV) — 0.62C5 " (m..)

and hence under the assumption that CNF (1 TeV) < C{¥¥ (1 TeV), also used in [149], Im C7(m,) ~
—0.6 Im Cg(m,) is obtained. Thus according to (4.32),

ork] .4 e

Acpls

is expected under this scenario and hence it is still expected that the Im Cyg contribution dom-
inates. It should be noted, however, that if the scale of new physics is sufficiently high this
situation could be reversed since CNF (m,.) — —8CLYF (m,) as the new physics scale goes to in-
finity; though this limit is approached rather slowly, and in any case increasing the new physics

scale substantially would most likely render the resulting C'P asymmetry too small to detect.

4.4 Conclusion

In contrast to B meson decays, theoretical assessment of charm decays is made considerably
more difficult by the comparative smallness of m. and the corresponding increased hadronic
uncertainties. Nonetheless the measured size of the C'P asymmetry (4.1), should it stand up
to future measurements, would seem to indicate the presence of beyond-SM physics due to the
fact that it is suppressed by four powers of the Cabibbo angle, although a large enhancement
from strong dynamics cannot be ruled out. Owing to the theoretical difficulties in calculating

strong decays, the ideas of [149] have been followed.
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The advantage of considering the chromomagnetic operator Og over the electromagnetic
operator Oy is twofold: first, Og is expected to contribute significantly to hadronic as well as
radiative decays and thus could potentially explain the current experimental discrepancy with

SM expectations through [150]

though this can only be taken as an estimate since sind is unknown. Second, the Og operator
can provide both the weak and strong phase required to produce an observable C'P asymmetry
in contrast to Oy, which requires the leading decay amplitude to have a large strong phase,
which, as has been argued, it does not.

The prediction corresponding to (4.35) in the D — V+ channel is'?:

Ace(D” = (¢*.0) = (~1.5% (Im[CNP]> ~ 0% (““[CNP])) s

0.4-102 0.4-102
Im[C)P] Im[C{N P
Acp(DF FK)) = (3.9% ( ——2— 2% | ——2— 4.
cp(Digs) = (07 K™ )) <3 9% (0.4. 102) +0.2% (0.4~ 0z))es o (436)

which has an interesting feature not present in the hadronic decay: because the final state
contains two vector particles, it is sensitive to both the parity-conserving and parity-violating
parts of the Og) operators and thus potentially the chirality structure of beyond-SM physics
is experimentally accessible if the C'P asymmetry in both the charged and neutral channel can
be measured. This is also partially the result of the smallness of the charm-quark mass; the
heavy-quark relation I = O(1/my ) would otherwise be expected to strongly suppress the
contribution of the Of operator.

The way forward from here seems rather difficult on both the experimental and theoretical
fronts. From the theoretical standpoint, the prediction (4.36) would be vastly improved by a
complete calculation of the O(ay) corrections to WA, specifically the non-factorisable diagrams
which are expected to give rise to the strong phase that would determine the contribution of
Im C7 to the C'P asymmetry. Judging by the calculation of the chromomagnetic form factor in
Chapter 3, however, it can be expected that such a calculation using LCSR will be technically
difficult since it will almost certainly require dealing with anomalous thresholds at two loops.
Another strong motivation for calculation of the O(«y) corrections is that it would give a much
better indication of whether the argument that WA, rather than QL (q.v. Figure 4.1), is indeed
the dominant amplitude in radiative D meson decays.

On the experimental side, further LHCb data in the D — 7w and D — KK channels is
of course desirable, and indeed as remarked in the introduction new data from LHCb [146]
rather disappointingly shows no sign of an asymmetry. This is a sizeable shift from their prior

result [22] and in comparison to the CDF result [135]; however, since it includes the data of the

123ee (4.30) for the definition of cg.
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earlier analysis, the present experimental situation appears to confirm the SM. An experimental
measurement of the D° — p% and DT — p*~ rates would nonetheless be interesting, to see
whether the sort of analysis performed in section 4.1.2 is correct and whether charm decays in
this channel can be treated perturbatively, although since the estimate (4.25) is two orders of
magnitude below the current experimental limits B(D° — p%y) < 2.4 x 1074 [147], this will

have to wait for an LHCb upgrade or future flavour-factory experiment.
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Chapter 5

Isospin asymmetry in B — (K, K*, p)lT1~

In this chapter I describe the calculation of the isospin asymmetry in semi-leptonic B decays,

as published in [92].

5.1 Introduction

The isospin asymmetry in B — K*IT|~ was for some time measured by experiment to be
negative [155,156], the opposite sign to the SM prediction. This has not been confirmed by
new LHCb data [21], which agrees with the SM prediction; however a large negative deviation
from zero, at the level of 40 when integrated over ¢?, appears in the new results for the
isospin asymmetry in B — KItI~, which according to theory is expected to be small. Isospin
asymmetries in B — K*y and B — pvy decays have also been measured and it will be found
that these agree with and deviate by 20 from the SM prediction, respectively.

Since at present measured isospin asymmetries are only marginally in agreement with the
SM, it is worthwhile to study the sensitivity of these asymmetries to beyond SM FCNC oper-
ators. A complete calculation of the influence of all of these operators will complement con-
straints from non-leptonic decays on all AF' = 1 operators. The goal of this calculation is then
to compute the contribution of all suitable FCNC operators up to dimension 6 on the isospin
asymmetries in all similar processes for which there are presently sufficient statistics, that is
B — (K,K*)Itl~ and B — (K*, p)y [21,147], as well as the as-yet unobserved B — plti~.
The extension to the closely related process B — wlTl~ is a straightforward matter of replac-
ing certain input parameters but numerical results are not provided here since it appears that
experimental data is some way off.

It turns out that isospin violating effects can be divided into two categories: ultraviolet (UV)
isospin violation due to four quark operators in the effective Hamiltonian coupling differently to

up- and down-type quarks, and infrared (IR) isospin violation which arises from photon emission
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<0 00 L

Figure 5.1: Processes contributing to isospin violation in semi-leptonic B decays. The left-hand
diagram indicates a weak annihilation (WA) process, the middle diagram a quark loop spectator
scattering (QLSS) process and the right-hand diagram indicates isospin violation arising from the
chromomagnetic operator Og. Crosses indicate possible isospin violating photon emission points.
Note that in WA emission from the heavy quark line can also violate isospin symmetry, since the
four quark operator may couple differently to different flavours of spectator quark.

from the spectator quark since the strength of the electromagnetic interaction depends on the
quark flavour. The classes of isospin violating process are included: weak annihilation (WA),
quark loop spectator scattering (QLSS) and the Og contribution, as shown in Figure 5.1. UV
isospin violation only occurs in WA-type diagrams since the four quark operator must connect
to the spectator quark line in that case. Isospin violating effects due to differences in the light
quark masses and decay constants are below 1% and therefore neglected. Such effects however
complicate the calculation of analogous flavour SU(3) asymmetries such as By — ¢ vs. B — K*
since the hadronic differences between Bs and By are too large to be ignored. Although sum
rule or lattice calculations of the ratios of meson decay constants could be used, these would
have to be very accurate in order to result in useful constraints on Wilson coefficients in the

effective Hamiltonian being obtained.

Various aspects of the isospin asymmetry in B — (K, K*)ITI~ decay have been calculated
previously. The closely related decay B — V' has been computed using QCDF in [84] and using
a mixture of QCDF and LCSR in [129]. A computation of the isospin asymmetry B — K*v in
the minimal supersymmetric SM has been reported in [157]. B — (K, K*)IT]~ was computed
using QCDF in [51], and a mixed approach was recently employed for B — KI*I1~ in [134]. This
calculation improves on these works by including the complete basis of dimension six operators
for WA and QLSS, the Og calculation described in Chapter 3, and the complete set of twist-
3 terms for WA. It is therefore a straightforward matter to calculate the isospin asymmetry
in a arbitrary model once the Wilson coefficients are known, or conversely to identify which
operators may be responsible for any observed deviation, if found, although given the large
number of possible operators detailed knowledge of the ¢ spectrum would be necessary to

constrain specific operators outside the context of a model.
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5.2 Definitions and outline of the calculation

The definition of the effective b — si™!~ Hamiltonian in the SM is given in Section 2.4 and
the decomposition of the B — VI*I™ matrix elements are given in Section 2.9. The extensions
of the four quark operator basis will be described in the sections 5.3.1, 5.4.1 and 5.6.1. The
isospin asymmetry itself is defined as
- (g?) = dAY _ cﬁv,dr@‘) - @‘)m—]/dq? — dU[B~ — M~1+1-]/dg? 5.1)
dg* 2 ar(B° — M 1+1-]/dg? + dT[B~ — M~1+1-]/dqg?

(ah™ (@) +af* (@) (5:2)

where M stands for a vector or pseudoscalar meson and the second equation defines the CP
averaged isospin asymmetry. The experimental definition is of course usually written in terms
of the branching fraction and B meson lifetimes. The isospin asymmetry in B — V' is defined
analogously. For the K* the C'P asymmetry is small and thus the result of taking the C'P
average is primarily improved experimental statistics; however for the K this is essential since
in the neutral case it is the K2 which is a C' P-eigenstate superposition of the two strangeness
eigenstates |ds) and |5d). By contrast the C' P-asymmetry in B — p is sizeable, and this case is
discussed in 5.6. The coefficient cp; accounts for cases where the valence quark content of the
final state meson does not correspond exactly to the quark pair produced by the short distance
decay. This is the case for the neutral p meson since p° ~ (wu — dd)/+/2 and thus ¢, = /2, but
the remaining cases are simple cx = cx~ = 1. Weak annihilation diagrams can also couple to
the @u component of the p° final state however constant the ¢, is selected with respect to the
leading term in the decay arising from Oz 9 19 which cannot.

As in previous studies [51,84], it will be assumed that the isospin asymmetry is small and
thus a linear approximation to (5.2) may be used. The leading isospin symmetric term is
assumed to arise from the operators Or g 19 (or rather their effective counterparts). With these

approximations, the isospin asymmetry may be written

0- Re |7,7°(¢*) AL (g?
d:;l SRR > V[ (¢?) - (4 >l A
‘ = [T @)+ [ TA @)
dA?_ +7-1 — Re {EV’O(QQ)Agfu(QQ)} O Adfu 2\12
az P S s e e OO
. 5 Re | T0(0)A7(0)] .~
A [B = K] = oAl (53

>[I O R+ TAO)]

where the functions Z(V’A) are coefficients of different tensor structures arising in B — MITI~

decays and are described in Section 2.9. The sums over ¢ may be taken in either the {0,+, —}
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or {0,V, A} basis as described there; the only relevant property of these functions here is that
the total B — VI~ decay rate is proportional to >, | Zj€V7A|7;j(q2)\2. The functions

7;V’0 include only the leading isospin symmetric terms in the decay, namely

T = C5" (") Hi(¢?) + C5"Ti(¢”)

T = Cs™ () (q®) + C5 fr(e?) (5.4)
and with this definition the matrix elements for the full decay rate (2.70) are split up as
TV (@) = T (@) + T T."*) = C§"G(¢®) + Wi(a®) + S(a°) (5.5)
and the isospin asymmetric part is given by
AT =T = T (D) (5.6)

The functions G; are the chromomagnetic matrix element described in Chapter 3 and the
functions W; and S; give the WA and QLSS contributions and will be calculated in sections 5.3
and 5.4 respectively.

As mentioned in the introduction isospin violation owing to quark mass differences and
differences in meson decay constants is neglected, which manifests itself here as the assumption
that the leading terms 7.? are equal in both the charged and neutral decays. The pseudoscalar
decay constants differ by roughly 0.5% between the neutral and charged case [158] and thus
will turn out to be negligible as compared to the overall uncertainty in this calculation. The
mass splitting between the neutral and charged K is somewhat larger at around 1% [123],
which occurs because the kaon mass is connected to chiral symmetry breaking!. This will
not lead to a large isospin asymmetry since both are still very light in comparison to the B
meson and the phase space difference between the two would be expected to be on the order
of? (m%, —m2.,)/m% ~ 107%, and in any case light meson mass effects shall be neglected
entirely in this calculation. The mass splitting between the charged and neutral B mesons is
small, mpgo — mp+ = 0.32(6) MeV, and this is completely negligible in comparison with every
other scale in the problem which are at their smallest on the order of Agcp ~ 300 MeV. It is
therefore safe to say that isospin violation arising through quark masses and QCD effects are
negligible in comparison to isospin violation from the processes depicted in Figure 5.1, which

are to be calculated.

1The mass splitting can therefore be estimated from the Gell-Mann-Oakes—Renner relation [102] as mio —
mi .~ (mg —mu) (Gq) [ f7-
It might appear from (2.81) that it should scale linearly rather than quadratically, i.e. as (mgo—mg+)/mp,
however the factor mp + myg appearing in that formula is merely due to the standard definition of Pr in (2.62)
and is not actually reflected in the rate.
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Figure 5.2: Example of a weak annihilation form factor result, specifically contribution of OgVA and
OVA to B — K*I*1~. The definition of the W/, is given in (5.18). The region 0GeV? < ¢2 <
1 GeV? is excluded owing to the presence of strong resonances here; note particularly that the point
at ¢? = 0 (blue dot) does not appear to connect smoothly to the real part (solid red line). The point
at ¢> = 0 must be calculated using a different method because of this, as described in Section 5.3.6.

5.3 Weak annihilation (WA)

The WA process B~ — W~ — K )~ is described by the “tree-level” operators O 2 in a process
as shown in Figure 5.1 (left). By extension, the same name is also given to diagrams with the
same arrangement of quark lines involving O3_g, though they arise from renormalisation group

evolution and short distance penguin diagrams.

The WA contribution to B — pv has already been computed in the SM using LCSR in
[77,78]. This contribution was also calculated using QCDF in [120]. This is in principle
equivalent to B — K*I*]~ in the ¢®> = 0 limit, although, as will be explained in Section 5.3.6,
OPE terms must be handled differently in these two cases. The WA contribution to B —
K*I*1~ for general ¢ has been calculated using QCDF in [42,51]. This calculation extends
previous work by using LCSR to calculate WA at general ¢2, including all possible dimension
6 four-quark FCNC operators and computing twist-3 corrections from i terms in the K* DA,

which contribute to the longitudinal polarisation and were neglected in [42,51].

As is typical for B meson decays, the range of the validity of the computation is restricted
by the presence of resonances, both in the partonic and hadronic pictures. In the case of weak
annihilation it is particularly the light p and w resonances which are problematic, so the results
of this calculation are not valid in the 0 GeV? < ¢? < 1 GeV? region. This problem manifests
as a divergence as ¢> — 0 owing to the (gq) condensate term. The OYVA form factor is plotted
in 5.2 to illustrate the issue. Note that in this plot charm resonances which would be expected
in the ¢ ~ m% n region are absent, owing to the fact that they occur as an order a, correction
to WA. However, the results for the isospin asymmetry remain invalid in this region because

other contributions, particularly the C§ contribution, are still strongly affected.
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5.3.1 Complete WA basis of dimension 6 operators at O(a?)

All dimension 6 four-quark operators ql'1b5T2¢ that potentially contribute at O(a?) are in-
cluded:

O™ = qbsq 03" = qysb 3¢ O3 = gbsvsq O™ = gysb 575q

O™ = qyubsyq O™ = b3y O = qrubsy'ysq O™ = @vusb 3754

O™ = Go,,b50"q  OWA = Go,sbs0™ g , (5.7)
parametrised by the effective Hamiltonian:
a 10
HVA = —ZEN S alo (5.8)
V2 i=1

where the ¢ superscript has been suppressed on the operators O}NA. The operator basis has been
organised in terms of scalar and pseudoscalar, vector and axial and tensor currents. Although
this is not the optimal fit for weak decays in the SM that have V' — A structure, it makes the
linear combinations which actually contribute to decays transparent, since the external B, K
and K* mesons are states of definite parity. At higher orders in «; the size of this basis doubles,
since colour octet operators which cannot contribute to factorised decays also appear. In fact,
the p meson can couple to these octet operators at leading order O(a?) owing to the presence
of multiple external d-type quarks in B® — p°® decays, which can therefore couple to alternative
Fierz arrangements of four-quark operators. The extended effective Hamiltonian required in

this case is defined in 5.6.1.

WA coefficients in the SM

In the SM the operators (5.7) obey minimal flavour violation (MFV) [159-163] and furthermore
may be expressed in the form gU'PrbsPrI'q (2.19). Since WA fixes the quark flavours and
couples to just a single colour structure, only two independent combinations of SM WCs appear
in each B — MII process, which correspond to the scalar-scalar and vector-vector® Dirac four

quark structures. For a bq — sq process, with ¢ = u, d, the couplings are given by

Cs
q _ -9
2 (Nc +C’6>

C M [ C
==t =af = (L r0r) 0.5 (L r o)

I
|
S
[
I
<
w
I
|
S
N
I

3With appropriate left- and right-handed projectors.
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where N, = 3 is the number of colours as usual. The vector current couplings a5_g are different
for w and d spectator quarks, which follows from the fact that O; 2 (2.19) only couple to up-
type quarks as a result of the absence of tree-level FCNCs in the SM. As described earlier,
the splitting of WCs for different spectator quarks is referred to as UV isospin violation and in
this case radiation from all four external quarks (see Figure 5.1, left) contributes to the isospin
asymmetry. In B — K ) decays the contribution of O12 and thus UV isospin violation is
suppressed owing to the smallness of A, /A;. The situation for B — p decays is somewhat more
complicated, however, for the C P-averaged case the suppression from |cos ackm|< 1 plays the
same role and the penguin operators O3_g still dominate the isospin asymmetry. The p meson
situation will be discussed in more detail in Section 5.6, and the exceptional value of cos ackm
will be exploited in Section 5.7.

It must be understood that formulae such as (5.9) are strictly applicable at leading order
in a,. In the present calculation this is all that is required since loop corrections to the WA
contribution are not computed; however at higher orders the coefficients will be dependent on
the renormalisation scheme, including evanescent operators, e.g. [164]. Both SM and beyond-
SM operators would then have to be matched onto this higher order basis, which itself would be
a somewhat involved calculation. This may well be unnecessary however: since at this point it
must be expected that violations of the SM are small, the most sensible approach to improving
the present work would be to complete a higher order calculation of the SM isospin asymmetry
to reduce the SM uncertainties. Contributions from beyond SM physics can then be added
using leading order results in the generic four-quark basis computed here, since they will be
suppressed by new small parameters and thus loop corrections to beyond-SM effects are unlikely

to be significant.

5.3.2 Factorisation of WA at leading order O(a?)

The WA matrix element with uncontracted photon polarisation tensor €(q), reads

A lwa=(X7"(p)|ql1b 5T 2q| B)|wa

— (X|5Taq(0) (v* (9)|aT1b| B) + (X*(p)[5T24/0) (0[gT1b|B) +O(as) . (10)

initial state radiation (ISR) final state radiation (FSR)

The two matrix elements shall be referred to as initial state radiation (ISR) and final state
radiation (FSR) respectively, as labelled in the equation. ISR terms will be calculated using
sum rules as described in Section 2.8. FSR terms will be calculated using the light cone OPE.
The Feynman diagrams which were computed are shown in Figure 5.3, although as will be
explained below LCSR is only used to approximate the B meson state where necessary. Only
one of the two techniques is required in each case because the matrix element which does not

emit the photon can always be written in terms of a simple hadronic quantity, i.e. fg, fx+ or
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Twist Operator OWVA
1 2 3 4 5 6 7 8 9 10
Factorisable X X X X X X X X
-even (¢ 2 LF,
B= K iﬁ-odd (Efp’,,)) 3 LF
Lorentz invariance v X X vV |V X X v |V X
Factorisable X X X X
x-even (¢) 2 I LF,
B — K* | y-even (gﬁ))’gia)) 3 I 1F.
x-odd (¢,) 2 F F I I
x-odd (", hf") 3 F I
Lorentz invariance v v v V|V v vV vV |/ /

Table 5.1: Operators contributing to WA and which DAs couple to each. The rows marked “Lorentz
invariance” indicate which operators are coupled to at all orders in as. “Factorisable” indicates which
can be coupled to at leading order in ayg, which is considerably more restrictive owing to the fact
that the decay can be factored into two separate matrix elements that must obey Lorentz invariance
separately. x-even and x-odd stand for even and odd chirality, which indicate an odd and even
number of gamma matrices respectively. The remaining rows indicate which components of the
vector and pseudoscalar meson DAs couple to each operator at leading order . This implies that
the decays may be factorised, and in these rows I indicates initial state and F' final state radiation.
F, indicates that the final state radiation is purely a contact term which can be set to zero in a
certain choice of gauge. These terms are therefore accurate to all orders in twist. Note that as far
as the twist assighments in this table are concerned, | and g, are related to other components of
the K* DA by Wandzura-Wilczek relations [70]. At the present level of approximation where light
quark masses and three-particle DAs are neglected this means that /| and g, may be written in
terms of ¢ and ¢ respectively, and thus the twist-2 and twist-3 contributions are not separately
gauge invariant at the O(my) level, although the O(mY,) part of the twist-2 contribution is gauge
invariant.
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f#-. Results of this type of calculation are valid away from partonic and hadronic thresholds,
which in this case means that the p,w and J/v resonance regions must be excluded. The results
which will be presented are valid for the range 1GeV < ¢? < 8 GeV?, although it should be
stressed that 8 GeV? is just above the perturbative charm pair threshold ~ 7.8 GeV? and thus
these results may not be accurate at the very upper end of this range. Results for B — V'~ are
also included, which are the ¢ = 0 limit of the W;(¢?) functions. In this case the contribution of
hadronic p and w resonances is included through the photon DA [77,78,165]. For ¢ > 1, GeV?,

these contributions are replaced by the (Ggq) condensate.

5.3.3 Selection rules

As it turns out, the fact that WA matrix elements are factorisable at O(a?) as in (5.10) leads
to highly restrictive selection rules on the four quark operators, because parity and Lorentz
invariance considerations apply separately to the ISR and FSR terms. These rules are depicted
in table 5.1.

However, there is one selection rule which is not dependent on factorisability. For the K
meson there is a parity selection rule. Since the K is a pseudoscalar, helicity conservation
implies that the final state photon polarisation is longitudinal and thus no final state of even
parity can be constructed. Since the B meson also has odd parity, the decay can therefore only
be induced by parity conserving operators. To put it another way, only three 4-vectors enter
in the final state, and thus it is not possible to create a scalar through use of the Levi-Civita
tensor. Since the total number of v5 matrices and Levi-Civita tensors appearing in any given
term must be even, it follows that the absence of Levi—Civita tensors in the result implies that
an even number of 5 matrices must appear in the calculation; one from the B meson and one
from the K. This immediately eliminates half of the operators in table 5.1, as indicated in the
“Lorentz invariance” row of the B — K transition.

The additional constraints imposed by factorisation, or equivalently truncating at O(a?),
occur in two ways. The first, for the scalar- and vector-like current operators O}]Y‘_*S arises in the
factored matrix element that does not emit the photon. The second, for the tensor operators
OngAO, arises due to Lorentz invariance in the final state matrix element.

The OW/}S case is a simple parity constraint: neither the K* or B meson can couple to a
vector or scalar current of opposite parity to the particle since three or four vectors are required
to construct a Lorentz scalar or vector with opposite parity in four dimensions, and the B and
K* have only one and two respectively. This means that only half of the operators O}’Y_{Xg are
coupled to. Note that in the case of the K this rule applies in addition to the global parity
selection rule, so in that case only two of the eight operators enter factorisable terms.

The case of the tensor operators ng’{% is somewhat different owing to the identity "% 0,, =

2i0M" 5, which means that the presence of one tensor operator parity implies presence of the
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| ¢ | WA Eq.(57) | QLSS Eq.(5.28) | total
K* [ 20] | 12B] Sas010 | 10B3] all noi=2,=SU(3) | 24[7]
K | 1[1] | 4[3] afg 53] idemnox=A4 10[7]

Table 5.2: Summary of operators contributing to isospin in B — K (*)II. The number of operators
that are present in the SM for the respective channel is denoted in square brackets. The QLSS
counting in the SM is the number of linearly independent contributions which depends on the
number of quark flavours of different mass running in the loop, which in the present approximation
is 3. Each of these linear combinations is independent of the coefficients for WA in the SM, so the
total number of operators in the final column is simply the sum.

other, subject to global parity considerations. In this case factorisation restricts the K final
state from coupling to tensor operators at all since a pseudoscalar meson cannot couple to a
local tensor current operator by Lorentz invariance, so whichever factorised matrix element the
photon does not couple to is necessarily zero. The K* however does couple to local tensor
currents, so the ISR term is non-zero, even in the case of a longitudinally polarised meson,
although that is suppressed by powers of mg+ as described below (5.12).

Combining these selection rules means that the K couples to 8/2/2 4+ 0 = 2 four quark
operators at this level of approximation, and the K* couples to 8/2 + 2 = 6. The situation
is depicted in table 5.2, along with the number of operators required for the QLSS and Og
contributions. The basis for the QLSS contribution is provided later in (5.28), however the
only applicable selection rule is the global parity constraint for the K.

The stringent selection rules in the factorisation approximation have important implications
when considering which terms in the K and K* DAs must be included. As can be seen from
table 5.1, the O}V operator only appears at next-to-leading twist for the K, and similarly the
O;’Y{% operators only appear at next-to-leading twist for longitudinally polarised K™* mesons,
which are potentially significant in the intermediate ¢? regime where the contribution of longi-
tudinal polarisation is not overwhelmed by the photon pole. This is particularly important for
the O;&A operators because these dominate the isospin asymmetry, as will be discussed later,

owing to their large Wilson coefficients.

5.3.4 Computation of WA leading order O(a?)

The calculation of these matrix elements in (5.10) is somewhat varied, since in almost all cases
there are tricks to simplify the process. The very simplest matrix elements appearing in (5.10)

are those which do not emit a photon. These are given by

2
. m _ . L
Ol B(pa) = ~i 722 (Olar"15blB(p)) = i vl
(K*(p,m)|5v"q|0) = fr=mr-n" (K*(p,n)|50"" q|0) = ife. (p'n” — nt'p")
(K (p)|57v5q|0) = —ipF (K (p)|57"v54|0) = —ifrxp" (5.11)
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(a) Perturbative photon contributions. (b) OPE quark condensate contribution.

Figure 5.3: Weak annihilation Feynman diagrams for B — MI"I=. The zigzag line is the B-
meson current insertion. Crosses mark possible photon insertions, although the contribution from
the insertion at the dashed cross is zero.

where p2- = fxm2 /(mg + myg). All other couplings to local two-particle currents are zero by
either angular momentum or parity conservation. In the case of the light mesons these formulae
can be recovered from the DAs in appendix B, however these are all order formulae rather than
low twist approximations. Note however that use of the formulae (5.11) for the B meson is
dependent on the ISR and FSR terms in (5.10) being separately gauge invariant, otherwise
contact terms may not cancel between them. In the case of the light mesons this problem is
avoided because as already mentioned the DAs reproduce (5.11). The following subsections
describe the techniques used to calculate the various different operator contributions. The
labels in brackets of the section headings correspond to the operator selection rules shown in

table 5.1.

Initial state radiation only (I)

This case occurs for the vector meson final state with the tensor current operators ng/{% and
the vector operator OYA. The operator O3V is of course rather more similar to the operators
OngA which also couple to vector currents but in this case the final state contact term must be
zero due to parity considerations. Computation of the initial state is straightforward using sum
rules as explained in Section 2.8 and the relevant dispersion relations will be given as part of
the results in Section 5.3.5. To calculate the initial state sum rule it is most convenient to work
at my+ = 0 since this somewhat simplifies the dispersion relations required. As this calculation
only includes terms up to O(mg-~), it would seem that mg~ could be set to zero immediately
since the initial state only depends on the invariant p? which is of order O(m%.). However,
this only works for transversely polarised K* mesons; in the longitudinal case the polarisation

n ~ 1/mg- and thus O(m%.) corrections in the initial state are lifted to O(mg-).

Fortunately in the longitudinally polarised case this can be avoided by writing the polar-
isation vector n explicitly in terms of p and ¢ = pp — p. This is similar in concept to the

well-known ultra-relativistic approximation discussed in Section 2.10. It is straightforward to
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solve for the constraints n? = —1 and 7 - p = 0 giving
(m% —m%. — ¢*)p* — 2m%.q"
n"=n +2n-q , 5.12
iR ( )(sz—m%(*—q2)2—4m%<*q2 ( )

where 1] -q = 0. At mg» = 0 this reproduces the results of the ultra-relativistic approximation
n — p/mg~; however, since the tensor operator requires pl#n¥! higher orders are required and
the formula (5.12) is exact. Expanding in m g~ the right-hand side of the tensor matrix element
in (5.11) may be written:
W v WV (o U wov 4m%{*(77Q) wov w v 4
Py =" = ' ') — o5 (0" — ¢"p”) + O(mi-) (5.13)
(mp — %)

Since the longitudinal polarisation is now explicitly O(m%.) the light meson mass my- may be

set to zero for the remainder of the calculation, particularly in order to simplify the dispersion

relation.

Final state radiation only (F)

This case occurs for the operators Og?’f

for the K* final state and is rather straightforward.
The initial state matrix element is given by (5.11) and the final state is evaluated using the
DAs given in appendix B. A general discussion of calculating with DAs is given in Section 2.7.
The only difficulty here is that gauge invariance in the case of O3'* is non-trivial owing to the

presence of two DAs related by equations of motion. The identity

uhif)(u) + Zh{ (u) = 2 /0 ' () = o1(0)) v, (5.14)

which follows from equation (3.21/22) in [70], must be used to show ¢ - .A* = 0.

Initial state radiation plus final state contact term (I,F.)

This case occurs for the operators Oy in the vector meson case and O3'* in the pseudoscalar
case. In this case the final state radiation term is purely a contact term in the limit of massless
quarks and can be fixed to zero by appropriate choice of gauge. The calculation of this term is
detailed in Section 2.7. The initial state term calculation then follows the sum rule procedure
as usual. In contrast to the case where both initial and final state radiation are physical, there
is no concern over parasitic cuts unlike the (I,F) case discussed below, since the final state

contribution is given by (2.43), that is

(p+ @) (K™[57"9)0) = e(Qq — Qs) fr=mrc+ (1 €) (5.15)
and there are no poles or cuts in this result in the variable (p + ¢)2.
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bB p

Q

Figure 5.4: The dashed lines in the left-hand figure show cuts with the momentum of the B meson
current. The right-most cut however does not have the quantum numbers of the B meson, and
so should not be included in the dispersion relation. The solution to this problem is illustrated in
the right-hand diagram and essentially consists of lifting the constraint pg = p + ¢ and allowing
momentum to flow into the four quark operator. This solution is described in detail in Section 3.2.1
and subsequent sections.

Both initial and final state radiation (I,F)

This case only occurs for the OVA operator at leading order a?, however unfortunately for
future higher order calculations of non-factorisable terms, it will be the norm. In this case, the
same problem occurs as for the chromomagnetic operator Og, in that there are cuts with gs
quantum numbers in the external momentum invariant p%, which clearly should not be counted
as part of the perturbative duality approximation to the B meson state. In the case of final
state radiation only this problem is avoided because a sum rule need not be used to compute
the B meson part of the matrix element; however, in the present case gauge invariance comes

into play because the factorised matrix elements in (5.10) are not separately gauge invariant.

This situation really leaves two possible ways forward: either separation of desired cuts
with B meson quantum numbers from those without must be managed, or some approximation
must be constructed in which it can be argued that gauge invariance violation is small. The
latter approach is entirely feasible and in fact closely related to an issue which arises in QCDF
calculations, to be discussed in Section 5.4.6; however, the former is more theoretically consistent

so that is the approach that shall be taken.

In fact, all the basic results required are those worked out in Section 3.2.1, and the Passarino—
Veltman functions which occur in the result are those in Section 3.2.2. There is therefore only

one remaining technical point: the sum rule approximation to fg used in the term

wti,,, 2

(K ()" (0, ) 5795010) 010756l Bp)) = 28 (K ()" (0, )l535410) (5.16)

must be chosen carefully. Due to the presence of cancellations between gauge variant terms

in ISR and FSR matrix elements, f&* must be chosen to be consistent with the way the ISR
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terms are calculated. In the present calculation, the correct expression is

2 50 2 212 2 2
wti _ M 3 / (mBS) (s —m;) _ (mme>
= — ex ds —m exp | —=2——2 , (5.17
e [%2 Pz, . b (qq) exp ME, (5.17)

2
my,

where the Borel parameter M3, must be the same as that used for the ISR term, and fp is
likewise whatever value is taken there. In general therefore fz and fi" will not be equal.

A final point is worth remarking on: again owing to the fact that the ISR and FSR terms
are not separately gauge invariant, projection of each term onto the basis (3.16) leads to a 1/¢>
divergence in the pf. coefficient, which cancels in the sum. Since this is a pseudoscalar decay
there is no concern with the presence of a divergence for ¢> — 0 since physically this process
does not exist, however it is convenient for numerical purposes to cancel such divergent terms
explicitly. It is rather helpful then that in the present case the relevant DA ¢ (u) (B.1) is
restricted to its asymptotic form by equations of motion when three-particle DAs and quark
masses are neglected [93], so the resulting integrals are analytic. This rearrangement of terms
has been done in the results presented in Section 5.3.5, and must be borne in mind if attempting

to reproduce them.

5.3.5 WA results

Due to the choice (5.7) of basis for the four quark operators, it is convenient to present results
for the vector meson in the {V, A, 0} basis (2.74) since each basis tensor (2.71) then has definite

parity. The matrix elements W4 (¢?), with ¢ € {T,V, A, 0}, are decomposed as follows:
10 10
Wig®) =) aiW!(¢*) =Y af [F],(a*) + I],(¢%)] - (5.18)
j=1 j=1

The functions I and F' stand for ISR and FSR respectively and are further parametrised as

1 m% —m? S0 m% — s
I (¢*) = — | (qq) ex (B b) V2 (¢? —l—/ ds ex ( B ) ¢ (g% s :
1.(q) Tom?, <<qq> P, (q) o >z, p;.(a", )

(5.19)
where ¢ € {T,V, A,0} is common to both the K* and K cases and
mp 2 1
Fli(q®) =fi-In () / f1i(¢% u) du (5.20)
my 0
. mpg 2 1
Flo(@?) =pk £ (mb) IRGRI (5.21)

where ¢ € {V, A,0} applies to the K*-meson case and F;{T to the K. The Borel parameter is
taken to be Mg, = 9(2)GeV although as discussed previously the Borel parameter need not be
the same for independent terms since the result should only weakly depend on its value within

a reasonable range, and when higher twist and/or a; corrections are included the result may be
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%] > 1GeV?

Figure 5.5: Quark condensate contribution to be replaced by the photon DA contribution for ¢> = 0
case i.e. B — V~. The important point to realise is that both diagrams are gauge variant and
produce, together with the other diagram in Figure 5.3b(right), a fully gauge invariant result.

extremised w.r.t. the Borel parameter. The duality threshold is taken to be so = 35(1)GeV?

as for the chromomagnetic operator. The quoted uncertainty in the Borel parameter and the

duality threshold are the ranges over which they are varied to provide an estimate of the error

of the LCSR method; the details of the error estimation method are given in Section 5.5.1. The
wti

decay constant f*' is fixed by gauge invariance considerations as described above (5.17). The

occurrence of fp in I]‘{ is evaluated using the leading order sum rule in the previous Chapter

(3.74), and MJ%B = 5.0(5)GeV is again used. The occurrence of fp in I, is taken from lattice
data as fp = 191(5)MeV [166,167]. Formulae for DAs of the external light mesons are given in
appendix B.1. Formulae for all functions appearing on the RHS of (5.21) are given in appendix

E.1

536 WAatg¢?=0

The results presented in the previous section cannot be used at ¢g> = 0. The reason for this is
shown in Figure 5.5; there is a term proportional to @, (7q) /¢* in (5.21), e.g. (E.6), when the
photon is emitted from the light quark line. Clearly at ¢ = 0 this calculation is invalid. This

problem arises because for an on shell photon, the quark propagator

(v(9)la(z)q(0)|0) (5.22)

is light cone dominated and a short distance expansion in x fails as described in Section 2.6.
Fortunately the solution to this problem is then rather obvious; instead of using a local OPE as
may be done for ¢? > 0 a non-local OPE on the light cone must instead be employed. Since prior
computations of weak annihilation in LOSR were at ¢? = 0 [77,78], this technique was already
used there. Here, those results are extended to the case of the K final state and the tensor
current operators WAg ;0. The DA for the quark propagator in an external electromagnetic
field is given in appendix B.2.

It must be pointed out in this case that the results given here for the operators Og}’é* differ
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from those in [77] by a small term. The origin of this is the final state contact term discussed in
Section 2.7, which is exactly known due to the fact that the required matrix element coincides
with a Ward identity. The result for the final state matrix element (5.15) is proportional
to Qg — Qs, so this immediately presents a problem when the graph shown in Figure 5.6 is
considered: there is a contact term proportional to @} (gg) in the initial state so therefore there
must be a corresponding one proportional to @ (Gq), but all Q, (gg) terms have been removed
to avoid (gq) /q? divergences. Of course, this is a gauge dependent statement; however, there
seems to be no a priori reason why the gauge of the external electromagnetic field cannot
be chosen arbitrarily. The solution to this problem is in fact already incorporated into the

expression for the photon DA in (B.10), by realising that, in a covariant gauge A, = €,e'7",

qu <QQ>

<'y(q7 e)|(ja(x) ([267 O]EM,QCD - [267 O]QCD) Qb(0)|0> = 4N,

1
/ due™e.x 6, , (5.23)
0

where ([x,0]gm,qcp — [#, 0]qep) is the difference between a Wilson line including and excluding
the QED gauge field. The identity (5.23) reflects the fact that the photon DA is usually specified
in terms of a operators which are both QED and QCD gauge invariant, but these are not the
quantities which typically appear in Feynman diagrams. The right hand side of (5.23) indeed
turns out to produce the contact term required when combined with the contact term from the
diagram in Figure 5.6, however it is not exactly equal to a contact term. It is the remainder
from evaluating (5.23) which is the difference between the result found here and that in [77]*.
The resulting difference between the present result and theirs can be seen in (E.23), although
it should be stressed that this term is in fact extremely small and thus the difference between

these results and those of [77] are numerically entirely negligible®.

Results for the ¢ = 0 case are given by introducing the function ng,i‘w given by

1 m2 — m? 50 m% — s
b g (e (P20 v [ asen (BB ) m20) L G20
. me%< M )7 S Mg )

which should be used in (5.21) in place of I],(¢*). The spectral density p?7(s) is defined by

re-using the results for g2 # 0 and introducing an additional term for the photon DA density,

pii (s) = p} (0, 5) + (aq) 57 (s) - (5.25)

The functions V" and p§7(s) are given in appendix E.1.2.

40f course, they calculated at p2 > 0 rather than p2 = 0 as done here, however as noted in Section 2.7 p% = 0
must be used for non-trivial FSR cases since twist-4 DAs are neglected here, so p? is set to zero throughout for
consistency and simplicity.

5 [78] has not been mentioned in this discussion because that paper did not include the tiny Qp (gq) contri-
bution so no contact term problem arises.
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54 -0

Figure 5.6: The left-hand graph presents a problem at ¢> = 0: it is clearly proportional to Q; (7q)
and there is no reason to exclude it at ¢> = 0 since it produces a physical contribution to the
decay rate. However, the right-hand graph must then also produce a corresponding contact term
proportional to @), (Gq) since the contact term from FSR is proportional to Q, — @, but the photon
DA expression in [165] contains no such term.

5.4 Quark loop spectator scattering (QLSS)

The QLSS contribution is given by graphs shown in Figure 5.7. This graph is similar to that of
the chromomagnetic operator (see Figure 5.1), except that the gluon connecting to the heavy
and light quark lines is produced by a perturbative quark loop rather than exclusively short
distance effects as in the Og case. This means that much of the discussion of Chapter 3 also
applies to this diagram, however owing to the presence of the additional loop the computation
of this diagram using LCSR would be a significant challenge since anomalous thresholds are
to be expected”. Such a calculation is beyond the scope of the present work, so QCDF is
used which means that only a one-loop calculation must be performed. The computation of
QLSS in QCDF has previously been performed in [84] and [51] in the SM for B — K*v and
B — K*I*1~, respectively. Here these calculations are extended by including a complete basis
of four quark operators contributing to QLSS. It is worth noting immediately that generically
this operator basis is completely independent of the operators (5.7) and the extended colour
octet basis (5.63) required in the B — p case due to the presence of the additional light s quark,

whose mass is taken to be degenerate with that of other two light flavours.

5.4.1 QLSS operator basis

There are ten possible Lorentz structures for four quark operators, as given in equation (5.7).
The vector coupling of the gluon restricts this to four possible operators which appear in the

QLSS diagram, as well as fixing the colour structure coupling. These relevant operators are

SO f SLryA* oD (5.26)

| =

PN S A7 orm) =

1
4f
QlL(R) 4

6This interpretation is subject to the fact that RG running mixes the two contributions.
"See Section 3.2.4 for specific details on this problem.
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Figure 5.7: Quark loop spectator scattering (QLSS) topology. Crosses denote possible photon
insertions which violate isospin symmetry. This parallels the Og contribution computed in Chapter 3,
but is more complicated owing to the presence of an additional loop. The charm quark gives by far
the largest contribution in the SM owing to the large value of A\.C5 in comparison to coefficients
of other operators in (2.19). The dashed box indicates a hard subgraph which is computed most
straightforwardly without reference to the external hadronic states; this procedure is described in
Section 5.4.2.

where sy, = SH% and likewise sp = sl_% and A% are the Gell-Mann matrices. Since in this
calculation mg has been set to zero, the effect of the u, d and s quarks is degenerate and the

effects of these three quark can be grouped into a single operator
4SUB3)F _ u ,
QzL(}g))F = ( atr) T Qatr) + Qii(R)) ;o v=1,2 (5.27)
and the effective Hamiltonian for QLSS may be written

G
2/QUSS _ _TZAt sE QY ., z=12, x=LR, f=SU@B)rcb |, (5.28)

z,X f

where WCs are denoted s/

2y- As explained in the introduction to this section, this basis is

linearly independent of that which occurs in WA, owing to the fact that WA does not couple

to s, c or b quarks.

5.4.2 b — sg subgraph

The calculation of the b — sg subgraph, denoted by the dashed box in Figure 5.7, is an entirely

standard one loop perturbative procedure. The matrix element needed is

a = (sg(r, )| HSb) = > [KY Fa(r?) + K Fau(r?)] (5.29)
i=L,R

where K1, are the only tensor structures allowed by Lorentz covariance and gauge invariance

rhy — r2yh P — gt
Kiwm == Tur Kym= "2 LLr (5.30)

which requires r - K = 0. Note that although (5.29) has been written as a matrix element, the

result is independent of the external momenta of the b and s quarks due to the structure of the
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graph: they have not been assumed on shell even though the QCDF approach to calculating
Figure 5.7 implies that they will be, at least to leading order in 1/m;. From the effective
Hamiltonian (5.28), it clearly follows that the dressing functions F' may be parametrised as:

Foy =5UO H,(5,0) + 5

Z,X

H,(s,m.) + SZ7XHI(S, b) . (5.31)

c
T,X

Dimensional analysis shows that Hy functions have dimension 1, which necessitates that they
are proportional to a particle mass and since the loop fermion mass is the only such quantity
appearing in the calculation, it must be the case that H,(s,ms) ~ my. This renders the value
of the WCs sg g((;’; irrelevant since they do not contribute, and therefore reduces the number of
effective operators in QLSS from 12 to 10. The functions H, have simple expressions in terms

of standard loop integral functions:

9h(s,m) + 4] Hy(s,m) = ——% By(s,m?,m?) (5.32)

Hyi(s,m) = — 2

9672

where h(s,mg) is known as the vacuum polarisation owing to its appearance in the one-loop
correction to gauge boson propagators and is given in (2.26). The function By is the stan-

dard Passarino—Veltman scalar two-point function, which is related to the vacuum polarisation

(again, z = %) function by
2 Ip(s,m)+log™ — 2 — 2
m 4 ’ 12 3
BO(S,m2’m2) :2—10g?+2 2+ZI . (533)

Note that these results for H, are independent of the ~5 regularisation scheme used owing to
the choice of four quark operator basis (5.28), however the projection onto that basis must
be done up to O(D — 4) order in dimensional regularisation since the By and h functions are
1/(D — 4) divergent and therefore ultimately expressions for F , will be scheme dependent.

The divergent part is therefore indicated explicitly in (2.26).

5.4.3 Standard Model b — sg transition

Due to the scheme dependence of the conversion to the QLSS operator basis (5.28), it is most
convenient to present the projection of the SM effective Hamiltonian (2.19) onto this basis in

terms of the dressing functions F , (5.31) rather than the WCs s/ _ , since these functions are

T,X?
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finite unlike H,(s,m) (5.32). In the SM this the NDR scheme gives

3 Ae
F11.(s) =392 lh(& me) (—)\02 +Cy + CG) + h(s,mp)(C3 + Cy + C)
t
Au 8
+ h(S,O) (—)\02 +C5+3Cy + 3CG> — ?7(03 —Cs — 1506)
t
Fl,R(S) =0
my
Fan(s) 8—<c - Gy)
Fy1(s) :W S(CST — Cg) = 0+ O(my) (5.34)

where F 1, was first worked out in [51] although the . dependence has been included explicitly
here, which is important in the case of the p meson since then A./A\; = —1 does not hold. Finite
terms in the results for Fy ; and Fy (g r) are scheme dependent; however the coefficient cst
is scheme independent [49, 168] since it is the total contribution to b — sy with the K> tensor
structure at one loop. The scheme dependence is illustrated particularly nicely by this case
since C§ = Cyg in the HV scheme [49] but receives contributions from four quark operators in

the NDR scheme (2.23).

As mentioned earlier, the contribution from the charm loop dominates the function Fy r,
since |A./A:C2|= 1, and all other contributions are either suppressed by small WCs C3_g, as

can be seen in table 2.1, or small CKM matrix elements A,/ in the case of the up quark.

5.4.4 QLSS results

The results of the QLSS calculation will be given here, so that the approximations involved
and accuracy of the method may be discussed more effectively in section later in Section 5.4.5.

Combining (5.29) with the B and K* meson DAs the result for the QLSS topology is

Cr 16m3as fgm L _ 1 _
51() =v2Q, S [ (a4 ) = Bl + ug?))

mp
fK*m( ) Freemge- ) )
am% g 2h () (mh — ) \ 4
_ Fyr(amy +ug®) | [ (wWu(mb —¢*) Frer e 9\ (u)
e 2(umf; +ug?)? 22+ (¢*)(my —¢?)  4a
(5.35)
S%(¢*) = (L < R) (5.36)
Cr 3210, fmp fK*mK*
d-S§7 (@) =~ Qo du by (u

e A / (5.37)

mp

Fi a(am% +ug?®) + —————
AL ) e )

F27A(1_1,m23 + qu)} ,
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with d = — Y2memyv [ ikewise for the K meson final state the result is
VPE

Cr (mp + mg)16m3 0, fB K /1
Nc mme)\_ (q2) 0 du d)K(u)

mp

u(m%y — q?)

S%(QQ) =—0Qq

(5.38)

x | Fyy (um + ug®) — By (umy +ug®)|

where the Fy 1 terms have previously been worked out in [51,84], although there is a difference
of a factor of two in S&"" in those two sources. The results here agree with [84] on this point.
These results have been expressed in the {+, —, 0} basis (2.74) because in this case the helicity
of the final state meson is directly connected to the helicity of the b — sg subgraph. Note that
unlike in the WA case only include isospin violating terms proportional to (), are included here;
the isospin-symmetric terms proportional to ), were not calculated since UV isospin violation
is not possible here. Note that A4 (¢?) are momentum-dependent moments of the B meson DA
and in no way connected to the Kéllén function A; they will be defined shortly below (5.43). In

the results for longitudinally polarised K* and K cases the notation

Fl,V(A)(S) = FI,R(S) + Fl,L(S) (539)

has been used for the sake of brevity. As is normal in this type of calculation Wandzura-Wilczek
equations of motion for the K* have been used to get (5.35).

The appearance of momentum-dependent moments of the B meson DA imply that the 1/my
expansion is not entirely systematic, which will be discussed shortly. To produce the results

(5.35) the following two types of term appear

4&=AmﬂmﬂhﬂMh) (5.40)

X, :/O s (1) —2tle)

i A 5.41
g (5.41)

essentially separated by the presence or absence of a pole at I, = ¢?/mp. ¢4 are B meson
wave functions to be discussed shortly in Section 5.4.5. Assuming that the functions Hy 2(l4)
are smooth on the scale [, — I + Aqcp they can be approximated by a constant at the peak

of the rest of the integrand

X, 5 < /O h dl+¢i(l+)> H1(0) = H, (0) (5.42)

°° o+(l4) 200 = Ha(q*/mp)
Xo — </O A s e )Hz(q /mp) = ) (5.43)

which gives the definition of the momentum-dependent moments A+ (g?) in terms of the B

meson DA.

Of course, the results for the F contribution in (5.35) suffer the problem that the calculation
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in Chapter 3 was done to solve: there is a logarithmic endpoint divergence in the integral arising
from the region where 4 — 0. The ways of working around this problem in QCDF are outlined
in Section 3.3, however since the LCSR result for the chromomagnetic operator is now available

an alternative approach can be adopted. The problematic function Fy;(r?) is expanded as
Foi(r?) = [F2,i(0)]ogr + [F2i (1) = F2,i(0)] g opp (5.44)

and the contribution of each of the terms in square brackets is computed separately using the
method specified in the subscript. The endpoint divergence in the QCDF calculation is removed
because an additional factor of @ has been introduced in the appropriate region Fp 4 (r? — 0). As
discussed in Section 3.3 the LCSR result includes the contribution of soft gluons from the initial
state B meson where the QCDF result does not, so the physical nature of the approximation
implied by (5.44) is somewhat unclear. However the removal of the endpoint sensitive term from
the QCDF result would appear to largely alleviate any questions over its validity since only the
region where Fy ;(r?) — F»;(0) is sizeable contributes and therefore only far off-shell gluons can

possibly appear in the QCDF calculation, and these are well approximated by QCDF.

The final point to be discussed is the absence of the twist-3 corrections to the K result (5.38)
in comparison to (5.35) where the twist-3 DAs gf’a) appear, which is in contradiction to the
previous inclusion of twist-3 K contributions in WA. This difference stems from two issues, one
from WA and one from QLSS. On the WA side, the reason that twist-3 K contributions, and
also the twist-3 DAs h‘(ls’t) in the K* case, were included, was because the scalar current four
quark operators would give no contribution without them. Neither would the tensor current
operators in the case of longitudinally polarised K* mesons. This reasoning does not apply to
the QLSS case; all operators are already coupled to at twist-2 accuracy. Therefore the question
should really be approached from the other end: why are the twist-3 DAs g(f’a) included? The
reason is that this contribution is expected to have comparable magnitude to the ¢, term,
because they are both at the same order in 1/m; power counting. This is because the ¢
term happens to cancel the 1/(I; — ¢?/mp) pole occurring in the light quark propagator, so
it is 1/mp suppressed with respect to a naive diagrammatic power counting. It is therefore

a)

necessary to include gf’ since it is of the same order. All other terms appearing in (5.35),

(5.37) and (5.38) have their expected 1/mp power, and thus it is not necessary to include either

the ¢, , or h‘(ls’t) contributions in the case of the K and K™ respectively.

545 The B meson DA in QLSS

Since this is the only place in this thesis where the B meson DA is used the calculation of (5.35)

will be discussed here briefly. It is most convenient to discuss this calculation using light cone
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coordinates in the rest frame of the B meson, with two light like unit vectors n4

n? =n2 =0 nyon_ =2, (5.45)

1

where an arbitrary vector may be written z# = 5(zynf + x_n") + 2/, although for the

most part as this is a two-body decay all perpendicular momenta are zero. In particular for
B — K™~ the kinematics

2 2

=mp— —, _:O, = —, —_=m 5 5.46
P+ B mp p q+ mp q B ( )

may be chosen. The B meson DA is then given by [118,169]

(01Ga (@) [, 2]b5(0)| B(pg)) = % /O il e

X [142_]& {¢+(l+)7ﬂ+ +o-(14) (7/L— B lJF’Yi@l&i) } 75} b

1
aliteps

(5.47)

where pg = mpv. The wave functions ¢+ and associated formulae are given in appendix B.3.

The first question to address in calculating with the B DA is to ask why it takes the form
(5.47) of a light cone propagator in the B meson rest frame; after all there is no a priori reason
this should be the case, since one would expect that all of the spatial components of the light
quark momentum would have similar magnitude. That it is a light cone propagator arises, much
as in the light meson case, from the dynamics of the hard-scattering kernel in the factorised
process: it is only sensitive to one component of the light quark momentum [118]. In the present

case, only the invariant combination

I 1 20 1 1
(—0% @+P—qul—qly mply +1 - mpls

(5.48)

is needed and thus to leading order in 1/m; the short distance part of the amplitude is not
sensitive to [_. Clearly however this is subject to corrections from the g;/_ term and thus
terms at O(q?/m%) have been neglected, which is somewhat to be expected in this approach
since my is expected to be the largest scale in the calculation. At ¢? = 4m?2 this amounts to
a potential 30% correction to these results, and thus the full result for the isospin asymmetry

computed here cannot be used above the charm resonance region.

The [, derivative in (5.47) is also neglected before performing the bulk of this calculation.
This is useful as dealing with derivatives tends to increase the complexity of such calculations by
a few times, and there is already a derivative from the K* DA to be handled. The [, derivative
however will introduce a 1/my, suppression in all cases since it will duplicate a denominator,

with the exception of the case where the photon is emitted from the light quark originating
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from the B meson. In that case the fermion propagator does not lead to a 1/m; suppression
straightforwardly; however, in combination with part of the B meson DA the relevant part of
the diagram reads

o, : oy i
bl g s Srla = 1) = ileysy Ly ((q SR

d—1
=

1)4 li) ,— O(Aqep/mp)  (5.49)

where Sr(k) = i(})~! is the massless fermion propagator. That this is 1/my suppressed can
be argued as follows: the second term vanishes by setting I; = 0 after taking the derivative.
To analyse the first term ~7~y#~, , is contracted with a polarisation vector €, in light-cone

coordinates to give

Ll s, =l [Beer e | 190 e, (5.50)

=0

where the first part must be compared with the other structure coupling to ¢_ (I ):

=)= o [era + g 0+ 1] (551)

It can therefore be seen that the derivative term is subleading in the e, coefficient by Iy /q- =
O(Aqcp/mp). The coefficient of e_ appearing in (5.50) is not obviously suppressed; however it
is necessarily related to the €4 term by gauge invariance since only a single physical longitudinal

polarisation is present, and thus it also must be suppressed.

5.4.6 Gauge invariance in QLSS

The last point leads nicely on to a discussion of gauge invariance in the 1/m; expansion and
to some extent approximate gauge invariance generally. The issue of gauge invariance in QLSS
away from ¢ = 0 is not straightforward since there is potentially a second independent scale
in the problem. In principle it would be expected that the sum of the two diagrams emitting a
photon from the spectator quark shown in Figure 5.7 is gauge invariant. The computation used
in [51]%, which was reproduced for this calculation and extended for non-SM operators, can
only be expected to respect gauge invariance at leading order in 1/m;. However, the constraint
implied by Ward identities will turn out to mix different orders in 1/m; and a careful choice of
how to impose this constraint must be made in order not to enhance the inherent violation of

gauge invariance by a factor of m%/¢® and thus have it induce an error in the overall result.

8These authors do not discuss the QED gauge invariance.
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In full generality, the B — K*I*1~ decay may be parametrised:

(K*(n, )7 (q, W) Hert| B(p + q))

=U"(¢*) = (- p"Up(a®) + (0 - Q)q"Uq(a®) + 0 (p - OUy(®) + i€ uppaoUe(a*)
(5.52)

The term U, is of no relevance to the remainder of this discussion as it does not appear in the
following Ward identity. Also, the same problem arises for the K meson as can be seen by

setting U, | k= Uc|g= 0 throughout. The QED Ward identity for this matrix element is
0=q.U"¢*) = (n-q) [(p- DUp(¢®) + °Uq(a®) + (- Q)U,(¢*)] - (5.53)

In principle, provided that gauge invariance is obeyed exactly, any one of the three functions
or any linear combination thereof may be eliminated in favour or the remaining two. U, shall
not be considered since it appears on identical footing to U, in (5.53), so the equations for

eliminating the other two functions are:

x Uy(?) = — % [Un(®) + Un(a?)] (5.54)
v U(d) = = Uy(a®) ~ LU (5.55)

In the ¢® — 0 limit, (5.54) requires that
Up(0) + Uy(0) =0, (5.56)

in order to avoid a 1/¢? kinematic singularity in the matrix element (5.52), which would render
integral of the differential decay rate (2.80) infinite and is thus clearly unphysical. Since only
the leading term in 1/my, has been calculated (5.56) cannot be expected to hold exactly, and
this problem is exacerbated by the m%/¢* enhancement of any error which would be induced by
employing (5.54). Computing to higher orders in 1/m; would not really help here since the use
of (5.54) will always enhance terms beyond the scope of the calculation. By contrast, applying

(5.55) does not introduce any such problems and thus this is the route that should be taken.

The above discussion is best illustrated by an explicit example and for this purpose the sim-
pler pseudoscalar case B — KIT1~ will be used. The matrix element (5.52) is then proportional

to:

(Lemp = 2¢)p" +2(p- 9)q" _, (- @)d" —*p"  Lympp"

U x
lymp — ¢? lymp — ¢? lymp — ¢?

(5.57)

The replacement (5.55) then fixes U, = —2¢*/(I+mp — ¢*), which amounts to dropping the
second term on the right-hand side. The first term is gauge invariant on its own, and this is the

complete result. Note that considering the coefficients of the p* and ¢* tensors separately would
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have led to the wrong conclusion, since it is the second term rather than the first that contains
the largest coefficient of p#. It is therefore crucial to use the approach illustrated in (5.54,5.55)
to select the appropriate tensor whose coefficient will absorb the non-gauge invariant remainder,
which here is p* rather than ¢* as would normally be chosen to make the basis orthogonal with
the standard tensors (2.62).

Although the preceding discussion is in the context of the 1/my, expansion, the main point
stands independent of the particular expansion; if the approximation involved in computing a
matrix element necessitates abandonment of strict gauge invariance, the superfluous degree of
freedom must be eliminated in such a way that no kinematical singularities are introduced in

the region of interest.

55 B — K® results

Prior to presenting results for the isospin asymmetry, some small details of the calculation must
be discussed. The hadronic inputs are the same as those used in Chapter 3, given in tables 3.1
and 3.2. Error estimates using a method that is perhaps slightly unusual but straightforward

from a computational standpoint, which will be describe next.

5.5.1 Error estimation

Error estimates are computed in the following way: the central value of a result is computed
using the central values of all inputs. To compute the error, a list of pseudo-random sample
points is then generated from the probability distributions of the input parameters, the result
computed for each sample point and then the standard deviation estimated from these results
fixing the central value as the mean.

The obvious alternative approach is to compute the central value and the derivative w.r.t.
each input parameter and then estimate the standard deviation of the result assuming the
output distribution has a Gaussian shape. This is not done in the present case for two reasons:
first, the input parameter space is quite large, and for large numbers of input parameters it is
certainly less computationally intensive to take a Monte Carlo approach when the uncertainty
is expected to be dominated by only a few, but it is not known which. The second reason is
that a few of the integrals involved are numerically difficult, and they are difficult to compute
to an accuracy of much more than one part in 103, so it is better to consider finite differences in
the input parameters since direct estimates of the derivative are likely to be rather inaccurate.

To be specific, for a function f(x), where x represents all N input parameters and is thus

N-dimensional, the variance is estimated as

o? =
n—1 4

LS () — f)?, (5.58)
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where z. is the central value of the input parameters and not included in z;, and n is the number
of sample points used to compute an error estimate, excluding the central value z.. The points x;
are generated from the N-dimensional probability distribution of input parameters; note that x;
is varied for all parameters simultaneously, so none of its elements are equal to the central value
of any input parameter. In effect, this is a primitive Monte Carlo integration over the input
parameter distribution space. All input parameters are assumed to be Gaussian distributed
with standard deviation equal to their quoted error, except for the renormalisation scale which

T.£.0).0 are assigned an error of 20% which arises

will be discussed below. The functions 7
from the uncertainty in the form factors 7, A; 3, V and f; 1 and non form factor corrections.
This is imposed at the level of the T functions so that constraints such as T ~ O(1/m;) and
T3 ~ (1 — ¢?)T3 are maintained. Note that this is not expected to accurately estimate the error
in the right-handed form factor 7', but that contribution is heavily suppressed in any case. A
different approach will be taken in Section 6.8.2 where right-handed terms dominate.

To compute the scale uncertainty only 3 points are sampled: p, /2 and 2u. The renor-

malisation scale is set to p to compute the central value of a result. The error is computed

as

i =gy (7 (8) - 700) + stz - 5007 (5.59)

i=1
although in practice this is implemented by generating 2n pseudo-random numbers y; in [—1, 1]
and selecting 11/2 or 2u depending on whether y > 0. This may then be incorporated into the
same procedure as sampling all other input parameters. The central renormalisation scale is
taken to be u = my = 4.7GeV for all processes except QLSS and Og, which are taken to be
renormalised at p/ = /Agp, where Ay = 0.5(2)GeV as in Chapter 3.

5.5.2 ¢* dependence and validity

In this section the validity of the LCSR approach in ¢2 is discussed, as well as the underly-
ing reasons for the shape of the graphs in Figure 5.8, which will also apply to beyond SM

contributions to the asymmetry.

Physical spectrum and approximation ranges

The physical range of the decay spectrum is 4m? < ¢2 < (mp — mi?)? = 22.9(19.3)GeV?.
This calculation of the isospin asymmetry has employed two methods of calculation, LCSR
and QCDF. The LCSR results in principle should be valid over nearly the whole ¢? spectrum
provided that m% —q¢* > mpAqcp, excluding regions within 1 — 2GeV? of partonic or hadronic
resonances. However, the QCDF results are not so widely applicable, as they are limited by the
assumption, already discussed, that ¢ < m% and terms of order ¢>/m% have been neglected,

as discussed in Section 5.4.5.
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Considering the combination of these restrictions, the perturbative charm pair production
threshold provides a convenient upper cutoff for the validity of these results. Results are
therefore presented for the region 1GeV? < ¢ < 8GeV?, bounded on the lower end by the
p meson resonance region and on the upper end by the J/¥ meson resonance. In this region
q?/m% < 0.3 so the violation of the QCDF approximations is not expected to be too large.

It should be mentioned that it is possible to extend the LCSR calculation to include the
effects of resonances by replacing the sum rule calculation with a narrow resonance approxi-
mation in the duality region of the meson. The details of this approach are given in Section
6.2.2; however, this method presents some difficulties in particular in the presence of anomalous

thresholds, so it has not been attempted in the present case.

Isospin asymmetry in B — K*Il decreases for high ¢

The ¢? spectrum of the isospin asymmetry turns out to be primarily dominated by the ¢?
behaviour of the leading isospin-symmetric terms in the decay rather than the small isospin

violating terms. The leading term in the decay rate is controlled by two factors:

a) Cg 19 are large in comparison with the other WC (q.v. table 2.1), partially as a result of a

1/sin 0‘2,[, ~ 4 enhancement, where 0y is the Glashow—Weinberg angle.

b) The leading terms in the B — M1l decay rate may be written as:

Tr~  [C55,0(1) + CFFO(1)]
To ~V@?[Cs,0(1) + C5TO(1)]
Te~  [C§h00(¢%/mE) + CFTOQ)] (5.60)

This behaviour can be inferred from (2.69), (2.70), and (2.74). The underlying reason for this
is that the semi-leptonic operators Og 19 do not generate the lepton pair via an intermediate
photon but rather represent the contribution of the Z boson and loop corrections, and thus

are not 1/¢? enhanced as ¢ — 0.

It therefore follows that at low ¢? in B — K*ll isospin violating terms only compete against
C?ff, but at high ¢® they must compete with the much larger Cy ;o and hence the asymmetry
decreases for large ¢>. In B — KII no such argument applies as in 77 C$T and Cg 19 are on
equal footing; however, the asymmetry is expected to be small over the whole ¢ range as a

result.

High ¢*> > mp(mp — mpAqcp) region

As mentioned above, the methods employed for this calculation are not valid for the low recoil
regime, that is where m% — ¢* ~ mpAqcp. Nonetheless it can be expected that the isospin

asymmetry will be small in this region, which can be seen from two separate arguments:
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e Form factor contributions in the high ¢? region: in this region the C7 g 19 form factors are
expected to be enhanced by the presence of the nearby B} resonance at ¢* = mQB:7 which
can be seen from the plots and form factor parametrisations in [81]. No such enhancement
is present in the isospin violating terms, except for UV isospin violating effects at O(ay) in
WA which are of course ay and CKM suppressed. It is therefore expected that the isospin
asymmetry in the high ¢? regime is suppressed in comparison to the intermediate regime
by resonant contributions to the C7 g 19 form factors, and doubly suppressed in comparison
to the low ¢ region where isospin violating terms are enhanced by p,w resonances and

the proximity of the photon pole.

e Low recoil OPE: some time ago an OPE in ¢? and mg was proposed [170] for the low recoil
region and implemented phenomenologically in [171]. It has also been recently reinvesti-
gated in [172]. Obviously the low recoil region entails a different power counting in 1/my
since ¢? is then a comparable large scale. In this language the leading isospin symmetry
decay contributions come as dimension three matrix elements and isospin violating terms
originate from higher dimensional operators (dimension 6 for WA and dimension 5 for

QLSS and Og) and are therefore naturally small.

5.5.3 Isospin asymmetry in the Standard Model

The results of the calculation of the B — K )1~ in the SM are shown in Figure 5.8, including
a breakdown into the contributions of different operators. Tabulated data are given in appendix
E.3. In both cases the isospin asymmetry for g2 > 1 GeV? is very small, below 1%. These results
are similar to previous determinations of the isospin asymmetry [51,134] in this range, which
is a non-trivial result since this calculation has employed a mostly LCSR-based approach in
contrast to the QCDF dominated approaches used previously’. The result for B — K*ITI~
is consistent with the experimental average in the [2.0,4.3](}6\/2 bin according to the Heavy
Flavour Averaging Group (HFAG) [147]; however, the present experimental uncertainty in
this bin is rather large. By contrast the B — KITl~ asymmetry in this bin is currently
—0.42%5-2% and thus the SM prediction is two standard deviations away from the experimental

0

value!?. Further experimental data in this channel are therefore eagerly anticipated. Finally,

the comparison between this calculation of B — K*v and the HFAG world average is
C_L](K*’)/)HFAG = 52(26)% ELI(K*’)/)LZ = 49(26)% (561)

and the two are in surprisingly good agreement. This value is also close to values previously

found by [51,84,129]. It would therefore appear that at present the B — K*(,171™) channels

9 [134] computed some terms using K* sum rules with the B meson DA
10Although HFAG citation [147] is dated 2012, these data are taken from the June 2013 update on their
website http://www.slac.stanford.edu/xorg/hfag/index.html.
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Figure 5.8: Isospin asymmetry results for B — K (*)]l with grey error bands. Graphs in the left-hand
column correspond to the B — K* asymmetry and those in the right-hand column to the B — K
asymmetry. The top row of graphs shows the total predicted isospin asymmetry in the SM. The
middle and bottom rows show breakdowns into the contributions of seven separate short distance
operators. The bottom graphs contain the larger contributions. The dominance of Cg + C5/3 has
been found previously [84]. See Section 5.5.1 for details of the calculation of the grey error band.
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b — s(d) WA QLSS Os
Operator wC CKM M.E. CKM M.E. CKM M.E.
012 tree Ao ~ M%) tree | Ae ~ A2(A3)  loop - -
Os3_¢ penguin | A\, ~ A2(A3)  tree | A\ ~ A2(A%)  loop - -
Os penguin - - - - A ~ A2(A3)  loop

Or penguin not isospin sensitive & dominates rate in low ¢° region
09,10 penguin not isospin sensitive & dominates rate in high ¢ region

Table 5.3: Factors influencing the size of various operators contributing to the decays B — K*){*+]~
in the SM. WC gives the type of the leading UV diagram which generates the given operator(s).
CKM gives the magnitude of the CKM matrix coefficients appearing in the effective Hamiltonian
(2.19) in terms of the Wolfenstein parameter A ~ 0.22. The alternative value in brackets applies to
the b — d rather than the b — s transition, although there the CKM phases also play a significant
role in the B — p decay, as discussed in Section 5.6.3. M.E. indicates whether the matrix element
is loop suppressed. Note that the Og contribution is considered to be loop suppressed in comparison
to the WA terms, due to the 1/1672 factor appearing in the operator definition (2.19); in any case
it is clear from (5.34) that it is on the same level as QLSS. The last two rows of the table describe
the contributions of the O7 g 19 operators which dominate the decay rate and therefore set the scale
of the asymmetry. This is discussed in more detail in Section 5.5.2.

show no signs of non-SM physics.

The factors affecting the size of contributions of each operator to the isospin asymmetry
are given in table 5.3, which also summarises the ¢ behaviour discussed in Section 5.5.2. It
can be seen from the plots in Figure 5.8 that the dominant contribution to the B — K*[*I~
isospin asymmetry comes from the Og operator followed by the Oy operator. This can be further
analysed according to table E.2 to see that for ¢2 > 1 GeV? the Cj contribution comes primarily
from WA and the Cy contribution from QLSS. Their relatively close magnitude indicates that
the loop suppression in QLSS is similar to the suppression of Cg arising from the fact that it is
generated entirely by penguin diagrams in the UV. The contribution of the Oy operator through
WA is negligible owing to its heavy CKM suppression. The situation for B — K*v is rather
different because WA is strongly enhanced by the nearby p resonance here as described in Section
5.3.6. This effect is absent at the present level of approximation in the QLSS calculation'!.
Therefore B — K*v is strongly Cg dominated, as has been found previously [84].

For B — KItI~ the contributions of O 46 are comparable, which is a result of the WA
and QLSS contributions for O4 ¢ and O3 respectively, and again the Og contribution is small.
This is broadly similar to the B — K* result at ¢®> > 4GeV?; the differences in the detail will
be the result of the absence of transverse polarisations and the difference in the structure of
twist-3 terms as discussed in Section 2.10. Recent LHCb results for B — KI*I~ [21] indicate
a large deviation from zero at the level of 40 when integrated over ¢ and even at 20 in the
[2.0,4.3] GeV? bin, where the theoretical calculation is most trustworthy. Since the prediction
of the isospin asymmetry (Figure 5.8) is at the 1% level and the world average measured

asymmetry is 40% [147] in this bin, this channel could potentially be a strong signal of beyond

HThe fermion traces that would be required to compute this contribution in LCSR have been evaluated and
they are zero, as occurred in the Og case, so this is not an artefact but genuine as suppression.
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SM physics if improved experimental measurements have a similar magnitude. Of course, in
that case it would be necessary to scrutinise the theoretical calculation again; however, it is hard
to believe that the result could be out by an order of magnitude. This issue will be discussed

again briefly in Section 5.8.

5.6 B — pisospin asymmetry

B — p decays differ from B — K* decays in two important ways: first, the CKM hierarchy
for the effective Hamiltonian is different, and second the neutral p meson is a mixture of two
valence quark states p° ~ (@u — dd) as explained below (5.2).

In fact, it transpires that the first point is not important in the C P-averaged isospin asym-
metry. As will be discussed further in Section 5.6.3, the C'P-averaged asymmetry is sensitive

to the real part of the CKM coeflicient, given by

/\bd

Zu

R N

)\bd
L= — ’ COS CLCKM (5.62)

e — =
bd
A

where A4 = V¥ V;;,. The present PDG value gives cos acky = 0.02(7) [123] and hence the con-
tribution of Cs to the asymmetry is suppressed by an amount comparable to the A? suppression
in the B — K* case. This occurrence will be exploited to create a stringent test of the SM in
Section 5.7.

The isospin asymmetry in B — wltl~ will not be computed here. The extension of
the results for B — KITI™ in the previous section is straightforward; however, at present
Bt — w7iT~ has only recently been observed at LHCb [173] and the neutral mode remains
unseen. An experimental determination of the isospin asymmetry in this channel therefore
seems some way off. The p—w asymmetry might also be considered as in [129] except that in
this case there is a substantial asymmetry due to QCD effects; by comparison the asymmetry
due to electromagnetic effects is small and will only be relevant when a more precise theoretical

determination of the leading form factor is available.

5.6.1 Extending the effective Hamiltonian for B® — p0lF[~

Since the neutral p meson is a mixture of valence quark states (4w — dd)/+/2, alternative
arrangements of the four quark operators in the WA diagrams are possible either coupling to
the @u state (absent in the K* case) or swapping the d quark connections owing to the presence
of more than one d quark line in the diagram. To recover the factorised form (5.10) the four
quark operator can be rearranged by a Fierz transform of the Dirac structure, and a similar
operation on the colour matrices. This transform mixes the colour singlet and octet operators

and therefore introduces the octet operators which do not couple to the K* into the p® channel.
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Accordingly colour-octet operators are defined analogously to the singlet operators (5.7) as

1
OVA = qD1bsToq — OV = JINT1b5XTag (5.63)
so that for example O¥VA’8 = %cj)\“b 5A%q, and the effective Hamiltonian is modified (5.8) to be:
a 10
WA _ _TF [GQOWA + aSQoWAvS} . 5.64
\/§ t Z K3 3 K3 1 ( )

=1

In spite of the introduction of these new operators, the number of linearly independent WCs
contributing to WA cannot in fact have increased since the situation presented in table 5.1
is entirely due to Lorentz invariance constraints on the factorised matrix elements. There are
therefore again only six linearly independent contributions and the contribution of BY — p°1+1~

4 which

to the isospin asymmetry will be presented in terms of a set of effective coefficients af,

couple to the same Feynman graphs as in the BY — K*Y case. Results for the B — p asymmetry

will therefore be presented in terms of

pt o at P ald (5.65)

where the effective coefficients a¢ are linear combinations of af and af“’d.
The formulae for the charged coefficients a;j* in terms of SM WCs are the same as for the

K* and are given in (5.9). The effective neutral coefficients a¢ in the SM are given by:

agzaizz(g"urcﬁ)
C A C
al = —ad = <N3 + C4> W <01 + N2> (5.66)

dg =aj =0
Formulae for the colour octet coefficients a?q in the SM and the effective coefficients a¢ in the
general case are given in appendix E.2, and the SM formulae given in (5.66) may be derived
from those and (5.9). An important aspect of (5.66) is that the coefficients of the QCD penguin
operators Cs5__¢ are the same as in the B — K* case (5.9), which will be important in Section 5.7,

and is due to the left-handed structure of the SM operators.

5.6.2 lIsospin asymmetry B — pl™l~ in the Standard Model

Results for the B — pl™l~ isospin asymmetry are shown in Figure 5.9. Again, tabulated data
are provided in appendix E.3. The general discussion of ¢? behaviour in Section 5.5.2 still

applies in this case.

Inconveniently, the experimental measurement of the isospin asymmetry in the B — p case
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Figure 5.9: The C'P-averaged isospin asymmetry for B — pl™1~ with grey error bands is shown in
the top row. The middle row shows the contributions of different SM operators to the C' P-averaged
isospin asymmetry in B — pl™1~. The right hand graph shows the larger contributions. Note that
unlike at ¢ = 0 the Oy contribution is comparable to the Cg contribution here; this is due to a
small weak phase arising from C§ alleviating the cos ackr suppression slightly. See Section 5.5.1
for details of the calculation of the grey error band. The bottom row shows the isospin asymmetry
for individual C P modes of B — pll; b — d and b — d-type. The isospin asymmetry differs greatly
between C'P conjugate modes since the separate modes depend on the combination of strong and
weak phases both of which are sizeable. This effect is explained in detail in 5.6.3.
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is calculated differently from the B — K* case, as [174]

TR0 B(BT — ptv) —2ar(py) arlpn)<l __
A = -1= ~ =2 5.67
(p) 275+ B(BY — pO) 1+ ar(py) ar(py) ( )
_ ~ Apy)
ar(P) = =5 A N (5.68)

where the CP-averaged asymmetry has been used. In this normalisation, the present result

compares with the measured value as [147]
A(p’Y)HFAG = —46(17)% 5 A(p’}/)LZ = —10(6)% . (569)

A is quoted as a percentage following convention, even though A(py) = 1 has no particu-
lar significance. For completeness the result of this calculation for the CP-averaged isospin

asymmetry in B — p7v in using the K* type normalisation is

ar(py)urac = 30715% , ar(py)Lz = 5.2(2.8)% , (5.70)

where (5.69) and (5.67) have been used to produce the “HFAG” value. This result is comparable
to that obtained in [129]'? and somewhat larger than that in [175], principally due to a different

choice of acku.

The result (5.69) is marginally consistent with the current experimental status. Using ta-
ble 12 of [129], with a linear extrapolation, |V;q/Vis| can be extracted from R, = B(B —
p7)/B(B — K*v). Given that the asymmetry (5.70) is rather large, this calculation is per-

formed separately in the charged and neutral channels to give

= 0.229(25)
Rpo

= 0.165(25)

=0.211(7) (5.71)

‘ Via
PDG

ts

‘th

ts

‘th

ts

where the current value from PDG [123] is quoted for comparison. The values used for the B — p
and B — K* branching fractions are given in (5.80). The results in (5.71) rather indicate that
it is the BT — p' rate which appears to be causing the majority of the discrepancy from the

prediction (5.69).

5.6.3 The effect of C'P averaging in p meson decays

The results presented in the previous subsection are all based on C P-averaged branching frac-

tions. To examine the effect of C'P averaging on the isospin asymmetry, it is useful to begin by

12Note that [129] uses the opposite sign convention for A(py). The sign convention used in (5.69) matches
that used by Belle [174] and HFAG.
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parametrising a term in a matrix element as
M :|M‘6155trong el Pweak M :|M‘ezémongeﬂ¢wcak ) (5.72)

which allows the C P-conjugate term M to be written explicitly. In the context of computing
the isospin asymmetry in B — py, T2(0)A%"(0) is needed. Since T2(0) is real, it follows from
(5.3) that

no C P-average: a?_ [B — py] x T-(0)Re {T_V’d(O) - T_V“(O)}

CP-average: a;[B — py] & T_(0) Re [T_V»d(o) —700) + TV40) = TV (0)|
(5.73)

where again 7 denotes a C'P conjugate. The isospin violating part ’Tiv’q is the sum of a

number of terms, however it is clear from (5.72) and (5.73) that the effect of C'P averaging is

schematically:
no C'P-average: a?* [B — py] ~ Re[e!strons gidwear]
C P-average: ar[B — py] ~Re[e!strons] Re[e!Pwear] (5.74)

The situation away from ¢ = 0 is essentially the same, although the leading term can also have
small weak and strong phases there from CSH(qQ) so in that case the phases dstrong and Pyeak
are relative. It is obvious from (5.74) that the C' P averaged result will be significantly different

to the C'P eigenstate results if both the strong and weak phases are large.

The question then is when there are both large strong and weak phases present. The weak
phase is not ¢? dependent, so will be discussed first. For the K*, A\b* /A is real up to A® in the
Wolfenstein parametrisation (2.8), and the contribution of terms proportional to A, is small,
so the weak phase is essentially zero. By contrast, the contribution of the Oy operator to the p
meson decay is dependent on weak phase arg \’? /A% = ackyr and therefore in the C P average

this term is suppressed by cos acxy = 0.02(7) [123].

The question of strong phases then arises. Since strong phases in the leading isospin sym-
metric term are small, the important question is the size of the strong phase in the isospin
violating terms. The contribution of the Og operator to the isospin asymmetry is rather small,
so will be ignored here; only the QLSS and WA terms will be considered. Away from ¢? = 0
it can be seen from Figure 5.2 that weak annihilation in vector current operators has a large
phase, but no phase at ¢ = 0. All other WA operators give no strong phase at ¢> = 0, and
have a strong phase away from ¢ = 0 when they have an ISR term as given in table 5.1. QLSS
terms generically have a non-zero strong phase, however they are small compared to WA at

¢> = 0. Tt is therefore concluded that the generic case is that large strong phases are present
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away from ¢ = 0, within the range of validity of this calculation results, but absent at ¢ = 0,
and it is expected that as a result the p meson isospin asymmetry will be strongly affected by
CP averaging but the K* asymmetry will not. The isospin asymmetry for B — p in the two
different C'P channels is shown in the bottom row of Figure 5.9 and confirms this analysis.
The result that the K(*) isospin asymmetry is CP independent is entirely in the context
of the SM. It would therefore be interesting in a future experiment to measure the C'P modes
separately as a difference between the two results would be a strong indication of beyond-SM
physics. Unfortunately as described in the introduction, this is impossible for the K system

since experimentally the K2 is measured in this case which implies C P averaging.

5.7 B — (K™, p) isospin asymmetry splitting as an SM null test

Following on from the previous section, the smallness of cos acknm can be exploted to construct
an observable with extremely small theoretical uncertainty, although the present experimental
uncertainty will be somewhat larger.

The prediction that will be made is essentially that the isospin asymmetry for B — K*v and
B — py should be similar, once differences in the leading form factors and hadronic parameters
are accounted for. The reduction in theoretical uncertainty arises because the dominant source
of uncertainty in the B — (K™, p)y isospin asymmetry comes from the scale dependence of
Wilson coefficients, since the leading term is proportional to Cg which is small but mixes with
the large coefficient Cs under renormalisation group running. This scale dependence can be

cancelled by constructing an appropriate ratio, namely

ar(py) A(py)
5, =1— ) p 14 L Ry 5.75
= ey e @+ Ap)ar (K 7x (5.75)
where
L(B = py) | Vis
Rojer = | o 2 PY) | Vis 5.76
i T'(B — K*v) | Via (5.76)

and where a barred partial width T' implies a C' P-average, and omission of charges implies an

isospin average'®. The dominant contributions to the right-hand side of (5.75) are:

. Ce+C5/3 fir FVA(0)

_ 30éCF
S (O

8w

t... T(BoVy~ INCET P TV (), (5.77)

where the dots stand for Cs 4-contributions, which lead to small corrections to d,, because K*
and p cases are very similar; quark mass corrections, and B — p° diagrams at O(a?), where the
different structure of the p¥ matters even for small cos ackn. The function F WA(O) is essentially

the contribution of the functions F;’(Q " (¢) defined in (5.24) to the isospin asymmetry, with

I3For the p-meson this implies T'(B — py) = s+T(BT — pty) + T(BY — p%) due to p° ~ (au — dd)/v/?2 as

discussed previously.

1
2

129



130 James Lyon

0 20 40 60 80 100 120 140 160 180

ackm/®

Figure 5.10: Plot of the effective p to K™ isospin asymmetry difference d,, (5.75) as a function of
the CKM matrix angle ackn. Vertical lines indicate the current experimental value of ackm [123]
and its uncertainty. At the present small value of cos ackm, 6a, is well determined theoretically.

the meson decay constant f+ explicitly factored out. As can be seen from the full results in
(E.1), this function then only depends on the final state meson through higher twist Gegenbauer
moments. Since FWA(0) is approximately independent of the final state, it follows from (5.75)

and (5.77) that
il

0o; =1— f% + small corrections (5.78)
K*

where the corrections are expected to be much smaller than 1, and thus the leading source of
uncertainty, scale dependence of Cs + C5/3, has dropped out. It is also convenient for this
construction that'* f;"/fx. = 0.98(8) and thus it is expected that d,, ~ 0. The factor R~
is included to eliminate the dependence on form factors 7} since there is no reason to leave

factors which may be so easily accounted for in (5.78).

The full calculation of d,, is a straightforward extension of the calculation of the isospin
asymmetry, except that in this particular case the linearising approximation used to reach (5.3)
is avoided in favour of the definition (5.2). Quadratic corrections to the isospin asymmetry are
included in this case because the cancellation of uncertainty raises the A2Cy WA in the B — p
transition above the level of error in the calculation and thus the cos acknm suppression is not

quite as effective as it appears in the linear approximation.

In terms of experimentally measured quantities (5.2) is given by

Q%B(BO — p%y) = B(BT — pty) 7;‘3TJ;B(BO — K*0v) + B(B+* — K**~)
%B(BO — K*0v) — B(B+ — K*tv) 2%[3(30 — p%y) + B(Bt — ptv)
(5.79)

Vis
Via

buy = 1_’

14Gee table 3.2.
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The values [123]

Tp+ Vid
=1. £l =0.211
= 1o79(7) =0
B(B* — pTy) = 9.8(2.5) x 1077 B(B® — py) =8.6(1.5) x 1077 (5.80)
B(BT — K*Tv) =4.21(18) x 107° B(B" — K*%y) = 4.33(15) x 107°

are used and errors combined in quadrature to estimate error. The prediction therefore com-

pares with the experimental result as
[5a1]exp = —4.0(3.5) [0a,)17 = 0.10(11) (5.81)

and it can be seen that the theoretical uncertainty is indeed small'® at 11% compared to
roughly 50% uncertainties in determining the isospin asymmetry in (5.61) and (5.70). Given
the sensitivity of this observable to acky it has also been plotted as a function of that variable
in Figure 5.10. Improved measurements of the inputs to (5.79) might therefore provide a signal
of beyond-SM physics in certain cases. It should be noted that the ratios |Vis/Viq| and 75+ /7o
are already experimentally sufficiently well determined and contribute a negligible amount to
the experimental uncertainty in (5.81). The uncertainty in this result arises mainly from the
ratio of the isospin conjugate branching fractions; in fact, although the current experimental
value of the B — p isospin asymmetry has a larger asymmetry than the K* case, the size of the
errors in percentage terms is similar and thus improved determination of all branching fractions
in (5.80) is necessary to reduce substantially the uncertainty in (5.81).

It is clear that the structure of the SM is responsible for the smallness of d,, (5.75). In
general the quantity d,, is thus highly sensitive to certain kinds of new physics which act

differently on the B — p and B — K* decays. Some examples are:

o Non-MFV isospin violation: if the ratios between WCs for b — s and b — d transitions

are not A /b4,

e UV isospin violation: if four quark operators of the type (5.7) with different WCs for u—
and d— type quarks are present, because the K** and p° valence quark states are not a

simple matter of an s — d replacement.

e Colour octet operators: as with the previous point, non-SM structure of colour octet
operators may give significant contribution to the B — p° decay; see appendix E.2 for

formulae.

Some examples to illustrate the sensitivity of this measurement to beyond SM physics are

provided in table 5.4.

151t should be compared to 1 according to (5.78).
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T a‘f—>a‘f+aﬁ a%—)a%—i—m
-0.3 1.16(15) 1.71(20)
-0.2 0.82(11) 1.21(13)
-0.1 0.47(9) 0.67(9)
0.1 —0.29(14) —0.51(15)
0.2 —0.68(18) —1.14(21)
0.3 —1.08(23) —1.78(28)

Table 5.4: Examples of the effect of introducing non-SM operators on the value d,,. All a are fixed
to their SM values and then one is altered by the specified amount as specified in at the top of the
table. The resulting variation of §,, can be large and is primarily the result of the p° coupling to
a different combination of a; as discussed in Section 5.6.1, and these are therefore examples of UV
isospin violation. The uncertainties quoted in this table do not include uncertainty from varying the
renormalisation scale: this would require a computation of the scale dependence of the extended
effective Hamiltonian (5.64) and is thus beyond the scope of this work. The renormalisation scale
is taken to be the usual central value, p = 4.7GeV.

5.8 Isospin asymmetries beyond the Standard Model

In this section the problem of applying this calculation to identifying any beyond-SM contribu-
tions to B — (K™, p) isospin asymmetries will be approached. Before discussing the application
of the results in sections 5.3 and 5.4, the other possible source of potential deviation from the
SM prediction should be mentioned: a sizeable deviation in the rate from the SM expecta-
tion. The possible beyond-SM isospin symmetric operators that could affect the rate are the
right-handed O7 g ;0; however, they are already quite constrained [100,176,177].

An important question is therefore what present constraints there are on four quark oper-
ators? The contributions of the operators defined in (5.8) and (5.28) have been plotted to the
B — (K, K*, p)i*l~ asymmetries in figures 5.11 and 5.12. Given that the present experimental
uncertainty in B — K*IT1~ is rather large and B — pl™l~ has not been observed, no attempt
is made to constrain the four-quark operators in these channels pending future, more accurate,

measurements. Two sources of constraints on four-quark operators are identified:

e B — p/K*v isospin asymmetries. Bounds are derived on the four quark operators in
the following way: the discrepancy in the WC of each operator that would be required
to saturate the experimental uncertainty at the 2¢ level, for values given in (5.61) and
(5.70), is computed. The results of this procedure are given in tables 5.5 and 5.6. Note
that these constraints are calculated by varying only a single operator at a time from its
SM value, which of course cannot be expected to be a realistic scenario. Nonetheless this
would generically be expected to provide approximately correct constraints unless there
are strong cancellations between the contributions of beyond-SM operators. As can be
seen from figures 5.11 and 5.12, such a cancellation would not hold for the entire ¢ range
in B — (K*, p)I*i™, so if the electromagnetic decay does not produce results there is still

hope for the semi-leptonic channel.
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Figure 5.11: Breakdown of contributions of WA (a;), QLSS (s , ) and (’)é/) to the isospin asymmetry
B — K™l in the linear approximation (5.3). Contributions have been split as detailed in table 5.3
into different graphs in order to make them more readable. Note that a} = 0.1 and sg;x =1 are
used to produce these figures, as in the tables.
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B — K*y | Min. SM Max. Min. SM Max.
ay -0.39 -0.068 0.25 | af | -0.24 -0.068 0.11
ay -0.38  -0.068 0.25 | af | -0.24 -0.068 0.10
ay -0.41  -0.021 0.37 | a¢ | -0.67 -0.028 0.61
ag -0.62  0.021  0.57 | ad -1.0 0.028 1.0
ag -0.049 0 0.049 | ad | -0.080 0 0.080
afy -0.048 0 0.048 | a, | -0.080 0 0.080

Table 5.5: Constraints on WCs a? (5.8) from B — K*~v at 20, assuming no accidental cancellations
occur, along with SM values. 0 < ay(K*vy) < 10% is assumed, and constraints derived from table
E.2, assuming that only a single coefficient a; deviates from its SM value. SM values are calculated
from (5.9) and table 2.1. All constraints are for the real part of these coefficients; the imaginary part

is not constrained by the isospin asymmetry unless it is extremely large and the linear approximation
(5.3) is invalidated.

e Non-leptonic decays. Four quark operators give significant contribution to non-leptonic
decays where the electromagnetic and chromomagnetic operators occur at subleading
orders in the gauge couplings. A deviation from SM values of these operators would
therefore be expected to give a more significant contribution to those processes than
semi-leptonic decays. However, it is much more difficult to predict these processes from
a theoretical standpoint since the relative strong phases of different contributions suffer
significant uncertainties, e.g. [118]. The MFV structure of the SM can be constrained from
studies of these decays [178-180] which fit CKM matrix angles but cannot distinguish
Lorentz and colour structure of different operators at all. Constraints on four quark
electric penguin operators have however been obtained in [181,182]¢. It would appear
from those papers that beyond-SM contributions to four quark operators are at most
O(1) corrections to their SM values. A global fit of all experimental data might be able
to provide better constraints on the WC than are currently available, but this is beyond

the scope of this work.

It should be noted that constraints from isospin asymmetries are essentially complementary
to those from direct C'P asymmetries, since isospin asymmetries are sensitive to corrections to
the real parts of WCs, whereas direct C'P asymmetries are sensitive to the imaginary parts, or

rather C'P-odd phases.

Finally the current experimental state of B — KITI~ must be evaluated in view of the
above discussion. The SM results in Figure 5.8 imply that for beyond-SM corrections in one
operator to account for isospin asymmetry at the 50% level would require a WC an order of
magnitude larger than its SM value. The above discussion of the effects of four quark operators

in non-leptonic decays seems to imply that this scenario is rather unlikely.

16Note that in this calculation, the contribution of these operators can be easily included since the effective
WCs coupling to u and d-type quarks have been separated.
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B—py| SM  Bound SM  Bound
al -0.068 -4.1 | a |-0.068 -2.1
al -0.068  -4.0 | ad |-0.068  -2.0
a¥ -0.021 4.9 a¢ | -0.028 8.1
ay 0.021  -7.6 | al | 0.028  -13
ay 0 0.56 | ad 0 0.94
aly 0 0.56 | ad, 0 0.93

Table 5.6: Constraints on operators af from B — py at 20, assuming no accidental cancellations
occur, along with SM values. 6% < a;(py) < 67% is assumed, and constraints derived as described
below table 5.5. Again note that only the real part is listed, as this is what enters the CP-
averaged isospin asymmetry. Since the calculated SM value is the lower bound of this range (within
uncertainties), the SM value of the coefficient and the other bound are quoted; the true value is
expected to lie in this range.

5.9 Conclusions

The isospin asymmetry in the SM in radiative and semi-leptonic B — K*, B — p and B - K
decays has been discussed. At present the result for B — K™ is in excellent agreement with

experiment [147], in spite of its rather sizeable uncertainty:
(_ZI(K*’Y)HFAG = 52(26)% (_ZI(K*’Y)LZ = 49(26)% . (582)

The situation in B — p and B — K is far less clear. There is a 20 discrepancy between the

SM expectation and experiment:
a[(p’y)HFAG = 30t%g% (_L[(p’y)LZ = 52(28)% 3 (583)

however, it appears that the charged decay BT — p*+y is principally responsible for the large
measured isospin asymmetry, and it will not be at all surprising if the measurement in that
channel shifts somewhat. In particular, the normalised difference between the B — K*v and
B — py isospin asymmetry introduced in Section 5.7 seems strongly to indicate that a large
difference between the two is inconsistent with the current measurements of the CKM matrix
and the absence of beyond-SM physics.

The measurement of B — KIT[™ is also significantly larger than the prediction: the asym-
metry is expected to be on the 1%-level, and the present measurement —0.42f8:§g [147] in the
[2.0,4.3]GeV? range is 20 away from that. This result is difficult to reconcile with SM expec-
tations: it would appear that for the isospin asymmetry to be so large, an order-of-magnitude
enhancement in one or more of the WCs is required, and in spite of the difficulties in cal-
culating hadronic decays it would be expected that order-of-magnitude enhancements would
be noticeable since the theoretical uncertainties are not generally quite so extreme, e.g. [183].
It should be remarked that there is no generic expectation that the B — KIT[~ asymmetry

should be similar to the B — K*IT1~: if new physics generates sizeable right-handed current
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operators they will couple differently, and even in the SM the different structure of the K and
longitudinally polarised K* beyond leading twist leads to moderate differences. It appears to
be very difficult to accommodate an isospin asymmetry in B — KI*I~ and the 50% level in
the SM at all. In view of this it seems sensible to reserve judgement until further experimental
results.

Aside from the the present discrepancy with experiment, the principal problem in this
computation is the lack of a calculation of the non-factorisable loop corrections in WA, since this
should be the dominant O(«) contribution as it potentially couples to large colour unsuppressed
W(Cs. This should reduce the uncertainty in the theoretical result substantially by reducing the
dominant renormalisation scale uncertainty. Such a calculation is expected to be technically

difficult owing to the likely presence of anomalous thresholds.
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Chapter 6

Long-distance charm loops in B — VT[]~

In the SM, it has been known for a long time that radiative B meson decays produce pre-
dominantly left-handed photons and that the amplitude for right-handed decays is 1/my, sup-
pressed [97]. For the short-distance electromagnetic penguin amplitude the 1/m; suppression
can be seen from the structure of the effective Hamiltonian, which after restoration of the

light-quark mass term neglected in (2.19) gives [184]

GF)\t €

Heff|7: \/§ w

S0 - F(mp(14v5) +ms(1 —75))b . (6.1)

The Oy operator therefore couples to left- and right-handed quark currents in the ratio ms/m;
and since it can be shown from Lorentz invariance considerations, e.g. [75], that the parity-
conserving and -violating form factors are equal at ¢?> = 0, the partonic prediction carries over

to the hadronic level.

The form factor contribution from O is however not necessarily the leading right-handed
amplitude in B — V', since it is at the same order in 1/my; power counting as possible
long-distance corrections. It was argued in [185] using an inclusive approach, that there are
potentially much larger corrections arising from the Oy operator when a charm-quark loop
emits a soft gluon into the final-state vector meson, which could give a right-handed amplitude
on the order of 10% of the left-handed one. In [129,186], however, the same contribution was
computed using a 1/m. expansion, which gave an effect only on the 1% level. In this chapter,
the relevant charm-loop contribution will be calculated in a fully exclusive LCSR approach, so
that the question of the magnitude of right-handed photon production in the SM can finally be
settled. This calculation will be contrasted with the previous estimates and it shall be argued
that neither the inclusive nor the 1/m, expansion approach was correct; however, the results

of the 1/m, calculation were in fact at the right order of magnitude.

For the process B — Vv it was shown [187] that the time-dependent C'P asymmetry is
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sensitive to the interference of the left- and right-handed amplitudes. More recently, the full
set of angular observables in B — K*I*T]~ have been considered [98] and optimised quantities,
minimising the sensitivity to form factors and thus to theoretical uncertainties, have been
proposed [99,100]. One in particular, P, is sensitive to the interference between the left- and
right-handed amplitudes and hence this calculation is also relevant there. Updated predictions

in light of these results will therefore be provided for both of these observables in Section 6.8.

The contents of this chapter are to be published in [95].

6.1 Matrix element

The function L;(¢?) which gives the contribution of a quark loop radiating a soft gluon into
the final-state meson in B — VI~ decay shall be computed. The definition of this function
in the context of B meson form factors is given in Section 2.9. The functions L;(¢?) are further

broken into contributions due to different quark flavours, which gives

A
Lil@*) = =CoQu D 3Lqa(q") + (Co=Co) D QuLea(@) +CoQuLoila®) (6:2)
q=u,c q=u,c,
d,s,b

after the effective Hamiltonian (2.19) is taken into account'. The hierarchy of the coefficients is
given by Cy ~ 1 and |C5 4 6|< 1, and |A./At|~ 1, [Ay/Ae|~ A%, By far the largest contribution
is therefore given by the charm quark, since it is neither suppressed by a small WC nor the
Cabibbo angle. Taking the case of the charm current, these functions correspond to the matrix

element

S PAL) = i [ et VT eln) 25ONBGR) . (63)

i=V,A,0

where the operator @i is defined as

AC 7)\0, 7)\11
(), (4.,

which in terms of operators in the effective Hamiltonian (2.19) gives N.Q5 = Qf + 2NC@§, that
is Q! is the colour-traceless part. The functions L..i(¢*) are further broken down into three

contributions

Lei(q®) = L2 (¢*) + L5 () + LE(¢*) | (6.5)

1The small term arising from O3 with a different Lorentz structure has been neglected since the much larger
charm bubble term is the primary concern of this calculation. Furthermore, for b — dv transitions the photon
DA does not give a contribution, since the resulting light-quark loop with the vector weak current has an odd
number of Dirac matrices, and therefore this contribution is either suppressed by a small WC or light-quark
mass in contrast to the case of WA.

140



Rare semi-leptonic B meson decays 141

Dy = q+ Q1p

PB

a1p

Figure 6.1: Sum rule matrix element and kinematics assignments for soft gluon charm loop process.

according to the nature of the radiated gluon, that is whether it is a soft gluon in the final-state
vector meson, a soft gluon in the initial-state heavy meson or any other gluon, respectively?.
The projection tensors P/* are given in (2.71). The functions Lg}; (¢?) have already been worked
out in [129] for massless quarks. This chapter will focus on the calculation of soft gluons radiated
into the final state Lg}; (¢?), since this contribution generates a large strong (C'P-even) phase.
The function Lgf(qQ) will also be discussed briefly in Section 6.4. Calculation of the hard
gluon contribution Lgi(q2) would involve a two-loop sum rule and since it has been found to
be factorisable [42] and should not be expected to lead to a large right-handed amplitude, the

calculation of L%;(¢?) will not be attempted.

6.2 Sum rule calculation

. \Y4 2 . .
The functions Lii (¢*) will be computed using a sum rule approach. The general method was
discussed in Section 2.8. The correlation function used to calculate the matrix elements (6.3)
is:

472

my

cp<p,q,k>=( )( ! ) [ttty @ e (v )T (e e(w)2@1 0T HO

femp
(6.6)
As in Chapter 3, the issue of parasitic cuts arises and cuts with the correct quantum numbers
for a B meson must be separated from other parasitic cuts. The solution used here is the same
as in Section 3.2.1, and a spurious momentum k at the weak operator vertex is introduced

following [106]. The introduced momenta are

PB=D+q P=pp—k Q=q—k (6.7)

2The exact nature of this division rather depends on the method of calculation used, since the separation
between hard and soft gluons will usually depend on a factorisation scale.
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Invariant | Hadron J¥ | Flavour | Comments

Q? J /v 17 | ec Charmonium resonances

% B, 0~ | gb B meson states

q> B, 1% | 5 Would be charmonium parasite q2 F20, 02
p? multi-hadron | 0% | écsg Would be B meson parasite p2 £20 p2B

Table 6.1: Interpretation of external momentum cuts in terms of quark and hadron states.

and the corresponding cuts are listed in table 6.1. The resulting Feynman diagram and momen-
tum assignments are shown in Figure 6.1. Unlike in the calculation of Chapter 3, anomalous
thresholds do not occur here. Problems are largely avoided because in this instance the diagram

cleanly separates into two pieces according to

p=p+q P=p+Q |, (6.8)

where the charm loop does not contain pp or ¢ and the remainder of the diagram does not
contain P or (), and hence the invariant (p — k)?, which cannot be set on-shell (p — k)? — m?%..

simultaneously with k2 — 0, does not appear in any denominators.

The correlation function C is decomposed into scalar components, using an extension of the

decomposition in Section 2.9, to include the additional momentum k, as in Chapter 3:
CP =Cy P +CaP} +CoPy +C Py . (6.9)

The additional tensor introduced to accommodate the spurious momentum k is given by

Q-4
Pp — My« — (¢
where the selection of p? rather than ¢” to make the tensor gauge invariant is due to the
discussion in Section 5.4.6, and differs from the choice in Chapter 3. Using the three-particle

distribution amplitudes in appendix B.1.1 and the quark propagator in B.4, the diagram in

Figure 6.1 can be evaluated to

__ [ fvmemv v (P? — Q?)
== () L T e

fvmbmv> / v (P2 Q?)
Ca=~— ( dus Ala) (6.10)
meB (z,v,) )(12 )
Co— - vmbmv / (0Wh ~¢) +500h — ¢ - PP+ @)
meB 2mb (z,v a) (pg - mg)(lz - m%) o ’
where 7 = (1 — ) and m2 = m?/(z%) is a convenient combination of the mass of the charm

quark and the Feynman integration parameter z. The five-parameter integration measure dus
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is defined as

1 1 1
/ dus = / dx/ dv/ dondogdagd(l —a; —ag —ag) . (6.11)
(z,v,a) 0 0 0

The momenta in the denominators are [ = Q +wvagp and p, = g+ @sp and therefore the required

invariant momentum squares are:

12 = vasP? + 5az Q% + a3va3m%<* ,

Pi = a2q® + Goph + asdomie. (6.12)

where Taz = 1 — vas. The result for Cy has been confirmed to reproduce [106, eq. 27] when
the quark mass is set to zero, which is as expected since it is the 7T (a) DA which structurally
resembles the three-particle pion DA. All of the results in (6.10) have been computed using a
light cone approximation to the quark propagator in a one gluon background, which is given
in appendix B.4. This has been checked to be the same as the result using the full quark
propagator in a one gluon background, also given in appendix B.4, although the equivalence
of the two results is non-trivial since they are only equal under the five-parameter integration
and not otherwise. It can be seen immediately from (6.10) that all three amplitudes have the
same cut structure, and from (6.12) that as promised the cuts have separated the invariant
pairs P2, Q? and p%, ¢*.

In order to extract the contribution of the B meson state to the components (6.10), each
function must be rewritten in terms of a dispersion relation in the momentum p% using Cauchy’s

integral theorem

1 [ ds
Gl Q@ P = - [ e @R P (6.13)

mg s_pB

and then a Borel transformation recovers the sum rule estimate for the B meson matrix element:

S

B
0
dse(mB—s)/M* Im, C;(¢%, Q% s, P?) . (6.14)

2
b

LIM (g%, Q% P?) = %/

m

The superscript k indicates the presence of the additional momentum & in this function. Unlike

the sum rule calculations in chapters 3 and 5, the relation between the function Lg};’k (%, Q% P?)

is not yet apparent because ¢? and Q? are not set equal. The reason for this is that a second

dispersion relation in the variable Q? will be considered to account for the presence of the .J /1)

resonance, and this procedure, along with the relation to the matrix elements (6.3), will be
discussed in Section 6.2.2.

In contrast to other calculations in this thesis, in this case a great deal of progress can be

made analytically, and in fact only two of the five integrals need to be done numerically. The

procedure for reducing (6.14) to a simpler form will be outlined, since it is significantly simpler
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if the integrals are done in the right order.

To begin with all momentum squares will be considered to be space-like so that integrals can
be performed without having to consider the complex structure, which will allow the complex
branch cuts to be identified straightforwardly rather than having to resort to Landau equations?.
Using the explicit form of the DAs given in appendix B.1.1, the a3, as and v integrals can be

performed to give

da drx _
= [ [ et {(Gogimd — 5]~ oglm — s — s’ P + i)

x (log[m? — @Q? ] - log[m —a3P? — a3Q’|P; s + Pi4) }Pi,S ,
(6.15)

where P; ,, are polynomials in the integration variables, mass and external momentum squares.
They are given in appendix F.1 for the leading-twist component of the three-particle DAs to
allow the results of this calculation to be checked; the full expressions are much larger but
present no additional technical difficulties. The pole at p% = ¢ has zero residue and therefore

the discontinuity is entirely due to the logarithms in p%, so the dispersion representation for C;

in pZB is
B /°° dxx da3 i1 5
- 2)3
2 S @*)(s — %) (6.16)
X ((log[mi—Q | — log[m; —Oz3P2—Oé3Q 1) 13+P7,4) ;
ith
wi i g2
s My =4 6.17
j= T (6.17)

The a3 integral may now be performed analytically and the imaginary part on the right-hand
side of (6.14) is then
drz

1 k(2 2 '
;Imsci (¢%s,P )s>m§:/0 (P2 —Q2)3(s — )3 X

)
(log[m? — Q] —log[m? — a3P* — a5Q*])Ris + Ri7)Ris .

(6.18)

where R; , are polynomials in momentum squares, masses and = and are again given in ap-
pendix F.1 for the leading-twist three-particle DAs. This represents the final form which can
be reached through simple analytic integration and thus the momentum invariant P2 may now
be set on-shell, which according to table 6.1 entails the analytic continuation P? — m%. As
mentioned previously, the analytic continuation in ¢? and Q? is complicated by the presence of
the charmonium resonances and the procedure used to deal with these will be given in Section

6.2.2.

3See Section 3.2.4.
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6.2.1 Large m, cross-check

The calculation of (6.18) has already been calculated in the large m,. limit using LCSR in
[129,186] at ¢*> = 0. The result from that paper converted into the normalisation (6.3) is

B [
) « I e+ S0 s s /m2\°
L‘Z};(OH [186]: fl{iK il’)lK* / . dS e(mB s)/f\/[ (b) (S _ m%) . (619)

1 2
4m2mym% f 2 s

By comparison, the result (6.18) combined with (6.14) gives

Lg‘gk(O) mezoo, 5 JK-muc :ls‘K* /363 ds e(mB=s)/M* (mi)g) (s —m3) (P2> , (6.20)
g 4m2mym% fp m2 s s
which is identical except for a factor P?/s. In fact, this factor cannot appear in the result
of [186], since in that case the use of the 1/m,. expansion obviates the need for the additional
momentum k; rather, the photon momentum plays the role of eliminating parasitic cuts as
in the case of the electromagnetic form factors coupling to O7. Since that calculation would
therefore be expected to be equivalent to this one at k = 0, P and pp are not distinguished
thus P? — p%, or rather P? — s under the dispersion integral, and thus the expressions (6.19)
and (6.20) are indeed equivalent. It is worth mentioning that, as will be discussed in Section
6.5, the 1/m, expansion is not actually convergent at the physical value of m., and in addition
the 1/m. and 1/m;, expansions interfere here, so that the the large m. and m; scaling in (6.19)

is correct for the case m. > myp — oo but not my > m. — oo.

6.2.2 Perturbative calculation near the J/1 resonance

The treatment of the two momenta appearing in the correlation function C? (6.13), correspond-
ing to the external photon momentum, ¢? and @2, must now be addressed. The variable ¢ can
be set directly to the desired physical value, however Q% cannot as can be seen from table 6.1
which implies the presence of a perturbative multi-particle threshold at Q% = 4m?2. Therefore
setting Q2 to the physical value of the external momentum is incorrect because perturbative
QCD is not applicable near partonic or hadronic thresholds. The solution to this problem is
to construct a sum rule for .J/+ production using the correlation function C*. The Q2 range
attributed to J/v¢ production is then subtracted from the dispersion representation of C* and
replaced by a simple pole which is the expected structure in the hadronic picture, with the
residue of that pole given by the sum rule for J/¢ production. This method has previously
been used in [188,189].

The dispersion relation satisfied by Lg":’k in Q2 is

dt Tmy LYY (t, ¢*)
t(t—Q*—i0)

2
LITMQ%,¢%) = LETM0,¢%) + % / (6.21)
cut
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where one subtraction has been used so that the resulting integral is not divergent, and other

momentum squares have been omitted from function parameters for brevity.

In order to sensibly associate the complex cut on the right-hand side of (6.21) with char-
monium production it must be the case that the cut begins at Q2 = 4m? in perturbation
theory. This is not in fact what happens, as can be seen from (6.18): the second logarithm
log[m?2 — a}P? — a3Q?] has a threshold even for space-like Q2 due to the presence of P? = m3%.
In this calculation the complex branch cut of this second logarithm is not considered to con-
tribute to charmonium production but rather the strong phase of the overall matrix element.
This picture is correct in the small g2 region where af = O(Aqcp/msp) and the second logarithm
is approximately independent of Q2. The situation at high ¢ is reversed; at ¢> — m%, the max-
imum possibly accessible through sum rules, o = 0 and the two logarithms in (6.18), cancel.
In the low recoil region it therefore does not make sense to treat the two logarithms differently.
In this calculation, the dispersion relation (6.21) shall only be applied to the first logarithm
which is clearly associated with the charmonium spectrum. Justification of this approach is

deferred until the result is obtained in (6.25) which will shed more light on the situation.

Applying the usual semi-global quark hadron duality approach to (6.21), the dispersion
integral is split into two regions separated at an effective continuum threshold sg/ w, and the
region between the perturbative threshold at 4m? and this duality threshold is attributed to
the charmonium resonances. The resulting formula for Li‘; with the perturbative threshold

region replaced is

V(g2 2 dt Imy L9V (¢, ¢2
LR ) = L0, + @2 Y. (@) —~+ Q—/ L ed 2( )
V:J/”Lﬁ,\ll/,... mV(mV - Q ) ™ bv t(t - Q )

(6.22)
where the sum runs over all low-lying ¢c vector mesons. Although there are two narrow low-
lying resonances, the J/¢ and the 1(25), only a single resonance at the J/¢ mass will be used
in this calculation since it will transpire that the result is not valid above the J/¢ mass, and
using only a single pole avoids any question of how to partition the duality region contribution

I/

between them. The residues ;" in (6.22) is the amplitude for J/1 meson production and can

therefore be calculated using standard sum rule methods leading to

J/P
So

1
r;]/w(q2):; / _ dt Im, LIV, g2)e e =0/Mipy (6.23)
4m?

Inserting this result into (6.22) and neglecting other charmonium resonances gives

5o dt Tmy, Lg‘;’k(t, q°)
m2 MGy (m5, = Q?
Q> dt Tmy LI* (8, ¢%)

o / -2

™

e(m?//w*t)/Mﬁ/w

2
LIVM(Q2,¢%) = LIVM(0,62) + %/
4

(6.24)
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where the prime denotes that the resonance subtraction procedure has been performed. The
expression (6.24) is however rather inconvenient for numerical computation and it proves ad-

vantageous to combine it with (6.21) to produce

/4 "L‘Z]/?w -
2 psp’? e Mirw 1
LI(Q2, ) = VM@ )+ S [ detm, L8V 1, q?) -
c,i Cyt e 4m?2 o m?]/w (m?]/w - Qz) t(t - QQ)

(6.25)
in which the t integrals are now over a finite range. Integration contours for each term may
also be taken off the real line into the lower complex half plane Imt < 0 when @Q? lies inside
the integration region, to avoid numerically tricky integrations which contain simple poles. The
final result is then given by setting the external momenta to their on-shell values according
to table 6.1, that is P2 — m% and ¢? to the external photon momentum, so that all external
momenta are correct for the physical matrix element (6.3) subject to the the standard semi-
global duality approximation described in Section 2.8. Q? is set to the same value as ¢2, and
then the final result for L*Z}Z-/ is

L9)(¢%) = LM (@ % mE) (6.26)

It is apparent that (6.24) and thus (6.25) cannot be valid for all Q2. The final term de-
scribes the contribution due to the density-of-states of a multi-particle continuum, and it would
therefore be expected that Imy Lg};’k(s({/ ¥ ¢*) = 0, because the phase space volume is zero
at the multi-particle threshold. However, since the lightest states in the perturbative and
hadronic spectra have different masses, the perturbative density-of-states is non-zero at the
duality threshold. This problem manifests itself as a logarithmic divergence for Q2 — sg]]/ v
Unfortunately there is little that can be done to repair this deficiency; although it should be
the case that for sufficiently large Q2 local duality becomes a good approximation, it can be
seen from the famous R function plot in [123,154]* that there are resonances in the charm
threshold region up to around +/s & 4.6 GeV, which is far too close to the perturbative b-quark
mass for there to be a significant window between the charm pair region and the kinematical
upper bound of the B — V process. It should be stressed that this problem is specific to the
matrix element under consideration; it is still expected that form factors calculated using LCSR
should in general be valid up to m% —q? ~ O(mpAqcp) but the presence of a significant charm
threshold prevents this. Fortunately this low-recoil region is accessible via other means, either
the low-recoil OPE [171] or lattice simulations®, although these approaches are only suitable
for local operator form factors and do not include long-distance effects. The justification for

only considering the cut due to the first logarithm in (6.18) as contributing to the charmonium

4Figure 46.7, available separately under “Plot of cross sections and related quantities” on the website.
5 Although lattice usually simulates the high ¢ region of these decays, to date results for the K* meson are
not yet available owing to the fact that it is unstable [190].
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L9Y%,(0) x 10 L2Y,(0) x 10°
B— K* | —(0.23+0.37) — (217 £1.23)i —(0.73 + 1.89) — (3.97 + 1.61)i
B—p (0.01 +0.33) — (2.79 £ 1.20)i  —(0.85 4+ 1.78) — (3.78 + 1.28)i
By — K* | (0.26+£0.14) — (1.88 £ 0.91)i —(0.62 £ 1.73) — (2.62 £ 0.73)i
By — ¢ (0.04 £ 0.26) — (2.23 £ 0.98)i —(0.04 + 1.46) — (4.09 =+ 1.45)i
LI (0) x 103 L?Y(0) x 103
B— K* | —(0.68£1.58) — (4.34£2.01)i  (0.35 £ 1.10) 4 (1.27 £ 0.29)i
B—p —(0.60 + 1.44) — (4.64 £ 1.75)i  (0.61 % 1.09) + (0.70 = 0.20)i
B, — K* | —(0.25+£1.21) — (3.18 £1.15)i  (0.62 + 1.25) 4 (0.52 £ 0.23)i
B, — ¢ (0.00 + 1.18) — (4.47 £ 1.72)i  (0.05 4 0.90) + (1.32 + 0.34)i

Table 6.2: Results for Lg}i/ at ¢?> = 0 for various different final-state mesons. The top half of the
table gives results in the parity basis, and the bottom half in the helicity basis.

resonances and treating the second perturbatively, is that at low ¢2 this is justified by the
smallness of o3, and the high ¢? region is inaccessible in any case as m? /4m? is not sufficiently
large to reach the region where charm production can be treated perturbatively.

This is, however, not entirely the end of the matter of treating contributions from vector
meson resonances. Although the charm-quark loop is the dominant one in b — s decays due
to the hierarchy of CKM and WCs, there is also the case of b — d decays to consider, as
well as the subleading contributions in b — s. It is therefore necessary to consider the case of
light-quark loops, where the relevant mesons are the p, w and ¢. Examining the R function
plot [123,154] in the low momentum region reveals that perturbation theory appears to be a
good approximation above 1.3GeV or so. Considering that the s-quark loop and therefore the
¢ meson are likely to be the dominant source of deviation from the perturbative prediction
in the 1.0 — 1.3GeV range and that the s-quark loop is suppressed by a small WC in both
b — d and b — s transitions, taking the local duality result (6.18) for light-quarks in the region
¢ > 1 GeV? seems reasonable. It will turn out that the uncertainties in this result are large in
any case, and thus difficulties caused by the p, w and ¢ mesons are unlikely to be the dominant
source of error. At g% = 0 the light-quark contribution is treated using the resonance modelling

approach described in this section following [129].

6.3 Results

Plots of the functions Lg}i/ are shown in Figure 6.2 for B — K™ transitions, and values at
q®> = 0 for various final-state mesons are given in table 6.2. Two features of these results are

interesting:

e The strong phase is large, even at ¢ = 0. This is a result of the cut in P? of the multi-
particle ¢cgs state, and the situation remains the same up to ¢? ~ 4m?. Near ¢* = 4m?,
the J/1 intermediate state dominates the matrix element which approaches a simple pole

due to the construction in Section 6.2.2), and as discussed in that section, these results
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Figure 6.2: Plots of the real and imaginary parts of Lg}i/ for i € {V, A,0}, and the magnitude of

L*Z‘{, for B — K™ transitions. The solid black line is the real part, and the dashed red line the
imaginary part. It is clear from these plots that the large m. expansion fails, since in the m,. — oo
limit the matrix element should have no strong phase at ¢? = 0.
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are not reliable beyond this point.

e The left-handed amplitude is large compared to the right-handed one. Although this is
the normal situation in B — V decays at leading order in 1/my, there is no reason to
expect that it should be the case here since the parity conserving and violating amplitudes,
whose sum and difference is the left- and right-handed amplitudes, are not related, arising
from the conformal expansion parameters of the V and A DAs respectively. This is even
further emphasised by the fact that G-parity constraints on the expansion parameters
mean that the dominant contribution to the parity conserving and violating amplitudes
arise at different orders in the twist expansion. A fuller discussion of the structure of these
results and their helicity structure is deferred to Section 6.6, where they are contrasted

with those of [185].

On a technical level, this calculation appears to be significantly more complicated than the
calculations done for B — nw in [106] and for B — J/¢K in [191]. The reason for this is
that those papers were treating the case of purely hadronic final states and thus only needed
to compute the term analogous to the r} term in (6.22) but not the continuum term which
contributes to the production of photons and lepton pairs. This allowed them to use a 1/my

/¥

expansion since the dispersion variable analogous to ¢ is then restricted to t < so‘] < mi,

which is not true in the radiative and semi-leptonic cases®.

6.4 Initial state soft gluon contribution

In this section the contribution of charm loops coupling to a soft gluon from the initial-state
B meson will be discussed, although a conclusive result will not be provided, for reasons to
be explained. As will be argued in Section 6.5, the largest momentum invariant arising in the
charm loop for a soft initial state gluon is O(mpAqep) rather than O(m?). Because of this
the charm-pair production threshold is not expected to be crossed and the leading term in the
1/m. expansion should provide a reasonable approximation.

Since this estimate will employ the 1/m,. expansion, emission of the photon via the charm
loop is a local process, and the calculation will be further simplified by setting ¢? = 0, since only
qualitative features of the result will be of interest. The effective local sbgy operator induced

by Os in the large m,. limit was worked out in [192] and is

ie*“/ d'we' ™ T{[e(x)y,c(2)]Q5(0)} = 2crqr + ... (6.27)

61t might seem from (6.25) that in fact only the range 4m?2 < t < sg/w is used; however, the term Lg‘i/ (Q2%,¢?)
there contains a log[m2 — Q2] term from (6.18) which cannot be 1/m;, expanded since it is independent of mg.
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Figure 6.3: Sum rule diagram for initial-state soft gluon contribution L‘Zf(O). The use of the three-
particle current J3p means that cuts select only the three-particle B meson state, thus giving the
contribution of initial state soft gluons.

where

N ~ ~a )\a ].
ar = (D"F)[53,(1 = 15)9Gas 5 1] T

(6.28)
From (6.3) and (6.27), the relation of this operator to the desired form factor Lgf is found
to be

o . N
Tomzm K lar|B) = eu(PyLEy + PALE) (6.29)

A suitable correlation function for the extraction of the these form factors is
C(pp,q) = z'/d‘lace_“’B‘”’j (K*|Tqr(0) J3p(x)|0) (6.30)
where the interpolating current Jsg, defined by
Jap = bg G - 059 (B|J3p|0) = 2ifpmp(\y + AE) (6.31)

is used to select the three-particle component of the B meson. The normalisation of the current
Jsp was introduced in [193]. The Feynman diagram for the sum rule implied by (6.30) is
depicted in Figure 6.3. Following the usual sum rule procedure, the correlation function C(pg, q)
is matched to a hadronic representation

C(pp,q) = [2ifpmp(\% + A%)]Wiﬂ? +... (6.32)

B~ PB

where the dots stand for higher resonances and states. The evaluation of the correlation function
(6.30) in QCD is standard, except that it turns out that twist-3 terms in the K* DA must be
included since the twist-2 terms give no contribution. The K* DA is given to the necessary
order in appendix B.17. Tt is also noteworthy that the gluon correlator required (Gzy(x)Gg 5(Y)

is the same in any gauge in which global colour symmetry is unbroken, and hence the use of

(s;t)

7Since only perpendicular polarisations are of interest at g2 = 0, the twist-3 term h” may be ignored.
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the Fock-Schwinger gauge in deriving (6.27) and (6.28) does not entail any complications here.

The resulting sum rule for LZfV) A)(O) is

s6” mp—s 1 (us—m2)
9B (0) = L9B (0) = — Qs [K=MmK~ d 2 d b (a)
c,V( ) c,A( ) 1447Tm3meB()\2E+)\%I) - se M s U s g\ (u)
(6.33)
Inserting numerical values from table 3.2 along with a,(up) = 0.35 gives
B B 5 [0.4CeV?
E H
This value is considerably smaller than Lf}’ﬁ/ = —3.6 x 1072 given in [194]%. In fact, this

sum rule is problematic because it is highly sensitive to the duality threshold s§Z, or to put
it another way, the Borel transform is ineffective in suppressing the continuum contribution.
It should further be remarked that the existing determinations of A% + A% are also rather
problematic since the value A% + A% |gn= 0.29(13) GeV? [193] is dominated by the highest
dimension condensates considered and the value A% + A% |kno= 0.48 GeV? [195] is dependent
on the choice of B meson model wave functions. Since the parameters A% and A3, appear in
the numerator rather than the denominator of the B DA calculation, a significant shift in their
values could bring the estimate (6.34) and the B DA value Lg,]?, = —3.6 x 1072 [194] much
closer.

To try and bring some clarity to this situation, the computation of A% + )% using a diagonal

sum rule for (J3p(x)J35(0)) was attempted, and the resulting formula is

asCrN, s¢” mE=S S 11mS
sYFiVe / MZ b+ b

dse 1s 3 3mis —mis® + >

(6.35)

16073 fEmE Jme

5
+ (2mg + 3m§s) log (mQ>>

b
However, this suffers from the same problem as (6.33); the continuum contribution is far too
large to make the result trustworthy” and it is highly sensitive to the duality threshold sq.
AL+ 2%, =04 GeV?, the average of the two previous determinations [193,195], is therefore
taken here as an indicative value, but only a lattice determination will definitively resolve this
question.

Ultimately, this estimate of the initial-state radiation contribution, as well as the B DA
computation [194], both lead to the same qualitative features: L‘Zf, = Lgﬁ and Im szf =
0. The initial-state contribution therefore does not contribute to either C'P asymmetries or
the breaking of the heavy-quark symmetry relation 7y = T4, although the result in [194] is

significant because it gives a sizeable correction to the decay rate at intermediate ¢2.

8Note that the comparison in that paper between the results in equations (6.3) and (6.4) is questionable,
since soft gluon emission into the initial and final state hadrons is not physically comparable.

9Note that the contribution of (Fq) was included in this calculation but it turns out to be zero, which only
raises further questions as to the validity of this sum rule.
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Figure 6.4: The inclusive b — sgy graph, the external kinematics of which determine the convergence
(or otherwise) of the 1/m, expansion. The dashed and dotted lines indicate cuts which can give
rise to complex branch cuts; the dotted lines are considered below threshold because the soft gluon
is expected to be almost on-shell and the photon is assumed to be below the ¢?> = 4m? threshold
where the 1/m, expansion must break down. Only the momentum flowing through the weak vertex
is therefore relevant.

6.5 The 1/m,. expansion in soft gluon effects

In this chapter, the contribution to B — VIti™ decay of a charm loop with soft gluon emitted
into the final-state meson has been computed, and a large imaginary part or the resulting
amplitude found. Previous calculations of this term have used the 1/m. expansion to rewrite
it in terms of an effective local operator and then proceeded to compute (V|O|B) [186]. This
operator product expansion procedure of course produces no imaginary part since the charm
pair production threshold is implicitly not crossed. The 1/m, expansion was however employed
in Section 6.4 for the initial-state soft gluon contribution examined there, and thus the details

of convergence merit further examination.

The b — sgvy sub-graph relevant to the convergence of the 1/m, expansion in processes
considered in this chapter is shown in Figure 6.4. For simplicity the photon shall be taken
to be on-shell, so that the assumption that the gluon is soft then means that there is only a
single non-zero momentum invariant in the problem. It is then expected that the convergence
or otherwise of the 1/m,. expansion will be determined by whether that momentum invariant,
which will be labelled [? in accordance with (6.10), ever reaches the charm pair production
threshold, ? > 4m2.

For the case of soft gluon emission into the final-state meson computed in Section 6.2, it

can be seen from (6.10) that the relevant loop integral at Q% = ¢? = 0 is

/1 d /1 J zxv 1
x v =
0 o ZTzxvagP?—m?2  dazP?

2 . .
where z = (Zjni . The series coefficients can be seen to scale as n
2

arcsiny/z 1 Z 4" (( z"
2(0—2)| Am2 =~ 2n + 3 ’
(6.36)

—1/2

by Stirling’s approximation,
and thus the radius of convergence is |z|< 1 as expected from considering the cuts. Since the
range of az is 0 < a3 < 1, it follows that P? = m% > 4m?2 and therefore the pair production

threshold is crossed for soft gluon emission into the K* meson.
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The next case to be addressed is that of a soft gluon in the initial state, that is to say the
three-particle component of the B meson state. The 1/m. expansion has already been assumed
to converge for this case in Section 6.4, and this assumption is consistent with the results
of [195], which do not have a strong phase. It is not in fact possible in an LCSR approach
to separate the soft gluon term cleanly from that of a hard gluon connecting to either of the
quark lines forming the B meson in the proper two-loop calculation of this term. Nonetheless a
straightforward kinematical argument can be made that the 1/m, expansion converges for soft
initial-state gluons. The soft gluon momentum is taken in the B meson rest frame to be given
by

mp mp

pgn = (A, —A,0,0) Q= (7 7,o,o) : (6.37)

where the photon momentum, again at Q2 = 0, is included to make the relative directions
clear. The gluon momentum has been chosen to lie along the opposite light-cone direction to
that of the photon, which is in accordance with the construction of the light-cone B meson
DA neglecting the direction to which the short-distance amplitude is not sensitive. The series

expansion parameter in this case is

(pgp —Q)* A<mp_ mpA A
4m? 4m2 " 1.3GeV

(6.38)

which implies that the series converges, since it is expected that A < mp —my < 1.3 GeV. The

use of the local operator in Section 6.4 is therefore justified.

There is one remaining puzzle to address: why the numerical results in table 6.2 are the
same order of magnitude as those computed previously using the 1/m. expansion in [129,186],

which give |L§X |~ 1073, The asymptotic behaviour of (6.36) in both limits is given by

1 2
1 1 220 o P2 P — o0
dx dv_—H = 1 (6.39)
0 0 TrvagP? —m? . P2 50
24m?

and thus in a sense the fact that the magnitude of the result in [129, 186] is comparable to
this result is a coincidence arising from the fact that 6m2 and m?% are not of vastly differing
magnitudes. This point of view is however overstating the case; were mp many orders of
magnitude larger than m., the 1/m. expansion would not have been employed in the first place
since it could not have been expected to converge. The similarity in magnitude between these
results and the local operator approximation is therefore not unexpected, although the degree

of similarity is surprising.
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6.6 Comparison with the inclusive approach

The predictions of the exclusive LCSR calculation given in table 6.2 are very different to those
calculated in [185]: the present approach gives a contribution to the amplitude at the level of
1% of the leading electromagnetic form factor term, whereas [185] predicted that an effect on
the 10% level could be expected. The question of why the two differ by an order of magnitude
must therefore be addressed.

The most obvious potential source of discrepancy between the two results is their scaling in

the large m;, and m, limits. The prediction of [185] is that

Li}f(o) Cy Agep

CHTI(0)] yy  CFT

(6.40)

To contrast this with the results of Section 6.2, it can be seen from (6.20) and (6.39) that the

large my;, scaling found here is

A4
L9V (0) ~ ¢l 29D 6.41
c,l( ) 3K meg ( )
which in combination with T1(0) ~ (fpm%)~! [97] entails
1%
L7} (0) G2 Agop (6.42)
CsT1(0) SR Gt my,

LZ

and therefore the two results are not fundamentally different as far as their asymptotic behaviour
is concerned.

The key difference between the two estimates therefore appears to be the use of a fully
exclusive approach in the present calculation, which gives an additional dimensionless factor
of ¢l in (6.42) not present in (6.40). The value (.. = 0.023 was found in [127], and the
smallness of this coefficient, along with the smallness of other coefficients in the three-particle
K* DAs, would certainly account for the smallness of the present results.

The calculation in Section 6.2 also finds that the amplitude for right-handed photon produc-
tion is significantly smaller than the left-handed amplitude, which does not have an apparent
origin in the 1/m;, expansion as is usually the case for B — V'~ decays, since the formulae for
Cy and C4 in (6.10) have the same structure. In fact, were the three-particle DAs restricted to
the leading collinear twist form only, the approximate G-parity of the K* meson would have
led to Cy =~ 0 and thus reproduced the result of the inclusive calculation [185], that the left-
and right-handed amplitudes are equal.

The conclusion that must be drawn is that the results presented here are not directly re-
sponsible for the discrepancy between the inclusive predictions of [185] and the present exclusive
calculation. Rather, the smallness of the exclusive prediction and its helicity structure reflect

the underlying three-particle DA parameters. It would therefore appear that the amplitude for
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a gluon and two quarks to hadronise into a light vector meson is significantly smaller than would
be expected on dimensional grounds, and in fact the authors of [185] attempted to estimate
this effect using Ali-Greub shape function models [196] which reduced ratio (6.40) from 10% to

3%, much closer to the value from the exclusive calculation.

6.7 Right handed amplitudes in the SM

Although the results of Section 6.2 found that even in this soft charm loop contribution the
right-handed amplitude is smaller than the left-handed one, the suppression is mild compared
to the usual 1/m; suppression which appears in the C7 ¢ form factor contributions and WA
terms. The non-factorisable charm loop is therefore expected to give a significant contribution
to right-handed amplitudes in B — Vv and B — VI¥I~ as predicted in the introduction.

To give an indication of the relative magnitude of different right-handed amplitudes in
the SM, the right-handed amplitudes from factorisable operators C7 9 and non-factorisable O,
are plotted in Figure 6.5. The much smaller right-handed WA contribution is also shown for
comparison. It appears that the short-distance form factor term proportional to mg is dominant
at large recoil and the non-factorisable charm loop calculated in this chapter is several times
smaller. The results computed here are therefore not expected to alter predictions for all
observables sensitive to final state helicities significantly, although they will give the dominant
contribution to time-dependent C'P in some cases since the weak phases of the Oy and Or
operators are different. They are however significant insofar as the uncertainty of right-handed
amplitudes is reduced very substantially in comparison with the [185], and time-dependent C' P
asymmetries corresponding to a right-handed amplitude much above the 1% level would indeed

appear to be a signal for new physics.

6.8 Observable effects

There are two presently measured quantities sensitive to the helicity of the photon in radiative
and semi-leptonic B meson decays, the time-dependent C'P asymmetry in B — V+ and the
angular observables P; and S3 in B — VItI~. Updated predictions in light of the present

calculation are therefore presented.

6.8.1 Time dependent C'P asymmetries

It was pointed out in [187] that the time dependent C'P asymmetry in B — V+ is produced by
interference of left- and right-handed photon polarisations. Following the notation of [197] the

10This estimate is constructed rather naively by multiplying C77}1(0) ~ 0.1 by values in table E.2 and m/my;
however, according to the equation in [75], the strange quark mass enters as an ms/mp+ correction in the
twist-3 b DAs, which are expected to be m = /mj, suppressed w.r.t. the leading amplitude by comparing (E.2)
to (E.3).
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Figure 6.5: Magnitude of contributions to right-handed lepton pair production in B — K*IT~ in
the SM. The three types of contribution are factorisable form factor contributions labelled C’?g, weak
annihilation labelled WA, and long-distance charm loops (where the approximation |CoA./A¢|— 1
has been taken for simplicity). The form factor contributions in this case are taken from fits in [190],
due to their good small ¢? behaviour. Since the published fits of the form factors [81,190,194] are
all done in the parity basis, the small right-handed contribution from the form factors cannot be
reliably extracted, although in fact for ¢> < 5GeV? the form factor contribution is dominated by
the short-distance right-handed amplitude proportional to mg in the C7; WC and therefore it is
expected that the result is reasonably accurate in this region. It can be seen from this plot that the
right-handed component of WA is negligible in the SM, although terms proportional to m; arising
from the operators O3_g were neglected, which would be expected to give a contribution on the
1075 level'®. The contribution of long-distance charm loops computed in this chapter therefore
appears to be a significant correction to the leading amplitude at large recoil, at the 25% level.
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| la/p| 2,
BY {0.9997(13) 2arg(—V Vi) = 28 = 43°
BY | 1.0086(28) 2arg(—V;:iVy) ~ —2X%2n = —2.0°

Table 6.3: Neutral B meson mixing parameters relevant to this calculation. |g¢/p| is taken from
the HFAG 2013 update [147]. Note that the angle ®, here is the complex phase of ¢/p which is
denoted ¢, in [197] but is different from ¢, used in B-B mixing studies [198], which have a related
angle ¢ = m — ®,4, which is the complex phase of the off-diagonal entry in the B meson mass
matrix. The leading order SM result for this angle is used, and the required numerical values for
CKM parameters are taken from [123].

C'P asymmetry may be written as

L[By = VA(t) — T[By — VA (t)
F[Bq = V9l(t) - T'[By — VA(t)
_ Ssin(Amgt) — C cos(Amyt)

~ cosh(3AT,t) — Hsinh(1ATt)

Acp[Bq — V’y](t) =

(6.43)

where the signs are chosen such that Amg = my — myp and AT’y = 'y, — 'y, with L corre-
sponding to the lighter and H to the heavier of the C' P conjugate B mesons, are both positive
in the SM. The parameters S, C and H are given by [187,197]

C=N(TPHTPAT P-To?]  S=2Nm |2 (T T2 +T,77)]

N = [|T-PH T PHT - P+T+?]  H=2NRe {g (T-7> +T+T¢)} . (6.44)

where IV is a normalisation constant and the notation of Section 2.9 has been slightly extended
so that 7, is the C'P conjugate amplitude corresponding to 7;. q/p = |q/plexp(i®,) is the ratio

of B meson mixing parameters which are given in table 6.3.
If the left- and right-handed amplitudes are parametrised as

T = Ape'r T, = Age'r | (6.45)

where ¢r, g is the CP-odd weak phase and the strong phase is retained in Ay, g, then the CP

conjugate amplitudes are
T, =¢Ape 0 T_ =¢EApe r | (6.46)

where £ is the C'P eigenvalue of the final state. £ = 1 for p, w and ¢ and for the K* it depends
on the daughter state: it is £ = 1 for the Kgn¥ state and ¢ = —1 for the K 7" state [197]. The
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B —Vy B —» K*y B — (p,w)y By — ¢ B, — K*y
Type b—s b—d b—s b—d
S[B = VA|Lz 1.2+09% —-124+08% 0.01£0.03% —0.3+0.5%
H[B—=VqlLz | (124+1.0%) (-09+14%) 1.6+1.1% —1.7+21%
S[B — VAo, 1.7+£0.4% 0% 0% 0%
H[B = V~lo, | (1.8+0.3%) (0%) 2.5+ 0.5% 0%
S[B — VAlgrac | —0.16(22)  —0.83(65)(18)

Table 6.4: Predictions for the C'P violation parameters S and H in B — V'~ type decays. The top
section shows the prediction along with the associated uncertainty. £ = 1 has been taken for all final
states in (6.46); in the K* case it depends on the daughter state as described below (6.46). Results
for H in brackets are given for purposes of comparison but are not expected to be experimentally
measurable since the width difference of B; mesons is too small [197]. The middle section leading
order results from the O; operator only, for comparison purposes. The quoted uncertainty for these
values arises from scale variation of the strange quark mass only. In the last line, the present
experimental average from HFAG [147] is included, which is consistent with the theoretical result,
although the uncertainty must be substantially reduced before a truly meaningful comparison is
possible.

CP asymmetry parameters S and H may then be written

S Re[A} Ag] | sin
— 9¢ LRI b — b —
TALEHARE | o [ 0700
(6.47)
. A sin
Ar€AL, 9¢ Re {AR} (B — b1 — dR)
L cos

where the approximation |¢/p|= 1 has been used, which holds to good accuracy as can be seen
from table 6.3. It is then apparent that a measurement of S or H is an indirect measurement

of the right-handed amplitude.

The results of this calculation are given in table 6.4, along with the short-distance penguin
contribution for comparison. In no case does the result including the Os contribution differ from
the short-distance value by more than 1.50. This is due to two factors: first, the Os contribution
is smaller than previously expected at only the 1% level and second, the uncertainties in table
6.2 are large. The result which stands out in table 6.4 is for S[Bs — ¢7], which is both
much smaller and more precisely determined than all the others. This is a result of (6.47)
and the hierarchy of CKM coefficients in b — s decays. The factor sin(®, — ¢ — ¢r) is zero
if the spectator quark in the B meson has the same flavour as the b quark decay product,
which results in the weak phase of the B-B oscillation being the same as the weak phase of the
B — V-~ transition. For the B — p~vy decay this suppression, along with the independent mg/m;
suppression, is lifted by the Oy operator which has a different weak phase but for By — ¢~ it

survives since |\, |< |A¢| and hence the difference between the weak phases is small.
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6.8.2 The P; and S3 angular observables

In recent years, the full angular structure of B — VIt~ decays have been studied [98], and
optimized observables with reduced form factor uncertainty proposed [99] and improved [100].
One of these angular observables, P, originally introduced as Ag? ) in [199], is sensitive to
interference between the left- and right-handed amplitudes. In the normalisation conventions
introduced in Section 2.9, P; is given by!!

_ T PHTAP = TA P =ITA

_ 7 6.48
T P T AP T P AP (6.48)

Pl = A’(T2)

where lepton masses have been neglected. Pj is closely related to another observable S5 [98],
which has a stronger dependence on form factors than P; and is thus less theoretically clean
but at present has smaller experimental errors [200], so predictions for S will also be provided.
In the 7 convention, it is given by

[TV PHTH P TA P TA P

, (6.49)
T PHITAPHTY PHTE PHT 2+ 7542

1

where again lepton masses have been set to zero.
Since the 7 amplitudes used in this thesis differ from the AK’ﬁO used to define the P; and
Ss by a ¢? dependent normalisation factor, in addition to a linear change of basis, averaging

over a ¢? bin must be performed with an appropriate weight according to

(pyy — (T PHTAPITY AT )
Y T PHTARPHTY PHTLAR),
1

2

(T PHTAP-|TY P=ITE )

(S3) =5 ; (6.50)
(T PHTAPHTY PHTE PHT P+T6 )
where the weighted average { f ((]2)>F is defined as
(Mm%, m%., q2)3/2
= [ ) | MBI g (6:51)

This brings amplitudes |7;]? into the same ¢ normalisation convention as the I; angular coef-
ficients!'? defined in [98] up to an overall constant which cancels in both (6.48) and (6.49).
The results of these calculations are presented in tables 6.5 and 6.6. Plots of the full ¢
dependence are shown for the [1, 6] GeV? range in Figure 6.6. The form factors used in these
calculations are those described in [190] because they appear to give better small ¢ behaviour,
that is to say, the right-handed component at ¢ = 0 is smaller than in other available form

factor fits [81,194]. The uncertainties in the tables and plots are calculated using the method

11 The upper index denotes the parity of the operator producing the lepton pair, and the lower index the vector
meson polarisation
12 Also frequently known as J;, e.g. [99, 100]
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Prediction LHCD [200]
Bin/GeV? Py S P S
[1,6] —0.037(47)  —0.006(7) | 0.157939+0-03  (.0370-97+0-61
2,4.3] | —0.027(48)  —0.003(7) | —0.2970%+002  _0.04T0 j9001
[4.3,6] | —0.069(73) —0.013(11)

Table 6.5: P, and S5 angular observables integrated over standard ¢2 bins in the recoil range acces-
sible to this calculation. The [4.3,6] GeV? bin is included for comparison with [100]. The present
level of experimental uncertainty indicates no deviation from the SM, and indeed the theoretical
prediction is essentially zero in view of those uncertainties. See text for details of the uncertainties.

Bin/GeV2 P1 53
[1,2] 0.011(51)  0.002(9)
[2, 3] —0.010(49)  —0.001(6)
3, 4] —0.035(50)  —0.004(7)
(4, 5] —0.056(62)  —0.010(8)
[5, 6] —0.074(78)  —0.014(12)

Table 6.6: Theoretical predictions for P; and S3 in 1GeV? bins. See text for a discussion of the
uncertainties.

described in Section 5.5.1 but in this case there is an additional problem due to extracting the
right-handed form factor from fits given in a parity basis. To allow for this, the right-handed
form factor is assigned an uncertainty of 2.5% of the magnitude of the left-handed form factor,
which is given as the maximum fit error in [81]. Although a different method of fitting is used
in [190] than in [81] the former does not discuss the precision of the fit, but since it uses the
latter as input it seems reasonable to assume the precision of both fits is similar. Unfortunately
ms/my is also at the percent level, so this assumption makes the uncertainty in the right-
handed short-distance amplitude large, and since the results of Section 6.3 indicate that the Oy
contribution is in fact sub-leading, the overall uncertainty in P; and S3 is dominated by this fit
precision error. These uncertainties are similar to those quoted in [100] as a result of Aqcp/me
corrections. It should be possible to reduce them by an order of magnitude if form factors can

be calculated and fitted for the right-handed amplitude separately.

6.9 Conclusions

LCSR has been used to compute the contribution of charm loops emitting a soft gluon to the
B — K*ITl~ decay amplitude at large recoil. The contributions of charm loops exchanging
gluons with the B and K* valence quarks are significant because they are not suppressed by
small WC, the Cabibbo angle, or gauge invariance at ¢> = 0, as is the factorisable charm
bubble. They therefore represent a potentially significant contribution to the overall branching
fraction. The contribution of hard gluons has been worked out in an inclusive approach in [104]
and that of soft initial-state gluons in [194], so that the present calculation means that the set

of next-to-leading charm bubble diagrams is now in principle complete.
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Figure 6.6: Plot of P; and S3 estimate including O3 soft gluon effects. See text for a discussion of
the error bands.

It transpires that in fact the amplitude for a soft gluon to be radiated into the final-state
meson is small and is thus not relevant to the overall branching fraction. It is nonetheless
important since it was previously claimed [185] that it could give the dominant contribution to
the right-handed decay amplitude in B — V. This has been found not to be the case, although
it still represents a sizeable correction to the short distance right handed amplitude from the
electromagnetic operator Q7. The principal result of this calculation is therefore not so much an
accurate calculation of the non-factorisable charm bubble term, since the uncertainties in table
6.2 are substantial compared to the overall result, but the finding that it does not represent a

significant enhancement to the short-distance term, as can be seen in Figure 6.5.

The contribution of the Oy operator with a soft gluon from the initial-state B meson has
been discussed in Section 6.4. Although the attempt there to produce a result quantitatively
comparable to that computed using QCDF in [194] failed due to instability of the sum rules
constructed, the same qualitative features were found, including that this contribution does
not give a contribution to the right-handed amplitude. It also appears that the present state
of knowledge of the three-particle B meson DA is unsatisfactory as the available sum rules for
A% + A%, both as originally developed in [193] and an alternate sum rule given in Section 6.4,
are not numerically stable. This does not mean that large corrections are expected since there
is no reason to believe that the value A% + A2, = 0.48 GeV?, derived from equations of motion
in [195], is substantially incorrect; however, it is dependent on the B meson wave-function

model chosen and therefore O(1) corrections are to be expected.

Finally, the new result for the non-factorisable Oy diagram has been applied to produce
updated predictions of C P asymmetries in various B — V' decays and the P; and S3 angular
coefficients in B — K*I*1~. At present, experimental errors in these channels are rather large
in comparison to the theoretical uncertainty, and the theoretical prediction is for a small effect
in all cases. The prediction of the angular coefficients P; and S5 is obstructed somewhat, due to

the lack of an accurate fit of the right-handed component of B — V form factors over the whole
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q® range. Computing the right-handed form factor is beyond the scope of this chapter but it
would appear possible to extend [81] to give the required result, and this would be expected to
reduce the error in the right-handed B — VITI~ amplitude by around an order of magnitude
when combined with the results calculated in this chapter, which provide a similar improvement

over the previous inclusive estimate [185] of the non-factorisable charm loop effect.
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Chapter 7

Conclusions

In this thesis, calculations of several new contributions to the closely-related semi-leptonic and
radiative B meson decays have been presented. Although these decays are rare, they play a
crucial role in testing the decays of the b quark because non-perturbative QCD effects are under
good theoretical control, and factorisation and sum rules give predictions with good accuracy.
Despite the fact that they represent only a small class of possible B meson decays, the processes
B — X~ and B — X171~ offer many observables such as asymmetries and angular coefficients,
which can provide independent constraints on the short-distance physics of b quark decays.
Progress in the search for physics beyond the SM in the B sector therefore depends both on
improved measurements of these many different quantities and better theoretical understanding
of the contributions of effective operators to each of them. The variety of observables means
that each can be sensitive to different operators and different quark-level processes induced by
those operators.

The calculation of the chromomagnetic matrix element in Chapter 3 means that the leading
amplitudes for each of the ten operators contributing to semi-leptonic B decays are now known.
That this contribution was not computed previously was due to a breakdown of QCDF due to
the presence of a power-like infrared divergence in one Feynman diagram. The LCSR method
was used to overcome this difficulty, but a new difficulty was encountered not previously seen in
B meson sum rules, that of anomalous thresholds. Whilst these do not lead to any theoretical
problems in the LCSR method, they do make the required analytic continuation more com-
plicated than is usually the case. Unfortunately such difficulties are to be expected in future
multi-loop sum rule calculations, and indeed they were encountered again in the calculation of
a certain higher twist WA diagram in Chapter 5.

Although the chromomagnetic operator gives a small contribution to the overall branching
fraction and is also not a major contributor to the isospin asymmetry computed in Chapter

5, this development means that should deviations from SM predictions be found it would be
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possible to assess whether new contributions to the Cg WC are responsible. In light of data
showing unexpectedly large C'P violation in hadronic D decays and the fact that an enhanced
Cs WC could be responsible [150], Chapter 4 put forward an argument that should the future
measurement of the C'P asymmetry in D — V' also be above expectations in the SM, new
contributions to Cg must be considered a strong possibility, since it is not as well constrained
as four-quark operators by the overall branching fraction, and the associated chromomagnetic
matrix element has a large strong phase necessary to produce observable direct C'P violation
when the dominant amplitude is real. Unfortunately, recent data from LHCb on the direct C P
asymmetries in D decays did not confirm the earlier measurements and there is now much less
reason to expect new physics to be found through measuring the CP asymmetry of D — V7
decays. Nonetheless, the points in Chapter 4 remain valid; both the analysis of the leading
amplitude in radiative D meson decays and the argument that the chromomagnetic matrix
element is the most promising candidate should sizeable C'P asymmetries eventually be found,
once the decay D — V' is measured with sufficient accuracy.

The analysis of the isospin asymmetry in B — V decays in Chapter 5 extends prior results
in two orthogonal directions: first, the LCSR method is used for the calculation of WA in
B — VIt~ decays and previous results using QCDF are confirmed, and second, the WA and
QLSS processes are extended to a general basis of four-quark operators to facilitate beyond-
SM analyses in this channel. The isospin asymmetry in B — P decays was also considered,
which included calculation of a new term at sub-leading twist which turns out to give a large
contribution in the SM but violates the oft-made assumption that the pseudoscalar-meson
decay amplitude is equivalent to the longitudinal amplitude for vector-meson decay. The best-
measured isospin asymmetry, that in B — K*v, was found to be in good agreement with SM
expectations; however, the decays B — py and B — KI*l~ were not. In the case of the p
meson it was argued that a large splitting between the C'P-averaged B — py and B — K*v
isospin asymmetries cannot be accommodated in the SM, given that the large WA contribution
separating the two amplitudes is suppressed by an order of magnitude in the C' P-average by
CKM factors. In the absence of a combined fit of b — d decays it is not possible to attribute
this discrepancy to a specific cause, but it does appear to be the neutral rather than the charged
decay which is presently at odds with the SM prediction. The situation for the B — K is rather
different, firstly because the measured isospin asymmetry is very large and secondly because the
SM prediction is much smaller than the case of vector final states since the rate is dominated by
the Og 10 operators rather than O7, which has a much smaller WC but is enhanced, along with
the isospin-violating WA terms, by the photon pole in B — V~ decays. An isospin asymmetry
on the 40% level in B — K171~ decays would therefore imply an enhancement of an order-of-
magnitude in one of the operators contributing to isospin violation, and such a large deviation
from SM expectations would be expected to show up in other channels. It was however pointed

out that by a careful choice of the Lorentz structure of an effective operator it can be made to
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contribute to only the vector or pseudoscalar case.

Chapter 6 is centred on the calculation of radiative and semi-leptonic B meson decays
through a charm-quark loop induced by the Oy operator, where a soft gluon is emitted into
the final-state meson. This contribution has been a significant source of uncertainty in certain
observables for some years since the amplitudes to emit left- and right-handed photons have
comparable magnitudes, and it had been thought that it could dominate the right-handed rate.
The main contribution of the improved calculation presented here is that in spite of the fact that
its uncertainty is large in comparison to its own magnitude, it reduces the overall uncertainty
in the right-handed decay rate substantially, because it has been shown not to be the dominant
term. Unfortunately, since up until now published fits of the B — V form factors have not used
the left-right polarisation basis, estimating the right-handed matrix element accurately is not
straightforward. A computation of the right-handed form factor amplitude should be possible,
although LCSR must be used since QCDF cannot be easily extended to power-suppressed
corrections, and would represent the next step in reducing the theoretical uncertainty in the
relevant angular observables P, and S3. The computation of time-dependent C'P asymmetries
fortunately avoids such problems because the form factors are known to preserve the short-
distance helicity structure exactly for the on-shell photon, and therefore predictions of these
quantities with percent-level accuracy are possible.

The way forward from these results is mainly a case of waiting for further experimental
data, since the majority of theoretical predictions given in this thesis are already ahead of
experimental precision. There are exceptions in the isospin asymmetry of B — py and B —
KITl~ where there is a significant tension between the current measurements and theoretical
expectations, but given past experience, such as in the case of the C'P asymmetry in hadronic
charm decays discussed in Chapter 4 where new data has shifted the world average result
significantly, it would seem sensible not to draw firm conclusions at this stage. Nonetheless
there remain open theoretical challenges in this area: sub-leading power corrections and ag
corrections are not well-known in all cases, and a calculation of the QLSS terms and non-
factorisable WA using LCSR would reduce the theoretical uncertainty in the isospin asymmetry
and right-handed amplitudes significantly, although it is expected that this would be obstructed
by anomalous thresholds. The QLSS diagram in particular is of interest because an LCSR
calculation of that topology would also include the soft initial-state gluon contribution through
the O5 operator, discussed in Chapter 6, which has been claimed to give a significant correction
to the overall branching fraction [194]. That statement however was dependent on B meson
wave-function models and confirmation through an alternative approach would be significant.
Similarly, an update of LCSR form factor estimates in the helicity rather than the parity basis

would reduce the large uncertainties in the P; angular observable.
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Appendix A

Definitions

As explained in Section 2.1, the convention used in this thesis for the Levi-Civita tensor is
different from that used in FeynCalc [25] by default. The choice of convention implies the sign
of the trace

Tr{y vy~ v5} = 4iet"P7 | (A1)

and fortunately this is configurable in FeynCalc using the code

. Tr[GA[a,b,c,d,5]]
> SetOptions[Tr, LeviCivitaSign -> 1];
s SetOptions[DiracTrace, LeviCivitaSign -> 1];

. Tr[GA[a,b,c,d,5]]

which should print

\ _4i€abcd

, 4Z'€abcd

to indicate that the convention has been changed.
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Appendix B

Distribution amplitudes

In this appendix the distribution amplitudes used throughout this thesis are collected.

For further references see the classic review [82], the LCSR review [105] and the thorough

paper on higher twist DA [70].

B.1 Light meson DA

The 2-particle DA for the pseudoscalar at twist-2 (¢x ) and -3 (¢, ») (e.g. [201]) is given by

(K(p)|5(x)q[z, z]q(2)p | 0) :/0 duei (wpatupz) [i&[p%]ba@((u)

(B.1)
g ke p . :
—@4NC [Y5]baPp(u) — 224Ncpu(ac — 2)u[0"¥5]pa®o () | + higher twist |

where a,b are Dirac indices, 4 = 1 — u, 3 = fxgm?%/(ms + m,) and the [z, 2] represents a
QCD Wilson line to make the matrix element gauge invariant. The asymptotic forms of the

DA functions are

Pk (u) = ¢o(u) = 6uu Pp(u) =1 . (B.2)

From the appendix of [93] it is seen that upon neglecting quark masses and three-particle
DAs, equations of motion constrain ¢, ,(u) to their asymptotic forms. ¢x(u) is expanded in

Gegenbauer moments as usual.

171



172 James Lyon

The 2-particle DA for the vector meson at twist-2 (¢ 1) and -3 (g} (. a)) (e.g. [81]) is

(K*(p,n) | 5(2)al, 2lq(2)s | 0) :/0 due““”"”“”'z){fp l(mﬁ)baM( )

=5 (@ = e 0) = o a0 = ) e >]
(B.3)
+mZVJ:K* l(p)baz : Ei — 3 &) () + (7/ - pM)b 0 (u)
+i€uupa77upp($ —2)7 ("5 ) pa gﬂ_a) (u) + higher twist .
The asymptotic DAs are
o1 (u) = dy(u) = g\ (u) = hﬁs)(u) = 6uu
9 (u) = % (14 (u—1u)? hﬁ“ (u) = 3(u—u)? . (B.4)

In fact, these functions overparametrise the K* state and are related by QCD equations of
motion [70], the use of which in calculating B meson weak annihilation is described in Section

5.3.2.

B.1.1 Three particle distribution amplitudes

The leading twist-3 distribution amplitudes for vector mesons are [127]

(0122(2)9Cu (V230501 (= 2)|V (D)) = — frmy T2, A(v, p2) + O(m) (B.5)
(0122(2)9Gu (V) Va1 (—2) |V (py ) = +z'fvmvTWv<v,pz> +O(m) (B.6)
(0132(2)9G (V) T (—2)|V (p, ) = *fv m? ZT%WT(v,pz) +o(my) , (BT

where é;w = 1/26HVQBG“5 and the T34 tensors are given by

A
T03(/,Ll/ pa{pMnJ_u _ang_;Z]

Tt = PaPudf, — PpPuIay — PaPvdh, + PaPvlay,

At m%. = 0 identical results are produced with the replacements n, — n and g* — g. The
K n

distribution amplitudes are parametrised as

1 1 1
[A,V, Tl(v,pz) = / dal/ dOég/ dasd(l —ag; — as — ag)e_ipz(az_m*'ma')[A,V,T](g) ,
0 0 0
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and the conformal expansion of the DA reads

Ala) = ¢3V—360a1a2a3( I +)\:|3|V(a —ag)—i—w;‘, (Tas —3)+...)

1
V(a) = (;53 v = 360a1a2a§(/€g v —l—w“slv(al —ag) + )\L‘VQ(’?Ckg -3)+...)
1
T( ) ¢3v—360a1a2a3(/€3v+W3v( )+>\3V2(7Oé3—3) ) . (B8)

The notation with ¢!l has been used in the recent literature [127,186] to make the notation

more systematic. The values used in thesis for the K* are [127, table 1]

1. =0.023(8) Al . =0.035(15) &l . =—0.07(3)
K. = 0.000(1) wl . =0.10(04) Al = —0.008(4)
K- = 0.003(3) Wiz = 0.3(1) A = —0.025(20) (B.9)

at p = 1GeV. The parameters £ and A are zero for the vector mesons which have definite
G-parity such as the p. Here these parameters are small since G-parity breaking is small but

non-zero in the K*.

B.2 Photon DA

The leading twist 2 photon DA [165] is:

(7(q, €)|@a () [z, 2] g5 (2)|0) = de /0 d*ye e’ (0T qa(x)[x, 2)qn(2) i (y)]0)

N 1
= % / due’ T2 (6 (u)o*Penqs + (x — 2)-€),, + higher twist . (B.10)
c Jo

The first and second term on the last line correspond to the left-hand side of equation [165]
and second term on the right-hand side of the same equation. The reason (B.10) is not gauge
invariant is that [z, z] does not contain the QED Wilson line as in the expansion of the external
field to first order. The use of a polarisation vector ¢, implies the use of the Lorentz gauge
A, — eueiq'l where € - ¢ = 0. It is however possible to check gauge invariance of results
computed using this formula by the replacement
n-e

€u — € — n- qq;,a (Bll)
which allows axial gauges to be accessed. Note that the perturbative photon contribution must
be included in addition to the photon DA since it is a separate term in the OPE. The asymptotic

photon DA is given by
bo(u) = 6xuu (B.12)
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where x is the magnetic susceptibility of the quark condensate, calculated to be xy = —3‘15(10)Ge\/'72
at u = 1GeV in [165] (the sign is adjusted to the convention of the covariant derivative (2.1)).

B.3 B-meson DA

The leading order two particle B meson DA and its associated definitions are given in Section
5.4.5. Here the complete definition is given along with the wave functions ¢4 commonly used,

which are the model functions defined in [193]

_ W —w/wo _ 1 —w/wo B
w)=—5e _(w)=—e , 13
¢+ (w) 3 ¢—(w) ) ( )

with wy = 2Auqrr/3 ~ 0.4GeV. Note that these two functions are related by Wandzura-

Wilczek type equations of motion [118]. The moment functions appearing in (5.35) are

AP :/oodz — = B.14
:I:(q) 0 +l+—q2/m3—i6 ( )

NP = wi Lyein-Ei@)] . A =S Gr-EiG).  (B15)

where y = ¢? /womp and the function Ei is the exponential integral.

B.4 Fermion propagator on the light-cone in a background field

The massive propagator in a gluonic background field on the light-cone can be obtained in the
Fock-Schwinger gauge x - A = 0 using the heat kernel method presented in the appendix of [76].

The propagator is expanded in powers of z2

(O Te()e(0)[0) 4 = i [ e Se(k)

So(k) = SO k) + 8P (k) +... (B.16)

where only the first correction S,EQ) is needed:

o K+me
S =
1
2 g F+me  F+me
Sé ) = 75/0 dv <UU~G(UI) 2 —m2)? +U(k‘2 — mg)QmG(vz)) . (B.17)
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The computation of Chapter 6 can also be performed using the perturbative propagator without

a light cone expansion, derived using the Fock-Schwinger gauge relation A, (x) = fol vl Gy (va)dv:

1 4
) o n E+m I +m /+m
(2) — d4 d /7 iy.(k—1) c _u c v c B.1
Se Z/ y/o vdv gGu (vy) (27T)4e k2 — m{y 12— sz 12 —m?2 (B.18)

This has been confirmed to give the same results as those in Chapter 6 computed using the

light cone expansion of the quark propagator.

B.5 Anomalous dimensions

Here the one-loop anomalous dimensions relevant to DA parameters and local OPE condensates

used in this thesis are collected. The convention for the one-loop anomalous dimensions is chosen

o(q®) = e(p?) (as(qg) ) T : (B.19)

as(p?)

such that

where By = (11N. — 2Ny)/3 is the leading term in the QCD beta function as usual. Some

authors define this equation with the exponent as ++v./f8, instead, e.g. [70].

Anomalous dimensions for local operators, as well as associated coefficients specifically the

quark mass and meson tensor decay constants such as f 1%*, are

Ygg = —Ym = 6CF e.g. [202]
Ygonrg = Y+ = —2CF 203]
Vg.aGg = CF (204], (B.20)

where of course Cr = 4/3. The vector current, and thus the meson decay constants fy (),
have no anomalous dimension. By construction, the anomalous dimension of the magnetic

susceptibility appearing in the photon DA is given by, e.g. [77]:
Yx = Vgorvqg — Vaa = —8CF . (B.21)

Anomalous dimensions for Gegenbauer coefficients appearing in the pseudoscalar and vector

meson DAs are:

1

3
vk =—8Cp (zp(n +1) -+ n+1) [70, (3.57)]

A =, = —8Ck <w(n+2)+7E_i_2(n+ll)(n+2)

) 0. o) o G0
where n indicates it is associated with the n'® coefficient, 1 is the digamma function and vz is
I

. 1 . .
the Euler-Mascheroni constant as usual. ;" are anomalous dimensions for the vector meson
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DAs ¢, |(u) and v, is for the pseudoscalar DA ¢x (u). Note that these anomalous dimensions

are for combinations like j}%* a;-, not the Gegenbauer moments themselves.

’y,‘l = 7, is a consequence of both being the anomalous dimension of the same light cone

operator, cf. Section 2.10. The appearance of a special function in a one loop anomalous

dimension is explained by [83]

n—1

Y(n) +ve =

(B.22)

bl
I
| =

1

and thus 75 = Ygourq and fy”

= Ygynq = 0 reduce to the local operator results.

Anomalous dimensions for the three-particle DAs are more complex due to mixing between
the A and V expansion parameters beyond leading twist and therefore they are not listed
here. They are available from [127] but it should be noted that a different convention for the
anomalous dimensions is employed there: the exponent used in equations analogous to (B.19)

is 7v/Bo and therefore the anomalous dimensions listed there must be scaled by a factor of —2

so that they can be used in (B.19).
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Appendix C

Dyson-Schwinger equations (DSEs)

DSEs [58-60] were briefly mentioned in the main text, and so a brief discussion of their deriva-

tion is included here. In Minkowski space DSEs generally take the form

SF[g]

<\p‘fr{ + iFg 2210 }‘cp> ~0 (1)

where F[¢] is an arbitrary polynomial of the field operators ¢;(x), and S[¢] is the classical
action. ¥ and ® are arbitrary external states. The equation (C.1) follows straightforwardly for

¥ = ® = 0 from the path integral representation of correlation functions, since

<0’T{ R RROREE }‘°> < [ 2o (S5 +iF1e155 Gy ) elisie)

_ / Do Mfmw exp(iS[¢]) = 0

(C.2)

where f D¢ denotes a path integral. This derivation of course assumes that the integral of a
total derivative is zero, which is indeed the case when boundary terms vanish, as is generally
assumed. It is however not always the case; DSEs for ghosts in Yang-Mills theory must be
derived via a different method [205] in order to be non-perturbatively valid owing to the Gribov
problem [206]. That this equation also holds for transitions between arbitrary states follows
from the fact that external states may be represented by boundary conditions on space-like
surfaces [59], and therefore the equation holds provided that such surfaces are well separated
from the point z.

In DSE based calculations the usual next step is to define the connected generating functional

W through
Z00) = eV = / Do exp (iS[qS] + / dde(x)qS(x)) (C.3)

and then define the one-particle irreducible generating functional I" as the Legendre transform

of W[J]. These functionals are more useful than the partition function Z[J] in most cases
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because they reveal considerable internal structure of correlation functions, they are not as
general as Z[J] and (C.1), which because they apply to transitions between arbitrary states may
be considered equations between time ordered products of operators. The definition W[J] =
log Z[J] can only be applied to transitions between overlapping states, i.e. usually forward
scattering problems, since for non-overlapping states Z[0] = 0. This breakdown is hardly
surprising since the resulting DSEs on the connected generating functional W are non-linear
and the utility DSEs requires that different derivatives of W commute with each other which

is guaranteed by only considering expectation values rather than operators.
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Appendix D

Additional chromomagnetic operator ma-

terial

D.1 tg)(u) formula

9w =S [Bi+clC)]

i€{a,b,c,d}

(u—1)""m, P2 (¢?)H (u— 1) P? —ug®) M (u(P? — ¢*)* + 4(P* — p})¢®) >

(P? = p3)* + 2u(p + ¢*)(P? — pg) +u? (g — ¢°)*)H (mj (u*(Qu(P? — ¢°)
—14¢°(P?)* + (P*)’ + (8p% — 5¢°)¢* P* + 2p%(¢%)?) — Qq(4(16p% — 13P%)¢?

P2)2 4 (P%)* + 6(3P% — 4p%)(11P? — 12p%)(¢*)? + 4(40p% — 53P?)(¢*)® + 33
)))(P? = pi)? = 2ug®(Qy + 4Qq) (P?)? — (@b + 56Q4)¢> P* + 4Qqq” (16p7; + 5
¢*)(P? = p)° = 16Qq(q*)*(P? — )" + 5u’(Qy — Q) (05 — ¢*)*(P? — ¢*) +
(P? = ¢*)2(=2(8(Qp — Qo) (PB)* + (9Qs — TQ0)¢°pE + (13Q1 — 3Q9)(¢°)?)

(P?)? +2(5Qs (0 + ¢*) — Qq(50F + ¢°))(P*)* + ¢*((41Qs — 72Q4) (Ph)* + 2(41

Qq — 6Qu)a*ph + (31Qy — 46Q4)(¢°)*) P + 2Qq¢*(—324° (p5)* + 20(p)° + 17(¢*)?
pE +(0°)°) = Qua® (=176 (p%)? + 14(p)° + 22(¢°)*p% + (¢°)%)) + o

(PE — P*)(2Qq((72(p%)? — 104P?pl; + 33(P*)*)¢*(P?)? + (4p}; — 3P?)

(P2)! -+ 2(—1T6P2(3)® + 64(p3)° + 152(P2)%5f, — 47(P?))(¢2)® + 2(12

(%) — 60P°pE + 61(P?)*)(¢*)° + (44p; — 63P%)(¢*)! +5(¢°)°) + Qy
(

P? — ¢*)(¢*(69p% + 50¢°)(P?)? — (8p% + 29¢°)(P?)® + 6(P?)* + ¢*(—36
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(p5)? — 62¢°p; + 3(¢°)*) P* + pH(10p% — 3¢%)(¢%)?)) + u* (¢*((201Qp — 556
Qq)a*(Ph)* + 8(5Qs — 16Q,) () + 2(113Qs + 2Qq)(¢*)pB + (64Qp — 171Q)
(@*)*)(P?)? + ¢*(4Qq(T0(p%)* + T1¢°pT; + 30(¢*)%) — Qu(129(p})* + 222¢°
Ph +133(¢%)%)(P?)° + (18(Qp — Qg) (p%)? + 58(2Qs — 3Qq)a*p + (97Qp — T9Q,)
PP+ (22(Qq — Qo) +4(TQq —8Qu)a”) (P?)° +5(Qy — Q)
%)%+ (6°)%(2Qq(—68¢% (ph)* + 208(p3)* + 103(¢%)?pi; + 14(¢°)%) — Qp
129¢*(p)? + 66(pB)° + 98(4°)*p% + (¢°)) P? + (¢*)*(13Qs
pE)¢ (20% + 3¢%) — Qq(50(p%)*(¢%)? + 22p%(¢%)” + (¢°)* — 32(p)°
¢* +80(pE))))u" + (P? = pB)((PE — P*)(Qu(¢*(24(p3)* + 67¢°
ph + (6°)°)(P?)? = ¢*(25p% + 17¢%)(P?)® — (p; — 13¢°)
(PY)* + (P?)° + (¢*)*(=50(p)” — 35¢°p% + 54(¢%)*) P* — 2p3(¢°)* (p + 15
0*)) — Qq(P? — pB)(—2(48(p})* — 8OP?pi; + 29(P?)*)(¢°)® + 4(27P° — 8p3;)
(a°)° +33(¢°)" + 12(P?)°¢* + (P*)))u® + (2Qq(P? — ) ((—24(p%)* + 40

P?ply = 15(P?)?)¢*(P?)? + (P*)° + 2(80P*(p})* — 32(pp)° — 68(P?)*ph + 29

(g
(P
(
(v

(P*)°)(¢%)* — 2(4(p})* — 44P°p} + 59(P%)?)(¢°)* + (69P? — 56p7;)

(@*)* +5(¢°)°) + Qu(—4°(285¢* () + 60(p%)* + 214(¢%)*p% + 9(¢%)?)

(P?)? + ¢*(123(p%)? + 250¢%p% + 69(¢°)*) (P?)? — ¢*(92pF + T1¢%)(P?)" + (2
P+ 23¢°)(P?)° = 2(P?)° + (¢°)%(159¢% (p%)* + 130(p3)* + 90(¢*)*p — 30
()°)P? + pi(¢%)*(—=50(p%)? — 57¢°p + 24(¢°)%)))u” + (¢*((201Qp — 292
Qq)a* (P5)* +8(7TQ — 8Qq) (p5)° + 2(101Qy — 58Q4)(¢*)*p; + (T4Qs — 221Qy)
(@*)°)(P*)? + ¢*((136Qq — 111Q4) (P)* + 2(98Qq — 93Qb)a*p; + 5(40Qq — 23Qs)
(@*)*)(P?)® + (6(Qp — Qq)(P%)* + 10(8Qs — 9Qq)4°pT + (67Qp — 97Q,)
(@®)*)(P*)" +2(5(Qq — Qo)pE — 8Qwq” + 10Q4¢%) (P?)° + 3(Qs — Q)

(P?)° = (¢*)*((87Qb + 88Qq)q* (P5)* + 2(57Qp — 112Qq) (P)” + 2(61Qp — 121Qy)
(@*)*p% + (TQy — 52Q9)(¢*)*) P? + (¢*)*(—(9Qs + 38Q9) () (¢*)? + 2

(18Qy — 25Qq)p5(4%)° + (Qq — 6Q1)(¢*)* + (58Qs + 32Q,) (P5)*¢” — 48Q,
(PB))ut + (P? = ¢*)*(=2(4(Qb — Qy) (p3)? + (7Q — 5Qq)a*ph + (TQy — 9
Qq)(¢*)*)(P?)? +6(Qy — Qy) (5 + ¢*)(P?)* + ¢*((33Qs — 40Q,)

(P%)* + (46Qq — 24Q4)°p + 3(9Qs — 14Q) (g ) )P+ ¢?((29Qy — 40Q4)q”
(PB)* +6(4Q, — 3Qw) (p5)” + 22(Qq — Qb)(¢°)?p — (@b — 6Q49)(¢°)%))

u® +3(Qp — Qq) (P — ¢*)*(P? — ¢*)*u’ — (P2 PE)*a*(Qu((pg — ¢)(P?)? +2
(P?)? +7¢* (0} + 3¢*) P* — 6p%(¢%)*) — 4Qq(P? — pB)((P?)* 4+ 2¢*P* + 5
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(@*)%))u — 4(P? — p)* (4Qqph + 3QuP? — 4Q,P?)(¢%)?)) (D.2)
by == 2(u—1)""my P2 () THQy — Qo) (¢°(¢* — 4ph) + 2P%¢* + (P?)*) " (mj
(P? =) + (P* + ¢*)(P* — p)) (D.3)

P =3 (= 1)y QuP 0 — ) (= D — uP?) 7 (upy — ug® + %) (P — )2 + 4
(P? = pg)a®) 2 ((P?)*((3 — Tu)u(ph)? + 2(u(17u — 28) + 5)¢*ph — 3(u — 1)(9u — 14)(¢*)?)
u? 4+ (P2 (=sup? + p% + 5(u — 1)¢>)u® 4+ (P?)2(2(13u — 5) (p%)*u® + (=57u? + T5u — 14)
(pB)?a*u + 2(u(3u(u +4) - 28) + T)ph(4*)*+
(u — 1) (u(25u — 88) + 78)(¢*)*)u + P?¢*(—2(u(26u — 61) + 11)
) — 46)(p%) ¢ u—

2((u — Vu(u(47u — 164) + 114) + 2)p%(¢*)? + (u — 1) (u(u(11u — 52) 4 50) — 4)

(p%)u® + (bu(3u — 4)(9u — 19

(@*)%) + P (—2u(Tu — 2)(¢*)* (v — 1) + (u(u(59u — 12) — 38) + 4)
pE(d*)3(u — 1) + (4 — w(u(u(Tlu + 93) — 294) + 138))
(p5)%(¢%)* +16(1 — bu)u®(p)" + 2u(u(13u(u + 8) — 115) + 14)(p5)’¢*))mj + u(uph — u
0> +*)((=pE(10(p%)* — 9P?p + (P?)*)(P?)? — (—225P%(p)* + 124
(PB)’ + 78(P?)?p} + 51(P?)°)(¢%)* + (63(ph)* — 152P%p} + 121(P?)?)
(¢*) + (13p%; = 31P%)(¢*)* + 4(¢°)° + (20 + P?)(—41P%(p})* + 24(p})* + 16
(P?)*p% +5(P?)*)¢*)u’ + (0F — ¢°)(P? — ¢*)*(=6(p)? + 3P?p}h + 9¢°p; + 5
(P*)? +2(¢%)* = 13P%¢*)u’ + 2¢*(3(2(p)? + 5¢°ph — 23(¢°)*) (P?)* + 2
(0% + 7¢)(P?)* + (—66¢*(n3)* — 17(pE)” +123(¢%)*pE + 8(¢%)*) P* — 60
(PB)*(¢*)? — 4B (¢*)° + 8(p%)" — (¢*)! + 41(pE)*¢*)u — 2(P? — p})
(@*)*(B(ph)* — TP} + 23¢°pE + (¢)° — 25P%¢%))) (D.4)
by =2my H(P?Qq((P*)? = p5a®) (¢ (¢?
(% +¢*) + (P? = pp)? + (g — ¢*)?) " (my (u(pE — ¢*)*(*(0h + P?) + P?
(P? = 3p)) + (P? — p3)2(P*(3p + ¢°) + ¢*(¢° — 5p%))) + i (5 — P?)(u(3
P2+ ¢*)(0h —°)? — (P* = ¢*)(P* = p3)(=3p% + 2P° + ¢%))) + Qu(mj — p)
(% — P)(0% — ¢*) ' ((u = 1)¢* —uP?) ™" + P?Qq(pE — mi)(ph — P*)(—uP? + P* + ug®)™!
(PBa* — (P = (u=1)7'Qu(ph — ¢*) 7 (¢°(¢° — 4pB) + 2P°¢° + (P?)*) "
(mi(P* (0 + ¢°) + p5(d° — %) + (P?)?) — pi(P? — ) (4ph + P? — ¢°))) (D.5)
cd =—4u—1) " umy, 'P2Qq(2u(P? — pB)(ph + ¢°) + (P* — %)’ + v’ (05 — ¢)*) M (mi

(—(u+1)pp + P? +ug®) + my + uph(ph — P?)) (D.6)

p

—4p%) +2P%¢* + (P*)) 7' (2u(P? - pj)

et =4(u—1)""my, ' P?Qq(¢*(¢* — 4p%) + 2P%¢* + (P?)?) M (mj(—2p% + P* + ¢%) + mj, + ph

(rp — P?)) (D.7)
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el =(u—1)""u"tmy ' QuP?(Ag%(P? — ph) + u(P? — ¢°)*) 2 (2my (u(¢® (9% + ¢°) — 11P?

7+ (P?)%) + ¢(P? — pp) — 3u*(P? — ¢°)%) + 2(u — Dyumj (u(P? — ¢*)*(=3p% + 2P° + ¢*) + ¢

(P? — pB)(—6p% + 5P + ¢%)) + u(P? — pB) (u(P?)*((2u® + u — 3)¢* — 2u(u + 1)p3) — 2P¢

(u((5 — 2u)u + Dp% + (w(2(u — 3)u + 1) + 3)¢*)+
P (—2(u(u(u +8) — 4) — 3)p3¢® + 2u(Tu + 1)(p3)? + u(2u® + u — 3)
(@*)%)) (D-8)
cf =4(u—1)""m, ' QuP?(¢* (¢ — 4py) + 2P + (P?)*) ™' (my + p(P® — pj)) (D.9)

D.2 (Cj imaginary part with up to two massive propagators

In order to make use of the formula (3.44) an equation for Im Cy on the principal branch is
required. This is straightforward to derive from its Feynman parameter integral and is presented

here. The integral representation is given by

C()(p%7p37p§7mgaovmg)

1—x
=/ dx/ dy [(1 =z —y)(zpi + yp3 — mf) + xyps — ym3 + ie]

1 1
— [ do [yl y)(ant + (1= o)~ ) + - ymi 4 T (D10)
0 0

where setting one mass to zero allows a change of integration variables which considerably

simplifies the problem. The imaginary part is recovered from the well-known relation (3.35)

Imco(pipg;pg)mgaoam%)
1 1

= —ﬂ/ dx/ dys (1 —y)(zp? + (1 — z)yp; — m) + zyp; — ym3)
0 0

Lo —md) +yi — m3)) — O((ypi — m3) — ym3)
T [ dy —— 5 5 (D.11)
0 y(pT — yp3) + yps

The regions where the step functions are non-zero are given by the inequalities

y(p3 — pT +mg —m3) +pi —mg >0 (D.12)

—y°p3 + y(p3 +mg —m3) —mg >0 (D.13)

The two step functions can be treated entirely separately and it is a straightforward matter in

computer code to intersect the constraints (D.12) and (D.13) with the range [0,1] to reduce

182



Rare semi-leptonic B meson decays 183

(D.11) to a pair of integrals of the form

/ v dy _ 1 log | W2 =¥ )1 —y4) (D.14)
v 907 —yp3) + yp3 A2, 02, 3 (1 —y-)(y2 — y4)

y+ are given by the roots of 4(p? — yp2) + yp3 = 0, explicitly:

L = PEEPS = ps & VAL p5.p5)

D.15
2p3 (D-15)

Note that the square root of the Kéllén function obeys /A(p?,p3,p3) = p3(y+ — y—) and
provided that this constraint is maintained exchanging y, with y_ does not alter the value of
(D.14), so there is no possible issue with the branch choice of the square root.

The case p3 = 0 requires special treatment. First, note that the second inequality becomes
ym3 +ym3 < 0 and this cannot be satisfied for real masses. The first inequality is unaffected.

Then the integral (D.14) is replaced by

Y2 d 1
/ Y = log <y2 +ys) (D.16)
v YPTHYPy Py — i Y1+ Ys

2

where yg = pgpjp%.

The entire computation of (D.11) therefore only requires calculating a few square roots and
logarithms. The results of this method have been compared to the output of LoopTools [111]
and found to be the same; the benefit of not using LoopTools is that computing only the imag-
inary part is considerably computationally cheaper and thus the complicated two dimensional

integrals implied by appendix D.1 take much less time.
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Appendix E

Additional isospin asymmetry material

E.1 Weak annihilation formulae

Functions defined on the right-hand side of (5.21) are listed here. Any function not listed is zero,
and which functions are zero can be inferred from table 5.1 plus the additional consideration
that each operator will either couple to the V or A, 0 basis tensors according to its parity. The
functions pc, an pc, are the dispersion representations of the Passarino—Veltman functions Cj

and Cy in (3.17) and are therefore given by (3.45) and (3.30) respectively, given that:
pC, =pC, lu=1 pCy =pC.lu=1 - (E.1)

The functions in (5.21) which apply at |¢2|> 1GeV? are given in subSection E.1.1, and the
functions in (5.24) which apply at ¢®> = 0 are given in subSection E.1.2.

E.1.1 WA formulae |¢%/> 1GeV?

V2mpmy

“Vee

Defining, as before, d = — , the formulae for WA are:

A =220, (e o) (E2)

(u—1m% —ug®  um? — ug® + ¢2

2,2 02
32m mi.mpy

9 (R ) = (s uly __ ulyg B

d fQ,O(q au) - (mQB _qg)g h“ (U) |:um23 +ﬁq2 ﬂmQB +’LLC]2:| ( 3)
q 2 — _ 9.2 Qb Qq 4

A (@) = 20000 (g by ) (B4)
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st =B te-)” (it 100 ()

Sm2
—sQyp (2m§q2 —s¢® + 32) log <7nb2q2_822+52> (E.5)

2, 2
+5Qqq” (2mj + ¢* — s) log (W))

myq

212 freemp (MEQq — Qug?)

E.
i (£6)

Vsq,v(q2) =

Pg,ala* s) = %mbe*mK* (32 (s—a*)" (¢* - m%)) - ((mf —5) (s

- %) (mz? (Qb — Qq) (—sq2 + () + 282> —5(s—¢°) (s (Qb— Qq) — 2Quq” )

mb + q
miq> )
sm? )
E.7)

+ 5%Qqq° (—2m§ (s — %) +2my + (s — ¢%) ) log (

2
57 (723m§ (s = ¢%) = 2mipg” + 5 (s — ¢°) ) log <m q* — sq? + s*

oo femie (—mEe? Qo = 3Q0) +miQu + Qo (¢)°)
VG,A(q ) = - miqg (mQB — qg) (Eg)

Smb

3
0ol (s ) = S frcemic- <52 (s—¢?)° (m3 _q2)) (23 myQy log ( o + 52

+ (mi —8) (Qb — Qq) (s — ¢°) (mj (¢* —3s) +s(s—¢%))

E.9)

m+ -5
_252m§Qq(m§+q2—s)log< b q )

87r2m?3fK*mK*Qq
¢* (m% — %)

d- V6q,0(q2) = (E.10)

-1 2
(s (s— q2)3> fic- (—2$m§qu2 log (quQingQW)
(mi —s) (s — %) (Mg (Qb — Qg) (¢° +5) — s (Qp+ Q) (s — ¢°)) (E.11)
+ 2$m§Qqq2 log (W))

+ ol

myq

Am2fh. (m2Q, — Qu?
Vil (%) = —& (ml;q;’ ') (E.12)
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sq2 + 52
+ (my — ) (s = ¢%) (mi Qv — Qq) (¢° +5) =5 (Qu +Qq) (s — %))

+ —
+28m§Qqq 10g< mb q i >

(E.13)

3
loald’ss) = =it (0= )" (=) )~ ( 2omiQua? log (q“”")

A (m} — ¢?) fie- (miQq — Qvg®)
myq? (Mm% — ¢2)

Vib,ala®) = (E.14)

4 plood?.s) = ~tmmic fi. (¢ = )" (o~ #)°) <m§Qb (o (4 + 5

+2s (s — ¢*)) log (2smg> (E.15)

miq® — sq* + s
— (m} —s) (s — ¢%) (2m3 (Qv — Qq) + (@ + Q) (s — %))

+miQy (¢ +5) (mf + ¢ = ) (—bg <((+q)>>>

miq

16m2mEmi. (m? — ) fir (MEQq — Qug?)

mpq? (¢2 —mp)3

d-Vipo(e?) = (E.16)
q 2 3 2
P4,T(q ,8) = _5/11( (mp

+m) (smB (QmBq +mp—4s¢°+(q 2)2>) 1 (2sQum (my+s (mE—3s)) pc,(s)
+ 25mBQq,ocb s (m% (mQB +q* — 2s) + mg + s (s— mQB))
)

)

+ (mf ) (Qy — (m% (mQB +q¢% - 45) + 5 (—3m23 -+ 43)
(E.17)
Vir(d®) = - 4W2mb“%<g‘%$3 +mx) (E.18)

2\ _ 27 uQy @
fanld ) = @(mB + ) [¢P(u) (um + ﬂq um?, T uq2> (E.19)
R ( ) u(1 + 2a)m% + 2u%q (14 2u)m% + 2u?q?
+ (Qb u(um? + ug?)? e a(am% + uq?)? )]

3 3\ 1 sm
pLnld®,5) = o fic (s +mic) (5° (5~ *)°) (28%%@ 08
b

—25°mEQ, (m} + ¢* — s) log (s(m%—l;qj—s)) (E.20)
+ (2= 5) (Qo— Q) (5 — ) (2 (¢ — 39 +s<s—q2>>)

4% frQq (mp + mi)

Vsq,T(q2) = 2
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E.1.2 WA formulae ¢> =0

2
212 freemic Qg (m> 272Q
) S , vfr=mp-
2 mp
27 (6) - 2 freemic Qg (s% (—) - 2) ya 2 freemic (Qp — 2Q,) (5.23)
Pe,a\S) = szB 6,A = sz .
4m*myQq fie. 6 ("2
Mg K+ Py (T) 472Q fie-
Po v (s) = S Vow = ™ = (E.24)
42 Q fJ_ o mj
TMpJq ] o+ Py (T) 47T2mebe‘*
Ploals) = m, Vig = *TK (E.25)
E.2 Wilson coefficients in BY — p° decay
Here the formulae for a¢ omitted from Section 5.6.1 are collected.
~d d 1 U u U u 2 8u 8u
ag =ag + 6(_a2 — a3 +4ag — day + 3afy) + 5( ay" — a3" +dag" — da7" + 3aif) (E26)
1 1 '
E( — ad + 4a — 4a2 + 3afy) + §( —a§? + 4a8? — 4a8? 4 3a52)
1 , , : 2
ad =ad + 6(—(11 —ay + 4a¥ — 4a§ + 3agy) + §( a¥ — a§" + 448" — 4a8" 4 3a8") E.27)
1 1 '
1—( —a$ + 4a? — 402 + 3ad) + §( — a§? 4 4a3? — 468 + 3a8)
1
ag =ag +E( (a§ — ag) +2(ag — ag) + (af — af) — (af — a})) .
1 .
F 5 (20— a3) + 20— o) + (0} — o) — (o} — al"))
1 u u u u
ag =ag + 12 (2(ag —af) +2(af — a¥) + (a§ — ay) — (a§ — a3)) (£.29)
1 U u u U .
+ 5 (205" = ag") +2(a7" — a7") + (a3" — a3") — (a5 — a3"))
3 =af + 5o — o) + (0 — )+ (af — )+ (@ — o) + (e} i) (E30)
1

T3 (e — ) + (af — ) + 5 (a3 — a8 + (a3~ ) (B3)

~d d d
ajg =aig + g(alo —ajy) + 9
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¢ /GeV?

B — Kl 1 2 3 4 5 6 7 8
ay =0.1 0.35% 0.14% -0.03% -0.15% -0.23% -0.27% -0.28% -0.25%
ag 0.68% 0.60% 0.63% 0.64% 0.62% 0.58% 0.53% 0.47%
a -0.10% -0.13% -0.18% -0.21% -0.22% -0.23% -0.22% -0.20%
ag 0.35% 0.31% 0.33% 0.33% 0.32% 0.30% 0.27%  0.24%

STETST| 128%  0.68% 0.35% 018% 0.08% 0.04% 0.01% -0.01%
Si(R,L) 0.88% 0.60% 0.39% 0.25% 0.16% 0.11% 0.07%  0.04%
L 020%  -0.34% -031% -0.25% -0.20% -0.15% -0.12% -0.09%
SS(R,L) -4.68% -3.94% -3.13% -246% -1.96% -1.57% -1.25% -0.91%
by 5.03% 175% 0.03% -1.04% -1.76% -2.25% -2.51% -2.44%
(&5 -0.00% -0.00% -0.00% -0.00% -0.00% -0.00% -0.00% -0.00%
Co -0.84% -0.45% -0.22% -0.10% -0.03% 0.01% 0.03%  0.04%
Cs 0.02% 0.04% 0.04% 0.04% 0.04% 0.04% 0.03%  0.03%
Cy -0.11% -0.21% -0.28% -0.31% -0.31% -0.29% -0.27% -0.24%
Cs 0.01% -0.00% -0.01% -0.02% -0.03% -0.03% -0.03% -0.03%
Cs 0.20% 0.23% 0.30% 0.35% 0.39% 0.41% 0.39% 0.34%
cst -0.22% -0.09% -0.02% 0.02% 0.05% 0.08% 0.09%  0.09%
SM total -0.93% -0.48% -0.20% -0.01% 0.12%  0.20% 0.24%  0.24%

Table E.1: Breakdown of contributions to B — Kl isospin asymmetry in SM operator coefficients
C;, and in a generalised basis of four quark WA operators with coefficients a; and QLSS contributions
9 =1 was used to produce these values.

with coefficients s, . af = 0.1 and s

T,X

The coefficients for colour octet operators in the SM are:

8q __

8q __ 8q __ 8q _

a;” = Q" =az = —a4 =
8q 8q __ 8q __ 8q __
5" = —0g = —Q7" = ag" =
8q 8q

—4C5

Ay
205 — 25552 C

t

(E

32)

E.3 Tabulated isospin asymmetry results in the SM and beyond SM

operator breakdown

The data tables here correspond to the graphs in figures 5.8, 5.9, 5.11 and 5.12. Results for the
K are given in table E.1, the K* in table E.2 and the p in table E.3. Data for B — (K*, p)y

are also provided, denoted by ¢? = 0 in tables E.2 and E.3.
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q?/GeV?
B — K*lI 0 1 2 3 4 5 6 7 8
ay =01 | -1.55% -0.22% -0.00% 0.06% 0.08% 0.08% 0.07% 0.06% 0.06%
al -1.58% -0.33% -0.09% -0.00% 0.02% 0.03% 0.04% 0.03% 0.03%
at 1.29% -0.07% 0.02% 0.00% -0.00% 0.00% 0.01% 0.02% 0.03%
ay 0.84% -0.53% -0.64% -0.67% -0.65% -0.60% -0.54% -0.47% -0.42%
al 10.3% -0.20% 0.23%  0.03% -0.02% 0.02% 0.10% 0.17%  0.26%
a, 10.5% 0.43% 040% 0.13% 0.08% 0.14% 0.24% 0.34%  0.47%
ad =01 |-285% -040% -0.00% 0.12% 0.15% 0.15% 0.14% 0.12% 0.11%
al 291% -0.61% -017% -0.01% 0.05% 0.07% 0.07% 0.07%  0.06%
ag 0.78% 0.00% 0.02% 0.00% -0.00% -0.00% -0.00% 0.00% 0.01%
ag 0.50% -0.30% -0.34% -0.35% -0.33% -0.31% -0.27% -0.24% -0.21%
ag 6.23% 0.18% 0.20% 0.02% -0.04% -0.03% 0.00% 0.04%  0.08%
ad, 6.29% 0.45% 0.24% 0.03% -0.03% -0.01% 0.04% 0.09% 0.16%
sSEE =11 000% -1.26% -0.75% -0.38% -0.18% -0.08% -0.03% -0.01%  0.00%
s h 0.00% -0.90% -0.67% -0.43% -0.26% -0.16% -0.10% -0.06% -0.03%
st 0.01% 0.20% 0.38% 0.34% 026% 0.19% 0.14% 0.10% 0.08%
s;U® 0.28% 0.81% 0.58% 0.36% 021% 0.12% 0.06% 0.03% -0.00%
s¢, 0.40% 0.67% 0.57% 042% 0.30% 0.22% 0.16% 0.11%  0.07%
st 0.95% -0.00% -0.28% -0.33% -0.31% -0.26% -0.22% -0.18% -0.14%
S 1.59% -1.82% -1.96% -1.64% -1.27% -0.97% -0.73% -0.54% -0.36%
sb 5.03% 833% 3.25% 0.12% -1.56% -2.38% -2.67% -2.62% -2.28%
sS, 0.02% 243% 2.21% 1.66% 1.19% 0.85% 0.61% 0.44% 0.29%
st 0.05% -4.60% -1.84% -0.05% 0.98% 1.56% 1.83% 1.88% 1.69%
& 0.01% -0.00% -0.00% -0.00% -0.00% -0.00% -0.00% -0.00% -0.00%
Cs 0.11% -0.71% -0.44% -0.24% -0.12% -0.06% -0.02%  0.01%  0.03%
Cs 0.09% 0.01% 0.04% 0.04% 0.05% 0.04% 0.04% 0.03% 0.03%
Cy -0.98% -0.08% -0.25% -0.30% -0.31% -0.30% -0.28% -0.26% -0.24%
Cs 0.51% -0.09% -0.02% 0.01% 0.02% 0.02% 0.02% 0.02% 0.01%
Ce 6.41% 1.40% 0.40% 0.03% -0.11% -0.17% -0.18% -0.18% -0.17%
Csf 0.19% -0.34% -0.14% -0.02%  0.05% 0.09% 0.10% 0.10%  0.09%
SM total | 4.92% 0.18% -0.42% -0.48% -0.44% -0.38% -0.33% -0.28% -0.24%

Table E.2: Breakdown of contributions to B — K*[l isospin asymmetry in SM operator coefficients
C;, and in a generalised basis of four quark WA operators with coefficients a; and QLSS contributions

with coefficients s

X

al = 0.1 and s4

X

=1 was used to produce these values. The ¢?> = 0 value

corresponds to the process B — K*v and is computed slightly differently to B — K™l as described
in Section 5.3.6. The value for s, and sJ, are zero at ¢ = 0 as a consequence of h4(0) = 0 in
this approximation.

190



Rare semi-leptonic B meson decays 191
q%/CeV?

B — pli 0 1 2 3 4 5 6 7 8
ay =01 |-155% -023% -0.01% 0.05% 0.07% 0.07% 0.07% 0.06% 0.06%
ay -1.59%  -0.33% -0.09% -0.01%  0.02%  0.04%  0.04% 0.04%  0.03%
ay 1.25% -0.06% 0.02%  0.00% -0.00% 0.00% 0.01%  0.02%  0.03%
ay 0.81% -0.62% -0.72% -0.74% -0.71% -0.66% -0.59% -0.52% -0.46%
al 11.0% -0.20%  0.26%  0.04% -0.02% 0.03% 0.11% 0.19%  0.28%
ay 11.1%  045% 043% 0.14% 0.07% 0.12% 0.23% 0.33% 0.47%
ag =01 |-310% -0.46% -0.03% 0.11% 0.14% 0.15% 0.14% 0.12% 0.11%
af -317% -0.65% -0.18% -0.01%  0.05% 0.07% 0.07% 0.07%  0.07%
ag 0.76%  0.00% 0.02% 0.00% -0.00% -0.00% -0.00% 0.00%  0.01%
ag 0.48% -0.34% -0.38% -0.38% -0.37% -0.34% -0.30% -0.26% -0.23%
ad 6.62% 0.19% 0.22%  0.03% -0.04% -0.03% 0.00% 0.04%  0.09%
ad, 6.68% 0.48% 0.27% 0.04% -0.03% -0.01% 0.03% 0.09% 0.16%

RO =11 000% -1.39% -081% -0.41% -0.19% -0.08% -0.03% -0.01%  0.00%
P 0.00% -1.01% -0.74% -0.47% -0.28% -0.17% -0.10% -0.06% -0.03%
' h 001% 0.22% 042% 0.37% 029% 021% 0.15% 0.11%  0.08%

SUE) 20.40%  0.94%  0.64% 0.39% 0.22% 0.12%  0.06% 0.03% -0.00%
s, 0.44%  0.77%  0.64% 045%  0.32%  0.23% 0.16% 0.12%  0.07%
sty L12%  0.00% -0.31% -0.36% -0.33% -0.28% -0.23% -0.19% -0.15%
s5n 1.76% -2.05% -213% -1.74% -1.34% -1.01% -0.76% -0.57% -0.38%
shp 4.02%  8.46%  3.29% 0.06% -1.70% -2.55% -2.86% -2.82% -2.47%
851 0.02%  2.69% 2.38% 1.76% 1.26%  0.89% 0.64% 0.46%  0.30%
sb, 0.05% -4.81% -1.85% 0.03% 1.11% 170% 1.99% 2.04% 1.83%
@) 001% 0.02% 001% 0.01% 0.00% 0.00% -0.00% -0.00% -0.00%
Cs 0.01% -1.46% -1.00% -0.65% -0.40% -0.23% -0.11% -0.02%  0.09%
Cs 0.08% 0.01% 0.04% 0.05% 0.05% 0.05% 0.04% 0.04%  0.03%
Cy 0.93% -0.09% -0.28% -0.34% -0.35% -0.33% -0.31% -0.28% -0.26%
Cs 0.54% -0.10% -0.02% 0.01%  0.02%  0.02% 0.02% 0.02% 0.01%
Co 6.74% 151% 0.46% 0.06% -0.10% -0.16% -0.18% -0.18% -0.18%
cgt 0.14% -0.35% -0.14% -0.01%  0.06% 0.09% 0.11% 0.11% 0.09%
SM total | 5.22% -0.45% -0.93% -0.87% -0.72% -0.57% -0.43% -0.32% -0.21%

Table E.3: Breakdown of contributions to B — pll isospin asymmetry in SM operator coefficients
C;, and in a generalised basis of four quark WA operators with coefficients a; and QLSS contributions
with coefficients s, . aj' = 0.1, ad = 0.1 and 5%, = 1 was used to produce these values. The
modified four-quark coefficients @; are explained in Section 5.6. The ¢ = 0 value corresponds to
the process B — py and is computed slightly differently to B — pll as described in Section 5.3.6.

The value for s7, and s, are zero at g% = 0 as a consequence of A, (0) = 0 in this approximation.
1R 2L +
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Appendix F

Additional charm loop material

F.1 Explicit results

Here the polynomials are listed which where omitted from Section 6.2 for the sake of brevity. As
can be seen from (6.10) and (B.1.1) the expressions for Py, and P4 , have the same structure,
as do Ry, and R4,. Expressions for P4, and Rj4 , are therefore omitted. The expressions

here are for the leading terms in the relevant DAs:
V(a) = 360041&2@%.‘%';‘/ T(a) = 360a1042a§f<;§v (F.1)

The expressions for the full DAs still retain the structure outlined in Section 6.2, but are

significantly longer so are not included here.

Pyi = Pa1 = Py1 =2(mj — p%)(mi — azph — azq®)
Pyy = Paz = Poo =a3(pp — ¢°)((mj — pg) + (mj — aspl — @aq®))
Pys=Pa3=Q>—m
Pog == as(py — )(P? = @) + 5 (m? — Q)(P* + v~ @ — )
PV,4 = PA,4 :0!3(P2 - Qz)
Pos == 5as(P* = Q)(FP* + b - @* = ¢)

frmpymy

1 I
Pys == .
V5 =5 X meQB 360535
1 fympymy Il
Pys == x —5—360(q ;o
A5 =5 % fem% Carc
1 fimymy | ¢ 360ki..
Pl 7 3¢ F.2
05 =5 % fBm% 2m? (P? — Q?) (F-2)
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Ry = Rag =—6(Q> —m2)(m2 — a3Q* — a5 P?)((—2 + a3) P*¢* + 2mi(P? — Q) + ¢°Q*—
0307 Q% — a3 P?s + Q%s + a3Q%s + ¢*m3 — sm2)

Ry =(mj — pB)(mi(P? — Q%) + m2(q® — ph) + ppQ% — P?¢*)*(2mi (P? — Q*)+
mi(pZB _ 3P2 _ q2 4 3Q2) _pQBQZ _ 2P2q2 4 3P2Q2 4 3(]2Q2 _ 3(@2)2)

Ryy7 = Ra7 =a5(P? — Q*)(4(a3)*(P? — @%)*(¢* — 5) — 3a3(P® — Q*)(—2miP* + 2P%¢*+
2m2Q? — 3¢°Q% + Q%*s + ¢*m2 — sm2) + 6(Q* — m?2)(—2P?%¢* + 2mZ(P?* — Q*)+
Q>+ Qs + ¢°m? — sm2))

Roz :é(pr —¢*) 1 (P? = Q) (mi — pE)(mj — ¢*)(—=mi (P* — Q*)(3m: (nE — ¢*) B+
9P% — ¢* = 9Q%) + Q*(¢*(3P% — 26p}) — 3ph(pE + 9P?) +29(¢%)%) + 4P (8ph+
3P —8¢°) + 3(Q*)* (9% — 5¢%)) + 2my, (P* — Q*)*(8p% + 3P — 8¢” — 3Q°)+
6(m2)*(ph — ¢°)*(—pp + 3P + ¢* = 3Q%) + 3m’ (v — ¢°)(Q*((4p% — 5¢%)

(P% — ¢°) — 6P*(2p% + ¢°)) + P> (p; + 9P% — ¢*) — 3(Q%)*(¢° — 4pB))+
(@*)*(=2(¢*)*(4p + 9P?) + 3pB¢*(TpE + 6P?) + 6(pE)* (3P — ph) — 7(¢*)°)+
(p?
+ (

P*?Q*(9P*(¢* - 3p%) — (0B — *)3ph + 29¢°)) + 2(P?)?(¢*)*(8p%h + 3P? — 8¢°)+
3(Q%)°(3pE4q* — 6(0%)* + (¢%)))

Ryg = 112 (s —m2) x maﬁongw

Rag = 112 (s —mi) x f\}?bmv 36OC3K*

Ros 1 " fememe | ¢2 360k37 (F.3)

o120 fgmy | 2mp (P2 - Q%) (s —¢?)
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Glossary

ADM Anomalous dimension matrix.
BPHZ Bogoliubov—Parasiuk-Hepp-Zimmermann.
CKM Cabibbo-Kobayashi-Maskawa.

DA Distribution amplitude. Describes the probability of finding a set of partons with a given

momentum inside a hadron. See Section 2.7.

DSE Dyson-Schwinger equation. An exact equation of motion for a quantum field theory. See

appendix C.

FCNC flavour-changing neutral current.

FSR final state radiation.
GIM Glashow—Iliopoulos—Maiani.

HFAG Heavy Flavour Averaging Group [147].

HYV 't Hooft—Veltman regularisation scheme in which 5 = iv9vy17273-

IR infrared.

ISR initial state radiation.

LCSR Light cone sum rule, see Section 2.8.
LHC Large Hadron Collider.

LSZ Lehmann-Symanzik—Zimmermann; formula relating S-matrix elements to vacuum corre-

lation functions [71].

MFV Minimal flavour violation: a class of beyond SM flavour models in which flavour transi-

tions are still controlled by the CKM matrix. See references in Section 5.3.1.
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NDR Naive dimensional regularisation, in which 5 is treated as anticommuting.

OPE Operator product expansion. See Section 2.5.

QCD quantum chromodynamics.

QCDF QCD factorisation; throughout this thesis used to denote a method for computing
heavy to light B meson decays where both the B and final state mesons are treated using

a light cone expansion.
QL quark loops.

QLSS quark loop spectator scattering.

RG renormalisation group.

SM The standard model of particle physics, see Section 2.2.

UV ultraviolet.

VEV vacuum expectation value.

WA weak annihilation.

WC Wilson coefficient.
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