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Abstract

In this thesis, novel corrections to B → Xγ and B → Xl+l− decays, where X is a pseu-

doscalar or vector meson, are presented. These are the chromomagnetic matrix element, weak

annihilation in a general four-quark operator basis and a long-distance charm loop contribution.

The calculation of the chromomagnetic matrix element completes the calculation of matrix

elements for all relevant effective weak operators in B → V γ decays, removing an infrared

divergence which previous computations had treated in a very approximate way. It also en-

counters an interesting technical obstacle not previously seen in sum rule calculations, which

is likely to be encountered regularly in future once higher order loop diagrams are calculated.

The potential for this term to contribute to the CP asymmetry in D → V γ in the presence of

new physics is discussed.

The improved computation of weak annihilation diagrams is applied to the analysis of isospin

asymmetries in radiative and semi-leptonic B → (ρ,K(∗)) decays, and the computation of long-

distance charm bubble terms is applied to produce an improved prediction for time-dependent

CP asymmetries in various B → V γ decays.
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Chapter 1

Introduction

One of the goals of science is to explain the behaviour of complex systems in terms of simpler

components, and to infer underlying principles which explain as wide a range as possible of

observations. The pursuit of ever simpler building blocks led to the discoveries that chemicals

are comprised of atoms, atoms of electrons and nuclei, and nuclei of protons and neutrons.

Subsequently a number of other particles which are not constituents of normal matter were

discovered, and the study of these, along with the smallest building blocks of normal matter,

is what came to be known today as elementary particle physics.

Elementary particle physics was undoubtedly hugely successful throughout the second half of

the 20th century, culminating in the introduction of the Standard Model (SM) in the 1960s and

’70s [1–9], which explained all observations in particle physics at that time as well as predicting

the existence of a number of then unobserved fundamental particles. Subsequent experiments

have identified all of the predicted particles, although some at considerably different masses to

those expected, culminating in the experimental discovery of the Higgs boson in 2012 [10, 11].

In all this time, the only modification made to the SM has been the inclusion of neutrino mass

following the observation of solar neutrino oscillation at the Sudbury Neutrino Observatory and

Kamiokande experiments in the 1990s [12,13].

For all of this success, the SM still leaves a number of questions unanswered. Unification with

general relativity has been a long-standing goal of theoretical physicists but has so far proven

technically difficult, and since the reach of particle physics experiments is unlikely to allow

small scale observation of gravitational effects for the foreseeable future, this is likely to remain

a largely mathematical exercise. Aside from this, the SM itself contains several open problems,

most notably the hierachy problem and the puzzle of its matter content and couplings. The

hierarchy problem is enticing since it suggests that the Higgs boson mass should be unstable

against quantum corrections, and therefore it is hoped that new particles exist at masses not

much larger than that of the Higgs to resolve this problem. The leading theoretical candidate
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for these new particles today is supersymmetry, although lack of experimental discovery so

far at the Large Hadron Collider (LHC) has somewhat dampened optimism that it should be

within easy reach.

As for the particle content and couplings of the SM, there are two essentially orthogonal

puzzles. First, the cancellation of gauge anomalies between quarks and leptons within a fam-

ily, which would seem to imply that the SM charge assignments arise from some underlying

structure. Second, the question of why there are three families and why they appear to have a

hierarchical mass structure. Experiments at the Large Electron-Positron collider indicated that

if a fourth family exists, it is unlike the three already known since the Z boson only appears

to decay to three types of neutrino [14]. As for the mass hierarchy, although much theoretical

work has been done [15], there is presently no conclusive evidence of physics beyond the SM.

So then, what is B physics and what role does it play in all of this? The answer to the first

question is straightforward: B physics studies the decays of the b quark, which are measured

indirectly through the decays of heavy mesons containing b quarks. As for the second, these

decays are particularly interesting because they probe the flavour sector of the SM, which

contains the only known CP violating phase. Thorough experimental understanding of this

sector is therefore desirable since it is believed that the amount of CP violation in the SM is

not nearly sufficient to account for the observed baryon asymmetry of the universe [16,17].

Aside from the top quark, the b is the heaviest quark in the standard model, but unlike

the top it is sufficiently long lived to hadronise. Still, the fact that the b quark mass is much

larger than the scale of quantum chromodynamics (QCD) means that perturbation theory

remains an effective tool for computing B meson processes; non-perturbative effects can be

separated from short distance physics and grouped by inverse powers of the B meson mass.

Since the QCD aspects of B mesons can be handled well within perturbation theory, decay

rates can be predicted directly in terms of the SM electroweak sector and a small number of

non-perturbative QCD parameters, allowing indirect tests of the electroweak sector. The large

number of different decay channels enables many independent tests of the SM to be performed,

and likewise many independent constraints on its parameters, and deviations in any channel

would be a likely indication of new physics. This complements the results of high energy

collision experiments which aim to produce new particles on or near the mass shell. The study

of B meson decays has been ongoing since the exclusive lifetime was measured at the Large

Electron-Positron collider [18,19]; subsequently the dedicated B physics experiments BaBar and

Belle were performed, and today the LHCb experiment is continuing to provide more precise

measurements of B decays as part of the LHC experimental programme [20]. As with the other

LHC experiments, although some tantalising hints of non-SM physics have been seen [21, 22],

it is still likely as not that better statistics will confirm the SM picture.

This thesis will focus on semi-leptonic heavy-to-light B meson decays. Various new contri-

butions to these decays are computed, and their importance to isospin and CP asymmetries

12
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will be analysed. The remainder of this thesis is organised as follows:

Chapter 2 General theoretical background and methods used to perform calculations in B

physics are discussed, and conventions are established. The ultra-relativistic approxi-

mation is introduced and evaluated in light of the results for the isospin asymmetry in

Chapter 5.

Chapter 3 The contribution of the chromomagnetic operator to semi-leptonic B decays is

calculated. The differences between the light cone sum rules and QCD factorisation ap-

proaches are highlighted, and the infrared singularities are discussed. This calculation

runs into a significant technical obstacle due to the need to separate states with B me-

son quantum numbers from light states in the sum rule. The details of this problem

are presented, and the resulting implications for constructing multi-loop sum rules are

pondered.

Chapter 4 A scenario for sizeable CP asymmetry in D meson decays, through the chromo-

magnetic operator whose matrix elements are calculated in Chapter 3, is presented.

Chapter 5 The isospin asymmetry in B → (K,K∗, ρ)l+l− is calculated using light cone sum

rules (LCSRs) for all four-quark operators up to dimension 6. This is applied to the SM

operator basis to obtain a prediction for this asymmetry and loose constraints on beyond-

SM operators. Selection rules for operators in each process are discussed which allow

deviations from the SM prediction to appear much more strongly in specific channels if

beyond-SM physics does not couple to V −A currents.

Chapter 6 The contribution of charm loops with soft gluon emission to B → V l+l− decay

is calculated. It is analysed in the context of other non-factorisable charm bubble terms

and its contribution to the right-handed decay amplitude in the SM, where it appears

to dominate since the parity conserving and violating amplitudes are not related in this

case.

Chapter 7 A summary of the results of each chapter is given, along with concluding remarks

on how the calculations in this thesis may be further improved in future.

13
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Chapter 2

Preliminaries

In this chapter the basic techniques used throughout this thesis to compute heavy meson decays

will be discussed.

2.1 Conventions

The process of writing down a quantum field theory usually involves a certain amount of freedom

of choice, where signs and basis conventions can be changed without affecting any observables

of the theory. It is rather unfortunate although perhaps inevitable that some of these choices

have not developed universally accepted conventions, and so comparison between results of

different papers can occasionally be rather laborious if it is not made clear what the effects of

conventions are.

In this thesis, the covariant derivative is taken to be

Dµ = ∂µ − ieQAµ − ig
λa

2
Aaµ , (2.1)

which leads to interaction vertices with fermions of the form +ieγµ and igγµ λ
a

2 , where λa are

the Gell-Mann matrices and Q is the particle charge, either +2/3 or −1/3 for quarks and −1 for

leptons. The gauge charges e and g are both taken to be positive. This agrees with [23]1.

The totally antisymmetric Levi-Civita tensor is defined to satisfy ε0123 = +1, which follows

[24] but not [23]. This enters Dirac traces through

Tr{γµγνγργσγ5} = 4iεµνρσ . (2.2)

Note that this definition is only meant to imply the sign of the traces involving γ5 and not its

1Somewhat confusingly [23] sometimes absorbs the electron charge Q = −1 into this definition to give
Dµ = ∂µ + ieAµ.
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D-dimensional extension, which will be discussed in Section 2.4. This convention also disagrees

with the default choice of FeynCalc2 [25].

2.2 The Standard Model (SM)

The SM is the long standing and highly successful model underpinning the current state of

theoretical particle physics developed during the 1960s and ’70s [1–9]. Its basic ingredients are

well known: it has three generations of fermions, each containing quarks and leptons, and a

single scalar Higgs field, which interact via Yukawa couplings and a gauged SU(3)× SU(2)L ×
U(1)Y symmetry. Putting all of these ingredients together (e.g. [23]), the Lagrangian density

for the matter and Higgs sectors may be written

(2.3)

L = −1

4
F aµνF

a
µν +

∑
i

iQ̄iL /DQ
i
L +

∑
i

[
iūiR /Du

i
R + id̄iR /Dd

i
R

]
+ (DµH)†(DµH)

+ µ2H†H − λ(H†H)2 −
∑
i,j

Q̄iL

[
yiju H̃u

j
R + yijd Hd

j
R

]
+ h.c. + leptons ,

where QiL = (uiL, d
i
L) are left-handed SU(2) quark doublets and uR, dR are right-handed quark

fields, H̃a ≡ εabH†b is the Higgs field transformed to the SU(2) anti-fundamental representation,

and the covariant derivative Dµ implies inclusion of all gauge fields necessary for the field it

acts on. The lepton sector has not been written out in full since its dynamics will play no role in

this thesis. The “Mexican hat” shape of the Higgs potential λ|H|4−µ2|H|2 implies a non-trivial

minimum of the effective action and therefore that 〈H〉 6= 0 in the vacuum. For interactions at

scales small compared to the Higgs vacuum expectation value (VEV), the basis of fields used

in (2.3) is therefore inappropriate as there will be large bilinear mixing terms. This is of course

the scenario of interest for B meson decays.

Rewriting (2.3) accounting for the non-zero Higgs VEV has several consequences. The first

of these is that the quarks, leptons and W and Z bosons become massive. Since the solar

neutrino oscillation experiments of the ’90s, neutrinos are also known to have mass [12,13], but

their masses are too small to have an effect in accelerator experiments. The mass terms for the

quarks are then given by

Q̄iLy
ij
u 〈H̃〉ujR ≡ yiju m0ū

i
Lu

j
R Q̄iLy

ij
d 〈H〉 d

j
R ≡ m0y

ij
d d̄

i
Ld

j
R , (2.4)

where the up/down type of the left-handed quarks is defined by the direction of the Higgs VEV.

The mass basis for the quarks is given by the singular value decomposition (e.g. [26]) of the

matrices yu,d as

yu,d = Uu,dΣu,dW
†
u,d . (2.5)

2This convention can be changed; see appendix A.

16



Rare semi-leptonic B meson decays 17

The diagonal matrix m0Σu,d then gives the quark masses. The Wu,d matrices can be absorbed

into the definitions of the right-handed fields uR, dR without affecting any other terms in the

SM Lagrangian and are thus unphysical. The same cannot be said of the U matrices: after the

change of basis

uL = Uuu
′
L dL = Udd

′
L , (2.6)

the gauge interaction with the SU(2)L field, labelled Bµ, after expanding the Pauli matrix

components becomes

1√
2

(
ū′LU

†
u d̄′LU

†
d

)
γµ

 B3
µ B1

µ − iB2
µ

B1
µ + iB2

µ −B3
µ

 Uuu
′
L

Udd
′
L


=

1√
2

(
ū′L d̄′L

)
γµ

 B3
µ V (B1

µ − iB2
µ)

V †(B1
µ + iB2

µ) −B3
µ

 u′L

d′L

 , (2.7)

where V = U†uUd is the Cabibbo–Kobayashi–Maskawa (CKM) matrix [27, 28]. Two of the

SU(2)L boson degrees of freedom therefore induce transitions between up- and down-type

quarks, while the other is diagonal. The matrix V is unitary since it is the product of two

unitary matrices. A 3 × 3 unitary matrix has nine degrees of freedom: five of these may be

eliminated by phase rotations on the six quark flavours (the sixth global phase has no effect)

leaving four physically relevant parameters.

Both the fact that the CKM matrix does not appear in the B3 interaction term and its

unitarity are important in the SM. The B3 component of the SU(2)L gauge field mixes with

the U(1)Y gauge field to form the photon and the Z boson, and the absence of the CKM

matrix here means that there are no tree-level flavour-changing neutral currents (FCNCs) in

the SM, so any FCNC process is loop suppressed and expected to be small. Although neutral

current decays are rare in comparison with charged current decays and thus correspondingly

more difficult to measure precisely, they are interesting objects of study since it may be the case

that contributions from beyond-SM physics are significant. The unitarity of the CKM matrix

again leads to a suppression of flavour-changing neutral processes: neutral flavour-changing

loop processes will take the form V †MV as seen in Figure 2.1, and thus would be flavour-

diagonal were it not for the fact that the interaction matrix M depends on the mass of the

intermediate quark. This is known as the Glashow–Iliopoulos–Maiani (GIM) mechanism [29].

It leads to a rather different structure of FCNC decays for heavy up- and down- type quarks

since the top quark is so much heavier than the bottom: b → s and b → d decays contain

large logarithms ∼ logm2
t/m

2
b but the corresponding logarithms for the charm quark are much

smaller ∼ logm2
b/m

2
c . This point will be returned to in Chapter 4.
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b s

u, c, t

γ

W

Figure 2.1: Example of a flavour-changing neutral loop process. The appearance of the CKM matrix
twice in this diagram in the form V †V would mean that off-diagonal flavour-changing terms such
as b→ s transitions would be zero were it not for the different masses of the up-type quarks.

The standard choice for parametrisation of the CKM matrix is in terms of three Euler angles

and a CP violating phase [30]. In this thesis a widespread alternative parametrisation due to

Wolfenstein [31] and its all-order extension [32] will be employed. The full expressions are

rather lengthy so are not reproduced; however the approximate expression for the CKM matrix

in this parametrisation is

V =


Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =


1− λ2

2 λ Aλ3(ρ− iη)

−λ 1− λ2

2 Aλ2

Aλ3(1− ρ− iη) −Aλ2 1

 , (2.8)

which is accurate up to O(λ4) corrections. This expansion in a small parameter λ ≈ 0.23

reveals that the CKM matrix exhibits some structure; it is nearly diagonal and the coefficients

for transitions between different quark generations have considerably different magnitudes. The

origin of this structure is not yet well understood, though many proposed models exist [15].

2.3 The Renormalisation Group (RG)

As is well known, calculations beyond tree-level in quantum field theory often lead to the

appearance of divergent integrals. In order to produce finite predictions, the procedure of

renormalisation was developed, where the divergent parts are absorbed into unphysical param-

eters of the theory. The problem then is that it is not clear that absorbing divergences of all

possible diagrams is possible when there are only a finite number of parameters into which to

absorb them. In fact the divergences can only be absorbed for a specific class of renormalisable

theories – non-renormalisable theories are also common such as the effective electroweak theory,

which will be described in Section 2.4, but in that case calculations must be restricted to a fixed

perturbative order.

The problem of renormalisation was largely solved by the Bogoliubov–Parasiuk–Hepp–

Zimmermann (BPHZ) scheme [33–35] which gives an algorithm for systematically subtract-

ing the divergences of a given Feynman graph. It does not however solve a second problem:

quantum field theories usually contain symmetries, notably, as far as the SM is concerned, Yang-

18
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Mills theory, and symmetries are easiest to deal with when they are manifestly preserved. The

situation with regard to non-Abelian gauge theories was vastly improved by the introduction

of dimensional regularisation under which the gauge symmetry is preserved [36]. This is not

entirely without a price: Lorentz invariance must be broken to deal correctly with chiral gauge

theories in this approach, although problems in chiral gauge theories are virtually inevitable

owing to the Adler-Bell-Jackiw anomaly [37,38].

The effect of regularisation and renormalisation is that the couplings of a quantum field

theory acquire a dependence on the regularisation parameter. Since the goal of renormalisation

is to eliminate that parameter it is replaced by another parameter using some renormalisation

conditions. This parameter is massive, which is in general unavoidable since as it will turn

out the divergent integrals correspond to anomalous breaking of scale invariance [39, 40]. The

introduction of a new parameter raises the question of whether the theory indeed has more

parameters than originally intended or not. In fact, the original coupling and the newly intro-

duced mass scale can be related to each other, and this relation is known as the renormalisation

group.

Since at hadronic scales the QCD gauge coupling is much larger than the electromagnetic

coupling, it is most common to deal only with loop corrections in αs and to neglect those in

αem and the Fermi coupling GF . In this case in dimensional regularisation the bare coefficient

of an operator c0 may be written (e.g. [41])

c0(ε) = µ−nεZc(ε, g(µ))c(µ) , (2.9)

where ε = 4−D
2 and n is found by fixing c to its engineering dimension in the Lagrangian and Z

to be dimensionless. c can be a mass, or more usefully in the case of weak decays the coefficient

of an effective operator. The renormalisation constant Zc only depends on the renormalisation

scale µ indirectly through the gauge coupling g(µ) in minimal schemes3. The independence of

the left-hand side of (2.9) on µ can be exploited to eventually give

µ
dc

dµ
= c [γc(g) + nε] µ

dg

dµ
= −g [β(g) + ε] , (2.10)

where the definition of the β function for the running of the gauge coupling has also been

included. It is interesting to note that in order for (2.10) to hold it must be the case that the

residue of the 1/ε pole in Zc(ε, g(µ)) carries all information about the scale dependence of c;

all more singular poles must be defined in terms of this one, which can provide a non-trivial

check on the formalism. (2.10) is, without a perturbative expansion, as much as can be done

for the gauge coupling g; however in the case of c it is usual to remove the dependence of c on

3The extension to theories with multiple gauge couplings is straightforward since the scale µ can be chosen
separately for each coupling.
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µ entirely in favour of a dependence on g, which gives

dc

dα
= − γc(α)

2αβ(α)
c

γc→αγ(0)
c /4π−−−−−−−−−→

β(α)→αβ0/4π

(
−γ

(0)
c

2β0

)
c

α
, (2.11)

where a change of variables to α ≡ g2

4π has been introduced, and this is the form of the renor-

malisation group equation useful in dealing with effective theories. The factor −γ0/2β0 is the

result of definitions used to reach (2.10) and this convention shall be used to define the one

loop anomalous dimension γ0 of an operator in this thesis4, but it is not a universal convention.

The leading order solution to (2.11) is then

c(µ1) =

(
α(µ1)

α(µ2)

)−γ(0)
c /2β0

c(µ2) . (2.12)

The question that has not yet been addressed is the usefulness of (2.11) and (2.12), which

allow the renormalisation scale µ to be varied without affecting physical observables since the

bare coupling is held fixed. In practice this relation is not exact since, as in (2.12), it is usual

to work at a finite order of perturbation theory and therefore changing the renormalisation

point only keeps the physical results fixed up to a certain perturbative order. Although the

behaviour of uncalculated terms is in principle unknown, the RG can be exploited to choose

the renormalisation point such that the perturbative series should be expected to converge as

rapidly as possible. In practical terms loop calculations in quantum field theory result in the

appearance of logarithms of the ratio of the external scale q2, as well as particle masses, to the

renormalisation point, that is ∼ log q2/µ2. An RG improved calculation will then set µ2 ∼ q2,

so that such logarithms are small.

In a theory with multiple couplings the situation is slightly more complicated: (2.10) must

be replaced by

µ
dci
dµ

= γij(g)cj (2.13)

in order to account for mixing between different operators. γij is known as the anomalous

dimension matrix (ADM). If the convention γij = αγ
(0)
ij /4π is adopted at leading order following

(2.11), (2.13) can then be rewritten as

dci
dαs

= −
γ

(0)
ij cj

2αsβ0
. (2.14)

In order to extend the solution (2.12) to the case of multiple couplings the ADM is diagonalised

by

cDi = Vijcj γDij = Vikγ
(0)
kl V

−1
lj (2.15)

4Anomalous dimensions are listed for some relevant operators in appendix B.5.
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and then the solution takes a very similar form to (2.12):

ci(µ1) =
∑
j,k

V −1
ij

(
αs(µ1)

αs(µ2)

)−γDjj/2β
Vjkck(µ2) . (2.16)

For higher order calculations it is necessary to solve the flow equation (2.13) beyond the

leading order in αs; sadly in this case an exact analytic solution cannot be found and the

differential equation may either be solved numerically or by an expansion in αs(µ1) − αs(µ2).

The expansion in the latter case is given in the appendix of [42] and this is the method that

will be employed to compute the effective Wilson coefficients for b→ s decays below.

2.4 Effective Hamiltonian for b→ sl+l−

The scale of B meson decays is ∼ 5 GeV, far below the electroweak scale characterised by MW ∼
80 GeV. A description of electroweak interactions in terms of W bosons and including the top

quark will therefore lead to large logarithms in the resulting calculations ∼ logm2
b/M

2
W when

loop corrections are included. The appearance of large logarithms indicates that a perturbative

series is likely to show poor convergence. In cases where large logarithms are due to a choice of

the renormalisation scale far from the interaction scale, the appropriate solution is to use the

RG to change the renormalisation point and re-sum the leading large logarithms. In the present

case, the large scale is due to the presence of heavy particles rather than a large renormalisation

scale, so this cannot immediately be done.

The way to avoid this problem however is simple: since the W boson mass is large compared

to the momentum scales being studied, an expansion in 1/M2
W can be performed. In the simplest

case, a W boson exchange between two quark lines can be replaced by a four-quark operator

g2
W

2
V ∗csVcbs̄γµ

1− γ5

2
c

gµν

p2 −M2
W

c̄γν
1− γ5

2
b = −GF√

2
V ∗csVcbs̄γµ(1−γ5)c c̄γµ(1−γ5)b+O

(
p2

M4
W

)
,

(2.17)

as illustrated in Figure 2.2. The implication of (2.17) is that an effective Hamiltonian

Heff =
GF√

2
V ∗csVcbs̄γµ(1− γ5)c c̄γµ(1− γ5)b (2.18)

will produce the same results as the full theory at low momentum scales. In fact owing to the

structure of the CKM matrix (2.8) this is the largest flavour-changing neutral term.

This illustrates the general procedure rather well: all operators below a certain dimension

consistent with the symmetries of the full theory are written down and then their coupling con-

stants are fixed, so that their effect matches that of the full ultraviolet theory up to corrections

suppressed by heavy masses, e.g. [43]; in this case, the W and Z boson masses and the top

quark mass. The Higgs boson mass is in fact not relevant because the Higgs boson does not
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b s

c c

sb

cc

W

Figure 2.2: Replacement of W boson by a local four quark effective operator

mediate flavour-changing processes, although the Z manages to circumvent this for technical

reasons.

So far, the question of renormalisation has not been addressed. It is well known that the

Fermi theory of weak interactions is non-renormalisable; since GF has negative dimension, an

infinite number of dimensionless operators can be constructed. In contrast to the case of a

renormalisable field theory, multiple insertions of a four-quark operator would be renormalised

by a higher dimension operator appearing at a higher power of GF which must be separately

matched to the ultraviolet theory. In practice however the higher dimension operators associated

with higher powers of GF are expected to be heavily suppressed since they would carry more

powers of 1/M2
W and thus a calculation at leading order is sufficient.

By contrast, loop corrections in the strong coupling constant αs are crucial, since these will

generate large logarithms that must be resummed to get accurate results. Integrating out the

heavy degrees of freedom is done with the renormalisation scale µ2 ∼ M2
W , so that logarithms

appearing in the couplings of the effective theory are small. Since the heavy particle masses

have been traded for a large renormalisation point in the effective theory, renormalisation

group evolution may then be used to bring that scale down to the interaction scale of interest,

and only small logarithms appear. This is the power of the effective theory approach: it

allows interactions with heavy particles to be computed accurately, where the corresponding

calculation in the full ultraviolet theory could require high order loop corrections to achieve the

same results.

The inclusion of αs loop corrections in constructing the effective theory for b → sl+l−

processes introduces a number of new operators. The relevant infrared symmetry constraint is

unitarity of the CKM matrix (2.8). Since renormalisation constants are purely a property of

the theory at short distances particle masses do not appear, and thus GIM cancellation in the

divergent parts of loop diagrams is exact, which reduces the number of operators required. The

full effective Hamiltonian needs ten operators, given by [44]

Heff =
GF√

2

[
2∑
i=1

(λuCiOui + λuCiOui )− λt
∑
q

6∑
i=3

CiOqi − λt
10∑
i=7

CiOi
]

, (2.19)

where the index q runs over all active quark flavours (u, d, s, c, b), and λq = V ∗qsVqb is a commonly
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used shorthand for CKM matrix elements. The operators appearing in the effective Hamiltonian

are:

Current-current operators

Oq1 = (s̄iqj)V−A(q̄jbi)V−A Oq2 = (s̄iqi)V−A(q̄jbj)V−A ;

QCD penguin operators

Oq3 = (s̄ibi)V−A
∑
q

(q̄jqj)V−A Oq4 = (s̄ibj)V−A
∑
q

(q̄jqi)V−A

Oq5 = (s̄ibi)V−A
∑
q

(q̄jqj)V+A Oq6 = (s̄ibj)V−A
∑
q

(q̄jqi)V+A ;

Magnetic penguin operators

O7 = −emb

8π2
s̄σ · F (1 + γ5)b O8 = −gsmb

8π2
s̄σ ·G(1 + γ5)b ;

Semileptonic operators

O9 =
αem

2π
(l̄γµl)(s̄γµ(1− γ5)b) O10 =

αem

2π
(l̄γµγ5l)(s̄γµ(1− γ5)b) .

The notation for quark currents is q̄qV±A ≡ q̄γµ(1± γ5)q, where the vector index is implicitly

contracted. Small corrections proportional to the s-quark mass that appear in O7 and O8,

which are identical to the terms given under the replacement mb(1 + γ5) → ms(1 − γ5), have

been neglected. The operator O10 arises due to intermediate Z bosons, which might seem

to be forbidden because the relevant diagram contains both a W and Z boson; however, this

is circumvented because the Z boson coupling is a mixture of the weak and electromagnetic

couplings and thus it can appear at O(αemGF ). To include higher order loop corrections in

αs properly, it turns out to be convenient to go over to an alternative basis containing fewer

instances of γ5 [45]; closed loops with odd numbers of γ5 matrices complicate loop calculations

in dimensional regularisation since γ5 is strictly a four-dimensional object.

A particular issue that arises in electroweak interactions is the presence of γ5. It is well

known that the extension of the γ5 matrix away from D = 4 is not straightforward, because it

is not possible simultaneously to satisfy [46]

Tr{γ5γ
µγνγργσ} ∝ εµνρσ and {γ5, γµ} = 0 (2.20)

in D 6= 4. There are two well-known schemes for dealing with occurrences of γ5, known as the ’t

Hooft–Veltman (HV) scheme [36] and the naive dimensional regularisation (NDR) scheme [47],
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defined through

γ5 =
i

4!
εµνρσγ

µγνγργσ and {γ5, γµ} = 0 (2.21)

respectively. Both schemes have significant difficulties: the HV scheme breaks D-dimensional

Lorentz invariance and thus the counterterms needed to renormalise the theory do not respect

gauge symmetry [47]. The NDR scheme is internally inconsistent, since it can be shown without

assumptions on γ5 that

Tr[{γα, γ5}γαγµγνγργσ] = 2(D − 4) Tr[γ5γµγνγργσ] , (2.22)

which is obviously inconsistent with {γα, γ5} = 0 in D 6= 4 dimensions, and therefore closed

fermion loops with odd numbers of γ5 matrices cannot be calculated [48]. However it turns out

that b→ s decays do not require computing closed loops with odd numbers of γ5 matrices, and

in this situation the NDR scheme is perfectly consistent and far simpler than the HV scheme.

In the context of the effective Hamiltonian (2.19), the choice of γ5 scheme affects the Wilson

coefficients (WCs) C7,8,9, because these operators at tree level are at the same order of αs or

αem as loop corrections arising from the four-quark operators O1−6. It is therefore common to

absorb these loop corrections into effective coefficients Ceff
7,8 [49], which are scheme independent

at leading order. They are given, for the effective Hamiltonian (2.19) in the NDR scheme, by:

Ceff
7 = C7 −

4

9
C3 −

4

3
C4 +

1

9
C5 +

1

3
C6 , Ceff

8 = C8 +
4

3
C3 −

1

3
C5 . (2.23)

The situation with C9 is slightly different: the corrections from the four-quark operators are

not local. However, since C9 couples to a lepton pair which does not couple to gluons at leading

order in αem, b → sll through C9 can be factorised, and therefore it makes sense to include

the complete one-loop corrections into an effective operator Ceff
9 (q2), which can be combined

with the exclusive form factors. The relevant form factors will be described in Section 2.9. The

function Ceff
9 (q2) is given in the NDR scheme by

Ceff
9 (q2) = C9 + Y (q2) , (2.24)

where the loop corrections Y (q2) are [50]:

Y (q2) =h(q2,mc)

(
−λc
λt

(3C1 + C2) + 3C3 + C4 + 3C5 + C6

)
− h(q2,mb)

2
(4C3 + 4C4 + 3C5 + C6)

− h(q2, 0)

(
λu
λt

(3C1 + C2) +
1

2
(C3 + 3C4)

)
+

4

27
(C3 + 3C4 + 8C5) .

(2.25)
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µ = mb µ =
√
mbΛH

CMM BBL CMM BBL
C1 -0.2622 -0.1311 -0.5636 -0.2818
C2 1.0087 1.0524 1.0299 1.1238
C3 -0.0051 0.0110 -0.0175 0.0194
C4 -0.0778 -0.0316 -0.1718 -0.0524
C5 0.0003 0.0087 0.0012 0.0132
C6 0.0009 -0.0371 0.0042 -0.0775
Ceff

7 -0.2975 -0.3351
Ceff

8 -0.1569 -0.1828
C9 4.0354 4.4207
C10 -4.2496 -4.2496

Table 2.1: WCs at µ = mb and µ =
√
mbΛH at NNLL order for mb = 4.7GeV, MW = 80.4GeV,

sin2 θW = 0.23, mt = 177GeV, ΛH = 0.5GeV and Λ
(5)
QCD = 214MeV in two different bases.

Three-loop running for αs is used. The BBL basis used is that defined in [42]; it is equivalent to the
traditional basis defined in [44] at leading order. The CMM basis [45] is used for loop calculations;
however, all results are presented in the BBL basis and all references to WCs C1−6 elsewhere in the
text are in that basis.

The function h is the standard quark vacuum polarisation function (this form from [51])

h(s,m) = −4

9

(
log

m2

µ2
− 2

3
− z − (2 + z)

∆

2

)
− 4

9
(2+z)

√
|z − 1|


arctan

1√
z − 1

z > 1

log
1 +
√

1− z√
z

− iπ

2
z ≤ 1

(2.26)

where z ≡ 4m2

s and the renormalisation scheme dependent term ∆ [52] has been included for

later convenience. It is given by

∆ =
2

4−D − γE + log 4π , (2.27)

which is set to zero in the MS scheme.

2.4.1 Wilson coefficients (WCs) for b→ sl+l−

The calculation of the WCs of the Hamiltonian for b → s decay is rather involved, so this

intermediate result of the calculations in chapters 5 and 6 is included so that the results can

be more easily reproduced. The renormalisation group flow procedure is applied as described

in Section 2.3 up to three-loop order, specifically using the solution of the flow equation to

this order in the appendix of [42]. Rather than the operator basis defined below (2.19) this

calculation is done in the CMM basis [45] since it is in this basis that the higher order anomalous

dimensions have been computed, as its construction was designed to ease automated calculation.

The complete ADM to three loops is taken from [53], and the expressions for the Wilson

coefficients Ci at the electroweak scale are take from [54] for C1−6 and C9,10 and [55] for Ceff
7,8.

These are always employed at µ = MW to set the initial conditions for the RG flow; that is
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to say the uncertainty owing to α4
s terms at this scale is ignored, although uncertainty of the

masses of the W boson and top quark is accounted for. Since αs(MW ) ≈ 0.11 is small this

should have a negligible effect on the overall uncertainty of our calculations.

After computing coefficients at the chosen low scale in the CMM basis, they are then trans-

formed into the pseudo-BBL basis defined in [42, eq. 79], which is equivalent to the BBL basis

at leading order in αs. The results of this procedure are given in table 2.1.

2.5 The Operator Product Expansion (OPE)

Perturbation theory in the SM is expected to be valid at short distances, or equivalently at

energies large compared to the masses of hadronic resonances arising from QCD. An important

question in addressing SM phenomenology is therefore how pure perturbation theory breaks

down and whether longer distance correlations can be addressed. The OPE provides a means

to address these problems.

The OPE, introduced by Wilson [56], proposes that at short distances a product of two

operators A and B may be expanded

A(x)B(0) =
∑
i

ci(x)Oi(0) , (2.28)

where Oi are local operators and ci(x) are c-number coefficient functions, and the sum in

principle runs over all operators Oi whose quantum numbers are the same as those of the

product AB. Under perturbation theory at sufficiently short distances it might be hoped from

dimensional analysis that

A(λx)B(0) =
∑
i

ci(λx)Oi(0)
λ→0−−−→

∑
i

λdOi−dA−dBci(x)Oi(0) (2.29)

holds, where dO is the engineering dimension of the operator O, up to logarithmic corrections.

Since fields in a quantum field theory in more than two dimensions will have positive dimension

it would then be expected that only a finite number of operators Oi with dOi < dn for some dn

can be written down. This would imply that at sufficiently short distances only a finite number

of terms in the OPE (2.28) need to be considered, as higher dimension operators are suppressed

by powers of the distance. The claim of the OPE [56] is that this holds quite generally: as

λ → 0 in (2.29), only a finite number of coefficient functions are more singular than λdn for

some dn, even beyond perturbation theory.

Of course, the practical utility of the OPE arises from the fact that the coefficient functions

ci(x) can be computed within perturbation theory, and then the expectation values of local

operators in vacuum and on different particle states can be derived from experiment. Rigorously

it has been shown that coefficient functions can be derived by computing divergences in L+ 1
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loop graphs [57], which amounts to considering the action of the Callan–Symanzik equation

on both sides of (2.28) [41]. This procedure is rather cumbersome, however, since it involves

computing diagrams involving one more loop than the final result and is not what is normally

done, rather the usual interaction–picture perturbation theory using a Dyson series is performed

followed by Wick contraction, e.g. [23]. In contrast to the usual perturbative approach, in which

normal ordered operator products are dropped because their expectation values are zero in the

perturbative vacuum, all terms are retained since the same cannot be guaranteed for the full

vacuum. It then follows that the most singular short distance term in the OPE is exactly the

perturbative part, since it is associated with the dimension 0 identity operator.

This procedure can be somewhat better justified by considering the Dyson–Schwinger equa-

tions (DSEs) [58–60], which provide genuinely non-perturbative constraints between different

time-ordered operator products5. In the usual case, this means starting from the Gaussian

solution to the free field theory and recovering standard perturbation theory. In the OPE

case as discussed above, the recovery of the coefficient functions of operators whose perturba-

tive expectation value is zero is also sought. The appropriate zero order solution is given by

Wick’s theorem [61] followed by Taylor expanding the x coordinates on the normal ordered

operators [41], e.g.

T {A(x)B(0)} = ∆AB
F (x) · I +

∑
n

1

m!
xµ1...µm :(∂µ1...µmA)B: , (2.30)

where I is the identity operator, ∆AB
F (x) the bare Feynman propagator and : AB : a normal

ordered local operator. It has been assumed that A and B are fields rather than composite

operators which would necessitate the inclusion of many more operators arising from commuting

the constituent fields.

This naturally raises the question of the connection of the operators on the right-hand side

of (2.28) to those in (2.30). Wilson’s argument for (2.28) [56] constructs the right-hand side

by systematically extracting the most singular part of A(x)B(0) at short distances, subtracting

this singularity and then repeating. At each step in such a construction only the most singular

term in the most singular remaining coefficient function is recovered, and for subsequent steps

an extension of that coefficient function away from x = 0 must be made. This means that

the operators appearing on the right-hand side of (2.28) in general are expected to be scheme

dependent. The right-hand side of (2.30) however is scheme independent, except insofar as

an arbitrary scale Λ could have been introduced and Λ2x2 terms included in the coefficient

functions. These was no reason to do this, however, as is well known divergences occur in

interacting quantum field theories which must be regularised by the explicit introduction of an

arbitrary mass scale and renormalisation conditions. The extension of normal ordered products

to all perturbative orders of an interacting field theory was solved by Zimmermann through the

5See appendix C for a brief discussion.

27



28 James Lyon

BPHZ regularisation scheme [62].

Further, in contrast to the case of renormalisable local actions, OPE calculations may con-

tain infrared divergences [63–65]. Since the SM is infrared finite, it is expected that infrared

divergences should cancel in observable processes in the spirit of the Kinoshita–Lee–Nauenberg

theorem [66, 67]. Infrared divergences in Feynman diagrams with massless particles are ex-

pected, however, and in OPE calculations must be absorbed into operator expectation values;

in particular for external bound states in QCD, infrared divergences must cancel between short

and long distance physics in order for perturbation theory to be useful. Separation of scales in

this way is the subject of factorisation theorems [68]. In principle this means that OPE con-

densates can depend on a separate UV and IR renormalisation point; however, under normal

circumstances they would be fixed to the same value since the usual goal of RG running is to

make logarithms small and both the IR and UV renormalisation scales are compared to the

same hard scale.

It might be wondered whether in calculating OPE coefficient functions perturbatively crucial

non-perturbative information might be missed. Given the practical impossibility of performing

non-perturbative OPE calculations on phenomenologically interesting theories, this question

cannot truly be answered; however, it has at least been shown that the coefficient functions

respect all symmetries of the underlying theory [69], that is to say all symmetry-breaking contri-

butions must come from expectation values of local operators. Since the OPE is an expansion in

terms of operators rather than correlation functions this is rather to be expected, as symmetry-

breaking terms would usually be dependent on external parameters such as temperature and

density which the OPE cannot see. Indeed, although the OPE is practically useful where there is

a substantial difference between the interaction scale and the scale of non-perturbative physics,

conceptually it is a separation between the behaviour of a theory arising from commutation

relations of operators and that from external states.

Finally, there is the question of what role symmetries and equations of motion play in the

OPE. Since the coefficient functions are nothing but Feynman diagrams with certain external

kinematics, there must be relations between some of them. In order to produce consistent

results, symmetry constraints must therefore be satisfied by OPE expectation values such that

the combination of the short and long distance parts is free of residual gauge dependence. The

simplest example of such a constraint is in the quark condensate

〈ψ̄(i /D −m)ψ〉 = 0 =⇒ i〈ψ̄ /∂ψ〉 = m〈ψ̄ψ〉+O(αs) , (2.31)

and generalisations of this equation of motion constraint play a crucial role in the construction

of light meson distribution amplitudes (DAs) [70]. The equation (2.31) also has an additional

implication: the OPE may not be strictly truncated at a given external operator dimension

since equations of motion may relate condensates of different dimension. The higher dimension
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condensate may be excluded by other means, however, as in this case neglecting the light quark

mass implies 〈ψ̄ /∂ψ〉 ∼ m→ 0.

Of course, none of this necessitates that the OPE actually converges for a particular process,

that is to say that the coefficient functions relevant to a particular process at physical external

momenta will in fact suppress higher dimension condensates. It turns out that in common cases

this cannot be guaranteed, and this is the subject of the next section.

2.6 Correlation functions near the light cone

The mathematical objects of interest to particle physics are S-matrix elements, which, as is well

known, may be related to Fourier transforms of correlation functions via Lehmann–Symanzik–

Zimmermann (LSZ) reduction [71]. This means that the behaviour of a correlation function at

all spatial coordinates is used in computing a physical result and it must be shown that the use

of an expansion such as (2.28) is justified, i.e. that the short distance contribution is dominant.

The dominant contribution is best illustrated by way of example. A scattering process

producing a pion will, after evaluating the operator product expansion for the short distance

part, contain a contribution from the two quark operator, which may be generally expressed as

M =

∫
ddx

∫
ddl

(2π)d
ei(k+l)·x

∑
P

〈0|:ψ̄(x)ΓP (l, qi)ψ(0):|π(p)〉 , (2.32)

where ΓP are projections of the short distance part onto the basis of Dirac matrices, qi are

the external momenta of the process and k is some linear combination of qi. From Lorentz

invariance it follows that the required pion expectation values are

〈0|:ψ̄(x)Γψ(0):|π(p)〉 = φ̃Γ(p · x,m2
πx

2) , (2.33)

where Γ is a specific component of a Dirac projector. Plugging this into (2.32) and removing

the x-coordinate via a Taylor expansion gives

M =
∑
P

φΓP

(
ip · ∂

∂l
,−m2

π

∂2

∂l2

)
ΓP (l, qi)

∣∣∣∣∣
l=−k

. (2.34)

The key to whether or not the OPE converges is now held by ΓP . These derivatives may be

rewritten in terms of Lorentz scalar quantities as:

p · ∂
∂l
→ 2(p · l) ∂

∂l2
+
∑
i

p · qi
∂

∂(l · qi)
+m2

π

∂

∂(l · p) (2.35)

m2
π

∂2

∂l2
→ m2

π

[
2D

∂

∂l2
+ 4l2

∂2

∂(l2)2
+ 4(l · qi)

∂2

∂(l2)∂(l · qi)
+ qi · qj

∂2

∂(l · qi)∂(l · qj)
+ . . .

]
,

(2.36)
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where the dots are all terms including invariants in p and are identical in structure to those

in qi, since p is not singled out in (2.36), unlike in (2.35). In order to proceed further, it is

necessary to assume that the action of the derivatives on the short distance function ΓP is to

suppress it by a large scale. This will typically be the case except in the vicinity of singularities

of ΓP , and in perturbative correlation functions amounts to the requirement that propagators

are off-shell.

If the hard scale of the interaction is Q2, the scaling assumptions

∂

∂(l2)
∼ ∂

∂(l · qi)
∼ ∂

∂(l · p) ∼
1

Q2
l2 ∼ l · qi ∼ p · qi ∼ Q2 (2.37)

combined with (2.35) and (2.36) lead to the conclusion that

p · ∂
∂l
∼ 1 m2

π

∂2

∂l2
∼ m2

π

Q2
(2.38)

and hence it would seem that the expansion in terms of powers of the derivative (2.36) is

convergent but the expansion in terms of (2.35) is not. It is also possible to reach this conclusion

by considering the oscillation of the exponential eik·x appearing in (2.32) in a certain reference

frame, e.g. [41]. It should be mentioned at this point that particle masses have largely been

ignored in this argument: the presence of very massive particles does not spoil light-cone

convergence since derivatives will introduce additional powers of 1/M2 and it is assumed that

M2 � Q2, and in fact were this always the case then (2.35) would scale as Q2/M2 and be a

valid basis for expansion.

Since the derivative (2.36) corresponds to a series expansion in x2, a process is light-cone

dominated when this expansion converges, as is expected to be the case when the short distance

kernel ΓP is away from any thresholds. However xµ (through p · x) is not a good expansion

parameter, and therefore the full p · x dependence must be retained.

The final step in treating external hadrons is then to characterise the function φ̃Γ (2.33)

near x2 = 0. The classic OPE would expand the left-hand side of (2.33) in terms of operators

of increasing dimension

ψ̄(x)ψ(0) = ∂µ1...µm

[
ψ̄
←→
D ν1...νnψ

]
, (2.39)

where
←→
D µ =

←−
Dµ−

−→
Dµ, and characterise the pion state in terms of expectation values of these

local operators. Unfortunately such an approach will lead to sums which do not converge [72],

and in fact the correct approach is to keep the full p · x dependence and write

〈0|ψ̄(x)Γψ(x)|π(p)〉 =

∫ 1

0

φΓ(u)eiup·xdu . (2.40)

The function φΓ is then known as a distribution amplitude (DA). It is somewhat interesting

that the integral is over the range [0, 1]; physically the interpretation is that a configuration in
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which one of the quarks has negative energy is extremely unlikely. Mathematically, however,

it has an entirely different origin: in a non-interacting conformal theory (which QCD) is at

leading order) the free OPE may be explicitly summed to give a result of the form [73]

ψ̄(x)Γψ(0) '
∫ 1

0

∑
n

fn(u, p · x, x2)On(ux)du (2.41)

and hence in a perturbative construction of the OPE it follows that the general form (2.40) has

the correct momentum flow structure. In contrast to the local OPE discussed in the previous

section, this leads to a situation where an infinite number of parameters may enter into the

function φΓ without any suppression in the hard scale of the process. This then presents the

problem of how to capture an infinite number of parameters in a useful way. This problem is

solved by exploiting the approximate conformal symmetry of QCD and categorising operators

on the light cone in terms of twist rather than dimension [74], and then the contribution of

higher twist operators are expected to be suppressed by the Borel parameter in sum rules [75].

An issue that has not been discussed throughout this section is gauge invariance of distri-

bution amplitudes such as (2.40). The solution to this problem is usually to construct DAs in

the Fock-Schwinger gauge x · A = 0 so that a matrix element ψ̄(0)ψ(x) may be interpreted in

a gauge invariant way by joining the two quark operators with a straight Wilson line. In other

gauges infinite resummations must be performed in order to separate “physical” gluon emission

from terms purely associated with cancelling gauge dependence [76].

2.7 Calculating with distribution amplitudes

The light-cone OPE in non-vacuum external states manifests itself through DAs, which provide a

systematic way of approximating non-perturbative states through a small number of parameters.

The full listing of DAs used in this thesis is given in appendix B; in this section some details of

performing calculations with these objects will be discussed.

Light-cone distribution amplitudes are developed in terms of a conformal basis at light-

like distances, e.g. [75]. As discussed in Section 2.6, for S-matrix elements knowledge of the

correlation functions away from the light cone is also required. This can be recovered by

matching Lorentz invariant structures order by order in the external state mass, which implies

that the light-cone expansion is also a small mass expansion, and that results must be truncated

at a certain order in light-external meson masses in order to be consistent. This does not apply

to B meson distribution amplitudes in which light-cone dominance arises via a rather different

mechanism due to the 1/mb expansion, which will be discussed in Section 5.4.5.

A nice example to illustrate the above point occurs in weak annihilation (WA), which con-

tributes to the isospin asymmetry and will be discussed in Section 5.3. In that case, the matrix
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element

(p+ q)µ 〈K∗(p, η)γ∗(q)|s̄γµq|0〉 = 〈K∗(p, η)γ∗(q)|i∂µ[s̄γµq]|0〉 (2.42)

must be computed. Owing to the derivative operator acting on the weak current this matrix

element may be computed exactly using a Ward identity, up to light quark mass corrections

O(ms,mq). This was the procedure used in the first sum rule calculations of WA [77, 78] and

expounded in more detail in [79].

The Ward identity procedure gives

(p+ q)µ 〈K∗γ|s̄γµq|0〉 =ie(p+ q)µεν

∫
x

e−ipB ·x 〈K∗|T s̄γµq(x)Jνem(0)|0〉

=ieεν

∫
x

e−ipB ·x 〈K∗|i∂µ {T s̄γµq(x)Jνem(0)} |0〉

=e(Qq −Qs)εν 〈K∗(p, η)|s̄γνq(0)|0〉

=e(Qq −Qs)fK∗mK∗(η · ε)

(2.43)

and indeed the hadronic part of the matrix element only requires the identity 〈K∗(p, η)|s̄γνq(0)|0〉 =

fK∗mK∗η
ν and no knowledge of the K∗ Bethe–Salpeter wave function is necessary. Indeed, the

result (2.43) is accurate to all orders in QCD subject to neglecting the quark masses.

The result (2.43) may also be computed using the K∗ DA, although the calculation is rather

more involved. The relevant terms in the K∗ DA are [80]

〈K∗(p, η) | s̄(x)a[x, 0]q(0)b | 0〉 =

∫ 1

0

du eiup·x
{
f⊥K∗

4Nc
(/η/p)baφ⊥(u)

+
mK∗fK∗

4Nc

[
(/p)ba

η · x
p · x

(
φ‖(u)− g(v)

⊥ (u)
)

+ (/η)bag
(v)
⊥ (u) +

1

4
εµνρση

νpρxσ (γµγ5)ba g
(a)
⊥ (u)

]}
(2.44)

where [x, 0] indicates a Wilson line to make the expression gauge invariant. A fuller version is

given in appendix B. A curious property of this expression is that an odd number of powers of

the K∗ mass appears on the right-hand side, which implies that it cannot obviously be expected

to be suppressed by m2
K∗/Q

2 with respect to the first term. As an example, it in fact turns

out that in the leading electromagnetic penguin amplitude for B → K∗γ, all terms in (2.44)

occur at the same order in the 1/mb expansion, e.g. [81]. This situation can arise because the

binding energy of the initial state B meson in that process is ∼ mB−mb ∼ 0.5GeV, providing a

scale comparable to mK∗ , and would presumably also be the case in many other processes with

external QCD bound states. The form of the DA also presents a problem which does not occur

in normal perturbation theory: how to deal with the presence of coordinates when working in

momentum space is preferable? Fortunately the answer is straightforward, since

xµeiup·x = − i
u

∂

∂pµ
eiup·x

1

p · xe
iup·x = i

∫ u

0

eivp·xdv +
1

p · x (2.45)
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and for practical purposes the DA (2.44) is rewritten

〈K∗(p, η) | s̄(x)a[x, 0]q(0)b | 0〉 =

∫ 1

0

du

{
f⊥K∗

4Nc
(/η/p)baφ⊥(u)

+
mK∗fK∗

4Nc

[
−(/p)ba

Φ(u)

u
ηµ

∂

∂pµ
+ (/η)bag

(v)
⊥ (u)− i

4
εµνρση

νpρ (γµγ5)ba
g

(a)
⊥ (u)

u

∂

∂pσ

]}
eiup·x ,

(2.46)

where the function Φ(u) is defined as

Φ(u) =

∫ u

0

φ‖(v)− g(v)
⊥ (v)dv . (2.47)

Thus all coordinates are removed from (2.44) at the expense of the introduction of derivatives

in the external momentum. Unfortunately the computer algebra package FeynCalc has no

facilities to deal with vector derivatives, so a certain amount of creative trickery is required if

one does not wish to perform all calculations by hand; performing the derivative manually by

introducing an additional vector and Taylor expanding in its coefficient works, provided that it

does not exhaust the computer’s memory.

The coefficient functions φ⊥,‖(u) and g
(v,a)
⊥ (u) are somewhat confusingly also known as

distribution amplitudes. The functions φ⊥,‖(u) are expanded in terms of Gegenbauer polyno-

mials [80,82]

φ⊥,‖(u) = 6ūu

(
1 +

∞∑
n=1

a⊥,‖n C3/2
n (2u− 1)

)
, (2.48)

which is directly connected to the fact that QCD is conformally invariant, although the specific

form arises because Gegenbauer polynomials C
3/2
n (2u − 1) form an orthogonal basis on [0, 1]

with the weight ūu [83], so the coefficients of the DA are the expectation values of operators of

specific collinear twist acting on the K∗ state [73]. The functions g
(v,a)
⊥ (u) are not independent

but are are given in terms of other DAs by equations of motion [75].

Finally, the matrix element (2.42) can be evaluated using (2.46) and taking into account

the equation of motion6 [70, 84]

Φ(u) = ū

(
g

(v)
⊥ (u)− g

(a)′
⊥ (u)

4

)
− g

(a)
⊥ (u)

4
(2.49)

6This equation is derived from (4.15/16) of [70], and a nearly identical equation with u↔ ū appears in [84].
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and the result is

(p+ q)µ 〈K∗(p, η)γ(q, ε)|s̄γµq|0〉

= eενfK∗mK∗

∫ 1

0

du

{
Qq

[
ην
(
g

(v)
⊥ (u)− u2p2

(ūp+ q)2

(
g

(v)
⊥ (u) +

1

4
g
′(a)
⊥ (u)

))

− (ūp+ q)ν
2up2(η · q)
(ūp+ q)4

(
Φ(u) +

1

4
g

(a)
⊥ (u)

)]
−Qs [ū↔ u]

}
, (2.50)

which agrees with (2.43) since
∫ 1

0
g

(v)
⊥ (u)du = 1 up to factors of p2 = m2

K∗ . These terms must

be neglected since they occur at a higher order in m2
K∗ than the DA (2.44) is complete to, that

is to say they are identified with twist-4 terms and would cancel with terms arising from the

twist-3 and twist-4 DAs, which are detailed in [85]. However, the requirement to truncate to a

certain order in mK∗ to get consistent results is not strictly connected to the twist expansion;

higher Gegenbauer moments in DAs also have higher twist but are in no way connected to

the expansion in mK∗ , rather the equations of motion link terms at different powers of mK∗ ,

appearing in the meson DA whose lowest twist part is different.

2.8 Sum rules

The principal tool used to compute B meson transitions in this thesis is light cone sum rules

(LCSRs). This is really two distinct techniques, the combination of which is sufficiently advan-

tageous to merit its own name. The light cone part of this method refers to the light cone OPE

and is described in Section 2.6; this section will describe the calculation of hadronic processes

through sum rules.

A typical matrix element for a semi-leptonic B meson decay is

〈l+l−M |Heff |B(pB)〉 . (2.51)

This may be related to a matrix element with the external B meson replaced by a local operator

with appropriate quantum numbers:

Π(pB) ≡ i
∫
d4xe−ipB ·x〈l+l−M |HeffJB(x)|0〉 =

〈l+l−M |Heff |B(pB)〉〈B(pB)|JB(0)|0〉
m2
B − p2

B

+ . . .

(2.52)

This is nothing other than the LSZ reduction formula [71]. The dots include both poles at

masses other than mB and the continuum contribution arising from multi-particle states. The

current JB is given by

JB = imbb̄γ5q 〈B(pB)|JB(0)|0〉 = m2
BfB . (2.53)
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The correlation function Π cannot be perturbatively computed at p2
B = m2

B since QCD pertur-

bation theory is not reliable near resonances, which is hardly surprising as bound states are an

intrinsically non-perturbative effect. It can however be reliably computed sufficiently far below

the perturbative threshold, i.e. p2
B � (mb − ΛQCD)2. The method of sum rules [86, 87] then

relies on the following observation: in the region in which Π(p2
B) may be reliably computed,

Cauchy’s theorem can be used to say that

Π(p2
B) =

1

2πi

∮
Γ

Π(s)

s− p2
B

ds . (2.54)

The integration contour Γ separates the point p2
B from all other singularities and branch cuts

in Π(s) in the complex plane. If the function Π(s) falls off sufficiently quickly for |s|→ ∞ in

all directions then the contour Γ may be taken to infinity, so that only parts of the contour

surrounding the singularities remain. If it does not vanish sufficiently quickly at infinity then

subtractions may be performed so that the function to which Cauchy’s theorem is applied has

the right asymptotic properties. A common example which does not converge is given by the

two point Passarino–Veltman function B0 [88]. Importantly these subtractions will drop out of

the final form of the sum rule, as will be shown shortly.

(2.54) is already a sum rule; however, it is not yet of a form useful to estimate the contri-

bution of a single particle. To do this, (2.52) and (2.54) are combined to give

Π(p2
B) =

1

2πi

∮
Γ

Π(s)

s− p2
B

ds =
fBm

2
B

m2
B − p2

B

〈l+l−M |Heff |B(pB)〉+
1

2πi

∮
ΓC

Π(s)

s− p2
B

ds , (2.55)

where the contour ΓC encloses all complex singularities except the B meson pole, and the inte-

gral term may therefore be considered to arise from excited and multi-particle states. At this

stage the equation (2.55) is exact. For the integral over the contour Γ the correlation function

Π(s) may be computed perturbatively, and provided p2
B is sufficiently far from thresholds QCD,

perturbation theory will produce an accurate result. This is known as global duality between

the hadronic and partonic pictures and it is exact owing to Cauchy’s theorem. In order to

calculate the transition matrix element, an estimate of the continuum contribution ΓC is there-

fore required. The approximation used [87] is again to calculate Π(s) perturbatively inside this

integral and take the contour ΓC to enclose all complex singularities above Re(s) = s0 on the

real line. Singularities off the real line may also occur; these will be discussed in Section 3.2.4.

This is known as the semi-global duality approximation. s0 is an effective threshold parameter

and is chosen somewhere in the vicinity of the lowest-lying multi-particle state in the same

channel, which in the case of the current JB implies a B meson with either two pions or a rho

meson, so s0 ∼ (mB + 2mπ)2 ∼ (mB +mρ)
2. Applying this approximation to (2.55) gives

fBm
2
B

m2
B − p2

B

〈l+l−M |Heff |B(pB)〉 =
1

2πi

∮
ΓP

Πpert(s)

s− p2
B

ds , (2.56)
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m2
B

Im s

Re s

s0 ΓC

ΓP

m2
b

Im s

Re s

s0 ΓC

ΓP

Figure 2.3: Illustration of contours used in a B meson sum rule. The left-hand diagram shows the
complex structure of the full theory, and the right-hand diagram shows the structure of the pertur-
bative approximation. The semi-global duality approximation relies on the continuum contribution
ΓC computed perturbatively being a good approximation to the contour ΓC in the full theory, and
therefore the contour ΓP in a perturbative calculation is a good approximation to the pole residue
in the full theory.

where the contour ΓP is the difference between the contours Γ and ΓC and therefore encloses

the B meson pole. This process is illustrated in Figure 2.3. Note that although this formula

is approximate and the contour integral is exactly over the low-lying resonance region in which

perturbation theory cannot be trusted, the exactness of global duality implies that this approx-

imation is reasonable provided that perturbation theory is reliable over the contour ΓC , which

surrounds higher resonance and multi-particle contributions. Finally, a Borel transform in the

variable p2
B , related to the inverse Laplace transform is applied. Since the dependence of (2.56)

on p2
B has a simple functional form, only a single formula for the Borel transform is required

Bp2
B→M2

[
1

s− p2
B

]
=

1

M2
e−s/M

2

, (2.57)

and thus p2
B is eliminated in favour of a mass M2, known as the Borel parameter. The Borel

transform eliminates subtractions required in constructing the relation (2.54), since terms which

are polynomial in p2
B transform into δ(M2) and its derivatives, and such terms do not contribute

for M2 > 0. The final form of the sum rule is therefore:

〈l+l−M |Heff |B(pB)〉 =
1

fBm2
B

1

2πi

∮
ΓP

exp

(
m2
B − s
M2

)
Πpert(s)ds

≡ 1

fBm2
B

∫ s0

m2
b

exp

(
m2
B − s
M2

)
ρ(s)ds .

(2.58)

The function ρ(s) arises since it is assumed that the contour ΓP lies along the real line and

therefore the contour integration can be traded for an integral of a density function ρ(s). The
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Borel parameter in this formula must be selected to satisfy two requirements simultaneously:

that the OPE (either the local or light-cone version) converges, i.e. that contributions from

operator condensates of higher dimension or twist are suppressed, and that the contribution

from the continuum is small; or to put it another way, that the sensitivity to s0 is minimized [86].

If these conditions cannot both be fulfilled, then the sum rule estimate of the matrix element

(2.58) cannot be trusted.

Although the use of sum rules as they are applied to B meson decays has been illustrated,

their original development was in the context of two-point Green’s functions [86], where they

have a very clean theoretical interpretation owing to the Källén–Lehmann spectral representa-

tion [89,90], which states that for a general two-point function

〈T {φ(x)φ(y)}〉 =

∫ ∞
0

ρ(s)∆(x− y, s) ds
2π

, (2.59)

where ∆(x − y, s) is the Feynman propagator for a free particle of mass
√
s, and a Fourier

transform will take this exactly to the form (2.55). Therefore in the case of two-point functions

Figure 2.3 is completely general and there can be no branch cuts except on the positive real axis.

The optical theorem and Cutkosky cutting rules [91] rather imply that this can be generalised

to 2n-point forward scattering amplitudes. It cannot however be extended to three- and higher

n-point functions as will be seen in Chapter 3.

2.9 Decomposition of B → V and B → P matrix elements

Matrix elements for B → V and B → P transitions are expanded in terms of scalar functions;

in order to do this the basis tensors must be specified to fix the normalisation of these functions.

The B → P case is simple since there is only a single meson polarisation and hence only the

normalisation is required, whereas in the B → V case the presence of three polarisations means

that the optimal way to separate these must also be taken into account.

Following the conventions of [92], the matrix elements of B → Ml+l− in either the vector

or pseudoscalar final state case may be written at leading order in αem, i.e. assuming single

photon exchange, as

out 〈M(p)l+(l1)l−(l2)|B(p+ q)〉in

=
GF√

2
λt
αemmb

q2π

(
ū(l1)γµv(l2)

∑
i

Pµi T Vi (q2) + ū(l1)γµγ5v(l2)
∑
i

Pµi T Ai (q2)

)
δ(4)(q−l1−l2) ,

(2.60)

where λt is as defined below (2.19), and ū and v are lepton polarisation spinors of mass dimension
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1/2. The case B → V γ is closely related and given by:

out 〈V (p)γ(q, ε)|B(pB)〉in =
GF√

2
λt
gemmb

4π2

∑
i

εµP
µ
i T Vi (0)δ(4)(pB − p− q) . (2.61)

The corresponding pseudoscalar decay B → Pγ does not exist owing to angular momentum

conservation. For the same reason, only two of the three possible vector meson polarisations oc-

cur in the decay B → V γ since angular momentum conservation requires that the vector meson

and photon helicities are the same, and the physical photon has no longitudinal polarisation.

The tensors Pi are the standard choice for penguin form factors, e.g. [81, 93]:

Pµ1 =2εµνρσηνpσqρ

Pµ2 =i
[
(m2

B −m2
V )ηµ − (η · q)(2p+ q)µ

]
Pµ3 =i(η · q)

[
qµ −

q2

m2
B −m2

V

(2p+ q)µ
]

PµT =
1

mB +mP

[
(m2

B −m2
P )qµ − q2(2p+ q)µ

]
. (2.62)

The functions Ti are usually broken down into contributions from each operator in (2.19),

although this is only valid at leading order in αs, since at higher orders the scale dependence of

the Wilson coefficients in (2.19) partially cancels the scale dependence of the matrix elements

of each individual operator, and hence only matrix elements which may be factorised in a scale-

independent way can be truly considered separate contributions to (2.60). The contribution

of the semi-leptonic operators O9 and O10 are conventionally written in terms of the form

factors [81,93]

〈P (p)|s̄γµb|B(pB)〉 =f+(q2)

(
(pB + p)µ −

m2
B −m2

P

q2
qµ

)
+
m2
B −m2

P

q2
F0(q2)qµ

〈V (p, η)|s̄γµb|B(pB)〉 =εµνρση
νpρBp

σ 2V (q2)

mB +mV

〈V (p, η)|s̄γµγ5b|B(pB)〉 =iηµ(mB +mV )A1(q2)− i(pB + p)µ(η · pB)
A2(q2)

mB +mV

− iqµ(η · pB)
2mV

q2

(
A3(q2)−A0(q2)

)
,

(2.63)

where q ≡ pB − p, and

A3(q2) =
mB +mV

2mV
A1(q2)− mB −mV

2mV
A2(q2) . (2.64)

The additional relations A3(0) = A0(0) and f+(0) = F0(0) ensure that the matrix elements

are free of kinematical singularities at q2 = 0. Likewise, the electromagnetic operator O7
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contribution is written in terms of the form factors

〈P (p)|s̄σµνqνb|B(pB)〉 =i
(
(pB + p)µq

2 − qµ(m2
B −m2

P )
) fT (q2)

mB +mP
(2.65)

〈V (p, η)|s̄σµνqνb|B(pB)〉 =2iεµνρση
νpρBp

σT1(q2) (2.66)

〈V (p, η)|s̄σµνqνγ5b|B(pB)〉 =T2(q2)
(
ηµ(m2

B −m2
V )− (η · pB)(pB + p)µ

)
+ T3(q2)(η · pB)

(
qµ −

q2

m2
B −m2

V

(pB + p)µ

)
,

(2.67)

and Dirac algebra implies that T1(0) = T2(0).

The matrix element parametrisation in (2.60) is chosen such that T Vi ∼ C7Ti + . . . . The

axial lepton amplitude T A arises entirely from the O10 operator, and in terms of the standard

form factors (2.63) is

T A1,2,3 = C10H1,2,3(q2) T AT = C10hT (q2) , (2.68)

where the functions Hi and hT are defined to capture the conversion factors

H0(q2) = (η · q)mV

mb
A0(q2) H1(q2) =

q2V (q2)

2mb(mB +mV )

H2(q2) =
q2A1(q2)

2mb(mB −mV )
H3(q2) = −mV

mb
A3(q2)

h0(q2) = −m
2
B −m2

P

2mb
f0(q2) hT (q2) =

mB +mP

2mb
f+(q2) . (2.69)

for later convenience. The vector lepton amplitudes T V are expanded as:

T Vi (q2) = Ceff
9 (q2)Hi(q

2) + Ceff
7 Ti(q

2) + Ceff
8 Gi(q

2) +Wi(q
2) + Si(q

2) + Li(q
2) i = 1, 2, 3

T VT (q2) = Ceff
9 (q2)hT (q2) + Ceff

7 fT (q2) + Ceff
8 GT (q2) +WT (q2) + ST (q2) (2.70)

For readers unfamiliar with this particular subject area, Ti, fT and all functions appearing on

the right-hand side of (2.69) are standard: the functions Ti defined here are similar in spirit

and notation to those used in [42] but are not equivalent owing to O9,10 contributions being

included here but treated separately there, and the remaining functions Gi, Wi, Si and Li are

not used outside this thesis and the papers on which it is based.

The form factor functions Ti, fT and those in (2.69) are taken where required from [81,93].

The functions Gi were calculated in [94] and this calculation is detailed further in Chapter 3.

The functions Wi and Si arise from the four-quark operators, and are an arbitrary separation

convenient for examining the isospin asymmetry in B → K∗ll. These functions were calculated

in [92] and this calculation is described in Chapter 5. The functions Li arise from a charm

bubble emitting a soft gluon into the final state meson and are calculated in Chapter 6 [95].

The effective Wilson coefficients Ceff
7,8,9 are explained in Section 2.4.
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The standard choice of basis tensors (2.62) is however less than ideal in the vector meson

case, because it does not uniquely separate the contribution of longitudinally polarised mesons.

It is advantageous to separate this contribution for two reasons: first, it clearly separates the

terms that do not appear at q2 = 0, and second, the vector meson distribution amplitudes nicely

separate into transverse and longitudinal terms at leading and next-to-leading twist. In [92],

the basis used was

PµV = 2εµνρσηνpρqσ

PµA =
i√
λ̂V

(
λ̂Vm

2
Bη

µ − 2(η · q)
(
(1− m̂2

V − q̂2)pµ − 2m̂2
V q

µ
))

Pµ0 =
4im̂V√
2q̂2λ̂V

(η · q)
[
2q̂2pµ − (1− m̂2

V − q̂2)qµ
]

, (2.71)

where hatted quantities are dimensionless and normalised to the B meson mass (q̂2 = q2/m2
B

and m̂V = mV /mB), and

λV ≡ λ(1, m̂2
V , q̂

2) = ((1 + m̂V )2 − q̂2)((1− m̂V )2 − q̂2) (2.72)

is the Källén function, again with normalised entries. PV and PA are the tensors associated

with transverse meson polarisations since p · PV,A = 0, and P0 is the longitudinal, or zero

helicity, polarisation. PV and PA are labelled as such since they arise from the vector and axial

vector part of the weak current respectively; it is also convenient to define positive and negative

helicity coefficient tensors by

Pµ± =
1√
2

[PµV ∓ PµA] , (2.73)

since the left-handed structure of weak decays means that T− is expected to be zero up to

quark mass-type corrections7. Subscripts attached to T , T and other functions defined in

(2.70) indicate that the subscripted symbol is the coefficient of that tensor, so that there are

three possible bases:

T1(q2)Pµ1 + T2(q2)Pµ2 + T3(q2)Pµ3 = TV (q2)PµV + TA(q2)PµA + T0(q2)Pµ0

= T+(q2)Pµ+ + T−(q2)Pµ− + T0(q2)Pµ0 .
(2.74)

7Specifically, either non-zero quark masses or chiral odd vacuum condensates such as 〈q̄q〉, 〈q̄Gq〉, etc.
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The conversion formulae between these bases are:

T±(q2) =
1√
2

[TV (q2)∓ TA(q2)] (2.75)

T0(q2) =
1

m̂V

√
q̂2

8

[
1 + 3m̂2

V − q̂2√
λ̂V

T2(q2)−
√
λ̂V

1− m̂2
V

T3(q2)

]
(2.76)

TV (q2) = T1 (2.77)

TA(q2) =
1− m̂2

V√
λ̂V
T2(q2) . (2.78)

Note that for mV → 0 this reproduces the heavy quark form factors, for example comparing to

the notation T⊥,‖ of [42]

TV,A(q2)
mV→0−−−−→ T⊥(q2) T0(q2)

mV→0−−−−→ −
√

q2

m2
V

(1− q̂2)T‖(q2) , (2.79)

where TV (q2) = TA(q2) in the heavy quark limit [96,97].

Writing the decay rate in terms of the Ti functions leads to simple expressions for the total

B → V and B → P decay rates:

dΓ

dq2
[B → V l+l−] =

[
λ̂

3/2
V

q2

](αem

4π

)2

cH
∑
i=V,A

[∣∣T iV (q2)
∣∣2 +

∣∣T iA(q2)
∣∣2 + |T i0 (q2)|2

]
(2.80)

dΓ

dq2
[B → Pl+l−] =

[
λ̂

3/2
P

2(mB +mK)2

](αem

4π

)2

cH
∑
i=V,A

|T iT (q2)|2 (2.81)

Γ[B → V γ] =

[
3

4
λ̂

3/2
V

](αem

4π

)
cH

[∣∣T VV (0)
∣∣2 +

∣∣T VA (0)
∣∣2] , (2.82)

where

cH ≡
G2
F |λt|2m2

bm
3
B

12π3
(2.83)

arises from the weak effective Hamiltonian and meson phase space factors and the lepton mass

has been neglected. The normalisation of the tensors (2.71) is chosen such that each of the

T functions has the same effect on the decay rate (2.80). The decay rates (2.80) and (2.81)

have had the integration over the final state angular distribution performed, since that was

the quantity of interest in studying the isospin asymmetry in Chapter 5. However, a set of

optimized angular observables for B → V l+l− has been developed in [98–100], one of which

will be discussed in Chapter 6.

2.10 The ultra-relativistic approximation

There is a well-known approximation in light-cone physics relating longitudinally polarised

vector meson results to those for pseudoscalar mesons. The reason for this arises from a term

41



42 James Lyon

in the K∗ DA [81]8

〈K∗(p, η)|s̄(x)a[x, 0]q(0)b|0〉 =

∫ 1

0

du eiup·x
mK∗fK∗

4Nc
(/p)ba

η · x
p · xφ‖(u) + . . . (2.84)

which is strikingly similar to the leading twist term in the K DA [93]

〈K(p)|s̄(x)a[x, 0]q(0)b|0〉 =

∫ 1

0

dueiup·xi
fK
4Nc

[/pγ5]baφK(u) + . . . (2.85)

apart from the η·x
p·x term and having opposite parity. The fact that it has opposite parity is

normally irrelevant for weak decays since the γ5 matrix can usually be eliminated by γ5(1−γ5) =

−(1− γ5) up to quark mass-type corrections, which are expected to be small. For a two-body

decay, the polarisation vector may be separated into ηµ = ηµ⊥ + ηµ‖ , where η⊥ · q = 0 gives

the transverse component perpendicular to the plane of the decay. This is done fully in 5.12;

however, in the limit m2
K∗ → 0, it is straightforward to show that

ηµ‖ =
p

mK∗
+O(m∗K) , (2.86)

which allows the inconvenient factor η·x
p·x to be eliminated in this limit. It therefore follows that

〈K∗(p, η‖)|s̄(x)a[x, 0]q(0)b|0〉 ∼ 〈K(p)|s̄(x)a[x, 0](iγ5q(0))b|0〉+O(m2
K,K∗) , (2.87)

subject to replacement of masses, decay constants and Gegenbauer moments in the DA. This

replacement will be used in Chapter 3 to calculate the chromomagnetic form factor of longitu-

dinally polarised mesons.

The conventional wisdom that longitudinally polarised vector mesons are equivalent to pseu-

doscalar mesons is however incorrect. Aside from the fact that it is dependent on the V − A
structure of SM weak interactions to eliminate the parity difference, which invalidates the ap-

proximation beyond the SM, it also does not hold beyond the leading twist DA. It is apparent

from (2.86) that O(m2
K∗) corrections to the approximation should be expected, however in fact

there are also corrections at the first subleading order O(mK∗). This can be seen from the

selection rules for WA in table 5.1, since the pseudoscalar meson couples to an operator that

the vector meson does not, which is what brought it to our attention [92].

At next-to-leading order inmK∗ , there are two types of new term appearing in theK∗ DAand

one in the K DA. In the case of the g
(v,a)
⊥ DAs in the K∗, the ultra-relativistic approximation

holds, because these contribute to the perpendicular polarisation amplitude at O(mK∗) and

thus do not interfere with the longitudinal polarisation. An example of this is given by the

operators OWA
6,8 in WA in Section 5.3. The other new terms at O(mK,K∗) are the h

(s,t)
‖ and φp,σ

in the K∗ and K respectively. These do not respect the ultra-relativistic approximation and

8See appendix B for more complete DAs and an explanation of terms involved
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thus it breaks down at O(mK,K∗).

Two points about this breakdown are worth noting: first, it is small in heavy-to-light decays

owing to power counting in 1/mB : the φ⊥ and g
(v,a)
⊥ terms are both leading in 1/mB for

perpendicular polarisations so are both included [101]; however, for longitudinal polarisation

only φ‖ is leading and so the effects of h
(s,t)
‖ can be neglected. This means that the violation of

the ultra-relativistic approximation is small. The second point is the origin of the breakdown:

theK andK∗ are fundamentally different particles and in fact the subleading twist DAs φp,σ and

h
(s,t)
‖ have entirely different origins. The twist-3 K∗ DAs h

(s,t)
‖ are related by Wandzura-Wilczek

type equations of motion to φ⊥
9 [70] and are thus not independent degrees of freedom. The

twist-3 K DAs φp,σ are also constrained by equations of motion but there is no equivalent to φ⊥

for the K, and in fact the leading contribution to φp,σ is from chiral symmetry breaking [93].

This can be seen from the appearance of the coefficient µ2
K = fKm

2
K/(ms + mq), which is

approximately µ2
K ∼ 〈q̄q〉 /fK according to the Gell-Mann–Oakes–Renner relation [102].

9Neglecting three particle contributions.
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Chapter 3

The chromomagnetic operator in heavy-to-

light FCNCs

This chapter will describe the calculation of the matrix elements

〈M(p)γ∗(q)|O8|H(pB)〉 (3.1)

where pB = p+q. The operator O8 is the chromomagnetic operator of the electroweak effective

Hamiltonian discussed in Section 2.4, given by:

O8 = − g

8π2
mbs̄σ ·G(1 + γ5)b ≡

[
−gmb

8π2

]
Õ8 . (3.2)

This operator also contains a small term proportional to the strange quark mass which couples

to the right- rather than left-handed s quark, but this will be neglected as the strange quark

mass is neglected throughout this calculation. H is a pseudoscalar heavy meson, principally

the B meson, but results will also be provided for the D meson albeit with considerably larger

uncertainty. M is a pseudoscalar or vector meson and γ∗ is a photon, which may be off-shell

so that both the decays to a photon and a lepton pair can be accessed.

The calculation of the chromomagnetic matrix elements has been previously published in

[103].

3.1 Matrix element and sum rule

For definiteness, throughout this chapter the initial state meson shall be taken to be a B meson

and the final state meson shall be taken to be a vector meson. The replacement of B with D

is straightforward and the replacement of the final state vector meson with a pseudoscalar is
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in this case closely related to the longitudinal degree of freedom of the vector, as discussed in

Section 2.10. The amplitude of the transition induced by the chromomagnetic operator reads:

A∗ρ(V ) ≡ 〈γ∗(q, ρ)V (p, η)|Õ8|B̄(pB)〉 = i

∫
〈V |Tjρem(x)Õ8(0)|B̄〉 eiq·xd4x+ . . . (3.3)

The dots stand for higher twist contributions not captured by perturbation theory; in the case

of the on-shell photon the leading twist photon DA will be discussed in Section 3.4.1. For

a sufficiently off-shell photon the local OPE would be more appropriate; however, only the

leading perturbative term will be considered here as higher dimension operators should be

substantially suppressed for q2 > 1 GeV2. The intermediate region 0 < q2 < 1 GeV2 is too close

to the vicinity of the ρ meson intermediate state to be computable perturbatively. The external

momenta are pB = p+ q and η is the vector meson polarisation. The photon polarisation is left

as the uncontracted index ρ here. The operator Õ8 = s̄σ ·G(1 + γ5)b is the operator O8 (3.2)

after dropping the constant prefactor.

Four scalar functions are defined corresponding to the three polarisations of the vector meson

and the one of the pseudoscalar:

cV A∗ρ(V ) = kG
(
G1(q2)P ρ1 +G2(q2)P ρ2 +G3(q2)P ρ3

)
A∗ρ(P ) = kG

(
GT (q2)P ρT

)
. (3.4)

The Lorentz structures P ρi are defined in Section 2.9, and importantly are the same as those

used in the definition of the standard B → V and B → P tensor form factors. The factor cV

is included to absorb factors arising from coupling only to one valence state of a meson, which

occurs in the case of ρ0 ∼ (ūu− d̄d)/
√

2 and ω ∼ (ūu+ d̄d)/
√

2, where a b→ d transition will

only couple to the d̄d component. This means that cV = −
√

2 for B → ρ0, cV =
√

2 for B → ω

and cV = 1 in all other transitions. The constant kG ≡ −2e/g is chosen so that the functions

Gι parallel the standard form factors Ti and fT
1:

〈γ∗(q, ρ)V (p, η)|Heff |B̄〉 ∝
∑
i

(C7Ti(q
2) + C8Gi(q

2))P ρi + . . .

〈γ∗(q, ρ)P (p)|Heff |B̄〉 ∝ (C7fT (q2) + C8GT (q2))P ρT + . . . (3.5)

For semi-leptonic decays, the physical domain of these functions is 4m2
l < q2 < (mB −

mP,V )2; however, lepton masses do not directly enter this calculation except through q2. The

validity of these results will be futher discussed in Section 3.4.1.

Since the weak interaction is localised through the effective Hamiltonian, the transition

matrix element for O′8, which is O8 with opposite chirality (1 + γ5)→ (1− γ5) can be inferred

directly. Under exchange of chirality (1+γ5)→ (1−γ5) in O8 (3.2), the Gι-functions transform

1See Section 2.9 for their definitions.
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as follows:

{G1, G2, G3, GT }
(1+γ5)→(1−γ5)−−−−−−−−−−→ {G1,−G2,−G3, GT } . (3.6)

Note however that this calculation cannot be used to compute the effect of O′8 in the SM since

it is proportional to ms which is taken to be zero. Beyond–SM applications where O′8 has a

larger coefficient are the intended use of (3.6), and one such application will be discussed in

Chapter 4.

3.1.1 The sum rule

The matrix elements (3.1) are extracted from the correlation function

ΠV (q2, p2
B) = ε∗ρ(q)ΠV

ρ (q2, p2
B) = i

∫
〈γ∗(q)V (p)|TJB(x)Õ8(0)|0〉 e−ipB ·xd4x (3.7)

where the B meson figures as an interpolating current:

JB = imbb̄γ5q , 〈B(pB)|JB |0〉 = m2
BfB . (3.8)

In the equation above q = u, d are light flavoured quarks and fB is the standard B meson decay

constant. The techniques for extracting the matrix element (3.3) from (3.7) are discussed in

Section 2.8. In the present case, however, a major complication will arise: it will not be possible

to write the perturbative computation of (3.7) in the form

ΠV (q2, p2
B) =

∫ ∞
m2
b

ρ(q2, s)

s− p2
B

ds (3.9)

as in (2.54), where the integral is taken along the real line. The situation that will occur is

depicted in Figure 3.5, which shows the presence of a complex singularity off the real line.

As will be shown later, the presence of this singularity is the result of analytic continuation

from the Euclidean momentum region to the physical one and cannot be avoided by a different

choice of Riemann sheet. This complex singularity is the result of an anomalous threshold in

the three-point Green’s function (3.7) and the key point in relation to constructing a sum rule in

the presence of such an anomalous threshold is that its real part is above the duality threshold.

Therefore, the anomalous threshold and the associated branch cut are taken to be part of the

continuum of excited and multi-particle states, and thus the final sum rule will still be in the

form of an integral along the real line and may be interpreted as a density function in the sense

of the Källén-Lehmann spectral representation [89,90] below the duality threshold.
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ūp

V (p)
pB

q

ūp+ q

upÕ8

A1 A2 q

V (p)
pB

ūp

upÕ8

A3

V (p)
pB

ūp

upÕ8
q

q

V (p)
pB

ūp

upÕ8

−up− q

A4

Figure 3.1: Chromomagnetic spectator scattering diagrams. V (p) is the external meson distribution
amplitude, which may be a vector or pseudoscalar meson. The pseudoscalar meson case is related
to the longitudinal polarisation of the vector meson when using the ultra-relativistic approximation
so no additional computation is required. See Section 2.10 for discussion.

3.2 Computation of Gι

At leading order in αs there are twelve graphs contributing to Gι. They can be separated into

two groups as shown in figures 3.1 and 3.2:

Gι(q
2) = G(s)

ι (q2) +G(ns)
ι (q2) . (3.10)

G
(ns)
ι contains six graphs in which the gluon from the chromomagnetic operator connects to

the b- or s-quark line, henceforth known as non-spectator graphs. G
(s)
ι contains four graphs in

which the gluon connects to the light quark line, known as spectator graphs. The two remaining

graphs in which the gluon connects to the heavy quark line and the photon is radiated from the

spectator quark line are neglected; they are expected to be suppressed since none of the energy

from the heavy quark decay is transferred to the light quark.

The non-spectator graphs (Figure 3.1) may be computed in an inclusive approach [104] and

then convoluted with vector and magnetic penguin form factors to produce an exclusive result.

This procedure is described in Section 3.2.5. The main part of this chapter is devoted to the

computation of the spectator graphs G
(s)
ι and a discussion of the complications outlined in

Section 3.1.1.
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b

Õ8

sb

Õ8

s

Figure 3.2: Non-spectator contributions to Gι. The contribution from these graphs can be computed
via a convolution of the inclusive result of [104] with the vector and magnetic penguin form factors
described in 2.9.

Q

V (p)
pB

ūp

up
k Õ8

−up−Q

p2B
p2BP 2

Figure 3.3: Cuts in the presence of the extended external momentum configuration. The momentum
insertion k at the weak operator introduces the new momentum invariant P 2 ≡ (pB −k)2. The cut
in P 2 should not be included in the dispersion representation since, as is clear from the diagram, it
cuts the s rather than the b quark line and hence has the wrong quantum numbers for a B meson
state. The two cuts in p2

B both have the right quantum numbers and indicate that this sum rule
includes both two- and three- particle B meson states, and thus both hard gluon scattering and
contribution from initial state soft gluons are included.

3.2.1 Parasitic cuts

The discussion of sum rules in Section 2.8 does not touch upon the technical details of the

analytic structure of correlations such as (3.7). The analytic structure of two-point functions

is known from the Källén-Lehmann spectral representation [89, 90], and correspondingly sum

rules derived from correlation functions with the same initial and final state are expected to

have simple structure. This situation arises for example in the case of the cross-section for

e+e− → hadrons, e.g. [105], and such sum rules are known as diagonal.

The correlation function (3.7) is however non-diagonal. The analytic structure of this corre-

lation function can be partially examined through Cutkosky rules [91]. The cuts corresponding

to the momentum from the JB current insertion are shown for diagram A4 in Figure 3.3. Of the

three cuts shown, only two cut the b quark line. The third instead cuts the s quark line: this

cut should not enter the sum rule for a B meson initial state since it has the wrong quantum

numbers and it also leads to a cut starting at p2
B = 0 rather than p2

B = m2
b , as would be
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expected from a perturbative approximation to a B meson state. This additional cut may be

considered to arise from alternative time orderings in (3.7), since the matrix element may be

written

i 〈γ∗(q)V (p)|TJB(x)Õ8(0)|0〉 e−ipB ·x

=
∑
ψ

[
〈γ∗(q)V (p)|Õ8(0)|ψ〉 〈ψ|JB(x)|0〉 θ(−x0) + 〈γ∗(q)V (p)|ψ〉 〈ψ|JB(x)Õ8(0)|0〉 θ(x0)

]
,

(3.11)

with appropriate normalisation of the complete set of inserted states |ψ〉. For x0 < 0 only those

states |ψ〉 with b̄q quantum numbers contribute, whereas for x0 > 0 only those with s̄q do so.

Unfortunately this observation, while interesting, does not lead to an apparent method to select

only the B meson-like cuts, since inserting the Heaviside step function into the expression (3.7)

breaks manifest Lorentz invariance, which it would seem wise to avoid.

The method used to circumvent this problem was introduced by Khodjamirian for B →
ππ in [106]; similar approaches have also been used previously outside B physics [107, 108].

The approach is to consider the three external momenta pB , p and q to be independent, or

equivalently to introduce a spurious momentum k flowing into the chromomagnetic operator

Õ8. The sum is then based on a four-point rather than a three-point correlation function, so

there are three additional momentum invariants which are taken to be the squares of the vectors

P ≡ pB − k Q ≡ q − k (3.12)

and the spurious momentum k itself. The effect of this modification on the diagram A4 is

shown in Figure 3.3, where it can be seen that the sq state now has momentum P rather than

pB and therefore does not contaminate the analytic structure in p2
B . To recover the correlation

function (3.1) from the sum rule with the extended external momentum configuration, the five

invariants P 2, q2, Q2, p2, k2 are set on-shell:

P 2 = m2
B q2 = Q2 k2 = 0 p2 = m2

V,P . (3.13)

The approximation m2
V,P = 0 is used throughout this calculation, which is required for con-

sistency with the level of twist approximation of the final state meson2. This choice is not

unique: as is well known the kinematics of a four-point function may be described in terms

of Mandelstam variables [109], and the seven kinematic invariants that can be constructed are

reduced to six by a constraint. In the present case the invariant (p+k)2 = (pB−Q)2 = p2
B−P 2

may be considered the seventh momentum square, and under the choice (3.13) it is not on shell

where it would be zero. However p2
B−P 2 = O(mbΛQCD) is in fact not off-shell in the dispersion

2Corrections due to the non-zero mass of the vector or pseudoscalar meson first enter at twist 4.
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integral by more than the width of the duality window, and hence this problem should be con-

sidered part of the intrinsic uncertainty of the semi-global duality approximation. The quantity

p2
B −P 2 does however contain the invariant p2

B used to construct the dispersion relation where

it arguably should not, and hence this may be expected to affect the complex structure of the

dispersion representation, which, as it turns out, is what happens.

The addition of an external momentum k means that the Pι basis described in Section 2.9

is no longer adequate. Instead an extended basis with an additional tensor structure in each

of the pseudoscalar and vector meson cases is used. The correlation function (3.7) is expanded

in terms of functions gι, where ι ∈ {0, 1, 2, 3, 4} for the vector meson and ι ∈ {0, T, T̄} in the

pseudoscalar case:

ΠV =

4∑
i=0

gi(q
2)ε(Q) · pi ΠP =

∑
i∈{0,T,T̄}

gi(q
2)ε(Q) · pi . (3.14)

The basis tensors are a straightforward extension of the standard basis (2.62) and are given by

pρ1 =2εραβγηαpβQγ

pρ2 =i [((pB + p) ·Q)ηρ − (η ·Q)(pB + p)ρ]

pρ3 =i

[
(η ·Q)Qρ − (η ·Q)(pB + p)ρ

q2

Q · (pB + p)

]
pρ4 =i

[
(η ·Q)kρ − (η ·Q)(pB + p)ρ

k ·Q
Q · (pB + p)

]
(3.15)

in the vector case and

pρT =(mB −mP )

[
Qρ − q2

Q · (pB + p)
(pB + p)ρ

]
pρ
T̄

=(mB −mP )

[
kρ − k ·Q

Q · (pB + p)
(pB + p)ρ

]
(3.16)

in the pseudoscalar case. The final tensor pρ0 = Qρ is expected to have coefficient zero due to

gauge invariance. Similarly to the kinematics (3.13), this extension is not unique, since the pairs

of vectors (pB , P ), (q,Q) and (p, p + k) are not distinguished when the external momenta are

on shell (k = 0). The choices (3.15) and (3.16) maintain pι ·Q = 0, since away from k = 0 the

external photon momentum is Q rather than q. To return to the original basis without k, the

matrix elements G1,2,3,T (q2) are computed from the dispersion representations of g1,2,3,T (q2)

and the functions g4,T̄ (q2) are discarded.

3.2.2 Spectator graphs

The graphs A1-A4 (q.v. Figure 3.1) can be straightforwardly evaluated. The light-cone OPE

is used to treat the final state meson, and the calculation was performed using FeynCalc [25]
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to perform Dirac traces, Passarino–Veltman reduction and basis projection. Following this

automated calculation, the functions gι are expressed in terms of polynomials of the external

momentum squares and eight Passarino–Veltman functions [110], which are:

Ba = B0(u(p2
B − P 2), 0,m2

b) Bb = B0(p2
B − P 2, 0,m2

b)

Bc = B0(up2
B + ūq2, 0,m2

b) Bd = B0(p2
B , 0,m

2
b)

Ca = C0(p2
B , u(p2

B − P 2), ūP 2 + uq2, 0,m2
b , 0) Cb = C0(p2

B , p
2
B − P 2, q2, 0,m2

b , 0)

Cc = C0(up2
B + ūq2, u(p2

B − P 2), q2,m2
b , 0,m

2
b) Cd = C0(p2

B , p
2
B − P 2, q2,m2

b , 0,m
2
b) .

(3.17)

Note that the functions in the right-hand column are simply those in the left-hand column at

u = 1, so dispersion representations will not be given for these separately3. To give explicit

results, the vector meson amplitudes are broken down into the contribution from longitudinal

and transverse polarisations:

gi(q
2) = g

(⊥)
i + g

(‖)
i (q2) . (3.18)

At twist-2 the transverse and longitudinal polarisations are identified directly with the dis-

tribution amplitudes φ⊥(u) and φ‖(u). For the perpendicular polarisation the result may be

written:

g
(⊥)
1 (q2) = g

(⊥)
3 (q2) =

g
(⊥)
2 (q2)

1− q2/P 2
= −αs

8π
kGCF f

⊥
V m

2
b

∫ 1

0

φ⊥(u)t
(⊥)
H (u)du . (3.19)

The relations between g
(⊥)
1,2,3 are not accidental, rather the g

(⊥)
1 –g

(⊥)
2 relation is a result of the

left-handed structure of the Õ8 operator inherited from the W boson interaction combined with

the leading twist approximation for the vector meson, and the g
(⊥)
2 –g

(⊥)
3 relation arises because

the parity-violating perpendicular polarisation corresponds to a specific linear combination of

p2 and p3, with the orthogonal combination being the longitudinal polarisation, as discussed in

Section 2.9. The integrand kernel t
(⊥)
H is given by

t
(⊥)
H (u) =

QqBa +QbBc + 2(Qq +Qb)Bd
uq2 + ūP 2

− 2QqCa −QbCc + . . . (3.20)

where Qb = − 1/3 is the b quark charge and Qq = + 2/3 or − 1/3 is the light quark charge

which depends on the heavy meson under consideration. The dots represent additional finite

terms which do not contribute to the dispersion representation (they disappear under Borel

subtraction) and are dependent on the exact treatment of γ5 in dimensional regularisation

owing to the issues touched on in Section 2.4. The longitudinal polarisation will be dealt with

3For definiteness the parameter convention used is the same as that used in FeynCalc [25], LoopTools [111]
and Denner’s review [52].
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momentarily. The pseudoscalar function gT (q2) is given by

g
(⊥)
T (q2) = −αs

8π
kGCF f

⊥
P m

2
b

∫ 1

0

φP (u)t
(P )
H (u)du ; (3.21)

however, in this case the integrand is considerably more complicated and thus the expression

for tPH(u) is deferred to appendix D.1.

The longitudinally polarised vector meson contribution can be computed from gT (q2) us-

ing the ultra-relativistic approximation4. In the limit of the meson mass going to zero, the

longitudinal polarisation vector may be written:

η =
p

mV
+O(mV ) . (3.22)

Inserting this into the DA (B.3) yields an expression identical in structure to (B.1) at leading

twist-2, aside from the presence of γ5 in the latter. The (1 + γ5) in the O8 operator can be

commuted to the pseudoscalar DA insertion and then the γ5 is annihilated by (1 + γ5)γ5 =

(1 + γ5). Note that for the operator O′8 of opposite chirality this relation will include a minus

sign. Under the replacement (3.22) the tensor pρ3 becomes

pρ3
η→p/mV−−−−−−→

(
i(P 2 − q2)

2mV (mB −mP )

)
pρT . (3.23)

The remaining differences between the vector and pseudoscalar DAs can be taken care of by

the substitutions φP (u) → φ‖(u) and fP → ifV . Combining these replacements with (3.23)

gives the identity

g
(‖)
3 (q2) = −fV

fP

2mV (mB −mP )

m2
B − q2

gT (q2)
∣∣
φP→φ‖

(3.24)

g
(‖)
1 (q2) = g

(‖)
2 (q2) = 0 , (3.25)

which is valid up to O(mV ) corrections arising at twist-3. It should be noted that there is a

similar relation to (3.23) for the tensor p2, the reason that the longitudinal polarisation con-

tributes to g3(q2) rather than g2(q2) is that for a perpendicularly-polarised final-state meson

η ·Q = 0 which leads to p3 → 0, in contrast to the case of p2 which remains non-zero for perpen-

dicular polarisation vectors. The coefficient g2 of p2 is therefore a mixture of perpendicular and

longitudinal terms but the coefficient g3 of p3 relates to longitudinal terms only, and therefore

longitudinal terms computed using the ultra-relativistic approximation belong there.

4See Section 2.10.
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3.2.3 Dispersion representations of Passarino–Veltman functions

The procedure to construct dispersion representations of Passarino–Veltman functions is in

principle rather straightforward; the principal difficulty which may arise is analytic continuation.

This procedure will be illustrated in the case of the function Ba (3.17), where it is indeed simple,

before proceeding to the rather trickier case of Ca. By definition of Ba:

Ba ≡ B0(u(p2
B − P 2), 0,m2

b) ≡
(2πµ)4−d

iπ2

∫
ddk

(k2 + iε)((k + u(p2
B − P 2))2 −m2

b + iε)

=−
∫ 1

0

log

[
x(m2

b − x̄u2(p2
B − P 2)2)− iε
µ2

]
,

(3.26)

where x̄ ≡ 1− x. The final form of the expression is taken from [52] fixing the constant ∆ = 0

as per the MS scheme, and may be straightforwardly derived from the definition in terms of

a loop integral by the standard procedure of Feynman parametrisation to render the integral

spherically symmetric, as described in any quantum field theory textbook, e.g. [23].

Construction of the dispersion representation is usually done most straightforwardly via the

following two observations: firstly, that the Feynman parameter representation (3.26) does not

contain any complex singularities for Im p2
B > 0, since the imaginary part of the logarithm

argument cannot be zero anywhere in the integral region. This generalises to the three-point

representation, provided that the imaginary part of all three invariants is positive; however, for

the four-point function the Feynman parametrisation is rather more complex and the situation

not so clear [88]. Secondly, Ba is real for p2
B � 0, i.e. for real p2

B below any thresholds. It

follows from these two observations and the Schwarz reflection principle that there are also

no complex singularities in the lower half of the complex plane, and thus the entire complex

structure of this function consists of a single cut along the real line, as illustrated in Figure 2.3.

As B0 is related to two-point functions this was the only possible outcome since it is the complex

structure implied by the Källén-Lehmann spectral representation [89, 90] which exists for any

two-point function. In the case of dispersion representations, however, the two observations are

more general; n-point correlation functions are generally real when all external momenta are

space-like since they are related to correlation functions of a Euclidean field theory by Wick

rotation. A dispersion representation valid for space-like external momenta can therefore be

constructed straightforwardly. In the case at hand it is:

B0(u(p2
B − P 2), 0,m2

b)−B0(0, 0,m2
b) =

p2
B

π

∫ ∞
m2
b
u +P 2

ImsB0(u(s− P 2), 0,m2
b)

s(s− p2
B)

ds , (3.27)

where a single subtraction has been performed to render the right-hand side finite. The spectral

density is given by:

ρBa(s) =
1

π
ImsB0(u(s− P 2), 0,m2

b) =

(
1− m2

b

u(s− P 2)

)
Θ

(
1− m2

b

u(s− P 2)

)
. (3.28)
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The Borel transform in this case gives:

Bp2
B→M2

[
B0(u(p2

B − P 2), 0,m2
b)
]

=
1

π

∫ ∞
m2
b
u +P 2

e−s/M
2

ImsB0(u(s− P 2), 0,m2
b)ds . (3.29)

Having constructed a dispersion representation for space-like external momenta by taking the

imaginary part, the dispersion representation for time-like external momenta is recovered by

analytic continuation in the Lorentz invariants. This is the procedure most commonly used for

B physics sum rules, e.g. [75, 105, 106, 112]. All spectral densities (3.17) except for Ca may be

derived by this method and the remaining two are:

ρBc =

(
1− m2

b

us+ ūq2

)
Θ

(
s− m2

b − ūq2

u

)

ρCc =
log
(
A−λ1

√
λ3

A+λ1

√
λ3

)
√
λ3

[
Θ

(
s− m2

b − ūq2

u

)
−Θ

(
s− m2

b

u
− P 2

)]

+
log
((

B−λ2

√
λ3

B+λ2

√
λ3

)(
A−λ1

√
λ3

A+λ1

√
λ3

))
√
λ3

Θ

(
s− m2

b

u
− P 2

)
,

(3.30)

where

A ≡2m2
bq

2 − u
(
q2 − P 2

) (
m2
b + ūq2 + us

)
B ≡u

((
q2 − P 2

) (
m2
b + u

(
s− P 2

))
− 2q2

(
s− P 2

))
λ1 ≡m2

b − us− ūq2

λ2 ≡m2
b − u(s− P 2)

λ3 ≡λ
(
us+ ūq2, u(s− P 2), q2

)
,

and λ(x, y, z) = (x− (y+ z))2−4yz is the Källén-function. In fact, the function Cc does indeed

suffer some of the same difficulties as Ca, but they only occur for q2 above a high threshold

and can be ignored in this analysis.

3.2.4 Dispersion representation of Ca

Before addressing the dispersion representation of Ca specifically, it is worthwhile to analyse

its complex singularity structure. For real external momentum invariants, Ca is given by its

Feynman parameter representation

Ca ≡ C0(p2
B , ūP

2 + uq2, u(p2
B − P 2),m2

b , 0, 0)

=

∫ 1

0

dx

∫ 1

0

dy

∫ 1

0

dz
δ(1− x− y − z)

z(xp2
B + yu(p2

B − P 2)−m2
b) + xy(ūP 2 + uq2) + iε

=

∫ 1

0

dy′
∫ 1

0

dx
[
(1− y′)(xp2

B + (1− x)y′u(p2
B − P 2)−m2

b) + xy′(ūP 2 + uq2) + iε
]−1

,

(3.31)
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where in the second line a standard substitution y = (1 − x)y′ has been used to linearise the

denominator in x. The procedure for identifying singularities arising in complex integrals is

described in [113]. In the case of a Feynman integral it boils down to identifying points where

the denominator, henceforth identified as F , is zero, and one of the following holds for each

Feynman parameter xi:

1. Either xi = 0, so that xi is on the integration boundary

2. or ∂F
∂xi

= 0, so that there is a stationary point at the zero of F .

These conditions are known as the Landau equations5. Normal thresholds in p2
B can be read

off from cuts in the triangle diagram and are given by p2
B = m2

b and p2
B =

m2
b

u + P 2. These

thresholds correspond to the solutions ∂F
∂x = 0, y = 0 and ∂F

∂y = 0, x = 0 of the Landau

equations, respectively. A third singularity is at ūP 2 + uq2 = 0, but that is of no interest

here since it does not involve p2
B . Since these singularities correspond to momentum cuts in a

Feynman diagram, they correspond to the Cutkosky rules method of computing the imaginary

part of a diagram.

There is an additional solution at ∂F
∂x = ∂F

∂y = 0 which does not correspond to an identifiable

momentum cut in the triangle diagram. This type of singularity is known as an anomalous

threshold. This corresponds to all three propagator momenta going on-shell simultaneously in

the loop integral, and in the case of Ca this occurs at

p2
B = s± ≡

(1 + u)m2
b + uP 2 ±

√
(uP 2 − ūm2

b)
2 − 4u2m2

bq
2 − iε

2u
, (3.32)

where the −iε indicates that analytic continuation when the argument of the square root be-

comes negative is such that Im s+ ≤ 0.

Unfortunately, the Landau conditions only identify the location of potential complex singu-

larities; they do not give an indication on which Riemann sheets they are actually present. In

the case of the three-point function, the complex structure was analysed in the framework of

axiomatic quantum field theory by Källén and Wightman [114] and shown to be divisible into

octants according to the signs of the imaginary parts of the external momenta. The anomalous

cuts in this approach are given by [115]

(p2
B − r)(u(p2

B − P 2)− r) + r(ūP 2 + uq2) = 0 , (3.33)

which reproduces (3.32) after the identification r = m2
b . Construction of integral representations

of three-point functions was also considered in [116]. Unfortunately the results there are not

suited for constructing sum rules because complex anomalous thresholds are avoided through

taking the cut to lie along the negative real axis.

5Note that these conditions are written expecting that the δ function is present; in the case of (3.31) this
means that z = 0 corresponds to x+ y = 1 which would otherwise also have to be considered.

56



Rare semi-leptonic B meson decays 57

In the present case however, the simplest way to proceed is rather more straightforward.

Since the Feynman parameter representation is correct for Im p2
B > 0 and there are therefore

no complex singularities in the upper half plane, the contour required for a dispersion repre-

sentation there lies just above the real line. This therefore suggests that applying the usual

dispersion representation construction (3.28) may be useful:

(3.34)

1

π
ImCa = −

∫ 1

0

dy

∫ 1

0

dxδ
(
(1− y)(uy(p2

B − P 2)−m2
b)

+ x(y((1− uy)P 2 + uq2) + (1− y)(1− uy)p2
B)
)

= −
∫ 1

0

dy
θ(p2

B −m2
b + y

1−y (ūP 2 + uq2))− θ(uy(p2
B − P 2)−m2

b)

y((1− uy)P 2 + uq2) + (1− y)(1− uy)p2
B

,

where the imaginary part is applied under the integral using the well known identity

lim
ε→0

∫
f(x)

x− iεdx =

 (
iπδ(x) +

1

x

)
f(x)dx , (3.35)

where
ffl

denotes a Cauchy principal value integral. To study the integral (3.34), the restrictions

imposed by the Heaviside step functions must be analysed. The two constraints lead to

p2
B −m2

b +
y

1− y (ūP 2 + uq2) > 0 =⇒ 1

y
<

1

yL
= zL = 1 +

ūP 2 + uq2

m2
b − p2

B

(3.36)

uy(p2
B − P 2)−m2

b > 0 =⇒ 1

y
<
u(p2

B − P 2)

m2
b

. (3.37)

The second of these (3.37) is not satisfied for p2
B <

m2
b

u + P 2 for any y in the range 0 < y < 1.

It therefore does not lead to any difficulties in the complex structure of Ca, since for p2
B → −∞

it induces no imaginary part and the Schwarz reflection principle applies. The first condition

(3.36) is rather more interesting because for P 2 > 0 and q2 > 0, values which they will take

when put on-shell, zL > 1 for p2
B → −∞ and hence the representation (3.34) implies a cut

along the negative real axis as well as the positive one.

The first thing to note in this situation is that the analytic structure in p2
B appears to be

rather different for P 2 < 0 and q2 < 0 than for the physical case P 2 > 0 and q2 > 0. This sug-

gests that the traditional approach of starting with space-like external momenta, constructing

a dispersion representation and analytically continuing the spectral density function may not

be straightforward. Since the Feynman parameter representation already provides an analytic

continuation to time-like external momenta for Im p2
B ≥ 0 it is possible to take an alternative

approach: start from the known behaviour of Ca in the upper complex half-plane at physical

P 2 and q2 and analytically continue to the lower complex half-plane in such a way that there

is no cut for p2
B → −∞, which is the choice of complex structure that must be made in order

to construct a physical dispersion representation.
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Analytic

continuation s−

s+

m2
b

m2
b

u
+ P 2

Im p2B

Re p2B

Figure 3.4: Analytic continuation of Ca from the upper half-plane, covered by the Feynman pa-
rameter integral representation, to the lower half-plane. The zigzag lines indicate choice of branch
cuts. Solid dots represent branch points. The dotted zigzag line represents a discontinuity present
in the Feynman parameter integral, which is analytically continued across to produce a dispersion
representation. The open circle shows the location of a branch point which is not present on the
principle Riemann sheet of the function.

This representation is constructed as follows

Ca(p2
B) =

Ca(p2
B) Im p2

B > 0

Ca(p2∗
B )∗ + δCa(p2

B) Im p2
B < 0

, (3.38)

where Ca(p2
B) in the upper complex half plane is taken to be defined by the Feynman parameter

integral. Since there are no complex singularities in this region a dispersion representation will

only need its imaginary part on the real line. For the present calculation, this was worked out

directly in terms of logarithms and the result is given in appendix D.2; however, the same result

can be obtained from LoopTools [111]. The function δCa is a stitching function; it corrects for

the effects of a non-zero imaginary part along the section of the real axis across which the

analytic continuation is done. The benefit of the construction (3.38) is that the correction δCa

is considerably simpler than the full function Ca but carries all of the difficult complex structure;

since it is related to the imaginary part of Ca on the real axis, it only contains logarithms rather

than the dilogarithms in the full formula for Ca, e.g. [52].

The analytic continuation across the real axis is illustrated in Figure 3.4. For the segment

of the real axis to the left of any branch points the branch cut is to be eliminated via the choice

of δCa (3.38), and in order to do this the formulae for Ca must match just below and just above

the real axis in this region. It therefore follows that for real p2
B < m2

b :

δCa(p2
B) = 2i ImCa(p2

B), p2
B < m2

b . (3.39)
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In this region only the first Θ function appearing in (3.34) contributes and

δCa(p2
B) = − 2πi

u(p2
B − P 2)

∫ 1

yL

dy

(y − y+)(y − y−)
= −2πi

p2
B

∫ zL

1

dz

(z − z+)(z − z−)

= −2πi√
λ

(
log

(
z+ − zL
z+ − 1

)
− log

(
z− − zL
z− − 1

))
=

2πi√
λ

(
log

(
1− z+

1− z−

)
− log

(
z+ − zL
z− − zL

))
,

(3.40)

where

λ = λ(p2
B , ūP

2 + uq2, u(p2
B − P 2)) (3.41)

y± =
(1 + u)p2

B − P 2 − uq2 ±
√
λ

2u(p2
B − P 2)

(3.42)

z± =
(1 + u)p2

B − P 2 − uq2 ±
√
λ

2p2
B

(3.43)

and λ(x, y, z) ≡ (x − y − z)2 − 4yz is the Källén function, as usual. The integral substitution

z = y−1 was used in (3.40) to avoid the singularity at p2
B = P 2. The final step of rearranging

logarithms in (3.40) is not guaranteed to preserve the branch structure of the function; however,

this step reproduces the correct result on the real axis for p2
B → −∞ and that is all that is

required, since the analytic continuation to other regions must be recovered by a more careful

analysis, performed below.

It is worth noting immediately that the solutions to z± = zL are given by p2
B = s±, and

hence a branch point must exist at p2
B = s+, because none of the other logarithm branch

points coincide with it and thus it cannot be cancelled. There are however no finite solutions

to z± = 1, so the first logarithm does not introduce any branch points. The branch cuts of Ca

may therefore be chosen as shown in Figure 3.4, and the full dispersion relation follows from

(3.38)

Ca(p2
B) = CAa (p2

B) +

∫ ∞
m2
b

ds

s− p2
B

(ρC(s) + ρδC(s)) , (3.44)

where

ρC(s) =
ImCa(s)

π
(3.45)

ρδC(s) =
1√
λ(s)

(
log

(
z+ − zL
z− − zL

)
− log

(
z+ − 1

z− − 1

))∣∣∣∣∣
p2
B→s

≡ 1√
λ(s)

(log θL − log θ1) (3.46)

CAa (p2
B) = −2πi

∫ Re s+

s+

ds

s− p2
B

[
1√
λ

∣∣∣∣
p2
B→s

]
(3.47)

Computation of (3.45) is entirely standard and outlined in appendix D.2. The function CAa (p2
B)

gives contribution due to the anomalous threshold, which owing to the choice of branch cuts

goes to zero when s+ is real. The form of CAa (p2
B) follows from (3.46) and the fact that the
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m2
B

Im p2B

Re p2B

s0 ΓC

s+

ΓP

m2
b

Im p2B

Re p2B

s0

s+

ΓC

ΓP

Figure 3.5: Comparison of analytic structure of Ca (3.17) (right) and the expected analytic structure
of the matrix element (3.7) in the full theory. The complex branch point s+ is considered part of
the continuum of multi-particle and excited states, identified by ΓC in both diagrams, and since
Re s+ > s0, the associated branch cut can be safely connected directly to the real line via a
vertical cut. The contribution of the B meson state to the perturbative matrix element is given
by the contour ΓP , which by semi-global duality is still expected to approximate the pole residue
at p2

B = m2
B in the full theory. Note that the location of the branch point s+ associated with the

anomalous threshold is not expected to be the same in the full theory; however, according to the
analysis of Källén & Wightman [114,115] the branch structure is expected to be the same, i.e. there
should only be a single branch point in the lower complex half-plane in the full theory.

discontinuity across the branch cut of a logarithm is constant regardless of its location, and

equal to 2πi. The appearance of the factor 2πi can also be viewed as a consequence of the

fact that the integrand of (3.47) is the discontinuity of a discontinuity, and hence originates

in a dilogarithm rather than a logarithm where the 2πi would cancel with the factor from

Cauchy’s formula. The relation between the perturbative analytic structure (3.40) and the

analytic structure of the full theory is shown in Figure 3.5.

It now remains to solve the problem of selecting the correct branches of the logarithms

appearing in different (3.46) for real s. First, it is useful to define the analytic continuation of

the square root of the Källén function λ to the complex plane, given by

√
λ(s) = ū

√
λ+ − s

√
λ− − s , (3.48)

where λ± are the zeros of λ

λ± =
ūP 2 + u(1 + u)q2 ± 2u

√
q2(ūP 2 + uq2)

ū2
. (3.49)

Note that λ± ≥ P 2, with the equality holding for P 2 = q2, so these zeros are not encountered

below s = m2
b . The analytic continuation (3.48) follows from observing that

√
λ > 0 for s < λ−

implies that
√
λ < 0 for s > λ+, since far from the roots the function must appear to be linear

because it is the square root of a quadratic, so
√
λ(s) ∝ s for s going to infinity in any direction.
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It can also be seen from this argument that Im
√
λ(s) > 0 in the lower complex half-plane.

The analytic structure for p2
B < m2

b < λ− can now be understood straightforwardly. It

follows from the fact that there are no finite solutions to z± = 1 and that z− < z+ < 1 for

p2
B → 0+, that z± < 1 for s < λ−. However, z− diverges at s = 0 and the argument of the

logarithm changes sign. Since there is no branch point below s = m2
b on the real line it must

be the case that Re δCa(s) = 0 for s < m2
b according to (3.39), and therefore the correct result

can be obtained by taking the magnitude of both logarithms in (3.46). The arguments to both

logarithms in (3.46) can therefore be taken to be real and the logarithms are on the principal

branch for 0 < s < m2
b in accordance with the requirement that δCa is purely imaginary in

this region, since this is the easiest place from which to construct the analytic continuation to

s > m2
b .

The key to understanding the analytic continuation of the logarithms (3.46) is then to

understand how their arguments behave in the complex plane for λ− < s < λ+, that it to

say when λ(s) < 0. In this region, the argument to each logarithm is a pure phase since the

numerator and denominator of the arguments are complex conjugates of each other. The second

logarithm is the simpler of the two so it will be analysed first. Its phase is given for λ(s) < 0

by

arg
z+ − 1

z− − 1
= −2 arctan

Im
√
λ

ūs+ P 2 + uq2
= −2 arctan

ū
√

(s− λ−)(λ+ − s)
ūs+ P 2 + uq2

. (3.50)

The second equality holds because it is the branch where Im
√
λ > 0 that is being considered6.

Near p2
B = λ±, the phase is known to be zero. The sign of this expression near s = λ− can be

obtained by expanding s = λ− + ε:

arg
z+ − 1

z− − 1
= −2 arctan

(
ū
√
ε
√
λ+ − λ−

ūλ− + P 2 + uq2

)
. (3.51)

Expanding near the other root s = λ+ − ε produces the same expression with λ− → λ+ in the

denominator. As the phase cannot go to zero between these points and does not diverge, it can

be seen whether the logarithm has switched branches (the argument has circled the origin) by

checking the sign of the denominator at either end. Since λ± > P 2, the phase is positive for

all λ(s) < 0, so it may be concluded that the first logarithm does not change branch and the

imaginary part of this logarithm should always be taken to be positive. In order to simplify the

6The function δCa is only defined below the real line and the sign of Im
√
λ(s− iε) follows from (3.48)
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Figure 3.6: Location of the roots of the Källén function λ± and the real part of the anomalous
threshold s± over the u integration range. s± have the same real part where they are complex.
The vertical dotted lines show a tricky region in the integration range where the values of s± and
λ± do not indicate on which sheet the logarithm arguments should be taken; for example at the
left-most dotted line s− = λ− but in order to achieve the desired analytic continuation all the way
to u = 1, s− and λ− must be taken to orbit each other rather than just to approach and recede,
thereby picking up a factor of 2πi. The same thing occurs with s+ and λ− at the last dotted line.

notation, two alternative logarithm functions with different branch choices are introduced:

log+ x =

log x Imx = 0

log(−x) + iπ Imx 6= 0

log− x = log(−x)− iπ , (3.52)

which are the same as the standard logarithm on the real line, but the imaginary parts have

known sign, i.e. Im log+ x ≥ 0 and Im log− x ≤ 0 on the principal branch of each function. The

replacement log θ1 → log+ θ1 in (3.46) implements the analytic continuation of this logarithm

along the entire real line. Further, since it only has an imaginary part when
√
λ is also imaginary,

the imaginary part of the result comes entirely from the principal branch of ImCa and the second

logarithm.

Following the same line of reasoning for the other logarithm, the quantity whose sign gives

the sign of the phase of that logarithm near s = λ± is

r(s) = (1+u−2zL)s−P 2−uq2 =
2m2

b

s−m2
b

(
ūP 2 + uq2

)
−
[
s− u(s− P 2)− (ūP 2 + uq2)

]
(3.53)

62



Rare semi-leptonic B meson decays 63

and the notation r± ≡ r(λ±) shall be used. It is much simpler to explain the analytic contin-

uation of this logarithm with reference to a diagram of the branch points, which is shown in

Figure 3.6. If sgn(r+) = sgn(r−), then the sign of the imaginary part is taken to be sgn(r−) and

the analytic continuation is the appropriate logarithm definition in (3.52). Examining (3.53)

reveals that dr
ds < 0 for s > m2

b and P 2, q2 > 0, so the only remaining case that is relevant for the

dispersion relation at physical external momenta is r− > 0 and r+ < 0; the sign change in the

other direction does not arise in this calculation. The logarithms are not expected to produce

an imaginary part below the relevant thresholds Re s− or λ− and likewise they cannot produce

an imaginary part for s → ∞, because then ImCa(p2
B) would be logarithmically divergent for

any value of p2
B , and this is not the case. The first logarithm in (3.46) must therefore be on the

principal branch for both s < min(λ−,Re s−) and s > max(λ+,Re s+)7. It can thus be seen

that the branch choice for this logarithm may be discontinuous across Re s± but since this can

only introduce a factor of 2πi, that is to say it can only jump between neighbouring Riemann

sheets of the logarithm, there are no further complications due to θL circling the origin more

than once. The only slight catch in writing down the complete analytic continuation on the

real line is now that λ− < Re s± < λ+ holds nearly but not quite everywhere when Im s+ 6= 0,

as shown in Figure 3.6, and the ranges where this fails are easy to miss. Putting all of these

constraints together the first logarithm is given, on the real line, for all relevant values of the

external parameters, by:

logL θL =



r+ > 0 ∧ r− > 0 log+ θL

r+ < 0 ∧ r− > 0



λ < 0

s < Re s+ log+ θL

s > Re s+ log− θL

λ > 0



θL < 0

s < λ− log− θL

s > λ+ log+ θL

θL > 0


Re s+ < s < λ− log θL − 2πi

λ+ < s < Re s+ log θL + 2πi

otherwise log θL

r+ < 0 ∧ r− < 0 log− θL

(3.54)

(3.46) is now replaced by:

ρδC(s) =
1√
λ(s)

(
logL θL − log+ θ1

)
. (3.55)

The correctness of this equation has been verified by comparing the results of computing Ca

through (3.44) to the results of LoopTools. This completes the calculation of G
(s)
ι (q2) (3.10).

7The fact that the real part of s± is taken is due to the choice of cut structure in Figure 3.4.
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3.2.5 Non-spectator graphs

The non-spectator scattering contribution G
(ns)
ι (q2), given by the inclusive graphs shown in

Figure 3.2, is computed using a local expansion of these graphs in 1/m2
c , performed in [104],

combined with the form factor calculations of [81,93]. The result is

G
(ns)
i (q2) =

(
−αs(mb)

4π

)(
Qb
− 1/3

)(
F

(7)
8 Ti(q

2) + F
(9)
8 Hi(q

2)
)

i = 1 . . . 3

G
(ns)
T (q2) =

(
−αs(mb)

4π

)(
Qb
− 1/3

)(
F

(7)
8 fT (q2) + F

(9)
8 hT (q2)

)
, (3.56)

where Ti(q
2), fT (q2), Hi and h+ are defined in (2.69). The functions F

(7,9)
8 (q2) are given

in [104].

3.3 Comparison with QCD factorisation

The matrix element (3.1) has previously been computed at q2 = 0 using QCDF in [84], or rather

its isospin violating part has. This is in fact the most interesting part to compare with this

calculation because it is infrared divergent, so the comparison reveals how the LCSR method,

which incorporates hard and soft initial-state gluons on equal footing, resolves this divergence.

The specific comparison is of diagrams A1 and A2 in Figure 3.1. Since G1(0) = G2(0) (3.19)

the quantity of interest may be written:

G
(s)
1 (0) =

[
αs
4π

CF
Nc

12π2 f⊥fB
m2
B

]
︸ ︷︷ ︸

∼m−5/2
b

(QqX⊥ +QbX̄⊥) , (3.57)

where the large mb scaling of the bracket is indicated. The quantity X⊥ corresponds to photon

emission from the spectator quark line and has the same normalisation as in [84],

X⊥ =

∫ 1

0

φ⊥(u)x⊥(u)du , (3.58)

and likewise for X̄⊥ and x̄⊥. The QCDF result for x⊥(u) is [84]:

xQCDF
⊥ (u) =

1 + ū

3ū2
, (3.59)

The LCSR result derived in Section 3.2 simplifies considerably at q2 = 0, primarily owing to

the absence of problems with the anomalous threshold, but remains rather more complex than

the QCDF result

xLCSR
⊥ (u) =

∫ s0

m2
b

ds e
m2
B−s
M2 ρ(s, u) (3.60)
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and x̄LCSR
⊥ has the same relation to ρ̄. The integrands are given by:

ρ(s, u) =
m2
bNc

12π2f2
B︸ ︷︷ ︸

∼m3
b

 log
(
ūs(m2

b+P
2−s)

P 2(m2
b−us)

)
P 2 − ūs − s−m2

b

ūsP 2

 (3.61)

ρ̄(s, u) =
m2
bNc

12π2f2
B

θ(us−m2
b)

us−m2
b

2u2sP 2
+

log
(
us
m2
b

)
2uP 2

− s−m2
b

usP 2

 . (3.62)

The large mb scaling of the prefactor arises from fB ∼ m
−1/2
b [117]. There are several obvious

differences between the QCDF and LCSR results which are to be explained:

1. The integral (3.58) contains an endpoint divergence for x⊥(u)→ xQCDF
⊥ (u), whereas the

LCSR result is finite.

2. The LCSR integrand (3.61) contains an imaginary part absent in the QCDF case.

3. Since the LCSR result incorporates soft initial-state radiation and the QCDF result does

not, are the two calculations directly comparable?

The answers to all of these questions are closely related. To begin with, it is worthwhile

discussing the problem of the endpoint divergence in QCDF and its traditional resolution.

Taking the DA to be its asymptotic value,

φ⊥(u)→ 6ūu (3.63)

the divergent part of the integral (3.58) can be evaluated:

XQCDF
⊥ (u) = 2

∫ 1

0

du

ū
− 1 (3.64)

Corrections to (3.63) are expressed in terms of a sum of Gegenbauer polynomials; these could

in principle soften the endpoint behaviour to ∼ ū2 and thereby remove the endpoint divergence

if there is a conspiracy amongst the coefficients, but there is no reason to believe that this

is the case. The presence of this infrared divergence can be understood from Figure 3.7 as

resulting from a pair of massless propagators going on-shell in the ū → 0 limit. This also

hints at the origin of the problem and its resolution; the gluon propagator in Figure 3.7 (right)

carries momentum, which is the difference between the shaded quark propagator and the light

quark in the B meson, and this momentum from the initial-state quark is neglected to leading

order in 1/mB . The infrared divergence is then expected to be softened for ū < ΛQCD/mB but

also implies that a Taylor series in 1/mB cannot be expected to converge. It will later be seen

explicitly that this is what occurs in the LCSR calculation, where the 1/mB expansion is not

assumed. In view of this problem, it was proposed in [118] for a similar problem in B → ππ
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ūp

V (p)
pB

q

ūp+ q

upÕ8

ūp

V (p)

q

ūp+ q

upÕ8

B(pB)

Figure 3.7: Origin of infrared divergences in both LCSR (left) and QCDF (right) calculations. The
shaded propagators behave as ū−1 near ū → 0 at q2 = 0. In the QCDF case two propagators
go on shell simultaneously and the resulting ū−2 behaviour is too singular to be cancelled by the
asymptotic vector meson DA (3.63). By contrast in the LCSR case the loop cannot produce a
singularity worse than log ū leading to an overall (log ū)/ū behaviour, which is integrable when
convoluted with (3.63).

that the divergent propagators be replaced according to 1/(ūm2
B) → 1/((ū + ε)m2

B), where

ε ∼ Λh/mB parametrises the softening, and that a correction term should be added to account

for strong phases which might occur in a full calculation of the endpoint behaviour. The exact

approach used in [51] is to replace

XQCDF
⊥ =

∫ 1

0

φ⊥(u)xQCDF
⊥ (u)du→ (1 + ρeiφ)

∫ 1−Λh/mB

0

φ⊥(u)xQCDF
⊥ (u)du , (3.65)

where ρ, φ are real and it is expected that |ρ|< 1 [84]. The strong phase arising in the LCSR

result has therefore already been anticipated and this difference between the two approaches

does not indicate a problem so much as a benefit of the LCSR method that the strong phase

can be estimated.

As for the LCSR solution, two points are worth mentioning. First, it is not possible for the

diagram of Figure 3.7 (left) to contain a ū−2 singularity since infrared singularities in QCD are

at worst logarithmic, e.g. [41]. Combining this with the light-quark propagator it can be seen

that the allowed singularities are:

xLCSR
⊥ ∼ α⊥

log ū

ū
+ β⊥ log(ū) + γ⊥

1

ū
, (3.66)

although as can be seen from (3.61), α⊥ = 0. The fact that the leading singularity in the

ū → 0 limit is not present does not have an obvious explanation; it is already apparent from

the intermediate result (3.20) that α⊥ = 0 and this suggests that it is a result of the simplifying

effect of the leading twist vector meson DA8. It would therefore appear that α⊥ = 0 will not

hold in a higher twist calculation.

Second, the interpretation of the LCSR and QCDF calculations is rather different. In

8See appendix B
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B B V (p)

Õ8

k

q

pB
(qs)0± (qs)0±

up

ūp

Figure 3.8: Origin of the strong phase in B → V γ through the chromomagnetic operator in the
diagram A1. Other diagrams contain similar strong phases. A strong phase appears because a
second cut can be made in addition to the B meson cut required for the sum rule. The use of the
momentum insertion k is necessary to achieve this result since it separates B meson cuts that are
used to construct the sum rule from other cuts that lead to a strong phase in the amplitude.

the QCDF case, the gluon momentum is fixed by the external DAs, and for u ∼ O(1) the

gluon is far off shell and therefore said to be hard. The soft gluon contribution is expected

to be subleading in 1/mB , since it corresponds to an exceptional configuration of the external

momentum fraction ū, although as it has already been shown this interpretation fails due to

the endpoint singularity. In contrast the LCSR approach integrates over all gluon momentum

configurations without any kinematical approximation and therefore large contributions from

the soft gluon region can be properly accounted for. Strong phases are allowed in this case

because soft gluons can form intermediate three-particle states as shown in Figure 3.8, which

in a hadronic picture correspond to excited states in the pseudoscalar s̄q channel. The LCSR

calculation therefore appears to include the complete QCDF result since hard gluons are fully

accounted for, and the difference between the two arises from LCSR also properly accounting

for soft gluons which are neglected in the QCDF scheme.

3.3.1 Heavy quark limit and mb scaling

Further support for the point of view that the LCSR calculation includes the QCDF result

can be obtained by an explicit heavy quark expansion. It was proposed in [117, 119] that the

heavy-quark scaling of a correlation function can be recovered from the sum rule using

mB = mb + Λ̄ s0 = m2
b + 2mbω0

M2 = 2mbτ fB = f
(s)
B m

−1/2
b (3.67)

and taking the large mb limit. The key statement is that the B meson “binding energy”

Λ̄ ≡ mB −mb is independent of the b quark mass. The scaling of s0 is expected according to

s0 ∼ (mB+mρ)
2, as argued in Section 2.8, and the Borel parameter scaling is chosen so that the
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exponential argument is dimensionless. Explicit use of the fB scaling will not be made, since

fB only appears in overall proportionality constants and would therefore clutter the notation.

If the asymptotic DA φ⊥(u) = 6ūu is used in (3.58), both integrals may be performed exactly.

Doing so and performing the large mb expansion (3.67) gives:

XLCSR
⊥ =

[
Ncω

2
0

f2
Bπ

2

]{
2ω0

mb

((
log

(
mb

2ω0

)
− iπ

)〈
z2
〉
−
〈
z2 log z

〉)
+O

(
m−2
b

)}
(3.68)

X̄LCSR
⊥ =

[
Ncω

2
0

f2
Bπ

2

]{(
〈z〉
(

2Λ̄

mb
− 1

)
+

2ω0

mb
〈z2〉

)
+O

(
m−2
b

)}
, (3.69)

where 〈f(z)〉 =
∫ 1

0
exp

(
Λ̄−ω0z
τ

)
f(z)dz. The presence of a logmb term in (3.68) means that the

Taylor expansion around mb →∞ does not exist; the logarithm must be subtracted before the

Taylor expansion can be performed.

The scaling of the two expressions (3.68) and (3.69) lead to G1 scaling of

Gb1(0) ∼ m−3/2
b Gq1(0) ∼ m−5/2

b (logmb +O(1)) , (3.70)

where the superscript indicates the quark from which the photon is emitted. This scaling agrees

with [42,84,120]. Despite the fact that Gb1 is the leading term, Gq1 is more phenomenologically

interesting because it contributes to the isospin asymmetry, since it is proportional to the

spectator quark charge, and can lead to measurable CP asymmetries owing to the strong

phase.

It is apparent from (3.68) that the real and imaginary parts of Gq1(0) are of the same order

in mb. This signals the breakdown of the QCDF approximation, since the large imaginary

part implies the presence of long distance dynamics which are neither associated to the initial

nor final meson states and are therefore non-factorisable. It is also possible to understand

the breakdown of QCDF in a more mechanical way by performing the mb expansion under

the s integral (3.60). To start with, it is useful to replace the s integration in (3.60) with an

integration over a dimensionless integral z via s = s0 + 2mbω0z, that is:

xLCSR
⊥ (u) = 2mbω0

∫ 1

0

e
Λ̄−ω0z
τ ρ(m2

b + 2mbω0z, u)dz . (3.71)

Expanding the density (3.61) in these new variables gives:

Re ρ =
2cω2

0z
2

mb

1 + ū

ū2

Im ρ =− cmbπ

u
Θ

(
2ω0z

mb
− ū
)

, (3.72)

where c ≡ Nc/(12π2f2
Bmb) ∼ m0

b . The real part recovers the QCDF result (3.59). Although the

mb scaling of the imaginary part appears to be different to the real part here, the narrowness of

the integration region owing to the step function compensates for this. In fact, the expressions
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Figure 3.9: (Left) mb scaling behaviour of X⊥ (3.57) according to LCSR. (Right) Ratio of full
LCSR result to the asymptotic expression (3.68). Clearly at the physical value of mb the large mb

approximation (3.68) is inaccurate; a much larger value of mb is required to reach the large mb

regime of this quantity. In particular, there are significant cancellations in ReX⊥ at the physical
value of mb and as a result it is smaller than the imaginary part, even though in the mb →∞ limit
the real part is the larger of the two.

for imaginary and real parts in (3.72) are not really comparable since the operations of large

mb expansion and taking the real and imaginary parts do not commute; taking the large mb

limit on (3.61) and subsequently taking the imaginary part would give Im ρ = 0. Likewise, the

endpoint singularity arising from the real part (3.72) can be eliminated by splitting the integral

into two regions ū ∼ 1 and ū ∼ m−1
b , and then Re ρ(ū ∼ m−1

b ) ∼ mb in accordance with the

imaginary part.

Given the difficulties in the 1/mb expansion, it is worth examining whether the approxi-

mation (3.68) is a good one, and the comparison between the leading term (3.68) and the full

numerical evaluation of XLCSR
⊥ is shown in Figure 3.9. It is apparent from this comparison that

considering mb to be large as in (3.68) does not produce an good approximation at the physical

value of mb.

3.4 Gι results

In order to get numerical results for G
(s)
ι (q2) (3.4) from ΠV (3.7):

ΠV (q2, p2
B) =

m2
BfB

p2
B −m2

B

〈γ∗(q)V (p)|Õ8|B(pB)〉+ . . . (3.73)

The procedure for separating the term of interest from the continuum in ΠV has been described

in Section 2.8; however, this in fact leads to an estimate of [m2
BfB ] 〈γ∗(q)V (p)|Õ8|B(pB)〉.

Although fB is known quite accurately from lattice calculations, in sum rule estimates of

matrix elements it has been proposed that the appropriate strategy [121] is to take the sum

rule estimate of fB . This would certainly seem to be a sensible approach since the cuts with

B meson quantum numbers in Figure 3.3 can be identified with terms in the fB sum rule, and
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H s0 M2[G] M2[fH ] mH fH cond. value mass value
Bs 36(1.5) 9(2) 5.0(5) 5.37 0.162 〈q̄q〉 (−0.24(1))3 mb 4.7(1)
Bq 35(1.5) 9(2) 5.0(5) 5.28 0.142 〈s̄s〉 0.8(1) 〈q̄q〉 mc 1.3(1)
Ds 6.7(7) 6(2) 1.5(2) 1.96 0.185 〈gsq̄Gq〉 (0.8(1))2 〈q̄q〉 m̄s 0.094(3)
Dq 6.2(7) 6(2) 1.5(2) 1.86 0.156 〈gss̄Gs〉 (0.8(1))2 〈s̄s〉

Table 3.1: Input parameters to sum rules, as well as OPE condensates and quark masses. All
quantities are in units of GeV to the appropriate power. The specified values for fH are the heavy
meson decay constants as computed from (3.74) and should not be compared with the actual values
since radiative corrections are sizeable. The values M2[G] and M2[fH ] are the Borel parameters
used in the sum rules for Gι and fH respectively; they need not be the same as described below
(3.74). The tree-level heavy-quark masses are chosen to satisfy mH ' mh + Λ̄ with Λ̄ ' 0.6GeV
approximately. This approach is consistent with previous heavy meson decay calculations, e.g. [42].
The strange quark mass in the MS is given at µMS = 2 GeV. Note that the strange quark mass is
neglected in the Gι sum rule to avoid significant complications in the calculation.

it might be expected that the sensitivity of the final result to the duality approximation would

be reduced if the sensitivity to the duality threshold in fB and ΠV is correlated. The sum rule

for fB is given at O(α0
s) by [122]:

(3.74)
(m2

BfB)2 = m2
b exp

(
m2
B −m2

b

M2
fB

)(
3

8π2

∫ s0

m2
b

exp

(
m2
b − s
M2
fB

)
(s−m2

b)
2

s
ds−mb 〈q̄q〉µ

− mb

2M2
fB

(
1− m2

b

2M2
fB

)
〈gsq̄Gq〉µ

)
.

Radiative corrections in αs were excluded because the calculation of ΠV is also at leading

order, so subleading terms in the αs series of the ratio would not be not fully accounted

for were a higher order approximation to fB used. The parameter s0 should be chosen to

be the same in both the fB and O8 sum rules, since it is a physical parameter separating

perturbative states identified with the B meson from those which are not; clearly this only

makes sense because the B meson cuts in both calculations are the same as already discussed.

On the other hand, the Borel parameter M2 may be chosen differently, since the sum rule

should in principle be independent of this parameter and deviations from this are indications of

semi-global duality violation, although in a practical perturbative calculation the ideal of M2

independence is replaced by low M2 sensitivity over a reasonable range, in which both higher

dimension OPE condensates and the continuum contribution are effectively suppressed. The

necessary numerical inputs for these results are shown in tables 3.1 and 3.2.

The calculation has already been split into terms where the gluon from the O8 operator

connects to the spectator quark and those where it does not (3.10). It is further useful to

separate the spectator scattering contribution for the vector meson final state into two parts

depending on the polarisation of the final state meson, as for the correlation functions (3.18):

G
(s)
i (q2) = G

(⊥)
i (q2) +G

(‖)
i (q2) . (3.75)
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f‖[GeV] f⊥[GeV] a
‖
2 a⊥2 a

‖
1 a⊥1

ρ 0.216(1)(6) 0.160(11) 0.17(7) 0.14(6)
ω 0.187(2)(10) 0.139(18) 0.15(12) 0.14(12)
K∗ 0.211(7) 0.163(8) 0.16(9) 0.10(8) 0.06(4) 0.04(3)
φ 0.235(5) 0.191(6) 0.23(8) 0.14(7)

Table 3.2: Light vector meson distribution amplitude parameters. Mesons with odd G-parity have

vanishing odd Gegenbauer moments. The scale dependent quantities f⊥, a
‖,⊥
1,2 are evaluated at

µ = 1 GeV. The computation of these values is described in [103], using experimental values taken
from [123], lattice calculations [124, 125] and sum rules from [80, 126–128]. The values for the ω
meson are taken to be the same as the ρ with double the uncertainty, since theoretical calculations
are unavailable. The decay constants are the same as in [129], subject to updated experimental
inputs.

The relations between the correlation functions (3.19) also carry over to the matrix elements

G
(s)
i (q2), so

G
(⊥)
1 (q2) = G

(⊥)
3 (q2) =

G
(⊥)
2 (q2)

1− q2/m2
B

(3.76)

G
(‖)
1 (q2) = G

(‖)
2 (q2) = 0 , (3.77)

from which it follows that only G
(⊥)
1 (q2) and G

(‖)
3 (q2) need to be specified. Likewise the relation

between the longitudinal polarisation of vector mesons and the equivalent pseudoscalar meson

(3.24) carries over:

GT (q2) = −fP
fV

m2
B − q2

2mV (mB −mP )
G

(‖)
3 (q2)|φ‖→φP . (3.78)

Results for pseudoscalar decays are therefore qualitatively the same as those for G
(‖)
3 and will

not be displayed explicitly. For the sake of completeness the expression for G
(⊥)
1 (q2) is

G
(⊥)
1 (q2) =− αs

8π
CF f

⊥
V m

2
b

1

m2
BfB

∫ 1

0

duφ⊥(u)

∫ s0

m2
b

ds

× e
m2
B−s
M2

[
QqρBa +QbρBc + 2(Qq +Qb)ρBd

uq2 + ūP 2
− 2QqρCa −QbρCc

]
,

(3.79)

which follows from (3.19), (3.20) and the standard sum rule procedure. The density functions ρi

are given in sections 3.2.3 and 3.2.4. The expression for G
(‖)
3 (q2) is not displayed explicitly owing

to the fact that it is exceedingly complex; its derivation, however, is in principle straightforward

once the dispersion representation of Ca is known and the resulting polynomials are given in

appendix D.1. It has been verified that the expressions in appendix D.1 do not introduce

any additional poles in p2
B in the expression for g

(‖)
3 (q2), hence only the cuts arising from

the Passarino–Veltman functions need to be accounted for. There are however poles in the

individual coefficient functions which are cancelled in the total and some care is required in

the numerical integrals in order to get accurate results. Numerical treatment of integrals with
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ρ[π]+ ρ[π]0, ω ρ[π]− K∗[K]+ K∗[K]0 K∗[K]− K̄∗[K̄]0 φ

d̄u ūu± d̄d ūd s̄u s̄d ūs d̄s s̄s
B− ūb - - b→ d - - b→ s - -
B̄0 d̄b - b→ d - - - - b→ s -
B̄s s̄b - - - - b→ d - - b→ s
D0 ūc - c→ u - - - - - -
D+ d̄c c→ u - - - - - - -
Ds s̄c - - - c→ u - - - -

Table 3.3: Heavy-to-light FCNC transitions into vector and pseudoscalar mesons. Valence quark
content of each meson is shown and the main table body indicates the FCNC transition type. The η

and η′ are not considered. The chromomagnetic transition amplitudes G
(s)
ι (0) are shown in table 3.4

for vector mesons.

local difficulties is something of a standard problem and in this calculation GSL [130], which

provides a range of good numerical integration routines, was used.

The list of transitions to which this calculation is applicable is shown in table 3.3. Results

for B → V γ type decays are shown in table 3.4. Plots for the key Gi functions are shown

in Figure 3.10 for the decay B → K∗l+l−. Tabulated results for these graphs were published

in [103]. In spite of some effort, a numerical fit of the graphs in Figure 3.10 with a small number

of parameters did not prove effective in contrast to the O7 case [81], and it appears that in the

present case simple interpolation using generic Chebyshev or spline approximation methods is

most effective.

The calculation of uncertainties in table 3.4 was done as follows: input parameters are

varied according to their uncertainties given in tables 3.1 and 3.2. This leaves three remaining

sources of uncertainty: higher-twist and higher-order corrections in αs, the semi-global duality

approximation and renormalisation scale uncertainty, although scale uncertainty and higher-

order corrections are related. Violations of the duality approximation are accounted for by

variation of the duality threshold s0, as shown in table 3.1. The effect of neglecting higher twist

is assigned an error of 15%. The renormalisation scale uncertainty is accounted for by varying

µ around µ =
√

ΛHmb with ΛH = 0.8(2) GeV and rescaling running quantities9 using their

one-loop anomalous dimensions, which are listed in appendix B.5. All of these sources of error

are added in quadrature since there is no reason to expect strong correlations.

3.4.1 Qualitative remarks

The previous section only gave explicit results for the spectator scattering parts of the chro-

momagnetic transition amplitude. A comparison between the spectator and non-spectator

scattering amplitudes is presented in table 3.5. This reveals that the non-spectator amplitude

is rather the larger of the two; however it is worth noting that only the spectator scattering

part contributes to the isospin asymmetry.

9Note that the heavy quark mass does not run in this calculation since the PS mass rather than the MS mass
has been used.
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G
(⊥)
1 (0)× 102 unc.% G

(⊥)
1 (0)× 102 unc.%

B− → ρ−γ 0.29− 0.39i 25% D0 → ρ0γ −7.0− 5.0i 32%
B− → K∗−γ 0.29− 0.40i 26% D0 → ωγ −6.1− 4.3i 34%
B̄0 → ρ0γ 0.22 + 0.19i 27% D+ → ρ+γ −1.9 + 2.5i 32%
B̄0 → ωγ 0.19 + 0.17i 33% D+

s → K∗+γ −1.8 + 2.1i 33%
B̄0 → K̄∗0γ 0.20 + 0.20i 28%
B̄s → K∗0γ 0.21 + 0.18i 27%
B̄s → φγ 0.26 + 0.23i 26%

Table 3.4: G
(s)
1 (0) for b→ d, b→ s and c→ u type transitions. This gives the contribution of the

diagrams A1−4 (see Figure 3.1) to (B,D) → V γ processes. There appear to be four qualitatively
distinct cases, depending on whether the initial state is either a B or D meson and whether it
is charged or neutral. Charge conjugate transitions follow from multiplication by −1 since every
transition is proportional to valence quark charges. The total contribution of the chromomagnetic

operator to B → V γ also required the non-spectator amplitude G
(ns)
1 ; the two are compared in

table 3.5. Pseudoscalar meson decays are not listed since the B → Pγ transition is forbidden.
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Figure 3.10: Plots of G
(⊥)
1 (q2) and G

(‖)
3 (q2) for charged and neutral B mesons. The Bs meson will

be qualitatively similar to the B0, and likewise the replacement of the b quark with a charm quark
leads to qualitatively similar results after accounting for the smaller q2 range in that case.
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type B− → ρ−γ B̄0 → ρ0γ D+ → ρ+γ D0 → ρ0γ

G
(s)
1 (0)× 10−2 0.29− 0.39i 0.22 + 0.19i −1.9 + 2.5i −7.0− 5.0i

G
(ns)
1 (0)× 10−2 0.90 + 1.3i 0.90 + 1.3i −8.5− 12i −8.5− 12i

G1(0)× 10−2 1.2 + 0.91i 1.1 + 1.5i −10− 9.5i −16− 17i∣∣∣G(s)
1 (0)/G

(ns)
1 (0)

∣∣∣ [%] 31 18 21 58∣∣∣G(s)
1 (0)/T1(0)

∣∣∣ [%] 2 1 4 12

|G1(0)/T1(0)| [%] 6 7 20 33

Table 3.5: Comparison of spectator and non-spectator parts of Gι functions, and the leading form
factor T1 in B → V γ. For the T1(0) form factors the reference values T1(0) = 0.27 [81] for B → ρ

and T1(0) = 0.7 for D → ρ are used. The ratio of G
(ns)
1 to T1(0) can be inferred directly from the

method used to compute G
(ns)
1 described in Section 3.2.5 and is therefore a result of [104].

Õ8

V (p)
Õ8

V (p)

Figure 3.11: Additional contribution from the photon DA at q2 = 0. These diagrams are in fact
zero due to Dirac algebra and only the perturbative photon interaction contributes.

A reader familiar with the WA contribution to B → V γ might ask why the contribution

of the photon DA has not been raised at all. As will be discussed further in Chapter 5, the

photon DA accounts for the susceptibility of the quark condensate to a background photon

field and may be viewed as predominantly originating from an intermediate off-shell ρ meson

state. The diagrams in Figure 3.11, which are the only two possible arrangements which satisfy

kinematical constraints imposed by the DAs, were in fact computed but it transpires that if

the meson mass is neglected, as it must be at leading twist, both of these diagrams are zero

owing to Dirac algebra. They are, however, non-zero if q2 6= 0 is allowed; though this does not

make sense for an on-shell photon, it is worth mentioning since the vanishing of the photon

DA contribution appears to be an accident and this result does not imply that the ρ meson

resonance is somehow invisible to Gi(q
2) at leading order.

Since results have been computed for both B and D mesons, the effect of heavy-quark scaling

may be re-examined numerically. The electromagnetic form factor T1(0) scales as m
−3/2
b [117]

and this carries over to the scaling of G
(ns)
1 (0), since the F7,8 functions used to compute it in

Section 3.2.5 clearly scale as m0
b [104]. As discussed in Section 3.3.1, the scaling of G

(ns)
1 (0) can

be split into two parts according to the emitting quark charge

G
(s)
1 (0) = QhG

h,(s)
1 (0) +QqG

q,(s)
1 (0) (3.80)
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and then G
h,(s)
1 (0) ∼ m

−3/2
b and G

q,(s)
1 (0) ∼ m

−5/2
b up to logarithmic corrections. Photon

emission from the heavy-quark line therefore scales as m
−3/2
b , regardless to which quark line

the gluon connects. Numerical investigation of the heavy-quark scaling of G
(ns)
1 (0) is not within

the scope of this investigation, since it is nothing but the scaling of T1(0). The numerical scaling

of the spectator-quark scattering parts may be examined in terms of a pair of ratios using the

decomposition (3.80):

Rh =
G
b,(⊥)
1 (0)[B → ργ]

G
c,(⊥)
1 (0)[D → ργ]

= 0.14 Rl =
G
q,(⊥)
1 (0)[B → ργ]

G
q,(⊥)
1 (0)[D → ργ]

= 0.05 + 0.04i . (3.81)

From the heavy-quark scaling behaviour the expected values of these ratios are

|Rh| ≈ αs(
√
mcΛH)/αs(

√
mbΛH)(mc/mb)

3/2 = 0.2 (3.82)

|Rq| ≈ αs(
√
mcΛH)/αs(

√
mbΛH)(mc/mb)

5/2 = 0.06 , (3.83)

which are really quite close to those in (3.81), in view of the problems with heavy-quark scaling

described in Section 3.3.1. It would appear that there is some correlation between the non-

leading terms in the heavy-quark mass in the b and charm quark cases, since according to

Figure 3.9 the heavy-quark limit is not an especially good approximation in the present case.

Finally the validity of this calculation in q2 must be discussed. The principle for determining

whether this kind of sum rule calculation is valid is that the results cannot be trusted when

either full or perturbative QCD predict production of particles. In the case of the O8 operator,

the most problematic region is 0 < q2 < 1 GeV2, where the strong ρ meson resonance will

appear. The photon case q2 = 0 can however be accounted for correctly, since the influence of

non-perturbative contributions may be accounted for using the photon DA, and this procedure

will be discussed in the calculation of WA contributions in Section 5.3.6; however, as explained

earlier in this section, in the O8 case it happens that these contributions are zero. There are

also resonances due to s̄b, d̄b and b̄b vector meson states, i.e. the B∗d,s and the Υ. These heavy

states only impose the restriction q2 < m2
b , so the validity of this calculation covers the vast

majority of the physical parameter range.

3.5 Concluding remarks on Gι

This calculation has resolved a long-standing unknown term in heavy-to-light FCNC decays.

The resulting values of the “form factors” Gι are small and so they are not relevant to the

overall branching fractions (B,D) → V ll or (B,D) → V γ; however, they are large enough to

contribute significantly to CP and isospin asymmetries as will be seen in chapters 4 and 5. The

large strong phase of this amplitude is an important feature for CP asymmetry contribution.

The comparison between the LCSR and QCDF calculations of Gι is itself rather interesting,
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since it reveals that in this instance the large mb expansion fails due to the endpoint singularity,

and the full mb dependence must be retained in order to regulate this. More sophisticated ap-

proaches to factorisation might, however, allow endpoint divergences to be treated consistently.

One approach has been put forward in [131] and extended in [132]. The O8 contribution was

calculated using this method in [133]; however, this does not generate the imaginary part.

Perhaps the most interesting feature of this calculation is the unexpected appearance of a

complex anomalous threshold in the dispersion relation. Although this is not the conceptual

problem it might appear to be since the anomalous threshold can be considered part of the

continuum of multi-particle states, it does present some technical difficulty in the calculation.

The presence of this anomalous threshold is associated with the introduction of the momentum

insertion k which then requires an additional analytic continuation in P 2. This insertion is not

usually required at leading order in αs for B → V ll processes, because for WA the amplitude

can usually be factorised and for the electromagnetic operator the photon momentum plays the

same role. As will be shown in Chapter 5, the same difficulty can also arise in WA beyond

leading twist, and it would appear that beyond leading order the momentum k will be required

in most cases and the anomalous threshold problem should be expected to be generic. A

complete next-to-leading order calculation of B → V ll using LCSR can therefore be expected

to involve considerably difficult analytic continuations unless a systematic method is found.

Finally, it should be remarked that an alternative approach to calculating the chromomag-

netic form factor was proposed in [134] shortly before the publication of this calculation. In

this approach, the B meson external state is treated using a light-cone DA and a sum rule is

used for the light meson, although only the soft initial-state gluon contribution is computed, so

questions of 1/mb expansion difficulties do not arise. This approach avoids the complications

brought about by the k insertion since the parasitic cuts are near m2
b , which is far above the

duality threshold of any light vector meson, and thus the resulting dispersion relations can be

expected to be simpler. The problem of endpoint divergences and the 1/mb expansion are likely

to be difficult to address properly in this approach, however, since the B meson DA assumes

that the 1/mb expansion works.
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Chapter 4

CP violation in D → V γ through the

chromomagnetic operator

Last year, experimental results from LHCb and CDF indicated a significant direct CP asym-

metry in D0 → ππ and D0 → KK decays [22, 135]. This was something of a surprise because

the CP asymmetry in charm decays is expected to be small; it is proportional to the weak

phase difference between the current-current and penguin operators, and thus is suppressed by

four powers of the Cabibbo angle. The naive expectation is therefore that the CP asymmetry

should be of order ∼ 10−4. The CP asymmetry measured in experiment, however, was [135]

∆ACP = AK
+K−

CP −Aπ+π−

CP = −0.65(18)× 10−2 , (4.1)

where

AfCP ≡
Γ[D0 → f ]− Γ[D̄0 → f ]

Γ[D0 → f ] + Γ[D̄0 → f ]
. (4.2)

This is at least an order of magnitude higher than expected. Two brief remarks should be made

about this measurement: first, in the limit of exact SU(3) flavour symmetry, AK
+K−

CP = −Aπ+π−

CP

would hold. Second, both AK
+K−

CP and Aπ
+π−

CP should be small separately; the quantity ∆ACP

is preferred because some experimental errors cancel. It is also expected that the pollution

from indirect, i.e. time-dependent, CP asymmetries is negligible [22]; thus (4.1) appears to be

a true indication of direct, i.e. time-independent, CP asymmetry in D meson decays.

If the value (4.1) is confirmed, the question of why it is so much larger than expectations

must be addressed: it could be due to new physics [136–139], or alternatively unexpected strong

dynamics [140–143]. Fortunately transitions of the ∆I = 3/2 type, which could lead to sizeable

CP violation [144], can be tested with isospin sum rules [145], so the problem is reduced to

∆I = 1/2 operators.
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Since this calculation was originally published [94], LHCb have published updated data [146],

which along with the updated global average is [147]:

∆ACP |2013 LHCb = (+0.49± .30(stat.)± 0.14(sys.))× 10−2

∆ACP |2013 HFAG = −0.33(12)× 10−2 . (4.3)

This has significantly shifted the world average asymmetry towards zero in comparison to (4.1),

and perhaps therefore the SM is set to prevail again. This chapter will continue to use (4.1) as

indicative of the magnitude of CP violation in D meson decays, and further comments will be

made in the conclusions Section 4.4.

If the CP asymmetry is due to new physics rather than the aforementioned strong dynamics,

it turns out that the chromomagnetic operators

O8 = −gmc

8π2
ūσµνGaµν

λa

2
(1 + γ5)c O′8 = −gmc

8π2
ūσµνGaµν

λa

2
(1− γ5)c (4.4)

are good candidates, since they do not violate any existing constraints [148]. It should be

emphasised that these operators are of the ∆I = 1/2 type and therefore avoid isospin tests. It

should also be noted that C ′8 = (mu/mc)C8 is negligible in the SM. The reference value for the

C8 Wilson coefficient following, e.g. [149], is taken to be

Im[C
(′)NP
8 ] = 0.4× 10−2 , (4.5)

which is two orders of magnitude larger than its value in the SM1.

The contribution of chromomagnetic operators to CP violation (4.1) can be estimated using

QCDF [150] to be

∆ACP |NF≈ −1.8(ImC8 − ImC ′8) sin δ , (4.6)

where δ is the strong phase difference in the B → KK and B → ππ systems2, which is unknown

but expected to be ∼ O(1), although the sign is not known and hence the sign of ImC8 is not

determined. It can be seen that (4.6) is proportional to ImC8−ImC ′8, because the parity of the

D and ππ/KK states implies that these transitions are induced by a parity-violating operator

and hence the γ5 part of the O(′)
8 operators, which have opposite signs. The proposed value

(4.5) would therefore account for the observed CP violation (4.1), if indeed sin δ ≈ 1.

The unfortunate presence of unknown phases in D → ππ and D → KK decays means that

it is desirable to study CP violation in other D meson decays which are theoretically more

accessible. Another system was therefore chosen in which new physics in the C8 coefficient

would induce sizeable CP violation, D → (ρ0, ω)γ. This follows previous work which proposed

1See Section 4.1.1 for the definition of C8 used here.
2That is to say, the difference between the chromomagnetic amplitude and the leading amplitude which

should be approximately equal in both systems assuming SU(3) flavour symmetry.
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a scenario for observable CP violation in this channel through new physics in C7 [149]; the

scenario proposed here differs in that the strong (CP -even) phase difference necessary to observe

direct CP violation arises in the chromomagnetic matrix element rather than the leading order

matrix element, which, it will be argued, in fact has a small strong phase.

4.1 The decay D → V γ

The size of contributions of D → V γ decays is very different to those in B → V γ decays,

due to the different quark masses and CKM hierarchy involved. The implications of this for

theoretical calculations of the D → V γ rate will be discussed in this section. Unfortunately

owing to the large renormalisation scale sensitivity and the comparatively small mass of the

charm quark relative to the QCD scale and hence poor convergence of the 1/mc expansion, the

situation is not at present completely clear. Nonetheless, the argument will be made that the

decay D → V γ is dominated by weak annihilation and thus has a small strong phase.

4.1.1 The effective Hamiltonian for c→ u decays

The effective Hamiltonian for c → u decays is structurally the same as for b → s decays.

Following [148], it is written as:

Heff = λdHd + λsHd + λbHpeng , λD ≡ V ∗cDVuD , D = d, s, b , (4.7)

where

Hq =
GF√

2

2∑
i=1

CqiOqi , q = d, s

Oq1 =(ūLµq)(q̄L
µc) , Oq2 = (ūαLµqβ)(q̄βL

µcα)

λbHpeng =
GF√

2
(C7O7 + C ′7O′7 + C8O8 + C ′8O′8 + ...) (4.8)

and Lµ ≡ γµ(1− γ5). α and β are colour indices. The CKM factor λb has been absorbed into

the coefficients C7,8, since it cannot be assumed that they are relevant for beyond-SM operators.

The dimensionful coupling GF is retained. The electromagnetic penguin operators are exactly

analogous to (4.4)

O7 = −emc

8π2
ūσµνFµν(1 + γ5)c O′7 = −emc

8π2
ūσµνFµν(1− γ5)c (4.9)

and have the same chirality structure as the chromomagnetic ones, that is C ′7 = (mu/mc)C7.

The crucial difference from b → s decays arises from the fact that the penguin operators

O3−6 are only generated in the absence of GIM cancellation in the RG running. In b decays,

79



80 James Lyon

the heaviest quark in the up-sector is the top which is above the electroweak scale; thus the

penguin operators are generated starting at a very high scale and WCs are expected to be

approximately proportional to logm2
t/m

2
b . In the case of charm decays, this role is played by

the bottom quark and thus the relevant logarithm is logm2
b/m

2
c , so the operators O3−6 thus

generated are expected to be small in the SM. Furthermore, the penguin operators O3−6 are

proportional to the CKM factor λb, which is O(λ5) and thus much smaller than in the B

meson case. As a result, the operators O1,2 are expected to dominate D meson decays and the

four-quark penguin operators O3−6 in (4.7) have not been included.

The scenario for sizeable observable CP violation will be through transitions induced by

the chromomagnetic operator O8 computed in Chapter 3. The definitions and amplitudes are

briefly recapitulated here. The amplitude of the chromomagnetic operator (4.9) is parametrised

as

Ai|8= 〈V γ|Heff |8|D〉 =
GF√

2

(emc

2π2

) 1

cV

(C8 + C ′8)G1(0) i = 1

(C8 − C ′8)G2(0) i = 2

, (4.10)

where Heff |8= GF√
2

(C8O8 + C ′8O′8), cf. (4.8). The factor cV is inserted to absorb trivial factors

due to the ω ∼ (ūu+ d̄d)/
√

2, ρ0 ∼ (ūu− d̄d)/
√

2 wave functions, and thus cV =
√

2 for ρ0 and

ω and cV = 1 in all other cases. This factor will drop out in the CP asymmetry. Eliminating

trivial factors, the definition (4.10) combined with (4.8) implies

〈V γ|O(′)
8 |D〉 =

(emc

4π2

) 1

cV
(G1(0)P1 ±G2(0)P2) , (4.11)

which, as explained in Chapter 3, is designed to be analogous to the definitions of the standard

penguin form factors T1,2(0), discussed in Section 2.9. At twist-2 accuracy it was found that

G1(0) = G2(0), which implies that O8 and O′8 generate solely left- and right-handed amplitudes

respectively. It can be seen from table 3.5 that GD
0→ρ0γ

1 (0) ' GD
0→ωγ

1 (0), G
D+
s →K

∗+γ
1 (0) '

GD
+→ρ+γ

1 (0) to an accuracy sufficient for the present purpose, and therefore no distinction

will be made between them3. The imaginary part, which is the value relevant for the CP

asymmetry, is

Im[GD0
1 (0)] ' −0.20(8) Im[GD

+

1 (0)] ' −0.10(4) , (4.12)

where numbers were rounded. The values in (4.12) are sizeable compared to typical estimates

TD
0

1 (0) ' TD
+

1 (0) ' 0.7 of the O7 operator [149]. The difference between the neutral and

charged matrix elements in (4.12) originates from the charges of the valence quarks of the

mesons.

3The dominant effect of the final state meson is in the decay constants fXmX and f⊥X for WA and G1(0)
respectively, and thus the correction due to this approximation is expected to be given by R = rρ/rω ≈ 1.01

where rX = (f⊥X )/(mXf
‖
X) in the ρ− ω case, for instance.
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c d

ū
d̄

γ

D0 ρ0, ω c u

ū

γ

ρ0, ωD0

d, s

c u

ū

γ

ρ0, ωD0

d, s

Figure 4.1: The three diagrams whose contributions are expected to be potentially dominant in
D → V γ decays. They are WA (left), a factorisable quark loop (middle) and a quark loop with
gluon exchange (right). The middle diagram vanishes for an on-shell photon by gauge invariance.
The right-hand diagram has a large strong phase, which can be seen from the inclusive calculation
in [151]. The question of whether the leading amplitude has a large strong phase or not is then
essentially the question of whether the left- or right-hand diagram is the dominant amplitude.

4.1.2 The leading amplitude in D → V γ decays

There are two candidates for the leading amplitude in D → V γ decays: weak annihilation and

quark loops, as shown in Figure 4.1. The quark-loop contribution has been calculated in an

inclusive approach in [151] and found to dominate all other inclusive contributions; obviously,

however, this does not include weak annihilation.

The amplitude will be parametrised as in the B meson case (2.62) as4:

A[D → V γ] ≡〈V γ|Heff |D〉 = A1
P1

2
+A2

P2

2

=AL
(
P1 + P2

4

)
+AR

(
P1 − P2

4

)
,

(4.13)

where

P1 = 2εραβγε
ρηαpβqγ P2 = 2i[(p · q)(η · ε)− (η · q)(p · ε)] (4.14)

and η(p) and ε(q) stand for the vector meson and photon polarisation tensors. The amplitudes

AL,R will be further parametrised as:

AL,R = lL,Re
iδL,ReiφL,R + gL,Re

i∆L,ReiΦL,R , (4.15)

where the terms are separated according to their weak (CP-odd) phases, φL,R and ΦL,R. Two

weak phases are sufficient to parametrise decays in the SM, since the three relevant CKM

coefficients are related by unitarity, and thus one of them can be eliminated in favour of the

4The amplitudes A1,2 are often denoted by APC,PV in the literature (up to phases), e.g. [149,152]. PC and
PV stand for parity-conserving and -violating respectively.
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other two. In terms of these amplitudes, the partial width for D → V γ is given by:

Γ[D → V γ] =
1

32π
m3
D

(
1− m2

V

m2
D

)3 (
|A1|2+|A2|2

)︸ ︷︷ ︸
x[V ]

, (4.16)

where x[V ] = |A1|2+|A2|2 has been defined for later convenience.

With these definitions of the amplitude, the CP asymmetry (4.2) may be re-written as

ACP [D0 → f ] =
−2
∑
i=L,R ligi sin(∆i − δi) sin(Φi − φi)∑

i=L,R [l2i + g2
i + 2ligi cos(∆i − δi) cos(Φi − φi)]

, (4.17)

which exposes the need for both sizeable CP -odd and CP -even phase differences in order to

produce an experimentally measurable CP asymmetry.

Weak annihilation (WA) contribution

The scenario for CP violation will rely on the leading-order strong phase being small. It will be

argued that it is reasonable to believe that the WA contribution to D → V γ decay is dominant,

and indeed this amplitude has no strong phase at leading order in αs. The question of the size

of the strong phase in subleading corrections will be addressed thereafter.

The contribution of weak annihilation in A[D → V γ] will be estimated using sum rules

computed in [77, 78], and these estimates will be compared to experimentally measured rates.

Unfortunately the rate for the process under consideration, D → ργ, has not yet been measured.

The calculation of these matrix elements in B physics including several extensions will be

discussed in Chapter 5; however, in the case of SM charm physics, the coefficients of the

four-quark penguin operators O3−6 are negligible as described in Section 4.1.1 and thus the

additional terms computed for that case are irrelevant.

The measured rates of the D0 → V γ-type are [123]:

B(D0 → K̄∗0γ) = 3.27(34) · 10−4 B(D0 → φγ) = 2.70(35) · 10−5 , (4.18)

which are Cabibbo allowed and singly Cabibbo suppressed, respectively. The total amplitude

in the x[V ] normalisation (4.16) for these decays can therefore be inferred:

x[K̄∗]ex = 1.8 · 10−14(10%)GeV−2 x[φ]ex = 2.0 · 10−15(10%)GeV−2 . (4.19)

The relation between A1,2 (4.13) and APC(PV) of reference [77] for a D → V γ decay is

A1(2)|WA,O(ff0
s )= −

(
GF√

2
λda1

)(
fVmV

cV

)
APC(PV) , (4.20)
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where a1 = C1 + C2/3 ' −0.5 is the colour suppressed WC5, and the constant cV is defined

below (4.10). The ratio of the LCSR prediction to the experimental value is

x[K̄∗]LCSR

x[K̄∗]ex
' 0.5 , (4.21)

which translates into a factor of ∼
√

2 for the amplitudes. Thus the LCSR prediction accounts

for 60% of the experimental result. This result is considered rather good in view of the antici-

pated uncertainty, which is expected to be largely due to omission of higher order corrections,

or equivalently renormalisation scale error, and the use of semi-global quark-hadron duality in

the sum rule. Following (4.21), predictions shall be constructed for other D → V γ decay rates

by scaling the corresponding LCSR predictions [77] by a factor of two. This entails scaling the

amplitude by
√

2, and it is assumed that LCSR accurately predicts the phase, resulting in

A1(2)|LD' 1.4×A1(2)|WA,O(ff0
s ) ; (4.22)

then using the notation l1(2) ≡ A1(2)|LD:

l1 '
−3.7 · 10−8

cV mD

(
a2

−0.5

)
l2 '

−2.1 · 10−8

cV mD

(
a2

−0.5

)
{D0 → (ρ0, ω)}

l1 '
−13.2 · 10−9

cV mD

( a1

1.0

)
l2 '

−11.8 · 10−9

cV mD

( a1

1.0

)
{D+

(d,s) → (ρ+,K∗+)} . (4.23)

Since WA has no strong (CP -even) phase at leading order, lL,R = l1± l2 in (4.15), and therefore

in the left-right basis:

lL '
−5.8 · 10−8

cV mD
lR '

−1.6 · 10−8

cV mD
{D0 → (ρ0, ω)}

lL '
12.5 · 10−9

cV mD
lR '

0.7 · 10−9

cV mD
{D+

(d,s) → (ρ+,K∗+)} . (4.24)

The corresponding estimates for branching ratios are:

B(D0 → (ρ0, ω)γ)|(4.22)' 0.6 · 10−5 (4.25)

2B(D+
s → K∗+γ) ' B(D+ → ρ+γ)|(4.22)' 1.3 · 10−6 .

It should be noted at this point that the processes in (4.18) are charged rather than neutral

current processes and thus do not have a quark loop contribution since the spectator quark

also changes flavour, and therefore would be strongly expected to be WA dominated, which

enhances the credibility of the estimates (4.23) as the likely value of the WA amplitude.

To cross-check, the estimated branching fraction B(D0 → (ρ0, ω)γ) above is compared with

5Note that in [77] the colour structures of the operators O1,2 are switched in the effective Hamiltonian, and
thus C1,2 are switched in the formula for a1.

83



84 James Lyon

the measured rate in B(D0 → φγ)PDG (4.18) and it is noted that the former is down by about

a factor of four. A factor of two comes from the ρ0 and ω valence quark contents which imply

c2V = 2, in contrast to the φ for which c2V = 1. Another factor 1.2 comes from phase space

factors and the mV fV prefactor in (4.16). The remaining discrepancy might be partly due to

neglecting the strange quark mass; it might be questioned whether 2ms, which results from

the axial current, is really so small a parameter. A quick order-of-magnitude estimate based

on [70] would suggest that such corrections should be on the level of (f⊥φ /fφ)(2ms/mφ) ∼ 20%6,

which is certainly not negligible. It therefore seems that the estimate (4.25) is plausible and

at present this will have to suffice, as it is far below the present experimental upper bound of

2.4 · 10−4 [123].

Weak annihilation (WA) versus quark loops (QL)

Having estimated the size of the WA contribution, the size of quark loop matrix elements will

be estimated next, the leading order contributions to which are illustrated in Figure 4.1. The

distinguishing characteristic of the two types of contribution is that in WA the spectator quark

also connects to the four-quark operator from Heff and is thus a cq̄ → uq̄-type transition,

whereas in quark loop-type contributions the additional quarks scatter into the final state

photon and it is thus a c → uq̄q transition. The WA contributions have been computed in

1995 for B → V γ and D → V γ in [151] and B0 → (ρ0, ω)γ in [77, 78] at O(α0
s), and the QL

contribution was computed in [151]. This QL calculation was performed in a 1/mc expansion,

whose convergence is rather questionable, but it is expected that it should give a reasonable

estimate.

It is argued that the WA amplitude dominates that of QL:

1. Generic argument: QL and WA are generated by the same four-quark operator, Od,s1,2

and Od1,2 (4.8) respectively. The QL contribution has two more loops than the WA

contribution since the middle diagram in Figure 4.1 is zero due to gauge invariance and

thus only diagrams with an additional gluon contribute. From a general point of view it

would therefore be expected that WA� QL due to these suppressions7.

2. Test case in B physics: The same line of reasoning can be applied to B → ρ decays to

check its validity in that case, which is on a rather more secure theoretical footing. Taking

numbers from [129] results in8 |AQL/AWA|B−→ρ−γ' 2 · 10−2. The QL contribution in

this case is taken to come from the diagram where the gluon is radiated into the final-

6ms(2 GeV) = 95 MeV has been used, and RG running has been applied to 2 GeV of f⊥φ in table 3.2. The RG

running itself accounts for a 5% shift. This estimate could easily be out by a factor of two were the calculation
done fully since the hard scattering kernel will have an end-point singularity. However, the corresponding FSR
terms will have a small strong phase and thus the basis of this argument is not spoiled.

7In principle there is a GIM suppression of the QL in addition, though this is not very effective for the matrix
elements [151] owing to ms � mu,d.

8In case the reader is wondering, these numbers do not include CKM matrix coefficients, which lead to a
Cabibbo suppression of WA in B physics.
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state meson. The QL numbers are of comparable magnitude for both charm and light

quarks. The reason that this comparison is done for the charged rather than the neutral

channel is that WA in B0 → ρ0γ is accidentally small owing to cancellations between the

current-current operators O1,2 and the penguin operators O3−6 [129]. Such cancellations

cannot be expected in D0 → ρ0γ because the coefficients of penguin operators are tiny,

as discussed in Section 4.1.1.

3. The D physics case: The question is then whether the hierarchy which is indeed present

in B physics carries over to D physics. Taking the contribution of QL from [151] and

the estimates of [77] for WA, it can be estimated that |AQL/AWA|' 2 · 10−2, whose

closeness to the B meson result is most likely accidental. From another point of view, any

differences between the B and D physics cases would be expected to be suppressed by

powers of the heavy-quark mass and thus the breakdown of the heavy-quark expansion

may be estimated in the charm-quark case. In the heavy-quark limit it is expected that

A1 = A2, i.e. AR = 0, and therefore the breakdown of the heavy-quark expansion can

be estimated from the results in [77]. These results indicate that the 1/mb,c expansion

holds to the level of 70% and 57% in the B and D meson cases respectively, which does

not indicate that the 1/mc expansion exhibits sufficiently poor convergence to overcome

the difference of two orders of magnitude that is estimated to separate the WA and QL

amplitudes.

Thus analysis suggests that WA dominates QL by roughly two orders of magnitude. The op-

posing viewpoint should be mentioned: an alternative approach to calculating D meson decays

has been to model the transitions with hadronic data [152]. In the long-distance contributions

calculated there, WA diagrams correspond to pole contributions and QL contributions to the

vector meson dominance (VMD) mechanism. In that paper, comparable numbers were found

for the pole and VMD terms, which conflicts with the expectation based on the analysis above.

There are, however, two deficiencies in this approach: first in the pole part AR = 0, which

contradicts the sum rule calculation [77, 78]. Second, couplings in the VMD approach must

be taken from experiment and therefore have unknown phase, and thus this approximation is

not able to capture strong cancellations, which would appear to be likely in this case owing to

the vanishing of the factorisable QL contribution due to gauge invariance. One of the authors

of [152] has made a similar point in [153, 3.1.3].

Strong phases in weak annihilation

It has been argued that the QL contribution, which has a large strong phase, is small compared

to WA; however, in order to complete the argument that the overall strong phase of the leading

amplitude in D → V γ is small, the strong phase in WA must also be estimated.

At leading order O(α0
s), the strong phase is zero. This is certainly the case, from the results
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in [77, 78], when the light-quark mass is neglected; however, it should also hold for non-zero

quark masses because the decay remains factorisable. Details of this factorisation are given in

Section 5.3.2, and the argument that the strong phase is zero is essentially that the initial-state

radiation matrix element 〈γ|JµV−A|B〉 will be far below threshold at the weak current vertex,

and the final-state radiation matrix element 〈ργ|JµV−A|0〉 is well approximated by the light cone

OPE, which gives no strong phase at leading order.

Unfortunately the relevant non-factorisable loop corrections to WA, which would contain

the strong phase, have not been computed. The size of QCD corrections will therefore be

studied in a generic way through the O7 operator. The corrections due to the chromomagnetic

operator O8 can be viewed as radiative corrections to the leading decay terms and it may be

inferred from table 3.5 that they are around the 15% level.

Final remarks

Aside from the question of the suitability of the heavy-quark expansion in D decays, there is also

some question over whether the αs perturbation series converges. In fact, this should not be a

problem in D → V γ decays because the D meson mass mD = 1.86 GeV and the photon “mass”

q2 = 0 are far from other perturbative and hadronic thresholds9. The vacuum polarisation

plot, R(s) ∝ σ(e+e− → hadrons) [123, 154]10, indeed indicates that there are no significant

thresholds in either region and in fact the closest threshold is the ω meson pole. Although

the electromagnetic current relevant to that cross-section is certainly not the same as the weak

current relevant to WA, it should be sufficiently closely related that the non-perturbative effects

have similar magnitude. At mD, the ratio of the leading order partonic cross-section to the

measured hadronic cross-section indicates a 15% correction11 and the three-loop perturbative

QCD result is in-between the two. It therefore seems that the non-perturbative corrections in

this region should not be expected to be very large.

In view of the discussion above, 25% will be taken as a conservative estimate of the size of

radiative corrections. If it is assumed that the real and imaginary part have similar magnitude

then the strong phase of WA is taken to be 10◦, that is |δL|' |δR|' 10◦ in (4.15). Of course,

a computation of the non-factorisable radiative correction would be preferable to this sort of

estimate. In particular, the sign of the strong phase of such a correction is significant, since RG

running will mix a beyond-SM correction to Ceff
8 into Ceff

7 , and thus the sign of the phase of

radiative corrections will determine whether the resulting CP asymmetries cancel or augment

each other. This will be discussed in Section 4.3.

9The next charmed J = 0 meson candidiate listed in PDG [123] is at 2.4 GeV.
10Chapter 46, under “Plots of cross sections and related quantities” on pdgLive [123].
11R(s) ≈ 2 at leading order for ms �

√
s/2 < mc, hadronic data is available from pdgLive [123] under “Data

files and plots of cross-sections and related quantities”.

86



Rare semi-leptonic B meson decays 87

4.2 CP violation scenario

A scenario will be proposed where a sizeable CP asymmetry is generated by a large CP -odd

imaginary part in the C8 WC, generated by beyond-SM physics. The amplitudes in (4.15) in

this scenario are given by

lL(R) = |l1 ± l2|, δL,R = φL,R = 0

gL(R)e
i∆L(R) =

GF√
2

(emc

2π2

) 1

cV
|C(′)

8 |(2G1(0))

G1(0) = |G1(0)|ei∆ , C8 = |C8|eiΦL , C ′8 = |C ′8|eiΦR , (4.26)

with l1,2 given by (4.23) and ∆ ≡ ∆L = ∆R. The amplitudes G1(0) and their phases are given

in table 3.5; the leading twist result derived there has been used so that G1(0) = G2(0), and

thus that O8 and O′8 solely contribute to the left- and right-handed amplitudes respectively,

and that the two have identical strong phases ∆L = ∆R.

Exploiting these simplifications and assuming that |gL,R|� |lL,R| , the CP asymmetry may

be written (4.17) as

ACP[D0 → V γ] ≈ −2

l2L + l2R
(gLlL sin(∆− δL) sin(ΦL) + gRlR sin(∆− δR) sin(ΦR)) . (4.27)

Since the leading order strong phases δL,R are presently unknown, as discussed earlier, they are

set to zero, and then the formulae in (4.26) may be used to write a more explicit formula for

this scenario:

ACP[D0 → V γ] =
−4

l2L + l2R

GF√
2

(emc

2π2

) Im[G1(0)]

cV
(lL Im[C8] + lR Im[C ′8]) . (4.28)

Numerically, with mc = 1.3GeV and plugging (4.23), (4.5) and the values in table 3.5 into

(4.28) the CP asymmetry in the neutral transition may be estimated as

ACP(D0 → (ρ0, ω)γ) =
(
−3.84Im[CNP8 ]− 1.04Im[C ′NP8 ]

)
cB

=

(
−1.5%

(
Im[CNP8 ]

0.4 · 10−2

)
− 0.4%

(
Im[C ′NP8 ]

0.4 · 10−2

))
cB ,

(4.29)

with an estimated uncertainty of about 45%, which will be discussed below, and where

cB ≡
(

0.6× 10−5

B(D0 → (ρ0, ω)γ)

)1/2

(4.30)

is included so that the branching fraction B(D0 → (ρ0, ω)γ) may be easily updated when

measurements or improved theoretical determinations become available. In going from (4.28)

to (4.29) the fact that the imaginary part of CSM
8 , which is suppressed by four powers of the
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Cabibbo angle, is negligible with respect to the value (4.5), has been used.

In the charged case the result is

ACP(D+
(d,s) → (ρ+,K∗+)γ) =

(
9.71Im[CNP8 ] + 0.60Im[C ′NP8 ]

)
cB

=

(
3.9%

(
Im[CNP8 ]

0.4 · 10−2

)
+ 0.2%

(
Im[C ′NP8 ]

0.4 · 10−2

))
cB ,

(4.31)

again with an estimated uncertainty of 45%. The dominance of the O8 contribution over the

O′8 contribution in both cases is a remnant of heavy-quark symmetry, which indicates that lR

is 1/mc suppressed w.r.t. lL. In this particular case, a sizeable difference between lR/lL in the

charged and neutral decays could in principle allow extraction of ImC8 and ImC ′8 separately,

given sufficient experimental sensitivity.

The significant sources of uncertainty in this calculation are listed below:

• The largest source of uncertainty is in the calculation of O8 matrix elements, which are

estimated to have an error of around 35%; see table 3.5.

• The strong phase of the leading WA contribution δL,R was estimated to be on the order

of 10◦ in Section 4.1.2, which leads to a 20% uncertainty.

• The magnitude l2L + l2R is not assigned an uncertainty, because it is assumed that it is

taken from experiment; however, the ratio lL/lR is not determined in this way and has

therefore been inferred from the results of [77]. This procedure is assigned an uncertainty

of 20%.

Combining these three sources of uncertainty in quadrature leads to an overall uncertainty

estimate of 45%. There is no reason to expect that they would be correlated. Uncertainty due

to CP violation from ImC7 has not been included, and will be discussed in the next section.

4.3 CP violation through ImC7

In [149], a sizeable value of ImCNP7 was proposed as a possible source of CP violation in

the charm system. This effect would however be distinct from the effect in the D → ππ and

D → KK systems, because it is αem suppressed and therefore expected to be small in hadronic

processes. Since the O7 operator emits the photon in a short-distance process with no strong

phase, the strong phase difference necessary for observable CP violation must in this case come

from the leading matrix element. According to the arguments of Section 4.1.2, this strong phase

is in fact small, on the order of 10◦. The ratio of the magnitude of CP violation from C7 and

C8 can be estimated to be∣∣∣∣ACP |7ACP |8

∣∣∣∣ =

∣∣∣∣T1(0) sin δL
ImG1(0)

× ImC7

ImC8

∣∣∣∣ . 0.6×
∣∣∣∣ ImC7

ImC8

∣∣∣∣ , (4.32)

88



Rare semi-leptonic B meson decays 89

where values G1(0) ≈ 0.2 (4.12), T1(0) ≈ 0.7 [149] and δL ≈ 10◦ were used. It is therefore

apparent that if ImC7 is comparable to ImC8, they may both give a similar contribution

to the CP asymmetry, which could either stack or cancel. However, as explained in Section

4.1.2, the estimate δL ∼ 10◦ is expected to be conservative and thus (4.32) is also likely to be

pessimistic. A substantial cancellation between the two cannot however be ruled out without

proper calculation of δL.

In fact, the beyond-SM contributions from C7 and C8 are connected, since RG running

mixes C8 into C7. As such it was proposed in [149] that this mixing would lead to CP violation

in D → V γ. As mentioned in the introduction, this calculation depends on a large strong

phase in the leading decay amplitude which is expected to be absent according to this analysis,

however the mixing of C7 and C8 along with (4.32) implies that the combination of these effects

should be examined. This case will be illustrated by assuming that the scale of new physics

MNP = 1 TeV and that only SM degrees of freedom exist below this scale. In that case, the

resulting new physics contributions to the WCs at the charm scale [149, (6)-(9)] are

CNP
8 (mc) ≈ 0.42CNP

8 (1TeV) (4.33)

CNP
7 (mc) ≈ 0.37CNP

7 (1TeV)− 0.26CNP
8 (1TeV) ≈ 0.37CNP

7 (1TeV)− 0.62CNP
8 (mc)

and hence under the assumption that CNP
7 (1 TeV)� CNP8 (1 TeV), also used in [149], ImC7(mc) ≈

−0.6 ImC8(mc) is obtained. Thus according to (4.32),∣∣∣∣ACP |7ACP |8

∣∣∣∣ . 0.4 (4.34)

is expected under this scenario and hence it is still expected that the ImC8 contribution dom-

inates. It should be noted, however, that if the scale of new physics is sufficiently high this

situation could be reversed since CNP
7 (mc)→ −8CNP

8 (mc) as the new physics scale goes to in-

finity; though this limit is approached rather slowly, and in any case increasing the new physics

scale substantially would most likely render the resulting CP asymmetry too small to detect.

4.4 Conclusion

In contrast to B meson decays, theoretical assessment of charm decays is made considerably

more difficult by the comparative smallness of mc and the corresponding increased hadronic

uncertainties. Nonetheless the measured size of the CP asymmetry (4.1), should it stand up

to future measurements, would seem to indicate the presence of beyond-SM physics due to the

fact that it is suppressed by four powers of the Cabibbo angle, although a large enhancement

from strong dynamics cannot be ruled out. Owing to the theoretical difficulties in calculating

strong decays, the ideas of [149] have been followed.
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The advantage of considering the chromomagnetic operator O8 over the electromagnetic

operator O7 is twofold: first, O8 is expected to contribute significantly to hadronic as well as

radiative decays and thus could potentially explain the current experimental discrepancy with

SM expectations through [150]

∆ACP |NF≈ −1.8(ImC8 − ImC ′8) sin δ ; (4.35)

though this can only be taken as an estimate since sin δ is unknown. Second, the O8 operator

can provide both the weak and strong phase required to produce an observable CP asymmetry

in contrast to O7, which requires the leading decay amplitude to have a large strong phase,

which, as has been argued, it does not.

The prediction corresponding to (4.35) in the D → V γ channel is12:

ACP(D0 → (ρ0, ω)γ) =

(
−1.5%

(
Im[CNP8 ]

0.4 · 10−2

)
− 0.4%

(
Im[C ′NP8 ]

0.4 · 10−2

))
cB

ACP(D+
(d,s) → (ρ+,K∗+)γ) =

(
3.9%

(
Im[CNP8 ]

0.4 · 10−2

)
+ 0.2%

(
Im[C ′NP8 ]

0.4 · 10−2

))
cB , (4.36)

which has an interesting feature not present in the hadronic decay: because the final state

contains two vector particles, it is sensitive to both the parity-conserving and parity-violating

parts of the O(′)
8 operators and thus potentially the chirality structure of beyond-SM physics

is experimentally accessible if the CP asymmetry in both the charged and neutral channel can

be measured. This is also partially the result of the smallness of the charm-quark mass; the

heavy-quark relation lR = O(1/mb,c) would otherwise be expected to strongly suppress the

contribution of the O′8 operator.

The way forward from here seems rather difficult on both the experimental and theoretical

fronts. From the theoretical standpoint, the prediction (4.36) would be vastly improved by a

complete calculation of the O(αs) corrections to WA, specifically the non-factorisable diagrams

which are expected to give rise to the strong phase that would determine the contribution of

ImC7 to the CP asymmetry. Judging by the calculation of the chromomagnetic form factor in

Chapter 3, however, it can be expected that such a calculation using LCSR will be technically

difficult since it will almost certainly require dealing with anomalous thresholds at two loops.

Another strong motivation for calculation of the O(αs) corrections is that it would give a much

better indication of whether the argument that WA, rather than QL (q.v. Figure 4.1), is indeed

the dominant amplitude in radiative D meson decays.

On the experimental side, further LHCb data in the D → ππ and D → KK channels is

of course desirable, and indeed as remarked in the introduction new data from LHCb [146]

rather disappointingly shows no sign of an asymmetry. This is a sizeable shift from their prior

result [22] and in comparison to the CDF result [135]; however, since it includes the data of the

12See (4.30) for the definition of cB.
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earlier analysis, the present experimental situation appears to confirm the SM. An experimental

measurement of the D0 → ρ0γ and D+ → ρ+γ rates would nonetheless be interesting, to see

whether the sort of analysis performed in section 4.1.2 is correct and whether charm decays in

this channel can be treated perturbatively, although since the estimate (4.25) is two orders of

magnitude below the current experimental limits B(D0 → ρ0γ) ≤ 2.4 × 10−4 [147], this will

have to wait for an LHCb upgrade or future flavour-factory experiment.
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Chapter 5

Isospin asymmetry inB → (K,K∗, ρ)l+l−

In this chapter I describe the calculation of the isospin asymmetry in semi-leptonic B decays,

as published in [92].

5.1 Introduction

The isospin asymmetry in B → K∗l+l− was for some time measured by experiment to be

negative [155, 156], the opposite sign to the SM prediction. This has not been confirmed by

new LHCb data [21], which agrees with the SM prediction; however a large negative deviation

from zero, at the level of 4σ when integrated over q2, appears in the new results for the

isospin asymmetry in B → Kl+l−, which according to theory is expected to be small. Isospin

asymmetries in B → K∗γ and B → ργ decays have also been measured and it will be found

that these agree with and deviate by 2σ from the SM prediction, respectively.

Since at present measured isospin asymmetries are only marginally in agreement with the

SM, it is worthwhile to study the sensitivity of these asymmetries to beyond SM FCNC oper-

ators. A complete calculation of the influence of all of these operators will complement con-

straints from non-leptonic decays on all ∆F = 1 operators. The goal of this calculation is then

to compute the contribution of all suitable FCNC operators up to dimension 6 on the isospin

asymmetries in all similar processes for which there are presently sufficient statistics, that is

B → (K,K∗)l+l− and B → (K∗, ρ)γ [21, 147], as well as the as-yet unobserved B → ρl+l−.

The extension to the closely related process B → πl+l− is a straightforward matter of replac-

ing certain input parameters but numerical results are not provided here since it appears that

experimental data is some way off.

It turns out that isospin violating effects can be divided into two categories: ultraviolet (UV)

isospin violation due to four quark operators in the effective Hamiltonian coupling differently to

up- and down-type quarks, and infrared (IR) isospin violation which arises from photon emission
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B M B BM M

Figure 5.1: Processes contributing to isospin violation in semi-leptonic B decays. The left-hand
diagram indicates a weak annihilation (WA) process, the middle diagram a quark loop spectator
scattering (QLSS) process and the right-hand diagram indicates isospin violation arising from the
chromomagnetic operator O8. Crosses indicate possible isospin violating photon emission points.
Note that in WA emission from the heavy quark line can also violate isospin symmetry, since the
four quark operator may couple differently to different flavours of spectator quark.

from the spectator quark since the strength of the electromagnetic interaction depends on the

quark flavour. The classes of isospin violating process are included: weak annihilation (WA),

quark loop spectator scattering (QLSS) and the O8 contribution, as shown in Figure 5.1. UV

isospin violation only occurs in WA-type diagrams since the four quark operator must connect

to the spectator quark line in that case. Isospin violating effects due to differences in the light

quark masses and decay constants are below 1% and therefore neglected. Such effects however

complicate the calculation of analogous flavour SU(3) asymmetries such as Bs → φ vs. B → K∗

since the hadronic differences between Bs and B0 are too large to be ignored. Although sum

rule or lattice calculations of the ratios of meson decay constants could be used, these would

have to be very accurate in order to result in useful constraints on Wilson coefficients in the

effective Hamiltonian being obtained.

Various aspects of the isospin asymmetry in B → (K,K∗)l+l− decay have been calculated

previously. The closely related decay B → V γ has been computed using QCDF in [84] and using

a mixture of QCDF and LCSR in [129]. A computation of the isospin asymmetry B → K∗γ in

the minimal supersymmetric SM has been reported in [157]. B → (K,K∗)l+l− was computed

using QCDF in [51], and a mixed approach was recently employed for B → Kl+l− in [134]. This

calculation improves on these works by including the complete basis of dimension six operators

for WA and QLSS, the O8 calculation described in Chapter 3, and the complete set of twist-

3 terms for WA. It is therefore a straightforward matter to calculate the isospin asymmetry

in a arbitrary model once the Wilson coefficients are known, or conversely to identify which

operators may be responsible for any observed deviation, if found, although given the large

number of possible operators detailed knowledge of the q2 spectrum would be necessary to

constrain specific operators outside the context of a model.
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5.2 Definitions and outline of the calculation

The definition of the effective b → sl+l− Hamiltonian in the SM is given in Section 2.4 and

the decomposition of the B → V l+l− matrix elements are given in Section 2.9. The extensions

of the four quark operator basis will be described in the sections 5.3.1, 5.4.1 and 5.6.1. The

isospin asymmetry itself is defined as

a0̄−
I (q2) ≡ dA0̄−

I

dq2
≡ c2MdΓ[B

0 →M
0
l+l−]/dq2 − dΓ[B− →M−l+l−]/dq2

c2MdΓ[B
0 →M

0
l+l−]/dq2 + dΓ[B− →M−l+l−]/dq2

(5.1)

āI(q
2) ≡ 1

2

(
a0̄−
I (q2) + a0+

I (q2)
)

, (5.2)

where M stands for a vector or pseudoscalar meson and the second equation defines the CP

averaged isospin asymmetry. The experimental definition is of course usually written in terms

of the branching fraction and B meson lifetimes. The isospin asymmetry in B → V γ is defined

analogously. For the K∗ the CP asymmetry is small and thus the result of taking the CP

average is primarily improved experimental statistics; however for the K this is essential since

in the neutral case it is the K0
S which is a CP -eigenstate superposition of the two strangeness

eigenstates |d̄s〉 and |s̄d〉. By contrast the CP -asymmetry in B → ρ is sizeable, and this case is

discussed in 5.6. The coefficient cM accounts for cases where the valence quark content of the

final state meson does not correspond exactly to the quark pair produced by the short distance

decay. This is the case for the neutral ρ meson since ρ0 ∼ (ūu− d̄d)/
√

2 and thus cρ =
√

2, but

the remaining cases are simple cK = cK∗ = 1. Weak annihilation diagrams can also couple to

the ūu component of the ρ0 final state however constant the cρ is selected with respect to the

leading term in the decay arising from O7,9,10 which cannot.

As in previous studies [51, 84], it will be assumed that the isospin asymmetry is small and

thus a linear approximation to (5.2) may be used. The leading isospin symmetric term is

assumed to arise from the operators O7,9,10 (or rather their effective counterparts). With these

approximations, the isospin asymmetry may be written

dA0̄−
I

dq2
[B → K∗l+l−] =

∑
i Re

[
T V,0i (q2)∆d−u

i (q2)
]

∑
i

[
|T V,0i (q2)|2+

∣∣T Ai (q2)
∣∣2] +O([∆d−u

i (q2)]2)

dA0̄−
I

dq2
[B → Kl+l−] =

Re
[
T V,0T (q2)∆d−u

T (q2)
]

|T V,0T (q2)|2+
∣∣T AT (q2)

∣∣2 +O([∆d−u
T (q2)]2)

a0̄−
I [B → K∗γ] =

∑
i Re

[
T V,0i (0)∆d−u

i (0)
]

∑
i

[
|T V,0i (0)|2+

∣∣T Ai (0)
∣∣2] +O([∆d−u

i (0)]2) , (5.3)

where the functions T (V,A)
i are coefficients of different tensor structures arising in B →Ml+l−

decays and are described in Section 2.9. The sums over i may be taken in either the {0,+,−}
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or {0, V, A} basis as described there; the only relevant property of these functions here is that

the total B → V l+l− decay rate is proportional to
∑
i∈{0,+,−}

∑
j∈V,A|T

j
i (q2)|2. The functions

T V,0i include only the leading isospin symmetric terms in the decay, namely

T V,0i = Ceff
9 (q2)Hi(q

2) + Ceff
7 Ti(q

2)

T V,0T = Ceff
9 (q2)hT (q2) + Ceff

7 fT (q2) , (5.4)

and with this definition the matrix elements for the full decay rate (2.70) are split up as

T Vi (q2) = T V,0i (q2) + T V,qi (q2) T V,qi (q2) = Ceff
8 Gqi (q

2) +W q
i (q2) + Sqi (q2) (5.5)

and the isospin asymmetric part is given by

∆d−u
i (q2) = T V,di (q2)− T V,ui (q2) . (5.6)

The functions Gi are the chromomagnetic matrix element described in Chapter 3 and the

functions Wi and Si give the WA and QLSS contributions and will be calculated in sections 5.3

and 5.4 respectively.

As mentioned in the introduction isospin violation owing to quark mass differences and

differences in meson decay constants is neglected, which manifests itself here as the assumption

that the leading terms T 0
i are equal in both the charged and neutral decays. The pseudoscalar

decay constants differ by roughly 0.5% between the neutral and charged case [158] and thus

will turn out to be negligible as compared to the overall uncertainty in this calculation. The

mass splitting between the neutral and charged K is somewhat larger at around 1% [123],

which occurs because the kaon mass is connected to chiral symmetry breaking1. This will

not lead to a large isospin asymmetry since both are still very light in comparison to the B

meson and the phase space difference between the two would be expected to be on the order

of2 (m2
K0 − m2

K+)/m2
B ∼ 10−4, and in any case light meson mass effects shall be neglected

entirely in this calculation. The mass splitting between the charged and neutral B mesons is

small, mB0 −mB+ = 0.32(6) MeV, and this is completely negligible in comparison with every

other scale in the problem which are at their smallest on the order of ΛQCD ∼ 300 MeV. It is

therefore safe to say that isospin violation arising through quark masses and QCD effects are

negligible in comparison to isospin violation from the processes depicted in Figure 5.1, which

are to be calculated.

1The mass splitting can therefore be estimated from the Gell-Mann–Oakes–Renner relation [102] as m2
K0 −

m2
K+ ∼ (md −mu) 〈q̄q〉 /f2K .
2It might appear from (2.81) that it should scale linearly rather than quadratically, i.e. as (mK0−mK+ )/mB ,

however the factor mB +mK appearing in that formula is merely due to the standard definition of PT in (2.62)
and is not actually reflected in the rate.
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Figure 5.2: Example of a weak annihilation form factor result, specifically contribution of OWA
5 and

OWA
6 to B → K∗l+l−. The definition of the W q

j,ι is given in (5.18). The region 0 GeV2 < q2 <

1 GeV2 is excluded owing to the presence of strong resonances here; note particularly that the point
at q2 = 0 (blue dot) does not appear to connect smoothly to the real part (solid red line). The point
at q2 = 0 must be calculated using a different method because of this, as described in Section 5.3.6.

5.3 Weak annihilation (WA)

The WA process B− →W− → K(∗)− is described by the “tree-level” operators O1,2 in a process

as shown in Figure 5.1 (left). By extension, the same name is also given to diagrams with the

same arrangement of quark lines involving O3−6, though they arise from renormalisation group

evolution and short distance penguin diagrams.

The WA contribution to B → ργ has already been computed in the SM using LCSR in

[77, 78]. This contribution was also calculated using QCDF in [120]. This is in principle

equivalent to B → K∗l+l− in the q2 = 0 limit, although, as will be explained in Section 5.3.6,

OPE terms must be handled differently in these two cases. The WA contribution to B →
K∗l+l− for general q2 has been calculated using QCDF in [42, 51]. This calculation extends

previous work by using LCSR to calculate WA at general q2, including all possible dimension

6 four-quark FCNC operators and computing twist-3 corrections from h‖ terms in the K∗ DA,

which contribute to the longitudinal polarisation and were neglected in [42,51].

As is typical for B meson decays, the range of the validity of the computation is restricted

by the presence of resonances, both in the partonic and hadronic pictures. In the case of weak

annihilation it is particularly the light ρ and ω resonances which are problematic, so the results

of this calculation are not valid in the 0 GeV2 < q2 < 1 GeV2 region. This problem manifests

as a divergence as q2 → 0 owing to the 〈q̄q〉 condensate term. The OWA
5 form factor is plotted

in 5.2 to illustrate the issue. Note that in this plot charm resonances which would be expected

in the q2 ∼ m2
J/Ψ region are absent, owing to the fact that they occur as an order αs correction

to WA. However, the results for the isospin asymmetry remain invalid in this region because

other contributions, particularly the Ceff
9 contribution, are still strongly affected.
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5.3.1 Complete WA basis of dimension 6 operators at O(α0
s)

All dimension 6 four-quark operators q̄Γ1b s̄Γ2q that potentially contribute at O(α0
s) are in-

cluded:

OWA
1 ≡ q̄b s̄q OWA

2 ≡ q̄γ5b s̄q OWA
3 ≡ q̄b s̄γ5q OWA

4 ≡ q̄γ5b s̄γ5q

OWA
5 ≡ q̄γµb s̄γµq OWA

6 ≡ q̄γµγ5b s̄γ
µq OWA

7 ≡ q̄γµb s̄γµγ5q OWA
8 ≡ q̄γµγ5b s̄γ

µγ5q

OWA
9 ≡ q̄σµνb s̄σµνq OWA

10 ≡ q̄σµνγ5b s̄σ
µνq , (5.7)

parametrised by the effective Hamiltonian:

HWA,q = −GF√
2
λt

10∑
i=1

aqiO
WA
i , (5.8)

where the q superscript has been suppressed on the operators OWA
i . The operator basis has been

organised in terms of scalar and pseudoscalar, vector and axial and tensor currents. Although

this is not the optimal fit for weak decays in the SM that have V − A structure, it makes the

linear combinations which actually contribute to decays transparent, since the external B, K

and K∗ mesons are states of definite parity. At higher orders in αs the size of this basis doubles,

since colour octet operators which cannot contribute to factorised decays also appear. In fact,

the ρ meson can couple to these octet operators at leading order O(α0
s) owing to the presence

of multiple external d-type quarks in B0 → ρ0 decays, which can therefore couple to alternative

Fierz arrangements of four-quark operators. The extended effective Hamiltonian required in

this case is defined in 5.6.1.

WA coefficients in the SM

In the SM the operators (5.7) obey minimal flavour violation (MFV) [159–163] and furthermore

may be expressed in the form q̄ΓPLb s̄PRΓq (2.19). Since WA fixes the quark flavours and

couples to just a single colour structure, only two independent combinations of SM WCs appear

in each B → Mll process, which correspond to the scalar-scalar and vector-vector3 Dirac four

quark structures. For a bq → sq process, with q = u, d, the couplings are given by

aq1 = −aq2 = aq3 = −aq4 = −2

(
C5

Nc
+ C6

)
aq5 = −aq6 = −aq7 = aq8 =

(
C3

Nc
+ C4

)
− δqu

λu
λt

(
C1

Nc
+ C2

)
aq9 = aq10 = 0 , (5.9)

3With appropriate left- and right-handed projectors.
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where Nc = 3 is the number of colours as usual. The vector current couplings a5−8 are different

for u and d spectator quarks, which follows from the fact that O1,2 (2.19) only couple to up-

type quarks as a result of the absence of tree-level FCNCs in the SM. As described earlier,

the splitting of WCs for different spectator quarks is referred to as UV isospin violation and in

this case radiation from all four external quarks (see Figure 5.1, left) contributes to the isospin

asymmetry. In B → K(∗) decays the contribution of O1,2 and thus UV isospin violation is

suppressed owing to the smallness of λu/λt. The situation for B → ρ decays is somewhat more

complicated, however, for the CP -averaged case the suppression from |cosαCKM|� 1 plays the

same role and the penguin operators O3−6 still dominate the isospin asymmetry. The ρ meson

situation will be discussed in more detail in Section 5.6, and the exceptional value of cosαCKM

will be exploited in Section 5.7.

It must be understood that formulae such as (5.9) are strictly applicable at leading order

in αs. In the present calculation this is all that is required since loop corrections to the WA

contribution are not computed; however at higher orders the coefficients will be dependent on

the renormalisation scheme, including evanescent operators, e.g. [164]. Both SM and beyond-

SM operators would then have to be matched onto this higher order basis, which itself would be

a somewhat involved calculation. This may well be unnecessary however: since at this point it

must be expected that violations of the SM are small, the most sensible approach to improving

the present work would be to complete a higher order calculation of the SM isospin asymmetry

to reduce the SM uncertainties. Contributions from beyond SM physics can then be added

using leading order results in the generic four-quark basis computed here, since they will be

suppressed by new small parameters and thus loop corrections to beyond-SM effects are unlikely

to be significant.

5.3.2 Factorisation of WA at leading order O(α0
s)

The WA matrix element with uncontracted photon polarisation tensor ε(q)ρ reads

A∗ρ|WA=〈Xγ∗(ρ)|q̄Γ1b s̄Γ2q|B〉|WA

= 〈X|s̄Γ2q|0〉〈γ∗(ρ)|q̄Γ1b|B〉︸ ︷︷ ︸
initial state radiation (ISR)

+ 〈Xγ∗(ρ)|s̄Γ2q|0〉〈0|q̄Γ1b|B〉︸ ︷︷ ︸
final state radiation (FSR)

+O(αs) . (5.10)

The two matrix elements shall be referred to as initial state radiation (ISR) and final state

radiation (FSR) respectively, as labelled in the equation. ISR terms will be calculated using

sum rules as described in Section 2.8. FSR terms will be calculated using the light cone OPE.

The Feynman diagrams which were computed are shown in Figure 5.3, although as will be

explained below LCSR is only used to approximate the B meson state where necessary. Only

one of the two techniques is required in each case because the matrix element which does not

emit the photon can always be written in terms of a simple hadronic quantity, i.e. fB , fK∗ or
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Twist Operator OWA
n

1 2 3 4 5 6 7 8 9 10

B → K

Factorisable 7 7 7 7 7 7 7 7
χ-even (φK) 2 I,Fc

χ-odd (φP,σ) 3 I,F
Lorentz invariance 3 7 7 3 3 7 7 3 3 7

B → K∗

Factorisable 7 7 7 7
χ-even (φ‖) 2 I I,Fc

χ-even (g
(v)
⊥ , g

(a)
⊥ ) 3 I I,Fc

χ-odd (φ⊥) 2 F F I I

χ-odd (h
(t)
‖ , h

(s)
‖ ) 3 F I

Lorentz invariance 3 3 3 3 3 3 3 3 3 3

Table 5.1: Operators contributing to WA and which DAs couple to each. The rows marked “Lorentz
invariance” indicate which operators are coupled to at all orders in αs. “Factorisable” indicates which
can be coupled to at leading order in αs, which is considerably more restrictive owing to the fact
that the decay can be factored into two separate matrix elements that must obey Lorentz invariance
separately. χ-even and χ-odd stand for even and odd chirality, which indicate an odd and even
number of gamma matrices respectively. The remaining rows indicate which components of the
vector and pseudoscalar meson DAs couple to each operator at leading order α0

s. This implies that
the decays may be factorised, and in these rows I indicates initial state and F final state radiation.
Fc indicates that the final state radiation is purely a contact term which can be set to zero in a
certain choice of gauge. These terms are therefore accurate to all orders in twist. Note that as far
as the twist assignments in this table are concerned, h‖ and g⊥ are related to other components of
the K∗ DA by Wandzura-Wilczek relations [70]. At the present level of approximation where light
quark masses and three-particle DAs are neglected this means that h‖ and g⊥ may be written in
terms of φ⊥ and φ‖ respectively, and thus the twist-2 and twist-3 contributions are not separately
gauge invariant at the O(mV ) level, although the O(m0

V ) part of the twist-2 contribution is gauge
invariant.
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f⊥K∗ . Results of this type of calculation are valid away from partonic and hadronic thresholds,

which in this case means that the ρ, ω and J/ψ resonance regions must be excluded. The results

which will be presented are valid for the range 1 GeV < q2 < 8 GeV2, although it should be

stressed that 8 GeV2 is just above the perturbative charm pair threshold ∼ 7.8 GeV2 and thus

these results may not be accurate at the very upper end of this range. Results for B → V γ are

also included, which are the q2 = 0 limit of the Wi(q
2) functions. In this case the contribution of

hadronic ρ and ω resonances is included through the photon DA [77,78,165]. For q2 > 1,GeV2,

these contributions are replaced by the 〈q̄q〉 condensate.

5.3.3 Selection rules

As it turns out, the fact that WA matrix elements are factorisable at O(α0
s) as in (5.10) leads

to highly restrictive selection rules on the four quark operators, because parity and Lorentz

invariance considerations apply separately to the ISR and FSR terms. These rules are depicted

in table 5.1.

However, there is one selection rule which is not dependent on factorisability. For the K

meson there is a parity selection rule. Since the K is a pseudoscalar, helicity conservation

implies that the final state photon polarisation is longitudinal and thus no final state of even

parity can be constructed. Since the B meson also has odd parity, the decay can therefore only

be induced by parity conserving operators. To put it another way, only three 4-vectors enter

in the final state, and thus it is not possible to create a scalar through use of the Levi–Civita

tensor. Since the total number of γ5 matrices and Levi–Civita tensors appearing in any given

term must be even, it follows that the absence of Levi–Civita tensors in the result implies that

an even number of γ5 matrices must appear in the calculation; one from the B meson and one

from the K. This immediately eliminates half of the operators in table 5.1, as indicated in the

“Lorentz invariance” row of the B → K transition.

The additional constraints imposed by factorisation, or equivalently truncating at O(α0
s),

occur in two ways. The first, for the scalar- and vector-like current operators OWA
1...8 arises in the

factored matrix element that does not emit the photon. The second, for the tensor operators

OWA
9,10, arises due to Lorentz invariance in the final state matrix element.

The OWA
1...8 case is a simple parity constraint: neither the K∗ or B meson can couple to a

vector or scalar current of opposite parity to the particle since three or four vectors are required

to construct a Lorentz scalar or vector with opposite parity in four dimensions, and the B and

K∗ have only one and two respectively. This means that only half of the operators OWA
1...8 are

coupled to. Note that in the case of the K this rule applies in addition to the global parity

selection rule, so in that case only two of the eight operators enter factorisable terms.

The case of the tensor operators OWA
9,10 is somewhat different owing to the identity εµνρσσρσ =

2iσµνγ5, which means that the presence of one tensor operator parity implies presence of the
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C
(′)
8 WA Eq.(5.7) QLSS Eq.(5.28) total

K∗ 2[1] 12[3] aq2,4,5,6,9,10 10[3] all no i=2,f=SU(3) 24[7]
K 1[1] 4[3] aq4,8 5[3] idem no χ = A 10[7]

Table 5.2: Summary of operators contributing to isospin in B → K(∗)ll. The number of operators
that are present in the SM for the respective channel is denoted in square brackets. The QLSS
counting in the SM is the number of linearly independent contributions which depends on the
number of quark flavours of different mass running in the loop, which in the present approximation
is 3. Each of these linear combinations is independent of the coefficients for WA in the SM, so the
total number of operators in the final column is simply the sum.

other, subject to global parity considerations. In this case factorisation restricts the K final

state from coupling to tensor operators at all since a pseudoscalar meson cannot couple to a

local tensor current operator by Lorentz invariance, so whichever factorised matrix element the

photon does not couple to is necessarily zero. The K∗ however does couple to local tensor

currents, so the ISR term is non-zero, even in the case of a longitudinally polarised meson,

although that is suppressed by powers of mK∗ as described below (5.12).

Combining these selection rules means that the K couples to 8/2/2 + 0 = 2 four quark

operators at this level of approximation, and the K∗ couples to 8/2 + 2 = 6. The situation

is depicted in table 5.2, along with the number of operators required for the QLSS and O8

contributions. The basis for the QLSS contribution is provided later in (5.28), however the

only applicable selection rule is the global parity constraint for the K.

The stringent selection rules in the factorisation approximation have important implications

when considering which terms in the K and K∗ DAs must be included. As can be seen from

table 5.1, the OWA
4 operator only appears at next-to-leading twist for the K, and similarly the

OWA
2,10 operators only appear at next-to-leading twist for longitudinally polarised K∗ mesons,

which are potentially significant in the intermediate q2 regime where the contribution of longi-

tudinal polarisation is not overwhelmed by the photon pole. This is particularly important for

the OWA
2,4 operators because these dominate the isospin asymmetry, as will be discussed later,

owing to their large Wilson coefficients.

5.3.4 Computation of WA leading order O(α0
s)

The calculation of these matrix elements in (5.10) is somewhat varied, since in almost all cases

there are tricks to simplify the process. The very simplest matrix elements appearing in (5.10)

are those which do not emit a photon. These are given by

〈0|q̄γ5b|B(pB)〉 = −ifBm
2
B

mb
〈0|q̄γµγ5b|B(pB)〉 = ifBp

µ
B

〈K∗(p, η)|s̄γµq|0〉 = fK∗mK∗η
µ 〈K∗(p, η)|s̄σµνq|0〉 = if⊥K∗(p

µην − ηµpν)

〈K(p)|s̄γ5q|0〉 = −iµ2
K 〈K(p)|s̄γµγ5q|0〉 = −ifKpµ , (5.11)
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M

(a) Perturbative photon contributions.

〈q̄q〉

M

(b) OPE quark condensate contribution.

Figure 5.3: Weak annihilation Feynman diagrams for B → Ml+l−. The zigzag line is the B-
meson current insertion. Crosses mark possible photon insertions, although the contribution from
the insertion at the dashed cross is zero.

where µ2
K = fKm

2
K/(ms + mq). All other couplings to local two-particle currents are zero by

either angular momentum or parity conservation. In the case of the light mesons these formulae

can be recovered from the DAs in appendix B, however these are all order formulae rather than

low twist approximations. Note however that use of the formulae (5.11) for the B meson is

dependent on the ISR and FSR terms in (5.10) being separately gauge invariant, otherwise

contact terms may not cancel between them. In the case of the light mesons this problem is

avoided because as already mentioned the DAs reproduce (5.11). The following subsections

describe the techniques used to calculate the various different operator contributions. The

labels in brackets of the section headings correspond to the operator selection rules shown in

table 5.1.

Initial state radiation only (I)

This case occurs for the vector meson final state with the tensor current operators OWA
9,10 and

the vector operator OWA
5 . The operator OWA

5 is of course rather more similar to the operators

OWA
6,8 which also couple to vector currents but in this case the final state contact term must be

zero due to parity considerations. Computation of the initial state is straightforward using sum

rules as explained in Section 2.8 and the relevant dispersion relations will be given as part of

the results in Section 5.3.5. To calculate the initial state sum rule it is most convenient to work

at mK∗ = 0 since this somewhat simplifies the dispersion relations required. As this calculation

only includes terms up to O(mK∗), it would seem that mK∗ could be set to zero immediately

since the initial state only depends on the invariant p2 which is of order O(m2
K∗). However,

this only works for transversely polarised K∗ mesons; in the longitudinal case the polarisation

η ∼ 1/mK∗ and thus O(m2
K∗) corrections in the initial state are lifted to O(mK∗).

Fortunately in the longitudinally polarised case this can be avoided by writing the polar-

isation vector η explicitly in terms of p and q = pB − p. This is similar in concept to the

well-known ultra-relativistic approximation discussed in Section 2.10. It is straightforward to
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solve for the constraints η2 = −1 and η · p = 0 giving

ηµ = ηµ⊥ + 2(η · q) (m2
B −m2

K∗ − q2)pµ − 2m2
K∗q

µ

(m2
B −m2

K∗ − q2)2 − 4m2
K∗q

2
, (5.12)

where η⊥ ·q = 0. At mK∗ = 0 this reproduces the results of the ultra-relativistic approximation

η → p/mK∗ ; however, since the tensor operator requires p[µην] higher orders are required and

the formula (5.12) is exact. Expanding in mK∗ the right-hand side of the tensor matrix element

in (5.11) may be written:

(5.13)pµην − ηµpν = (pµην⊥ − ηµ⊥pν)− 4m2
K∗(η · q)

(m2
B − q2)2

(pµqν − qµpν) +O(m4
K∗)

Since the longitudinal polarisation is now explicitly O(m2
K∗) the light meson mass mK∗ may be

set to zero for the remainder of the calculation, particularly in order to simplify the dispersion

relation.

Final state radiation only (F)

This case occurs for the operators OWA
2,4 for the K∗ final state and is rather straightforward.

The initial state matrix element is given by (5.11) and the final state is evaluated using the

DAs given in appendix B. A general discussion of calculating with DAs is given in Section 2.7.

The only difficulty here is that gauge invariance in the case of OWA
2 is non-trivial owing to the

presence of two DAs related by equations of motion. The identity

uh
(t)
‖ (u) +

u

2
h

(s)′
‖ (u) = 2

∫ u

0

(
h

(t)
‖ (v)− φ⊥(v)

)
dv , (5.14)

which follows from equation (3.21/22) in [70], must be used to show q · A∗ = 0.

Initial state radiation plus final state contact term (I,Fc)

This case occurs for the operators OWA
6 in the vector meson case and OWA

8 in the pseudoscalar

case. In this case the final state radiation term is purely a contact term in the limit of massless

quarks and can be fixed to zero by appropriate choice of gauge. The calculation of this term is

detailed in Section 2.7. The initial state term calculation then follows the sum rule procedure

as usual. In contrast to the case where both initial and final state radiation are physical, there

is no concern over parasitic cuts unlike the (I,F) case discussed below, since the final state

contribution is given by (2.43), that is

(p+ q)µ 〈K∗γ|s̄γµq|0〉 = e(Qq −Qs)fK∗mK∗(η · ε) , (5.15)

and there are no poles or cuts in this result in the variable (p+ q)2.
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K
K

k

pB

Q

p

Figure 5.4: The dashed lines in the left-hand figure show cuts with the momentum of the B meson
current. The right-most cut however does not have the quantum numbers of the B meson, and
so should not be included in the dispersion relation. The solution to this problem is illustrated in
the right-hand diagram and essentially consists of lifting the constraint pB = p + q and allowing
momentum to flow into the four quark operator. This solution is described in detail in Section 3.2.1
and subsequent sections.

Both initial and final state radiation (I,F)

This case only occurs for the OWA
8 operator at leading order α0

s, however unfortunately for

future higher order calculations of non-factorisable terms, it will be the norm. In this case, the

same problem occurs as for the chromomagnetic operator O8, in that there are cuts with q̄s

quantum numbers in the external momentum invariant p2
B , which clearly should not be counted

as part of the perturbative duality approximation to the B meson state. In the case of final

state radiation only this problem is avoided because a sum rule need not be used to compute

the B meson part of the matrix element; however, in the present case gauge invariance comes

into play because the factorised matrix elements in (5.10) are not separately gauge invariant.

This situation really leaves two possible ways forward: either separation of desired cuts

with B meson quantum numbers from those without must be managed, or some approximation

must be constructed in which it can be argued that gauge invariance violation is small. The

latter approach is entirely feasible and in fact closely related to an issue which arises in QCDF

calculations, to be discussed in Section 5.4.6; however, the former is more theoretically consistent

so that is the approach that shall be taken.

In fact, all the basic results required are those worked out in Section 3.2.1, and the Passarino–

Veltman functions which occur in the result are those in Section 3.2.2. There is therefore only

one remaining technical point: the sum rule approximation to fB used in the term

〈K(p)γ∗(q, ρ)|s̄γ5q|0〉 〈0|q̄γ5b|B(pB)〉 = −if
wti
B m2

B

mb
〈K(p)γ∗(q, ρ)|s̄γ5q|0〉 (5.16)

must be chosen carefully. Due to the presence of cancellations between gauge variant terms

in ISR and FSR matrix elements, fwti
B must be chosen to be consistent with the way the ISR
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terms are calculated. In the present calculation, the correct expression is

fwti
B =

m2
b

fBm4
B

[
3

8π2

∫ s0

m2
b

exp

(
m2
B − s
M2

WA

)
(s−m2

b)
2

s
ds−mb 〈q̄q〉 exp

(
m2
B −m2

b

M2
WA

)]
, (5.17)

where the Borel parameter M2
WA must be the same as that used for the ISR term, and fB is

likewise whatever value is taken there. In general therefore fB and fwti
B will not be equal.

A final point is worth remarking on: again owing to the fact that the ISR and FSR terms

are not separately gauge invariant, projection of each term onto the basis (3.16) leads to a 1/q2

divergence in the pµT coefficient, which cancels in the sum. Since this is a pseudoscalar decay

there is no concern with the presence of a divergence for q2 → 0 since physically this process

does not exist, however it is convenient for numerical purposes to cancel such divergent terms

explicitly. It is rather helpful then that in the present case the relevant DA φK(u) (B.1) is

restricted to its asymptotic form by equations of motion when three-particle DAs and quark

masses are neglected [93], so the resulting integrals are analytic. This rearrangement of terms

has been done in the results presented in Section 5.3.5, and must be borne in mind if attempting

to reproduce them.

5.3.5 WA results

Due to the choice (5.7) of basis for the four quark operators, it is convenient to present results

for the vector meson in the {V,A, 0} basis (2.74) since each basis tensor (2.71) then has definite

parity. The matrix elements W q
ι (q2), with ι ∈ {T, V,A, 0}, are decomposed as follows:

W q
ι (q2) =

10∑
j=1

aqjW
q
ι,j(q

2) ≡
10∑
j=1

aqj
[
F qj,ι(q

2) + Iqj,ι(q
2)
]

. (5.18)

The functions I and F stand for ISR and FSR respectively and are further parametrised as

Iqj,ι(q
2) =

1

fBm2
B

(
〈q̄q〉 exp

(
m2
B −m2

b

M2
WA

)
V qj,ι(q

2) +

∫ s0

m2
b

ds exp

(
m2
B − s
M2

WA

)
ρqj,ι(q

2, s)

)
,

(5.19)

where ι ∈ {T, V,A, 0} is common to both the K∗ and K cases and

F qj,i(q
2) =f⊥K∗fB

(
mB

mb

)2 ∫ 1

0

fqj,i(q
2, u) du (5.20)

F qj,T (q2) =µ2
Kf

wti
B

(
mB

mb

)2 ∫ 1

0

fqj,T (q2, u) du , (5.21)

where i ∈ {V,A, 0} applies to the K∗-meson case and F qj,T to the K. The Borel parameter is

taken to be M2
WA = 9(2)GeV although as discussed previously the Borel parameter need not be

the same for independent terms since the result should only weakly depend on its value within

a reasonable range, and when higher twist and/or αs corrections are included the result may be
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〈q̄q〉

M

φγ

M−→

|q2| > 1GeV2 q2 = 0

Figure 5.5: Quark condensate contribution to be replaced by the photon DA contribution for q2 = 0
case i.e. B → V γ. The important point to realise is that both diagrams are gauge variant and
produce, together with the other diagram in Figure 5.3b(right), a fully gauge invariant result.

extremised w.r.t. the Borel parameter. The duality threshold is taken to be s0 = 35(1)GeV2

as for the chromomagnetic operator. The quoted uncertainty in the Borel parameter and the

duality threshold are the ranges over which they are varied to provide an estimate of the error

of the LCSR method; the details of the error estimation method are given in Section 5.5.1. The

decay constant fwti
B is fixed by gauge invariance considerations as described above (5.17). The

occurrence of fB in Iqj,ι is evaluated using the leading order sum rule in the previous Chapter

(3.74), and M2
fB

= 5.0(5)GeV is again used. The occurrence of fB in F qj,i is taken from lattice

data as fB = 191(5)MeV [166,167]. Formulae for DAs of the external light mesons are given in

appendix B.1. Formulae for all functions appearing on the RHS of (5.21) are given in appendix

E.1.

5.3.6 WA at q2 = 0

The results presented in the previous section cannot be used at q2 = 0. The reason for this is

shown in Figure 5.5; there is a term proportional to Qq 〈q̄q〉 /q2 in (5.21), e.g. (E.6), when the

photon is emitted from the light quark line. Clearly at q2 = 0 this calculation is invalid. This

problem arises because for an on shell photon, the quark propagator

〈γ(q)|q̄(x)q(0)|0〉 (5.22)

is light cone dominated and a short distance expansion in x fails as described in Section 2.6.

Fortunately the solution to this problem is then rather obvious; instead of using a local OPE as

may be done for q2 > 0 a non-local OPE on the light cone must instead be employed. Since prior

computations of weak annihilation in LCSR were at q2 = 0 [77,78], this technique was already

used there. Here, those results are extended to the case of the K final state and the tensor

current operators WA9,10. The DA for the quark propagator in an external electromagnetic

field is given in appendix B.2.

It must be pointed out in this case that the results given here for the operators OWA
5,6 differ
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from those in [77] by a small term. The origin of this is the final state contact term discussed in

Section 2.7, which is exactly known due to the fact that the required matrix element coincides

with a Ward identity. The result for the final state matrix element (5.15) is proportional

to Qq − Qs, so this immediately presents a problem when the graph shown in Figure 5.6 is

considered: there is a contact term proportional to Qb 〈q̄q〉 in the initial state so therefore there

must be a corresponding one proportional to Qq 〈q̄q〉, but all Qq 〈q̄q〉 terms have been removed

to avoid 〈q̄q〉 /q2 divergences. Of course, this is a gauge dependent statement; however, there

seems to be no a priori reason why the gauge of the external electromagnetic field cannot

be chosen arbitrarily. The solution to this problem is in fact already incorporated into the

expression for the photon DA in (B.10), by realising that, in a covariant gauge Aµ = εµe
iq·x,

〈γ(q, ε)|q̄a(x) ([x, 0]EM,QCD − [x, 0]QCD) qb(0)|0〉 =
iQq 〈q̄q〉

4Nc

∫ 1

0

du eiuq·xε · x δba , (5.23)

where ([x, 0]EM,QCD − [x, 0]QCD) is the difference between a Wilson line including and excluding

the QED gauge field. The identity (5.23) reflects the fact that the photon DA is usually specified

in terms of a operators which are both QED and QCD gauge invariant, but these are not the

quantities which typically appear in Feynman diagrams. The right hand side of (5.23) indeed

turns out to produce the contact term required when combined with the contact term from the

diagram in Figure 5.6, however it is not exactly equal to a contact term. It is the remainder

from evaluating (5.23) which is the difference between the result found here and that in [77]4.

The resulting difference between the present result and theirs can be seen in (E.23), although

it should be stressed that this term is in fact extremely small and thus the difference between

these results and those of [77] are numerically entirely negligible5.

Results for the q2 = 0 case are given by introducing the function Iqj,i|γ , given by

Iqj,i|γ=
1

fBm2
B

(
〈q̄q〉 exp

(
m2
B −m2

b

M2
WA

)
V q,γj,i +

∫ s0

m2
b

ds exp

(
m2
B − s
M2

WA

)
ρq,γj,i (s)

)
, (5.24)

which should be used in (5.21) in place of Iqj,i(q
2). The spectral density ρq,γj,i (s) is defined by

re-using the results for q2 6= 0 and introducing an additional term for the photon DA density,

ρq,γj,i (s) = ρqj,i(0, s) + 〈q̄q〉 ρ̃q,γj,i (s) . (5.25)

The functions V q,γj,i and ρ̃q,γj,i (s) are given in appendix E.1.2.

4Of course, they calculated at p2 > 0 rather than p2 = 0 as done here, however as noted in Section 2.7 p2 = 0
must be used for non-trivial FSR cases since twist-4 DAs are neglected here, so p2 is set to zero throughout for
consistency and simplicity.

5 [78] has not been mentioned in this discussion because that paper did not include the tiny Qb 〈q̄q〉 contri-
bution so no contact term problem arises.
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〈q̄q〉

M

φγ

M

Figure 5.6: The left-hand graph presents a problem at q2 = 0: it is clearly proportional to Qb 〈q̄q〉
and there is no reason to exclude it at q2 = 0 since it produces a physical contribution to the
decay rate. However, the right-hand graph must then also produce a corresponding contact term
proportional to Qq 〈q̄q〉 since the contact term from FSR is proportional to Qb−Qq, but the photon
DA expression in [165] contains no such term.

5.4 Quark loop spectator scattering (QLSS)

The QLSS contribution is given by graphs shown in Figure 5.7. This graph is similar to that of

the chromomagnetic operator (see Figure 5.1), except that the gluon connecting to the heavy

and light quark lines is produced by a perturbative quark loop rather than exclusively short

distance effects as in the O8 case6. This means that much of the discussion of Chapter 3 also

applies to this diagram, however owing to the presence of the additional loop the computation

of this diagram using LCSR would be a significant challenge since anomalous thresholds are

to be expected7. Such a calculation is beyond the scope of the present work, so QCDF is

used which means that only a one-loop calculation must be performed. The computation of

QLSS in QCDF has previously been performed in [84] and [51] in the SM for B → K∗γ and

B → K∗l+l−, respectively. Here these calculations are extended by including a complete basis

of four quark operators contributing to QLSS. It is worth noting immediately that generically

this operator basis is completely independent of the operators (5.7) and the extended colour

octet basis (5.63) required in the B → ρ case due to the presence of the additional light s quark,

whose mass is taken to be degenerate with that of other two light flavours.

5.4.1 QLSS operator basis

There are ten possible Lorentz structures for four quark operators, as given in equation (5.7).

The vector coupling of the gluon restricts this to four possible operators which appear in the

QLSS diagram, as well as fixing the colour structure coupling. These relevant operators are

Q4f
1L(R) ≡

1

4
f̄λaγµf s̄L(R)λ

aγµb Q4f
2L(R) ≡

1

4
f̄λaσµνf s̄L(R)λ

aσµνb , (5.26)

6This interpretation is subject to the fact that RG running mixes the two contributions.
7See Section 3.2.4 for specific details on this problem.
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MB

u, d, s,
c, b

Figure 5.7: Quark loop spectator scattering (QLSS) topology. Crosses denote possible photon
insertions which violate isospin symmetry. This parallels the O8 contribution computed in Chapter 3,
but is more complicated owing to the presence of an additional loop. The charm quark gives by far
the largest contribution in the SM owing to the large value of λcC2 in comparison to coefficients
of other operators in (2.19). The dashed box indicates a hard subgraph which is computed most
straightforwardly without reference to the external hadronic states; this procedure is described in
Section 5.4.2.

where sL = s 1+γ5

2 and likewise sR = s 1−γ5

2 and λa are the Gell-Mann matrices. Since in this

calculation ms has been set to zero, the effect of the u, d and s quarks is degenerate and the

effects of these three quark can be grouped into a single operator

Q
4SU(3)F
xL(R) ≡

(
Q4u
xL(R) +Q4d

xL(R) +Q4s
xL(R)

)
, x = 1, 2 (5.27)

and the effective Hamiltonian for QLSS may be written

HQLSS = −GF√
2
λt
∑
x,χ,f

sfxχQ
4f
xχ , x = 1, 2 , χ = L,R , f = SU(3)F , c, b , (5.28)

where WCs are denoted sfxχ. As explained in the introduction to this section, this basis is

linearly independent of that which occurs in WA, owing to the fact that WA does not couple

to s, c or b quarks.

5.4.2 b→ sg subgraph

The calculation of the b→ sg subgraph, denoted by the dashed box in Figure 5.7, is an entirely

standard one loop perturbative procedure. The matrix element needed is

aµ = 〈sg(r, µ)|HQLSS|b〉 =
∑
i=L,R

[
Kµ

1,iF1,i(r
2) +Kµ

2,iF2,i(r
2)
]

, (5.29)

where Kµ
1,2 are the only tensor structures allowed by Lorentz covariance and gauge invariance

Kµ
1,(L,R) =

rµ/r − r2γµ

r2
PL,R Kµ

2,(L,R) =
rµ − /rγµ

r2
PL,R (5.30)

which requires r ·K = 0. Note that although (5.29) has been written as a matrix element, the

result is independent of the external momenta of the b and s quarks due to the structure of the
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graph: they have not been assumed on shell even though the QCDF approach to calculating

Figure 5.7 implies that they will be, at least to leading order in 1/mb. From the effective

Hamiltonian (5.28), it clearly follows that the dressing functions F may be parametrised as:

Fx,χ = sSU(3)
x,χ Hx(s, 0) + scx,χHx(s,mc) + sbx,χHx(s, b) . (5.31)

Dimensional analysis shows that H2 functions have dimension 1, which necessitates that they

are proportional to a particle mass and since the loop fermion mass is the only such quantity

appearing in the calculation, it must be the case that Hx(s,mf ) ∼ mf . This renders the value

of the WCs s
SU(3)
2L(R) irrelevant since they do not contribute, and therefore reduces the number of

effective operators in QLSS from 12 to 10. The functions Hx have simple expressions in terms

of standard loop integral functions:

H1(s,m) = − 1

96π2
[9h(s,m) + 4] H2(s,m) = − m

4π2
B0(s,m2,m2) , (5.32)

where h(s,mq) is known as the vacuum polarisation owing to its appearance in the one-loop

correction to gauge boson propagators and is given in (2.26). The function B0 is the stan-

dard Passarino–Veltman scalar two-point function, which is related to the vacuum polarisation

(again, z ≡ 4m2

s ) function by

B0(s,m2,m2) = 2− log
m2

µ2
+ 2

9
4h(s,m) + log m2

µ2 − 2
3 − z

2 + z
. (5.33)

Note that these results for Hx are independent of the γ5 regularisation scheme used owing to

the choice of four quark operator basis (5.28), however the projection onto that basis must

be done up to O(D − 4) order in dimensional regularisation since the B0 and h functions are

1/(D − 4) divergent and therefore ultimately expressions for Fx,χ will be scheme dependent.

The divergent part is therefore indicated explicitly in (2.26).

5.4.3 Standard Model b→ sg transition

Due to the scheme dependence of the conversion to the QLSS operator basis (5.28), it is most

convenient to present the projection of the SM effective Hamiltonian (2.19) onto this basis in

terms of the dressing functions Fx,χ (5.31) rather than the WCs sfx,χ, since these functions are
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finite unlike Hx(s,m) (5.32). In the SM this the NDR scheme gives

F1,L(s) =
3

32π2

[
h(s,mc)

(
−λc
λt
C2 + C4 + C6

)
+ h(s,mb)(C3 + C4 + C6)

+ h(s, 0)

(
−λu
λt
C2 + C3 + 3C4 + 3C6

)
− 8

27
(C3 − C5 − 15C6)

]
F1,R(s) =0

F2,R(s) =
mb

8π2
(Ceff

8 − C8)

F2,L(s) =
ms

8π2
(Ceff

8 − C8)→ 0 +O(ms) , (5.34)

where F1,L was first worked out in [51] although the λc dependence has been included explicitly

here, which is important in the case of the ρ meson since then λc/λt ≈ −1 does not hold. Finite

terms in the results for F1,L and F2,(L,R) are scheme dependent; however the coefficient Ceff
8

is scheme independent [49, 168] since it is the total contribution to b→ sγ with the K2 tensor

structure at one loop. The scheme dependence is illustrated particularly nicely by this case

since Ceff
8 = C8 in the HV scheme [49] but receives contributions from four quark operators in

the NDR scheme (2.23).

As mentioned earlier, the contribution from the charm loop dominates the function F1,L

since |λc/λtC2|≈ 1, and all other contributions are either suppressed by small WCs C3−6, as

can be seen in table 2.1, or small CKM matrix elements λu/λt in the case of the up quark.

5.4.4 QLSS results

The results of the QLSS calculation will be given here, so that the approximations involved

and accuracy of the method may be discussed more effectively in section later in Section 5.4.5.

Combining (5.29) with the B and K∗ meson DAs the result for the QLSS topology is

Sq−(q2) =
√

2Qq
CF
Nc

16π3αsfBmB

mb

∫ 1

0

du

(
F1,L(ūm2

B + uq2)− 1

mB
F2,R(ūm2

B + uq2)

)
×
[
f⊥K∗φ⊥(u)

ūm2
B + uq2

− fK∗mK∗

2λ+(q2)(m2
B − q2)

(
g

(v)
⊥ (u)− g

(a)′

⊥ (u)

4

)]

− F2,R(ūm2
B + uq2)

mB

[
f⊥K∗φ⊥(u)u(m2

B − q2)

2(ūm2
B + uq2)2

− fK∗mK∗

2λ+(q2)(m2
B − q2)

g
(a)
⊥ (u)

4ū

]
(5.35)

Sq+(q2) = (L↔ R) (5.36)

d · Sq,V0 (q2) = −Qq
CF
Nc

32π3αsfBmB

mb

fK∗mK∗

λ−(q2)(m2
B − q2)

∫ 1

0

duφ‖(u)

×
[
F1,A(ūm2

B + uq2) +
mB

ū(m2
B − q2)

F2,A(ūm2
B + uq2)

]
,

(5.37)
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with d ≡ −
√

2mBmV√
q2E

. Likewise for the K meson final state the result is

SqT (q2) =−Qq
CF
Nc

(mB +mK)16π3αsfBfK
mBmbλ−(q2)

∫ 1

0

duφK(u)

×
[
F1,V (ūm2

B + uq2)− mB

ū(m2
B − q2)

F2,V (ūm2
B + uq2)

]
,

(5.38)

where the F1,L terms have previously been worked out in [51,84], although there is a difference

of a factor of two in Sq,V0 in those two sources. The results here agree with [84] on this point.

These results have been expressed in the {+,−, 0} basis (2.74) because in this case the helicity

of the final state meson is directly connected to the helicity of the b→ sg subgraph. Note that

unlike in the WA case only include isospin violating terms proportional to Qq are included here;

the isospin-symmetric terms proportional to Qb were not calculated since UV isospin violation

is not possible here. Note that λ±(q2) are momentum-dependent moments of the B meson DA

and in no way connected to the Källén function λ; they will be defined shortly below (5.43). In

the results for longitudinally polarised K∗ and K cases the notation

F1,V (A)(s) ≡ F1,R(s)± F1,L(s) (5.39)

has been used for the sake of brevity. As is normal in this type of calculation Wandzura-Wilczek

equations of motion for the K∗ have been used to get (5.35).

The appearance of momentum-dependent moments of the B meson DA imply that the 1/mb

expansion is not entirely systematic, which will be discussed shortly. To produce the results

(5.35) the following two types of term appear

X1 =

∫ ∞
0

dl+φ±(l+)H1(l+) (5.40)

X2 =

∫ ∞
0

dl+φ±(l+)
H2(l+)

l+ − q2/mB − iε
, (5.41)

essentially separated by the presence or absence of a pole at l+ = q2/mB . φ± are B meson

wave functions to be discussed shortly in Section 5.4.5. Assuming that the functions H1,2(l+)

are smooth on the scale l+ → l+ ± ΛQCD they can be approximated by a constant at the peak

of the rest of the integrand

X1 →
(∫ ∞

0

dl+φ±(l+)

)
H1(0) = H1(0) (5.42)

X2 →
(∫ ∞

0

dl+
φ±(l+)

l+ − q2/mB − iε

)
H2(q2/mB) ≡ H2(q2/mB)

λ±(q2)
, (5.43)

which gives the definition of the momentum-dependent moments λ±(q2) in terms of the B

meson DA.

Of course, the results for the F2 contribution in (5.35) suffer the problem that the calculation
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in Chapter 3 was done to solve: there is a logarithmic endpoint divergence in the integral arising

from the region where ū→ 0. The ways of working around this problem in QCDF are outlined

in Section 3.3, however since the LCSR result for the chromomagnetic operator is now available

an alternative approach can be adopted. The problematic function F2,i(r
2) is expanded as

F2,i(r
2) = [F2,i(0)]LCSR +

[
F2,i(r

2)− F2,i(0)
]
QCDF

(5.44)

and the contribution of each of the terms in square brackets is computed separately using the

method specified in the subscript. The endpoint divergence in the QCDF calculation is removed

because an additional factor of ū has been introduced in the appropriate region F2,±(r2 → 0). As

discussed in Section 3.3 the LCSR result includes the contribution of soft gluons from the initial

state B meson where the QCDF result does not, so the physical nature of the approximation

implied by (5.44) is somewhat unclear. However the removal of the endpoint sensitive term from

the QCDF result would appear to largely alleviate any questions over its validity since only the

region where F2,i(r
2)−F2,i(0) is sizeable contributes and therefore only far off-shell gluons can

possibly appear in the QCDF calculation, and these are well approximated by QCDF.

The final point to be discussed is the absence of the twist-3 corrections to the K result (5.38)

in comparison to (5.35) where the twist-3 DAs g
(v,a)
⊥ appear, which is in contradiction to the

previous inclusion of twist-3 K contributions in WA. This difference stems from two issues, one

from WA and one from QLSS. On the WA side, the reason that twist-3 K contributions, and

also the twist-3 DAs h
(s,t)
‖ in the K∗ case, were included, was because the scalar current four

quark operators would give no contribution without them. Neither would the tensor current

operators in the case of longitudinally polarised K∗ mesons. This reasoning does not apply to

the QLSS case; all operators are already coupled to at twist-2 accuracy. Therefore the question

should really be approached from the other end: why are the twist-3 DAs g
(v,a)
⊥ included? The

reason is that this contribution is expected to have comparable magnitude to the φ⊥ term,

because they are both at the same order in 1/mb power counting. This is because the φ⊥

term happens to cancel the 1/(l+ − q2/mB) pole occurring in the light quark propagator, so

it is 1/mB suppressed with respect to a naive diagrammatic power counting. It is therefore

necessary to include g
(v,a)
⊥ since it is of the same order. All other terms appearing in (5.35),

(5.37) and (5.38) have their expected 1/mB power, and thus it is not necessary to include either

the φp,σ or h
(s,t)
‖ contributions in the case of the K and K∗ respectively.

5.4.5 The B meson DA in QLSS

Since this is the only place in this thesis where the B meson DA is used the calculation of (5.35)

will be discussed here briefly. It is most convenient to discuss this calculation using light cone
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coordinates in the rest frame of the B meson, with two light like unit vectors n±

n2
+ = n2

− = 0 n+ · n− = 2 , (5.45)

where an arbitrary vector may be written xµ = 1
2 (x+n

µ
+ + x−n

µ
−) + xµ⊥, although for the

most part as this is a two-body decay all perpendicular momenta are zero. In particular for

B → K(∗)l+l− the kinematics

p+ = mB −
q2

mB
, p− = 0 , q+ =

q2

mB
, q− = mB , (5.46)

may be chosen. The B meson DA is then given by [118,169]

〈0|q̄a(x)[x, z]bb(0)|B(pB)〉 =
−ifBmB

4Nc

∫ ∞
0

dl+e
−il·x

×
[

1 + /v

2

{
φ+(l+)/n+ + φ−(l+)

(
/n− − l+γν⊥

∂

∂lν⊥

)}
γ5

]
ba

∣∣∣∣
l=

l+n+
2

(5.47)

where pB = mBv. The wave functions φ± and associated formulae are given in appendix B.3.

The first question to address in calculating with the B DA is to ask why it takes the form

(5.47) of a light cone propagator in the B meson rest frame; after all there is no a priori reason

this should be the case, since one would expect that all of the spatial components of the light

quark momentum would have similar magnitude. That it is a light cone propagator arises, much

as in the light meson case, from the dynamics of the hard-scattering kernel in the factorised

process: it is only sensitive to one component of the light quark momentum [118]. In the present

case, only the invariant combination

1

(q − l)2
=

1

q2 + l2 − q+l− − q−l+
q2→0−−−→ 1

mBl+ + l+l−
≈ 1

mBl+
(5.48)

is needed and thus to leading order in 1/mb the short distance part of the amplitude is not

sensitive to l−. Clearly however this is subject to corrections from the q+l− term and thus

terms at O(q2/m2
B) have been neglected, which is somewhat to be expected in this approach

since mb is expected to be the largest scale in the calculation. At q2 = 4m2
c this amounts to

a potential 30% correction to these results, and thus the full result for the isospin asymmetry

computed here cannot be used above the charm resonance region.

The l⊥ derivative in (5.47) is also neglected before performing the bulk of this calculation.

This is useful as dealing with derivatives tends to increase the complexity of such calculations by

a few times, and there is already a derivative from the K∗ DA to be handled. The l⊥ derivative

however will introduce a 1/mb suppression in all cases since it will duplicate a denominator,

with the exception of the case where the photon is emitted from the light quark originating
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from the B meson. In that case the fermion propagator does not lead to a 1/mb suppression

straightforwardly; however, in combination with part of the B meson DA the relevant part of

the diagram reads

l+γ
ρ
⊥
∂

∂lρ⊥
γ5γ

µSF (q − l) = il+γ5γ
ρ
⊥γ

µ

(
γρ⊥

(q − l)2
+ 2

/q − /l
(q − l)4

lρ⊥

)
,→ O(ΛQCD/mB) (5.49)

where SF (k) = i(/k)−1 is the massless fermion propagator. That this is 1/mb suppressed can

be argued as follows: the second term vanishes by setting l⊥ = 0 after taking the derivative.

To analyse the first term γρ⊥γ
µγ⊥,ρ is contracted with a polarisation vector εµ in light-cone

coordinates to give

l+γ
ρ
⊥/εγ⊥,ρ = −l+

[
/n+ε+ + /n−ε−

]
+ l+ γ

ρ
⊥/ε⊥γ⊥,ρ︸ ︷︷ ︸

=0

, (5.50)

where the first part must be compared with the other structure coupling to φ−(l+):

i/n−/ε(/q − /l) =
i

4
/n−

[
ε+q− + /ε⊥/n+(q+ + l+)

]
. (5.51)

It can therefore be seen that the derivative term is subleading in the ε+ coefficient by l+/q− =

O(ΛQCD/mB). The coefficient of ε− appearing in (5.50) is not obviously suppressed; however it

is necessarily related to the ε+ term by gauge invariance since only a single physical longitudinal

polarisation is present, and thus it also must be suppressed.

5.4.6 Gauge invariance in QLSS

The last point leads nicely on to a discussion of gauge invariance in the 1/mb expansion and

to some extent approximate gauge invariance generally. The issue of gauge invariance in QLSS

away from q2 = 0 is not straightforward since there is potentially a second independent scale

in the problem. In principle it would be expected that the sum of the two diagrams emitting a

photon from the spectator quark shown in Figure 5.7 is gauge invariant. The computation used

in [51]8, which was reproduced for this calculation and extended for non-SM operators, can

only be expected to respect gauge invariance at leading order in 1/mb. However, the constraint

implied by Ward identities will turn out to mix different orders in 1/mb and a careful choice of

how to impose this constraint must be made in order not to enhance the inherent violation of

gauge invariance by a factor of m2
B/q

2 and thus have it induce an error in the overall result.

8These authors do not discuss the QED gauge invariance.
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In full generality, the B → K∗l+l− decay may be parametrised:

〈K∗(η, p)γ∗(q, µ)|Heff |B(p+ q)〉

≡ Uµ(q2) = (η · q)pµUp(q2) + (η · q)qµUq(q2) + ηµ(p · q)Uη(q2) + iεµνρσηνpρqσUε(q
2) .

(5.52)

The term Uε is of no relevance to the remainder of this discussion as it does not appear in the

following Ward identity. Also, the same problem arises for the K meson as can be seen by

setting Uη|K= Uε|K= 0 throughout. The QED Ward identity for this matrix element is

0 = qµU
µ(q2) = (η · q)

[
(p · q)Up(q2) + q2Uq(q

2) + (p · q)Uη(q2)
]

. (5.53)

In principle, provided that gauge invariance is obeyed exactly, any one of the three functions

or any linear combination thereof may be eliminated in favour or the remaining two. Uη shall

not be considered since it appears on identical footing to Up in (5.53), so the equations for

eliminating the other two functions are:

7 Uq(q
2)→− p · q

q2

[
Up(q

2) + Uη(q2)
]

(5.54)

3 Up(q
2)→− Uη(q2)− q2

p · qUq(q
2) . (5.55)

In the q2 → 0 limit, (5.54) requires that

Up(0) + Uη(0) = 0 , (5.56)

in order to avoid a 1/q2 kinematic singularity in the matrix element (5.52), which would render

integral of the differential decay rate (2.80) infinite and is thus clearly unphysical. Since only

the leading term in 1/mb has been calculated (5.56) cannot be expected to hold exactly, and

this problem is exacerbated by the m2
B/q

2 enhancement of any error which would be induced by

employing (5.54). Computing to higher orders in 1/mb would not really help here since the use

of (5.54) will always enhance terms beyond the scope of the calculation. By contrast, applying

(5.55) does not introduce any such problems and thus this is the route that should be taken.

The above discussion is best illustrated by an explicit example and for this purpose the sim-

pler pseudoscalar case B → Kl+l− will be used. The matrix element (5.52) is then proportional

to:

Uµ ∝ (l+mB − 2q2)pµ + 2(p · q)qµ
l+mB − q2

= 2
(p · q)qµ − q2pµ

l+mB − q2
+

l+mBp
µ

l+mB − q2
. (5.57)

The replacement (5.55) then fixes Up = −2q2/(l+mB − q2), which amounts to dropping the

second term on the right-hand side. The first term is gauge invariant on its own, and this is the

complete result. Note that considering the coefficients of the pµ and qµ tensors separately would
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have led to the wrong conclusion, since it is the second term rather than the first that contains

the largest coefficient of pµ. It is therefore crucial to use the approach illustrated in (5.54,5.55)

to select the appropriate tensor whose coefficient will absorb the non-gauge invariant remainder,

which here is pµ rather than qµ as would normally be chosen to make the basis orthogonal with

the standard tensors (2.62).

Although the preceding discussion is in the context of the 1/mb expansion, the main point

stands independent of the particular expansion; if the approximation involved in computing a

matrix element necessitates abandonment of strict gauge invariance, the superfluous degree of

freedom must be eliminated in such a way that no kinematical singularities are introduced in

the region of interest.

5.5 B → K(∗) results

Prior to presenting results for the isospin asymmetry, some small details of the calculation must

be discussed. The hadronic inputs are the same as those used in Chapter 3, given in tables 3.1

and 3.2. Error estimates using a method that is perhaps slightly unusual but straightforward

from a computational standpoint, which will be describe next.

5.5.1 Error estimation

Error estimates are computed in the following way: the central value of a result is computed

using the central values of all inputs. To compute the error, a list of pseudo-random sample

points is then generated from the probability distributions of the input parameters, the result

computed for each sample point and then the standard deviation estimated from these results

fixing the central value as the mean.

The obvious alternative approach is to compute the central value and the derivative w.r.t.

each input parameter and then estimate the standard deviation of the result assuming the

output distribution has a Gaussian shape. This is not done in the present case for two reasons:

first, the input parameter space is quite large, and for large numbers of input parameters it is

certainly less computationally intensive to take a Monte Carlo approach when the uncertainty

is expected to be dominated by only a few, but it is not known which. The second reason is

that a few of the integrals involved are numerically difficult, and they are difficult to compute

to an accuracy of much more than one part in 103, so it is better to consider finite differences in

the input parameters since direct estimates of the derivative are likely to be rather inaccurate.

To be specific, for a function f(x), where x represents all N input parameters and is thus

N -dimensional, the variance is estimated as

σ2 =
1

n− 1

n∑
i=1

(f(xi)− f(xc))
2 , (5.58)
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where xc is the central value of the input parameters and not included in xi, and n is the number

of sample points used to compute an error estimate, excluding the central value xc. The points xi

are generated from the N -dimensional probability distribution of input parameters; note that xi

is varied for all parameters simultaneously, so none of its elements are equal to the central value

of any input parameter. In effect, this is a primitive Monte Carlo integration over the input

parameter distribution space. All input parameters are assumed to be Gaussian distributed

with standard deviation equal to their quoted error, except for the renormalisation scale which

will be discussed below. The functions T (T,±,0),0 are assigned an error of 20% which arises

from the uncertainty in the form factors Ti, A1,3, V and f+,T and non form factor corrections.

This is imposed at the level of the T functions so that constraints such as T+ ∼ O(1/mb) and

T3 ∼ (1− q2)T2 are maintained. Note that this is not expected to accurately estimate the error

in the right-handed form factor T+, but that contribution is heavily suppressed in any case. A

different approach will be taken in Section 6.8.2 where right-handed terms dominate.

To compute the scale uncertainty only 3 points are sampled: µ, µ/2 and 2µ. The renor-

malisation scale is set to µ to compute the central value of a result. The error is computed

as

σ2
µ =

1

2n− 1

n∑
i=1

[(
f
(µ

2

)
− f(µ)

)2

+ (f(2µ)− f(µ))
2

]
, (5.59)

although in practice this is implemented by generating 2n pseudo-random numbers yi in [−1, 1]

and selecting µ/2 or 2µ depending on whether y > 0. This may then be incorporated into the

same procedure as sampling all other input parameters. The central renormalisation scale is

taken to be µ = mb = 4.7GeV for all processes except QLSS and O8, which are taken to be

renormalised at µ′ =
√

ΛHµ, where ΛH = 0.5(2)GeV as in Chapter 3.

5.5.2 q2 dependence and validity

In this section the validity of the LCSR approach in q2 is discussed, as well as the underly-

ing reasons for the shape of the graphs in Figure 5.8, which will also apply to beyond SM

contributions to the asymmetry.

Physical spectrum and approximation ranges

The physical range of the decay spectrum is 4m2
l < q2 < (mB − m(∗)

K )2 = 22.9(19.3)GeV2.

This calculation of the isospin asymmetry has employed two methods of calculation, LCSR

and QCDF. The LCSR results in principle should be valid over nearly the whole q2 spectrum

provided that m2
B−q2 � mBΛQCD, excluding regions within 1−2GeV2 of partonic or hadronic

resonances. However, the QCDF results are not so widely applicable, as they are limited by the

assumption, already discussed, that q2 � m2
B and terms of order q2/m2

B have been neglected,

as discussed in Section 5.4.5.
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Considering the combination of these restrictions, the perturbative charm pair production

threshold provides a convenient upper cutoff for the validity of these results. Results are

therefore presented for the region 1GeV2 < q2 < 8GeV2, bounded on the lower end by the

ρ meson resonance region and on the upper end by the J/Ψ meson resonance. In this region

q2/m2
B < 0.3 so the violation of the QCDF approximations is not expected to be too large.

It should be mentioned that it is possible to extend the LCSR calculation to include the

effects of resonances by replacing the sum rule calculation with a narrow resonance approxi-

mation in the duality region of the meson. The details of this approach are given in Section

6.2.2; however, this method presents some difficulties in particular in the presence of anomalous

thresholds, so it has not been attempted in the present case.

Isospin asymmetry in B → K∗ll decreases for high q2

The q2 spectrum of the isospin asymmetry turns out to be primarily dominated by the q2

behaviour of the leading isospin-symmetric terms in the decay rather than the small isospin

violating terms. The leading term in the decay rate is controlled by two factors:

a) C9,10 are large in comparison with the other WC (q.v. table 2.1), partially as a result of a

1/sin θ2
W ' 4 enhancement, where θW is the Glashow–Weinberg angle.

b) The leading terms in the B →Mll decay rate may be written as:

TT ∼ [Ceff
9,10O(1) + Ceff

7 O(1)]

T0 ∼
√
q2[Ceff

9,10O(1) + Ceff
7 O(1)] ,

T± ∼ [Ceff
9,10O(q2/m2

B) + Ceff
7 O(1)] . (5.60)

This behaviour can be inferred from (2.69), (2.70), and (2.74). The underlying reason for this

is that the semi-leptonic operators O9,10 do not generate the lepton pair via an intermediate

photon but rather represent the contribution of the Z boson and loop corrections, and thus

are not 1/q2 enhanced as q2 → 0.

It therefore follows that at low q2 in B → K∗ll isospin violating terms only compete against

Ceff
7 , but at high q2 they must compete with the much larger C9,10 and hence the asymmetry

decreases for large q2. In B → Kll no such argument applies as in TT Ceff
7 and C9,10 are on

equal footing; however, the asymmetry is expected to be small over the whole q2 range as a

result.

High q2 ≥ mB(mB −mBΛQCD) region

As mentioned above, the methods employed for this calculation are not valid for the low recoil

regime, that is where m2
B − q2 ∼ mBΛQCD. Nonetheless it can be expected that the isospin

asymmetry will be small in this region, which can be seen from two separate arguments:
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• Form factor contributions in the high q2 region: in this region the C7,9,10 form factors are

expected to be enhanced by the presence of the nearby B∗s resonance at q2 = m2
B∗s

, which

can be seen from the plots and form factor parametrisations in [81]. No such enhancement

is present in the isospin violating terms, except for UV isospin violating effects at O(αs) in

WA which are of course αs and CKM suppressed. It is therefore expected that the isospin

asymmetry in the high q2 regime is suppressed in comparison to the intermediate regime

by resonant contributions to the C7,9,10 form factors, and doubly suppressed in comparison

to the low q2 region where isospin violating terms are enhanced by ρ, ω resonances and

the proximity of the photon pole.

• Low recoil OPE: some time ago an OPE in q2 and m2
b was proposed [170] for the low recoil

region and implemented phenomenologically in [171]. It has also been recently reinvesti-

gated in [172]. Obviously the low recoil region entails a different power counting in 1/mb

since q2 is then a comparable large scale. In this language the leading isospin symmetry

decay contributions come as dimension three matrix elements and isospin violating terms

originate from higher dimensional operators (dimension 6 for WA and dimension 5 for

QLSS and O8) and are therefore naturally small.

5.5.3 Isospin asymmetry in the Standard Model

The results of the calculation of the B → K(∗)l+l− in the SM are shown in Figure 5.8, including

a breakdown into the contributions of different operators. Tabulated data are given in appendix

E.3. In both cases the isospin asymmetry for q2 > 1 GeV2 is very small, below 1%. These results

are similar to previous determinations of the isospin asymmetry [51, 134] in this range, which

is a non-trivial result since this calculation has employed a mostly LCSR-based approach in

contrast to the QCDF dominated approaches used previously9. The result for B → K∗l+l−

is consistent with the experimental average in the [2.0, 4.3]GeV2 bin according to the Heavy

Flavour Averaging Group (HFAG) [147]; however, the present experimental uncertainty in

this bin is rather large. By contrast the B → Kl+l− asymmetry in this bin is currently

−0.42+0.20
−0.22 and thus the SM prediction is two standard deviations away from the experimental

value10. Further experimental data in this channel are therefore eagerly anticipated. Finally,

the comparison between this calculation of B → K∗γ and the HFAG world average is

āI(K
∗γ)HFAG = 5.2(2.6)% āI(K

∗γ)LZ = 4.9(2.6)% (5.61)

and the two are in surprisingly good agreement. This value is also close to values previously

found by [51,84,129]. It would therefore appear that at present the B → K∗(γ, l+l−) channels

9 [134] computed some terms using K∗ sum rules with the B meson DA
10Although HFAG citation [147] is dated 2012, these data are taken from the June 2013 update on their

website http://www.slac.stanford.edu/xorg/hfag/index.html.
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Figure 5.8: Isospin asymmetry results for B → K(∗)ll with grey error bands. Graphs in the left-hand
column correspond to the B → K∗ asymmetry and those in the right-hand column to the B → K
asymmetry. The top row of graphs shows the total predicted isospin asymmetry in the SM. The
middle and bottom rows show breakdowns into the contributions of seven separate short distance
operators. The bottom graphs contain the larger contributions. The dominance of C6 + C5/3 has
been found previously [84]. See Section 5.5.1 for details of the calculation of the grey error band.
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b→ s(d) WA QLSS O8

Operator WC CKM M.E. CKM M.E. CKM M.E.
O1,2 tree λu ∼ λ4(λ3) tree λc ∼ λ2(λ3) loop - -
O3−6 penguin λt ∼ λ2(λ3) tree λt ∼ λ2(λ3) loop - -
O8 penguin - - - - λt ∼ λ2(λ3) loop

O7 penguin not isospin sensitive & dominates rate in low q2 region
O9,10 penguin not isospin sensitive & dominates rate in high q2 region

Table 5.3: Factors influencing the size of various operators contributing to the decays B → K(∗)l+l−

in the SM. WC gives the type of the leading UV diagram which generates the given operator(s).
CKM gives the magnitude of the CKM matrix coefficients appearing in the effective Hamiltonian
(2.19) in terms of the Wolfenstein parameter λ ' 0.22. The alternative value in brackets applies to
the b→ d rather than the b→ s transition, although there the CKM phases also play a significant
role in the B → ρ decay, as discussed in Section 5.6.3. M.E. indicates whether the matrix element
is loop suppressed. Note that the O8 contribution is considered to be loop suppressed in comparison
to the WA terms, due to the 1/16π2 factor appearing in the operator definition (2.19); in any case
it is clear from (5.34) that it is on the same level as QLSS. The last two rows of the table describe
the contributions of the O7,9,10 operators which dominate the decay rate and therefore set the scale
of the asymmetry. This is discussed in more detail in Section 5.5.2.

show no signs of non-SM physics.

The factors affecting the size of contributions of each operator to the isospin asymmetry

are given in table 5.3, which also summarises the q2 behaviour discussed in Section 5.5.2. It

can be seen from the plots in Figure 5.8 that the dominant contribution to the B → K∗l+l−

isospin asymmetry comes from the O6 operator followed by the O2 operator. This can be further

analysed according to table E.2 to see that for q2 > 1 GeV2 the C6 contribution comes primarily

from WA and the C2 contribution from QLSS. Their relatively close magnitude indicates that

the loop suppression in QLSS is similar to the suppression of C6 arising from the fact that it is

generated entirely by penguin diagrams in the UV. The contribution of the O2 operator through

WA is negligible owing to its heavy CKM suppression. The situation for B → K∗γ is rather

different because WA is strongly enhanced by the nearby ρ resonance here as described in Section

5.3.6. This effect is absent at the present level of approximation in the QLSS calculation11.

Therefore B → K∗γ is strongly C6 dominated, as has been found previously [84].

For B → Kl+l− the contributions of O2,4,6 are comparable, which is a result of the WA

and QLSS contributions for O4,6 and O2 respectively, and again the O8 contribution is small.

This is broadly similar to the B → K∗ result at q2 > 4GeV2; the differences in the detail will

be the result of the absence of transverse polarisations and the difference in the structure of

twist-3 terms as discussed in Section 2.10. Recent LHCb results for B → Kl+l− [21] indicate

a large deviation from zero at the level of 4σ when integrated over q2 and even at 2σ in the

[2.0, 4.3] GeV2 bin, where the theoretical calculation is most trustworthy. Since the prediction

of the isospin asymmetry (Figure 5.8) is at the 1% level and the world average measured

asymmetry is 40% [147] in this bin, this channel could potentially be a strong signal of beyond

11The fermion traces that would be required to compute this contribution in LCSR have been evaluated and
they are zero, as occurred in the O8 case, so this is not an artefact but genuine αs suppression.
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SM physics if improved experimental measurements have a similar magnitude. Of course, in

that case it would be necessary to scrutinise the theoretical calculation again; however, it is hard

to believe that the result could be out by an order of magnitude. This issue will be discussed

again briefly in Section 5.8.

5.6 B → ρ isospin asymmetry

B → ρ decays differ from B → K∗ decays in two important ways: first, the CKM hierarchy

for the effective Hamiltonian is different, and second the neutral ρ meson is a mixture of two

valence quark states ρ0 ∼ (ūu− d̄d) as explained below (5.2).

In fact, it transpires that the first point is not important in the CP -averaged isospin asym-

metry. As will be discussed further in Section 5.6.3, the CP -averaged asymmetry is sensitive

to the real part of the CKM coefficient, given by

Re
λbdu
λbdt

= −
∣∣∣∣λbduλbdt

∣∣∣∣ cosαCKM (5.62)

where λbdi = V ∗idVib. The present PDG value gives cosαCKM = 0.02(7) [123] and hence the con-

tribution of C2 to the asymmetry is suppressed by an amount comparable to the λ2 suppression

in the B → K∗ case. This occurrence will be exploited to create a stringent test of the SM in

Section 5.7.

The isospin asymmetry in B → πl+l− will not be computed here. The extension of

the results for B → Kl+l− in the previous section is straightforward; however, at present

B+ → π+l+l− has only recently been observed at LHCb [173] and the neutral mode remains

unseen. An experimental determination of the isospin asymmetry in this channel therefore

seems some way off. The ρ–ω asymmetry might also be considered as in [129] except that in

this case there is a substantial asymmetry due to QCD effects; by comparison the asymmetry

due to electromagnetic effects is small and will only be relevant when a more precise theoretical

determination of the leading form factor is available.

5.6.1 Extending the effective Hamiltonian for B0 → ρ0l+l−

Since the neutral ρ meson is a mixture of valence quark states (ūu − d̄d)/
√

2, alternative

arrangements of the four quark operators in the WA diagrams are possible either coupling to

the ūu state (absent in the K∗ case) or swapping the d quark connections owing to the presence

of more than one d quark line in the diagram. To recover the factorised form (5.10) the four

quark operator can be rearranged by a Fierz transform of the Dirac structure, and a similar

operation on the colour matrices. This transform mixes the colour singlet and octet operators

and therefore introduces the octet operators which do not couple to the K∗ into the ρ0 channel.
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Accordingly colour-octet operators are defined analogously to the singlet operators (5.7) as

OWA
i = q̄Γ1b s̄Γ2q =⇒ OWA,8

i =
1

4
q̄λaΓ1b s̄λ

aΓ2q , (5.63)

so that for example OWA,8
1 = 1

4 q̄λ
ab s̄λaq, and the effective Hamiltonian is modified (5.8) to be:

HWA,q = −GF√
2
λt

10∑
i=i

[
aqiO

WA
i + a8q

i O
WA,8
i

]
. (5.64)

In spite of the introduction of these new operators, the number of linearly independent WCs

contributing to WA cannot in fact have increased since the situation presented in table 5.1

is entirely due to Lorentz invariance constraints on the factorised matrix elements. There are

therefore again only six linearly independent contributions and the contribution of B0 → ρ0l+l−

to the isospin asymmetry will be presented in terms of a set of effective coefficients ãdi , which

couple to the same Feynman graphs as in the B0 → K∗0 case. Results for the B → ρ asymmetry

will therefore be presented in terms of

ρ± ↔ aui ρ0 ↔ ãdi (5.65)

where the effective coefficients ãdi are linear combinations of adi and a8u,d
i .

The formulae for the charged coefficients aui in terms of SM WCs are the same as for the

K∗ and are given in (5.9). The effective neutral coefficients ãdi in the SM are given by:

ãd2 = ãd4 = 2

(
C5

Nc
+ C6

)
ãd5 = −ãd6 =

(
C3

Nc
+ C4

)
+
λu
λt

(
C1 +

C2

Nc

)
(5.66)

ãd9 = ãd10 = 0 .

Formulae for the colour octet coefficients a8q
i in the SM and the effective coefficients ãdi in the

general case are given in appendix E.2, and the SM formulae given in (5.66) may be derived

from those and (5.9). An important aspect of (5.66) is that the coefficients of the QCD penguin

operators C3...6 are the same as in the B → K∗ case (5.9), which will be important in Section 5.7,

and is due to the left-handed structure of the SM operators.

5.6.2 Isospin asymmetry B → ρl+l− in the Standard Model

Results for the B → ρl+l− isospin asymmetry are shown in Figure 5.9. Again, tabulated data

are provided in appendix E.3. The general discussion of q2 behaviour in Section 5.5.2 still

applies in this case.

Inconveniently, the experimental measurement of the isospin asymmetry in the B → ρ case
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Figure 5.9: The CP -averaged isospin asymmetry for B → ρl+l− with grey error bands is shown in
the top row. The middle row shows the contributions of different SM operators to the CP -averaged
isospin asymmetry in B → ρl+l−. The right hand graph shows the larger contributions. Note that
unlike at q2 = 0 the C2 contribution is comparable to the C6 contribution here; this is due to a
small weak phase arising from Ceff

9 alleviating the cosαCKM suppression slightly. See Section 5.5.1
for details of the calculation of the grey error band. The bottom row shows the isospin asymmetry
for individual CP modes of B → ρll; b→ d and b̄→ d̄-type. The isospin asymmetry differs greatly
between CP conjugate modes since the separate modes depend on the combination of strong and
weak phases both of which are sizeable. This effect is explained in detail in 5.6.3.
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is calculated differently from the B → K∗ case, as [174]

∆(ργ) =
τB0

2τB+

B(B+ → ρ+γ)

B(B0 → ρ0γ)
− 1 =

−2āI(ργ)

1 + āI(ργ)

aI(ργ)�1≈ −2āI(ργ) (5.67)

āI(ργ) = − ∆(ργ)

2 + ∆(ργ)
, (5.68)

where the CP -averaged asymmetry has been used. In this normalisation, the present result

compares with the measured value as [147]

∆(ργ)HFAG = −46(17)% , ∆(ργ)LZ = −10(6)% . (5.69)

∆ is quoted as a percentage following convention, even though ∆(ργ) = 1 has no particu-

lar significance. For completeness the result of this calculation for the CP -averaged isospin

asymmetry in B → ργ in using the K∗ type normalisation is

āI(ργ)HFAG = 30+16
−13% , āI(ργ)LZ = 5.2(2.8)% , (5.70)

where (5.69) and (5.67) have been used to produce the “HFAG” value. This result is comparable

to that obtained in [129]12 and somewhat larger than that in [175], principally due to a different

choice of αCKM.

The result (5.69) is marginally consistent with the current experimental status. Using ta-

ble 12 of [129], with a linear extrapolation, |Vtd/Vts| can be extracted from Rρ = B(B →
ργ)/B(B → K∗γ). Given that the asymmetry (5.70) is rather large, this calculation is per-

formed separately in the charged and neutral channels to give∣∣∣∣Vtd

Vts

∣∣∣∣
Rρ0

= 0.229(25)

∣∣∣∣Vtd

Vts

∣∣∣∣
Rρ+

= 0.165(25)

∣∣∣∣Vtd

Vts

∣∣∣∣
PDG

= 0.211(7) , (5.71)

where the current value from PDG [123] is quoted for comparison. The values used for theB → ρ

and B → K∗ branching fractions are given in (5.80). The results in (5.71) rather indicate that

it is the B+ → ρ+ rate which appears to be causing the majority of the discrepancy from the

prediction (5.69).

5.6.3 The effect of CP averaging in ρ meson decays

The results presented in the previous subsection are all based on CP -averaged branching frac-

tions. To examine the effect of CP averaging on the isospin asymmetry, it is useful to begin by

12Note that [129] uses the opposite sign convention for ∆(ργ). The sign convention used in (5.69) matches
that used by Belle [174] and HFAG.
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parametrising a term in a matrix element as

M =|M |eiδstrongeiφweak M̄ =|M |eiδstronge−iφweak , (5.72)

which allows the CP -conjugate term M̄ to be written explicitly. In the context of computing

the isospin asymmetry in B → ργ, T 0
±(0)∆d−u

± (0) is needed. Since T 0
±(0) is real, it follows from

(5.3) that

no CP -average: a0̄−
I [B → ργ] ∝ T−(0) Re

[
T V,d− (0)− T V,u− (0)

]
CP -average: āI [B → ργ] ∝ T−(0) Re

[
T V,d− (0)− T V,u− (0) + T̄ V,d− (0)− T̄ V,u− (0)

]
,

(5.73)

where again T̄ denotes a CP conjugate. The isospin violating part T V,qi is the sum of a

number of terms, however it is clear from (5.72) and (5.73) that the effect of CP averaging is

schematically:

no CP -average: a0̄−
I [B → ργ] ∼Re[eiδstrongeiφweak ]

CP -average: āI [B → ργ] ∼Re[eiδstrong ] Re[eiφweak ] . (5.74)

The situation away from q2 = 0 is essentially the same, although the leading term can also have

small weak and strong phases there from Ceff
9 (q2) so in that case the phases δstrong and φweak

are relative. It is obvious from (5.74) that the CP averaged result will be significantly different

to the CP eigenstate results if both the strong and weak phases are large.

The question then is when there are both large strong and weak phases present. The weak

phase is not q2 dependent, so will be discussed first. For the K∗, λbsc /λ
bs
t is real up to λ3 in the

Wolfenstein parametrisation (2.8), and the contribution of terms proportional to λu is small,

so the weak phase is essentially zero. By contrast, the contribution of the O2 operator to the ρ

meson decay is dependent on weak phase arg λbdu /λ
bd
t = αCKM and therefore in the CP average

this term is suppressed by cosαCKM = 0.02(7) [123].

The question of strong phases then arises. Since strong phases in the leading isospin sym-

metric term are small, the important question is the size of the strong phase in the isospin

violating terms. The contribution of the O8 operator to the isospin asymmetry is rather small,

so will be ignored here; only the QLSS and WA terms will be considered. Away from q2 = 0

it can be seen from Figure 5.2 that weak annihilation in vector current operators has a large

phase, but no phase at q2 = 0. All other WA operators give no strong phase at q2 = 0, and

have a strong phase away from q2 = 0 when they have an ISR term as given in table 5.1. QLSS

terms generically have a non-zero strong phase, however they are small compared to WA at

q2 = 0. It is therefore concluded that the generic case is that large strong phases are present
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away from q2 = 0, within the range of validity of this calculation results, but absent at q2 = 0,

and it is expected that as a result the ρ meson isospin asymmetry will be strongly affected by

CP averaging but the K∗ asymmetry will not. The isospin asymmetry for B → ρ in the two

different CP channels is shown in the bottom row of Figure 5.9 and confirms this analysis.

The result that the K(∗) isospin asymmetry is CP independent is entirely in the context

of the SM. It would therefore be interesting in a future experiment to measure the CP modes

separately as a difference between the two results would be a strong indication of beyond-SM

physics. Unfortunately as described in the introduction, this is impossible for the K system

since experimentally the K0
S is measured in this case which implies CP averaging.

5.7 B → (K∗, ρ) isospin asymmetry splitting as an SM null test

Following on from the previous section, the smallness of cosαCKM can be exploted to construct

an observable with extremely small theoretical uncertainty, although the present experimental

uncertainty will be somewhat larger.

The prediction that will be made is essentially that the isospin asymmetry for B → K∗γ and

B → ργ should be similar, once differences in the leading form factors and hadronic parameters

are accounted for. The reduction in theoretical uncertainty arises because the dominant source

of uncertainty in the B → (K∗, ρ)γ isospin asymmetry comes from the scale dependence of

Wilson coefficients, since the leading term is proportional to C6 which is small but mixes with

the large coefficient C2 under renormalisation group running. This scale dependence can be

cancelled by constructing an appropriate ratio, namely

δaI ≡ 1− āI(ργ)

āI(K∗γ)
RρK∗ = 1 +

∆(ργ)

(2 + ∆(ργ))āI(K∗γ)
RρK∗ , (5.75)

where

RρK∗ ≡
√

Γ̄(B → ργ)

Γ̄(B → K∗γ)

∣∣∣∣VtsVtd
∣∣∣∣ (5.76)

and where a barred partial width Γ̄ implies a CP -average, and omission of charges implies an

isospin average13. The dominant contributions to the right-hand side of (5.75) are:

āI(V γ) ≈ C6 + C5/3

Ceff
7

f⊥V F
WA(0)

TV1 (0)
+ . . . Γ̄(B → V γ) ≈ 3αCF

8π

∣∣λtCeff
7

∣∣2 |TV1 (0)|2 , (5.77)

where the dots stand for C3,4-contributions, which lead to small corrections to δaI because K∗

and ρ cases are very similar; quark mass corrections, and B0 → ρ0 diagrams at O(α2
s), where the

different structure of the ρ0 matters even for small cosαCKM. The function FWA(0) is essentially

the contribution of the functions F qj,(2,4)(q
2) defined in (5.24) to the isospin asymmetry, with

13For the ρ-meson this implies Γ̄(B → ργ) = 1
2

Γ̄(B+ → ρ+γ) + Γ̄(B0 → ρ0γ) due to ρ0 ∼ (ūu − d̄d)/
√

2 as
discussed previously.
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Figure 5.10: Plot of the effective ρ to K∗ isospin asymmetry difference δaI (5.75) as a function of
the CKM matrix angle αCKM. Vertical lines indicate the current experimental value of αCKM [123]
and its uncertainty. At the present small value of cosαCKM, δaI is well determined theoretically.

the meson decay constant f⊥ explicitly factored out. As can be seen from the full results in

(E.1), this function then only depends on the final state meson through higher twist Gegenbauer

moments. Since FWA(0) is approximately independent of the final state, it follows from (5.75)

and (5.77) that

δaI = 1− f⊥ρ
f⊥K∗

+ small corrections , (5.78)

where the corrections are expected to be much smaller than 1, and thus the leading source of

uncertainty, scale dependence of C6 + C5/3, has dropped out. It is also convenient for this

construction that14 f⊥ρ /f
⊥
K∗ = 0.98(8) and thus it is expected that δaI ≈ 0. The factor RρK∗

is included to eliminate the dependence on form factors TV1 since there is no reason to leave

factors which may be so easily accounted for in (5.78).

The full calculation of δaI is a straightforward extension of the calculation of the isospin

asymmetry, except that in this particular case the linearising approximation used to reach (5.3)

is avoided in favour of the definition (5.2). Quadratic corrections to the isospin asymmetry are

included in this case because the cancellation of uncertainty raises the λ2
uC2 WA in the B → ρ

transition above the level of error in the calculation and thus the cosαCKM suppression is not

quite as effective as it appears in the linear approximation.

In terms of experimentally measured quantities (5.2) is given by

δaI = 1−
∣∣∣∣VtsVtd

∣∣∣∣ 2
τB+

τB0
B(B0 → ρ0γ)− B(B+ → ρ+γ)

τB+

τB0
B(B0 → K∗0γ)− B(B+ → K∗+γ)

√√√√ τB+

τB0
B(B0 → K∗0γ) + B(B+ → K∗+γ)

2
τB+

τB0
B(B0 → ρ0γ) + B(B+ → ρ+γ)

.

(5.79)

14See table 3.2.
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The values [123]

τB+

τB0

= 1.079(7)

∣∣∣∣Vtd

Vts

∣∣∣∣ = 0.211(7)

B(B+ → ρ+γ) = 9.8(2.5)× 10−7 B(B0 → ρ0γ) = 8.6(1.5)× 10−7 (5.80)

B(B+ → K∗+γ) = 4.21(18)× 10−5 B(B0 → K∗0γ) = 4.33(15)× 10−5

are used and errors combined in quadrature to estimate error. The prediction therefore com-

pares with the experimental result as

[δaI ]exp = −4.0(3.5) [δaI ]LZ = 0.10(11) (5.81)

and it can be seen that the theoretical uncertainty is indeed small15 at 11% compared to

roughly 50% uncertainties in determining the isospin asymmetry in (5.61) and (5.70). Given

the sensitivity of this observable to αCKM it has also been plotted as a function of that variable

in Figure 5.10. Improved measurements of the inputs to (5.79) might therefore provide a signal

of beyond-SM physics in certain cases. It should be noted that the ratios |Vts/Vtd| and τB+/τB0

are already experimentally sufficiently well determined and contribute a negligible amount to

the experimental uncertainty in (5.81). The uncertainty in this result arises mainly from the

ratio of the isospin conjugate branching fractions; in fact, although the current experimental

value of the B → ρ isospin asymmetry has a larger asymmetry than the K∗ case, the size of the

errors in percentage terms is similar and thus improved determination of all branching fractions

in (5.80) is necessary to reduce substantially the uncertainty in (5.81).

It is clear that the structure of the SM is responsible for the smallness of δaI (5.75). In

general the quantity δaI is thus highly sensitive to certain kinds of new physics which act

differently on the B → ρ and B → K∗ decays. Some examples are:

• Non-MFV isospin violation: if the ratios between WCs for b → s and b → d transitions

are not λbst /λ
bd
t .

• UV isospin violation: if four quark operators of the type (5.7) with different WCs for u−
and d− type quarks are present, because the K∗,0 and ρ0 valence quark states are not a

simple matter of an s→ d replacement.

• Colour octet operators: as with the previous point, non-SM structure of colour octet

operators may give significant contribution to the B → ρ0 decay; see appendix E.2 for

formulae.

Some examples to illustrate the sensitivity of this measurement to beyond SM physics are

provided in table 5.4.

15It should be compared to 1 according to (5.78).
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x ad1 → ad1 + x ad8 → ad8 + x
-0.3 1.16(15) 1.71(20)
-0.2 0.82(11) 1.21(13)
-0.1 0.47(9) 0.67(9)
0.1 −0.29(14) −0.51(15)
0.2 −0.68(18) −1.14(21)
0.3 −1.08(23) −1.78(28)

Table 5.4: Examples of the effect of introducing non-SM operators on the value δaI . All aqi are fixed
to their SM values and then one is altered by the specified amount as specified in at the top of the
table. The resulting variation of δaI can be large and is primarily the result of the ρ0 coupling to
a different combination of ai as discussed in Section 5.6.1, and these are therefore examples of UV
isospin violation. The uncertainties quoted in this table do not include uncertainty from varying the
renormalisation scale: this would require a computation of the scale dependence of the extended
effective Hamiltonian (5.64) and is thus beyond the scope of this work. The renormalisation scale
is taken to be the usual central value, µ = 4.7GeV.

5.8 Isospin asymmetries beyond the Standard Model

In this section the problem of applying this calculation to identifying any beyond-SM contribu-

tions to B → (K∗, ρ) isospin asymmetries will be approached. Before discussing the application

of the results in sections 5.3 and 5.4, the other possible source of potential deviation from the

SM prediction should be mentioned: a sizeable deviation in the rate from the SM expecta-

tion. The possible beyond-SM isospin symmetric operators that could affect the rate are the

right-handed O′7,9,10; however, they are already quite constrained [100,176,177].

An important question is therefore what present constraints there are on four quark oper-

ators? The contributions of the operators defined in (5.8) and (5.28) have been plotted to the

B → (K,K∗, ρ)l+l− asymmetries in figures 5.11 and 5.12. Given that the present experimental

uncertainty in B → K∗l+l− is rather large and B → ρl+l− has not been observed, no attempt

is made to constrain the four-quark operators in these channels pending future, more accurate,

measurements. Two sources of constraints on four-quark operators are identified:

• B → ρ/K∗γ isospin asymmetries. Bounds are derived on the four quark operators in

the following way: the discrepancy in the WC of each operator that would be required

to saturate the experimental uncertainty at the 2σ level, for values given in (5.61) and

(5.70), is computed. The results of this procedure are given in tables 5.5 and 5.6. Note

that these constraints are calculated by varying only a single operator at a time from its

SM value, which of course cannot be expected to be a realistic scenario. Nonetheless this

would generically be expected to provide approximately correct constraints unless there

are strong cancellations between the contributions of beyond-SM operators. As can be

seen from figures 5.11 and 5.12, such a cancellation would not hold for the entire q2 range

in B → (K∗, ρ)l+l−, so if the electromagnetic decay does not produce results there is still

hope for the semi-leptonic channel.
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dĀI

dq2
[B → K∗l+l−]

ad2

ad4

ad5

ad6

ad9

ad10

-6

-4

-2

0

2

4

6

8

10

1 2 3 4 5 6 7 8

%

q2/GeV
2

dĀI
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Figure 5.11: Breakdown of contributions of WA (ai), QLSS (sfx,χ) and O(′)
8 to the isospin asymmetry

B → K(∗)ll in the linear approximation (5.3). Contributions have been split as detailed in table 5.3
into different graphs in order to make them more readable. Note that aqi = 0.1 and sfx,χ = 1 are
used to produce these figures, as in the tables.
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ãd6
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Figure 5.12: Breakdown of contributions of WA (ai), QLSS (sfx,χ) and O(′)
8 to the isospin asymmetry

B → ρll in the linear approximation (5.3). Contributions have been split as detailed in table 5.3
into different graphs in order to make them more readable. Note that aui = 0.1, ãdi = 0.1 and
sfx,χ = 1 are used to produce these figures, as in the tables.
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B → K∗γ Min. SM Max. Min. SM Max.
au2 -0.39 -0.068 0.25 ad2 -0.24 -0.068 0.11
au4 -0.38 -0.068 0.25 ad4 -0.24 -0.068 0.10
au5 -0.41 -0.021 0.37 ad5 -0.67 -0.028 0.61
au6 -0.62 0.021 0.57 ad6 -1.0 0.028 1.0
au9 -0.049 0 0.049 ad9 -0.080 0 0.080
au10 -0.048 0 0.048 ad10 -0.080 0 0.080

Table 5.5: Constraints on WCs aqi (5.8) from B → K∗γ at 2σ, assuming no accidental cancellations
occur, along with SM values. 0 < āI(K

∗γ) < 10% is assumed, and constraints derived from table
E.2, assuming that only a single coefficient aqi deviates from its SM value. SM values are calculated
from (5.9) and table 2.1. All constraints are for the real part of these coefficients; the imaginary part
is not constrained by the isospin asymmetry unless it is extremely large and the linear approximation
(5.3) is invalidated.

• Non-leptonic decays. Four quark operators give significant contribution to non-leptonic

decays where the electromagnetic and chromomagnetic operators occur at subleading

orders in the gauge couplings. A deviation from SM values of these operators would

therefore be expected to give a more significant contribution to those processes than

semi-leptonic decays. However, it is much more difficult to predict these processes from

a theoretical standpoint since the relative strong phases of different contributions suffer

significant uncertainties, e.g. [118]. The MFV structure of the SM can be constrained from

studies of these decays [178–180] which fit CKM matrix angles but cannot distinguish

Lorentz and colour structure of different operators at all. Constraints on four quark

electric penguin operators have however been obtained in [181, 182]16. It would appear

from those papers that beyond-SM contributions to four quark operators are at most

O(1) corrections to their SM values. A global fit of all experimental data might be able

to provide better constraints on the WC than are currently available, but this is beyond

the scope of this work.

It should be noted that constraints from isospin asymmetries are essentially complementary

to those from direct CP asymmetries, since isospin asymmetries are sensitive to corrections to

the real parts of WCs, whereas direct CP asymmetries are sensitive to the imaginary parts, or

rather CP -odd phases.

Finally the current experimental state of B → Kl+l− must be evaluated in view of the

above discussion. The SM results in Figure 5.8 imply that for beyond-SM corrections in one

operator to account for isospin asymmetry at the 50% level would require a WC an order of

magnitude larger than its SM value. The above discussion of the effects of four quark operators

in non-leptonic decays seems to imply that this scenario is rather unlikely.

16Note that in this calculation, the contribution of these operators can be easily included since the effective
WCs coupling to u and d-type quarks have been separated.
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B → ργ SM Bound SM Bound
au2 -0.068 -4.1 ãd2 -0.068 -2.1
au4 -0.068 -4.0 ãd4 -0.068 -2.0
au5 -0.021 4.9 ãd5 -0.028 8.1
au6 0.021 -7.6 ãd6 0.028 -13
au9 0 0.56 ãd9 0 0.94
au10 0 0.56 ãd10 0 0.93

Table 5.6: Constraints on operators aqi from B → ργ at 2σ, assuming no accidental cancellations
occur, along with SM values. 6% < āI(ργ) < 67% is assumed, and constraints derived as described
below table 5.5. Again note that only the real part is listed, as this is what enters the CP -
averaged isospin asymmetry. Since the calculated SM value is the lower bound of this range (within
uncertainties), the SM value of the coefficient and the other bound are quoted; the true value is
expected to lie in this range.

5.9 Conclusions

The isospin asymmetry in the SM in radiative and semi-leptonic B → K∗, B → ρ and B → K

decays has been discussed. At present the result for B → K∗ is in excellent agreement with

experiment [147], in spite of its rather sizeable uncertainty:

āI(K
∗γ)HFAG = 5.2(2.6)% āI(K

∗γ)LZ = 4.9(2.6)% . (5.82)

The situation in B → ρ and B → K is far less clear. There is a 2σ discrepancy between the

SM expectation and experiment:

āI(ργ)HFAG = 30+16
−13% āI(ργ)LZ = 5.2(2.8)% ; (5.83)

however, it appears that the charged decay B+ → ρ+γ is principally responsible for the large

measured isospin asymmetry, and it will not be at all surprising if the measurement in that

channel shifts somewhat. In particular, the normalised difference between the B → K∗γ and

B → ργ isospin asymmetry introduced in Section 5.7 seems strongly to indicate that a large

difference between the two is inconsistent with the current measurements of the CKM matrix

and the absence of beyond-SM physics.

The measurement of B → Kl+l− is also significantly larger than the prediction: the asym-

metry is expected to be on the 1%-level, and the present measurement −0.42+0.20
−0.22 [147] in the

[2.0, 4.3]GeV2 range is 2σ away from that. This result is difficult to reconcile with SM expec-

tations: it would appear that for the isospin asymmetry to be so large, an order-of-magnitude

enhancement in one or more of the WCs is required, and in spite of the difficulties in cal-

culating hadronic decays it would be expected that order-of-magnitude enhancements would

be noticeable since the theoretical uncertainties are not generally quite so extreme, e.g. [183].

It should be remarked that there is no generic expectation that the B → Kl+l− asymmetry

should be similar to the B → K∗l+l−: if new physics generates sizeable right-handed current
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operators they will couple differently, and even in the SM the different structure of the K and

longitudinally polarised K∗ beyond leading twist leads to moderate differences. It appears to

be very difficult to accommodate an isospin asymmetry in B → Kl+l− and the 50% level in

the SM at all. In view of this it seems sensible to reserve judgement until further experimental

results.

Aside from the the present discrepancy with experiment, the principal problem in this

computation is the lack of a calculation of the non-factorisable loop corrections in WA, since this

should be the dominantO(αs) contribution as it potentially couples to large colour unsuppressed

WCs. This should reduce the uncertainty in the theoretical result substantially by reducing the

dominant renormalisation scale uncertainty. Such a calculation is expected to be technically

difficult owing to the likely presence of anomalous thresholds.
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Chapter 6

Long-distance charm loops in B → V l+l−

In the SM, it has been known for a long time that radiative B meson decays produce pre-

dominantly left-handed photons and that the amplitude for right-handed decays is 1/mb sup-

pressed [97]. For the short-distance electromagnetic penguin amplitude the 1/mb suppression

can be seen from the structure of the effective Hamiltonian, which after restoration of the

light-quark mass term neglected in (2.19) gives [184]

Heff |7=
GFλt√

2

e

8π2
s̄σ · F (mb(1 + γ5) +ms(1− γ5))b . (6.1)

The O7 operator therefore couples to left- and right-handed quark currents in the ratio ms/mb

and since it can be shown from Lorentz invariance considerations, e.g. [75], that the parity-

conserving and -violating form factors are equal at q2 = 0, the partonic prediction carries over

to the hadronic level.

The form factor contribution from O′7 is however not necessarily the leading right-handed

amplitude in B → V γ, since it is at the same order in 1/mb power counting as possible

long-distance corrections. It was argued in [185] using an inclusive approach, that there are

potentially much larger corrections arising from the O2 operator when a charm-quark loop

emits a soft gluon into the final-state vector meson, which could give a right-handed amplitude

on the order of 10% of the left-handed one. In [129, 186], however, the same contribution was

computed using a 1/mc expansion, which gave an effect only on the 1% level. In this chapter,

the relevant charm-loop contribution will be calculated in a fully exclusive LCSR approach, so

that the question of the magnitude of right-handed photon production in the SM can finally be

settled. This calculation will be contrasted with the previous estimates and it shall be argued

that neither the inclusive nor the 1/mc expansion approach was correct; however, the results

of the 1/mc calculation were in fact at the right order of magnitude.

For the process B → V γ it was shown [187] that the time-dependent CP asymmetry is
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sensitive to the interference of the left- and right-handed amplitudes. More recently, the full

set of angular observables in B → K∗l+l− have been considered [98] and optimised quantities,

minimising the sensitivity to form factors and thus to theoretical uncertainties, have been

proposed [99, 100]. One in particular, P1, is sensitive to the interference between the left- and

right-handed amplitudes and hence this calculation is also relevant there. Updated predictions

in light of these results will therefore be provided for both of these observables in Section 6.8.

The contents of this chapter are to be published in [95].

6.1 Matrix element

The function Li(q
2) which gives the contribution of a quark loop radiating a soft gluon into

the final-state meson in B → V l+l− decay shall be computed. The definition of this function

in the context of B meson form factors is given in Section 2.9. The functions Li(q
2) are further

broken into contributions due to different quark flavours, which gives

Li(q
2) = −C2Qu

∑
q=u,c

λq
λt
Lq,i(q

2) + (C4 − C6)
∑
q=u,c,
d,s,b

QqLq,i(q
2) + C3QsLs,i(q

2) , (6.2)

after the effective Hamiltonian (2.19) is taken into account1. The hierarchy of the coefficients is

given by C2 ∼ 1 and |C3,4,6|� 1, and |λc/λt|∼ 1, |λu/λt|∼ λ2. By far the largest contribution

is therefore given by the charm quark, since it is neither suppressed by a small WC nor the

Cabibbo angle. Taking the case of the charm current, these functions correspond to the matrix

element

∑
i=V,A,0

Pµi Lc,i(q
2) =

4π2

mb
i

∫
d4xeiq·x 〈V (p)|T {c̄γµc(x) 2Q̃c1(0)}|B(pB)〉 , (6.3)

where the operator Q̃c1 is defined as

Q̃c1 =

(
c̄
λa
2
c

)
V−A

(
s̄
λa
2
b

)
V−A

, (6.4)

which in terms of operators in the effective Hamiltonian (2.19) gives NcQ
c
2 = Qc1 + 2NcQ̃

c
1, that

is Q̃1
c is the colour-traceless part. The functions Lc,i(q

2) are further broken down into three

contributions

Lc,i(q
2) = LgVc,i (q2) + LgBc,i (q2) + LRc,i(q

2) , (6.5)

1The small term arising from O3 with a different Lorentz structure has been neglected since the much larger
charm bubble term is the primary concern of this calculation. Furthermore, for b → dγ transitions the photon
DA does not give a contribution, since the resulting light-quark loop with the vector weak current has an odd
number of Dirac matrices, and therefore this contribution is either suppressed by a small WC or light-quark
mass in contrast to the case of WA.
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Figure 6.1: Sum rule matrix element and kinematics assignments for soft gluon charm loop process.

according to the nature of the radiated gluon, that is whether it is a soft gluon in the final-state

vector meson, a soft gluon in the initial-state heavy meson or any other gluon, respectively2.

The projection tensors Pµi are given in (2.71). The functions LgVq,i (q2) have already been worked

out in [129] for massless quarks. This chapter will focus on the calculation of soft gluons radiated

into the final state LgVc,i (q2), since this contribution generates a large strong (CP -even) phase.

The function LgBc,i (q2) will also be discussed briefly in Section 6.4. Calculation of the hard

gluon contribution LRc,i(q
2) would involve a two-loop sum rule and since it has been found to

be factorisable [42] and should not be expected to lead to a large right-handed amplitude, the

calculation of LRc,i(q
2) will not be attempted.

6.2 Sum rule calculation

The functions LgVc,i (q2) will be computed using a sum rule approach. The general method was

discussed in Section 2.8. The correlation function used to calculate the matrix elements (6.3)

is:

Cρ(p, q, k) =

(
4π2

mb

)(
1

fBm2
B

)
i2
∫
d4xd4yeiQ·xe−ipB ·y 〈V (p)|T {c̄γρc(x)2Q̃1(0)JB(y)}|0〉 .

(6.6)

As in Chapter 3, the issue of parasitic cuts arises and cuts with the correct quantum numbers

for a B meson must be separated from other parasitic cuts. The solution used here is the same

as in Section 3.2.1, and a spurious momentum k at the weak operator vertex is introduced

following [106]. The introduced momenta are

pB = p+ q P = pB − k Q = q − k (6.7)

2The exact nature of this division rather depends on the method of calculation used, since the separation
between hard and soft gluons will usually depend on a factorisation scale.
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Invariant Hadron JP Flavour Comments
Q2 J/ψ 1− c̄c Charmonium resonances
p2
B Bq 0− q̄b B meson states

q2 Bs 1± s̄b Would be charmonium parasite q2 k→0−−−→ Q2

P 2 multi-hadron 0± c̄cs̄q Would be B meson parasite P 2 k→0−−−→ p2
B

Table 6.1: Interpretation of external momentum cuts in terms of quark and hadron states.

and the corresponding cuts are listed in table 6.1. The resulting Feynman diagram and momen-

tum assignments are shown in Figure 6.1. Unlike in the calculation of Chapter 3, anomalous

thresholds do not occur here. Problems are largely avoided because in this instance the diagram

cleanly separates into two pieces according to

pB = p+ q P = p+Q , (6.8)

where the charm loop does not contain pB or q and the remainder of the diagram does not

contain P or Q, and hence the invariant (p− k)2, which cannot be set on-shell (p− k)2 → m2
K∗

simultaneously with k2 → 0, does not appear in any denominators.

The correlation function C is decomposed into scalar components, using an extension of the

decomposition in Section 2.9, to include the additional momentum k, as in Chapter 3:

Cρ = CV P ρV + CAP ρA + C0P ρ0 + CkP ρk . (6.9)

The additional tensor introduced to accommodate the spurious momentum k is given by

P ρk = kρ +
Q2 − q2

p2
B −m2

K∗ − q2
pρ q · Pk = 0 η · k = η · Pk = 0 ,

where the selection of pρ rather than qρ to make the tensor gauge invariant is due to the

discussion in Section 5.4.6, and differs from the choice in Chapter 3. Using the three-particle

distribution amplitudes in appendix B.1.1 and the quark propagator in B.4, the diagram in

Figure 6.1 can be evaluated to

CV =−
(
fVmbmV

fBm2
B

)∫
(x,v,α)

dµ5
xv (P 2 −Q2)

(l2 −m2
x)(p2

b −m2
b)
V(α) ,

CA =−
(
fVmbmV

fBm2
B

)∫
(x,v,α)

dµ5
xv (P 2 −Q2)

(p2
b −m2

b)(l
2 −m2

x)
A(α) , (6.10)

C0 =−
(
f⊥V mbmV

fBm2
B

)√
q2

2m2
b

∫
(x,v,α)

dµ5

x(v̄(p2
B − q2) + 1

2v(p2
B − q2 − P 2 +Q2))

(p2
b −m2

b)(l
2 −m2

x)
T (α) ,

where x̄ ≡ (1 − x) and m2
x ≡ m2

c/(xx̄) is a convenient combination of the mass of the charm

quark and the Feynman integration parameter x. The five-parameter integration measure dµ5
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is defined as

∫
(x,v,α)

dµ5 =

∫ 1

0

dx

∫ 1

0

dv

∫ 1

0

dα1dα2dα3δ(1− α1 − α2 − α3) . (6.11)

The momenta in the denominators are l ≡ Q+vα3p and pb ≡ q+ᾱ2p and therefore the required

invariant momentum squares are:

l2 = vα3P
2 + vα3Q

2 + α3vα3m
2
K∗ ,

p2
b = α2q

2 + ᾱ2p
2
B + α2ᾱ2m

2
K∗ , (6.12)

where vα3 ≡ 1 − vα3. The result for C0 has been confirmed to reproduce [106, eq. 27] when

the quark mass is set to zero, which is as expected since it is the T (α) DA which structurally

resembles the three-particle pion DA. All of the results in (6.10) have been computed using a

light cone approximation to the quark propagator in a one gluon background, which is given

in appendix B.4. This has been checked to be the same as the result using the full quark

propagator in a one gluon background, also given in appendix B.4, although the equivalence

of the two results is non-trivial since they are only equal under the five-parameter integration

and not otherwise. It can be seen immediately from (6.10) that all three amplitudes have the

same cut structure, and from (6.12) that as promised the cuts have separated the invariant

pairs P 2, Q2 and p2
B , q

2.

In order to extract the contribution of the B meson state to the components (6.10), each

function must be rewritten in terms of a dispersion relation in the momentum p2
B using Cauchy’s

integral theorem

Ci(q2, Q2, p2
B , P

2) =
1

π

∫ ∞
m2
b

ds

s− p2
B

Ims Ci(q2, Q2, s, P 2) , (6.13)

and then a Borel transformation recovers the sum rule estimate for the B meson matrix element:

LgV,kc,i (q2, Q2, P 2) =
1

π

∫ sB0

m2
b

dse(m2
B−s)/M

2

Ims Ci(q2, Q2, s, P 2) . (6.14)

The superscript k indicates the presence of the additional momentum k in this function. Unlike

the sum rule calculations in chapters 3 and 5, the relation between the function LgV,kc,i (q2, Q2, P 2)

is not yet apparent because q2 and Q2 are not set equal. The reason for this is that a second

dispersion relation in the variable Q2 will be considered to account for the presence of the J/ψ

resonance, and this procedure, along with the relation to the matrix elements (6.3), will be

discussed in Section 6.2.2.

In contrast to other calculations in this thesis, in this case a great deal of progress can be

made analytically, and in fact only two of the five integrals need to be done numerically. The

procedure for reducing (6.14) to a simpler form will be outlined, since it is significantly simpler
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if the integrals are done in the right order.

To begin with all momentum squares will be considered to be space-like so that integrals can

be performed without having to consider the complex structure, which will allow the complex

branch cuts to be identified straightforwardly rather than having to resort to Landau equations3.

Using the explicit form of the DAs given in appendix B.1.1, the α1, α2 and v integrals can be

performed to give

Ci =

∫ 1

0

∫ 1

0

dα3dxx

(P 2 −Q2)(p2
B − q2)3

{
((log[m2

b − p2
B ]− log[m2

b − α3p
2
B − ᾱ3q

2])Pi,1 + Pi,2)

×
(
log[m2

x −Q2]− log[m2
x − α3P

2 − ᾱ3Q
2]Pi,3 + Pi,4

)}
Pi,5 ,

(6.15)

where Pi,n are polynomials in the integration variables, mass and external momentum squares.

They are given in appendix F.1 for the leading-twist component of the three-particle DAs to

allow the results of this calculation to be checked; the full expressions are much larger but

present no additional technical difficulties. The pole at p2
B = q2 has zero residue and therefore

the discontinuity is entirely due to the logarithms in p2
B , so the dispersion representation for Ci

in p2
B is

Cki =−
∫ ∞
m2
b

ds

s− p2
B

∫ 1

0

dxx

∫ α∗3

0

dα3 Pi,1Pi,5
(P 2 −Q2)(s− q2)3

×
(

(log[m2
x −Q2]− log[m2

x − α3P
2 − ᾱ3Q

2])Pi,3 + Pi,4

)
,

(6.16)

with

α∗3 ≡
m2
b − q2

s− q2
. (6.17)

The α3 integral may now be performed analytically and the imaginary part on the right-hand

side of (6.14) is then

1

π
Ims Cki (q2, s, P 2)s>m2

b
=

∫ 1

0

dxx

(P 2 −Q2)3(s− q2)3
×

(log[m2
x −Q2]− log[m2

x − α∗3P 2 − α∗3Q2])Ri,6 +Ri,7)Ri,8 ,

(6.18)

where Ri,n are polynomials in momentum squares, masses and x and are again given in ap-

pendix F.1 for the leading-twist three-particle DAs. This represents the final form which can

be reached through simple analytic integration and thus the momentum invariant P 2 may now

be set on-shell, which according to table 6.1 entails the analytic continuation P 2 → m2
B . As

mentioned previously, the analytic continuation in q2 and Q2 is complicated by the presence of

the charmonium resonances and the procedure used to deal with these will be given in Section

6.2.2.

3See Section 3.2.4.
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6.2.1 Large mc cross-check

The calculation of (6.18) has already been calculated in the large mc limit using LCSR in

[129,186] at q2 = 0. The result from that paper converted into the normalisation (6.3) is

LgVc,A(0)| [186]= −
5

4

fK∗mK∗

m2
cmbm2

BfB
ζ
‖
3K∗

∫ sB0

m2
b

ds e(m2
B−s)/M

2

(
m2
b

s

)5

(s−m2
b) . (6.19)

By comparison, the result (6.18) combined with (6.14) gives

LgV,kc,A (0)
mc→∞−−−−−→ −5

4

fK∗mK∗

m2
cmbm2

BfB
ζ
‖
3K∗

∫ sB0

m2
b

ds e(m2
B−s)/M

2

(
m2
b

s

)5

(s−m2
b)

(
P 2

s

)
, (6.20)

which is identical except for a factor P 2/s. In fact, this factor cannot appear in the result

of [186], since in that case the use of the 1/mc expansion obviates the need for the additional

momentum k; rather, the photon momentum plays the role of eliminating parasitic cuts as

in the case of the electromagnetic form factors coupling to O7. Since that calculation would

therefore be expected to be equivalent to this one at k = 0, P and pB are not distinguished

thus P 2 → p2
B , or rather P 2 → s under the dispersion integral, and thus the expressions (6.19)

and (6.20) are indeed equivalent. It is worth mentioning that, as will be discussed in Section

6.5, the 1/mc expansion is not actually convergent at the physical value of mc, and in addition

the 1/mc and 1/mb expansions interfere here, so that the the large mc and mb scaling in (6.19)

is correct for the case mc � mb →∞ but not mb � mc →∞.

6.2.2 Perturbative calculation near the J/ψ resonance

The treatment of the two momenta appearing in the correlation function Cρ (6.13), correspond-

ing to the external photon momentum, q2 and Q2, must now be addressed. The variable q2 can

be set directly to the desired physical value, however Q2 cannot as can be seen from table 6.1

which implies the presence of a perturbative multi-particle threshold at Q2 = 4m2
c . Therefore

setting Q2 to the physical value of the external momentum is incorrect because perturbative

QCD is not applicable near partonic or hadronic thresholds. The solution to this problem is

to construct a sum rule for J/ψ production using the correlation function Cρ. The Q2 range

attributed to J/ψ production is then subtracted from the dispersion representation of Cρ and

replaced by a simple pole which is the expected structure in the hadronic picture, with the

residue of that pole given by the sum rule for J/ψ production. This method has previously

been used in [188,189].

The dispersion relation satisfied by LgV,kc,i in Q2 is

LgV,kc,i (Q2, q2) = LgV,kc,i (0, q2) +
Q2

π

∫
cut

dt Imt L
gV
c,i (t, q2)

t(t−Q2 − i0)
, (6.21)
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where one subtraction has been used so that the resulting integral is not divergent, and other

momentum squares have been omitted from function parameters for brevity.

In order to sensibly associate the complex cut on the right-hand side of (6.21) with char-

monium production it must be the case that the cut begins at Q2 = 4m2
c in perturbation

theory. This is not in fact what happens, as can be seen from (6.18): the second logarithm

log[m2
x−α∗3P 2−α∗3Q2] has a threshold even for space-like Q2 due to the presence of P 2 = m2

B .

In this calculation the complex branch cut of this second logarithm is not considered to con-

tribute to charmonium production but rather the strong phase of the overall matrix element.

This picture is correct in the small q2 region where α∗3 = O(ΛQCD/mb) and the second logarithm

is approximately independent of Q2. The situation at high q2 is reversed; at q2 → m2
b , the max-

imum possibly accessible through sum rules, α∗3 = 0 and the two logarithms in (6.18), cancel.

In the low recoil region it therefore does not make sense to treat the two logarithms differently.

In this calculation, the dispersion relation (6.21) shall only be applied to the first logarithm

which is clearly associated with the charmonium spectrum. Justification of this approach is

deferred until the result is obtained in (6.25) which will shed more light on the situation.

Applying the usual semi-global quark hadron duality approach to (6.21), the dispersion

integral is split into two regions separated at an effective continuum threshold s
J/ψ
0 , and the

region between the perturbative threshold at 4m2
c and this duality threshold is attributed to

the charmonium resonances. The resulting formula for LgVc,i with the perturbative threshold

region replaced is

LgV,kc,i (Q2, q2) = LgV,kc,i (0, q2) +Q2
∑

V=J/ψ,Ψ′,...

rVi (q2)

m2
V (m2

V −Q2)
+
Q2

π

∫
sV
0

dt Imt L
gV,k
c,i (t, q2)

t(t−Q2)
,

(6.22)

where the sum runs over all low-lying c̄c vector mesons. Although there are two narrow low-

lying resonances, the J/ψ and the ψ(2S), only a single resonance at the J/ψ mass will be used

in this calculation since it will transpire that the result is not valid above the J/ψ mass, and

using only a single pole avoids any question of how to partition the duality region contribution

between them. The residues r
J/ψ
i in (6.22) is the amplitude for J/ψ meson production and can

therefore be calculated using standard sum rule methods leading to

r
J/ψ
i (q2) =

1

π

∫ s
J/ψ
0

4m2
c

dt Imt L
gV,k
c,i (t, q2)e(m2

J/ψ−t)/M
2
J/ψ . (6.23)

Inserting this result into (6.22) and neglecting other charmonium resonances gives

LgV,k′c,i (Q2, q2) = LgV,kc,i (0, q2) +
Q2

π

∫ s
J/ψ
0

4m2
c

dt Imt L
gV,k
c,i (t, q2)

m2
J/ψ(m2

J/ψ −Q2)
e(m2

J/ψ−t)/M
2
J/ψ

+
Q2

π

∫
s
J/ψ
0

dt Imt L
gV,k
c,i (t, q2)

t(t−Q2)
,

(6.24)
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where the prime denotes that the resonance subtraction procedure has been performed. The

expression (6.24) is however rather inconvenient for numerical computation and it proves ad-

vantageous to combine it with (6.21) to produce

LgV,k′c,i (Q2, q2) = LgV,kc,i (Q2, q2)+
Q2

π

∫ s
J/ψ
0

4m2
c

dt Imt L
gV,k
c,i (t, q2)

 e

m2
J/ψ
−t

M2
J/ψ

m2
J/ψ(m2

J/ψ −Q2)
− 1

t(t−Q2)

 ,

(6.25)

in which the t integrals are now over a finite range. Integration contours for each term may

also be taken off the real line into the lower complex half plane Im t < 0 when Q2 lies inside

the integration region, to avoid numerically tricky integrations which contain simple poles. The

final result is then given by setting the external momenta to their on-shell values according

to table 6.1, that is P 2 → m2
B and q2 to the external photon momentum, so that all external

momenta are correct for the physical matrix element (6.3) subject to the the standard semi-

global duality approximation described in Section 2.8. Q2 is set to the same value as q2, and

then the final result for LgVc,i is

LgVc,i (q2) = LgV,k′c,i (q2, q2,m2
B) . (6.26)

It is apparent that (6.24) and thus (6.25) cannot be valid for all Q2. The final term de-

scribes the contribution due to the density-of-states of a multi-particle continuum, and it would

therefore be expected that Imt L
gV,k
c,i (s

J/ψ
0 , q2) = 0, because the phase space volume is zero

at the multi-particle threshold. However, since the lightest states in the perturbative and

hadronic spectra have different masses, the perturbative density-of-states is non-zero at the

duality threshold. This problem manifests itself as a logarithmic divergence for Q2 → s
J/ψ
0 .

Unfortunately there is little that can be done to repair this deficiency; although it should be

the case that for sufficiently large Q2 local duality becomes a good approximation, it can be

seen from the famous R function plot in [123, 154]4 that there are resonances in the charm

threshold region up to around
√
s ≈ 4.6 GeV, which is far too close to the perturbative b-quark

mass for there to be a significant window between the charm pair region and the kinematical

upper bound of the B → V process. It should be stressed that this problem is specific to the

matrix element under consideration; it is still expected that form factors calculated using LCSR

should in general be valid up to m2
B−q2 ∼ O(mBΛQCD) but the presence of a significant charm

threshold prevents this. Fortunately this low-recoil region is accessible via other means, either

the low-recoil OPE [171] or lattice simulations5, although these approaches are only suitable

for local operator form factors and do not include long-distance effects. The justification for

only considering the cut due to the first logarithm in (6.18) as contributing to the charmonium

4Figure 46.7, available separately under “Plot of cross sections and related quantities” on the website.
5Although lattice usually simulates the high q2 region of these decays, to date results for the K∗ meson are

not yet available owing to the fact that it is unstable [190].
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LgVc,V (0)× 103 LgVc,A(0)× 103

B → K∗ −(0.23± 0.37)− (2.17± 1.23)i −(0.73± 1.89)− (3.97± 1.61)i
B → ρ (0.01± 0.33)− (2.79± 1.20)i −(0.85± 1.78)− (3.78± 1.28)i
Bs → K∗ (0.26± 0.14)− (1.88± 0.91)i −(0.62± 1.73)− (2.62± 0.73)i
Bs → φ (0.04± 0.26)− (2.23± 0.98)i −(0.04± 1.46)− (4.09± 1.45)i

LgVc,−(0)× 103 LgVc,+(0)× 103

B → K∗ −(0.68± 1.58)− (4.34± 2.01)i (0.35± 1.10) + (1.27± 0.29)i
B → ρ −(0.60± 1.44)− (4.64± 1.75)i (0.61± 1.09) + (0.70± 0.20)i
Bs → K∗ −(0.25± 1.21)− (3.18± 1.15)i (0.62± 1.25) + (0.52± 0.23)i
Bs → φ (0.00± 1.18)− (4.47± 1.72)i (0.05± 0.90) + (1.32± 0.34)i

Table 6.2: Results for LgVc,i at q2 = 0 for various different final-state mesons. The top half of the
table gives results in the parity basis, and the bottom half in the helicity basis.

resonances and treating the second perturbatively, is that at low q2 this is justified by the

smallness of α∗3, and the high q2 region is inaccessible in any case as m2
b/4m

2
c is not sufficiently

large to reach the region where charm production can be treated perturbatively.

This is, however, not entirely the end of the matter of treating contributions from vector

meson resonances. Although the charm-quark loop is the dominant one in b → s decays due

to the hierarchy of CKM and WCs, there is also the case of b → d decays to consider, as

well as the subleading contributions in b → s. It is therefore necessary to consider the case of

light-quark loops, where the relevant mesons are the ρ, ω and φ. Examining the R function

plot [123, 154] in the low momentum region reveals that perturbation theory appears to be a

good approximation above 1.3GeV or so. Considering that the s-quark loop and therefore the

φ meson are likely to be the dominant source of deviation from the perturbative prediction

in the 1.0 − 1.3GeV range and that the s-quark loop is suppressed by a small WC in both

b→ d and b→ s transitions, taking the local duality result (6.18) for light-quarks in the region

q2 > 1 GeV2 seems reasonable. It will turn out that the uncertainties in this result are large in

any case, and thus difficulties caused by the ρ, ω and φ mesons are unlikely to be the dominant

source of error. At q2 = 0 the light-quark contribution is treated using the resonance modelling

approach described in this section following [129].

6.3 Results

Plots of the functions LgVc,i are shown in Figure 6.2 for B → K∗ transitions, and values at

q2 = 0 for various final-state mesons are given in table 6.2. Two features of these results are

interesting:

• The strong phase is large, even at q2 = 0. This is a result of the cut in P 2 of the multi-

particle c̄cq̄s state, and the situation remains the same up to q2 ∼ 4m2
c . Near q2 = 4m2

c ,

the J/ψ intermediate state dominates the matrix element which approaches a simple pole

due to the construction in Section 6.2.2), and as discussed in that section, these results
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Figure 6.2: Plots of the real and imaginary parts of LgVc,i for i ∈ {V,A, 0}, and the magnitude of

LgVc,V for B → K∗ transitions. The solid black line is the real part, and the dashed red line the
imaginary part. It is clear from these plots that the large mc expansion fails, since in the mc →∞
limit the matrix element should have no strong phase at q2 = 0.
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are not reliable beyond this point.

• The left-handed amplitude is large compared to the right-handed one. Although this is

the normal situation in B → V decays at leading order in 1/mb, there is no reason to

expect that it should be the case here since the parity conserving and violating amplitudes,

whose sum and difference is the left- and right-handed amplitudes, are not related, arising

from the conformal expansion parameters of the V and A DAs respectively. This is even

further emphasised by the fact that G-parity constraints on the expansion parameters

mean that the dominant contribution to the parity conserving and violating amplitudes

arise at different orders in the twist expansion. A fuller discussion of the structure of these

results and their helicity structure is deferred to Section 6.6, where they are contrasted

with those of [185].

On a technical level, this calculation appears to be significantly more complicated than the

calculations done for B → ππ in [106] and for B → J/ψK in [191]. The reason for this is

that those papers were treating the case of purely hadronic final states and thus only needed

to compute the term analogous to the rVi term in (6.22) but not the continuum term which

contributes to the production of photons and lepton pairs. This allowed them to use a 1/mb

expansion since the dispersion variable analogous to t is then restricted to t < s
J/ψ
0 � m2

b ,

which is not true in the radiative and semi-leptonic cases6.

6.4 Initial state soft gluon contribution

In this section the contribution of charm loops coupling to a soft gluon from the initial-state

B meson will be discussed, although a conclusive result will not be provided, for reasons to

be explained. As will be argued in Section 6.5, the largest momentum invariant arising in the

charm loop for a soft initial state gluon is O(mbΛQCD) rather than O(m2
b). Because of this

the charm-pair production threshold is not expected to be crossed and the leading term in the

1/mc expansion should provide a reasonable approximation.

Since this estimate will employ the 1/mc expansion, emission of the photon via the charm

loop is a local process, and the calculation will be further simplified by setting q2 = 0, since only

qualitative features of the result will be of interest. The effective local s̄bgγ operator induced

by O2 in the large mc limit was worked out in [192] and is

iε∗µ
∫

d4xeiqx T {[c̄(x)γµc(x)]Qc2(0)} = 2cF qF + . . . (6.27)

6It might seem from (6.25) that in fact only the range 4m2
c < t < s

J/ψ
0 is used; however, the term LgVc,i (Q2, q2)

there contains a log[m2
x −Q2] term from (6.18) which cannot be 1/mb expanded since it is independent of mb.
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pB

q

VBB

Figure 6.3: Sum rule diagram for initial-state soft gluon contribution LgBc,i (0). The use of the three-
particle current J3B means that cuts select only the three-particle B meson state, thus giving the
contribution of initial state soft gluons.

where

qF = (DρFαβ)[s̄γρ(1− γ5)gG̃aαβ
λa

2
b] , cF = − 1

48π2m2
c

. (6.28)

From (6.3) and (6.27), the relation of this operator to the desired form factor LgBc,i is found

to be
−1

12m2
cmb

〈K̄∗|qF |B̄〉 = εµ(PµV L
gB
c,V + PµAL

gB
c,A) . (6.29)

A suitable correlation function for the extraction of the these form factors is

C(pB , q) = i

∫
d4xe−ipB ·x 〈K̄∗|TqF (0) J3B(x)|0〉 , (6.30)

where the interpolating current J3B , defined by

J3B = b̄g G · σγ5q 〈B̄|J3B |0〉 = 2ifBmB(λ2
E + λ2

H) , (6.31)

is used to select the three-particle component of the B meson. The normalisation of the current

J3B was introduced in [193]. The Feynman diagram for the sum rule implied by (6.30) is

depicted in Figure 6.3. Following the usual sum rule procedure, the correlation function C(pB , q)

is matched to a hadronic representation

C(pB , q) = [2ifBmB(λ2
E + λ2

H)]
〈K̄∗|qF |B̄〉
m2
B − p2

B

+ . . . (6.32)

where the dots stand for higher resonances and states. The evaluation of the correlation function

(6.30) in QCD is standard, except that it turns out that twist-3 terms in the K∗ DA must be

included since the twist-2 terms give no contribution. The K∗ DA is given to the necessary

order in appendix B.17. It is also noteworthy that the gluon correlator required 〈Gaµν(x)Gbαβ(y)〉
is the same in any gauge in which global colour symmetry is unbroken, and hence the use of

7Since only perpendicular polarisations are of interest at q2 = 0, the twist-3 term h
(s,t)
‖ may be ignored.
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the Fock-Schwinger gauge in deriving (6.27) and (6.28) does not entail any complications here.

The resulting sum rule for LgBc,(V,A)(0) is

LgBc,V (0) = LgBc,A(0) = − αsfK∗mK∗

144πm2
cfBmB(λ2

E + λ2
H)

∫ sLE0

m2
b

ds e
m2
B−s
M2

∫ 1

m2
b/s

du

(
us−m2

b

)2
us

g
(a)
⊥ (u) .

(6.33)

Inserting numerical values from table 3.2 along with αs(µh) = 0.35 gives

LgBc,V (0) = LgBc,A(0) = −0.15× 10−3

(
0.4GeV2

λ2
E + λ2

H

)
. (6.34)

This value is considerably smaller than LgBc,V = −3.6 × 10−2 given in [194]8. In fact, this

sum rule is problematic because it is highly sensitive to the duality threshold sLE0 , or to put

it another way, the Borel transform is ineffective in suppressing the continuum contribution.

It should further be remarked that the existing determinations of λ2
E + λ2

H are also rather

problematic since the value λ2
E + λ2

H |GN= 0.29(13) GeV2 [193] is dominated by the highest

dimension condensates considered and the value λ2
E + λ2

H |KMO= 0.48 GeV2 [195] is dependent

on the choice of B meson model wave functions. Since the parameters λ2
E and λ2

H appear in

the numerator rather than the denominator of the B DA calculation, a significant shift in their

values could bring the estimate (6.34) and the B DA value LgBc,V = −3.6 × 10−2 [194] much

closer.

To try and bring some clarity to this situation, the computation of λ2
E+λ2

H using a diagonal

sum rule for 〈J3B(x)J3B(0)〉 was attempted, and the resulting formula is

(6.35)
(λ2
E + λ2

H)2 =
αsCFNc

160π3f2
Bm

2
B

∫ sLE0

m2
b

dse
m2
B−s
M2
LE

(
m8
b

4s
+

11m6
b

3
− 3m4

bs−m2
bs

2 +
s3

12

+
(
2m6

b + 3m4
bs
)

log

(
s

m2
b

))
.

However, this suffers from the same problem as (6.33); the continuum contribution is far too

large to make the result trustworthy9 and it is highly sensitive to the duality threshold s0.

λ2
E + λ2

H = 0.4 GeV2, the average of the two previous determinations [193, 195], is therefore

taken here as an indicative value, but only a lattice determination will definitively resolve this

question.

Ultimately, this estimate of the initial-state radiation contribution, as well as the B DA

computation [194], both lead to the same qualitative features: LgBc,V = LgBc,A and ImLgBc,V =

0. The initial-state contribution therefore does not contribute to either CP asymmetries or

the breaking of the heavy-quark symmetry relation TV = TA, although the result in [194] is

significant because it gives a sizeable correction to the decay rate at intermediate q2.

8Note that the comparison in that paper between the results in equations (6.3) and (6.4) is questionable,
since soft gluon emission into the initial and final state hadrons is not physically comparable.

9Note that the contribution of 〈q̄q〉 was included in this calculation but it turns out to be zero, which only
raises further questions as to the validity of this sum rule.
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Figure 6.4: The inclusive b→ sgγ graph, the external kinematics of which determine the convergence
(or otherwise) of the 1/mc expansion. The dashed and dotted lines indicate cuts which can give
rise to complex branch cuts; the dotted lines are considered below threshold because the soft gluon
is expected to be almost on-shell and the photon is assumed to be below the q2 = 4m2

c threshold
where the 1/mc expansion must break down. Only the momentum flowing through the weak vertex
is therefore relevant.

6.5 The 1/mc expansion in soft gluon effects

In this chapter, the contribution to B → V l+l− decay of a charm loop with soft gluon emitted

into the final-state meson has been computed, and a large imaginary part or the resulting

amplitude found. Previous calculations of this term have used the 1/mc expansion to rewrite

it in terms of an effective local operator and then proceeded to compute 〈V |O|B〉 [186]. This

operator product expansion procedure of course produces no imaginary part since the charm

pair production threshold is implicitly not crossed. The 1/mc expansion was however employed

in Section 6.4 for the initial-state soft gluon contribution examined there, and thus the details

of convergence merit further examination.

The b → sgγ sub-graph relevant to the convergence of the 1/mc expansion in processes

considered in this chapter is shown in Figure 6.4. For simplicity the photon shall be taken

to be on-shell, so that the assumption that the gluon is soft then means that there is only a

single non-zero momentum invariant in the problem. It is then expected that the convergence

or otherwise of the 1/mc expansion will be determined by whether that momentum invariant,

which will be labelled l2 in accordance with (6.10), ever reaches the charm pair production

threshold, l2 ≥ 4m2
c .

For the case of soft gluon emission into the final-state meson computed in Section 6.2, it

can be seen from (6.10) that the relevant loop integral at Q2 = q2 = 0 is

∫ 1

0

dx

∫ 1

0

dv
x̄x2v

x̄xvα3P 2 −m2
c

=
1

4α3P 2

[
1− arcsin

√
z√

z(1− z)

]
= − 1

4m2
c

∞∑
n=0

4n((n+ 1)! )2

(2n+ 3)!
zn ,

(6.36)

where z ≡ α3P
2

4m2
c

. The series coefficients can be seen to scale as n−1/2 by Stirling’s approximation,

and thus the radius of convergence is |z|< 1 as expected from considering the cuts. Since the

range of α3 is 0 < α3 < 1, it follows that P 2 = m2
B > 4m2

c and therefore the pair production

threshold is crossed for soft gluon emission into the K∗ meson.
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The next case to be addressed is that of a soft gluon in the initial state, that is to say the

three-particle component of the B meson state. The 1/mc expansion has already been assumed

to converge for this case in Section 6.4, and this assumption is consistent with the results

of [195], which do not have a strong phase. It is not in fact possible in an LCSR approach

to separate the soft gluon term cleanly from that of a hard gluon connecting to either of the

quark lines forming the B meson in the proper two-loop calculation of this term. Nonetheless a

straightforward kinematical argument can be made that the 1/mc expansion converges for soft

initial-state gluons. The soft gluon momentum is taken in the B meson rest frame to be given

by

pgB = (Λ,−Λ, 0, 0) Q =
(mB

2
,
mB

2
, 0, 0

)
, (6.37)

where the photon momentum, again at Q2 = 0, is included to make the relative directions

clear. The gluon momentum has been chosen to lie along the opposite light-cone direction to

that of the photon, which is in accordance with the construction of the light-cone B meson

DA neglecting the direction to which the short-distance amplitude is not sensitive. The series

expansion parameter in this case is

zgB =
(pgB −Q)2

4m2
c

Λ�mB−−−−−→ mBΛ

4m2
c

≈ Λ

1.3 GeV
, (6.38)

which implies that the series converges, since it is expected that Λ < mB −mb < 1.3 GeV. The

use of the local operator in Section 6.4 is therefore justified.

There is one remaining puzzle to address: why the numerical results in table 6.2 are the

same order of magnitude as those computed previously using the 1/mc expansion in [129,186],

which give |LgVc;1 |∼ 10−3. The asymptotic behaviour of (6.36) in both limits is given by

∫ 1

0

dx

∫ 1

0

dv
x̄x2v

x̄xvα3P 2 −m2
c

=


1

4α3P 2
P 2 →∞

− 1

24m2
c

P 2 → 0
(6.39)

and thus in a sense the fact that the magnitude of the result in [129, 186] is comparable to

this result is a coincidence arising from the fact that 6m2
c and m2

B are not of vastly differing

magnitudes. This point of view is however overstating the case; were mB many orders of

magnitude larger than mc, the 1/mc expansion would not have been employed in the first place

since it could not have been expected to converge. The similarity in magnitude between these

results and the local operator approximation is therefore not unexpected, although the degree

of similarity is surprising.
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6.6 Comparison with the inclusive approach

The predictions of the exclusive LCSR calculation given in table 6.2 are very different to those

calculated in [185]: the present approach gives a contribution to the amplitude at the level of

1% of the leading electromagnetic form factor term, whereas [185] predicted that an effect on

the 10% level could be expected. The question of why the two differ by an order of magnitude

must therefore be addressed.

The most obvious potential source of discrepancy between the two results is their scaling in

the large mb and mc limits. The prediction of [185] is that

LgVc,1(0)

Ceff
7 T1(0)

∣∣∣∣∣
[185]

∼ C2

Ceff
7

ΛQCD

mb
. (6.40)

To contrast this with the results of Section 6.2, it can be seen from (6.20) and (6.39) that the

large mb scaling found here is

LgVc,1(0) ∼ ζ‖3K∗
Λ4

QCD

fBm3
b

, (6.41)

which in combination with T1(0) ∼ (fBm
2
B)−1 [97] entails

LgVc,1(0)

Ceff
7 T1(0)

∣∣∣∣∣
LZ

∼ ζ‖3K∗
C2

Ceff
7

ΛQCD

mb
(6.42)

and therefore the two results are not fundamentally different as far as their asymptotic behaviour

is concerned.

The key difference between the two estimates therefore appears to be the use of a fully

exclusive approach in the present calculation, which gives an additional dimensionless factor

of ζ
‖
3K∗ in (6.42) not present in (6.40). The value ζ

‖
3K∗ = 0.023 was found in [127], and the

smallness of this coefficient, along with the smallness of other coefficients in the three-particle

K∗ DAs, would certainly account for the smallness of the present results.

The calculation in Section 6.2 also finds that the amplitude for right-handed photon produc-

tion is significantly smaller than the left-handed amplitude, which does not have an apparent

origin in the 1/mb expansion as is usually the case for B → V γ decays, since the formulae for

CV and CA in (6.10) have the same structure. In fact, were the three-particle DAs restricted to

the leading collinear twist form only, the approximate G-parity of the K∗ meson would have

led to CV ≈ 0 and thus reproduced the result of the inclusive calculation [185], that the left-

and right-handed amplitudes are equal.

The conclusion that must be drawn is that the results presented here are not directly re-

sponsible for the discrepancy between the inclusive predictions of [185] and the present exclusive

calculation. Rather, the smallness of the exclusive prediction and its helicity structure reflect

the underlying three-particle DA parameters. It would therefore appear that the amplitude for
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a gluon and two quarks to hadronise into a light vector meson is significantly smaller than would

be expected on dimensional grounds, and in fact the authors of [185] attempted to estimate

this effect using Ali-Greub shape function models [196] which reduced ratio (6.40) from 10% to

3%, much closer to the value from the exclusive calculation.

6.7 Right handed amplitudes in the SM

Although the results of Section 6.2 found that even in this soft charm loop contribution the

right-handed amplitude is smaller than the left-handed one, the suppression is mild compared

to the usual 1/mb suppression which appears in the C7,9 form factor contributions and WA

terms. The non-factorisable charm loop is therefore expected to give a significant contribution

to right-handed amplitudes in B → V γ and B → V l+l− as predicted in the introduction.

To give an indication of the relative magnitude of different right-handed amplitudes in

the SM, the right-handed amplitudes from factorisable operators C7,9 and non-factorisable O2

are plotted in Figure 6.5. The much smaller right-handed WA contribution is also shown for

comparison. It appears that the short-distance form factor term proportional to ms is dominant

at large recoil and the non-factorisable charm loop calculated in this chapter is several times

smaller. The results computed here are therefore not expected to alter predictions for all

observables sensitive to final state helicities significantly, although they will give the dominant

contribution to time-dependent CP in some cases since the weak phases of the O2 and O7

operators are different. They are however significant insofar as the uncertainty of right-handed

amplitudes is reduced very substantially in comparison with the [185], and time-dependent CP

asymmetries corresponding to a right-handed amplitude much above the 1% level would indeed

appear to be a signal for new physics.

6.8 Observable effects

There are two presently measured quantities sensitive to the helicity of the photon in radiative

and semi-leptonic B meson decays, the time-dependent CP asymmetry in B → V γ and the

angular observables P1 and S3 in B → V l+l−. Updated predictions in light of the present

calculation are therefore presented.

6.8.1 Time dependent CP asymmetries

It was pointed out in [187] that the time dependent CP asymmetry in B → V γ is produced by

interference of left- and right-handed photon polarisations. Following the notation of [197] the

10This estimate is constructed rather naively by multiplying C7T1(0) ≈ 0.1 by values in table E.2 and ms/mb;
however, according to the equation in [75], the strange quark mass enters as an ms/mK∗ correction in the
twist-3 h‖ DAs, which are expected to be mK∗/mb suppressed w.r.t. the leading amplitude by comparing (E.2)
to (E.3).
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Figure 6.5: Magnitude of contributions to right-handed lepton pair production in B → K∗l+l− in
the SM. The three types of contribution are factorisable form factor contributions labelled Ceff

7,9, weak
annihilation labelled WA, and long-distance charm loops (where the approximation |C2λc/λt|→ 1
has been taken for simplicity). The form factor contributions in this case are taken from fits in [190],
due to their good small q2 behaviour. Since the published fits of the form factors [81, 190, 194] are
all done in the parity basis, the small right-handed contribution from the form factors cannot be
reliably extracted, although in fact for q2 . 5 GeV2 the form factor contribution is dominated by
the short-distance right-handed amplitude proportional to ms in the C7 WC and therefore it is
expected that the result is reasonably accurate in this region. It can be seen from this plot that the
right-handed component of WA is negligible in the SM, although terms proportional to ms arising
from the operators O3−6 were neglected, which would be expected to give a contribution on the
10−5 level10. The contribution of long-distance charm loops computed in this chapter therefore
appears to be a significant correction to the leading amplitude at large recoil, at the 25% level.

157



158 James Lyon

|q/p| Φq
B0
d 0.9997(13) 2 arg(−V ∗tdVtb) ≡ 2β = 43◦

B0
s 1.0086(28) 2 arg(−V ∗tsVtb) ≈ −2λ2η = −2.0◦

Table 6.3: Neutral B meson mixing parameters relevant to this calculation. |q/p| is taken from
the HFAG 2013 update [147]. Note that the angle Φq here is the complex phase of q/p which is
denoted φq in [197] but is different from φq used in B-B̄ mixing studies [198], which have a related
angle φM ≈ π − Φq, which is the complex phase of the off-diagonal entry in the B meson mass
matrix. The leading order SM result for this angle is used, and the required numerical values for
CKM parameters are taken from [123].

CP asymmetry may be written as

ACP[Bq → V γ](t) ≡ Γ[B̄q → V γ](t)− Γ[Bq → V̄ γ](t)

Γ[B̄q → V γ](t)− Γ[Bq → V̄ γ](t)

=
S sin(∆mst)− C cos(∆mst)

cosh( 1
2∆Γst)−H sinh( 1

2∆Γst)
,

(6.43)

where the signs are chosen such that ∆ms = mH − mL and ∆Γs = ΓL − ΓH , with L corre-

sponding to the lighter and H to the heavier of the CP conjugate B mesons, are both positive

in the SM. The parameters S, C and H are given by [187,197]

C = N
[
|T−|2+|T+|2−|T −|2−|T +|2

]
S = 2N Im

[
q
p

(
T −T ∗− + T +T ∗+

)]
N =

[
|T−|2+|T+|2+|T −|2+|T +|2

]−1
H = 2N Re

[
q
p

(
T −T ∗− + T +T ∗+

)]
, (6.44)

where N is a normalisation constant and the notation of Section 2.9 has been slightly extended

so that T i is the CP conjugate amplitude corresponding to Ti. q/p = |q/p|exp(iΦq) is the ratio

of B meson mixing parameters which are given in table 6.3.

If the left- and right-handed amplitudes are parametrised as

T− = ALe
iφL T+ = ARe

iφR , (6.45)

where φL,R is the CP -odd weak phase and the strong phase is retained in AL,R, then the CP

conjugate amplitudes are

T + = ξALe
−iφL T − = ξARe

−iφR , (6.46)

where ξ is the CP eigenvalue of the final state. ξ = 1 for ρ, ω and φ and for the K∗ it depends

on the daughter state: it is ξ = 1 for the KSπ
0 state and ξ = −1 for the KLπ

0 state [197]. The
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B → V γ B0 → K∗γ B0 → (ρ, ω)γ Bs → φγ Bs → K̄∗γ
Type b→ s b→ d b→ s b→ d

S[B → V γ]LZ 1.2± 0.9% −1.2± 0.8% 0.01± 0.03% −0.3± 0.5%
H[B → V γ]LZ (1.2± 1.0%) (−0.9± 1.4%) 1.6± 1.1% −1.7± 2.1%
S[B → V γ]O7

1.7± 0.4% 0% 0% 0%
H[B → V γ]O7

(1.8± 0.3%) (0%) 2.5± 0.5% 0%
S[B → V γ]HFAG −0.16(22) −0.83(65)(18)

Table 6.4: Predictions for the CP violation parameters S and H in B → V γ type decays. The top
section shows the prediction along with the associated uncertainty. ξ = 1 has been taken for all final
states in (6.46); in the K∗ case it depends on the daughter state as described below (6.46). Results
for H in brackets are given for purposes of comparison but are not expected to be experimentally
measurable since the width difference of Bd mesons is too small [197]. The middle section leading
order results from the O7 operator only, for comparison purposes. The quoted uncertainty for these
values arises from scale variation of the strange quark mass only. In the last line, the present
experimental average from HFAG [147] is included, which is consistent with the theoretical result,
although the uncertainty must be substantially reduced before a truly meaningful comparison is
possible.

CP asymmetry parameters S and H may then be writtenSH
 = 2ξ

Re[A∗LAR]

|AL|2+|AR|2

sin

cos

 (Φq − φL − φR)

AR�AL−−−−−→ 2ξRe

[
AR
AL

]sin

cos

 (Φq − φL − φR) ,

(6.47)

where the approximation |q/p|= 1 has been used, which holds to good accuracy as can be seen

from table 6.3. It is then apparent that a measurement of S or H is an indirect measurement

of the right-handed amplitude.

The results of this calculation are given in table 6.4, along with the short-distance penguin

contribution for comparison. In no case does the result including the O2 contribution differ from

the short-distance value by more than 1.5σ. This is due to two factors: first, the O2 contribution

is smaller than previously expected at only the 1% level and second, the uncertainties in table

6.2 are large. The result which stands out in table 6.4 is for S[Bs → φγ], which is both

much smaller and more precisely determined than all the others. This is a result of (6.47)

and the hierarchy of CKM coefficients in b → s decays. The factor sin(Φq − φL − φR) is zero

if the spectator quark in the B meson has the same flavour as the b quark decay product,

which results in the weak phase of the B̄-B oscillation being the same as the weak phase of the

B → V γ transition. For the B → ργ decay this suppression, along with the independent md/mb

suppression, is lifted by the O2 operator which has a different weak phase but for Bs → φγ it

survives since |λu|� |λt| and hence the difference between the weak phases is small.

159



160 James Lyon

6.8.2 The P1 and S3 angular observables

In recent years, the full angular structure of B → V l+l− decays have been studied [98], and

optimized observables with reduced form factor uncertainty proposed [99] and improved [100].

One of these angular observables, P1, originally introduced as A
(2)
T in [199], is sensitive to

interference between the left- and right-handed amplitudes. In the normalisation conventions

introduced in Section 2.9, P1 is given by11

P1 ≡ A(2)
T =

|T VV |2+|T AV |2−|T VA |2−|T AA |2
|T VV |2+|T AV |2+|T VA |2+|T AA |2

, (6.48)

where lepton masses have been neglected. P1 is closely related to another observable S3 [98],

which has a stronger dependence on form factors than P1 and is thus less theoretically clean

but at present has smaller experimental errors [200], so predictions for S3 will also be provided.

In the T convention, it is given by

S3 =
1

2

|T VV |2+|T AV |2−|T VA |2−|T AA |2
|T VV |2+|T AV |2+|T VA |2+|T AA |2+|T V0 |2+|T A0 |2

, (6.49)

where again lepton masses have been set to zero.

Since the T amplitudes used in this thesis differ from the AV,A⊥,‖,0 used to define the P1 and

S3 by a q2 dependent normalisation factor, in addition to a linear change of basis, averaging

over a q2 bin must be performed with an appropriate weight according to

〈P1〉 =

〈
|T VV |2+|T AV |2−|T VA |2−|T AA |2

〉
Γ〈

|T VV |2+|T AV |2+|T VA |2+|T AA |2
〉

Γ

〈S3〉 =
1

2

〈
|T VV |2+|T AV |2−|T VA |2−|T AA |2

〉
Γ〈

|T VV |2+|T AV |2+|T VA |2+|T AA |2+|T V0 |2+|T A0 |2
〉

Γ

, (6.50)

where the weighted average
〈
f(q2)

〉
Γ

is defined as

〈
f(q2)

〉
Γ
≡
∫
f(q2)

[
λ(m2

B ,m
2
K∗ , q

2)3/2

q2

]
dq2 . (6.51)

This brings amplitudes |Ti|2 into the same q2 normalisation convention as the Ii angular coef-

ficients12 defined in [98] up to an overall constant which cancels in both (6.48) and (6.49).

The results of these calculations are presented in tables 6.5 and 6.6. Plots of the full q2

dependence are shown for the [1, 6] GeV2 range in Figure 6.6. The form factors used in these

calculations are those described in [190] because they appear to give better small q2 behaviour,

that is to say, the right-handed component at q2 = 0 is smaller than in other available form

factor fits [81, 194]. The uncertainties in the tables and plots are calculated using the method

11The upper index denotes the parity of the operator producing the lepton pair, and the lower index the vector
meson polarisation

12Also frequently known as Ji, e.g. [99, 100]
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Prediction LHCb [200]

Bin/GeV2 P1 S3 P1 S3

[1, 6] −0.037(47) −0.006(7) 0.15+0.39+0.03
−0.41−0.03 0.03+0.07+0.01

−0.07−0.01

[2, 4.3] −0.027(48) −0.003(7) −0.29+0.65+0.02
−0.46−0.03 −0.04+0.10+0.01

−0.06−0.01

[4.3, 6] −0.069(73) −0.013(11)

Table 6.5: P1 and S3 angular observables integrated over standard q2 bins in the recoil range acces-
sible to this calculation. The [4.3, 6] GeV2 bin is included for comparison with [100]. The present
level of experimental uncertainty indicates no deviation from the SM, and indeed the theoretical
prediction is essentially zero in view of those uncertainties. See text for details of the uncertainties.

Bin/GeV2 P1 S3

[1, 2] 0.011(51) 0.002(9)
[2, 3] −0.010(49) −0.001(6)
[3, 4] −0.035(50) −0.004(7)
[4, 5] −0.056(62) −0.010(8)
[5, 6] −0.074(78) −0.014(12)

Table 6.6: Theoretical predictions for P1 and S3 in 1 GeV2 bins. See text for a discussion of the
uncertainties.

described in Section 5.5.1 but in this case there is an additional problem due to extracting the

right-handed form factor from fits given in a parity basis. To allow for this, the right-handed

form factor is assigned an uncertainty of 2.5% of the magnitude of the left-handed form factor,

which is given as the maximum fit error in [81]. Although a different method of fitting is used

in [190] than in [81] the former does not discuss the precision of the fit, but since it uses the

latter as input it seems reasonable to assume the precision of both fits is similar. Unfortunately

ms/mb is also at the percent level, so this assumption makes the uncertainty in the right-

handed short-distance amplitude large, and since the results of Section 6.3 indicate that the O2

contribution is in fact sub-leading, the overall uncertainty in P1 and S3 is dominated by this fit

precision error. These uncertainties are similar to those quoted in [100] as a result of ΛQCD/mb

corrections. It should be possible to reduce them by an order of magnitude if form factors can

be calculated and fitted for the right-handed amplitude separately.

6.9 Conclusions

LCSR has been used to compute the contribution of charm loops emitting a soft gluon to the

B → K∗l+l− decay amplitude at large recoil. The contributions of charm loops exchanging

gluons with the B and K∗ valence quarks are significant because they are not suppressed by

small WC, the Cabibbo angle, or gauge invariance at q2 = 0, as is the factorisable charm

bubble. They therefore represent a potentially significant contribution to the overall branching

fraction. The contribution of hard gluons has been worked out in an inclusive approach in [104]

and that of soft initial-state gluons in [194], so that the present calculation means that the set

of next-to-leading charm bubble diagrams is now in principle complete.
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Figure 6.6: Plot of P1 and S3 estimate including O2 soft gluon effects. See text for a discussion of
the error bands.

It transpires that in fact the amplitude for a soft gluon to be radiated into the final-state

meson is small and is thus not relevant to the overall branching fraction. It is nonetheless

important since it was previously claimed [185] that it could give the dominant contribution to

the right-handed decay amplitude in B → V γ. This has been found not to be the case, although

it still represents a sizeable correction to the short distance right handed amplitude from the

electromagnetic operator O7. The principal result of this calculation is therefore not so much an

accurate calculation of the non-factorisable charm bubble term, since the uncertainties in table

6.2 are substantial compared to the overall result, but the finding that it does not represent a

significant enhancement to the short-distance term, as can be seen in Figure 6.5.

The contribution of the O2 operator with a soft gluon from the initial-state B meson has

been discussed in Section 6.4. Although the attempt there to produce a result quantitatively

comparable to that computed using QCDF in [194] failed due to instability of the sum rules

constructed, the same qualitative features were found, including that this contribution does

not give a contribution to the right-handed amplitude. It also appears that the present state

of knowledge of the three-particle B meson DA is unsatisfactory as the available sum rules for

λ2
E + λ2

H , both as originally developed in [193] and an alternate sum rule given in Section 6.4,

are not numerically stable. This does not mean that large corrections are expected since there

is no reason to believe that the value λ2
E + λ2

H = 0.48 GeV2, derived from equations of motion

in [195], is substantially incorrect; however, it is dependent on the B meson wave-function

model chosen and therefore O(1) corrections are to be expected.

Finally, the new result for the non-factorisable O2 diagram has been applied to produce

updated predictions of CP asymmetries in various B → V γ decays and the P1 and S3 angular

coefficients in B → K∗l+l−. At present, experimental errors in these channels are rather large

in comparison to the theoretical uncertainty, and the theoretical prediction is for a small effect

in all cases. The prediction of the angular coefficients P1 and S3 is obstructed somewhat, due to

the lack of an accurate fit of the right-handed component of B → V form factors over the whole
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q2 range. Computing the right-handed form factor is beyond the scope of this chapter but it

would appear possible to extend [81] to give the required result, and this would be expected to

reduce the error in the right-handed B → V l+l− amplitude by around an order of magnitude

when combined with the results calculated in this chapter, which provide a similar improvement

over the previous inclusive estimate [185] of the non-factorisable charm loop effect.
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Chapter 7

Conclusions

In this thesis, calculations of several new contributions to the closely-related semi-leptonic and

radiative B meson decays have been presented. Although these decays are rare, they play a

crucial role in testing the decays of the b quark because non-perturbative QCD effects are under

good theoretical control, and factorisation and sum rules give predictions with good accuracy.

Despite the fact that they represent only a small class of possible B meson decays, the processes

B → Xγ and B → Xl+l− offer many observables such as asymmetries and angular coefficients,

which can provide independent constraints on the short-distance physics of b quark decays.

Progress in the search for physics beyond the SM in the B sector therefore depends both on

improved measurements of these many different quantities and better theoretical understanding

of the contributions of effective operators to each of them. The variety of observables means

that each can be sensitive to different operators and different quark-level processes induced by

those operators.

The calculation of the chromomagnetic matrix element in Chapter 3 means that the leading

amplitudes for each of the ten operators contributing to semi-leptonic B decays are now known.

That this contribution was not computed previously was due to a breakdown of QCDF due to

the presence of a power-like infrared divergence in one Feynman diagram. The LCSR method

was used to overcome this difficulty, but a new difficulty was encountered not previously seen in

B meson sum rules, that of anomalous thresholds. Whilst these do not lead to any theoretical

problems in the LCSR method, they do make the required analytic continuation more com-

plicated than is usually the case. Unfortunately such difficulties are to be expected in future

multi-loop sum rule calculations, and indeed they were encountered again in the calculation of

a certain higher twist WA diagram in Chapter 5.

Although the chromomagnetic operator gives a small contribution to the overall branching

fraction and is also not a major contributor to the isospin asymmetry computed in Chapter

5, this development means that should deviations from SM predictions be found it would be
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possible to assess whether new contributions to the C8 WC are responsible. In light of data

showing unexpectedly large CP violation in hadronic D decays and the fact that an enhanced

C8 WC could be responsible [150], Chapter 4 put forward an argument that should the future

measurement of the CP asymmetry in D → V γ also be above expectations in the SM, new

contributions to C8 must be considered a strong possibility, since it is not as well constrained

as four-quark operators by the overall branching fraction, and the associated chromomagnetic

matrix element has a large strong phase necessary to produce observable direct CP violation

when the dominant amplitude is real. Unfortunately, recent data from LHCb on the direct CP

asymmetries in D decays did not confirm the earlier measurements and there is now much less

reason to expect new physics to be found through measuring the CP asymmetry of D → V γ

decays. Nonetheless, the points in Chapter 4 remain valid; both the analysis of the leading

amplitude in radiative D meson decays and the argument that the chromomagnetic matrix

element is the most promising candidate should sizeable CP asymmetries eventually be found,

once the decay D → V γ is measured with sufficient accuracy.

The analysis of the isospin asymmetry in B → V decays in Chapter 5 extends prior results

in two orthogonal directions: first, the LCSR method is used for the calculation of WA in

B → V l+l− decays and previous results using QCDF are confirmed, and second, the WA and

QLSS processes are extended to a general basis of four-quark operators to facilitate beyond-

SM analyses in this channel. The isospin asymmetry in B → P decays was also considered,

which included calculation of a new term at sub-leading twist which turns out to give a large

contribution in the SM but violates the oft-made assumption that the pseudoscalar-meson

decay amplitude is equivalent to the longitudinal amplitude for vector-meson decay. The best-

measured isospin asymmetry, that in B → K∗γ, was found to be in good agreement with SM

expectations; however, the decays B → ργ and B → Kl+l− were not. In the case of the ρ

meson it was argued that a large splitting between the CP -averaged B → ργ and B → K∗γ

isospin asymmetries cannot be accommodated in the SM, given that the large WA contribution

separating the two amplitudes is suppressed by an order of magnitude in the CP -average by

CKM factors. In the absence of a combined fit of b → d decays it is not possible to attribute

this discrepancy to a specific cause, but it does appear to be the neutral rather than the charged

decay which is presently at odds with the SM prediction. The situation for the B → K is rather

different, firstly because the measured isospin asymmetry is very large and secondly because the

SM prediction is much smaller than the case of vector final states since the rate is dominated by

the O9,10 operators rather than O7, which has a much smaller WC but is enhanced, along with

the isospin-violating WA terms, by the photon pole in B → V γ decays. An isospin asymmetry

on the 40% level in B → Kl+l− decays would therefore imply an enhancement of an order-of-

magnitude in one of the operators contributing to isospin violation, and such a large deviation

from SM expectations would be expected to show up in other channels. It was however pointed

out that by a careful choice of the Lorentz structure of an effective operator it can be made to
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contribute to only the vector or pseudoscalar case.

Chapter 6 is centred on the calculation of radiative and semi-leptonic B meson decays

through a charm-quark loop induced by the O2 operator, where a soft gluon is emitted into

the final-state meson. This contribution has been a significant source of uncertainty in certain

observables for some years since the amplitudes to emit left- and right-handed photons have

comparable magnitudes, and it had been thought that it could dominate the right-handed rate.

The main contribution of the improved calculation presented here is that in spite of the fact that

its uncertainty is large in comparison to its own magnitude, it reduces the overall uncertainty

in the right-handed decay rate substantially, because it has been shown not to be the dominant

term. Unfortunately, since up until now published fits of the B → V form factors have not used

the left-right polarisation basis, estimating the right-handed matrix element accurately is not

straightforward. A computation of the right-handed form factor amplitude should be possible,

although LCSR must be used since QCDF cannot be easily extended to power-suppressed

corrections, and would represent the next step in reducing the theoretical uncertainty in the

relevant angular observables P1 and S3. The computation of time-dependent CP asymmetries

fortunately avoids such problems because the form factors are known to preserve the short-

distance helicity structure exactly for the on-shell photon, and therefore predictions of these

quantities with percent-level accuracy are possible.

The way forward from these results is mainly a case of waiting for further experimental

data, since the majority of theoretical predictions given in this thesis are already ahead of

experimental precision. There are exceptions in the isospin asymmetry of B → ργ and B →
Kl+l− where there is a significant tension between the current measurements and theoretical

expectations, but given past experience, such as in the case of the CP asymmetry in hadronic

charm decays discussed in Chapter 4 where new data has shifted the world average result

significantly, it would seem sensible not to draw firm conclusions at this stage. Nonetheless

there remain open theoretical challenges in this area: sub-leading power corrections and αs

corrections are not well-known in all cases, and a calculation of the QLSS terms and non-

factorisable WA using LCSR would reduce the theoretical uncertainty in the isospin asymmetry

and right-handed amplitudes significantly, although it is expected that this would be obstructed

by anomalous thresholds. The QLSS diagram in particular is of interest because an LCSR

calculation of that topology would also include the soft initial-state gluon contribution through

the O2 operator, discussed in Chapter 6, which has been claimed to give a significant correction

to the overall branching fraction [194]. That statement however was dependent on B meson

wave-function models and confirmation through an alternative approach would be significant.

Similarly, an update of LCSR form factor estimates in the helicity rather than the parity basis

would reduce the large uncertainties in the P1 angular observable.

167



168 James Lyon

168



Appendix A

Definitions

As explained in Section 2.1, the convention used in this thesis for the Levi-Civita tensor is

different from that used in FeynCalc [25] by default. The choice of convention implies the sign

of the trace

Tr{γµγνγργσγ5} = 4iεµνρσ , (A.1)

and fortunately this is configurable in FeynCalc using the code

1 Tr[GA[a,b,c,d,5]]

2 SetOptions[Tr, LeviCivitaSign -> 1];

3 SetOptions[DiracTrace, LeviCivitaSign -> 1];

4 Tr[GA[a,b,c,d,5]]

which should print

1 −4iεabcd

2 4iεabcd

to indicate that the convention has been changed.
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Appendix B

Distribution amplitudes

In this appendix the distribution amplitudes used throughout this thesis are collected.

For further references see the classic review [82], the LCSR review [105] and the thorough

paper on higher twist DA [70].

B.1 Light meson DA

The 2-particle DA for the pseudoscalar at twist-2 (φK) and -3 (φp,σ) (e.g. [201]) is given by

〈K(p) | s̄(x)a[x, z]q(z)b | 0〉 =

∫ 1

0

duei(up·x+ūp·z)

[
i
fK
4Nc

[/pγ5]baφK(u)

−i µ
2
K

4Nc
[γ5]baφp(u)− i µ

2
K

24Nc
pµ(x− z)ν [σµνγ5]baφσ(u)

]
+ higher twist ,

(B.1)

where a, b are Dirac indices, ū ≡ 1 − u, µ2
K ≡ fKm

2
K/(ms + mq) and the [x, z] represents a

QCD Wilson line to make the matrix element gauge invariant. The asymptotic forms of the

DA functions are

φK(u) = φσ(u) = 6ūu φp(u) = 1 . (B.2)

From the appendix of [93] it is seen that upon neglecting quark masses and three-particle

DAs, equations of motion constrain φp,σ(u) to their asymptotic forms. φK(u) is expanded in

Gegenbauer moments as usual.
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The 2-particle DA for the vector meson at twist-2 (φ‖,⊥) and -3 (g
(v,a)
⊥ ) (e.g. [81]) is

〈K∗(p, η) | s̄(x)a[x, z]q(z)b | 0〉 =

∫ 1

0

du ei(up·x+ūp·z)

{
f⊥K∗

4Nc

[
(/η/p)baφ⊥(u)

− i
2

(1)ba(η · (x− z))m2
K∗h

(s)
‖ (u)− i(σµν)bap

µ(x− z)ν η · (x− z)
(p · (x− z))2

m2
K∗h

(t)
‖ (u)

]

+
mK∗fK∗

4Nc

[
(/p)ba

η · (x− z)
p · (x− z)φ‖(u) +

(
/η − /p

η · (x− z)
p · (x− z)

)
ba

g
(v)
⊥ (u)

+
1

4
εµνρση

νpρ(x− z)σ (γµγ5)ba g
(a)
⊥ (u)

]}
+ higher twist .

(B.3)

The asymptotic DAs are

φ⊥(u) = φ‖(u) = g
(a)
⊥ (u) = h

(s)
‖ (u) = 6ūu

g
(v)
⊥ (u) =

3

4

(
1 + (u− ū)2

)
h

(t)
‖ (u) = 3(u− ū)2 . (B.4)

In fact, these functions overparametrise the K∗ state and are related by QCD equations of

motion [70], the use of which in calculating B meson weak annihilation is described in Section

5.3.2.

B.1.1 Three particle distribution amplitudes

The leading twist-3 distribution amplitudes for vector mesons are [127]

〈0|q̄2(z)gG̃µν(vz)γαγ5q1(−z)|V (p, η)〉 = −fVmV T
3
αµνA(v, pz) +O(m3

V ) (B.5)

〈0|q̄2(z)gGµν(vz)γαq1(−z)|V (p, η)〉 = +ifVmV T
3
αµνV(v, pz) +O(m3

V ) (B.6)

〈0|q̄2(z)gGµν(vz)σαβq1(−z)|V (p, η)〉 =
1

2
f⊥V m

2
V

η · z
p · z T

4
αβµνT (v, pz) +O(m3

V ) , (B.7)

where G̃µν = 1/2εµναβG
αβ and the T 3,4 tensors are given by

T 3
αµν = pα[pµη

(λ)
⊥ν − pνη

(λ)
⊥µ]

T 4
αβµν = pαpµg

⊥
βν − pβpµg⊥αν − pαpνg⊥βµ + pβpνg

⊥
αµ .

At m2
K∗ = 0 identical results are produced with the replacements η⊥ → η and g⊥ → g. The

distribution amplitudes are parametrised as

[A,V, T ](v, pz) =

∫ 1

0

dα1

∫ 1

0

dα2

∫ 1

0

dα3δ(1− α1 − α2 − α3)e−ipz(α2−α1+vα3)[A,V, T ](α) ,
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and the conformal expansion of the DA reads

A(α) ≡ φ̃‖3;V = 360α1α2α
2
3(ζ
‖
3;V + λ̃

‖
3;V (α1 − α2) + ω̃

‖
3;V

1

2
(7α3 − 3) + . . . )

V(α) ≡ φ‖3;V = 360α1α2α
2
3(κ
‖
3;V + ω

‖
3;V (α1 − α2) + λ

‖
3;V

1

2
(7α3 − 3) + . . . )

T (α) ≡ φ⊥3;V = 360α1α2α
2
3(κ⊥3;V + ω⊥3;V (α1 − α2) + λ⊥3;V

1

2
(7α3 − 3) + . . . ) . (B.8)

The notation with φ‖ has been used in the recent literature [127, 186] to make the notation

more systematic. The values used in thesis for the K∗ are [127, table 1]

ζ
‖
3K∗ = 0.023(8) λ̃

‖
3K∗ = 0.035(15) ω̃

‖
3K∗ = −0.07(3)

κ
‖
3K∗ = 0.000(1) ω

‖
3K∗ = 0.10(04) λ

‖
3K∗ = −0.008(4)

κ⊥3K∗ = 0.003(3) ω⊥3K∗ = 0.3(1) λ⊥3K∗ = −0.025(20) , (B.9)

at µ = 1 GeV. The parameters κ and λ are zero for the vector mesons which have definite

G-parity such as the ρ. Here these parameters are small since G-parity breaking is small but

non-zero in the K∗.

B.2 Photon DA

The leading twist 2 photon DA [165] is:

〈γ(q, ε)|q̄a(x)[x, z]qb(z)|0〉 = ie

∫ 1

0

d4yεµe
iq·y 〈0|T q̄a(x)[x, z]qb(z)j

µ
em(y)|0〉

=
iQq 〈q̄q〉

4Nc

∫ 1

0

duei(uq·x+ūq·z)(φγ(u)σαβεαqβ + (x− z)·ε)ba + higher twist . (B.10)

The first and second term on the last line correspond to the left-hand side of equation [165]

and second term on the right-hand side of the same equation. The reason (B.10) is not gauge

invariant is that [x, z] does not contain the QED Wilson line as in the expansion of the external

field to first order. The use of a polarisation vector εµ implies the use of the Lorentz gauge

Aµ → εµe
iq·x where ε · q = 0. It is however possible to check gauge invariance of results

computed using this formula by the replacement

εµ → εµ −
n · ε
n · q qµ (B.11)

which allows axial gauges to be accessed. Note that the perturbative photon contribution must

be included in addition to the photon DA since it is a separate term in the OPE. The asymptotic

photon DA is given by

φγ(u) = 6χūu , (B.12)

173



174 James Lyon

where χ is the magnetic susceptibility of the quark condensate, calculated to be χ = −3.15(10)GeV−2

at µ = 1GeV in [165] (the sign is adjusted to the convention of the covariant derivative (2.1)).

B.3 B-meson DA

The leading order two particle B meson DA and its associated definitions are given in Section

5.4.5. Here the complete definition is given along with the wave functions φ± commonly used,

which are the model functions defined in [193]

φ+(ω) =
ω

ω2
0

e−ω/ω0 φ−(ω) =
1

ω0
e−ω/ω0 , (B.13)

with ω0 = 2ΛHQET/3 ' 0.4GeV. Note that these two functions are related by Wandzura-

Wilczek type equations of motion [118]. The moment functions appearing in (5.35) are

λ−1
± (q2) =

∫ ∞
0

dl+
φ±(ω)

l+ − q2/mB − iε
(B.14)

and they may owing to the choice of wave function (B.13) be integrated analytically

λ−1
+ (q2) =

1

ω0

[
1 + ye−y(iπ − Ei(y))

]
, λ−1

− (q2) =
e−y

ω0
(iπ − Ei(y)) , (B.15)

where y = q2/ω0mB and the function Ei is the exponential integral.

B.4 Fermion propagator on the light-cone in a background field

The massive propagator in a gluonic background field on the light-cone can be obtained in the

Fock-Schwinger gauge x ·A = 0 using the heat kernel method presented in the appendix of [76].

The propagator is expanded in powers of x2

〈0|Tc(x)c̄(0)|0〉A = i
∫

d4k
(2π)4 e

−ik·xSc(k)

Sc(k) = S
(0)
c (k) + S

(2)
c (k) + . . . , (B.16)

where only the first correction S
(2)
c is needed:

S(0)
c =

/k +mc

k2 −m2
c

,

S(2)
c = −g

2

∫ 1

0

dv

(
vσ ·G(vx)

/k +mc

(k2 −m2
c)

2
+ v̄

/k +mc

(k2 −m2
c)

2
σ ·G(vx)

)
. (B.17)
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The computation of Chapter 6 can also be performed using the perturbative propagator without

a light cone expansion, derived using the Fock-Schwinger gauge relationAµ(x) =
∫ 1

0
vxρGρµ(vx)dv:

S(2)
c = i

∫
d4y

∫ 1

0

vdv gGµν(vy)

∫
d4l

(2π)4
eiy.(k−l)

/k +mc

k2 −m2
c

γµ
/l +mc

l2 −m2
c

γν
/l +mc

l2 −m2
c

(B.18)

This has been confirmed to give the same results as those in Chapter 6 computed using the

light cone expansion of the quark propagator.

B.5 Anomalous dimensions

Here the one-loop anomalous dimensions relevant to DA parameters and local OPE condensates

used in this thesis are collected. The convention for the one-loop anomalous dimensions is chosen

such that

c(q2) = c(µ2)

(
αs(q

2)

αs(µ2)

)−γc/2β0

, (B.19)

where β0 = (11Nc − 2Nf )/3 is the leading term in the QCD beta function as usual. Some

authors define this equation with the exponent as ±γc/β0 instead, e.g. [70].

Anomalous dimensions for local operators, as well as associated coefficients specifically the

quark mass and meson tensor decay constants such as f⊥K∗ , are

γq̄q = −γm = 6CF e.g. [202]

γq̄σµνq = γf⊥ = −2CF [203]

γgsq̄Gq = CF [204], (B.20)

where of course CF = 4/3. The vector current, and thus the meson decay constants fK(∗) ,

have no anomalous dimension. By construction, the anomalous dimension of the magnetic

susceptibility appearing in the photon DA is given by, e.g. [77]:

γχ ≡ γq̄σµνq − γq̄q = −8CF . (B.21)

Anomalous dimensions for Gegenbauer coefficients appearing in the pseudoscalar and vector

meson DAs are:

γ⊥n = −8CF

(
ψ(n+ 1) + γE −

3

4
+

1

n+ 1

)
[70, (3.57)]

γ‖n = γn = −8CF

(
ψ(n+ 2) + γE −

3

4
− 1

2(n+ 1)(n+ 2)

)
[70, (4.49)], [201, (3.6)],

where n indicates it is associated with the nth coefficient, ψ is the digamma function and γE is

the Euler–Mascheroni constant as usual. γ
⊥,‖
n are anomalous dimensions for the vector meson
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DAs φ⊥,‖(u) and γn is for the pseudoscalar DA φK(u). Note that these anomalous dimensions

are for combinations like f⊥K∗a
⊥
n , not the Gegenbauer moments themselves.

γ
‖
n = γn is a consequence of both being the anomalous dimension of the same light cone

operator, cf. Section 2.10. The appearance of a special function in a one loop anomalous

dimension is explained by [83]

ψ(n) + γE =

n−1∑
k=1

1

k
(B.22)

and thus γ⊥0 = γq̄σµνq and γ
‖
0 = γq̄γµq = 0 reduce to the local operator results.

Anomalous dimensions for the three-particle DAs are more complex due to mixing between

the A and V expansion parameters beyond leading twist and therefore they are not listed

here. They are available from [127] but it should be noted that a different convention for the

anomalous dimensions is employed there: the exponent used in equations analogous to (B.19)

is γ/β0 and therefore the anomalous dimensions listed there must be scaled by a factor of −2

so that they can be used in (B.19).
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Dyson-Schwinger equations (DSEs)

DSEs [58–60] were briefly mentioned in the main text, and so a brief discussion of their deriva-

tion is included here. In Minkowski space DSEs generally take the form

〈
Ψ

∣∣∣∣T { δF [φ]

δφi(x)
+ iF [φ]

δS[φ]

δφi(x)
}
∣∣∣∣Φ〉 = 0 (C.1)

where F [φ] is an arbitrary polynomial of the field operators φi(x), and S[φ] is the classical

action. Ψ and Φ are arbitrary external states. The equation (C.1) follows straightforwardly for

Ψ = Φ = 0 from the path integral representation of correlation functions, since〈
0

∣∣∣∣T { δF [φ]

δφi(x)
+ iF [φ]

δS[φ]

δφi(x)
}
∣∣∣∣0〉 ∝ ∫ Dφ( δF [φ]

δφi(x)
+ iF [φ]

δS[φ]

δφi(x)

)
exp(iS[φ])

=

∫
Dφ δ

δφi(x)
F [φ] exp(iS[φ]) = 0

(C.2)

where
∫
Dφ denotes a path integral. This derivation of course assumes that the integral of a

total derivative is zero, which is indeed the case when boundary terms vanish, as is generally

assumed. It is however not always the case; DSEs for ghosts in Yang-Mills theory must be

derived via a different method [205] in order to be non-perturbatively valid owing to the Gribov

problem [206]. That this equation also holds for transitions between arbitrary states follows

from the fact that external states may be represented by boundary conditions on space-like

surfaces [59], and therefore the equation holds provided that such surfaces are well separated

from the point x.

In DSE based calculations the usual next step is to define the connected generating functional

W through

Z[J ] = eW [J] =

∫
Dφ exp

(
iS[φ] +

∫
ddxJ(x)φ(x)

)
(C.3)

and then define the one-particle irreducible generating functional Γ as the Legendre transform

of W [J ]. These functionals are more useful than the partition function Z[J ] in most cases
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because they reveal considerable internal structure of correlation functions, they are not as

general as Z[J ] and (C.1), which because they apply to transitions between arbitrary states may

be considered equations between time ordered products of operators. The definition W [J ] =

logZ[J ] can only be applied to transitions between overlapping states, i.e. usually forward

scattering problems, since for non-overlapping states Z[0] = 0. This breakdown is hardly

surprising since the resulting DSEs on the connected generating functional W are non-linear

and the utility DSEs requires that different derivatives of W commute with each other which

is guaranteed by only considering expectation values rather than operators.
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Appendix D

Additional chromomagnetic operator ma-

terial

D.1 t
(P )
H (u) formula

t
(P )
H (u) =

∑
i∈{a,b,c,d}

[
bPi Bi + cPi Ci

]
(D.1)

bPa =
1

2
(u− 1)−1m−1

b P 2(q2)−1((u− 1)P 2 − uq2)−1(u(P 2 − q2)2 + 4(P 2 − p2
B)q2)−2

((P 2 − p2
B)2 + 2u(p2

B + q2)(P 2 − p2
B) + u2(p2

B − q2)2)−1(m2
b(u

2(Qb(P
2 − q2)

(−14q2(P 2)2 + (P 2)3 + (8p2
B − 5q2)q2P 2 + 2p2

B(q2)2)−Qq(4(16p2
B − 13P 2)q2

(P 2)2 + (P 2)4 + 6(3P 2 − 4p2
B)(11P 2 − 12p2

B)(q2)2 + 4(40p2
B − 53P 2)(q2)3 + 33

(q2)4))(P 2 − p2
B)2 − 2uq2((Qb + 4Qq)(P

2)2 − (Qb + 56Qq)q
2P 2 + 4Qqq

2(16p2
B + 5

q2))(P 2 − p2
B)3 − 16Qq(q

2)2(P 2 − p2
B)4 + 5u6(Qb −Qq)(p2

B − q2)2(P 2 − q2)4 + u5

(P 2 − q2)2(−2(8(Qb −Qq)(p2
B)2 + (9Qb − 7Qq)q

2p2
B + (13Qb − 3Qq)(q

2)2)

(P 2)2 + 2(5Qb(p
2
B + q2)−Qq(5p2

B + q2))(P 2)3 + q2((41Qb − 72Qq)(p
2
B)2 + 2(41

Qq − 6Qb)q
2p2
B + (31Qb − 46Qq)(q

2)2)P 2 + 2Qqq
2(−32q2(p2

B)2 + 20(p2
B)3 + 17(q2)2

p2
B + (q2)3)−Qbq2(−17q2(p2

B)2 + 14(p2
B)3 + 22(q2)2p2

B + (q2)3)) + u3

(p2
B − P 2)(2Qq((72(p2

B)2 − 104P 2p2
B + 33(P 2)2)q2(P 2)2 + (4p2

B − 3P 2)

(P 2)4 + 2(−176P 2(p2
B)2 + 64(p2

B)3 + 152(P 2)2p2
B − 47(P 2)3)(q2)2 + 2(12

(p2
B)2 − 60P 2p2

B + 61(P 2)2)(q2)3 + (44p2
B − 63P 2)(q2)4 + 5(q2)5) +Qb

(P 2 − q2)(q2(69p2
B + 50q2)(P 2)2 − (8p2

B + 29q2)(P 2)3 + 6(P 2)4 + q2(−36
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(p2
B)2 − 62q2p2

B + 3(q2)2)P 2 + p2
B(10p2

B − 3q2)(q2)2)) + u4(q2((201Qb − 556

Qq)q
2(p2

B)2 + 8(5Qb − 16Qq)(p
2
B)3 + 2(113Qb + 2Qq)(q

2)2p2
B + (64Qb − 171Qq)

(q2)3)(P 2)2 + q2(4Qq(70(p2
B)2 + 71q2p2

B + 30(q2)2)−Qb(129(p2
B)2 + 222q2

p2
B + 133(q2)2))(P 2)3 + (18(Qb −Qq)(p2

B)2 + 58(2Qb − 3Qq)q
2p2
B + (97Qb − 79Qq)

(q2)2)(P 2)4 + (22(Qq −Qb)p2
B + 4(7Qq − 8Qb)q

2)(P 2)5 + 5(Qb −Qq)

(P 2)6 + (q2)2(2Qq(−68q2(p2
B)2 + 208(p2

B)3 + 103(q2)2p2
B + 14(q2)3)−Qb

(129q2(p2
B)2 + 66(p2

B)3 + 98(q2)2p2
B + (q2)3))P 2 + (q2)2(13Qb

(p2
B)2q2(2p2

B + 3q2)−Qq(50(p2
B)2(q2)2 + 22p2

B(q2)3 + (q2)4 − 32(p2
B)3

q2 + 80(p2
B)4))))u−1 + (P 2 − p2

B)((p2
B − P 2)(Qb(q

2(24(p2
B)2 + 67q2

p2
B + (q2)2)(P 2)2 − q2(25p2

B + 17q2)(P 2)3 − (p2
B − 13q2)

(P 2)4 + (P 2)5 + (q2)2(−50(p2
B)2 − 35q2p2

B + 54(q2)2)P 2 − 2p2
B(q2)3(p2

B + 15

q2))−Qq(P 2 − p2
B)(−2(48(p2

B)2 − 80P 2p2
B + 29(P 2)2)(q2)2 + 4(27P 2 − 8p2

B)

(q2)3 + 33(q2)4 + 12(P 2)3q2 + (P 2)4))u2 + (2Qq(P
2 − p2

B)((−24(p2
B)2 + 40

P 2p2
B − 15(P 2)2)q2(P 2)2 + (P 2)5 + 2(80P 2(p2

B)2 − 32(p2
B)3 − 68(P 2)2p2

B + 29

(P 2)3)(q2)2 − 2(4(p2
B)2 − 44P 2p2

B + 59(P 2)2)(q2)3 + (69P 2 − 56p2
B)

(q2)4 + 5(q2)5) +Qb(−q2(285q2(p2
B)2 + 60(p2

B)3 + 214(q2)2p2
B + 9(q2)3)

(P 2)2 + q2(123(p2
B)2 + 250q2p2

B + 69(q2)2)(P 2)3 − q2(92p2
B + 71q2)(P 2)4 + (2

p2
B + 23q2)(P 2)5 − 2(P 2)6 + (q2)2(159q2(p2

B)2 + 130(p2
B)3 + 90(q2)2p2

B − 30

(q2)3)P 2 + p2
B(q2)3(−50(p2

B)2 − 57q2p2
B + 24(q2)2)))u3 + (q2((201Qb − 292

Qq)q
2(p2

B)2 + 8(7Qb − 8Qq)(p
2
B)3 + 2(101Qb − 58Qq)(q

2)2p2
B + (74Qb − 221Qq)

(q2)3)(P 2)2 + q2((136Qq − 111Qb)(p
2
B)2 + 2(98Qq − 93Qb)q

2p2
B + 5(40Qq − 23Qb)

(q2)2)(P 2)3 + (6(Qb −Qq)(p2
B)2 + 10(8Qb − 9Qq)q

2p2
B + (67Qb − 97Qq)

(q2)2)(P 2)4 + 2(5(Qq −Qb)p2
B − 8Qbq

2 + 10Qqq
2)(P 2)5 + 3(Qb −Qq)

(P 2)6 − (q2)2((87Qb + 88Qq)q
2(p2

B)2 + 2(57Qb − 112Qq)(p
2
B)3 + 2(61Qb − 121Qq)

(q2)2p2
B + (7Qb − 52Qq)(q

2)3)P 2 + (q2)2(−(9Qb + 38Qq)(p
2
B)2(q2)2 + 2

(18Qb − 25Qq)p
2
B(q2)3 + (Qq − 6Qb)(q

2)4 + (58Qb + 32Qq)(p
2
B)3q2 − 48Qq

(p2
B)4))u4 + (P 2 − q2)2(−2(4(Qb −Qq)(p2

B)2 + (7Qb − 5Qq)q
2p2
B + (7Qb − 9

Qq)(q
2)2)(P 2)2 + 6(Qb −Qq)(p2

B + q2)(P 2)3 + q2((33Qb − 40Qq)

(p2
B)2 + (46Qq − 24Qb)q

2p2
B + 3(9Qb − 14Qq)(q

2)2)P 2 + q2((29Qb − 40Qq)q
2

(p2
B)2 + 6(4Qq − 3Qb)(p

2
B)3 + 22(Qq −Qb)(q2)2p2

B − (Qb − 6Qq)(q
2)3))

u5 + 3(Qb −Qq)(p2
B − q2)2(P 2 − q2)4u6 − 2(P 2 − p2

B)2q2(Qb((p
2
B − q2)(P 2)2 + 2

(P 2)3 + 7q2(p2
B + 3q2)P 2 − 6p2

B(q2)2)− 4Qq(P
2 − p2

B)((P 2)2 + 2q2P 2 + 5
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(q2)2))u− 4(P 2 − p2
B)3(4Qqp

2
B + 3QbP

2 − 4QqP
2)(q2)2)) (D.2)

bPb =− 2(u− 1)−1m−1
b P 2(q2)−1(Qb −Qq)(q2(q2 − 4p2

B) + 2P 2q2 + (P 2)2)−1(m2
b

(P 2 − q2) + (P 2 + q2)(P 2 − p2
B)) (D.3)

bPc =
1

2
(u− 1)−1u−1m−1

b QbP
2(p2

B − q2)−1((u− 1)q2 − uP 2)−1(up2
B − uq2 + q2)−1(u(P 2 − q2)2 + 4

(P 2 − p2
B)q2)−2(((P 2)3((3− 7u)u(p2

B)2 + 2(u(17u− 28) + 5)q2p2
B − 3(u− 1)(9u− 14)(q2)2)

u2 + (P 2)4(−5up2
B + p2

B + 5(u− 1)q2)u3 + (P 2)2(2(13u− 5)(p2
B)3u2 + (−57u2 + 75u− 14)

(p2
B)2q2u+ 2(u(3u(u+ 4)− 28) + 7)p2

B(q2)2+

(u− 1)(u(25u− 88) + 78)(q2)3)u+ P 2q2(−2(u(26u− 61) + 11)

(p2
B)3u2 + (5u(3u− 4)(9u− 19)− 46)(p2

B)2q2u−

2((u− 1)u(u(47u− 164) + 114) + 2)p2
B(q2)2 + (u− 1)(u(u(11u− 52) + 50)− 4)

(q2)3) + q2(−2u(7u− 2)(q2)4(u− 1)2 + (u(u(59u− 12)− 38) + 4)

p2
B(q2)3(u− 1) + (4− u(u(u(71u+ 93)− 294) + 138))

(p2
B)2(q2)2 + 16(1− 5u)u2(p2

B)4 + 2u(u(13u(u+ 8)− 115) + 14)(p2
B)3q2))m2

b + u(up2
B − u

q2 + q2)((−p2
B(10(p2

B)2 − 9P 2p2
B + (P 2)2)(P 2)2 − (−225P 2(p2

B)2 + 124

(p2
B)3 + 78(P 2)2p2

B + 51(P 2)3)(q2)2 + (63(p2
B)2 − 152P 2p2

B + 121(P 2)2)

(q2)3 + (13p2
B − 31P 2)(q2)4 + 4(q2)5 + (2p2

B + P 2)(−41P 2(p2
B)2 + 24(p2

B)3 + 16

(P 2)2p2
B + 5(P 2)3)q2)u2 + (p2

B − q2)(P 2 − q2)2(−6(p2
B)2 + 3P 2p2

B + 9q2p2
B + 5

(P 2)2 + 2(q2)2 − 13P 2q2)u3 + 2q2(3(2(p2
B)2 + 5q2p2

B − 23(q2)2)(P 2)2 + 2

(p2
B + 7q2)(P 2)3 + (−66q2(p2

B)2 − 17(p2
B)3 + 123(q2)2p2

B + 8(q2)3)P 2 − 60

(p2
B)2(q2)2 − 4p2

B(q2)3 + 8(p2
B)4 − (q2)4 + 41(p2

B)3q2)u− 2(P 2 − p2
B)

(q2)2(8(p2
B)2 − 7P 2p2

B + 23q2p2
B + (q2)2 − 25P 2q2))) (D.4)

bPd =2m−1
b (P 2Qq((P

2)2 − p2
Bq

2)−1(q2(q2 − 4p2
B) + 2P 2q2 + (P 2)2)−1(2u(P 2 − p2

B)

(p2
B + q2) + (P 2 − p2

B)2 + u2(p2
B − q2)2)−1(m2

b(u(p2
B − q2)2(q2(p2

B + P 2) + P 2

(P 2 − 3p2
B)) + (P 2 − p2

B)2(P 2(3p2
B + q2) + q2(q2 − 5p2

B))) + p2
B(p2

B − P 2)(u(3

P 2 + q2)(p2
B − q2)2 − (P 2 − q2)(P 2 − p2

B)(−3p2
B + 2P 2 + q2))) +Qb(m

2
b − p2

B)

(p2
B − P 2)(p2

B − q2)−1((u− 1)q2 − uP 2)−1 + P 2Qq(p
2
B −m2

b)(p
2
B − P 2)(−uP 2 + P 2 + uq2)−1

(p2
Bq

2 − (P 2)2)−1 − (u− 1)−1Qb(p
2
B − q2)−1(q2(q2 − 4p2

B) + 2P 2q2 + (P 2)2)−1

(m2
b(P

2(p2
B + q2) + p2

B(q2 − 4p2
B) + (P 2)2)− p2

B(P 2 − p2
B)(4p2

B + P 2 − q2))) (D.5)

cPa =− 4(u− 1)−1um−1
b P 2Qq(2u(P 2 − p2

B)(p2
B + q2) + (P 2 − p2

B)2 + u2(p2
B − q2)2)−1(m2

b

(−(u+ 1)p2
B + P 2 + uq2) +m4

b + up2
B(p2

B − P 2)) (D.6)

cPb =4(u− 1)−1m−1
b P 2Qq(q

2(q2 − 4p2
B) + 2P 2q2 + (P 2)2)−1(m2

b(−2p2
B + P 2 + q2) +m4

b + p2
B

(p2
B − P 2)) (D.7)
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cPc =(u− 1)−1u−1m−1
b QbP

2(4q2(P 2 − p2
B) + u(P 2 − q2)2)−2(2m4

b(u(q2(9p2
B + q2)− 11P 2

q2 + (P 2)2) + q2(P 2 − p2
B)− 3u2(P 2 − q2)2) + 2(u− 1)um2

b(u(P 2 − q2)2(−3p2
B + 2P 2 + q2) + q2

(P 2 − p2
B)(−6p2

B + 5P 2 + q2)) + u(P 2 − p2
B)(u(P 2)2((2u2 + u− 3)q2 − 2u(u+ 1)p2

B)− 2P 2q2

(u((5− 2u)u+ 1)p2
B + (u(2(u− 3)u+ 1) + 3)q2)+

q2(−2(u(u(u+ 8)− 4)− 3)p2
Bq

2 + 2u(7u+ 1)(p2
B)2 + u(2u2 + u− 3)

(q2)2))) (D.8)

cPd =4(u− 1)−1m−1
b QbP

2(q2(q2 − 4p2
B) + 2P 2q2 + (P 2)2)−1(m4

b + p2
B(P 2 − p2

B)) (D.9)

D.2 C0 imaginary part with up to two massive propagators

In order to make use of the formula (3.44) an equation for ImC0 on the principal branch is

required. This is straightforward to derive from its Feynman parameter integral and is presented

here. The integral representation is given by

C0(p2
1, p

2
2, p

2
3,m

2
0, 0,m

2
2)

=

∫ 1

0

dx

∫ 1−x

0

dy
[
(1− x− y)(xp2

1 + yp2
3 −m2

0) + xyp2
2 − ym2

2 + iε
]−1

=

∫ 1

0

dx

∫ 1

0

dy
[
(1− y)(xp2

1 + (1− x)yp2
3 −m2

0) + xyp2
2 − ym2

2 + iε
]−1

(D.10)

where setting one mass to zero allows a change of integration variables which considerably

simplifies the problem. The imaginary part is recovered from the well-known relation (3.35)

ImC0(p2
1, p

2
2, p

2
3,m

2
0, 0,m

2
2)

= −π
∫ 1

0

dx

∫ 1

0

dyδ
(
(1− y)(xp2

1 + (1− x)yp2
3 −m2

0) + xyp2
2 − ym2

2

)
= −π

∫ 1

0

dy
Θ(ȳ(p2

1 −m2
0) + y(p2

2 −m2
2))−Θ(ȳ(yp2

3 −m2
0)− ym2

2)

ȳ(p2
1 − yp2

3) + yp2
2

(D.11)

The regions where the step functions are non-zero are given by the inequalities

y(p2
2 − p2

1 +m2
0 −m2

2) + p2
1 −m2

0 > 0 (D.12)

−y2p2
3 + y(p2

3 +m2
0 −m2

2)−m2
0 > 0 (D.13)

The two step functions can be treated entirely separately and it is a straightforward matter in

computer code to intersect the constraints (D.12) and (D.13) with the range [0, 1] to reduce
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(D.11) to a pair of integrals of the form

∫ y2

y1

dy

ȳ(p2
1 − yp2

3) + yp2
2

=
1√

λ(p2
1, p

2
2, p

3
3)

log

[
(y2 − y−)(y1 − y+)

(y1 − y−)(y2 − y+)

]
(D.14)

y± are given by the roots of ȳ(p2
1 − yp2

3) + yp2
2 = 0, explicitly:

y± =
p2

1 + p2
3 − p2

2 ±
√
λ(p2

1, p
2
2, p

2
3)

2p2
3

(D.15)

Note that the square root of the Källén function obeys
√
λ(p2

1, p
2
2, p

2
3) = p2

3(y+ − y−) and

provided that this constraint is maintained exchanging y+ with y− does not alter the value of

(D.14), so there is no possible issue with the branch choice of the square root.

The case p2
3 = 0 requires special treatment. First, note that the second inequality becomes

ȳm2
0 + ym2

2 < 0 and this cannot be satisfied for real masses. The first inequality is unaffected.

Then the integral (D.14) is replaced by

∫ y2

y1

dy

ȳp2
1 + yp2

2

=
1

p2
2 − p2

1

log

(
y2 + yS
y1 + yS

)
(D.16)

where yS =
p2

1

p2
2−p2

1
.

The entire computation of (D.11) therefore only requires calculating a few square roots and

logarithms. The results of this method have been compared to the output of LoopTools [111]

and found to be the same; the benefit of not using LoopTools is that computing only the imag-

inary part is considerably computationally cheaper and thus the complicated two dimensional

integrals implied by appendix D.1 take much less time.
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Appendix E

Additional isospin asymmetry material

E.1 Weak annihilation formulae

Functions defined on the right-hand side of (5.21) are listed here. Any function not listed is zero,

and which functions are zero can be inferred from table 5.1 plus the additional consideration

that each operator will either couple to the V or A, 0 basis tensors according to its parity. The

functions ρCb an ρCd are the dispersion representations of the Passarino–Veltman functions Cb

and Cd in (3.17) and are therefore given by (3.45) and (3.30) respectively, given that:

ρCb =ρCa |u=1 ρCd =ρCc |u=1 . (E.1)

The functions in (5.21) which apply at |q2|> 1GeV2 are given in subSection E.1.1, and the

functions in (5.24) which apply at q2 = 0 are given in subSection E.1.2.

E.1.1 WA formulae |q2|> 1GeV2

Defining, as before, d ≡ −
√

2mBmV√
q2E

, the formulae for WA are:

(E.2)fq2,A(q2, u) = 2π2φ⊥(u)

(
Qq

(u− 1)m2
B − uq2

− Qb
um2

B − uq2 + q2

)

(E.3)d · fq2,0(q2, u) =
32π2m2

K∗m
2
B

(m2
B − q2)2

h
(s)′

‖ (u)

[
ūQb

um2
B + ūq2

− uQq
ūm2

B + uq2

]

(E.4)fq4,V (q2, u) = −2π2φ⊥(u)

(
Qb

um2
B − uq2 + q2

+
Qq

−um2
B +m2

B + uq2

)
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(E.5)

ρq5,V (q2, s) =
3

2
mbfK∗mK∗

(
s
(
s− q2

)3)−1
((
m2
b − s

)
(Qb −Qq)

(
s2 −

(
q2
)2)

− sQb
(
2m2

bq
2 − sq2 + s2

)
log

(
sm2

b

m2
bq

2 − sq2 + s2

)
+ sQqq

2
(
2m2

b + q2 − s
)

log

(
s
(
m2
b + q2 − s

)
m2
bq

2

))

(E.6)V q5,V (q2) =
2π2fK∗mK∗

(
m2
bQq −Qbq2

)
m2
bq

2

ρq6,A(q2, s) =
3

2
mbfK∗mK∗

(
s2
(
s− q2

)3 (
q2 −m2

B

))−1

((
m2
b − s

) (
s

− q2
) (
m2
b (Qb −Qq)

(
−sq2 +

(
q2
)2

+ 2s2
)
− s

(
s− q2

) (
s (Qb −Qq)− 2Qbq

2
))

+ s2Qqq
2
(
−2m2

b

(
s− q2

)
+ 2m4

b +
(
s− q2

)2)
log

(
s
(
m2
b + q2 − s

)
m2
bq

2

)

+ s2Qb

(
−2sm2

b

(
s− q2

)
− 2m4

bq
2 + s

(
s− q2

)2)
log

(
sm2

b

m2
bq

2 − sq2 + s2

))
(E.7)

(E.8)V q6,A(q2) = −
2π2fK∗mK∗

(
−m2

bq
2 (Qb − 3Qq) +m4

bQq +Qb
(
q2
)2)

m2
bq

2 (m2
B − q2)
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u(um2
B + ūq2)2
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E.1.2 WA formulae q2 = 0

ρ̃q,γ5,V (s) =
2π2fK∗mK∗Qqφγ

(
m2
b

s

)
s
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E.2 Wilson coefficients in B0 → ρ0 decay

Here the formulae for ãdi omitted from Section 5.6.1 are collected.

ãd2 =ad2 +
1

6
(−au2 − au3 + 4au6 − 4au7 + 3au10) +

2

9
(−a8u

2 − a8u
3 + 4a8u

6 − 4a8u
7 + 3a8u

10 )

+
1

12
(−ad2 − ad3 + 4ad6 − 4ad7 + 3ad10) +

1

9
(−a8d

2 − a8d
3 + 4a8d

6 − 4a8d
7 + 3a8d

10)

(E.26)

ãd4 =ad4 +
1

6
(−au1 − au4 + 4au5 − 4au8 + 3au9 ) +

2

9
(−a8u

1 − a8u
4 + 4a8u

5 − 4a8u
8 + 3a8u

9 )

+
1

12
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1

9
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4 + 4a8d

5 − 4a8d
8 + 3a8d
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ãd5 =ad5 +
1
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+
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ãd9 =ad9 +
1

6
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1

12
((ad1 − au1 ) + (ad4 − au4 )) +

1

9
((a8d

1 − a8u
1 ) + (a8d

4 − a8u
4 )) (E.30)

ãd10 =ad10 +
1

6
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1
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((ad2 − au2 ) + (ad3 − au3 )) +

1

9
((a8d

2 − a8u
2 ) + (a8d
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q2/GeV2

B → Kll 1 2 3 4 5 6 7 8
au4 = 0.1 0.35% 0.14% -0.03% -0.15% -0.23% -0.27% -0.28% -0.25%
au8 0.68% 0.60% 0.63% 0.64% 0.62% 0.58% 0.53% 0.47%
ad4 -0.10% -0.13% -0.18% -0.21% -0.22% -0.23% -0.22% -0.20%
ad8 0.35% 0.31% 0.33% 0.33% 0.32% 0.30% 0.27% 0.24%

s
SU(3)
1(R,L) = 1 1.28% 0.68% 0.35% 0.18% 0.08% 0.04% 0.01% -0.01%

sc1(R,L) 0.88% 0.60% 0.39% 0.25% 0.16% 0.11% 0.07% 0.04%

sb1(R,L) -0.20% -0.34% -0.31% -0.25% -0.20% -0.15% -0.12% -0.09%

sc2(R,L) -4.68% -3.94% -3.13% -2.46% -1.96% -1.57% -1.25% -0.91%

sb2(R,L) 5.03% 1.75% 0.03% -1.04% -1.76% -2.25% -2.51% -2.44%

C1 -0.00% -0.00% -0.00% -0.00% -0.00% -0.00% -0.00% -0.00%
C2 -0.84% -0.45% -0.22% -0.10% -0.03% 0.01% 0.03% 0.04%
C3 0.02% 0.04% 0.04% 0.04% 0.04% 0.04% 0.03% 0.03%
C4 -0.11% -0.21% -0.28% -0.31% -0.31% -0.29% -0.27% -0.24%
C5 0.01% -0.00% -0.01% -0.02% -0.03% -0.03% -0.03% -0.03%
C6 0.20% 0.23% 0.30% 0.35% 0.39% 0.41% 0.39% 0.34%
Ceff

8 -0.22% -0.09% -0.02% 0.02% 0.05% 0.08% 0.09% 0.09%
SM total -0.93% -0.48% -0.20% -0.01% 0.12% 0.20% 0.24% 0.24%

Table E.1: Breakdown of contributions to B → Kll isospin asymmetry in SM operator coefficients
Ci, and in a generalised basis of four quark WA operators with coefficients ai and QLSS contributions
with coefficients sqxχ. aqi = 0.1 and sqx,χ = 1 was used to produce these values.

The coefficients for colour octet operators in the SM are:

a8q
1 = −a8q

2 = a8q
3 = −a8q

4 = −4C5

a8q
5 = −a8q

6 = −a8q
7 = a8q

8 = 2C3 − 2δqu
λu
λt
C1 (E.32)

a8q
9 = a8q

10 = 0

E.3 Tabulated isospin asymmetry results in the SM and beyond SM

operator breakdown

The data tables here correspond to the graphs in figures 5.8, 5.9, 5.11 and 5.12. Results for the

K are given in table E.1, the K∗ in table E.2 and the ρ in table E.3. Data for B → (K∗, ρ)γ

are also provided, denoted by q2 = 0 in tables E.2 and E.3.
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q2/GeV2

B → K∗ll 0 1 2 3 4 5 6 7 8
au2 = 0.1 -1.55% -0.22% -0.00% 0.06% 0.08% 0.08% 0.07% 0.06% 0.06%
au4 -1.58% -0.33% -0.09% -0.00% 0.02% 0.03% 0.04% 0.03% 0.03%
au5 1.29% -0.07% 0.02% 0.00% -0.00% 0.00% 0.01% 0.02% 0.03%
au6 -0.84% -0.53% -0.64% -0.67% -0.65% -0.60% -0.54% -0.47% -0.42%
au9 10.3% -0.20% 0.23% 0.03% -0.02% 0.02% 0.10% 0.17% 0.26%
au10 10.5% 0.43% 0.40% 0.13% 0.08% 0.14% 0.24% 0.34% 0.47%
ad2 = 0.1 -2.85% -0.40% -0.00% 0.12% 0.15% 0.15% 0.14% 0.12% 0.11%
ad4 -2.91% -0.61% -0.17% -0.01% 0.05% 0.07% 0.07% 0.07% 0.06%
ad5 0.78% 0.00% 0.02% 0.00% -0.00% -0.00% -0.00% 0.00% 0.01%
ad6 -0.50% -0.30% -0.34% -0.35% -0.33% -0.31% -0.27% -0.24% -0.21%
ad9 6.23% 0.18% 0.20% 0.02% -0.04% -0.03% 0.00% 0.04% 0.08%
ad10 6.29% 0.45% 0.24% 0.03% -0.03% -0.01% 0.04% 0.09% 0.16%

s
SU(3)
1R = 1 0.00% -1.26% -0.75% -0.38% -0.18% -0.08% -0.03% -0.01% 0.00%
sc1R 0.00% -0.90% -0.67% -0.43% -0.26% -0.16% -0.10% -0.06% -0.03%
sb1R 0.01% 0.20% 0.38% 0.34% 0.26% 0.19% 0.14% 0.10% 0.08%

s
SU(3)
1L -0.28% 0.81% 0.58% 0.36% 0.21% 0.12% 0.06% 0.03% -0.00%
sc1L -0.40% 0.67% 0.57% 0.42% 0.30% 0.22% 0.16% 0.11% 0.07%
sb1L 0.95% -0.00% -0.28% -0.33% -0.31% -0.26% -0.22% -0.18% -0.14%
sc2R 1.59% -1.82% -1.96% -1.64% -1.27% -0.97% -0.73% -0.54% -0.36%
sb2R 5.03% 8.33% 3.25% 0.12% -1.56% -2.38% -2.67% -2.62% -2.28%
sc2L 0.02% 2.43% 2.21% 1.66% 1.19% 0.85% 0.61% 0.44% 0.29%
sb2L 0.05% -4.60% -1.84% -0.05% 0.98% 1.56% 1.83% 1.88% 1.69%
C1 -0.01% -0.00% -0.00% -0.00% -0.00% -0.00% -0.00% -0.00% -0.00%
C2 0.11% -0.71% -0.44% -0.24% -0.12% -0.06% -0.02% 0.01% 0.03%
C3 0.09% 0.01% 0.04% 0.04% 0.05% 0.04% 0.04% 0.03% 0.03%
C4 -0.98% -0.08% -0.25% -0.30% -0.31% -0.30% -0.28% -0.26% -0.24%
C5 -0.51% -0.09% -0.02% 0.01% 0.02% 0.02% 0.02% 0.02% 0.01%
C6 6.41% 1.40% 0.40% 0.03% -0.11% -0.17% -0.18% -0.18% -0.17%
Ceff

8 -0.19% -0.34% -0.14% -0.02% 0.05% 0.09% 0.10% 0.10% 0.09%
SM total 4.92% 0.18% -0.42% -0.48% -0.44% -0.38% -0.33% -0.28% -0.24%

Table E.2: Breakdown of contributions to B → K∗ll isospin asymmetry in SM operator coefficients
Ci, and in a generalised basis of four quark WA operators with coefficients ai and QLSS contributions
with coefficients sqxχ. aqi = 0.1 and sqx,χ = 1 was used to produce these values. The q2 = 0 value
corresponds to the process B → K∗γ and is computed slightly differently to B → K∗ll as described
in Section 5.3.6. The value for sf1R and sf2L are zero at q2 = 0 as a consequence of h+(0) = 0 in
this approximation.
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q2/GeV2

B → ρll 0 1 2 3 4 5 6 7 8
au2 = 0.1 -1.55% -0.23% -0.01% 0.05% 0.07% 0.07% 0.07% 0.06% 0.06%
au4 -1.59% -0.33% -0.09% -0.01% 0.02% 0.04% 0.04% 0.04% 0.03%
au5 1.25% -0.06% 0.02% 0.00% -0.00% 0.00% 0.01% 0.02% 0.03%
au6 -0.81% -0.62% -0.72% -0.74% -0.71% -0.66% -0.59% -0.52% -0.46%
au9 11.0% -0.20% 0.26% 0.04% -0.02% 0.03% 0.11% 0.19% 0.28%
au10 11.1% 0.45% 0.43% 0.14% 0.07% 0.12% 0.23% 0.33% 0.47%
ãd2 = 0.1 -3.10% -0.46% -0.03% 0.11% 0.14% 0.15% 0.14% 0.12% 0.11%
ãd4 -3.17% -0.65% -0.18% -0.01% 0.05% 0.07% 0.07% 0.07% 0.07%
ãd5 0.76% 0.00% 0.02% 0.00% -0.00% -0.00% -0.00% 0.00% 0.01%
ãd6 -0.48% -0.34% -0.38% -0.38% -0.37% -0.34% -0.30% -0.26% -0.23%
ãd9 6.62% 0.19% 0.22% 0.03% -0.04% -0.03% 0.00% 0.04% 0.09%
ãd10 6.68% 0.48% 0.27% 0.04% -0.03% -0.01% 0.03% 0.09% 0.16%

s
SU(3)
1R = 1 0.00% -1.39% -0.81% -0.41% -0.19% -0.08% -0.03% -0.01% 0.00%
sc1R 0.00% -1.01% -0.74% -0.47% -0.28% -0.17% -0.10% -0.06% -0.03%
sb1R 0.01% 0.22% 0.42% 0.37% 0.29% 0.21% 0.15% 0.11% 0.08%

s
SU(3)
1L -0.40% 0.94% 0.64% 0.39% 0.22% 0.12% 0.06% 0.03% -0.00%
sc1L -0.44% 0.77% 0.64% 0.45% 0.32% 0.23% 0.16% 0.12% 0.07%
sb1L 1.12% 0.00% -0.31% -0.36% -0.33% -0.28% -0.23% -0.19% -0.15%
sc2R 1.76% -2.05% -2.13% -1.74% -1.34% -1.01% -0.76% -0.57% -0.38%
sb2R 4.02% 8.46% 3.29% 0.06% -1.70% -2.55% -2.86% -2.82% -2.47%
sc2L 0.02% 2.69% 2.38% 1.76% 1.26% 0.89% 0.64% 0.46% 0.30%
sb2L 0.05% -4.81% -1.85% 0.03% 1.11% 1.70% 1.99% 2.04% 1.83%
C1 0.01% 0.02% 0.01% 0.01% 0.00% 0.00% -0.00% -0.00% -0.00%
C2 0.01% -1.46% -1.00% -0.65% -0.40% -0.23% -0.11% -0.02% 0.09%
C3 0.08% 0.01% 0.04% 0.05% 0.05% 0.05% 0.04% 0.04% 0.03%
C4 -0.93% -0.09% -0.28% -0.34% -0.35% -0.33% -0.31% -0.28% -0.26%
C5 -0.54% -0.10% -0.02% 0.01% 0.02% 0.02% 0.02% 0.02% 0.01%
C6 6.74% 1.51% 0.46% 0.06% -0.10% -0.16% -0.18% -0.18% -0.18%
Ceff

8 -0.14% -0.35% -0.14% -0.01% 0.06% 0.09% 0.11% 0.11% 0.09%
SM total 5.22% -0.45% -0.93% -0.87% -0.72% -0.57% -0.43% -0.32% -0.21%

Table E.3: Breakdown of contributions to B → ρll isospin asymmetry in SM operator coefficients
Ci, and in a generalised basis of four quark WA operators with coefficients ai and QLSS contributions
with coefficients sqxχ. aui = 0.1, ãdi = 0.1 and sqx,χ = 1 was used to produce these values. The
modified four-quark coefficients ãi are explained in Section 5.6. The q2 = 0 value corresponds to
the process B → ργ and is computed slightly differently to B → ρll as described in Section 5.3.6.
The value for sf1R and sf2L are zero at q2 = 0 as a consequence of h+(0) = 0 in this approximation.
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Appendix F

Additional charm loop material

F.1 Explicit results

Here the polynomials are listed which where omitted from Section 6.2 for the sake of brevity. As

can be seen from (6.10) and (B.1.1) the expressions for PV,n and PA,n have the same structure,

as do RV,n and RA,n. Expressions for PA,n and RA,n are therefore omitted. The expressions

here are for the leading terms in the relevant DAs:

V(α) = 360α1α2α
2
3κ
‖
3;V T (α) = 360α1α2α

2
3κ
⊥
3;V (F.1)

The expressions for the full DAs still retain the structure outlined in Section 6.2, but are

significantly longer so are not included here.

PV,1 = PA,1 = P0,1 =2(m2
b − p2

B)(m2
b − α3p

2
B − ᾱ3q

2)

PV,2 = PA,2 = P0,2 =ᾱ3(p2
B − q2)((m2

b − p2
B) + (m2

b − α3p
2
B − ᾱ3q

2))

PV,3 = PA,3 =Q2 −m2
x

P0,3 =− α3(p2
B − q2)(P 2 −Q2) +

1

2
(m2

x −Q2)(P 2 + p2
B −Q2 − q2)

PV,4 = PA,4 =α3(P 2 −Q2)

P0,4 =− 1

2
α3(P 2 −Q2)(P 2 + p2

B −Q2 − q2)

PV,5 =
1

2
× fVmbmV

fBm2
B

360κ
‖
3K∗

PA,5 =
1

2
× fVmbmV

fBm2
B

360ζ
‖
3K∗

P0,5 =
1

2
× f⊥V mbmV

fBm2
B

√
q2

2m2
b

360κ⊥3K∗

(P 2 −Q2)
(F.2)
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RV,6 = RA,6 =− 6(Q2 −m2
x)(m2

x − ᾱ∗3Q2 − α∗3P 2)((−2 + α∗3)P 2q2 + 2m2
b(P

2 −Q2) + q2Q2−

α∗3q
2Q2 − α∗3P 2s+Q2s+ α∗3Q

2s+ q2m2
x − sm2

x)

R0,6 =(m2
b − p2

B)(m2
b(P

2 −Q2) +m2
x(q2 − p2

B) + p2
BQ

2 − P 2q2)2(2m2
b(P

2 −Q2)+

m2
x(p2

B − 3P 2 − q2 + 3Q2)− p2
BQ

2 − 2P 2q2 + 3P 2Q2 + 3q2Q2 − 3(Q2)2)

RV,7 = RA,7 =α∗3(P 2 −Q2)(4(α∗3)2(P 2 −Q2)2(q2 − s)− 3α∗3(P 2 −Q2)(−2m2
bP

2 + 2P 2q2+

2m2
bQ

2 − 3q2Q2 +Q2s+ q2m2
x − sm2

x) + 6(Q2 −m2
x)(−2P 2q2 + 2m2

b(P
2 −Q2)+

q2Q2 +Q2s+ q2m2
x − sm2

x))

R0,7 =
1

6
(p2
B − q2)−1(P 2 −Q2)(m2

b − p2
B)(m2

b − q2)(−m2
b(P

2 −Q2)(3m2
x(p2

B − q2)(p2
B+

9P 2 − q2 − 9Q2) +Q2(q2(3P 2 − 26p2
B)− 3p2

B(p2
B + 9P 2) + 29(q2)2) + 4P 2q2(8p2

B+

3P 2 − 8q2) + 3(Q2)2(9p2
B − 5q2)) + 2m4

b(P
2 −Q2)2(8p2

B + 3P 2 − 8q2 − 3Q2)+

6(m2
x)2(p2

B − q2)2(−p2
B + 3P 2 + q2 − 3Q2) + 3m2

x(p2
B − q2)(Q2((4p2

B − 5q2)

(p2
B − q2)− 6P 2(2p2

B + q2)) + P 2q2(p2
B + 9P 2 − q2)− 3(Q2)2(q2 − 4p2

B))+

(Q2)2(−2(q2)2(4p2
B + 9P 2) + 3p2

Bq
2(7p2

B + 6P 2) + 6(p2
B)2(3P 2 − p2

B)− 7(q2)3)+

P 2q2Q2(9P 2(q2 − 3p2
B)− (p2

B − q2)(3p2
B + 29q2)) + 2(P 2)2(q2)2(8p2

B + 3P 2 − 8q2)+

3(Q2)3(3p2
Bq

2 − 6(p2
B)2 + (q2)2))

RV,8 =
1

12
(s−m2

b)×
fVmbmV

fBm2
B

360κ
‖
3K∗

RA,8 =
1

12
(s−m2

b)×
fVmbmV

fBm2
B

360ζ
‖
3K∗

R0,8 =
1

12
× f⊥KmbmK

fBm2
B

√
q2

2m2
b

360κ⊥3K∗

(P 2 −Q2)(s− q2)
(F.3)
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Glossary

ADM Anomalous dimension matrix.

BPHZ Bogoliubov–Parasiuk–Hepp–Zimmermann.

CKM Cabibbo–Kobayashi–Maskawa.

DA Distribution amplitude. Describes the probability of finding a set of partons with a given

momentum inside a hadron. See Section 2.7.

DSE Dyson–Schwinger equation. An exact equation of motion for a quantum field theory. See

appendix C.

FCNC flavour-changing neutral current.

FSR final state radiation.

GIM Glashow–Iliopoulos–Maiani.

HFAG Heavy Flavour Averaging Group [147].

HV ’t Hooft–Veltman regularisation scheme in which γ5 = iγ0γ1γ2γ3.

IR infrared.

ISR initial state radiation.

LCSR Light cone sum rule, see Section 2.8.

LHC Large Hadron Collider.

LSZ Lehmann–Symanzik–Zimmermann; formula relating S-matrix elements to vacuum corre-

lation functions [71].

MFV Minimal flavour violation: a class of beyond SM flavour models in which flavour transi-

tions are still controlled by the CKM matrix. See references in Section 5.3.1.
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NDR Naive dimensional regularisation, in which γ5 is treated as anticommuting.

OPE Operator product expansion. See Section 2.5.

QCD quantum chromodynamics.

QCDF QCD factorisation; throughout this thesis used to denote a method for computing

heavy to light B meson decays where both the B and final state mesons are treated using

a light cone expansion.

QL quark loops.

QLSS quark loop spectator scattering.

RG renormalisation group.

SM The standard model of particle physics, see Section 2.2.

UV ultraviolet.

VEV vacuum expectation value.

WA weak annihilation.

WC Wilson coefficient.
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