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Abstract. In the framework of the celebrated perfect-fluid approach to the k=0 —
Friedmann-Robertson-Walker models, with decoupled mixed sources, the case of
radiation and cosmological dust has been investigated. We have obtained the
algebraic equations which provide the scale factor and therefore computed the
essential cosmological parameters. Finally, the quantum cosmological approach based
on this minisuperspace and its heuristic correspondence with the classical regime have
been received a particular consideration.
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1. INTRODUCTION

Nowadays, some modern trends in cosmology are revealed by the consistent
investigations focusing on mixed matter sources, most of them elaborated in the
framework of Einstein’s theory. According to observations, we are provided with
the conclusion that, within the present epoch, the main contribution to the energy
density is reserved to the cosmological constant, the most trivial and appealing
candidate to dark energy. It proves that it is the dark energy component the one
which drives the expansion of the universe at an accelerated rate. The role of the
cosmological constant in the evolution of the Universe is confirmed by the large
scale experimental observations on the distribution of galaxies and clusters and by
WMAP measurements on the fluctuations detected in CMB radiation [1].

It is well-known that the expansion rate is intimately related to the types of
energy that the Universe contains. As the universe undergoes a continuous
evolution, with progressive phases in which new forms of matter are generated,
with various middle stages that affect the behavior of the universe as a whole,
theoretical studies on cosmologies with a mixed composition of matter seem
legitimate and very appealing. Also, one may get a more accurate description of the
Universe in its present state, where the transitions between various epochs might be
revealed by the way these matter sources intermingle to generate new physically
interesting dynamics [2].

Romanian Journal of Physics 63, 109 (2018)


mailto:denisa.mihu0@gmail.com

Article no. 109 Denisa-Andreea Mihu 2

Furthermore, the isotropy and homogeneity which characterizes the large
scale universe are consistent with the fluid-type Friedmann-Robertson-Walker
(FRW) evolving cosmological models [3] which are locally isotropic and spatially
homogeneous [4]. The detection of the CMB radiation generated within a very
early and hectic phase as a label of the relic radiation comes to support this idea.
According to the data collected by the COBE mission, it appears that the CMB
radiation is very smooth to at least one part in 10° [5], possessing a black body
spectrum whose temperature isotropy constitutes a direct probe in favor of the
physical constraint of homogeneity and isotropy of the Universe at its megagalactic
scale. Observations on temperature variations in CMB indicate that after leaving
the radiation era, the geometry of the Universe is described in terms of a spatially-
flat FRW universe [6]. We specify that the large-scale homogeneity as a
characteristic of the observable universe founds a powerful explanation within the
inflation scenario [7].

Our paper is following a previous investigation [8], where we developed a
mixed matter cosmology with non-interacting ideal fluids namely, stiff matter and
dust. In the first stage of our present study, within the fluid formalism, we consider
the universe composed of cosmological dust and radiation. In the second stage, we
add one more component, namely the cosmological constant in order to study its
effects on the dynamics of the considered model. We specify that the species of
fluid involved are treated as non-interacting matter sources. Historically, models
with decoupled matter and radiation start with the ones elaborated by Lemaitre [9],
Stabell [10] and Mclntosh [11, 12], followed by the ones developed in [13, 14].
These focused not only on flat models (k£ =0), with a non-linear time-dependent
equation of state parameter, but also on models with other types of geometries
(k=41).

At the basis of our choice for the togetherness of the radiation and dust
species lies the phenomenology of the influence of radiation pressure on the cosmic
dust mostly at the level of galaxies. For a long period way back in the past, this
issue has been an acute and debatable one [15]. Among the studies on cosmologies
with decoupled dust and radiation sources, we mention the theoretical investigative
models [16, 17].

Within the frame of quantum minisuperspace theory, in [18], the authors are
analyzing the FRW universe with non-interacting fluids. Following an analytical
procedure, the paper shows that, for a combined dust-radiation source, the dust
component can be created as a quantum effect. Moreover, when quantum effects
come into play, the radiation also possesses an exotic character, leading to the
formation of bounces.

With reference to the (small) positive cosmological constant we are
considering here, this is in agreement with recent measurements of two
independent groups, High-Z Supernova Team and the Supernova Cosmological
Project [19, 20, 21].
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Our approach is inspired by the work of Chavanis [17] which we find
inspiring for allowing a deeper and more elaborate analysis that unveils intricacies
behind the model” dynamics.

In what it concerns the quantum cosmological treatment developed in the
final part of our work, this can be compared to similar recent investigations [22, 23,
24], where the solutions to the Wheeler—DeWitt proved to be expressed in terms of
Heun functions.

2. DYNAMICS OF THE MODEL WITHIN THE CONTEXT
OF FLUIDIC FORMALISM

The line element in comoving spherical coordinates for the
quadridimensional homogeneous and isotropic flat space with constant local
curvature is given by the k& =0— Friedmann-Robertson-Walker (FRW) metric

ds’ =a’ () & +r7dQ |-, (1)

where dQ® =d@” +sin”> Odg” . The physical quantity a(t): R —> R, , a(t)=a,e’"”
defines the scale factor, a function of the global time coordinate namely the cosmic
time denoted here by ¢. We introduce the tetradic pseudo-orthonormal frame
ea(a:ﬁ) , whose dual base is

+ 9

® =adr, 0’ =ardl, & =arsinfde, ®* =dr,

so that ds* =77,,0"@", with n,, =diag[L, 1, 1, —1].
Within the framework of an uniform perfect fluid of isotropic pressure with
the energy-momentum tensor components given by 7, = p, T,, = p, the Einstein’s

system of equations, G, +1,,A =«T,, , admits the explicit representation

.o .2

a a
2—+—-A=-xp;
a a
-2
a
3—-A=xp,
a

)

where x=87G/c* and A is the positive cosmological constant. The second
relation in (2), i.e.
K A

H* ==p+—, 3
3P (3)
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where H is the Hubble function defined as H=a/a, is known as the

Friedmann’s equation for k=0 — FRW Universe. This will be of principal use in
the present study as it correlates two of the most essential cosmological parameters
responsible for the dynamics of the Universe: the total energy density p of the

perfect fluid and the Hubble expansion parameter H .
Our cosmological model is containing a combined matter source made of
non-miscible radiation and dust matter with the total energy density given by

3 4
a a 3
P = Poi (_Oj * Poz (_OJ :_(4—*‘%}’ )
a a K\ a a
where we have performed the following notations:

K 3 K 4
= — a, N = — a,
B 3,001 0s 7V 3,002 0

and the zero index corresponds to the present day values. Thus, the general
Friedmann equation (3) becomes equivalent to the differential equation

—_ _+
dr a a

da
Fi7 )

whose integration, with the origin condition a,(f=t,=0)=0, leads to the
following cubic equation for the scale function

32
a3—3%a2=%ﬁt2—6%t. (6)

To be mentioned that our result can be put into correspondence with the one
obtained in [17] for the same choice of Universe composition.
Before proceeding to an analysis of the solutions of this equation, we will
focus on deducing the expression of the other essential cosmological quantities.
From (5), one is able to compute the Hubble parameter as depending on the
scale function as

H(a)= @+al4, ™)

N

and, inserting this result into the Einstein equation, one can deduce the evolution of
the pressure with respect to the scale factor as described by the relation

play=—L. ®)
Ka
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The last formula together with (4) allows the finding of a non-linear dependence of
the cosmological energy density on the fluid pressure:

p(p)= 3[ﬁ ()" o p} : ©)

This result is the inverse function of the Equation of State (EoS) of our present
model, p(p), the latter possessing an intricate mathematical representation.

From the model’ time dependent EoS, p=w(¢)p, one may compute the
effective EoS parameter

/4
wla) = ———+,
3( Pa+ }/)
which results to decrease with the ratio s of the dust species over the radiation
4

component. Also, as the scale function approaches the primordial cosmological
. . 1 .
singularity, a — 0, the EoS parameter goes to a constant, w—);, meaning an

early universe dominated by the radiative component. Obviously, the same w

B

asymptotic tendency appears if = — 0 (a dominance of the radiative component
I4

over the dust species). In the last years, time-variation of the EoS parameter has
been under ardent investigations and discussions, for instance, within the context of
the models with viscous fluids [25] or quintessence models with scalar fields [26,
27]. Techniques based on data for recovering the physical quantity w(¢) have been
discussed in [28].

Last but not least, we compute the parameter

aa  2y+ Pa
q(a)=——2=—y p >0, (10)
a 2 ( pa+ ;/)
pointing out a decelerating Universe (i.e., g(¢)>0).

Now, we will return to the equation (6) and by calling down the theory of
third degree equation [29], we are going to discuss the nature of roots of the cubic
equation in terms of the model’ parameters. Hence, the discriminant for the
equation (6) is

3
A=-270 —IOS%Q. (11)
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where we have introduced the notation

3/2
7ﬂ—2 . (12)

As we are going to see in the followings, depending on the signs of both the
discriminant (11) and the expression in (12), different situations distinguish.

1. A<O and 0>0.

9 , ¥* 9 .
=—pBt°—6—1t==—pt(t—t,), with ¢, =
Q= fr =67 i=y pili-t)

W | 0o

In this case, the equation (6) possesses one real and two complex conjugate
roots. Because the scale factor has to be real, the corresponding solution is given by

-1/3
93,2 4,3
a(t)sa(Q)=%+77[ﬁ3Q+zf—ﬂ3Q4/1+ﬁT7QJ +
. ﬂ3Q+273—ﬁ3Q1/1+47 i
B p0

with QO representing the time dependent function defined in (12).

(13)

In the very late phases of the Universe evolution, compatible with small
3
values of the ratio

T, 1.e. high values of O, one can perform a series expansion

of the square root so that the scale factor admits the asymptotic representation

a3+ Q420 20"

Recalling (12), for large values of the time variable, i.e. >, , we have the
behavior Q= % Bt* from where we find that the radius of the universe increases

algebraically as a~r*”. Thus, as expected, in late times, the radiative component

does not manifest.
ii. A<0 and O0<0 (r<¢t,).
Even though, in this case, the solution is the same as in the previous one, it proves

that this situation cannot take place as the two inequalities cannot be valid
simultaneously. Thus, this case is not a physically acceptable one.
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iii. A=0and 0<0 (7<t,).

: o 4y . :
For this combination, it results that Q = —L3 which transforms our cubic

equation into the following configuration

3
@-3La 44l -0,
B s

. . . . 2
The above expression admits a static solution a, =a, =" and the root
Y oon?
a, :FQ+3—. If we ask for a; to be a positive physical quantity, we have to

deal with a time limited universe characterized by the parametric interval

’E(Q lf*jU(ét*, a) ie. te(O, 27\/;}{27\/;, 87\/?)
4 4 3ﬂ2 ﬂz 3ﬂ2

3. THE EFFECT OF THE COSMOLOGICAL CONSTANT IN THE CLASSICAL
AND QUANTUM EVOLUTION OF THE FRW UNIVERSE

In this section, we dedicate ourselves to the study of the effects that a
cosmological constant can generate, if inserted in the model we already discussed.
Thus, the Hubble parameter in terms of the scale function is given by

H(a)= fﬁ3+l4+,1, (14)
a a

with A = % . In the corresponding Friedmann equation,

#=P 7, (15)
a da

one may notice the contribution brought by the cosmological constant to the
Hubble function, while the cosmological energy density remains the same.

After performing the variable separation, the differential equation (15)
becomes
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ada _dr
A (ﬁ a+Ll+ a4j
A A
and, by introducing the substitutions
B 4
=L g=L 16
p="-4=" (16)
it transforms into
ada = dt. (17)

ﬁa/a“ + pa+gq

If it is to consider that ai( ) are defining the four roots of the quartic polynomial

a* + pa+q , then the differential equation (17) can be rewritten as
ada

ﬁ\/(a —a)(a-a,)(a-a;)(a-a,)

leading, by integration, to the following algebraic transcendental relation

2
\/I\/(al —a,)(a, —ay)

with

=dt, (18)

{alEllipticF[Z, é:]-l—(a2 —al)EllipticPi[e', Z, 5]} =t,(19)

(a—a))(a,—ay) ’

(az—a3)(a1—a4) a, —a,
Asymptotic representations for the elliptic functions allow for the transcendental
equation (19) to reduce to a new, more simplified and algebraically convenient
transcendental form:

Z=Arcsin{\/(a_a2)(al_a4)},8=(al_a3)(a2_a4) gr=t2"% (20)

21

27 a2(5+2g’)—25'a1 Z2}=t

Ja(a ~a;)(a, ~as) { i 6

An appropriate manner of tackling these transcendental equations are given by the
numerical procedures. For more details into the behaviour of these -elliptic
functions, their asymptotic approximations, series expansions, inequalities, one can
consult the papers [30, 31] and references within.
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We add the remark that the four roots ai(i:ﬁ) are satisfying a set of

mathematical relations in terms of the model parameters known as the Viete’s
relations.
In what follows, we will discuss the nature of the roots ai( ) of the

i=l,

polynomial a*+ pa+gq, in the framework of the quartic equation theoretical
background. Thence, the discriminant

A=256¢> —27p*, (22)

in terms of our notations in (16), is equivalent with the algebraic expression
1 N
A=—|256y" —27—|. 23
P ( /4 ’ } (23)

To be mentioned that the sign of the discriminant (23) has a significant influence

on the nature of the roots ai<i:ﬁ). The analysis over this aspect can be refined

through considering the sign of the polynomials below [32]
P=0, Q=8p=8§, D=64q=64%, A0:12q:12%. (24)

Thus, depending on the signs combination for the expressions defined in (24)
together with the sign of the discriminant (23), one distinguishes a number of
situations that determine the nature of the roots ai(i:ﬁ) and their algebraic

formulas. We will proceed to expose the relevant situations for our polynomial

under investigations.

. A<O
In this case, the quartic equation a* + pa+¢ =0 possesses two real and two
complex roots, namely

j p . f p
611,2:_Si _S2+4S€R, 0354:Sil S2+EEC, (25)
where

1 , A A -4 §
§= 1 ,3=Q,,/Q2+12q,w1th 0 :i/% and A1:27p2=27%,

7/
Ay =12g =12~
0 1 A
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Because the scale factor is a real quantity, particularly, we will be interested in the
real roots.

4 3
By virtue of identity A} — 4A(3) =—27A =27 % - 6912% , we have that

0,

Q,:3JA1+\/A12—4A3 23\/A1+\/—27A §

2 2

where the discriminant A in terms of the model parameters is given by (23).
In these considerations, the real solutions are described by the algebraic expression

ay = 2O 112y £+ —;,(AQ’2+127/)+ 2530 (26)
2 2 B0 24 302 2207 +12y

In addition, by calling down the inequality A <0, we find that the parameters of
our model are subjected to the constraint:

yA<0,15% (27)
ii. A>0. As for our model P=0, we find out that this situation is not
reflected in theory.
1. A=0.

In this case, by considering the condition D >0, one can identify one real
double root and two complex ones. In the same time, we have the relation

A7 —4A; =0 which leads to the following relation between the model’s
parameters

2 -94, (28)

The real solutions are described by the same algebraic construction in (26),

3 p2/3 3 (p 2/3
with Q':W:W(Ej and therefore one has the following set of real

1/4 1/4
a, =a, =—(%j =—(£j . (29)

Before we finish this section, let us derive, from the first Einstein equation
(2), the evolution of pressure with respect to the scale function:

solutions:
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play=-L 3% (30)
Ka K

In the same manner, one can deduce the dependence of the energy density on the
scale factor,

p(a>=3(ﬁ3+l4j, G1)
K\ a

a

so that we are able to determine the following effective pressure dependence on the
energy density, where a scale factor ‘interference’ is to be noticed,

(p, a)=p—l(¥+2—i/+3ﬂj. (32)
K\ a a

For the quantum analysis, to which the final part of our work is dedicated, let
us write the Friedmann equation (15), as the Hamiltonian-constraint

H=a*+V(a)=0-

This contains the non-positive potential

2
a a

V(a)z{ﬁ+l+/1a2}, (33)
which tends to —oo for both a >0 and a > .
In view of the theory developed in [23], the Wheeler—DeWitt (WDW)
equation [33, 34]

HY =0 (34)
with the effective Hamiltonian
H=%?p2+a—10V(a) (35)
and the momentum operator
p—>p=-i 2 ,
Oa

gets the explicit form
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2 - —
d‘f+ £+l2+ﬂ,§2 ¥ =0. (36)
dg ¢ ¢

Here, we have introduced the characteristic length a,, so that the variable and the

parameters get the dimensionless expressions ¢ =a/a, and

=Y 7 T-aia.

ay Ay

Up to a normalization constant, the solution to the differential equation (36) is
written in terms of the Heun biconfluent function of variable [35]

/
ng(i—l)zwg”:(z‘—l) ﬁa, (37)

ay

as
1= \E{*iﬁexp[éﬁé’z}HeunB{i% 7, 0,0, W;x} (38)

The absolute value of the amplitude (38) represented in Fig. 1, as a function
of x. This is starting from zero and is increasing to the maximum value for the

Universe with a =«[a0 /A . Then, it has an oscillating behavior, with periodic
decreasing maxima corresponding to high probabilities of those Universes.

064

0.54

0.4+

2 a2
| "2

0.2

0.1+

Fig. 1 — The absolute value of the function (38) with respect to the variable X defined in (37).
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4. CONCLUSIONS

For the spatially-flat FRW Universe filled with a mixture of cosmic dust and
radiation, the Friedmann equation is analytically integrable, leading to the cubic
equation (6) for the scale function. As one is expecting, the radiative epoch
characterizes the early times, while, at late times, it was identified the dust-like
behavior of the universe.

By adding a positive cosmological constant, its effects on the model
dynamics have been pointed out. In this respect, it was found a non-trivial
dependence of the pressure on the energy density and scale factor. The non-linear,
polytropic equation (32) is the algebraic sum of a standard linear EoS ( p= p) and

a non-linear term depending on the model’s parameters. With respect to the linear
dependence, we outline that within this level of approximation (the ultra-relativistic
limit), it might be viewed as a stiff matter EoS. This has been brought into
evidence by the Zel’dovich pioneering model of the Universe composed, in early
stages, of a cold gas of baryons interacting through a meson field [36]. A similar
non-linear EoS has been obtained in [8], for a mixed cosmology with stiff fluid,
cosmic dust and a cosmological constant, in the context of fluid dynamics with
viscous effects.

Finally, within a quantum analysis, the wave function of the Universe is
expressed in terms of the intricate Heun functions in their biconfluent form. The
absolute value of the wave function is characterized by a zero initial value for
a =0, indicating a smooth departure from the vacuum state; from this singularity
the wave function is starting to increase until it achieves the most prominent

maximum, at a = afao / \/I . As the scale function evolves towards higher values,

the most probable Universes possess successive decreasing maxima, alternating
with non-vanishing minima.

As an ultimate remark, it is worth noticing that the present work can be
expanded in several directions, as for example by embedding the £ =0- FRW
branes in a higher dimensional space [37].
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