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Abstract. In the framework of the celebrated perfect-fluid approach to the k = 0 – 

Friedmann-Robertson-Walker models, with decoupled mixed sources, the case of 

radiation and cosmological dust has been investigated. We have obtained the 

algebraic equations which provide the scale factor and therefore computed the 

essential cosmological parameters. Finally, the quantum cosmological approach based 

on this minisuperspace and its heuristic correspondence with the classical regime have 

been received a particular consideration. 
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1. INTRODUCTION 

Nowadays, some modern trends in cosmology are revealed by the consistent 

investigations focusing on mixed matter sources, most of them elaborated in the 

framework of Einstein’s theory. According to observations, we are provided with 

the conclusion that, within the present epoch, the main contribution to the energy 

density is reserved to the cosmological constant, the most trivial and appealing 

candidate to dark energy. It proves that it is the dark energy component the one 

which drives the expansion of the universe at an accelerated rate. The role of the 

cosmological constant in the evolution of the Universe is confirmed by the large 

scale experimental observations on the distribution of galaxies and clusters and by 

WMAP measurements on the fluctuations detected in CMB radiation [1]. 

It is well-known that the expansion rate is intimately related to the types of 

energy that the Universe contains. As the universe undergoes a continuous 

evolution, with progressive phases in which new forms of matter are generated, 

with various middle stages that affect the behavior of the universe as a whole, 

theoretical studies on cosmologies with a mixed composition of matter seem 

legitimate and very appealing. Also, one may get a more accurate description of the 

Universe in its present state, where the transitions between various epochs might be 

revealed by the way these matter sources intermingle to generate new physically 

interesting dynamics [2]. 
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Furthermore, the isotropy and homogeneity which characterizes the large 

scale universe are consistent with the fluid-type Friedmann-Robertson-Walker 

(FRW) evolving cosmological models [3] which are locally isotropic and spatially 

homogeneous [4]. The detection of the CMB radiation generated within a very 

early and hectic phase as a label of the relic radiation comes to support this idea. 

According to the data collected by the COBE mission, it appears that the CMB 

radiation is very smooth to at least one part in 10
5
 [5], possessing a black body 

spectrum whose temperature isotropy constitutes a direct probe in favor of the 

physical constraint of homogeneity and isotropy of the Universe at its megagalactic 

scale. Observations on temperature variations in CMB indicate that after leaving 

the radiation era, the geometry of the Universe is described in terms of a spatially-

flat FRW universe [6]. We specify that the large-scale homogeneity as a 

characteristic of the observable universe founds a powerful explanation within the 

inflation scenario [7]. 

Our paper is following a previous investigation [8], where we developed a 

mixed matter cosmology with non-interacting ideal fluids namely, stiff matter and 

dust. In the first stage of our present study, within the fluid formalism, we consider 

the universe composed of cosmological dust and radiation. In the second stage, we 

add one more component, namely the cosmological constant in order to study its 

effects on the dynamics of the considered model. We specify that the species of 

fluid involved are treated as non-interacting matter sources. Historically, models 

with decoupled matter and radiation start with the ones elaborated by Lemaitre [9], 

Stabell [10] and McIntosh [11, 12], followed by the ones developed in [13, 14]. 

These focused not only on flat models ( 0k  ), with a non-linear time-dependent 

equation of state parameter, but also on models with other types of geometries 

( 1k   ). 

At the basis of our choice for the togetherness of the radiation and dust 

species lies the phenomenology of the influence of radiation pressure on the cosmic 

dust mostly at the level of galaxies. For a long period way back in the past, this 

issue has been an acute and debatable one [15]. Among the studies on cosmologies 

with decoupled dust and radiation sources, we mention the theoretical investigative 

models [16, 17]. 

Within the frame of quantum minisuperspace theory, in [18], the authors are 

analyzing the FRW universe with non-interacting fluids. Following an analytical 

procedure, the paper shows that, for a combined dust-radiation source, the dust 

component can be created as a quantum effect. Moreover, when quantum effects 

come into play, the radiation also possesses an exotic character, leading to the 

formation of bounces. 

With reference to the (small) positive cosmological constant we are 

considering here, this is in agreement with recent measurements of two 

independent groups, High-Z Supernova Team and the Supernova Cosmological 

Project [19, 20, 21]. 
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Our approach is inspired by the work of Chavanis [17] which we find 

inspiring for allowing a deeper and more elaborate analysis that unveils intricacies 

behind the model’ dynamics. 

In what it concerns the quantum cosmological treatment developed in the 

final part of our work, this can be compared to similar recent investigations [22, 23, 

24], where the solutions to the Wheeler–DeWitt proved to be expressed in terms of 

Heun functions. 

2. DYNAMICS OF THE MODEL WITHIN THE CONTEXT  

OF FLUIDIC FORMALISM 

The line element in comoving spherical coordinates for the 

quadridimensional homogeneous and isotropic flat space with constant local 

curvature is given by the 0k  – Friedmann-Robertson-Walker (FRW) metric 

 2 2 2 2 2 2d ( ) d d ds a t r r t      , (1) 

where 2 2 2 2d d sin d     . The physical quantity , ( )
0( ) f ta t a e  

defines the scale factor, a function of the global time coordinate namely the cosmic 

time denoted here by t . We introduce the tetradic pseudo-orthonormal frame 

 1,4a a
e


, whose dual base is 

1 da r  , 2 dar  , 3 sin dar   , 4 dt  , 

so that 2ds a b
ab   , with  diag 1,  1,  1,  1ab   . 

Within the framework of an uniform perfect fluid of isotropic pressure with 

the energy-momentum tensor components given by T p  , 44T  , the Einstein’s 

system of equations, ab ab abG T    , admits the explicit representation 

  (2) 

where 48 /G c   and   is the positive cosmological constant. The second 

relation in (2), i.e. 

 2

3 3
H





  , (3) 
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where H  is the Hubble function defined as , is known as the 

Friedmann’s equation for 0k   – FRW Universe. This will be of principal use in 

the present study as it correlates two of the most essential cosmological parameters 

responsible for the dynamics of the Universe: the total energy density   of the 

perfect fluid and the Hubble expansion parameter H . 

Our cosmological model is containing a combined matter source made of 

non-miscible radiation and dust matter with the total energy density given by 

 

3 4

0 0
01 02 3 4

3a a

a a a a

 
  



     
       

    
, (4) 

where we have performed the following notations: 

 3
01 0

3
a


  ,   4

02 0
3

a


    

and the zero index corresponds to the present day values. Thus, the general 

Friedmann equation (3) becomes equivalent to the differential equation 

 
2

d

d

a

t a a

 
  , (5) 

whose integration, with the origin condition ( 0) 0i ia t t   , leads to the 

following cubic equation for the scale function 

 
3 2

3 2 29
3 6

4
a a t t

 


 
   . (6) 

To be mentioned that our result can be put into correspondence with the one 

obtained in [17] for the same choice of Universe composition.  

Before proceeding to an analysis of the solutions of this equation, we will 

focus on deducing the expression of the other essential cosmological quantities. 

From (5), one is able to compute the Hubble parameter as depending on the 

scale function as 

 
3 4

( )H a
a a

 
  , (7) 

and, inserting this result into the Einstein equation, one can deduce the evolution of 

the pressure with respect to the scale factor as described by the relation 

 
4

( )p a
a




 . (8) 
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The last formula together with (4) allows the finding of a non-linear dependence of 

the cosmological energy density on the fluid pressure: 

  
1 4

3 3 4( ) 3p p p  
  

  
. (9) 

This result is the inverse function of the Equation of State (EoS) of our present 

model, ( )p  , the latter possessing an intricate mathematical representation. 

From the model’ time dependent EoS, ( )p w t  , one may compute the 

effective EoS parameter 

 
( )

3
w a

a



 



, 

which results to decrease with the ratio 



 of the dust species over the radiation 

component. Also, as the scale function approaches the primordial cosmological 

singularity, 0a , the EoS parameter goes to a constant, 
1

3
w , meaning an 

early universe dominated by the radiative component. Obviously, the same w  

asymptotic tendency appears if 0



  (a dominance of the radiative component 

over the dust species). In the last years, time-variation of the EoS parameter has 

been under ardent investigations and discussions, for instance, within the context of 

the models with viscous fluids [25] or quintessence models with scalar fields [26, 

27]. Techniques based on data for recovering the physical quantity ( )w t  have been 

discussed in [28]. 

Last but not least, we compute the parameter 

 , (10) 

pointing out a decelerating Universe (i.e., ( ) 0q t  ). 

Now, we will return to the equation (6) and by calling down the theory of 

third degree equation [29], we are going to discuss the nature of roots of the cubic 

equation in terms of the model’ parameters. Hence, the discriminant for the 

equation (6) is 

 
3

2

3
27 108Q Q




    . (11) 
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where we have introduced the notation 

  
3 2

29 9
6

4 4
Q t t t t t


 


    , with 

3 2

2

8

3
t




  . (12) 

As we are going to see in the followings, depending on the signs of both the 

discriminant (11) and the expression in (12), different situations distinguish. 

i. 0   and 0Q  . 

In this case, the equation (6) possesses one real and two complex conjugate 

roots. Because the scale factor has to be real, the corresponding solution is given by  

 

1 3
1 3 2 3

3 3 3

3

1 3
1 3 3

3 3 3

3

2 4
( ) ( ) 2 1

2 4
            2 1

a t a Q Q Q
Q

Q Q
Q

  
  

  


  

 





 
       
 
 

 
    
 
 

 (13) 

with Q  representing the time dependent function defined in (12). 

In the very late phases of the Universe evolution, compatible with small 

values of the ratio 
3

3

4

Q




, i.e. high values of Q , one can perform a series expansion 

of the square root so that the scale factor admits the asymptotic representation 

1 3 1 3 1 3
ta Q Q Q

 

 


      

Recalling (12), for large values of the time variable, i.e. , we have the 

behavior 29

4
Q t  from where we find that the radius of the universe increases 

algebraically as . Thus, as expected, in late times, the radiative component 

does not manifest. 

ii.  0   and 0Q   ( t t ). 

Even though, in this case, the solution is the same as in the previous one, it proves 

that this situation cannot take place as the two inequalities cannot be valid 

simultaneously. Thus, this case is not a physically acceptable one. 
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iii.  0   and 0Q   ( t t ). 

For this combination, it results that 
3

3

4
Q




   which transforms our cubic 

equation into the following configuration 

3
3 2

3
3 4 0a a
 

 
   . 

The above expression admits a static solution 1 2

2
a a




   and the root 

2

3 2
3a Q

 


  . If we ask for 3a  to be a positive physical quantity, we have to 

deal with a time limited universe characterized by the parametric interval  

1 3
0,  ,  

4 4
t t t t  

   
    
   

    i.e.   
2 2 2

2 2 8
0,  ,  

3 3
t

     

  

   
    
   
   

. 

3. THE EFFECT OF THE COSMOLOGICAL CONSTANT IN THE CLASSICAL  

AND QUANTUM EVOLUTION OF THE FRW UNIVERSE 

In this section, we dedicate ourselves to the study of the effects that a 

cosmological constant can generate, if inserted in the model we already discussed. 

Thus, the Hubble parameter in terms of the scale function is given by 

 
3 4

( )H a
a a

 
   , (14) 

with 
3




 . In the corresponding Friedmann equation, 

 , (15) 

one may notice the contribution brought by the cosmological constant to the 

Hubble function, while the cosmological energy density remains the same. 

After performing the variable separation, the differential equation (15) 

becomes 
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4

d .
ada

t

a a
 


 


 

  
 

 

and, by introducing the substitutions 

 p



 , q




   (16) 

it transforms into  

 
4

d .
ada

t
a pa q


 

 (17) 

If it is to consider that 
 1,4i i
a


 are defining the four  roots of the quartic polynomial 

4a pa q  , then the differential equation (17) can be rewritten as 

 
    1 2 3 4

d
ada

t
a a a a a a a a


   

, (18) 

leading, by integration, to the following algebraic transcendental relation 

 
  

      1 2 1

1 4 2 3

2
,  ',  ,  a EllipticF Z a a EllipticPi Z t

a a a a
  


  

 
, (19) 

with 

 
  

  
2 1 4

1 2 4

Arcsin
a a a a

Z
a a a a

  
 

   

,
  

  
1 3 2 4

2 3 1 4

a a a a

a a a a


 


 
, 2 4

1 4

'
a a

a a






. (20) 

Asymptotic representations for the elliptic functions allow for the transcendental 

equation (19) to reduce to a new, more simplified and algebraically convenient 

transcendental form: 

 
  

 2 1 2
2

1 4 2 3

2 ' 2 '2

6

a aZ
a Z t

a a a a

  



   
  

    
. (21) 

An appropriate manner of tackling these transcendental equations are given by the 

numerical procedures. For more details into the behaviour of these elliptic 

functions, their asymptotic approximations, series expansions, inequalities, one can 

consult the papers [30, 31] and references within. 
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We add the remark that the four roots 
 1,4i i
a


 are satisfying a set of 

mathematical relations in terms of the model parameters known as the Viete’s 

relations. 

In what follows, we will discuss the nature of the roots 
 1,4i i
a


 of the 

polynomial 4a pa q  , in the framework of the quartic equation theoretical 

background. Thence, the discriminant 

 3 4256 27q p   , (22) 

in terms of our notations in (16), is equivalent with the algebraic expression 

 
4

3

3

1
256 27






 
   

 
. (23) 

To be mentioned that the sign of the discriminant (23) has a significant influence 

on the nature of the roots 
 1,4i i
a


. The analysis over this aspect can be refined 

through considering the sign of the polynomials below [32] 

 0P  ,   8 8Q p



  ,   64 64D q




  ,   0 12 12q




   . (24) 

Thus, depending on the signs combination for the expressions defined in (24) 

together with the sign of the discriminant (23), one distinguishes a number of 

situations that determine the nature of the roots 
 1,4i i
a


 and their algebraic 

formulas. We will proceed to expose the relevant situations for our polynomial 

under investigations. 

i. 0   

In this case, the quartic equation 4 0a pa q    possesses two real and two 

complex roots, namely  

 2
1,2

4

p
a S S

S
      , 2

3,4
4

p
a S i S

S
    , (25) 

where 

21
12

2 3
S Q q

Q
 


, with 

2 3
1 1 03

4

2
Q

    
   and 

2
2

1 2
27 27p




   , 

0 12 12q



   . 
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Because the scale factor is a real quantity, particularly, we will be interested in the 

real roots. 

By virtue of identity 
4 3

2 3 2
1 0 4 3

4 27 27 6912
 

 
        , we have that 

2 3
1 1 0 13 3

4 27
0

2 2
Q

        
    , 

where the discriminant   in terms of the model parameters is given by (23). 

In these considerations, the real solutions are described by the algebraic expression 

  2 2
1,2

2

2 31 1 1
12 12

2 32 3 12

Q
a Q Q

QQ Q


   

   


       

  
.(26) 

In addition, by calling down the inequality 0  , we find that the parameters of 

our model are subjected to the constraint: 

 3 40,1   . (27) 

ii. 0  . As for our model 0P  , we find out that this situation is not 

reflected in theory. 

iii. 0  . 

In this case, by considering the condition 0D  , one can identify one real 

double root and two complex ones. In the same time, we have the relation 
2 3
1 04 0     which leads to the following relation between the model’s 

parameters 

 , (28) 

The real solutions are described by the same algebraic construction in (26), 

with 

2 32 3

1 3 1 3

3 3

2 2

p
Q





 
    

 
and therefore one has the following set of real 

solutions: 

 

1 4 1 4

1 2
3 3

q
a a





   
       

   
. (29) 

Before we finish this section, let us derive, from the first Einstein equation 

(2), the evolution of pressure with respect to the scale function: 
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4

3
( )p a

a

 


  . (30) 

In the same manner, one can deduce the dependence of the energy density on the 

scale factor,  

 
3 4

3
( )a

a a

 




 
  

 
, (31) 

so that we are able to determine the following effective pressure dependence on the 

energy density, where a scale factor ‘interference’ is to be noticed, 

 
3 4

1 3 2
( ,  ) 3p a

a a

 
  



 
    

 
. (32) 

For the quantum analysis, to which the final part of our work is dedicated, let 

us write the Friedmann equation (15), as the Hamiltonian-constraint 

 . 

This contains the non-positive potential 

   2

2
V a a

a a

 


 
    

 
, (33) 

which tends to   for both 0a  and a . 

In view of the theory developed in [23], the Wheeler–DeWitt (WDW) 

equation [33, 34] 

 0H   (34) 

with the effective Hamiltonian 

  20

0

1

4

a
H p V a

a
   (35) 

and the momentum operator 

 ˆp p i
a


  


, 

gets the explicit form 
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2

2

2 2

d
0

d

 


 

 
     
 

. (36) 

Here, we have introduced the characteristic length 0a , so that the variable and the 

parameters get the dimensionless expressions 0a a   and 

 
0

4

a


  , 

2
0

4

a


  , 2

04 a  . 

Up to a normalization constant, the solution to the differential equation (36) is 

written in terms of the Heun biconfluent function of variable [35] 

    
1 2

1 4

0

2
1 1

2
x i i a

a


     , (37) 

as 

 
 2

1 4

2 1
exp 2 ,  0,  0,  ;  

2

i ii
HeunB i x

 
   




  

    
    

. (38) 

The absolute value of the amplitude (38) represented in Fig. 1, as a function 

of x . This is starting from zero and is increasing to the maximum value for the 

Universe with 0 /a a  . Then, it has an oscillating behavior, with periodic 

decreasing maxima corresponding to high probabilities of those Universes. 

 

Fig. 1 – The absolute value of the function (38) with respect to the variable x  defined in (37). 
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4. CONCLUSIONS 

For the spatially-flat FRW Universe filled with a mixture of cosmic dust and 

radiation, the Friedmann equation is analytically integrable, leading to the cubic 

equation (6) for the scale function. As one is expecting, the radiative epoch 

characterizes the early times, while, at late times, it was identified the dust-like 

behavior of the universe.  

By adding a positive cosmological constant, its effects on the model 

dynamics have been pointed out. In this respect, it was found a non-trivial 

dependence of the pressure on the energy density and scale factor. The non-linear, 

polytropic equation (32) is the algebraic sum of a standard linear EoS ( p  ) and 

a non-linear term depending on the model’s parameters. With respect to the linear 

dependence, we outline that within this level of approximation (the ultra-relativistic 

limit), it might be viewed as a stiff matter EoS. This has been brought into 

evidence by the Zel’dovich pioneering model of the Universe composed, in early 

stages, of a cold gas of baryons interacting through a meson field [36]. A similar 

non-linear EoS has been obtained in [8], for a mixed cosmology with stiff fluid, 

cosmic dust and a cosmological constant, in the context of fluid dynamics with 

viscous effects.  

Finally, within a quantum analysis, the wave function of the Universe is 

expressed in terms of the intricate Heun functions in their biconfluent form. The 

absolute value of the wave function is characterized by a zero initial value for 

0a  , indicating a smooth departure from the vacuum state; from this singularity 

the wave function is starting to increase until it achieves the most prominent 

maximum, at 0 /a a  . As the scale function evolves towards higher values, 

the most probable Universes possess successive decreasing maxima, alternating 

with non-vanishing minima. 

As an ultimate remark, it is worth noticing that the present work can be 

expanded in several directions, as for example by embedding the 0k  – FRW 

branes in a higher dimensional space [37]. 
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