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Main Findings and
Introduction

Before diving in the introduction and the background material, for the impatient
and excited reader, the main findings of this thesis are presented and briefly dis-
cussed. Some familiarity with the concepts presented is assumed.

1.1 Main findings

The main topic of this thesis is wormholes. These can be thought of as smooth
bridges between two far away points in spacetime. These points can be discon-
nected from each other, in the sense that they are spacelike separated. If a worm-
hole allows information to travel through it, we call it traversable. In the oppo-
site case we have a non-traversable wormhole, a famous example of which is the
Einstein-Rosen bridge. In order for a wormhole to be traversable it needs to be
sourced by an exotic stress tensor. More precisely, the stress tensor must violate
the null energy condition (NEC), which is respected in classical physics. However,
in quantum physics the NEC is violated. There is now a whole zoo of wormhole
constructions that use various techniques to achieve traversability. However, the
work that changed the landscape of wormholes is [1], by Gao, Jafferis and Wall
(GJW). The authors constructed the first traversable holographic wormhole by
starting from a BTZ black hole and coupling the two boundaries with a non-local
coupling. Without too much detail, this coupling has the form

58 = —/hOR(’)L, (1.1.1)

where Op, i is a primary operator in the left and right boundary respectively, and
h is the coupling constant. This creates two negative shock waves that propagate
in the black hole background. After some lengthy calculations one finds that the
average null energy condition (ANEC) is violated so that the wormhole opens up.
The opening of the wormhole, is calculated to be

AV x hGTN (1.1.2)
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where ¢ is the AdS radius, G is Newton’s constant and AV is the difference of
V coordinate (in Kruskal metric) between the future horizon and the first lightray
which can get through the wormhole. In Chapter 2 we study the amount of
information that can be sent through this type of wormhole. In the GJW case, we
find that the number of particles that go through the wormhole is

N x % (1.1.3)

where r}, is the black hole horizon radius. To obtain this estimate we impose that
we are in the probe limit, which means that the signal does not backreact too
much on the geometry. Moreover, instead of only coupling one O field, we couple
K of them as in [2]. This enhances the negative energy and the amount of particles
we can send through the wormhole in a linear way. We also find that there is an
upper bound on how many fields we are allowed to couple

K <07 Gy . (1.1.4)

We also calculate that the maximum amount of information we can send through
this type of wormhole, using various techniques is

N< It = Spy. (1.1.5)
N

Finally, we compare the aforementioned bulk results we obtained with a crude
boundary estimate, and find them compatible.

In Chapter 3, we stay in the same spirit. Once again we use the non-local coupling
for traversability. The goal of this chapter is to make an eternal AdS, traversable
wormhole. We have drawn inspiration from [3]. In a nutshell, we start with two
magnetically charged Reissner-Nordstrom (RN) black holes with opposite charges.
In order to render the wormhole traversable we add a non-local coupling of the
same type as GJW between the two CFTs that are dual to our black holes. The
term we add to our action is of the form

88 = i/d% h(UROh + whuk) (1.1.6)

where Vg 1, is the bulk field that is dual to the charged fermions in the right and
left CFT respectively and h is the coupling constant. This added term modifies the
boundary conditions. By solving the Einstein equations with these new boundary
conditions we get the quantum correction of the stress tensor to linear order in h

(i) = g N (1.1.7)

2



1.1. Main findings

For h > 0 the stress tensor is negative and we can violate the ANEC and open up
the wormhole. We then use this result to solve the Einstein equations numerically
and pertubatively in order to find the geometry. From far away the resulting
geometry looks like two AdS; RN black holes. However in the middle the two
black holes are connected by a throat that is nearly AdS, X S2. So, an infalling
observer would not hit a singularity but instead they would travel from one mouth
to the other through this nearly AdSs X S? throat.

Finally, we find that there is a Hamiltonian whose ground state is dual to this
wormbhole

ih - _
H=Hy+Hp— /dQ2 (BRwE + Wi UR) 4 QL — Qr), (1.1.8)

for some small values of u, the chemical potential and &, the coupling constant.

In Chapter 4 we switch gears and focus on recent developments in the information
paradox front. In a number of papers [4-9] the Page curve of Hawking radia-
tion was recovered within semi-classical gravity. This was managed by recognizing
that the fine grained entropy of the radiation receives a contribution from a dis-
connected piece of spacetime that usually lives in the black hole, called the island.
The so-called island formula is

A(0I)

S(R) = m}n{@;t[ Gy T Sma(RU 1)} } : (1.1.9)

where A(JI) is the area of the boundary of the island I, and Spat(R U I) is the
renormalized entropy of the quantum fields on the union of the regions R and I. In
short, the way we acquire the Page curve goes as follows. Before the evaporation
starts there is no island, so the first term in (4.1.1) is zero and thus the entropy
follows the curve S(R) & Smat(R). Later, when the evaporation of the black hole
has progressed, a new extremal surface appears, which is the island. Its boundary
is close to the horizon and it contains almost all the partners of the Hawking
radiation that has escaped. These partners in the island purify the external ones

and hence the entropy decreases, following the curve S(R) = i(cii) and the Page

curve is recovered.

By now, islands have been studied in various different ways and in a number of ge-
ometries. In this thesis we study them in Friedmann-Lemaitre-Robertson-Walker
(FRW) cosmologies. Usually islands are associated with black holes, in the con-
text of which the information paradox is well-defined. We explore what happens
in four dimensional cosmological spacetimes. We extend the work of [10], where
the authors derived three necessary conditions for the existence of an island and
applied them to spatially flat kK = 0 FRW supported by radiation and curvature
and cosmological constant A. They found that for flat slicing and A < 0 there is
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an island that starts at a large radius and extends to infinity. For A > 0 no islands
were found.

We expand to the cases of open and closed slicing. We find that for closed universes
irrespective of the cosmological constant there is always an island that is the whole
Cauchy slice. However, this is not the exciting case. When A > 0, for open
universes there are no islands. However, for A < 0 there are non-trivial islands
for both the open and closed slicing. In the case of a closed universe, there is an
island region around the half-sphere point. This island is finite in size. For open
universes, an island region shows up for large enough radius and extends all the
way to infinity, in a similar fashion as in the flat slicing case in [10].

With this we conclude the main findings of this thesis. We proceed with giving a
more general overview concerning wormholes and discussing background material
needed for the rest of the thesis.

1.2 Wormbholes

Wormbholes have been, for over a century, an object of fascination both for physi-
cists and the wider public. They are depicted as spacetime shortcuts that a traveler
can take in order to traverse distances that otherwise would be impossible to cross.
Usually the travelers are shown to go through one side and appear unharmed on
the other. However, in reality, it is still unclear whether or not such objects exist,
and if they do, if the trip through them would be a safe one.

For a wormhole to be traversable, it is necessary that geodesics entering from one
side (and hence, focusing) defocus upon reaching the other in order to escape.
This defocusing of the geodesics is contrary to the usual effect of gravity. In
the presence of ordinary positive energy, geodesics tend to focus. Thus, for the
geodesics to defocus, the presence of negative energy is required in the throat
region.

This conclusion was first arrived at by Morris and Thorne [11] in 1998. They
constructed the one of the first traversable wormholes by choosing an adequate,
well-behaved metric and solving for the stress tensor.! The resulting stress tensor
indicated that negative energy is essential to prevent the wormhole throat from
collapsing upon a traveler. This type of unusual energy violates the energy con-
ditions, which are requirements that capture the expectation that energy should
be positive. Despite this, there exist a number of theoretical and experimental
examples, classically and quantumly, where the energy conditions are violated. In

IThe first traversable wormhole was constructed by Ellis and independently by Bronnikov in
1973, and it was a nongravitating, purely geometric wormhole.

4



1.2. Wormbholes

subsection 1.2.2, we will briefly examine a case where the null energy condition (the
most useful energy condition in the study of wormholes) is violated, and in 1.2.3
we will review a famous non-traversable wormhole, namely, the Einstein-Rosen
bridge.

In the years following Morris and Thorne’s publication, a plethora of papers on
the topic of traversable wormholes were published. The construction most rele-
vant to this thesis is the Gao-Jafferis-Wall (GJW) wormhole [1]. This was the
first traversable wormhole in holography. One appealing aspect of the GJW con-
struction is that the negative energy necessary to open up the wormhole is not
artificially put there “by hand,” but instead arises as a consequence of a non-
local coupling that connects the two boundaries. Once this coupling is done, two
negative energy shock waves start propagating in the bulk of the geometry. In
subsection 1.3.3 we will briefly review how shock waves work and in 1.3.4 we will
examine the GJW construction.

1.2.1 Pointwise and averaged null energy condition

The essence of General Relativity can be captured by the Einstein Equations
G =8rGNT,, , (1.2.1)

where G, is the Einstein tensor and 7}, is the stress tensor. The left hand
side of (1.2.1) represents the curvature of our spacetime and the right hand side
encapsulates all the energy contained in it. In general, one can pick their favorite
metric, calculate the Einstein tensor and then demand that it is equal to the stress
tensor. Even though this procedure is formally correct, it does not ensure that the
resulting stress tensor will be a realistic energy source. Thus, in order to avoid
having nonphysical stress tensors we impose energy conditions.

As Carroll [12] explains: “The energy conditions are coordinate-invariant restric-
tions on the energy-momentum tensor”. To gain more physical intuition we will
consider the stress tensor of the perfect fluid and examine how the energy condi-
tions look in this case. The perfect fluid stress tensor has the form

Ty = (p+p)UUy + pgpv » (1.2.2)

where U* is the four-velocity of the fluid, p is the energy density and p the pressure.
In what follows ¢# is a null vector. The most popular energy condition, at least
for the topic of wormholes, is the null energy condition (NEC)

Ty 040" >0, (1.2.3)

which in the case of the perfect fluid can be written as
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p+p>0. (1.2.4)

There are more energy conditions, but this one will be the only one that we will
be using in this thesis. Moreover, it is the hardest one to violate. Notice that the
energy density can be negative as long as there is compensating positive pressure.
The aforementioned condition is otherwise called pointwise null energy condition
because it only refer to specific points in spacetime. Most classical matter obeys
NEC, not all. Additionally, all pointwise energy conditions are necessarily violated
by essentially any quantum field theory [13]. This led Tipler [14] to suggest an
averaged version of the pointwise energy conditions. He proposed averaging the
weak energy condition (yet another energy condition) over an observer’s worldline

/Twu"u"dT >0, (1.2.5)
.

where v is a timelike curve, u* is a tangent vector and 7 the proper time. The
energy density is not measured on a single point, rather averaged over a geodesic.
In this case, we are allowed to have negative energy density on some portions of
the geodesic, as long as overall the positive energy density “wins”. We can do the
same for NEC

/ka”k”d)\ >0, (1.2.6)
.

where v is now a lightlike curve, k* is a tangent null vector and A the affine
parameter. This type of energy condition is called averaged null energy condition
(ANEC) and this is the one whose violation can lead to a traversable wormhole.
The success of averaging is that these non-local conditions do, in general, hold for
quantum field theories, unlike their local counterparts [15-19] .

An alternative approach to the averaged energy conditions are the quantum in-
equalities, first introduced by Ford [20]. They are constraints on the magnitude
and duration of the negative energy fluxes and densities, measured by an inertial
observer. They resemble the uncertainty principle because they state that the
duration of a negative energy pulse is inversely related to its magnitude. In this
thesis, we will not explore the quantum inequalities further.

1.2.2 The Casimir effect

The most prominent example of violation of the energy conditions, in the quantum
realm, is the Casimir effect, which has been experimentally observed [21-23]. In
1948 Hendrik Casimir showed that the presence of two perfectly reflecting plates
distorts the vacuum energy of the electromagnetic (EM) field [24,25]. Specifically,
he found that it is negative relative to the normal zero point energy. The EM field
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becomes quantized due to the presence of the plates. The modes of the field that
are longer than the distance between the plates cannot fit between them. So, to
put it simply, between the plates we are “missing” some of the modes. As a result,
the vacuum energy we calculate is lower than that of the Minkowski vacuum, which
contains all modes.

Following [26], the electromagnetic Casimir stress tensor, in four dimensional
Minkowski spacetime ds? = —dt? + dx? + dy? + dz? with plates at z = 0 and
z = a, can be written as

-1 0 0 O
2
0 1 0 O
(P 1.2.7
Casimir 720a4 0 0 1 0 ( )
0 0 0 -3

It is easy to see that the EM Casimir stress tensor violates NEC for all null vectors
(except when they are parallel to the plates) since p + p, < 0. By p we denote
T and p, is T33. On the other hand, ANEC is harder to violate. Up to this
point of the analysis we have assumed perfectly conducting plates, but in realistic
scenarios the mass of the plates far exceeds the negative energy. Since we integrate
along a complete null geodesic, the integral takes contributions from the matter
composing the plates too. So, even though NEC is violated everywhere between
the plates, ANEC is in general satisfied.

In Visser’s book [27] there is an explicit analysis about what happens with the
averaged energy conditions. In a nutshell, he defines another Casimir stress tensor,
similar to (1.2.7), that corresponds to having realistic metal plates:

2
720a*
where ## is the unit vector in the time direction and the plates are not ideal and
have surface mass density o. Then he writes down ANEC and immediately infers
that the only way it can be violated is when ¢ is physically unreasonable. So, it’s
safe to say that ANEC is obeyed in the case of physical plates.

TE, = ot'#[5(2) + 0(2 — a)] + O(2)O(a — 2)

Casimir

[ — 42727], (1.2.8)

However, there is another variation of the electromagnetic Casimir effect. The
Casimir effect can also arise when our spacetime does not have trivial topology.
A simple example is the following. Assume that we have a two dimensional flat
spacetime and a free massless scalar field on which we impose periodic boundary
conditions. In this case, the Casimir stress tensor is found to be
s

612"

where L is the period. In this case, since there are no physical plates to contribute,
ANEC is violated. Thus, the topological Casimir effect is a better candidate for the

T Gasimir — (1.2.9)

7



1. Main Findings and Introduction

construction of traversable wormholes. There is a number of papers dedicated to
building traversable wormholes by using the topological Casimir effect, indicatively
[3,28-34]. One study that stands out is [3]. The set-up includes fermions that give
rise to Casimir energy, which renders the wormhole traversable. We will review
this construction in detail in chapter 3.

1.2.3 Einstein-Rosen bridge

The first theoretical example of a non-traversable wormhole lives in the maximally
extended Schwarzschild black hole. It was first noticed by Ludwig Flamm [35], in
1916, and later by Einstein and Rosen [36]. They realized that besides the usual
Schwarzschild black hole solution, there is a second solution, the white hole. It
can be thought as the reverse of the black hole. Things can escape to us from the
white hole, but we can never reach it.

Figure 1.1: Kruskal diagram of the Schwarzschild black hole. The zig-zag lines repre-
sents the singularities (UV = 1).

One can start from the usual form of the Schwarzschild black hole metric
2GNM 2GNM\?
ds® = — (1 - iv ) dt* + (1 - Jrv ) +r2dQ?, (1.2.10)

and bring it to the following form

2G3, M3
ds® = %e*’“/wmdwv +7r2d0?, (1.2.11)
T
where
r
_ _ r/2GNM
uv (1 2GNM> e . (1.2.12)

8



1.3. Wormbholes in holography

These cooridnates in (1.2.12) are known as the Kruskal coordinates. The Kruskal
diagram of the Schwarzschild black hole is shown in fig. 1.1. Depending on the
signs of U and V' we can be in either of the four quadrants. From region I we can
travel to region II, but we can could never reach III or IV. Signals can travel to I
and IT from IV. Of course, anything moving in region II has its fate sealed; it will
unavoidably hit the future singularity.

In this geometry there is a non-static, non-traversable wormhole connecting the
two asymptotically flat regions. The throat of the wormhole has its shortest length
at the bifurcation point, in the middle. However, even if we send a photon from
region I, almost hugging the horizon, it will never make it to region IV.

1.3 Wormholes in holography

The new era of wormholes came a few years ago, with the work of Gao, Jafferis
and Wall (GJW) [1]. In this work the first traversable wormhole in holography was
constructed. After the publication of this paper, many others followed. Here we
review the GJW wormhole and some of its follow-up papers, in subsection 1.3.4.
For now, we are going to review some necessary background material before diving
into the wormholes.

1.3.1 AdS/CFT

Wormbholes had been the topic of study of physicists for a long time. The game
changer, however, was when they were put in the context of AdS/CFT. The
AdS/CFT correspondence was proposed by Juan Maldacena in 1997 [37]. Simply
put, it is a duality between a gravitational system with negative cosmological con-
stant (AdS) in d + 1 dimensions and a quantum field theory (specifically a CFT)
in d dimensions. The CFT lives on the boundary of AdS and the gravitational
theory lives in the bulk of AdS.

In path integral language we can express the AdS/CFT correspondence as

Zerr|J] = Zyuk[dr) (1.3.1)

where J is the source of an operator O in the CFT and ¢, is the boundary condition
of a field ¢ in the bulk. This is one version of the dictionary between the quantities
on the boundary and the bulk [38,39]. One can differentiate the partition functions
with respect to the sources, acquire the desired correlators and then set the sources
to zero.

There is a second version [40,41] of the dictionary that is obtained by extrapolating

9



1. Main Findings and Introduction

correlators in the bulk to the boundary as follows

(O1(21)O2(22) - - - Op(n)) = lim 28 b1z, 1) 2 (2, 2) - B2, 20)), (1.3.2)

where O are CF'T operators of conformal weight A;, and A is the sum of conformal
weights of all the O operators. The z appearing above is the one holographic
direction. In Poincare coordinates AdSg41 is written as

€2
ds® = Z—Q(dz2 + o datdx”), (1.3.3)

where £2 is the AdS length. Two important limits of z are z — 0 at the boundary
and z — oo in the bulk. The two dictionaries are equivalent [42,43]. Using these
dictionaries, one can translate between quantities between the bulk and those on
the boundary.

For example, a useful lemma of the AdS/CFT dictionary is the scalar field in AdS.
The dictionary tells us that a scalar field of mass m in the bulk is dual to a scalar
operator O with scaling dimension

2
Azg-i-\/dz—i—mzﬁ. (1.3.4)

There are many entries in the AdS/CFT dictionary and discovering more remains
an active area of research.

Since the appearance of AdS/CFT there have been hundreds of studies on it. It
has proven a very useful tool in the pursuit of understanding quantum gravity.

1.3.2 The BTZ black hole

There are many different black holes relevant to holography. Here we focus our
attention on the BTZ black hole, as it is necessary for the following material and
importantly, because it has a favorite holographic dual, the thermofield double
state. The BTZ black hole is asymptotically AdS and three-dimensional. Its
metric in “Schwarzschild”-like coordinates is

2 2

_ 2 ¢
R dr® £ 17d6, 1= \/BGNIM (1.3.5)

ds? = —
£2 r2—r;

where r,, is the horizon radius, £ is the radius of AdS and M is the mass of the
black hole. Another set of useful coordinates is Kruskal coordinates. In Kruskal

10
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coordinates the BTZ metric becomes

ARAUAV 472 (1 — UV)? dp?

ds® = , 1.3.6
UV +1)? (1.3.6)
where U LUV
rpt r —
- v _ , 1.3.
exP( 52) V' o 1+U0V (13.7)

The horizons live at U = 0 and V = 0, the boundaries at UV = —1, and the
singularities at UV = 1. In this geometry, there exists a non-traversable wormhole,
as in the maximally extended Schwarzschild black hole. The Penrose diagram is
shown in Fig. 1.2. Once again, even if we send a signal from the right side, very
far in the past, it can never make it to the left side.

Figure 1.2: Penrose diagram of the BTZ black hole. The vertical lines represent the
boundaries and the zigzag lines represent the singularities.

In 2001, Maldacena proposed that this geometry is dual to two copies of the CFT
in the thermofield double state [44], which has the form

ITFD) = (1.3.8)

\/—Z e PEn2ln)i[n)s .
The thermofield double state was first introduced in [45], as a trick to treat the
thermal mixed state p = e % as a pure one in a bigger system. The trick
involves doubling the degrees of freedom (dof) of one theory and entangling the
two resulting systems.

The propagators of the BTZ black hole are known analytically [46,47]

—A

/2
a1 (r* - T%)l Th r Th

Ka (t,r,0) = <€2> AT, (— - cosh e—zt—k Ecosh ?gé ,

(1.3.9)
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where rp, is the horizon and will be very useful in the later chapters of this thesis.

1.3.3 Shock-waves

In this subsection we briefly examine shock waves in the BTZ geometry, using as
reference [48,49]. Understanding how shock waves work will be very useful for the
purposes of this thesis. As mentioned in the introduction, in the traversable BTZ
wormbhole construction of [1] we have two negative energy shock waves propagating
in the bulk. Starting from the unperturbed BTZ geometry, we insert a particle at
the left boundary. The CFT state becomes

W (t)|TFD) . (1.3.10)

where t,, is the time we insert the particle at the left boundary. We assume that
the energy of the particle is E, and that it is small compared to the mass of the
black hole M.

Figure 1.3: BTZ black hole geometry. We have inserted a particle on the left boundary.
It propagates in the spacetime and eventually crosses the horizon and encounters the
singularity.

Naively it seems like this cannot have a significant effect on the geometry. However,
if we push the insertion far enough into the past, the particle will be boosted, in
comparison to the original frame, and it will cross the the ¢ = 0 slice with energy

E, ~ Bl (1.3.11)
Th
where ¢ is the AdS radius and 7, the horizon radius. In this frame, the particle
is actually a high energy shock wave that is going to have a non-trivial effect on
the geometry. In order to find the new geometry we sew two BTZ geometries, one
with mass M and one with M + E, along the null surface on which the shock is
traveling, V,, = e~ "ntw/¢,

12
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tw

Figure 1.4: Penrose diagram of the perturbed BTZ black hole. The double red lines
represent the shock wave. The orange line represents a signal that we send from the right
boundary. Upon encountering the shock wave it shifts deeper in the black hole interior.

For E/M small, we find that the v coordinate gets shifted by an amount a

~ FE 2
V=V+a, a= me”ﬂfw/l . (1.3.12)

The backreacted metric takes the following form

g2 — APAUAV + 1} [1 = (U +af(V)) V)? dg?
B (14 (U + ab(V)) V]? ‘

(1.3.13)

where (V) is the step function. If we send a signal from the right boundary
towards the left boundary, it will suffer a time delay when it reaches the horizon
V =0, where the shock wave exists.

For the purpose of constructing a traversable wormhole, we need somehow to
produce the “opposite” effect, namely, the signal should gain some time advance
in order to avoid ending up at the singularity. If there was an operator that could
create a negative energy shock wave instead of a positive one, the shift a would be
negative. Then, the signal would eventually encounter the negative energy shock
wave, shift towards the opposite direction and reappear on the left boundary.

13



1. Main Findings and Introduction

Figure 1.5: Negative shock wave in the BTZ geometry. The orange signal takes a time
advance upon meeting with the shock wave and reappears on the left boundary.

In the next subsection we review how this was achieved by Gao, Jafferis and Wall
in [1].

1.3.4 The Gao-Jafferis-Wall Wormbhole

The first traversable wormhole in holography was constructed by Gao, Jafferis
and Wall in [1]. They started from the unperturbed BTZ black hole geometry and
coupled the two boundaries using a coupling term of the form

58 = f/dtdqs h(t, 0)Or(t, $)OL(~t, ) , (1.3.14)

where O is a scalar primary operator with scaling dimension A, dual to a scalar
field . The ultimate goal is to calculate the stress tensor due to the non-local
coupling on the horizon V' = 0 and see if it violates the averaged null energy
condition (ANEC). After a number of tedious manipulations the authors find that
the integrated stress tensor is

/OO hU'(2A +1)2 2 (%+A,%—A;%+A;ﬁ>

T, =
- vudV 24A(2A + 1)[(A)2L(A 4 1)2¢ (1+ Up)At1/2 ’

(1.3.15)
where £ is the AdS radius. This quantity is always negative, which means that the
ANEC is violated and the wormhole is rendered traversable. If we send a signal
from the right boundary towards the left, upon meeting with the negative energy
shock wave will gain a time advance and will reappear on the left boundary, as in
Fig. 1.6.
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oL

OL OR

dr

Figure 1.6: The red line represents the signal we send, from the right boundary. The
blue regions represent the negative energy density. Upon collision with the negative
energy the signal shifts and instead of ending up in the singularity it emerges on the left
boundary. We must note that when we have even number of dimensions the negative
energy is always localized on light cones (as we saw in 14+1 Minkowski spacetime), whereas
in odd number of dimensions the negative energy is inside the light cones as well (as we
see here, in case of the BTZ).

The opening of the wormhole (in other words, the time advance a lightray will
gain) is equal to

AV ~ hGTN (1.3.16)

where 7, is the black hole horizon radius, Gy is Newton’s constant and V is
the dimensionless Kruskal coordinate. AV is a very small number. Thus, this
wormbhole differs than the usual static type, such as the Morris-Thorne wormhole,
that remain perpetually open. The GJW wormhole opens up for a small amount
of time and then closes again. However, this is enough for highly boosted signals
to traverse the wormbhole.

Following GJW, an abundance of similar constructions appeared, including one
version in two dimensions [2] and a rotating version in three dimensions [50],
among many others [51-59]. We explore this setup in more detail in chapter 2.

1.4 The Black Hole information paradox

1.4.1 Black hole thermodynamics

For a long time, it was believed that nothing can escape a black hole. Classically,
this is a true statement. This changed in the 70’s, when Hawking performed
his famous calculation [60], which showed that, quantumly, thermal radiation is
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emitted from black holes with temperature

K

:%’

(1.4.1)

where k is the surface gravity. For a Schwarzschild black hole the surface gravity
is k = m. It is worth mentioning that Bekenstein was first to come up with
the idea that black holes are thermal objects and have entropy [61]. Hawking
believed that they did not and tried to prove him wrong, only to end up confirming
Bekenstein’s idea. This temperature (1.4.1) suggests that black holes might behave
like a thermodynamic objects. A little earlier Bardeen, Carter and Hawking [62]
had calculated the response of a rotating black hole to objects being thrown in it

as
K

87TGN

where M, A, Q and J are the mass, horizon area, angular velocity and the angular
momentum of the black hole. This equation looks suspiciously similar to the first

dM =

dA +QdJ (1.4.2)

law of thermodynamics
dM = SdT + work terms, (1.4.3)

and indeed if we assume that the black hole has temperature T"  x and entropy
S o« A then the two equations are identical. Classically of course, there is no
reason to believe that this is anything more than a coincidence. However, when
combined with Hawking’s later calculation it confirms that black holes indeed emit
radiation and have entropy

A
= —. 1.4.4
SBH 1Gn ( )

Equation (1.4.4) is the well-known Bekenstein-Hawking entropy formula. We also
call it the coarse-grained entropy of the black hole. The total entropy of the black
hole is called the generalized entropy and it has the form [61]
A

Sgen = Te + Sout (1.4.5)
where S,y is the entropy of quantum fields outside of the horizon. It has been
proved that it obeys the second law of thermodynamics [17]. In order to proceed
in explaining the information paradox, it is crucial that we first discuss the notion
of the von Neumann or otherwise, fine-grained entropy. It has the form

Syny = —Trplogp, (1.4.6)

where p is the density matrix. The von Neumann entropy captures our ignorance
about the state of the system. For pure states it is zero, which signifies that we
know everything about the state.
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>t
tp
Figure 1.7: Page curve of the fine-grained entropy of an evaporating black hole.

1.4.2 The Page curve

The main issue that arises is the following. Assume we start with a black hole
system in a pure state. At some point it starts evaporating. We usually think of
this process as follows. Entangled Hawking pairs are created; one counterpart of
each pair falls in the black hole and the other escapes in the ambient space. The
outgoing pairs get collected at some far away part of spacetime, which we usually
call a “bath”.

We want to calculate the von Neumann entropy of the collected radiation. In
the beginning of the evaporation process the entropy of the radiation is zero since
there are no pairs in the bath. As the process starts, more and more outgoing
pairs end up in bath and the von Neumann entropy increases. Based on Hawk-
ing’s calculations [60,63] it keeps on increasing and at some point surpasses the
Bekenstein-Hawking entropy. This is the essence of the information paradox. In
simple words, the entropy of the radiation becomes larger than what the black
hole has room for. We would expect that if the process is unitary the entropy
of the radiation would grow until it reaches the point where S,y=Spy and then
start decreasing until it vanishes.

This is what Page proposed in [64]. He showed that initially the fine-grained
entropy grows, following the Hawking curve, but approximately halfway through
the evaporation process, it starts decreasing and eventually vanishes, as in Fig 4.1,
which is consistent with unitary evolution.
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1.4.3 Holographic fine-grained entropy

We previously saw that in the semi-classical regime the total entropy of a black
hole is given by (1.4.5). Interestingly, there exists a holographic version of the
aforementioned formula. It was first conceived by Ryu and Takayanagi [65] and
Hubeny, Rangamani, and Takayanagi [66]. It states that the entropy of a region
R in the CFT has entropy proportional to a spacelike, codimension 2 extremal
surface X such that X = R and X is homologous to R

AX)
S(R) = ——. 1.4.7
(R =G5 (1.47)
Faulkner, Lewkowycz and Maldacena [67] showed that when the quantum correc-
tions are included, the formula for the entropy takes the form
A(X)

S(R) = Sgen(X) = AGN + Shulk s (1.4.8)

where Spyuk is the entanglement entropy across X. Finally, Engelhardt and Wall
[68] proposed that the correct formula that computes the fine grained entropy is

S(R) = miny {extX [ig]? + SvN(Ex)] } (1.4.9)

where Y x is the area bounded by X and S,n(Xx) is the fine grained entropy
of the quantum fields on the area ¥ x. This formula means that in order to get
the correct entropy for the region R we need to extremize and then minimize the
generalized entropy.

1.4.4 Islands

In a series of breakthrough papers [4-9] the Page curve was recovered within semi-
classical gravity. The authors achieved that after realizing that the fine-grained
entropy of the radiation receives contributions from a disconnected region that
lies behind the black hole horizon, namely, the island. The full entropy of the
radiation is given by

A(OI)
4G N

where A(JI) is the area of the boundary of the island I, and Spat(R U I) is the
renormalized entropy of the quantum fields on the union of the regions R and

SR) = mIin{ext[

X + Smat(RU I)} } : (1.4.10)

I. Initially, before the evaporation begins, no Hawking pairs are emitted and no
islands exist. So, the exact entropy of the radiation is

S(R) =~ Smat(R) - (1.4.11)
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When the evaporation begins, Hawking partners start escaping from the black
hole and (1.4.11) steadily grows. At some point of the evaporation, a non-trivial
island appears behind the black hole horizon, extending almost through the whole
black hole interior. Thus, the island includes most of the Hawking partners of
the radiation that has escaped. So, the island purifies the radiation and the term
Smat (RUI) is approximately zero. The exact entropy of the radiation then becomes

A(aI)
AGy

S(R) ~ (1.4.12)

As the evaporation procceds and the black hole horizon shrinks, (4.1.3) decreases
and finally vanishes. Thus, the Page curve is followed and the black hole evapo-
ration process is unitary (see Figure 1.7).
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Traversable Wormbholes in
and Bounds on
Information Transfer

2.1 Introduction

Physicists and non-physicists have speculated about the possibility of connecting
distant pieces of spacetime by creating a “shortcut” joining them [11]. A connec-
tion observers could travel through, called a traversable wormhole, remained in
the realm of science fiction until a few years ago, when Gao, Jafferis and Wall
(GJW) constructed traversable wormholes in the context of the AdS/CFT corre-
spondence [69].

They began with an eternal AdS black hole, which contains an Einstein-Rosen
bridge (wormhole) which is marginally non-traversable. This geometry is dual to
two CFT’s entangled in the thermofield double state [44]. As we will review in
the next section, they added a coupling between the two CFTs. From the gravity
perspective, this is a non-local coupling between the left and right asymptotic
regions. This non-local coupling allows for negative null energy and makes the
wormbhole traversable.

The result of GJW provides a proof of existence for traversable wormholes in
holography. Yet, the more fundamental question still remains to be answered:
what are the general rules for traversable wormholes? In this paper we take a step
towards answering this question by analyzing the amount of information that can
be sent through GJW-type wormholes.

First, we clarify some aspects of the GJW wormhole geometry. We calculate the
time that the wormhole is open, defined as the maximum proper time separation
between the past and future event horizons, finding that this time is shorter than
the Planck time. While this result might suggest that the GJW wormhole cannot
be trusted, we explain why it can still be analyzed within the semiclassical regime

despite apparent Planckian features.!

IWe thank Daniel Jafferis for discussions on this point.
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Next, we perform a bulk estimate of the amount of information that can be sent
through the wormhole. We show that for the original GJW construction, in which
the two CFT’s are coupled by a single operator, the amount of information we can
transfer through the wormhole is proportional to the number of thermal cells

N ~ (%’L)d_l : (2.1.1)

in agreement with [50]. Here, 7, is the black hole radius, ¢ is the AdS radius and
d are the boundary spacetime dimensions.

The procedure to send this number of messages is to use modes with low angular
momentum, such that the signal varies on scales somewhat longer than the AdS
length scale in the transverse directions. The message should be sent from the
boundary long before the coupling between the two boundaries is turned on, so
that it is very close to the horizon when it encounters the negative energy.

In order to derive the bound (2.1.1), we impose a number of consistency conditions
to remain in a controlled regime. In particular, following [50], we impose the ‘probe
approximation’: the message should backreact on the geometry by a small amount,
so that the negative stress-energy tensor calculated in the absence of the signal is
a good approximation. The probe approximation, in combination with our other
conditions, allows us to do a well-controlled bulk analysis. However, as we discuss
in more detail in the discussion section, it is not completely clear whether this
condition must be imposed.

The capacity of the channel can be increased by including non-local couplings for
a large number, K, of fields, as in [70]. In fact, many fields must contribute to the
negative energy in order for the semiclassical description to be good. In particular,
in order to talk about a single metric sourced by the expectation value of the stress
tensor, the fluctuations in the stress tensor should be small compared to the mean.
We will see that meeting this condition requires a large number K of coupled light
fields.

The opening of the wormhole increases linearly in K, and so does the amount of
information we can transfer. However, a black hole has finite entropy, so there
should be an upper bound on K. We show that K < ¢?~!/Gy is needed for a
self-consistent bulk solution, where G is the Newton constant. This bound can
also be found by requiring that the UV cutoff of the theory is not lowered to the
AdS scale.

The final result is that the amount of transferable information is bounded by of
order the entropy of the black hole N < Spg, as expected. In order to send this
amount of information, we have to go beyond the s-channel and consider messages
that are somewhat localized along the horizon. In particular we show that it is
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inefficient to localize messages on sub-AdS scales in the transverse directions, but
it is possible if we couple many fields K. This would be needed for the comfortable
journey of a cat through the wormhole envisioned by Maldacena, Stanford, and
Yang [70].

We show that this result for the amount of information transfer is in accordance
with CFT expectations coming from quantum teleportation. From the quantum
theory perspective, the GJW protocol should be seen as analogous to quantum
teleportation [59,70]. Indeed, the thermofield double state is a specific pure, en-
tangled state of two copies of the CFT. Roughly, each thermal cell of the left CFT,
with size f3, is entangled with the corresponding thermal cell in the right CFT.

As in the standard qubit teleportation scenario, entanglement is not enough to
send information from one copy to the other one: classical communication is also
needed. Here, this is provided by the K couplings; these K couplings play the
role of approximately K classical bits of information per thermal cell. Because
the left-right coupling is local in space, it acts locally on the pairs of thermal
cells. So at this rough level, the information transfer is simply standard quantum
teleportation done on many qubits at once.

Note one miracle that has to occur: although the thermal cells have a pairwise
entanglement of S, separating this into S..;; EPR pairs would require solving
a difficult problem at strong coupling. However, the K couplings between left
and right simply couple primary operators on each side. The miracle is that this
crude coupling is sufficient for the delicate task of quantum teleporting a large
amount of information, as discussed in more detail in [71]. This miracle is the
same miracle that allows for the preparation of the TFD state from a simple
Hamiltonian [51,72,73].

The large value of K that maximizes the information transfer is of order the
entropy of an AdS size black hole, K ~ ¢?~'/Gy . For this value of K, the
teleportation process uses up all of the quantum entanglement, destroying the
black hole in the process.

Before continuing with our discussion, let us briefly comment on previous work
related to traversable wormholes. It is by now well known that classical matter
obeying the null energy condition, cannot support traversable wormholes — see,
for instance, [74]. But this statement is no longer true if we include quantum
corrections, leaving open the possibility that traversable wormholes are possible
in the real world [?]. Earlier results on how to build traversables wormholes using
exotic matter or higher curvature theories of gravity include, among others, [75—
82]. In the context of AdS/CFT, the fact that entanglement is not enough to
build a traversable wormhole in AdS, but one needs an explicit coupling between
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the left and right asymptotic regions was already noted in [82,83]. After GJW,
traversable wormholes were further explored for the case of AdS; in [70], while
recent attempts to construct eternal wormbholes include [?,51,56,84,85]. The case
of rotating wormholes in AdS was studied in [50]. Recently, the authors in [54]
found bounds on the information that can be transferred in the GJW wormbhole.
We will comment on the differences of both approaches in the discussion section.

The rest of the paper is organized as follows. In section 2.2 we give a quick review
of the GJW construction and we explore several interesting facts that have not yet
been pointed out in previous literature. In section 2.3 we bound the amount of
information that can be transmitted through the wormhole in the bulk and check
that it agrees with the boundary calculation. We conclude in section 2.4 indicating
some possible future directions.

2.2 Gao-Jafferis-Wall wormbhole

In this section we review the traversable wormhole geometry constructed by Gao,
Jafferis and Wall [69]. The main ingredient is a non-local coupling between the two
asymptotic boundaries of a background BTZ black hole. This geometry contains
an Einstein-Rosen bridge which is marginally non-traversable: photons falling
along the horizon almost put in causal contact the two boundaries. The non-local
coupling can generate a distribution of negative energy, which backreacts on the
geometry such that these photons, if send early enough, can now fall from one
boundary to the other. The wormhole becomes traversable.

The resulting geometry can be interpreted as the dual of the teleportation protocol
[70]. The BTZ black hole is dual to two copies of a CFT entangled in a particular
state, the thermofield double state (TFD) [44], which is defined by

ITFD) = —Y e /2ln), @ n)r, (2.2.1)

1
VZ
where |n)r r are energy eigenstates of the left and right CFT’s with energy E,.
This state is a pure entangled state from the perspective of the full system with
the property that the reduced density matrix for each side is thermal with inverse
temperature 3. Details on how to create this state are given in [51,72,73]. The
entanglement is the key resource for quantum teleportation, geometrically it builds
the connected wormhole geometry [86]. However, it is not enough, the exchange
of classical information is also needed. The non-local coupling takes care of this
second passage [70], geometrically it makes the wormhole traversable.

We begin this section by recalling some basic properties of the unperturbed BTZ
geometry.
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‘\/ U

Figure 2.1: Penrose diagram for the BTZ black hole.

2.2.1 Unperturbed BTZ geometry
The metric of the uncharged, non-rotating BTZ black hole is given by [87,88],

2

2
"™ = Th 5,2
12 dt® + 2

2

ds® = — ¢ Sdr? + r?d¢?, (2.2.2)
— 72

where 7, is the horizon radius, ¢ is the radius of AdS and ¢ should be periodically
identified ¢ ~ ¢ + 2m. The black hole mass and horizon radius are related by
r? = 8MGn/{?. The inverse temperature is given by 3 = %
constant, which, in three dimensions, is related to the Planck length by /p =
871G . We use the convention that time is flowing upwards at the right boundary

. Gy is Newton’s

and downwards at the left one.

For our purposes, it will be convenient to work in Kruskal coordinates,

it U r 1-UV
eXp( e2> V' o 140V (22.3)

that cover the maximally extended two-sided geometry — see Fig. 2.1 — with the
metric

—402dUdV + 72 (1 = UV)? dg?
(1+UV)?

where U > 0 and V' < 0 in the right wedge, UV = —1 at the boundaries and
UV =1 at the two singularities. The two horizons correspond to U = 0 and

ds® =

, (2.2.4)

V =0 and, as can be seen from the figure, are on the verge of causally connecting
the two boundaries.
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2.2.2 Adding a non-local interaction

The main novelty of the GJW construction is a non-local interaction between
the two boundaries, introduced through a small deformation of the original CFT
Hamiltonian

SH = —t / b h(t, ) Or(—t, $)On(t, ®) (2.2.5)

Here Oy g are scalar primary operators with conformal weight A and h(t, ¢) is the
coupling constant. For the interaction to be relevant we need A < 1. In principle,
the coupling constant could have some explicit dependence on ¢ or ¢, but we will
restrict to a constant coupling h turned on for some period of time

L 9 2—2A ¢
= ittg <t <ty
ey - (F) T resesy,

0 otherwise .

(2.2.6)

Note that, as in GJW, the factors of 8 are chosen so that h is dimensionless. We
will consider the perturbative problem with A < 1. As we explained above, a light
ray falling along the horizon almost puts in causal contact the two boundaries. We
want to show that the non-local coupling can be arranged in such a way that the
backreacted null geodesic makes it from one boundary to the other. For simplicity
we consider a radial geodesic, defined by V = 0.

First, we need to compute the expectation value of the stress-energy tensor along
this geodesic. Since we will be interested in computing the shift in the V' direction,
we only need to find Tyy. The perturbation is spherically symmetric, hence Ty,
along V = 0, can only depend on U. Once Tyy is obtained, we compute the
averaged null energy (ANE) by integrating it over the null ray,
h o0
ANE(h, Uy, Uy) = 7 A(Un, Up) = /U (Too)(U)dU | (2.2.7)
0
where Uy and Uy are the starting and ending times of the perturbation and, for
later convenience, we have defined a dimensionless ANE, A. Notice that in the last
expression the dependance on the ending time of the perturbation Uy is implicit
in the definition of the expectatiation value of Ty .

This will be our main diagnosis of the wormhole traversability. As we will see later,
a negative ANE “opens” the wormhole by a magnitude proportional to the amount
of averaged negative energy. So in order to quantify how traversable the GJW
wormbhole is, it is important to understand what are the optimal configurations
and how much negative energy can we obtain from those.

We compute the stress-energy tensor by point-splitting, hence we need to find
the modified bulk-to-bulk two-point function in the presence of 6H (2.2.5). As
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usual in holography, the operators Op, g are dual to a bulk scalar field ¢ with
mass m?¢? = A(A — 2). Working on the right wedge it is possible to compute the
modified propagator with

Gh = <<pg(t7 r, ¢)<Pg(t/a 7’/, ¢/)>h =

= -1 I — 1y I /40 ’ (228)
(™0, o), O)ult, to)u™ (' to) @l (1, D)ulE' to))n

Here the subscript R indicates that we are in the right wedge; the subscript h, that
we are looking for the leading order correction in h; H and I indicate the Heisen-
berg and interaction fields respectively and u(t,tg) = T exp {71‘ f; dt 5H(f)} is
the evolution operator in the interaction picture. The result to leading order in h
is [69]

Gn = 2sin7rA/dt1h(t1)KA(t’ +t1 —iB/2)KA(t—t1) + (t < 1), (2.2.9)

where Ka and K| are the bulk-to-boundary and the retarded bulk-to-boundary
propagators. Notice that we are omitting the r, ¢ dependence for simplicity. The
propagators are known analytically for the BTZ black hole? [46,47]

1/2 -A
oA 1 (r2—r?) - r -
Ka (t,r,0) = (ﬁ) oA TIL ( - cosh £—2t+ Hcosh ?¢ ,
(2.2.10)
2 .2\1/2
Kt 6) = Kt )00 U0 comn ™ T o )
h 82 Th f
(2.2.11)

where 0 is the Heaviside step function. We then need to transform equation (2.2.9)
into Kruskal coordinates and apply the point splitting formula to find the change
in the expectation value of the stress tensor induced by the interaction at the
horizon

(Tyv)(U) = lim 9y Ga(U,U"). (2.2.12)
U'—U

For details on how to obtain explicit expressions for the stress tensor, range of
validity and integrability properties, we refer the courageous reader to [69]. For
sources which are turned on at time ¢y and left on forever, the stress-energy tensor

2We suppress the sum over images in both propagators. When computing G}, we can include
one of these sums by extending the domain of integration over ¢ from [0, 27] to the real line. We
checked that the other sum gives contributions exponentially suppressed by e~ "4"h /¢, where n
is the index that runs over images.
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2. Traversable Wormholes in AdS and Bounds on Information Transfer

is given by

_ h252AAsin(rA)L(1 - A)
/ w3/2T7 (% — A)

1.1 .3 _A-UL=U U, -U
v Fy (2’2’A+172 A; 20, ’U1(1+U’U1)

x lim 3[]/ dUl
U'—U Us U1—A+1/2(U i Ul)A71/2(1 + U/Ul)AJrl
(2.2.13)

(Tvv)(U) = X

where F} is the Appell hypergeometric function. Now, to compute the ANE, we
need to further integrate the above expression along U. Surprisingly, this can be
done analytically [69]

14
.AOO(U(), A) = EANE(}L, U(), OO) =

. . 2.2.14
I(2A +1)2 2 (A+%’%_A’A+%’l+lU3) ( )
(

T 24A2A + 1)I(A)T(A + 1)2

14 U2)2"2 ’

where now the o F} is the ordinary hypergeometric function. It is instructive to
plot the ANE to see how it depends on the different parameters involved. This is
done in Fig. 2.2, where we plot the ANE as a function of A for different starting
times Uy. As expected, the sooner we turn on the coupling the larger amount of
negative energy we can get. The curve with Uy = 0, i.e. tg = —o0, gives an upper
bound on the amount of negative energy we can get with this type of sources:
| A% (U, A)| < 1071, One might worry that if the source is turned on for such a
long time we should take into consideration the backreaction of the negative energy
on the geometry. However, one can check that the gravitational perturbation is
small everywhere and so the linear order computation can be trusted.

The analytical expression (2.2.14) found by GJW is a remarkable result; however,
it is somewhat impractical to deal with hypergeometric function. In particular
in the next section we will need to quantify the backreaction of a message on
the quantity of negative energy and it would be helpful to have at disposal a
simpler expression for the ANE. In the following we provide such a simple analytic
expression, valid for the case of instantaneous sources

Wt ¢) = h (?)HAé (Zg(t—to)) : (2.2.15)

This can be found by manipulating equation (2.2.14). First, we find an expression
of the ANE for smeared interactions. This is a more physical scenario in which we
turn on the sources only for a finite amount of time AU = Uy — Uy. As before, we
define a dimensionless ANE,

¢
A*(Us, U, A) = +ANE(h,Us,Uy), (2.2.16)
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Figure 2.2: Dimensionless Averaged Null Energy as a function of A. The curves corre-
spond to different starting time Up, while the end point is always Uy = +o00. The earlier
we turn on the interaction the more negative energy we can obtain (note that Uy = 0
corresponds to boundary time t = —oo and Up = 1 to ¢t = 0).

where the subscript s stands for smeared. The ANE involves integrating over a
whole null ray the stress-energy tensor, that by itself is an integral over the sources.
Schematically, we can write this as

oo

AS(U(),Uf,A) = / dU TUU / dU/ dU1 T U Ul) (2217)
Uo Uo Uo

where we have defined a function 7(U,U;) whose integral is the stress energy

tensor. Notice that this quantity is allowed to have some discontinuities at the

positions where the sources are turned on/off. We can rewrite A° in terms of A

as follows

AS(UO,Uf,A)_/ dU/ AUy (U, U7 — / Uy (U, 07| =

(/ dU/ du, W / dU/ dU1> (U,Uy) =
Uo Uo Uy Uy
(U .

0,A) = A=(Uy, A

(2.2.18)

The integral in the second line vanishes because it adds up the energy generated
along the null geodesic for U < Uy by a source turned on only at Uy, i.e. the
support of the first integral lies outside the lightcone of the second. Finally, we
take the limit in which the coupling is turned on only for an instant of time and
find a remarkably simple analytic expression. The dimensionless ANE in this case
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2. Traversable Wormholes in AdS and Bounds on Information Transfer

is given by?

AinSt(Uo, A) = lim U, A (Uo, Ufa A)

= —Uy 0y, A (Up, A) . 2.2.19
Uy—Uo Uf*U() 0 UDA ( 0 ) ( )

It is straightforward to evaluate this expression: all the dependence on Uy, that
before was encoded in the hypergeometric functions, now becomes simply

‘ T (A + 1)2 U 2A41
nst _ 2 0
AUy, A) = = ANE (1 — Ug) : (2.2.20)

Notice that this expression might receive large correction from higher order terms
in h, which should be cured by introducing a small smearing. Nonetheless, it
provides a simple and helpful approximation to the smeared case. Also note that
in this way of deriving equation (2.2.20), we did not need to directly integrate the
stress-energy tensor for the instantaneous source, which was computed in [89], and
has an apparent non-integrable divergence for A > 1/2.

Plots of A%t are shown in Fig. 2.3. Note that this expression has a few interesting
properties. First, A" is symmetric under Uy — Uy ! which makes the time
Up = 1 somewhat special. In fact, it is easy to show analytically that Uy =1 is a
minimum of this function. It is also possible to note that the optimal weight, for
Uy = 1,is A ~ 0.9. Finally, we observe that for §-function source |A"!(Uy, A)| <
1072. This means that turning on the non-local coupling for only an instant
of time, at Uy = 1, reduces the amount of negative energy by only an order of
magnitude, as compared to A,

Independently of the details of the interaction, we see that the averaged null energy
of the Gao-Jafferis-Wall protocol is bounded, in absolute value, by |h|/¢ times an
order-one number. More precisely, we have

h
|ANE(h, Uy, Uy)| = L ‘|A|<‘ o1 (2.2.21)

Given that we are working perturbatively in h, we conclude that the ANE is
generically very small in AdS units. This fact is worrisome because, as we show
below, the amount of available negative energy determines the size of the wormhole
opening.

Before continuing with our analysis let us clarify a point concerning the reference
frame we have considered so far. We have worked in a frame in which ¢; = —tg,
that we will call the rest frame. The BTZ geometry is invariant under boosts,

3The extra Ug on the RHS comes from the fact that the source is a d-function in time while
for this limit we are taking a § in the U-coordinate.
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Figure 2.3: Averaged Null Energy for the case of instantaneous sources. In (a) we plot
the ANE as a function of A for different Uy. The largest amount of ANE (in absolute
value) is given by the curve with Uy = 1. This corresponds to ¢tz = tg = 0. Note that
for this choice of times, the wormhole is shortest; therefore, it is not surprising that the
effect of the non-local coupling is the largest. In (b), we plot the ANE as a function of Uy
for different A. The scale on the Uy axis is logarithmic which makes evident that each
curve has a minimum at Up = 1 and is symmetric under Uy — U L

{U — AU,V — A7V}, which act on the asymptotic boundaries as time transla-
tions t; r — tr r + 0t. Therefore, we can consider more general reference frames
in which t;, # —tr. We will call these, boosted frames. This is just a change of
coordinates, so the bound on information transfer we are looking for should be
independent of A\. However, the integrated null energy, and hence, the dimen-
sionless coeflicient A is not invariant under these boosts. In fact, an expression
for A in generally boosted frames can be easily found, and in Schwarzschild-like
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2. Traversable Wormholes in AdS and Bounds on Information Transfer

coordinates, is given by

12 —2A-1

‘Zg})f)ited(th tL, A) = —eXp (—;(tL + tR)> 1—‘75?(—2)22) |:; cosh (;(tR - tL)):| (2.2.22)
The exponential on the r.h.s. corresponds to the boost factor A we discussed above.
Indeed, we see that in the boosted frames we can get much more negative energy
than in the rest frame. In the next section we will explain why this, as expected,
cannot enhance the amount of information we can transfer across the wormhole.
In fact, for simplicity, we will keep working in the rest frame, eventually deriving a
coordinate-independent expression for the opening of the wormhole — see equation
(2.2.28).

2.2.3 Wormbhole opening

We can relate the ANE to the opening size of the wormhole through the linearized
Einstein equations. Let g,, = ngTZ + hyuw, be the metric of the perturbed BTZ
geometry, then in Kruskal coordinates, to leading order in h,, and at the horizon
V =0, the linearized Einstein equation reads [69]

1 ( Uhyyy(U) 4+ 2hyu(U) — hgy(U)

2 72 2 ) = 8GN (Tvv), (2.2.23)

where the primes denote derivative with respect to U. In fact, in order to use
this equation, where the classical metric is sourced by the expectation value of the
stress tensor, the fluctuations in the stress tensor should be small compared to its
mean. As we discuss in more detail in section 2.3.1, this semiclassical condition is
only met if a large number K of fields contributes to the negative energy. We do not
include the factors of K for now, since we are reviewing the original construction,
but will include them in our later analysis since they are essential for remaining
in the semiclassical regime.

Integrating this equation, the total derivative terms do not contribute if the pertur-
bation decays sufficiently fast at U = 400, which is the case unless the perturbation
is turned on forever. We are left with

1

@/dUhUU(U) = 87TGN/dU<TUU>. (2.2.24)

A null ray traveling close to the horizon will suffer a shift in its V —coordinate, see
Fig. 2.4a, due to the perturbation given by

1
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2.2. Gao-Jafferis-Wall wormhole

Combining both equations together we obtain
Gnh
AV = 47TGN dU<TUU> = 47TTA(U0,U]€) (2226)

where the dimensionless ANE, A, is defined in (2.2.7). If AV < 0, a null ray
traveling close to the horizon and starting on one side of the black hole will end
up traversing the wormhole and appear on the other side. Given the analysis in
the previous subsection, it is clear that the non-local interaction can make AV
negative by a proper choice of the sign of h. However, as explained above, A is
frame dependent and so is AV. We can quantify the opening of the wormhole in
a coordinate independent way by computing the proper time that the wormhole
remains open. To do this, we zoom into the diamond region that appears between
the future and the past horizon due to the backreaction of the negative energy,
see Fig. 2.4b. Near the horizon, the metric is approximately ds? ~ —4¢2dUdV.
Consequently the proper time that separates the lower and upper vertices of the
diamond region is

A7~ 20VAVAU., (2.2.27)

In the rest frame the coupling is symmetric under L <+ R, hence AV = AU and
the above relation reduces to A7 ~ 2¢AV. Combining everything, we have an
upper bound on the proper time between the past and future event horizons,

AT =~ 8tGnhA ,S Gn 5 (2.2.28)

where A is the one computed in the rest frame. In the boosted frames, the extra
contributions coming from AU and AV will cancel perfectly, leaving the expression
in the rest frame. We conclude that the time window that the wormhole remains
open is indeed Planckian, independent of the chosen frame.

Since the time for which the wormhole is open is so small, one might worry that
quantum gravity corrections are important and cannot be neglected. This is not
the case. The diamond is just a - small - piece of the BTZ geometry, the invariant
curvature is given by ¢~2 and is well separated from the Planck scale. While
passing through the wormhole a signal would just feel like traveling through empty
flat spacetime. Nonetheless, we still need to make sure that the signal is localized
to a Planck sized box to be certain that it will make it through the opening.
This sounds like a difficult, even dangerous, task. In this case we don’t need to
worry about this issue because the mouth of the wormhole is located close to the
horizon of a black hole. The gravitational blueshift makes sure that an ordinary
message at infinity is boosted enough by the time it reaches the mouth of the
wormhole to fit in such a Planck sized box. We just need to send the message
from the boundary early enough. The same gravitational effect guarantees that
we don’t need to fine-tune the moment we send the message from the boundary up
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() (b)

Figure 2.4: (a) The blue wavy lines represent the negative energy. The green line
shows how the future horizon recedes due to the backreaction of the negative energy on
the geometry. As the future horizon moves up, a diamond region is revealed in the middle
of the diagram. The past horizon remains unaffected. The red line is the positive energy
signal that we send through the wormhole. (b) Here, we have zoomed into the diamond
region. The side of the diamond is equal to AV/. A7 is the amount of proper time that
the wormhole remains open. The red region represents a signal that passes through the
wormhole throat.

to a Planck-time precision, because an asymptotic observer sees the window open
for an exponentially longer time. We conclude that, despite the smallness of the
opening, it is kinematically possible to send a message through the wormhole.*

2.3 Bound on information transfer

In the previous section we have revised the construction of GJW. The non-local
coupling between the two asymptotic boundaries is enough to open the wormhole
for only a Planck-sized window of time. Nonetheless, we have argued that thanks
to redshift this by itself is not an obstacle for a message traversing the wormhole.
However, so far we have neglected the backreaction of the message on the geometry,
staying in the so called probe approzimation. Given that the message needs to be
highly boosted to make it through the wormhole, one might worry that this is not

4We thank Daniel Jafferis for discussions on this point.
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2.8. Bound on information transfer

a valid approximation. In fact the signal might destroy the original traversable
wormhole setup altogether. In this section we check that this is not the case. It
is possible to send a large amount of information, while keeping under control the
backreaction on the geometry.

For convenience we now summarize the main results that will be proven throughout
the section. We begin by finding a simple condition on the total momentum
that we can send through the wormhole before the probe approximation becomes
unreliable. Because the signal is highly boosted by the time it reaches the horizon,
it can be approximated by a shock wave and its stress energy tensor (in light-cone
coordinates) is given by [90, 91]

Ty = 2s(v), (2.3.1)

Th

where py is the total momentum of the message. In the next subsection we show
that the probe approximation is valid as long as®

Gy pv
Th

probe approximation: < 1. (2.3.2)

This, combined with the requirement that each message we send is boosted enough
to fit through the wormhole opening, is enough to constraint the amount of infor-
mation we can transfer. We can estimate how much one signal needs to be boosted
using the uncertainty principle [70].

First, we consider messages that are completely spread across the horizon, i.e. s-
waves. We show that the amount of transferred information can be made large by
increasing the radius of the black hole; however, it is always much smaller than the
entropy of the black hole. To increase the number of bits that can be sent through
the wormhole, for fixed 7, we follow the approach of [70] and couple a large
number K of fields. Combining the probe approximation with the uncertainty
principle we obtain that the number N of bits that can go through the wormhole
is given by

Th

N <
~ Y

K. (2.3.3)
However, K cannot grow arbitrarily large. Treating the negative energy as a
negative shock we find that the maximum number of coupled fields beyond which
our construction becomes unreliable is

14
species bound: K < (2.3.4)

5Note that this statement is coordinate dependent. We will also provide an equivalent state-
ment in terms of the center-of-mass energy collision in equation (2.3.12).
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2. Traversable Wormholes in AdS and Bounds on Information Transfer

We can reproduce this bound also by imposing that the renormalized UV cutoff,
see [92,93], is above the AdS scale. Combining both results, we obtain the final
bound on the information that can be sent through the wormhole,

N<Ih xSy, (2.3.5)

Gn

We check that this bound is consistent with the one we obtain by considering the
boundary theory. Finally we consider signals that are localized in the transverse
direction. We show that it is possible to localize messages on sub-AdS scales if we
couple K > 1 fields. In the rest of the section we give details on how to derive
these bounds.

Notice that the breakdown of the probe approximation does not necessarily imply
that the wormhole closes. It only means that the GJW computation is not reliable
anymore. One might wonder if by fully taking into account the backreaction,
we might increase the amount of transferable information. The analysis of [50]
suggests that this is not the case; however, we believe that this issue has not been
settled yet. We will comment further on this in the discussion section.

2.3.1 S-wave channel

We want to bound the amount of information we can send through the wormhole.
As we explained above, to do this we first need to understand how far we can
trust the probe approximation. To begin with, we consider spherically symmetric
messages. To estimate the effect of one such message on the amount of negative
energy generated by the non-local coupling, we approximate the message as a
positive energy shock, propagating along the horizon V' = 0. At linear order we
don’t need to worry about the backreaction of the negative energy shock, the
geometry is then simply given by [48]

o —4dUAV + 13 (1 — (U + AUO(V))V)2dg?
1+ (U+AUB(V))V)? ’
| —A2AUAV + 4CAUS(V)AV? + 12 (1 — UV)2de?
B (1+0V)2

ds

(2.3.6)

)

where in the second line we have used the discontinuous coordinate U = U +
AUG(V). To compute the negative energy we need to know the propagator for the
scalar field in this shockwave geometry. Away from V = 0 this is simply given by
the BTZ propagator as the geometry is the one of the BTZ black hole. However,
the shockwave induces a discontinuity across V = 0, one can check that it is enough
to use the usual BTZ propagator but using the discontinuous coordinates,

Kok vy = KBT4(U, V), (2.3.7)
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tr

Figure 2.5: Schematically the ANE is given by the product of a boundary-to-bulk prop-
agator coming from the left CFT and a retarded boundary-to-bulk propagator coming
from the right one. Only the latter crosses the positive energy shock and undergoes a
time delay.

where schematically K is a BTZ propagator. When computing the ANE we eval-
uate two BTZ boundary-to-bulk propagators. But note that only the one coming
from the right boundary crosses the positive energy shock and undergoes a time
delay. See Fig. 2.5. The effect of this delay is equivalent to shifting the insertion
time of Og in (2.2.5) by a quantity

A
At =~ ﬁTIOJ , (2.3.8)

where we have assumed that the shift is small. The rest of the ANE computation
of GJW follows unchanged. The probe approximation is valid as long as the effect
of the message on the geometry can be neglected, i.e. as long as AU < 1. The time
delay is related to the stress energy tensor generated by the message by [48,91]

Tyv = %5(1/). (2.3.9)
N

Comparing with (2.3.1) we can relate the time delay to the total momentum carried
by the message

AU = GNZ;—V <1. (2.3.10)
h

We will see below that this momentum needs to be large enough such that the
message can fit through the wormhole. Notice that the momenta in Kruskal coor-
dinates are dimensionless since they are the conjugate variables to the dimension-
less U, V-coordinates. We can check that this condition is enough to ensure that

37



2. Traversable Wormholes in AdS and Bounds on Information Transfer

the negative energy is almost preserved by using our simple analytical expression
(2.2.22), valid for the case of instantaneous sources. For simplicity we consider the
optimal case in which tp — t;, = 0. We can trust the probe approximation if

A0, At) — A(0,0)
A(0,0)

<1. (2.3.11)

It is easy to see that this condition reduces to (2.3.10).

It is also possible to express the constraint above in terms of coordinate-independent
quantities. We approximate the interaction between the negative energy density
and the signal as a collision between particles and assume that the scattering is
dominated by gravitational interaction. Along the horizon of a BTZ black hole,
gravitational interaction decays exponentially outside a region of size ¢, see equa-
tion (2.3.43). This is expected since this region is a thermal cell on the horizon, i.e.
it corresponds to a region of size 8 on the boundary. Therefore, we can split the
collision in independent events, one per thermal cell. The probe approximation
translates to the statement that the amplitude associated to each of these collision
events should be small

GnScenl < 1. (2.3.12)

Here scep = p%,e”qff” /0? is the center-of-mass energy squared of one of these colli-

sions. In the rest frame, the momentum of the negative energy, per thermal cell,
is given by ¢fe!! ~ 1, p¢e! is simply given by py divided by the number of ther-
mal cells, r, /€. Tt is easy to see that with these identifications, equation (2.3.12)

reproduces (2.3.2).

The probe approximation provides an upper bound on the momentum a particle
traversing the wormhole can have. As pointed out in the previous section, this
particle needs to be highly boosted to fit through the wormhole, so the momentum
cannot be arbitrarily small. We can estimate the minimum required momentum
using the uncertainty principle® [70]

; 1 /

signal > _—_ o~ 2.3.13
where pf,ig"al is the momentum of one signal. Now imagine sending N non-
interacting signals. Then, py = N pf}gml. Combining the uncertainty principle

with the probe approximation condition (2.3.10), we find the following bound on
the number of bits one can send through the wormhole,

NghA%. (2.3.14)

SNotice that this momentum is superplanckian. This is not a problem, pi}g"al is a coordinate

dependent quantity and can be larger than the cutoff of our theory.
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Note that we can send a large number of bits through the wormhole if we consider
large black holes with r;, > £. However, this number is still much less than the
theoretical maximum, which should scale with the entropy of the black hole,

Spi ~ GL}]LV > %h (2.3.15)
From now on, we set h = A = 1, so our results are correct up to order-one (small)
numbers that depend on the details of the non-local interactions. In [50], it was
shown that one way of increasing IV is to add rotation to the black hole. However,
this is not enough to parametrically increase the amount of information transferred
from order rp /¢ to the much larger r;/Gy. An alternative way is to non-locally
couple a large number of fields. This was done in the case of AdSs in [70]. Here
we would like to analyze the consequences of this second approach in the case of
AdS3. Notice that if we interpret the non-local coupled fields as playing the role of
the classical messages in the usual teleportation protocol, it is natural to consider
many such fields to send more information.

Following [70], we consider a deformation of the theory in which we couple K fields

K
6H = — Ze/m h(t, ) O%(t, §)OL (—t, d) . (2.3.16)

i=1

Assuming that the non-locally coupled fields are not interacting, the negative
energy scales linearly with K.

Large K also allows us to enter the semiclassical regime. In order to couple the
metric to the expectation value of the stress tensor, we would like the fluctuations
in the stress tensor to be small compared to its mean. The fluctuations in the
stress tensor depend on the scale, increasing at short distances. We would at least
like the fluctuations to be small compared to the mean at scales of order the AdS
radius. In the presence of K light fields, the fluctuations in the stress tensor are

of order
K

(AT ~ 7 (23.17)
where we have focussed on the crucial component of the stress tensor for our

analysis, T;"". The mean value is”

Ty ) ~ -5 (2.3.18)

"Notice the different scaling in h between eq. (2.3.18) and eq. (2.3.17). The expectation
value of TUV is zero in the absence of non-local coupling and hence it is proportional to h. The
fluctuation of TUV instead is non-zero also in the absence of the non-local coupling, due to the
quantum fluctuation of the fields, and hence, to leading order, it is independent of h.
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Imposing that the fluctuations are small compared to the mean gives
RPK >1. (2.3.19)

Since we require i < 1 in order to work to leading order in the source, we certainly
need many fields,

1
K> 3>1, (2.3.20)

in order for the semiclassical description to be valid.

The opening of the wormhole is increased due to the increased negative energy,

AV~ = (2.3.21)

As we have seen in section 2.2.2, the non-local coupling is most effective at ¢ =0
when the wormhole is shortest. For definiteness, we can then consider K instan-
taneous non-local couplings all turned on at ¢ = 0. Turning on the coupling for a
longer time would just modify the specific value of A. The resulting picture is that
of K superimposed negative energy shocks. Notice that the probe approximation
condition (2.3.10) is not modified by the factor K. In the particle collision picture
this means that we need to treat the collision between the N signals and the K
shocks, in every thermal cell, as K independent processes. However, the pres-
ence of many fields does influence the uncertainty principle condition because the
opening of the wormhole increases with the available amount of negative energy

signal > i 14

V2 e (2.3.22)

Combining this condition with (2.3.10), we again find a bound on the number of
particles that can traverse the wormhole,

N < K%h. (2.3.23)

This seem to suggest that we can send as much information as we want, if we allow
K to be large enough. However, the black hole has finite entropy and cannot be
used to extract infinite amount of entanglement, so we expect a restriction for
large enough values of K. For example, it is known that the presence of many
species lowers the cutoff of the theory [92,93]

luv > KGy . (2.3.24)

The BTZ geometry cannot be treated as a semiclassical geometry when the UV
cutoff becomes of the same order of the curvature scale, i.e. we should have fyy <
{. This leads to an upper bound on K,

K< Gi (2.3.25)
N
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It turns out that this is already enough to make the bound on the number of
particles consistent with the finiteness of the black hole entropy. For the maximum
value of K, we thus obtain

N3 CTT’L ~ SpH - (2.3.26)
N

Note that this requires the number of light operators in the CFT to be of order
of the central charge ¢, and this is not the case in the usual known examples of
AdS3/CFTy. Nevertheless, the GJW protocol seems to be robust enough that it
will continue to make sense even in more exotic settings with a large number of light
fields, where the UV cutoff of the field theory is not well-separated from the AdS
scale, although the semiclassical bulk description will receive larger corrections.

2.3.2 A multiple shocks bound

In this section, we will build the bulk geometry by gluing together black hole
patches with different masses. This will be due to the effect of the non-local
interaction and the message that will be modelled by shockwaves. By restricting
the masses of the different patches to be positive, we will obtain constraints on
the amount of energy that can be carried by the shockwaves. The main objective
is to justify the species bound in equation (2.3.25) from a bulk perspective.

Let’s assume that the negative energy interaction between the two boundaries can
be modeled in the bulk by the insertion of two negative-energy shockwaves at
times tgp = —tr = t9. The message we would like to send through the wormhole
can also be modeled as a shockwave, but now a positive-energy one. As shown
in Fig. 2.6, for the sake of analyzing whether the geometry becomes traversable,
it is possible to neglect the effect of the left negative shockwave and consider
the collision between two spherical shells, one with positive and the other with
negative energy. The positive shell has energy F; and the negative one —Fs. As
shown in [49], this gravitational problem involving the collision of two shocks can
be solved by gluing different black-hole geometries together. Note that in this
section it will be more convenient to use Schwarzschild coordinates and energies,
and to only translate the final results into the null coordinates we used in previous
sections.

First, let us consider the simpler example where there is only one negative shock-
wave — see Fig.2.6a. It is easy to see that if the mass of the original black hole is
M and the shock carries energy -FEs, then one should glue the geometry of a black
hole with mass M in the past of the shock with another one with mass M — FEy
at the future of the shock.

The first bound comes from requiring that the mass of the second black holes

41



2. Traversable Wormholes in AdS and Bounds on Information Transfer

geometry remains positive, i.e., M — E5 > 0. The total energy E5 of the negative
shock is composed by the energy of the K species. In each thermal cell, the energy
should be of order of the local temperature and given that there are 7, /¢ thermal
2
1rh Ky

cells, the total energy is given by Fs = K3~ =B Using that the mass of

the BTZ blackhole is M ~ 73 /(G n¥?), it is immediate to note that

K< Gi (2.3.27)
N

that is exactly the species bound that appears in equation (2.3.25).

We can now add the positive energy shock, the message, and see if this setup
provides additional constraints. In the case of two shocks colliding, the gluing
gets more intricate as there are four different regions to consider. In [49], it was
showed that it is enough to impose two gluing conditions in order to get a consistent
answer: a continuity condition on the radius of the circle across the collision and a
DTR regularity condition [91,94]. These two conditions allow us to find the mass
of the black-hole in the post collision regime, M;. See Fig. 2.6b.

(a) (b)

Figure 2.6: Penrose diagrams of the different shockwave geometries. In (a), we only
consider the effect of a negative energy shock of energy —FEs (blue curvy line) sent at
to. In (b), we add the effect of a second shock with positive energy Ei sent at ¢; from
the left boundary (solid red line). The resulting geometry is formed by gluing four AdS
black hole patches with different masses.

If we want to glue different metrics of the form ds? = —f;(r)dt? + f;(r)~tdr? +
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r2d¢?, from the DTR condition, we have that at the r-coordinate of collision r.,

fe(re) folre) = filre) fr(re) s (2.3.28)

where t,b,1,r stand for the top, bottom, left and right regions respectively. The
difference with [49] resides in that in our case one of the shocks carries negative
energy (and is being sent at boundary time ¢ ~ 0). In this case, equation (2.3.28)
becomes

(r2 —8GNME?) (r2 —8GNM %) = (12 — 8GN (M + Eq)0?) (r2 — 8GN (M — E»)0?) .

This is sufficient to get M; as a function of the initial data. Moreover, if we want to
write it as a function of the boundary times at which the shocks are emitted, we can
translate r. in terms of the Kruskal coordinates. In the limit of small energies,
Ey2/M < 1, this can be done in any quadrant so for simplicity we consider
the bottom one. In there, the horizon radius is the unperturbed one, given by
r? = 8GN M/{*. The U-coordinate of the negative shock wave is U_ = ernto/€ and
the V-coordinate of the positive shock wave is V; = e~mnt /0 So, from equation
(2.2.3), the collision radius becomes

1- eXP(%(to - tl))
1+exp( 75t — 1))

Te =T} (2.3.29)

Plugging that back in equation (2.3.2) is enough to find the mass of the black hole
in the top region,

EiEy o (ri(to —t1)
Mt =M + E1 — E2 — M cosh T . (2330)
Note that for (¢9 — t1) large enough, the last term grows exponentially leading to
a negative mass in the upper region.® So, in the limit F; 5/M < 1, imposing that
M; should be positive results in

to—t
M? > Ey B, cosh? (W) . (2.3.31)
. . . 2rpty U+
We are interested in the case where ty ~ 0. Using that e ¢z = v that
+

U,V, = —1 on the boundary and that the shock with positive energy propagates
close to the horizon V; = 0, we find that
ErEy

M? > v +0O(Vy). (2.3.32)

8In fact, in three dimensions, this will happen even before the mass gets negative, as the
BTZ black hole has a lower bound for its mass.
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For comparison, it is convenient to express this bound in terms of the center-of-
mass energy of the collision,

E\E, (2
§= 2 K—? (2.3.33)

V+ Th

We obtain that .
GyVs < 7” (2.3.34)

where we used the definition of the black hole mass M ~ r?/Gn¢*>. Note that
s here corresponds to the collision between all the N signals and the K negative
shocks. To compare with the previous bounds, we translate this expression into
light-cone coordinates, where the stress-energy tensor for the message is already
given in eq. (2.3.1) and the one for the negative shocks has the generic form,

Ty = %Ua(U —Ty). (2.3.35)
h

We have seen in the previous section that the magnitude of Tyy scales as 71,
see eq. (2.2.13). So, given, that the negative shock is composed by K signals, we

Kry, . : .
expect qu = ™ light-cone coordinates, the center-of-mass energy squared is
just v a

v qu

5= =@ (2.3.36)
and so, eq. (2.3.34) becomes a bound on py,
Th y4

< 2.3.37

v S G?\,K ( )

that, combined with the uncertainty principle, gives yet another bound on the
number of signals that can go through the wormhole,

Th
N < —. 2.3.38
S (23.38)

Note that the final result is independent of K so it would seem to imply that we
can saturate the entropy bound without the need to couple many fields. However,
note that while it is true that by solving the junction condition we have solved
the full nonlinear Einstein equations, the same is not true for the field theory
computation. As we explained before, the amount of negative energy generally
decrease when we take into account the backreaction of the signal. Therefore,
when we go beyond the probe approximation, we cannot treat the negative energy
shock as a particle with a well defined momentum, ¢y, which is independent of the
signal momentum. In other words our previous computation implicitly assumed
the validity of the probe approximation and the final result is only valid when the
probe approximation is satisfied.
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2.3.3 Beyond spherical symmetry

So far we have bounded the amount on information we can transfer through the
wormhole in the s-channel. We have seen that to send something through the
wormhole we need r;, > ¢. However, it can be quite inconvenient to send signals
spread over all the horizon. For example, a cat would have a hard time in such
a delivery system. In this section we generalize our bound to signals that are
localized to some region of size b along the horizon. We begin by rederiving the
probe approximation condition (2.3.11) from a particle scattering perspective.

As before, we approximate the interaction between the signal and the negative
energy as a gravitational scattering between particles. Following [90] the condition
for the validity of the probe approximation is given by

1
S = 3 /d?’iﬁ\/—ghUUTUU <1, (2.3.39)

where S,; is the gravitational action evaluated on the shockwave geometry. Here
TUU is the stress-energy tensor generated by the signal, and hyy is the gravita-
tional field generated by the negative energy. We approximate the stress energy

tensors of the signal and the negative energy respectively with

1
TVV = 1;7‘/ (V)tv(e), TUU = Zd(U - Uo) . (2340)

h
The first expression is the usual stress tensor generated by an energy shock with
momentum py, where the transverse profile function ¢y (#) is a function with
support on an interval of size b/rj, and that integrates to 1. For our purpose, it
will be enough to consider a step function. To define the second expression we
have used that for the GJW construction the negative energy stress tensor scales
like /!, as shown in (2.2.13). The gravitational field obeys the following equation

2
r
(—(992 + Eg) hUU = GN’I’;ZLTUU, (2341)
Since we are interested in the limit where b < ¢ < 7y, we can approximate the
horizon with an infinite line. This allows to avoid dealing with periodic boundary
conditions and images. In other words let x = 0rj, /¢ we have

(=02 +1) hyy = GNP Ty, (2.3.42)

where z takes values on the real line. The Green function for this equation is given
by?
1 /
glx —2') = ief‘mﬂc . (2.3.43)

9The correct expression on the circle is given by g6 — 0" =
% nez exp{ (—% |0 — 6" + 27m\)} , we see that for r, > ¢ we can neglect the im-
ages, i.e. the terms with n # 0.
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Notice that this tells us that the gravitational interaction effectively shuts down
when Af =~ {/ry, which is the angle corresponding to one thermal cell in the
BTZ geometry. This means that, as we already pointed out earlier, the scatter-
ing between the messages and the negative energy shock naturally splits in /¢
independent shocks. In our case Ty does not depend on 6 and so,

hoo (8) = G2 / 9w — ') Tyy ~ Gul6(U) . (2.3.44)
Finally, we find that the probe approximation is now given by
G
Su ~ Nepv <1. (2.3.45)

Alternatively we can derive this expression by computing the time delay generated
by the localized shock and impose that it is small. For the dependence on the
transverse direction we take a simple step function

b
T 0<f<—,
ty(@) =< b Th (2.3.46)
0 otherwise .

The gravitational field generated by this shock is given by

Gnl? b/t :
hyy(z) = NTpvé(V) da'e~1a='1 (2.3.47)
0
The integral above can be easily evaluated
e — b/t x <0
b/t , ’
/ de'e”l*=2'l = Lo 7@ _ b/ <z <b/L, (2.3.48)
0 b/l—x _ —x
e e x>b/l.

Note that it is approximatively equal to b/¢ in the interval = € [0,b/¢], outside
this interval is given approximatively by b/¢ e 1%l We see that this quantity is
exponentially suppressed outside the thermal cell, i.e. for |x| 2 1. We conclude
that

hvv(0) ~ (2.3.49)

Gnlpyd(V) in the thermal cell,
otherwise .

From this we can find the time delay given by the positive shock on the negative
shock

1 Gnpy in the thermal cell ,

Bz
0 otherwise.
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If we require AU < 1 we recover (2.3.45).

Notice that, for a given value of momentum py, this is a more stringent requirement
than the one we found for s-waves, (2.3.2). Indeed, as we localize the message on
shorter scales the energy density corresponding to a given value of py increases,
so it is natural that the probe approximation is harder to satisfy. However, the
increased density ceases to play a role once we localize the signal on sub-AdS
scales, i.e. inside a thermal cell. This can be explained by looking at the Green
function (2.3.43). This is free of divergences in the z — 2’ limit. In fact, it is
approximately constant over the whole thermal cell. This means that when we
localize the message on sub-AdS scale, the gravitational field generated is smeared
over the whole thermal cell and it is always approximatively given by Gn/fpy .
This is true independently of the value of b. Notice that this is special to three
dimensions. Later, we will see that in higher dimensions the situation is not as
simple.

We would like now to proceed similarly to the previous subsection and bound py
from below. However, there is a complication. To localize the message along the
horizon we need to excite higher angular momentum modes. Compared to s-waves,
these modes have a harder time crossing the wormhole. Even after having emerged
from the horizon thanks to the negative energy shock, they still need to overcome
the potential barrier of the black hole. This provides an extra lower bound on
the momentum needed by the signal, which for high enough angular momenta
overcomes the one provided by the uncertainty principle.

To find this new bound we consider the equation for spinning geodesics in the
Schwarzschild metric. This can be obtained from the action

1y . 2 :
1= [anan S =5 [ (<rof+ fs i), ey

2 AN dh 2 f(r)
where the dot represents derivatives with respect to A. The symmetries of the
geometry ensure that along geodesics the energy, p, = — ff = —FE, and the angular

momentum, pg = r2¢ = L, are conserved. We are interested in highly boosted
particles, whose geodesics are approximately null. The equation can be obtained
by simply imposing ds? = 0, which is equivalent to the equation of motion of a
particle in a one dimensional potential

P4V(r)=E% V()= ?—j (1 - (?)2) . (2.3.52)

It is easy to see that the geodesic reaches the boundary only if

L
E> 7. (2.3.53)
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To estimate the angular momentum needed localize the message to a region of size
b consider a Gaussian wave-packet

fv () o exp (—W) : (2.3.54)

Fourier transforming this expression it is easy to see that the needed angular
momenta are those with L < rp,/b.

To compare this requirement with the uncertainty principle we first need to convert
it to Kruskal coordinates. The momenta in Kruskal coordinates are given by

Er? 2Vry, Ej L72
2r,U - (14 UV)2N f2 r2f7

bu =
(2.3.55)
G N )
V=T v Tarove\ 2 e

To obtain this expression one first needs to find p, by imposing p?> = 0. We
are interested in the limit where U ~ 1 and V =~ AV <« 1, for which we can
approximate

FUV) = ﬁ <_ 4Uv

2\ 1+U0Vv)?

Using this we see that py ~ 0 while the V' component of the momentum is ap-

7“2
) ~ —4?’21AV. (2.3.56)

proximately given by
N E¢?
Vs Ay

We conclude that the minimum required momentum needed to overcome the po-

(2.3.57)

tential barrier is given by
¢ 1
> 2.3.58
AN ( )
We see that for messages localized on scales smaller than a thermal cell this over-
comes the uncertainty principle requirement (2.3.13). Combining this with the

probe approximation bound (2.3.45) we find

b

7
This in particular means that to send one single message localized to a region of
size b < ¢ we need to couple K =~ ¢/b. We see that while it becomes increasingly
difficult to send messages localized on sub-AdS scales, it is still possible if we are
willing to couple a large number of fields. If we set N = 1 in the above expression

NOb)<K-, b<[t. (2.3.59)

we can find the minimum allowed value of b for a given K

14

b(K) 2 7 - (2.3.60)
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However, as we increase K the cutoff of the theory gets lowered to fyy ~ KGy
and we should also impose that b(K) > £y . These two requirements coincide for
Koin = /¢/Gy, which leads to the following estimate for the minimum possible
value of b

bmin ~ VG N . (2.3.61)

Before concluding notice that in the opposite limit, b ~ ¢, the uncertainty principle
and the potential barrier give the same bound and we find

NO) <K, b>¢(. (2.3.62)

~

This means that instead of sending Kr,/¢ s-waves we can also send messages
localized in a thermal cell, sending K such messages per thermal cell.

2.3.4 Comparison to Quantum Information Bounds

In the previous sections, we have estimated the maximum information that can
be sent through the wormhole with a bulk analysis. Here, we would like to briefly
compare to a boundary analysis. A detailed boundary calculation is difficult be-
cause the theory is strongly coupled, but we can still place bounds on the amount
of information transferred. As explained in [70], we can think of the procedure
as quantum teleportation.'® In standard quantum teleportation, if Alice and Bob
share and EPR pair, they can use it as a resource to transfer a qubit. One qubit
can be transferred at the cost of using up one entangled EPR pair and sending two
bits of classical information. Here we think of the left-right coupling as playing
the role of the classical communication, as explained in more detail in [70].

With these identifications, the amount of information sent is bounded by the
decrease in entanglement entropy between the two CFT’s,!!

N < —ASpp. (2.3.63)

We can compute the change in entropy from the change in energy induced by the
non-local coupling
ASgp = BAE. (2.3.64)

This equation is valid because in the thermofield double the entanglement entropy
between the two sides is equal to the thermal entropy. This statement is clear
before acting with the coupling. After acting with the coupling, a bulk calculation
tells us that the entanglement entropy is still equal to the thermal entropy, because

10We refer to quantum teleportation in a broad sense, without specializing to a particular
quantum communication protocol. For a more detailed description of specific quantum commu-
nication protocols that might be dual to the traversable wormhole see [95].

1'We thank David Berenstein for discussions on this point.
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the bulk geometry is still an eternal AdS-Schwarzschild black hole. We do not have
a direct CFT argument for this equality.

As mentioned above the boundary theory is strongly coupled, so computing AF
directly on the boundary would be hard. The best we can do is to assume that
the result of such a computation would match with the one we obtained with the
bulk analysis. In other words we assume that the change in energy is given by one
thermal quantum per coupling and per thermal cell,

K
AE~ 1L (2.3.65)

B’
where the number of thermal cells is given by £/3. This is the only input we need
from the bulk computation in this section. It would be interesting to check this, at
least for some examples of weakly coupled boundary theories, see for example [96].

Combining the above equations we find

N < ﬂ, (2.3.66)
B
which is K bits per thermal cell. This agrees with our bulk estimate found in
equation (2.3.23) by requiring the bulk geometry to remain in the probe approx-
imation. Clearly the entanglement entropy cannot decrease below zero, so an
absolute bound is
N < Sge . (2.3.67)

This absolute bound is saturated (up to order one prefactors) when we maximize
the number of species providing the negative energy, as given in equation (2.3.26).

Notice that since we interpret the non-local coupled fields as playing the role of
the classical messages in the usual teleportation protocol, it is natural to consider
many such fields to send more information. However, from the CFT point of view
it does not seem necessary that these are couplings between different fields, it
might be possible to couple the same field but at different times. This seems to
suggest that also in the bulk, if we were able to go beyond the probe approximation,
we might be able to send order Spy bits without coupling a parametrically large
number of fields.

2.3.5 Generalization to d + 1 dimensions

The picture we uncovered in the previous section is rather simple. Signals need
to be highly boosted to fall through the wormhole, (2.3.13). Their backreaction
on the geometry modifies the non-local coupling configuration, generally inducing
a reduction of the negative energy. In other words, they close the wormhole.
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We showed this at linear level, but the analysis of [50,70] suggests that this is
true also at nonlinear level. Certainly the negative energy is preserved if we can
neglect the backreaction of the signal altogether, i.e. the probe approximation is
valid, (2.3.2). The combination of this bound with the requirement that every
signal is boosted enough constraints the amount of information that can be sent
through the wormhole, see (2.3.23).

In this section we would like to understand how the bound on information transfer
is modified in d + 1 dimensions. We expect the above picture to still be valid.
Namely, the amount of information that can be transferred is bounded by a com-
bination of the probe approximation and the uncertainty principle. Unfortunately,
it is hard to carry out explicitly the calculation of GJW in higher dimensions, in
particular we cannot find an expression for the negative energy. We will assume
that the stress-energy tensor generated by the non-local coupling still scales with

the AdS radius,

K

where we have already included K species.

To find the equivalent of the probe approximation bound (2.3.2) in d+1 dimensions,
we again impose that the time delay generated by the positive energy shock is
small, AU < 1. The relation between the time delay and the stress energy tensor
of the shock in general dimensions is still given by (2.3.9), where the Newton
constant is now related to the Planck length by 877Gy = Z‘};l. In terms of the
total momentum carried by the signal the condition (2.3.2) becomes

_ Gnpy

AU = "NV <« 1. (2.3.69)
T

h

We can again rewrite this condition in terms of coordinate independent quantities
if we model the interaction between the signal and the negative energy as grav-
itational scattering. We showed that the gravitational interaction, close to the
horizon of the BTZ black hole, is localized to a thermal cell of size ¢ and there-
fore, the collision could be split in independent events, K for each thermal cell.
We demanded that each of these collision events was well described in the probe
approximation, (2.3.12). In higher dimensions it is still true that the gravitational
scattering is localized to a thermal cell. The limit on the validity of the probe ap-
proximation for gravitational scattering in d + 1 dimensions, see for example [97],
is given by

GNScell <1, (2.3.70)

¢d—3

Here we have set the impact parameter to be of order ¢. To find s, first notice
that, as can be seen from (2.3.68), the negative energy particles still carry one unit
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of momentum per thermal cell. To find the momentum carried by the positive
energy shock per thermal cell, we simply divide the total momentum py by the
number of thermal cells, r;il_l /¢4=1. Under this identifications it easy to see that
(2.3.70) agrees with (2.3.69).

The uncertainty principle condition carries on to higher dimension without modi-
fications. However, the size of the wormhole opening is now given by

Gn

a1 (2.3.71)

AV = GN / TUU ~ K
We can combine the uncertainty principle with the probe approximation require-
ment to bound the amount of information we can send through the wormhole.
The computation is identical to the one above, the final result is

d—1
N<K (%") . (2.3.72)
Similarly to the lower dimensional case the amount of information we can transfer
scales with K and the number of thermal cells. We can find a bound on K recalling
that in higher dimension the UV cutoff is renormalized as follows [92, 93]

lov = (KGy)TT . (2.3.73)
Taking this into account we see that for the maximal value allowed, K ~ (¢! /Gy,
we find
pd-1
Gn

This is the generalization to higher dimensions of our bound for information trans-
fer in the s-wave channel. We see that in any dimensions, for the maximum value
of K allowed by the species bound, we saturate the black-hole entropy.

We now turn to the case of localized messages presented above. For messages
localized in regions larger than the AdS scale, everything works the same as in the
three dimensional case. Instead of sending s-waves, we can send signals localized
to thermal cells, K such signals per thermal cell. This is because, as pointed out
above, the gravitational propagator in higher dimensions also decays exponentially
outside the thermal cell. The behaviour at shorter distances, instead, is qualita-
tively different in higher dimensions. The propagator is not constant inside the
thermal cell but acquires a singularity in the 2’ — x limit

1

Here x; are dimensionless coordinates defined similarly to (2.3.43). As a conse-
quence the gravitational field generated by signals localized on sub-AdS scales is
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not constant anymore inside the thermal cell and the analysis is not as simple.
In particular, it might be possible to try and send many localized messages per
thermal cell. We will not make this computation, but we simply imagine sending
many localized messages superimposed at the center of the thermal cell. The time
delay AU has now a non-trivial profile inside the thermal cell. For simplicity we
impose that the maximum value of this delay inside the thermal cell is small. In
principle we would need to solve

2

<_8?2 + ;g) hyy = GNT}QLTVV R (2376)
where 03 is the Laplacian on the (d—1)-dimensional transverse sphere. Inside the
thermal cell we can neglect the second term in the parenthesis and approximate the
sphere with a plane. The equation reduces to the Poisson equation for a Newtonian
potential in d — 1 dimensions. For radii larger than the b/¢, the solution is simply
given by'?

hyvy ~ Mé(V) (2.3.77)
VY & |$‘d_3 . 0.

The maximum is given by |x| = b/¢, which leads to

G
AU S grgspv < 1. (2.3.78)

Similarly to the three dimensional case the signal needs to be boosted enough to
overcome the angular momentum potential barrier, see (2.3.58). Combining these
requirements we can find that the information transfer bound is given by'3

b

N(b) S K <€>“ . (2.3.79)

As compared to the three dimensional case it is indeed harder to send localized
signals, for a given value of K. We can find the minimum value of b for a given K
by setting N = 1 in the above equation

—1

b(K) > K720, (2.3.80)

As we increase the number of coupling we renormalize the UV cutoff of the theory,
so we need also to check that b is larger than £;;y,. We have

b(K)> KT ilp. (2.3.81)

12Notice that this equation is only valid for d > 2. Moreover, in the case d = 3 the polynomial
reduces to a logarithm, |z|3~% — log |x|.

13The correct result for d = 3 is N(b) < K% logle/b
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Combining these two bounds we find that the minimum possible value of b is given
by14

e a—2
brin = () lp. (2.3.82)
lp

We conclude that in high enough dimensions we can localize messages on scales
smaller than what is possible in the three dimensional case. The reason is that
even though it is harder to localize messages for a fixed value of K, in higher
dimensions we can couple more fields before the UV cutoff reaches the AdS scale.

2.4 Discussion and future directions

In this work, we computed bounds on the amount of information that can be
transferred in the traversable wormhole construction by Gao, Jafferis and Wall
(and slight generalizations of it). This computation was motivated by some seem-
ingly problematic features of the GJW wormhole. Namely, the perturbative nature
of the non-local coupling opened the wormhole in the bulk only at a sub-Planckian
scale, making it dubious whether large amounts of information could be actually
transferred before closing the wormhole again. On the other hand, the wormhole
is built perturbatively around the eternal blackhole geometry. This means that
the entanglement entropy between the two boundaries is large and given by the
black hole entropy. From the boundary perspective, and assuming this protocol
is somehow dual to teleportation, this generates, in principle, a large amount of
entropy available to teleport information from one side to the other. The question
then becomes clear: is there a way we can use all that amount of entanglement
entropy to maximize the information transfer through the wormhole?

In section 2.2, we studied in detail the construction of GJW, allowing for different
types of non-local sources and computing the amount of negative energy generated
by each of them. In particular, we found a simple analytic formula for the case
where the sources are instantaneously turned on, avoiding much of the numerical
computation that are usually done in the literature.

In section 2.3, we found that the amount of information transferred in the standard
GJW wormbhole is of order O(hry,/¢). Note that this, in general, is much smaller
than the entanglement entropy, r,/Gy.

Nevertheless, we found that large black holes can allow for more than one bit
of information transfer. This contrast with previous results in the literature, in
particular with [54], where it is claimed that the maximum amount of information
that can be transferred is O(1). The difference lies in that their construction

141 the d = 3 this formula is correct up to logarithmic corrections.
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only couples the s-wave between two boundaries, while the coupling we consider
is local in space and therefore couples many angular modes. Coupling only the
s-wave leads to a smaller amount of negative energy, allowing for at most one bit
of information to be transmitted, as the authors find. Moreover the particular
infinite boost limit that is taken in [54] does not seem physically well motivated:
in the infinite boost limit, the collision between the negative energy and the signal
will have an arbitrarily high center of mass energy and not be well-described in
the semiclassical regime.

We also showed that it is possible to increase the amount of bits that can go
from one boundary to the other by introducing a large number K of light fields
coupled between the two boundaries. Using a combination of bounds coming from
the uncertainty principle, the probe approximation and the existence of many
species, we found that in principle it would be possible to send N ~ Spp bits
of information. This is interesting, since it maximizes the amount of information
that can be sent, at least from the boundary teleportation perspective.

The results on this paper rely on several assumptions and approximations of the
traversable wormhole geometry. It will be interesting to further relax these as-
sumptions and see whether it is possible to improve on our results. In the following,
we comment on interesting possible future directions.

Beyond the probe approximation. Most of the results presented rely in the so-called
probe approximation, assuming that the scattering processes between the shocks
are small. This seems to be a strong restriction because it is only possible to send
the maximum possible amount of information by allowing an extraordinarily large
number K of light bulk fields, K ~ ¢9~!/Gy. This large number of light fields
lowers the UV cutoff of the bulk theory. Also, many holographic theories do not
have a large number of light fields.

It would interesting to see if it is possible to saturate the amount of information
transferred without the need of so many fields by going beyond the probe approx-
imation. The calculation we presented in the multiple shocks section 2.3.2 is in
this spirit, showing that independently of K, we get a bound on N coming from
the gluing of the multiple shocks geometries.

One issue in going beyond the probe approximation is that the backreaction of
the signal on the geometry means that we would have to re-compute the stress
tensor coming from the coupled quantum fields, because we can no longer use
the propagator in the BTZ background in calculating the stress tensor. This was
explored in [50], where it was claimed that going beyond the probe approximation
just reduces the amount of negative energy generated, and therefore does not allow
for more information transfer.
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2. Traversable Wormholes in AdS and Bounds on Information Transfer

We are not fully convinced by these results for the following reason. The effect of
the backreaction is to create a time delay in the propagation across the signal. The
new bulk-to-boundary propagator can be computed in the presence of the signal.
Effectively, the signal induces a relative shift between the left and right boundary
times. In the absence of the signal, the most effective boundary-boundary coupling
occurs when the left and right boundary points are both halfway up the Penrose
diagram, at t;, = tg = 0, or at points related to this by symmetry. Upon intro-
ducing the signal, the shift means that the most effective coupling occurs when
both points are in the lower half of the Penrose diagram. However, [50] does not
consider allowing the coupled boundary points to be in this region. It would be
very interesting (and probably not difficult for the authors of [50]) to extend their
analysis into this regime.

If it is in fact possible, this would be rather surprising, given that from the telepor-
tation picture it would seem that we would either need to couple a large number
K of different fields, or we would need to keep the coupling turned on for a long
time.

To summarize: in this paper we have calculated how much information can be
sent while remaining in the probe regime, where the signal does not disturb the
leading order calculation of the negative energy due to coupled quantum fields.
These probe regime calculations and arguments are reliable. However, we do not
have a persuasive bulk argument explaining why the information that can be sent
is bounded by these probe regime calculations. It seems feasible to carry the
analysis beyond the probe regime in the future.

Quantum metric fluctuations. Since the wormhole is open for such a short time,
shorter than the Planck time, one might worry that quantum metric fluctuations
will have a large correction on the transmission of a semiclassical message. We
postpone a more complete discussion of these quantum fluctuations to future work.
However, at least in 2+1 dimensions, we can argue that the quantum fluctuations
will have a small effect. Quantum fluctuations include two effects: the thermofield
double state includes a superposition of different black hole masses, and the black
holes can be decorated by boundary gravitons.

Due the special properties of 241 dimensions, all of these metrics can be thought
of as BTZ black holes, deformed arbitrarily close to the boundary by gravitons.!?
In analyzing the signal, these effects can all by combined into an uncertainty in
the dimensionless time, ¢/, that the signal is emitted from the left boundary or
received by the right boundary. The effects of these perturbations are suppressed
by powers of the gravitational coupling; we believe that the quantum uncertainty

15We thank Jan de Boer for discussion on this point.
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A(t/B) ~ ,/GTN. (2.4.1)

Since we are interested in sending signals whose time duration is just a bit less

is given by

than the thermal scale, these quantum corrections to the width of the signal are
neglibible.

Beyond perturbative calculations. Many of the confusions that arise in the context
of GJW are due to the perturbative nature of the non-local interaction. It would be
interesting to find solutions at finite coupling and/or construct eternal wormholes
in this context. In two bulk dimensions, it is possible to create an eternal wormhole
[51], but the generalization to higher dimensions is not as straightforward —see, for
instance [56].

Beyond three spacetime dimensions. The GJW construction relies heavily on the
simplicity of the BTZ correlators. In section 2.3.5, we provide plausible general-
izations to general dimensions of the bounds on information found on this work.
It would be desirable to find a framework in higher dimensions where these claims
could be checked by explicit calculations.

Beyond black hole horizons. A natural framework to study traversable wormholes
are horizons in de Sitter spacetimes. Due to the nature of the cosmological hori-
zon, the insertion of shockwaves naturally provides a mechanism for traversable
wormholes. In the context of two dimensional gravity, it is possible to glue cosmo-
logical horizons in the IR, with an AdS boundary in the UV, and construct such
shockwave solutions [98]. The nice feature about those solutions is that they do
not need the insertion of non-local, negative energy couplings. It would be inter-
esting to see whether they can be generalized to higher dimensions and compare
the maximum bounds on information transferred in each case.

We hope to come back to some of these ideas in a future communication.
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Eternal AdS4 Wormbholes
from Coupled CFT’s

3.1 Introduction and Results

Wormbholes have been a puzzling topic for physicists for a century. Many efforts
have been made to build traversable wormholes using different kinds of fields and
techniques, most of which require either the insertion of exotic matter [11,76-79,
99,100] or higher derivative theories [80-82,101] which lack UV completions [102].

Recent work has shown how to build traversable wormholes in physically sensible
theories. Gao, Jafferis, and Wall (GJW) [103] showed how to make asymptoti-
cally AdS black holes traversable for a short time by coupling the boundaries to
each other. This approach has been extended in a number of other works since
then [50,53-55,57,59,70,85,104-111]. The first eternal traversable wormhole was
constructed by Maldacena and Qi [112] in asymptotically nearly-AdSs spacetime.
More recently, Maldacena, Milekhin and Popov [3] found a long-lived 4D asymp-
totically flat traversable wormhole solution in the Standard Model (see also [113]).

In this paper, we make use of the ingredients developed by GJW and MMP in order
to construct an eternal traversable wormhole in asymptotically AdS, spacetime.
Our motivation is twofold. First, by constructing wormholes in asymptotically
AdS spacetime, we can use AdS/CFT to learn more about them. Second, our
wormhole solution can be used to learn more about CFT’s. To this end, we
identify a family of Hamiltonians consisting of two copies of a CFT coupled by
simple, local interactions whose ground state is dual to the traversable wormhole.

This last point is significant for constructing traversable wormholes in a lab or on
a quantum computer. Some very interesting ideas on how to do this are described
in [71,114,115]. Given access to a holographic CFT, one simply needs to implement
the coupling and allow the system to cool to its ground state, which is dual to a
traversable wormhole.

Concretely, the bulk theory we consider is described in Section 3.2 and consists of
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3. Eternal AdS4 Wormholes from Coupled CFT’s

Einstein-Maxwell theory with negative cosmological constant, a U(1) gauge field
and massless Dirac fermions coupled to the gauge field. A particular solution is the
magnetically charged Reissner-Nordstrom (RN) black hole. Due to the magnetic
field, the charged fermions develop Landau levels. The lowest Landau level has
exactly zero energy on the sphere, so we can think of them as effectively 2D
fermionic degrees of freedom once we dimensionally reduce on the sphere.

The classical solution consists of two magnetically charged RN black holes con-
nected through an Einstein-Rosen bridge which is non-traversable. The traversabil-
ity of the wormhole is achieved by introducing a coupling between the two CFT’s
(labelled L, R) of the form

Sint = i/d3x h(UEOL + ol k) (3.1.1)

Here ¥ is the bulk field at the right boundary that is dual to the charged fermions
in the right CFT, and ¥” is defined analogously. Note that this is a local coupling
involving a single, low dimension operator in each CFT; this contrasts with the
beautiful construction of Maldacena and Qi [112] in the AdSs context, where a
large number of operators must be coupled.

In Sections 3.2.3 and 3.2.4, we describe how this interaction has the effect of mod-
ifying the boundary conditions and the vacuum state. The stress tensor receives
a quantum correction of the form

(Tys @) = 5 5

where R is the sphere radius, ¢ is the charge of the black hole, and A is given

(3.1.2)

by (3.2.33). For small coupling h, A(h) = h, but our analysis remains valid for
finite h. A priori it is not clear whether a self-consistent solution exists in which
the negative null energy supports a traversable wormhole. Since it is only the
quantum correction that has a chance of making the wormhole traversable, the
quantum effects have a large backreaction on the metric.

Typically, this would constitute an intractable problem: we cannot calculate the
quantum state, and hence the stress tensor, until we know the geometry, but on
the other hand we cannot solve the Einstein equations to determine the geometry
until we know the stress tensor. In this case, we are able to self-consistently solve
the system because the stress tensor takes a particularly simple form, depending
locally on the metric (up to an overall factor).

In Section 3.3, we discuss properties of both the linearized and non-linear solu-
tions. The wormhole geometry has the following two regimes. The middle of the
wormbhole is nearly AdSs x S2. As we move away from the middle of the worm-
hole, the geometry smoothly interpolates to the near-extremal region of two RN
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black holes. Far away, the quantum contribution (3.1.2) becomes negligible and
the geometry is that of two magnetically charged RN black holes (see Fig. 3.2).

As a consequence of the boundary perturbation, the mass of the wormhole is
slightly decreased by a term proportional to the coupling

M = My +AM |, with AM ~ —)\%(h) . (3.1.3)

An infalling observer will experience that she is approaching a naked singularity
from infinity. All of a sudden, deep in the throat region, the wormhole opens up
and she comes out to the other side safely.

In Section 3.4.1, we identify a simple Hamiltonian whose ground state is dual to the
wormhole. The procedure is to begin with two identical holographic CFT’s, each
with a global U(1) symmetry, so that they are dual to Einstein-Maxwell theory at
low energies. We then turn on a chemical potential for each CFT separately, and
turn on a coupling of the form WAWL where the ¥ operators are dual to a bulk
massless charged fermion.

Concretely, the Hamiltonian we analyze is
ih - -
H=Hy+Hp+p(Qr—Qr) = [ d (TEwl + OLwhR) (3.1.4)
This Hamiltonian is similar to the construction of Cottrell et al [116]. The authors
showed that the Hamiltonian in their case has the thermofield double state as its
ground state. That construction, however, did not have a semiclassical gravity
dual.

We show that the ground state of this theory is dual to our eternal traversable
wormbhole geometry for some range of the coupling h and chemical potential . We
compare the wormhole to other geometries with the same boundary conditions,
which may dominate the ensemble. In particular, we consider two disconnected
black holes and empty AdS. We compute the ground state for different values of
the parameters h and p, and find that the wormhole is the ground state for h > h,
and p > ., with the critical values given by

=2

T 2m 2r2
he = G % (1 + €2> and p. = \/Emp , (315)

with m, the Planck mass. Interestingly, as the non-local coupling vanishes, there
is a triple point located at h = 0, u = u. where the three phases meet. For values
h < 0, the ground state is dominated by either empty AdS or the black hole phase.

The challenge of building a traversable wormhole is to have enough negative en-
ergy to allow defocusing of null geodesics, allowing the sphere to contract and
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3. Eternal AdS4 Wormholes from Coupled CFT’s

re-expand. Here we have added two ingredients so that the bulk dual remains
semiclassical. First, the chemical potential makes the decoupled system closer to
being traversable, since the near-horizon geometry for an extremal black hole is
AdSy x S?. Because the size of the sphere is constant near the horizon, a small
amount of negative energy will allow the sphere to re-expand, and render the
wormhole traversable!. Second, by using bulk charged fermions in combination
with a magnetically charged black hole, as was done in MMP [3], we enhance the
negative energy due to the quantum effects. The key point is that a single 4d
charged fermion acts like a large number ¢ of 2d light charged fields due to the
large degeneracy of lowest Landau levels.

Note: We understand that overlapping results will appear in [117]. We thank S.
Banerjee for discussions. Also, [118] appeared very shortly before this work. There,
asymptotically AdS; wormholes are also constructed, but with rather different
ingredients. In addition, the solutions of [118] have different symmetries than our
solution: they preserve the full Poincaré invariance in the boundary directions. It
would be interesting to understand the relationship between the two constructions
better. We thank M. Van Raamsdonk for discussions.

3.2 Massless fermions in AdS;,

We start this section by describing the particular theory of interest, as well as
setting up the notation and conventions of spinors in curved space. Afterwards,
we describe how the boundary conditions change once we couple the asymptotic
boundaries. Finally, we compute the resulting stress tensor.

3.2.1 Dynamics

The theory consists of Einstein-Maxwell gravity with matter described by the
action

[ L poony - g
S_/d x\/§<16WGN(R 2A) 492F +iUDPV | . (3.2.1)

In particular, we are considering a single massless Dirac fermion of charge one. In
this section, we follow the approach and conventions of [3].

We consider g to be small, so that loop corrections are suppressed. A general class
of spherically symmetric solutions with magnetic charge, denoted by the integer
¢, can be parametrized as follows

ds? = 2 @D (_dt? 1+ da?) + R2(z) dO2, A= gcos 9d¢ . (3.2.2)

We thank Daniel Jafferis for suggesting this approach.
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Note that in this metric the range of x is compact and fixing this range can be seen
as a gauge choice. For now we use z € [0, 7]. To have a well-defined representation
of the Clifford algebra at each point of the spacetime we introduce the vierbein

el =edt, > =e%dx, > = Rdf, e*= Rsinfds . (3.2.3)
and by solving
de® +wNeb =0, w?®=—wb, (3.2.4)

we compute the spin connection components
w? = o'dt+odr, w2 =Re 7dh, w*? = R'sinfe 7dp, w* = cosfde. (3.2.5)

Here a prime denotes a derivative with respect to z, while a dot denotes a derivative
taken with respect to t. We use the following basis for the gamma matrices in flat
space

V=io,®1, Y¥=0,®1, 7’ =0,®0,, 74:UZ®Uy. (3.2.6)

In this basis the Dirac operator has the form

B =e=[io. (0 + g) + oy (00 + %l + %’)} ®1

o, 0y — 1A ¢ ( 1
% 5 0,240 4 5 (504 L eono)].
+ R ® [ sin o= {0+ 2 <

In the static case, the metric (3.2.2) has two Killing vectors 9, and J,. Introducing
the following ansatz will allow us to decompose in Fourier modes on the sphere

S2,

(3.2.7)

—g
2

Zwm (t,z) @™, ) . (3.2.8)

Here ¢™ and n™ are bi-spinors. In the rest of the paper we will suppress the
indices on . In this ansatz the Dirac equation is given by

§
20

eR (i020¢ + 0y0z)h @ = =X,
- P ” ] (3.2.9)
€ ¢ — 1Ag
—0, —_ " — cot (0 =X
R20¢®<0y Sin(0) +o (89+200()>)77
Restricting to the lowest Landau level decouples the equations and admits solutions
of the form
0N jxEm O\ i+Fm . 1
%/Ji—za ko) | nE = (Sinﬁ) : (COSQ) i e, jizi(_l:FQ) )
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3. Eternal AdS4 Wormholes from Coupled CFT’s

where 14 are the components of v, and we choose 0,17+ = £ny+ as the basis for
n. If we take ¢ > 0, the solution is

ne=0, n-=Y Chn" —j<m<j, (3.2.11)

m

where we define the quantum number j := j_, so that in the lowest Landau level
the degeneracy of the two-dimensional fields is q. The normalization constant is
given by

(2 + 2j)
1+j-m)(1+j+m)’

(€h)? = %F (3.2.12)

so that
/dQQ 0™ = Smym, - (3.2.13)

3.2.2 Boundary conditions

According to the AdS/CFT dictionary, a bulk Dirac spinor of mass m is dual to a
spin 1/2 primary operator O of conformal dimension

Ay — g + V2 (3.2.14)

where ¢ is the AdS radius [119,120]. The stability bound requires m > 0 [121].
When applying the correspondence, we should consider that the first order nature
of the Dirac action goes hand in hand with the different dimensionality between
the bulk and boundary spinors. The extrapolate dictionary instructs us to iden-
tify the two bulk chiral components with the same boundary field. In addition,
when solving the Dirichlet boundary value problem, we should impose boundary
conditions only on half of the spinor degrees of freedom. Our gamma matrix in
the holographic radial direction satisfies (72)2 = 1 and (y2)" = 2. We can then
decompose the bulk fermions onto the eigenspace of 72

Uy =Py, Py==(1£9%), (3.2.15)

N | =

and similarly for the Dirac conjugate. The orthogonal projection operator satisfies
the two conditions P? = P and P = P. More explicitly

o le_% 'l/}Jr —7/[1)7 77+
V=3 R (i(w—ilb))@(n) ’ (3.2.16)
. .:16‘5( by + it )®<n+> -
T 2 R \—i(vy+io) n-)
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The variation of the Dirac part of the action (3.2.1) with respect to Uy after
integration by parts becomes

ASp = bulk terms +z’/d3x VY (06T, — W60 ) (3.2.17)
3]

where 7 is the determinant of the induced metric at the boundary.The bulk terms
are proportional to the equations of motion. In order to have a well-defined bound-
ary value problem, we should include a boundary term of the form

Sa :i/d3x\ﬁ (a1 WUy +ap W W) . (3.2.18)
7]

We can then either fix ¥, = 0 or ¥_ = 0 (and thus ¥, = 0 or ¥_ = 0) at the
boundary depending on whether we set (a1 = —1,a3 = 0) or (a3 = 0,a2 = 1)
respectively in the total variation of the action §.Sp + §.95.

In the massless case, both modes W, are normalizable. We can then identify the
asymptotic values
09 = lim R(z) 20y | (3.2.19)
TG
with the normalizable part of the dual operator ©. After reducing on the S?
sphere, the effective 2D fermions obey reflective boundary conditions in both types
of quantizations

by = e . )5, standard
L =€%Y_, with a= 3 , (3.2.20)
=, alternate

which correspond to taking ¥9 = 0 or U® = 0 respectively. Intuitively, they
would not allow the charge and energy to leak out at the boundary. In fact, by
using the conservation equations it is easy to see that at the boundary

E:Tm‘a:o and Q:J2)8:0, (3.2.21)
where Jy is the & component of the U(1) current

Jy =Plop @nin = (W_m - wiw_) ®n'n, (3.2.22)
and T1» is the energy flux, which is given by the tz-component of the stress tensor

1

=5

(€102 = 004 + 0100 + 00— — (8 — )l — (O + Bl v ) o,
(3.2.23)
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Now consider two decoupled and identical conformal theories with fermionic de-
grees of freedom. In principle, each one has its own bulk gravity dual. The
boundary action then acquires the form?

Sp = z’/d%ﬁ (a1 UEUE + apUROE 4 b PLOL + 5,05 05) . (3.2.24)
o

There are various options depending on what type of boundary sources we would
like to keep turned-on. The guiding principle we will follow is CPT invariance.
CPT-related boundary conditions imply a vanishing 7' component consistent
with the fact that vacuum AdS; cannot support finite energy excitations [122].
For the purpose of this work, we choose the following CPT conjugate boundary
conditions

vR—o &L 9L —o, (3.2.25)
which correspond to the coefficients a; = —1, by = 1, and as = by = 0. The

vanishing energy can also be understood as due to the conformal anomaly con-
tribution present in the mapping between the energy of a CFT on the strip to
AdS, [112].

3.2.3 Modified boundary conditions

We are interested in the case where the two bulk geometries are two magnetically
charged RN black holes. Intuitively, we can think on them as being connected
through an Einstein-Rosen bridge. A priori, however, it is not obvious how to
connect both bulk geometries through the horizon. Moreover, in order to render
the wormhole traversable, we need to establish a connection between the two
asymptotic boundaries. We achieve that by using a non-local coupling of the
form?

Sint = —i/dga:ﬁ (hy WO 4 hoWE W 4 haWROE 4 p W OF) - (3.2.26)

This term will provide us with the negative energy we need and will open up the
wormhole. It is important to mention that if instead of fermions, we considered
interacting scalar fields, similar to [103], the lowest Landau levels would have
positive energy on the S? sphere, making the problem of finding a traversable
geometry much harder.

2Note that since we consider two copies of the theory we now have z € (-3, 5], and we
denote the left (right) boundary at © = F5 with L (R).

3In general, the coupling constants can be complex. However, they must satisfy hy = h3, hg =
h%, in order for (3.2.26) to be real.

4>
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We are looking for an eternal traversable wormhole, so we let the coupling con-
stants be turned on for all times. For the purposes of this work, we focus on the
case where the coupling constants are real and hy = hy = 0% The boundary
conditions turn out to be

UR 4 pol =0, and WL RUE =0, (3.2.27)

where hg = hy = —h. Notice that the sources at the boundary are vanishing. In
terms of the spinor components this implies the following boundary conditions

P — i+t —ihgE =0, and ¢ + it + hpf + ik =0. (3.2.28)

See Fig. 3.1 for an illustrations of the modified boundary conditions.

In order to obtain a solution to the equations of motion (3.2.9) with the boundary
conditions (3.2.28), for the lowest Landau level, we use the following ansatz:

_ Ak iy (t—x) _ B’f iw (L)
Yy = e'r and ¢Y_ = e . (3.2.29)
i zk: VT zk: VT

Filling in this ansatz in to the boundary conditions (3.2.28) leads to the following
constraint equations®

(%% + hiF)ay, + (1542 + hi®F3) By, =0

3.2.30
(iwk + hz'?)wk)ak + (z'?)wk-‘rl + hiwk+1)ﬁk :0 , ( )
with solution
i —2h £ i|1 — h?| Bl
WE = 2k — ; log <1+h2 y ﬁk- = (—1) ag (3231)
where k € Z. The solution can be written in the following form
2k+1 2
Wy = t (=) ZX(n) , (3.2.32)
2 s
where A is a function of h given by
1 2h

41t would be interesting to understand other combinations of the non-local couplings.
5Note that the equations are invariant under h — % and i — —fk, so the theory exhibits
S-duality.
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Yy

Figure 3.1: A right moving massless fermion, with amplitude || =
1, traveling on the strip hits the right boundary. The probability of the

resulting left mover is equal to Eh and the right mover emerging

—1)2

[GCESER
2

from the left boundary has amplitude ﬁ.
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3.2.4 Propagators and stress tensor

Using the solution (3.2.32), we write the fermionic fields as®

1 ) _ (_1)k+1 o (2
vy = E — et and = g L qpetrtte) (3.2.34)
" —~ VT ~ VT

The modes ay, obey the following anti-commutation relations
{ak,a}} =0k, , {og, a;}=0 and {az,a;{} =0, (3.2.35)

and the vacuum is defined as

arl0) =0 VkeZo, and al|0)=0 VEkeZs. (3.2.36)

Using equations (3.2.34)-(3.2.36) we calculate the propagators. We present one of
them here and the rest can be found in the Appendix A

1 eplen—o) e2 (" =7) 9i)(h)
T ! - — ! _— ...
(Wi (z-)v4(al)) = T1 @ =) + PR R (. —z_)+
(3.2.37)

We proceed by stating the relevant components of the stress tensor. Since (3.2.2)
is spherically symmetric and does not depend on time, the only off-diagonal com-
ponent of the stress tensor that could be nonzero is Ti2. However, in Appendix
B we show explicitly that 772 vanishes for our setup. Therefore, we only need the
diagonal components of the stress tensor, which are given by

Tis = 75 (V0w + vl o —awlws ol v ) ',
Toy = —55 (V1 0ewr — vl on — Oplvs + 0,0l )i,
o (3.2.38)
Tz =—— ET/)TUzW?TT] ;
Tyy = _isin(@) e R'sin(0)e"¢TonTn .

2 R

In order to compute the quantum contribution to the components of the stress
tensor due to the non-local coupling, we apply the point-splitting formula

: i al a a ST
(T) = lim 20 (6,1"V1) = Viue?”) (B(@)0 () - (3.2.39)

z'—x K

SIn the remainder of this work, we will use light-cone coordinates defined by z+ = t & x,
whenever they are more convenient.
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By using the propagators and after subtracting the vacuum contribution, we end
up with the following finite result

1 )
213 R2?

<T:l7u> =

diag (1,1,0,0) , (3.2.40)

where the factor ¢ comes from the fact that in the lowest Landau level the degener-
acy of the two-dimensional fields is ¢. The range for the compact radial coordinate
(Az = ) is present in the prefactor in the above expression. Picking a different
gauge would result in a rescaling of the stress tensor. One can easily check that
the stress tensor is conserved and traceless due to conformal symmetry. Details of
the stress tensor calculation can be found in Appendix B.

3.3 Wormbhole geometry

We start this section by describing the two different regimes of the wormhole
geometry, after which we analytically solve the (linearized) Einstein equations in
both regimes. We continue by showing that the solutions in the two regimes
can be consistently patched together through a coordinate transformation in the
overlapping region of validity. We end the section by solving the full, nonlinear
Einstein equations numerically.

3.3.1 Two regimes

The next task is to solve the semi-classical Einstein equations to find a magnetically
charged geometry sourced by (3.2.40)

G + Mgy = 8TGN (T} (3.3.1)

As we approach the AdS,; boundaries located at r — +o0o, the electromagnetic
contribution of the stress tensor dominates over the Casimir energy. Then, far
away from the wormhole throat the solution should look like Reissner-Nordstrom
AdS,

d 2
ds? = — f(r)dr? + T(Tr) +12d03 (3.3.2)
with emblackening factor
2GNM 2 2 °G
firy=1-"X +:—;+Z—2, and 712 = qug 20 (3.3.3)

Here M denotes the mass of the black hole, ¢ is an integer and r2 denotes the
magnetic charge of the black hole. Close to extremality, the geometry developes

70



3.3. Wormhole geometry

an infinitely long throat. The value of the extremal radius has the form

2 2
| _QZE

o.f(r) L0 = P=—|-1+/1+122] | (3.3.4)
r=r 6 [2

Inverting this relation gives the charge of the black hole in terms of the extremal

horizon radius and the AdS length

r2 =2 (1 + 322> . (3.3.5)

In the range of masses that we are interested in, the quartic polynomial f(r) =0
admits complex conjugate roots”. We choose to parametrize them by ry o = #(1 +
t€) with ¢ > 0 and # > 0. We can analytically solve for the other two roots,
rg and r4, and the parameter ¥ by matching the quadratic, cubic, quartic and
constant contributions to r2f(r). This parametrization is symmetric with respect
to e — —e. Therefore, the expressions for (r3,r4,#) will involve only even powers
of e. In the near extremal limit (¢ < 1), we then approximate f to order O(e*) by

Fr) = giQ ((T;TY + (7:>2> (r—r3)(r —r4) | (3.3.6)

with
oo PP(r447) 4 27%(r + 67) _
(r—r3)(r—ry) = 4% +2rF 4372 — ( Eg T 6?2( )7"€2+O(€4) , (3.3.7)
and
P 1+2ﬁ + O(e?) (3.3.8)
B 2C(r) Iz ' o
Here C(r) is defined by
2
c(r) =6 <Z) 1. (3.3.9)
In the region where r —7 < 7 and € is small, we can approximate the metric (3.3.2)
as
r—7\> dr?
ds* = —C(7) ( - ) +€ | dr?+ — +7%dQ5 . (3.3.10)
G e ((52)" +¢)

By making the following identifications,

r—

p= and t= C(F)% : (3.3.11)

As a function of 7., the disciminant interpolates between A(re = 0) = —16G3 M2£8(¢2 +
27G?VM2) to infinity. In particular, A =~ 256618 when re > £ and A ~ —16G N ¢1°M? when
re < £. In both cases, there is at least one pair of complex conjugate roots.
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3. Eternal AdS4 Wormholes from Coupled CFT’s

the metric can be brought to global AdSy x S? form

dp? .
ds® = —— | —(p* + 1)dt? 2d03 . 3.3.12
# = g (e ) g (3312)
Following [3], we expect that in the wormhole region the solution is a slight per-
turbation of the near extremal RN black hole. We make the following gauge choice
for our ansatz geometry in the throat

ds* ” (14 p* +7)dt* +

54 = —= | —
() p Y

where the functions ¥ (p) and v(p) are small fluctuations and 7 is given by (3.3.4).
In these coordinates, the stress tensor contribution has the approximate form

dp?

— | +7(1 95 3.1
1+p2+v>+r( +4)dQ3 , (3.3.13)

1 g\(h) .. 1
Th ) ~ —— 1, ———— . 3.14
(T, 5.3 72 diag ( 1, i+ p2)270’ 0 (3.3.14)

The linearized Esintein’s equations in this geometry are given by

¢

e s+ 0le) =0/ (0) = (14 P10 (0) = 0. (3:3.15)

ppi T = () + () =0, (33.16)
f2

00 g5 (1437 ) 000 490) + 200/0) + L+ A" () =0, (337
4 72

¢¢p:  sin(0) (C(T) (1 + 3€2> P(p) +7"(p) +2p¢ (p) + (1 + P2)¢H(P)> =0,

(3.3.18)

46:”27({);(}”8. Note that the first two equations
Ter

do not depend on . Therefore, we can find an expression for ¢(p) by solving the
first order equation (3.3.16). This results in

Y(p) = C(1 4 parctan(p)) + cp , (3.3.19)

with ¢ an integration constant. A simple check shows that (3.3.19) also solves the
tt component of the Einstein equations (3.3.15). By using the solution for 1(p), we
can now use the angular components of the Einstein equations to solve for y(p).
It turns out that
C(a5) oo :
v(p) = T (p* + p(3 + p?) arctan(p) — log(1 + p*)) + c1 + pea
(3.3.20)

where ( is a constant given by ¢ =

sarem) | O (14357)

8Note that we can write ¢ in terms of #. This results in ¢ = o — . From

this we see that we can let ¢ be small at finite A and independent of the ratio between 7 and £.
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3.3. Wormhole geometry

solves (3.3.17) and (3.3.18). Integration constants can be set to zero by requiring
that the geometry is invariant under p — —p and by a redefinition of p and t.

In the next subsection, we show that there is an overlapping region between the two
solutions deep in the RN-AdS throat and construct the full wormhole geometry.

3.3.2 Matching

Intuitively, once the non-local coupling A is turned on, the wormhole is formed
and the throat acquires a certain finite length L which we will determine below.
Outside this range, the linearized solution found in the previous section will not be
valid anymore. In fact, both perturbations ¥ and -y increase with the value of p, as
we approach the wormhole mouth. More precisely, we expect the slightly deformed
solution to be valid up to values of p for which the term p? is no longer subleading
(since this is the leading order behaviour of «). In the following, we consider p to
be large, but (p small and fixed, and ¢ small. We take the near-horizon limit of
(3.3.6)

f(r) = C(F)e? +C(7) (T — F)Q—CO") (T — F) € -2 (1 +4Z> (7" = ’:)3+- -
combined. A5 » s

r—r

where we have expanded up to third order in e and —

approximation let us set

Lr—r T
= — t=C(r)— . 3.3.22
p=22T, )7 (3322)
In the limit
L r—r
p>1, ?>>1, and = <1, (3.3.23)

equation (3.3.22) matches the order O(2) of the unperturbed ansatz geometry.
Here L is an integration constant that denotes the rescaling between the ¢ and 7
coordinates. Furthermore, by considering the relation between p and r, one can

see that L is a measure up to which we can trust the ansatz; so that p has a cutoff
L

at p ~ Z. By comparing to the matching of the near-extremal Reissner-Nordstrom

black hole given in (3.3.11), we see that L is connected to e through?

L:E. (3.3.24)
By matching the angular coordinates we see that
_ r—r e
=) - =0 =T r0(@) . @32)

9Recall that € encodes how “far” from extremality the near-extremal black hole metric is.
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3. Eternal AdS4 Wormholes from Coupled CFT’s

where we have expanded /1 + ¥(p), and in the third equality we used the expan-
sion of ¥(p) at large p. Using (3.3.22) and (3.3.25) we can find the value for L by
examining

_\r—
pdt = C(T) 7"—7‘:7?('

772

(3.3.26)

One can easily see that with this value for L, (3.3.22) and (3.3.25) are consis-
tent with one another. This also gives a relation between the non-local coupling
constant h and e. With (3.3.24) and (3.3.26) we see that

2T GNgN(h) ( ) _ QAN ()

= = 1+3—
¢ 16 w372 + w274

# (3.3.27)

The matching of the time component of the geometry is discussed in Appendix
C. In this appendix we show that the equations above give a consistent matching
between the Reissner-Nordstrém geometry and the deformed AdSy x S%. A final
comment we make concerning the matching is that the deformation v gives a
correction to the range of the radial coordinate, which in turn leads to a correction
to the stress tensor. However, this correction is of order (, and therefore will not
influence the matching'®. The full wormhole geometry with the two regimes is
schematically shown in Fig. 3.2.

An important fact to notice about the wormhole solution we find is that there are
three independent parameters: the charge, the non-local coupling and the AdS
length by which the solution is determined. As soon as these three parameters
are fixed, there is a unique, static and spherically symmetric wormhole geometry
that solves Einstein’s equations. At radii below the cutoff the geometry is that of
deformed AdS; x S2. As p increases, the geometry smoothly interpolates to a near-
extremal Reissner-Nordstrom black hole in AdS4. This black hole is characterized
by its charge r., while its mass is given by

Mwpg = Mext + AM, (3.3.28)
with
T 273 e g°N?(h) 7
Moyt = — + ——, d AM=-— Cr)=—-—*—— (143> )C(r),
oy Taye ™ e =T ( " 62) ")

(3.3.29)

where M,,; is the mass of an extremal black hole.
10The correction can be calculated by considering Az = fj; ;Z—Z, with y the holographic

coordinate, resulting in Az = 7 (1 + (f(7)), for some function f. Since we consider ¢ to be small,
the matching is consistent. If we had taken this correction into account the stress tensor would

have been given by (Tﬁy) = ﬁ%diag (1,1,0,0).
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0
Pcutoff Pcutoff \

HAdS, i
: Ang X 82

i HAdS,

Figure 3.2: Wormhole geometry: In the throat region the metric has the AdSy xS? form
(3.3.12) up to the cutoff located at p ~ L/7. Around this point, where the limits (3.3.23)
are satisfied, the geometry smoothly interpolates to near-extremal Reissner-Nordstrom
black holes in AdS4.

Since it is not very pleasant to have a factor of g in this formula, we use the
definitions to rewrite this as

wc (F) ~ _aAh)C(7)

AM = —
2273 7

¢. (3.3.30)

Therefore, the black hole is indeed near-extremal, with mass just below the ex-
tremal mass. Coming from infinity, as an observer approaches the wormbhole
mouth, the observer would experience getting closer and closer to a naked sin-
gularity. All of a sudden, the wormhole throat opens up and she traverses through
the wormhole reaching the other side safely.

In the limit ¢ > r., where the AdS radius is larger than the radii of the throats.
The change in the mass due to the non-local coupling has the form

GNg*N2(h)

AM = —
2m2r3

(3.3.31)

which has the same scaling as the binding energy, relative to the the energy of
two disconnected extremal black holes, coming from the wormhole throat in the
asymptotically flat case [3].

3.3.3 Non-linear solution

One might be concerned that the solution presented in the previous subsection
only exists in the linearized analysis. We will proceed to find a similar solution to

(0]



3. Eternal AdS4 Wormholes from Coupled CFT’s

the full Einstein’s equations. The geometry ansatz we will consider is the following

ds* = Li (—f(p)d + J%) + R*(p)d3 , (3.3.32)

p €10,£0), t € (—o0,00) and we have assumed the extremal value for the radius
in the overall factor. The non-zero components of the Einstein equations can be
written as

32f(0) TGN () | AGNaNR) | (o)

e T PCORG) TR SRR
_ f(p)fR(&))R (p) [ (]p%l?p)(p) _2f%(p (sz) (p) _0, (3.3.33)
op ‘c(f)gzzjf(g)*g? ET?N(qum)* fﬁ?qﬁ( <)>
~ TR R =" (3339
00 ;iz;gz:) B 3352( P . (F)R(p)ﬂ( p)R'(p)
CORDI'G) , CONDROR @) _ 5335
b6 s(0) (_Z%g(q;) B 3R;2(p) +2(T)R(p)7_{;’(p)R’(p)>

+ sin?(6) (C(T)RQ(p)f”(p) N C(T)f(p)R(p)R”(p)) _0.  (3.3.36)

272 72

These differential equations depend on three independent physical parameters of

the form
GNq2 GNq)\(h)

9262 ’ /2 ’

Since both functions f and R appear in the differential equations with two deriva-

and £ . (3.3.37)

tives, there will be four integration constants. By requiring the solution to be
symmetric around p = 0 we fix two of those. Requiring this Z, symmetry is equiv-
alent to setting f'(0) = R’(0) = 0. Furthermore we have the freedom to rescale
the time coordinate. This allows us to pick f(0) = 1. Now the constraint equation
(3.3.34) fixes R(0) in terms of f(0). By these choices all integration constants are
then fixed. Also note that due to spherical symmetry whenever the 06 equation is
solved, the ¢¢ equation is automatically satisfied. With the integration constants
as mentioned, we can now solve the ¢t and 66 equation numerically. The results
of solving the non-linear Einstein equations are shown in Figures 3.3 and 3.4. In
order to compare with the linearized results, we pick the integration constants so
that the non-linear and linear solutions agree at p = 0. We should note however
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3.3. Wormhole geometry

that the non-linear solution makes sense for other parameter values and integra-
tion constants as well. We expect the linear and non-linear results to agree up to

|ol~ peutoft = % As a final comment note that, as can be seen from Figure 3.3,

for large p the numerical solution behaves as R(p) ~ (%)_1 |p|, which is precisely
what we expect in light of equation (3.3.22) and by the fact that away from the
wormhole we expect the S? radius to be equal to .

Non-linear q-A(h)=1

Linearized
20
18
-50 -25 peutoff | pcutoff 25 50 P
2
Figure 3.3: Solutions of R(p) with parameters G?]"—;T = 0.01,

Gnapm) — 0,001, and ¢ = 100. The initial condition is R(0) = 17.
For these parameters we expect agreement up to pcutot = 7.2. We see
that for larger p the linear solution starts to deviate.

Non-linear g-A(h)=1

Linearized
s 25 pcutoff | peutoff 25 ‘5o ?
2
Figure 3.4: Solutions of f(p) with parameters C;Q’Z‘é = 0.01,

Gnapm) — 0,001, and ¢ = 100. The initial condition is R(0) = 17.
For these parameters we expect agreement up to pcutot = 7.2. We see
that for larger p the linear solution starts to deviate, and even becomes
negative. Of course, in this region the RN AdS black hole dominates.
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3. Eternal AdS4 Wormholes from Coupled CFT’s

3.4 Thermodynamics

This section contains a calculation of the on-shell Hamiltonian of the wormhole
solution. We propose a Hamiltonian and show that the wormhole solution is the
ground state for a region of parameter space. Furthermore we give a qualitative
discussion of the thermodynamic stability of the wormhole solution in the (grand)
canonical ensemble.

3.4.1 Hamiltonian ground state

We expect the wormhole geometry presented in the previous section to be dual to
the asymptotic field theories in some particular entangled state. In particular, it
should be dual to the ground state of a certain local Hamiltonian whose ground
state is approximately the thermofield double state with chemical potential [112,
116].

From the gravity point of view, given the set of boundary conditions, Einstein’s
equations fill in the bulk geometry smoothly. We will consider three solutions with
the same boundary conditions at zero temperature: the wormbhole, two discon-
nected black holes and empty AdS. Depending on the values of A(h) and pu, there
is a dominant saddle. For concreteness we will focus on the symmetric case where
the total magnetic charge is Q := Qr = —Qr, and the mass is M := Mpr = M.
Of course, less symmetric cases can also be considered but we believe they will not
dramatically modify the presented results.

In a general covariant theory, the on-shell Hamiltonian can be computed as a
boundary integral as follows

2 45
H[(] = Prou Pl , Tap = ————7 ,
[C] o ¢ B B H 5’7aﬁ

where T, 5 is the Brown-York stress tensor!!, u®

time hypersurface, ¢ is the flow vector and /o is the volume element of the
boundary at fixed time. The energy of a gravitational solution is associated to
time-translation symmetry, i.e., , to the Killing vector { = 9.

(3.4.1)

is the unit normal to a constant

The wormhole solution presented in the last section is a solution to the action with
interacting term

Sint = ih/d?’:v\/—v (TRwL + wlyh) (3.4.2)

HIn order to avoid IR divergences in AdS, we need to include counterterms in the purely
gravitational part of the action (3.2.1). In d=3, they result in a modified stress tensor Tog =
Kag — Kvap — %'yag — G, where Gog is the Einstein tensor computed on the boundary
induced metric vog [123].

78



3.4. Thermodynamics

The interacting part of the boundary stress tensor then has the form

2 0Sin
N
The metric close to the AdSy boundary at » — oo and the time-like unit vector
are of the form

Ta,@ =

= ihvag (UEUE + OLUR) (3.4.3)

ds* = —f(r)dr?* + ;,lZf) +72dQ35 and wu= \/fdr . (3.4.4)

The Z; symmetry along the radial direction allows us to define a notion of gravi-
tational energy by applying the formula (3.4.1) at the asymptotic AdS boundaries

Hyy := H[(T] = fihrz\/f/dQQ (TRUL + oL o) | (3.4.5)

At this point we need to evaluate the bulk spinors close to the asymptotic bound-
ary. We can achieve this by evaluating the scaling factor close to the boundary'?

%, [(WE@n)IP_y'Py (vh @n)] (3.4.6)
C

(7)
NG

and a similar expression for \IIL TR We then find

PRk =

(W @n)P_y'Py (W @n)] |

How = ~iHC(S [ Q[T 0n) PPy (08 0n) + (6 @ 1) PayP- (W )]
(3.4.7)

We can compute the semi-classical interacting Hamiltonian in the state defined in

(3.2.36) by computing the following expectation value

(Hine) = —ihC(f)g / Q[T @n)"P_y'PL (W" @n)) + (" @ n)Py'P_ (07 @n))] .
(3.4.8)

We can evaluate the boundary integral by taking first the angular spinors on-shell.
The correlators involved in (3.4.8) can be computed perturbatively in the limit

where A(h) ~ h. They are explicitly given in Appendix D. Finally, we obtain the

result!?

e2qh
o

(Hint) = C(7) = < 1+ 4h) =4AM + O (h*) (3.4.9)

12Tn the RN background (3.4.4), far away from the horizon the metric is conformaly flat. The
relation between the coordinates is t = +C(7), and © = f dr% ﬁ(ﬁ(?)7 and the conformal factor

equals 29 = (C(Lr))Qf.

13Note that in the second equal sign we only take into account the terms up to order h2, even
though the expression in the middle contains a third order term. This is done to compare to the
results of the previous section, which included terms up to second order.
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3. Eternal AdS4 Wormholes from Coupled CFT’s

with AM given by (3.3.29). In order to get the total wormhole energy, we need to
add the energy asssociated to the non-interacting parts, i.e., , of two near-extremal
RN black holes

(H)wy = 2Mw g + AAM — 2uQ = 2M,py + 6AM — 2uQ | (3.4.10)

where M,,; is the black hole extremal mass and ) the extremal charge. In this
equation, we have taken into account the change in energy due to the chemical
potential u for the asymptotic charges. This is similar to the electric case [124].

Now that we understand the energy of the wormhole geometry, we would like to
investigate whether it is the ground state of some Hamiltonian. We propose the
following local boundary Hamiltonian

" B )
H=Hp+Hg— % /d92 (TRwL + WL OR) + QL —Qr),  (3.4.11)

where H;, and Hp are the Hamiltonians associated to the boundary dual of the two
identical original systems, and again we take into account the change in energy due
to the chemical potential p for the asymptotic charges. It is important to notice
that equation (3.4.11) is an expression written purely in terms of boundary data.
In particular, we have defined the boundary spinors, denoted as ¥, by removing
the scaling factor defined in (3.2.19), so that

U, =R 30, . (3.4.12)

Note that the interacting term is inspired by (3.4.2), which in terms of the bound-
ary data can be written as

ih _ _
Sint = / drdQs (BEWL + G wh) . (3.4.13)

The Hamiltonian determines the time-evolution with respect to the asymptotic
time defined in (3.4.4). Note that the total charge of the field theories is conserved
as a consequence of a global symmetry.

Next, we consider the expectation value of the Hamiltonian for the different phases.
First of all note that the expectation value of (3.4.11) is precisely equal to (3.4.10)
for the wormhole solution, since that is the primary reason for the definition of
(3.4.11). Secondly, note that the empty AdS geometry has a vanishing Hamilto-
nian. Finally, we note that for the disconnected black holes, the interaction term
of the Hamiltonian does not contribute to the energy. This can be seen from the
fact that we can Wick rotate the RN black hole solution, after which the geometry
is conformal to the disk. However, the conformal factor vanishes if the black hole
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is extremal. Since the correlators on the disk must be finite, the total contribution
of the interacting part of the Hamiltonian must indeed be equal to zero.

The difference between the wormhole and the extremal black holes phases is given
by
(HYopu — (H)wu >0 . (3.4.14)

It is easy to see that (H)opy has a minimum at the point

L 0
= —— — f — 3.4.15
T i\l m2 w, for m2 >, ( )

for which (H)opn < (H)vacuum = 0 (see Figure 3.5). Then, the wormhole phase
(where it exists) dominates the ground state for values of the chemical potential
i > pe. The complete phase diagram is shown in Figure 3.6. We see that the point
(h = 0, = pc) is actually a triple point where the three different phases meet.
Intuitively, empty AdS is the dominant saddle for very small values of h, for which
the wormhole has not been formed yet, and u so that the charge contribution is
negligible. For h < 0 and g > p., the black holes phase is the dominant saddle.
Alternatively, for positive values of the coupling and u > ., the wormhole phase
will be the ground state of (3.4.11).

(HBH)

=~

min

Figure 3.5: Expectation value of the Hamiltonian (3.4.11) in the two-
disconnected black holes phase for different values of 7. The minimum
is located at rmin, which is given in (3.4.15).

3.4.2 Stability

We briefly discuss possible instabilities of the solution. When considering scalar
fields in a Reissner-Nordstrom AdS background there are instabilities that lead
to hairy black holes. These instabilities can be understood, for near-extremal
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h
he
WH
AdS
0 e “u
BH

Figure 3.6: Diagram that shows the ground state of the Hamiltonian (3.4.11) for dif-
ferent values of h and p. Empty AdS is the dominant contribution at the origin up to

the critical values h. = Cf;q g—g (1 + 215%2) and pe = myp+/m where the wormhole phase

becomes the ground state. The point (h = 0, u = p.) is a triple point where the three
phases meet. For negative values of h, there is a competition between the empty AdS and
the black holes phases. Note that depending on the mass of the monopoles in the theory

there could be a region in the diagram where the ground state is AdS with monopoles.
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black holes, as originating from the difference between the Breitenlohner Freedman
bounds for AdSs; and AdSy; fields that are allowed tachyons in the asymptotic
AdS, spacetime lead to instabilities in the AdSy near-horizon region. Even though
intuitively similar arguments would lead to fermionic instabilities, no evidence
for the existence of fermionic hairy black holes has been found [125]. Since the
argument crucially depends on the fact that there is an asymptotic AdSy geometry,
we expect the same result to hold for the wormhole phase.

Besides investigating whether the wormhole solution is the ground state of the
Hamiltonian (3.4.11), one could also wonder whether it is the thermodynamically
favored phase in one of the standard thermodynamic ensembles. We must couple
the two CFT’s in order for a wormhole solution to exist; if signals can cross from
one boundary to the other in the bulk, it must be possible to transfer information
between the CFT’s [108].

Before coupling the CFT’s, each CFT has a global U(1) symmetry with an asso-
ciated charge conservation. After coupling the theories, charge can flow from one
to the other, so only a single U(1) survives. In our conventions, the conserved
charge us Qr, + Qr. In our conventions, the wormhole solution has Q; = —Qg.
One can picture magnetic field lines threading the wormhole, so this convention
is natural. Therefore, the conserved charge for the wormhole is Q@ + Qr = 0.
In the standard construction of thermodynamic ensembles, one can only turn on
a chemical potential for this conserved charge. The term u(Qr — Qr) appearing
in our Hamiltonian looks like a chemical potential, but it is not really, because
Q1 — QR is not conserved: it does not commute with the interaction term in the
Hamiltonian.

One can ask whether the wormhole dominates one of the standard thermodynamic
ensembles at zero temperature; for example, consider the canonical ensemble. The
different phases that should be compared are the following: empty AdS, two black
holes, the wormhole solution.

The free energy is
F=FE-TS, (3.4.16)

in the canonical ensemble. At zero temperature, the wormhole phase will have
free energy equal to F' = 2Myy g, while empty AdS has a vanishing free energy.
Therefore, empty AdS dominates the ensemble.

Finally, one could consider other ensembles in the hope of finding an ensemble
in which the wormhole solution dominates. One candidate is the grand canonical
ensemble, with potential given by

®=F-TS —uQ. (3.4.17)
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However, the wormhole phase has a conserved charge Q = Q;+Qgr = 0. Therefore,
adding a term proportional to @ will not change the potential of the wormhole
phase. Because of this it can never dominate the ensemble. The only thing that
we have achieved by changing ensembles is that there can be even more phases
with a lower potential than the wormhole. Note that it is not very clear how to
interpret magnetic charges (and how to fix them) in the different ensembles. The
electromagnetic duality suggests they should be treated in the same way as electric
charges, but in the standard AdS/CFT context black holes with different electric
charges are different states in the same theory, while black holes with different
magnetic charges live in different theories. Presumably one can make a choice
when imposing boundary conditions for the gauge field analogous to the standard
vs alternate quantization for other light fields, and this choice determines whether
electric or magnetic states live in the same theory. It would be interesting to
understand this better, since our setup depends on the magnetic charges, but this
subtlety is mostly orthogonal to our work here.

To summarize: the wormhole appears to be a stable solution that corresponds to
the ground state of our Hamiltonian. However, it does not seem to arise as the
dominant phase of one of the standard thermodynamic ensembles with chemical
potential.

3.5 Discussion

We have found an eternal traversable wormhole in a four-dimensional AdS back-
ground. This geometry is a solution to the Einstein-Hilbert gravity action with
negative cosmological constant, a U(1) gauge field and massless fermions charged
under the gauge field. To open up the wormhole we need negative energy, which
we acquire by coupling the CFT’s living on the two boundaries of the spacetime.

By calculating the backreaction of the negative energy on the geometry, we find
a static traversable wormhole geometry with no horizons or singularities. This
wormhole is dual to the ground state of a simple Hamiltonian for two coupled
holographic CFT’s. The parameters in the Hamiltonian are the chemical potential,
the coupling strength, and the central charge. The wormhole dominates in some
region of parameter space, while disconnected geometries dominate other regions.

Working in the semi-classical approximation, the authors of [108] proved that
there are no traversable wormholes that preserve Poincaré invariance along the
boundary field theory directions in more than two spacetime dimensions. The
geometry found in this work evades this result because our solution is not Poincaré
invariant.
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There are a number of interesting future directions.

Traversable Wormholes in the lab; energy gap. One possible application
of our results is to build traversable wormholes in the lab by implementing our
interacting Hamiltonian and allowing the system to cool to the ground state. For
this process to be efficient, it is important the energy gap between the ground
state and the first excited state is not too small.

It would be interesting to carefully calculate the gap in this system. A rough
estimate can be obtained by calculating the maximum redshift. Black holes have
infinite redshift near the horizon and therefore support excitations with arbitrarily
small energy in the semi-classical limit.

Looking back at our ‘matching’ section, we see that the black hole geometry is
valid down to

r—r~el~T. (3.5.1)

At this location, the redshift is f(r) ~ C(7). Inside this matching radius, the
geometry is AdSy x S3. The relative redshift between the middle of the wormhole
and the matching surface is

fmatch ~ pQ -~ l
fO match 2

(3.5.2)

Combining these results, and restoring units using the AdS radius, our guess is

C(7)e?
T

Gap ~ (3.5.3)
This result looks concerningly small due to the €2; however, C(r) = 1 + 672/¢? is
large for large black holes. We leave a fuller discussion and more reliable calculation
for the future.

RG flow. Our bulk analysis is made convenient by the Weyl invariance of the
massless fermions, which correspond to boundary operators of particular dimen-
sions. If we think of the interaction term as an interaction in a single CFT,
this term appears to be exactly marginal. It would be interesting to understand
whether higher order corrections change the scaling dimension of this interaction,
or more generally to understand the RG flow of our system.

Supersymmetry. Related to the RG flow, it would add a degree of theoretical
control to realize the initial extremal black hole as a BPS state in a supersymmetric
theory. Accomplishing this requires embedding our simple U(1) theory in a theory
with more conserved charges [126-129].
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3. Eternal AdS4 Wormholes from Coupled CFT’s

CFT state. In the related construction of Cottrell et al [116], the state of the
dual CFT was identified with the thermofield double state, while the bulk geom-
etry was not under semiclassical control. In this paper, we have constructed a
controlled traversable wormhole, but have not calculated the quantum state of the
CFT in boundary variables. One may expect that it is a thermofield double type
state, but note that the wormhole is a zero temperature solution, so it cannot
be exactly the TFD. On the other hand, the bulk geometry clearly looks like a
slightly superextremal Reissner Nordstrom black hole away from the wormhole
mouth, giving a clear hint regarding the CFT state.

Multi-mouth wormholes. In the present work, we focused on asymptotically
AdS, two-mouth traversable wormhole geometries. It might be interesting to
extend our results and explore in the future the possibility of fourth dimensional
multi-mouth wormbholes similar to those studied in [110,111]. In particular, the
results of this paper might be used to understand explicitly the role played by
multiparty entanglement in the wormhole’s traversability.

Information transfer. Moreover, it would be interesting to investigate the
amount of information that can be sent through this type of wormhole, in a similar
fashion as in [50,55,70].

Replica wormholes. Finally, it has been found that two dimensional eternal
traversable wormhole geometries contribute to the fine-grained entropy in the
context of islands in de Sitter spacetime [130] (see also [10,131]). It would be
interesting to understand whether more general set-ups in higher dimensions can
be described with similar methods to those employed in this paper.
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Appendices

A Propagators

In this appendix we present the results for the propagators. Below, we show the
derivation of (3.2.37)

WLz )y (al)) = < Z ialajei“’jml—mkz—>

k,jeZ
1 . ;.
_ Lot iwir —iwgT
_< > Lofoe >
k,]GZZO
1 iwir —iwgx
—< > ;(5&]‘—%‘&2)6’“7 S >
k,jGZZO
— Z leiwj(xl—x,)
) T
JE€EZ>0
1 .2 , 26 (h
=2 —ei(357) e (1 + (-1) ZW( )(:EL —a:)) +0 ((a_ —2_)?)
JE€Z>0
1 eslel-z-) e3(@l—z-) 2iA(h) , 9
= + (2 —z_ )+ 0 (2 —x_)) .

T1_ @ —e) g e g

(A1)

The rest of the propagators can be derived in a similar fashion. We present the
results
s (@ —z+) e (@ —zt) 2iA(h)

1
;1 _ ei(;pfm)""l + et =) g2

(Wl (23— (al))) = (=2 )40 ((2 —z_)?) ,

(A.2)

1 es@hme)  e3(hma) 9y
t - 2
(W (z-)y- () = [ R /e R R /e e () =z )+O (2~ —2-)?) ,
(A.3)

(V- ()04 (21)) = (- (z )y () = (P ()94 (27)) =0 . (A4)

B Stress tensor

In this appendix we show the calculation of the stress tensor. First of all note that
we can average over the angular directions by taking the spherical components
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on-shell in equation (3.2.38). Since the spherical components are normalized such
that [ d*Q ™0™ = 6., averaging over the angular directions results in a factor
of ;=. Using this and point-splitting, the first line of (3.2.38) becomes

<%bkg*2/ﬂ@g%3MHWMMMWHWWmMﬁWWW

=g8mwaﬂm%wmmﬂme%m.<m>

The renormalized (T11) is found by subtracting the h = 0 contribution from the
h # 0 expression as follows

(Tua) = (T17°) = (TH°)

; jal-an) g f@l-r) g
= lim —& (3;-@)(16 , MR) (2 y g € — “(h)(x;—x+)>

st 87-(-32 +ez(m’7—w,) ’/T2
' =z

g () A e

tljlinm 8 R? ( 2 T 272 (¢ =0 + (" — 2)")

T —T
gA(h)

=~ B2

™

where we have omitted combined factors of (¢’ —¢) and (2’ — z) to higher orders.
Similarly, we find that the rest of the renormalized components of the stress tensor
are given by

<T22> = — - and <T33> = <T44> =0. (B3)
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We can also check that the stress tensor is conserved. We will need the following
components of V,,(T},)

Va <TM> =0: <Tmr> - ng <Tpx> - ng <Trp>
_gMh)R"  qA(h)o’

71—3R3 7-[-3R2 ’
Vt<th> at<th> - P <TPIL’> - fo<TIP>
g\(h)o’
T SR

Vo(Tor) = 06(Toz) — Tiog(Tpa) — T (Tip)
gA\(h)R'e=2°

B 23R

Vg (Toa) = 0s(Tga) — Fg¢<Tpr> - ng (Tzp)
g \(h)R'e=29 sin?(0)

B 23R ’

so that

V,U«<Tlf/> :gupvu<pr>
:ngvx <Tmr> + gttvt <th> + QGOVG <T9£E> + g¢¢v¢ <T¢z>

—oe (aAN(R)R' gA(h)ho'
¢ ( BRS T oR? (B.5)
2 gA(h)a’ 1 g\(h)R'e™?° B 1 g\ (h)R'e=27 sin?(0)
m™R2  R?2  2m°R R?sin?(0) 273 R
=0. (B.6)

As a final check one can show that the ¢, x component of the stress tensor is indeed
equal to zero. First note that T35 is equal to

T = ﬂp0ﬂ8w+—wawL—awgm+aﬁﬁw)®wn (B.7)

Using point-splitting this becomes

(Tia) = lim —Z / P (0 e ) — 0 e (a)

= O @ )0 () = O (0 (g (@) )y
= lim T (9 @ (@) (@) - O- (W (e ey (a0)
z' -z (B.8)

— 0Ll (@) (@) = 0r (@ )w- () |
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and we see that
(Ti2) =(T{7°) = (T5°)

o G (, e2(@ =) 9 (R)i 3 5 e2(@ =) 9)(R)i

't STRZN"T 1 4 i@ =) 72
Tr —T

C Matching

Let us turn to the time component of the metrics. At large p we can expand v(p)
in the following way

v(p) = C(CT) (1 +4Z) (—g;ﬁ - %p+ 210g(p)) +e (C.1)

In order to match the cubic term in p to the (%F)B term in (3.3.21) we will
consider the following limit. We consider p to be large, but (p small and fixed. In
this limit « is still given by (3.3.25). Furthermore, from (3.3.27) we see that we
should consider € to be of order {. This limit corresponds to expanding f at small
=T but even smaller ¢ €. More precisely, compared to (3.3.21) we still expand

7

in r;F up to third order. However, we only consider € up to zeroth order

f(r) = C(F) (T;’”>2—2(1+4Z> <7"7:r)3+0<<r;7")4> . (2

We should now match the expansion (C.2) to the following expression, where we
will assume to be in the limit discussed above

Ci)(l +p° +7(p));l—i = C(7) <p2 - gp?’% (1 +47;)> ;12 (r;r)2
—eo) () =50 (F) < (1+45)
=C(7) (TTT>2 —92 <1+4Z> (TTT)S (C.3)

where in the third line we used (3.3.25). We see that we recover (C.2) up to third
order.
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3.5. Discussion

D Correlators in (Hjy)

In this appendix, we show explicitly the equal-time correlators involved in the
computation of the semi-classical interacting Hamiltonian in terms of the 2D prop-
agators presented in Appendix A. Note that in Appendix A, the propagators are
expanded in z — ', while here we need the location of the fields to approach oppos-
ing boundaries. However, the expressions obtained are still valid if we take h small,
and expand in h instead. The equal-time correletors present in the Hamiltonian
are given by!4

(Hine) D —ihC(F / 2Q(UEwl)
_ _’hic( )/ ((—d)’f%ﬁ) + iRy iRy + WEWB) nin_
= e (<142 w0 () (D)

wr
and
(Hin) > =ihe()% [ Eaphun

ih
— ) [ 0 (WHE) + i) it o) - @E ) nla

qhec( )( 1+4h) +O(h4) ) (D.2)

r

14 Note that we include higher orders than we need for the computation in the main text.
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Islands in FRW Cosmologies

4.1 Introduction

One of the long-standing puzzles in modern physics is the black hole information
paradox. Its essence can be captured by examining the entropy of the sub-systems
of an evaporating black hole. In Hawking’s seminal calculation [60,63], the fine-
grained entropy of the radiation seemingly exceeds the Bekenstein-Hawking en-
tropy of the black hole. This signifies information loss. In a unitary process, a
pure state evolves into a pure state. Page showed [64] that initially the fine-grained
entropy grows, following the Hawking curve, but approximately halfway through
the evaporation process, it starts decreasing and eventually vanishes, which is
consistent with unitary evolution. In a series of breakthrough papers [4-9], it was
shown that the Page curve can be recovered within semiclassical gravity. The
key to this advance was realizing that the fine-grained entropy of the radiation
receives contributions from a disconnected region that lies in the gravitating sys-
tem, namely, the island. The exact entropy of the radiation is given by the island
formula

{A(@I)

S(R) zm}n{ext 1Cn

x +smat(Ru1)]}, (4.1.1)

where A(JI) is the area of the boundary of the island I, and Spat(R U I) is the
renormalized entropy of the quantum fields on the union of the regions R and
1. Before the evaporation begins, there are not any non-trivial islands and no
Hawking pairs have been emitted. So, initially, the exact entropy of the radiation
is

S(R) ~ Smat(R) . (4.1.2)

When the process starts, more and more Hawking partners escape from the black
hole and (4.1.2) steadily grows. As the evaporation proceeds, a non-trivial island
appears in the interior of the black hole. Its boundary is very close to the black
hole horizon. Since it extends almost through the whole black hole interior, it
contains most of the partners of the Hawking radiation that have escaped from
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>t
tp
Figure 4.1: Page curve of the fine-grained entropy of an evaporating black hole.

the black hole. The partners contained in the island region purify the ones of the
black hole, so the term Syat(RUI) in (4.1.1) vanishes and the exact entropy of
the radiation becomes

A(0I)
4Gy
As the black hole horizon shrinks, (4.1.3) decreases and finally vanishes. Thus,
the Page curve is followed and the black hole evaporation process is unitary (see
Figure 4.1). Remarkably, the island formula (4.1.1) has been derived using the
Euclidean path integral by applying the gravitational replica trick [132] (See [9]
for a review). It was shown that after the Page time replica wormholes become
dominant [7,8]. The island formula (4.1.1) is a generalization of Ryu-Takayanagi
formula [65-68,133,134] which has been extensively studied in the literature [135-
149].

SR) ~

(4.1.3)

It is worth emphasizing once more that in [7,8] the Page curve was recovered in
the context of semiclassical gravity. This leads one to ask whether islands exist
in cosmological spacetimes, where we do not have AdS/CFT duality [37] to assist
us. Moreover, since our universe has positive cosmological constant, it is natural
to wonder whether or not we might be living in an island.

The first cosmological islands were found in [150]. The authors considered a setup
where a radiation-dominated, flat Friedmann-Robertson-Walker (FRW) spacetime
is entangled with a non-gravitating auxiliary system. They examined the cases
with zero, positive and negative cosmological constant and concluded that islands
appear only in the last case. The way they achieved this was by introducing three
conditions that aid the search for islands. The beauty of these conditions is that
they are independent of the radiation region R. Once a non-trivial island region is
found, it is natural to wonder where the information of the degrees of freedom in I
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is encoded. One possible way to answer this question is by introducing an auxiliary
system that purifies the state of the system in I, for example preparing the whole
state in a thermofield double like state. This process is however non-unique.

In this paper, we build upon the work of [150]. We extend their analysis to FRW
universes with non-zero spatial curvature. We consider a state that is approxi-
mately thermal with inverse temperature 8. We use the island conditions proposed
in [150] along with an extra set of conditions that ensure our candidate islands
are in the semiclassical regime. In regions of spacetime where all of the above
are satisfied we conclude that islands can exist. Our main results are summarized
below.

Summary of results: As was mentioned before, we study FRW cosmologies that
are supported by radiation in a thermal state, cosmological constant and non-zero
spatial curvature. In closed universes, with any type of cosmological constant,
there is always an island that is the whole Cauchy slice. Additionally, when A < 0,
for any spatial curvature, we find that there is a different type of candidate island
region. These universes are recollapsing and have a time-symmetric slice. For
k > 0 and A < 0, we find that there is a candidate island region in the middle
of the Penrose diagram around the time-symmetric slice. This region is shown in
Figure 4.9. For k < 0 and A < 0, we have a similar situation, i.e. a candidate
island region around the time-symmetric slice, only this time it starts at a finite
value of the radial coordinate and extends to infinity, as shown in Figure 4.12.
This island is similar to the one found in [150] for £ = 0 and A < 0. We conclude
that the main element that allows for the existence of candidate island regions is
a negative cosmological constant.

For the purpose of this study, we use both analytical and numerical methods.
In order to have analytic control of the solution to the Friedmann equation, in
all the universes that it is possible, we focus on the time-symmetric slice, where
a'(n)|y=n,= 0. We study the solution, a(n)|,=n,= ao, at the low and high temper-
ature limits and find that for A < 0 islands appear only in the latter case, as the
former is always in the non-semiclassical regime. In the high temperature limit,
we see that ag does not have contributions from the curvature, i.e., to leading
order it coincides with the solution of the flat radiation-dominated FRW universe
evaluated at its time-symmetric slice. Hence, we conclude that at the turnaround
time, in the high temperature limit, the spatial curvature is negligible. In order
to support and complement our analytic calculations, we also “scan” the whole
spacetime for candidate island regions numerically and provide multiple figures
that show where the existence of islands is possible.

Outline: This paper is organized as follows. We begin in Section 4.2 by intro-
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ducing the setup and general framework. In Section 4.3 we review the analysis of
the radiation-dominated, flat FRW universes done in [150]. In Sections 4.4 and
4.5, we explore the possibility of islands in radiation-dominated FRW cosmologies
with positive and negative curvature respectively. Finally, in Section 4.6 we briefly
summarize our results and discuss future directions.

Note added: While finishing this work, the paper [151] appeared on the arXiv
which has some overlap with our results.
4.2 General framework

We are interested in finding candidate island regions in four dimensional FRW
cosmologies. The metric in conformal coordinates is given by

Rysinh(x/Rp), k=-1

ds® = a*(n) (—dn* + dx* + Sp(x)dQ3) , Sk(x) =1 x , k=0,
Rosin(x/Ro), k=1
(4.2.1)

for open, flat, and closed universes, respectively. Here, Ry is a fixed length scale
and a(n) is the scale factor. We assume that the state of the system is approxi-
mately thermal

1
p A Ee*BH , (4.2.2)

where 8 = fpa(n) is the inverse temperature at conformal time 7, and [y refers
to the temperature in Minkowski spacetime. Given a subregion I on a particular
Cauchy slice at time 1 = 19, the matter entropy of the bulk fields enclosed in it is
given by the thermal entropy

Smat(I) = sV (I) (4.2.3)

where sy, is the thermal entropy density, and ‘7(1 ) is the comoving volume enclosed
by I. For the metric (4.2.1), the comoving volume is

X1

= 4r / dy S2(x) - (4.2.4)
0

We define the region G as the complement of region I in the gravitating system
such that they share the same boundary, 0 = dG. The entropy of matter fields
enclosed by G is also extensive and is simply

Smat(G) = st (Viorar = V(1)) (4.2:5)
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where ﬁotal is the total volume enclosing both regions G and I. We consider FRW
cosmologies supported by radiation, spatial curvature, and cosmological constant.
The radiation and entropy densities have the form

4
CthTO

3
rad = — 0 d = ZewdP 4.2.6
praa = oor and - su = ey (4.2.6)

4

respectively. Here, ¢y, is proportional to the number of degrees of freedom and T}
is the temperature in Minkowski spacetime. The scale factor a(n) is the solution
to the Friedmann equation’

1 a(n)\> _ 8nGyenTy K A
a(n)? (a(ﬁ)> -

3 a()!  a(n)?PR2 + 3 (4.2.7)

We will apply the necessary island conditions for the existence of islands [150].
The explicit form of these three conditions in spacetimes arising from (4.2.1) are
as follows

« The Bekenstein bound is violated:

Smat(I) 2 .
(D255

(4.2.8)

where §mat is the finite part of the matter entropy and the wiggly inequality
means that the subleading terms compared to right hand side are ignored.
The derivation of this condition needs a careful treatment of UV divergences
of the matter entropy [150]. In our case, the thermal entropy (4.2.3) repre-

~

sents the extensive part of Spat(I) and is finite.

e [ is a quantum normal region:

(20, + Oy) Sgen(I) > 0 . (4.2.9)

e G is a quantum normal region:

(8, — D) Sgen(G) > 0 . (4.2.10)

Notice that in both conditions, we are using the null directions to deform the
surfaces 01 and OG with respect to the region I. For a closed universe, for example,
the entire Cauchy slice always satisfies these three conditions.

Once an overlapping region is found in a FRW cosmology, we still need to be sure
that they live in the semiclassical regime. In order to do so, we use the following
semiclassical conditions:

IFor the case of a negative cosmological constant, we will define a positive Ag > 0 such that
A = —Ap.
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e The proper time to the singularity requires

"
AT = /dn a(n) > 1lp . (4.2.11)
0

e The thermal length scale should satisfy

B8>1lp, ie., M >p . (4.2.12)
To
e The energy density should satisfy
CthTSL 4
Prad = —T 1 < M5 . 4.2.13
a(n)4 P ( )
o The size of the S? obeys
a(n)Sk(x) > lp . (4.2.14)
e The curvature radius requires
a(n)Ro >1p . (4.2.15)

Let us emphasize that the island conditions together with the semiclassical con-
ditions give a strong indication that an island exists in a given spacetime without
making any reference to the radiation region R.

Consider the case when we find a candidate island region I, i.e., , a region in
spacetime that fulfills the above criteria. A natural question to ask is in which
auxiliary system, R, is this region encoded? Following [150], one possible way to
answer this question is by purifying the original thermal state with a second copy
of Minkowski space and preparing the whole system in the thermofield double
state (TFD) using the Euclidean path integral

|Bo) = % Y e PP n)iin)s . (4.2.16)

This is of course a non-unique procedure. In this paper, we are agnostic about the
radiation region R and focus more on the question of whether islands can exist in
FRW cosmologies.

4.3 Flat slicing

In this section, we review the results of [150] for FRW cosmologies with flat slicing.
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A Zero cosmological constant

We first consider the case where the vacuum energy density is zero. The solution
of the Friedmann equation (4.2.7) has the simple form. It is given by

/ T4
CL(’I]) _ 87TG]\;)Cth 0 n. (431)

For a spherical region I located at x; at time 77, the Bekenstein bound is violated

Island conditions

for X 3
AL > — T 2
o~ 2 onr - (4.3.2)

In order for region I to be quantum normal, the ingoing condition is true for values

ﬂ;OT;]’jil . wTon>1
0, mlon <1,

X1
nr

>

(4.3.3)

while the outgoing condition is always satisfied. The third condition implies that
the outward part is true for

T
Xz > _mlonr 7 (4.3.4)
nr — mlonr +1
whereas the ingoing, for 77Tyn < 1, is satisfied when
T
XL, Moo (4.3.5)

nr — 1—nTons
There is an overlapping region where the three conditions are fulfilled for values
of conformal time such that

1
T077[ < ; . (436)

Semiclassical regime

Using the proper time condition (4.2.11), we find that we are in the semiclassical
regime when

1
T0771 > 1/4 (437)
Cth

which is in conflict with (4.3.6).

Conclusion

There is an overlapping region where all three island conditions are simultaneously
satisfied and it is shown in teal in Figure 4.2. However, this region is outside of
the semiclassical regime of validity. We conclude that we do not have islands in
this universe.
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04
o3 Bekenstein violating
n I quantum normal
0z (G quantum normal
01
0.0
0.0 0.1 0.2 0.3 04 05
X

Figure 4.2: Regions where the three island conditions are satisfied. We chose the
numeric values k =0, A =0, ¢;p = 1, To = 10, and G = 0.01. There is an overlapping
region close to n =~ 0. However, this region is outside of the semiclassical regime as it
violates the proper time condition (4.2.11).

B Positive cosmological constant

We proceed by turning on the cosmological constant and checking the three con-
ditions. The Bekenstein bound is violated when

3a(n)?
> 4.3.1
T (4.3.1)

The region I should be quantum normal. The outgoing condition is always satisfied
while the ingoing condition requires

x1 < a(n)/a'(n). (4.3.2)

The G quantum normal condition implies

a(n)(a’(n)xr — a(n)) +2Gnsmxr > 0 . (4.3.3)

Similarly as before, the overlap occurs outside of the semiclassical region. This
part of the geometry is depicted in teal in Figure 4.3.

C Negative cosmological constant

Finally, we consider the case with negative cosmological constant. There is a
recollapsing FRW universe as a solution to the Friedmann equation (4.2.7). Im-
portantly, a new ingredient of this cosmology is the existence of a time-symmetric
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0.04

Bekenstein violating

n 1 I quantum normal
0.02 |

G quantum normal

0.00
0.00 0.01 0.02 0.03 0.04 0.05

X
Figure 4.3: Regions where the three island conditions are satisfied. We chose the

numeric values k = 0, ¢z, = 1, To = 100, and AoGnx = 0.01. There is an overlapping
region close to 77 = 0 where the proper time condition (4.2.11) is not satisfied.

slice. By solving (4.2.7) at the time 7 = 1o such that a/(n9) = 0, we get

1
T4 1
ao = (&TGXE“‘O> . (4.3.1)

Island conditions

At this particular time the Bekenstein bound is violated for values

9 T 1/2
P (N . 4.3.2
X2 T, <2cthA0GN) (4.3.2)

The ingoing and outgoing quantum normal conditions for region I are reduced to
one condition

Oy Sgen(I) >0, (4.3.3)
which is always satisfied in this case. Similarly, the G quantum normal condition
becomes

3 - 1/2
—0,8,en(G) >0 — > — [ ———— , 4.3.4
\Sun(@ 20 = 2 g (5 o) (434

which is approximately the same result as the one we get from the first condition.
Hence, there is triple overlap when (4.3.2) is fulfilled.

Semiclassical regime

We still have to check that these regions, along the time-symmetric slice, are in
the semiclassical regime. The thermal length (4.2.12) and energy density (4.2.13)
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Figure 4.4: Regions where the three island conditions are satisfied. We chose the

numeric values, k = 0, ¢tsn = 1, Tp = 10, and AGxy = —0.01. We see that all conditions
are simultaneously satisfied starting from the value xr = 3a3 /4G nswn. The island region
is depicted in green. There are also overlapping regions at times where the solution a(n)
recollapses. However, they lie outside the semiclassical regime of validity given by the
proper time condition (4.2.11).

conditions imply A¢Gy < 1. From (4.2.14), the size of the region has to be

4.3.5
o (4.3.5)

AG 1/4
TOXI>>< 0 N> )

which is a less restrictive condition than (4.3.2). The curvature radius condition
(4.2.15) gives

1/4
oG ) . (4.3.6)

ToRy > (
Cth

All of the semiclassical conditions are satisfied and compatible with the island
conditions in the overlapping region (4.3.2).

Conclusion

We conclude that there is an island region in the semiclassical regime for values
that satisfy (4.3.2). This region is shown in green in Figure 4.4 together with the
island conditions in the whole spacetime.
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4.4. Positive curvature

4.4 Positive curvature

A Zero cosmological constant

We first consider the case where the vacuum energy density is vanishing and the
FRW cosmology is supported by radiation and positive curvature. Without loss
of generality, we can fix Kk = 1. In these coordinates, x € [0, 7Rp| is one of the
angles that parametrize the S3. Solving (4.2.7), gives a scaling factor of the form

2 4 1/2
aln) = <W> sin (IZO) . (4.4.1)

Island conditions

In order to look for island regions in this cosmology, we impose the three conditions
to the region I located at x = xy and = n;. The Bekenstein bound has the form

2
2x1 — Rosin <2RXI) > alnn)” 2 (XI) . (4.4.2)

0 ERNESN: Ry

In this equation we are basically comparing the comoving volume of the S3, with
the area term A(OI)/4G . A natural place to look for island regions is the point
where the volume is maximum and the area is very small. In fact, the S? acquires
its maximum size at x5 = mRy. Close to this particular value (4.4.2) becomes

R 1
<2 §:=mRy—xs . (4.4.3)

Ty . 27
Osm(}%)

Going to small times, 77/ Ry < 1, so that the area term shrinks, we get

§\? _ R
— < . 4.4.4
(Ro> ~ Ton? ( )

Imposing that I and G should be quantum normal results in

Tons < = . (4.4.5)

3=

This region, however, is non-semiclassical. We can see this by computing the
proper time to the singularity and the thermal length. Both (4.2.11) and (4.2.12)
are valid when

Tonr > 1, (4.4.6)

which is clearly in conflict with (4.4.5).
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Figure 4.5: Regions where the three conditions are satisfied. We chose the numeric
values k = 1, A = 0, ¢tp, = 1 and RoTp = 10 and Gny = 0.01. There are overlapping
regions close to the singularities, which are outside the semiclassical regime given by the
proper time condition (4.2.11).

Therefore, there are no island regions close to the singularities located at n; ~ 0
and n; = 7, and the place where the area term shrinks x; ~ mRy. We now proceed
to analyze the time-symmetric slice. At ny = wR/2, the scale factor is

SeanG
ao = \/WROTO? . (4.4.7)

Let us examine again the region close to x; = 7Ry. Expanding (4.4.2), we obtain

5 \2 1
e < . 4.4.
( RO) S (4.4.8)

For I to be quantum normal, we have

i Z WRQTO 5 (449)
Ry

while the condition for region G is always satisfied. We see that the three condi-
tions are simultaneously true in the regime where RyTj < 1.

Semiclassical regime

The semiclassical conditions for the thermal length (4.2.12) and the energy density
(4.2.13) are satisfied for large values of the temperature

RyTy > 1. (4410)
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4.4. Positive curvature

In this limit, the island conditions do not overlap and therefore there is no finite-
size island at the time-symmetric slice. In Figure 4.5, we show the regions where
the three conditions are valid in the semiclassical regime. As the temperature de-
creases into non-semiclassical values, the Bekenstein violating region progressively
covers half of the spacetime, creating a triple overlap in the middle of the Penrose
diagram. Moreover, there are overlapping regions close to the singularities outside
the scope of the semiclassical analysis.

Conclusion

The only possible island is the the entire Cauchy slice.

B Positive cosmological constant

As a warm-up example, we first neglect the density of radiation. This cosmology
then corresponds to the thermal state in de Sitter space. Here, it is convenient to
translate everything to the de Sitter radius ¢4s. In four dimensions, we have

3
las = ¢/ — - 4.4.1
ds Ao ( )
The Friedmann equation (4.2.7) reads
1 a'(n) > 2 1 Ao
+ ~ 20—y, 4.4.2
a(n)? (a(n) a(n)*lis 3 (42
and the solution is found to be
1
a(n) = — (4.4.3)
cos(n)

Island conditions

We now check the three necessary conditions. We restrict to the time-symmetric
slice, where ag = 1. Here, the entropy density has the form sy, = 1 /Ef’is. The
Bekenstein bound then is

T ool xr) o1 ( . (2Xl>)
—ssin® [ &= — | 2x7 — s sin [ = . 4.4.4

We notice that the first condition is satisfied at x; = mRy. If we expand close to
that point, (4.4.4) gives

62§GN 5 0= 7TRO—X[ . (445)
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Figure 4.6: Regions where the three conditions are satisfied. The numeric values are
chosen to be k = 1, ¢;p = 1, AoGn = 0.01. There are no non-trivial island regions in
thermal dSy.

This means that in order to satisfy the first island condition we have to go to
the distance that is smaller than Ip away from y; = wRy. Therefore, there are
no islands smaller than the full Cauchy slice in the thermal dS;. However, for
completeness we continue the analysis. We consider the second condition which
leads to
63
§> 45
Z Gn

The third condition is always satisfied. In Figure 4.6, we show the three islands
conditions in the semiclassical regime. We see that there are no overlapping re-

(4.4.6)

gions.

Conclusion
The only possible island is the entire Cauchy slice.

Adding radiation

We now add radiation. We focus on the time-symmetric slice where (4.2.7) takes

the form
B 8TG N cin Ty 1 Ao

3a(mo)* a(w)?R 3
By solving (4.4.7) we obtain

=0. (4.4.7)

(4.4.8)

b 3 V9 — 32memAoGNRETY
0~ 2R2A '
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4.4. Positive curvature

In order for this cosmology to have a time-symmetric solution, the following bound
must be satisfied

conMoG N (RoTp)* < P

It is obvious that it is not possible to go to the high temperature limit since that

(4.4.9)

would lead to a negative argument under the root in (4.4.8). So, we focus on the
low temperature limit.

Low temperatures

In the low temperature limit,

1

RyT —_
odo K (AOGN)1/4 )

(4.4.10)
there are two possible values for the scale factor, i.e., , ag = 1/Ropv/Ag and ag ~
cthG]l\{2R0T()2. The latter is Planckian, so we do not explore this case further. The
former represents the limit where the radiation becomes almost negligible and we
check the island conditions below.

Island conditions

For scale factor equal to ag &~ 1/Rov/Ag, we look for island regions other than the
full Cauchy slice close to x = wRy. As we explained before, in a closed universe,
this is the region where the probability of violating the Bekenstein bound is the
highest, since that is where the volume has its maximum value and the area its
minimum. The Bekenstein bound close to x; = 7Ry leads to

5\2
() S il cn(RoTo)*AoGy (4.4.11)
Ry 9

Next, we consider the quantum normal condition for region I, which gives
1 1
— > 5 .
Ry ~ emn(RoTo)3AoG N

(4.4.12)

The third condition is always satisfied. Consequently, there is triple overlap when
1

RTp> —
(CthAOGN)1/3

(4.4.13)

However, (4.4.13) together with (4.4.10) imply A¢Gx > 1. The overlapping region
is therefore outside the semiclassical regime.
Semiclassical regime

For semiclassical spacetimes, we know that AgGx < 1, as can be easily seen from
(4.2.15). In Figure 4.7, we show three island conditions in the semiclassical limit.
We see that for the two physical roots in (4.4.8) the island conditions are never
simultaneously satisfied.
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Figure 4.7: Three island conditions in the semiclassical regime for the two physical
roots in (4.4.8). The Bekenstein condition, A(0I)/4GNn — sthf/(l)7 is shown in blue, I
quantum normal condition in yellow and G quantum normal condition in green. We
chose the numeric values £k = 1, ¢sn = 1, RoTo = 1, and AgGny = 0.001. (Left) The
Bekenstein bound is never satisfied, as A(9I)/4Gn — sV (I) is always positive. (Right)
Bekenstein and G conditions are both satisfied close to x &~ wR. In all cases, the I and
G quantum normal conditions are mutually exclusive. The three islands conditions are
never satisfied.

Conclusion

The only possible island is the entire Cauchy slice.

C Negative cosmological constant

We now turn to the case where A = —Ap, with Ag > 0. At the time-symmetric
slice (4.2.7) reduces to

G e Ty 1 Ao
- +—=0. 4.4.1
3a(mo)*  a(mo)?R§ 3 4
At this time, the scale factor acquires the value
ag = 1\/—3 + \/9 + 327 GNRATH A . (4.4.2)
Rov/2Ag 070

In the small temperature limit, RoTy < 1/(AgGn)'/*, (4.4.2) takes the form

[87ein,G
ag ~ ”Ctg N RT? . (4.4.3)

This is effectively the limit where the vacuum energy density is negligible and
coincides with the analysis in Section A where there are no island regions.
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Figure 4.8: Three island conditions in the semiclassical regime along the time-symmetric
slice. We use the scale factor (4.4.5). The Bekenstein condition shown is A(9I)/4G N —
sth‘7([ ), which is satisfied when this quantity is negative. We chose the numeric values
k=1, cen = 1, RoTo = 10, and AgGn = 0.1. The three islands conditions are satisfied
in the overlapping region 26 around the value x5 = wRo/2.

High temperatures

We now analyze the high temperature limit
RoTo > 1/(AoGn)Y* . (4.4.4)
Here, (4.4.2) becomes

ag ~ 4.4.5
0 A, (4.4.5)
Importantly, in this limit the curvature contribution is negligible since the scale
factor coincides with (4.3.1). Naively, one might think that the best place to look
for islands is where the volume is maximal as in the spatially flat case. However,

- (SWCthGNTél ) 1/4

for a closed universe, regions close to x; = mRg/2 are in fact anti-normal.

Island conditions

It turns out that the best place to look for islands is at the middle of the S3 in
the direction of x, i.e., , xy = mRo/2. Let us first take values of x; such that
0 < w/2 — x1/Ro < 1. For high temperatures, the Bekenstein bound reduces to
the condition

0 T 3 1 1 TRy
— S —-—-= , 0= —— — . 4.4.6
Ry ™ 8 Ve AoG Ny RoTo 2 X1 ( )

The G quantum normal condition to first order implies

1) 2 QCthAoGN
— < | ————RoT, 4.4.7
RO - 3 ™ 020> ( )
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4. Islands in FRW Cosmologies

while the condition for I quantum normal is always satisfied. We see that both
(4.4.6) and (4.4.7) are satisfied when

1
VenmhoGy

This regime of parameters, where the three island conditions are satisfied, is con-
sistent with the high temperature limit (4.4.4).

RyTy > (448)

Semiclassical regime

We proceed to determine if the overlapping region is in the semiclassical regime.
The condition for the proper time (4.2.11) is valid for times Ton; > (GnAg)Y/%.
The conditions (4.2.12) and (4.2.13) are satisfied when A¢Gy < 1. The curvature
condition (4.2.15) implies RoTp > (GnAg)'/*. Finally, the sphere size condition
(4.2.14), to leading order in the separation ¢, has the following form

AoGa YY1 (MG 62
T - — e 4.4,
FoTp > ( 8meyn > + 2 \ 8meyy Ry + (4.4.9)

We see that all these conditions are compatible with (4.4.8) in the high temperature
limit (4.4.4). We present the three island conditions in Figure 4.8 for the time-
symmetric slice.

Conclusion

There is a semi-classical region at the time-symmetric slice and around the half-
sphere point, x; = 7Ry /2, where the three island conditions are satisfied. There-
fore, an island region appears when (4.4.8) is satisfied together with RyTp > 1
and AgGn < 1. A similar analysis follows for the values 7/2 — x;/Rp < 0. In
fact, there is a symmetric island region with respect to the half-sphere location.
These regions are depicted in Figure 4.9.

4.5 Negative curvature

A Zero or positive cosmological constant

These types of universes do not admit recollapsing solutions where a’(n) =0.

Both of them expand forever.

|77:770

B Negative cosmological constant
We take the values £ = —1 and A = —Ay. When we focus on the time-symmetric
slice, (4.2.7) simplifies to

_87TGN€0 . 1 + ﬁ
3a(mo)*  a(mo)?Rg ~ 3

0. (4.5.1)
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Figure 4.9: Regions where the three island conditions are satisfied in the semiclassical

regime for a closed FRW cosmology. We chose the numeric values k = 1, ¢in = 1 and
RoTo = 100 and A¢Gn = 0.01. There is an island region along the time-symmetric slice
and around x; = mRo/2. There are also overlapping regions at times where the solution
a(n) recollapses. However, they lie outside the semiclassical regime.

Then the scale factor is

ao

1 \/
= ——1/34+1/9+32 AgGNRATE . 4.5.2
Ro\/m \/ TCthMoG N 0 ( )

Low temperatures

First, in the low temperature limit RoTp < 1/ (cthGNA0)1/4, (4.5.2) becomes

1 3

ag " — [ — . 4.5.3
0~ 2o\ A (4.5.3)
We do not expect to find islands in this case, as this limit corresponds to having
almost no radiation. In fact, when we analytically check the first condition, we
end up in contradictions. Using (4.5.3) for large values of x/Ro > 1, we find that

in order to violate the Bekenstein bound, we need

1

RTy> —
070~ (eenGnAo)Y/3

(4.5.4)
which is very large in the semiclassical regime. However, our initial assumption
was that the temperature is very low. Similarly, for small values of x;/R < 1, we
find that the same condition (4.2.8) requires

XI - 1

_ 4.5.
Ro ™ (RoTp)3GAo ' (4:5.5)
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Figure 4.10: Three island conditions in the semiclassical regime along the time-
symmetric slice in the low temperature limit. We use the scale factor in (4.5.3). The
Bekenstein condition shown is given by A(81)/4Gx — sV (I), which is satisfied when
this quantity is negative. We chose the numeric values k = —1, ¢;p, = 1, RoTo = 1, and
AoGn = 0.01. The I quantum normal condition is always valid. The G condition is
never satisfed. The Bekenstein bound is never violated.

which together with the small temperature limit imply that x;/Ro > 1/(cenGnAg)/4

outside of the regime of validity. Hence, the first condition is never satisfied and
consequently it is not possible to have islands. In Figure 4.10, we show the three
conditions in the small temperature limit.

High temperatures

We now look at the high temperature limit RyTp > 1/ (CthGNAO)1/4. Here, (4.5.2)

takes the form »
(SWGNCthT61> /
ap = )
Ao

which corresponds to having negligible curvature at the turnaround time.

(4.5.6)

Island conditions

For small x;/Ro < 1, we find for the Bekenstein bound

9 1/2
X i . (4.5.7)
RO ~ 4ROT() QCthA()GN

For large x1/Ro > 1, we get

RTy > (—T v (4.5.8)
0t0~ 2 QCthGNAO ’ e

The second condition that requires I to be quantum normal is always satisfied at
the time-symmetric slice, and the third results to the same inequalities up to small
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Figure 4.11: Three island conditions in the semiclassical regime along the time-
symmetric slice in the high temperature limit. We use the scale factor in (4.5.6). The
Bekenstein condition shown is given by A(9I)/4Gn — senV (I), which is satisfied when
this quantity is negative. We chose the numeric values £ = —1, ¢tn, = 1, RoTo = 10,
and AoGny = 0.1. The I quantum normal condition is always valid. The three island
conditions are satisfied for values in (4.5.7).

order one numbers as the first condition. Therefore, there is an overlapping region
when (4.5.7) is valid.

Semiclassical regime

We also check that the semiclassical conditions at the time-symmetric slice are
satisfied. The conditions for the thermal length (4.2.12) and energy density (4.2.13)
are obeyed for GyAg < 1, which are true for reasonable spacetimes. Moreover,
we require that the size of the 82 sphere is bigger than the Planck length. For
large x/Ro > 1 the condition is automatically satisfied. For small x/Rg < 1, we

1 1/4
X s (GNAO) : (4.5.9)

have

Ry~ RoTy Cth

which is compatible with (4.5.7). Finally, we check the radius of curvature condi-
tion (4.2.15)

4.5.10
o (4.5.10)

G A 1/4
R0T0>>< N 0) s

which is again compatible with (4.5.8). Therefore, when we combine all the condi-
tions, we get an elongated teardrop region, (4.5.7). In Figure 4.11, we show three
island conditions in the semiclassical limit.
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Figure 4.12: Regions where the three island conditions are satisfied in the semiclassical

regime for an open FRW cosmology. We chose the numeric values £k = —1, ¢tn = 1,
RoTo = 100, and AoGn = 0.01. There is an island region along the time-symmetric slice
that extends to infinity. There are also overlapping regions at times where the solution
a(n) recollapses. However, they lie outside the semiclassical regime.

Conclusion

There is a semiclassical region at the time-symmetric slice where the three island
conditions are satisfied. Therefore, the existence of islands is possible for the values
in (4.5.8) together with RyTp > 1, and A¢Gn < 1. This region is shown in green
in Figure 4.12.

4.6 Discussion

In this paper, we studied the possible existence of islands in FRW cosmologies
supported by radiation, curvature, and cosmological constant. To this end, we
applied the three necessary conditions to subregions of the spacetime I and G,
together with the semiclassical conditions introduced in Section 4.2. We found that
the key element for the existence of non-trivial islands is a negative cosmological
constant. In the case of a closed universe, there is an island region around the half-
sphere point located at x; = mRg/2. This island is finite in size and is qualitatively
different from the island found in [150]. For open universes, an island region
shows up for large enough radius and extends all the way to infinity. By studying
the spacetime at the time-symmetric slice, we provided analytic evidence for the
existence of these islands in the high temperature limit where the spatial curvature
is negligible. We also performed a numerical analysis in the entire spacetime.
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4.6. Discussion

It turns out that having an FRW cosmology with a time-symmetric slice is not
sufficient for the existence of islands smaller than the whole Cauchy slice. For
example, closed de Sitter and a recollapsing universe with A = 0 and closed slicing
have time-symmetric slices, but the only possible island is the full Cauchy slice.

The analysis carried out in this paper is valid for more general class of cosmologies.
We expect to find islands in cosmologies with A < 0 for which the effective potential
Vet (@) vanishes at the turning point a’(n) = 0. For example, we expect that adding
ordinary matter would not change the conclusions of this paper.

There are a few exciting avenues of research related to our work that are worth
exploring. Since currently our universe is undergoing another period of inflation,
it would be interesting to study if islands are relevant in the context of inflation.
This can be modeled by bubbles of false vacuum where an inflating region forms
behind the horizon [152-154]. It is worth understanding whether inflating regions
are encoded in non-gravitating systems and if their formation is allowed in our
universe. Additionally, it would also be interesting to understand the implications
of our work in the case of eternally inflating multiverse studied in [155] where
islands have been shown to appear in collapsing AdS bubbles. Furthermore, islands
in Jackiw—Teitelboim de Sitter multiverse have been studied in [156] where they
appeared in the crunching regions. Another direction of inquiry would be to
explore the existence of islands in more general cosmologies in the spirit of [156].
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Conclusions

In this thesis we focused on holographic wormholes and islands (see section 1.1
for a summary of the results). Research focused both on islands and wormholes
has increased our understanding about gravity and its connection to quantum
information.

In the two initial island papers Almheiri, Engelhardt, Marolf and Maxfield and
independently Penington managed to recover the Page curve of an evaporating
black hole within semiclassical gravity [4,5]. An abundance of papers has ap-
peared since [6-10, 136, 143, 145, 145,148,151, 155, 156, 156178, 178-183], others
applying the island formula in different dimensions, in other spacetimes than AdS
and a number raising some concerns [139,184,185]. One very interesting aspect of
the island formula is that it allows us to compute the full quantum gravitational
entropy of the radiation within semiclassical gravity. This indicates that semi-
classical gravity “knows” more than we previously thought. Moreover, we learned
that information is not lost, but it is actually encoded in the radiation. However,
the mechanism of how exactly this happens is still unclear. By understanding
how this works we might be able to indirectly learn more about the interior of the
black hole. Although we have not managed to understand the complete picture
yet, there are new intuitions and lessons that we have learned along the way.

On the wormhole front, Gao, Jafferis and Wall managed to make a holographic
traversable wormhole through which we can send information [1], an accomplish-
ment in itself. Since then, numerous papers have used the non-local coupling
conceived in [1] in order to create and study traversable wormholes in higher or
lower dimensions [50-55,57,59,70,85,104—111,186-189]. One of the most interest-
ing aspects of this type of wormhole is that it can be seen as the dual of quantum
teleportation on the boundary side. The two entangled black holes play the role of
the entangled pair in the quantum teleportation scenario and the coupling between
the two sides represents the classical channel through which the two sides commu-
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nicate!. Since the wormbhole is rendered traversable, we do expect that things will
go through. From the wormhole perspective the signal has a relatively smooth
journey from one side to the other. From the dual description this is surprising
as quantum teleportation is a highly quantum process where the teleported qubit
undergoes a “violent” procedure after the classical information is received.

However, the question of whether or not wormholes exist in nature is still unan-
swered. There are two main avenues when it comes to discovering and probing
wormholes. The first one is observationally. It has been proposed that in order
to understand whether an object is a wormhole we need to observe properties
such as gravitational lensing [190-197], the “shadow” [198-205], the trajectories
of stars orbiting the mouths [206-215], the spectra of accretion disks [216-224]
and the trajectories of stars orbiting the (potential) mouths [225-233]. The lists
of references are by no means exhaustive. In all of these cases, a lot of theoretical
work has been done in order to find out the unique signature of wormholes in
contrast to black holes. As most wormholes solutions are black hole mimickers
it is not easy task. For an instructive review of the aforementioned methods we
recommend [234], and references therein. Another approach that is hoped to give
results is gravitational wave tests. Already in LIGO many gravitational wave sig-
nals from the merging of black holes have been detected, and LISA is under way.
There have been studies that identify the differences between a black hole merger
and a wormhole merger [226,235], which can be used as templates in the search
for wormholes.

The second option in order to probe wormholes is in the lab. One way we could do
this is if we built two entangled CFTs with a holographic dual, then applied the
non-local coupling of GJW to obtain a traversable wormhole. Even though there
are studies that tell us how to build the thermofield double state [72], preparing
two strongly coupled CFTs with a gravity dual in a lab is certainly not easy.
However, a simplified version of this set-up might be possible [71,236,237].

In a recent paper [238] that attracted a lot of attention, the authors claim that they
have managed to observe traversable wormhole dynamics on a quantum computer.
The setup included two systems of entangled particles that act as the mouths of the
wormhole. Each contained seven qubits. Then an eighth qubit (which is entangled
with another external qubit) is swapped with on of the seven qubits of one side
and its information is scattered among the other qubits. This is equivalent to
inserting a particle in one of the mouths of the wormhole. Then, the two systems
are coupled using a coupling term of the type e’V similar to the GJW one. This

LGenerically, the channel is quantum, but to circumvent that we can measure the operator
Op, for example and transfer the classical information of the outcome to the right. More detail
on how this works can be found in [2]
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is supposed to have the effect of opening the dual wormhole. The result is that
the transferred qubit appears on the other side, and remains entangled with its
partner that lives on the other side, outside of the first mouth.

Of course this study is interesting because it opens up the way in making even
more complicated and nuanced experiments on quantum computers in order to
understand wormholes. It is important though to note, that despite the confusion
in the press, a physical wormhole was not constructed. The goal was to observe
the dynamics via a dual “baby” SYK model. However, many researchers have been
skeptical about the interpretation of the results. From the fact that the number
of qubits is too small to have an interesting gravity dual to more specific technical
issues [239,240]. Nevertheless is it a step towards the right direction and it might
serve as a bluerprint for future experiments on quantum computers.

Even though as we discussed wormholes have still not been observed in nature, we
remain hopeful that in the future they will be.
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5. Conclusions
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Summary

One of the biggest unresolved problems in modern physics is the formulation of a
theory of quantum gravity. The reason is the seeming incompatibility of the theory
of general relativity with quantum physics. General relativity describes accurately
physics on large scales, such as planets and galaxies, whereas quantum mechan-
ics capture the physics of small scales, such as atoms and subatomic particles.
Both theories have been put to the test for many decades. They have both been
verified experimentally and their predictions have been found to be correct to a
remarkable degree of accuracy. Moreover, they are used in numerous technologies
and applications. General relativity is used, among others, in GPS systems where
accuracy is important and one needs to account for relativistic phenomena such
as time dilation, and in observational astronomy, gravitational lensing is used to
make maps of dark matter. Quantum physics also have many applications such as
in lasers, MRI scanners, computers and atomic clocks.

However, trying to study gravity in quantum field theory is problematic and the
detection of the graviton in a collider is also a distant dream. As Zimmermann
illustrates in [241] “Assuming these fields, the Planck scale of 1028eV can be reached
by a circular or linear collider with a size of about 10'°m, or about a tenth of the
distance between earth and sun, for either type of collider!”

A notorious instance where these two theories appear to clash is black holes. From
General Relativity we expect that information that falls in the black hole disap-
pears forever. The fate of anything crossing the black hole horizon is sealed. In
the 70s, in a series of papers [60-62], it was proven that black holes quantumly,
emit radiation and evaporate. Hawking initially thought that even though black
holes evaporate, information that falls in is indeed lost forever. However, this vi-
olates a core principle of quantum physics: conservation of information, leading
to the black hole information paradox. Nowadays, we firmly believe that informa-
tion is not lost in black holes, but the the question of exactly what happens to
the information that fell in the black hole after the evaporation is complete, still
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remains.

A breakthrough happened when ’t Hooft and independently Susskind formulated
the holographic principle [242,243], which says that gravity is emergent from a
lower dimensional quantum field theory. In 1997 Maldacena, in his seminal paper
[37], proposed the AdS/CFT correspondence, in which a theory of gravity in d
dimensional Anti-de-Sitter spacetime is dual to a conformal field theory in one
dimension less. This leads us to the following train of thought. A black hole in
AdS will be dual to a CFT and CFTs are unitary. This means that information
cannot be lost.

One of the reasons that we study wormholes is that they can provide insights
about how information can escape black holes. A popular holographic wormhole
lives in the bulk of a three dimensional maximally extended AdS black hole, called
the BTZ geometry. The BTZ geometry is dual to a maximally entangled state
called the thermofield double. At this point it is important to take a moment to
discuss entanglement, which is a curious property of quantum physics. Assuming
that we entangle a pair of particles by making them interact in some way or
produce them by pair creation, they are always going to be “connected”, even if
they are very far apart. If we measure the quantum state of one, we automatically
know the quantum state of the other. Recently, it was proposed by Susskind
and Maldacena [244] that entanglement in a holographic system gives rise to a
wormhole. The wormhole in the heart of BTZ is such an example. However, it is
non-traversable, so we cannot send information through it.

This viewpoint changed in 2016 when Gao, Jafferis and Wall (GJW) [1] constructed
the first holographic traversable wormhole. They started with the BTZ black hole
and added a non-local coupling. This coupling term creates two negative energy
shocks waves that propagate in the bulk and render the wormhole traversable. In
chapter 2 of this thesis we studied this wormhole and derived various bounds on
how much information can go through it, while staying in the probe approximation.
We found that the amount of information that can go through the GJW wormhole
is O(hry/¢), which is a lot smaller than the black hole entropy. Moreover, by cou-
pling many fields instead of only one, we increased the amount of information that
can be transferred to be approximately equal to the black hole entropy. Finally,
assuming that in the CFT side this protocol is dual to teleportation, we derived an
estimate of the information bound from the boundary perspective and compared
it to the bulk one.

In chapter 3 we again harnessed the power of the non-local coupling introduced
in [1], and constructed a four dimensional eternal AdS wormhole. Starting with two
four dimensional magnetically charged Reissner-Nordstrom AdS black holes, we

140



coupled their dual CFTs. This gives rise to negative energy. When we calculated
the backreaction that this negative energy has on our spacetime we found a static
traversable wormhole without horizons or singularities. We also found that this
wormhole is dual to the ground state of a simple Hamiltonian and for certain
values of the parameters of this Hamiltonian we found where the wormhole solution
dominates.

In chapter 4 we changed focus and directed our attention on recent developments
in the information paradox front. Recently, in a serious of breakthrough papers
[4-9] the Page curve of Hawking radiation was recovered within semi-classical
gravity, using the island formula. Essentially, what was realized is that in order to
correctly calculate the fine grained entropy of the radiation we need to include in
the computation a disconnected region that usually lies in the black hole, called
the island. The island formula naturally has been applied mostly in black holes,
where we have a clear notion of the information paradox.

However, in [10] the authors derived three conditions that are necessary in order to
have an island. These rules can be applied in a variety of spacetimes. In [10] they
apply it in spatially flat FRW cosmologies that are supported by radiation and
cosmological constant. They find that for negative cosmological constant there is
a non-trivial island that starts at a large finite value and extends to infinity.

We extended this research and applied this formula to open and closed sliced FRW
cosmologies. We found that in the case of negative cosmological constant both for
open and closed universes we have non-trivial islands. We concluded that the most
important feature that indicates whether or not we have non-trivial islands is the
negative cosmological constant.

141



5. Summary

142



Samenvatting

Een van de grootste onopgeloste problemen in de moderne natuurkunde is de for-
mulering van een theorie van kwantumzwaartekracht. Dit komt door de schijnbare
onverenigbaarheid van de algemene relativiteitstheorie met kwantumfysica. De al-
gemene relativiteitstheorie beschrijft nauwkeurig de fysica op grote schaal, zoals
planeten en sterrenstelsels, terwijl kwantummechanica de fysica van kleine schaal
vastlegt, zoals atomen en subatomaire deeltjes. Beide theorieén zijn al tientallen
jaren op de proef gesteld. Ze zijn allebei experimenteel geverifieerd en hun voor-
spellingen blijken opmerkelijk nauwkeurig te zijn. Bovendien gebruiken we ze in
meerdere technologieén en toepassingen. De algemene relativiteitstheorie wordt
onder andere gebruikt in GPS-systemen, waar nauwkeurigheid belangrijk is en
men rekening moet houden met relativistische verschijnselen zoals tijddilatatie,
en in de waarnemingsastronomie wordt zwaartekrachtlensing gebruikt om kaarten
van donkere materie te maken. Kwantumfysica wordt toegepast in onder andere
lasers, MRI-scanners, computers en atoomklokken.

Het is echter problematisch om zwaartekracht in de kwantumveldentheorie te
bestuderen, en de detectie van het graviton in een deeltjesversneller is nog een
verre droom. Zoals Zimmermann illustreert in [241] “Uitgaande van deze velden,
kan de Planck-schaal van 1028 eV worden bereikt door een cirkelvormige of lineaire
versneller met een grootte van ongeveer 101%m, ongeveer een tiende van de afstand

tussen de aarde en de zon, voor beide soorten versneller!”

Een berucht geval waarin de twee theorieén lijken te botsen is een zwart gat.
Vanuit de algemene relativiteitstheorie verwachten we dat informatie die in het
zwarte gat valt voor altijd verdwijnt. Het lot van alles wat de horizon van het
zwarte gat passeert, is bezegeld. In de jaren 70 werd echter in een reeks ar-
tikelen [60-62] bewezen dat zwarte gaten kwantumstraling uitzenden en daarbij
verdampen. Hawking dacht aanvankelijk dat hoewel zwarte gaten verdampen, in-
formatie die erin valt inderdaad voor altijd verloren gaat. Dit is echter in strijd
met een kernprincipe van kwantumfysica: behoud van informatie. Zo ontstond de
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informatieparadox van zwarte gaten. Tegenwoordig zijn we ervan overtuigd dat er
geen informatie verloren gaat in zwarte gaten, maar de vraag blijft wat er precies
gebeurt met de informatie die in het zwarte gat is gevallen nadat de verdamping
is voltooid.

Een doorbraak vond plaats toen 't Hooft en Susskind onafhankelijk van elkaar
het holografische principe formuleerden [242,243]. Volgens dit principe ontstaat
zwaartekracht uit een lager-dimensionale kwantumveldentheorie. In 1997 stelde
Maldacena in zijn baanbrekende artikel [37] de AdS/CFT-correspondentie voor,
waarin een zwaartekrachttheorie in d-dimensionale Anti-de-Sitter-ruimtetijd duaal
is aan een conforme veldentheorie in één dimensie minder. Dit leidt ons tot de
volgende gedachtegang: een zwart gat in AdS zal duaal zijn aan een CFT, en
CFT’s zijn unitair. Dit betekent dat informatie niet verloren kan gaan.

Een van de redenen dat we wormgaten bestuderen, is dat ze inzicht kunnen geven
in hoe informatie aan zwarte gaten kan ontsnappen. Een populair holografisch
wormgat leeft in het midden van een driedimensionaal maximaal uitgestrekt AdS-
zwart gat, in de zogeheten BTZ-geometrie. Deze geometrie is duaal aan een max-
imaal verstrengelde toestand dat we het thermoveld-dubbel noemen. Op dit punt
is het belangrijk even de tijd te nemen om verstrengeling te bespreken, wat een
merkwaardige eigenschap is van kwantumfysica. Ervan uitgaande dat we een paar
deeltjes verstrengelen door ze op de een of andere manier te laten interageren of ze
te produceren met paarvorming, zullen ze altijd "verbonden” zijn, zelfs wanneer
ze ver uit elkaar liggen. Als we de kwantumtoestand van de één meten, weten we
automatisch de kwantumtoestand van de ander. Onlangs werd door Susskind en
Maldacena [244] voorgesteld dat verstrengeling in een holografisch systeem leidt tot
een wormgat. Het wormgat in het hart van de BTZ-geometrie is zo’n voorbeeld.
Deze is echter niet doorkruisbaar, dus we kunnen er geen informatie doorheen
sturen.

Dit standpunt veranderde in 2016 toen Gao, Jafferis en Wall (GJW) [1] het eerste
holografische doorkruisbare wormgat construeerden. Ze begonnen met het BTZ
zwarte gat en voegden een niet-lokale koppeling toe. Deze koppelingsterm creéert
twee negatieve energieschokgolven die zich in de massa voortplanten en het worm-
gat doorkruisbaar maken. In hoofdstuk 2 van dit proefschrift bestudeerden we dit
wormgat en leidde we verschillende grenzen af voor hoeveel informatie er doorheen
kan gaan, terwijl we binnen de sondebenadering blijven. We ontdekten dat de ho-
eveelheid informatie die door het GJW-wormgat kan gaan O(hry/¢) is, wat een
stuk kleiner is dan de entropie van een zwart gat. Daarnaast hebben we, door veel
velden te koppelen in plaats van slechts één, de hoeveelheid informatie die kan
worden overgedragen vergroot tot ongeveer gelijk aan de entropie van een zwart
gat. Ten slotte, in de veronderstelling dat dit protocol aan de CFT-kant duaal is
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aan teleportatie, hebben we een schatting afgeleid van de informatiegrens vanuit
het grensperspectief en deze vergeleken met de bulk.

In hoofdstuk 3 hebben we opnieuw gebruik gemaakt van de kracht van de niet-
lokale koppeling die is geintroduceerd in [1], en hebben we een vierdimensionaal
eeuwig AdS-wormgat geconstrueerd. Beginnend met twee vierdimensionale mag-
netisch geladen Reissner-Nordstrom AdS zwarte gaten, koppelden we hun dubbele
CFT’s. Dit leidt tot een negatieve energie. Toen we de terugreactie berekenden die
deze negatieve energie heeft op onze ruimtetijd, vonden we een statisch doorkruis-
baar wormgat zonder horizonten of singulariteiten. We ontdekten ook dat dit
wormgat duaal is aan de grondtoestand van een eenvoudige Hamiltoniaan en voor
bepaalde waarden van de parameters van deze Hamiltoniaan vonden we waar de
wormgatoplossing domineert.

In hoofdstuk 4 hebben we de focus verlegd en onze aandacht gericht op recente
ontwikkelingen op het gebied van de informatieparadox. Onlangs werd in een reeks
baanbrekende artikelen [4-9] de Page-curve van Hawking-straling teruggevonden
binnen semi-klassieke zwaartekracht, met behulp van de eilandformule. Wat in
wezen werd gerealiseerd, is dat om de fijnkorrelige entropie van de straling correct
te berekenen we in de berekening een losgekoppeld gebied moeten opnemen dat
meestal in het zwarte gat ligt, het eiland genaamd. De eilandformule is natuurlijk
vooral toegepast in zwarte gaten, waar we een duidelijk beeld hebben van de
informatieparadox.

In [10] hebben de auteurs echter drie voorwaarden afgeleid die nodig zijn om een
eiland te hebben. Deze regels kunnen worden toegepast in verschillende ruimteti-
jden. In [10] passen ze het toe in ruimtelijk vlakke FRW-kosmologieén die worden
ondersteund door straling en een kosmologische constante. Ze ontdekken dat er
voor een negatieve kosmologische constante een niet-triviaal eiland is dat begint
bij een grote eindige waarde en zich uitstrekt tot in het oneindige. We hebben
dit onderzoek uitgebreid en deze formule toegepast op open en gesloten FRW-
kosmologieén. We ontdekten in het geval van een negatieve kosmologische con-
stante dat er niet-triviale eilanden bestaan in zowel open als gesloten universums.
We concludeerden dat de negatieve kosmologische constante het belangrijkste ken-
merk is dat aangeeft of we wel of geen niet-triviale eilanden hebben.
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