
CDF/DOC/COMPUPG/PUBLIC/7630
Version 1.0

May 6, 2005

GlideCNAF : A Purely Condor Glide-in Based CDF Analysis

Farm

Subir Sarkar1, Igor Sfiligoi2

Abstract

A purely Condor Glide-in based CDF Analysis Farm has been built that uses the Grid
resources available at the Tier1 Farm at CNAF, Bologna. In this article we shall discuss about
the urgent need of CDF for more processing power and argue that as significant upgrade of
the dedicated farms is becoming unrealistic, we must start using the shared resources. In
this context, we shall show that using Condor-G and Condor Glide-in is the easiest and most
efficient way to access Grid resources. This is all the more true for farms that already use
Condor as the batch system. The nascent farm, known as GlideCNAF, is about to enter into
the production phase.

1 Introduction

The CDF experiment has been collecting Physics data since 2000. Improvements in accelerator
running as well as detector and trigger conditions have resulted in steady increase in data taking
efficiency over the years. Analysis of an ever growing volume of data and the need for producing
yet larger samples of MC events require consistent growth of computing resources over time.

CDF produces∼ 100 TB of data per year. Figure1 shows the performance of the Tevatron ac-
celerator as well as the data taking efficiency of the CDF experiment during 2005, while Figure2
extrapolates the present performance of the accelerator for the years to come (until 2009). This
gives us an idea about how CDF computing power should evolve to cope up with the growing
need. Clearly, computing resource is always at premium in any running experiment like CDF.

1INFN-CNAF, Bologna & INFN-Roma1
2INFN-LNF, Frascati

Figure 1: Integrated Luminosity that the Tevatron accelerator has delivered and that collected
by the CDF experiment so far in 2005. The average data taking efficiency is 85% with scope of
further improvement in future.

Figure 2: Design luminosity that the Tevatron accelerator is expected to deliver in the coming
years during the lifetime of the experiment.

2

CDF has been successfully maintaining its own global computing environment with 9 Decen-
tralized Analysis Farms (dCAFs [2]) all over the globe and with about 55% of its total computing
power (∼ 2.3 THz) at remote sites. The present CDF global computing heavily depends on ded-
icated resources. However, the “Dedicated Pool” model is no longer favoured. Many sites have
expressed increasing desire to move away from dedicated resources following the Global HEP
computing strategy of moving towards Grid Computing. Expansion of dedicated resources is
increasingly becoming unrealistic and for some dCAFs might simply be impossible due to local
policy constraints. For example, CnafCAF is a Condor [1] based dCAF [4] running with the
following limited resources,

• CPU:∼490 KSI2K

• Storage: 32 TB

• CDF software and tools are on AFS, the server being at CNAF which guarantees efficient
access.

Significant expansion of the dedicated farm at CNAF at par with the increase in data volume
and requirement of larger MC samples is simply beyond consideration on longer term. New CPU
power will only be added to the global pool, more storage will, however, continue to be available
to individual experiments. Tables1 and 2 show a plausible scenario of evolution of CPU power
and storage for CDF at CNAF.

Year CDF (KSI2K) T1 (KSI2K) CDF Share (%)

2004 86
2005 494.5 1300 38
2006 903 1800 50
2007 1032 2400 43
2008 1161 6300 18
2009 1290 10500 12
2010 1419 18000 8

Table 1: A proposed evolutionary path of CDF share of processing power at CNAF during the
lifetime of CDF.

It is clear from the above that integrating CDF within the framework of Grid Computing
and building a shared and opportunistic dCAF, hopefully keeping all the CDF/CAF specific ad-
vantages is the natural step forward. This will open up a huge potential for availability of new
processing power (about 3.5 THz at CNAF itself). We can also take advantage of all the new
innovations in global computing this way.

CDF is actively engaged in the following areas of development, ordered in terms of maturity,
in order to integrate its computing model into Grid computing smoothly.

• Condor Glide-ins + CAF software (GlideCAF)

3

Year CDF (TB) T1 (TB) CDF Share (%)

2004 10
2005 32 200 16
2006 90 850 11
2007 130 1500 9
2008 170 3500 5
2009 210 5600 4
2010 250 9000 3

Table 2: A proposed evolutionary path of CDF Storage at CNAF during the lifetime of CDF.

• CAF interface to the Grid tools (GridCAF)

• SAMGrid

• Direct use of Grid tools

In this article, we shall discuss about the successful effort with Condor Glide-ins and demon-
strate that a mature and robust dCAF that uses Grid resources can indeed be built with moderate
effort.

2 Condor-G and Glide-ins

The Condor way of job submission to Grid (Globus Universe) is via Condor-G. Condor-G jobs
can be configured to bypass the Resource Broker (RB) and directly reach a Grid site Gatekeeper
or Computing Element (CE). The Condor Glide-in tool was created to ease the process of prepar-
ing Condor-G job submission with arbitrary configuration supported by Condor. When a Condor
Headnode submits Glide-ins to a Grid site Gatekeeper, the Gatekeeper distributes those jobs to
the underlying batch system (pbs, lsf, condor etc.) with the help ofglobus-job-manager
processes. Once the Condor-G jobs start at the local batch system, the Worker Nodes (WN) in-
stall the Condor daemons on the fly from a well known location (AFS in case of GlideCNAF)
and start them. As the Condor daemons start on the WNs, they communicate back to the submis-
sion machine or Headnode and become part of a local Condor pool. The WNs establish direct
connection to the Headnode and jobs are pulled from the local Condor queue. Figures3 and4
show how Grid resources become part of a Condor pool that has dedicated WNs as well. A Con-
dor pool can also be built purely out of Grid resources, as is the case for GlideCNAF. A Condor
based CAF Headnode close to the site Gatekeeper is all that is needed. GlideCNAF uses the
shared Tier1 resources at CNAF that has Fair-share policy in place, i.e before the LHC turn-on
and except during occasional LHC Data Challenges, CDF can hope to have plenty of resources.

4

Desktop

monitor

Mailer xml_monitor

WWW

Kerberos

CafMon

CafGui

Condor−G

WN

WN

WN

WN

WN
libMonitor

Plain Text

G
lo

bu
s

G
at

ek
ee

pe
r

D
ed

ic
at

ed
 R

es
ou

rc
e

Condor Protocol

Submitter

Condor

Headnode

Kerberos

Figure 3: Submit Condor Glide-ins to the Grid site Gatekeeper from the CondorCAF Headnode.
The Gatekeeper starts aglobus-job-manager process for each job submitted, which in turn
submits the job to the local batch system, and monitors the status of the job in the batch queue.

2.1 Authentication

Glide-ins are submitted by the CDF Grid user, with only one GSI certificate. As a consequence
all user jobs run under the same UID (e.gcdf004).

Although, this is not the way Grid was supposed to work, we have sound technical reasons
to support this way of functioning.

• We keep the policy decision in our hands instead of relying on the CDF VO and the local
batch system policies on the Grid world. Note that the VO Policy is yet to be implemented.
For a running experiment like CDF this poses a problem. Fortunately, a Glide-in based
CondorCAF which supports sophisticated user accounting overcomes this short-coming
easily.

• Fewer Glide-ins need to be submitted

At present we use the Kerberos CAF service principal (e.gsarkar/cdf/testcnaf@FNAL.GOV)
to generate a k5→VOMS proxy that requires the following step,

> kinit -F -k -t /etc/cdfcaf.keytab sarkar/cdf/testcnaf@FNAL.GOV

5

Desktop

Condor

monitor

Mailer xml_monitor

Submitter
Headnode

WWW

Kerberos

CafMon

CafGui

C
on

do
r p

ro
to

co
l

Plain Text

libMonitor

G
lid

ei
n

R
es

ou
rc

es
D

ed
ic

at
ed

 R
es

ou
rc

e

WN

WN

WN

WN

WN

WN

WN

WN

WN

WN

Kerberos

Figure 4: When the Glide-ins start on the WNs, resources become part of the local Condor
pool temporarily. The Headnode is notified about availability of new nodes and normal (Vanilla
Universe) jobs are subsequently pulled from the queue using usual Condor protocol. All the CAF
components continue to work as is.

> kx509
> kxlist -p
> voms-proxy-init -noregen -voms cdf

For more detail please refer to5. We are exploring the possibility of using the host certificate for
the Headnode which will be more meaningful and Grid compliant and hopefully more maintain-
able in the future. Note that the Condor Glide-in based farm does not mandate that the Fermilab
Robots Certificates of the users derived from the Kerberos CAF Service principals must exist on
the CDF VOMS server.

2.2 GlideCNAF

GlideCNAF is a purely Condor Glide-in based dCAF which is into beta test now and is expected
to go into production mode soon. GlideCNAF uses Cern Scientific Linux (SLC) based Grid
resources at Tier1@CNAF which uses LSF as the local batch system. Only a small change over
the Condor based production CAF software was needed for GlideCNAF to function like a native

6

Condor farm. A dedicated Headnode has been installed at CNAF to guarantee the most efficient
I/O between the Headnode and the Gatekeeper dedicated to CDF. The Headnode also acts as a
Grid User Interface (UI).

• GlideCNAF uses dedicated storage. We keep CDF user policy in our hands. The farm is
robust and all the original CAF specific tools, e.g monitoring, group accounting etc. work
without any modification. GlideCNAF is opportunistic and can, in principle, use all the
idle CPU cycles of a Grid site.

• GlideCNAF is configured to run 600 jobs simultaneously at present. In the best scenario
this means we have about 1.1 THz of CPU power at our disposal.

• GlideCNAF is a dCAF like CnafCAF. Whatever can be run on CnafCAF can be run on
GlideCNAF as well.

• GlideCNAF expands its capacity dynamically as and when new user jobs are discovered.
Just looking at the current number of VMs in the monitoring page will not tell the real
potential of the farm.

• CafMon/CafWWW work the same way as they do for any other dCAF

A detailed description about how to use the farm, in particular how to deal with an environ-
ment, where WNs are on the Grid side, unknown to us will be given in Appendix5.

3 Acknowledgments

Many people from both sides of the Atlantic helped us make GlideCNAF a reality. We thank
them all for their support. We acknowledge, in particular, significant help from Luca dell’Agnello,
Andrea Chierici and Alessandro Italiano with Tier1 resource usage; Vincenzo Ciaschini and
Daniele Cesini regarding VOMS related issues; Dan Bradley for Condor-G and Condor Glide-in
related support. We also thank all the beta testers of the farm.

4 Conclusions

A purely Condor Glide-in based CDF Analysis Farm, GlideCNAF, has been built at CNAF that
uses the common resources available at the Tier1 Farm. CDF has already started looking beyond
dedicated dCAFs for new computing resources, both for MC production and for analysis of ever
growing data volume. Condor Glide-in based solution is straight-forward and robust. Moreover,
sophisticated job monitoring and user accounting policy work in a native manner for a Glide-in
based CAF. These areas are still under-developed in the Grid world. However, a Glide-in based
CAF is understood to be best suited for Grid sites that strongly support a particular experiment,
as is the case for CDF at CNAF. To exploit generic Grid sites, GridCAF is being developed in
CDF.

7

5 Appendices

In this section all the technical details related to a Glide-in based CAF will be described. Since
the CAF software required only trivial modifications, we’ll mainly concentrate on the Glide-in
related technicalities.

Appendix A: GlideCNAF Operational Issues

• New service principal:<user >/cdf/testcnaf@FNAL.GOV (needed in.k5login)

• To submit jobs, all you will need to do is to copy the cnaf section of your.cafrc (if you
do not have one copy the official file
∼cdfsoft/dist/packages/CafUtil/development/cdf gui/.cafrc),
call it glide-cnaf (or invent a better name yourself) and replace

host=cdfhead.cnaf.infn.it by
host=cdftest.cnaf.infn.it

The GlideCNAF section will soon be added to the official.cafrc .

Group accounting has been implemented in GlideCNAF (groups = common,italy). It is the
same as in CondorCNAF.

• New environment variables have been introduced in the CAF Software in order to ease
integration with Grid. For example,

– If you use fcp in your shell script that is executed on the WNs (i.e started by
CafExe), do, e.g
> fcp -c $KRB5BIN DIR/rcp -N src dest

KRB5BIN DIR is correctly configured by the dCAF administrator.

– Similarly, you are encouraged to set the CDF software environment as,
> source $CDFSOFT/cdf2.(c)sh

instead of specifying the path specific to a dCAF.

Note that the above environment variables may not yet be available on all the dCAFs.

• GlideCNAF monitor is at http://cdfmon.cr.cnaf.infn.it:8081/glidecaf/

• The following application level problems and the subsequent solutions were found on
GlideCNAF:

– MCProd problem : the full path name of a file to be opened by the Fortran code may
become too long due to the fact that on the Grid side a unique directory name must be
ensured for each job and that might cause the program to abort. Here is one possible
way out,

8

∗ In the top dir ofmcProduction test release, do
> ln -sf cesData cesdata

∗ Try to use relative path names, namely, set
export JOB OUTPUTDIR=.

export WORK DIR=.
in mcProduction/scripts/MCProd.

– The C-shell scriptsubmit BMCdoes not run on GlideCNAF and returns with the
following error:
SHELL: Undefined variable.

The easiest solution is to usetcsh . Scientific Linux seems to be stringent on this
issue for reasons not yet known. Nevertheless, the recommended solution is to use
bash shell scripts at GlideCNAF.

Appendix B: Installation of a GlideCAF

A GlideCAF can be easily installed using the following prescription,

• Make sure that you can access the Gatekeeper as well as the local batch system of a grid
site of your choice. With a valid proxy (preferably k5→VOMS proxy as discussed in ap-
pendix5) you can try the commands like the following,
> globus-job-run ce02-lcg.cr /bin/hostname
ce02-lcg.cr.cnaf.infn.it
> globus-job-run ce02-lcg.cr:2119/jobmanager-lcglsf \

-queue cdf /bin/hostname
wn-04-04-16-a.cr.cnaf.infn.it

You must ensure the above before proceeding any further.

• Install a CondorCAF Headnode from scratch following instructions given in reference [5].
Note that Condor from version 6.7.7 works correctly for a Glide-in based CAF.

• Adapt the Condor configuration files for Condor-G submission with Kerberos and GSI
based authentication

• Create the Condor-G submission file and the Glide-in related configuration files. You
might need to slightly manually modify the Condor-G submission and the configuration
files.

• Send Glide-ins as Condor-G jobs to the Gatekeeper

• Check the status of the Glide-in jobs,

9

– condor q -globus shows status of Glide-in submission,SUBMITTED, PENDING,
ACTIVE etc.

– condor status -master shows the VMs as they are added to the pool

– Condor-G submission log file is also useful to track down problems

When the Glide-ins start running on the remote site and the remote VMs become available
on the Condor pool, submit test jobs using CAF tools

• Install the standard CondorCAF monitor following the CafCondor installation instruction.

The following sections elaborate on the points noted above.

Appendix C: Glide-ins and Condor Configuration

Glide-ins require authentication related configuration to be introduced in the Condor configu-
ration files. The following was added in$CONDORDIR/dist/etc/condor config to
switch on authentication.

Switch on authentication
SEC_DEFAULT_AUTHENTICATION = REQUIRED
SEC_DEFAULT_AUTHENTICATION_METHODS = KERBEROS,GSI
SEC_DEFAULT_ENCRYPTION = OPTIONAL
SEC_DEFAULT_INTEGRITY = PREFERRED

SEC_READ_AUTHENTICATION = OPTIONAL
SEC_CLIENT_AUTHENTICATION = OPTIONAL
SEC_READ_ENCRYPTION = OPTIONAL
SEC_CLIENT_ENCRYPTION = OPTIONAL
SEC_READ_INTEGRITY = OPTIONAL
SEC_CLIENT_INTEGRITY = OPTIONAL

The configuration file local to the Headnode contains the detail as given below,

GSI_DAEMON_DIRECTORY=/afs/infn.it/project/cdf/glidein/dist

Grid Certificate directory (standard)
GSI_DAEMON_TRUSTED_CA_DIR=/etc/grid-security/certificates/

Gridmap file that relates the proxy certificate to the user ’condor’
GRIDMAP=$(GSI_DAEMON_DIRECTORY)/grid-mapfile

10

SEC_DEFAULT_AUTHENTICATION = REQUIRED
SEC_DEFAULT_AUTHENTICATION_METHODS = KERBEROS,GSI

k5->VOMS Proxy file
GSI_DAEMON_PROXY = /cdfcaf/tickets/x509_service_proxy

Use Condor-G GridMonitor
ENABLE_GRID_MONITOR = TRUE

A single Gatekeeper accepts a maximum of 600 Condor-G jobs
GRIDMANAGER_MAX_SUBMITTED_JOBS_PER_RESOURCE = 600

Submit Condor-G jobs to the gatekeeper slowly
GRIDMANAGER_MAX_PENDING_SUBMITS_PER_RESOURCE = 2

In addition to the abovecreate glidein.sh automatically creates a configuration file
for the Glide-ins which has a similar authentication block as above except that the GSI authenti-
cation is tried first,q

SEC_DEFAULT_AUTHENTICATION_METHODS = GSI,KERBEROS

In order for Condor Computing on Demand (Cod) to work properly, the Glide-in side config-
uration must contain the following line,

VALID_COD_USERS = condor,cafmon

Appendix D: create glidein.sh

The following script first copies the Glide-in binaries for the correct architecture from the official
repository and creates a local distribution for more efficient access from the WNs. The script
then creates the configuration that will be used by the Glide-in daemons and finally prepares the
Condor-G submission description file. The script is general enough and should at a different site
with only trivial. Executecreate glidein.sh after starting Condor on the Headnode. Note
that, Condor 6.7.7 is the first version where GlideCNAF works fully.

#!/bin/sh
#---
Prepare Condor-G submission files with condor_glidein
#
v0.5 19/04/2005 - Igor & Subir
--

11

DEBUG=0
if [$# -lt 1]; then

echo Usage: ./create_glidein.sh distDir Condor_version[D=6.7.7]
exit 1

fi
distDir=$1
if [$# -lt 2]; then

echo Using default version: 6.7.7
version="6.7.7"

else
version=$2

fi

Check if Condor itself is running
condor_running=‘condor_status -master‘
if ["$condor_running" == ""]
then

echo "Condor must be running! exiting ..."
if ["$DEBUG" -eq 1]; then

ps -ef | egrep condor
fi
exit 2

fi

Environment
GLIDEIN_DIR="/afs/infn.it/project/cdf/glidein/${distDir}"
GLIDEIN_LOCAL=.
GLIBC_VERSION=glibc2.3
GLIDEIN_ARCH=${version}-i686-pc-Linux-2.4-${GLIBC_VERSION}
GLIDEIN_GATEKEEPER=ce02-lcg.cr.cnaf.infn.it:2119/jobmanager-lcglsf
SUFFIX=infn
GLIDEIN_USER=condor

Create the glidein directory, if needed
mkdir -p $GLIDEIN_DIR
cd $GLIDEIN_DIR

Fetch the tarball and unpack it properly
wget http://cs.wisc.edu/condor/glidein/binaries/$GLIDEIN_ARCH.tar.gz
mkdir -p $GLIDEIN_ARCH
cd $GLIDEIN_ARCH

12

tar xvzf ../$GLIDEIN_ARCH.tar.gz
cd $GLIDEIN_DIR
rm -f $GLIDEIN_ARCH.tar.gz

Create grid-mapfile
echo \"‘grid-proxy-info -issuer‘\" $GLIDEIN_USER > grid-mapfile

Generate the config file and the startup script
if ["$DEBUG" -eq 1]; then

echo INFO. Generate the config file and the startup script
fi
condor_glidein -anybody -suffix $SUFFIX -genconfig -genstartup

Install the daemon startup script.
chmod a+x glidein_startup.$SUFFIX

It seems condor_glidein script works slightly differently
for 6.7.3 and for >= 6.7.6

if [‘‘$version’’ == ‘‘6.7.3’’]; then
var=$(cat <<SETVAR
/bin/sh\n\nexport _CONDOR_GSI_DAEMON_PROXY=\$X509_USER_PROXY
SETVAR)

perl -pi -e ‘‘s#/bin/sh#$var#’’ glidein_startup.$SUFFIX
fi
mv glidein_startup.infn $GLIDEIN_ARCH/glidein_startup

Install the condor_config.
mv glidein_condor_config.$SUFFIX glidein_condor_config

cat >> glidein_condor_config <<EOF
VALID_COD_USERS = condor,cafmon

GSI_DAEMON_DIRECTORY=$GLIDEIN_DIR
GSI_DAEMON_TRUSTED_CA_DIR=/etc/grid-security/certificates/
GRIDMAP=\$(GSI_DAEMON_DIRECTORY)/grid-mapfile
SEC_DEFAULT_AUTHENTICATION = REQUIRED
SEC_DEFAULT_AUTHENTICATION_METHODS = GSI
EOF

Now generate the submit file used to run Glide-ins.

13

if ["$DEBUG" -eq 1]; then
echo INFO. Generate the Condor-G submit file to run Glide-ins.

fi
condor_glidein \

-suffix $SUFFIX \
-basedir $GLIDEIN_DIR \
-localdir $GLIDEIN_LOCAL \
-gensubmit \
-runonly \
-anybody \
-arch $GLIDEIN_ARCH \
-setup_jobmanager jobmanager-fork \
-queue cdf
$GLIDEIN_GATEKEEPER

Now you have a submit file named glidein_run.submit.$SUFFIX.
You can submit this to Condor-G and it will launch glidein daemons
However, we need some customisation

perl -pi \
-e ’s#_condor_NUM_CPUS=1#_condor_NUM_CPUS=2#;’ \
-e ’s#_condor_START=True#_condor_START=(VirtualMachineID == 2)#;’ \
-e ’s#cdfcaf\@cdftest.#subir\.sarkar\@#’ glidein_run.submit.$SUFFIX

For debugging purposes create
cp glidein_run.submit.$SUFFIX glidein_run.submit.$SUFFIX.dbg

Again, some customisation required, Condor-G GridMonitor
won’t work without stream_output = False; stream_error = False

var=$(cat <<SETVAR
output=glidein_$SUFFIX.output
error=glidein_$SUFFIX.error
log=glidein_$SUFFIX.log
should_transfer_files=YES
when_to_transfer_output=ON_EXIT
stream_output = False
stream_error = False
+Owner = undefined

Queue

14

SETVAR)

perl -pi -e "s#Queue#$var#" glidein_run.submit.$SUFFIX.dbg

Since we are very much in development, we need to change
the Condor version. Keep a link for easy maintenance
cd $GLIDEIN_DIR/..
if [-e dist]; then

rm dist
fi
ln -s $distDir dist

exit 0

Appendix E: Condor-G Submission Script

As already mentioned, the Condor-G submission script is automatically created and adjusted
for a particular site bycreate glidein.sh . The submission script used for GlideCNAF is
shown below. When Glide-ins are submitted, the following file works as a template if we submit
to a Gatekeeper other than the default one (ce02-lcg.cr.cnaf.infn.it) or submit more
than one jobs at a time.

For formatting convenience we use
GLIDEIN_DISTDIR=/afs/infn.it/project/cdf/glidein/v6.7.7
and break long lines below
Universe = Globus
Executable =
$(GLIDEIN_DISTDIR)/6.7.7-i686-pc-Linux-2.4-glibc2.3/glidein_startup
Arguments = -dyn -f

Environment =
CONDOR_CONFIG=$(GLIDEIN_DISTDIR)/glidein_condor_config;
_condor_CONDOR_HOST=cdftest.cnaf.infn.it;
_condor_GLIDEIN_HOST=cdftest.cnaf.infn.it;
_condor_LOCAL_DIR=.;
_condor_SBIN=$(GLIDEIN_DISTDIR)/6.7.7-i686-pc-Linux-2.4-glibc2.3;
_condor_CONDOR_ADMIN=subir.sarkar@cnaf.infn.it;
_condor_NUM_CPUS=2;
_condor_UID_DOMAIN=cr.cnaf.infn.it;
_condor_FILESYSTEM_DOMAIN=cr.cnaf.infn.it;
_condor_MAIL=/bin/mail;
_condor_STARTD_NOCLAIM_SHUTDOWN=1200;

15

_condor_START=(VirtualMachineID == 2)

Transfer_Executable = False
GlobusRSL = (queue=cdf)
GlobusScheduler = ce02-lcg.cr.cnaf.infn.it:2119/jobmanager-lcglsf
output=glidein_infn.output
error=glidein_infn.error
log=glidein_infn.log
should_transfer_files=YES
when_to_transfer_output=ON_EXIT
stream_output = False
stream_error = False
+Owner = undefined
Queue

Appendix F: submit glideins.sh

submit glideins.sh does the following; it,

• accepts the name of the site Gatekeeper and the number of Glide-ins to be submitted as
input

• removes those Glide-ins that were put on hold by Condor for some reason (mainly authen-
tication related problems)

• releases any user jobs that were held

• submits the required number of Glide-ins if there is really a need for new submission, i.e
if it discovers new user jobs on the Condor queue.

#!/bin/sh -f
--
#
Submit Condor-G jobs to the same Gatekeeper.
A crontab calls the script every n mins which submits the missing
glidein jobs when new user jobs are discovered.
#
Usage: $GLIDEIN_DIR/submit_glideins.sh gl_min gatekeepr
#
v0.6 05/05/2005 - Subir
--

GLIDEIN_DIR=/afs/infn.it/project/cdf/glidein/dist

16

SUFFIX=infn
DEF_GATEKEEPER=ce02-lcg.cr.cnaf.infn.it:2119/jobmanager-lcglsf
DEF_CDFQUEUE=cdf

QUEUE_OUTPUT_FILE=/tmp/condor_q_$$.output
GLIDEIN_JOB_FILE=/tmp/glidein_run_$$.submit

DEBUG=0

Input arguments
gatekeeper=$DEF_GATEKEEPER
gl_min=0
gl_max=2000 # tier 1 LSF farm@CNAF
cdfqueue=$DEF_CDFQUEUE

if [$# -gt 0]; then
gatekeeper=$1

fi
if [$# -gt 1]; then

gl_min=$2
fi
if [$# -gt 2]; then

gl_max=$3
fi
if [$# -gt 3]; then

cdfqueue=$4
fi

cleanup()
{

if [-e $QUEUE_OUTPUT_FILE]; then
if ["$DEBUG" -eq 1]; then

echo INFO. delete $QUEUE_OUTPUT_FILE
fi
rm $QUEUE_OUTPUT_FILE

fi
if [-e $GLIDEIN_JOB_FILE]; then

if ["$DEBUG" -eq 1]; then
echo INFO. delete $GLIDEIN_JOB_FILE

fi
rm $GLIDEIN_JOB_FILE

17

fi
}

Check if Condor itself is running
condor_running=‘condor_status -master‘
if ["$condor_running" == ""]; then

echo "ERROR. Either Condor is NOT running or "
echo "condor_master is not available ! exiting ..."
if ["$DEBUG" -eq 1]; then

ps -ef | egrep condor
fi
exit 1

fi

echo ---
echo === ‘date‘ ====

Cache condor_q output, do not call it many times within
a small time interval that may hang condor itself if the
queue is long

condor_q > $QUEUE_OUTPUT_FILE
status_code=$?
if ["$status_code" -ne 0]; then

echo "ERROR. condor_q command failed! exiting"
cleanup
exit $status_code

fi

Remove glide-in jobs on H/C
for id in ‘cat $QUEUE_OUTPUT_FILE | grep glidein_startup \

| awk ’{if ($6 == "H" || $6 == "C") print $1}’‘
do

echo "INFO. removing H/C glideins, id=$id ..."
condor_rm $id
sleep 2 # not sure if it is actually needed

done

Find number of glidein daemons running/queued
gl_inq=‘cat $QUEUE_OUTPUT_FILE | grep glidein_startup \

| awk ’BEGIN {s=0} {if ($6 == "R" || $6 == "I") s++} \

18

END {print s}’‘

Find how many use jobs are running
ujob_r=‘cat $QUEUE_OUTPUT_FILE | grep -e CafExe -e sam \

| awk ’BEGIN {s=0} {if ($6 == "R") s++} \
END {print s}’‘

Find how many use jobs are queued
ujob_i=‘cat $QUEUE_OUTPUT_FILE | grep -e CafExe -e sam \

| awk ’BEGIN {s=0} {if ($6 == "I") s++} \
END {print s}’‘

Find how many use jobs are held
ujob_h=‘cat $QUEUE_OUTPUT_FILE | grep -e CafExe -e sam \

| awk ’BEGIN {s=0} {if ($6 == "H") s++} \
END {print s}’‘

echo "INFO. User jobs, RUNNING = $ujob_r, "
echo " IDLE = $ujob_i, "
echo " HELD = $ujob_h ..."

If held jobs are found release them. However, since
we do not want to call condor_q again, the released
jobs will be considered diring the next iteration
if ["$ujob_h" -gt 0]; then

echo "INFO. Releasing all the jobs ... "
echo "will be considered during the next cycle"
condor_release -all
Wait for condor_release to finish and the
jobs to reappear as I/R
sleep 10

fi

Total user jobs
ujob_t=‘expr $ujob_r + $ujob_i‘

Check if re-submission is needed, first with user job
gl_req=‘expr $ujob_t - $gl_inq‘
if ["$gl_req" -le 0]; then

echo "INFO. glideins($gl_inq) >= user jobs($ujob_t) ..."
Now with minimum glidein requirement

19

gl_req=‘expr $gl_min - $gl_inq‘
if ["$gl_req" -le 0]; then

echo "INFO. Nothing to be done! "
echo "no of glideins to be submitted = $gl_req"
cleanup
exit 1

fi
else

if ["$gl_req" -ge "$gl_max"]; then
gl_req=‘expr $gl_max - $gl_inq‘
if ["$gl_req" -le 0]; then

echo "INFO. Nothing to be done! "
echo "no of glideins to be submitted = $gl_req"
cleanup
exit 2

fi
fi

fi
nsub=$gl_req

Create proper submit script from the template
cp $GLIDEIN_DIR/glidein_run.submit.$SUFFIX.dbg \

$GLIDEIN_JOB_FILE
perl -pi \

-e "s#$DEF_GATEKEEPER#$gatekeeper#;" \
-e "s#queue=$DEF_CDFQUEUE#queue=$cdfqueue#;" \
-e "s#Queue#Queue $nsub#" $GLIDEIN_JOB_FILE

Now submit
echo "INFO. Submit $nsub condor_glidein daemons ..."
echo
if ["$DEBUG" -eq 1]; then

cat $GLIDEIN_JOB_FILE
fi
condor_submit $GLIDEIN_JOB_FILE

Clean up allocated resources (e.g unlink files)
cleanup

exit 0

20

Appendix G: Crontabs

The Headnode running CondorCAF needs to do the following in order for GlideCNAF to work;
it

• looks for new user jobs in the CondorCAF queue and if required, automatically submits
Glide-ins,

• refreshes GSI proxy automatically so that the Glide-ins running on the WNs can authenti-
cate themselves

The above is achieved with the help of cron jobs as given below:

5 */8 * * * /cdfcaf/bin/signin.sh \
1>> /tmp/cron_signin.log 2>> /tmp/cron_signin.log

*/5 * * * * cd /cdfcaf/log; /cdfcaf/bin/submit_glideins.sh 1 0 0 \
1>> /tmp/cron_glidein.log 2>> /tmp/cron_glidein.log

Renewal of k5→VOMS Proxy

The CDF Virtual Organisation (VO)3 is exclusively based on the Virtual Organisation Mem-
bership Service (VOMS) and is hosted on a VOMS server at CNAF (voms.cnaf.infn.it).
CDF users are added to the VOMS server on request using a certificate issued by a trusted au-
thority. The X509 protocol was develop to convert a Fermilab Kerberos proxy into a full-fledged
Grid proxy, the so called k5→VOMS Proxy.

We follow the same model of proxy renewal as that used by CAF for Kerberos.cdfcaf
renews the Kerberos proxy of a CAF service principal first, then converts the Kerberos proxy to
a Grid proxy using the X509 protocol and finally creates a new VOMS proxy. The following
scripts demonstrates all the steps of proxy renewal.

#!/bin/sh

DEBUG=0
PROXY_USER=sarkar/cdf/testcnaf@FNAL.GOV
CONDOR_HOME=/cdfcaf/condor

source $CONDOR_HOME/sh/glidein_setup.sh

k5Proxy()
{

if [‘‘$DEBUG’’ -eq 1]; then
echo kinit -F -k -t /etc/cdfcaf.keytab $PROXY_USER

3Abstract entity grouping Users, Institutions and Resources (if any) in
the same administrative domain [3]

21

fi
kinit -F -k -t /etc/cdfcaf.keytab $PROXY_USER
kx509
kxlist -p # Write $X509_USER_PROXY

}

vomsProxy()
{

if [‘‘$DEBUG’’ -eq 1]; then
echo \$X509_USER_PROXY=$X509_USER_PROXY

fi
voms-proxy-init -cert $X509_USER_PROXY \

-key $X509_USER_PROXY --voms cdf
Overwrites $X509_USER_PROXY

voms-proxy-info -all
}

echo == ‘date‘ ==

Get x509 proxy
k5Proxy

In the unlikely event
while [‘‘$?’’ -ne 0]
do

echo ‘‘WARNING. Problems with k5 proxy generation, ‘‘
echo ‘‘ wait 1 min and retry ...’’
sleep 60;
k5Proxy

done

Now refresh k5->VOMS Proxy
vomsProxy

Return status code of VOMS Proxy renewal
exit $?

Glide-in Submission Driver Script

The following is an example of a driving script that callssubmit glidein.sh with proper
input. This is given here just for completeness sincesubmit glidein.sh can also be called

22

from a cron job passing the input arguments directly.

#!/bin/sh
#

GATEKEEPERS[0]=ce02-lcg.cr.cnaf.infn.it:2119/jobmanager-lcglsf
GATEKEEPERS[1]=prod-ce-01.pd.infn.it:2119/jobmanager-lcglsf
GATEKEEPERS[2]=gridba2.ba.infn.it:2119/jobmanager-lcgpbs
GATEKEEPERS[3]=gridit-ce-001.cnaf.infn.it:2119/jobmanager-lcgpbs

gk_index=0
if [$# -gt 0]; then

gk_index=$1
if [‘‘$gk_index’’ -lt 0]; then

random_number=‘perl -e ’{print int(rand()*10)}’‘
gk_index=${random_number}
if [‘‘$gk_index’’ -lt 1]; then

gk_index=2
fi

fi
fi

n_glideins=0
if [$# -gt 1]; then

n_glideins=$2
fi

n_glmax=2000
if [$# -gt 2]; then

n_glmax=$3
fi

gatekeeper=${GATEKEEPERS[$gk_index]}
echo $gatekeeper $n_glideins $n_glmax

CONDOR_HOME=/cdfcaf/condor
GLIDEIN_DIR=/afs/infn.it/project/cdf/glidein

source $CONDOR_HOME/sh/condor_setup.sh
source $CONDOR_HOME/sh/glidein_setup.sh

$GLIDEIN_DIR/submit_glideins.sh $gatekeeper $n_glideins $n_glmax

23

exit $?

Appendix H: Scalability Issues and Condor-G GridMonitor

GlideCAF software tries to ensure that the Condor-G GridMonitor starts correctly on the Headnode
in order to reduce load on the Gatekeeper. If you still find a high load on the Gatekeeper caused by
Glide-ins submission, check if the perl script$CONDORHOME/dist/sbin/grid monitor.sh
supports your jobmanager. For example, GlideCNAF uses a patched version of the script where
lcgpbs andlcglsf job managers were added. Refer to [6] for a discussion about scalability
of the Gatekeeper and the role of Condor-G GridMonitor.

References

[1] Condor Project Team. Offical Condor Homepage.http://www.cs.wisc.edu/condor. 1

[2] F. Wurthweinet. al. CDF CAF Design Document.CDF Internal Note, 5961. 1

[3] I. Foster, C. Kesselman and S. Tuecke. The Anatomy of the Grid.International Journal of
High performance Computing Applications, 15, 3 (2001).3

[4] I. Sfiligoi et. al . CAF based on Condor.CDF Internal Note, 7088. 1

[5] I. Sfiligoi et. al . Condor CAF Installation Manual. 2005.5

[6] Alan Roy. Using Condor-G Effectively.http://www.cs.wisc.edu/ roy/effectivecondorg, Ver-
sion 4. 3

24

	1 Introduction
	2 Condor-G and Glide-ins
	2.1 Authentication
	2.2 GlideCNAF

	3 Acknowledgments
	4 Conclusions
	5 Appendices

