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Implementation of quantum imaginary-time evolution method
on NISQ devices by introducing nonlocal approximation

Hirofumi Nishi®'*%, Taichi Kosugi'? and Yu-ichiro Matsushita

The imaginary-time evolution method is a well-known approach used for obtaining the ground state in quantum many-body
problems on a classical computer. A recently proposed quantum imaginary-time evolution method (QITE) faces problems of deep
circuit depth and difficulty in the implementation on noisy intermediate-scale quantum (NISQ) devices. In this study, a nonlocal
approximation is developed to tackle this difficulty. We found that by removing the locality condition or local approximation (LA),
which was imposed when the imaginary-time evolution operator is converted to a unitary operator, the quantum circuit depth is
significantly reduced. We propose two-step approximation methods based on a nonlocality condition: extended LA (eLA) and
nonlocal approximation (NLA). To confirm the validity of eLA and NLA, we apply them to the max-cut problem of an unweighted 3-
regular graph and a weighted fully connected graph; we comparatively evaluate the performances of LA, eLA, and NLA. The eLA
and NLA methods require far fewer circuit depths than LA to maintain the same level of computational accuracy. Further, we
developed a “compression” method of the quantum circuit for the imaginary-time steps to further reduce the circuit depth in the
QITE method. The eLA, NLA, and compression methods introduced in this study allow us to reduce the circuit depth and the
accumulation of error caused by the gate operation significantly and pave the way for implementing the QITE method on NISQ

devices.
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INTRODUCTION

Quantum computers, initially proposed by Feynmann', were
reported by Benioff?, Deutsch®*, Grover®, and Shor® to have great
potential that could overwhelmingly surpass that of classical
computers. Furthermore, Google experimentally demonstrated
quantum supremacy, which is the refutation of the extended
Church-Turing thesis, proving the feasibility of quantum compu-
ters and raising the expectation for solving practical problems that
a classical computer cannot address’. Quantum computers can
efficiently solve problems in the BQP (bounded-error quantum
polynomial) complexity class® and verify an answer to a problem
in the QMA (quantum Merlin—Arthur) complexity class®. One of the
actively researched problems for quantum computers is combi-
natorial optimization, which is an NP-hard problem'®. Combina-
torial optimization problems are closely related to our daily lives,
and they include the traveling salesman problem'’, scheduling
problem'?, and SAT (satisfiability problem) solver'3, Although
combinatorial optimization problems are NP-hard, some quantum
algorithms were shown to be superior to the classical ones.
Grover's algorithm is already known to improve the computational
cost with quadratic speedup when compared with classical
computers''> It has been reported that quantum annealing is
faster than simulated annealing in several cases'®°. Recently,
quantum approximate optimization algorithm (QAOA) has been
researched owing to its superiority over classical algorithms, which
was demonstrated at the time of its proposal®'. However, with the
development of classical algorithms??, the quantum advantage of
QAOA is now an open question.

Under these circumstances, it is challenging for researchers all
over the world to employ existing or near-future quantum
computers to achieve tasks that are very difficult or impossible
using classical computers. Currently available quantum computers
are noisy intermediate-scale quantum (NISQ) devices®®. Further,

conventional quantum algorithms, such as Grover's algorithm,
require many gate operations and they cannot be implemented
on NISQ devices with no error correction due to short coherence
time. Recently, classical-quantum hybrid algorithms called varia-
tional quantum eigensolver (VQE)**%, and QAOA?'%*°7° have
been proposed for NISQ devices. In these methods, ansatz states
with parameters are implemented on quantum circuits, and the
parameters included in the ansatz states are optimized on a
classical computer. While VQE and QAOA can be realized with a
limited number of quantum operations and have good noise
tolerance, it is difficult to determine the ansatz states properly and
converge high-dimensional parameters>'.

For quantum many-body problems, an imaginary-time evolu-
tion method is a known computational method to identify the
ground state. The imaginary-time evolution method selectively
extracts the ground-state component by performing time evolu-
tion in the direction of imaginary time. Various combinatorial
optimization problems are converted to a Hamiltonian format, and
their corresponding Hamiltonian is derived®2 Thus, it is possible to
solve the combinatorial optimization problem using the
imaginary-time evolution method.

The implementation of the imaginary-time evolution method
on a quantum computer involves a critical problem in that the
imaginary-time evolution operator is a nonunitary operator, and
therefore, it cannot implement the imaginary-time evolution
method on a quantum computer in its current state. To overcome
this challenge, two quantum imaginary-time evolution (QITE)
methods—one that assumes an ansatz state and another that
does not—were proposed in previous studies****, The method
that assumes the ansatz state traces the imaginary-time evolution
of the parameters contained in the ansatz state®**>3°, The other
method introduces a unitary operation to reproduce the state on

'Laboratory for Materials and Structures, Institute of Innovative Research, Tokyo Institute of Technology, Tokyo, Japan. 2Quemix Inc., Tokyo, Japan. email: nishi.h.ac@m.titech.ac.jp

Published in partnership with The University of New South Wales

NP| nature partner
pJ journals


http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00409-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00409-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00409-y&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41534-021-00409-y&domain=pdf
http://orcid.org/0000-0001-5155-6605
http://orcid.org/0000-0001-5155-6605
http://orcid.org/0000-0001-5155-6605
http://orcid.org/0000-0001-5155-6605
http://orcid.org/0000-0001-5155-6605
http://orcid.org/0000-0002-9254-5918
http://orcid.org/0000-0002-9254-5918
http://orcid.org/0000-0002-9254-5918
http://orcid.org/0000-0002-9254-5918
http://orcid.org/0000-0002-9254-5918
https://doi.org/10.1038/s41534-021-00409-y
mailto:nishi.h.ac@m.titech.ac.jp
www.nature.com/npjqi

H. Nishi et al.

which the imaginary-time evolution operator has acted accurately
without assuming an ansatz state>*3”-%,

We focus on the QITE method without the ansatz assumption
and apply it to the optimization problems. The QITE method
requires defining a domain size, which determines the accuracy of
reproducing the imaginary-time evolution operator. The quantum
circuit of an imaginary-time step scales exponentially with respect
to this domain size. Besides, as an additional quantum circuit is
added at each imaginary-time step, the quantum circuit becomes
deeper in proportion to the lapse of imaginary time®*. These two
features make it difficult to implement the QITE method on NISQ
devices.

Therefore, we propose two approximations and one computa-
tional technique to overcome this difficulty. We succeeded in
significantly reducing the quantum circuit depth of the QITE
method, and we applied the developed algorithms to the max-cut
problem, which is an NP-hard problem. For the max-cut problem,
we chose an unweighted 3-regular graph and a weighted fully
connected graph. The latter is a problem known as the
classification problem in the context of unsupervised machine
learning®®°,

RESULTS

Unitarization of imaginary-time evolution operators

Consider a scenario wherein a Hamiltonian A is given for the
optimization problem considered in this study. The Hamiltonian H
is expressed as the summation of some partial Hamiltonians h[m]
as H= Z ham h[m] where Np.m is the number of the partial
Hamlltonlans The max-cut problem, which is a computational
target of this work, is represented by the Hamiltonian in the form
of Ising spins and can be mapped to the Pauli-operator

of the Hamiltonian of quantum chemistry, each partial Hamilto-
nian can be mapped to the Pauli-operator representation on
qubits via the Bravyi-Kitaev representation*' or Jordan-Wigner
representation*?

For a given Hamiltonian, the ground state is obtained by using
the imaginary-time evolution method. We apply the imaginary-
time evolution operator defined by e~ ™, where 7 is the imaginary
time to reach the initial (r = 0) state of the system, |¥(tr = 0)); and
e ™|¥(t = 0)). The imaginary-time evolution operator is decom-
posed by a first-order Suzuki-Trotter decomposition into ones
with a small imaginary-time step AT (T=ATXNgep,) of the
individual partial Hamiltonians h[m].

4 Nstep Nham
e ™ H H e rhlm] O(AT?) . (M

n=1 m=1

Because the operators of the imaginary-time evolution are
nonunitary, they cannot be directly implemented as a gate
operation on a quantum computer. In the QITE method, the unitary
operator e 2™ s defined such that it reproduces the state
e ™|y} for a given state |W,) = |¥(1 = nA1)). We determine the
Hermitian operator A,[m] that minimizes the following residual
norm.
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Nonlocal condition for imaginary-time evolution operators
We express the Hermitian operator A,[m] as a linear combination

representation for qubits in a straightforward manner. In the case of the Dth order tensor products of Pauli operators
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Fig. 1 Quantum circuit diagrams and quantum circuit depth. a Schematic of a 3-regular graph. A partial Hamiltonian B[m] acts on qubits

represented with red vertices, i.e., h[m] o 0z ®6Z, Outer blue vertices represent a domain directly connected to the red vertices. Blue
vertices contained in the pale blue region comprise the set L, in Eq. ( ). b Quantum circuit diagram for one imaginary-time step of LA. The
horizontal line represents each qubit, and the yeIIow box represents 4° gating operations on the straddling qubits. ¢ Quantum circuit diagram
for one imaginary-time step of the NLA (domain size D = 2). The green boxes and vertical lines connecting them represent a second-order
tensor product operation on the two straddling qubits, with one imaginary-time step containing y,,Cp of second-order tensor products.
Detailed quantum circuit of the two-qubit unitary gate is described in Supplementary Note 2. The dependence of the quantum circuit depth
for one imaginary-time step of the max-cut problem in the 3-regular graph (d) and the fully connected graph (e) as a function of the number

of qubits.
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Table 1. Scaling of the size of the matrix ™ and the number of gate
operations per qubit of the linear equation of LA and NLA per
imaginary-time step.

Method Scaling of the size of the Scaling of the gate operations

linear equation per qubit
LA 4P 4PNpamD/Nipit
NLA 4P, Cp 4Py 1Cp 4

{7,,6)(‘/,6,/7,,627,} acting on the Ith qubit as
A ! ~ ~
Anlm] = Z GSWI{?.,D‘/]...,D (MG, 1y (m) ® -+ @ Big 3)

k1, Ip€llm i1-+ip

where the prime on the first summation symbol indicates
removing the double counting of the repeated tensors. We
defined L, as the set of Ny, qubits, each of which is directly

connected with those acted on by the partial Hamiltonian h[m];

however, L, does not contain the qubits acted on by h[m] [see
Fig. 1a]. The parameter D, which is called the domain size, satisfies

k D k + Ny, where we assumed the partial Hamiltonian h[m] to
be written by a tensor product of the kth order. {I;(m),--- [ i(m)} is

the set of qubits contained in the partial Hamiltonian h[m]. The
summation in Eq. (3) is taken over all combinations of D — k
qubits, {lx ; 1(m),---, Ip(m)}, and chosen from L. D is an input
parameter that represents the level of approximation; a larger D
indicates that the imaginary-time evolution operator is expressed
using higher-order tensor products and the residual norm in Eq.
(2) shows a smaller value, which leads to a better approximation.
Note that for D = Ny;;, with Np;; being the number of qubits, the
residual norm in Eq. (2) vanishes when minimized, yielding
the exact imaginary-time evolution operator. In this context, the
parameter D represents a truncation level. We consider a scenario
where the domain size D incorporates all elements in I, namely
D =k+ Ny, and then Eq. (3) reproduces the operator A,[m]
introduced in reference®*. This implies that Eq. (3) is a natural
extension of the approximation introduced in reference*. We call
the method for determining the operator A,[m] defined in
reference®® local approximation (LA) for comparison with later
approximation. Then, we refer to the method defined in Eq. (3) as
extended local-approximation (eLA). The following notation is
used to indicate the domain size D: e.g., LA with D =6 is denoted
by LA-D6. Note that, for LA, it is a well-defined approximation only
when the domain size D = k + Ny, and the value of D that can
be taken is limited by the Hamiltonian. With an ill-defined domain
size D in LA, we found that the calculation accuracy decreased,
which is called “Inexact QITE" in reference®’. Note that eLA can
remove such constraints on the Hamiltonian and flexibly
determine the parameter D by considering the linear combination
for qubits. This flexibility is obvious in the max-cut problem of the
fully connected graph. Solving the minimization problem in Eq. (2)

to determine the coefficients af{';_),} [m] results in the linear equation
SMa™m] = b™[m], which can be solved using a classical
computer. Here, 5({7}‘_}{},‘/]} = (wn|a{,.‘,i}a{j‘,j}|wn> and b({7.)/,-}[m] =
(Wn|6f{iv,f}f;[mﬂ%>. Figure 1b shows a schematic of the quantum

circuit representing one imaginary-time step of LA. In LA, the
operator of the imaginary-time evolution is approximated by the
tensor products of Pauli operators up to the Dth order; therefore,
4P gate operations are required for each partial Hamiltonian. The
total number of gate operations for one step of the imaginary-
time evolution is Nyam4®. Table 1 summarizes the size of the linear
equation of the LA per step of the imaginary-time evolution and
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the number of gate operations per qubit, where Ny is the total
number of qubits.

Furthermore, this study proposes another approximation
method for A, in the following form:

~ ! ~ ~
A= " ap Oin @ @ By )
I

1lp dvsip

The difference from Eq. (3) is that we remove the restriction on the
set {ly(m),--- l((m)} and extend the summation over qubits to
incorporate all possible combinations of D qubits {/;(m),--+ Ip(m)}.
We call this an NLA. As per this definition, we expand the
Hermitian operator, A,, using tensor products of Pauli operators
over all qubit combinations. Moreover, in LA and elA, the tensor
product space describing A,[m] is different depending on m,
which is the partial Hamiltonian. The NLA has a notable feature in
that the tensor product space that describes A[m] is the same for
all m. Table 1 lists the size of the linear equations of the NLA per
step of the imaginary-time evolution and the number of gate
operations per qubit, where the NLA requires only 4° unitary
operators in y,, Cp combinations for the quantum circuit in the first
step of the imaginary-time evolution. Figure 1c shows the
schematic of the quantum circuit of the NLA for one step of the
imaginary-time evolution (for D =2).

Reduction effect of circuit depth

To clarify the accuracy and effectiveness of NLA, we applied it to
the max-cut problem, which is an NP-hard problem. The
Hamiltonian of the max-cut problem in qubit representation is
given in the following form containing second-order tensor
products®2.

: 1= 62,02
H==D dj—p— Q
(ij)eE

As for the max-cut problem, we considered typical graphs such as
3-regular and fully connected graphs. The 3-regular graphs have
three connected edges at every vertex, where E is the set of edges
contained in the graph and d;; is the weight of the edges
connecting the ith and jth vertices.

The circuit depths, when LA and NLA are applied to the max-cut
problem, are shown in Fig. 1d for the 3-regular graph and Fig. 1e
for the fully connected graph because different graphs of the max-
cut problem change the number of the partial Hamiltonian
Nhams the necessary circuit depths for each approximation change
correspondingly. In Fig. 1d, e, the circuit depth calculated using
Qiskit*® is plotted with points, and the plotted points are
extrapolated. In the case of k-regular graphs, the number of the
partial Hamiltonians is given by Npam = kNpit/2. It increases linearly
with the number of vertices Ny so that the number of gate
operations per qubit does not depend on the number of qubits, as
listed in Table 1. Thus, we extrapolated using y = const.. In NLA,
regardless of the structure of the Hamiltonian, the number of gate
operations per qubit is scaled by O(Np®~") with respect to the
number of qubits Ny,;; because all combinations of y,, Cp are taken
for gate operations including the Dth order tensor product. In Fig.
1d, the circuit depth of the NLA is extrapolated by the function
fitted by f(x) =xP~1.

Note that in LA, D=3, 4, and 5 are not well-defined in the 3-
regular graph. Thus, D=6 is required, and 4°=4096 gate
operations are necessary for the imaginary-time evolution of
one partial Hamiltonian, which leads to a deeper circuit depth and
difficulty in implementation on NISQ devices. In addition, the
circuit depth required for LA-D6, compared to NLA-D2, NLA-D3,
etc,, is considerably higher in the region with a small number of
qubits. The circuit depth of the NLA becomes deeper than that of
LA in the region where the number of qubits increases.

npj Quantum Information (2021) 85
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Fig. 2 Numerical simulation of QITE method. Energy E (a) and component proportions of the state n(E) (b) in the QITE method to the max-
cut problem for an unweighted 3-regular graph with ten vertices. The ground state is denoted by GS and the first excited state by ES. The
energy E (c) and component proportions n(E) (d) of the QITE method for a weighted fully connected graph with ten vertices. e The total
energy level diagram of the weighted fully connected graph and the eigenstates corresponding to the ground state and the first excited state

(divided into two regions, red and blue).

In Fig. 1e, LA-D2 and eLA-D3 are not shown for the fully
connected graph (Nham=n,, C2) because the circuit depth of LA-D2
is equal to that of the NLA-D2, and that of eLA-D3 is equal to that
of NLA-D3. In addition, because the domain size has to be D = Ny;;
in LA, which is the exact imaginary-time evolution in a fully
connected graph, and the circuit depth increases exponentially
with respect to the number of qubits. In NLA, it can be scaled
down to the linear or quadratic function with respect to the
number of qubits. This result indicates that the NLA and eLA are
efficient in reducing the circuit depth, especially when the number
of partial Hamiltonians increases; further, these algorithms are
effective for NISQ devices.

Calculation accuracy
Simulations were performed after modifying the code provided in
reference®®. As an initial state, we adopted a state in which all
states were superimposed with equal a priori weights. We adopt a
figure of merit to discuss the accuracy of the QITE method.
= lim,_., POIHI¥D). ©
Ecs

The first target of the max-cut problem is an unweighted 3-
regular graph with ten vertices, where Egs is the energy of the
ground state, and it is obtained from the exact diagonalization.
The energy of the ground state is Egs= —12. It is known that
designing a classical algorithm that achieves r>331/332 for an
unweighted 3-regular graph is an NP-hard problem®*. Further, the
approximation accuracy of the current classical algorithm is r=
0.9326. Figure 2a shows the imaginary-time dependence of the
energy. The imaginary-time step was set to At=0.01. In LA-D2, as
the imaginary-time 1 increased, the energy decreased exponen-
tially in the beginning and converged to around —9, which is

npj Quantum Information (2021) 85

higher than the exact solution by about 3. Another important
point is that the energy does not monotonically decreases along
the imaginary-time evolution. This behavior indicates that the
conversion of the operator of the imaginary-time evolution to the
unitary operators is less accurate in expanding it in the space of
LA-D2. Furthermore, the LA-D6 calculation result shows E=
—11.99, which is the energy almost equal to the exact solution. We
found that an approximation accuracy in the eLA-D3 is E=—
11.17 (r=0.93) (the lowest value is E= —11.33 (r = 0.94)); in NLA-
D2, E=—11.42 (r=0.95); and in NLA-D3, E= —12.00 (r = 1.00). We
found that eLA-D3 had an approximation accuracy similar to that
of the classical algorithm, and NLA-D2 had already exceeded the
approximation accuracy of the classical algorithm. NLA-D3 shows
better accuracy than NLA-D2 and can reach a nearly exact
solution. Note that eLA and NLA monotonically decrease the
energy along the imaginary-time evolution with sufficiently good
accuracy compared to LA-D2. This behavior was confirmed not
only for NLA-D2 but also for NLA-D3 and others. As can be seen
from Fig. 1d, in LA-D6, the circuit depth of one imaginary-time
step is 369757, while the circuit depth in the NLA-D2 is 789. This
implies the circuit depth of NLA can be significantly shallower
than that of LA.

While NLA-D3 has extremely high accuracy, its circuit depth
increases with a quadratic function with respect to the number of
qubits. Then, we developed NLA-D2.5 to keep the scaling of the
circuit depth as linear as NLA-D2 while maintaining the accuracy
of NLA-D3, which is an approximation to expand the space of A,
to the space involving the second-order tensor products
incorporated by NLA-D2 and the third-order tensor products by
eLA-D3. Thus, by incorporating some portions of bases of eLA-D3
into those of NLA-D2, computational scaling can be made linear
with respect to the number of qubits, which makes it applicable
even in regions with a large number of qubits. Figure 1d shows

Published in partnership with The University of New South Wales
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Fig. 3 Numerical simulation of compression of imaginary-time steps. a Schematic of the compression of the imaginary-time step. Ncomp
steps are compressed into one step by 1st-order Suzuki-Trotter decomposition. Energy E (b) and component of the eigenstate n(E) (c) in the
imaginary-time evolution with and without compression of the imaginary-time step in the max-cut problem of an unweighted 3-regular
graph with ten vertices. The compressed point Ncomp, is plotted with circles. d Results of the simulation with noise for the max-cut problem in

an unweighted graph with four vertices.

that the circuit depth is almost the same as that of NLA-D2 for 50
qubits or more, which means that the circuit depth can be
significantly reduced compared to that of NLA-D3. In addition, the
calculation result of NLA-D2.5 is E=—11.95 and r=0.99, which
gives a good approximation accuracy with a small circuit depth.

Here, for further consideration, we decomposed the state
|W(1)) = e ™ |¥(r = 0)) into the eigenstate components of the
Hamiltonian, and the calculated n(E)=5|(i|¥(D)*5(E—E) as a
function of energy E at each imaginary-time step 7 is plotted in Fig.
2b where |} is the eigenstate of H and E; is the eigen energy of |i).
Here, we note that the ground state of the eigenstate component
n(Egs) is equal to the so-called fidelity defined as
F=|(Y1)|Wes)|®>. The ground state can be observed with
probabilities of n(Egs) = 0.60 for eLA-D3 (at maximum, n(Egs, T=
2.87) = 0.65), n(Egs) = 0.69 for NLA-D2, n(Egs) = 0.97 for NLA-D2.5,
and n(Egs) = 1.00 for NLA-D3. The imaginary-time dependence of
the probability of the first excited state is also plotted. For the first
excited state, it is observed that the probability is amplified up to
T=1, and it starts to decrease, which increases the ground-state
probability.

Next, we deal with another computational model called a
weighted fully connected graph (classification problem). The
coupling constants d;; were given by random numbers. The
ground-state energy is Egs = —57.993. In addition, the imaginary-
time step is set to At=0.01. In the classification problem, as
shown in Fig. 2e, each graph vertex is colored red or blue. In LA-
D2, as in the 3-regular graph, we observed that the energy does
not necessarily decrease monotonically. The energy of eLA-D3 is
lower than that of NLA-D2; E = —57.504 (r = 0.99) for eLA-D3, E=
—57.026 (r = 0.98) for NLA-D2, and E = —57.985 (r = 0.99) for NLA-
D3 (Fig. 2c). From the viewpoint of the component analyses of the
states, the ground state and the first excited state are pseudo-
degenerate (Fig. 2e), and therefore, the probability of the first

Published in partnership with The University of New South Wales

excited state remains at the same level as the ground state even
around 7= 2 when the energy converges sufficiently (Fig. 2d). In
NLA, the first excited state gradually decays along with the
imaginary-time evolution; however, a sufficiently long imaginary-
time evolution is necessary. In particular, NLA-D2 behaves similarly
to NLA-D3, and NLA-D2 is sufficiently accurate to obtain the
ground state in actual applications.

We now consider why the accuracy of eLA and NLA is better
than that of LA with a relatively small domain size D. From the
actual application results of eLA-D3, we found that the b(,z, [m]
(LPn\oTl,} [m]|¥,) =~ 0 when the Pauli operator oz iy @n ht | do
not intersect each other With a rough approximation for such
cases, b( ) [ = (¥,|6! ! h[m]|¥,) = 0, a sparsity in the coeffi-
cients o A can be de uced which eLA highlight and leverage.
This fact means that the terms that would require a large domain
size D in LA can be efficiently captured with a smaller domain size
D in eLA, leading to its high accuracy. Furthermore, by considering
that the definition of NLA is expanded from that of eLA, NLA can
improve further the accuracy of eLA.

Compression of imaginary-time steps

The approximation accuracy of the NLA and its circuit depth have
been discussed. The “compression of imaginary-time steps” is
introduced in this section for further reduction of the number of
gate operations in NLA. Figure 3a shows a schematic of the
compression technique. When the imaginary-time step At is
sufficiently small, the time-evolution operators can be compressed
into a single exponential form via the reverse Suzuki-Trotter
decomposition

Neomp Neomp

[ exp(—iatA,) = exp(—int Y~ A,) + O(AT), 7
n=1 n=1

npj Quantum Information (2021) 85
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where Ncomp is the number of compressed steps. It is necessary to
choose an appropriate Neomp Within the range that guarantees
sufficient accuracy for the Suzuki-Trotter decomposition because
its accuracy decreases if the Ncomp becomes large. To determine
the specific Neomp in this work, we increased the Nomp parameter
by one at every time-evolution step until the total energy
increases. In actual QITE calculations, Neomp is not necessarily a
constant throughout the calculation. This method enables the
reduction of quantum circuits to as small as 1/N¢omp. We discussed
the error of the second order for At in the compression method in
Supplementary Note 1.

The graph used for the calculation is the same as that in Fig. 2a,
b, which is a 3-regular graph with ten vertices. Figure 3 shows the
results of the compression technique for the QITE. In Fig. 3b, the
time the compression ended is plotted as a blue circle. In the case
of Fig. 3b, the quantum circuit depth is significantly reduced by
the compression technique to four compressed imaginary-time
steps, and the energy at =10 is E=—11.43 (r=0.95) without
and E=—11.59 (r=0.97) with the compression technique. We
found that sufficient accuracy was achieved regardless of the
compression, which indicates that compression does not affect
the results. It may be assumed that the compressed technique has
a lower energy than that of the uncompressed calculation; a
detailed investigation revealed that this was attributed to the
accidental acceleration of the convergence by compression.
Figure 3c plots the component analyses of the wavefunctions
during the imaginary-time evolution with and without the
compression method. Finally, the probability of obtaining a
ground state is n(Emyin) = 0.76 with and n(Enyin) = 0.73 without
the compression technique.

The “compression of imaginary-time steps” is effective in
reducing the circuit depth, and simultaneously, it reduces the
noise associated with the gate operations. We discuss the results
of the simulation with noise. The actual qubits are currently
connected only with neighboring sites; however, in this study, we
simulated a fully connected model. For implementation on an
actual quantum computer, in which only adjacent sites are
connected, a SWAP gate can be used with an overhead of
O(v/Npir)*®. For example, QAOA uses a SWAP network?*® to
implement a O(Ny;t) overhead*. We describe the quantum circuit
of NLA-D2 of the QITE method for an adjacent-coupling circuit
using the SWAP network in Supplementary Note 2. Figure 3d
shows the simulation results of the max-cut problem for an
unweighted graph with four vertices. The coefficients a ',7‘, in Eq.
(4) for the noisy calculation are the same as those for the non-
noisy calculation. The noiseless condition without compression
results in E= —3.94, which is close to the exact solution £ = —4.00
around T = 5. However, the circuit depth is 922 (At = 0.5), and the
simulation result with noise is E= —3.13, which is far from the
exact solution. This gap was attributed to the accumulation of
errors caused by an increase in circuit depth. The result with
compression is E= —3.85 in the case without noise; however, the
circuit depth is 163, and the effect of noise is expected to be less
sensitive. In fact, the simulation result with noise is E= —3.63,
which shows that the noise can be reduced with compression.
Thus, it has been shown that the “compression” method of
quantum circuits has the advantage of reducing the accumulation
of errors.

DISCUSSION

In this study, we proposed two-step approximation methods
based on nonlocality: eLA and NLA. We applied them to the Max-
cut problem of an unweighted 3-regular graph and a weighted
fully connected graph, and comparatively validated the perfor-
mances of LA, eLA, and NLA. We found that NLA requires
significantly less circuit depth than LA while maintaining the same
level of computational accuracy. For example, when we request
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the classical approximation limit in the QITE calculations, the
circuit depth required for a single imaginary-time step can be
significantly reduced from 369,757 for LA to 789 for NLA when
applying it to a 3-regular graph, and from about 314,000 for LA to
789 for NLA when applying it to a fully connected graph. Further,
we developed a “compression” technique of the imaginary-time
evolution steps to further reduce the circuit depth in the QITE
method. With this compression method, we succeeded in further
reducing the circuit depth. We showed that the reduction in
circuit depth using this compression method has a secondary
effect of reducing the accumulation of error caused by the gate
operation. Thus, it is an effective method for realization on NISQ
devices. The eLA, NLA, and compression methods introduced in
this study enable us to significantly reduce the circuit depth and
the accumulation of error caused by the gate operation and have
paved the way for the realization of the QITE method on NISQ
devices.

METHODS

Noisy simulation of QITE method

Our numerical simulations were performed after implementing the eLA,
NLA, and compression method on the code provided in reference®’. The
simulation of the quantum noise’s presence is performed with
the implementation of the QITE method at the level of the NLA-D2 on
the IBM Qiskit quantum simulator. Although almost all actual quantum
devices’ qubit connectivity is restricted, we simulated the QITE method
based on the fully connected coupling. For implementation on a device
connected only with neighboring qubits, we provide a circuit of the QITE
method using the SWAP network in Supplementary Note 2. The error
model of the gate was constructed from the thermal relaxation time (T;,
T,) = (100 ps, 80 us), and the gate time (Ty;, Tgy) =(0.02 ns, 0.1 ns). The
noise simulation was performed by introducing the readout errors (poo,
Po1, P1o, P11) = (0.995, 0.005, 0.02, 0.98). These parameters were assumed
to be close to the actual values of IBMQ™°.

Note added to proof

During our review of this paper, we noticed an independent work-related
“compression method” being done in parallel®'.
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