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Abstract. The low-temperature behavior of ferromagnets with a spontaneously broken
symmetry O(3) → O(2) is analyzed within the perspective of effective Lagrangians. The leading
coefficients of the low-temperature expansion for the partition function are calculated up to three
loops and the manifestation of the spin-wave interaction in this series is discussed. The effective
field theory method has the virtue of being completely systematic and model-independent.

1. Motivation

The question of how the low-temperature expansion of the partition function of a ferromagnet
is affected by the spin-wave interaction, has a long history. After a series of erroneous attempts,
Dyson, in his pioneering paper on the thermodynamic behavior of an ideal ferromagnet [1],
showed that the spin-wave interaction in the free energy density starts manifesting itself only
at order T 5. Here we go beyond Dyson’s analysis and explicitly calculate the effect of the spin-
wave interaction beyond T 5 in the free energy density of a ferromagnet. To the best of our
knowledge, this is the first time that the general structure of this power series and the explicit
calculation of the corresponding coefficients is given. Here, we just present some preliminary
results - a detailed exposition of the evaluation and, in particular, an extensive discussion of the
low-temperature series for the spontaneous magnetization of an ideal ferromagnet, will be given
elsewhere [2].

In the present work, we will make use of an approach which has the virtue of being completely
systematic and model-independent: the method of effective Lagrangians. Within the effective
Lagrangian framework, the structure of the low-temperature expansion of the partition function
for an O(3) ferromagnet was analyzed in Ref. [3] up to order T 5 and Dyson’s series was
reproduced in a straightforward manner. In the effective language, this corresponds to including
Feynman diagrams for the partition function up to two loops. Here we consider Feynman
diagrams up to three-loop order in the perturbative expansion of the partition function. As
it turns out, in the free energy density of a ferromagnet, the next-to-leading interaction term

already sets in at order T
11

2 – remarkably, this term is completely determined by the two low-
energy coupling constants of the leading-order effective Lagrangian L2

eff and does not involve

any higher-order effective constants from L4

eff related to the anisotropies of the cubic lattice.
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2. Effective field theory evaluation

The effective Lagrangian method relies on an analysis of the symmetry properties of the
underlying theory, i.e., the Heisenberg model in our case. In particular, it can universally
be applied to systems with a spontaneously broken symmetry and is formulated in terms of
Goldstone boson fields which are the relevant degrees of freedom at low energies [4]. Microscopic
details of the system, such as the structure of the lattice, are taken into account through a
few low-energy coupling constants in the effective Lagrangian. Symmetry does not fix the
actual numerical values of these couplings – these have to be determined experimentally or
in a numerical simulation of the underlying model. Symmetry, however, does unambiguously
determine the derivative structure of the terms in the effective Lagrangian.

Whereas the Heisenberg model is invariant under global O(3) spin rotations, the ground
state of the ferromagnet is invariant under the subgroup O(2) only. We then have one type of
spin-wave excitation – or one magnon particle – in the low-energy spectrum of the ferromagnet
which obeys a quadratic dispersion relation.

The leading-order effective Lagrangian (see Ref. [5]) is of order p2 and takes the form

L2

eff = Σ
ǫab∂0U

aU b

1 + U3
+ ΣµHU3 −

1

2
F 2∂rU

i∂rU
i . (1)

The two real components of the magnon field, Ua(a = 1, 2) are the first two components of the
three-dimensional unit vector U i = (Ua, U3), which transforms with the vector representation
of the rotation group. The quantity H is the third component of the external magnetic field
~H = (0, 0,H),H > 0. While the structure of the above terms is unambiguously determined by
the symmetries of the underlying theory, at this order, we have two a priori unknown low-energy
constants: the spontaneous magnetization Σ and the constant F . The above Lagrangian implies
a quadratic dispersion relation

ω(~k) = γ~k2 + O(|~k|
4

) , γ ≡
F 2

Σ
, (2)

characteristic of ferromagnetic magnons. It is important to note that – in the power counting
scheme – one temporal derivative is on the same footing as two spatial derivatives – in the
derivative expansion, two powers of momentum thus count as only one power of energy or
temperature: k2 ∝ ω, T .

The next-to-leading order Lagrangian is of order p4 and takes the form [3]

L4

eff = l1(∂rU
i∂rU

i)
2
+ l2(∂rU

i∂sU
i)

2
+ l3∆U i∆U i . (3)

It involves the three effective coupling constants l1, l2 and l3. Higher order pieces which are also
relevant for our calculation are

L6

eff = c1U
i∆3U i , L8

eff = d1U
i∆4U i . (4)

We conclude this section with a remark concerning effects induced by the anisotropy of the
lattice. For a cubic lattice, as shown in [6], the anisotropies start manifesting themselves only
at the four-derivative level: indeed, the pieces L4

eff , L6

eff and L8

eff contain additional terms –
not displayed in Eqs.(3) and (4) – which are not invariant under space rotations, such as

∑

s=1,2,3

∂s∂sU
i ∂s∂sU

i . (5)

In the present analysis, however, we do not take care of these extra terms and assume
space rotation symmetry up to order p8. The conclusions of the present paper regarding the
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manifestation of the spin-wave interaction in the partition function are not affected by this
idealization.

In finite-temperature field theory the partition function is represented as a Euclidean
functional integral

Tr [exp(−H/T )] =

∫

[dU ] exp
(

−

∫

T

d4xLeff

)

. (6)

The integration is performed over all field configurations which are periodic in the Euclidean
time direction U(~x, x4 + β) = U(~x, x4), with β ≡ 1/T . The periodicity condition imposed on
the magnon fields also reflects itself in the thermal propagator

G(x) =
∞
∑

n =−∞

∆(~x, x4 + nβ) , (7)

where ∆(x) is the Euclidean propagator at zero temperature,

∆(x) =

∫

dk4d
3k

(2π)4
ei~k~x−ik4x4

γ~k2 − ik4 + µH
. (8)

At finite temperature the derivative expansion in powers of the momenta amounts to an
expansion in powers of the temperature.

3. Results

While a detailed account of the perturbative evaluation can be found in Ref. [2], here we just
present some of the main results. The free energy density of the O(3) ferromagnet up to order
p11 is given by

z = − ΣµH −
1

8π
3

2 γ
3

2

T
5

2

∞
∑

n=1

e−µHnβ

n
5

2

−
15 l3

16π
3

2 Σγ
7

2

T
7

2

∞
∑

n=1

e−µHnβ

n
7

2

−
105

32π
3

2 Σγ
9

2

(

9l23
2γΣ

− c1

)

T
9

2

∞
∑

n=1

e−µHnβ

n
9

2

−
3(8l1 + 6l2 + 5l3)

128π3Σ2γ5
T 5

{

∞
∑

n=1

e−µHnβ

n
5

2

}2

−
945 d1

64π
3

2 Σγ
11

2

T
11

2

∞
∑

n=1

e−µHnβ

n
11

2

+
10395 l3c1

64π
3

2 Σ2γ
13

2

T
11

2

∞
∑

n=1

e−µHnβ

n
11

2

−
Σ

5

2

2F 9
j̄ T

11

2 + O(T 6) . (9)

The first term is temperature-independent. Contributions which involve half integer powers of

the temperature – T
5

2 , T
7

2 , T
9

2 and the first two terms of order T
11

2 – arise from one-loop graphs
and are thus all related to the free energy density of noninteracting magnons. Remarkably, up
to order p10 there is only one term in the above series – the order T 5 contribution, originating
from a two-loop graph – which is due to the spin-wave interaction and represents the Dyson
term. Note that there is no term of order T 4 in the above series of the free energy density.

The last term of order T
11

2 is related to a three-loop graph: The dimensionless function j̄,

j̄ = j̄(σ) , σ =
µH

T
, (10)
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in the limit σ→0, may be parametrized by

j̄(σ) = j1 + O(σ) , (11)

where the coefficient j1 is pure number given by

j1 = 0.0000091 . (12)

With the above results, the low-temperature series for the pressure takes the form

P = h0 T
5

2 + h1 T
7

2 + h2 T
9

2 + h3 T 5 + h4 T
11

2 + O(T 6) , (13)

with coefficients hi given by

h0 =
1

8π
3

2 γ
3

2

∞
∑

n=1

e−µHnβ

n
5

2

,

h1 =
15 l3

16π
3

2 Σγ
7

2

∞
∑

n=1

e−µHnβ

n
7

2

,

h2 =
105

32π
3

2 Σγ
9

2

(

9l23
2γΣ

− c1

)

∞
∑

n=1

e−µHnβ

n
9

2

,

h3 =
3(8l1 + 6l2 + 5l3)

128π3Σ2γ5

(

∞
∑

n=1

e−µHnβ

n
5

2

)2

,

h4 =
945

64π
3

2 Σγ
11

2

(

d1 − 11l3c1F
−2

)

∞
∑

n=1

e−µHnβ

n
11

2

+
Σ

5

2

2F 9
j̄ . (14)

In the limit σ = µH
T

→ 0, these coefficients become temperature independent and the sums
reduce to Riemann zeta functions,

h̃0 =
1

8π
3

2 γ
3

2

ζ(5

2
) ,

h̃1 =
15 l3

16π
3

2 Σγ
7

2

ζ(7

2
) ,

h̃2 =
105

32π
3

2 Σγ
9

2

(

9l23
2γΣ

− c1

)

ζ(9

2
) ,

h̃3 =
3(8l1 + 6l2 + 5l3)

128π3Σ2γ5
ζ2(5

2
) ,

h̃4 =
945

64π
3

2 Σγ
11

2

(

d1 − 11l3c1F
−2

)

ζ(11

2
) +

Σ
5

2

2F 9
j1 . (15)

Of particular interest are the last two terms involving the coefficients h3 and h4, as they contain
the spin-wave interaction part. The contribution displaying five powers of the temperature is the

famous Dyson term, while the interaction contribution contained in T
11

2 – the last term in the
coefficient h4 – is our main new result. Note that all other contributions to the pressure originate
from one-loop graphs – hence, those graphs describe noninteracting magnons and merely modify
the dispersion relation.

Up to order T 5, we thus reproduce Dyson’s series. In the effective Lagrangian framework,
the famous interaction term of order T 5 in the free energy density originates from a two-loop

XIV Mexican School on Particles and Fields IOP Publishing
Journal of Physics: Conference Series 287 (2011) 012018 doi:10.1088/1742-6596/287/1/012018

4



graph with an insertion from the next-to-leading order Lagrangian L4

eff . Remarkably, the next-

to-leading term resulting from the spin-wave interaction already sets in at order T
11

2 . Note again
that the coefficient of this three-loop interaction term, contained in h4, does not involve any
higher-order low-energy coupling constants. It only involves Σ and F , as well as the quantity j̄,
which is a dimensionless function determined by the symmetries of the underlying Heisenberg
model.

4. Conclusions

The effective Lagrangian method, which is based on symmetry considerations, has the virtue
of being completely systematic and model-independent. It allowed us to go beyond the results
of Dyson in a rigorous way and thereby solve the long-standing question of how the spin-wave
interaction manifests itself in the low-temperature expansion of the partition function of an ideal
ferromagnet. In particular, we have identified the correct temperature-power beyond the Dyson

term due to the spin-wave interaction: it is of order T
11

2 in the free energy density and does not
depend on the anisotropies of the cubic lattice.

A detailed exposition of the perturbative evaluation of the partition function within the
effective theory framework will be presented elsewhere [2]. In the same article, more results will
be provided. In particular, a detailed account of the low-temperature series for the spontaneous
magnetization of an ideal ferromagnet and its comparison with the condensed matter literature
will be given there.
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