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Abstract. It has recently been reported that gravitational wave echoes at a frequency of about 
72 Hz have been detected with the significance of 4.2σ from two neutron star merger event 
GW170817. Alternatively, the echoes of a gravitational wave can be obtained from ultra-
compact stars, i.e., stars with compactness between 1/3 and 4/9. The mass-radius relation of 
ultra-compact stars is crossing the photon sphere line, where the line obeys the relation 
compactness equal to 1/3. Furthermore, it has recently been reported that strange stars within a 
simplest MIT-Bag model with an ultra-stiff equation of state (EoS) where the speed of sound 
equal to speed of light in vacuum can produce gravitational wave echoes with frequencies on 
the order of tens of kilohertz. For more realistic models of strange star equation of state, the 
speed of sound in the matter is physically less than one, and it should be density-dependent. In 
this report, we will check whether the more realistic EoS of quark stars can emit gravitational 
wave echoes or not. Here we employ two models of EoSs such as MIT-Bag models with speed 
of sound =1/√3 and CIDDM models with the density-dependent speed of sound. 

1. Introduction 
The interpretation of gravitation wave GW170817 event detected by LIGO-VIRGO interferometers is 
a signal of two neutron stars merging with an estimated total mass Mtot about 2.4 solar mass. The final 
results of merging could be a massive compact star or black hole [1]. The existence of gravitation 
wave (GW) echoes in GW17087 event has been studied for the first time in Ref. [2]. They obtained 
from their analysis that a tentative signal with a frequency of about 72 Hz with 4.2σ significance level 
exists. The discussions of the origin, mechanism, and possible source of GW echoes can be found in 
Ref. [3] and the references therein, including there an interpretation of this echo signal as originating 
from ultra-compact objects. Note that the ultra-compact objects are objects with compactness larger 
than compactness of ordinary compact objects like neutron stars. Ultra-compact objects have 
compactness between 1/3 and 4/9. Therefore, the mass-radius of an ultra-compact object can cross the 
photon sphere line in the star mass-radius relation. The photon sphere is a surface located at R=3GM 
where the circular photon orbits around the object are possible. The known examples of ultra-compact 
objects are such as Gravstars, Wormholes, Fuzzballs [4]. 

Strange stars are stars composed by up, down, and strange quarks. The formation of strange stars is 
based on the consequence of the idea that the presence of strange quark can lower the binding energy 
of quark matter in weak equilibrium below the one of 56Fe. It is known in the literature as Bodmer and 
Witten hypothesis for the absolute stability of quark matter. Theoretical studies show that neutron stars 
may be converted to strange stars. However, the possible existence of quarks stars is still one of the 
most intriguing aspects of astrophysics, which has important implications for understanding the 
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physics of strongly interacting matter. There are many models of strange quark matter in literature. 
The MIT-Bag model provides the most straightforward description of strange quark matter, where 
quarks are free and the average impact of confinement is provided through Bag constant. Another 
attractive strange quark matter model is confined isospin and density-dependent mass (CIDDM) model 
where its sound of speed is less than one and density-dependent. (Please see detail discussions about 
strange stars, e.g., [5] and the references therein.) Because strange stars are known very compact, the 
authors of Ref. [3] examined the possibility that ultracompact object predicted by GW170817 event is 
a strange star by evaluating the GW echoes produced by the strange star. However, in their 
calculation, they used the simplest MIT-Bag model with an unrealistic ultra-stiff equation of state 
(EoS), i.e., with speed of sound equal to one. We need to note the authors of Ref. [6] has shown the 
conjecture that the speed of sound in any medium is smaller than the velocity of light in vacuum 
divided by √3 is compatible with two things, neutron stars with masses around two solar mass and 
proper equation of state of hadronic matter at low densities. Therefore, in this work, we re-examine the 
possibility that ultra-compact object predicted by GW170817 event is a strange star by evaluating the 
GW echoes produced by the strange star but by using more realistic models of strange quark matter 
namely MIT-Bag models with a speed of sound =1/√3 and CIDDM models. In this work we want to 
check whether strange stars are an ultra-compact object or not. 

The present paper is organized as follows. In Sec 2, we discuss the used formalism briefly. In sec 3, 
we provide the results and discussion, while sec 6, is for the conclusion. 

2. Formalism 
Here, we briefly discuss the strange  matter based on MIT-Bag and CIDDM models. The strange  
matter composed by up, down, and strange quarks with the presence of electrons to make the quark 
matter electrically neutral. We assume that quark stars are static and spherically symmetric. Therefore, 
we can use Tolman-Oppenheimer-Volkoff (TOV) equations to obtain the mass and radius of the quark 
stars. We assume also that the critical temperature of the strange matter is larger than the actual 
temperature in quark stars due to the fact that quark stars are very dense, then the impact of 
temperature in equation of state of quark matter can be neglected. Here we use natural unit where the 
speed of light in vacuum c=1 and Planck constant ħ = 1. 

2.1 MIT-Bag Models 
The general form of the EOS of strange matter based on MIT-Bag model can be expressed as the 
relation between pressure P and energy density ε of strange matter such as 

3 4 ,p B                                                                               (1) 

for realistic matter based on MIT-bag model with speed of sound 
1 / 3sv 

 and we should replace 
factor 3 in front pressure in Eq. (1) with factor 1 for ultra-stiff EoS. As suggested by Bodmer and 
Witten the bag constants B simulating the physical confinement with the acceptable value range is 
between 145 MeV <B 1/4<162 MeV. Detail discussion about the nature of MIT-Bag models can be 
found in Refs. [3-4]. 

2.2 CIDDM Model 
For strange with EoS based on the confined-isospin-density-dependent-mass (CIDDM) model with 
additional scalar and vector Coulomb terms of strange quark matter with parameterκ3=2500,  κ2

1=0.3, 
κ2

2=0.8 and  κ1=0.46. Here κ3 is isospin dependent parameter, κ2
1 is scalar Coulomb parameter and 

κ2
1is vector Coulomb parameter and  κ1 is harmonic oscillator parameter. The EoSs with scalar and 

vector Coulomb terms also pass the test for acceptable EoS to describe the quark matter (see the 
details of the EoS in Ref. [8] and the references therein). Note that the authors of Ref.[8] have found 
that within GR, if the Coulomb term is included, for the models where their parameters are consistent 
with strange quark matter absolute stability condition, the two sun-mass  constraint prefers the 
maximum QS mass prediction of the model with the scalar Coulomb term to that of the model with the 
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vector Coulomb term. With these models, we can obtain speed of sound less than 1 and density 
dependent. Detail discussion about the nature of CIDDM models can be found in Refs. [5,8]. 
 
2.3. TOV Equations 
To obtain the mass-radius relation, we use the EOS strange matter calculated by using above models  
as input to solve TOV equations. The TOV equation is written in the form of differential equations as 
follows [3-4]. 
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with p is the pressure, and the speed of light in vacuum is equal to 1. Note that G is Newtonian 
gravitational constant and in the center m(0) ≈ 0, P(0) ≈ Pc, while in the edge of the star m(R) = M , 
P(R) = 0. Φ(r) is matric function, M is mass of the star and R is radius of the star. Note that the 
corresponding first order differential equations are solved numerically by using Runge-Kutta method.   

2. 4. Frequency of GW Echoes 
The gravitational waves emitted by stellar objects are partly reflected by the angular potential barrier 
on photon spheres. It is conceivable that photon is trapped for gravitational waves; whit the frequency 
is inversely proportional to the length of the trap. If the trap distance is small means that the star is 
getting closer to the photon sphere line or the signal GW frequency is high. The signal echo time is 
measured as the time of light from the center of the star to the photon spheres, according to [3,10] 
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where m (r) and Φ (r) are determined by solving the TOV equation. The frequency of echoes of 
gravitational waves can be estimated by /echo echo   . The estimated frequency is1 / 2 echo . 

3. Results and Discussion 
In this section we will provide the results of numerical calculations based on the analysis. From the 
calculation results we obtain several plot results which are shown in Figs. 1-4. 
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Figure 1. Mass-radius diagram for various stars, 
with equation of state EoS1 

 Figure 2. Mass-radius diagram for various stars, 
with equation of state  EoS2 

 

 

 

Figure 3. Mass-radius diagram for various stars, 
within CIDDM with scalar Coulomb model 

 Figure 4. Mass-radius diagram for various stars 
within CIDDM with vector Coulomb model 

 
Table 1. The echo results of gravitational waves of various stars 

EoS Model  
MIT bag ( MeV) 

(B1=145, B2=185) echo (kHz) 

EoS1 4p B    145  21.87 
EoS1 4p B    185       35.60 
EoS2 3 4p B    145  0 
EoS2 3 4p B    185  0 
EoS3 CIDDM scalar - 0 
EoS3 CIDDM vector - 0 

 
It can be seen in Fig. 1, strange stars can cross the photon sphere line so that gravitational wave 

echos exist as the one obtained by Ref. [3] by using ultra-stiff EoS 4p B   and for the range of the 
acceptable B value. It is obvious  in Fig. 2 that strange stars cannot cross the photon sphere line, where 
the EoS base on realistic MIT-Bag model and Figs. 3-4 for both kinds of CIDDM models. Therefore, 
it obvious for realistic strange stars, the stars do not emit the gravitational wave echoes. Note that in 
EoS 1 there is no interaction, the greater the constants for increasing values in both the mass and star 
radius, this indicates that the star is getting compressed. Moreover, at pressure p, the star's speed is the 
same as the speed of light (vs = 1). Whereas in EoS 2, there is also no interaction with the same bag 

constant, and the prefactor in front the pressure become to 3, the star's speed is equal to 1 / 3  the 

speed of light (vs = 1 / 3 ). EoS 1 and EoS 2 both use MIT bag models with the same bag constants 
are B1 = 145MeV and B2= 185MeV. EoS 3 and EoS 4 have interactions. EoS 3 uses the CIDDM 
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model with Coulomb scalar whereas in EoS 4 use the CIDDM model with Coulomb vector. 
It means that the compactness strange stars of depend significantly on the speed of sound. However, to 
emit GW echo, strange stars should have vs≥ 1. This later fact is unrealistic. 

4. Conclusions 
Here we re-examine the possibility that ultra-compact object predicted by GW170817 event is a 
strange star by evaluating the GW echoes produced by the strange star but by using more realistic 
models of strange quark matter namely MIT-Bag models with a speed of sound =1/√3 and CIDDM 
models. We have shown that strange stars compactness depends on the speed of sound in strange 
quark matter.  We confirm that strange stars with realistic EoS cannot be categorized as ultra-compact 
oobjects 
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