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Abstract: In the galaxy, extremely large mass-ratio inspirals (X-MRIs) composed of brown dwarfs and

the massive black hole at the galactic center are expected to be promising gravitational wave sources

for space-borne detectors. In this work, we simulate the gravitational wave signals from twenty

X-MRI systems by an axisymmetric Konoplya–Rezzolla–Zhidenko metric with varied parameters. We

find that the mass, spin, and deviation parameters of the Kerr black hole can be determined accurately

(∼10−5 − 10−6) with only one X-MRI event with a high signal-to-noise ratio. The measurement of

the above parameters could be improved with more X-MRI observations.

Keywords: gravitational waves; extremely large mass-ratio inspirals; Sgr A*

1. Introduction

The first observations of gravitational waves (GWs) from binary black hole mergers
and binary neutron star inspirals ushered in a new era of GW physics and astronomy [1,2].
Since then, the ground-based detectors have detected 90 GW events [3–5]. The detectable
frequency band of current ground-based GW detectors such as Advanced LIGO [6], Ad-
vanced Virgo [7], and KAGRA [8] ranges from 10 to 10,000 Hz, which makes ground-based
GW detectors unable to detect any GWs with frequencies less than 10 Hz, while abundant
sources are emitting GWs in the low-frequency band [9]. The space-borne GW detectors
such as LISA [10], Taiji [11], and TianQin [12], which will be launched in the 2030s, will open
GW windows from 0.1 mHz to 1 Hz and are expected to probe the nature of astrophysics,
cosmology, and fundamental physics.

One of the most essential and promising GW sources for space-borne GW detectors is
the extreme-mass ratio inspiral (EMRI), which is formed when a massive black hole (MBH)
captures a small compact object [9,13]. The word “inspiral” here means the inspiralling
process such that the relatively lighter object gradually spirals in toward the MBH due to
the emission of GWs. The small object should be compact to keep it from being tidally
disrupted by the MBH so that it is unlikely to be a main-sequence star. The possible
candidate could be a stellar-mass black hole(BH), neutron star, white dwarf, or other
compact object. The designed space-borne detectors will be sensitive to EMRIs that contain
MBHs with the mass 104 − 107M⊙ and small compact objects with stellar mass, and the
fiducial mass ratio will be 103 − 106 [14].

Moreover, a special kind of EMRI, extremely large mass-ratio inspirals (X-MRIs) with
a mass ratio of q ∼ 108 are also potential sources for space-borne GW detectors [15,16].
An X-MRI system is formed when an MBH captures a brown dwarf (BD) with a mass of
∼10−2 M⊙. Brown dwarfs are substellar objects with insufficient mass to sustain nuclear
fusion and become main-sequence stars [17]. Brown dwarfs are denser than main-sequence
stars, and their Roche limit is closer to the horizon of MBH [15,18]. Therefore, brown dwarfs
could survive very close to the MBH.

Symmetry 2022, 14, 2558. https://doi.org/10.3390/sym14122558 https://www.mdpi.com/journal/symmetry

https://doi.org/10.3390/sym14122558
https://doi.org/10.3390/sym14122558
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com
https://orcid.org/0000-0003-4852-3487
https://doi.org/10.3390/sym14122558
https://www.mdpi.com/journal/symmetry
https://www.mdpi.com/article/10.3390/sym14122558?type=check_update&version=2


Symmetry 2022, 14, 2558 2 of 19

The mass of BD is relatively tiny, so space-borne GW detectors such as LISA could
only observe X-MRIs nearby, especially X-MRIs at the galactic center(GC) [15,16]. The
MBH of these X-MRIs, Sgr A*, is 8 kpc from the solar system, and its mass is about
4 × 106 M⊙ [19–22]. A typical X-MRI at the GC covers ∼108 cycles, which last millions
of years in the LISA band [16]. Such an X-MRI could have a relatively high SNR (more
than 1000), and dozens of X-MRIs might be observed during the LISA mission period [16].
Therefore, the X-MRIs at the GC offers a natural laboratory for studying the properties of
BH and testing theories of gravity.

In this paper, we simulate the GW signals of X-MRIs at the GC to show how and
to what extent the fine structure of Sgr A* could be figured. In general relativity (GR),
according to the no-hair theorem, BHs are characterized by their masses, spins, and electric
charges, and the Kerr metric is believed to be the metric that describes the space-time of BH.
However, alternative theories of gravity predict hairy black holes [23] and other metrics
that describe the space-time of BH [24]. The parameterized metrics are proposed to describe
the space-time of non-Kerr black holes. In this paper, to describe the space-time of X-MRIs
at the GC, we use a model-independent parameterization metric, the Konoplya–Rezzolla–
Zhidenko metric (KRZ metric) [24], which can describe metrics that are generic stationary
and axisymmetric.

This paper is organized as follows. In Section 2, we review the KRZ parametrization.
In Section 3, we introduce the “kludge” waveforms used in our work and simulate the GW
signals emitted by X-MRIs at GC. In Section 4, based on the simulated GW signals, we apply
the Fisher matrix to these GWs and present the accuracy of parameter estimation of Sgr A*
for future space-borne GW detectors. The conclusion and outlook are given in Section 5.
Throughout this letter, we use natural units (G = c = 1). Greek letters (µ, ν, σ, . . .) stand
for space-time indices, and Einstein summation is assumed.

2. KRZ Prametrized Metric

GR is the most accurate and concise theory of gravity by far [25]. In practice, there
are quite a few other theories of gravity, whose predictions resemble general relativity’s,
to be tested. In the framework of GR, the Schwarzschild or Kerr metric describes the
space-time of an uncharged BH. However, in modified and alternative theories of gravity,
there are other possible solutions for the description of the space-time of BHs [26–31]. The
predictions of different theories of gravity are different, so a universal and reasonable
theory about the GWs of an X-MRI should be model-independent.

In order to deal with the numerous metrics of non-Kerr black holes, one may use the
parameterized metric to describe the space-time of non-Kerr black holes. There are several
model-independent frameworks, one of which parametrizes the most generic black hole
geometry through a finite number of adjustable quantities and is known as Johannsen–
Psaltis parametrization (J-P metric) [32]. The J-P metric expresses deviations from general
relativity in terms of a Taylor expansion in powers of M/r, where M is the mass of BH
and r is the radial coordinate. The J-P parametrization is widely adopted, but it is not a
robust and generic parametrization for rotating black holes [24,33]. Notably, the parametric
axisymmetric J-P metric obtained from the Janis–Newman algorithm [34] does not cover
all deviations from Kerr space-time.

Another model-independent parameterization metric [24,35], the KRZ metric, is based
on a double expansion in both the polar and radial directions of a generic stationary and
axisymmetric metric. The KRZ metric is effective in reproducing the space-time of three
commonly used rotating black holes (Kerr, rotating dilation [36], and Einstein-dilaton-
Gauss-Bonnet black holes [37]) with finite parameters (see Ref. [24] for more details).
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According to KRZ parameterization, the space-time of any axisymmetric black hole with
total mass M and rotation parameter a could be expressed in the following form [24]:

ds2 = −
N2 − W2 sin2 θ

K2
dt2 − 2Wr sin2 θdtdφ

+K2r2 sin2 θdφ2 + S

(

B2

N2
dr2 + r2dθ2

)

, (1)

where [38]

S =
Σ

r2
= 1 +

a2

r2
cos2 θ , (2)

Σ = r2 + a2 cos2 θ, (3)

N, B, W, and K are the functions of the radial and polar coordinates (expanded in the
term cos θ),

W =
∞

∑
i=0

Wi(r)(cos θ)i

S
, (4)

B = 1 +
∞

∑
i=0

Bi(r)(cos θ)i, (5)

N2 =
(

1 −
r0

r

)

A0(r) +
∞

∑
i=1

Ai(r)(cos θ)i, (6)

K2 = 1 +
aW

r
+

a2

r2
+

∞

∑
i=1

Ki(r)(cos θ)i

S
, (7)

with

Bi = bi0
r0

r
+ B̃i

r2
0

r2
, (8)

B̃i ≡
bi1

1 + xbi2

1+
xbi3
1+...

, (9)

Wi = bi0
r2

0

r2
+ B̃i

r3
0

r3
, (10)

W̃i ≡
ωi1

1 + xωi2

1+
xωi3
1+...

, (11)

Ki>0(r) = ki0
r2

0

r2
+ K̃i

r3
0

r3
, (12)

K̃i ≡
ki1

1 + xki2

1+
xki3
1+...

, (13)

A0(r) = 1 − ǫ0
r0

r
+ (a00 − ǫ)

r2
0

r2
+

a2

r2
+ Ã0

r3
0

r3
, (14)

Ai>0 = Ki(r) + ǫi
r2

0

r2
+ ai0

r3
0

r3
+ Ãi

r4
0

r4
, (15)

Ãi ≡
ai1

1 + xai2

1+
xai3
1+...

, (16)

where x = 1 − r0/r, and r0 is the radius of the black hole horizon in the equatorial plane.
The metric (1) is characterized by the order of expansion in radial and polar directions. The
parameters aij, bij, ωij, kij (here i = 0, 1, 2, 3 . . . , j = 1, 2, 3 . . .) are effectively independent.
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This is because one of these functions, Ai(x), Bi(x), Wi(x) and Ki(x), is fixed by coordinate
choice [38].

In the following, we present the parameterized metric with first-order radial expansion
and second-order polar direction, which describe the space-time of a deformed Kerr black
hole [33,38]:

B = 1 +
δ4r2

0

r2
+

δ5r2
0

r2
cos2 θ, (17)

W =
1

Σ

[

ω00r2
0

r2
+

δ2r3
0

r3
+

δ3r3
0

r3
cos2 θ

]

, (18)

K2 = 1 +
aW

r
+

1

Σ

(

k00r2
0

r2
+

k21r3
0

r3
cos2 θ

)

, (19)

N2 =
(

1 −
r0

r

)

[

1 −
ǫ0r0

r
+ (k00 − ǫ0)

r2
0

r2
+

δ1r3
0

r3

]

+

[

(k21 + a20)
r3

0

r3
+

a21r4
0

r4

]

cos2 θ, (20)

The radius of the horizon and the Kerr parameter are

r0 = M +
√

M2 − a2, a = J/M, (21)

where J is the total angular momentum. For simplicity, here, M has one unit, i.e., M = 1.
One can obtain related variables and parameters from a dimensionless quantity by scale
transformations [39–44]: tM → t, rM → r, etc. The coefficient r0, a20, a21, ǫ0, k00, k21 and
ω00 in the KRZ metric can be expressed as follows [33,45]

r0 = 1 +
√

1 − ã2, (22)

a20 =
2ã2

r3
0

, (23)

a21 = −
ã4

r4
0

+ δ6, (24)

ǫ0 =
2 − r0

r0
, (25)

ω00 =
2ã

r2
0

, (26)

k00 =
ã2

r2
0

, (27)

k21 = ã4/r4
0 − 2ã2/r3

0 − δ6, (28)

k22 = −ã2/r2
0 + δ7, (29)

k23 = ã2/r2
0 + δ8, (30)

where ã = a/M stands for the spin parameter. The deformation parameters δj(j =
1, 2, . . . , 8) represent the deviations from the Kerr metric. The physical meaning of these
parameters could be summarized as follows: δ1 is related to the deformation of gtt; δ2, δ3

are related to the rotational deformation of the metric; δ4, δ5 are related to deformation of
grr, and δ6 is related to the deformation of the event horizon (see Ref. [24] for more details).
The KRZ metric is an appropriate tool to measure the potential deviations from the Kerr
metric. As a first-order approximation, in this work, we mainly consider δ1 and δ2.
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3. Waveform Model for KRZ Black Holes

Several waveform models can simulate the signal of an EMRI [14,46–50]. Among
these models, the kludge model can generate waveforms quickly and has a 95% accuracy
compared with the Teukolsky-based waveforms [49]. The kludge waveforms may be
essential in searching for EMRIs/X-MRIs for future space-borne GW detectors. We employ
the kludge waveforms to simulate X-MRI waveforms [45]. Before presenting the results,
we would like to review the structure and logic of the calculation. The calculation of
waveforms can be summarized in the following steps:

• First, we consider the brown dwarf of the X-MRI as a point particle.
• Second, we use the given metric to calculate the particle’s trajectory by integrating the

geodesic equations that contain the radiation flux.
• Finally, we use the quadrupole expression to obtain the GWs emitted from the system

of the X-MRI.

To obtain the trajectory of the particle, we start by calculating the geodesics using the
following equations:

u̇µ = −Γ
µ
ρσuρuσ, (31)

ẋµ = uµ, (32)

where xµ is the coordinate of the particle, uµ is the 4-velocity, which satisfiess.

|u| = gµνuµuν = −1 , (33)

and Γ
µ
ρσ are the Christoffel symbols. For stable-bounded geodesics, the orbital eccentricity e

and semi-latus rectum p can be defined by periastron rp and apastron ra, and the inclination
angle ι is defined in the Keplerian convention by:

e =
ra − rp

ra + rp
, p =

2rarp

ra + rp
, ι =

π

2
− θmin. (34)

where θmin is the minimum of θ along the geodesic. The geodesic may be specified by
the parameters (ra, rp, θmin), which fully describes the range of motion in the radial and
polar coordinates. In this paper, we define (e, p, ι) from (ra, rp, θmin) by the numerically
generated trajectory.

In the background of the Kerr metric, the geodesic can be described by the orbital
energy E, the z component of the orbital angular momentum Lz, and the Carter constant
Q [45]. E and Lz still exist in the KRZ background and take the form

E = −ut = −gttu
t − gtφuφ , (35)

Lz = uφ = gtφut + gφφuφ . (36)

Strictly speaking, unlike the Kerr metric, the Carter constant Q does not exist in the
KRZ metric. When considering the situations that are close to the Kerr metric, we use an
approximate “Carter constant” [51,52]

Q = L2
z tan2 ι, (37)
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While the orbital constants (E, Lz, Q) in the above geodesic setup do not vary with time,
it is convenient to work with alternative parametrizations of (E, Lz, Q). The relationship
between (ra, rp, θmin) and (E, Lz, Q) is given by [14]

P2|r=ra ,θ=π/2 − [r2 + (L2
z − aE)2 + Q]∆|r=ra ,θ=π/2 = 0, (38)

P2|r=rp ,θ=π/2 − [r2 + (L2
z − aE)2 + Q]∆|r=rp ,θ=π/2 = 0, (39)

Q = cos2 θmin

[

a2(1 − E2) +

(

Lz

sin θ

)2
]

. (40)

Because of the extreme mass ratio of X-MRI, the deviations from the geodesics due to
the radiation reaction should be small. In this work, for accuracy, we consider the effect of
the radiation reaction, which is included by replacing Equation (31) with the following one:

duµ

dτ
= −Γ

µ
ρσuρuσ +Fµ (41)

where the radiation force Fµ is connected with the adiabatic radiation fluxes (Ė, L̇z, Q̇) as

Ėut = −gttF t − gtφFφ,
L̇zut = gtφF t + gφφFφ,

Q̇ut = 2g2
θθuθF θ + 2 cos2 θ2a2EĖ + 2 cos2 θ Lz L̇z

sin2 θ
,

gµνuµF ν = 0.

(42)

Equation (42) can be deduced by taking derivatives with respect to proper time in
Equations (35)–(37). Integrating the geodesic equations that contain the radiation flux is
crucial for calculating the particle’s trajectory. In this paper, due to the short integration
time, we use the Runge–Kutta method. There are also several geometric numerical inte-
gration methods for integrating the equations of geodesics, such as manifold correction
schemes [53–55], extended phase space methods [56–59], explicit and implicit combined
symplectic methods [60–62], and explicit symplectic integrators [39–44]. For situations such
as the long-term evolution of Hamiltonian systems [55], geometric numerical integration
methods can be helpful.

Finally, after generating the trajectory, we turn to the third step of calculating the
gravitational waveforms. We start from transforming the Boyer–Lindquist coordinates
(t, r, φ, θ) into Cartesian coordinates (t, x, y, z) using the relations:

t = t, (43)

x = r sin θ cos φ, (44)

y = r sin θ sin φ, (45)

z = r cos θ. (46)

Then, we calculate the quadrupole expression (see Ref. [49]),

h̄jk(t, x) =
2

r
[ Ï jk(t

′
)]

t
′=t−r

, (47)

I jk(t
′
) =

∫

x
′ jx

′kT00(t
′
, x

′
)d3x

′
, (48)

where I jk(t
′
) is the source’s mass quadrupole moment, T00 is a component of the energy-

momentum tensor Tµν(t
′
, x

′
), and h̄µν = hµν − 1

2 ηµνηρσhρσ is the trace-reversed metric
perturbation. Then, we transform the waveform into the transverse-traceless gauge (see
Ref. [49] for more details):
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h
jk
TT =

1

2





0 0 0

0 hΘΘ − hΦΦ 2hΘΦ

0 2hΘΦ hΦΦ − hΘΘ



 , (49)

with

hΘΘ = cos2 Θ
[

hxx cos2 Φ + hxy sin 2Φ + hyy sin2 Φ
]

+hzz sin2 Θ − sin 2Θ[hxz cos Φ + hyz sin Φ], (50)

hΦΘ = cos Θ

[

−
1

2
hxx sin 2Φ + hxy cos 2Φ +

1

2
hyy sin 2Φ

]

+ sin Θ[hxz sin Φ − hyz cos Φ], (51)

hΦΦ =
[

hxx sin2 Φ − hxy sin 2Φ + hyy cos2 Φ
]

. (52)

Now, we obtain the plus and cross components of the waveform observed at the
latitudinal angle Θ and azimuthal angle Φ

h+ = hΘΘ − hΦΦ

= cos2 Θ
[

hxx cos2 Φ + hxy sin 2Φ + hyy sin2 Φ
]

+hzz sin2 Θ − sin 2Θ[hxz cos Φ + hyz sin Φ]

−
[

hxx sin2 Φ − hxy sin 2Φ + hyy cos2 Φ
]

, (53)

h× = 2hΘΦ

= 2
{

cos Θ

[

−
1

2
hxx sin 2Φ + hxy cos 2Φ +

1

2
hyy sin 2Φ

]

+ sin Θ[hxz sin Φ − hyz cos Φ]
}

. (54)

The strength of the signal in a detector can be characterized by the signal-to-noise ratio
(SNR). The SNR of the signals can be defined as [63]

ρ :=
√

〈h|h〉, (55)

where 〈·|·〉 is the standard matched-filtering inner product between two data streams. The
inner product between the signal a(t) and the template b(t) is

〈a|b〉 = 2
∫ ∞

0

ã∗( f )b̃( f ) + ã( f )b̃∗( f )

Sn( f )
d f (56)

where ã( f ) is the Fourier transform of the time series signal a(t), ã∗( f ) is the complex
conjugate of ã( f ), and Sn( f ) is the power spectral density of the GW detectors’ noise.
Throughout this paper, the power spectral density is taken to be the noise level of LISA.

In this work, to quantify the differences between GW signals and the templates, we
use the maximized fitting factor (overlap),

FF(a, b) =
(a|b)

√

(a|a)(b|b)
. (57)

If we include the time shift ts and the phase shift φs, the fitting factor reads

ff(ts, φs, a(t), b(t)) =
(a(t)|b(t + ts)eiφs)
√

(a|a)(b|b)
, (58)
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The maximized fitting factor is defined as

FF(a, b) = max
ts ,φs

(a(t)|b(t + ts)eiφs)
√

(a|a)(b|b)
. (59)

4. Data Analysis

In this section, we first specify the main parameters values we used in this work. Then,
we use XSPEG, a software for generating GWs in the KRZ metric, provided by the authors
of Ref. [45] to calculate the gravitational waveforms and conduct our analysis. Finally, we
employ the Fisher information matrix to evaluate the parameter estimation accuracy for
LISA-like GW detectors.

For an X-MRI at the GC, the mass of the brown dwarfs ranges from ∼0.01 M⊙ to
∼0.08 M⊙ [64]. The parameter values for the MBH Sgr A* in this work are as follows:

• The mass of Sgr A* MSgrA∗ = 4 × 106 M⊙ [19–21];

• The dimensionless spin parameter a = 0.5 [65];
• The distance between Sgr A* and the solar system Rp = 8.3 kpc [66];
• The latitudinal angle Θ = −29◦ and the azimuthal angle Φ = 266.417◦ [67].

Based on the parameters above, we first simulate the GW signals of twenty X-MRIs at
the GC (see Table 1). The mass ratio q ranges from 5 × 107 to 4.0 × 108, the orbit eccentricity
e ranges from 0.1 to 0.8, the semi-latus rectum p ranges from 10.6 to 50.0, the inclination
angle ι ranges from −2π/3 to π/3, and the duration of the above signals is one year. Then,
we calculate the overlaps between the above GW signals and many GW series with varying
parameters. Finally, we use the Fisher information matrix to provide the uncertainties of
parameter estimations.

Table 1. Parameter setting and parameter estimation accuracy for the 20 X-MRIs at the GC.

Signal e p ι MObject SNR ∆a/a ∆M/M ∆δ1 ∆δ2 ∆Rp /Rp

01 0.617 10.600 5π/6 2.80 × 10−2 1584.363 2.85 × 10−6 4.18 × 10−7 3.63 × 10−6 3.28 × 10−6 7.18 × 10−4

02 0.520 12.000 π/6 2.00 × 10−2 636.988 2.10 × 10−6 9.53 × 10−7 1.48 × 10−5 1.48 × 10−5 1.78 × 10−3

03 0.300 14.400 π/6 2.00 × 10−2 224.915 9.39 × 10−6 4.04 × 10−6 3.92 × 10−5 4.95 × 10−5 5.03 × 10−3

04 0.200 16.800 π/7 2.72 × 10−2 144.765 4.60 × 10−5 4.54 × 10−6 7.31 × 10−5 1.04 × 10−4 7.37 × 10−3

05 0.400 16.800 π/7 2.72 × 10−2 201.217 1.33 × 10−5 2.91 × 10−6 6.17 × 10−5 8.26 × 10−5 5.29 × 10−3

06 0.514 27.243 −π/12 1.80 × 10−2 30.518 2.47 × 10−4 1.96 × 10−5 8.48 × 10−4 1.39 × 10−3 3.58 × 10−2

07 0.500 24.750 π/4 3.60 × 10−2 59.061 7.79 × 10−5 3.33 × 10−6 1.70 × 10−4 3.44 × 10−4 1.68 × 10−2

08 0.600 19.200 π/5 2.80 × 10−2 148.460 1.92 × 10−5 1.91 × 10−6 1.21 × 10−4 1.92 × 10−4 6.92 × 10−3

09 0.700 15.300 π/6 1.00 × 10−2 140.487 1.15 × 10−5 4.43 × 10−6 1.54 × 10−4 1.80 × 10−4 7.73 × 10−3

10 0.800 12.600 π/8 1.20 × 10−2 355.391 4.80 × 10−6 3.42 × 10−6 6.45 × 10−5 6.18 × 10−5 3.27 × 10−3

11 0.100 39.600 −π/6 7.00 × 10−2 32.112 5.38 × 10−3 6.25 × 10−5 3.66 × 10−3 9.96 × 10−3 5.57 × 10−2

12 0.253 35.093 −π/3 7.84 × 10−2 39.303 7.72 × 10−5 2.36 × 10−7 4.13 × 10−5 1.41 × 10−4 2.63 × 10−2

13 0.206 30.159 −π/4 7.60 × 10−2 45.575 1.38 × 10−4 1.94 × 10−6 1.56 × 10−4 3.69 × 10−4 2.25 × 10−2

14 0.368 41.053 −π/7 8.00 × 10−2 47.910 1.49 × 10−3 1.23 × 10−5 3.00 × 10−3 8.19 × 10−3 3.61 × 10−2

15 0.295 47.924 −π/9 6.00 × 10−2 24.535 1.03 × 10−2 1.18 × 10−4 1.37 × 10−2 3.34 × 10−2 7.85 × 10−2

16 0.425 32.775 −π/11 3.00 × 10−2 19.701 6.08 × 10−4 2.15 × 10−5 1.04 × 10−3 1.99 × 10−3 5.27 × 10−2

17 0.300 27.300 π/3 3.20 × 10−2 27.179 9.05 × 10−5 1.01 × 10−6 7.17 × 10−5 2.40 × 10−4 3.78 × 10−2

18 0.133 44.200 −2π/3 6.80 × 10−2 29.731 9.80 × 10−4 2.19 × 10−6 4.83 × 10−4 2.21 × 10−3 3.43 × 10−2

19 0.137 50.039 −π/3 7.20 × 10−2 24.736 1.04 × 10−3 2.53 × 10−6 7.36 × 10−5 2.42 × 10−3 4.07 × 10−2

20 0.477 25.108 −3π/5 8.00 × 10−2 101.345 4.48 × 10−5 2.05 × 10−7 1.16 × 10−5 3.58 × 10−5 9.75 × 10−3

4.1. The Overlaps between Simulated GW Signals of X-MRIs and GW Series with Varying
Parameters

Suppose the GW signal and corresponding GW template overlaps are above 0.97 [68].
In that case, we would find neither the deviations from GR nor the unusual parameters of
X-MRIs, which is called the confusion problem [68]. The confusion problem can prevent
us from obtaining an accurate parameter estimation of the X-MRIs. To make sure there
is no confusion in our study, we calculate the overlaps between different gravitational
waveforms of twenty X-MRIs with varying parameters λi (λi = a, M, δ1, δ2, e, p, ι). Here,
(a, M) are the parameters of the Sgr A*, (δ1, δ2) are the deformation parameters of the
space-time from the Kerr solution, and (e, p, ι) are the parameters of the orbit (eccentricity,
semi-latus rectum, inclination).
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Because a, M, δ1, and δ2 are the intrinsic parameters of Sgr A* and present the nature
of MBH directly, we pay more attention to these four parameters. Figures 1–4 display the
overlaps between the original waveforms and the waveforms with varying parameters,
a, M, δ1 and δ2. As these figures show, the overlap tends to decrease, while the increment of
λ increases.

Figure 1. Overlaps between the original waveforms and the waveforms changed with spin a. The

other parameters (M, δ1, δ2, e, p, ι) of systems listed in Table 1 remain unchanged. The top plane

represents a-overlap curves from the top 10 systems (X-MRI 01 to X-MRI 10). The bottom plane

represents a-overlap curves from the last 10 systems (X-MRI 11 to X-MRI 20).

Figure 2. Overlaps between the original waveforms and the waveforms changed with mass M. The

other parameters (a, δ1, δ2, e, p, ι) of systems listed in Table 1 remain unchanged. The top plane

represents M-overlap curves from the top 10 systems (X-MRI 01 to X-MRI 10). The bottom plane

represents M-overlap curves from the last 10 systems (X-MRI 11 to X-MRI 20).
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Figure 3. Overlaps between the original waveforms and the waveforms changed with deformation

parameter δ1. The other parameters (M, a, δ2, e, p, ι) of systems listed in Table 1 remain unchanged.

The top plane represents δ1-overlap curves from the top 10 systems (X-MRI 01 to X-MRI 10). The

bottom plane represents δ1-overlap curves from the last 10 systems (X-MRI 11 to X-MRI 20).

Figure 4. Overlaps between the original waveforms and the waveforms changed with deformation

parameter δ2. The other parameters (M, a, δ1, e, p, ι) of systems listed in Table 1 remain unchanged.

The top plane represents δ2-overlap curves from the top 10 systems (X-MRI 01 to X-MRI 10). The

bottom plane represents δ2-overlap curves from the last 10 systems (X-MRI 11 to X-MRI 20).

Taking the overlap value 0.97 as a criterion would give the constraints on λ. Specif-
ically, to obtain the constraints on δλi by the GWs of X-MRI, we first keep the other
parameters fixed and generate several waveforms with varying λi. Then we calculate the
overlaps between the original waveform and the waveforms with varying λi. Finally, the
corresponding value of λi when the overlap equals 0.97 can be regarded as the limit of λi.
From these figures, we observe the parameter constraint ability for different X-MRI varies.
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4.2. Evaluate the Accuracy of Parameter Estimation for X-MRIs

The SNRs of the X-MRI GW signals is high enough to apply the Fisher information
matrix to estimate the accuracy of parameter estimation. We present the accuracy of
parameter estimation for Sgr A* in this part using the Fisher information matrix. To better
estimate the distance between Sgr A* and the solar system, we take account of the external
parameter Rp and constrain it by the gravitational waveforms of the X-MRIs in Table 1.

The Fisher information matrix Γ for a GW signal h parameterized by λ is given by (See
Ref. [69] for details)

Γi,j =<
∂h

∂λi
|

∂h

∂λj
>, (60)

where λi = (a, M, δ1, δ2, e, p, ι, Rp) is one of the parameters of the X-MRI system. The
parameter estimation uncertainty ∆λ due to Gaussian noise has the normal distribution
N (0, Γ−1) in the case of high SNR, so the root-mean-square uncertainty in the general case
can be approximated as

∆λi =
√

(Γ−1)i,i. (61)

For the parameter estimation uncertainty ∆λi, ∆λj(i 6= j), the corresponding likelihood
is [69–71].

L(λ) ∝ e−
1
2 Γi,j∆λi∆λj . (62)

For an X-MRI with eight parameters, we can obtain a Fisher matrix (Γi,j)8×8 by apply-
ing the results of these parameters’ preliminary constraints to Equation (60). Element Γi,j

(i 6= j) in the Fisher matrix is the result of the combination of parameter λi and parameter λj.
With the Fisher matrix, the absolute uncertainty ∆λi of any parameter λi can be estimated
by calculating Equation (61). Here, we focus on the estimations of Sgr A*’s parameters
(a, M, δ1, δ2, Rp).

By using the Fisher matrix, the parameter estimation accuracy of (a, M, δ1, δ2, Rp) for
the twenty X-MRI signals is shown in Table 1. Different X-MRI systems have different
abilities to estimate the uncertainty accuracy of the same parameter. For the spin of Sgr A*,
the relative uncertainty ∆a/a estimated by X-MRI 01, X-MRI 02, X-MRI 03, and X-MRI 10
reaches a very high precision, ∼10−6, while ∆a/a estimated by X-MRI 15 is only ∼10−2.
For the mass of Sgr A*, its relative uncertainty ∆M/M estimated by X-MRI 01, X-MRI
02, X-MRI 12, and X-MRI 20 reach ∼10−7, and ∆M/M estimated by X-MRI 15 is ∼10−4.
For the space-time deformation around Sgr A*, ∆δ1 and ∆δ2 estimated by X-MRI 01 reach
∼10−6, while the relative uncertainty of these deformation parameters estimated by X-MRI
15 is only ∼10−2. For the distance Rp, its relative uncertainty ∆Rp/Rp estimated by X-MRI
01 reaches ∼10−4, while the accuracy of ∆Rp/Rp estimated by X-MRI 06, X-MRI 07, X-MRI
11, and X-MRI 19 is only ∼10−2. From the above analysis, we find that X-MRI 01 has
stringent constraints for the five parameters (a, M, δ1, δ2, Rp). Therefore, we take X-MRI
01 as an example to present its likelihoods calculated by Equations (60)–(62). As shown in
Figures 5–7, it is obvious that the parameter estimation for X-MRI 01 may be affected by
any other parameter. Thus, it is reasonable to consider the parameters of one X-MRI signal
to estimate any parameter.
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Figure 5. Likelihoods of (δ1, δM/M), (δ1, δa/a), (δ1, δ2), (δ2, δM/M), (δ2, δa/a), and (δa/a, δM/M)

derived from the Fisher matrix of X-MRI 01. The black dashed eclipses show the 3σ confidence

level. The upper and the four right-hand panels show the marginalized probability distribution for

δ1, δ2, δa/a and δM/M, respectively.

We further study the influence of the combination of GW signals on the parameter
estimation accuracy. Here, we take parameter α as an example to present the data processing.
Firstly, we assume that there are n X-MRI systems at the GC. Then, we calculate the Fisher
matrices of all these signals to determine the diagonal element Γα,α. We sort the value of
Γα,α by the order of size, and the corresponding matrix will be Γα1, Γα2, . . . , Γαn. Then we
add these matrices to obtain the matrix Γα,

Γα = Γα1 + Γα2 + . . . + Γαn, (63)

With Γα, we obtain the estimation of absolute uncertainty from the equation

∆α =
√

(Γα)
−1
α,α. (64)

We repeat the steps of the estimation for ∆α, and calculate the absolute uncertainty
of a, M, δ1, δ2, Rp. Then, we will obtain the relative uncertainty. The results are shown in
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Figure 8. The accuracy improves as the number of X-MRI increases. As shown in Table 2,
with all twenty X-MRI systems, the estimation accuracy for these parameters all reach
higher precision. ∆a/a reaches an accuracy of ∼10−7. ∆M/M reaches an accuracy of
∼10−8. ∆δ1 reaches an accuracy of ∼10−6. ∆δ2 reaches an accuracy of ∼10−6. ∆Rp/Rp

reaches an accuracy of ∼10−4. The observation number of X-MRI systems does make sense
for parameter estimation. Finally, we must emphasize that the parameter estimation results
predicted by the Fisher information matrix here only stand for the ideal situation; in the
actual parameter estimation practice, because of all kinds of noise, the results would not be
that kind of good.

Figure 6. Likelihoods of (δa/a, δe/e), (δa/a, δp/p), (δa/a, δι/ι), (δa/a, δRp/Rp), (δM/M, δe/e),

(δM/M, δp/p), (δM/M, δι/ι), (δM/M, δRp/Rp), (δ1, δe/e), (δ1, δp/p), (δ1, δι/ι), (δ1, δRp/Rp),

(δ2, δe/e), (δ2, δp/p), (δ2, δι/ι), and (δ2, δRp/Rp) derived from the Fisher matrix of X-MRI 01. The

black dashed eclipses show the 3σ confidence level.
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Figure 7. Likelihoods of (δe/e, δRp/Rp), (δe/e, δι/ι), (δe/e, δp/p), (δp/p, δRp/Rp), (δp/p, δι/ι),

(δι/ι, δRp/Rp) derived from the Fisher matrix of X-MRI 01. The black dashed eclipses show the

3σ confidence level. The upper and the four right-hand panels show the marginalized probability

distribution for δe/e, δp/p, δι/ι, and δRp/Rp, respectively.

Figure 8. Cont.
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Figure 8. The relation between the parameter estimation accuracy and the X-MRI signal number. The

parameter in the first plane is δa/a, in the second plane is δM/M, in the third plane are δ1(red) and

δ2(blue), and in the fourth plane is δRp/Rp.

Table 2. Results of parameter estimation accuracy of all 20 X-MRI systems.

∆a/a ∆M/M ∆δ1 ∆δ2 ∆Rp /Rp

5.38 × 10−7 7.02 × 10−8 2.40 × 10−6 2.18 × 10−6 6.05 × 10−4

5. Conclusions and Outlook

Sgr A* is the closest MBH to the solar system. It is, therefore, an ideal laboratory to
study the properties of black holes and to test alternative theories of gravity. To investigate
the structure of Sgr A*, we simulate the GW signals for twenty X-MRI systems using
the KRZ metric and the kludge waveform. We then apply the Fisher information matrix
method to these GW signals. With a single GW X-MRI event detected, we were able to
obtain a relatively accurate estimate of spin a, mass M, and deviation parameters δ1 and δ2.
More X-MRI observations would improve the measurement of the above parameters.

In practice, galactic binaries (GBs) and EMRIs are also promising sources of space-
borne GW detectors, such as LISA [10]. GBs, comprised primarily of white dwarfs but also
neutron stars and stellar-origin black holes, emit continuous and nearly monochromatic
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GW signals. X-MRIs can be also regarded as monochromatic sources for space-borne
detectors, while the signals of X-MRIs can reach high SNRs, making X-MRIs feasible to
distinguish from weaker sources such as GBs [16]. On the contrary, EMRIs, which evolve
relatively rapidly, are polychromatic sources [16]. Therefore, EMRIs and X-MRIs could be
complementary in studying the space-time of MBH.
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The following abbreviations are used in this manuscript:

FF fitting factor

GC Galactic Center

GW gravitational wave

GR general relativity

LIGO Laser Interferometer Gravitation Wave Observatory

LISA Laser Interferometer Space Antenna

MBH massive black hole

SNR signal-to-noise ratio

X-MRI extremely large mass-ratio inspiral
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