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Resumo:
O eletromagnetismo de Maxwell-Proca é uma proposta de modificação do eletromagnetismo
clássico de Maxwell que, em poucas palavras, sugere que a interação eletromagnética é
intermediada por um fóton massivo. No meio do século XX novas evidências experimentais
davam sugestões de modificações ao eletromagnetismo clássico. Nesse artigo, eu apresento, de
maneira geral, a proposta de modificação feita por Alexandru Proca (1897-1955) e exploro
sua teoria calculando as equações de campo e o tensor energia-momento. Atualmente, as
ideias de Proca ainda são exploradas com ideias mais gerais de descrever um vetor de campo
massivo, essas teorias são chamadas de “Proca generalizado” ou “vector Galileon”.
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Abstract:
Maxwell-Proca electromagnetism is a proposed modification of Maxwell’s classical electro-
magnetism which, in a nutshell, suggests that the electromagnetic interaction is mediated
by a massive photon. In the middle of the 20th century, new experimental evidence sug-
gested modifications to classical electromagnetism. In this article, I present, in general, the
modification proposal made by Alexandru Proca (1897-1955) and explore his theory by cal-
culating the field equations and the energy-momentum tensor. Currently, Proca’s ideas are
still explored with more general ideas of describing a massive field vector, these theories are
called “generalized Proca” or “vector Galieon”.
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1 INTRODUÇÃO
Na segunda metade do século XIX, o eletromagnetismo, unificado pelas equações de Maxwell, proporcio-
nou uma descrição precisa e abrangente dos fenômenos elétricos e magnéticos. A força de Coulomb, uma
das pedras angulares dessa teoria, postulava uma interação instantânea e de longo alcance, mediada por
fótons sem massa. Essa visão, embora bem-sucedida em explicar uma vasta gama de fenômenos, como
dito em [1], deixava em aberto questões fundamentais sobre a natureza da interação eletromagnética.

Como muito bem discutido em [2], no início do século XX, o cenário da física teórica sofreu uma
profunda transformação com o advento da relatividade especial e da mecânica quântica. A busca por uma
teoria unificada das forças da natureza impulsionou os físicos a investigarem os limites da eletrodinâmica
clássica. As experiências de Rutherford, que revelaram a estrutura interna do átomo, e a descoberta da
radioatividade, evidenciaram a existência de forças de curto alcance, como a força nuclear forte, que se
comportava de maneira diferente da prevista pela eletrodinâmica como apontado por Yukawa [3]. Essas
novas descobertas desafiam a concepção clássica de uma interação eletromagnética de longo alcance e
mediada por partículas sem massa.

∗Endereço de correspondência: vitor.p.silva@edu.ufes.br
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Nesse contexto, o físico romeno Alexandru Proca, na década de 1930, propôs uma modificação
radical na teoria eletromagnética de Maxwell. Inspirado pelas ideias de Yukawa sobre a força nuclear e
pela necessidade de uma teoria que pudesse acomodar interações de curto alcance, Proca introduziu a
hipótese de um fóton massivo [4]. Essa modificação implicava em uma alteração fundamental na equação
de onda do campo eletromagnético, levando a uma interação que decai exponencialmente com a distância,
em contraste com a lei do inverso do quadrado da distância da força de Coulomb.

A teoria de Proca, embora não tenha sido confirmada experimentalmente e tenha sido posterior-
mente suplantada pela eletrodinâmica quântica, representou um marco importante na história da física
teórica. Ela abriu caminho para o desenvolvimento de teorias de gauge não abelianas e para a unificação
das forças fundamentais da natureza.

Neste artigo, exploro o formalismo covariante e enfatizo sua utilidade e justifico por que propor
uma modificação a uma teoria usando essa linguagem. Na Seção 3, apresento as equações de campo e o
tensor energia-momento da teoria de Proca. Finalmente, na Seção 4, apresentamos algumas considerações
sobre as aplicações contemporâneas da teoria de Proca.

Vale ressaltar que este artigo está sendo escrito como parte da avaliação da disciplina de Teoria
Eletromagnética do Programa de Pós-Graduação em Física.

2 FORMALISMO COVARIANTE
Para mostrar como a hipótese se Proca se encaixa no eletromagnetismo de Maxwell, é importante demons-
trar como o formalismo clássico é construído. Partimos das equações de Maxwell em unidade gaussianas,
dadas por

∇⃗ · E⃗ = 4πρ, (1)

∇⃗ × B⃗ − 1

c

∂E⃗

∂t
=

4π

c
J⃗, (2)

∇⃗ · B⃗ = 0, (3)

∇⃗ × E⃗ +
1

c

∂B⃗

∂t
= 0, (4)

em que E⃗ e B⃗ são, respectivamente, os campos elétrico e magnético , ρ e J⃗ são, respectivamente, densidades
de carga e corrente e c é a velocidade da luz. Vale destacar que as equações (1) e (2) são as que carregam
as informações das fontes geradores de campo, enquanto que (3) e (4) são entendidas como identidades
no contexto de potenciais.

De (3) podemos definir o potencial vetor A⃗,

∇⃗ · B⃗ = 0 → B⃗ = ∇⃗ × A⃗. (5)

Substituindo (5) em (4), definimos o potencial escalar φ,

∇⃗ ×

(
E⃗ +

1

c

∂A⃗

∂t

)
= 0 → E⃗ +

1

c

∂A⃗

∂t
= −∇⃗φ → E⃗ = −1

c

∂A⃗

∂t
− ∇⃗φ. (6)

Precisamos então definir a geometria do nosso espaço, essa geometria será em 4 dimensões dada
pela métrica de Minkowski, caracterizada por

η =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1

→ ds2 = c2dt2 − (dxi)2 (7)
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Com a geometria definida, podemos definir as coordenadas como x0 = ct e xi como as coordenadas
espaciais em que i = (1, 2, 3). Como exemplo, podemos citar o sistema cartesiano em que x1 = x, x2 = y e
x3 = z. Essas definições valem em qualquer sistema de coordenadas, podendo ser generalizada em notação
índice como xµ = (x0, xi) logo µ = (0, 1, 2, 3). Definimos então o quadripotencial eletromagnético como
Aµ = (φ,Ai), em que Ai são as componentes espaciais do potencial vetor A⃗, e o gradiente ∂µ = (∂0, ∂i) em
que ∂0 = ∂/∂x0. Tanto Aµ quanto o diferencial das coordenadas dxµ são chamados de tensores, construir
uma teoria com base em tensores é importante para que ela seja independente do sistema de coordenada
utilizado [5].

Podemos definir então um tensor de grau 2, reescrevendo (6) e (5) como

Ei = −∂0A
i − ∂iA

0 = ∂0Ai − ∂iA0 = F0i, (8)

Bi = εijk∂jA
k = −εijk∂jAk = −1

2
εijk(∂jAk − ∂kAj) = −1

2
εijkFjk, (9)

onde que εijk é o símbolo de Levi-Civita. Temos então, em coordenadas cartesianas

Fµν =


0 Ex̂ Eŷ Eẑ

−Ex̂ 0 −Bẑ Bŷ
−Eŷ Bẑ 0 −Bx̂
−Eẑ −Bŷ Bx̂ 0

→ Fµν = ∂µAν − ∂νAµ, (10)

percebe-se que o tensor Fµν é antissimétrico, pois

Fνµ = ∂νAµ − ∂µAν = −Fµν . (11)

Temos então que os campos Ei e Bi podem ser dados como componentes de Fµν ,

F0i = Ei, (12)
Fij = −εijkB

k, (13)

em que o último pode ser demonstrado substituindo (9),

Fij = −εijk

(
−1

2
εklmFlm

)
=

1

2
εijkεklmFlm =

1

2
(δilδjm − δimδjl)Flm

=
1

2
(Fij − Fji) = Fij . (14)

Definimos agora a quadri-corrente, dada por

Jµ =
(
cρ, J i

)
, (15)

podemos então supor que as equações de campo, nesse formalismo, serão dados por

∂µF
µν =

4π

c
Jν , (16)

e verificar que, de fato, (16) se resume nas equações (1) e (2). Para ν = 0,

∂iF
i0 =

4π

c
J0 → ∂iE

i = 4πρ, (17)

e para ν = i,

∂0F
0i + ∂jF

ji =
4π

c
J i → 1

c
∂tE

i + εijk∂jB
k =

4π

c
J i. (18)

Sabendo então que (16) é nossa solução para as equações de campo, podemos escrever a lagrangiana que
nos levaria a essas soluções como

LMaxwell = − 1

16π
FµνF

µν − 1

c
JµA

µ. (19)
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Descrever nossa teoria através de uma lagrangiana como (19) é a forma mais fundamental que
temos de descrever uma interação, por isso propostas de modificação são normalmente feitas à elas.
Nessa lógica, como é muito bem apresentado em [1], Proca propôs que a lagrangiana para a interação
eletromagnética com um fóton massivo seria dada por

LProca = − 1

16π
FµνF

µν − 1

c
JµA

µ +
m2

8π
AµA

µ, (20)

onde m = mγc/ℏ, em que ℏ é a constante de Planck reduzida e mγ seria a massa do fóton. A partir
da lagrangiana de Proca (20), podemos definir a ação, e então calcular grandezas importantes como as
equações de campo e o tensor energia-momento.

3 EQUAÇÕES DE CAMPO E TENSOR ENERGIA-MOMENTO
A ação de Proca é definida como

S[A, g] =

∫ (
− 1

16π
FµνFµν − 1

c
JµAµ +

m2

8π
AµAµ

)√
−gd4x, (21)

onde g é o determinante da métrica gµν e Fµν = ∂µAν − ∂νAµ = ∇µAν − ∇νAµ em que ∇µ é uma
derivada covariante. Isso ocorre para Fµν pois,

∇µAν −∇νAµ = ∂µAν + Γλ
µνAλ − ∂νAµ − Γλ

νµAλ,

onde Γλ
µν é o símbolo de Christoffel, que é simétrico no índices covariantes, ou seja, Γλ

µν = Γλ
νµ, logo

∇µAν −∇νAµ = ∂µAν − ∂νAµ + Γλ
µνAλ − Γλ

µνAλ

= ∂µAν − ∂νAµ. (22)

Podemos primeiro calcular a equação de campo variando (21) com relação a Aµ, teremos

δS =

∫ [
− 1

16π
(δFµνFµν + FµνδFµν)−

1

c
JµδAµ +

m2

8π
(+δAµAµ +AµδAµ)

]√
−gd4x, (23)

usando a métrica gµν , podemos mostrar que,

FµνδFµν = FµνgµαgνβδF
αβ

= FαβδF
αβ = FµνδF

µν , (24)

da mesma forma

AµδAµ = AµgµβδA
β

= AβδA
β = AµδA

µ, (25)

podemos então escrever (23) como,

δS =

∫ [
− 1

8π
FµνδFµν − 1

c
JµδAµ +

m2

4π
AµδAµ

]√
−gd4x. (26)

Pela definição de Fµν , teremos

FµνδFµν = Fµν(∇µδAν −∇νδAµ)

(µ ⇐⇒ ν) no primeiro termo,
= F νµ∇νδAµ − Fµν∇νδAµ

= 2∇νδAµF
νµ

integrando por partes,
= 2[∇ν(F

νµδAµ)−∇νF
νµδAµ], (27)
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onde o primeiro termo é o termo de borda, que temos a liberdade de definir como nulo. Temos então que
(26), pelo teorema do variacional, será

δS =

∫ (
1

4π
∇νF

νµδAµ − 1

c
JµδAµ +

m2

4π
AµδAµ

)√
−gd4x = 0

=

∫ (
1

4π
∇νF

νµ − 1

c
Jµ +

m2

4π
Aµ

)
δAµ

√
−gd4x = 0, (28)

como δAµ é uma variação arbitrária, temos que as equações de movimento são dados por

∇νF
νµ +m2Aµ =

4π

c
Jµ. (29)

Como esperado para qualquer tipo de modificação de uma teoria, no caso do eletromagnetismo de
Proca, retornamos à (16) quando m = 0. Aplicando ∇µ em (29), temos

∇µ∇νF
νµ +m2∇µA

µ =
4π

c
∇µJ

µ, (30)

como ∇µ∇ν = ∂µ∂ν que é simétrico, enquanto F νµ é antissimétrico, esse termo se anula, o termo ∇µJ
µ

é nulo devido a conservação da corrente, e dessa forma temos

∇µA
µ = 0 → ∇0A

0 + ∂iA
i = 0 → 1

c
∂tφ+ ∂iA

i = 0, (31)

que é a condição do calibre de Lorentz. Abrindo o primeiro termo em (29), temos

∇νF
νµ = ∇ν(∇νAµ −∇µAν) = ∇ν∇νAµ ≡ □Aµ, (32)

pois ∇µ∇νA
ν = 0 devido (31). Temos então,

□Aµ +m2Aµ =
4π

c
Jµ. (33)

É interessante notar que, no caso estático, ∂tAµ = 0,

∇2Aµ −m2Aµ = −4π

c
Jµ, (34)

e com a carga pontual em repouso, ou seja, Jµ = (cq, J i = 0), Ai = 0 e φ ̸= 0, teremos

∇2φ−m2φ = −4πq, (35)

cuja solução é um potencial de Yukawa

φ(r) = q
e

r

−mr
, (36)

que justamente descreve a interação nuclear, o parâmetro m dita o alcance dessa interação.
Para calcularmos o tensor energia momento, fazemos a variação em relação a métrica. Podemos

escrever a ação como

S =

∫ (
− 1

16π
Fµνg

αµgβνFαβ − 1

c
Jµg

µλAλ +
m2

8π
Aµg

γµAγ

)√
−gd4x,

δS

δgab(y)
=

∫ (
− 1

16π
Fµνg

αµgβνFαβ − 1

c
Jµg

µλAλ +
m2

8π
Aµg

γµAγ

)√
−gδ(x− y)d4x

=

(
− 1

16π
Fµνg

αµgβνFαβ − 1

c
Jµg

µλAλ +
m2

8π
Aµg

γµAγ

)
δ
√
−g +

δ

(
− 1

16π
Fµνg

αµgβνFαβ − 1

c
Jµg

µλAλ +
m2

8π
Aµg

γµAγ

)√
−g. (37)
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Começando com a variação de
√
−g, temos

δ
√
−g = − 1

2
√
−g

δg, (38)

para verificarmos a variação do determinante de g, usamos do fato do determinante ser dado por g =
ΠD

i=1λi, onde λi são os autovalores e D é a dimensão da matriz. Da variação do determinante temos

δg = (δλ1)Π
D
i=2λi + (δλ2)λ1Π

D
i=3λi + ...+ (δλD)ΠD−1

i=1 λi

= g

(
1

λ1
δλ1 + ...+

1

λD
δλD

)
= ggµνδgµν , (39)

sabendo também que gµλgλν = δµν , em que δµν é um delta de Kronecker, teremos

δ(gµλgλν) = δ(δµν )

gλνδg
µλ + gµλδgλν = 0

gρµgλνδg
µλ + gρµg

µλδgλν = 0

gρµgλνδg
µλ + δλρ δgλν = 0

δgρν = −gρµgλνδg
µλ

(ρ = µ; λ = σ)

δgµν = −gρµgσνδg
ρσ, (40)

temos então

δg = ggµν(−gρµgσνδg
ρσ)

= −gδνρgνσδg
ρσ

(ρ = µ; σ = ν)

= −ggµνδg
µν , (41)

portanto

δ
√
−g = −1

2

√
−ggabδg

ab. (42)

Para o segundo termo, temos

− 1

16π
Fµν(δg

αµgβνFαβ + gαµδgβνFαβ)−
1

c
Jµδg

µλAλ +
m2

8π
Aµδg

µγAγ (43)

se a variação é em relação à gab, temos

− 1

16π
(FµνF

ν
αδ

a
αδ

µ
b + FµνF

µ
β δ

β
a δ

ν
b )−

1

c
JµAλδ

µ
a δ

λ
b +

m2

8π
AµAγδ

µ
a δ

γ
b

− 1

16π
(FbνF

ν
a + FµbF

µ
a )−

1

c
JaAb +

m2

8π
AaAb, (44)

por fim podemos escrever δS/δgab como

δS

δgab
= −1

2

(
− 1

16π
FµνF

µν − 1

c
AµJ

µ +
m2

8π
AµA

µ

)√
−ggab[

− 1

16π
(FbνF

ν
a + FµbF

µ
a )−

1

c
AaJb +

m2

8π
AaAb

]√
−g, (45)

usando da definição do tensor energia-momento,

δS

δgab
= −

√
−g

2
Tab, (46)

6



CADERNOS DE FÍSICA DO PPGFIS-UFES
2024/1

temos

δS

δgab
= −

√
−g

2

(
− 1

16π
FµνF

µν − 1

c
AµJ

µ +
m2

8π
AµA

µ

)
gab

−
√
−g

2

[
1

8π
(FbνF

ν
a + FµbF

µ
a ) +

2

c
AaJb −

m2

4π
AaAb

]
,

por fim

Tab =

(
− 1

16π
FµνF

µν − 1

c
AµJ

µ +
m2

8π
AµA

µ

)
gab

+
1

8π
(FbνF

ν
a + FµbF

µ
a ) +

2

c
AaJb −

m2

4π
AaAb. (47)

4 CONCLUSÃO
A teoria de Proca, embora tenha sido pioneira na tentativa de descrever interações de curto alcance,
apresenta limitações significativas. Como muito bem discutido em [6], (20) não possui simetria de calibre,
ou seja, você teria um calibre preferencial para fazer suas medidas, o que daria um “sentido físico” para o
potencial vetor Aµ. Em contrapartida, se (20) é trabalhada com duas dimensões espaciais e uma temporal,
a simetria de calibre é mantida. De toda forma, a ideia de um fóton massivo continua a inspirar pesquisas
em diversas áreas da física.

Atualmente, a teoria de Proca é frequentemente interpretada como um formalismo mais geral
que engloba a eletrodinâmica de Maxwell e permite a descrição de fenômenos mais complexos. Essa
perspectiva tem levado a diversas aplicações interessantes [7]. Na gravitação, por exemplo, a teoria de
Proca tem sido explorada como uma possível generalização da relatividade geral [8], embora a introdução
de um fóton massivo nesse contexto exija um cuidado especial para evitar inconsistências teóricas, por
exemplo o surgimento de “parâmetro fantasmas”, ou seja, parâmetros sem fundamento teórico.

Outra área promissora é a física da matéria condensada. A teoria de Proca tem sido utilizada para
modelar supercondutores holográficos [9], onde a dualidade gauge-gravidade sugere uma conexão entre
teorias de calibre massivas e sistemas de muitos corpos. Essa abordagem oferece uma nova perspectiva
para o estudo de fenômenos como a supercondutividade de alta temperatura.

Por fim, podemos aplicar a ideia de Proca na astrofísica [10], em que temos a hipótese das Proca
Stars, estrelas compostas principalmente de bósons vetoriais massivos, também conhecidos como campos
de Proca. Esses bósons são partículas elementares que possuem spin 1 e massa.

Em suma, a teoria de Proca, apesar de suas limitações, continua a ser uma ferramenta valiosa
para a investigação de fenômenos físicos fundamentais. Ao estender a eletrodinâmica de Maxwell para
incluir um fóton massivo, essa teoria abre novas possibilidades para a compreensão de interações de curto
alcance e para a unificação das forças fundamentais da natureza. No entanto, é importante ressaltar que
a interpretação física da massa do fóton e as implicações para a estrutura do espaço-tempo ainda são
objeto de intensas pesquisas.
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