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Abstract The gauge field Wilson line operator is an impor-
tant concept in the gauge field theory and can be derived from
the nonlocal interaction. A similar analysis can be carried out
for the nonlocal interaction in the curved space-time to obtain
the gravitational Wilson line operator explicitly. In this paper
we first review the connection between the nonlocal interac-
tion and the gauge field Wilson line operator, then discuss
the gravitational Wilson line operator. Finally, we prove the
gauge invariance of the energy–momentum tensor to explore
the effect of the Wilson line operator.

1 Introduction

In the field theory, the gauge invariance is an important con-
dition because it is directly associated with the conservation
of currents and charges. Generally, under local gauge trans-
formation, the theory recovers gauge invariance by introduc-
ing the corresponding gauge field. However, in the bilocal
operator or nonlocal interactions, the gauge invariance can
not be fulfilled as in the conventional way. Since the nonlocal
interactions give rise two phase factors at two different space-
time points. In this circumstance, these phase factors can not
counteract with that of the gauge field. This can be seen more
concretely from the nonlocal interactions. In nonlocal field
theory, the main assumption is that fields interact with each
other at different space-time points. Thus under the gauge
transformation, the nonlocal interaction is not gauge invari-
ant. Therefore it is necessary to introduce a new operator,
which can neutralize these phase factors [1–4]. Such an oper-
ator is usually called Wilson line operator. The main property
of the Wilson line operator is that under the gauge transfor-
mation it generates two phase factors at different space-time
points too. According to the gauge transformation behavior
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of the Wilson line operator, it can be parameterized in terms
of the path-ordered exponential of the gauge field by solving
the parallel transport equation of the gauge field [5–7].

As for the theory in the curved space-time, the correspond-
ing gauge field is assumed to be gravity. By analogy to gauge
theory, in the curved space-time the gauge invariance can be
preserved if gravity is included. Similarly, the gauge invari-
ance of the nonlocal interaction in the curved space-time can
be ensured by including the Gravitational Wilson line opera-
tor. As mentioned above, in a straightforward manner, one is
able to obtain the gravitational Wilson line operator by solv-
ing the parallel transport equation for the Christoffel sym-
bol, which is the gauge connection in the curved-pace time
[8–12]. However, such parametrization of the gravitational
Wilson line operator is not consistent with the single copy of
gauge theory [8]. In Refs. [10,13,14], it has been proposed
that the gravitational Wilson line operator can be defined in
terms of the phase factor of the heavy relativising particle in
the curved space-time. Although the theory with such grav-
itational Wilson line operator satisfies gauge invariance, the
intrinsic connection between nonlocality and gravitational
Wilson line operators is not yet clear. Therefore, it is nec-
essary to systematically investigate the connection between
nonlocality and Wilson line operator, especially, unify the
method in which the gauge and gravitational Wilson line
operators can be derived in an analogous way.

This paper organized as follows: in Sects. 2 and 3, we
review the main framework of nonlocal regularization and
the derivation of the corresponding gauge field Wilson line
operator from the nonlocal field operator. In Sect. 4, we will
derive the gravitational Wilson line operator from the non-
local interaction in the curved space-time. In Sect. 5, as an
application, we explicitly verify the conservation of nonlo-
cal energy–momentum tensor and illustrate the effects of the
gravitational Wilson line operator. In the final section, we
will draw a short conclusion.
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2 Nonlocal regularization

One of the main challenges in quantum field theory (QFT)
is that ultraviolet (UV) divergences arise when one consid-
ers the loop contributions to physical observables. This can
be illustrated more clearly through the loop calculations of
specific interactions. For example, let us consider the inter-
action between the complex scalar field φ(x) and the electro-
magnetic field Aμ(x), which is described by the Lagrangian
density,

Llocal = [Dμφ(x)]∗Dμφ(x) − m2
φφ∗(x)φ(x)

− λ

4
[φ∗(x)φ(x)]2,

(1)

where the electromagnetic covariant derivative is defined as
Dμ = ∂μ− igAμ(x), λ is the coupling constant. It is obvious
that the local Lagrangian Llocal is gauge invariant under the
U (1) gauge transformation φ′(x) = U (x)φ(x). However,
the point is that when we calculate the loop corrections to the
coupling constant λ, the loop contribution is UV divergent.
This problem stems from the ill-defined nature of the prod-
uct of two local field operators at the same space-time point.
More specifically, local fields interact with one another at
the same space-time point [15]. Traditionally, to address this
issue, various regularization methods have been developed,
such as dimensional and Pauli–Villars regularization. On the
other hand, from the perspective of single-point interactions,
one can eliminate the ultraviolet divergence by positioning
the fields at different space-time points [16–21]. This pro-
cedure is called delocalization of field operators. After the
delocalization, one can obtain a new field operator, which
is called nonlocal field operator. The terminology for ‘non-
locality’ refers to scenario in which the original local field
operator φ(x) has been shifted to a new space-time point
φ(x + a). Furthermore, the nonlocal field operator φ(x + a)

hides the information about the infinite-order derivatives of
the local field operator since nonlocal field operator φ(x+a)

can also be written as φ(x+a) = ea.∂φ(x). From this aspect,
nonlocal regularization is also referred to as infinite-order
derivatives regularization [22–30].

Compared to other conventional regularization schemes,
nonlocal regularization can be systematically encoded into
a modified interaction Lagrangian. Generally, this modified
Lagrangian can be obtained by replacing the local field oper-
ator φ(x) in the local interaction Lagrangian with the nonlo-
cal operator φ(x + a). However, it is evident that if a theory
includes the nonlocal scalar field operator φ(x + a), then
it will lose its original gauge invariance. To preserve gauge
invariance in this case, one must invoke the gauge field Wil-
son line operator. A straightforward method to recover gauge
invariance is to replace the nonlocal field operator φ(x + a)

with the modified operator �(x, a, A) = W (x, a, A)φ(x +

a), whereW (x, a, A) symbolically represents the gauge field
Wilson line operator and A is the gauge field. According
to the gauge transformation of the local field operator, it
can be shown that the Wilson line operator transforms as
W ′(x, a, A) = U (x)W (x, a, A)U †(x +a). Thus, the nonlo-
cal operator �(x, a, A) generates a local phase factor similar
to its local counterpart, i.e., �(x, a, A)′ = U (x)�(x, a, A).
Consequently, the theory that incorporates both the nonlocal
field operator and the Wilson line operator remains gauge
invariant. Summarizing this, the nonlocal Lagrangian is con-
structed as,

Lnonlocal = [Dμφ(x)]∗Dμφ(x) − m2
φφ∗(x)φ(x)

−λ

4

∫
d4aF(a)

∫
d4bF(b)[W ∗(x, b, A)

×φ∗(x + b)W (x, a, A)φ(x + a)]2, (2)

where F(a) is the nonlocal regulator function, which
includes an additional cutoff parameter and satisfies certain
conditions. More details can be found in the Refs. [19–21].
Furthermore, in the local limit where F(a) = δ4(a), the
nonlocal Lagrangian Lnonlocal reduces to the local one. It is
clear that the modified Lagrangian Lnonlocal still preserves
gauge invariance under U (1) transformations. More impor-
tantly, the loop contributions are ultraviolet (UV) finite. This
conclusion can be intuitively understood from loop calcula-
tions. Specifically, in perturbative loop calculations, the Wil-
son line operator W (x, a, A) generates additional Feynman
diagrams, ensuring that the total loop contribution remains
gauge invariant and UV finite [4,31,32]. However, the regu-
larization of loop contributions depends on the Wilson line
operator and the shape of the nonlocal regulator. Therefore,
it is essential to define the explicit expression of the Wilson
line operator.

3 Gauge field Wilson line operator

Conventionally, the Wilson line operator is usually given by
the solution of the parallel transport equation of the corre-
sponding gauge field Aμ(x). To unify the method that will be
used in the next section, in this work, we will present another
method to parameterize the gauge field Wilson line opera-
tor. In such a method, the Wilson line operator for gauge
field or gravity can be straightforwardly obtained from the
nonlocality of the field.

Now we proceed to discuss the connection between non-
locality and gauge field Wilson line operators. Let us start
with a nonlocal scalar field operator φ(x + a). Indeed, it
can be rewritten as φ(x + a) = ea.∂φ(x). However, its
right side does not manifestly transform under the local
gauge transformation. To cure this issue, we replace the
partial derivative with the covariant derivative of the local
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scalar field. Then the modified field operator �̃(x, a, A) =
ea.(∂−igA)φ(x), which exactly transforms as �̃′(x, a, A) =
U (x)�(x + a, A). On the other hand, the nonlocal field
operator �̃(x, a, A) also can be transformed into the form
�̃(x, a, A) = ea.(∂−igA)e−a.∂φ(x + a). Comparing these
two nonlocal operators �(x, a, A) and �̃(x, a, A), one can
find that the gauge field Wilson line operator can be defined
as,

W (x, a, A) = ea.(∂−igA)e−a.∂ . (3)

Applying the Baker–Campbell Hausdorff formula, Eq. (3) is
simplified as,

W (x, a, A) = Exp

[
−ig

∑
n=1

(a.∂)n−1

n! a.A(x)

]

= PExp

[
−ig

∫ x+a

x
dzμAμ(z)

]
, (4)

where P is the path ordering operator. Obviously, Eq. (4) is
identical to the conventional expression of gauge field Wilson
line operator, which can be found in QFT textbooks and other
references [6,7].

4 Gravitational Wilson line operator

An action for the matter field in the curved space-time is
obtained by introducing the metric and vielbein fields which
contract with the modified covariant derivative and vector
field. However, the local scalar field is unchanged and the
same as the flat space-time. As for the nonlocal interaction
in the curved space-time, it can constructed by transforming
the nonlocal field operator into curved space-time following
the similar prescription stated above. However, it should be
noted that a nonlocal scalar field operator does not obey such
a simple rule. Since the nonlocal scalar field operator in the
flat space-time φ(x + a) is rewritten in the form φ(x + a) =
ea.∂φ(x). This indicates that the nonlocal field operator hides
higher order derivatives of local field operator with respect
to the space-time. Therefore in the curved space-time, the
nonlocal scalar field operator can be written as,

φ(x + a) = ee
μ
b a

b∂μφ(x), (5)

where the eμ
b represents vielbein field. It is necessary to men-

tion that the infinitesimal translation vector ab is a constant
vector. Therefore the curved space-time version of opera-
tor a.∂ can be obtained by the replacement eμ

b a
b∂μ[33]. It

will be more clear in the following section that in the weak
gravitational field limit, the vielbein field can be expanded
as eμ

b = δ
μ
a − κ

2 ηaλhλμ + O(κ2), where κ is defined as

κ2 = 32πG [34–36]. Substituting the expansion into the Eq.
(5), one obtains φ(x + a) = ea.∂− κ

2 h
μνaμ∂ν φ(x). Analogy

to Eq. (3), the exponential operator can be defined as the
gravitational Wilson line operator,

W (x, a, h) = ea.∂− κ
2 h

μνaμ∂ν e−a.∂ . (6)

By analogy to Eq. (4), further simplification gives rise to an
explicit parametrization for the gravitational Wilson line as,

W (x, a, h) = PExp[−κ

4

∫ x+a

x
hμν(z)dz{μ∂ν}], (7)

where the symmetrization notation a{μbν} is defined as
a{μbν} = aμbν + aνbμ. Comparing the Eq. (7) to the gauge
Wilson line operator, the gravitational Wilson line opera-
tor contains partial derivatives of local scalar field. If the
partial derivative is replaced with the four momentum of
the local scalar field, the Eq. (7) then can be rewritten as
W (x, a, h) = Exp[i κ

2m
∫ τ

0 dtvμvνhμν(x + vt)], where kν

denotes the four momentum of delocalized particle and is
defined kμ = mvμ, vν is the four velocity and defined as
vμ = aμ

τ
. Unsurprisingly, this expression is identical to the

massive particle phase factor result given in [10,13,14,37].

5 Gauge invariance of pseudo-scalar interaction

5.1 Nonlocal action in the curved space-time

In this section, as a simple example, we will explore the gauge
invariancy of nonlocal matter field action in the curved space-
time with the gravitational Wilson line operator. Analogy
to electrometric conserved current, the gravitational gauge
invariancy results in the conservation of energy–momentum
tensor even at the loop level. Therefore, we will investigate
the gauge invariance of the pion loop corrections to the proton
energy–momentum tensor. On the other hand, it is known
that the Yukawa-type interaction between the nucleon and
pion fields is governed by pseudoscalar Lagrangian density,
which is given by Lint = −igN̄ (x)γ 5τ .π(x)N (x), where
N (x) and τ .π(x) represent the nucleon and pion fields, and
τi are the Pauli matrices, g is the effective coupling constant
[6,38,39]. Following the prescription developed in [40,41],
it is easy to construct an effective action in the curved space-
time for the nucleon and pion kinetic term as well as for the
PS interaction as,

Slocal
PS =

∫
d4x

√−g(x)

[
i

2
N̄ (x)eμ

a (x)γ a∇μN (x)

− i

2
∇μ N̄ (x)eμ

a (x)γ aN (x) − mN̄ (x)N (x)

+δmN̄ (x)N (x)

]
+ 1

2

∫
d4x

√−g(x)
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×
[
gμν(x)

2
∂{μπ(x).∂ν}π(x) − m2

ππ(x).π(x)

+δm2
ππ(x).π(x)

]
− ig

∫
d4x

√−g(x)

×N̄ (x)γ 5τ .π(x)N (x), (8)

where gμν(x) and eμ
a (x) are the metric and vielbein field,

which represent the gravitational background of the matter
field,

√−g(x) is the determinant of the metric field gμν(x),
δm and δm2

π are the mass counterterms of nucleons and pions
[42–44]. It is worthwhile to mention that we have included
in pion and nucleon counterterms since they have a nonzero
contribution to the energy–momentum tensor and violate
the gauge invariancy. This is contrary to the electrometric
case, in which the counterterm fulfills the gauge invariance
independently. Therefore electrometric gauge invariance can
proved for the loop contribution and counterterm respec-
tively. On the other hand, as mentioned above the interaction
between the nonlocal particles can be described by the non-
local Lagrangian. In this work, we treat the pion field as a
nonlocal field. Correspondingly, the nonlocal version of the
Eq. (8) can be constructed as,

Snonlocal
PS =

∫
d4x

√−g(x)
[ i

2
N̄ (x)eμ

a (x)γ a∇μN (x)

− i

2
∇μ N̄ (x)eμ

a (x)γ aN (x) − mN̄ (x)N (x)

+δmN̄ (x)N (x)
] + 1

2

∫
d4x

√−g(x)

×
[
gμν(x)

2
∂{μπ(x).∂ν}π(x) − m2

ππ(x).π(x)

+δm2
ππ(x).π(x)

]
− ig

∫
d4x

×
∫

d4aF(a)
√−g(x)N̄ (x)γ 5

×W (x, a, h)τ .π(x + a)N (x), (9)

where W (x, a, h) is the gravitational Wilson line operator.
In fact, the metric and vielbein fields mix the flat space-
time background with curved one. More concretely, we can
not distinguish the flat space-time contribution from Eq. (9).
Alternatively, it is worth to separate metric and vielbein into
flat and curved space-time components. In the weak field
limit, gμν and eμ

a can be expanded around the flat space-time
background as [34–36],

gμν = ημν − κhμν + O(κ2),

√−g = 1 + 1

2
κh + O(κ2),

eμ
a = δμ

a − κ

2
ηaλh

λμ + O(κ2),

(10)

where h is defined as h = ημνhμν . Substituting Eq. (10) into
Eq. (9), we can find that the first terms of Eq. (10) give rise to
PS action in the Minkowskian space-time. As for the second
terms, they generate terms proportional to h and hμν , which
represent the true curved space-time background. Furtherly,
the energy–momentum tensor is defined as,

Tμν = − 2

κ

δS

δhμν
. (11)

Adopting this definition, from action in Eq. (9), we obtain the
energy–momentum tensor for nucleon -pion PS interaction
as,

Tμν(x) = i

4

[
N̄ (x) γ{μ∂ν}N (x) − ∂{μ N̄ (x) γν}N (x)

]

−ημν

[ i
2
N̄ (x) γ α∂αN (x) − i

2
∂α N̄ (x)γ αN (x)

−mN̄ (x)N (x) + δmN̄ (x)N (x)
]

+1

2
∂{μπ(x).∂ν}π(x) − ημν

2

[
∂απ(x).∂απ(x)

−m2
ππ(x).π(x) + δm2

ππ(x).π(x)
] − ig

×
∫

d4aF(a)
[−ημν N̄ (x)γ5τ .π(x + a)N (x)

+1

2

∫ 1

0
dt N̄ (x)γ5τ .π(x + a − at)N (x)a{μ∂ν}

]
,

(12)

where the last term represents the additional gauge link
energy–momentum tensor current. Actually, this term tends
to zero in the local limit F(a) → δ4(a). Using the energy–
momentum tensor currents and nonlocal action, one can cal-
culate the pion one loop corrections to the proton self energy
and the energy–momentum tensor. On the other hand, the
loop corrections to the energy–momentum can be parame-
terized in terms of gravitational form factors as [45–47],

〈p′|Tμν |p〉 = ū(p′,m)

[
A(t)

γ{μPν}
2

+ i B(t)
P{μσν}αqα

4m

+ D(t)
qμqν − ημνq2

4m
+ mc̄(t)ημν

]
u(p,m),

(13)

where u(p,mN ) is the proton spinor,mN is the physical mass
of the proton, kinematic variables P and q are defined as
P = (p+p′)/2,q = p′−p, and four momentum transfer t =
q2 = −Q2, ημν is the flat space-time metric, four Lorentz
invariant scalar functions A(t), B(t), D(t) and c̄(t) are called
gravitational form factors of the proton. From Eq. (13) it
can be seen that the first three terms satisfy gauge invariance
independently for each loop diagram except the last c̄(t) term.
If the total energy–momentum tensor is conserved qμTμν =
0, then the total c̄(t) from the all loop contributions vanishes
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Fig. 1 Pion one loop corrections to the proton self-energy, where the
solid and dashed lines represent pion and nucleon fields, respectively

i.e
∑
i
c̄i (t) = 0. To prove this, in the subsequent analysis,

we first calculate the pion one loop correction to the energy–
momentum tensor and then prove the gauge invariance.

Collecting energy–momentum tensor currents and nucleon-
pion nonlocal interactions, one can compose possible one
loop Feynman diagrams as shown in Figs. 1 and 2.

From Fig. 1a, one can write down pion one loop contribu-
tion to the proton self energy as,

�( 	 p,m) = −i 3 g2
∫

d4k

(2π)4

γ5( 	 p− 	 k + m)γ5

Dπ (k)DN (p − k)
F̃2(k),

(14)

where F̃(k) is Fourier transformation of the regulator func-
tion F(a) and defined as F̃(k) = ∫

d4aF(a)e−ik.a , Dπ (k)
and DN (k) are defined as Dπ (k) = k2 −m2

π + iε, DN (k) =
k2 − m2 + iε. Using the self-energy, the mass counterterm
δm is related to the self-energy via δm = �( 	 p = m,m).
For the tree diagram Fig. 2(a), one has energy–momentum
tensor vertex operator as,

�
μν
fig.2.a = ū(p′)

[
P{μγν}

2
− ημν( 	 P − m)

]
u(p), (15)

where P is defined as P = 1
2 (p′ + p). Similarly, the energy–

momentum tensor vertex operator for the gravitational coun-
terterm diagram Fig. 2b reads,

�
μν
fig.2.b = −ημνδmū(p′)u(p). (16)

In the same way, one can obtain the energy–momentum ten-
sor operator for the nucleon rainbow diagram Fig. 2c,

�
μν
fig2.c = −3 i g2ū(p′)

∫
d4k

(2π)4 γ 5( 	 p′− 	 k − m)

×
{

1

2
(P − k){μγ ν} − ημν( 	 P− 	 k − m)

}

× ( 	 p− 	 k + m)γ 5

DN (p − k)DN (p′ − k)Dπ (k)
F̃2(k)u(p).

(17)

Similarly, tensor vertex operator for the leading order pion
rainbow diagram Fig. 2d is obtained as,

�
μν
fig2.d = −3 i g2 ū(p′)

∫
d4k

(2π)4

[
k′{μkν} −

(
k.k′ − m2

π

)
ημν

]

× γ5( 	 p− 	 k + m)γ5

Dπ (k)Dπ (k′)DN (p − k)
u(p)F̃(k)F̃(k′). (18)

For the energy–momentum tensor current arises from the
Kroll–Ruderman (KR) type diagram Fig. 2e, one has,

�
μν
fig2.e = −3 i g2ū(p′)

∫
d4k

(2π)4

{
ημνγ5( 	 p− 	 k + m)γ5

Dπ (k)DN (p − k)

+ ημνγ5( 	 p′− 	 k + m)γ5

Dπ (k)DN (p′ − k)

}
F̃2(k)u(p). (19)

In the nonlocal regularization, vertex generated from the
gravitational Wilson line operator give rise to an additional
KR-like diagram Fig. 2f and the corresponding vertex oper-
ator can be obtained as,

�
μν
fig2.f = 3 i g2ū(p′)

∫
d4k

(2π)4

{
γ5( 	 p− 	 k + m)γ5

Dπ (k)DN (p − k)

×
[

1

2
k{μ ∂

∂kν}

∫ 1

0
dt F̃(k + qt)

]
+γ5( 	 p′− 	 k + m)γ5

Dπ (k)DN (p′ − k)

×
[

1

2
k{μ ∂

∂kν}

∫ 1

0
dt F̃(k − qt)

]}
F̃(k)u(p), (20)

where t is a dimensionless parameter. It is obvious that loop
contribution nucleon rainbow, pion rainbow and KR dia-
grams in the local limit F̃(k) = 1 recover to the local counter-
part except the additional gauge link diagram, which vanishes
due to the derivative of the regulator F̃(k).

5.2 Gauge invariance

As mentioned in the Sect. 1, like electromagnetic current,
the total energy–momentum tensor currents from the tree
and loop contributions must be conserved. This directly indi-
cates that the total c̄(t) gravitational form factor vanishes if
we combine the c̄(t) from each loop contribution. In this way,
we can prove the conservation of current straightforwardly
without explicitly calculating the gravitational form factors
A(t), B(t), D(t) and c̄(t). To do this, we first calculate the
identity qμ�μν(p, q) for each Feynman diagram then com-
bine all of them. Since as shown in Eq. (13), Lorentz struc-
ture of gravitational form factors A(t), B(t) and D(t) satisfy
on-shell condition except the c̄(t). Thus one can extract the
c̄(t) from the identity according to qμ�μν(p, q) = qν c̄(t).
Multiplying qμ to energy–momentum tensor vertex operator
�μν(p, q) for the tree diagram (Fig. 2a), from Eq. (15), we
easily get the identity,

qν�
μν
fig.2.a = 0. (21)
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Fig. 2 Pion one loop corrections to the proton gravitational form fac-
tors. The crossed circle denotes the insertion of the energy–momentum
tensor currents, the crossed square represents the additional gauge link

energy–momentum tensor currents arising from the gravitational Wil-
son line operator, and the solid dot represents the gravitational coun-
terterm

This implies that contribution from the tree diagram is gauge
invariant without including the other diagrams. As for the
gravitational counterterm diagram (Fig. 2b), the gauge invari-
ancy identity reads,

qν�
μν
fig.2.b = −qμū(p′)�( 	 p = m,m)u(p), (22)

where the leading order pion contribution to the proton self
energy �( 	 p,m) is defined in Eq. (14). Simplifying Eq. (17)
yields the gauge invariance identity for the nucleon rainbow
diagram (Fig. 2c) as,

qν�
μν
fig2.c = −3 i g2ū(p′)

∫
d4k

(2π)4 γ 5
[
(− qμ

2 )( 	 p− 	 k + m)

2DN (p − k)

+ (− 3qμ

2 )( 	 p′− 	 k − m)

2DN (p′ − k)
+ ( 	 p′− 	 k + m)kμ

DN (p′ − k)

−kμ( 	 p− 	 k + m)

DN (p − k)

]
γ 5

Dπ (k)
F̃2(k)u(p), (23)

where we have used identity k.q = 1
2 [DN (p−k)−DN (p′−

k)], and replace 	 q with 	 q = ( 	 p′ − 	 k−m)− ( 	 p− 	 k−m).
Therefore the numerator becomes ( 	 p − 	 k − m)( 	 p − 	 k +
m) = DN (p−k), ( 	 p′−	 k−m)( 	 p′−	 k+m) = DN (p′−k).
Similarly, from Eq. (18), we obtain the identity for the pion
rainbow diagram (Fig. 2d) as,

qν�
μν
fig2.d = −i3g2ū(p′)

∫
d4k

(2π)4

[
kμ γ5( 	 p− 	 k + m)γ5

DN (p − k)Dπ (k)

×F(k)F(k′) − kμγ5( 	 p′− 	 k + m)γ5

DN (p′ − k)Dπ (k)

×F(k − q)F(k)

]
u(p), (24)

where we have used the identity 2 k.q + q2 = Dπ (k′) −
Dπ (k), and Dπ (k′) is transformed into Dπ (k) by the replace-
ment k′ → k. In the same way, from Eq. (19), we obtain
gauge invariance identity for the KR diagram (Fig. 2e) as,

qν�
μν
fig2.e = −3 i g2ū(p′)qμ

∫
d4k

(2π)4

{
γ5( 	 p− 	 k + m)γ5

Dπ (k)DN (p − k)

+ γ5( 	 p′− 	 k + m)γ5

Dπ (k)DN (p′ − k)

}
F̃2(k)u(p).

(25)

Finally, the identity for the additional gauge link diagram is
given by,

qν�
μν
fig2.f = 3ig2ū(p′)

∫
d4k

(2π)4

{
kμ

γ5( 	 p− 	 k + m)γ5

Dπ (k)DN (p − k)

×[F̃(k′) − F̃(k)] − kμ

γ5( 	 p′− 	 k + m)γ5

Dπ (k)DN (p′ − k)

[F̃(k − q) − F̃(k)]
}
F̃(k)u(p). (26)

Combining the expressions in Eqs. (22, 23, 24, 25, 26),
the result reads,

qν�
μν
fig.2.b + qν�

μν
fig2.c + qν�

μν
fig2.d + qν�

μν
fig2.e + qν�

μν
fig2.f = 0.

(27)

Equation (27) shows that the total c̄(t) form factor from the
counterterm and loop contributions vanishes with the help
of the gravitational Wilson line operator. In addition, in the
local limit F̃(k) = 1 the additional gauge link contribution
of Eq. (26) tends to zero so that local c̄(t) from factor from
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Eqs. (22, 23, 24, 25) is also equal to zero. In summary, both
in the local and nonlocal frameworks the energy–momentum
tensor is conserved.

6 Conclusion

The Wilson line operator is an important topic in the gauge
field theory and gravity. It plays an important role as one
considers the gauge invariance of the nonlocal interactions
in the flat and curved space-time. In such a model, the non-
local field operator was introduced to renormalize the UV
divergence of the loop contribution. However, the price for
this is that the gauge invariance of the theory is violated.
To recover the gauge invariancy, it is necessary to include
both the gauge field and the gravitational Wilson line opera-
tor. Consequently, loop contributions to physical observables
are gauge invariant and UV finite.

In this paper, we developed a novel method in which the
gravitational Wilson line operator can be derived from the
nonlocal interactions. Our analysis shows that the nonlocal
result for the gravitational Wilson line operator is identical
to previous result. More importantly, by virtue of the grav-
itational Wilson line operator total c̄(t) gravitational form
factor is zero. This implies that the energy–momentum ten-
sor is conserved even in the non-local framework.
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