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Abstract

Methods based on machine learning have recently made substantial inroads in
many corners of cosmology. Through this process, new computational tools, new per-
spectives on data collection, model development, analysis, and discovery, as well as
new communities and educational pathways have emerged. Despite rapid progress,
substantial potential at the intersection of cosmology and machine learning remains
untapped. In this white paper, we summarize current and ongoing developments re-
lating to the application of machine learning within cosmology and provide a set of
recommendations aimed at maximizing the scientific impact of these burgeoning tools
over the coming decade through both technical development as well as the fostering
of emerging communities.
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1 Introduction

The interplay between models and observations is a cornerstone of the scientific method,
aiming to inform which theoretical models are reflected in the observed data. Within
cosmology, as both models and observations have substantially increased in complexity
over time, the tools needed to enable a rigorous comparison have required updating as
well. With an eye towards the next decade in cosmology, the vast data volumes to be
delivered by ongoing and upcoming surveys, as well as the ever-expanding theoretical
search-space, motivate a re-thinking of the statistical machinery used. In particular, we are
now at a crucial juncture where we may be limited by the statistical and data-driven tools
themselves rather than the quality or volume of the available data.

Methods based on artificial intelligence (AI) and machine learning (ML) have recently
emerged as promising tools for cosmological applications, demonstrating the ability to
overcome some of the computational bottlenecks associated with traditional statistical
techniques. Machine learning is starting to see increased adoption across different sub-
fields of and for various applications within cosmology. At the same time, the nascent
and emergent nature of practical artificial intelligence motivates careful continued devel-
opment and significant care when it comes to their application in the sciences, as well as
cognizance of their potential for broader societal impact.

In this white paper, we provide an overview of some of the ways machine learning
methods are becoming increasingly central to the way cosmological data is collected, ana-
lyzed, and interpreted. Along the way, we highlight our vision for necessary developments,
framing these as recommendations—both technological as well as sociological—for the
widespread safe and equitable adoption of machine learning methods within cosmology in
the coming decade.

2 Examples of science cases

2.1 Cosmic Probes

Cosmology is the study of the content and evolution of our Universe. In the ACDM stan-
dard model of cosmology, the Universe has three primary components: dark energy (the
source of the accelerated expansion of our Universe), dark matter (comprising the major-
ity of the mass density in our Universe, whose presence thus far has been inferred through
gravitational interactions), and ordinary visible matter. While the observational data has
thus far remained largely consistent with the standard model of cosmology, fundamental
physics questions remain unanswered. Unknowns include the particle nature of dark mat-
ter, the source of the accelerated expansion of the Universe, and the physics that seeded
the first structures in the Universe.

There is an exciting prospect for many of the outstanding problems in cosmology to
be solved, or substantial progress towards their solution to be made, using the statistical
power offered by current and upcoming cosmological experiments. Maximizing the scien-
tific return of forthcoming data will require methods that can extract as much information



as possible from observations while controlling for systematics associated with measure-
ments as well as theoretical models.

In multiple subfields of cosmology, the pathway to cosmological constraints generally
encompasses a source identification step, a summary measurement, and a comparison of
the observation to theoretical models for parameter inference. In the rest of this section,
we outline examples of cosmic probes where machine learning has already made a sig-
nificant impact, with continued progress expected over the next decade as observations
continue to increase in sensitivity. We note that the directions and works highlighted in
this as well as subsequent sections are meant to be representative, rather than exhaustive.

Machine learning techniques will be crucial for detecting and classify cosmological
sources, extract information from images, and optimize observing strategies. Examples of
probes of cosmology include galaxy clustering, supernovae, strong and weak gravitational
lensing, and the cosmic microwave background. Cosmology analyses that incorporate mul-
tiple probes have increased constraining power for two primary reasons. First, different
probes span model space parameters in complementary ways, allowing for tighter con-
straints of cosmological parameters. Second, each observable is impacted by its own set of
astrophysical processes and observational systematics. Machine learning methods can be
used to fully realize the potential of multi-probe cosmology by decorrelating the effect of
systematics and optimally combining information from multiple surveys [1].

Many scientific analyses that aim to extract cosmological information rely on astro-
nomical catalogs. These catalogs are constructed from astronomical images, with their
contents usually reflecting a “best-fit" model of the underlying image constituents (rather
than a distribution over possible constituents). The associated information loss folds in
information about uncertainty that cannot be retained in a downstream analysis. Machine
learning has the potential to fully realize probabilistic cataloging [2, 3] which aims to de-
tect and characterize constituents (e.g., stars and galaxies) from astronomical images in a
fully probabilistic manner. These capabilities were recently demonstrated in the context of
deblending crowded stellar fields [4] and can significantly enhanced the scientific output
of cosmological surveys in the forthcoming decade.

The detection and characterization of strong gravitational lenses has emerged as a
promising application of machine learning methods. An early application included a
community-driven challenge on detecting strong lenses (see Ref. [5] for a summary), in
which machine learning methods were shown to outperform traditional statistical tech-
niques. Detection algorithms for strong lenses were subsequently applied to data from
the Dark Energy Survey (DES) [6, 7] and the Dark Energy Spectroscopic Instrument
(DESI) [8, 9]. Further work [10-12] proposed applying parameter inference and un-
certainty quantification methods in order to characterize the properties of lensed sources
and lensing galaxies. More recently, with an eye towards the large sample of gravitational
lenses that will be imaged by forthcoming cosmological surveys like Euclid and LSST, there
has been significant effort towards understanding how to utilize machine learning to op-
timally exploit this data towards source/lens characterization [13-16], Hubble constant
inference [17], and characterization of dark matter substructure within the lensing galax-
ies [18-29] in a scalable manner.

Weak gravitational lensing is another area where machine learning has shown signifi-
cant advantages over traditional methods. In particular, machine learning methods allow
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for cosmological parameter inference via weak lensing measurements by leverage infor-
mation beyond conventional one- and two-point statistics [30-36]. Additionally, machine
learning methods have demonstrated the ability to outperform traditional estimators in
mass mapping—reconstructing the weak lensing convergence maps from observed galaxy
ellipticities [37-40].

Although the primary Cosmic Microwave Background (CMB) signal in the standard
cosmological scenario can be statistically described as a Gaussian random field and effi-
ciently analyzed with angular power spectrum estimators, machine learning methods have
demonstrated superior performance on CMB analysis tasks including CMB lensing recon-
struction [41], foreground separation [42, 43] and inference with polarization maps [44,
45]. Given the anticipated complexity of data, these techniques can significantly enhance
the deliverable output of forthcoming surveys like Simons Observatory [46], CMB-S4 [47],
and proposed high-resolution experiments like CMB-HD [48]. Analysis of CMB maps using
machine learning techniques has also been explored for characterizing galaxy clusters via
Sunyaev-Zel'dovich and CMB lensing signatures [49-52].

Machine learning has also been proposed as a way to confront the complexity of 21-cm
neutral hydrogen data probing the epoch of reionization, with applications explored for
parameter estimation [53-57] and signal extraction [58-60].

2.2 Time Domain & Multi-messenger Astrophysics

In the time domain, machine learning techniques have a key role to play in the era of
wide-field surveys across the electromagnetic and gravitational wave spectrum. Of these
surveys, the Vera C. Rubin Observatory’s Legacy Survey of Space and Time (LSST) will
produce ~10 million alerts from time-domain phenomena every night—higher than can
conceivably be inspected visually by the entire astronomical time-domain community in
a lifetime. LSST will be joined by the next-generation Very Large Array (ngVLA), CMB-
S4, the LIGO-VIRGO-Kagra Collaboration and numerous other data-intensive experiments
over the next decade. Each of these will provide us a different, multi-messenger window
into the variable sky and the cosmos.

The rate of transients alerts from these wide-field surveys far surpasses available spec-
troscopic resources already. Less than 5% of transient events reported to the International
Astronomical Union’s Transient Name Server (TNS) are followed up spectroscopically. The
order-of-magnitude increase in alerts with LSST will dramatically increase the stress on
available spectroscopic resources. In a cosmological context, Type Ia supernovae are espe-
cially important for measurements of the Hubble constant at a unique rung of the distance
ladder. ML techniques will be essential to classify these events in real time (for active,
spectroscopic follow-up) or for archival analysis.

While there has been significant progress in developing ML methods to characterize
and classify events in real-time from wide-field survey data (e.g. alert broker systems
such as NOIRLab’s ANTARES [61, 62], as well as algorithms such as RAPID [63], SuperN-
Nova [64], SuperRAENN [65]), much is left to be done before LSST in order to optimally
understand the diversity of events we expect to observe. We note that the ML commu-
nity has also developed many more sophisticated techniques (e.g., transformers, latent



stochastic differential equations, neural processes) which will greatly benefit our domain
challenges in the near future.

There is also a major role for unsupervised learning methods in the coming decade, to
identify rare events that have never been seen before (anomaly detection), and are buried
within the alert stream [66]. Indeed, while only one kilonova event—GW170817—has
been identified in both gravitational waves and the electromagnetic spectrum, we should
expect LSST to discover many kilonovae that are beyond LIGO-Virgo-Kagra’s detection
limit [67]. These unsupervised learning methods can also be used to identify events
that were missed during real-time processing, and the promise of these methods has al-
ready been demonstrated by teams processing Pan-STARRS, Dark Energy Survey (DES)
and Zwicky Transient Facility (ZTF) data (e.g. [68]).

Finally, the key promise of wide-field surveys is understanding populations of objects
in the time-domain. Modeling these populations to infer fundamental physics (e.g. infer-
ring cosmological parameters from type Ia supernovae) is a complex multi-level modeling
(sometimes known as hierarchical Bayesian) problem, and these analyses have either typ-
ically made simplifying assumptions in their models to make them tractable to evaluate
with traditional inference techniques such as Markov Chain Monte Carlo sampling. How-
ever, these simplifying assumptions themselves will lead to systematic biases. Building
blocks of machine learning models, such as deep neural networks, can be effectively lever-
aged within schemes like variational inference in order to perform approximate inference
on models defined in high-dimensional spaces. We expect that analysis groups will need
to complement traditional techniques on high-performance computing resources with new
methods that make much greater use of GPUs.

Multi-messenger Astrophysics (MMA) takes all of the requirements we have detailed
above and adds additional complexity. Sources that are energetic enough to distort the
fabric of space-time and cause gravitational waves are intrinsically rare, and a large subset
of those events that also emit electromagnetic radiation (nearby core-collapse supernovae,
neutron star mergers, and the merges of neutron stars and black holes) also evolve ex-
tremely quickly. For instance, the canonical MMA event, GW170817, will only have 1-2
detections in a survey such as LSST with its currently planned cadence [69].

Detecting and characterizing MMA events therefore requires discovery of very rare
events with very sparse and heterogeneous data from multiple facilities all in real-time. ML
methods, including unsupervised anomaly detection techniques [70], and hybrid architec-
tures such as convolutional recurrent neural networks (CRNNs) [71, 72], and simulation-
based inference techniques [73] will be necessary to process the smorgasbord of obser-
vations from different facilities, flag these events within hours, and automatically trigger
follow-up studies. Beyond the ML techniques highlighted in this white paper, MMA will
require significant investment in cross-survey cyberinfrastructure to help the community
store, process and share a mix of public and private data in order to understand these
enigmatic events.



3 Computing and Data

3.1 Data Processing

During and after data acquisition of modern, large-scale cosmological surveys, there are
multiple opportunities to improve the speed and accuracy of data processing. We will
approach these items sequentially in the nominal processing steps.

First, we envision new modalities for smart triggering—or fast selection and analysis of
data of critical elements upon observation. This is important especially for the detection
of transient or time-varying data that requires timely follow-up. Currently, this is typically
handled highly successfully with difference-imaging (e.g., Antares in LSST). However, the
predictive capabilities of this method are limited in terms of the accuracy and prediction
of early detection, which constrains our understanding of which types of objects are be-
ing selected. Being able to predict the class of objects with fewer observations greatly
increases the probability of capturing objects before they fade away. In general, earlier
understanding of object status and classification will allow us to choose the most valuable
objects for further observation. For objects that are not transient, but uniquely important
for other science cases, fast and accurate identification will permit for greater coordination
with other observational resources. Future solutions include embedding deep learning al-
gorithms within specialized computational units like TPUs and FPGAs, which are designed
for hyperfast data processing. This is the model under current usage within particle physics
programs at the Large Hadron Collider. Preliminary work has taken place in astronomy
to demonstrate this capability [74]. We envision a possible future where these fast pro-
cessors are used to pre-process raw data for fast detection: they may be part of an array
at the facility where the long-term data processing is occurring, or they may be located
at the observational facility. In the latter case, this would bypass data transfer times, as
well as facilitate adaptive action for immediate updates of the observing schedule from
observation to observation.

Next, consider the cleaning and calibration of data. Multiple types of noise artifacts and
confounding patterns can degrade image quality: sensor artifacts, particles (e.g., cosmic
rays), bright foreground stars, point spread function variation, galaxy blending, etc. All of
these need to be modeled and removed from the data before science can be performed.
The first obvious usage for machine learning is the removal of basic artifacts like cosmic
rays, which has already been demonstrated [75]. Foreground stars can be detected with
tools like Source Extractor, which uses machine learning for e.g., source classification [76].
Patterns in sensors (like the tree rings or brighter-fatter pixels discovered in the Dark
Energy Survey data) are more difficult to discover and typically require a great deal of data
investigation: replacing this task with algorithmic tools that can discover these pattern has
the potential to save a great deal of commissioning and science verification time. Potential
tools for this include detailed sensor simulators that can generate patterns in the sensors as
propagated to data, as well as inference loops that can test many flexible data models and
propose sensor patterns as systematics. Object blending is already a significant challenge
for surveys like LSST; the fainter and deeper our imaging becomes, the worse this problem
will be. This is currently a feature case study and much progress has been made [4], and
we encourage continued work on this challenge.
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3.2 High-Performance Computing

We anticipate high-performance computing (HPC) to play a crucial role in our capability to
use ML for cosmology this decade. The massive amount of data from cosmological surveys
such as the Dark Energy Spectroscopic Instrument (DESI), eROSITA, Euclid, Roman Space
Telescope, the Vera C. Rubin Observatory, Simons Observatory, and the Square Kilometre
Array (SKA) will require dedicated infrastructure to host the data. Likewise, the complex-
ity of the models used to interpret these surveys demands significant computational and
storage capabilities.

Consider the example of training an ML model to interpret a galaxy survey by com-
parison to cosmological simulations. Every stage of this process is an HPC-intensive task:
(1) simulations must be produced at large HPC facilities, using O(100K-1M) GPU-hours
(e.g. AbacusSummit [77]; Uchuu [78]); or O(10M-100M) CPU-hours [79-82] (2) outputs
are stored on large, high-throughput file systems, totalling O(1 PB); (3) the analysis (gen-
eration of data products) is executed in cluster environments (often using CPUs) requiring
a small percent of the cost incurred in running the simulations; (4) ML models are trained
on these data products (using GPUs or other accelerators). The next decade will only
see these requirements increase, as upcoming surveys explore both broader sky area and
greater depth, demanding simulations with both larger volume and finer resolution. This
will increase the HPC expense of every step of this process.

However, ML does not just place demands on HPC, but also offers opportunities. Tradi-
tional simulations, or parts of them, can be accelerated with ML [83-85]. High-resolution
simulations may be emulated based on low-resolution ones [86-88]; expensive physi-
cal calculations replaced with a machine learning interpolation thereof [82]. This may
increase the slope of the relation between computational resources and the size and res-
olution of the simulations. However, this will pose significant challenges to the storage
and manipulation of this data, that we expect to be of the order of tens to hundreds of
petabytes.

In order to maximize the usage and utilization of simulations and observations, large
collections of data must be placed in a publicly accessible location in national or interna-
tional HPC centers where users can access and work directly with the data without creating
copies of it elsewhere. At the same time, subsets of this data should be easy to download,
as interesting investigations can often be done on just a few MB of data products.

Cloud computing may be a compelling option for some HPC applications, with its mas-
sive storage and distributed compute resources. Cloud computing also offers an opportu-
nity to present users with a standard software stack, promising a solution to the byzantine
task of setting up an ML-ready software environment. However, applications like sim-
ulations or some kinds of ML training that need efficient communication between many
worker nodes may not run well in cloud environments. The opportunities for HPC-in-cloud
will surely expand in the next decade, though, driven by ML applications, and efforts to
leverage it for scientific workflows should be supported.

Ensuring reproducible research in an HPC context will require new ways for users to
interact with HPC resources. Reproducibility efforts in astrophysics are now widespread,
and span a spectrum from adopting software-industry testing and continuous integration
practices, to fully reproducible workflows that allow readers to reproduce a paper’s results



(e.g. generate all values and figures) at the click of a button These pipelines tend to be
cloud-hosted and use small datasets (few GB) and only a few CPU-hours—far below ML
requirements. But the transparency and pedagogical value of such workflows cannot be
ignored by the cosmology ML community. HPC centers must offer entry points to their
resources that allow automation of these workflows, including access to large datasets and
compute resources (especially GPUs).

The increasing demanding computational needs in astrophysics may trigger synergistic
collaborations between scientists and the industry. For instance, the methods used in the
industry to compress certain classes of data (e.g. videos in YouTube) will reduce the storage
needs in astrophysics, enabling deeper and more complete analyses of the data.

In summary, in the next decade HPC must support multiple workflows to maximize
science at the intersection of ML and cosmology. The computational infrastructure must
enable flagship efforts, such as hosting large observational data sets, running massive
cosmological simulations, and training ML models to map between the two. HPC centers
must also make such data (simulation and observations) publicly available, such that users
can bring their computations to the data or download narrow subsets of the data to support
local workflows. The software side will require dedicated, expert effort in the areas of
cloud hosting, containerization, and software environments to bridge the gap between the
code scientists write and the potential performance HPC hardware promises.

4 Simulations

While humans can easily identify patterns in low-dimensional data, machine learning al-
gorithms can also perform this task in high-dimensional spaces. Thus, simulations can be
used as a laboratory to identify unrecognized patterns that can help our understanding
of the underlying mechanisms behind the physical process being studied. For instance,
it has been shown that unknown relations between galaxy properties and parameters de-
scribing the composition of the Universe can be easily identified by employing machine
learning techniques on top of state-of-the-art hydrodynamic simulations [89]. We believe
that machine learning can trigger a revolution in the large variety of areas of cosmology
and galaxy formation that deal with high-dimensional data.

An important question in cosmology is: where does most of the information reside?
While for Gaussian density fields (e.g. our Universe on large scales or at early times) all
information can be extracted using the power spectrum, for highly non-Gaussian density
fields the optimal estimator is unknown. Many different works have shown that there is a
wealth of cosmological information that is located on small scales and that cannot be re-
trieved by using the power spectrum. This motivates the use of these scales to tighten cos-
mological constraints. Unfortunately, these scales not only are non-perturbative (i.e. they
require numerical simulations), but they may also be affected by uncertainties in astro-
physical phenomena such as supernova and active galactic nuclei (AGN) feedback. Thus,
in a conservative scenario one would like to marginalize over these baryonic effects.

In an ideal scenario, it would be desirable to constrain both cosmology and galaxy for-
mation parameters with the highest accuracy. This task could be carried out using machine
learning methods, that would require being trained using state-of-the-art cosmological hy-
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drodynamic simulations. With those simulations on hand, one could train neural networks
to extract the maximum amount of cosmological and astrophysical information from multi-
wavelength observations [90]. This would represent the theoretical formalism needed to
extract every single bit of information from cosmological surveys.

Achieving this goal requires running large sets of state-of-the-art hydrodynamic simu-
lations and using machine learning to increase the resolution of the simulations. Alter-
natively, machine learning could be used to accelerate the simulations themselves. De-
veloping and making publicly available standard datasets for cosmological tasks [91] will
contribute to the development of the machine learning techniques needed to accomplish
these tasks.

However, this ambitious approach is subject to some important caveats. First, it heavily
relies on the outcome of numerical simulations, that may or may not, overlap with real-
ity in high dimensions or in low-dimensional projections. For instance, can we trust the
outcome of state-of-the-art hydrodynamic simulations when considering the space formed
by a large number of galaxy properties? Second, a proper quantification of the statisti-
cal, and more important, systematics errors [90] are needed to determine the confidence
level of potential discoveries associated to this task (e.g. a detection of the sum of the
neutrino masses). Addressing these difficult questions may trigger deep developments not
only in the field of hydrodynamic numerical simulations (by improving the simulations to
match observations), but also the development of machine learning techniques that may
be protected against systematics effects such as numerical artifacts and inaccuracies from
the simulations.

With increase in size and complexity of both simulated and observational data, the need
for development of more robust machine learning methods, capable of working with mul-
tiple datasets at the same time, will increase. This will allow us to combine the knowledge
from hydrodynamic simulations and astrophysical surveys, but also learn from the similar-
ities and differences between them. These differences can come from approximations, nu-
merical artifacts, computational constrains, or even unknown physics, not included in the
simulations. On the other hand, observational effects, detector errors and even compres-
sion and decompression of the observed data can introduce additional differences. These
differences can cause models trained on simulations to suffer from very large decrease in
performance, when applied to real data.

It has been shown in Refs. [92, 93] that domain adaptation methods offer great promise
for astrophysics and cosmology. Domain adaptation methods [94], implemented during
model training, help extract only features present in all datasets. This helps align data
distributions and build a model that works on all datasets at the same time. Future imple-
mentation and development of these methods will be important for building more robust
machine learning methods that will not be affected by differences between the datasets, or
noise and other perturbations. Furthermore, because domain adaptation methods do not
require datasets to be labeled, they can be applied on new observational data. This will
be crucial for building automated systems initially trained on simulations, but capable of
working in real-time during cosmological survey observations.



5 Survey Operations and Instrument Design

5.1 Survey Operations

Cosmological surveys such as the LSST will repeatedly image the sky, returning to the same
part of the sky ~1000 times over a period of ten years. The cadence of these observations,
the depth of each exposure, and the filters through which the data will be taken will all
influence the scientific returns of the survey. For experiments such as the Vera C. Rubin
Observatory, the need for almost real-time classification of transient events exacerbates
the challenges of how to schedule the observations. With multiple scientific objectives
and observing conditions that have both short- and long-term coherence timescales (e.g.
atmospheric seeing and weather) traditional hand-tuned scheduling strategies or policies
are not feasible. Moreover, coordinating observations amongst many telescopes—e.g.,
for spectroscopic follow-up or multi-wavelength/-messenger measurements—typically re-
quires proposals to time-allocation committees with months of lag time. Finally, how do
we optimize the balance of execution toward a specific scientific goal and the exploration
for new phenomena?

Current methodologies, like those used in the Dark Energy Survey, rely on simulating
many years of high-level metrics (e.g., effective seeing and depth) for a single survey run;
humans then review statistics of these metrics, update parameters, and re-simulate until
a relative optimum can be found. Adaptive approaches such as feature-based scheduling
[95] that are cast as a formal optimization problem [96] in the context of reinforcement
learning have shown that they can optimize multiple competing science objectives, and
outperform current telescope scheduling approaches while retaining the capacity to re-
cover from unscheduled events (e.g. instrument failures). Unsupervised methods lever-
aging graph neural networks have been shown in simulations to optimize for scientific
objectives without the need for prescribing any observational policy models [97]. The
above references are a few of the rare examples of work that have gone into Al-related
algorithmic resource allocation for telescope observations.

Pursuing automated-scheduling is likely to lower costs and increase efficiency of tele-
scope observations. Consider the time savings for individual-proposal follow-up cam-
paigns, facility queued observations, and even multi-instrument/-site coordination. More-
over, it has the potential to improve science by allowing us to get the best data for a given
goal: the telescope can focus on fields and objects (of class and quality) that will serve the
prescribed scientific goal (including exploration).

There are several key challenges for growing and making the most of automated re-
source allocation in telescope observations. For supervised algorithms that are trained on
simulated data or previous observations, there will be a bias when applied to the space
of unobserved data: domain adaptation is an avenue to pursue here. Related, interpret-
ing the decisions and policies that are generated by the scheduling algorithms, as well as
the downstream economic and logistical consequences, will be essential for verification,
human understanding, and safety. To grow this effort, we envision administering data
benchmarks and challenges, performing cost-benefit analyses to understand economics,
and scaled testing of algorithms on small and large telescopes, as well as federations of
telescopes.
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5.2 Experiment and Instrument Design

Observational facilities and their instruments are designed to meet scientific requirements.
Developing the design specifications that match these requirements is a time- and thus
human-intensive process. Due to the evolving demands of scientific discovery—e.g., in-
creased precision and sensitivity of observations—the complexity of instruments is poised
to grow significantly; and this could be a significant bottleneck in terms of time and cost
for future experiments.

In the traditional design process, somewhat simplistically, humans first generate hy-
potheses (e.g., dark energy and dark matter affect the expansion of spacetime and thus
the distribution of matter), and then they establish quantitative scientific goals (e.g., er-
rors on the dark matter density) to test those hypotheses, generate the summary metrics
that come from data sets (e.g., galaxy two-point correlation function), identify the scope
and kinds of data that are required to achieve these metrics (e.g., galaxy survey), and then
establish the instrument design and observing specifications to achieve these data (e.g.,
optical telescope and sensor design). The requirement flow-down and design processes
are not always this linear from step to step: there are often feedback loops that are shorter
than the full loop; an experiment typically has multiple competing science goals, and
thus metrics. Each of the components in the requirement flowdown are typically devel-
oped independently within different software frameworks—whatever is required for that
component. Then, inputs and outputs from each are communicated to their neighboring
components, and this feedback process continues until design specifications are achieved
that meet the scientific requirements.

Rarely are multiple, let alone all, of the components linked together within a single
software framework. For example, in many circumstances, people working on one exper-
imental component communicate inputs and outputs via email. Also, many instrument
simulators used for design run primarily or only as standalone programs that require man-
ual operation: ZeMax is used for optics [98], and Comsol for electromagnetic sensors [99].
These all present barriers to fast global optimization of instrument and experiment design.

Connecting these components seamlessly within an algorithmic framework has the po-
tential to reduce bottlenecks and permit fast co-optimization of all the experiment and
instrument parameters in service of a set of scientific goals. We envision the conversion
of requirement flowdowns into models and numerical data. There are just a few known
areas where some of this concept have been implemented. For example, the optimiza-
tion of adaptive optics systems has subject of deep learning applications (see [100] for a
recent review). Many works are exploring the design of optical element configurations
with deep neural networks and similarly flexible algorithms [101-105]. Co-design of
instruments and observational strategies are being performed to optimize black hole ob-
servations [106]. Finally, there is also a burgeoning community of scientists who are
approaching design of instruments with machine learning [107] or with the outputs of
machine learning-pipelines in mind [108].

The only full simulation of a cosmic experiment that has so far been developed is the
SPectrOscopic Ken Simulation (SPOKES) [109], which was designed to replicate the DE-
Spec prototype experiment: it includes all major components of a spectroscopic cosmic
experiment from data acquisition to analysis to dark energy parameter constraints. Au-
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tomating hypothesis generation has not yet been implemented in SPOKES, and there has
been limited work in this area for physical experiments — primarily related to the genera-
tion of symbolic models [110, 111]. When a field of study is faced with a large landscape
of possibilities for theoretical development, automating hypothesis generation has the po-
tential to accelerate the search for new ideas to pursue; this may be of significant import
for studying dark matter and dark energy.

There are many potential avenues for the continued development of this area. For
example, a project to design a simple experiment (including the instruments) that is opti-
mized toward a scientific goal can provide a conceptual launching-off point: imagine per-
forming the automated design of a telescope system component-by-component, and then
doing that all in tandem. We recommend significant investment in the following: 1) build-
ing full digital twins of experiments (including instruments); 2) exploring the capacity of
machine learning for optimizing the design of individual instruments and all instruments
within an experiment; and 3) developing the capacity for automating hypotheses, which
is among the tightest of bottlenecks in scientific discovery. Also, some cost-benefit analy-
sis should be performed to study the utility and potential economic gains of automating
instrument design.

6 Machine Learning Architectures

Until recently, machine learning methods applied in cosmology were borrowed wholesale
from the computer science literature. The specific needs of the cosmology community
combined with the highly structured nature of cosmological datasets necessitates theoret-
ical and methodological developments on the machine learning side specifically tailored
for cosmology applications. Here, we outline ongoing as well as necessary efforts in this
direction.

The modern deep learning revolution arguably kicked off in 2012 with deep convolu-
tional neural networks like AlexNet showing record-breaking performance on benchmark
vision tasks. Since then, convolutional neural networks have found widespread application
within cosmology due to the fact that a lot of cosmological data is naturally represented
in the image domain. Despite their success, traditional convolutional neural networks
can only process rectangular images, restricting their use in the cosmological context.
The need to extend desired implicit biases like translation and rotation symmetry to a
more diverse set of domains—such as the celestial sphere—has spurred methodological
developments in neural network architectures specifically for cosmological applications.
Examples of these developments are custom spherical convolutional networks [112], effi-
cient translation- and rotation-invariant normalizing flows [113], and fixed kernel-based
convolutional architectures [114-116]. The needs addressed by such developments are
often distinct from those in mainstream computer vision research, which is predominantly
focused on application to natural images.

As outlined above, of particular importance for cosmology surveys is the development
of methodologies for the analysis of time series data (e.g. classification of light curves
from Type 1a supernovae). Recurrent Neural Networks [117], Long Short-Term Memory
Networks [118], and Transformers [119] have made significant advances for classifica-
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tion problems, but sparsely sampled light curves with noisy observations present many
challenges for standard neural network architectures common in applications outside of
astrophysics. Physics-inspired and physics-constrained neural networks [120] have shown
promise in reducing the dimensionality of the underlying latent space of a network with an
associated reduction in the size of data sets needed to train the network. Most of these ap-
plications, however, simply adopt existing network architectures without extending them
to the specific requirements of cosmology. For example, many network architectures are
sequential and recursive, which does not easily allow parallel computation (to account for
the size of cosmological data sets) or they assume a Markov process, which means that
they cannot easily learn long-range dependencies.

A specific effort to bridge methodological developments in the computer science litera-
ture with needs within cosmology is therefore necessary. As a concrete example, spherical
convolutional neural networks have seen widespread recent adoption for various cosmo-
logical applications (e.g., Refs. [121-123]) due to the existence of easy-to-use implemen-
tations tailored to common pixelizations schemes like HEALPix which are widely used in
cosmology [112, 124]. This showcases the need for continuous integration and cross-talk
between the communities.

The reliability of machine learning models for scientific discovery can be interrogated
through the development and application of interpretable and explainable ML systems.
Although a mature subfield, explainable AI (XAI) has made limited inroads within cosmol-
ogy [125, 126]. This can at least in part be attributed to the lack of methods that can
be robustly applied in typical scenarios of interest; we therefore see a critical need for
methodological development in this direction. Post-hoc application of symbolic regression
methods to trained neural networks [53, 127-129] towards model interpretability and
model discovery has recently demonstrated promise within cosmology, and we expect this
direction to continue to flourish in the near future.

7 Uncertainty Quantification and Bias

A major historic barrier to using machine learning models such as deep neural networks
within cosmology has been the lack of a robust and validatable statistical description of
their output. With increasing adoption of these methods within cosmology, and more
broadly in the sciences, the need for such descriptions have become acute. Here, we sum-
marize recent developments in uncertainty and bias quantification, and outline necessary
developments for the widespread adoption of machine learning models in the cosmological
context.

Perhaps the most common task in cosmological data analysis is parameter inference—
i.e., describing what a given set of observations tells us about a set of physically-meaningful
parameters in a model (for example, the six ACDM parameters). In the supervised learn-
ing setting, the simplest and historically most common way to frame this is as a regression
task—e.g., teaching a neural network to minimize the mean square error (MSE) between
its output and a set of target parameters. With the expressiveness of the neural network
and number of simulations under control, it can be shown the minimizing the MSE loss pro-
vides the maximum-likelihood estimate (MLE) [130]. Although statistically well-defined,
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the MLE and, more generally, any point estimate, is of limited scientific value when the
goal is to quantify if, and how well, a given point in the parameter space is compatible
with the data. In cosmology, this fact is further exacerbated since physical degeneracies
between parameters are ubiquitous, and there is often the need to compare and/or com-
bine results stemming from different experiments and observations.

Several methods for uncertainty quantification have been developed in the machine
learning literature, e.g., Monte Carlo dropout [131], Bayesian neural networks [132], and
deep ensembles [133]. Direct application of these methods within cosmology and their
statistical interpretation is often stymied due to a difference in language in how the two
fields talk about uncertainty. In particular, aleatoric and epistemic uncertainties (sometimes
called data and model uncertainties, respectively) are often distinguished in the machine
learning literature. Although these terms provide useful abstractions, their use in physics
can be confusing since they do not neatly map onto the more familiar concept of statistical
and systematic uncertainty.

The difference in perspectives can be at least partially attributed to what kind of un-
certainty is most important in either field. In machine learning, model usually refers to
the trained model (e.g., a neural network), since the data (e.g., natural language or im-
ages) is often assumed to be fixed with little insight into its generating process. On the
other hand, in physics we often have substantial insight into the data-generating processes,
with model encompassing the underlying physics processes, including detector effects that
led to the generation of the dataset. In typical machine learning applications, the afore-
mentioned methods are often used to account for the uncertainty in the machine learning
model. When adapted for physics applications, a subset can also account for uncertainty
associated with the data-generating process. These methods can produce biased or mis-
calibrated uncertainty estimates, even when applied to simple physical systems [134].

Probabilistic machine learning methods have recently demonstrated significant promise
for scientific applications, and particularly within cosmology. Methods under the umbrella
of simulation-based inference (SBI) aim to estimate full Bayesian posteriors, as well as
likelihoods or likelihood ratios (and associated confidence regions) in the setting where the
likelihood p(z | #) of the data-generating process associated with data = and parameters 6 is
unavailable or intractable, but samples x, 6 ~ p(x | ) can be simulated from a mechanistic
forward model. See Ref. [135] for a recent review. These methods are related in lineage
to Approximate Bayesian Computation (ABC), which has been extensively used within
cosmology in the last few decades. A typical application involves using a domain-specific
neural network, or a projected set of summary statistics, as an input to a parametrized
classifier or a conditioning context for a density estimator in order to learn an estimator for
the quantity of interest (e.g., posterior or likelihood). Indeed, cosmology-inspired research
has motivated the development of efficient SBI methods and algorithms [136-142].

Training parametrized classifiers and density estimators is a challenging task in ma-
chine learning, and often requires a large number of simulations and/or a post-hoc calibra-
tion procedure in order to produce satisfactory results. It was recently demonstrated that
typically-used SBI algorithms tend to produce overly confident posterior estimates [143]—
an unacceptable outcome in cosmological applications. It is therefore imperative to per-
form diagnostic coverage tests (as done in, e.g., Refs. [143-145]) to ensure that a trained
machine learning-based estimator produces well-calibrated and statistically-consistent re-

14



sults, as well as incentivize continued development of simulation-based inference methods
towards robust scientific discovery.

8 Education and Outreach

Cosmology, and in fact science at large, is at the cusp of a data-driven evolution driven
by the ever increasing open-source software and massive public datasets (both real and
simulated), as mentioned above. With this revolution, we have the opportunity to create a
more equitable scientific community and greatly increase the reach of our scientific impacts
(i.e., create an “inclusion revolution", [146]). Here we touch upon educational needs for
cross-disciplinary scientists and the requirements for effective outreach programs to the
broader public.

Cutting-edge advances in data-driven cosmology require increasingly complex tech-
niques. Cosmologists now regularly publish in ML venues such as NeurIPS and ICML (see,
e.g., the recurrent Machine Learning and the Physical Sciences Workshop at NeurIPS).
Competitive progress therefore requires mastery of physics (theoretical and/or observa-
tional), statistics and data science—a tall order for the upcoming generation of scien-
tists. Massive Open Online Courses (MOOCs) and educational-focused journals (e.g., dis-
till.pub) have addressed this need in varied educational backgrounds by providing free,
online supplementary courses to a more traditional physics background. However, few re-
sources exist by physicists and for physicists that detail scientifically-informed, data-driven
methodologies most relevant to our field. Interdisciplinary Al centers are increasingly
common, as well as open seminar series which are often broadcast online. We encourage
these new foci to continue to facilitate open discussion. We additionally encourage oppor-
tunities for collaborative development of new curricula for physics-informed ML. Finally,
in the aims of diversifying the field, we encourage funding agencies to directly directly
track progress on inclusion of funded programs by requiring documentation of diversity,
inclusion and equity efforts [147].

Looking beyond the academic community, cosmologists are additionally at the fore-
front of new opportunities to engage with the broader public, especially those of histori-
cally marginalized groups. On the broadest scale, computational capabilities of handheld
electronics (e.g., phones, tablets) allows for unprecedented interactivity with high-quality
simulations and graphics. Cosmologists can also capitalize on the growing the commu-
nity of online educational tools and communities for ML by providing datasets to these
communities. One potential avenue for this is creating public competitions which is free
for participants. We highlight two successful competitions: Galaxy Zoo [148] (in which
competitors are tasked with classifying the morphologies of galaxies from images) and
PLASTiICC [149] (in which competitors must classify transients simulated in an LSST-like
datastream). Both of these were held on the website Kaggle and garnered hundreds of
submissions. However, we do caution that these communities and competitions likely do
not reach out to the most marginalized communities, and indeed may contribute to widen-
ing the gap between those with and without dedicated educational resources (as is well
known for a need for dedicated education and outreach expertise [150]).
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9 Workforce Development

It is undeniable that the rapid progress in AI/ML has been guided by the commercial gains
of these techniques, especially in various technology sectors. At the same time, more than
60% of physics college graduates end up in the private sector; within this fraction, over
50% of graduates go into engineering or computational sciences [151]. Both academic and
industry settings require knowledge of algorithms, high-performance computing, software
carpentry, statistics and machine learning. Integrated computational education within
physics curricula is increasingly relevant for preparing a tech savvy workforce. While stu-
dents can supplement their core curricula with computer science courses, focused courses
which teach these fundamental skillsets are becoming increasingly necessary [152].

Industry is also taking advantage of the open-access, large datasets from cosmology
and increasingly creating opportunities to collaborate with academics on these problems
(e.g., the Pitt-Google LSST Broker being developed for the community). We encourage
continued collaboration with industry, through visiting scholar programs or more junior
funded research opportunities.

It is increasingly important that a broad and diverse range of people be involved in
these new technologies in order to bring critical perspectives to bear. If innovation is to
flourish, the goal must be to nurture critical and questioning perspectives, shaped by a
wide breath of experience, particularly experiences different from the traditional norms
currently represented in physics, math and data science. While such a goal is beneficial
to the study of these disciplines, it is crucial for the development of applications and tech-
nologies that will exploit algorithms developed by any future workforce. As the physics
community engages in the education of the next generation to design, develop and build
the future tools, a broad perspective must be taken to train and engage students in the
ethics and efficacy of these technologies. Recruiting and retaining currently minoritized
groups is an important piece of expanding the innovation quotient of the workforce.

The lack of input from groups who are often minoritized in the fields of physics and
data science can lead to algorithms and Al technologies that reflect the biases and prejudice
(conscious or unconscious) of a more narrowly experienced community. Algorithms that
mimic racial and gender discrimination are rife within our society. Without opportunities
to broaden the range of those who design and build these technologies, we will be unable
to advance justice in the scientific culture.

10 Recommendations and Vision

Machine learning is set to play an increasingly important role in many facets of cosmology
in the next decade. We conclude here by outlining a set of recommendations aimed at real-
izing our vision for the next generation in the development of artificial intelligence applied
to cosmology. We target these recommendations to a broad community of researchers in
the high-energy physics and astrophysics communities.

* Incentivize the use of machine learning techniques when there is a specific advantage
towards achieving the stated scientific goal over more thoroughly-vetted traditional
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statistical (e.g., providing the ability to extract more useful information from the data
or to emulate expensive simulations).

For parameter inference, eschew point estimation in favor of principled uncertainty
quantification, e.g. through simulation-based inference techniques. Assess the sta-
tistical soundness of inference pipelines through coverage tests ensuring that the
derived quantities of interest (e.g., parameter posteriors) are well-calibrated.

Encourage the production and public dissemination of general-purpose cosmological
simulations geared towards machine learning applications. Enable this through the
availability of centralized and decentralized institutional resources (e.g. HPC clusters
as well as cloud computing and storage facilities).

Incentivize modular and reproducible workflows in cosmological analyses that can
be built upon, independently validated, and used for pedagogical purposes.

Invest in cross-survey cyberinfrastructure in order to fully exploit synergies between
different cosmological surveys for real-time as well as archival multi-messenger anal-
ysis.

Recognizing that our models for complex processes in the Universe (reflected in, e.g.,
simulations) are often not perfect, understand and account for systematic differences
between the training and the data distributions through, e.g., principled uncertainty
propagation, the use of nuisance parameters defining a flexible family of training
distributions, or domain adaptation techniques. Develop and use methods that are
robust to systematic model mis-specification in order to minimize the risk of biases.

Adopt and develop explainable artificial intelligence techniques with the goal of
model interpretability and discovery in cosmology.

To the extent possible, minimize data augmentation by leveraging machine learning
architectures that encode the expected physical symmetries of the problem and the
structure of the data domain. Given the diversity of cosmological datasets, develop
efficient architectures suited to processing common cosmological data modalities.

Nurture, through education and workforce development, career paths for practition-
ers with expertise overlap in machine learning methods as well as cosmological ap-
plications. Develop curriculum-based learning at the intersection of cosmology and
data science aimed at PhD-level and early-career researchers.

Develop community-driven data benchmarks and challenges with specific scientific
goals in mind; these should be fostered by funding agencies to promote participation.

Understand and consider our responsibility towards society at large when developing
techniques based on artificial intelligence. Critically assess the broader societal (e.g.,
potential for harm) and environmental (e.g., carbon footprint) impact of research
performed at the intersection of artificial intelligence and cosmology.
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