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Abstract

The flavour symmetry succeeds in explaining the current global fit results. Flavour-symmetry models 
can be tested by the future experiments that improve the precision of neutrino oscillation parameters, such 
as the MuOn-decay MEdium baseline NeuTrino beam experiment (MOMENT). In this work, we consider 
tri-direct littlest seesaw (TDLS) models for a case study, and analyze how much MOMENT can extend 
our knowledge on the TDLS model. We find that measurements of θ23 and δ are crucial for MOMENT to 
exclude the model at more than 5σ confidence level, if the best fit values in the last global analysis result 
is confirmed. Moreover, the 3σ precision of model parameters can be improved at MOMENT by at least a 
factor of two. Finally, we project the surface at the 3σ confidence level from the model-parameter space to 
the oscillation-parameter space, and find the potential of MOMENT to observe the sum rule between θ23
and δ predicted by TDLS.
© 2020 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The discovery of neutrino oscillations points out the fact that neutrinos have mass, and pro-
vides evidence beyond the Standard Model (BSM). This phenomenon is successfully described 
by a theoretical framework with the help of three neutrino mixing angles (θ12, θ13, θ23), two 
mass-square splittings (�m2

21, �m2
31), and one Dirac CP phase (δ) [1–4]. Thanks to the great 

efforts in the past two decades, we almost have a complete understanding of such a neutrino 
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oscillation framework. More data in the neutrino oscillation experiments is needed to determine 
the sign of �m2

31, to measure the value of sin θ23, to discover the potential CP violation in the 
leptonic sector and even to constrain the size of δ [4]. For these purposes, the on-going long 
baseline experiments (LBLs), such as the NuMI Off-axis νe Appearance experiment (NOνA) [5]
and the Tokai-to-Kamioka experiment (T2K) [6], can answer these questions with the statistical 
significance � 3σ in most of the parameter space. Based on the analysis with their data, the nor-
mal mass ordering (�m2

31 > 0), the higher θ23 octant (θ23 > 45◦), and δ ∼ 270◦ are preferred 
so far [4]. The future LBLs, Deep Underground Neutrino Experiment (DUNE) [7], Tokai to 
Hyper-Kamiokande (T2HK) [8], and the medium baseline reactor experiment, the Jiangmen Un-
derground Neutrino Observatory (JUNO) [9,10] will further complete our knowledge of neutrino 
oscillations.

The MuOn-decay MEdium baseline NeuTrino beam experiment (MOMENT) has been pro-
posed and is under consideration. Apart from superbeam neutrino experiments like DUNE or 
T2HK, it is planned to be at muon-decay accelerator neutrino experiments. In such experiments, 
neutrinos come from a three-body decay process, avoiding intrinsic electron-flavor neutrino con-
taminations in the reconstructed signals from the source. In addition, MOMENT [11] is likely 
to use a Gd-doped water Cherenkov detector, which is capable of detecting multiple channels. 
MOMENT is understood to have excellent properties to study BSM physics, e.g. the invisible ν3
decay [12], NSIs [13–15] and sterile neutrinos [16–19]. Though the current studies on MOMENT 
have mainly focused on other BSM physics [20,21], it is also necessary to perform physics study 
related to the standard neutrino oscillation to test the flavour symmetry models.

Flavour symmetry models are used to explain the origin of the neutrino mixing, and to predict 
the value of oscillation parameters (some of useful review articles are [22–28]). These models are 
motivated by some interesting features, such as θ12 ∼ 33◦, and θ23 ∼ 45◦. Before the discovery of 
non-zero θ13 measurement by Daya Bay experiment [29], the ‘tri-bi-maximal’ neutrino mixing 
(TBM) ansatz, which was proposed in 2002 by Horrison, Perkins, and Scott [30], fitted with the 
experimental data in a good agreement:
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⎛
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With the fact that θ13 ≈ 8◦, several ways to obtain such non-zero value of θ13 are proposed. One 
of popular proposals is to correct the tri-bi-maximal neutrino mixing such that

sin θ12 = (1 + s)/
√

3, sin θ13 = r/
√

2, and sin θ23 = (1 + a)/
√

2.

Th neutrino mixing ansatz can be realised by high-energy symmetries Gf . The symmetry of dis-
crete groups Gf , preserved at the high energy but slightly broken at the lower energy, predicts 
the neutrino mixing, mass-square splittings, and the CP violation phase (Dirac and Majorana 
phases), with reduced degrees of freedom. The symmetries need to be broken at the low en-
ergy. Otherwise, the flavour of leptons cannot be distinguished. There are several approaches 
for the symmetry breaking, including the direct, indirect, and semi approaches. The direct ap-
proach preserves the residual symmetries of Gf in the charged-lepton or neutrino sector. On 
the other hand, there is no residual symmetry preserved in neither charged-lepton nor neutrino 
sector in the indirect approach. In the semi approach, the charged-lepton and neutrino sectors 
preserve different residual symmetries, respectively. This symmetry is broken by extending the 
Higgs sector or introducing the flavons. To achieve the δ prediction, many models are based on 
a discrete family symmetry Gf together with a non-commuting CP symmetry HCP. Broken in 
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different approaches, the symmetry Gf ⊗ HCP can predict different patterns for the neutrino 
mixing. For example, in the semi-direct approach, S4 is preserved in the leading order, and leads 
the bimaximal (MB) or tri-bimaximal (TB) neutrino mixing, while the higher order terms bring 
the correction to the neutrino mixing.

One of the most predictive flavour-symmetry models is the littlest seesaw model (LSS), which 
includes two massive right-handed neutrinos: one corresponds to the atmospheric-mass term, 
while the other is included for the solar-mass term [31–33]. The littlest seesaw model in the 
tri-direct approach (TDLS) has been proposed and succeeds in describing the current global-
fit results [34,35]. The tri-direct approach is that after the breaking of the family symmetry 
Gf ⊗ HCP, three residual symmetries are preserved in different sectors: one in the charged-
lepton sector, two in the sectors of right-handed neutrinos for atmospheric and solar mass terms, 
respectively. In this model, four parameters x, η, r , ma are used to describe neutrino oscillations. 
This model has been studied with simulated data at NOνA, T2K, DUNE, T2HK and JUNO [36]. 
In this work, we study how the next-generation neutrino project using muon-decay beams such 
as MOMENT can further extend our knowledge on the TDLS model. We have two reasons to 
motivate this study. Firstly, TDLS describes the current data successfully and tends to be a nice 
way to offer neutrino mass terms from theoretical point of view. Secondly, it must be straightfor-
ward to test the underlying model predictions and compare the performance of MOMENT to the 
other experiments, such as NOνA, T2K, DUNE, and T2HK.

This paper is arranged as follows. In Sec. 2, we will introduce how TDLS models predict oscil-
lation parameters, before presenting how this model describes the NuFit4.0 result. In Sec. 3, we 
will introduce the statistics and simulation details used in this paper. We will show the definition 
of χ2, including the way that we implement “the pull method” to estimate the impact of sys-
tematic uncertainties, and how we include the current global-fit results by priors. We will then 
summarize the assumed configurations for the MOMENT experiment, and will show how the 
probabilities for MOMENT will be changed by varying each of model parameters. The simula-
tion results will be shown in Sec. 4. We will present the model exclusion capability at MOMENT 
and how model parameters can be constrained by MOMENT data. We will discuss results of pro-
jecting the 3σ sphere from the model-parameter space to the standard-parameter space. Finally, 
we will close up this paper in Sec. 5 with our conclusions.

2. Model review: littlest Seesaw in the Tri-Direct approach

The littlest seesaw model in the tri-direct approach is currently proposed, and succeeds in 
describing the current neutrino-oscillation data [34]. In this model, the atmospheric and solar 
flavon vacuum alignments are 〈φatm〉 ∝ (

1,ω2,ω
)T

and 〈φsol〉 ∝ (1, x, x)T , where ω = e2πi/3

stands for a cube root of unity and the parameter x is real because of the imposed CP symmetry. 
As a result, the Dirac neutrino mass matrix reads as follows:

mD =
⎛
⎝ ya ys

ωya xys

ω2ya xys

⎞
⎠ . (1)

The right-handed neutrino Majorana mass matrix is diagonal

mN =
(

Matm 0
0 Msol

)
. (2)

Under the littlest seesaw model, the light left-handed Majorana neutrino mass matrix is given by
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Table 1
A summary of the relation between oscillation parameters and TDLS model parameters [34]. Two require-
ments are imposed by TDLS: the smallest mass state m1 = 0 and the normal mass ordering. The sign of 
sin δ depends on the sign of x cosψ : “+” (“−”) is for x cosψ > 0 (< 0).

Model parameters x, η, r(≡ ms/ma), ma

Combinations of model parameters

y = 5x2+2x+2
2
(
x2+x+1

) (ma + eiηms),

z = −
√

5x2+2x+2
2
(
x2+x+1

) [
(x + 2)ma − x(2x + 1)eiηms

]
,

w = 1
2(x2+x+1)
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(x + 2)2ma + x2 (2x + 1)2 eiηms

]
,

sinψ = �(
y∗z+wz∗)
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(
y∗z+wz∗)

|y∗z+wz∗| .
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⎛
⎝ 1 ω ω2

ω ω2 1
ω2 1 ω

⎞
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⎛
⎝1 x x

x x2 x2

x x2 x2

⎞
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where ma = |y2
a/Matm|, ms = |y2

s /Msol|, and the only physically important phase η depends on 
the relative phase between y2

a/Matm and y2
s /Msol. The parameter r is defined the ratio of ms to 

ma , r ≡ ms/ma . Obviously, from Eq. (3), m1 = 0 and the normal mass ordering are imposed by 
TDLS. We summarise the dependence of oscillation parameters on model parameters in Table 1. 
Ref. [34] further predicts the sum rule for TDLS,

cos2 θ12 cos2 θ13 = 3x2

5x2 + 2x + 2
. (4)

We use the best fit value and the 3σ uncertainty of NuFit4.0 [4] (shown in Table 2), we find 
the best fit results for TDLS models in Table 3. The 3σ uncertainty is given as

−5.475 < x < −3.37, 0.455 < η/π < 1.545,

0.204 < r < 0.606, 3.343 < m /meV < 4.597.
(5)
a
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Table 2
The best fit and 3σ uncertainty, in the results of NuFit4.0 [4].

Parameter θ12/◦ θ13/◦ θ23/◦ δ/◦ �m2
21/10−5eV2 �m2

31/10−3eV2

best fit 33.82 8.61 49.6 215 7.39 2.525
3σ Range 31.61 − 36.27 8.22 − 8.99 40.3 − 52.4 125 − 392 6.79 − 8.01 2.47 − 2.625

Table 3
The best fit for x, η, r , ma with the result of NuFit4.0 [4], and the corresponding oscillation parameters.

�χ2 x η/π r ma/ meV θ12/◦ θ13/◦ θ23/◦ δ/◦ �m2
21/10−5eV2 �m2

31/10−3eV2

4.98 −3.65 1.13 0.511 3.71 35.25 8.63 46.98 278.96 7.39 2.525

Fig. 1. A scheme to correlate the model parameters with standard neutrino oscillation parameters. The error propagation 
is implemented in the simulation code up to the spectra analysis.

Notable between Tables 2 and 3 is that the most inconsistent oscillation parameters are θ23 and δ. 
The others are placed within the 1σ error, or even at the best-fit value (e.g. �m2

21 and �m2
31). As 

a result, we are looking forward to improving precision measurements on θ23 and δ for further 
understanding of this model.

3. Simulation details

3.1. Statistics method

The statistical study on the TDLS model at MOMENT can be understood in Fig. 1. The 
model imposes correlations between or among the standard neutrino oscillation parameters, and 
predicts the oscillation spectra for MOMENT. In other words, the neutrino spectra of MOMENT 
can constrain the standard oscillation parameters, and therefore test the TDLS model or constrain 
the model parameters. Based on this perspective, we use two methods to conduct the numerical 
analysis with the simulated data:

• The standard three neutrino oscillations expressed by three mixing angles, two mass-square 
splittings and one Dirac-CP phase: 

−→O = {θ12 , θ13 , θ23 , δCP , �m2 , �m2 }. We expect that 
21 31
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precision measurements of mixing parameters are correlated with uncertainties of current 
global fit results. We suppose that a given experiment reconstructs neutrino spectra in N
bins sequentially. The number of observed events in the bin i is recorded as ni , which in our 
work is predicted by the true model. We can build a χ2

st.(
−→O ) to quantify the sensitivity:

χ2
st.(

−→O ) =
N∑

i=1

[
μi(

−→O ) − ni

σi

]2

, (6)

where μi is the number rate of bin i predicted by the hypothesis 
−→O .

• We consider the following parameters from TDLS: 
−→M = {x , η , ma , r}. Other steps in the 

likelihood analysis will follow the same strategy as the above method, but replace the Eq. (6)
with

χ2
st.(

−→M) =
N∑

i=1

[
μi(

−→O (
−→M)) − ni

σi

]2

, (7)

with standard oscillation parameters as a function of model parameters 
−→O (

−→M).

To describe the impact of systematic uncertainties, we adopt the following modification:

χ2
sys.(

−→O or
−→M) = min{ξs ,ξb}

N∑
i=1

[
μi((

−→O or
−→O (

−→M); ξs, ξb) − ni

σi

]2

+ p(ξs, σs) + p(ξb, σb) ,

(8)

where p(ξ, σ) = ξ2/σ 2 is a Gaussian prior on the nuisance parameter ξ with the uncertainty σ
(subscripts s and b denote signal and background respectively) and μi((

−→O or
−→O (

−→M); ξs, ξb) is 
predicted event rate for bin i

μi((
−→O or

−→O (
−→M); ξs, ξb) = (1 + ξs) × μs,i + (1 + ξb) × μb,i , (9)

with the signal rate μs,i and the background rate μb,i for each energy bin i.
To include the currently constraints for the neutrino oscillation parameters, we finally use

χ2(
−→O or

−→M) = min−→O or
−→M

χ2
sys.(

−→O or
−→M) +

∑
i

p(
−→O i (

−→M),
−→O cen.,i ,

−→σ i) , (10)

where 
∑

i p(
−→O hyp., 

−→O cen., 
−→σ ) is the summation of Gaussian priors over all oscillation parame-

ters with two vectors: one includes all central values 
−→O cen. and the other consists of the standard 

deviation −→σ . The values for 
−→O cen. and −→σ are taken from the best-fit value and according to 3σ

uncertainties of the NuFit4.0 result [4] (shown in Table 2), respectively. In this work, the values 
of 

−→O (
−→M) are predicted by the TDLS model.

3.2. Experiment setting

We summarize the simulation details for MOMENT in Table 4. MOMENT, as a medium 
muon decay accelerator neutrino experiment, has been originally proposed as a future experiment 
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Table 4
Assumptions for the source, detector and the running time at MOMENT 
in the simulation. The energy resolution is described by a Gaussian dis-
tribution with the width σE .

MOMENT

Fiducial mass Gd-doping Water cherenkov (500 kton)

Channels νe(ν̄e) → νe(ν̄e), νμ(ν̄μ) → νμ(ν̄μ),
νe(ν̄e) → νμ(ν̄μ), νμ(ν̄μ) → νe(ν̄e)

Energy resolution σE 8.5% × E

Runtime μ− mode 5 yrs + μ+ mode 5 yrs
Baseline 150 km
Energy range 100 MeV to 800 MeV
Normalization appearance channels: 2.5%
(error on signal) disappearance channels: 5%
Sources of Neutral current, Atmospheric neutrinos
Background Charge misidentification

to measure the leptonic CP-violating phase, though it also has good sensitivities on θ13, θ23 and 
�m2

31 [37].
The neutrino fluxes are kindly provided by the MOMENT working group [11]. The events are 

taken from 100 to 800 MeV. We assume five-year data taken at the μ− and μ+ mode, respec-
tively. Eight oscillation channels (νe → νe, νe → νμ, νμ → νe , νμ → νμ and their CP-conjugate 
partners) are considered in this work. Multi-channel analyses are helpful in measuring the values 
of multiple parameters. As a result, the detector design is also crucial to precisely read out the 
events from different neutrino-oscillation channels. We have to consider flavour and charge iden-
tifications to distinguish secondary particles by means of an advanced neutrino detector — a 500 
kton Gd-doped water cherenkov detector. The charged-current interactions are used to identify 
neutrino signals: νe +n → p + e−, ν̄μ +p → n +μ+, ν̄e +p → n + e+, and νμ +n → p +μ−, 
with the new technology using Gd-doped water to separate both Cherenkov and coincident sig-
nals from capture of thermal neutrons [38,39]. The energy resolution is assumed 12%/E for all 
channels. For the systematic uncertainties, we assume σs = 2.5% for signal normalizations and 
σb = 5% for background fluctuations.

The major background components come from the atmospheric neutrinos, neutral current 
backgrounds and charge mis-identifications. They can be largely suppressed with the beam di-
rection and a proper modelling background spectra during the beam-off period, which are to 
be extensively studied in detector simulations. We consider matter effects during neutrino prop-
agations with the help of the Preliminary Reference Earth Model (PREM) density profile is 
considered in the numerical calculations [40].

3.3. Neutrino oscillation probabilities in the TDLS model

In Figs. 2 and 3, we present the variation of probabilities for MOMENT with the 3σ un-
certainty for model parameters in terms of NuFit4.0 results given in Eq. (5). We also show the 
probability with the best fit values as the input Table 3. In Fig. 2, we see the variation of νμ

and ν̄μ disappearance channels is much larger than those in the electron neutrino disappearance 
channels. As a result, νμ and ν̄μ disappearance channels are two most dominating channels for 
the TDLS model. In the lower two panels, we see the variation of x in the model has the largest 
impact, covering the range from 0 to 1 for the probability within 0.1 GeV ≤ Eν ≤ 0.8 GeV. 



8 J. Tang, T.-C. Wang / Nuclear Physics B 952 (2020) 114915
Fig. 2. The impact of the probability for varying each model parameters within 3σ uncertainty predicted with Nu-
Fit4.0 result Eq. (5): −5.475 < x < −3.37 (red band), 0.455 < η/π < 1.545 (dark grey band), 0.204 < r < 0.606 (blue 
band), 3.343 < ma/meV < 4.597 (green band). We also show the probability for the best fit (B.F.) Table 3 in the black 
curve: (x, η, r, Ma) = (−3.65, 1.13π, 0.511, 3.71 meV). The upper left (right) panel is for P(νe → νe) (P(ν̄e → ν̄e)), 
while the lower left (right) panel is for P(νμ → νμ) (P(ν̄μ → ν̄μ)). (For interpretation of the colours in the figure(s), 
the reader is referred to the web version of this article.)

The second largest effect comes from the model parameter r . It also ranges from 0 to 1, yet the 
trend is different. For the higher energy (Eν > 0.45 GeV), the lower bound of the probability 
is getting larger, and it is ∼ 0.45 at Eν = 0.8 GeV for both channels. For the model parameter 
ma , the probability is changing with �P ∼ 0.2 along with the probability for the best fit value 
in Table 3. The similar feature is seen for the parameter η; yet the variation of probability is 
smaller �P ∼ 0.05. It seems that η is the distinctive parameter not to be measured by νμ and ν̄μ

disappearance channels as easily as the other three model parameters. Eventually, we find that νe

and ν̄e disappearance channels are more sensitive to the variation of η than the other parameters, 
where �P can approach ∼ 0.1 around the first minimum Eν ∼ 0.3 GeV.

In Fig. 3, we show variations of P(νμ → νe), P(ν̄μ → ν̄e), P(νe → νμ), and P(ν̄e → ν̄μ). 
The behaviours in four panels are almost the same. The largest variation is given by the impact 
of η: �P ∼ 0.06 around the first maximum Eν ∼ 0.3 GeV for all panels. The impact of model 
parameters x and r can reduce the lower bound significantly in the probability plane. From the 
first minimum to 8 GeV, the lower bound of probability can even reach 0. For both parameters, 
the variation of probability is around �P ∼ 0.03. The variation for ma is the smallest around 
0.01.

We observed that the lower limits reach 0 in a wide range of Eν for most of channels, except 
νe and ν̄e disappearance ones. This happens when we varying the values of x and r . The reason 
for this feature is that the oscillation minimum moves in wide range of Eν with x or r , as we see 
in Fig. 4, in which we use P(νμ → νe) as an example. We vary x from −5.5 to −3.5 (left panel), 
and vary r from 0.2 to 0.6 (right panel). The result demonstrates that the horizontal shift of the 
minimum makes the lower limit of the band to be 0 in a wide Eν region.
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Fig. 3. The impact of the probability for varying each model parameters within 3σ uncertainty predicted with Nu-
Fit4.0 result Eq. (5): −5.475 < x < −3.37 (red band), 0.455 < η/π < 1.545 (dark grey band), 0.204 < r < 0.606
(blue band), 3.343 < ma/meV < 4.597 (green band). We also show the probability for the best fit (B.F.) Table 3 in 
the black curve: (x, η, r, ma) = (−3.65, 1.13π, 0.511, 3.71 meV). The upper left (right) panel is for P(νμ → νe)

(P(ν̄μ → ν̄e)), while the lower left (right) panel is for P(νe → νμ) (P(ν̄e → ν̄μ)).

Fig. 4. The impact of the probability P(νμ → νe) for varying value for x (left) and r (right). Except for the varied one, 
the other parameters are used according to Table 3 in the black curve: (x, η, r, ma) = (−3.65, 1.13π, 0.511, 3.71 meV). 
In the left (right) panel, the black, thick grey, red-dashed, blue-short-dashed, and green-dotted curves are x =
−5.5, −5, −4.5, −4, −3.5 (r = 0.2, 0.3, 0.4, 0.5, 0.6), respectively.

To sum up, we see that νμ and ν̄μ disappearance channels are the most important channels to 
constrain TDLS models, especially for x, r and ma . However, the other six channels can provide 
information for η. Thanks to the multiple channel features, MOMENT can be used to study 
TDLS models and can even measure model parameters precisely.

4. Results

In this section, we present physics potentials of MOMENT on the TDLS model. We firstly 
predict the exclusion limit for this model in different scenarios. We will see that θ23 and δ are 
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Fig. 5. The χ2
ex. value for tri-direct littlest seesaw model for θ13, θ23, δ and �m2

31. The range for each parameter is taken 
according to the 3σ uncertainty in NuFit4.0 results.

key parameters to exclude TDLS models. Then, we study how MOMENT data can be used to 
constrain model parameters. We will see model-parameter degeneracies due to the poor measure-
ment of θ12. We also project the �χ2 to θ23-δ plane from the model parameter space. This shows 
an interesting correlation and demonstrates the goodness of fit in the analysis of simulated data.

4.1. Model exclusion

To give the model exclusion curves, we study the minimum of χ2 value for the TDLS with a 
given set of true values for the standard oscillation parameters (three mixing angles, two mass-
square splittings, and a Dirac CP phase), and define the statistical quantity χ2

ex. as follows:

χ2
ex. =

∑
i

min−→M
χ2(μi(

−→M), ni(
−→O true)). (11)

We adopt Wilk’s theorem [41]. When comparing nested models, the �χ2 test statistics is a 
random variable asymptotically distributed according to the χ2-distribution with the number of 
degrees of freedom, which is equal to the difference in the number of free model parameters. The 
statistical quantity χ2

ex. can be understood as the minimum of �χ2 value for given true values 
for oscillation parameters. And this quantity is exactly �χ2 value in Table 3.

We present our result in Figs. 5 and 6. In these figures, we vary true values for each one or 
two of standard oscillation parameters, while the other standard oscillation parameters are fixed 
at the TDLS predictions (θ12, θ13, θ23, δ, �m2

21, �m2
31) ∼ (35.25◦, 8.63◦, 47◦, 279◦, 7.39 ×

10−5 eV2, 2.525 × 10−3 eV2). As we do not see any impact on θ12 and �m2
21, we will simply 

ignore them in our discussion from now on.
In Fig. 5, we show the χ2

ex. values against various true values for θ13 (upper-left), θ23 (upper-
right), δ (lower-left), �m2

31 (lower-right). The range we show is given by the 3σ uncertainty in 
the NuFit4.0. Strikingly, we see very high exclusion levels for θ23 and δ; for θ23 (δ), χ2

ex. can 
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Fig. 6. The 2-D exclusion contour for tri-direct littlest seesaw model on the plane of any two true standard parame-
ters, from 1σ to 5σ . The statistical quantity computed in this figure is χ2

ex. Eq. (11). The range for each parameter 
is taken according to the 3σ uncertainty in NuFit4.0 results. The black dot denotes the best fit of NuFit4.0 results 
((θ12, θ13, θ23, δ, �m2

21, �m2
31) = (33.82◦, 8.61◦, 49.6◦, 215◦, 7.39 × 10−5 eV2, 2.525 × 10−3 eV2)), while the 

star is the prediction by the tri-direct littlest seesaw model with NuFit4.0 results ((θ12, θ13, θ23, δ, �m2
21, �m2

31) ∼
(35.25◦, 8.63◦, 47◦, 279◦, 7.39 × 10−5 eV2, 2.525 × 10−3 eV2)).

climb up to ∼ 160 (∼ 120) at the upper bound, and reach ∼ 90 (∼ 180) at the lower bound. For 
�m2

31, the exclusion level χ2
ex. at both bounds is close to 8. The worst one among these four 

parameters is θ13, and it cannot even reach 2σ exclusion level at the 3σ uncertainty of NuFit4.0.
In Fig. 6, we show 2-dimension contours at 1σ (gray), 2σ (red), 3σ (green), 4σ (blue), 

and 5σ (magenta) on a combination of two parameters from θ13, θ23, δ, and �m2
31. The sta-

tistical quantity computed in this figure is χ2
ex. in Eq. (11), which can be considered as a 

minimum of �χ2 for a given true values of oscillation parameters. We vary the true val-
ues for two oscillation parameters in order to see if the exclusion ability can be enhanced 
via the precision measurement of two oscillation parameters. The range we show is the 3σ

uncertainty in NuFit4.0. In all panels, the black dot denotes the best fit of NuFit4.0 results 
((θ12, θ13, θ23, δ, �m2

21, �m2
31) = (33.82◦, 8.61◦, 49.6◦, 215◦, 7.39 × 10−5 eV2, 2.525 ×

10−3 eV2)), while the star is the prediction by the tri-direct littlest seesaw model with Nu-
Fit4.0 results ((θ12, θ13, θ23, δ, �m2

21, �m2
31) ∼ (35.25◦, 8.63◦, 47.◦, 279◦, 7.39 ×

10−5 eV2, 2.525 × 10−3 eV2)). Though we do not see any correlations, we find that the black 
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Fig. 7. The �χ2 value against each model parameters for MOMENT. True values for the model parameters are used 
(x, η, r, ma) = (−3.65, 1.13π, 0.511, 3.71 meV). The range shown here is according to the 3σ uncertainty with 
NuFit4.0 results Eq. (5): −5.475 < x < −3.37 (red band), 0.455 < η/π < 1.545 (dark grey band), 0.204 < r < 0.606
(blue band), 3.343 < ma/meV < 4.597 (yellow band).

dot is outside of 5σ contour on the θ23-δ plane. This tells us that the measurement of θ23 and δ
for MOMENT can exclude the TDLS over 5σ if NuFit4.0 results are confirmed.

4.2. Model parameter constraint

We study how model parameters can be constrained by MOMENT. For this purpose, we study 
the statistics quantity,

�χ2 =
∑

i

χ2(μi(
−→Mhyp.), ni(

−→Mtrue)) −
∑

i

χ2(μi(
−→Mb.f.), ni(

−→Mtrue)), (12)

where 
−→Mhyp. is the hypothesis, 

−→Mtrue is the true values, and 
−→Mb.f. is the best fit. Here −→Mb.f. is exactly 

−→Mtrue. We show our result in Figs. 7 and 8. We set the true values at the 
(x, η, r, ma) = (−7/2, π, 0.553, 3.72 meV), which is the best fit with NuFit4.0 results. And 
the range for each panel is the 3σ uncertainty with NuFit4.0 results Eq. (5): −5.475 < x < −3.37
(red band), 0.455 < η/π < 1.545 (dark grey band), 0.204 < r < 0.606 (blue band), 3.343 <
ma/meV < 4.597 (yellow band). At 3σ confidence level, the uncertainty of the model parame-
ter x lies roughly from −4.25 to −3.5. For the model parameter η, it ranges from ∼ 0.925π to 
∼ 1.275π . The 3σ errors for r and ma are about 0.36 < r < 0.58 and 3.5meV < ma < 3.85meV. 
Compared to the result shown in Eq. (5), we see the parameter with the least improvement is r , 
for which the 3σ uncertainty is improved by a factor of 2.

In Table 5, we compare our simulated results with those in the current global fit and the other 
neutrino experiments: the combination of NOνA and T2K, DUNE, and T2HK. For the last three 
configurations, we take results from Ref. [36]. This is obvious that MOMENT can largely im-



J. Tang, T.-C. Wang / Nuclear Physics B 952 (2020) 114915 13
Fig. 8. Precision measurements of any two model parameters in the framework of three neutrino oscillations taking 
uncertainties of the current global fit results, for MOMENT, at 1σ (gray), 2σ (orange), 3σ (black) confidence level. True 
values for the model parameters are used (x, η, r, ma) = (−3.65, 1.13π, 0.511, 3.71 meV).

Table 5
The 3σ allowed ranges in x, η, r , ma for NuFit4.0 [4], MOMENT, the combination of NOνA and T2K, DUNE and 
T2HK. For the last three configurations, we take the result from Ref. [36].

exp. x η/π r ma/meV

NuFit4.0 [−5.475, − 3.37] [0.455, 1.545] [0.204, 0.606] [3.343, 4.597]
MOMENT [−4.25, − 3.5] [0.925, 1.275] [0.36, 0.58] [3.56, 3.86]
NOνA+T2K [−4.8, − 3.5] [0.84, 1.4] [0.3, 0.6] [3.56, 3.86]
DUNE [−4.2, − 3.5] [0.93, 1.27] [0.4, 0.6] [3.56, 3.86]
T2HK [−3.8, − 3.5] [0.94, 1.21] [0.45, 0.6] [3.56, 3.86]

prove the sensitivity of these model parameters, in contrast to results with simulated NOνA and 
T2K data (−4.8 < x < −3.5, 0.84 < η/π < 1.4, 0.3 < r < 0.6 and 3.56 < ma/meV < 3.83
for 3σ uncertainties). We also find the performance of MOMENT is similar to that of DUNE 
(−4.2 < x < −3.5, 0.93 < η/π < 1.27, 0.4 < r < 0.6 and 3.56 < ma/meV < 3.83 for 3σ un-
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Fig. 9. The points at the 4-dimension sphere at the 3σ projected on θ23-δ for MOMENT experiment. We also present the 
1σ (grey), 2σ (orange), and 3σ (black) contours without the restriction of TDLS.

certainties), but worse than that of T2HK (−3.8 < x < −3.5, 0.94 < η/π < 1.21, 0.45 < r < 0.6
and 3.56 < ma/meV < 3.86 for 3σ uncertainties). We cannot neglect the fact that because they 
are not sensitive to the size of �m2

21, the 3σ allowed range on ma is the same to MOMENT, the 
combination of NOνA and T2K, DUNE, and T2HK.

In Fig. 8, we show 1σ (gray), 2σ (light-orange) and 3σ (black) contours on the plane spanned 
by any two of model parameters. We see a strong correlation among x, η and r , which is consis-
tent with Eq. (3). In Eq. (3), we see these three parameters joint in the matrix for the neutrino solar 
mass. As a result these degeneracies can be resolved by precision measurement of solar mixing 
angle θ12 or solar mass-square splitting �m2

21. This degeneracy problem has also addressed by 
simulation results in other LBL experimental configurations, and is known to be resolved by the 
precision measurement of θ12 [36].

In Fig. 9, we project the 3σ sphere from the 4-dimension model-parameter space to the plane 
spanned by θ23 and δ. In more detail, we take a point (xi, ηi, ri , mi

a) on the 3σ sphere in the 
space of all four model parameters, and we place this point at (θ i

12, θ
i
13, θ

i
23, δ

i, �m
2,i
21 , �m

2,i
31 ) in 

the oscillation-parameter space. Two points (xi, ηi, ri , mi
a) and (θ i

12, θ
i
13, θ

i
23, δ

i, �m
2,i
21 ,�m

2,i
31 )

can be transferred by relations in Table 1. Obviously, this can demonstrate the restriction on 
oscillation parameters by TDLS, and is a way to understand if MOMENT can be used to observe 
the sum rule predicted by TDLS. Also, because the degree of freedom is reduced, the precision of 
oscillation parameters can be better. For the purpose, we also compare the result with the allowed 
contour without the restriction of TDLS. The band feature appears, assuming TDLS. This feature 
can be understood by the expansions of cosδ and sin δ in Table 1:

cos δ = cot 2θ23
[
3x2 − (

4x2 + x + 1
)

cos2 θ13
]

√
3 |x| sin θ13

√(
5x2 + 2x + 2

)
cos2 θ13 − 3x2

, (13)

and

sin δ = ± csc 2θ23

√√√√1 +
(
x2 + x + 1

)2
cot2 θ13 cos2 2θ23

3x2
[
3x2 tan 2θ13 − 2

(
x2 + x + 1

)] , (14)

with “+” for x cosψ > 0 and “−” for x cosψ < 0.
Considering θ23 ∼ 45◦, we have

cos δ ∝ cot 2θ23 = cos 2θ23
sin 2θ23

,

sin δ ∝ ± csc 2θ23 = ± 1 .
(15)
sin 2θ23
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Therefore, we have

tan δ ∝ 1/ cos 2θ23. (16)

Eq. (16) predicts that if θ23 = 45◦, δ = 90◦ or 270◦, which is also confirmed in the θ23-δ panel 
of Fig. 9. On the other hand, due to the poor sensitivity to the solar angle of MOMENT, we do 
not see the result reflecting the sum rule in Eq. (4). More results for projecting �χ2 on the other 
standard-parameter space are presented in Appendix A.

5. Conclusion

We have studied how we can extend our knowledge on the flavor symmetry with MOMENT, 
using eight channels of neutrino oscillations (νe → νe, νe → νμ, νμ → νe, νμ → νμ and their 
CP-conjugate partners) with the help of the following detection processes in a Gd-doped water 
Cherenkov detector: νe + n → p + e−, ν̄μ + p → n + μ+, ν̄e + p → n + e+, and νμ + n →
p + μ−. We have analyzed the physics potential of MOMENT on littlest seesaw models in the 
tri-direct approach given in Eq. (3) as a case study.

We have studied the exclusion ability to TDLS models for MOMENT. We found that θ23

and δ are the most important parameters to exclude this model, though some contributions from 
θ13 and �m2

31 are also seen. We noticed that the precision measurement in MOMENT of θ23

and δ can exclude this model with more than 5σ significance, if the best fit of NuFit4.0 is con-
firmed. We also presented the constraint on model parameters with simulated MOMENT data. 
We have found MOMENT data can improve the 3σ uncertainty by at least a factor of two, com-
pared to those by NuFit4.0 results shown in Eq. (5). We have found the degeneracy problem, 
which is caused by the poor measurement of θ12. This degeneracy problem has been addressed 
in Ref. [36]. We projected the 3σ sphere from the model-parameter space to the oscillation-
parameter space. Finally, we have found that the sum rule between θ23 and δ: tan δ ∝ 1/ cos 2θ23

(for θ23 ∼ 45◦) predicted by Eqs. (13) and (14) can be checked by MOMENT.
Finally, we come to the conclusion that θ23 and δ are the most important parameters in the 

standard neutrino mixing framework to understand the underlying TDLS model. It is not only 
because they are the only two parameters, of which the model prediction deviates from the best 
fit of NuFit4.0 by more than 1σ , but also because they can exclude this model at the 5σ confi-
dence level as soon as the best fit values are confirmed in the future global analysis. As a result, 
to optimize the experimental design at MOMENT for the purpose of understanding the TDLS 
model, we need to aim at precision measurements of θ23 and δ.
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Fig. 10. The �χ2 value against θ12 (upper left), θ13 (upper right), θ23 (middle left), δ (middle right), �m2
21 (lower left) 

and �m2
31 (lower right), for MOMENT experiment, assuming the tri-direct model.

Appendix A. Projection on the standard-parameter space

After studying the behaviour of �χ2 in the model-parameter space (x, η, r and ma) in 
Sec. 4.2, we are interested in its behaviour the oscillation-parameter space (θ12, θ13, θ23, δ, 
�m2

21, and �m2
31). Therefore, we project the value of �χ2 from the model-parameter space 

to the oscillation-parameter space. In Fig. 10, we will show the �χ2 against the value of one 
oscillation parameter, and in Fig. 11, we will project the point on 3σ allowed contour on θ13-δ, 
θ13-�m2

31, and θ23-�m2
31 planes.

In Fig. 10, we project points inside the 3σ sphere from the 4-dimension model-parameter 
space on each oscillation parameters with their �χ2 values (y-axis). Though MOMENT is not 
sensitive to θ12, we see that this parameter is well constrained to be better than that of NuFit4.0 
result. The uncertainty for θ13 and �m2

21 are almost the same as the 3σ errors NuFit4.0. The 
asymmetry for θ12, θ23 and �m2

31 is passed by the same feature of x, η, and ma .
In Fig. 11, we project the 3σ sphere from the 4-dimension model-parameter space to the two-

dimension plane spanned by the standard oscillation parameters. We see that under the TDLS 
model, δ and �m2 are constrained better than those without assuming TDLS models by about a 
31
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Fig. 11. The points at the 4-dimension sphere at the 3σ projected on θ13-δ (upper-left), θ13-�m2
31 (lower-left), θ23-�m2

31
(lower-right) for MOMENT experiment. We also present the 1σ (grey), 2σ (orange), and 3σ (black) contours without 
the restriction of TDLS.

factor of 2. The uncertainty for θ23 is slightly better when TDLS is assumed. The 3σ uncertainty 
for θ13 is roughly the same between with and without assuming TDLS models.
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