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Abstract

We present a measurement of the inclusive W and Z production cross-section from
~ 14 pb™! of data from the 1992-93 collider run at the Fermilab Tevatron. From the
ratio measurement of oy * B(W — lv)/oz * B(Z — ll) we put a limit on the unexpected
decay modes of the W boson. We present preliminary results on the transverse momentum
distribution of W and Z bosons. We present a limit on the anomalous coupling parameters
related to the electric/magnetic moments of the W and Z bosons from the processes
pp — W(lv)W(lv) + X, pp — W(l)W(55)/W(lw)Z(55) + X, pp — W(lv)y + X, and
P — Z(”)‘)’ +X.
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The age of electroweak physics began with the discovery of the W and Z bosons at the CERN
SppS in 1983(1]. In the last decade, the Standard Model (SM) predictions have been con-
firmed to high precision from e*e” experiments at LEP[2], SLC(3] and pp experiments at the
Tevatron[4]. In this article, we will discuss some of the important electroweak results[{5-9] from
~ 14 pb~! of data collected by the D@ experiment during the 1992-1993 run. Some preliminary
results will also be discussed using the partial data set collected during the 1994-95 run.

1  Inclusive W and Z Production Cross-Section

At a center of mass energy of /s = 1.8 TeV, W and Z bosons are primarily produced by
gg annihilation often accompanied by gluon emission. The leptonic decay modes of W and Z
boson are respectively characterized by a high transverse momentum (Pr) lepton accompanied
by large missing transverse energy (Er) and two high Pr leptons. The inclusive production
cross-sections, ow and oz for W and 7 bosons have been calculated[10] to the order of a,%. The
cross-section measurement provides insight into the SM of electroweak and strong interactions
and also into the structure of nucleons. The measurement of the ratio of cross-section times
branching ratio for W and Z boson R = ow * B(W — w)/oz x B(Z — ll) can be used to
extract the width of W, 'y, and hence can be used to put a limit on the unexpected decay
modes of W.

The inclusive cross-section for a W decaying into a lepton and a neutrino is calculated as

Nobs - kag

GVV*B(W——* lV) = m

(1)
where N,;, is the number of observed events, Nykg is the number of expected background events,
Aw is the acceptance, ew is the detection efficiency and £ is the integrated luminosity used
for the analysis. The Z boson cross-section, oz, for decays into two leptons is calculated in a
similar fashion. _

The measured cross-section times branching ratio values are listed in Table 1 and are com-
pared with theoretical predictions and CDF[11] result in Figure 1. The total cross cross-sections
are calculated to be oy = 22.35 nb and oz = 6.71 nb using My = 80.23 = 0.18 GeV/c*12],
My = 91.1940.004 GeV/c?[13], sin’ 6w = 1 — (My/Mz)? = 0.2259 and the CTEQ2M par-
ton distribution function (pdf)[14]. The predicted cross-section times branching ratio values
ow * B(W — lv) = 2421013 and oz x B(Z — ) = 0.2267035¢ are estimated using the lep-
tonic branching ratio B(W — lv) = 10.84+0.02%[15] and B(Z — ) = 3.3674:0.006%(13].
The widths of the bands in Fig. 1 indicate the error in the predicted values primarily due to the
choice of structure function (4.5%) and the uncertainty due to the use of an NLO pdf with a full
NNLO theoretical calculation (3%). The experimental error is dominated by the uncertainty
on the luminosity (5.4%).

The ratio of the measured cross-section can be used to measure the leptonic branching ratio
B(W — lv) and the total width of W, I'y-. The systematics due to luminosity and choice of
pdf cancel in the ratio measurement. The ratio expression

ow * BW — W) ow T(W— lv) 1

o xB(Z - 1) oz T(W) “B(Z = 1I) (2)

can be written as

ow F(W —> lV) _1~
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Table 1: Measured cross-section times branching ratio values for W and Z bosons decaying into
electron(e) and muon(p) channels. The first error is statistical and the second is systematic.

ow * B(W—{v)(nb) oz * B(Z—1l)(nb) R
1992-93
e 2.36+0.02+0.15 0.218+0.00840.014 10.82-:0.414-0.30
" 2.09+0.0640.25 0.17840.02240.023 11.8%18+1.1
DO(e+p) 10.90£0.49 (stat.@syst.)
1994-95 (preliminary)
e 2.2440.02-0.20 0.22640.006+0.021  9.940.340.8
" 1.93-+0.0440.20 0.159+0.0144£0.022 12.3+1.1:+1.2
Standard
Model 2.4210-13 0.22670:5L8

Using the value R(e+p) = 10.902:0.49 as shown in Table 1, ow/oz = 3.33+0.03[10],

B(Z — 1) = 3.367-0.006%(13] and T(W — Iv) = 225.2 £ 1.5 MeV|[15] we obtain

T(W)pe = 2.044£0.091(expt)£0.017(theo) = 2.044+0.093 GeV which is in very good
agreement with the SM value of I'(W)g,; = 2.077+£0.014 GeV[12,15]. The world average[4, and
references therein] as shown in Fig. 2 is I'(W)yworp = 2-062£0.059 GeV. By comparing this
value to the SM value, an upper limit of ALy < 109 MeV at 95% confidence limit (CL) could
be placed on the excess width allowed by experiment for non-Standard Model decays of W,
such as W decaying into heavy quarks, or supersymmetric charginos or neutralinos.
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2 Measurement of W and Z Boson Pr (P]W and PIZ )

At the Tevatron W and Z bosons are primarily produced by ¢g annihilation. The transverse mo-
mentum to the boson is provided by initial state gluon radiation. Thelow Pr(P;”, P < 20 GeV/c)



part of the spectrum is dominated by multiple soft gluon emission and the production cross-
section is calculated using a soft gluon resummation technique[16-20]. The high Pr(PF,P¢
> 20 GeV/c) part of the spectrum is well described by perturbative QCD[21]. A measurement
of the low Pr part of the spectrum could be used as a constraint on QCD resummation calcu-
lations and a measurement of the high Pr part of the spectrum could be used as a sensitive
test of perturbative QCD. Deviation from the predicted spectrum at high Pr could indicate
the possibility of new physics. A good understanding of the P} spectrum is also necessary for
a precise measurement of the W mass.

We have measured P)Y and PZ in the electron channel. P}’ is determined from the hadronic
recoil of the W, while PZ is determined from the sum of two electron transverse momenta.
Fig. 3 and 4 respectively show the background subtracted P}¥ and P# spectrum compared with
theoretical predictions smeared by detector resolutions. Although the results are preliminary
and need better understanding of the systematics, we do see a good agreement between data
and theory.
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3 Triple Gauge Boson Couplings

In the SM the self coupling of gauge bosons are due to the non-Abelian nature of the theory.
Deviations from the predicted behaviour cause the model to be non-renormalizable or, to violate
unitarity in high energy scattering[22]. In the SM u and ¢ channel diagram amplitudes cancel
each other, thus ensuring the unitarity of the multiboson production. The Lagrangian with
fixed anomalous coupling violates unitarity and thus at high energy the coupling is modified
by a form factor with a scale A, which is usually defined as the scale of new physics. The only
allowed coupling in the SM are between charged and neutral particles i.e, WWV (V = Z,7).
Self coupling between neutral particles i.e, ZVy (V = Z,7) is not allowed. Observation of
excess diboson events could signal new physics[23].

We have studied the anomalous gauge boson couplings in the WWZ, WWr, Z Z~y and Zvyvy
channels. The WW production process depends strongly on the WW+ and WW Z coupling
parameters due to destructive interference among contributing amplitudes. The most general
effective Lagrangian[24], invariant under U (1)EM, for the electroweak gauge interaction contains
eight independent coupling parameters, the CP-conserving parameters Ky and Ay and the



CP-violating parameters &£ and M-, where V = Z,~v. The coupling parameters are related
to the magnetic dipole moment uy = (e/2mw)(1 + Ky + Ay), electric quadrupole moment
Q% = (—e/miy)(ksy — Ay), electric dipole moment dw = (e/2mw)(%, + A,), and magnetic
quadrupole moment Q7 = (—e/m3;)(ky — A,) of the W boson[25]. In the SM, at the tree
level the couplings are uniquely determined by the SU(2), x U(1)y gauge symmetry. In SM
Ak, = A, = Axz = Az = 0. The C'P-violating coupling parameters &, = :\,, =Rz = Az = 0.
Non-zero coupling parameters result in an increase of the production cross-section and an
enhancement in the Py ,(V = W,Z,v) spectrum at the high P} region. A study of the
PY,(V =W, Z,v) spectrum thus provides a direct test of the WWy and WW Z couplings.

The SM predicts the production cross-section for pp — WHtW ™ and pp — W*Z to be 9.5
pb and 2.5 pb at /s = 1.8 TeV[26]. For WW+v and WW Z couplings we have searched in the
PP—WW + XLl vV (£l —ee,ep, pp) channel. One event is found in ~ 14 pb~! of data with
an expected background of 0.54 events. The total efficiency is 7.8% and the SM expectation
is 0.46 events. The main source of the background to this channel is £ — WWbb[27]. To
reduce the background from ¢¢ substantially we require that the vector sum of the Er from
hadrons E;IAD defined as | — (Ell + Eé? + Fr)| to be less than 40 GeV. As shown in Fig. 5
this requirement reduces 75% of the ¢ background while keeping 95% of the signal. From the
observed event, estimated background, efficiency and luminosity we can put a 95% CL limit of
o(WW) < 87 pb[7]. As shown in Fig. 6, one can put a limit of —2.6 < Ax < 2.8 (A =0) and
—2.1< A< 21 (Ars=0) at 95% CL on the coupling parameters from the observed limit as a
function of k¥ and ) and the theoretical prediction of W boson pair production.

We have also looked into the channels WW, W Z — ev + >2jets. Although this channel has
4.5 times higher branching ratio than the pp — WW +X — 'v/'(£l'—ee, ep, pp) channel, this
channel suffers from much higher W — ev + jets background. However at higher PJ" (W — ev)
the backgrounds are small and the sensitivity to WW+~y/WW Z anomalous coupling is enhanced.
We have analyzed a2 14 pb~! of data for this channel selecting events with a high Er electron,
large E7 to be consistent with a W — ev and two jets with EX' > 30 GeV, and mass
of the dijet system to be consistent with mass of W/Z, i.e, 50 < m;; < 110 GeV/c% We
observe a total of 84 events in the data, while the background from W + >2jets, multijet and
other sources is 75.5+13.3 events. The SM expectation is 2.9%0.5 events for WW and WZ
combined production. We do not see any excess of high P}V events. Using the measured
efficiencies and the background subtracted signal, we set a 95% CL upper limit on the cross-
section times branching fraction for o * BWtW ™~ — e*vjj) + o x BW*Z — e*vjj) for
the SM case to be 17 pb. To set a limit on the anomalous coupling parameters, a binned
likelihood fit was performed on the Pr spectrum of the W — ev system, allowing the MC signal
prediction as a function of coupling parameters and the expected backgrounds to fluctuate
to the observed number of events. Under the assumption that CP-violating couplings are
zero, Ak=Ar,=Arz, AA=AN=ANz, and A = 1.5 TeV, we obtain a preliminary 95% CL of
—0.89 < Ak < 1.07 (A =0) and —0.66 < A < 0.67 (Ax =0).

We have also studied WW+y production where a photon is produced with a W in the final
state, either through initial state or final state radiation or through an s—channel diagram which
is sensitive to W W+ coupling. We require that the event should consist of a high Pr isolated
lepton (e or ), large £r and an isolated photon of Py > 10 GeV/c. It is also required that the
photon and lepton should be separated in phase space by AR(I—«v) > 0.7. In ~ 14 pb™' of data
we observe a total of 23 events and estimate the total background to be 6.44+1.4 events which
is consistent with SM expectation of 16.675341.4 events. Using a binned likelihood method
to fit the PJ spectrum for a form factor scale A = 1.5 TeV, we obtain limit on the coupling
parameters to be ~1.6 < Ax < 1.8 (A =0) and —0.6 < A < 0.6 (Ak = 0) at the 95% CL. We
also rule out U(1)gy coupling of W boson at 80% CL[8].
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CLEO{28] has studied the flavor-changing neutral current process b— sy which is described
al W is exchanged in a loop with a top quark, with
a photon emitted from any of the lines[29]. This process is sensitive to the WW+~ couplings
and the measured inclusive b—sy branching ratio is 2.3240.57+0.35x10~*. Fig. 7 shows the
measured limits on Ak and A for the Wy production from D8], CDF[30] and CLEO[28].
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Figure 8: Limits on anomalous couplings

Figure 7: Limits on anomalous couplings
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We have also analyzed 55 pb~! of the 1994-95 run data for the W+ process where a W
decays into an electron and a neutrino. We find the results to be consistent with the SM
expectation and the combined preliminary limit on anomalous coupling parameters from the
1992-93 published result[8] and the 1994-94 electron data at the 95% CL is —1.46 < Ak <
140 (A=0)and —0.4 <A <04 (Ax= 0) for A = 1.5 TeV. Work is in progress to combine

limits from the Wy—lvy, W'W—gllvu and WW/W Z—lvjj channels and put a tighter Lmit



on Ax and A.

Since the Z and photon do not couple to each other, the study of Zv production is sensitive
to anomalous coupling (ZV~ (ZZ~v and Zv+)) beyond SM. The most general Lorentz and gauge
invariance for the ZZ~v(Z~~) vertex is described by eight coupling parameters &), (i = 1, ...,4)
where V = Z,v. In SM at tree level all these couplings are h/ = 0. While AV and AY
are CP-violating, hY and h} are CP-conserving. At very high energy like WWV coupling,
ZV~ coupling is also regulated by a form factor with scale A to preserve the unitarity bound.
Although the W W~ process is insensitive to the scale A at the Tevatron beyond Ay > a few
100 GeV, the effect of the form factor is sensitive to Zv couplings due to a higher power of 3
dependence in the ZVy vertex function.

We have looked for Z+ events in the electron and muon channels. The event is required to
have two isolated high Pr leptons (e or ) and an isolated photon with P} > 10 GeV/c. It
is also required that both the leptons be separated from the photon by AR(I — v) > 0.7, to
reduce background from radiative Z decay. In ~ 14 pb~' of data we observe 6 events with an
estimated background of 0.5 events and SM expectation of 5.7 events. Using a binned likelihood
to fit the P] spectrum, assuming no CP-violation and a form factor scale A = 500 GeV, we
put limit on CP-conserving coupling parameters at 95% CL at —1.8 < hZ, < 1.8 (k7 = 0)
and —0.5 < hZ, < 0.5 (k% = 0). The limits on corresponding Zvy~ couplings and C'’P-violating
couplings are nearly identical{9]. Fig. 8 shows the limit on Z+ coupling from D®[9], CDF[31]
and L3 [32]. The limit from L3 is complementary to both the D@ and CDF results.

4 Conclusion

D@ has already published several results[4-9] on properties of the W and Z bosons, some of
which have been presented here. The experiment has collected nearly 85 pb™! of data during the
1994-95 run. The new data set will reduce the error considerably on most of the measurements
thus further constraining the SM.
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WWry anomalous couplings — limits

A=15TeV

95% CL Limits:
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Run 1B Preliminary Wy Results

« Wy Photon E;. Distribution — electron channel only
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WW,WZ = 1v jj

e The WW, WZ — [v g7 channel is background dominated
« However, at high p; (W — eV)
— backgrounds are small
— anomalous WWy/ WWZ couplings enhance cross section

" — sensitive test of anomalous couplings

- Normalized to13.7 pb™!

«— Ak=2,A=15
12 F

Number of events / 20 GeV
o0

page 38



16
14
12
10

Number of events / 10 GeV

S N O a O ®

12

10

Number of events/ 10 GeV

p¥ spectrum

DO Preliminary
Points: data
¢ Dashed: QCD fakes and W+ Z 2jets
1
! Dotted: W+22jets
E i !
o !
1 ih
:t H L“‘_,
.1‘|||*111|—"r'q\"1_.1"‘4*1‘ L_Jl.._.!llll'l 11’11!1
0 50 100 150 200 250 300 350 400
pp (W — ev) [GeV]
-
o Solid: QCD fakes and W+ 2 2jets
F. Dotted: WW Ax=2,A=1.5
o Doshed: WW Ax=2,A=0
o Dot dashed: WW SM
S N S Sk e LT == U U BV
0 50 100 150 200 250 300 350 400

Pr (W — ev) [GeV]

959% CL limits obtained from binned likelihood fit, assuming
A=15 TeV and AK},zAKz, A.Y'—'-'A.Z:

0.89<Ak <107 (A=0) PRELIMINA

s

0.66<1<0.67 (Ak=0) —

page 39



WWV anomalous coupling limits — comparison
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Why measure g%t—?

e Sensitive Test of pQCD Predictions
e Physics Beyound the Standard Model
e Constrain QCD Resummation Calc.

o Aid Measurement of Mw
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CONCLUSIONS --
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