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Abstract

This thesis presents a series of studies on the dynamics of high mass ratio multiples, with

applications to planetary systems orbiting stars and stellar systems orbiting supermassive

black holes (SMBHs).

Almost two thousand exoplanetary systems have recently been discovered, and their

configurations gave rise to new puzzles related to planetary formation theories. We

studied the dynamics of planetary systems aiming to understand how the configuration

of planetary system is sculptured and to probe the origin of planetary systems. First,

we discussed hierarchical three-body dynamics, which can be applied to planets that

are orbiting a star while perturbed by a planet or a star that is farther away. The

perturbation from the farther object can flip the planetary orbits and produce counter

orbiting hot Jupiters, which cannot be formed in the framework of classical planetary

formation theory. In addition, we have studied the stellar encounters with planetary

systems in star clusters, which produce eccentric and inclined planets. Moreover, we

investigated the obliquity variation of the Earth, and the developed formalism can be

applied to exoplanetary systems. We note that the obliquity variation is important to

the habitability of the exoplanets.

Long term dynamics is also central to understanding stellar systems orbiting

SMBHs. SMBHs are common in the centers of galaxies and lead to rich dynamical

interactions with nearby stars. At the same time, dynamical features of nearby stars
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reveal important properties of SMBHs. The aforementioned hierarchical three-body

dynamics can be applied to stars near SMBH binaries, which are natural consequences of

galaxy mergers. We found that the distribution of stars surrounding one of the SMBHs

results in the shape of a torus due to the perturbation from the other SMBH, and the

dynamical interactions contribute to an enhancement of tidal disruption rates, which

can help identify the SMBH binaries. In addition, we investigated the heating of stars

near SMBHs, where the heating of stars due to gravitational waves as the SMBHs merge

may mark the merger, and provide an electromagnetic counterpart for gravitational wave

detection. Moreover, the accumulated tidal heating of stars may cause the stars to be

more vulnerable for tidal disruptions, as the stars orbit around a SMBH in an eccentric

orbit.
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Chapter 1

Introduction

The study of dynamics can be dated back to the time of Newton, who studied the

motion of objects and inquired fundamental questions, such as the stability of our Solar

System due to the interaction of planets and comets. There are significant progresses

in the studies of dynamics throughout the years, such as secular theories by Lagrange

and Laplace, who provided a landmark description of the long-term (secular) dynamics

of solar system, and later the foundations of chaos by Poincare, as he investigated

three-body interactions. Many challenges, such as the great inequality of Jupiter and

Saturn, have been solved along with the significant progresses in analytical studies.

However, despite the important breakthroughs in dynamical studies, many of the

questions still remain unanswered till today. For instance, some of them are due to the

complex nature of chaotic systems (see a review in Laskar 2013).

It is possible to answer some of the fundamental questions today, such as the

stability of our Solar System, thanks to the development in numerical algorithms and

improvement in computational power. For example, one may simulate the chaotic
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CHAPTER 1. INTRODUCTION

systems with high precision and predict the behavior of the chaotic system in a statistical

sense by obtaining a large number of trajectories with similar initial conditions. In

addition to the improvements in computation, solving dynamical problems is stimulated

by interesting topics in astrophysics today, including probing the characteristics of

planetary systems outside of our solar system (exoplanetary systems) and the properties

of supermassive black holes.

In this thesis, I have utilized both analytical methods and numerical simulations to

study the dynamics of high mass ratio multiples, which are prevalent in our universe. In

particular, I have studied the dynamics of planetary systems (§1.1, section I: chapter 2-7)

and stellar systems orbiting around supermassive black holes (§1.2, section II: chapter

8-10).

1.1 Dynamics of Planetary Systems

Since the first few exoplanet observed in the late 1980s to the early 1990s (Campbell

et al. 1988; Latham et al. 1989; Wolszczan & Frail 1992; Mayor & Queloz 1995), 1890

confirmed exoplanets in 1189 planetary systems have been discovered today (as of

Feb 20, 2015 shown in Figure 1.1, http://exoplanet.eu/). Occurrence studies of

the explanatory systems suggest that on average there is one exoplanet per star (e.g.,

Dressing & Charbonneau 2013). Along with the exciting detections, theories of planetary

formation have been confronted: massive planets have been detected to orbit their host

star in the order of days (the so-called “hot-Jupiters”, e.g., Mayor & Queloz 1995; Marcy

et al. 1997), where they could not be formed (Rafikov 2006), and the planets may have

eccentric orbits and/or orbit misaligned from the spin axis of the star (e.g., Hébrard

2



CHAPTER 1. INTRODUCTION

Figure 1.1: The number of exoplanets discovered v.s. year of discovery.

et al. 2008), contrary to the classical planetary formation theory. This wide diversity of

the exoplanetary systems has given rise to numerous new puzzles that require theoretical

explanations.

Many of these features can be explained by dynamical studies, which in turn

improve our understanding on planetary formation. In particular, for solar system

dynamics earlier on, the formation of eccentric orbits due to the hierarchical three-body

interactions has been proven to be critical. For example, it may cause crashes of artificial

satellites orbiting the Earth while perturbed by the Moon and can explain the asteroids

orbiting the Sun in eccentric orbits while perturbed by Jupiter (Lidov 1962; Kozai 1962).

Recently, further studies of this three-body interaction (the “Kozai-Lidov” mechanism)

explain the origin of eccentric orbits for explanatory systems, such as 16 Cyg Bb and

3



CHAPTER 1. INTRODUCTION

HD80606 (Holman et al. 1997; Wu & Murray 2003) and the formation of retrograde hot

Jupiters, which orbit in the opposite direction from the spin of the star (e.g., Naoz et al.

2011).

In addition to the origin of planetary systems, dynamics is important for the

habitability of planets, and investigating the habitability of the detected planets can

finally allow humankind to answer fundamental questions, such as whether we are alone

in the universe. In the late 1950s, astronomers speculated the habitability of planets

orbiting other stars (e.g., Huang 1959). The definition of habitability at that time varied

from one author to another. Today, according to the definition by NASA, habitable

zone refers to regions where liquid water can exist on the surface of an exoplanet. The

size of the habitable zone for planets orbiting main sequence stars has been investigated

in the literature (Kasting et al. 1993), and it has been recently found that there are

0.2-0.4 planets per M dwarf habitable zone (Bonfils et al. 2013; Dressing & Charbonneau

2015). However, the climate condition on the planets may still be unpleasant inside the

habitable zone, since many other factors, such as dynamical instability may render the

planets inhabitable. Thus, further studies on the dynamical stability of these planets,

including the obliquity variation of the planets (e.g., Laskar & Robutel 1993; Li &

Batygin 2014a), may put another constraint on the habitability of planetary systems

(e.g., Spiegel et al. 2009).
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CHAPTER 1. INTRODUCTION

1.1.1 Origin of Planetary Systems

Hierarchical Three-body Dynamics and Stellar Spin-orbit Misalignment

In this thesis, I studied the spin-orbit misalignment as a probe for the origin of planetary

system. According to the classical planetary formation theory, the spin of the star should

align with the orbit of the planets as the planetary system form in one molecular cloud,

which has a preferred direction of rotation. In contrast with our own solar system,

where the misalignment between the spin of the Sun and the planetary orbits is small

(∼ 7◦), exoplanetary systems may exhibit large misalignments (e.g., Fabrycky & Winn

2009; Morton & Johnson 2011). To date, many mechanisms involving the dynamics of

protoplanetary disks, perturbation of a farther object, oscillation modes of stars and

tides have been proposed in the literature to explain the spin-orbit misalignment (e.g.,

Bate et al. 2010; Winn et al. 2010; Naoz et al. 2011; Batygin 2012; Albrecht et al. 2012;

Dawson 2014; Fielding et al. 2014; Petrovich 2015), and it is likely that the observations

show signatures of more than one mechanism (Li et al. 2014c). A coherent understanding

of planetary system formation and evolution is essential, and contributes to estimating

how unique our own solar system is in the universe.

In particular, hierarchical three-body system dynamics is one of the mechanisms

that can explain the misalignment between the planets orbit and the spin of the star

(e.g., Fabrycky & Tremaine 2007; Naoz et al. 2012; Li et al. 2014a). The configuration

is shown in Figure 1.2, and this kind of configuration is common in the universe as

a result of their inherent stability. The dynamics of a hierarchical three-body system

is complex. For instance, it has been found in the literature that when the mutual

inclination between an inner binary and the perturber is above ∼ 40◦, the inner binary’s
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orbit undergoes large amplitude oscillations in eccentricity and inclination (Kozai 1962;

Lidov 1962), and may flip across 90◦ if the perturbers orbit is non-circular, or when none

of the components in the close binary is a test particle (e.g., Naoz et al. 2011; Katz et al.

2011; Lithwick & Naoz 2011; Naoz & Fabrycky 2014).

The hierarchical three-body interaction can explain many astrophysical phenomena.

For stellar systems, some of the binary stars are at separations closer than the minimum

separation they can be formed, so there is a need for a mechanism to bring the two

stars closer to each other after they are formed. The eccentricity of the inner orbit can

be enhanced through the hierarchical three-body interaction, and the distance between

the two objects at pericenter can be reduced. Thus, the two stars can be brought closer

due to the perturbation from an outer companion, and this interaction helps explain the

formation of short period binaries (e.g., Ford et al. 2000; Fabrycky & Tremaine 2007;

Shappee & Thompson 2013).

In addition, this mechanism can help explain the origin of blue stragglers and type

Ia supernovae. Blue stragglers are stars that are hotter and bluer than the main sequence

stars in a cluster. They can be formed through collisions. However, the collision rates are

too low to explain the origin of the blue stragglers. Since the two stars can be brought

closer and have the potential to collide with each other via the hierarchical three-body

interaction, this interaction can enhance the collision rate and help explain the origin of

blue stragglers (e.g., Perets & Fabrycky 2009; Naoz & Fabrycky 2014). Similarly, one of

the ways to produce type Ia supernovae is through collisions of two white dwarfs. This

interaction can enhance the collision rate and help produce type Ia supernovae (e.g.,

Katz & Dong 2012).
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CHAPTER 1. INTRODUCTION

m2	
  

J2	
  

Figure 1.2: The configuration of a hierarchical three-body system. m1 and mp form the

inner binary, and m2 is the outer perturber.

For binary black holes of high eccentricity, the merger timescale of the binary black

holes can be significantly reduced. Thus, this interaction can enhance the black hole

merger rate, as it excites the eccentricity of the binary black holes (e.g., Blaes et al. 2002;

Bode & Wegg 2013). Moreover, stars can be brought closer to a supermassive black

hole and be tidally disrupted through hierarchical three-body interactions. This has the

potential to enhance the tidal disruption rates of stars near SMBH binaries (Ivanov et al.

2005; Chen et al. 2011; Wegg & Bode 2011).

In this thesis, we investigate the hierarchical three-body dynamics, and we

have found a new mechanism that allows the orbit to flip from an almost co-planar

configuration by ∼ 180◦, and to increase its eccentricity to ∼ 1 − 10−6 during the flip

7
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(Li et al. 2014a). This increases the parameter space for the interesting phenomena. In

addition, assuming one of the objects in the close binary is massless, the system can be

reduced to be one degree of freedom, and the flip timescale and the flip criteria can be

derived analytically. Moreover, we have analyzed the parameter space for the hierarchical

three-body dynamics in the test particle limit, and identified the underlying resonances

for the flip (Li et al. 2014b).

For planetary systems in three-body hierarchical configuration, the close binary is

composed of a host star and an exoplanet, which is perturbed by an outer planet or an

outer star. The planets orbit may flip according to the hierarchical three body dynamics.

As the spin axis of the star is not affected, this mechanism will change the spin orbit

misalignment. Meanwhile, the eccentricity of the close binary increases during the flip,

and this reduces the distance between the planet and the star at the pericenter to allow

tides to operate. Specifically, tides will circularize the orbit and shrink the orbit, halting

the eccentricity and inclination oscillations. This way, an exoplanet with a spin-orbit

misalignment can be produced. If the planet starts in a coplanar configuration with the

perturbing object, we found that the planetary orbit may flip by ∼ 180◦ and form a

counter orbiting hot Jupiter (Li et al. 2014a).

The variation of the stellar spin-orbit misalignment due to planetary orbital

precession caused by planetary interaction is also important in explaining the observed

spin-orbit misalignment. In particular, we have studied the exoplanetary system,

Kepler-56, which is a multi-planet system containing an outer planet and two coplanar

inner planets that are in orbits misaligned with respect to the spin axis of the host star

(Li et al. 2014c). We constrained the distribution of the mutual inclination between the

inner two planets and the outer planet using the observed misalignment between the

8
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stellar spin and the inner planetary orbits, and requiring the system to be dynamical

stable. Moreover, we discussed this distribution as a function of the initial stellar spin

variation. As a side note, we investigated the future evolution of this system and found

the inner two planets will be engulfed in ∼ 129 Myr and ∼ 155 Myr. This is the first

exoplanetary system observed where two of its planets are going to be engulfed.

Scattering Encounter in Clusters

Scattering encounters play important roles in determining the final orbital distributions

of planets, since most stars and planetary systems form in clusters surrounded by a

large number of neighboring stars (e.g., Heggie & Rasio 1996; Adams & Laughlin 2001;

Spurzem et al. 2009). For instance, our solar system likely formed in a large stellar

group, since there are large amount of short-lived radioactive species present during the

formation of the solar system, inferred from meteoritic measurements. However, in a

crowded cluster, the solar system can be disrupted. To constrain the birth environment

of the solar system, we’ve calculated the averaged cross section for the disruption of

solar system using N-body simulations (Li & Adams 2015). In addition, we’ve also

obtained the expression of the disruption cross section as a function of the planetary

system properties, such as the planet-star distance and the mass of the star, which can

be applied to exoplanetary systems in general.

1.1.2 Spin-axis Dynamics of Planets

The habitability of an exoplanet depends on various conditions, where the planets orbital

configuration and spin-axis dynamics plays a significant role (e.g., Spiegel et al. 2009).
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In particular, the obliquity variation of planets is important because it determines the

latitudinal distribution of the stellar radiation received on the planet. This has been

studied extensively for objects in our Solar System (e.g., Laskar et al. 1993; Touma &

Wisdom 1993). For instance, Earth’s obliquity (the angle between Earths spin axis and

its orbit) is stabilized by the Moon and would undergo chaotic variations and reach

∼ 80 degrees in the Moon’s absence (Laskar & Robutel 1993). However, according to

the recent numerical simulations, without the Moon, the obliquity of the Earth stays

low (. 40 degrees) over ∼Gyr timescales (Lissauer et al. 2012). Accordingly, in (Li &

Batygin 2014a), we re-examined the spin-axis evolution of a Moonless Earth within the

context of a simplified perturbative framework, and found the chaotic diffusion timescale

to be as long as 6 billion years when the obliquity is between ∼ 40 − 60 degrees. This

demonstrated that even in the absence of the Moon, the stochastic change in Earth’s

obliquity is sufficiently slow to not preclude long-term habitability.

As an extension, we studied the past variation of the Earths obliquity and found that

the Earth obtained its current obliquity during the formation of the Moon (Li & Batygin

2014b). It is likely that the architecture of the Solar System underwent a dynamical

instability-driven transformation, where the primordial configuration was more compact

(e.g., Tsiganis et al. 2005; Morbidelli et al. 2005; Gomes et al. 2005). Thus, the

perturbation of the Earths obliquity due to the other planets can be different, potentially

allowing for large amplitude variation in the Earths obliquity. Our calculations suggest

that the system avoided resonant encounters throughout its evolution, indicating that

the Earths obliquity was stable since the formation of the Moon.

10
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1.2 Interactions between Stars and Supermassive

Black Holes

SMBHs are common in the center of galaxies, and the features of the SMBH are

correlated with the properties of the host galaxy (e.g., the well-known M − σ relation)

(Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002). In addition to

the host galaxy as a whole, the SMBHs affect stars surrounding them. The existence of

the SMBH can explain puzzling phenomena, such as the origin of hypervelocity stars in

the center of our galaxy, which can be produced during a close encounter between the

SMBH and a stellar binary, where one of the stars gets captured by the SMBH and the

other star gets ejected with extremely high velocity (e.g., Hills 1988; Yu & Tremaine

2003; Brown et al. 2005). On the other hand, the properties of the stars reveal valuable

information about the SMBHs. For instance, the mass of the SMBH can be measured

from the stellar orbits (for Sgr A*) or the collective dynamics of nearby stars (e.g.,

Valluri et al. 2004; Ferrarese & Ford 2005; Ghez et al. 2008; Genzel et al. 2010), and the

mass function of the SMBHs can be estimated from tidal disruption rate of stars (Stone

& Metzger 2014). In this thesis, I have focused on the distribution of stars surrounding

SMBH binaries due to hierarchical three-body interactions, and the heating of stars

surrounding SMBHs.

11
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1.2.1 Implications for Stars Surrounding Supermassive Black

Hole Binaries

SMBH binaries (SMBHB) are natural consequences of galaxy mergers, since SMBHs are

common in the center of galaxies. Spatially-resolved active galactic nuclei have been

observed (Komossa et al. 2003; Bianchi et al. 2008; Green et al. 2010; Koss et al. 2011;

Fabbiano et al. 2011) (an example is shown in Figure 1.3). In addition, spectroscopic

surveys (Comerford et al. 2009; Smith et al. 2010; Liu et al. 2010b) and observations that

combine ground-based imaging show numerous systems containing compelling SMBHB

candidates with pc to kpc separations (Rodriguez et al. 2006; Liu et al. 2010a; Shen et al.

2011; Fu et al. 2011; McGurk et al. 2011). At sub-parsec distance, it is very difficult to

detect the SMBHB observationally, yet one may identify the SMBHB from the dynamical

interactions between the SMBHB and the stars. For example, it has been found that the

dynamical interactions between the SMBHB and the stars may increase the rate of tidal

disruption events (e.g., Ivanov et al. 2005; Chen et al. 2011; Wegg & Bode 2011). The

tidal disruption events provide a viable way to probe the dormant SMBH.

Stars, which orbit one of the SMBHs and are perturbed by the other SMBH,

reside in a hierarchical three-body configuration. For stars surrounding SMBHB, the

aforementioned hierarchical three-body interactions can affect the distribution of stars

surrounding a supermassive black hole binary (SMBHB). To characterize the parameter

space where the eccentricity can be excited, we systematically studied the number of

stars vulnerable to tidal disruption for a wide range of SMBHB configurations (Li et al.

2015). We found that the the eccentricity increase is stronger for stars orbiting the less

massive SMBH. Moreover, as it is more effective when the mutual inclination between
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Figure 1.3: An example of SMBH binary in galaxy cluster Abel 400 (figure 1 in Colpi

& Dotti (2011)).

the planets orbit and the orbit of the SMBHB is high (∼ 40 − 140 degrees), stars with

high mutual inclination are more likely to be disrupted and this will cause the final

survived stars to distribute in the shape of a torus.

1.2.2 Heating of Stars Surrounding Supermassive Black Holes

As mentioned above, SMBHBs have been observed and are natural consequences of

the mergers of galaxies. The SMBHBs may merge and produce gravitational waves

(GWs), which are ripples in space time, predicted by General Relativity. GWs generally

determine sky positions only to the order of degrees. To better identify the source of the

GWs and to interpret the GW data, one needs the electromagnetic (EM) counter part of

GW, which can determining the host galaxy redshift and the environment of the sources

(Kocsis et al. 2006; Phinney 2009). A large variety of EM signatures have been proposed
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to accompany the coalescence of SMBHBs (e.g., Schnittman 2011; Haiman et al. 2009).

For instance, the recoil of the black hole remnant changes the tidal disruption rate of

stars due to the refilling of the loss cone as the black hole remnant wanders (Stone &

Loeb 2011a, 2012; Li et al. 2012), and we studied the dissipation of the GW energy

in stars during the merger of the SMBHs, and the consequent heating of the stars(Li,

Kocsis & Loeb 2012).

In addition to GW heating, stars can be tidally heated as they orbit close to SMBHs.

For instance, many stars exist in the Galactic Center of our own Milky Way and orbit

the supermassive black hole, SgrA*, in eccentric orbits (Genzel et al. 2010). For the stars

close to SgrA*, the modes inside the star can be tidally excited every time it passes the

pericenter of the orbit, and the dissipated heat from the excited modes are accumulated

over many passages. Li & Loeb (2013) calculated the coupling of the stellar modes with

their orbits, and showed that the gravitational interaction with background stars leads

to a linear growth of the tidal excitation energy with the number of pericentre passages

near SgrA*. Using both analytical estimation and numerical simulation with stellar

evolution code MESA, we found that the accumulated heat deposited by excitation of

modes can lead to a runaway disruption of the star at a pericentre distance that is four

to five times farther than the standard tidal disruption radius. The accumulated heating

may explain the lack of massive (& 10M�) S-stars closer than several tens of AU from

SgrA*.
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Chapter 2

Eccentricity Growth and Orbit Flip

in Near-coplanar Hierarchical

Three-body Systems

This thesis chapter originally appeared in the literature as

Li, G., Naoz, S., Kocsis, B. & Loeb, A. Eccentricity Growth and

Orbit Flip in Near-coplanar Hierarchical Three-body Systems,

The Astrophysical Journal, 785, 116, 2014

It is presented here with minor modifications.

Abstract

The dynamical evolution of a hierarchical three body system is well characterized by the

eccentric Kozai-Lidov mechanism, where the inner orbit can undergo large eccentricity
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and inclination oscillations. It was shown before that starting with a circular inner

orbit, large mutual inclination (40◦ − 140◦) can produce long timescale modulations

that drives the eccentricity to extremely large value and can flip the orbit. Here, we

demonstrate that starting with an almost coplanar configuration, for eccentric inner and

outer orbits, the eccentricity of the inner orbit can still be excited to high values, and

the orbit can flip by ∼ 180◦, rolling over its major axis. The ∼ 180◦ flip criterion and

the flip timescale are described by simple analytic expressions that depend on the initial

orbital parameters. With tidal dissipation, this mechanism can produce counter-orbiting

exo-planetary systems. In addition, we also show that this mechanism has the potential

to enhance the tidal disruption or collision rates for different systems.

2.1 Introduction

The Kozai-Lidov mechanism (Kozai 1962; Lidov 1962) has proven very useful for

interpreting different astrophysical systems. For example, it has been shown that its

application can explain Hot Jupiters configurations and obliquity (e.g. Holman et al.

1997; Wu & Murray 2003; Fabrycky & Tremaine 2007; Veras & Ford 2010; Correia et al.

2011; Naoz et al. 2011, 2012). Furthermore, close stellar binaries with two compact

objects are likely produced through triple evolution, and secular effects may play key role

in these systems and in their remnants (e.g. Harrington 1969; Mazeh & Shaham 1979;

Soderhjelm 1982; Kiseleva et al. 1998; Ford et al. 2000; Eggleton & Kiseleva-Eggleton

2001; Fabrycky & Tremaine 2007; Perets & Fabrycky 2009; Thompson 2011; Katz &

Dong 2012; Shappee & Thompson 2013; Naoz et al. 2013a; Naoz & Fabrycky in prep.).

Secular effects have been proposed as an important element both in the growth of black
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holes at the centre of dense star clusters and the formation of short-period binaries black

hole (Blaes et al. 2002; Miller & Hamilton 2002; Wen 2003) and tidal disruption events

(Chen et al. 2009, 2011; Wegg & Bode 2011; Bode & Wegg 2013).

The Kozai-Lidov mechanism was first discussed by Kozai (1962) and Lidov (1962),

who applied the mechanism for specific configurations where the outer orbit was circular

and one of the members inner binary was a test (massless) particle. In this situation,

the component of the inner orbit’s angular momentum projected on the total angular

momentum of the whole system (z axis) is conserved. To lowest order, the quadrupole

approximation provides a valid presentation of the system (Lidov & Ziglin 1974). In

that case, the system is integrable and the eccentricity and the inclination undergo large

oscillations when i > 39.2 degree due to the “Kozai resonance” (Thomas & Morbidelli

1996).

Recently, Naoz et al. (2011, 2012) showed that relaxing either one of these

assumptions, (i.e., an eccentric outer orbit, or non-negligible mass binary members)

leads to qualitatively different behavior. In this case the z-component of the inner, and

outer orbit’s angular momentum is not conserved. Considering systems beyond the test

particle approximation, or a circular orbit, requires the octupole–level of approximation

(Harrington 1968, 1969; Ford et al. 2000; Blaes et al. 2002).

The octupole approximation can lead to extremely large values for the inner orbit’s

eccentricity (Ford et al. 2000; Naoz et al. 2013a; Teyssandier et al. 2013). Furthermore,

the inner orbit’s inclination can flip its orientation from prograde to retrograde, with

respect to the total angular momentum (Naoz et al. 2011, 2013a). We refer to this

process as the eccentric Kozai–Lidov (EKL) mechanism. It has been shown in Naoz et al.
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(2013a) that the secular approximation can be used as a tool for understanding different

astrophysical settings, from massive or stellar compact objects to planetary systems.

We focus on the octupole order when the inclination is set to be almost coplanar.

Lee & Peale (2003) considered the case when the mutual inclination is zero, and they

showed that the eccentricity can oscillate due to the octupole effects. Here we set the

mutual inclination to be non-zero but still very small. We show both numerically and

analytically, that an eccentric inner orbit (e1 > 0.6) in almost coplanar configuration

with an eccentric outer orbit becomes highly eccentric (e1 & 0.9999) due to the octupole

effects. Provided that it avoids a direct collision with or tidal disruption by the central

object, it undergoes a ∼ 180◦ flip. We apply this mechanism to the retrograde hot

jupiters and discuss its application to tidal disruptions.

The paper is organized as follows. In §2, we demonstrate the coplanar flip, and

derive the analytical expression for the flip criterion and timescale. In §3, we start the

system with a large range of parameter space to study the flip criterion and timescale.

Finally, in §4, we discuss the applications of the coplanar flip to exo-planetary systems

and tidal disruption events.

2.2 Coplanar Flip

The Kozai-Lidov mechanism relates to the hierarchical three-body system as shown in

Figure 2.1. The parameter ε,

ε =
a1

a2

e2

1− e2
2

, (2.1)
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is small, where a is the semi-major axis and e is the eccentricity of the inner “1” and

outer “2” orbit (Naoz et al. 2013a).

m2	
  

J2	
  

Figure 2.1: Configuration of the hierarchical 3-body system. An object mP orbits around

the object m1 and forms an inner binary. The outer binary is composed of the outqer

object m2 orbiting the center mass of m1 and mP . The parameters of the inner and outer

binary are denoted by subscripts 1 and 2, respectively. The angle i represents the mutual

inclination between the two orbits, and J1 and J2 represent the orbital angular momenta

of the inner and outer binary. The coolanar case corresponds to i ∼ 0.

In the test particle quadrupole approximation (mP → 0, e2 = 0), the Kozai-Lidov

resonance is between the longitude of periapsis and the longitude of ascending node of

the inner orbit (Kozai 1962). The eccentricity and the inclination oscillate with large
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amplitudes when the inclination is over 40 degree. This resonance also exists if the

test particle mass is significant. The quadrupole approximation describes the orbital

evolution when the outer orbit is circular. When the outer orbit is non-circular, the

octupole approximation is needed, inducing variations in eccentricity and inclination on

longer timescales, and causes excursions to even higher eccentricities and inclinations

above 90◦ (Naoz et al. 2011, 2013a). However, starting with a circular inner orbit, the

inclinations that produce this behavior are restricted to the range of ∼ 40◦ − 140◦.

Starting with an almost coplanar configuration (e1 = 0.8, i = 5◦), we find that the

inner orbit can still flip if it starts eccentric (the high eccentricity low inclination case:

hereafter HeLi). We show the flip in Figure 2.2 using direct N-body integrations, with

the MERCURY software package (Chambers97). The remarkable agreement with the

integration using the secular approximation up to the octupole order is also shown in

Figure 2.2.

The flip in the HeLi case is qualitatively different from the low eccentricity high

inclination case (LeHi case, see Figure 2.3 upper panel). Specifically, in the initially

coplanar case, the oscillation amplitude of the inclination is small maintaining a coplanar

configuration before the flip, as the eccentricity grows monotonically to large values.

The timescale for the inclination to cross over 90◦ (namely the flip timescale) is much

shorter. Moreover, the underlying resonances responsible for the flips are different (Li et

al. in prep.). The HeLi case is dominated by only octupole order resonances. However,

the LeHi case is dominated by both the quadrupole order resonances and the octupole

order resonances. As a comparison, we illustrate the difference in the HeLi case in the

right panel of Figure 2.3.
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To illustrate the orbital evolutions, we show the movies1 of the inner orbital

evolution in the test-particle limit for both cases. We set the z axis to be aligned with

the total angular momentum and the x axis is aligned with the ascending node of the

outer orbit. In the test particle limit, the outer orbit is stationary. In the movies, the

inner orbit is painted according to the value of the mean anomaly. The black arrow

represents the normalized orbital angular momentum, and the pink arrow represents the

z component of the angular momentum. The orbital flip can be observed in the rapid

reorientation of the pink arrow from the +z to the z direction. The black arrow shows

the orientation of the orbit. The orbit rolls over its major axis when it flips. This can be

understood analytically as dJ1/dt is perpendicular to the eccentricity vector at i = 90◦.

2.2.1 Analytical Derivation

The coplanar flip phenomenon can be understood analytically in the test particle

approximation (i.e, mP → 0). In the large inclination regime, it was shown that

the behavior associated with the test particle approximation is valid for m2/mP > 7

(Teyssandier et al. 2013).

This test particle approximation in hierarchical 3-body systems was studied

extensively in the past (Lithwick & Naoz 2011; Katz et al. 2011), but only in the regime

of large inclinations between the inner and outer orbit’s (and for small initial inner

eccentricity e1 < 0.5 Lithwick & Naoz 2011). Our initial coplanar configuration simplifies

the analytic treatment. The ∼ 180◦ flip occurs due to octupole-level terms, whose

1https://www.cfa.harvard.edu/~gli/images/lowi.mp4;

https://www.cfa.harvard.edu/~gli/images/lowi.mp4
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importance can be estimated via ε.

We follow the equation of motion using a Hamiltonian description for the non-

relativistic hierarchical three body problem. We define the energy function as the

negative of the Hamiltonian in the secular approximation up to the octupole level

(Lithwick & Naoz 2011). The Hamiltonian of such systems is well documented in the

literature (e.g. Harrington (1968, 1969); Ford et al. (2000)). The scaled energy function

for the hierarchical three-body system in the test particle approximation to this order is

Fquad + εFoct, where

Fquad = −(e2
1/2) + θ2 + 3/2e2

1θ
2 (2.2)

+ 5/2e2
1(1− θ2) cos(2ω1),

Foct =
5

16
(e1 + (3e3

1)/4) (2.3)

× ((1− 11θ − 5θ2 + 15θ3) cos(ω1 − Ω1)

+ (1 + 11θ − 5θ2 − 15θ3) cos(ω1 + Ω1))

− 175

64
e3

1((1− θ − θ2 + θ3) cos(3ω1 − Ω1)

+ (1 + θ − θ2 − θ3) cos(3ω1 + Ω1)).

To the first order in i, the evolution of e1 and $1 = ω1 + Ω1 can be solved (we

denote $1 = ω1 + Ω1 hereafter). Specifically, ė1 and $̇1 depend only on e1 and $1:

ė1 =
5

8
J1(3J2

1 − 7)ε sin($1), (2.4)

$̇1 = J1

(
2 +

5(9J2
1 − 13)ε cos($1)√

1− J2
1

)
, (2.5)

where J1 =
√

1− e2
1. Combining the two differential equations, we can express cos$1 as
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a function of e1:

cos$1 =
8e2

1 − C
e1(20 + 15e2

1)ε
, (2.6)

where C is an integration constant, which is the energy that corresponds to i = 0 and

can be determined from the initial condition. Substituting cos($1) in the differential

equation of ė1, we obtain a separable first order differential equation:

ė1 = −5

8
(4 + 3e2

1)

√
(1− e2

1)
(

1− (C − 8e2
1)2

25e2
1(4 + e32

1)2ε2

)
ε. (2.7)

Integrating equation (2.7), we get e1 as a function of time.

Figure 2.3 shows that the eccentricity increases steadily and the inclination oscillates

in the low inclination scenario until the flip occurs. This behavior can also be seen in

Figure 2.4. The steady change of e1 can be explained by equation (2.4). Since

5

8
J1(3J2

1 − 7)ε < 0(0 < J1 < 1), (2.8)

the sign of ė1 depends on sin($1), and e1 reaches its extremum when sin($1) = 0. In

addition, since $1 vanishes to the quadrupole order, the change of $1 is small. Thus,

e1 does not oscillate over the quadrupole timescale. Instead, e1 increases or decreases

monotonically to emin or emax.

Using the conservation of Fquad + εFoct, we can estimate the evolution of the inner

orbit in the low inclination case by calculating the constant energy curve in Figure 2.4

(pink dashed line). The total energy Fquad + εFoct depends on the four variables: e1, i, ω1

and Ω1. To obtain the maximum inclination, imax as a function of e1 as shown in Figure

2.4, we need to express ω1 and Ω1 as a function of e1 at i = imax. From the equation of

motion, i̇ ∝ sin(2ω1), thus the maximum of inclination occurs at ω1 = 0. When ω1 = 0,
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cos$ = cos Ω, thus, substituting equation 2.6 in the conservation of Fquad + εFoct, we

get imax as a function of e1. The analytic expression is compared with the numerical

trajectory in Figure 2.4, where the evolution of e1 and i are obtained by integrating the

equations of motion in the secular approximation.

Moreover, Figure 2.4 shows another major difference between the LeHi behavior and

the HeLi case studied here. For the LeHi case, energy conservation of the quadrupole

approximation, Fquad, can be used to find the maximum eccentricity and the minimum

inclination. However, the octupole correction is non-negligible in the HeLi case.

The flip time can be estimated using equation (2.7). Since sin$1 < 1, e1 increases

steadily before the flip, the flip time scale can be estimated as:

tflip =

∫ emax

emin

ė1
−1 de . (2.9)

.

The initial conditions of this configuration are i ∼ 0, e1,0 → 1, where the subscript

“0” represents the initial condition. Since e1 increases monotonically until the flip, we

set the minimum eccentricity to be the initial eccentricity, i.e., emin = e1,0. Furthermore,

the maximum eccentricity is simply emax = 1.

On the other hand, when sin($) > 1, e1 decreases first before it increases. Since the

flip always occurs at the maximum eccentricity, the flip time is simply:

tflip =

∫ emin

e0

ė1
−1 de+

∫ emax

emin

ė1
−1 de . (2.10)

We calculate emin with equation (2.6) by setting cos($) = 1 and estimate the flip time.

As shown in Figure 2.5 the analytical flipping time, tflip, agrees well with the numerical

results.
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It is straightforward now to derive the flip condition. Rearranging equation (2.6),

we find

ε cos($1) =
8e2

1 − C
e1(20 + 15e2

1)
, (2.11)

where C is the integration constant (energy at i = 0) introduced in equation (2.6).

The difference on left hand side between the initial time and the flip time bound by

ε(1− cos($1)). When the orbit flips, e1 → 1 and the difference on the right hand side is

8− C
35

− 8e2
1 − C

e1(20 + 15e2
1)
. (2.12)

Thus, a flip will happen when the following condition holds:

ε(1− cos($1)) >
8− C

35
− 8e2

1 − C
e1(20 + 15e2

1)
. (2.13)

Substituting C from the initial condition, we obtain the flip criterion:

ε >
8

5

1− e2
1

7− e1(4 + 3e2
1) cos(ω1 + Ω1)

. (2.14)

Figure 2.5 compares the analytical and the numerical results. The left panel focuses on

the flip criterion, whereas the black line represents the analytical criterion, the green

plus symbols represent the numerical runs that do not flip in 104tKozai, and the blue

cross symbols represent the numerical runs that flip. The timescale tKozai is defined as:

tKozai =
m1

m2

(a2

a1

)3

(1− e2
2)3/2(1− e2

1)1/2Pin, (2.15)

where Pin is the period of the inner orbit. We start the runs for different eccentricities

and inclinations. The analytical criterion agrees well with the numerical results. In

the right panel of Figure 2.5, we compare the flip timescale for three arbitrarily chosen

eccentricities. The analytical results also agree well with the numerical results.
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2.3 Systematic Study of 180◦ Flips

We explored the entire e1 and i0 parameters space that can produce flips. We scanned

systematically the parameter space of the initial conditions e1, i and a2 and integrate for

the secular evolution of the inner orbit in the test-particle limit. For systems that flipped

within 1000 tKozai we recorded the time when the flip happens, where tKozai is defined in

equation (2.15).

At low eccentricity, the critical inclination (above which the orbit flips) increases.

This is consistent with the flip condition of the HiLe mechanism (Lithwick & Naoz 2011;

Katz et al. 2011), where here we have extended Figure 8 of Lithwick & Naoz (2011) to

larger initial e1. However, unlike Lithwick & Naoz (2011) that scan the e1(ω = 0) (i.e.,

the minimal eccentricity) and i(ω = 0), we determine the initial conditions that will lead

to a flip. For the HeLi case, the result is also consistent with the analytical flip condition

described in the §2. At moderate eccentricity, the behavior of the inner orbit is more

complicated, and cannot be easily decried analytically. Figure 2.6 depicts the numerical

results of the systematic exploration of the parameter space. The left panel of Figure 2.6

shows the flip condition for different initial inclinations and eccentricities, as a function

of different ε. Not surprisingly, stronger perturbations (i.e., larger ε) can cause flips in

larger regions of the parameter space. Consistent with Lithwick & Naoz (2011), we also

find that the intermediate regime of e1,0 ∼ 0.4 allows for flips.

The right panel of Figure 2.6 shows the flip time (similar to the right panel of Figure

2.5, but this time for different initial inclinations). We normalized the time by tKozai.

Note that the flip time of the eccentric coplanar scenario is shorter than that of the HiLe

mechanism (as also apparent in the example in Figure 2). In addition, when e1 > 0.5,
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the flip time is shorter as e1 increases.

2.4 Application to Exoplanets and Tidal Disruption

Events

The effect we discovered may have different interesting applications. We briefly mention

two of them hereafter. As shown in Figure 2, during the evolution the eccentricity can

reach very large values, which can result in a small pericenter distance and collisions

between the inner two objects. In addition, if the objects do not collide, this allows for

tidal dissipation to take place. Specifically, it shrinks and circularizes the orbit. If tide

takes place after the orbit rolls over, a counter–orbiting inner orbit can be produced.

This configuration is interesting as the inner orbit is almost coplanar with the outer orbit

but goes in the opposite direction.

2.4.1 Counter Orbiting Hot Jupiters

Hot Jupiters – massive extrasolar planets in a very close proximity to their host star

(∼ 1 − 4 day orbit) – are observed to exhibit interesting characteristics. The planet’s

projected orbital orientation ranges from almost perfectly aligned to almost perfectly

anti-aligned with respect to the spin of the star (Albrecht et al. 2012). In other words, the

sky projected angle between the stellar spin axis and the planetary orbit (the spin-orbit

angle, otherwise known as obliquity) is observed to span the full range between 0◦ and

180◦.
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Formation theories that rely on a planet slowly spiraling in through angular

momentum exchange with the protoplanetary disk produce low obliquities (Lin &

Papaloizou (1986), but see Thies et al. (2011); Batygin (2012)). The highly misaligned

configuration poses a unique challenge to planet formation and evolution models. It

was suggested that secular perturbations due to a distant object (Fabrycky & Tremaine

2007; Veras & Ford 2010; Correia et al. 2011; Naoz et al. 2011, 2012), planet-planet

scattering (Ford & Rasio 2008; Nagasawa & Ida 2011; Chatterjee et al. 2011; Boley et al.

2012) and secular chaos excursions (Wu & Lithwick 2011) can explain large obliquity,

but cannot explain counter-orbiting configurations. Similar results can be achieved if the

star and protoplanetary disk are initially in an aligned configuration for a fine tuned

initial condition (see Batygin 2012). Furthermore, a test particle can be captured in a

2 : 1 mean motion resonance and flip by ∼ 180◦ as migration continues (Yu & Tremaine

2001), and test particles in a debris disk can be flipped due to the interaction of a closely

separated planet (Tamayo 2013).

We note that while the EKL mechanism can produce retrograde orbits (both in

the inclination and obliquity sense) (Naoz et al. 2011, 2012, 2013a), it cannot produce

counter orbiting Hot Jupiters. This is because these studies initialized the inner planet

with small eccentricity, which means that the initial inclination needed to produce large

eccentricity oscillations is large ∼ 40◦ − 140◦. Furthermore, these initial conditions

results in an inclination which are more likely to be confined in the same regime

(Teyssandier et al. 2013). Thus, the final maximum hot Jupiters obliquity reached in

these experiments and others (e.g. Fabrycky & Tremaine 2007; Naoz et al. 2012) is

∼ 150◦. An obliquity of ∼ 180◦ could be attributed to projection effects.

The coplanar ∼ 180◦ flip may play a role in the obliquity evolution of many
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exoplanetary systems. Coplanar configurations are naturally produced if the planet

and the perturbing object (m2, a star or a planet) are formed in the same disk, or if

they are captured in the disk due to hydrodynamic drag. Eccentricity may be excited

by planet-planet scattering or interactions with the protoplanetary disk (Ford & Rasio

2008; Nagasawa & Ida 2011). In addition, eccentric gas giant exoplanets are observed at

distances larger than 0.1AU from their host star (Ford et al. 2000).

During the orbital flip, the orbit becomes radial (e1 → 1), which reduces the

pericenter distance, and allows tide to operate. Tidal dissipation shrinks the orbit

separation and circularizes it (Matsumura et al. 2010). If this happens after the orbital

plane rolled over, a counter orbiting Hot Jupiter is formed.

We illustrate this behavior in Figure 2.7 where the orbit flips within 10Myr from

∼ 6◦ to ∼ 170◦ and the obliquity flips from 0◦ to ∼ 173◦. This orbit reaches its

equilibrium state in a circular counter-orbiting configuration with a small semi-major

axis (0.032 AU). Such large obliquities may represent the observed retrograde hot Jupiter

HAT-P-7 b and HAT-P-14 b, where the sky projected obliquities are 182◦.5 ± 9◦.4 and

189◦.1± 5◦.119, (Winn et al. 2011).

In Figure 2.7, we adopt the “equilibrium tidal” model (Hut 1981; Eggleton et al.

1998; Eggleton & Kiseleva-Eggleton 2001). Its complete set of equations of motion can

be found in Fabrycky & Tremaine (2007). Specifically, this approach takes into account

the rotation of the star, and the distortion of the planet due to rotation and the tide of

the star. In addition, it assumes the viscous timescales of the planet and the star are

constant and the tidal quality factor Q is proportional to the orbital period of inner orbit

(Hansen 2010). In the example we show in Figure 2.7, we set the viscous timescale of
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the star and the planet to 50 years and 0.94 years, respectively, which correspond to the

quality factors of Q ∼ 106 and 105 for a 10 day orbital period. In this calculation we also

include General Relativity precession of the inner and outer body, following Naoz et al.

(2013b).

The example shown in Figure 2.7 predicts that this counter-orbiting planet has

an eccentric coplanar companion. We stress that this does not mean that one should

expect a high abundance of counter orbiting planets, nor that even one exists. This

mechanism can produce a large range of final inclinations depending on when tides start

to dominate. The pericenter distance shrinks before and during the flips, and when

tides become important their effect may effectively halt the orbital flip. In addition, this

mechanism drives the inner orbit eccentricity to extremely high values and might result

in the planet colliding with or tidally disrupted by the star. Calculating the fraction of

systems that will result in a counter orbiting planet and the fraction of planets that will

collide with the star is beyond the scope of this paper.

Related to the coplanar flips, we explain the behavior found by Fabrycky & Tremaine

(2007), where the spin orbit angle flips in the test particle quadruple limit while the

inclination does not flip. In this limit, one of the members of the inner orbit is a test

particle and the outer orbit is circular, the z component of the angular momentum is

conserved. If the orbit starts prograde i < 90◦ is will remain prograde. However, the

obliquity can flip from prograde to retrograde, as shown in the top panel of Figure 2.8.

This is a different kind of flip because the flips occur in the x-y plane (as discussed

below).

In the limit at i ∼ 90◦, dJ1/dt is in the direction of J1 and Ω1 shifts by 180◦ (Katz
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et al. 2011). Thus, J1 moves in a straight line across the origin in the x-y plane and the

orbit flips by 180◦ in the x-y plane. The orbital direction of the inner planet is reversed

while the mutual inclination remains less than 90◦.

This can be seen in the movies as well. The flip timescale is the quadrupole Kozai

timescale. Because the flip of the orbit is abrupt, tides from the planet cannot respond

fast enough to realign the stellar spin to the angular momentum of the inner orbit. As

a consequence, the spin-orbit angle crosses 90◦ (Figure 2.8). The behavior also persists

when the inclination is less than 90◦, but in that case the shift of the longitude of

ascending node and the change in obliquity are less than 180◦.

Similar to the HeLi flip, the flip in the x-y plane can also produce ∼ 180◦

counter-orbiting planets with respect to the stellar spin, however, this requires the

perturber’s orbit to be nearly perpendicular to the inner orbit. The flip in the x-y plane

may also be relevant for gravitational waves emitted by compact object binaries, where

the orbital flip changes the polarization angle of the signal.

2.4.2 Tidal Disruption Events - Systematic Study

As mentioned above, the eccentric Kozai–Lidov mechanism (large and small inclination)

drives the inner orbit eccentricity to very large values. This reduces the pericenter

distance. When an object moves close to m1, the tidal force of m1 can get stronger than

the object’s self-gravity and hence tidally disrupt the object. For instance, stars may be

tidally disrupted by supermassive black holes if they pass very close to the black holes.

Tidal disruption of stars by black holes may produce luminous electromagnetic transients

that have been observed (e.g. Bade et al. 1996; Komossa & Greiner 1999; Gezari et al.
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2003, 2006, 2008b, 2009; van Velzen et al. 2011; Cenko et al. 2012; Gezari et al. 2012).

We show an example of an object passing the Roche limit in Figure 2.9. To mimick

the case that produces a counter-orbiting exoplanet (e.g. Figure 2.7), we use the same

initial parameters but with a different semi major axis (a1 = 39 AU). In addition, this

calculation includes both tidal dissipation and General Relativisty precession effects,

similar to Figure 2.7. In this case, during the flip, the eccentricity increases, causes the

pericenter to reach the Roche limit of the planet and disrupting the planet.

A very large eccentricity does not immediately imply a tidal dissipation event, since

this depends on the initial separation of the orbit. We map the maximum eccentricity

that can be reached during the evolution, which may then be useful to examine the

likelihood of tidal disruption for specific systems.

Specifically, we study the maximum eccentricity reached during the evolution for

ε = 0.03. Since this depends on the time the integration stops, we record the respective

maximum eccentricity of the inner orbit for integration times 3tKozai, 5tKozai, 10tKozai

and 30 tKozai. As shown in Figure 2.10 the eccentricity of the inner orbit can be very

close to one, with 1 − e1,max ∼ 10−4 during the first flip, and 10−6 over longer time

periods.

This process is relevant for estimating the rates of planet-star collisions (Hellier

et al. 2009; Bear et al. 2011), stellar tidal disruptions due to black hole binaries (Ivanov

et al. 2005; Colpi & Dotti 2011; Chen et al. 2011; Wegg & Bode 2011; Bode & Wegg

2013; Stone & Loeb 2012; Li et al. in prep.), Type 1a supernovae (Katz & Dong 2012),

and gravitational wave sources (O’Leary et al. 2009; Kocsis & Levin 2012).

To illustrate the percentage of systems that can avoid tidal disruptions and form

33



CHAPTER 2. COPLANARFLIP

hot Jupiters, we perform a Monte Carlo simulation. We set m1 = 1M�, mp = 0.001M�,

m2 = 0.03M�, a2 = 500 AU, e2 = 0.6, a1 to be uniformly distributed between 30 − 50

AU, i1 to be uniformly distributed between 0 − 10◦, and e1 to be uniformly distributed

between unity and the minimum e1 that can produce a 180◦ flip. The tidal model and its

parameters are the same as those included in Figure 2.7. We include 500 runs. A small

fraction of systems (90/500 systems) avoid collisions and form hot Jupiters (as shown in

Figure 2.11). The final spin-orbit misalignment are typically lower than ∼ 150◦ as shown

in Figure 2.12. The percentage to form hot Jupiter is similar to the results by Naoz

et al. (2012) and Petrovich (2015), who studied the effect of Kozai-Lidov mechanism in

general. Note the spin-orbit misalignment does not reach 180◦ in this set of Monte Carlo

simulation. Monte Carlo simulations including more runs are needed to estimate the

fraction of systems that can produce a spin-orbit misalignment reaching 180◦.

To require the hierarchical criterion to be valid, we set ε < 0.1. When ε & 0.1, the

planetary (inner) orbit can still be flipped by ∼ 180◦. However, the non-hierarchical

configuration leads to stronger interactions between the outer perturber and the inner

orbit. This may cause instability, and the inner planet may be captured by the outer

perturber. As shown in Figure 2.13, moving the outer perturber closer to 11 AU

(ε = 0.125), and keeping the other parameters the same as those in Figure 2.2, the inner

orbit can still be flip by ∼ 180◦. Nevertheless, the inner planet can be ejected from the

system due to instability. Note that we ignore collisions or tidal disruptions of the planet

to focus on the three-body point mass dynamics. Moving the outer perturber closer to

a2 ∼ 7 AU, the inner planet can be captured by the outer perturber more easily. The

inner planet exhibits chaotic orbital evolutions as it switches its host star between m1

and m2, and its inclination relative to the orbital plane of m1 and m2 varies chaotically
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(see the movie on https://www.cfa.harvard.edu/~gli/images/case10.mp4, m1 is

placed at the center. The red line represents the planetary trajectory, and the blue line

represents the perturber’s orbit).

2.5 Conclusion

We have presented a new mechanism that flips an eccentric inner orbit by 180◦ starting

with a coplanar configuration in a hierarchical three body system with an eccentric

outer perturber. We use the secular approximation to study the dynamics, and show the

agreement between the secular treatment and the N-body simulation in Figure 2.2.

The HeLi (high eccentricity low inclination) flip is a different mechanism from the

LeHi flip discussed by Naoz et al. (2011, 2013a). The underlying resonances causing

the large oscillation in the inclination and the flip are different: the LeHi flip is caused

by both the quadrupole and the octupole interactions. However, in the HeLi case, only

octupole resonances are in play (see for further discussion in Li et al. in prep). Moreover,

for the low inclination case, the orbital evolution is regular, which admits a simple

analytic flip criterion and timescale (which were shown to agree with the numerical

results in Figure 2.5). In addition, the difference can be seen through the evolution of

the orbit: the eccentricity increases monotonically and the inclination remains low before

the flip, and the flip timescale of the coplanar case is shorter comparing with the high

inclination case (see Figure 2.3 and movies2). Including both the high inclination and

low inclination flip, we studied the flip condition for a wide range of parameter space for

2https://www.cfa.harvard.edu/~gli/images/lowi.mp4;

https://www.cfa.harvard.edu/~gli/images/lowi.mp4
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the initial condition in Figure 2.6.

Observations of the sky-projected obliquity angle of Hot Jupiters shows that their

orbital orientation ranges from almost perfectly aligned to almost perfectly anti-aligned

with respect to the spin of the star (Albrecht et al. 2012). We showed in the hierarchal,

nearly coplanar, three body framework, an initial eccentric inner orbit can flip its

orientation by almost 180◦ in the presence of an eccentric companion (Figures 2.5 and

2.6). During the planet’s evolution its eccentricity is increased monotonically, and thus

tides are able to shrink and circularize the orbit. If the planet has flipped by ∼ 180◦

before tidal evolution dominates, a counter orbiting close-in planet can be formed.

Figure 2.7 demonstrated this behavior. Not only does the final planet inclination

reach 180◦ with respect to the total angular momentum, but also the obliquity. This

is because the timescale to torque the spin of the star is much longer than the orbital

flip timescale, the spin-orbit angle is similar to the inclination at ∼ 180◦. Therefore,

starting with an initially aligned spin orbit configuration, the mechanism presented here

can produce counter orbiting close-in planets for a nearly coplanar system. The counter

orbiting exoplanets with a 180◦ obliquity angle can be verified using the measured

spin-orbit angle. The true spin-orbit angle can be obtained from the sky projected

spin-orbit measurement using the Rossiter-McLaughlin method and the line of sight

spin-orbit angle measurement using astroseismology.

We note that we do not expect an excess of counter orbiting planets, because this

mechanism can drive the inner orbit to an extremely large eccentricity (see Figure 2.10)

therefore the planet may often end up plunging into the star before circularizing due to

tidal effects. A systematic survey of the likelihood of creating counter orbiting planets is

36



CHAPTER 2. COPLANARFLIP

beyond the scope of this paper.

In addition to exo-planetary systems, this mechanism can be applied to many

different astrophysical settings, which can tap into the parameter space of hierarchical

three body system that has large initial eccentricities and low inclinations. As the

eccentricity can be excited to ∼ 1 − 10−6 (Figure 2.10), this mechanism may result in

an enhanced rate of collisions or tidal disruption events for planets, stars and compact

objects with hierarchical three body configuration.
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Figure 2.2: The consistency and convergence of the numerical method for the point mass

dynamical evolution of the inner orbit. We set m1 = 1M�, m2 = 0.02M�, mP = 10−3M�,

a1 = 1 AU, a2 = 50 AU, i = 5◦, e1 = 0.9, e2 = 0.7, ω1 = ω2 = Ω2 = 0◦ and Ω1 = 180◦.

The green line represents the run integrated using the secular approximation, and the

dashed blue line represents the results of the N-body simulation using the Mercury code.

The results of the two methods agree. In both cases, the test particle exhibits an 180◦

flip in a coplanar configuration.
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Figure 2.3: The evolution of the inner orbit’s eccentricity and mutual inclination. We

set the mass of m1 and mP to a solar and a Jupiter mass, and the mass of the outer

perturber m2 to 0.03M�, and ω1 = 0◦, Ω1 = 180◦, e2 = 0.6, a1 = 4 AU, a2 = 50 AU.

We use the secular approximation to calculate the dynamical evolution of point masses.

The upper panel shows the standard Kozai cycles for comparison, (e1 = 0.01, i = 65◦),

and the lower panel shows the eccentric coplanar scenario (e1 = 0.8, i = 5◦). For the

former, both i and e1 oscillate with large amplitudes, but in the eccentric coplanar case,

e1 increases steadily and i oscillates to maintain a coplanar configuration. The flip occurs

much more rapidly in the eccentric coplanar case.
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Figure 2.4: Left Panel: standard Kozai-Lidov scenario with initial conditions e1 = 0.01,

i = 65◦, m1 = 0.3M�, m2 = 0.1M�, a1 = 1 AU, a2 = 40 AU, ω1 = 0◦, Ω1 = 180◦. Right

Panel: the eccentric coplanar case, with initial conditions e1 = 0.9, i = 5◦, m1 = 0.3M�,

m2 = 0.03M�, a1 = 1 AU, a2 = 40 AU, ω1 = 0◦, Ω1 = 180◦. The evolution tracks

represent the change of Jz (Lithwick & Naoz 2011). The inclination i and e1 oscillate

for large initial inclinations, while in the low inclination case, i oscillates and e1 increases

steadily. The dashed line represents the constant Fquad + εFoct curve at ω1 = 0◦, which

sets the maximum or minimum inclination during a quadrupole cycle. The black solid

line represents the constant Fquad curve. The maximum inclination in each quadrupole

Kozai cycle follows the constant Fquad curve only in the HiLe mechanism.
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Figure 2.5: Comparisons of the numerical results and the analytic expressions for the

point mass dynamical evolutions. The initial inclination is i = 5◦. Left panel: the

numerical results versus the analytic criterion for the flip condition (equation (2)). The

black line indicates the analytic criterion. The numerical result is obtained from the

secular integration, where the initial condition is: m1 = 1M�, m2 = 0.1M�, a1 = 1AU,

a2 = 45.7AU, ω1 = 0◦, Ω1 = 180◦. The blue crosses represent the flipped runs and the

green pluses represent the runs that do not flip in 104 tKozai, where tKozai is defined in

equation 2.15. Right panel: the flip timescale for different initial eccentricity. The black

line indicates the flip time calculated analytically, and the colored crosses are the flip time

recorded in the numerical runs.
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Figure 2.6: The flip condition and the flip time. Left panel: The flip condition for the

whole parameter space of initial e1 and i for three different outer semi-major axes, a2.

The initial condition for all the simulations are: m1 = 1M�, m2 = 0.1M�, a1 = 1 AU,

ω1 = 0◦, Ω1 = 180◦. a2, e1 and i are different for the runs. The simulations do not include

the influence of tides. Initial conditions above the colored lines in the e1− i plane exhibit

an orbital flip. The red line represents the case when a2 = 13.7 AU (ε = 0.1), the purple

line represents the case when a2 = 45.7 AU (ε = 0.03) and the blue line represents the case

when a2 = 137.5 AU (ε = 0.01). The flip condition agrees well with our analytic estimates

for the eccentric coplanar cases. The flip condition is more complicated at moderate e1.

Right panel: The flip time for a2 = 45.7 AU. The flip time is shorter for the HeLi case.

Note: when e1 is higher, tKozai is shorter (see equation 2.15). Thus, the eccentric coplanar

flip time is much shorter than the standard Kozai.
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Figure 2.7: The evolution of the inner orbit under gravitational and tidal forces. The

result is obtained by integrating the secular equation of motion. We set the mass and

the radius of m1 to be those of the Sun, and the mass and the radius of mP to be those

of Jupiter, and m2 = 0.03M�. The initial obliquity angle (ψ) is set to be 0. We set

a1 = 39.35 AU, a2 = 500 AU, e1 = 0.8, e2 = 0.6, ω1 = 0◦, Ω1 = 180◦, i = 6◦ for the initial

condition. For tides, we set the dissipation quality factor to be Q1 = 106, QJ = 105. The

orbit flips after ∼ 10Myrs. During the flip, e1 ∼ 1 and the tidal dissipation forces the

orbit to decay and circularize. The orbit reaches equilibrium with ψ ∼ 173◦, a1 ∼ 0.032

AU and e1 ∼ 0. General Relativity precession of the inner and outer body is included

following Naoz et al. (2013b).
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Figure 2.8: The ∼ 180◦ flip of the spin-orbit angle when the mutual orbital inclination

is slightly less than 90◦. We set the mass and the radius of m1 to be those of the Sun,

and the mass and the radius of mP to be those of Jupiter, and m2 = 0.03M�. The initial

spin-orbit angle (ψ) is set to be 0. We set a1 = 40 AU, a2 = 500 AU, e1 = 0.01, e2 = 0.6,

ω1 = 0◦, Ω1 = 180◦, i = 85◦ for the initial condition. The top panel shows the point

mass dynamical evolution of the inclination and the spin orbit angle, and we can see that

during each Kozai cycle and the inclination oscillates, the spin orbit angle flips. In the

middle panel, e1 is plotted as a function of time. In the bottom panel, we show that the

longitude of the ascending node shifts by ∼ 180◦ abruptly at the end of each Kozai cycle.

This indicates the rapid ∼ 180◦ flip of the orbit in the x-y plane.
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Figure 2.9: An example illustrating a tidally disruption event. The initial condition is the

same as in Figure 2.7, except a1 = 39 AU. Similar to Figure 2.7, both tidal dissipation and

General Relativisty precession effects are included (see text). During the flip, e1 ∼ 1 and

the tidal dissipation forces the orbit to decay (as shown in the bottom panel). However,

the tidal circularization is outran by the eccentricity excitation during the flip, and the

object is disrupted before reaching 180◦ when rp < rL, where rL is the Roche limit of the

object to m1.
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Figure 2.10: The maximum eccentricity. The maximum eccentricity reached during the

secular evolution in time 3tKozai (upper left panel), 5tKozai (upper right panel), 10tKozai
(lower left panel) and 30tKozai (lower right panel) as a function of the initial eccentricity

(horizontal axis) and inclination (vertical axis). Tides are not included in the simulation.

The initial condition of the runs are m1 = 1M�, m2 = 0.1M�, a1 = 1 AU, a2 = 45.7

AU, e2 = 0.7, ω1 = 0◦, Ω1 = 180◦. The typical eccentricity reached at the first flip is

∼ 1− 10−4, and the eccentricity may increase to ∼ 1− 10−6 after several flips. The HiLe

case reaches the maximum eccentricity later than the LiHe case. The inner orbit flips

above the black solid lines.
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the Monte Carlo simulations.
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Figure 2.13: The orbital evolution of the inner planet at ε = 0.125. The system

configuration is the same as that in figure 2.2, except that the outer perturber is moved

to a2 = 11 AU. The inner planet can still flip. a1 is increased at ∼ 2.5× 104 yr, and the

inner planet is eventually ejected at ∼ 5× 104 yr.

48



Chapter 3

Chaos in the Test Particle Eccentric

Kozai-Lidov Mechanism

This thesis chapter originally appeared in the literature as

Li, G., Naoz, S., Holman, M. & Loeb, A. Chaos in the Test

Particle Eccentric Kozai-Lidov Mechanism, The Astrophysical

Journal, 791, 86, 2014

Abstract

The Kozai-Lidov mechanism can be applied to a vast variety of astrophysical systems

involving hierarchical three-body systems. Here, we study the Kozai-Lidov mechanism

systematically in the test particle limit at the octupole level of approximation. We

investigate the chaotic and quasiperiodic orbital evolution by studying surfaces of section

and the Lyapunov exponents. We find that the resonances introduced by the octupole
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level of approximation cause orbits to flip from prograde to retrograde and back as well

as cause significant eccentricity excitation, and the chaotic behaviors occur when the

mutual inclination between the inner and the outer binary is high. We characterize the

parameter space that allows large amplitude oscillations in eccentricity and inclination.

3.1 Introduction

The Kozai-Lidov mechanism (Kozai 1962; Lidov 1962) has proven very useful for

interpreting numerous astrophysical systems. For example, it has been shown that it can

play a major role in exoplanet configurations and obliquities (e.g. Holman et al. 1997;

Wu & Murray 2003; Fabrycky & Tremaine 2007; Veras & Ford 2010; Correia et al. 2011;

Naoz et al. 2011, 2012). In addition, close stellar binaries with two compact objects are

likely produced through triple evolution, and the Kozai-Lidov mechanism may play a key

role in these systems (e.g. Harrington 1969; Mazeh & Shaham 1979; Soderhjelm 1982;

Kiseleva et al. 1998; Ford et al. 2000; Eggleton & Kiseleva-Eggleton 2001; Fabrycky &

Tremaine 2007; Perets & Fabrycky 2009; Thompson 2011; Katz & Dong 2012; Shappee

& Thompson 2013; Naoz et al. 2013a; Naoz & Fabrycky submitted). Furthermore, the

Kozai-Lidov mechanism has been proposed as an important element in the growth of

black holes at the centers of dense star clusters, the formation of short-period binaries

black hole (Blaes et al. 2002; Miller & Hamilton 2002; Wen 2003; Ivanova et al. 2010),

and tidal disruption events (Chen et al. (2009, 2011); Wegg & Bode (2011); Bode &

Wegg (2013), Li et al., in prep).

The Kozai-Lidov mechanism focuses on hierarchical three-body systems, which can

be treated as the interaction between two elliptical wires by orbit averaging: the inner
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wire is composed of the inner two objects, and the outer wire is composed of the outer

companion orbiting around the center mass of the inner two objects. The total angular

momentum of this system, the vector sum of the inner orbit’s and the outer orbit’s

angular momenta, is conserved.

Kozai (1962) and Lidov (1962) first studied this mechanism by expanding the

gravitational potential in a power series of the semi-major axis ratio and considered

applications when one of the inner object is massless (the test particle limit) and

the outer orbit is circular. Kozai (1962) considered the secular (long term) evolution

of asteroids under the perturbation of Jupiter, and Lidov (1962) studied the secular

evolution of satellites under the perturbation of the Moon. In those cases, the gravitation

potential of the inner orbit is axisymmetric, which renders the ẑ component of the

inner orbit’s angular momentum (Jz) constant, where ẑ is the direction of the total

angular momentum of the system. The quadrupole order of approximation (O
(
(a1/a2)2

)
)

sufficiently describes the orbital evolution of such systems, and the eccentricity and the

inclination undergo large amplitude oscillations due to the “Kozai resonance” when

i > 39.2◦.

Recently, Naoz et al. (2011) considered the case when none of the inner objects

is a test-particle, and pointed out that Jz is no longer conserved. In addition, the

eccentric Kozai-Lidov Mechanism (hereafter EKL) applies to cases when the outer orbit

is non-circular, where the ẑ component of the angular momentum of the inner orbit

is also not conserved (Naoz et al. 2011). In this situation, the octupole terms in the

potential (O
(
(a1/a2)3

)
) need to be taken into account to describe the orbital evolution,

where the eccentricity of the inner orbit can be excited to unity, and the inner orbit may

flip from prograde to retrograde or vice versa (Naoz et al. 2011; Lithwick & Naoz 2011;
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Katz et al. 2011; Naoz et al. 2013a). As the eccentricity increases, the pericenter distance

decreases, and causes an enhanced tidal disruption rate (Li et al., in prep). Furthermore,

including the octupole effects, the oscillation in the eccentricity and the inclination of the

inner orbit may still exist when i < 39.2◦, and the inner orbit may undergo a coplanar

flip from ∼ 0◦ to ∼ 180◦ (Li et al. 2014a).

Here, we probe the test particle limit, which simplifies the analysis due to its

smaller number of degrees of freedom. This approximation was proven to be very

useful in a large range of astrophysical settings (Lithwick & Naoz (2011); Katz et al.

(2011); Naoz et al. (2012); Li et al. (2014a), Naoz & Silk in prep, Li, et al., in prep).

Importantly, probing this limit can help us gain some basic understanding of the EKL

mechanism. The test particle limit has been studied in the literature before to obtain

an analytical understanding on the flip of the orbit (Lithwick & Naoz 2011; Katz et al.

2011). Nevertheless, a systematic study on the chaotic behavior and the identification of

the underlying resonances are necessary but are uncovered in the literature. We identify

the resonances, and characterize the chaotic regions and the initial conditions where high

eccentricity and the flips may occur in the parameter space. This can help predict the

dynamical evolution of systems without doing a large amount of simulations.

This paper is organized as follows. In §2, we give a brief overview of the Kozai-Lidov

mechanism. In §3, we investigate the surface of section systematically for a large range

of orbital parameters. In §4, we characterize the initial condition which allows large

amplitude oscillations in eccentricity and inclination. Finally in §5, we characterize the

chaotic regions.
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3.2 Overview of the Eccentric Kozai-Lidov Mecha-

nism in the Test-particle Limit

As mentioned in the introduction, the Kozai-Lidov mechanism describes the dynamical

behavior of hierarchical three-body systems (see Figure 8.1). The inner two objects (m1

and mt) form an inner orbit, and the outer orbit is formed by the outer object (m2)

orbiting around the center mass of the inner two objects. The eccentric Kozai-Lidov

mechanism describes the dynamics when the outer orbit is eccentric, and the test-particle

limit requires one of the closely separated objects to be a test particle mt → 0.

In the hierarchical configuration, we average over the mean motion of the two

orbits and treat the evolution of the system as the interaction of two elliptical wires.

This reduces this system from six degrees of freedom to four degrees of freedom. In

addition, in the test-particle limit, the outer orbit is stationary, and reduces the system

to two degrees of freedom (Harrington 1968, 1969; Ford et al. 2000). Expanding the

Hamiltonian of the interaction energy between the two ellipses in a power series of a1/a2,

the Hamiltonian can be expressed as the following at the second (quadrupole) and the

third (octupole) order (Lithwick & Naoz 2011):
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m2	
  

J2	
  

Jz	
  

Figure 3.1: The system configuration. A test particle mt orbits around an object m1

and forms the inner binary. The outer binary consists of the object (m2) and m1 (in the

test particle limit). Jo represents the angular momentum of the outer binary, J represents

that of the inner binary, and Jz represents the ẑ component of J , where ẑ is in the direction

of Jo. In the test particle limit J � Jo and the outer orbit is stationary.
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Fquad(J, ω, Jz,Ω) =
1

2
(−1 + J2) +

J2
z

J2
+

3(1− J2)J2
z

2J2
(3.1)

+
5

2
(1− J2)(1− J2

z /J
2) cos (2ω)

Foct(J, ω, Jz,Ω) =
5

16
(
√

1− J2 +
3

4
(1− J2)3/2) (3.2)

[
(1− 11Jz

J
− 5J2

z

J2
+

15J3
z

J3
) cos (ω − Ω)

+ (1 +
11Jz
J
− 5J2

z

J2
− 15J3

z

J3
) cos (ω + Ω)

]

− 175

64
(1− J2)3/2

[
(1− Jz

J
− J2

z

J2
+
J3
z

J3
) cos (3ω − Ω)

+ (1 +
Jz
J
− J2

z

J2
− J3

z

J3
) cos (3ω + Ω)

]
,

where Hquad = −Fquad and Hoct = −Fquad − εFoct, and

ε =
a1

a2

e2

1− e2
2

. (3.3)

ε characterizes the importance of the octupole order. The Hamiltonian is scaled with

mt

√
Gm1a1tK , where

tK =
8

3
Pin

m1

m2

(a2

a1

)3

(1− e2
2)3/2 (3.4)

(Lithwick & Naoz 2011). J =
√

1− e2
1 is the angular momentum of the inner orbit, ω

is the argument of periapsis of the inner orbit, Jz =
√

1− e2
1 cos i1 is the ẑ component

of the inner orbit’s angular momentum J , and Ω is the longitude of the ascending node

of the inner orbit. Specifically, J , ω and Jz, Ω are conjugate momentum and coordinate

pairs. We denote e1 as the eccentricity of the inner orbit, and i1 as the inclination of

the inner orbit to the total angular momentum of the system. In the test particle limit,

i1 = i is the mutual inclination between the two orbits.
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In the quadrupole limit, the Hamiltonian is independent of Ω, so Jz is constant, and

the system is integrable. In addition, the angle ω = $ − Ω is the resonant angle of the

system, where $ is the longitude of the periapsis. When i > 39.2◦, the solution admits a

resonant region and e1 and i exhibit large amplitude oscillations. Particularly, e1 may be

excited to high values starting from e1 ∼ 0 (e.g. Morbidelli 2002).

As mentioned in the introduction, the octupole order adds variations in Jz which

allows the inner orbit to flip from prograde to retrograde, and the eccentricity to be

excited very close to 1 (Lithwick & Naoz 2011; Katz et al. 2011; Naoz et al. 2011, 2012,

2013a). We work with the Hamiltonian at the octupole level of approximation to analyze

the surface of section and the chaotic behaviors in the next sections.

3.3 Surfaces of Section

For a two degree of freedom system, the surface of section projects a 4-dimensional

trajectory on a 2-dimensional surface. Specifically, we plot points on a 2-dimensional

surface composed of one canonically conjugate pair (e.g. J − ω or Jz − Ω) whenever the

other angle (Ω or ω) reaches a fixed value and moves in a fixed direction (see the left

panel in Figure 3.2). The collection of the points form the surface of section.

There are three distinct regions in the surface of section: “resonant regions”,

“circulation regions”, and “chaotic regions” (right panel in Figure 3.2). The resonant

regions are formed by points where the momenta and coordinates (the angles) undergo

bounded oscillations. The trajectories in this region are quasiperiodic, where the

system is in the libration mode. The circulation region represents trajectories where the
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Figure 3.2: Upper panel: Illustration of the “surface section” for the J − ω plane. By

recording the point in the trajectory every time Ω = 0, Ω̇ > 0, the trajectory can be

represented by a 2 dimensional graph, as shown in the left panel. This set of points form

the “surface of section”. Lower panel: Illustration of the resonant and chaotic regions

in surface of section. We set H = −0.1, ε = 0.1 in this plot. The resonant and higher

order resonant zones are marked by the red and the green arrow. The chaotic zones are

indicated by the grey arrow. In the resonant region, the angle ω is constrained in a small

region and the trajectories are quasiperiodic. In the chaotic region, the position of the

points are not regular and the trajectories are chaotic.

coordinates are not constrained to a specific interval. Both resonant and circulatory

trajectories map onto a 1D manifold on the surface of section. On the contrary, chaotic

trajectories map onto a 2D manifold. In other words, while quasi-periodic trajectories

form lines on the section, chaotic trajectories are area-filling. Embedded in the chaotic

region, the small islands correspond to the second order resonances, which are caused

by the interaction between the primary resonances. The trajectories in the second order

resonant regions are also quasiperiodic.

We now consider the surface of section in the J − ω plane (setting Ω = 0 and

dΩ/dt > 0). When e1 is excited to large values, J → 0. When Ω is set, for each point in

the J − ω plane, Jz (−J 6 Jz 6 J) is unequivocally defined by the conservation of H.

There is a finite range of H that the system can take on, because both actions must have
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zero imaginary components. Since we plot the sections with constant H values, we first

explore the range of energy H it can achieve in the J − ω plane. This way, we can select

the range in H that we explore below.

We notice that the maximum and minimum energy it can reach in the J − ω plane

when Ω = 0 is ∼ 3 and ∼ −2.4 (see Appendix Figures 3.8 and 3.9, which show the

maximum and the minimum H in the J − ω plane). Thus, we plot six surfaces of

section for H ranging from H = −2 to H = 1.2, since when H > 1.2, the behavior is

similar to that of H = 1.2. Note that the H admits positive values for this bounded

system, because it is the interaction energy between the test particle (mt) and the outer

companion (m2), i.e. the disturbing function of this system to the Kepler Hamiltonian

of the inner and outer orbits. To investigate the role of the octupole effects, we plot the

surface section for two extreme values of ε: ε = 0.001 and ε = 0.1. When ε < 0.001,

the octupole effects are negligible. On the other hand, ε = 0.1 represents the maximal

octupole effects, where when ε > 0.1, the hierarchical condition may break down and the

system may become unstable.

The sections are shown in Figure 3.3. The empty region (bounded by the black

curves) do not have physical solutions. The comparison between the two rows in Figure

3.3 shows the difference between the octupole and the quadrupole resonances: ε = 0.001

is dominated by the quadrupole effect and ε = 0.1 is dominated by both the quadrupole

and the octupole effects. For the former, where the quadrupole dominates, there are two

resonant regions with fixed points at ω = π/2 and 3π/2 when H is high (as shown in

Figure 3.3 at ε = 0.001, H = −0.5,−0.1, 0.5 and 1.2). For the latter when the octupole

plays an important role (i.e., ε = 0.1), we find different resonant regions for different

energy levels, and the location of the resonant regions vary according to the energy levels.
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Figure 3.3: The surface of section in the J − ω plane. In the first row, ε = 0.001 and

in the second row, ε = 0.1. The octupole terms are important when ε is bigger. H varies

from −2 ∼ 1. The corresponding e1 and i in this plane is shown in Figure 3.10 and 3.11.

There are chaotic regions at H = −0.5 and H = −0.1.

The resonant regions are associated with fixed points at ω = π, ω = π/2 and

ω = 3π/2 depending on the energy level. These resonant zones result from the interaction

of the resonances associated with the “harmonics” in the octupole level Hamiltonian,

i.e. 2ω, ω ± Ω, and 3ω ± Ω. Moreover, chaotic regions can only be seen for high ε at

H = −0.5 and H = −0.1, where the chaotic zones are a result of the overlap of the

resonances between the quadrupole and the octupole resonances. Embedded in the

chaotic region, higher order resonances can be found at H = −0.1, where the trajectories

are quasi-periodic and the eccentricity cannot be excited.

On the other hand, the comparison between the different energy levels shows the

orbital evolution corresponds to different orbital parameters. The corresponding e1 and

i are shown in Figure 3.10 and Figure 3.11 in the appendix. Accordingly, the low H

corresponds to the low inclination (i ∼ 0 − 30◦) and high eccentricity (e1 & 0.6) case,
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the higher H corresponds to the high inclination (i ∼ 30◦ − 60◦) and low eccentricity

(e1 . 0.6) case, and H > 0 corresponds to high inclination (i ∼ 60 − 90◦) and low

eccentricity case (e1 . 0.3). When H is low (H ∼ −2), the evolution is only affected by

the octupole resonances, while when H is higher, octupole and quadrupole resonances

both contribute and may overlap to cause the chaotic region as mentioned above. We

find that e1 can be excited to high values (J → 0) for almost all energy levels but is

only excited very close to unity for higher ε. This emphasizes that the octupole level

of approximation causes large eccentricity excitation, since larger ε implies that the

octupole level is important.

Next, we study the surface section in the plane of Jz−Ω (Figure 3.4). These sections

clearly show the flip of the orbit when Jz changes sign. The maximum and minimum

energy that can be reached in the Jz−Ω (with ω = 0) plane is ∼ 0 and ∼ −2.4. Thus, we

plot the surface of section ranging from H = −2 to H = −0.1 for two values of ε = 0.001

and 0.1. At the quadrupole level, Jz is constant, and there’s no resonances in the Jz − Ω

plane. Thus, all the resonances originated from the octupole level of approximation, and

the fixed points are at Ω = π and Ω = 0. In addition, similar to the surface section on

the J − ω plane, we see higher order resonances for ε = 0.1 at H = −0.3 and H = −0.1

embedded in the chaotic region, and the chaotic region is confined to H = −0.5 and

H = −0.1. Since Jz changes sign in all energy levels, the orbit may flip for all energy

levels, and the flip parameter space is larger for higher ε. The corresponding e1 and i on

the surface are shown in Figure 3.12 and Figure 3.13.

To summarize, the surfaces of section show that flips and the excitation of e1 can

occur for both regular regions and chaotic regions for a wide range of H, and they depend

sensitively on the initial condition. In addition, the trajectories are chaotic only when
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Figure 3.4: The surface of section in the Jz−Ω plane. In the first row, ε = 0.001 and in

the second row, ε = 0.1. H varies from −2 ∼ 0. There are chaotic regions at H = −0.5,

H = −0.3 and H = −0.1. All the features are due to the octupole order, as the Jz is

constant in the quadrupole order. The corresponding e1 and i are shown in Figure 3.12

and 3.13.

H . 0, corresponding to high mutual inclination low eccentricity cases. Furthermore,

it is the octupole resonances that cause the flip of the orbit and the excitation of

eccentricity very close to unity.

3.4 The Maximum Eccentricity and the Flip Condi-

tion

To apply this mechanism to astrophysical systems with different initial conditions, we

investigate the parameter regions which exhibit interesting dynamical behaviors. We

create a finer grid of H and ε than those presented in Figure 3.3 and 3.4, and we monitor

the trajectories that start with the selected initial condition in the J − ω or the Jz − Ω
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plane. Of course, some behaviors which do not pass through the selected initial condition

will be missed, but this exploration gives a general idea of the behavior of the system as

a whole.

We start with the exploration in the J − ω plane. To systematically estimate the

range in J that the trajectories may reach, we start at the maximum energy boundary of

J for a given H and ε, which corresponds to the minimum eccentricity. Accordingly, for

H < −1, ω starts at π, and for H > −1, ω starts at π/2. The maximum e1 is recorded

after monitoring for t = 500tK (we define tK in equation (3.4)), which is much longer

than the Lyapunov timescale (see below).

In Figure 3.5, we plot 1 − e1,max as a function of ε, where each curve represents a

fixed H (H ∈ [−2, 2]), and ε ranges from 0.001 to 0.1. In addition, we use the symbol

“x” to mark the ε higher than which the orbit flips. It shows that there are roughly five

dynamical regions in H: when H . −1.5, −0.5 . H . 0 and H & 0.5, the orbit may flip

and e1 can be excited very close to unity; when −1.5 . H . −0.5 and 0 . H . 0.5,

starting with the minimum e1, e1 cannot be excited to unity. Reading from the surface

of section in Figure 3.3, the lack of e1 excitation at 0 . H . 0.5 and high ε is due to the

quadrupole resonances, which traps the trajectory at low e1.

Particularly, e1 may be excited and the orbit may flip in three scenarios: when the

inner orbit is eccentric and coplanar, when the inner orbit is circular and with high

inclination, or when the inner orbit is moderately eccentric and with very high inclination

∼ 80− 90◦ (see Figure 3.14). In addition, the maximum change in ∆J can be well fit by

a power law from H < −1:

∆J = e−2.77H−3.62ε0.051H+1.08. (3.5)
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Figure 3.5: The maximum e1 for different H and ε. We set the initial condition at the

top of the energy boundary condition of the J − ω plane, and we record the maximum

e1 reached in t = 500tK . Each line represents a different H, and the cross marks the ε

bigger than which the inner orbit may flip (i cross over 90◦). We find that e1 may be

excited and the orbit may flip whenH . −1.5, −0.5 . H . 0 and H & 0.5. The first

case corresponds to the coplanar flip (i flips from ∼ 0◦ to ∼ 180◦ or vise versa), and the

latter two correspond to the high inclination flip.

Next, we explore the Jz − Ω plane. We start the trajectories at the lower energy

boundary of Jz at Ω = π for the given H and ε, and we record the maximum change in Jz

after t = 500tK . Figure 3.6 shows ∆Jz as a function of ε, where each curve represents a

different H. ε ranges from 0.001 to 0.1, and H ranges from −2 to 0, since the maximum

H is zero for ω = 0. Similarly to the J − ω plane, we use the symbol “x” to mark the

ε higher than which the orbit flips. As expected, it shows that the orbit may flip when

−2 < H < −1.5 and −0.5 < H < 0, where −2 < H < −1.5 corresponds to an eccentric
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and coplanar inner orbit, and −0.5 < H < 0 corresponds to a circular inner orbit with a

high inclination. Moreover, ∆Jz can be fit by a power law of H and ε:

∆Jz =





e−2.21ε1.06 (H < −0.5)

e10.7H+4.23ε0.48H+1.31 (H > 0.5) ,

(3.6)
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Figure 3.6: The maximum change in Jz for different H and ε. We set the initial point

at Ω = π, where Jz is on the lower energy boundary. We record the maximum change in

Jz for t = 500tK . The crosses represent the ε bigger than which the inner orbit may flip

(Jz changes sign). We find the orbit may flip at −2 < H < −1.5 and −0.5 < H < 0. The

former corresponds to the coplanar flip and the latter corresponds to the high inclination

flip.
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3.5 Chaotic Regions

The surfaces of section show that the system is chaotic when H . 0 (Figure 3.3 and 3.4).

To better characterize the chaotic regions, we first calculate the percentage of area that

is chaotic in each surface in Figure 3.3. Specifically, we divide each surface into equally

spaced grids in J and ω, and count the fraction of grids that has chaotic trajectories. We

use the Lyapunov exponent (λ) to determine whether the trajectories are chaotic, where

λ indicates how quickly two closely separated trajectories diverge from each other,

λ = lim
t→∞

1

t
ln
δtraj(t)

δtraj(0)
. (3.7)

We integrate the tangent of the trajectories for 1000tK to compute λ, and we find

that there are chaotic trajectories only when ε = 0.1, H = −0.5 or −0.1. Specifically, 85

out of 276 (∼ 31%) grid cells have chaotic trajectories when ε = 0.1 and H = −0.5, and

109 out of 242 (∼ 45%) grid cells have chaotic trajectories when ε = 0.1 and H = −0.1.

It shows even when H . 0, a large range of orbital parameters would still yield regular

trajectories.

Next, we characterize the chaotic region in the parameter space of H and ε. We

arbitrarily select the trajectories starting with Ω = 0, ω = π/2 and the maximum J for

the given H and ε, where the associated e1 and i of the initial condition are shown in

Figure 3.14. Similarly, we integrate the tangent of the trajectories for 1000tK to compute

λ, and we plot λ as a function of H and ε in the left panel of Figure 3.7. The larger

λ corresponds to the more chaotic systems. A large region in the parameter space is

regular, and the system is chaotic only when −0.6 < H < 0 for larger ε. The Lyapunov

timescale is ∼ 6tK when ε & 0.01 and −0.6 < H < 0 (low e1 and i & 40◦).
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To justify that the regions with smaller λ are regular, we increase the run time

to 4000tK , and we find that the Lyapunov exponents for the regular region decrease,

while the Lyapunov exponents in the chaotic region remain at ∼ 6tK . Moreover, to

avoid missing chaotic regions due to the specific choice of the initial condition, we vary

the initial condition and make several contour plots of λ in the plane of H and ε. The

right panel of Figure 3.7 shows the case for ω starts at 0, where the trajectories are also

chaotic when −0.6 < H < 0.

3.6 Conclusion

The hierarchical three-body system in the test particle limit is common in a large range

of astrophysical settings. The dynamical behavior of such systems may lead to retrograde

objects, an enhanced rate for tidal disruption, and merger or collision events (e.g.

Holman et al. (1997); Fabrycky & Tremaine (2007); Naoz et al. (2011, 2012); Chen et al.

(2011); Bode & Wegg (2013), Naoz & Silk, in prep, Li et al., in prep). Here, we used a

large range of the initial condition to systematically study the dynamics, including the

underlying resonances, and the chaotic characteristics of the system.

First, we plotted the surface of section on the J − ω plane for a large range of

energy H and two different ε to identify the underlying resonances (Figure 3.3). In the

quadrupole level, the resonances occur at high H center around fixed points at ω = π/2

and 3π/2. On the other hand, the octupole level resonances center at ω = 0, π/2, π,

or 3π/2 depending on the different energy levels, and we can identify resonances in all

these energy levels. The octupole resonances cause the excitation of the e1 in the high

eccentricity coplanar case (corresponds to low H), shown in Li et al. (2014a). The overlap
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Figure 3.7: Lyapunov exponents with different H and ε. Run time t = 1000. Left

Panel: we consider the following initial condition: ω0 = π/2, Ω0 = 0, J0 = 1 or the

maximum J at the energy boundary and −0.8 < H < 0.3. Right Panel: we consider

the following initial condition: ω0 = Ω0 = 0, J0 = 1 and −0.6 < H < 0. Note that

for this choice of initial conditions no physical solution exists for H > 0. The colormap

represents the value of the Lyapunov exponents λ. The yellow and red colors correspond

to big Lyapunov exponents, which are associated with chaotic regions, and cyan and blue

colors represent the regular regions.
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of the quadrupole and octupole resonances causes the chaos for the low eccentricity and

high inclination case (corresponds to higher H), (e.g. Naoz et al. (2011)).

The surfaces of section in the Jz − Ω plane not only show the octupole resonances

but the condition when the orbit flips as Jz changes sign (Figure 3.4). At the quadrupole

level, Jz is a constant, and there is no resonant zones in the Jz − Ω plane. However, at

the octupole level, the resonant zones exist and lead to the flip of the orbit. As expected,

similarly to the J − ω plane, it also shows that chaotic behavior exist when H . 0 for

high ε.

Finally, we calculated the Lyapunov exponent for different H and ε to characterize

the region where the evolution is chaotic. Consistently with the surface of section, we

have found that the orbital evolution is chaotic when H . 0 (low e1 high i cases).

Specifically, the Lyapunov timescale ∼ 6tK .

By monitoring the trajectories, we find that the inner eccentricity may be excited

and the orbit may flip for a circular high inclination orbit or for an eccentric and nearly

coplanar orbit. This agrees with previous discussions in the literature for the flips with

high inclination (Naoz et al. 2011; Lithwick & Naoz 2011; Katz et al. 2011), and the

coplanar flips (Li et al. 2014a). In addition, we note that the flips with high inclination

are chaotic and the coplanar flips are regular. This analysis can be applied to observed

systems. Knowing roughly the orbital elements, one can identify the type of trajectories

in the surface of section. Then, one can study the evolution features of the system

without doing a large number of simulation for different initial condition. Moreover, our

analysis could help predict the enhancement in the rate of tidal disruption events due to

eccentricity excitation (Li, et al., in prep).
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3.8 Appendix

First, we explore the range of H it can reach for the surface of section in the J − ω plane

with Ω = 0 and in the Jz − Ω plane with ω = 0. We contour plot the maximum and

minimum of H as a function of J and ω while setting Ω = 0 in Figure 3.8, which depicts

that the range of H is ∼ −2.4 to ∼ 3. Similarly, we plot the maximum and minimum of

H for different Jz and Ω with ω = 0 in Figure 3.9. It shows that H ranges from ∼ −2.4

to 0. Accordingly, we plot the surface of section for −2 < H < 1.2 in Figure 3.3, since

when H > 1.2 the section are similar to that when H =∼ 1.2, and we set −2 < H < 0

for the surface of section in Figure 3.4.

Next, we show the associated eccentricity and the inclination for the surface of

section (Figure 3.3, 3.4) and the initial condition in Figure 3.5 and 3.6. This helps to

connect the resulting dynamical behavior to the parameters in e1 and i, that can be

obtained more directly for observations.

In Figure 3.10 and 3.11, we plot the initial condition in the J−ω plane corresponding

to the surfaces of section in Figure 3.3. e1 can be calculated from the J value directly

as e1 =
√

1− J2, so higher J associates with lower e1. On the other hand, i is lower for

larger J when H = −2,−1,−0.5, and i is higher for larger J when H = −0.1, 0.5, 1.2.
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In this plot, we set ε = 0.1. The energy range is about −2.5 ∼ 3 in the J − ω plane. In

addition, this explains the shape of the empty region (where there are no solution) in the

surface of section plot.
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Figure 3.10: The eccentricities in the J −ω plane (Ω = 0). Note that these are not the

initial conditions, but directly the values of e1 in the J − ω surface at fixed Ω = 0 for the

given H and ε. Similar to Figure 3.3, in the first row, ε = 0.001 and in the second row,

ε = 0.1. The octupole terms are more dominant when ε is bigger.
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Figure 3.11: The inclinations in the J − ω plane (Ω = 0). Note that these are not the

initial conditions, but directly the values of i in the J − ω surface at fixed Ω = 0 for the

given H and ε. Similar to Figure 3.3, in the first row, ε = 0.001 and in the second row,

ε = 0.1. The octupole terms are more dominant when ε is bigger.
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Next, in Figure 3.12 and 3.13, we plot e1 and i in the Jz −Ω plane, corresponding to

the surface section in the Jz − Ω plane with ω = 0 in Figure 3.4. When i > 90◦, Jz > 0,

and when i < 90◦, Jz < 0. We find that e1 is higher for lower H, and i is closer to 90◦

for higher H.

Furthermore, we plot the initial condition for the trajectories we selected to

investigate the maximum e1 in Figure 3.14. It shows that for the maximum e1 plot

(Figure 3.5), when H . −1.2, we monitor the trajectories that start with high

eccentricity and low inclination. In this case, when H . −1.7, the orbit may flip at

high ε and the maximum e1 may reach ∼ 1 − 10−6 for high ε. When −1.2 . H . 0,

we monitor trajectories that start with low eccentricity and high inclination. In this

case, not much variations are seen unless H . 0. When H > 0, we monitor trajectories

starting with high inclination i ∼ 80− 90◦.

In the end, we plot the initial condition for the trajectories that are monitored for Jz

or the flip of the orbit in Figure 3.15. When H . −1, we start the trajectories with high

e1 and low i; when H & −1, we start the trajectories with low e1 and high i. The orbit

may flip with −0.4 . H . 0 at high ε for trajectories starting with low e1 and high i,

and the orbit may flip with H . −1.5 when the trajectories start with high e1 and low i.
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Figure 3.12: The eccentricities on the Jz − Ω plane (ω = 0). Note that these are not

the initial conditions, but directly the values of e1 in the Jz − Ω surface at fixed ω = 0

for the given H and ε. Similar to Figure 3.4, in the first row, ε = 0.001 and in the second

row, ε = 0.1. The octupole terms are more dominant when ε is bigger.
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Figure 3.13: The inclinations in the Jz −Ω plane (ω = 0). Note that these are not the

initial conditions, but directly the values of i in the Jz − Ω surface at fixed ω = 0 for the

given H and ε. Similar to Figure 3.4, in the first row, ε = 0.001 and in the second row,

ε = 0.1. The octupole terms are more dominant when ε is bigger.
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Chapter 4

The Dynamics of the Multi-planet

System Orbiting Kepler-56

This thesis chapter originally appeared in the literature as

Li, G., Naoz, S., Valsecchi, F., Johnson, J. & Rasio, F. The

Dynamics of the Multi-planet System Orbiting Kepler-56, The

Astrophysical Journal, 794, 131, 2014

Abstract

Kepler-56 is a multi-planet system containing two coplanar inner planets that are in

orbits misaligned with respect to the spin axis of the host star, and an outer planet.

Various mechanisms have been proposed to explain the broad distribution of spin-orbit

angles among exoplanets, and these theories fall under two broad categories. The first is

based on dynamical interactions in a multi-body system, while the other assumes that
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disk migration is the driving mechanism in planetary configuration and that the star (or

disk) is titled with respect to the planetary plane. Here we show that the large observed

obliquity of Kepler 56 system is consistent with a dynamical origin. In addition, we

use observations by Huber et al. (2013) to derive the obliquity’s probability distribution

function, thus improving the constrained lower limit. The outer planet may be the cause

of the inner planets’ large obliquities, and we give the probability distribution function of

its inclination, which depends on the initial orbital configuration of the planetary system.

We show that even in the presence of precise measurement of the true obliquity, one

cannot distinguish the initial configurations. Finally we consider the fate of the system

as the star continues to evolve beyond the main sequence, and we find that the obliquity

of the system will not undergo major variations as the star climbs the red giant branch.

We follow the evolution of the system and find that the innermost planet will be engulfed

in ∼ 129 Myr. Furthermore we put an upper limit of ∼ 155 Myr for the engulfment of

the second planet. This corresponds to ∼ 3% of the current age of the star.

4.1 Introduction

Over the past few years, measurements of the sky-projected obliquity of exoplanets

have found that large obliquities and even retrograde systems are common among hot

Jupiters (e.g. Fabrycky & Winn 2009; Triaud et al. 2010; Morton & Johnson 2011;

Moutou et al. 2011; Albrecht et al. 2012; Hébrard et al. 2013). Recently, Hirano et al.

(2012), Sanchis-Ojeda et al. (2012), Albrecht et al. (2013), Chaplin et al. (2013) and

Van Eylen et al. (2014) have measured the obliquity of six transiting multi-planet

systems discovered by the NASA Kepler mission, and found they all have low obliquities.
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However, Huber et al. (2013), using asteroseismology, showed that large obliquities are

not confined to Hot Jupiter systems. In fact Kepler-56 has two, low mass, inner planets

whose orbit normal is tilted with respect to the stellar spin axis.

Several mechanisms have been suggested to explain the formation of misaligned

planets. These theories can be divided into two categories. The first is based on tilting

the orientation of an inner planet compared to the stellar spin axis. This category

includes scattering and secular dynamical effects between a planet and a companion, or

other planets in the system that can produce large obliquities (e.g., Fabrycky & Tremaine

2007; Chatterjee et al. 2008; Nagasawa et al. 2008; Naoz et al. 2011, 2012, 2013a; Wu

& Lithwick 2011; Li et al. 2014a; Li et al. 2014b; Valsecchi & Rasio 2014a,b). These

mechanisms predict that an inner planet with a large obliquity has an outer perturber

which is inclined with respect to the plane of the inner planet, the perturber can be

either a stellar companion or a planet, or even multiple planets. In the second category,

planets move inward from their birthplaces beyond the snow line by migrating inward

through the protoplanetary disk (e.g. Lin & Papaloizou 1986; Masset & Papaloizou

2003). Large obliquities can then be produced either by tilting the stellar spin axis with

respect to the orbital angular momentum (e.g. Winn et al. 2010; Lai et al. 2010; Rogers

et al. 2012, 2013; Spalding & Batygin 2014), or by tilting the protoplanetary disk (Bate

et al. 2010; Batygin 2012). This second category of models predicts that the various

planets in a system should lie roughly in the same plane since they were confined to the

same flattened disk.

Here we focus on the dynamical mechanism that produced the large obliquities

in the Kepler-56 planetary system. Most of the theoretical studies investigating large

obliquities focused on Hot Jupiters, mainly because these were observed to have large
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obliquities. The underlining physics of producing a misalignment in the presence of a

perturber is very similar. Thus, such studies are relevant for investigating the Kepler-56

system (as we will show below).

Kepler multiple systems are typically packed, small sized (∼ 1− 10 R⊕ e.g. Lissauer

et al. 2011; Swift et al. 2013) and close–in (∼ 1 − 100 d, e.g., Steffen & Farr 2013)

systems. At face value these configurations may indicate that dynamical and secular

processes are suppressed, since these systems better resemble the theoretical outcome of

planet migration in the protoplanetary disk, given their low mutual inclinations (Lissauer

et al. 2011; Fang & Margot 2012). Therefore, a large obliquity in a multi-planet system

may be used as a laboratory to test the two categories of models summarized above. In

other words, since it seems that these planets form in a disk, a tilt of the protoplanetary

disk or of the star, will cause the multiple planets to show the same obliquity.

Kepler-56 is an evolved star at the base of the red giant branch in the HR

diagram with m? = 1.32 M� R? = 4.23 R� and an age of 3.5 Gyr (Huber et al. 2013).

Furthermore, Huber et al. (2013) showed that the innermost planet (mb = 0.07 MJ ,

Rb = 0.65 RJ , hereafter planet “b”) has a period of 10.5 d, and a period of 21.4 d for the

other planet (mc = 0.57 MJ , Rc = 0.92 RJ , hereafter planet “c”). The mutual inclination

between these two planets is measured to be < 5◦. Kepler-56 is an interesting system as

it raises many questions regarding its formation and future evolution. Most importantly,

Huber et al. (2013), measured the obliquity of the system using asteroseismology and

placed a lower limit on the true obliquity of the two inner planets of ψ > 37◦. The

dynamical analysis of Huber et al. (2013) favors the scattering and later torquing

scenario.
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Here we use Kepler-56’s current observations to compute the probability distribution

for its obliquity. (Huber et al. (2013) reported observations already give enough

information to calculate such distribution.) This enables us to also put strong constrains

on the probability distribution of the outer planet’s inclination with respect to the

innermost two. Furthermore, we estimate that the two inner planets will be engulfed

in ∼ 129 Myr and . 155 Myr, respectively. The engulfment of the inner planets is

consistent with the the deficit in short period planets around retired A stars (e.g.

Johnson et al. 2007; Sato et al. 2008; Bowler et al. 2010; Schlaufman & Winn 2013).

The paper is structured as follows. We calculate the obliquity distribution function

from observations, and show that the current observations give more information than

just a lower limit (Section 4.2). We then discuss the current obliquity precession as

a function of the system initial conditions (Section 4.3.2) and show that combining

the physical understanding and the observed distribution, we can infer the outer most

planet orbital inclination with respect to the innermost two as a function of the initial

configuration (Section 4.3.3). We also calculate the orbit and obliquity future evolution

as the star further ascends the giant branch (Section 4.4). We finally offer our discussion

(Section 4.5).

4.2 The Obliquity Distribution Function

Huber et al. (2013) analyzed the stellar oscillations observed in the Kepler photometry

and used the splitting of the observed oscillation frequencies to measure the inclination

between the stellar spin axis and the line of sight, finding i?ls = 47◦ ± 6. With the transit

photometry, Huber et al. also measured the inclination of the inner planet’s orbit with
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Figure 4.1: The cumulative distribution function of ψ. This calculation is based on

the observed parameters from Huber et al. (2013). We assume that the angle between

the stellar spin axis (ns) and the normal to the innermost orbit (nin) in the azimuthal

direction around the line of sight (i.e., α in the schematic to the left) is random (taken

from a uniform distribution). This enable us to produce a distribution function and not

only a lower limit, see text for more details. We show a schematic of the geometry in the

right panel. The solid curve corresponds to i?ls = 47◦±6, and the dashed curve corresponds

to i?ls = 133◦ ± 6 (due to the degeneracy in the asteroseismology measurements).

respect to the line of sight, finding ibls = 83.84◦+0.26
−0.25. Together, these angles place a lower

limit on the three-dimensional angle between the stellar spin axis and planetary orbital

plane of ψ > 37◦.

The angle between the normal of the orbit and the stellar spin is not simply ibls + i?ls

since, for example, the angle, ibls can have different values on the sky plane (different

values of α as shown in Figure 4.1). In this simple geometrical configuration (see

Figure 4.1, left panel) and defining Lin and S as the angular momentum of the innermost

orbit and stellar spin, respectively, the obliquity is defined by the scalar product between

the three dimensional spin axis unit vector ns = S/S = (sin i?ls, 0, cos i?ls) and the three

dimensional normal to the innermost orbit nin = Lin/L = (sin ibls, 0, cos ibls), in random

orientation with each other:
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cosψ = ns ·Rlsnin . (4.1)

Here

Rls(α) =




cosα − sinα 0

sinα cosα 0

0 0 1




(4.2)

is the rotation matrix in the azimuthal direction around the line of sight. We assume

that α, the angle between the stellar spin and the orbital angular momentum in the

azimuthal direction around the line of sight, is uniformly distributed. It is sufficient

to multiply only once by the rotation matrix, with the random angle. Therefore, from

Equation (4.1) we can estimate the cumulative distribution function of ψ. As shown

in the right panel of Figure 4.1, the lower limit on ψ is of course the same one found

by Huber et al. (2013), i.e,. ψ > 37◦, but an upper limit of 131◦ also exists and both

these values have the same probability, which is larger than the probability of the angles

in the range of 37◦ < ψ < 131◦. We use ψobs to denote the observationally constrained

value of ψ. Note that due to the degeneracy in the asteroseismology measurements, i?ls

could also be 133◦ ± 6. Setting i?ls = 133◦, ψobs is in the range of 49◦ < ψ < 143◦ (see the

dashed line in Figure 4.1). Therefore, adding these two pieces together, the distribution

of ψobs is symmetric over 37◦ < ψ < 143◦. This distorts ψobs only slightly, because ibls is

almost 90◦. Accordingly, we adopt i?ls = 47◦ ± 6, and have ψobs constrained in the range

of 37◦ < ψ < 131◦ for the following discussion.
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4.3 Obliquity and Inclination Evolution in the

Presence of an Outer Perturber

4.3.1 Overview of the System Architecture

In a sufficiently packed multi–planet system the planets’ apsidal precessions are dictated

by both the outer orbital companion and gravitational interactions between the two

inner planets. In our case, the inner two planets are packed very close together, which

suppresses eccentricity excitations that may arise due to the gravitational perturbations

induced by the perturber (planet “d”). If this perturber is inclined with respect to the

orbital plane of the inner planets, then the plane will precess (e.g., Innanen et al. 1997;

Takeda et al. 2008; Mardling 2010; Kaib et al. 2011; Boué & Fabrycky 2014). However

the exact evolution of the obliquity and its current value are highly sensitive to the

initial configuration of the system and, specifically, to the inclination of the outer orbit

with respect to the inner one.

We first evolve the system with direct N-body integration using Mercury software

package (Chambers & Migliorini 1997) and then use our numerical results to evaluate

the spin-orbit evolution (§ 4.3.2). The latter is being set by the point mass dynamics (see

below for more details). The system orbital parameters are set initially to ab = 0.1028 AU,

ac = 0.1652 AU (based on the orbital solution provided by Huber et al. 2013). Since

the properties of the outer body are yet unknown, we set ad = 2 AU as an illustrative

example following the dynamical simulation of Kepler 56 in Huber et al. (2013). We work

in the invariable plane where the z axis is parallel to the total angular momentum, Ltot.

Therefore, the inclinations of the orbits are defined with respect to the total angular
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momentum. In this frame, we set for simplicity ωb = ωc = ωd = Ωb = Ωc = Ωd = 0,

where ωj (Ωj) is the argument of perihelion (longitude of ascending nodes) of the planet

j. In addition, we simplify the system by imposing zero mutual inclination between the

two inner planets and by setting the eccentricity of the two inner planets to zero (which

is consistent with Huber et al. 2013, estimate). Following Huber et al. (2013), we also

take the mean anomalies to be fb = 57◦, fc = 182◦ and fd = 256◦. The outer orbit

eccentricity (ed) does not affect the evolution of the system significantly, thus we only

show results for ed = 0. The parameter that sets the system evolution is the mutual

inclination between the outer planet’s orbit and the inner plane, imut, which we discuss

in details below. Given the observed obliquity distribution (Figure 4.1) we calculate next

the probability distribution of the inclination of the system as a function of the system

initial conditions.

4.3.2 Dynamics of Kepler 56

In the presence of a tilted outer orbit with inclination imut, the two inner planets will

precess around the total angular momentum vector. Note that the precession of the

orbit due to the oblateness of the star is negligible in this case. The torque felt by planet

“b” due to stellar oblateness1 is more than two orders of magnitude smaller than the

torque due to planet “c” (see Tremaine et al. 2009 and Tamayo et al. 2013). Therefore,

the orbital evolution is not affected by the torque due to the stellar oblateness, and the

system is in the “pure orbital regime” (Boué & Fabrycky 2014). We thus obtain the

1The J2 coefficient, which approximates the non-spherical shape by the star level of oblateness, was

calculated following Eggleton et al. (1998).
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orbital evolution from an N-body simulation.

The obliquity angle is defined with respect to the innermost planet’s orbital angular

momentum, Lb. Thus, a natural coordinate choice for the spin is the Laplace–Runge–

Lenz (q̂b, ĥb, êb). Here, êb is the eccentricity vector (whose direction is toward the

pericenter of planet “b” orbit), ĥb is the unit vector parallel to the orbital angular

momentum of planet “b” (the vector hb is the specific angular momentum vector, i.e.,

Lb = m?mb/(m? +mb)hb), and q̂b completes the right-hand triad of unit vectors. In this

notation the precession of the stellar spin, S = (Se, Sq, Sh), due to one planet is simply

(Eggleton et al. 1998)

dS

dt prec,a
= S×Kb +

m?mb

m? +mb

hb/I2(−Ỹbêb + X̃bq̂b + W̃bĥb) , (4.3)

where hb = [G(m?+mb)ab(1+e2
b)]

1/2, G is the gravitational constant, and Kb = (Xb, Yb, Zb)

represents the precession due to the orbital evolution:

Xb =
dib
dt

cosωb +
dΩb

dt
sinωb sin ib , (4.4)

Yb = −dib
dt

sinωb +
dΩb

dt
cosωb sin ib , (4.5)

Zb =
dωb
dt

+
dΩb

dt
cos ib , (4.6)

and X̃b, Ỹb and W̃b represent the torque due to the stellar oblateness and the tidal
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dissipation:

X̃b = −mbk?R
5
?

µl̇a5
b

ShSe
(1− e2

b)
2

(4.7)

− Sq

2l̇tF?

1 + (9/2)e2
b + (5/8)e4

b

(1− e2
b)

5
,

Ỹb = −mbk?R
5
?

µl̇a5
b

ShSq
(1− e2

b)
2

(4.8)

− Se

2l̇tF?

1 + (9/2)e2
b + (5/8)e4

b

(1− e2
b)

5
,

W̃b =
1

tF?

[1 + (15/2)e2
b + (45/8)e4

b + (5/16)e6
b

(1− e2
b)

13/2
(4.9)

− Sh

l̇

1 + 3e2
b + (3/8)e4

b

(1− e2)5

]
,

where l̇ =
√
Gm?/a3

b , and

tF? =
tV ?
9

m2
?

(m? +mb)mb

(
ab
R?

)8
1

(1 + 2k2)2
, (4.10)

To calculate the orbital evolution due to the orbital precession (the Kb term), we

take the time evolution of ω,Ω and i of planets “b” directly from the N-body integration.

This dominates the obliquity variation. The tidal effects are negligible until planet b

is almost engulfed (see discussion on the future evolution of Kepler-56 in §4.4). The

timescale for the evolution of planet b’s orbital separation due tidal dissipation in the

star is defined in terms of the stellar viscous timescale tV ?. tV ? is set to be 50 yr and

kept constant, where tV ? corresponds to Q ∼ 106 for a 10 day orbit. The parameter

k2 is the apsidal precession constant, which is related to the Love parameter kL via

k2 = 2kL (a similar equation exists for planet “b” and “c”). Note that the effects of

tides in the planets are negligible. In fact, assuming a viscous timescale corresponding

to Q = 12 and 105 for planet “b” and “c” (Murray & Dermott 1999), respectively, the

small planets radii yield much longer tidal timescales [see equation (4.10)]. In any case,
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Figure 4.2: Short time scale obliquity evolution for the two scenarios. The left

panel shows the evolution in the S||Lin with an initial imut = 20◦ scenario while the right

panel is for the S||Ltot with an initial imut = 40◦. The orbital evolution was done using

direct N-body integration.

the unconstrained nature of exoplanets makes it difficult to conclude how their tidal

coefficients evolve.

Equations (4.3)–(4.10) imply that the time evolution of imut (and thus ψ) depends

on the initial system’s configuration. This can be constrained from the observed obliquity

distribution. In Figure 4.2 we show the evolution of ψ assuming two possible initial

configurations: S parallel to Lin and imut = 20◦ (left, hereafter “S||Lin” scenario), and S

parallel to Ltot and imut = 40◦ (right, hereafter “S||Ltot” scenario), where Lin and Ltot

are the orbital angular momentum of the inner two planets and the total orbital angular

momentum, respectively. We show below that these values for imut give a misalignment

of at least 37◦ during the evolution (the minimum value constrained observationally).

In the S||Lin scenario, ψ oscillates between well-aligned (ψ = 0◦) and ∼ 2 × imut
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(∼ 38.2◦). In this case, we postulate that the system formed initially in a disk and

planet “d” was perhaps scattered to large inclinations (e.g., Rasio & Ford 1996), causing

the obliquity angle to precess between 0◦ and ∼ 2× imut. Another possible case for this

configuration is accretion of material onto the protoplanetry disk, which can tilt the

outer parts of the disk and the total angular momentum (Bate et al. 2010; Tremaine

2011; Thies et al. 2011). Therefore, in the S||Lin scenario, ψ ∼ 40◦ can be produced by

an initial inclination imut > 20. Note that a retrograde configuration with imut = 160◦

can also produce ψ ∼ 40◦.

In the S||Ltot scenario, ψ remains close to the initial value. This configuration

could have occurred if the inner parts of the disk were warped perhaps due to magnetic

interactions with the inner disk edge (e.g., Lai et al. 2010). Therefore in the S||Ltot

scenario, ψ ∼ 40◦ can be produced by an initial imut = 40◦.

We show below that for the S||Lin scenario ψ is more likely to be detected in the

maximum (at ∼ 38.2◦) where the derivative is closer to zero. For each possible obliquity

value ψ̃ ∈ (0◦, 180◦), we derived a cumulative distribution function of the mutual

inclination, where CDF(ψ̃|imut) = ∆t(ψ < ψ̃|imut)/t, where ∆t is the time interval.

This quantity will be used below to estimate the probability distribution of the system

configuration for the actual observations. We run 35 N-body runs, for an array of initial

inclinations imut between 5◦ and 175◦, and calculate the cumulative probability for the

two scenarios.
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Figure 4.3: The probability distribution of idls. We calculate this probability assum-

ing md follows the mass function of Cumming et al. (2008).

4.3.3 Inferring the Inclination Distribution Function from

Observations

When the spin-orbit misalignment is due to the dynamical interaction between the

planets, the obliquity distribution function derived from observations (Section 4.2, Figure

4.1) can be used to place strong constrains on the mutual inclination between the inner

planets and planet “d”, i.e., imut. We calculate the conditional probability distribution

of imut given the observed distribution ψobs, i.e., p(imut|ψobs). This posterior probability

can be written as

p(imut|ψobs) =
p(ψobs|imut)p(imut)

p(ψobs)
, (4.11)

where p(ψobs) is a normalization term, which we disregard because the shape of the

distribution is of larger significance than the absolute probability here, and the absolute

probability is out of the scope of this paper.
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Figure 4.4: The probability distribution of the mutual inclination inferred from

observations. We consider the two scenarios S||Lin (blue circle) S||Ltot (red lines), and

two possible probability distribution on p(imut). The left panels are for nd lying in the

plane defined by nin and the line of sight, i.e., imut = ibls − idls, while in the right panels

we assume random orientation (see text). The top panels show a specific example for the

advantage in having a more precise observation ψbin = 37 − 43◦, and the bottom panels

show the results form the observed cumulative distribution (Figure 4.1).

Furthermore, we use the distribution function of planet “d” line of sight inclination,

idls, to estimate the prior probability, p(imut). Note, that the actual value of md sin idls

only affect the normalization of the probability, but since we care about the shape of the

probability we can ignore this. Note that if we assume the outer orbit to be isotropically

distributed, the probability density function for idls takes the form of sin idls. This suggests

that the most probable value for idls is 90◦.

Following Ho & Turner (2011) we calculate the probability p(idls) assuming Cumming
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et al. (2008) mass function for md (see Figure 4.3). Note that the distribution in

Cumming et al. (2008) is for m sin i, not m. However, since the power law index is large,

we use this power law for the mass distribution according to Ho & Turner (2011). The

angle we are actually interested in is the angle between the normal to the outer orbit

nout and the normal to the inner orbit nin. While ibls has been measured to be 83.84◦,

(Huber et al. 2013) we have no information about the orientation of these two vectors on

the plane of the sky. Consider first the case where the three dimensional normal to the

outer orbit, nd lies in the plane defined by nin and the line of sight. This yields a simple

relation between the different angles, i.e., imut = ibls− idls. Therefore, p(imut) = p(ibls− idls),

where the latter is calculated from p(sin idls) following Ho & Turner (2011). Their mass

distribution function yields small md (compared to the measured md sin idls), thus sin idls

is more likely to be close to its maximum of 1. This suggests angles near 90 degrees for

idls, which implies that imut = ibls − idls is more likely to have a small value.

However, another possible prior is that nd has a random orientation (similar to

the configuration depicted in the left side of Figure 4.1). Thus, as in Section 4.2, we

multiply the normal to the orbit with the rotation matrix in Eq. (4.2) assuming a random

azimuthal angle α, i.e.,

cos imut = nout(i
d
ls) ·Rls(α)nin(ibls) , (4.12)

where nout(i
d
ls) is chosen with p(sin idls) distribution, which gives p(imut). This prior also

gives a high probability for large values of imut, as this case covers large parts of the

parameter space. Below we consider these two cases.

The probability of ψobs for a given imut, i.e., p(ψobs|imut) can be calculated from

p(ψobs|imut) =

∫ ∞

0

p(ψ̃|imut)pobs(ψ̃)dψ̃ , (4.13)
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where pobs(ψ) was computed in Section 4.2, Figure 4.1. The probability p(ψ|imut) is

calculated from theory for the two different cases, i.e., S||Ltot and S||Lin. In the discrete

description we calculate the probability distribution of imut for each ψ. This can be easily

derived from the cumulative distribution function calculated in Section 4.2, Figure 4.1.

Using Equations (4.11) − (4.13) we can find the mutual inclination probability

function given the observed obliquity distribution. This is depicted in Figure 4.4, bottom

panels. We consider the two initial configurations scenarios, i.e., S||Ltot and S||Lin, and

the two p(idls) cases, i.e., nout random along line of sight (right panels) and nout in the

same plane as nin (left panels). Since the obliquity distribution function derived from

observations has two high probability peaks, (ψ = 37◦ and ψ = 131◦), the possible imut

values that can produce such distribution function also have two peaks. In the case of

S||Lin, the double peak distribution is also probable since the precession of a retrograde

orbit can as well produce this configuration. Note that if we also consider the case when

i?ls = 133◦ ± 6 (due to the degeneracy in the asteroseismology measurements), ψobs is

symmetric, and p(imut|ψobs) would also be symmetric.

Interestingly, better observations may help constraining imut but will not disentangle

the degeneracy between the S||Ltot and S||Lin cases. We show this in the top panels

of Figure 4.4, where we consider an example of ψ = 40 ± 3◦. In the S||Ltot scenario,

the symmetry is broken, since, there is a direct link between the obliquity and imut in

this case, as seen from the right panel of Figure 2. Note that the two different p(imut)

cases produce slight differences in the probability peak. Assuming that nout and nin are

coplanar produces a decreasing probability toward imut ∼ 45◦, as in this case near polar

configurations are less likely. On the other hand, assuming a random orientation for nout

produces an increasing probability toward the larger imut values. In fact, as mentioned
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above, this case yields a larger parameter space for near polar configurations. Having

a precise observation also improves the imut estimation for the S||Lin but the double

peak probability remains, because the same obliquity can be reached in a prograde and

retrograde configurations. The degeneracy can be broken only for the case where S||Ltot,

a more precise measurement of ψ will be available. This can be seen in the top panels of

Figure 4.4, where ψbin represents 37◦ < ψ < 43◦.

So far, we have assumed two possible priors for p(imut). These represent two extreme

possibilities, one which favors low mutual inclinations and one which favors large values.

The truth may lay in between. Thus, we have tested the possibility that nd is randomly

oriented within a small interval as a prior (see the left side of Figure 4.1, where α, is

now confined to a certain interval). In this case, differently from what figure 3 shows, we

assumed an initial tilt of 37◦ between the stellar spin axis and the angular momentum

of the inner orbit. This way, we consider the possibility that the source of the obliquity

is not dynamical. We find that for α >∼ 10◦ equation (4.11) and the observed obliquity

distribution favors large mutual inclinations. In other words, the three planets will be

aligned, and the observations will be consistent with tilt of the star or the disk in the

migration scenario, if the random angle α < 10◦

4.4 Tidal and Stellar Evolution

Here we focus on the fate of the innermost planet and the future evolution of the obliquity

as a result of tidal dissipation in the star and stellar evolution. We compute a detailed

model of the host star with the publicly available stellar evolution code MESA (version

4798 Paxton et al. 2011, 2013). Specifically, we follow Huber et al. (2013) and consider
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a star with an initial mass and metallicity of 1.32 M� and Z = 0.032, respectively. We

evolve the stellar model with the same physical assumptions adopted in Valsecchi &

Rasio (2014b). Briefly, we account for stellar wind mass loss following the test suite

example provided with MESA for the evolution of a 1 M� star, and we set the mixing

length αMLT parameter to 1.92, following the MESA star Standard Solar Model (Paxton

et al. 2011, Table 10). Note that the mass loss is negligible in this case, since the star is

only slightly evolved (as shown in Figure 4.5). This negligible mass loss explains why the

planets’ orbits are significantly expanding, differently from the case of the Earth when

the Sun evolves into a red giant. The model agrees with the observationally inferred

stellar mass, radius, and effective temperature (within 1σ) at 4.418 Gyr. The latter is

consistent with the age quoted by Huber et al. (2013) within 1σ (3.5± 1.3 Gyr).

The advanced evolutionary stage of the host star (which is off its Main Sequence)

poses the interesting possibility that, if Kepler-56 is similar to other Kepler multi-planet

systems, it may have had planets that were engulfed as the star expanded (such

possibilities have been investigated in the literature, Bear & Soker 2011a, 2012). If this is

the case, the observed small stellar rotation rate suggests that the host star in Kepler-56

did not engulf a large planet. In fact, to increase the stellar spin by more than 10%, the

engulfed planet should have had a mass larger than 0.6 MJ (neglecting the possibility

of core-envelope decoupling, see, e.g., Teitler & Königl 2014). However, we note that

magnetic braking, stellar winds, and the expansion of the star as a result of natural

stellar evolution might all contribute to spin down after engulfment. Nevertheless, it

also seems unlikely (but not impossible) that a very massive planet could have migrated

to the innermost configuration, with two lighter planets outside (planets “b” and “c”)

which also supports the notion that no inner planet was engulfed.
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Figure 4.5: Future evolution of the star and the innermost planets. Left column

(from top to bottom): evolution of the stellar mass, radius and the apsidal precession

constant (k2) computed with MESA (Paxton et al. 2011, 2013). Middle and right columns

(from top to bottom): evolution of the semi-major axis, eccentricity, and inclination with

respect to the invariable plane for planet “b” (magenta lines) and planet “c” (red lines).

In the middle panels we consider the S||Lin scenario with an initial imut = 20◦, while in

the right panels we consider the S||Ltot scenario with an initial imut = 40◦. We start

the calculation at the present time and we stop it when the innermost planet is engulfed

(ab = R?). The evolution depicted is due to tidal interactions between the evolving star

and the two inner planets, also accounting for the point mass dynamics via direct N-body

integrations.
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The inner planets’ orbital evolution is affected by tides, whose efficiency changes

as the star evolves. In the left panels of Fig. 4.5 we show the forward evolution of the

stellar mass, radius, and Love parameter. The latter was computed following Valsecchi

et al. (2012).

Both the specific angular momentum (hb) and the eccentricity undergo tidal

dissipation, which leads to circularization and orbital shrinking. Following Eggleton

et al. (1998) we have

deb
dt

= −Ṽbeb , (4.14)

dhb
dt

= −W̃bhb . (4.15)

The parameters W̃b and Ṽb are the dissipation coefficients (see Eggleton et al. 1998),

where W̃b is given by equation (4.9), and Ṽb is defined as:

Ṽb =
9

tF?

[1 + (15/4)e2
b + (15/8)e4

b + (5/64)e6
b

(1− e2
b)

13/2
(4.16)

− 11Sh

18l̇

1 + (3/2)e2
b + (1/8)e4

b

(1− e2)5

]
.

We compute the evolution of the orbital separation, eccentricity, and inclination,

using the extrapolated orbital parameters from the initial direct N-body integration,

together with the equations mentioned above. We stop the integration when the

innermost planet is engulfed (ab = R?) and neglect possible mass transfer events between

the planet and the star (e.g., Trilling et al. 1998), for simplicity. The evolution is shown

in the right two panels of Figure 4.5. During the first ∼ 0.1 Gyr of evolution, the star

loses about 0.1% of its mass and its radius expands by about 40%. After this stage tidal

effects become increasingly important and planet “b” is quickly engulfed. We note that

the tidal treatment adopted here does not fully account for how the evolution of the
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star affects the efficiency of tides (i.e. the stellar viscous timescale tV ? is kept fixed).

However, a more consistent orbital evolution calculation with the method adopted in

Valsecchi & Rasio (2014a,b), but only accounting for the evolution of the innermost

planet, yields similar results. Note also that the precession due to the stellar oblateness

affects the final stages of the evolution (very close to the final engulfment of planet “b”).

This occurs because tidal dissipation dominates the dynamics only towards the end of

the evolution right before the engulfment, and thus, it does not change the overall orbital

dynamics. Moreover, we find that the final semimajor axis of the planet is ∼ 0.03 AU

during the engulfment, which is within twice the Roche limit (the Roche limit is 0.016

AU according to the prescription of Paczyński (1971)). This suggests that the planet

may be tidally distorted during the engulfment and that the accumulated heat due to

tidal dissipation as the planet orbits the star multiple times may increase the chance

of tidal disruption (Li & Loeb 2013). Past studies have investigated the engulfment of

planets by their host stars (Nordhaus et al. 2010; Bear & Soker 2011a; Kaib et al. 2011;

Kratter & Perets 2012; Veras et al. 2013; Lillo-Box et al. 2014). Figure 4.5 shows that

the innermost planet will be engulfed in ∼ 129 Myr. Similarly, the second planet (Kepler

56c) will be engulfed in less than ∼ 155 Myr.

The tidal evolution of the inner planets affects the stellar spin evolution (equation

(4.3)). The same equation holds for planet “c” (substituting subscript “b” with “c”).

The stellar spin evolves due to the precession of planets “b” and “c”, and their tidal

torque. We extrapolate the evolution of their precession directly from the N-body

calculation. The evolution of the stellar spin direction and magnitude is shown in

Figure 4.6. In particular, we show the evolution of the obliquity ψ and the angle between

the stellar spin and the total angular momentum (φ). The magnitude of the spin
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Figure 4.6: The evolution of the stellar spin. Top: obliquity; middle: angle

between the stellar spin and the total angular momentum; bottom: spin magnitude |S|
in units of rad yr−1. The initial spin period is 75 d, which translates to a spin rate of

∼ 30 rad yr−1. The left panel shows the evolution in the S||Lin scenario with an initial

imut = 20◦, while the right panel is for the S||Ltot scenario with an initial imut = 40◦.
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decreases due to the mass lost and the expansion of the stellar radius (irrespective of the

scenario considered). This exercise reveals that the obliquity behavior for the two cases

does not vary much as the star evolves. In the S||Lin scenario with an initial imut = 20◦,

the obliquity oscillates between zero and ∼ 40◦, the amplitude slightly decreases, and

additional modulations due to tides appears. In the S||Ltot scenario with an initial

imut = 40◦, the obliquity monotonically decreases.

4.5 Discussion

We studied the configuration and obliquity of Kepler-56, a multi planet system with

two coplanar inner planets that are misaligned with respect to their host star. Two

main scenarios were proposed in the literature to explain the large obliquities observed

for close-in exoplanets. The first model involves dynamical evolution between multi

planetary members or stellar companion (e.g., Winn et al. 2010; Fabrycky & Tremaine

2007; Chatterjee et al. 2008; Nagasawa et al. 2008; Naoz et al. 2011, 2012, 2013a; Wu &

Lithwick 2011; Li et al. 2014a). The second model proposes disk migration as the main

mechanism which controls the planetary configuration, while the star spin axis is tilted

with respect to the planets by other mechanisms (e.g. Winn et al. 2010; Lai et al. 2010;

Rogers et al. 2012, 2013; Spalding & Batygin 2014). The two scenarios lead to different

configurations for the configuration of the planets with respect to each other and the

star. The dynamical scenario predicts that large obliquities are associated with an

inclined perturber, while the disk-migration scenario predicts aligned planetary systems.

We showed that the large obliquity observed in Kepler-56 is consistent with a dynamical

nature.
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We showed that we can improve the Huber et al. (2013) lower limit on the obliquity

(ψ > 37◦). Specifically, using the Huber et al. (2013) current observations, we found the

probability distribution of the observed true obliquity (see Figure 4.1). This probability

has a large range with two main peaks at ψ = 37◦ and ψ = 131◦. Furthermore, using this

probability distribution we gave the probability distribution of the inclination of the third

planet with respect to the inner two (imut). This is highly dependent on the system’s

initial conditions. For this reason, we explored two scenarios: S||Lin and S||Ltot. In the

former, the initial spin axis of the star was set along the orbital angular momentum of

the inner two planets. A possible origin for this configuration is that the system formed

initially in a disk and the third Jupiter-like planet was perhaps scattered to a large

inclination. Instead, in the S||Ltot scenario, the initial stellar spin was set parallel to

the total orbital angular momentum. This initial condition may be ad hoc, and possibly

caused by, e.g., magnetic interactions Lai et al. (e.g., 2010) warping the inner parts of the

disk. For these two scenarios, we found the mutual inclination probability function for

the observed obliquity distribution (see Figure 4.4 bottom panels). Both configurations

have a double peak distributions, with zero probability of having aligned configuration

between the two orbits. The degeneracy between the two probability peaks may be

broken only for the S||Ltot case, with a more precise measurement of ψ. However, a

precise measurement of ψ would not disentangle between the S||Ltot and S||Lin cases, as

shown in the top panels of Figure 4.4.

We finally considered the effect of the stellar evolution on the system’s parameters

and, specifically, the obliquity. We evolved the host star using MESA (Paxton et al.

2011, 2013) and extrapolated the planets orbital evolution calculated with direct N-body

integration (since the latter is rather regular and periodic). We have also included the
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spin precession and tidal evolution. This exercise revealed that the obliquity behavior

for the two cases does not vary significantly as the star evolves. It also shows that planet

“b” will be engulfed in ∼ 129 Myr.
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Chapter 5

Cross Sections for Planetary

Systems Interacting with Passing

Stars and Binaries

This thesis chapter originally appeared in the literature as

Li, G., Adams F. Cross Sections for Planetary Systems

Interacting with Passing Stars and Binaries, Monthly Notices of

the Royal Astronomical Society, 448, 344, 2015

It is presented here with minor modifications.

Abstract

Most planetary systems are formed within stellar clusters, and these environments can

shape their properties. This paper considers scattering encounters between solar systems
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and passing cluster members, and calculates the corresponding interaction cross sections.

The target solar systems are generally assumed to have four giant planets, with a variety

of starting states, including circular orbits with the semimajor axes of our planets, a more

compact configuration, an ultra-compact state with multiple mean motion resonances,

and systems with massive planets. We then consider the effects of varying the cluster

velocity dispersion, the relative importance of binaries versus single stars, different

stellar host masses, and finite starting eccentricities of the planetary orbits. For each

state of the initial system, we perform an ensemble of numerical scattering experiments

and determine the cross sections for eccentricity increase, inclination angle increase,

planet ejection, and capture. This paper reports results from over 2 million individual

scattering simulations. Using supporting analytic considerations, and fitting functions

to the numerical results, we find a universal formula that gives the cross sections as

a function of stellar host mass, cluster velocity dispersion, starting planetary orbital

radius, and final eccentricity. The resulting cross sections can be used in a wide variety

of applications. As one example, we revisit constraints on the birth aggregate of our

Solar System due to dynamical scattering and find N <∼ 104 (consistent with previous

estimates).

5.1 Introduction

A large fraction of planetary systems form within stellar clusters (Lada & Lada 2003;

Porras et al. 2003) and these birth environments can influence their resulting properties

(e.g., see the reviews of Adams 2010; Pfalzner 2013). One potentially important process

occurs when binary systems — and single stars — fly past solar systems and disrupt the
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orbits of their constituent planets. This type of scattering interaction has been studied

in the field (Laughlin & Adams 2000), and within young embedded clusters (e.g., Adams

et al. 2006; Malmberg et al. 2007, 2011; Boley et al. 2012; Dukes & Krumholz 2012;

Chatterjee et al. 2012; Hao et al. 2013; Pacucci et al. 2013), where the latter results can

be used to provide constraints on the possible birth environment of our own solar system

(e.g., Adams & Laughlin 2001; Hester et al. 2004; Williams & Gaidos 2007; Spurzem et

al. 2009; Portegies Zwart 2009; Adams 2010; Williams 2010; Pfalzner 2013). We stress

that the dynamical constraints derived for the birth aggegate of the solar system depend

on many variables, including assumptions made about the cluster properties, any other

constraints imposed on the problem, and the interaction cross sections.

This present study focuses on the cross sections themselves, and expands previous

work to include a much wider range of parameter space; the implications for the solar

birth environment are then briefly considered at the end of the paper. For studies

concerning our solar system, most previous work has calculated the cross sections for

this mode of disruption by considering the initial orbits of the giant planets to have

their present-day values of semimajor axis. However, some recent work suggests that

our solar system may have begun in a more compact configuration (Gomes et al. 2005;

Tsiganis et al. 2005), and the planets may not have reached their present-day orbits

until the solar system reached an age of hundreds of millions of years. One motivation

for this present study is thus to determine cross sections for solar system disruption

for more compact configurations. Note that the sign of the effect is not obvious a

priori: The geometrical cross section of the compact solar system is smaller, and hence

implies a smaller interaction cross section. However, the decreased relative separations

of the planets allow for increased planet-planet interactions, which could result in more
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disruption from the passing stars; in addition, the close spacing in compact solar systems

allows for orbit crossing to occur for smaller values of eccentricity.

In some compact configurations of the solar system, the giant planets can be at

or near mean motion resonance. This possibility leads to interesting dynamics: Mean

motion resonances can protect planetary systems from disruption, and could thus lead

to greater stability and smaller interaction cross sections. On the other hand, the mean

motion resonances themselves are more easily compromised than planetary orbits —

the potential energy corresponding to the resonance angle being in a bound state is

much less than the gravitational potential energy of the planetary orbit. An important

related question is thus to find the cross sections for passing stars (including binaries)

to disrupt mean motion resonances. Planetary systems with disrupted resonances will

usually retain their planets in the near term, although they could be subject to orbit

instabilities over longer spans of time.

In addition to compact solar system architectures, this paper considers a wider range

of parameter space than previous studies. Part of this expanded scope is possible due

to increased computational capabilities. This present study includes results from more

than 2 million individual numerical experiments that simulate a solar system interacting

with a passing binary (or single star). For each choice of solar system architecture and

each choice of the background parameters for the encounters, we run a large ensemble of

NE simulations (where NE = 80,000 for most cases, but can be larger). The variations

that we consider for the target solar systems include compact configurations (described

above), more massive planets, nonzero initial orbital eccentricities, and a range of masses

for the central stars. Regarding variations in the background environment, this paper

considers two main issues: We determine the effects of varying the velocity dispersion of
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the cluster stars, and we compare the relative sizes of the scattering cross sections for

single stars versus binaries as they interact with planetary systems.

This paper is organized as follows. We formulate our approach to calculating

the interaction cross sections in Section 5.2. The resulting cross sections are then

given in Section 5.3, which provides 〈σ〉 for increases in eccentricity, increases in the

spread of inclination angles, planet ejection, planet capture, and changes in semimajor

axes. Results are also presented for increasing orbital eccentricities up to orbit-crossing

configurations and compares the efficacy of passing single and binary stars. These results

are given as a function of solar system architecture, velocity dispersion of the cluster, and

mass of the host star. Over much of the parameter space of interest, the cross sections

display a nearly self-similar form. Section 5.4 presents a scaling analysis that shows how

the results scale with velocity disperion, stellar mass, and starting semimajor axis. As an

application, Section 5.5 revisits the possibile dynamical constraints on the birth cluster

of the solar system. In order to assess the level of disruption, one also needs the rate of

close encounters in young stellar clusters. These rates have already been calculated for a

wide range of cluster properties (Adams et al. 2006; Proszkow & Adams 2009) and are

used herein. The paper concludes, in Section 5.6, with a summary of our results and a

discussion of their implications.

5.2 Formulation of the Problem

One useful way to specify the effects that passing stars can have on planetary systems

is to define cross sections of interaction. For example, the scattering interactions could

eject a planet, increase the eccentricity, change the semimajor axis, and/or perturb the
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inclination angle of the orbit. For a given type of disruption, a solar system presents

an effective target area for being disrupted by passing stars. With this definition, the

effective interaction rate Γ for disruption is then given by the usual formula

Γ = n∗〈σ〉〈v〉 , (5.1)

where n∗ is the mean density of stars in the environment, 〈v〉 is the mean relative

velocity between systems, and 〈σ〉 is the cross section for the given mode of disruption.

We note that the background environment determines the stellar density n∗ and the

distribution of relative velocities. As outlined below, the relative velocities follow a

Maxwellian distribution characterized by the expectation value 〈v〉. The interaction

cross section depends on this velocity distribution, so that we actually calculate the

quantity 〈σ〉v ≡ 〈σv〉/〈v〉, where the subscript denotes that the cross section depends on

the velocity expectation values 〈v〉. For ease of notation, however, we drop the subscript

for the remainder of the paper. In young embedded clusters, we expect n∗ ∼ 100 pc−3

and 〈v〉 ∼ 1 − 2 km/s; in the field (in the solar neighborhood) these quantities have

typical values n∗ ∼ 1 pc−3 and 〈v〉 ∼ 30− 40 km/s. Because of the velocity dependence

of the cross sections, solar systems in the field (with high fly-by speeds) are, on average,

less affected by passing stars.

To calculate the cross sections for interactions, we adopt the following approach.

First we must specify the configuration of the solar system that will be targetted

for disruption (for example, we can use the current set of four giant planets in our

solar system, with their current masses and semimajor axes, all in orbit about a solar

mass star). Next we must specify the background environment, which determines the

distribution of relative velocities. For most of this work, we focus on the case where the
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target solar system encounters binaries. We then perform a large ensemble of numerical

simulations, where the input parameters are specified according to a Monte Carlo

scheme. The results are then used to calculate the probability of various outcomes and

the corresponding cross sections (for further detail, see Laughlin & Adams 2000; Adams

& Laughlin 2001; Adams et al. 2006).

In principle, the Monte Carlo sampling scheme should sample all possible encounters

between binaries and the target solar system, including those with large impact

parameters. In practice, however, only sufficiently close encounters have a non-negligible

chance of affecting the planetary orbits. In order to conserve computer time, we thus

make the following limitation. We treat the semimajor axes a of the binaries on a

different footing than the others: The values of a are sampled uniformly out to amax =

1000 AU (more than 30 times the size of Neptune’s orbit in our solar system). For a

given value of a, we then limit the possible range of impact parameters to fall within an

area given by A0 = Bπa2. With this sampling scheme, the cross section of interaction,

for a given type of disruption event, is given by

〈σ〉 =

∫ amax

0

p(a)da fD(a)
(
Bπa2

)
, (5.2)

where p(a) is the probability distribution for binaries having a semimajor axis a. The

factor fD(a) represents the fraction of all encounters (within the pre-determined area

A0 = Bπa2) that results in the outcome of interest. Note that the maximum allowed

value of the impact parameter varies with a and is given by $max =
√
Ba.

The formulation of equation (5.2) can be understood as follows: Consider a given

outcome of interest, say, the ejection of Neptune. We only consider fly-bys that take place

within the area A0 = Bπa2, where a is sampled uniformly. If every encounter within this
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area leads to the ejection of Neptune, and all encounters outside this area (which are not

computed) have no effect, then fD = 1; the probability factor p(a) corrects for the actual

distribution of binary semimajor axis, and one can see that equation (5.2) provides the

correct effective cross section. In practice, of course, only a small fraction of encounters

lead to the ejection of Neptune so that fD � 1. As long as we choose the factor B large

enough, we are ignoring only distant encounters that have little contribution to the cross

section. Nonetheless, since B is finite, this procedure leads to a lower limit on the cross

section. We have run convergence tests with ever-increasing values of B and find that B

= 100 is large enough to include essentially all relevant encounters. In most of this work

we thus use B = 100, which provides a good compromise between computational speed

and accuracy. For comparison, our previous work (Laughlin & Adams 2000; Adams &

Laughlin 2001) used the smaller value B = 4, so that the reported cross sections (again

presented as lower limits) were smaller than those obtained here by a factor of ∼ 2.

This present treatment thus provides a more complete accounting for wide binaries and

results in a greater lower bound on the true cross sections.

The distribution p(a) is determined by the observed binary period distribution,

which is nearly uniform in the quantity log a, but has a broad peak centered at period

P = 105 days, which implies a ≈ 42 AU for solar type stars (Duquennoy & Mayor 1991).

Within the scheme outlined above, encounters between a given solar system and a

passing binary are specified by a large number of input parameters: We must specify

the properties of the binary, including its semimajor axis a, orbital eccentricity eb, the

masses of the two stars M1∗ and M2∗, and finally the phase of the binary orbit θb at

the start of the encounter. The orbital elements (a, eb) are sampled from their observed

distributions (Duquennoy & Mayor 1991). Similarly, the stellar masses are sampled from
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a log-normal form of the stellar initial mass function (consistent with that advocated by

Adams & Fatuzzo 1996 and Chabrier 2003). Both members of the binary are sampled

independently from the distribution and the stellar masses are limited to the range

M∗ = 0.07 − 10M�. As a result, we exclude brown dwarfs and the very largest stars

(which are both rare and tend to reside at cluster centers). The phase angle θb of the

orbit is sampled uniformly over [0, 2π]. Next we must specify the incoming velocity v∞

of the solar system with respect to the binary center of mass; this speed is sampled

from a Maxwellian distribution with a velocity dispersion vb/2 that characterizes the

background environment (e.g., a cluster). The remaining variables are the three angles

(θ, ψ, φ) necessary to specify the direction and orientation of the encounter, and finally

the impact parameter $. The impact parameter is chosen randomly within a circle of

radius 10a centered on the binary center of mass (corresponding to the choice B = 100

in equation [5.2]).

Using a Monte Carlo scheme to select the input parameters according to the

distributions described above, we carry out a large ensemble of scattering simulations.

For most cases we find that the number of simulations NE = 80, 000 is large enough

to provide good statistics. The outcomes of these numerical experiments are then used

to compute the fraction fD of disruptive encounters for a given type of outcome. The

resulting errors due to incomplete sampling are typically 5 percent or less, but can be

larger for rare events (e.g,. for planet ejections, the sampling errors are ∼ 10 percent).

Each simulation is thus an N-body problem. For most cases, N = 7, where the

target system consists of four giant planets orbiting a host star and interacts with a

binary. The equations of motion are integrated using a Bulirsch-Stoer method (Press

et al. 1986), which allows for rapid integrations and high accuracy. Because we are
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interested in the planetary orbits, which only contain a small fraction of the total energy

of the N-body system, the simulations must conserve the total energy to high accuracy in

order to determine the final orbital elements. For example, the energy contained in the

orbit of Neptune, the least bound planet, is typically 104 times smaller than the binding

energy of a binary, or the initial gravitational potential energy between the binary and

the solar system. In practice, our individual simulations have an accumulated error of

only one part in 108, so that orbital changes are safely resolved.

5.3 Results for the Cross Sections

Using the formulation described in the previous section, we have performed several large

ensembles of numerical scattering simulations. Unless stated otherwise, we consider the

solar systems to have four giant planets and to interact with passing binary stars. We

then consider a number of different solar system architectures for the starting states,

as outlined below (see Table 1). To obtain reasonable statistics within the Monte

Carlo scheme, the number of individual numerical experiments for each solar system

architecture must typically be of order NE ≈ 80, 000. This choice produces relative

errors (due to incomplete sampling) of order 5 percent or smaller.

In the first set of simulations, we consider the target system to be an analog of

our present-day solar system. In this case, we place the four giant planets in orbit

about a solar mass star and give the planets their current masses and semimajor axes.

The eccentricities are all set to zero, however, so that we can measure the eccentricity

increases produced by the scattering encounters. From the results of these experiments,

we compute the cross sections for orbital disruption of each of the four planets (as

110



CHAPTER 5. SCATTER

outlined in the previous section). The results are shown as the solid blue curves in Figure

5.1, which also presents the cross sections for a more compact starting configuration

(described below). The error bars (not shown) due to incomplete Monte Carlo sampling

correspond to relative errors with a root-mean-square (RMS) value of ∼4.4%.

In Figure 5.1, and throughout this paper, the cross sections for increasing the

eccentricity to e = 1 incorporate all of the ways that the planet can be removed from its

solar system. These channels include [1] actually increasing the eccentricity to e ≥ 1,

which includes both hyperbolic orbits and planetary orbits that intersect the host star,

[2] ejection from the solar system by increasing the kinetic energy so that the orbit is

unbound, and [3] capture by one of the (two) passing stars. These channels are not

mutually exclusive, but the simulations are stopped after one of these events takes

place. However, these channels only include ejection processes that happen during or

immediately after the encounter (we denote these processes as prompt ejections). In

other cases, the planets are scattered into high eccentricity orbits, so that the orbits

cross each other. With these configurations, in the absence of resonance, the planets will

eventually experience close encounters, which in turn lead to ejections or collisions (we

denote this process as delayed ejection). The cross sections for delayed ejections will be

considered later.

For comparison, we also present the results from a series of numerical experiments

using a more compact orbital architecture (shown as the red dashed curves in Figure

5.1), which is motivated by the Nice model of solar system formation (Gomes et al.

2005). Although the Nice model has a number of variations, one feature is that the giant

planets could have formed with a more compact configuration than that of the present

day. For this case, we fix the orbit of Jupiter at aJ = 5.2 AU, and then let each successive
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planet have a semimajor axis that is larger than the previous one by a factor of 5/3.

This evenly-spaced solar system thus extends out to only 24 AU. The results, shown in

Figure 5.1, indicate that the cross sections for the compact configuration are somewhat

smaller than those obtained with the current semimajor axes. For this compact solar

system, the RMS errors (not shown) due to incomplete sampling are ∼4.6%.

Next we consider an even more compact orbital configuration, again motivated by

the Nice model, where the four giant planets are in mutual mean motion resonance

(MMR). In this case, we choose the starting semimajor axes to have values of a = 5.88

AU (Jupiter), 7.89 AU (Saturn), 10.38 AU (Uranus), and 12.01 AU (Neptune). With

these semimajor axes, Jupiter and Saturn are in a 3:2 MMR, Saturn and Uranus are in a

3:2 MMR, while Uranus and Neptune are in a 5:4 MMR (for further discussion of this

initial state, and others, see Batygin & Brown 2010; Nesvorný & Morbidelli 2012; Li &

Batygin 2014b). Note that the semimajor axis ratios do not imply period ratios with

exact integer values (although they are close). All of the orbital elements must be chosen

properly to put the system in mutual MMR, and this requirement displaces the period

ratios somewhat. Nonetheless, the resonance angles of the system (for all three planet

pairs) are librating in the initial state, as required for MMR. With this initial state, the

solar system is much more compact than at the present epoch, and the cross sections for

interactions are smaller. This trend is illustrated in Figure 5.2, which compares the cross

sections with those obtained for solar systems with the standard starting configuration.

To leading order, the smaller cross sections obtained for the resonant architecture are

a direct consequence of the smaller geometrical size. However, closer inspection of the

results suggests that the cross sections are larger than the smaller size would imply (see

the analysis of the following section). For example, the cross sections for changing the
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Figure 5.1: Cross sections for eccentricity increase for the current solar system architec-

ture and for a more compact configuration movitated by the Nice model. For the current

solar system (solid blue curves), the four giant planets are started with their current semi-

major axes and zero eccentricity. For the compact configuration (dashed red curves), the

planets are started with semimajor axes having a fixed ratio aj+1/aj = 5/3, where Jupiter

(j = 1) is started at its present location aJ = 5.2 AU. For both sets of cross sections, the

curves, from top to bottom, correspond to Jupiter (bottom), Saturn, Uranus, and Nep-

tune (top). Since the orbits start with zero eccentricity, the eccentricity increase ∆e = e,

where e is the post encounter eccentricity.
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Figure 5.2: Cross sections for eccentricity increase for the current solar system architec-

ture and for a resonant configuration movitated by the Nice model. For the current solar

system (solid blue curves), the four giant planets are started with their current semima-

jor axes and zero eccentricity. For the resonant configuration (dashed red curves), the

planets are started with semimajor axes a = 5.88, 7.89, 10.38, and 12.01 AU (for the

analogs of Jupiter to Neptune). For both sets of cross sections, the curves, from top to

bottom, correspond to Jupiter (bottom), Saturn, Uranus, and Neptune (top). Since the

orbits start with zero eccentricity, the eccentricity increase ∆e = e, where e is the post

encounter eccentricity.
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eccentricity of Uranus and Neptune are comparable. In this compact state, planet-planet

interactions can be important and act to increase the the cross sections of Uranus (and

Saturn) beyond the values obtained for more widely separated orbits.

In addition to changes in the orbital elements of the individual planets, as shown in

Figure 5.2, scattering interactions can remove solar systems from their resonant states.

The energy required to remove a planetary system from resonance is much less than

that required to eject a planet, or even to substantially change its orbital elements. To

address this issue, we have run an additional series of numerical simulations to determine

the fraction of systems that are removed from their initial resonant state due to passing

binaries. As before, the ensemble size NE ≈ 80,000, although the simulations take longer

because the resonance angles must be monitored for several libration times after the

encounters. The result of this set of experiments is the cross section for removing the

solar system from its initial resonant state, namely

〈σ〉res ≈ (2, 280, 000± 20, 800) AU2 . (5.3)

This cross section is about 20 times larger than that required to eject Neptune from the

solar system in its normal state, and nearly 40 times larger than the cross section to

eject Neptune from the compact, multi-resonant state. If the removal of the system from

resonance results in orbital instability over longer time intervals, then the multi-resonant

state could be more sensitive to disruption from passing stars than the standard solar

system architecture. We have carried out 70 longer-term integrations for post-encounter

systems and find that all but one are stable on time scales of ∼ 1 Myr. Other authors

(Batygin & Brown 2010; Nesvorný & Morbidelli 2012) also find that multi-resonant

states can be unstable due to perturbations (generally due to a planetesimal disk), and
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can eject planets, but more follow-up integrations are required to assess the probability

of significant instability.

The results reported thus far have all been calculated for cases where vb = 1 km/s,

a typical value for an embedded cluster environment (Lada & Lada 2003; Porras et al.

2003). Now we generalize the treatment by considering the dependence of the cross

section on the velocity dispersion of the background environment. As is well known,

interaction cross sections for high speed encounters, such as in the field (Laughlin &

Adams 2000), are much lower than those in clusters (Adams et al. 2006), and the velocity

dependence is relatively steep (Adams & Spergel 2005; Dukes & Krumholz 2012). To

study this dependence, we consider ensembles of numerical simulations with different

values of velocity dispersion vb. More specifically, we consider solar system starting with

the current value of semimajor axes, and vb in the range from 1 km/s to 32 km/s, varied

by factors of
√

2 (so they are evenly spaced in a logarithmic sense). For the low end of

this range of vb, we can use the usual number NE = 80,000 of trials in the ensemble for

each value of vb. For the larger values of vb, however, the cross sections are lower, and

disruptive events are rare, so that we need larger values of NE to obtain good statistics

(we find that the choice NE ≈ 200, 000 is usually large enough).

The interaction cross sections produced by this study are shown in Figure 5.3, where

each panel corresponds to the results for one of the giant planets. The cross sections are

plotted as a function of the post-encounter eccentricity e, for each choice of vb. Figure

5.3 shows that the cross sections are almost evenly spaced in a logarithmic sense, with

the lowest (highest) velocity dispersions producing the largest (smallest) largest cross

sections. This finding suggests that the cross sections — to leading order — display a

power-law dependence on the vb. This claim is verified in the following section.
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Figure 5.3: Cross sections for eccentricity increase for the current solar system architec-

ture over a wide range of velocity dispersions in the background cluster. The four giant

planets of the solar system are started with their current semimajor axes and zero eccen-

tricitiy. Each panel shows the cross sections to increase orbital eccentricity for Jupiter

(upper left), Saturn (upper right), Uranus (lower left), and Neptune (lower right). vb fall

in the range from 1 km/s (uppermost curves in each panel) to 16 km/s (lower curves),

and are equally spaced logarithmically (by factors of
√

2).
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Figure 5.4: Cross sections for a range of masses of the host star. Each case uses analogs

of the four giant planets of our solar system, where the planets start with the current

semimajor axes and zero eccentricitiy. Each panel shows the cross sections to increase

orbital eccentricity for the analog Jupiter (upper left), Saturn (upper right), Uranus (lower

left), and Neptune (lower right). The four curves in each panel correspond to four stellar

masses, M∗ = 0.25, 0.5, 1.0, and 2.0 M�, from top to bottom.
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Next we consider the effect of changing the mass M∗ of the host star. Figure 5.4

shows the cross sections for systems with the current solar system architecture and

varying stellar masses, from M∗ = 0.25 − 2.0M�. For these numerical experiments, the

solar systems are all started with four planets that have the same masses and semimajor

axes of the giant planets of our solar system. These analogs are labeled as ‘Jupiter’

through ‘Neptune’, although the host star can have a mass that differs from the Sun. As

expected, the cross sections shown in Figure 5.4 decrease as the stellar masses increases.

Unlike the case of varying the velocity dispersion, however, the cross sections, considered

as a function of eccentricity increase, do not display as much self-similarity: The cross

sections decrease more steeply with eccentricity as the mass of the host star increases.

Nonetheless, for a given value of eccentricity increase, cross sections for the four planets

(with their four values of a) all show the nearly same (power-law) scaling with stellar

mass.

Notice that changing the stellar mass is (in one sense) akin to changing the

planetary masses, because the mass ratios are the most important variables. However,

this association is not an equivalence: The masses of the passing binaries also enter into

the problem, and their mass distribution is kept invariant. In addition, if the masses

of the planets are increased to the point where the planet-planet interactions play a

role, then self-excitation of eccentricity can produce larger cross sections. This issue

is addressed below where we consider solar systems with larger planets. We expect

interactions to be important in the regime where the angular momentum exchange time

scale between planets is comparable to the encounter timescale. The exchange time scale

can be determined, but the calculation is different for widely separated planets where

the secular approximation is valid and for the resonant case (for further discussion, see
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Batygin & Morbidelli 2013).

For the starting configurations used thus far, the initial orbital eccentricities of

the planets have been taken to be zero. Given this choice, the resulting cross sections

represent the cross sections for increasing eccentricity (which cannot decrease from

its initial value). However, for the related problem of single stars interacting with

binaries, an important difference arises between starting states where the binary has

zero eccentricity and states where the binary has small but finite eccentricity (Heggie &

Rasio 1996). One might worry that the cross sections calculated herein could be affected

by introducing small starting eccentricities for the planetary orbits. We have explored

this possibility by using two additional starting configurations for the solar system. In

one case, the planetary orbits are started with their currently observed eccentricities, e

= 0.049, 0.057, 0.045, and 0.011 for Jupiter, Saturn, Uranus, and Neptune, respectively.

In the second case, the planetary orbits are all started with a larger value of eccentricity

e = 0.10. The resulting cross sections are shown in Figure 5.5, along with our previous

results with zero starting eccentricity. As shown in the Figure, all of the cross sections

converge to the same values as long as the final eccentricity is moderately larger than the

starting values. The difference between results obtained starting with zero eccentricity

and those where the orbits have their current eccentricity is modest. For the larger

starting values e = 0.10, the cross sections for reaching e = 0.10 are enormous of course,

much larger than the limits of the plot (and hence are not shown). Even for this starting

state, however, the cross sections have almost converged to their “natural” values for

e>∼ 0.20, except for the case of Uranus; for this planet, the cross sections for eccentricity

excitation only converge for e>∼ 0.35.

The results illustrated in Figure 5.5 indicate that the problem of solar systems
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Figure 5.5: Cross sections for the solar system planets and varying initial eccentricities

of the planetary orbits. For all cases, the four giant planets of our solar system are started

with their current semimajor axes. The solid blue curves show the results for zero initial

eccentricitiy; the dashed red curves show the results where the planets start with their

current orbital eccentricities (e = 0.049, 0.057, 0.045, and 0.011); the black dotted curves

show the results where the starting orbits all have e = 0.10. Cross sections are given

for Jupiter (bottom curves), Saturn, Uranus, and Neptune (top curves), all given as a

function of the post-encounter value e of the eccentricity.
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interacting with passing binaries is somewhat different than that of single stars

interacting with binaries (Heggie & Rasio 1996). Starting with zero eccentricities has

a larger effect in the binary-single-star setting. One difference between the two cases

is that of symmetry: For a single star passing by a binary with zero eccentricity, the

incoming trajectory is the same as the outgoing trajectory provided that the encounter

is distant (so that the binary orbit can be considered as a ring of mass); this symmetry

cancels some of the forcing. However, this symmetry is absent for solar system scattering,

even when the planetary orbits are circular. The binaries that impinge upon the solar

systems are themselves eccentric, where e is drawn from the observed binary eccentricity

distribution (which favors high e). In addition, the solar systems have four planets,

with different orbital phases, and this property also breaks the symmetry (albeit to a

lesser degree). Another difference between the two scattering problems is that the cross

sections of this paper are averaged over an ensemble of different binary properties and

different encounter parameters. The binary scattering results (Heggie & Rasio 1996)

show that the the difference between finite eccentricity and circular orbits is largest

for distant encounters, but the effect (the change in eccentricity) is largest for close

encounters (see their Figure 2). The cross sections of this paper include both regimes,

but the cross section is dominated by the close encounters where the results for e = 0 and

e 6= 0 are similar. As a result, starting the planetary orbits with non-zero eccentricity

has only a modest effect on the cross sections considered in this paper (provided that

one considers post-encounter eccentricities sufficiently larger than the starting values).

Next we consider the effects of planetary mass on the scattering cross sections. The

results are shown in Figure 5.6 for the usual Solar System parameters and for an analog

solar system where all of the giant planets have the mass of Jupiter (mP = 1mJ). Both
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Figure 5.6: Cross sections for eccentricity increase in systems where the giant planets all

have mass mP = 1mJ (dashed red curves). The cross sections for the current solar system

architecture are shown for comparison (solid blue curves). In both cases, the planets are

started with the current semimajor axes of the giant planets in our Solar System and

with zero eccentricity. Cross sections are shown for analogs of Jupiter (bottom curves),

Saturn, Uranus, and Neptune (top curves).
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classes of systems start with the same semimajor axes (the present-day values in our

system) and zero eccentricity. The figure shows that the cross sections for increasing the

eccentricities of Neptune and Uranus are largely unaffected by the increase in planetary

mass, but the cross sections for Jupiter and Saturn are somewhat larger. Note that the

cross sections are plotted only for eccentricity values e ≥ 0.20. Within such a massive

planetary system, small eccentricities (e ∼ 0.10) are easily excited by planet-planet

interactions; as a result, the cross sections for eccentricity increase — as determined

through our numerical scheme — are extremely large and are not plotted in the figure.

The numerical results for the cross sections can be understood as follows: To leading

order, we often expect the planets to act as test particles, so that the cross sections

should not be sensitive to the planetary masses. For sufficiently massive planets, however,

an increase in the eccentricity of one planet can lead to significant perturbations acting

on the other planets, thereby leading to increased eccentricity excitation. By increasing

the mass of all of the planets to that of Jupiter, the resulting solar systems are more

excitable. The largest increase in the cross sections, which occurs for Jupiter and for

low eccentricties, is only a factor of ∼ 2; most cross sections experience smaller changes.

These results are generally consistent with the idea that our Solar System is “full”,

i.e., no additional planets and little additional mass can be added to the extant planets

without rendering the system unstable. In fact, even the current solar system is unstable

on sufficiently long time scales (Batygin & Laughlin 2008; Laskar & Gastineau 2009).

Another way in which planetary orbits can be altered by scattering encounters is

by changing their inclination angles. For all of the simulations, we start the four giant

planets in the same plane (so that iJ = iS = iU = iN = 0). After the encounters,

the inclination angles of the four planets are, in general, nonzero. We define the
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Figure 5.7: Cross sections for increasing the spread of inclination angles of the planetary

orbits. All of the giant planets are started in the same plane; the quantity ∆i is the total

range of inclination angles of the four orbits after the encounters. Cross sections are shown

for a variety of vb, from vb = 1 km/s (top curve) to vb = 16 km/s (bottom curve), where

the values are evenly spaced logarithmically (by factors of
√

2).
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post-encounter spread ∆i of the inclination angles according to the expression

∆i ≡ max

{
cos−1

[
Jj · Jk
JjJk

]}
, (5.4)

where the Ji are the angular momentum vectors of the planetary orbits and where

the indices run through all four of the giant planets. The resulting cross sections for

increasing the spread of inclination angles is shown in Figure 5.7. The Figure shows the

cross sections for a range of velocity dispersions of the background cluster, from vb = 1

km/s to vb = 16 km/s, where the values are spaced by factors of
√

2. The cross sections

are almost evenly spaced in the semi-logarithmic plot and have nearly the same shape

as a function of ∆i. These properties indicate that the cross section has a power-law

dependence on vb (see Section 5.4).

In general, increases in the inclination angles are positively correlated with increases

in eccentricity. This result is not unexpected, as changes in both orbital elements

correspond to disruption of the initial states. To illustrate this trend, in Figure 5.8 we

plot the increases in the spread of inclination angle ∆i versus the change in eccentricity

(equivalently, the post-encounter eccentricity since ∆e = e). The two variables are in

fact well correlated, but the range of possible ∆i values for a given eccentricity e = ∆e

is large. As a result, in the figure we plot the mean values of ∆i averaged over a bin in

∆e with a width of δ = 0.05. The data show a well-defined correlation; for this choice of

binning, the spread in the inclination angles grows to about 80◦ as the eccentricity grows

to unity. The four curves shown in Figure 5.8 correspond to the four giant planets. Note

that the orbits of all four planets show the same general trend.

The cross sections discussed thus far correspond to the immediate, post-encounter

properties of the solar systems. In addition to immediate ejection, however, the solar
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Figure 5.8: Correlation between eccentricity increases and increases in the spread of

inclination angles of the planetary orbits. All of the giant planets are started in the same

plane with circular orbits; the quantity ∆i is the total range of inclination angles of the

four orbits after the encounters. Correlations are shown for the orbital elements changes

of Jupiter (heavy dashed red curve), Saturn (black solid curve), Uranus (black dotted

curve), and Neptune (heavy blue solid curve). For each planet, the inclination angle

increases are binned over a range in ∆e of width δ = 0.05. Although the correlation is

well-defined, the range of ∆i for a given value of ∆e is relatively large. The error bars

(shown for the Neptune curve only) depict the standard deviations.
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Figure 5.9: Cross sections for the ejection of at least one planet as a function of vb in

the cluster. The target systems have four giant planets with the masses and semimajor

axes of our solar system bodies. Cross sections are shown for three cases: increases in

eccentricity large enough to produce orbit crossing (solid dark curve marked by green

error bars), direct ejection of a planet (dotted red curve), either channel of ejection (solid

blue curve).
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systems can be rendered sufficiently unstable so that they eject planets long after

the scattering encounters are over. These longer term ejection events can be divided

into (at least) two types. In the first — and most unstable — case, the scattering

encounters leave the planetary orbits with high enough eccentricity so that adjacent

orbits cross. Most orbiting-crossing systems will eventually eject one of their planets,

provided that the system is not in a mean motion resonance; furthermore, perturbations

due to stellar encounters are unlikely to place a planetary system in resonance. We

address the effects of this type of instability by finding the cross sections for producing

orbit-crossing planetary systems (see below). In the second case, systems with more

modest eccentricities can be unstable over long spans of time. In order to assess the

effects of this latter class of outcomes, the post-encounter systems must be integrated

over typical stellar ages (billions of years). This task is beyond the scope of this present

work, but provides an interesting problem for the future.

Using the results of our numerical experiments, we can calculate the cross sections

for the scattering interactions to leave any two orbits with high enough eccentricities to

cross. For the case of the analog solar system, where the four giant planets have their

current masses and semimajor axes, the resulting cross sections are shown in Figure 5.9.

Three sets of cross sections are shown as a function of vb of the background cluster.

The cross sections for the post-encounter system to have an orbit-crossing configuration

are shown as the lower, green solid curve in the figure. For the calculation of this cross

section, only systems where all of the planets are retained by the host star are included.

The cross sections for the system to eject any planet (including those planets captured

by the passing stars) are shown as the red dotted curve. Finally, the total cross sections

for ejection, including both direct ejection of a planet and/or crossing orbits, are shown
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as the blue solid curve in the figure. The error bars depict the uncertainties in the cross

sections due to incomplete Monte Carlo sampling. Note that the cross sections for orbit

crossing and the cross sections for direct ejection are roughly comparable, with the latter

slightly larger (except at high velocity dispersion, where they are the same within the

sampling uncertainties). The total cross section for ejection is thus larger than that

for direct ejection by a factor of ∼ 2. This statement holds only for the current solar

system architecture, but remains valid over the range of velocity dispersion shown here

(vb = 1− 16 km/s).

We can now compare the results for the standard solar system architecture with that

of the more compact configuration motivated by the Nice model. Here we consider only

the most compact version where the planets are in multiple mean motion resonances (see

Figure 5.2). The compact configuration is expected to have lower cross sections for direct

ejection. But the orbits are closer together, so that less eccentricity excitation is required

to produce crossing orbits. On the other hand, the semimajor axes are smaller, which

lowers the cross sections for eccentricity increase. We find here that the cross sections for

orbit crossing are comparable, 〈σ〉 = 96, 500± 3750 AU2 for the standard configuration

versus 〈σ〉 = 92, 200± 3710 AU2 for the compact multi-resonant case. However, the cross

section for direct ejection is larger for the standard solar system by a factor of 1.5, so

that the total ejection cross section remains larger by a factor of ∼ 1.25.

Although the semimajor axes of planetary orbits are altered less dramatically than

the eccentricities and inclination angles during scattering encounters, the values of a

are nonetheless affected. The possible variations are quantified in Figure 5.10, which

shows the cross sections for producing relative changes (∆a)/a in the semimajor axes of

the four giant planets. This ensemble of numerical simulations uses the standard solar
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Figure 5.10: Cross sections for changes in the semimajor axis of the planetary orbits

due to scattering encounters. The target systems are analogs of our Solar System, with

the four giant planets initially in circular orbits with the current values of their semimajor

axes. The plots shows the cross sections for relative changes (∆a)/a in the semimajor

axis for the orbits of Jupiter (lower red curve), Saturn (green curve), Uranus (cyan curve),

and Neptune (upper blue curve).
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system architecture as initial conditions, where the planets have their current masses and

semimajor axes. The velocity dispersion of the background cluster is taken to be vb/2 =

0.5 km/s. As expected, the cross sections are largest for Neptune (top blue curve) and

smallest for Jupiter (bottom red curve). As a crude approximation, the cross sections are

proportional to the starting semimajor axes of the planets (although closer inspection

shows the scaling is somewhat less steep than linear).

Scattering encounters can cause the semimajor axes to become either smaller or

larger, corresponding to the loss or gain of orbital energy. However, Figure 5.10 shows

that the process is highly asymmetric, where the orbits are much more likely to become

larger (gain energy) than to move inward (lose energy). The scattering encounters rarely

reduce the semimajor axes by more than a factor of two. Moreover, the magnitude of

the cross sections are relatively small. More specifically, the cross sections for changing

the initial semimajor axes by 10% are roughly comparable to — but somewhat smaller

than — the cross sections for ejecting a planet (compare Figures 5.1 and 5.10). One

might think that cross sections for moderate changes ∆a would be larger than those

for ejection. However, the cross sections for changes in semimajor axis do not include

the ejections themselves, i.e., they are the cross sections for changing the semimajor

axis with the planet remaining bound to its host star. For large changes in a, there is

not much parameter space where a is increased but the planet remains bound (thereby

leading to the values shown in Figure 5.10). Notice also that the figure does not show

cross sections for overly small values of (∆a)/a; the cross sections become singular in the

limit (∆a)/a→ 0, as marked by the vertical dashed line.

The cross sections considered thus far correspond to interactions between solar

systems and passing binaries. On the other hand, roughly half of the stellar population
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Figure 5.11: Cross sections for eccentricity increase due to encounters with passing single

stars. The target systems are analogs of our Solar System, with the four giant planets in

circular orbits with their current values of semimajor axis. Each panel shows the cross

sections for a given planet, as labeled, where the curves correspond to varying velocity

dispersions of the background cluster: vb = 1, 2, 4, and 8 km/s (from top to bottom).
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consists of single stars, so that the corresponding cross sections for singles must also

be determined. Since we are primarily interested in a comparison between the cross

sections for single stars and binaries, it is crucial to use the same sampling for all of

the parameters in the problem. Toward this end, we use exactly the same procedure as

before (outlined in Section 5.2), but let the mass of the second star go to zero. In this

limit, the other, single star automatically resides at the center of mass of the system (and

the value of the binary eccentricity becomes irrelevant). The resulting cross sections for

single stars interacting with solar system analogs are shown in Figure 5.11. As before,

the initial solar systems consist of four giant planets with the masses and semimajor axes

of the present day Solar System (but with zero starting eccentricity). Each panel shows

the interaction cross sections for eccentricity increases for a given planet (as labeled).

Results are shown for four values of the velocity dispersion of the background cluster,

i.e., vb = 1, 2, 4, and 8 km/s (ordered from top to bottom in each panel).

Next we make a rough comparison of the cross sections for single star interactions

(Figure 5.11) with those obtained earlier for binaries (e.g., Figure 5.3). The single star

cross sections are smaller by more than a factor of two. Note that the binary systems

are, on average, somewhat wider than the size of the solar systems. As a result, as a

pair of stars passes by a solar system, it consists mostly of empty space but still provides

(roughly) twice the opportunity for interaction as a single star. One thus expects at

least a factor of two reduction in the cross sections for passing singles. The fact that the

reduction is larger than a factor of two is thus significant and indicates that the dynamics

of the binaries themselves must contribute. Further, as discussed in the following section,

the cross sections for single stars exhibit a different dependence on the background

velocity dispersion and a slightly steeper dependence on post-encounter eccentricity.
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For convenience, Table 2 collects the cross sections for the ejection and capture

of all four planets. For each solar system configuration considered in this paper, the

table lists two sets of cross sections, where the first line corresponds to planetary

ejection and the second line corresponds to planetary capture. The Standard Model

(the first configuration in the table) represents the case where the four giant planets

have the masses and semimajor axes of our current Solar System, the host star has mass

M∗ = 1.0M�, the velocity dispersion of the cluster vb = 1 km/s, and the interacting stars

are binary. The first column in the table labels the solar system configuration by the

variable that differs from its standard value. The error bars in the table are those due to

incomplete Monte Carlo sampling. One way to assess statistical significance is through

the ratio of the cross section to its sampling error. For the ejection cross sections, the

mean value (averaged over the entire table) of this signal to noise ratio is ∼ 14, so that

the ejection cross sections are well-determined. Capture events are much more rare. For

the capture cross sections, the mean value of the signal to noise ratio is only ∼ 4. For

the rarest events, captures with high cluster velocity dispersion, the cross sections are

only defined at the factor of two level.

5.4 Analysis and Scaling Laws

The cross sections found in the previous section display relatively simple dependences on

the underlying variables of the problem: For example, for each type of solar system, the

cross sections, when considered as functions of the post-encounter planetary eccentricity

e, all display the same general shape. As a result, the functions 〈σ〉(e) can (almost) be

rescaled to find a universal functional form, where scaling factors take into account the
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initial semimajor axis a of the planet, the velocity dispersion vb/2 of the background

environment, the stellar mass M∗, and so on. The goal of this section is to understand

the general scaling properties of the cross sections and to determine the extent to which

they are self-similar. In general, self-similarity arises when physical scales are either

missing from a problem or do not contribute to the results (Barenblatt 2003); we return

to this issue at the end of the section.

Even in the reduced case where we consider one planet at at time, the interactions

considered in this paper involve four bodies (the host star, the planet, and two

binary members). Unfortunately, four-body interactions are rather difficult to describe

analytically to any reasonable degree of approximation. As a result, the goal of this

section is relatively modest: Instead of building complicated analytical models for

4-body (and higher N-body) dynamics, we consider here basic physical principles that

can be used as motivation for scaling laws. We then combine these heuristic results with

our detailed numerical determinations of the cross sections. The result is physically

motivated fitting formula that characterize the cross sections over the parameter space

of interest (a, vb,M∗, e).

To start the discussion, consider the simplest case where the the cross section for

interactions is the geometrical cross section πa2 provided by a planet in its initial orbit.

Further, we consider the planets to be independent of each other during the encounters.

This cross section will be enhanced by gravitational focusing, so we can write down an

heuristic expression for the cross section in the form

〈σ〉0 ≈ απa2

(
1 +

v2
esc

v2
∞

)
, (5.5)

where vesc is the escape speed from the target system (at the location of the planet), and
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v∞ is the asymptotic relative speed between the two systems. In order to pass within

this cross sectional area, the interacting star (binary) must be about the same distance

from the planet as its host star, so that the planet has a chance of being ejected from

its original solar system. This expression thus represents the escape cross section. The

parameter α is a dimensionless constant of order unity and is included to encapsulate

the uncertainties inherent in this approximation. After inserting the expression for the

escape speed, we obtain

〈σ〉0 = απa2

(
1 +

GM∗
av2

b

)
→ απ`a , (5.6)

where we have replaced the asymptotic speed v∞ with vb of the cluster (or other

background stellar system) and we have defined the corresponding length scale

` ≡ GM∗/v
2
b (where ` ∼ 890 AU for vb = 1 km/s). The final expression represents the

limiting form, which is applicable when gravitational focusing dominates, and implies a

linear dependence of the cross section on a. Given this form, the cross section requires

another length scale. In this problem, the orbit speed of the binary, the asymptotic speed

v∞ of the encounter, the orbit speed of the planet, and vb are all roughly comparable (1

– 10 km/s). For example, the orbit of Neptune in our solar system has an escape speed

of ∼ 5.5 km/s, whereas the orbit speed of a binary at the peak of the period distribution

is also ∼ 5 km/s. If we only have a single velocity V , then dimensional analysis implies

that the relevant length scale must be ` = GM∗/V
2, as given in equation (5.6); additional

uncertainties can be absorbed into the dimensionless parameter α. Finally we note that

for a velocity dispersion vb = 1 km/s, the gravitational focusing term dominates by a

factor of 30.

The limiting form of equation (5.6) is linear in the starting semimajor axis a of
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the planet. To see how well this expression works, we plot the ejection cross sections

of the planets versus semimajor axis in Figure 5.12. As expected, the ejection cross

section is a nearly linear function of the semimajor axis. This trend holds for solar

systems starting with the present-day semimajor axes (star symbols) and the more

compact configuration where the semimajor axes are spaced by factors of 5/3 (open

triangles). We also plot results for ultra-compact solar systems in multiple mean motion

resonance (open squares). In order to isolate the dependence of the cross sections on

initial semimajor axis from planet-planet scattering effects, this latter case uses smaller

planet masses (by a factor of 10), so they act more like test masses; to explore a wider

range in a, we also take this compact system to be smaller by a factor of 1.35 compared

to that considered in the previous section. The error bars delineate the uncertainty due

to incomplete Monte Carlo sampling. Not only do the cross sections show nearly linear

dependence on a, but the slope of the curve is predicted by the above analysis. The red

solid (blue dashed) curve in Figure 5.12 shows the cross section predicted by equation

(5.6) for the limiting case (full form); for both cases, the characteristic length scale ` =

890 AU and the dimensionless parameter α = 7/5.∗

Next we consider the dependence of the cross sections on the post-encounter

eccentricity e (which is equivalent to ∆e because the orbits start with zero eccentricity).

For all four planets in all three types of solar system, the e-dependence is similar. Since

the ejection cross sections scale linearly with semimajor axis a (see Figure 5.12), we scale

the cross sections by dividing out one power of a. The resulting scaled cross sections are

∗In order to set the value for this dimensionless parameter, and others specified in this section, we

generally search in increments of 10−2, find the value that gives the minimum RMS error, and then choose

the nearest round number (ratio of relatively small integers).
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Figure 5.12: Cross sections for planetary escape versus the starting semimajor axis. The

12 points on the plot correspond to the four giant planets in each of three versions of the

initial solar system architecture. The symbols represent different starting states, including

the semimajor axes of the present-day solar system (stars), a compact configuration with

5/3 semimajor axis ratios (open triangles), and an ultra-compact solar system starting

in multiple mean motion resonances (open squares). The red solid line shows the cross

section indicated by the limiting form of equation (5.6); the blue dashed curve shows the

full form.
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shown in Figure 5.13 as a function of eccentricity e. In addition to the individual cases

(shown as the light dotted curves), the average is shown as the heavy blue curve, where

the error bars depict the standard deviation. This latter quantity provides a measure

of the spread in the values of the cross section over the various cases. The standard

deviation varies from about 17% of the cross section at low eccentricity e = 0.10 to only

about 9% at e = 1.0.

The curves in Figure 5.13 are nearly straight lines on the semi-logarithmic plot,

so that the dependence of the cross sections on eccentricity is nearly exponential. For

purposes of illustration, we use an exponential fitting function of the form

〈σ〉e
a

= απ` exp[ b (1− e) ] , (5.7)

where the first factor enforces consistency with the ejection cross sections considered

above. For the value b = 4/3, we obtain a good fit to the calculated, scaled cross

sections, as shown by the heavy red line in Figure 5.13. Except for first point (e = 0.1),

the exponential fit (straight red line) agrees with the average values (solid blue curve)

to within about 3%, i.e., the difference is much less than the width of the distributions

as measured by the standard deviations. Another measure of the quality of the fit is

provided the relative differences between the numerically determined cross sections used

in constructing Figure 5.13 and the exponential form given by equation (5.7); the RMS

of these relative errors is ∼ 12%.

Next we consider the effects of the velocity dispersion of the background cluster

environment. As shown in Figure 5.3 in the previous section, the cross sections vary with

the post-encounter eccentricity with approximately the same functional form over a wide

range of vb. Only the leading cofficient changes. Moreover, the uniform spacing of the
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Figure 5.13: Scaled cross sections versus eccentricity increase ∆e (equivalently, the post-

encounter eccentricity e) for the four giant planets in each of the starting architectures for

the solar system. The individual cases are shown as light dotted curves. The heavy solid

blue curve depicts the average, where the error bars depict the standard deviation. The

straight red line shows the result for cross sections with a purely exponential dependence

on eccentricity.
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curves in Figure 5.3 indicates that the cross sections must have a power-law dependence

on vb (to leading order). We have explored scalings with velocity dependence of the form

〈σ〉 ∝ v−γb and find that the best fit occurs for γ ≈ 7/5. Using this choice of power-law

index, we plot the scaled cross sections versus post-encounter eccentricity in Figure 5.14,

where we include the linear a-dependence found previously (i.e., 〈σ〉v7/5
b /a). Each light

dotted curve in the figure shows the result for one planet and one choice of velocity

dispersion. The heavy blue curve shows the average over all of the curves, where the

error bars depict one standard deviation. The heavy straight red line represents the

same exponential dependence given in equation (5.7) and used in Figure 5.13. The RMS

of the relative differences between the numerically determined cross sections and the

curve given by equation (5.7) is ∼ 13%. The cross section curves are thus self-similar

to this level of accuracy. Furthermore, the dependence of the cross sections on velocity

dispersion is nearly independent of the dependence on starting semimajor axis a of the

planet.

The dependence of the interaction cross sections on the mass of the host star is

somewhat more complicated than for the other variables, as illustrated in Figure 5.4.

As the mass M∗ of the star increases, the cross sections, considered as functions of

eccentricity, become steeper. The spacing of the curves in Figure 5.4 (for different stellar

masses) grows with e, so that the curves are not self-similar. In spite of this complication,

we can still fit the cross sections with a power-law function of stellar mass, although the

accuracy of the approximation is not expected to be as high as in the previous cases.

We thus consider a scaling of the form 〈σ〉 ∝ M−µ
∗ , and vary the index µ to find the

best fit. The choice µ = 1/3 provides the lowest RMS of the relative error. Figure 5.15

shows the result by plotting the scaled cross sections 〈σ〉M1/3
∗ /a (again including the
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Figure 5.14: Scaled cross sections versus eccentricity increase ∆e (equivalently, post-

encounter eccentricity e) for a collection of different velocity dispersions for the back-

ground. The starting state is taken to have four giant planets with the current semimajor

axes. Cross sections are scaled by v
7/5
b /a (see text). The individual cases are shown as

light dotted curves, with include curves for each of the planets for vb = 1 – 16 km/s,

equally spaced logarithmically (by factors of
√

2). The heavy solid blue curve depicts the

average, where the error bars depict the standard deviation. The red striaght line shows

the result for cross sections with a purely exponential dependence on eccentricity.
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Figure 5.15: Scaled cross sections versus eccentricity increase ∆e (equivalently, post-

encounter eccentricity e) for solar systems with different stellar masses. The starting

state is taken to have four giant planets with the current masses and semimajor axes.

Cross sections are scaled by M
1/3
∗ /a (see text). The individual cases are shown as light

dotted curves, with include curves for each of the four planets for four choices of stellar

mass M∗ = 0.25 – 2.0 M� (spaced by factors of 2). The heavy solid blue curve depicts the

average, where the error bars depict the standard deviation. The red striaght line shows

the result for cross sections with a purely exponential dependence on eccentricity.
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linear dependence on semimajor axis a) as a function of post-encounter eccentricity. The

light dotted lines show the individual (scaled) cross sections and the heavy blue curve

shows the average. The error bars depict the corresponding standard deviation, which is

larger than for the cases considered previously (compare Figure 5.15 with Figures 5.13

and 5.14). The heavy red staight line shows the same result as before (from equation

[5.7]). The RMS error between the exponential line and the numerically determined

cross sections is about 20%. This larger error measure results from fitting the cross

sections with a power-law form, even though the results depart somewhat more from

self-similarity.

The cross sections for increasing the spread of inclination angles, considered over a

range of velocity dispersions, also show a nearly self-similar form (see Figure 5.7). This

finding indicates that the cross section should scale with a nearly power-law dependence

so that 〈σ〉 ∝ v−ηb . Over the range vb = 1− 16 km/s, we find that the best fit occurs for

η ≈ 7/5. To illustrate how well this scaling law works, we plot the scaled cross sections

〈σ〉v7/5
b as a function of sin(∆i) in Figure 5.16. Each light dotted curve in the figure

corresponds to the result of one choice of velocity dispersion. The heavy blue curve

shows the average of the scaled cross sections, where the error bars depict the standard

deviations. The mean size of the error bars corresponds to relative differences of ∼ 6%,

so that the curves are self-similar to this degree of accuracy. Notice that the scaling

exponent η ≈ 7/5 for inclination angle increases as a function of vb is the same as the

corresponding index for eccentricity increases.

After the velocity dependence has been scaled out, the cross section for increasing

the spread of inclination angles is a slowly varying monotonic function of ∆i (see Figure

5.16). If we consider x = sin ∆i as the independent variable (instead of ∆i itself), the
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Figure 5.16: Scaled cross sections for increasing the post-encounter spread ∆i of the

inclination angles of the planetary orbits. The starting states have the four giant planets

orbiting in the same plane (∆i = 0). The cross sections are scaled by the velocity

dispersion of the cluster with the relation 〈σ〉v7/5
b . The individual cases are shown as light

dotted curves. The heavy solid blue curve depicts the average, whereas the error bars

depict the standard deviation. The heavy red curve shows the fitting function described

in the text.
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cross section can be fit with an exponential function which is analogous to that used to

describe the eccentricity dependence. More specifically, if we use the functional form

〈σ〉i = 〈σ〉0 exp [b0 (1− sin ∆i)] , (5.8)

then the cross section for increasing ∆i can be fit using the parameters b ≈ 3/4 and

σ0 ≈ 166, 000 AU2. Note that the value of the index b used here somewhat smaller than

that needed to fit the dependence of the cross sections on (post-encounter) eccentricity

(compare with equation [5.7]). The fitting function from equation (5.8) is shown in

Figure 5.16 as the solid red curve. The quality of the fit is reasonably good: The fitting

curve falls within one standard deviation (marked by errorbars in the figure) of the mean

for all of the range except the first point (x = sin ∆i = 0.1); alternately, the RMS of

the relative error between the two curves is ∼ 8%. However, the mean of the numerical

results (blue curve) shows more curvature than the exponential fit (red curve), especially

at small values of x.

Although we could find a more complicated fitting function that has smaller RMS

relative error, we use equation (5.8) in order to compare changes in the spread of

inclination angle with changes orbital eccentricity. If we equate the variable x = sin ∆i

with e, then equations (5.7) and (5.8) have the same general form. We can then compare

the leading coefficients, which have values 〈σ〉0 ≈ 166,000 AU2 for ∆i-dependence and

απ`a ≈ 120,000 AU2 for e-dependence, where we have used a = 30 AU to evaluate the

latter expression. The cross sections for eccentricity increase and spread of the inclination

angles thus display similar behavior. The leading coefficients agree to within ∼ 28% and

we can make the following inexact analogy: An increase in Neptune’s eccentricity of ∆e

= 0.1 corresponds to changing the spread of the inclination angles (of all four planets)
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so that sin ∆i increases by 0.1. We can also make a rough association between increasing

the spread of inclination angles to ∆i ≥ 90 degrees and the ejection of a planet (e ≥ 1).

Both of these events have (approximately) the same cross section and both involve order

unity changes to the angular momenta of the planetary orbits. In addition, the cross

sections for inclination angle increase and eccentricity increase scale with the vb in the

same manner (∝ v
7/5
b ).

The association between changes in the variables sin ∆i and e provides an intriguing

topic for additional work. To leading order, the canonical actions written in terms of the

orbital elements have the forms

Γ ∝ 1

2
e2 and Z ∝ sin2(i/2) . (5.9)

The apparent relation between the two variables (as observed in the simulation results)

could thus be evidence of an equipartition-like mixing of the actions (see Lichtenberg &

Lieberman 1992). Although beyond the scope of the present paper, this issue should be

explored further.

We can extract a potentially important cross section from these results. The

scattering interactions considered here can readily increase the spread of inclination

angles of outer bodies in a solar system. On the other hand, the scattering events

themselves have little effect on planets in tight orbits, such as the multi-planet systems

observed by the Kepler mission (Batalha et al. 2013). However, the bodies in the outer

solar system can have important long-term effects on the inner bodies provided that

they are scattered into orbits with sufficiently high inclination angles. More specifically,

if the inclination angles of the outer orbits are larger than 39.2◦, then the Kozai effect

can operate (Kozai 1962; Lidov 1962), and the inner portions of the solar system can be
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excited over the age of the systems. Combining this requirement with the results of our

numerical simulations, we find that the cross section for scattering a solar system into a

state where the Kozai effect can operate is given by

〈σ〉Kozai62 ≈ 210, 000 AU2
( aout

30 AU

)( vb

1 km/s

)−7/5

, (5.10)

where aout is the semimajor axis of the outermost planet of the system. Note that

the requirement of large mutual inclination is necessary but not sufficient for the

Kozai effect to play a role. The Kozai effect is a highly fragile type of interaction

because it involves libration of the argument of periastron, and this quantity can be

subject to many other sources of precession (for further discussion, see Batygin et al.

2011). We also note that this form for the cross section (equation [5.10]) involves some

extrapolation: The numerical simulations were carried out primarily for the architecture

of the current solar system. Nonetheless, the outermost planet is always the most

affected by fly-by interactions, and the cross sections scale linearly with semimajor axis

to a good approximation.

Next we consider the scaling behavior of the cross sections for interactions with

passing single stars. As for the case of binary systems, we expect the cross sections to

scale nearly linearly with the semimajor axis a of a given planet. In addition, the nearly

equal spacing on the logarithmic plot of Figure 5.11 indicates that the cross sections

should display power-law dependence on the velocity dispersion, such that 〈σ〉 ∝ v−γsb .

The velocity dependence for these single star cross sections is moderately less steep

than those found earlier for binaries; the optimal value of the index γs ≈ 6/5, which is

somewhat smaller than the value for binary cross sections γ ≈ 7/5. After scaling out the

semimajor axis and velocity dispersion, the reduced cross sections are shown in Figure
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Figure 5.17: Scaled cross sections versus eccentricity increase ∆e (equivalently, post-

encounter eccentricity e) for solar systems interacting with single stars. The starting

states have four giant planets with the current masses and semimajor axes of our Solar

System. Cross sections are scaled by the factor v
6/5
b /a. The individual cases are shown

as light dotted curves, which include the four giant planets and four values of velocity

dispersion of the background cluster: vb = 1, 2, 4, and 8 km/s. The heavy solid blue curve

depicts the average, where the error bars depict the standard deviation. The red striaght

line shows the result for cross sections with an exponential dependence on eccentricity.
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5.17. The light dotted curves show the scaled values for given planets and values of vb

(which lie in the range 1 – 8 km/s). The heavy blue curve shows the mean over the

entire collection and the error bars denote the standard deviations. These error bars

correspond to an average relative error of ∼ 15%, which is comparable to, but somewhat

larger than that found for the binary cross sections.

The scaled cross sections shown in Figure 5.17 for single star interactions show

a nearly exponential dependence on the post-encounter eccentricity. Although this

behavior is analogous to that found for the binary cross sections, the slope of the

exponential is somewhat steeper. Here we consider a fitting function of the form

〈σ〉single = 〈σ〉0
( a

AU

)( vb

1 km/s

)6/5

exp [bs(1− e)] , (5.11)

where we obtain a good fit for 〈σ〉0 = 1000 AU2 and bs = 8/5. The resulting fit is shown

as the red straight line in Figure 5.17. The RMS difference between the expression of

equation (5.11) and the numerically determined, scaled cross sections for single stars is

only ∼ 8%.

Now we can compare the cross sections for single stars with those for binaries.

The comparison is complicated by the different scalings of the two cases with velocity

dispersion and the different exponential laws for the eccentricity dependence. To fix

ideas, consider the benchmark case where vb = 1 km/s for the background cluster. Here,

the cross sections for binary star interactions are ∼ 4.2 times larger than those for single

stars at the high end of the eccentricity range e = 1. Similarly, the binary cross sections

are ∼ 3.2 times larger at the low end of the eccentricity range where e = 0.10. Averaged

over the span of eccentricity considered here, the binary cross sections are larger by

a factor of ∼ 3.6. This factor decreases with increasing velocity dispersion, however,
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because the binary cross sections fall according to the relation 〈σ〉 ∝ v
−7/5
b , whereas the

single star cross sections fall as 〈σ〉 ∝ v
−6/5
b . With these scaling laws, the cross sections

for binaries are only a factor of 2 larger (than those for single stars) when the vb is

increased to vb ≈ 20 km/s.

These results can be interpreted as follows: At high asymptotic speeds, which occur

for vb>∼ 20 km/s, the two members of a binary pass by the solar system quickly enough

so that binary motion and planetary motion play only a minor role in the interaction

(this speed is much larger than the mean orbital speed of either the binary or the

outer planet). As a result, the two stars interact with the solar system in an almost

independent manner, and the cross sections for binary interactions should be a factor of

∼ 2 larger than those for single stars (for large vb). On the other hand, lower impact

speeds can be comparable to the binary orbital speed and/or the planetary orbital

speeds. In this regime, the motion of the binary stars relative to one another during the

encounter can increase their chances of interacting with the planets, thereby leading to

larger cross sections. In extreme cases, resonant interactions can occur when the velocity

scales of the problem are all comparable (see also Laughlin & Adams 2000), and these

long-lived events can greatly increase the chances of disruption of planetary orbits during

the encounters. To be consistent with this picture, the ratio of the single-star cross

section to the binary cross section must decrease less steeply with vb, as found here.

Before leaving this section, we briefly address the issue of how self-similarity can

arise in the context of solar system scattering. In its full form, this problem has six

velocities (four planetary orbits, one binary orbit, and the encounter velocity) and seven

masses (four planets and three stars). One expects self-similarity only when most of these

scales do not contribute (Barenblatt 2003). We can construct an argument to reduce the
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number of relevant scales as follows: To leading order — and only during the encounter

itself — planetary interactions with the binary are independent of interactions with

other planets. As a result, we can (often) treat the encounters as single-planet systems

scattering with binaries. The planet itself is usually small enough to be considered

as a test mass, so that we are left with “only” three masses and three velocities.

The binary masses are always drawn from the same IMF, and the cross sections are

determined through many samples of that IMF (NE >∼ 80, 000), thereby leaving the ratio

M∗/(M1∗ + M2∗) as the most important mass variable. In the regime of interest, the

cross sections have values in the range 〈σ〉 ∼ 104 − few × 105 AU2, which implies that

the length scales that characterize the interactions `c ≡ 〈σ〉1/2 ≈ 100 − 500 AU. This

size scale is larger than that of both the planetary orbits (a = 5 − 30 AU) and most

binary orbits (where the peak of the period distributions corresponds to ab ≈ 42 AU).

If the orbital speeds of the planets and the binary are fast enough, then their orbits can

be replaced by rings of mass with the same semimajor axis and eccentricity (Murray

& Dermott 1999). This averaging effectively eliminates the orbital velocities from the

problem and leaves vb as the most important velocity variable. Indeed, we find that

the cross sections depend most sensitively on the stellar host mass M∗ (equivalently,

the mass ratio M∗/(M1∗ + M2∗)) and the velocity dispersion vb. This argument is not

exact, however, and the additional scales (e.g., orbits speeds) do play some role. These

complications are responsible for the spread in the scaled cross sections shown in Figures

5.12 – 5.16.

We can also compare these scaling results to analytic results found in previous studies

(see, e.g., Heggie & Rasio 1996; Spurzem et al. 2009), although the system parameters

are not exactly the same. The latter study finds a scaling relation 〈σ〉 ∝ a3/2v−1
b in the
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impulsive regime (where v∞ ∼ vb is much greater than the orbital speed of the planet)

and 〈σ〉 ∝ av−2
b for non-impulsive encounters. Our results (see Figures 5.14 and 5.17)

are intermediate between these two scaling laws, since the encounters are rarely fully

in the impulsive or the non-impulsive regime. In addition, this current study includes

binaries, and the binary orbital speed is generally comparable to the planetary orbital

speed. The binary motion can either add to or subtract from the relative velocity of

the encounter (depending on the timing and geometry of the encounters), so that the

scattering interactions have a wide range of relative velocities, even for a given vb. As a

result, our parameter space does not fall fully in any of the limiting regimes considered

by previous analytic estimates.

We note that we took into account the flux of the incoming stars after obtaining

the scattering cross section. It is more accurate to consider the flux while calculating

the cross section. An additional velocity dependence on the cross section due to the flux

can slightly reduce the cross section, because higher velocity stars (weaker perturber)

are more likely to encounter the planetary system. Figure 5.18 shows the cross section

versus the final eccentricity for Neptune when vb = 1 km/s, comparing with the original

velocity distribution. The reduction in the cross section is similar for the other planets.

We further note that the expression of gravitational focusing also provides a scaling

law for the dependence of the cross sections on vb. However, the cross section cannot

be fit well by this simple expression. The dependence on the incoming velocity is more

complicated, and the cross section can be fit better with a power law expression as shown

in Figure 5.19.
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Table 5.1:: Solar System Architectures

Configuration Jupiter Saturn Uranus Neptune

Standard e = 0 e = 0 e = 0 e = 0

Compact a = 5.20 AU a = 8.67 AU a = 14.4 AU a = 24.1 AU

Resonant a = 5.88 AU a = 7.89 AU a = 10.38 AU a = 12.01 AU

Eccentric # 1 e = 0.049 e = 0.057 e = 0.045 e = 0.011

Eccentric # 2 e = 0.10 e = 0.10 e = 0.10 e = 0.10

Massive mP = 1mJ mP = 1mJ mP = 1mJ mP = 1mJ

eccentricity
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Figure 5.18: The cross section of Neptune when vb = 1 km/s, comparing with the

distribution taken into account the flux. The cross section taking into account the flux is

slightly smaller than the original case.

155



CHAPTER 5. SCATTER

Table 5.2:: Cross Sections for Ejection and Capture

Configuration Jupiter Saturn Uranus Neptune

Standard model 15500 ± 1360 34000 ± 2050 72300 ± 3100 113000 ± 3860

812 ± 306 2140 ± 531 6040 ± 994 11400 ± 1280

Compact model 18100 ± 1510 32700 ± 2130 57500 ± 2790 93900 ± 3570

915 ± 379 2280 ± 607 4380 ± 817 11500 ± 1320

Resonant model 23900 ± 1810 40200 ± 2440 61100 ± 2990 60100 ± 2900

1240 ± 467 2150 ± 569 3430 ± 701 3620 ± 738

Massive planets 24100 ± 1890 38300 ± 2390 77700 ± 3360 105000 ± 3880

1530 ± 579 2170 ± 637 4810 ± 932 8480 ± 1190

vb = 2 km/s 9170 ± 947 14800 ± 1250 29800 ± 1770 45200 ± 2240

391 ± 136 635 ± 173 2600 ± 487 6370 ± 903

vb = 4 km/s 2980 ± 454 6090 ± 776 10600 ± 918 15700 ± 1140

270 ± 173 607 ± 230 1580 ± 486 2430 ± 569

vb = 8 km/s 1220 ± 258 2580 ± 403 4060 ± 506 5830 ± 698

130 ± 85 134 ± 75 239 ± 88 624 ± 228

vb = 16 km/s 181 ± 39 607 ± 113 1220 ± 182 2140 ± 252

82 ± 52 53 ± 39 214 ± 83 169 ± 69

M∗ = 0.25M� 37400 ± 2195 74800 ± 3170 138000 ± 4350 196000 ± 5130

766 ± 330 3510 ± 742 10300 ± 1240 19500 ± 1720

M∗ = 0.5M� 27600 ± 1830 54000 ± 2630 107000 ± 3740 152000 ± 4460

1730 ± 560 3310 ± 755 7470 ± 1060 15100 ± 1490

M∗ = 2.0M� 11000 ± 1170 21700 ± 1720 45700 ± 2420 69300 ± 2980

458 ± 234 1590 ± 467 4420 ± 844 7410 ± 1110

Single, vb = 1 km/s 3840 ± 651 7100 ± 856 17300 ± 1430 30600 ± 1980

135 ± 80 587 ± 210 2080 ± 480 5090 ± 871

Single, vb = 2 km/s 1620 ± 324 3110 ± 429 9030 ± 926 13200 ± 1090

168 ± 86 236 ± 106 1370 ± 423 2810 ± 641

Single, vb = 4 km/s 685 ± 177 1300 ± 244 3740 ± 531 6790 ± 793

116 ± 94 117 ± 51 360 ± 117 1480 ± 411

Single, vb = 8 km/s 269 ± 103 1090 ± 322 1440 ± 286 1880 ± 266

21 ± 14 23 ± 14 157 ± 53 374 ± 202
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5.5 The Solar Birth Aggregate

Given that most stars are born within clusters, it is likely that the birth environment of

our own Solar System was a cluster of some type. The argument for a substantial birth

cluster is bolstered by evidence for short-lived radionuclides in meteorites, which suggests

that the early solar nebula was enriched by a nearby supernova (Cameron & Truran

1977; see the review of Dauphas & Chaussidon 2011). A number of previous papers have

considered how dynamical scattering encounters in this putative birth cluster can provide

constraints on the cluster properties (see the discussion of Section 5.1). Unfortunately,

however, no consensus has been reached. This section briefly revisits the issue in light of

the updated cross sections determined above.

The basic problem posed by the solar birth aggregate involves a number of

ingredients: [I] Direct supernova enrichment of the early solar nebula requires a nearby

massive star, which is more likely to form in a larger stellar system. Further, significant

nuclear enrichment requires close proximity (distances d = 0.1 − 0.3 pc), which implies

that the supernova progenitor lives within the same cluster. Acting in the opposite

direction, larger clusters can potentially disrupt planetary systems through the action

of both [II] dynamical scattering (with the cross sections determined here) and through

[III] intense radiation fields which can evaporate gaseous disks. In order for the solar

system to reach its present-day state, however, the orbits of the giant planets cannot be

greatly perturbed and the early solar nebula could not be too severely evaporated. On

the other hand, [IV] the classical Kuiper belt has an apparent edge at ∼ 50 AU, and [V]

the dwarf planet Sedna has an unusual orbit; both of these solar system properties could

be explained by requiring a close encounter with another member of the cluster. The
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challenge is to find a birth scenario for the solar system that successfully negotiates the

compromises required to simultaneously explain all five of these constraints. Supernova

enrichment, the edge of the Kuiper belt, and the orbit of Sedna all argue in favor a large

and long-lived cluster; disruption via both scattering and radiation argue in the opposite

direction.

Existing work has considered a variety of approaches to this issue. Several authors

advocate solar birth clusters with stellar membership size in the range N = 103 − 104

(e.g., Adams & Laughlin 2001; Portegies Zwart 2009; Adams 2010; Pfalzner 2013).

These studies find that cluster systems in this decade of N lead to moderate dynamical

disruption of their constituent planetary systems. Additional work focuses on even

larger, longer-lived clusters and find that they can instigate substantial changes to

planteary orbits, including frequent ejections (Malmberg et al. 2007, 2011; Spurzem et

al. 2009; Parker & Quanz 2012; Hao et al. 2013). On the other hand, competing work

suggests that the solar birth cluster does not produce significant disruption of planetary

orbits (Williams & Gaidos 2007; Dukes & Krumholz 2012; Craig & Krumholz 2013; see

also Williams 2010).

The aforementioned papers thus reach different conclusions about the importance of

dynamical scattering of planetary systems in clusters. These differences arise because

of varying assumptions about cluster properties and varying assumptions about how to

enforce the five constraints on solar system properties outlined above. Although a full

review of this topic is beyond the scope of this work, we provide a brief overview below

(for additional detail, see the reviews of Adams 2010; Dauphas & Chaussidon 2011;

Pfalzner 2013).
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For a given type of disruption, with cross section 〈σ〉, the interaction rate is given by

Γ = n∗〈σ〉v (from equation [5.1]). The total expected number Ndis of disruption events,

per solar system, integrated over the lifetime τ of the cluster is then given by

Ndis =

∫ τ

0

Γdt =

∫ τ

0

n∗〈σ〉vdt . (5.12)

The number of disruptive interactions thus depends on the speed v at which a given

solar system encounters passing binaries, their number density n∗, and the total time τ

spent within the cluster.

We first consider the speed v. Recall that the interaction cross section 〈σ〉 varies

with the velocity dispersion of the cluster according to the relation 〈σ〉 ∝ 〈σ〉0v−7/5
b .

If we identify the speed v with the velocity dispersion vb of the cluster, then the

product 〈σ〉v ∝ v
−2/5
b . As a result, most of the velocity dependence of the cross

section is compensated by that of the interaction rate, so that the number of disruption

events depends only weakly on the velocity dispersion. As an example, consider the

Orion Nebula Cluster (ONC), an intermediate-sized young stellar system with velocity

dispersion vb ∼ 2 km/s (Hillenbrand & Hartmann 1998). Provided that it stays intact,

the ONC is likely to evolve into an open cluster resembling the Pleiades (Kroupa et

al. 2001); over the coming ∼ 100 Myr, the velocity dispersion of the cluster will slowly

decrease to vb ∼ 1 km/s. Over this span of time, the quantity v
−2/5
b that defines the

velocity dependence of the interaction rate varies by only about 32%.

For setting the number of disruption events, one important quantity is the time τ

over which clusters remain intact as dynamical systems. In the simplest terms, although

most stars are formed in clusters, these astronomical entities come in (at least) two

distinctly different flavors. Only about 10 percent of the stellar population is born within
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clusters that are sufficently robust to become open clusters (Roberts 1957; Battinelli &

Capuzzo-Dolcetta 1991), which are relatively long-lived (τ = 100 Myr – 1 Gyr). The

remaining 90 percent of the stellar population is born within embedded clusters (e.g.,

Allen et al. 2007), which have much shorter lifetimes (τ ∼ 10 Myr). As shown below,

solar systems that are born within long-lived clusters can have an appreciable chance

of dynamical disruption; short-lived clusters lead to significant disruption with greatly

reduced probability.

Another important quantity is the density of the cluster. For clusters found in

the solar neighborhood, the cluster radius R ∝ N1/2 (Lada & Lada 2003), so that the

clusters display nearly constant surface density (Adams et al. 2006). With this relation,

clusters with larger stellar membership sizes N have lower mean densities. However, the

clusters in the sample are relatively small (with N < 2500), and this trend does not

continue up to the largest clusters with N = 104 − 106 (Whitmore et al. 2007), or to the

subpopulation of systems that become globular clusters. The largest clusters can thus

have larger densities.

To assess the effects of scattering encounters, we need to specify the rate Γ at which

solar systems encounter passing binaries (and single stars). As shown previously (Adams

et al. 2006; Proszkow & Adams 2009), the rate of close encounters in a cluster can be

written in the convenient form

Γ = Γ0

(
b

b0

)γ
, (5.13)

where b0 is a fiducial distance (taken here to be b0 = 1000 AU), and where the fiducial

rate Γ0 and index γ depend on the cluster properties. The index γ falls in the range

1 ≤ γ ≤ 2, where the extreme of the range correspond to perfect gravitational focusing
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(γ → 1) and the full geometrical cross section (γ → 2). In these systems, encounters

beyond ∼ 1000 AU are little affected by gravitational focusing. Since the cross sections

calculated in this paper include gravitational focusing, we can write the interaction rate

in the form

Γ = Γ0
〈σ〉
πb2

0

. (5.14)

The benchmark interaction rate Γ0 has a typical value of about 0.1 interactions per

target star per Myr. However, given the wide range of possible cluster properties, it

can vary over a wide range, from an order of magnitude lower to an order of magnitude

larger than this fiducial value (see Figures 6 and 7, and Tables 8 – 13 in Proszkow

& Adams 2009). Note that the benchmark rate is, in general, larger than the simple

estimate Γ0 ∼ 〈n∗〉vbπb
2
0, where 〈n∗〉 is the mean density of the cluster. The stellar

density that defines the interaction rate is not the mean over the cluster, but rather

the weighted mean over the integrated orbits of the ensemble of cluster members. The

cluster members generally do not stay at a given cluster radius, and the cluster density

is centrally concentrated, so that solar systems sample the higher stellar densities of the

cluster core. This effect is amplified by the starting conditions for clusters, which start

with subvirial initial conditions; as a result, the orbits are more radial than isotropic,

resulting in more excursions through the dense central core (see Adams et al. 2006;

Proszkow & Adams 2009 for further discussion).

Collecting the results outlined above, we can write the number of disruption events

(from equation [5.12]) in the form

Ndis ≈
〈σ〉0
πb2

0

∫ τ

0

Γ0

(
vb

1 km/s

)−2/5

dt . (5.15)

The cross section for moderate solar system disruption can be taken as 〈σ〉0 ≈ 2.5× 105
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AU2, which corresponds to events producing eccentricity increases ∆e = 0.1 and/or

increases in the spread of inclination angles ∆i = 10◦ (e.g., see Figures 5.1 and 5.7). To

obtain this value, we use a linear combination of the binary and single-star cross section

(see Figure 5.11), and an assumed binary faction of 2/3. Although these changes to the

orbital elements are not devastating, they are large enough to distinguish a disrupted

solar system from our own. Note that this value can be written 〈σ〉0 ≈ (500 AU)2, which

is somewhat larger than the previous estimate of ∼ (400 AU)2 (from Adams & Laughlin

2001).† The leading factor in equation (5.15) is thus of order 1/10. Since the benchmark

interaction rate Γ0 ∼ 0.1 Myr−1, the cluster lifetime must be relatively long, τ ∼ 100

Myr, in order for disruption to take place with high probability. In other words, most

solar systems residing in long-lived clusters can experience moderate disruption.

The cross sections for planet ejection are smaller than the values used above by a

factor of ∼ 3. As a result, only a fraction (∼ 1/3) of the solar systems in long-lived

clusters are expected to lose planets with Neptune-like orbits (with even smaller fractions

for closer planets). Keep in mind, however, that the benchmark interaction rates Γ0 can

vary by a factor of ∼ 10 in both directions.

The above considerations resolve some of the differences found in the literature

concerning the disruption rates for planetary systems in clusters. In order for disruption

to occur with high probability, clusters must live for relatively long times τ >∼ 100 Myr.

Indeed, the studies that find low disruption rates consider the clusters to have relatively

†The difference arises because the present study increases the target area in equation (5.2) from B = 4

to B = 100, thereby including more distant events. Note that the original work (Adams & Laughlin 2001)

correctly introduced the cross sections as lower limits. The present cross sections are also lower limits,

although they are much closer to their greatest lower bounds.

162



CHAPTER 5. SCATTER

short lifetimes τ ∼ 10 Myr (e.g., Williams & Gaidos 2007; Dukes & Krumholz 2012).

How long are clusters expected to stay together? As outlined above, the cluster

population has at least two branches. Some clusters disperse over relatively short time

scales of only ∼ 10 Myr. The robust clusters that survive to become open clusters have

empirically determined lifetimes τem that can fit with a function of the form

τem = 2.3Myr

(
Mc

1M�

)0.6

, (5.16)

where Mc is the cluster mass (Lamers et al. 2005). With this relation, clusters with

initial masses larger than ∼ 550M� live longer than 100 Myr and can potentially disrupt

their constituent solar systems. More specicifally, we can write the dynamical constraint

in the form

Ndis ≈
〈σ〉0
πb2

0

〈Γ0〉2.3(ΥN)3/5〈(vb/1 km/s)−2/5〉<∼ 1 , (5.17)

where Υ (≈ 1/2 M�/star) is the mass-to-number ratio (the conversion factor between

cluster mass Mc and cluster membership size N), and where we include the time average

of the velocity dispersion of the cluster (raised to the proper power). After some

rearrangement and the specification of typical numbers, this constraint can be written in

the form

N <∼ 5000
[( 〈σ〉0

2.5× 105AU2

)( 〈Γ0〉
0.05Myr−1

)
(5.18)

×
〈(

vb

1 km/s

)−2/5
〉]−5/3

<∼ 104 .

Note that the disruption cross section is determined more precisely than either the

expected age of the cluster (from equation [5.16]) or the benchmark interaction rate

Γ0. This latter quantity can be determined to high accuracy for a given set of cluster

properties and initial conditions, but its value varies appreciably from cluster to cluster
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(Proszkow & Adams 2009). Equation (5.18) uses a value near the low end of the range

in order to provide an upper limit on N . In light of these uncertainties, a reasonable

order-of-magntidue estimate for the dynamical constraint is N <∼ 104, as given by the

final inequality. This result is roughly consistent with previous estimates (Adams &

Laughlin 2001; Portegies Zwart 2009; Adams 2010; Pfalzner 2013). Nonetheless, the

full probability distribution for the survival (or disruption) of planetary systems as a

function of cluster size N should be constructed.

The constraint given by equation (5.18) assumes that the solar birth cluster is

relatively long-lived. If the solar system formed within a cluster that disperses in only

∼ 10 Myr, the corresponding dynamical constraint would be considerably weaker. The

motivation for considering a long-lived cluster comes from constraints jointly implied

by the five solar system properties outlined at the beginning of this section. Direct

supernova enrichment [I] favors a long-lived cluster, so that the progenitor star has

enough time to live, evolve, and explode. An even stonger argument comes from the need

for a scattering event to produce the edge of the classical Kuiper belt [IV] and to produce

the orbit of Sedna [V]. If these solar system properties arise from dynamical interactions

in the birth cluster, then a long-lived stellar system is strongly indicated. It remains

possible for these features of the solar system to be explained in other ways. Nonetheless,

any self-consistent set of constraints on the solar birth environment must explain all three

of these properties, and must simultaneously account for the corresponding constraints

due to dynamical scattering encounters [II] and radiation fields [III] (e.g., see Fatuzzo &

Adams 2008; Thompson 2013).

For completeness, we also consider possible constraints on the solar birth cluster for

the scenario where the solar system spends much of its early life in the ultra-compact
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multi-resonant configuration (see Section 5.3, Figure 5.2). The cross section for removing

the solar system from its resonant state is then given by equation (5.3), which is more

than nine times larger than that used above. If, in addition, the removal of the solar

system from resonance always led to significant disruption over longer times, then

the maximum size of the solar birth cluster would be ∼ 40 times smaller than that

of equation (5.18). In practice, however, the solar system, after being removed from

resonance, will not always be significantly disrupted (for example by ejecting a planet)

before it evolves and spreads out (as advocated by the Nice model; Gomes et al. 2005;

Tsiganis et al. 2005). To assess the risk of disruption in this case, one must also know the

probability of the non-resonant (but still compact) solar system experiencing disruption

on sufficiently short time scales. This calculation involves a large ensemble of long-term

(∼ 100 Myr) solar system integrations and is beyond the scope of this present work.

Nonetheless, direct application of equations (5.3) and (5.18) suggests that the constraint

could be tighter than that derived for the solar system in its usual configuration.

Finally, we note that another class of observational constraints on the solar birth

environment might become available. Given that the birth cluster is expected to have

N ≈ 103 − 104 stars with similar chemical composition, it is possible in principle to find

other members of our solar birth aggregate. Although billions of years have passed and

the cluster has long since dispersed, perhaps ∼ 20 of these solar siblings could reside

within 100 pc of the Sun (Portegies Zwart 2009). By focusing on the chemical species

that show the most variation from cluster to cluster, it is possible to observationally

distinguish these siblings from other stars (Ramı́rez et al. 2014). The discovery of even

a few such stars would provide strong constraints on the properties of the solar birth

cluster and its location within the Galaxy. On the other hand, the Solar System could
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have had a more complicated dynamical history including large radial migration in the

Galaxy (Kaib et al. 2011), which could reduce the chances of finding solar siblings.

5.6 Conclusion

5.6.1 Summary of Results

Using results from more than 2 million individual numerical scattering experiments, this

paper has found cross sections for the disruption of planetary orbits in solar systems

interacting with passing stars and binaries. Our specific results can be summarized as

follows:

[1] More compact solar systems have smaller interaction cross sections (Figures 5.1

and 5.2). To leading order, the cross section for a given disruption event (e.g., planet

ejection or eccentricity increase) scales linearly with the semimajor axis of the initial

orbit, i.e., 〈σ〉 ∝ a (see Figure 5.12).

[2] For most solar systems, the cross section for a given planetary orbit to be

disrupted during a scattering encounter is almost independent of the other planets.

This feature of the interactions allows for the scaling analysis presented in Section

5.4. Of course, after the encounter, solar systems that suffer moderate disruption can

subsequently experience orbital instability, and this latter effect does depend (quite

sensitively) on the other planets in the system. In addition, for highly self-interacting

solar systems, those with sufficiently massive planets and/or close orbits, interactions

among the planets themselves can lead to effectively higher cross sections (e.g., see

166



CHAPTER 5. SCATTER

Figures 5.2 and 5.6).

[3] The dependence of the cross sections 〈σ〉 on the post-encounter eccentricity e has

a nearly exponential form (see Figures 5.1 – 5.5). As a result, the cross sections can be

written 〈σ〉 ∝ exp[−be], where b ≈ 4/3 provides a good fit across the range of parameter

space considered in this work (Figures 5.13, 5.14, and 5.15).

[4] The cross sections depend sensitively on the velocity dispersion vb of the

background environment, where the dependence displays a nearly power-law form.

Moreover, the shape of the cross section curves, as a function of eccentricity, are nearly

the same across the parameter space considered here (Figures 5.3 and 5.14). The cross

sections can thus be written as 〈σ〉 ∝ v−γb exp[−be], where γ = 7/5 and b = 4/3 provide

a good fit over range of interest.

[5] The cross sections depend on the mass M∗ of the host star, where the dependence

has the approximate form 〈σ〉 ∝ M
−1/3
∗ . The mass dependence is somewhat more

complicated, however, as the cross sections are not fully self-similar (see Figures 5.4

and 5.15). For more disruptive encounters (where e → 1 and planets are ejected), the

scaling with mass is somewhat steeper and the form 〈σ〉 ∝ M
−1/2
∗ provides a better fit

(consistent with previous results from Adams et al. 2006).

[6] Most of this work considers planetary orbits with vanishing initial eccentricity

e. Nonetheless, for solar systems starting with e 6= 0, the interaction cross sections

for eccentricity increase are nearly the same (Figure 5.5), provided that one considers

post-encounter eccentricities sufficiently larger than the starting values (roughly, by the

increment δe ∼ 0.1). This finding stands in contrast to the related problem of single

stars interacting with binaries, where the cross sections for binaries with e = 0 and e 6= 0
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are significantly different (Heggie & Rasio 1996).

[7] The above results can be combined to write the cross section for eccentricity

increase for solar systems interacting with binaries in the general form

〈σ〉 = 4050 (AU)2
( a

AU

) (M∗
M�

)−1/3

(5.19)

×
(

vb

1km/s

)−7/5

exp

[
4

3
(1− e)

]
.

This result holds over the ranges of parameters given by 5 AU ≤ a ≤ 50 AU,

0.25M� ≤ M∗ ≤ 2M�, 1 km/s ≤ vb ≤ 16 km/s, and 0.1 ≤ e ≤ 1. Equation (5.19) is

in good agreement with the numerically obtained results: For fixed stellar mass, the

RMS relative error for the range of starting semimajor axis, velocity dispersion, and

post-encounter eccentricity is less than about 12 percent (see Figures 5.13 and 5.14).

Including variations in the stellar mass, the RMS error is less than about 20 percent

(Figure 5.15). Over the same regime of parameter space, the cross section itself varies by

more than a factor of ∼ 1000. Equation (5.19) provides the total ejection cross sections

(including capture events) in the limit e→ 1; the cross sections for ejection and capture

are listed separately in Table 5.1.

[8] The cross sections for increasing the spread of inclination angles ∆i are

comparable to those for increasing eccentricity (Figure 5.7). The cross sections for ∆i

also show a nearly self-similar form, and scale with velocity dispersion of the background

cluster according to 〈σ〉 ∝ v
−7/5
b (Figure 5.16). This scaling exponent is the same as

that found for eccentricity increases. The cross sections can be fit with an exponential

dependence on the variable x = sin ∆i. Although inexact, one can identify increases in

inclination with increases in eccentricity such that ∆x ∼ ∆e. In general, increases in

the spread of inclination angles and orbital eccentricity are well-correlated (Figure 5.8),
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although the ∆i values for a given ∆e display a wide range. We have also determined the

cross sections for increasing the inclination angles beyond 39.2◦, the benchmark value

required for the Kozai effect to operate (equation [5.10]).

[9] In addition to the ejection of planets during the scattering encounters, orbital

eccentricites can be increased so that planetary orbits will cross each other. Most solar

systems in such states will eject — or perhaps accrete — planets on relatively short time

scales. For systems with the architecture of the current solar system, the cross section for

this channel of secondary ejection is comparable to that of direction ejection, so that the

total cross section for ejection is effectively doubled (Figure 5.9). For the ultra-compact

configuration of the solar system (in or near multiple mean motion resonances), the cross

section for ejection due to orbit crossing is comparable to that of the standard solar

system, but the cross section for direct ejection is smaller.

[10] The cross sections for changing the semimajor axes of the planetary orbits are

smaller than those for increasing eccentricity and/or inclination angle (Figure 5.10).

Equivalently, the semimajor axes change much less than the other orbital elements

during scattering encounters. In rough terms, 10% changes in the semimajor axis — for

planets that remain bound — have approximately the same cross sections as planetary

ejection.

[11] The cross sections for solar systems interacting with single stars are smaller

than those for binary encounters (Figure 5.11). The single-star cross sections are nearly

self-similar (Figure 5.17), and scale with the semimajor axis of the planet and cluster

velocity dispersion according to 〈σ〉 ∝ a v
6/5
b . The scaling exponent for velocity is

somewhat smaller than that for binaries and the dependence of the cross sections on
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the post-encounter eccentricity is steeper. On average, the single-star cross sections are

smaller than the binary cross sections by a factor of ∼ 3.6 for small velocity dispersions

(vb = 1 km/s). This factor falls to only ∼ 2 for larger values vb ∼ 20 km/s; for

higher speeds we expect the binary components to act as two separate stars during the

encounters (except for close binaries). In general, the effective cross section is a linear

combination of the single and binary star cross sections,

〈σ〉 = fb〈σ〉binary + (1− fb)〈σ〉single , (5.20)

where fb is the binary fraction.

[12] We have briefly revisited the dynamical constraint that can be placed on the

birth aggregate of our solar system due to scattering encounters (Section 5.5). The

strength of this constraint depends crucially on whether one assumes that the solar

system forms in a robust, long-lived cluster (with τ >∼ 100 Myr, like those that become

open clusters) or in a short-lived cluster that dissipates within τ ∼ 10 Myr. For

long-lived clusters, the requirement that the solar system is not disrupted implies an

order of magnitude upper limit on the solar birth aggregate of N <∼ 104 (see equation

[5.18]). In practice, one should construct the probability distribution for solar system

survival/disruption as a function of N (using the cross sections determined herein), and

combine it with the other constraints on the birth cluster (see Figure 7 in Adams 2010;

see also Portegies Zwart 2009 and Pfalzner 2013).

[13] The cross section for removing a solar system from mean motion resonance is

much higher than that required to disrupt the planetary orbits. For the ultra-compact

multi-resonant configuration advocated by some versions of the Nice model, this cross

section (see equation [5.3]) is ∼ 9 times larger than the disruption cross section for
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the usual solar system architecture. If removal from resonance leads to longer-term

instability, then constraints on the solar birth aggregate would be tighter for systems in

the multi-resonant configuration.

5.6.2 Discussion

The cross sections reported in this paper are subject to three different types of

uncertainties, and the distinctions among these quantities should be kept in mind. [1]

First, the Monte Carlo procedure used to determine specific cross sections (as outlined

in Section 5.2) results in uncertainties due to incomplete sampling. These uncertainties

decrease with increasing size of the ensemble of simulations and are proportional to

N−1/2
E . Over most of the parameter space, we run sufficient numbers NE of scattering

experiments so that the sampling errors are less than ∼ 5% and usually even smaller.

These sampling errors are present in all of the cross sections presented in Section 5.3,

although they are usually not included on the plots (however, see Figure 5.5). [2] Next,

in Section 5.4, we explore scaling laws to collapse the cross sections for varying velocity

dispersion vb, host mass M∗, and planet semimajor axis a into nearly self-similar forms.

The range of the resulting scaled functions is thus characterized by the error bars shown

in Figures 5.13, 5.14, 5.15, 5.16, and 5.17. These error bars represent a measure of the

degree to which the cross sections depart from self-similarity. The size of these error bars

falls in the range 10 – 15%, except for the scaling with the mass of the host star (where

the error bars correspond to 20% departures). [3] Finally, the mean of the scaled cross

sections are described by fitted functions with simple forms. The differences between

these functions and the mean scaled cross sections are of order 5 – 10%, smaller than
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the standard deviations of the different sets of cross sections used to construct the mean

forms.

In addition to the uncertainties outlined above, the cross sections calculated herein

depend on the features of the stellar population that provides the perturbations. As

described in Section 5.2, the cross sections sample the distributions of stellar masses,

binary periods, binary mass ratios, binary orbital eccentricities, etc. Different choices for

these distributions will lead to corresponding variations in the cross sections. Although

we use observations to specify the distributions, they are nonetheless subject to both

measurement error and possible variations from region to region.

The numerical simulations carried out for this paper determine the immediate

changes in the orbital elements of the solar systems due to passing stars. However,

additional changes in the orbital elements can occur over longer time scales. As one

example, after an encounter, a planetary system often has larger eccentricities, which

can lead to orbital instability over longer spans of time. But the timescales for such

instabilities can have a wide range. For systems where the eccentricities are increased so

much that planetary orbits cross, one expects instability and (usually) planet ejection on

a relatively short time. The cross sections for orbit crossing are thus of great interest and

are given in Figure 5.9. For systems with smaller eccenticity increases, however, orbital

instability can take much longer. For compact multi-resonant solar systems, modest

changes in the orbital elements and/or the removal of the system from its resonant state

can lead to instabilities over millions of years (Batygin & Brown 2010). For systems with

more widely separated orbits, instabilities can take even longer than the current age of

the universe (Batygin & Laughlin 2008; Laskar & Gastineau 2009). To study this issue,

the post-encounter solar systems must be integrated over long time scales (up to billions
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of years) to fully determine the effects of the encounters. This task is left for future

work. On another front, the orbits could also damped after the scattering encounters,

thereby moving the orbits back towards smaller eccentricities (Levison & Morbidelli

2007; Picogna & Marzari 2014). This effect should also be considered in follow-up

studies, especially on time scales of 1 – 100 Myr when solar systems are expected to

retain a significant population of planetesimals.

The scattering encounters considered herein can be effective in sculpting giant planet

orbits and the Kuiper Belt of our Solar System (e.g., Kenyon & Bromley 2004). On the

other hand, the Oort cloud is too large to be produced within a young embedded cluster

(e.g., see Brasser et al. 2012 for further discussion). More specifically, the Oort cloud

extends out to ∼ 50, 000 AU (Oort 1950; Jewitt 2001), more than 1000 times the size

of the solar systems considered in this paper. With this enormous size, the Oort cloud

would be decimated by passing stars within the cluster. As a result, the cloud must be

produced later, after the solar system leaves its birth cluster, or perhaps during its exit.

Any viable scenario for the solar birth environment must simultaneously account for

the Oort cloud, the giant planet orbits, Kuiper Belt properties, radioactive enrichment,

Sedna’s orbit, and survival of the solar nebula gas reservoir; these coupled constraints

thus pose an interesting and challenging opimization problem for further study.
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Chapter 6

On the Spin-axis Dynamics of a

Moonless Earth

This thesis chapter originally appeared in the literature as

Li, G. & Batygin, K. On the Spin-axis Dynamics of a Moonless

Earth, The Astrophysical Journal, 790, 69, 2014

Abstract

The variation of a planet’s obliquity is influenced by the existence of satellites with a

high mass ratio. For instance, the Earth’s obliquity is stabilized by the Moon, and would

undergo chaotic variations in the Moon’s absence. In turn, such variations can lead to

large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central

issue for understanding climate. The relevant quantity for dynamically-forced climate

change is the rate of chaotic diffusion. Accordingly, here we reexamine the spin-axis
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evolution of a Moonless Earth within the context of a simplified perturbative framework.

We present analytical estimates of the characteristic Lyapunov coefficient as well as the

chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic

change in the Earth’s obliquity is sufficiently slow to not preclude long-term habitability.

Our calculations are consistent with published numerical experiments and illustrate the

putative system’s underlying dynamical structure in a simple and intuitive manner.

6.1 Introduction

With the exception of Venus and Mercury, all planets in our solar system have satellites.

However, satellites that comprise a high mass ratio are apparently not very common. In

the solar system, the Earth-Moon system is the only planet (not counting Pluto-Charon)

where mM/m⊕ is not negligible. Moreover, no compelling evidence has been found for

exomoons around the observed exoplanets (Kipping et al. 2013a,b).

The existence of satellites with high mass ratios may play a significant role in

stabilizing the planet’s obliquity. For instance, the Earth’s obliquity is currently stable.

However, if the Moon were removed, the Earth’s obliquity would undergo chaotic

variations (Laskar et al. 1993; Neron de Surgy & Laskar 1997; Lissauer et al. 2012).

Mars’s satellites comprise a negligible fraction of Mars’ mass, and Martian obliquity is

thought to have been chaotic throughout the solar system’s lifetime (Ward 1973; Touma

& Wisdom 1993; Laskar & Robutel 1993).

The stability of the obliquity is very important for climate variations, as obliquity

changes affect the latitudinal distribution of solar radiation. For the case of Mars (an
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ocean-free atmosphere-ice-regolith system), the obliquity changes apparently result in

drastic variations of atmospheric pressure by runaway sublimation of CO2 ice (Toon

et al. 1980; Fanale et al. 1982; Pollack & Toon 1982; Francois et al. 1990; Nakamura

& Tajika 2003; Soto et al. 2012). For Earth-like planets (planets partially covered by

oceans) the change of climate depends on the specific land-sea distribution and on the

position within the habitable zone around the star. In other words, while it is debatable

whether the variation in obliquity truly renders a planet inhabitable, it is clear that

the climate can change drastically as the obliquity varies (Williams & Kasting 1997;

Chandler & Sohl 2000; Jenkins 2000; Spiegel et al. 2009).

Although spin-axis chaos for a Moon-less Earth is well established, the rate of

chaotic diffusion appears to be inhomogeneous in the chaotic layer. To this end, Laskar

et al. (1993) used frequency map analysis and noted that Earth obliquity may exhibit

large variations (ranging from 0 degree to about 85 degree), if there were no Moon.

However, recently Lissauer et al. (2012) used direct integration and showed that the

obliquity of a moonless Earth remains within a constrained range between −2 Gyr

to 2 Gyr, and concluded that the chaotic variations of the Earth’s obliquity and the

associated climatic variations are not catastrophic. This finding is in fact consistent with

the frequency map analysis of Laskar et al. (1993). Moreover, even prior to the direct

numerical integration, Neron de Surgy & Laskar (1997) has already pointed out that

rapid chaotic variation have a restricted range. Interestingly, a similar analysis applies

to the obliquity evolution of Mars (Laskar et al. 2004). Stated more simply, it is not

only important to understand if the obliquity undergoes chaotic variations but also to

understand how rapidly such variations occur, to obtain a handle on the climatic changes

that govern the habitability of a given planet. Our goal here is to describe a framework
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for such an analysis. We adopt a perturbative approach to the problem, and calculate

the characteristic Lyapunov timescale and the diffusion coefficient of the obliquity. With

the Lyapunov timescale and the diffusion coefficient, one can estimate the range of the

obliquity the planet may reach in a given time, and inform the climate change of the

planet.

Our paper is structured as follows. In section 2, we delineate the perturbative

model and lay out the inherent assumptions. In section 3, we calculate the diffusive

properties of the system and compare our analytical estimates to numerical simulations.

We conclude and discuss the implications of our results in section 4.

6.2 A Simplified Perturbative Model

As the primary goal of this work is to obtain analytical estimates of the relevant

timescales for chaotic diffusion, we begin by considering a simplified description of the

system.

Without the Moon, the Earth’s obliquity is found to be chaotic in the range 0− 85o

, where there are two large chaotic regions: 0o − 45o & 65o − 85o. There also exists a

moderately chaotic bridge that connects the two regions: 45o − 65o (Laskar et al. 1993;

Morbidelli 2002). The dynamical analysis is simpler in the large chaotic regions. Thus,

we treat them first.
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6.2.1 Large Chaotic Regions: 0◦ − 45◦ & 65◦ − 85◦

The Hamiltonian describing the evolution of planetary obliquity is well documented in

the literature (e.g. Colombo (1966); Laskar & Robutel (1993); Touma & Wisdom (1993);

Neron de Surgy & Laskar (1997)):

H(χ, ψ, t) =
1

2
αχ2 +

√
1− χ2 × (A(t) sinψ +B(t) cosψ)), (6.1)

where ψ is the longitude of the spin-axis, χ = cos ε, ε is the obliquity, and α is an

approximately constant parameter. Specifically,

α =
3G

2ω

[ m�

(a�
√

1− e2
�)3

+
mM

(aM
√

1− e2
M)3

(1− 3

2
sin2 iM)

]
Ed, (6.2)

where m� is the mass of the Sun, a� and e� are the semi major axis and the eccentricity

of the Earth’s orbit, mM is the mass of the moon, aM , eM and iM are the semi major axis,

eccentricity and inclination of the Moon’s orbit around the Earth, Ed is the dynamical

ellipticity of Earth, and ω is the spin of the Earth. α characterizes the intrinsic precession

of the Earth’s spin axis, and is obtained by averaging the torques from the Sun and

Moon over their respective orbits. For a moonless Earth, α = 0.0001yr−1 (Neron de

Surgy & Laskar 1997). In addition,

A(t) = 2(q̇ + p(qṗ− pq̇))/
√

1− p2 − q2, (6.3)

B(t) = 2(ṗ− q(qṗ− pq̇))/
√

1− p2 − q2, (6.4)

where p = sin i/2 sin Ω and q = sin i/2 cos Ω, i is the inclination of the Earth with

respect to the fixed ecliptic and Ω is the longitude of the node.

The inclination and the longitude of node of the Earth change as the other planets

in the solar system perturb the Earth’s orbit. The evolution of i and Ω can be obtained
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by direct numerical integration or in the low-e,i regime via perturbative methods such

as the Lagrange-Laplace secular theory. Specifically, within the context of the latter, a

periodic solution represented by a superposition of linear modes can be obtained.

i cos Ω =
∑

ik cos (skt+ γk), (6.5)

i sin Ω =
∑

ik sin (skt+ γk). (6.6)

The amplitudes and the frequencies of the modes have been computed in classic

works (Le Verrier 1855; Brouwer & van Woerkom 1950). We use the latest update of

these values from Laskar (1990).

In adopting equations (6.5) and (6.6) as a description of the Earths inclination

dynamics, we force the disturbing function in Hamiltonian (1) to be strictly periodic.

In fact, it is well known that the orbital evolution of the terrestrial planets is chaotic

with a characteristic Lyapunov time of ∼ 5Myr (Laskar 1989; Sussman & Wisdom

1992). Consequently, our model does not account for the stochastic forcing of the

obliquity by the diffusion of the Earths inclination vector (see Laskar et al. 1993). Such

a simplification is only appropriate for systems where the intrinsic Chirikov diffusion is

faster than that associated with the disturbing function. As will be shown below, the

assumption holds for the system at hand.

As already mentioned above, in absence of the Moon, rapid chaos spans two

well-separated regions, which are joined by a weakly chaotic bridge (Laskar et al. 1993).

In each of the highly chaotic regions, irregularity arises from overlap of a distinct pair

of secular resonances (see Chirikov (1979)). As shown in Figure (6.1), the overlap of s1
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and s2 causes the chaotic region in ε ∼ 65o − 85o (“C2”) and the overlap of s3 and s4

causes the chaotic region in ε ∼ 0o − 45o (“C1”). Including only the terms associated

with these four frequencies in Hamiltonian (7.2), the chaotic region of ε ∼ 0o − 85o can

be well reproduced (Morbidelli 2002). Accordingly in the following analysis, we retain

only the four essential modes to analyze the two chaotic regions and the “bridge” that

connects them sequentially.
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Figure 6.1: The minimum/mean/maximum of the obliquity reached in 18Myr as a

function of the initial obliquity. The grey lines represent the results including all the

frequencies, the black lines represent the results including s1, s2, s3 and s4, the red lines

represent the results including s1 and s2, and the blue lines represent the results including

s3 and s4. The four frequencies reproduces the results including all the frequencies.

Between ε0 ∼ 65o − 85o and ∼ 0o − 45o, the chaotic behavior of obliquity is caused by s1

and s2, and s3 and s4 separately. Between 45o− 65o, the evolution of the obliquity is also

not regular, and is caused by a nonlinear coupling among the resonant doublets (s1,2 and

s3,4).

Substituting the expansion for i cos Ω and i sin Ω and keeping only the four
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frequencies (s1−4), we can rewrite the Hamiltonian as

HC1,2(χ, ψ, t) =
α

2
χ2 + ε

√
1− χ2 ×

4∑

k=1

ak cos (skt+ δk + ψ), (6.7)

where ε = 10−7, α = 0.0001yr−1. The other parameters are included in table (6.1). An

identical derivation is followed in Laskar (1996).

Within “C1” and “C2”, the chaotic variations are not sufficiently large to induce

overwhelming variations in
√

1− χ2. To leading order, it can be assumed to be constant,

and we evaluate it at the center of the chaotic regions (specifically χ0,1 = 20◦ for “C1”

and χ0,2 = 70◦ for “C2”). In doing so, we deform the topology of the domain inherent

to Hamiltonian (7) from a sphere to a cylinder. While not appropriate in general,

such an operation is justified for the system at hand because both “C1” and “C2”

individually occupy a limited obliquity range (see Appendix for additional discussion).

Then, the Hamiltonian obtains a simple pendulum like structure, characterized by

four forced resonances. Keeping one resonance at a time, we can plot the separatrixes

associated with each harmonic (Figure (6.2)). As noted before, the two large chaotic

zones can be understood to be the interaction of the resonant doublets s1 & s2, and s3

& s4 separately. The region in the bridge is dominated by the secondary resonances

Table 6.1:: Parameters for the simplified Hamiltonian (6.7).

a (yr−1) s (×10−5yr−1) δ

k = 1 2.47638 -2.72353 -2.56678

k = 2 2.93982 -3.43236 -1.70626

k = 3 15.5794 -9.1393 1.1179

k = 4 5.46755 -8.6046 2.4804
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which will be described in the next section. We also note that by setting
√

1− χ2 to a

constant, the “C1” region extends to χ = cos ε > 1. Because here we only focus on the

qualitative dynamical behavior, the extension to the unphysical regions can be neglected.

Furthermore, we notice that there is a gap between the second order resonances and the

“C2” region. This gap is likely also an artifact that arises from setting
√

1− χ2 = const.,

as this assumption leads to a deformation of the resonant structure. Since the dynamical

behavior in the bridge is well characterized by a second-order truncation of the averaged

Hamiltonian, we do not extend our analysis to the higher orders.
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Keeping s3,4 or s1,2 only, we can adequately reproduce the large chaotic regions “C1”

and “C2”. Thus, we obtain simplified Hamiltonians for “C1” and “C2” separately.
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HC1(χ, ψ, t) =
α

2
χ2 + ε

√
1− χ2

0,1 (6.8)

× (a3 cos (s3t+ δ3 + ψ) + a4 cos (s4t+ δ4 + ψ)),

HC2(χ, ψ, t) =
α

2
χ2 + ε

√
1− χ2

0,2 (6.9)

× (a1 cos (s1t+ δ1 + ψ) + a2 cos (s2t+ δ2 + ψ)),

where the parameters can be found in table (6.1).

6.2.2 Bridge Region: 45◦ − 65◦

In case of the Earth, if the obliquity were to be confined to either large chaotic domain,

the climatic variability could in principle be relatively small. However, the analysis

of Laskar et al. (1993) shows that transport between the two regions is possible. To

understand the migration between the two chaotic zones, one needs to understand the

dynamics in the bridge zone between 45o − 65o. As the bridge zone is a region between

the two doublet resonant domains, it is likely that the diffusion is driven by secondary,

rather than primary resonances. In this section, we present the simplified Hamiltonian

governing the dynamical behavior in the bridge.

In order to obtain an analytical description of the resonant harmonics in the bridge,

we must generate them by averaging over the primary harmonics. In particular, here

we do so by utilizing the Poincare-Von Ziepel perturbation method (Goldstein 1950;

Lichtenberg & Lieberman 1983). Consider a canonical transformation that arises from
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a type-2 generation function G(Φ, ψ, t), Φ = χ − ε∂G
∂ψ

, φ = ψ + ε∂G
∂Φ

. Upon direct

substitution, we obtain:

HB(Φ, φ, t) =
α

2
Φ2 + ε2

[α
2

(∂G
∂ψ

)2

+
4∑

i=1

sin(sit+ φ)
∂G

∂Φ

]
+O(ε3), (6.10)

where

G(Φ, ψ, t) =

√
1− Φ2

∏4
k=1(αΦ + sk)

(
(6.11)

−
4∑

i=1

α3Φ3 sin(ψ + sit+ δi)ai −
∑

j 6=i

α2Φ2 sin(ψ + sit+ δi)aisj

−
∑

j,l 6=i

αΦ sin(ψ + sit+ δi)aisjsl −
∑

j,l,m6=i

sin(ψ + sit+ δi)aisjslsm

)
.

As before, we set Φ to a constant (at Φ = cos(50o)) in the second term and rewrite

the Hamiltonian as:

HB(Φ, φ, t) =
α

2
Φ2 + ε2

(∑

k

bk cos (s2,kt+ δ2,k + 2φ)
)
, (6.12)

where s2,k is the sum of any two of the first order resonance frequencies s1−4. Note that

because the bridge region is even more tightly confined in obliquity than either “C1” or

“C2”, it is sensible to ignore the variations in Φ in the second term.

Considering each resonant term in isolation, the Hamiltonian resembles that of a

simple pendulum. Plotting the separatrix of the Hamiltonian for each term, we find that

there are four second order resonances in the bridge region (as shown in Figure (6.2)).

Two of the resonances reside in extreme proximity to each-other and only give rise to

modulational diffusion that is much slower than that arising from marginally overlapped

harmonics (Lichtenberg & Lieberman 1983). Consequently, we can approximate the
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Hamiltonian in the bridge by three overlapping resonances. Thus, the simplified

Hamiltonian for the bridge is:

HB(Φ, φ, t) =
α

2
Φ2 + ε2

3∑

k=1

bk cos (s2,kt+ δ2,k + 2φ), (6.13)

where the parameters can be found the table (6.2).

Table 6.2:: Parameters for the simplified Hamiltonian (6.13).

b (yr−1) s (yr−1) δ

k=1 789482. s1 + s3 = −0.000118628 -1.69271

k=2 755727. s1 + s4 = −0.000113281 -3.05521

k=3 364558. s2 + s3 = −0.000125717 -2.55324

6.3 Results

6.3.1 Analytical Estimates

With simplified expressions for the Hamiltonians in each charscteristic region delineated,

we can estimate quantities relevant to the extent of the motion’s irregularity (specifically,

the Lyapunov exponent and the action-diffusion coefficient) following Chirikov (1979),

with the method discussed in the Appendix.

Briefly, for a simple asymmetrically modulated pendulum:

HD(p, q, t) =
β

2
p2 + c(cos q + cos(q + ωBt)), (6.14)

where there are two resonant regions separated by ωB/β in action. The libration

frequency associated with the stable equilibria of either resonance is ωL =
√
cβ, which is
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identical (in magnitude) to the unstable eigenvalue of the separatrix. Moreover, the half

width of the resonance, ∆, can be calculated as ∆ = 2
√
c/β.

When the resonances are closely overlapped (e.g. in region “C1”, “C2”), the

Lyapunov exponent (λ) is roughly the breathing frequency: νB = ωB/(2π). Meanwhile,

in the marginally overlapped case (“bridge”), it amounts to roughly 2νL = 2ωL/(2π). In

other words,

λ ∼ 1

K

ωL
2π
∼





νB (ωB/β < ∆)

2νL (ωB/β ∼ 2∆),

(6.15)

where K = ∆
ωB/β

= 2 ωL

ωB
is a stochasticity parameter, which characterizes the extent of

resonance overlap. Note that when ωB < ∆, 1
K
ωL

2π
= νB/2. We adopt λ ∼ νB based on

the results from the Appendix in the following calculation. The empirical factor of 2

does not affect our results on the qualitative behavior of the system.

Accordingly, the quasi-linear diffusion coefficient (D) can be estimated as ∆2νB

when the resonances are closely overlapped, and as ∆2νL when the resonances are farther

apart (Murray et al. 1985), although better estimates can be obtained in adiabatic

systems (Cary et al. 1986; Bruhwiler & Cary 1989; Henrard & Morbidelli 1993):

D ∼ ∆2λ ∼





∆2νB (ωB/β < ∆)

∆2νL (ωB/β ∼ 2∆).

(6.16)

Taking the simplified Hamiltonian (6.8) and following Murray & Holman (1997),

we approximate the two resonances as having the same widths (which quantitatively

amount to the average width). Upon making this approximation, we get:

H̃C1(χ, ψ, t) =
α

2
χ2 + εã2(cos(s3t+ δ3 + ψ) + cos (s4t+ δ4 + ψ)). (6.17)
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As noted earlier, ε = 10−7, α = 0.0001yr−1, s4 − s3 = 5× 10−6yr−1, ã1 = 3.6yr−1.

Because the two resonances are closely overlapped (as shown in Figure (6.2)), the

Lyapunov exponent can be estimated as the breathing frequency: νB = (s4 − s3)/2/π ∼

10−6yr−1. Accordingly, the diffusion coefficient (D) is ∆2νB ∼ 10−8yr−1, where

∆ = 2
√
εã/α is the half width of the resonant region. With the diffusion coefficient, we

can estimate the time needed to cross the two chaotic zones and the bridge: t ∼ δχ2/D.

Specifically, taking δχ = cos 0o − cos 45o, tC1 ∼ 7.5 Myr.

Next, we consider zone “C2” (equation (6.9)). After approximating the two

resonances as having the same width, we rewrite the Hamiltonian as

H̃C2(χ, ψ, t) =
α

2
χ2 + εã2(cos(s1t+ δ1 + ψ) + cos(s2t+ δ2 + ψ)), (6.18)

where α = 0.0001yr−1, ε = 10−7, ã2 = 2.5yr−1, s1 − s2 = 7× 10−6yr−1.

Similarly to zone “C1”, the Lyapunov exponent can be estimated as νB ∼ 10−6yr−1,

because the two resonance are closely overlapped. The diffusion coefficient thus evaluates

to D = ∆2νB ∼ 10−8yr−1. Finally, the time to cross “C2” can be estimated as

tC2 ∼ δχ2/D ∼ 10 Myr.

Finally, for the bridge zone, we can approximate the simplified Hamiltonian in

equation (6.13) as a resonance triplet with the same width:

H̃B(Φ, φ, t) =
α

2
Φ2 (6.19)

+ ε2ã3(cos(s2,1t+ δ2,1 + 2φ) + cos (s2,2t+ δ2,2 + 2φ) + cos (s2,3t+ δ2,3 + 2φ)),

where α = 0.0001yr−1, ε = 10−7, ã3 = 664633yr−1, δs = 6.21769× 10−6.

Because the resonances are not closely overlapped as shown in Figure (6.2), the

Lyapunov exponent can be estimated as 2ωL/(2π), where the libration frequency is
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ωL =
√

2α(ε2ã) (the angle is 2φ instead of φ). Thus, the Lyapunov exponent is roughly

∼ 3.7×10−7yr−1. Then the diffusion coefficient can be estimated as ∆2νL ∼ 5×10−11yr−1,

and tbridge ∼ 2 Gyr.

The stark differences in the estimates of the crossing times obtained above place

the results of Lissauer et al. (2012) into a broader context. That is, our calculations

explicate the fact that the long-term confinement of the obliquity to either the “C1” or

the “C2” regions observed in direct numerical simulations arises from the distinction

in the underlying resonances that drive chaotic evolution. Because the diffusion in the

bridge is facilitated by secondary resonances, it is considerably slower, allowing the

stochastic variation in obliquity to remain limited.

6.3.2 Numerical Results

To validate the analytical results, we numerically estimate the Lyapunov exponent. We

follow the method discussed in Ch. 5 of Morbidelli (2002). Specifically, we linearize the

Hamiltonian and evolve the difference (δtraj(t)) of two initially nearby trajectories in

phase space. The initial separation is set to 10−6. The Lyapunov exponent is calculated

as:

λ = lim
t→∞

1

t
ln
δtraj(t)

δtraj(0)
. (6.20)

We start our runs with different initial obliquity to probe the different chaotic/regular

regions. We check the convergence of our results using two different running times

(t = 500 Myr and t = 1 Gyr). In the regular regions, the Lyapunov exponent approaches

zero, and is limited only by the integration time. As shown in Figure (6.3), the Lyapunov
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exponents in the two large chaotic zones are λC1 ∼ λC2 ∼ 10−6yr−1 and the Lyapunov

exponents in the bridge zone is λbridge ∼ 5× 10−7yr−1.
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Figure 6.3: The numerical result of the Lyapunov exponent and the diffusion coefficient

with different initial obliquity. Left panel: the Lyapunov exponent. The red circles rep-

resent the Lyapunov exponent calculated for t = 500 Myr, and the blue crosses represent

that calculated for t = 1 Gyr. The Lyapunov exponent converges in the chaotic region for

the different running times and in the regular region the Lyapunov exponent approaches

zero as the running time increases. Right panel: the diffusion coefficient estimated by

taking averages over bins of 0.5 Myr before taking the difference in χ. The diffusion

coefficient in the bridge is much smaller than that in the chaotic zones. The dashed lines

in the two panels are the results using the analytical method.

Then, we follow the numerical method discussed in Chirikov (1979) to calculate the

diffusion coefficient. Specifically, to eliminate the oscillations caused by the libration

of the resonances, we average χ in bins with the same bin size δt. Then, we take the

difference (δχ) between neighboring bins. The diffusion coefficient is estimated by

averaging δχ2/δt. The bin size δt needs to be bigger than the libration period of the
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resonances but smaller than the saturation timescale in the chaotic zone and the bridge.

Here, we set δt = 0.5 Myr, and run the simulation for 500 Myr. The results are plotted

in the right panel of Figure (6.3). Unsurprisingly, the diffusion coefficient is much smaller

in the bridge than that in the chaotic zones.

We compare the analytical results with the numerical estimation. In Figure (6.3),

the analytical results are represented by black dashed lines. Roughly, the analytical

results are consistent with the numerical results. To further elucidate the qualitative

agreement, we integrated the full Hamiltonian (equation (7.2)) and the resulting

evolutionary sequences are shown in Figure (6.4).

10
4

10
6

10
8

10
10

0

40

80

time (yr)

ε

40

80

ε

40

80

ε

40

80

ε

40

80

ε

Figure 6.4: The evolution of the obliquity as a function of time by integrating the full

secular Hamiltonian numerically (equation (7.2)). The different panels represent different

initial obliquities: from top to bottom: ε0 = 10o, ε0 = 30o, ε0 = 50o, ε0 = 70o. ε0 = 90o.

ψ0 = 0 for all the panels.

Note that the time to cross “C1” and “C2” are about ∼few Myr, and the time to
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cross the bridge is much longer: & Gyr. This is fully consistent with our analytical

arguments. Furthermore, as already mentioned above our results are consistent with

Lissauer et al. (2012), who noticed that the Earth’s obliquity is constrained in “C1”

within −2 Gyr to 2 Gyr. Although the diffusion time we calculated for the bridge is

∼ 2 Gyr, the diffusion time only roughly characterizes the timescale it takes to cross the

bridge, and the exact crossing time depends on the specific initial condition. Thus, as 2

Gyr is on the similar timescale of the integration time used in Lissauer et al. (2012), it is

probable that the obliquity would reach “C2” if the integration time in their simulations

were to be increased.

6.4 Conclusion

Without the Moon, Earth’s obliquity is chaotic, however, the rate at which the system

explores the irregular phase space is not evident a-priori (Laskar et al. 1993; Lissauer

et al. 2012). In other words, the characteristic range over which the obliquity varies

in a given time-frame depends sensitively on the exact architecture of the underlying

resonances that drive chaotic motion. Here, we utilized canonical perturbation theory

to estimate the Lyapunov exponent and the diffusion coefficient which characterize the

chaotic rate of the change of the obliquity. Our calculations were performed within

the context of a perturbative approach which yields a simple model, which in turn

illuminates the underlying structure of the dynamics in a direct and intuitive way.

In order to obtain a qualitatively tractable description of the system, we simplified

the Hamiltonian to a restricted sum of single pendulums, and followed Chirikov (1979)

to estimate the characteristic timescales. Subsequently, we validated the analytical
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results by calculating the Lyapunov exponent and diffusion coefficient numerically and

by integrating the full Hamiltonian in the secular approximation. We found broad

agreement between the analytical and numerical results. Particularly, there are three

distinct regions where the obliquity exhibits chaotic variations. Rapid chaos is observed

between 0 − 45o and 65 − 85o, while a mildly chaotic bridge connects the two regions.

Our estimates suggest that the time to cross the “bridge” is ∼ 2 Gyr, much longer than

the time to cross the two large chaotic zones. This is consistent with the findings of

Lissauer et al. (2012).

With the envelope of the exoplanetary detection edging ever closer to the discovery

of numerous Earth-like planets∗, the spin-axis dynamics of a Moonless Earth presents

itself as an important paradigm for the assessment of the potential climate variations

on such objects. Indeed, it is tempting to apply a framework such as that outlined

in this work to an array of multi-transiting planetary systems, for which the masses

and orbital parameters are well established. Unfortunately, results stemming from

such an exercise would be under-informed by a lack of observational constraints on

the physical properties of the individual planets such as spin rates and dynamical

ellipticities. Consequently, endeavors of this sort must await substantial breakthroughs

in observational characterization. Nevertheless, the implications of the present study for

the emerging extrasolar planetary aggregate are clear: an absence of a high-mass ratio

Moon should not be viewed as suggestive of extreme climate variations. That is, even for

a Moonless Earth-like planet, residing in a stochastic spin-axis state, the characteristic

chaotic diffusion rate may sufficiently slow to not limit long-term habitability.

∗To date, the recently completed Kepler mission has detected four super-Earths (namely Keper-

22b,62e,62f,69c) in the habitable zone (Borucki et al. 2012, 2013; Barclay et al. 2013).
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6.6 Appendix

6.6.1 Dynamics of the Unsimplified Hamiltonian

In our simplified perturbative model, we set
√

1− χ2 to be a constant in the Hamiltonian

(equation (6.7)) in order to treat this system as a modulated pendulum. Here, we justify

this approach by showing that the dynamics with the original Hamiltonian can be well

approximated by the simplified version with
√

1− χ2 set to be a constant.

Considering each forcing term with frequency sk at a time, we can plot the critical

curve of the trajectories. We show the four critical curves with the different frequency

sk in Figure 6.5. Since most of the forcing terms have librating region far from χ = 1,
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the separatrixes are not greatly distorted and are essentially analogous to that with

√
1− χ2 constant in Figure 6.2. Because the interaction of the resonant (librating)

regions give rise to the dynamical structure of this system, the corresponding overlaps

of the separatrixes demonstrate that the dynamics of the original Hamiltonian can be

captured by the simplified Hamiltonian.
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Figure 6.5: The separatrix of the un-simplified Hamiltonian with each frequency sk. It

is analogous to that in Figure 6.2, justifying our approaching with
√

1− χ2 set to be a

constant.

6.6.2 Double Resonances and Triple Resonances

As explained in the main text, the chaotic zones and the bridge can be approximated

as two or three overlapping resonances with equal widths. Here, we demonstrate an

analytical way to calculate the Lyapunov exponent and the diffusion coefficient for the

double or triple resonances with the same resonant widths. This analytical method can

be applied for resonant doublets or triplets with equal widths in general.
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For the double resonances, the Hamiltonian can be written as:

HD(p, q, t) =
β

2
p2 + c(cos q + cos(q − ωBt)) (6.21)

where ωB is the frequency difference between the two resonances. The half width of each

resonant region is ∆ = 2
√
c/β, and the libration frequency of each resonant region is

ωL =
√
cβ. To illustrate the behavior of this Hamiltonian, in Figure (6.6), we plot the

surface of section starting from point p = 1.5, q = 1 with the total run time t = 1000,

where we measure time in units of 1/
√
cβ and action in units of

√
c/β. As ωB decreases,

the two resonances are more overlapped.
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Figure 6.6: The analytical models for the double resonances. Left panel: the surface

of section of the double resonances with different overlaps starting with q = 1, p = 1.5.

Middle panel: the numerical and the analytical estimates of the Lyapunov exponent with

different overlaps. Right panel: the numerical and analytical estimates of the diffusion

coefficient with different overlaps.

Next, we estimate the Lyapunov exponent of the double resonances numerically.

Following the method discussed in (Morbidelli 2002), we linearized the hamiltonian HD

to evolve the difference of two trajectories. We start the integration at p = 1.5, q = 1

arbitrarily, and calculate the Lyapunov exponent as 1
t

ln δ(t)
δ(0)

, where we set t = 1000 for

our integration. We plot the numerical result in the middle panel of Figure (6.6) with
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the blue line. To compare with the characteristic frequencies in this system, we over

plotted νB = ωB/2π and νL = ωL/2π.

We notice that when the resonances are closely overlapped ωB < 2, the Lyapunov

exponent can be approximated as νB. When the resonances are less overlapped but still

attached 2 < ωB < 4, the Lyapunov exponent is approximately constant (∼ 2ωL). When

the resonances are more separated, the Lyapunov exponent falls as the system becomes

more regular.

Then, we calculate the diffusion coefficient numerically. To average over the

oscillations due to the libration behavior, we take the difference in δp at t = n/νB, n ∈ Z,

and estimate the diffusion coefficient as 〈δp2νB〉. The result is plotted in the right panel

in Figure (6.6) with the blue line.

Comparing with the characteristic timescale of the system, we find that the when

the two resonant regions are closely overlapped (ωB < 2), the diffusion coefficient can

be well estimated as ∆2νB. When the two resonant regions are separated more apart,

the diffusion coefficient drops as the system becomes more regular. When ωB = 4, the

diffusion coefficient is approximately ∼ ∆2νL.

Similarly, for the triple resonances, we use the following simplified Hamiltonian:

HT (p, q, t) =
β

2
p2 + c(cos q + cos(q − ωBt) + cos(q + ωBt)) (6.22)

Using trigonometric identities, this Hamiltonian can be rewritten as

HT (p, q, t) =
β

2
p2 + c(1 + 2 cos(ωBt)) cos q (6.23)

Thus, HT can be understood as a “breathing” resonance whose width is changing with

frequency νB (Morbidelli 2002). We plot the overlap of the resonances in the left panel
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of Figure (6.7).
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Figure 6.7: The analytical models for the triple resonances analogous to the bridge

zone. Left panel: the surface of section of the double resonances with different overlaps

starting with q = 1, p = 1.5. Middle panel: the numerical and the analytical estimates of

the Lyapunov exponent with different overlaps. Right panel: the numerical and analytical

estimates of the diffusion coefficient with different overlaps.

We numerically calculated the Lyapunov exponent and the diffusion coefficient with

the method described for the double resonances. We find that similar to the double

resonances, the Lyapunov exponent can be well estimated as νB when ωB < 2, as ∼ 2νL

when 2 < ωB < 4 and drops when ωB > 4. For the diffusion coefficient, we find that it

can be estimated as ∆2νB for ωB < 2 and it drops for ωB > 2. At ωB ∼ 4, it can be

estimated as ∆2νL.
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Chapter 7

Pre-LHB Evolution of the Earth’s

Obliquity

This thesis chapter originally appeared in the literature as

Li, G. & Batygin, K. Pre-LHB Evolution of the Earth’s Obliquity,

The Astrophysical Journal, 795, 67, 2014

Abstract

The Earth’s obliquity is stabilized by the Moon, which facilitates a rapid precession of

the Earth’s spin-axis, de-tuning the system away from resonance with orbital modulation.

It is however, likely that the architecture of the Solar System underwent a dynamical

instability-driven transformation, where the primordial configuration was more compact.

Hence, the characteristic frequencies associated with orbital perturbations were likely

faster in the past, potentially allowing for secular resonant encounters. In this work
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we examine if at any point in the Earth’s evolutionary history, the obliquity varied

significantly. Our calculations suggest that even though the orbital perturbations were

different, the system nevertheless avoided resonant encounters throughout its evolution.

This indicates that the Earth obtained its current obliquity during the formation of the

Moon.

7.1 Introduction

Obliquity variation plays a major role in the modulation of climate, as it determines the

latitudinal distribution of solar radiation. For instance, according to the Milankovitch

theory, the ice ages on the Earth are closely associated with the variation in insolation

at high latitudes, which depends on the orbital eccentricity and orientation of the spin

axis (e.g. Weertman 1976; Hays et al. 1976; Imbrie 1982).

The spin-axis dynamics of the Earth-Moon system has been extensively studied in

the literature and is generally well understood. At present, the obliquity variation of the

Earth is regular and only undergoes small oscillations between 22.1◦ and 24.5◦ with a

41000 year period (e.g. Vernekar 1972; Laskar & Robutel 1993). Without the Moon, the

obliquity of the hypothetical Earth is chaotic, but is constrained between 0 − 45◦ over

billion year timescales (Laskar et al. 1993; Lissauer et al. 2012; Li & Batygin 2014a).

The difference between obliquity cycles exhibited by a Moon-less Earth and that

corresponding to the real Earth arise largely as a consequence of the underlying resonant

structure (Laskar 1996). Specifically, the spin-axis of the Earth may exhibit complex

behavior if its precession resonates with the secular evolution of the Earth’s orbit. The
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Figure 7.1: The Fourier spectrum of the Earth’s orbital parameter (i⊕e
iΩ⊕t) obtained

from an N-body simulation using the mercury6 program. The initial conditions are those

identified in Batygin & Brown (2010), which are compatible with the Nice model. Note

that the maximum high-amplitude secular frequencies corresponding to multi-resonant

conditions are ∼ −18
′′
/yr, which is similar to the current maximum secular frequency

s3 = −18.8512
′′
/yr. The maximum high-amplitude secular frequencies are within the

same order of magnitude for the three cases.

former is dominantly controlled by Solar and Lunar torques, whereas the latter is forced

by long-period planet-planet interactions. In absence of the Moon, the Earth would

indeed find itself residing within a multi-resonant domain signaling chaotic motion

(Chirikov 1979; Laskar et al. 1993). The introduction of the Moon, however, accelerates

the precession of the spin-axes, and detunes the system away from resonance yielding

quasi-periodic evolution (Neron de Surgy & Laskar 1997).

The aforementioned real vs Moon-less Earth discussion leaves open the question of
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how the dynamical state of the spin-axis may have responded to changes in the orbital

architecture. After all, if the Earth’s orbital evolution was once characterized by more

rapid secular evolution, past resonant behavior of the spin-axis cannot be ruled out

a-priori. Indeed for the case of Mars, the study of Brasser & Walsh (2011) has shown

that the orbital rearrangement of the Solar System has led to a qualitative change

in the dynamical behavior of the spin-axis. Hence, it is possible that in the history

of the Earth-Moon system, the obliquity variation of the Earth was once significant.

Correspondingly, understanding the past variation of the obliquity shines light on how

the Earth obtained its current spin-orbit misalignment.

Substantial progress has been made towards the characterization of the early

dynamical evolution of the Solar System through the development of the Nice model.

Qualitatively, the picture envisioned within the context of the Nice model is one where

the giant planets start out on a compact orbital configuration and following a transient

instability scatter onto their current orbits (Tsiganis et al. 2005; Levison et al. 2011;

Nesvorný 2011; Batygin 2012; Nesvorný & Morbidelli 2012). The numerous successes

of the Nice model include a replication of the dynamical architecture of the outer Solar

System (Morbidelli et al. 2009), the inner solar system (Brasser et al. 2009; Agnor

& Lin 2012), the formation of the Kuiper belt (Levison et al. 2008; Batygin et al.

2011), the chaotic capture of Jupiter and Neptune trojan populations (Morbidelli et al.

2005; Nesvorný et al. 2007) as well as its role as a trigger mechanism for late heavy

bombardment (LHB) (Gomes et al. 2005).

Although the primordial state of the Solar System is not well constrained, it is likely

that the giant planets resided in a multi-resonant configuration (i.e. a condition where

each planet resides in mean motion resonances with each of its neighbors) at the time of
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Figure 7.2: The comparison of the maximal secular frequencies of the Earth correspond-

ing to various outer Solar System architectures and the forced spin-axis precession rate

of the Earth. The presented analysis shows that the precession frequency is much bigger

than the orbital frequency at low obliquity, and this indicates that there are no significant

obliquity variations in the history of the Earth-Moon system due to resonances.

nebular dispersion, as such architectures are natural outcomes of disk-driven migration

(Masset & Snellgrove 2001; Morbidelli et al. 2007). Under this assumption, a limited

number of configurations compatible with the Nice model have been identified (Batygin

& Brown 2010; Nesvorný & Morbidelli 2012). Accordingly, in this study we extend the

quantification of the Nice model by exploring the spin-axis dynamics of the Earth-Moon

system within the context of pre-instability orbital configurations.

The plan of this paper is as follows. In §2, we analyze resonant conditions, and in

§3, we study the obliquity variation using numerical simulations. We summarize and

discuss our results in §4.
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7.2 Spectral Analysis

As already mentioned above, the Sun and the Moon torque the spin axis of the Earth,

and the other planets in the solar system perturb the orbit of the Earth. When the two

effects share the same frequencies, resonances arise and the spin-orbit angle (obliquity)

undergoes large amplitude variations (Colombo 1966; Ward 1973; Henrard & Murigande

1987). Furthermore, if the resonances overlap, the obliquity variation becomes chaotic

(Chirikov 1979; Laskar et al. 1993). Therefore, the obliquity variation is sensitive to the

two sets of frequencies. Accordingly, in this section, we investigate whether resonant

motion was plausible at any point in the system’s evolutionary history.

In order to obtain the dominant secular frequencies of the Earth’s orbital inclination

vector, we performed N-body integrations of the multi-resonant conditions identified

by Batygin & Brown (2010) using the mercury6 orbital integration software package

(Chambers 1999). The specific multi-resonant states onto which the giant planets were

initialized are delineated in Table (7.1). The rows labeled N1–N4 correspond to different

multi-resonant states, while the columns depict neighboring period ratios∗. Table (7.2)

shows the eccentricity of the four giant planets, which are set to be in the same plane.

On the other hand, the terrestrial planets were put in the same location as where they

are currently†, motivated by the analysis of Brasser et al. (2009). We ignore the impacts

∗Initial conditions where Jupiter and Saturn are locked in a second-order 5:3 resonance were not

considered due to their comparatively low capture probability (Pierens & Nelson 2008).

†We note that the angular momentum deficit of the terrestrial planet system may have been somewhat

lower in the past. However, this does not affect our analysis appreciably because to leading order, the

frequencies of the secular system are set only by the semi-major axes and masses (Murray & Dermott
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from scattered planetesimals, since their effects are negligible here. The duration of each

integration spanned 50 Myr.

The characteristic secular frequencies, obtained by Fourier analysis of the quantity

z = ieıΩ, where i is the inclination, Ω is the longitude of ascending node, and ı =
√
−1

are shown in Figure (1). The curves corresponding to the various multi-resonant giant

planet configurations are labeled accordingly. As shown in the figure, the maximum

frequencies with non-negligible amplitudes are around −18
′′
/yr. This is similar to the

current maximum large-amplitude frequency (s3 = −18.8512
′′
/yr) (Laskar 1990).

As a consequence of tidal evolution, the torque exerted on the Earth by the Moon

varies as a function of time. Specifically, as the Lunar orbit expands, the spin rate of

the Earth slows down and the torque becomes weaker. The tidal dissipation inside the

Earth and the Moon depends on the underlying rheology and is generally complicated

(see Efroimsky & Williams 2009 for a review). However, as the total angular momentum

remains constant under tidal dissipation, the torque and the spin precession frequency

caused by the Moon can be evaluated as a function of the Earth-Moon semi-major axis

1999).

Table 7.1:: Multi-resonant states.

PJupiter : PSaturn PSaturn : PUranus PUranus : PNeptune

N1 2 : 3 2 : 3 4 : 5

N2 2 : 3 3 : 4 2 : 3

N3 2 : 3 3 : 4 3 : 4

N4 1 : 2 3 : 4 3 : 4
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(a). The expression for the forced spin precession frequency is ψ̇ = α cos (ε), where ψ

is the longitude of the spin-axis, ε is the obliquity, and α is the precession coefficient

defined as (Neron de Surgy & Laskar 1997):

α =
3G

2ω

[ m�

(a⊕
√

1− e2
⊕)3

+
mM

(aM
√

1− e2
M)3

(1− 3

2
sin2 iM)

]
Ed. (7.1)

In the above expression, m� is the mass of the Sun, a⊕ and e⊕ are the semi

major axis and the eccentricity of the Earth’s orbit, mM is the mass of the moon,

aM = a, eM and iM are the semi major axis, eccentricity and inclination of the Moon’s

orbit around the Earth, ω is the spin of the Earth, and Ed = (2C − A − B)/C is the

dynamical ellipticity of the Earth, where A, B and C are the moment of inertia in the

three principle axes. We set Ed to be proportional to ω2, as it arises from rotational

deformation (e.g. Murray & Dermott 1999). We plot the forced spin-axis precession rate,

ψ̇ due to both the Sun and the Moon in Figure 7.2, where the solid and the dashed

curves corresponds to null (ε = 0 deg) and nearly lateral (ε = 85 deg) obliquities. Note

that in this approach, we require the Moon to be sufficiently far away from the Earth

(a & 15R⊕) for the Moon’s orbit to precesses about the ecliptic plane. Additionally, we

over-plot the maximum orbital frequencies obtained from the N-body simulations (also

shown in Figure 7.1).

The denoted curves suggest that for all reasonable choices of parameters, the

spin-axis precession frequency has consistently exceeded the maximal secular frequencies

significantly, even though the past orbital frequencies are larger than the current ones.

Given that the current obliquity is relatively low, this indicates that the spin-axis

resonant encounters of low order are unlikely to have played an important role in the

past history of the Earth-Moon system. In other words, the Earths obliquity did not
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vary substantially throughout the Solar System’s lifetime. On the other hand, had the

Earths primordial obliquity been greater than ε & 80 deg, resonant dynamics of the

spin-axis could have been possible after a few hundred Myr of tidal evolution.

Moreover, at ∼ 600 Myr, the four giant planets reach instability and quickly scatter

divergently. The onset of this transient behavior can arise from an encounter of a planet

pair with a mean motion resonance (e.g. Jupiter & Saturn’s encounter with a 2:1 or a

5:3 MMR; see Tsiganis et al. 2005; Morbidelli et al. 2007; Batygin & Brown 2010), or

from the destruction of the resonant phase-protection mechanism by interactions with

a distant self-gravitating planetesimal disk (Levison et al. 2011; Nesvorný & Morbidelli

2012). To mark the time when the instability occurs in Figure 7.2, the Earth-Moon

distance as a function of time needs to be calculated. Assuming a constant time lag

(CTL) tidal model with tdiss = 33.18 minutes, the Earth-Moon distance at ∼ 600 Myr is

marked with an orange line in Figure 7.2. The specific choice for tdiss is adopted so that

the Earth-Moon distance evolves to its current state at ∼ 4.5 Gyr.

Shortly after the onset of the instability, the giant planets evolve onto their

current locations with higher eccentricities and inclinations, which damp as a result of

interactions with a massive planetesimal disk (Levison et al. 2008). Numerical integration

shows that the relevant secular frequencies when the eccentricity and inclination are

damping are similar to the current frequencies, as the frequencies are largely determined

by the semi major axes and masses alone (Murray & Dermott 1999). This suggests that

there are no large obliquity variations during the damping era either.

We note that an initial Solar System configuration that harbored more than two

ice giants beyond the orbit of Saturn is a distinct possibility within the framework of
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the Nice model (Nesvorný 2011; Batygin 2012; Nesvorný & Morbidelli 2012). Although

such configurations will yield quantitatively different evolutions from the cases presented

here, the synonymity of the Fourier decompositions of the initial conditions presented

in this work (see Figure 7.1) suggest that the introduction of additional Neptune-mass

planets into the resonant chains is unlikely to alter the results significantly. Accordingly,

here we use only the four giant planet models as illustrative examples.

7.3 Numerical Integrations

The analysis performed above suggests that the obliquity does not exhibit large variations

due to the resonances as a result of Chirikov diffusion arising from secular spin-orbit

resonance overlap at low obliquities. This however does not negate the possibility of

substantial obliquity diffusion associated with stochastic pumping arising from a chaotic

orbit (Lichtenberg & Lieberman 1983). To illustrate explicitly the evolution of the

obliquity as a function of time, we numerically integrate the obliquity variation using the

Earth’s orbital evolution obtained from N-body simulations. Specifically, we evolve the

Earth’s obliquity adopting multi-resonant conditions for the giant planets (depicted in

Table 1), and taking the precession coefficient to change in accord with the Moon’s tidal

recession and the Earth’s spin-down. As before, a CTL tidal model was employed with

tdiss = 33.18 minutes.

The Hamiltonian describing the evolution of the obliquity is well documented in

the literature (e.g. Colombo 1966; Laskar et al. 1993; Touma & Wisdom 1993; Neron de
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Surgy & Laskar 1997):

H(χ, ψ, t) =
1

2
αχ2 +

√
1− χ2 (7.2)

× (A(t) sinψ +B(t) cosψ)),

where χ = cos ε, α is the precession coefficient (see eqn 7.1), and

A(t) = 2(q̇ + p(qṗ− pq̇))/
√

1− p2 − q2, (7.3)

B(t) = 2(ṗ− q(qṗ− pq̇))/
√

1− p2 − q2, (7.4)

where p = sin i⊕/2 sin Ω⊕ and q = sin i⊕/2 cos Ω⊕. The integrations are taken to span

600 Myr.

Starting with different initial obliquities, we plot the numerical results in Figure 7.3.

The calculations suggest that independent of the initial condition, when ε . 80◦, the

obliquity remains nearly constant as a function of time. The obliquity varies substantially

and rapidly when 90◦ & ε & 80◦, because the precession frequency (α cos ε) matches

with the orbital perturbation frequency at later times (as shown in Figure 7.2). This is

consistent with our analysis of the resonances, indicating the effect of chaotic pumping

on the obliquity diffusion is negligible here. As noted above, this suggests that that the

Earth’s present obliquity has been preserved throughout the system’s history.

7.4 Conclusion

It is generally accepted that substantial modulation of the Earths obliquity can result in

dynamically-forced climatological changes. In turn, the variation of a planet’s obliquity

is sensitive to the precession frequency of its spin axis and its secular orbital frequencies.
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When the two sets of frequencies match, resonances may arise and the planet’s obliquity

may undergo large amplitude variations (as the case for the Moonless Earth (e.g. Laskar

et al. 1993; Li & Batygin 2014a) or for Mars (Ward 1973; Touma & Wisdom 1993;

Laskar & Robutel 1993)). Currently, the Earth’s obliquity is regular and oscillates with

a very small amplitude (22.1 − 24.5◦). However, the orbital forcing of the Earth likely

underwent significant changes throughout the Solar Systems dramatic history, potentially

suggesting that the dynamical state of the Earths spin-axis may have been resonant in

the past. In this study, we have quantified this possibility.

We began our investigation by examining the feasible proximity of the pre-instability

secular modes that characterize the orbital evolution of the Earth to the precession rate of

the Earths spin-axis. To obtain the secular orbital frequencies of the Earth, we computed

the orbital evolution of the Earth, adopting Solar System orbital architectures that were

previously demonstrated to serve well as initial conditions for the Nice model by Batygin

& Brown (2010). Our analysis has shown that even under favorable assumptions, the

slow-down in the spin-axis precession frequency associated with the tidal evolution of the

Earth-Moon system as well as the increase in the forcing frequencies associated with a

more compact giant-planet configuration are insufficient to give rise to secular spin-orbit

resonant encounters in the system at low obliquities.

Subsequently, to illustrate the obliquity variation explicitly, we directly integrated

the pre-LHB spin-axis evolution of the Earth. We adopted the Earth’s orbital evolution

from the N-body simulations and calculated the precession coefficient based on the CTL

tidal dissipation model for the Earth-Moon system. The numerical results show that only

minimal oscillations in the Earths obliquity can be expected for primordial obliquities

less than ε . 80 deg. Indeed, this is consistent with our qualitative analysis of spin-axis
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resonant conditions.

Cumulatively, our study shows that the dynamical perturbations arising from

the other planets are unlikely to have given rise to resonant excitations of the Earths

spin-axis at low obliquity. Moreover, chaotic pumping arising from a diffusing orbit also

leads to negligible evolution. Thus, the Earth’s obliquity likely did not vary substantially

throughout the dramatic lifetime of the Solar System, and was probably set in situ by

the giant impact associated with the formation of the Moon. This remarkable aspect

of Solar System dynamics renders the Earths obliquity one of the few truly primordial

features of the Solar System.
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Table 7.2:: Orbital properties.

eJupiter eSaturn eUranus eNeptune

N1 0.0060 0.025 0.031 0.0083

N2 0.0038 0.017 0.017 0.0064

N3 0.0069 0.026 0.016 0.018

N4 0.044 0.025 0.053 0.0046

aJupiter (AU) aSaturn (AU) aUranus (AU) aNeptune (AU)

N1 5.88 7.89 10.38 12.01

N2 5.87 8.00 9.98 13.16

N3 5.84 7.83 9.67 11.63

N4 5.48 8.74 10.59 12.86
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Figure 7.3: The obliquity as a function of time when the giant planets are in resonant

states, as presented in table (7.1). The Earth-Moon system is taken to evolve under

tidal dissipation with a constant time lag (tdiss = 33.18 minutes). The obtained solutions

suggest that the obliquity remains constant except when it is initialized at 90◦ & ε & 80◦.
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Chapter 8

Implications of the Eccentric

Kozai-Lidov Mechanism for Stars

Surrounding Supermassive Black

Hole Binaries

This thesis chapter has been submitted to Monthly Notices of the Royal

Astronomical Society, and originally appeared in arXiv as

Li, G., Naoz, S., Kocsis, B. & Loeb, A. Implications of

the Eccentric Kozai-Lidov Mechanism for Stars Surrounding

Supermassive Black Hole Binaries, 2015
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Abstract

An enhanced rate of stellar tidal disruption events (TDEs) may be an important

characteristic of supermassive black hole (SMBH) binaries at close separations. Here

we study the evolution of the distribution of stars around a SMBH binary due to

the eccentric Kozai-Lidov (EKL) mechanism, including octupole effects and apsidal

precession caused by the stellar mass distribution and general relativity. We identify a

region around one of the SMBHs in the binary where the EKL mechanism drives stars

to high eccentricities, which ultimately causes the stars to either scatter off the second

SMBH or get disrupted. For SMBH masses 107M� and 108M�, the TDE rate can reach

∼ 10−2/yr and deplete a region of the stellar cusp around the secondary SMBH in ∼ 0.5

Myr. As a result, the final geometry of the stellar distribution between 0.01 and 0.1 pc

around the secondary SMBH is a torus. These effects may be even more prominent in

nuclear stellar clusters hosting a supermassive and an intermediate mass black hole.

8.1 Introduction

Supermassive black holes (SMBHs) are ubiquitous at the centers of galaxies (Kormendy

& Ho 2013). Stars passing close to the SMBH can be tidally disrupted, and the fall

back of the stellar debris produces a strong electromagnetic tidal disruption flare (e.g.,

Gezari 2012). More than a dozen tidal disruption event (TDE) candidates have been

observed until present (e.g., Bade et al. 1996; Gezari et al. 2003, 2006, 2008a, 2009; van

Velzen et al. 2011; Gezari et al. 2012; Holoien et al. 2014), including two candidates with

relativistic jets (Levan et al. 2011; Bloom et al. 2011; Zauderer et al. 2011; Cenko et al.
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2012). TDEs can provide valuable information on dormant SMBHs, which are otherwise

difficult to detect.

The rate of the TDEs provide information about the SMBH and the stellar

distribution in the center of galaxies (Stone & Metzger 2014). The rate of TDEs is highly

uncertain observationally due to the small sample size. It is estimated to be in the range

of 10−5−10−4 per galaxy per year by Donley et al. (2002); Gezari et al. (2008a); Maksym

(2012); van Velzen & Farrar (2014). This roughly agrees with the theoretical estimates,

discussed by Frank & Rees (1976); Lightman & Shapiro (1977); Cohn & Kulsrud (1978);

Magorrian & Tremaine (1999); Wang & Merritt (2004); Brockamp et al. (2011); Stone

& Metzger (2014). However, the TDE rate may be enhanced due to the presence of

a non-axisymmetric gravitational potential around the SMBH (Merritt & Poon 2004),

or due to a massive perturber (Perets et al. 2007). In addition, the TDE rate may be

higher in galaxies with more than one SMBH (Ivanov et al. 2005; Chen et al. 2009, 2011;

Wegg & Bode 2011), or when the SMBH binary (SMBHB) recoils due to the emission

of gravitational waves (Stone & Loeb 2011a; Li et al. 2012; Stone & Loeb 2012). Some

TDEs may not appear as flares and therefore be missed in observations(Guillochon &

Ramirez-Ruiz 2015).

In this paper, we focus on the impact of SMBHB on the surrounding distribution

of stars through hierarchical three body interactions. The outer SMBH perturbs the

stellar population around the inner∗ SMBH, and leads to long-term variations in the

eccentricities and inclinations of the stellar orbits while keeping the semimajor axes

∗We consider stars that initially orbit the “inner” SMBH and whose orbits are perturbed by the

“outer” SMBH regardless of which SMBH is more massive.
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of their orbits fixed. In particular, when the orbit of the SMBH secondary is circular

and if the mutual inclination between the orbits of the SMBHB and a star is over

40◦, the stellar eccentricity and inclination undergo periodic oscillations, known as the

quadrupole Kozai-Lidov mechanism (Kozai 1962; Lidov 1962). This is caused by the

long-term (orbit-averaged) Newtonian gravitational effect expanded in multipoles to the

quadrupole order, i.e. second order in the semimajor axis ratio of the stellar and the

outer SMBH’s orbit. More generally, it has been found that when the outer orbit is

eccentric, the analogous octupole eccentric Kozai-Lidov mechanism (EKL, third order

in semi major axis ratio) causes the eccentricity to be excited very close to unity and

the inner orbit to flip from prograde to retrograde or vice versa (Naoz et al. 2011; Katz

et al. 2011; Lithwick & Naoz 2011; Naoz et al. 2013a,b; Li et al. 2014a; Li et al. 2014b).

The TDE rate has been discussed in the literature for stars orbiting an SMBHB, where

the quadrupole Kozai-Lidov mechanism can enhance the tidal disruption rate (Ivanov

et al. 2005; Chen et al. 2009, 2011; Wegg & Bode 2011). For the Galactic Center,

the Kozai-Lidov mechanism driven by the stellar disk has also been discussed and the

additional effects of Newtonian apsidal precession were shown to play a significant role

(Chang 2009). In light of recent developments in the understanding of hierarchical three

body interactions we revisit this problem. Since the stellar eccentricity can be increased

to a value much closer to unity by eccentric perturbers, we expect the EKL mechanism

to enhance TDE rates with respect to the circular case. We therefore seek to re-evaluate

the total number of stars vulnerable to TDE due to EKL.

It is well known that apsidal precession quenches the EKL mechanism (e.g., Ford

et al. 2000; Blaes et al. 2002; Naoz et al. 2013b). In galactic nuclei this may be due to the

Newtonian (NT) gravitational effect of the spherical stellar cusp or general relativistic
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(GR) precession, provided that the corresponding precession timescale is much shorter

than the Kozai timescale (Chang 2009). Furthermore, the EKL mechanism may be

quenched if the eccentricity of the star is changed by the stellar cluster due to scalar

resonant relaxation, or if the orbital plane is reoriented by the stellar cluster due to

vector resonant relaxation (Rauch & Tremaine 1996; Kocsis & Tremaine 2011, 2014) or

Lense-Thirring precession (Merritt et al. 2010; Merritt & Vasiliev 2012). We find that

NT precession and GR precession may have a large effect on the EKL mechanism, but

tidal effects, scalar and vector resonant relaxation, and Lense-Thirring precession are

typically less important. The timescale on which the EKL mechanism operates increases

if the outer SMBH mass is reduced. Thus, GR precession may dominate over and quench

the EKL mechanism most efficiently if the outer SMBH is less massive than the inner

SMBH (see figure 2 in Naoz & Silk 2014). Similarly, we find that NT precession also

suppresses the EKL mechanism most efficiently when the outer SMBH is less massive.

Tidal disruption is expected in the opposite regime when the EKL mechanism is very

prominent, i.e. when the outer SMBH is more massive than the inner SMBH. We identify

the outcome of the EKL mechanism as a function of SMBHB parameters and quantify

the TDE rate.

Our discussion is organized as follows. In §2, we describe the adopted methods.

In §3, we characterize the parameter space to identify where the EKL mechanism is

important. Then, we calculate the tidal disruption rate and discuss the final stellar

distribution due to the EKL mechanism with an illustrative example in §4, and for stars

surrounding an intermediate-mass black hole in §5. Finally, we summarize our main

results in §6.

225



CHAPTER 8. IMPLICATIONS OF THE ECCENTRIC KOZAI-LIDOV
MECHANISM

8.2 Method

We study the tidal disruption of stars due to the EKL mechanism in galaxies that host a

SMBHB. The three-body system consists of an “inner binary” comprised of the SMBH

and a star, and an “outer binary” comprised of the outer SMBH and the center mass of

the inner binary, as shown in Figure 8.1. We denote the masses of the objects by m1

(inner SMBH), m2 (star), and m3 (outer SMBH), and for orbital parameters we use

subscript 1 and 2 for the inner and outer binary, respectively. In order for the EKL

mechanism to operate, we require the triple system to be in a hierarchical configuration:

the inner binary on a much tighter orbit than the third object, such that (e.g., Lithwick

& Naoz 2011; Katz et al. 2011),

ε =
a1

a2

e2

1− e2
2

< 0.1 , (8.1)

where a and e are respectively the semimajor axis and eccentricity.

8.2.1 Comparison of Timescales

We examine the range of orbital parameters in oder to identify the regions in which the

EKL mechanism may operate. The relevant processes’ timescales can be expressed as:

tK =
2πa3

2(1− e2
2)3/2

√
(m1 +m2)(1− e2

1)√
Ga

3/2
1 m3

(8.2)

toct =
1

ε
tK (8.3)

tGR1 =
2πa

5/2
1 c2(1− e2

1)

3G3/2(m1 +m2)3/2
(8.4)
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Figure 8.1: The system configuration. ‘c.m.’ denotes the center of mass of the inner

binary, which contains the star (with mass m2) and SMBH (with mass m1). The other

SMBH (with mass m3) is on an outer orbit.
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tGR2 =
2πa

5/2
2 c2(1− e2

2)

3G3/2(m1 +m2 +m3)3/2
(8.5)

tGR,int =
16

9

a3
2c

2(1− e2
2)3/2(m1)3/2

√
ae1

√
1− e2

1G
3/2m2

1m3

(8.6)

tNT = 2π
(√Gm1/a3

1

πm1e1

∫ π

0

dψM∗(r) cosψ
)−1

(8.7)

tRR,s =
4πω

β2
sΩ

2

m2
1

M∗(r)m2

(8.8)

tRR,v =
2πfvrr

Ω
m1

1√
M∗(r)m2

(8.9)

trel = 0.34
σ3

G2ρm2 ln Λ
(8.10)

tLT =
a3c3(1− e2)3/2

2G2m2
1s

(8.11)

tGW =
a4

2

4

5

64

c5

G3m1m3(m1 +m3)
. (8.12)

Here tK is the quadrupole (O(a1/a2)2) Kozai timescale. Following Naoz et al. (2013b),

toct is the octupole (O(a1/a2)3) Kozai timescale. tGR1 and tGR2 are the timescales of

the first order post Newtonian general relativistic (GR) precession at the quadrupole

order (O(a1/a2)2) on the inner and outer orbit, and tGR,int is the timescale associated

with the first post-Newtonian order GR interaction between the inner and the outer

orbit. Following Kocsis & Tremaine (2011), tNT is the timescale of the Newtonian

precession caused by the stellar potential, and tRR,s and tRR,v are the timescales of the

scalar and vector resonant relaxation. trel is the two body relaxation timscale. tLT is

the Lense-Thirring precession timescale, and tGW is the timescale of the orbital decay

of the binary SMBHB due to gravitational wave radiation. For the resonant relaxation

timescales, M∗(r) is the mass of the stars interior to r, ω is the net rate of precession due

to GR and NT, βs is estimated to be 1.05± 0.02 by Eilon et al. (2009), Ω is the orbital

frequency of the star, and fvrr is estimated to be 1.2 by Kocsis & Tremaine (2014). For
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the Lense-Thirring timescale, sGm2
1/c is the spin angular momentum of the inner SMBH

(see references in e.g., Naoz et al. 2013b; Kocsis & Tremaine 2011; Peters 1964). We

define some of these effects in more detail in § 8.2.2 below.

The EKL mechanism operates if the following criteria are satisfied:

1. The three-body configuration satisfies the hierarchical condition (ε < 0.1, see

equation (8.1))

2. The stars stay in the Hill sphere of the inner SMBH in order for them to remain

bound to it, i.e. a1(1 + e1) < a2(1− e2)(m1/3m3)1/3.

3. The quadrupole (O(a1/a2)2) Kozai timescale, tK , needs to be shorter than the

timescales of the other mechanisms that modify the orbital elements, otherwise

the EKL mechanism is suppressed. The competing mechanisms include Newtonian

precession (NT), general relativistic precession (GR), scalar resonant relaxation,

vector resonant relaxation, two-body relaxation, Lense-Thirring precession, and the

gravitational radiation.

Note that the secular approximation fails when the perturbation from the outer

SMBH is too strong or when the eccentricity reaches values very close to unity (e.g.,

Antonini & Perets 2012; Katz & Dong 2012; Antognini et al. 2014; Antonini et al. 2014;

Bode & Wegg 2013). This means that there are some systems that are poorly described

by our approximation. However, we expect that those systems reach even higher

eccentricities than the one predicted by the octupole approximation (e.g., Antognini et

al. 2013), and thus our overall qualitative conclusions may hold even for those systems,

but the quantitative rate values possibly underestimate the true rates.
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To calculate the Newtonian timescale, the resonant relaxation timescales, and the

two body relaxation timescale, we adopt the spherically symmetric model for the stellar

density discussed in O’Leary et al. (2009). Specifically, the stellar density distribution is

a power law of semimajor axis and the normalization is fixed by the M − σ relation,

ρ∗(r) =
3− α

2π

m1

r3

(
GM0(m1/M0)1−2/k

σ2
0 r

)−3+α

, (8.13)

where k = 4, M0 = 1.3 × 108M�, σ0 = 200km/s (Tremaine et al. 2002), and we set

α = 1.75.

Figure 8.2 shows the timescales for the case of a 1M� star orbiting a 107M�

SMBH. The separation of the SMBHB is set to 0.3 pc. The upper panel corresponds to

m3 = 106M�, and the lower panel corresponds to m3 = 109M�. For the Lense-Thirring

timescale, s is set to unity. The eccentricity of the star-SMBH system, e1, is assumed

to be 2/3 and e2 is assumed to be 0.7. The EKL-dominated region is larger for higher

e2 with fixed a1 and a2. Figure 8.2 shows that the EKL mechanism is suppressed for a

107–106M� binary at all radii, but it may operate at least in a restricted range for a

107–109M� binary. Note that although the octupole timescale toct is longer than some of

the other secular timescales, our simulations show that the eccentricity can nevertheless

reach high values provided that tK is the shortest timescale and toct is at most moderately

larger than the other timescales. Thus, in the following, we identify the regions where

the eccentricity may be excited using conditions 1–3 above irrespective of toct. Typically,

the conditions on the quadrupole Kozai timescale (tK < tGR and tK < tNT ) set the lower

limit for a1 for a fixed a2, and the hierarchical configuration ε < 0.1 and the Hill sphere

limit set the upper limit on a1.

Next, we examine the a1 − a2 parameter space to identify the parameters where
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Figure 8.2: The different timescales as a function of the semi major axis of the stars

(a1), where e1 = 2/3, m1 = 107M�, a2 = 0.3 pc, m2 = 1M�, e2 = 0.7. In the upper

panel, m3 = 106M�, and in the lower panel, m3 = 109M�. In the grey region, ε > 0.1, the

hierarchical approximation is violated. The EKL mechanism does not operate in the grey

region and wherever tquad is not the shortest timescale. The quadrupole Kozai timescale

is shorter than the other timescales for the semimajor axis range indicated by the light

green arrow.
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EKL dominates. We plot two examples in Figure 8.3: m1 = 107M�, m2 = 1M�,

m3 = 106M�, e2 = 0.7 in the upper panel, and m1 = 107M�, m2 = 1M�, m3 = 109M�,

e2 = 0.7 in the lower panel. The EKL-dominated region is bigger for larger e2. To

test the dependence on e1, we include two extreme e1 values: e1 = 0 (solid lines) and

e1 = 0.999 (dashed lines). The parameter space is independent of the mass of the star

as long as m2 � m1. The EKL-dominated region is bounded by tK = tGR (blue line)

and tK = tNT (red line) from above and by the Hill sphere limit (grey line) and the

hierarchical condition (black line) from below. In the upper panel, there is no region

where the EKL mechanism dominates. In the lower panel, the region where EKL

dominates is shaded with horizontal dashed lines for e1 = 0.999 and it is shaded with

vertical solid lines for e1 = 0.

We calculate the number of stars affected by the EKL mechanism for the particular

stellar density distribution around the inner SMBH (equation (8.13)). In Figure 8.4, we

consider the parameter space of different m1, m3, a2, e2 and show the number of stars in

the range of a1 where all criteria are satisfied for the EKL mechanism to operate. Each

panel shows the parameter plane of m1 and m3 (assuming m2 � m1), a2 is varied in

different columns of panels from 0.1 to 10 pc, and e2 is varied in the different rows from

0.1 to 0.7. We set the stellar eccentricity to its typical value e1 = 2/3 in all panels. In

regions where the EKL mechanism is important, approximately 105−6 stars are affected.

Thus, the EKL mechanism may significantly contribute to the tidal disruption events.

Note that the EKL mechanism is more likely to be suppressed for stars orbiting around

the more massive SMBH. However, for parameters where the EKL mechanism is not

suppressed everywhere around the more massive inner SMBH, the total number of stars

affected by EKL may be higher for stars orbiting the more massive SMBH than for those
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Figure 8.3: The a1 − a2 parameter space, m1 = 107M�, m2 = 1M�, e2 = 0.7. In the

upper panel, m3 = 106M�, and in the lower panel, m3 = 109M�. The solid blue and red

lines represent e1 = 0 and the dashed blue and red lines represent e1 = 0.999. Above

the red or blue lines, the EKL mechanism is suppressed by the GR or the Newtonian

precession. Below the black line or the grey lines, the hierarchical configuration or the

Hill sphere limit is violated. The EKL mechanism is suppressed everywhere in the upper

panel, and the EKL mechanism dominates in the shaded regions in the lower panel.
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orbiting the less massive SMBH.

8.2.2 Equations of Motion

As shown in the previous section, GR and NT precessions represent important limitations

for the EKL mechanism. In this section, we review the equations of motion which govern

the long-term evolution of stars due to the EKL mechanism, GR and NT precessions,

and tidal effects adopted from Naoz et al. (2013a,b) and Tremaine (2005). We use the

Delaunay’s elements, which provide a convenient dynamical description of hierarchical

three-body systems. The coordinates are the mean anomalies, l1 and l2, the arguments of

periastron, g1 and g2, and the longitude of nodes, h1 and h2. Their conjugate momenta are

L1 =
m1m2

m1 +m2

√
G(m1 +m2)a1 (8.14)

L2 =
m3(m1 +m2)

m1 +m2 +m3

√
G(m1 +m2 +m3)a2

G1 = L1

√
1− e2

1, G2 = L2

√
1− e2

2 (8.15)

H1 = G1 cos i1, H2 = G2 cos i2, (8.16)

where i denotes the inclination relative to the total angular momentum of the three-body

system and G without subscript is the gravitational constant. To leading order, the two

binaries follow independent Keplerian orbits where lj are rapidly varying and Lj, Gj, Hj,

gj, and hj are conserved for j ∈ {1, 2}. These quantities are slowly varying over longer

timescales due to the superposition of the perturbations: the EKL mechanism, GR and

NT precessions, and tidal effects, discussed next.
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Figure 8.4: The number of stars (N) influenced by the EKL mechanism, assuming a

stellar density distribution in equation (8.13), and that the stellar mass is negligible and

e1 = 2/3. We determine the range of stellar semimajor axis a1 where the EKL mechanism

operates for a fixed set of SMBH masses, m1, m3, and outer orbital parameters, e2 and

a2. Plotting the corresponding number of stars as a function of m1 and m3 for an array

of e2 and a2 as shown, captures a large parameter space. The EKL mechanism affects a

large number of stars over a wide range of SMBH binary parameters when a2 . 3 pc.

235



CHAPTER 8. IMPLICATIONS OF THE ECCENTRIC KOZAI-LIDOV
MECHANISM

Eccentric Kozai-Lidov Mechanism

The equations of motion for the EKL mechanism may be derived using the double

averaged Hamiltonian (i.e. averaged over the rapidly varying l1 and l2 elements). We go

beyond the analyses of Chen et al. (2011) and Wegg & Bode (2011), who considered only

the quadrupole (O(a1/a2)2) Kozai-Lidov mechanism, where the z-component of angular

momentum is constant. This assumption does not hold when the orbit of the SMBHB

is eccentric, and one needs to include the octupole order terms (O(a1/a2)3) (e.g. Naoz

et al. 2013a). The Hamiltonian can be decomposed as

HKozai,quad = C2{(2 + 3e2
1)(3 cos2 itot − 1)

+ 15e2
1 sin2 itot cos 2g1} (8.17)

HKozai,oct =
15

4
εMe1C2{A cosφ+ 10 cos itot sin2 itot

× (1− e2
1) sin g1 sin g2}, (8.18)

where

εM =
m1 −m2

m1 +m2

ε (8.19)

C2 =
G2

16

(m1 +m2)7

(m1 +m2 +m3)3

m7
3

(m1m2)3

L4
1

L3
2G

3
2

(8.20)

A = 4 + 3e2
1 −

5

2
B sin2 itot (8.21)

B = 2 + 5e2
1 − 7e2

1 cos 2g1 (8.22)

cosφ = − cos g1 cos g2 − cos itot sin g1 sin g2 (8.23)

The equations of motion for the EKL mechanism are given by Hamilton’s equations (eqn

(A26-35) in Naoz et al. 2013a).
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GR Effects

Next, we consider the leading order (first Post-Newtonian, 1PN) effects of GR. We

follow Naoz et al. (2013b), who derived the double averaged 1PN Hamiltonian to the

octupole (O(a1/a2)3) order. The Hamiltonian consists of four terms: Ha1 , Ha2 , Ha1a2 ,

Hint (Naoz et al. 2013b). Here Ha1a2 does not contribute to the dynamical evolution,

and the long-term effect of Hint is typically negligible, as its timescale is longer than that

of the Kozai timescale and the GR precession of the inner and outer orbit as long as the

star stays within the Hill sphere of the inner SMBH. Thus, we only consider the effects

of Ha1 and Ha2 which cause the GR precession of the arguments of periapsides,

dg1

dt

∣∣∣
1PN,a1

= −3G3/2(m1 +m2)3/2

a
5/2
1 c2(1− e2

1)
, (8.24)

dg2

dt

∣∣∣
1PN,a2

= −3G3/2(m1 +m2 +m3)3/2

a
5/2
2 c2(1− e2

2)
. (8.25)

Given that we neglect Hint, and higher order Post-Newtonian corrections such as

Lense-Thirring precession and gravitational radiation, the other conserved quantities,

Lj, Gj, Hj, hj, are not effected for j ∈ {1, 2}.

NT Precession

The Newtonian potential of a spherical stellar cusp causes apsidal precession at the rate

(Tremaine 2005):

ġ1,NT =
(1− e2

1)1/2

(Gm1/a3
1)1/2a1e1

dΦ∗
dr

cosψ, (8.26)

where Φ∗ is the stellar potential, r is the distance to the central SMBH and ψ is the

true anomaly of the inner orbit. The averaged precession rate of g1 due to Newtonian
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precession is expressed below:

ġ1,NT =
(Gm1/a

3
1)1/2

πm1e1

∫ π

0

dψM∗(r) cosψ, (8.27)

where M∗(r) is the mass of the stellar system interior to r and r ≡ r(ψ) =

a1(1 − e2
1)/(1 + e cosψ) from Kepler’s equation. Explicit analytic expressions for the

apsidal precession rate are given in Appendix A of Kocsis & Tremaine (2014).

Tidal Dissipation

To investigate if tides can suppress eccentricity excitation, we consider the “equilibrium

tide” with constant time lag to calculate the inner binary’s orbital evolution when the

pericenter distance is larger than 2Rt. Similarly to Naoz et al. (2012) and Naoz &

Fabrycky (2014), we include the differential equation governing the orbital evolution

following Eggleton et al. (1998); Eggleton & Kiseleva-Eggleton (2001) and Fabrycky

& Tremaine (2007). For the star, we assume the viscous timescale is 10 yr, which

corresponds to the quality factor (Goldreich & Soter 1966) Q ∼ 105 for a 10 day orbit

(or Q ∼ 4× 108 for a 100 year orbit).

In Figure 8.5 we show a representative example of the evolution with and without

tides. The effect of tides is negligible mainly because the orbital period is long and Q is

low.

8.3 SMBH-binary System

Requiring the criteria listed in §8.2.1, the minimum and the maximum distance of the

star affected by the EKL mechanism from the inner SMBH can be calculated. However,
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Figure 8.5: Comparison of the runs with tidal effects and the runs with no tidal effects.

The dashed green line indicates the case with tidal effects and the blue lines indicates the

case without tidal effects. The two lines are nearly identical, suggesting that tidal effects

are negligible in these runs. The left panel shows a case when a 1 M� star orbits around

a 107M� SMBH with a1 = 0.017 pc and e1 = 0.001, and is perturbed by a 109M� outer

SMBH with a2 = 1 pc. The right panel shows a case when a 10 M� star orbits around

a 107M� SMBH with a1 = 0.035 pc and e1 = 0.01, and is perturbed by a 109M� outer

SMBH with a2 = 1 pc, e2 = 0.7. We used the constant time lag prescription for the tides,

and the quality factor Q was set to ∼ 105 for a 10 day orbit (Q ∼ 4× 108 for a 100 year

orbit).
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not all stars in this region will be disrupted, since the excitation of the eccentricity

depends sensitively on the orbital orientation, and the parameter region where the

eccentricity can be excited is complicated (Li et al. 2014b). In addition, when the Kozai

timescale is only slightly smaller than the GR or the NT timescale (with tK still being

the smallest), the evolution of the inner orbit is complex. For instance, the eccentricity

of the inner orbit can be excited in configurations where the eccentricity cannot be

excited due to the Kozai-Lidov mechanism alone. This excitation may be caused by the

resonances between the NT, GR or Kozai-Lidov precessions (Naoz et al. 2013b).

We consider the following illustrative example: m1 = 107M�, m2 = 108M�, a2 = 0.5

pc, e2 = 0.5. We adopt the isotropic stellar distribution function of equation (8.13),

assuming the stars have a solar mass, and that the eccentricity distribution is thermal

(dN/de = 2e). We run large Monte-Carlo simulations, integrating the equations presented

in §8.2, where the equations of motion for the EKL mechanism are given by Hamilton’s

equations (eqs. (A26-35) in Naoz et al. 2013a), and ġ1 = ġ1,EKL + ġ1,GR + ġ1,NT ,

ġ2 = ġ2,EKL + ġ2,GR. We distinguish three outcomes for the EKL evolution: “TDE”,

“scattered by the SMBH companion”, and “surviving”, as explained now.

The eccentricity of the star needs to reach very close to unity to cause tidal

disruption. The tidal radius is Rt = 5× 10−6 pc around a 107M� SMBH. We identify the

TDE with a1(1 − e1) < 3Rt, since the stars may still be disrupted due to accumulated

heating under the strong tide outside the tidal radius (Li & Loeb 2013). Since the size

of the Hill sphere of the less massive SMBH is small (i.e. 0.08 pc in our example), the

star may reach the apocenter outside the Hill sphere before disruption as the eccentricity

increases. Namely, the gravitational pull of the companion SMBH (m3) will be larger

than m1. We refer to this as a “scattering event” (a1(1 + e1) > a2(1− e2)(m1/(3m3))1/3).
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Note that the secular approximation is no longer valid for the scattering events.

Three-body integrations of the dynamical evolution of scattering events show that they

may either lead to an exchange interaction, where the star is captured by the outer

SMBH, they may cause the ejection of the star producing a hyper-velocity star (Samsing

2014; Guillochon & Loeb 2014), or they may be tidally disrupted. The scattering

events resulting in a capture may systematically increase the eccentricity distribution of

stars orbiting the companion SMBH. For the third category, we label the stars neither

disrupted nor scattered by the companion after 1 Gyr as “survivors”.

Figure 8.6 shows the results of the numerical simulation in the final a1 − i and

a1 − e1 planes. We use open circles to mark stars that underwent TDEs, crosses for

stars that were scattered by the companion, and full circles for stars that survived. The

disruption/scattering time is color coded, and it indicates that most of the disruption

events occur within ∼ 0.5 Myr. This corresponds to the octupole Kozai timescale, which

is roughly 0.2 − 2 Myr for these systems at a1 = 0.03 − 0.08 pc. Out of all 1,000 stars

between a1 = 0.0275 pc and 0.075 pc, 57 are disrupted, and 726 are scattered by the

outer black hole. According to the stellar density distribution in equation (8.13), there

are ∼ 105 stars in this semi-major axis range. Normalized by the total number of stars

in this semi-major axis range, it indicates that the tidal disruption rate is ∼ 10−2/yr in

the first ∼ 0.5 Myr for the less massive black hole due to EKL, while ∼ 7 × 104 stars

undergo scattering events by the outer SMBH.

Since the eccentricity of the stars with high inclinations are more likely to be

excited, the stars with high inclinations are more vulnerable to tidal disruption, the

final inclination distribution is no longer isotropic (the lower panels in Figure 8.7) and

the stars around the SMBH form a torus-like configuration (see Naoz & Silk (2014) for
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similar results). The stars with larger semi major axis have higher probability to be

scattered when their eccentricity become excited due to the EKL mechanism, and thus

the final distribution of stars surrounding the less massive black hole will be truncated at

a larger semimajor axis. In addition, the distribution of the eccentricity of the surviving

stars shows deviations from thermal distribution with a suppression of very eccentric

stars (as expected since they get scattered by m3 more easily, and their eccentricity can

be excited more easily at a lower inclination (Li et al. 2014a)). Furthermore, as shown in

Figure 8.8, the stars that are closer to m1 (. 0.04 pc) have an eccentricity distribution

closer to thermal. The stars that are closer to m3 (& 0.04 pc) have systematically smaller

eccentricities. The thermal distribution for closely separated stars (. 0.04 pc) is similar

to the observed S stars in the center of the Milky-Way galaxy (Genzel et al. 2010), which

shows a steeper slope.

8.4 SMBH-IMBH System

Let us consider next the perturbations of a SMBH on stars orbiting an intermediate mass

black hole (IMBH). IMBHs may form through runaway mergers during core collapse

in globular clusters (Portegies Zwart & McMillan 2002). Since globular clusters sink

to the galactic center through dynamical friction, and the disrupted globular cluster

could contribute to most of the mass in nuclei stellar cluster for galaxies with total mass

below 1011M�, this setup may be common in the Universe(Portegies Zwart et al. 2006;

Antonini 2013; Gnedin et al. 2014). Alternatively, IMBH may form at cosmologically

early times from population III stars in galactic nuclei (Madau & Rees 2001), or in

accretion disks around SMBHs (Goodman & Tan 2004; McKernan et al. 2012, 2014).
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Figure 8.6: The outcome of the evolution around a SMBH binary with m1 = 107M�,

m3 = 108M�, a2 = 0.5 pc, e2 = 0.5. We plot the final i1 versus a1 and e1 versus a1 for

stars that survived, were disrupted, or were scattered in the simulation after 1 Gyr. The

color code indicates the time when the star is disrupted or is scattered. Out of the 1,000

stars between a1 = 0.0275 pc and 0.075 pc, 57 are disrupted, and 726 are scattered by

the outer black hole. The number of stars in this range according to the distribution of

equation (8.13) is ∼ 105 (assuming the stars are 1 solar mass). This suggests that the

tidal disruption rate is ∼ 10−2/yr in the first ∼ 0.5 Myr for the less massive black hole.
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In the Milky Way center, the orbits of the S-stars are consistent with that caused by

the dynamical interactions of IMBHs (Merritt et al. 2009). In addition, IRS 13E may

potentially host an IMBH, though its existence is controversial (Maillard et al. 2004;

Schödel et al. 2005; Fritz et al. 2010). The TDE rate has been discussed by Chen &

Liu (2013) and Mastrobuono-Battisti et al. (2014). Here, we consider the interactions of

stars surrounding IMBHs in the center of galaxies with the central SMBH due to the

hierarchical three body interactions, and consider the re-distribution of the stars as a

result of the interaction.

We set the IMBH mass to 104M� at a distance of 0.1 pc from Sgr A∗ (a2 = 0.1pc,

e2 = 0.7, m1 = 104M� and m3 = 4 × 106M�). These parameters for the IMBH are

allowed according to limits on the astrometric wobble of the radio image of Sgr A∗

(Hansen & Milosavljević 2003; Reid & Brunthaler 2004), the study of hypervelocity stars

(Yu & Tremaine 2003), and the study of the orbits of S stars (Gualandris & Merritt

2009). We set the distance of stars to be uniformly distributed between 0.00045 pc and

0.0028 pc. The tidal disruption radius for 1M� stars is 4.89 × 10−7 pc. The minimum

distance is set by requiring the GR precession timescale to be longer than the Kozai

timescale, and the maximum distance is set by requiring the stars to stay in the Hill

sphere of the IMBH. Note that in this case the hierarchical criterion 1 in Sec. 8.2.1,

ε < 0.1, is satisfied as long as the stars are within the IMBH’s Hill sphere. We assume

the distribution of the stellar eccentricity to be uniform. We take into account GR

precession, NT precession and EKL at octupole order in the integration.

In 1, 000 runs, we find that ∼ 40 end up in tidal disruption and ∼ 500 are scattered

as shown in Figure 8.9. The tidal disruption/scattering time (color coded) is around

105 yrs. As shown in Figure 8.10, we predict that the surviving stars form a torus-like
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configuration (similarly to the result achieved by Naoz & Silk (2014) for dark matter

particles). The predicted distribution may be resolved if the angular resolution of the

instrument is better than that corresponding to the Hill sphere around the IMBH, in this

case 0.07 arcsec. This can be achieved in near infrared by the Gemini, VLT and Keck

telescopes. In addition, the EKL mechanism also produces scattering events which may

be responsible for the observed hypervelocity stars. The TDE rate may reach ∼ 10−4/

yr for a short ∼ 105 yr duration episode after the globular cluster first approaches the

galactic nucleus at a distance of 0.1 pc, assuming there are ∼ 200 stars in a globular

cluster around an 104M�-IMBH in the EKL-dominated region according to the density

distribution in equation (8.13).

8.5 Conclusion

SMBH binaries are natural outcomes of galaxy mergers. An SMBH binary may show an

enhanced TDE rates due to the eccentric Kozai-Lidov (EKL) mechanism and chaotic

three body interactions (Ivanov et al. 2005; Chen et al. 2009, 2011; Wegg & Bode 2011).

The higher tidal disruption rates may in turn serve as a flag to identify closely separated

black hole binaries on subparsec scale, which are difficult to detect otherwise. We focused

on the effect of the EKL mechanism (see Naoz et al. 2011, 2013a) on the surrounding

stars in SMBHB. This mechanism can excite the stars’ eccentricity to values very close

to unity (e.g., Naoz et al. 2013a,b; Li et al. 2014a; Li et al. 2014b). We identified the

range of physical parameters where EKL is important.

We first compared the Kozai timescale with the secular timescales of other

mechanisms that may suppress EKL in galactic nuclei. These include Newtonian (NT)
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precession, general relativistic (GR) precession, resonant relaxation, two body relaxation,

Lense-Thirring precession and orbital decay due to gravitational wave emission. We have

found that for the SMBHB cases we considered, NT precession and GR precession may

suppress EKL, especially when the inner SMBH is more massive than the outer SMBH

(as shown in Figure 8.4). This is consistent with the results by Naoz & Silk (2014)

for dark matter particles around SMBH binaries, as well as the three body scattering

experiments done by Chen et al. (2009); Wegg & Bode (2011); Chen et al. (2011), who

observed that the tidal disruption events were dominated by the three body chaotic

interactions rather than EKL mechanism for stars surrounding the more massive black

hole. However, we found that a massive outer binary allows a non-negligible region of

parameter space where the EKL mechanism may operate and lead to TDEs. We also

demonstrated that tidal effects are typically negligible for the stellar orbital evolution

(see Figure 8.5).

To illustrate the EKL effects on stars surrounding the less massive black hole,

we ran 1,000 numerical experiments with different initial conditions for a star cluster

surrounding a 107M� black hole, which is being perturbed by a 108M� outer black hole.

We have found over ∼ 50 out of the 1,000 runs stars are disrupted in ∼ 0.5 Myr. Scaled

with the total number of stars according to equation (8.13), this corresponds to a TDE

rate of 10−2/yr for the first ∼ 0.5 Myr. In contrast, Chen et al. (2011) considered tidal

disruption rates for stars surrounding the more massive SMBH, using numerical three

body scattering experiments. They estimated the tidal disruption rate to be as high as

0.2 per year mainly due to three-body scattering effects†, in the first 3× 105 yrs for stars

†since, as we showed, the EKL is suppressed in this case
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surrounding a 107M� SMBH perturbed by an 81 times less massive outer SMBH. For

the same SMBHB configuration, EKL only affects at most ∼ 103 stars surrounding the

less massive SMBH as shown in Figure 8.4, and affects at most ∼ 103 stars surrounding

the more massive SMBH. Thus, EKL contributes negligibly to the total tidal disruption

rate in this case, but EKL contributes significantly to the TDE rate of stars around the

secondary SMBH.

The EKL mechanism also affects the stellar distribution for stars surrounding the

less massive SMBH. As shown in Figure 8.7, the survived stars within a particular range

of radii are distributed in the shape of a torus (Naoz & Silk 2014). In addition, a large

number of stars orbiting the less massive black hole will be scattered by the outer black

hole following the EKL-induced eccentricity increase. In our illustrative example, ∼ 670

out of 1000 stars are eventually transferred to an orbit around the outer, more massive

SMBH. This may produce hyper-velocity stars (Guillochon & Loeb 2014).

Finally, we studied the tidal disruption of stars by an IMBH during mergers of

globular clusters with galactic nuclei. For an IMBH of mass 104M� at a distance of 0.1

pc from Sgr A∗, 4% of stars get disrupted within the relevant distance range around the

IMBH, and ∼ 50% get scattered within 105 yrs. This yields a tidal disruption rate of

∼ 10−4/yr. Some of the scattering events may produce hypervelocity stars or additional

TDEs. The EKL mechanism produces a torus-like stellar distribution for the surviving

stars, which may be resolved by the Gemini, VLT and Keck telescopes in near infrared.

Further investigations of this process using numerical scattering experiments would be a

worthwhile in the future.
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our illustrative example shown in Figure 8.6. The final distribution represent the surviving

stars.
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inclination relative to the orbital plane of IMBH.
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Chapter 9

Accumulated Tidal Heating of Stars

Over Multiple Pericenter Passages

Near SgrA*

This thesis chapter originally appeared in the literature as

Li, G. & Loeb, A. Accumulated Tidal Heating of Stars Over

Multiple Pericenter Passages Near SgrA*, Monthly Notices of the

Royal Astronomical Society, 429, 3040, 2013

It is presented here with minor modifications.

Abstract

We consider the long-term tidal heating of a star by the supermassive black hole at the

Galactic center, SgrA*. We show that gravitational interaction with background stars
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leads to a linear growth of the tidal excitation energy with the number of pericenter

passages near SgrA*. The accumulated heat deposited by excitation of modes within

the star over many pericenter passages can lead to a runaway disruption of the star at

a pericenter distance that is 4-5 times farther than the standard tidal disruption radius.

The accumulated heating may explain the lack of massive (& 10M�) S-stars closer than

several tens of AU from SgrA*.

9.1 Introduction

Near the Galactic center, stars may get scattered into orbits for which the tide raised

by the supermassive black hole, SgrA*, at pericenter is large but not strong enough to

disrupt the stars. The scattering rate into those orbits is larger than that of immediate

tidal disruptions orbits, where the pericenter distances are smaller than the tidal radius,

rp . rt = R∗(MBH/M∗)
1
3 (Magorrian & Tremaine 1999; Alexander & Livio 2001). Here

MBH = 4 × 106M� is the mass of SgrA* (Ghez et al. 2008; Genzel et al. 2010), and

M∗ and R∗ are the mass and radius of the star. In the near miss regime, stars with

rp & rt are not disrupted during their first passage near SgrA*, their tidal heating and

bloating could still be substantial after multiple passages due to the tidal distortion and

the excitation of internal oscillation modes. In principle, a sufficiently large number of

close passages may lead to the disruption of these stars (Rees 1988; Novikov et al. 1992;

Kosovichev & Novikov 1992; Diener et al. 1995; Alexander & Morris 2003; Antonini et al.

2011; Guillochon & Ramirez-Ruiz 2012). Various tidal effects at rp & rt were considered

in the literature, including relativistic effects (Luminet & Marck 1985; Gomboc & Čadež

2005; Ivanov & Chernyakova 2006; Kostić et al. 2009), tidal heating of planets by stars
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(Ivanov & Papaloizou 2004a, 2007, 2011), and tidal heating in close binary systems

(Press & Teukolsky 1977; Kochanek 1992; Mardling 1995a,b; Lai 1997; Ho & Lai 1999;

Ivanov & Papaloizou 2004b; Lai & Wu 2006; Fuller & Lai 2011; Weinberg et al. 2012).

In this paper we consider the heating of stars at distances rp & 3rt from SgrA*.

Since each pericenter passage is associated with a small distortion in the shape of stars,

one may adopt a linear description for the tidal excitation of stellar modes (Novikov et al.

1992; Kosovichev & Novikov 1992). The associated theory of linear mode excitation has

been calibrated recently by new data on stellar binaries from the Kepler satellite (Fuller

& Lai 2012; Burkart et al. 2012). The underlying theory was also recently extended to

describe nonlinear coupling of the excited modes (Weinberg et al. 2012). We use the

latest results from these studies to calculate the tidal excitation and heating of stars in

the vicinity of SgrA*.

Our goal is to find the maximum distance from SgrA* at which the accumulated

heating due to numerous pericenter passages can lead to tidal disruption of stars around

SgrA*. The accumulated heating would lead to the absence of massive stars on eccentric

orbits interior to a spherical region around SgrA*, whose radius depends on M? and

exceeds the standard tidal disruption radius rt. Our predictions could be tested by future

searches for stars at closer separations than the known S-stars, which have rp & 102 AU

(Ghez et al. 2008; Genzel et al. 2010).

SgrA* is surrounded by a circumnuclear disk of young stars (Genzel et al. 2010).

Inside the inner radius of this disk, there is the S-cluster of young main sequence B-stars

(Ghez et al. 2003; Eisenhauer et al. 2005), with random orbital orientations and high

orbital eccentricities (Gillessen et al. 2009). All the known S-stars have rp � rt, but
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it is possible that the lack of S-stars inside 100 AU is caused by the accumulated tidal

heating over multiple pericenter passages. Our predictions can be tested as new stars,

such as SO-102 (Meyer et al. 2012), are being discovered and new instruments, such

as the second-generation VLTI instrument GRAVITY (Bartko et al. 2009), are being

constructed.

The outline of the paper is as follows. In §10.2 we describe the method we use to

calculate the heating due to tidal excitation and the response of the stars. In §10.3 we

show examples of these effects in the Galactic center using two stellar models produced

by MESA stellar evolution code (Paxton et al. 2011) and present the results. In §10.4,

we summarize our main conclusions.

9.2 Heating of Stars by Tidal Excitation of Modes

The tidal force from SgrA* can excite internal oscillation modes within an orbiting star

during its pericenter passages. At distances rp & 3rt, the energy gain by tidal excitation

per pericenter passage is low, but the accumulated energy after many passages can heat

the star significantly.

9.2.1 Mode Excitation and Interference in Multiple Pericenter

Passages

To calculate the low energy gain per orbit at rp & 3rt, it is appropriate to use the

linear perturbation formalism of Press & Teukolsky (1977) (see also Novikov et al. 1992;

Kosovichev & Novikov 1992). We denote the separation of the star from SgrA* at time t
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by r(t). For a single passage, the energy of an excited stellar mode can be expressed as,

∆E0,nml = 2π2
(GM2

∗
R∗

)(MBH

M∗

)2(R∗
rp

)2l+2

|Qnl|2|Knlm|2, (9.1)

where n is the mode order and {l,m} are the two spherical harmonic indices. The

excited modes have l > 1, −l < m < l, and we adopt the convention in which n < 0 for

g-modes and n > 0 for p-modes. The coefficient Knlm represents the coupling to the

orbit,

Knlm =
Wlm

2π

∫ ∞

−∞
dt
( rp
r(t)

)l+1

exp{i[ωnt + mΦ(t)]}, (9.2)

where ωn is the mode frequency, Φ(t) is the true anomaly, and Wlm = (−1)(l+m)/2[ 4π
(2l+1)

(l−

m)!(l + m)!]1/2/[2l (l−m)
2

! (l+m)
2

!]. The ‘tidal overlap integral’ Qnl represents the coupling

of the tidal potential to a given mode,

Qnl =

∫ 1

0

R2dRρ(R)lRl−1[ξRnl + (l + 1)ξSnl]. (9.3)

where ρ(R) is the stellar density profile as a function of radius R. ξ(R) =

[ξRnl(R)êR + ξSnl(R)R∇]Ylm(θ, φ) is the mode eigenfunction, with ξRnl being its radial

component and ξSnl being its the poloidal component. The total energy transferred from

the orbit to the star in a single passage is

∆E0 =
∑

nlm

∆E0,nml . (9.4)

Next, we consider the evolution of the modes as a result of multiple pericenter

passages. If the dissipation timescale of the modes is longer than the orbital period,

the modes remain excited and interfere with newly excited modes during subsequent

passages. Mardling (1995a,b) considered this problem numerically and found two orbital

parameter regions. In one of them the energy exchange between the mode and the orbits
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is quasi-periodic and the amplitudes of the modes remain small. In the other region,

chaotic behavior is exhibited. Ivanov & Papaloizou (2004b) (hereafter IP04) further

explored this stability boundary using a proxy α, which characterizes the change of the

phase due to the orbital period change, where the period change is caused by the energy

transferred to the modes. By mapping the mode amplitude and phase of a particular

passage to those values at an earlier passage, IP04 found that when α is larger than a

threshold value αc, there is a secular increase of mode energy. αc depends on the phase

of the mode in the first passage.

For Galactic center stars with rp & 3rt around SgrA*, the change in orbital period

per passage provided by the exchange between tidal excitation energy and orbital energy

is too small to increase the mode amplitude. Below we show that gravitational scattering

on stars and compact objects in the Galactic center could naturally lead to a drift in the

orbital period that allows the amplitude of the excited modes to increase stochastically.

Similar to IP04, we introduce the two-dimensional vectors xi to characterize the

amplitude Ai and the phase ψi of the excited modes at the ith passage:

x1
i = Ai cos(ψi),

x2
i = Ai sin(ψi). (9.5)

Because different stellar modes act independently in the linear regime, we focus here on

one mode with frequency ωn. For the (i+ 1)th passage,

xi+1 = R(φi)[xi + e], (9.6)

where φi = ωnPorb,i (with Porb,i being the orbital period for the ith passage), e1 = 1,

e2 = 0 and R is the rotation matrix.
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Defining αi = ωn∆Porb,i where ∆Porb,i is the change in the orbital period in the

ith passage, we get φi+1 = φi + αi. In difference from IP04, αi is a random variable.

Given the initial condition x0 = (1, 0) (without loss of generality) and equation (9.6),

we examine numerically how the mode amplitude changes as a function of the number

of passages. First, we examined the case when α is drawn from a uniform distribution

between −2αm to 2αm, 〈|α|〉 = αm. We characterize the growth in the mode amplitude

by the power-law index of its evolution with the number of passages (using a total of 106

passages). Figure 9.1 shows that for 〈|α|〉 > 0.1 the amplitude increases with a power-law

index of 0.5, so the energy of the mode increases linearly with time. We also examined an

alternative case with α drawn from a Poisson distribution and the result was the same .

Note that in difference from IP04, the increase in the amplitude is caused by

the stochastic nature of α. We also find that the threshold value does not show any

dependence on φ0.

Next we examine the value of 〈|α|〉 due to gravitational perturbers in the Galactic

center. We start by expressing α in terms of the fractional change in the orbital period

assuming the primary excited mode has frequency ωn ∼
√
NpmGM∗/R3

∗ (with a typical

value Npm ∼ 10),

α = ωn∆Porb

∼ 3300
∆Porb
Porb

[√Npm

10

(1− 0.9

1− e
)3/2(rp/rt

3

)3/2]
, (9.7)

where e is the orbital eccentricity. Thus, when |∆Porb|
Porb

& 3 × 10−5 the amplitude of the

modes increases stochastically.

We calculate the expected |∆Porb|/Porb due to gravitational scatterings using the

N-body code BHINT (Löckmann & Baumgardt 2008) to track the orbits of the stars
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Figure 9.1: The power-law index of the mode amplitude growth with time during

multiple passages as a function of the average magnitude of α = ωn∆Porb. When the

power-law index is around 0.5, the amplitude growth resembles a random walk and the

energy of the mode is growing linearly with the number of passages. We find this scaling

when 〈|α|〉 > 0.1, independent of the value of φ0 = ωnPorb,0 (shown by the different lines).
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and compact objects in the Galactic center. We estimate |∆Porb|/Porb for each passage,

and the expectation value is calculated by averaging |∆Porb|/Porb over ∼ 50 passages.

We performed a convergence test and verified that our numerical errors are small

and the results are robust. The fractional change in the orbital period of a test star

depends on the semi-major axis a and eccentricity e of its orbit and the distribution

of perturbers within the S-cluster. We assume an outer radius of ∼ 0.04 pc (= 1′′) for

the S-cluster, and estimate the period change for typical S-stars with eccentricities in

the range of 0.85–0.95. We consider the initial mass function (IMF) that matches the

mass distribution of S-stars inside 0.8′′ (dN/dm ∝ m−2.15±0.3) (Bartko et al. 2010)). The

fractional change of the orbital period is most sensitive to the massive stars (Murray-Clay

& Loeb 2011). We normalize the IMF so that it gives ∼ 3 S-stars with M ∼ 20M� as

observed. In the mass range of 0.3–25M�, the IMF yields a total of 800 stars.

We also considered the effects of scattering on stellar-mass black holes (SBH) and

a hypothetical intermediate-mass black hole (IMBH). SBHs are more massive than the

background stars and therefore are expected to segregate in the Galactic center (Morris

1993; Miralda-Escudé & Gould 2000; Freitag et al. 2006). We normalize the number of

SBHs (each having 10M�) within 0.04 pc to be 1400, based on Miralda-Escudé & Gould

(2000) and Freitag et al. (2006). An IMBH was hypothesized as an agent for randomizing

the inclinations of stars in the S-cluster, potentially creating the hyper-velocity stars

and the stellar disk (Yu & Tremaine 2003; Sesana et al. 2006; Yu et al. 2007; Gualandris

& Merritt 2009; Perets & Gualandris 2010; Yu 2010). To gauge its effect on ∆Porb we

assume an IMBH mass of 103M� (Yu 2010) with either a = 10−3pc (= 206AU)) and

e = 0.80 or a = 3 × 10−4pc and e = 0.26. The scattering due to the SBH and IMBH

dominate the fractional change in the orbital periods.
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Figure 9.2 shows the results from the numerical runs of the N-body code. We find

that the fractional changes of the orbital period are higher than the minimum value

required to increase the mode amplitudes stochastically, implying that the energy of the

excited modes would increase linearly with the number of pericenter passages. Because

the scattering of the orbit is fully random and the change of the orbit is typically small

(∼ 10−4–10−3), we neglect the orbital evolution. For a random walk, the period is

expected to change significantly only after 106–108 passages, beyond the number of

passages considered here.

Similar to the study on the variation of orbital period, we quantify the change in

eccentricity using N-body integration code BHINT. We use the same configuration of

the stars and we do not consider the effect of SBHs or IMBHs for simplicity. Figure

9.3 shows the changes in eccentricity for a star at a = 0.01 pc, e = 0.998 versus time.

Assuming δe(t) ∝
√
t, the changes in 1− e over ∼ 1 Myr timescale, during which the star

accumulates a large amount of energy, is δ(1− e) ∼ 0.25(1− e0). Thus, the eccentricity

variation due to the perturbation from the surrounding stars can affect the heating

process. The increase of the eccentricity may increase the heating, and the decrease of

the eccentricity can weaken the tidal excitation of the modes and delay tidal disruption.

Since δ(1 − e)/δ(1 − e0) is less than an order of unity before the star accumulates the

heating energy, heating of the star will not be completely suppressed due to the variation

in eccentricity. We ignore the variation in eccentricity for the rest of this section for

simplicity.
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Figure 9.2: The average of the fractional change in orbital period per pericenter passage,

〈|∆Porb|/Porb〉, for stars on orbits with different semi-major axis a. The x-axis is in unit of

10−3 pc = 206 AU. We include 800 stars with an initial mass function (dN∗/dM∗) ∝M−2.15
∗

(Bartko et al. 2010) in the mass range 0.3–25M�, providing about three 20M� stars.

We also consider scattering on a population of 1, 400 stellar-mass black holes (SBH)

within 0.04 pc from Sgr A* (Miralda-Escudé & Gould 2000; Freitag et al. 2006), or an

intermediate mass black hole (IMBH) with a mass of 103M� on two possible orbits.
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9.2.2 Tidal Heating of Stars

Since the expected fractional change in the orbital period per pericenter passage in

Figure 9.2 is higher than 3×10−5, the tidally-excited mode energy is expected to increase

linearly with the number of pericenter passages. Cumulatively, a significant amount of

heat might be deposited inside the star during multiple passages. In this section, we

consider the dissipation of the mode energy and the resultant heating of the star.

Previous studies showed that when the amplitude of the excited modes increases

over some parametric instability threshold, the excited mode begins to transfer its energy

to lower frequency daughter modes which dissipate rapidly (Dziembowski 1982; Kumar

& Goodman 1996; Wu & Goldreich 2001; Arras et al. 2003; Weinberg & Quataert 2008;

Weinberg et al. 2012). We set ncrit = Eth/∆E0 to be the number of pericenter passages

after which the amplitude of the mode exceeds this threshold, where Eth is the threshold

energy when non-linear coupling occurs. As the dissipation time of the excited daughter

modes is typically short compared with the orbital period in the Galactic center, the

thermal energy gain in the stellar interior is:

Et,np = (np/ncrit)Eth = np∆E0, (9.8)

where Et is the thermal energy gained during this process, np is the number of pericenter

passages and ∆E0 is the energy gain of the excited modes during the first passage.

When np � ncrit, the thermal energy added to the star is independent of the parametric

instability threshold.

The heat generated around a radius R within the star at time t0 will be trapped

inside the star for a finite time, (t− t0) < tc(R), where tc(R) is the characteristic time it

takes heat to leak out. We estimate tc(R) as the minimum between the photon diffusion
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time, tdiff =
∫
dR{τ(R) − (R∗ − R)[dτ(R)/dR]}/c, and the turbulent convection time,

tt =
∫
dR/vc(R), for each spherical shell inside the star. Here τ(R) is the scattering

optical depth and vc(R) is the convective velocity. At late times t > tc(R), the heating

at radius R will saturate and reach a steady state where it is balanced by cooling. This

sets the upper limit of the maximum heat stored at a radius R.

As the non-linear coupling excites a large number (> 103) of daughter modes, most

of the energy is redistributed. Typically, the daughter modes consist of high order

g-modes and so the energy is redistributed mostly in the radiative zone. Weinberg et al.

(2012) investigated modes inside solar-type stars and found that most of the energy is

transferred to the radiative core of the star. For simplicity, we will assume that the

energy is uniformly distributed per unit mass within the radiative zone.

The energy gained can be expressed as follows,

Et(R) =





ncrit∆E0(R) if tc(R) < Porbncrit

tc(R)
Porb

∆E0(R) if tc(R) > Porbncrit

(9.9)

Assuming that energy is evenly deposited throughout the entire radiative zone of the

star, we find E0(R) and obtain the thermal energy stored at a radius R, Et(R). Typically

for stars at rp & 3rt around SgrA*, ncrit � tc(R)/Porb, and so the total stored heat is

independent of ncrit. Finally, integrating Et(r) over the interior of the star yields the

total heating inside the star, EH .

As a result of the additional source of energy, the star expands. So far, we did

not include the increase of the size of the star in our calculation. As the stellar radius

increases, the tidal effects become stronger with ∆E ∝ R6
∗. A decrease in the mode

frequency ∼
√
GM∗/R3

∗ brings ωn closer to the orbital frequency and increases Knl.
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Thus, ignoring the variation in the tidal overlap integral (Qnl), the tidal excitation

becomes stronger as the size of the star increases. In addition, the rate of the expansion

and the final size of the star depend on where the heat is deposited (Podsiadlowski 1996).

We examine this process more closely with MESA stellar evolution simulations (Paxton

et al. 2011) in the next section.

As the star gains energy, its energy gain rate increases due to its increasing size.

The resulting runaway process could lead to the disruption of the star. In order to find

the minimum heating at saturation (t > tc(R = 0)) that may lead to disruption, we

express the radius of the star after the nth pericenter passage as, R∗(n) = R∗,0(1 + εn),

where R∗,0 is the original radius of the star. Assuming ∆E ∝ R∗(n)6 and ignoring the

change in entropy within the star, we find

1/(1 + εn)− 1/(1 + εn+1) = ∆Ẽ0((1 + εn)6 − 1), (9.10)

where ∆Ẽ0 = ∆E0/(GM
2
∗/R∗,0). Figure 9.4 shows the growth of R∗(n) as a function of

the number of pericenter passages starting with the saturation value of ε0 = 0.01. Our

results demonstrate that at rp/rt ∼ 4 the stored heat can approach the binding energy

of the star after ∼ 106 pericenter passages following saturation, even if the total heat

gained at saturation is only ∼ 1% of the binding energy. This threshold increases as

rp/rt increases.

During its lifetime, a massive star can achieve & 107 pericenter passages at the

corresponding distances from SgrA*. For example, a 20 M� star with e = 0.9 and

rp ∼ 5rt around SgrA* has an orbital period of ∼ 0.8 years. Thus, during its lifetime the

star encounters ∼ 107 pericenter passages. The maximum number of pericenter passages

is also limited by gravitational scatterings on other stars. According to Figure 9.2, with
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stochastic scatterings on SBH or one hypothesized IMBH, the maximum number of

passages at the original pericenter is ∼ 106 − 108. Thus, for rp/rt < 5, the star will

be significantly heated even if the total heat gained at saturation is only ∼ 1% of the

binding energy.

Non-linear effects are expected to dominate in the last phase of the disruption

process. When the star is distorted, the energy transfer from the orbit to the modes can

be either positive or negative depending on the phases of the modes and the orientation

of the ellipsoid at the time of the pericenter passage. Diener et al. (1995) studied this

effect statistically and found that the probability of a positive transfer of energy from

the orbit to the star is high.

9.3 Results

Based on the formalism presented in §10.2, we calculated the tidal heating of stars in the

Galactic center. We consider two steller masses: 1M� (representing low-mass stars) and

20M� (representing high mass stars, similar to SO-2 (Martins et al. 2008)). The other

properties of the two stars are summarized in Table 9.1.

Table 9.1:: Properties of stellar models

Mass Metallicity Radius Age

(M�) (R�) (yrs)

1 Z = Z� 1 4.5× 109

20 Z = Z� 10 7× 106
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Since the energy gain in each passage depends on
(
R∗/rp

)2l+2

, and because the

value of Qnl and Knlm are similar for modes with different values of l, the quadrupole

(l = 2) modes gain the most energy during the tidal excitation (whereas l = 0 and l = 1

modes are not excited). Thus, we focus on the l = 2 modes.

We calculate the overlap integral (Qnl) and the orbit coupling (Knlm) using the

MESA stellar model (Paxton et al. 2011). The adiabatic normal modes are computed

with the ADIPLS code (Christensen-Dalsgaard 2008). For illustration, we show in Figure

9.5 the values of
∑
m

|Qn,l=2|2|Kn,l=2,m|2 for a 20M� star in orbit around Sgr A* with

a = 7 × 10−3 pc and e = 0.9. As expected (e.g. Press & Teukolsky 1977; Burkart et al.

2012), we find that lower order g-modes are excited the most. The energy gain in one

passage, ∆E0, can then be found from equation (9.4).

To calculate the time it takes for the deposited heat to travel to the surface (tc) as

described in §9.2.2, we obtain the optical depth and the convective velocity profile in the

interior of the stars from the MESA code (Paxton et al. 2011). Figure 9.6 shows the

cooling time as a function of radius for the two stars.

The threshold for non-linear coupling has been discussed by Weinberg et al. (2012)

for three mode coupling in a solar-mass star. If the daughter modes only couple to one

other daughter mode, the threshold is Eth ∼ 10−19GM2
∗/R∗; however, if the daughter

modes couple to multiple daughters, Eth ∼ 10−16GM2
∗/R∗. In both cases, (tc/torb)� ncrit

in the interior of the stars for rp & 3rt. Thus, the heating of the star is independent of the

value of ncrit. Conservatively, we calculate the heating using the high energy threshold.

As the daughter modes consist of high order g-modes, energy is redistributed mostly

in the radiative zone of the star. For simplicity, we assume that the distribution is
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uniform per unit mass in the radiative zone and integrate equation (9.9) over the interior

of the star. Figure 9.7 shows the heat gained by the stars (EH) in units of their binding

energy (EB) obtained from MESA, at the saturation time t = tc(R = 0). The increase in

the stellar radius is not included in this calculation.

Taking account of the runaway increase in the stellar radius, the net heat deposited

could approach the binding energy and hence lead to disruption when the heating at

saturation approaches 1% of the binding energy. We estimate that the heating could be

substantial at rp ∼ 4.5rt for 20M� stars.

Next we analyse the heating effect more accurately using MESA stellar evolution

simulations. We estimate the heating rate by ∆E0/Porb, and assume that the heat

is deposited uniformly in the radiative zone. We take account of the change in

|Qnl=2|2|Knl=2m|2 due to the change of the stellar structure through iterations. For our

first iteration, we assume a constant |Qnl=2|2|Knl=2m|2 and obtain the structure of the

heated stars with different radii at different times. Then we calculate the increase in

|Qnl=2|2|Knl=2m|2 as a function of the increase in stellar radius for the heated stars. For

our second iteration, we simulate the heated stars with a changing |Qnl=2|2|Knl=2m|2 as

a function of stellar radius. We calculate |Qnl=2|2|Knl=2m|2 and continue iterating until

the dependence of |Qnl=2|2|Knl=2m|2 on radius converges. In the examples we consider,

convergence is reached within two iterations.

Our convergent results for the 20 M� star indicate that the size of the convective

core decreases and the central temperature stays approximately constant during the

heating. For the 1 M� star, the size of the radiative core increases and the central

temperature drops significantly. Figure 9.8 shows the radius of the heated star as a
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function of time. We compare the results of the two iterations for the 20 M� star at

rp/rt = 4.5 and for the 1 M� star at rp/rt = 5, and find that the disruption time depends

only weakly on the change in |Qnl=2|2|Knl=2m|2. For other pericenter distances we show

only the results of the first iteration (assuming |Qnl=2|2|Knl=2m|2 =const). Requiring

the heating timescale to be shorter than the orbital scattering timescale and the stellar

lifetime, we find that the maximum rp for disruption is ∼ 4.5rt for a 20 M� star and

∼ 5rt for a 1 M� star.

For simplicity, we only considered non-rotating stars. As discussed by Fuller & Lai

(2012), the mode frequencies are modified for rotating stars by mCnlΩ∗, where Ω∗ is the

rotation rate of the star and Cnl =
∫ R∗

0
ρR2(2ξRξS+ ξS2) dR. Because Qnl are unchanged

by rotation, the dominant modes shift to higher order g-modes which have smaller values

of Qnl. Thus, rotation would lower the excitation energies. In addition, the rotation

may modify the modes themselves (Burkart et al. 2012), and further complicate the

calculation. Treatment of tidal excitation in misaligned spin-orbit systems were discussed

by Ho & Lai (1999) and Lai & Wu (2006).

Finally, we discuss the observational signature of a tidally heated star. Using the

MESA simulation, we plot the Hertzsprung-Russell (HR) diagram of the heated stars

in Figure 9.9. Because our calculation is not appropriate in the non-linear regime when

the tidal radius of the heated star approaches ∼ (rp/2.7), we stop the calculation when

rp ∼ 2.7rt,heated, where rt,heated is the tidal radius of the heated star. We find that a 1

M� star at rp ∼ 2.7rt,heated acquires a luminosity L that is ∼ 3 times higher than if it

were on the main sequence and an effective temperature Teff that is ∼ 12% lower than

the main sequence star. A 20M� star at rp ∼ 2.7rt,heated acquires a luminosity that is

∼ 44% times higher and an effective temperature that is ∼ 20% lower than that on the
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main sequence. Photometrically, the heated stars could be confused with giant stars that

evolved off the main sequence (illustrated by the blue lines in the plot).

9.4 Conclusion

We considered the tidal excitation of oscillation modes in stars orbiting SgrA*. When

the dissipation timescale of the modes is longer than the orbital period, the modes

excited in each passage interfere. Due to the gravitational scatterings on nearby stars

or stellar-mass black holes, the orbital period of the excited star changes stochastically

and the energy of the excited modes increases approximately linearly with the number

of pericenter passages. As non-linear coupling of the stellar modes dissipate the kinetic

energy of the modes, the excited star is heated. Once the deposited heat is significant,

the star bloats and its tidal heating accelerates, until non-linearities lead to the final

mass loss and possible disruption of the star.

We calculated the thermal energy gain by a star as a function of the semi-major axis

and eccentricity of its orbit around Sgr A*. We have found that the maximum pericenter

distance where the heat gained by the star approaches its binding energy is rp ∼ 5rt

(∼ 3.7 AU) for a 1 M� star and rp ∼ 4.5rt (∼ 13 AU) for a 20 M� star. The accumulated

heating may explain the lack of massive (& 10M�) S-stars closer than several tens of AU

from SgrA* (Genzel et al. 2010).

The heating process may be most effective for the highest-mass stars (& 100M�),

where radiation pressure nearly balances gravity and reduces the binding energy

considerably relative to GM2
∗/R∗ (Shapiro & Teukolsky 1986). This makes these stars
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more vulnerable to disruption through heating. However, the heating is not important

for giant stars evolved off the main sequence, because for rp/rt ∼ 5 the orbital period of

a giant star is too long to allow sufficient number of pericenter passages during the star’s

lifetime.

The expected radius of the cavity produced by tidal disruption of stars depends on

stellar mass (Alexander & Livio 2001). Since gravitational scatterings on other objects

could change the orbital period on a timescale much shorter than the lifetime of a low

mass star but similar to the lifetime of the high mass star (∼ 20M�), the net number of

pericenter passages is similar in the two cases. Of course, the tidal distance of a high

mass star is larger than that of a low mass star, and so a lower mass star may approach

Sgr A* at a closer distance (having a shorter orbital time and more pericenter passages)

before being tidally disrupted.

The removal of tidally-heated stars makes it more difficult to test the no hair

theorem of general relativity based on stellar orbits, as the precession produced by

the quadruple moment of SgrA* decreases with increasing distance. For example, the

precession rate due to the quadruple moment of SgrA* is only ∼ 0.4µas/yr for a 20M�

star with rp = 4.5rt, and is ∼ 4µas/yr for a 1M� star with rp = 5rt, assuming a

normalized spin of 0.7 for SgrA* (Will 2008). Gravitational deflections by other stars or

compact objects contaminate the precession signal and require the monitored stars to

be within ∼ 2 × 10−4 pc from SgrA* (Merritt et al. 2010). We find that only low mass

stars (which cannot be detected at present) would be viable targets for testing the no

hair theorem around SgrA*.

As new stars, such as SO102 (Meyer et al. 2012), are being discovered in the Galactic
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center, our predictions for the tidal cavity radius as a function of stellar mass may be

tested. In particular, the second-generation VLTI instrument GRAVITY will be able to

resolve faint stars with a K-band magnitude mK = 18 (∼ 3M�) (Bartko et al. 2009) and

test our predictions in the coming years.
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Figure 9.3: The change in eccentricity of a star at 0.01 pc with e = 0.998 due to

surrounding stars. The configuration of the stellar cluster is the same as that shown in

Figure 9.2. The changes in eccentricity can affect heating, but cannot completely suppress

the heating process.
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when t > tc(R = 0), assuming ∆R/R∗,0(n = 0) = 0.01. We find that a star can be heated

significantly after ∼ 106 passages even if the thermal energy it stores at saturation is only

1% of its binding energy. This threshold increases as rp/rt increases.
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computed with the ADIPLS code (Christensen-Dalsgaard 2008) based on the stellar struc-

ture from the MESA stellar model (Paxton et al. 2011). The mass (20M�) and radius

(10R�) of the star resemble those of SO-2 (Martins et al. 2008).
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Figure 9.7: Maximum amount of heat gained at saturation in units of the binding

energy of the star as a function of its orbital parameters a and e for a 20M� star. The

solid black line indicates the pericenter distance boundary rp = 2.7rt below which the

linear tidal excitation formalism is not applicable (Novikov et al. 1992). The dashed

black line delineates the threshold EH/EB ∼ 0.01, beyond which the star can potentially

be disrupted in . 106 pericenter passages. We find that 20M� stars are significantly

heated at rp ∼ 4.5rt.

278



CHAPTER 9. TIDAL HEATING OF STARS IN THE GALACTIC CENTER

10
3

10
4

10
5

10
6

0.5

1

1.5

2

2.5

3

3.5

heating time (yrs)

R
∗(

R
⊙

)

 

 

no heating

rp/rt = 4

rp/rt = 5

rp/rt = 5
2

1M⊙

10
3

10
4

10
5

10
6

10
7

10
1

10
2

heating time (yrs)

R
∗(

R
⊙

)

 

 

no heating

rp/rt = 4

rp/rt = 4.5

rp/rt = 4.5
2

rp/rt = 5

20 M⊙
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radius increases.
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Chapter 10

Gravitational Wave Heating of Stars

and Accretion Disks

This thesis chapter originally appeared in the literature as

Li, G., Kocsis, B & Loeb, A. Gravitational Wave Heating of Stars

and Accretion Disks, Monthly Notices of the Royal Astronomical

Society, 425, 2407, 2012

Abstract

We investigate the electromagnetic (EM) counterpart of gravitational waves (GWs)

emitted by a supermassive black hole binary (SMBHB) through the viscous dissipation

of the GW energy in an accretion disk and stars surrounding the SMBHB. We account

for the suppression of the heating rate if the forcing period is shorter than the turnover

time of the largest turbulent eddies. We find that the viscous heating luminosity in
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0.1M� stars can be significantly higher than their intrinsic luminosity, but still too low

to be detected for extragalactic sources. The relative brightening is small for accretion

disks.

10.1 Introduction

The coalescence of supermassive black hole binaries (SMBHBs) generates gravitational

waves (GW) which are a primary source for the proposed Laser Interferometric Space

Antenna (LISA∗). SMBHBs are inevitable outcomes of galaxy mergers. Spatially-resolved

active galactic nuclei have been observed (Komossa et al. 2003; Bianchi et al. 2008;

Green et al. 2010; Koss et al. 2011; Fabbiano et al. 2011). In addition, spectroscopic

surveys (Comerford et al. 2009; Smith et al. 2010; Liu et al. 2010b) and observations that

combine ground-based imaging show numerous systems containing compelling SMBHB

candidates with pc to kpc separations (Rodriguez et al. 2006; Liu et al. 2010a; Shen et al.

2011; Fu et al. 2011; McGurk et al. 2011). Hydrodynamic simulations of galaxy mergers

also predict SMBHB pair formation (e.g. Escala et al. 2004, 2005; Di Matteo et al. 2005;

Robertson et al. 2006; Hopkins et al. 2006; Callegari et al. 2009; Colpi & Dotti 2011;

Blecha et al. 2012).

Electromagnetic (EM) counterparts to GW sources complements the GW detection

by determining the host galaxy redshift and the environment of the sources (Kocsis

et al. 2006; Phinney 2009). A large variety of EM signatures have been proposed to

accompany the coalescence of SMBHBs (Schnittman 2011; Haiman et al. 2009). In the

∗http://lisa.nasa.gov/
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pre-merger phase, the torques of the SMBHB excavates a hollow region in the disk and

leads to periodic accretion across the gap on the orbital timescale (Cuadra et al. 2009;

MacFadyen & Milosavljević 2008; Hayasaki et al. 2008). After the merger, the recoil

of the black hole remnant and its sudden mass loss due to the final GW burst produce

shocks in the accretion disk which lead to EM signals (Bode & Phinney 2007; Lippai

et al. 2008; Schnittman & Krolik 2008; Shields & Bonning 2008; O’Neill et al. 2009; Rossi

et al. 2010). The recoil of the black hole remnant changes the tidal disruption rate of

stars due to the refilling of the loss cone and the wandering of black hole remnant (Stone

& Loeb 2011a, 2012; Li et al. 2012). Finally, the infall of gas onto the black hole remnant

produces an EM afterglow (Milosavljević & Phinney 2005; Tanaka & Menou 2010).

In this paper, we consider the viscous dissipation of GWs generated by a SMBHB

in a neighboring gaseous medium. In particular, the velocity shear induced by GWs in

the gas is damped by viscosity. The dissipated GW energy turns into heat, and produces

an electromagnetic flare. Unlike other EM counterparts, the brightening here follows

promptly within a few hours to days after the coalescence of the SMBHB (Kocsis & Loeb

2008). The effect provides a unique test of general relativity for the interaction of GWs

with matter. In § 10.2 and 10.3 we investigate GW dissipation in a gaseous accretion

disk and stars in the vicinity of the SMBHB. We examine the suppression of the effect if

the forcing period is shorter than the turnover time of the largest eddies (Krolik 2010),

in analogy to a similar treatment of tidal heating in binary stars (Zahn 1966; Goldreich

& Keeley 1977). Finally, we discuss our conclusions and their implications in § 10.4.
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10.2 Method

We start by presenting our approach for estimating the GW heating inside an accretion

disk and stars due to turbulent viscosity. Following Kocsis & Loeb (2008), we

approximate the GW luminosity by matching the Newtonian inspiral luminosity prior

to merger (t < 0), the peak luminosity at the merger (t = 0) and the decay luminosity

afterwards (t > t1), where t1 can be fixed from this matching procedure. Specifically, in

the Newtonian inspiral regime, the luminosity is

LGW inspiral =
32

5

G4

c5

M3µ2

a5
, (10.1)

where M = M1 + M2 is the sum of the masses of the SMBHB members, µ = M1M2/M

is the reduced mass of the SMBHB and a is the separation between the SMBHB, which

can be expressed as

a =

[
256

5

G3

c5
µM2(t1 − t)

]1/4

, (10.2)

assuming a circular orbit. The peak luminosity is approximated from numerical

simulations (Berti et al. 2007; Buonanno et al. 2007) as

LGW peak ≈ 10−3 c
5

G

( µ
M

)2

, (10.3)

and the ringdown luminosity is set to be

LGW ringdown = LGW peak exp

(
−c(t− t1)

5Rg

)
, (10.4)

where Rg = GM/c2 is the gravitational radius of the SMBHB. The peak luminosity is

modified by a factor of two (Berti et al. 2007; Buonanno et al. 2007) due to different

magnitudes and orientation of the spin of the SMBHB. In this paper, we assume the

masses of the two black holes are the same.
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With the approximated expression of GW luminosity as a function of time, the

dissipation of GW energy inside a viscous medium can be calculated by solving the

weak-field Einstein equation (Hawking 1966; Weinberg 1972):

ėheat =
16πGη

c2
eGW, (10.5)

where ėheat is the dissipation rate, η is the dynamical viscosity and eGW is the GW energy

density. eGW can be obtained from eGW = Y (θ) LGW

4πcr2
, where θ is the angle relative to the

total angular momentum vector, Y (θ) = 5/2[sin8(θ/2) + cos8(θ/2)]. We use the average

value 〈Y 〉 = 1 below. With LGW derived, the only unknown parameter is the dynamical

viscosity of the medium that the GW passes through. The dissipation rate of the GW

energy gives the heating rate of any gaseous medium such as an accretion disk and stars.

Next, we estimate the dynamical viscosity for stars. We use stellar models produced

by Modules for Experiments in Stellar Astrophysics (MESA†) (Paxton et al. 2011), a

1D stellar evolution code, and we consider stellar models, whose properties are included

in Table 10.1. We associate the dynamical viscosity with the mixing length theory

diffusion coefficient, which is directly provided in the simulated models by MESA. When

the period of the driving force is smaller than the largest eddy turnover time, the eddy

viscosity depends on the ratio of the period to the largest eddy turnover time in one of

two possible ways:

η = ηi min
[(τGW

2τl

)
, 1
]
, (10.6)

or

η = ηi min
[(τGW

2πτl

)2

, 1
]
, (10.7)

†http://mesa.sourceforge.net/
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where ηi is the intrinsic viscosity in the absence of shear force with short period, τl is the

largest eddy turnover timescale and τGW is the shear force period, which is calculated

as 2π/ωGW, where ωGW = 2
√
GM/a3 in the inspiral phase a < 6Rg and 0.25/(GM/c3)]

after the ringdown, and extrapolate linearly during the transition according to Buonanno

et al. (2007). The viscosity scaling given by Eq. (10.6) is discussed in Zahn (1966,

1989); Zahn & Bouchet (1989) and Eq. (10.7) in Goldreich & Keeley (1977); Goldreich

& Nicholson (1989). Observations are more consistent with Zahn’s scaling for pulsating

stars in the red edge of the instability strip (Gonczi 1982), for tidal circularization of

binary stars (Verbunt & Phinney 1995; Meibom & Mathieu 2005), while the damping of

the solar p-mode oscillations is more consistent with the Goldreich’s scaling (Goldreich

& Kumar 1988; Goldreich et al. 1994). Recently, Penev et al. (2009) studied turbulent

viscosity in low mass stars using the perturbative approach of Goodman & Oh (1997),

taking into account compressible fluid and anisotropic viscosity. Their simulation

suggests a linear scaling. However, Ogilvie & Lesur (2012) found results more consistent

with Goldreich’s scaling when studying the limit of a low amplitude short oscillation

period shear. We considered both scalings for stars in this paper.

With the viscosity for stars and LGW(t) in hand, the GW heating rate can be

estimated using Eq. (10.5). The EM luminosity increase can be estimated by solving the

radiative transfer equation:

tc(r)
d

dt
∆f(r) + ∆f(r) = ėheat, (10.8)

LGWH =

∫

star

∆f(r) dV, (10.9)

where ∆f(r) is the excess EM signal produced per unit volume as a function of location

in the star, LGWH is the excess EM luminosity associated to GW heating, and tc(r) is the
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cooling time as a function of the location, which characterizes the time it takes for heat

to travel to the surface. We estimate the latter by taking the integral of the minimum

of the photon diffusion time, dr/c× [τ(r)− (R∗ − r)dτ(r)
dr

], and the turbulent convection

time, dr/vc(r), in each spherical shell inside the star, where the optical depth, τ(r), and

the convective velocity, vc(r) are obtained from the MESA simulation, and R∗ is the

radius of the star.

Finally, we estimate the heating in accretion disks. We adopt the geometrically

thin, optically thick, standard accretion disk model, where the angular momentum

transport is associated with the internal stresses due to turbulence (Shakura & Sunyaev

1973; Novikov & Thorne 1973). Heat is dissipated locally by turbulent viscosity, and

transported vertically outward by photon diffusion or advection. Specifically, the

viscosity of the accretion disk is

ηi(r) =
2

3

αP (r)

Ω(r)
, (10.10)

where Ω2(r) = GM/r3 is the angular velocity, α is a constant which we assume to be

0.3 (King et al. 2007), and P is the total (gas+radiation) pressure in the α disk model,

and gas pressure in the β model. In these models, the physical characteristics of the

disk is fixed by the following parameters: the accretion rate in Eddington units (ṁ),

the radiation efficiency (ε), and the SMBHB mass (M) (Goodman 2003; Goodman &

Tan 2004). We set ṁ to be 0.1, ε to be 0.1, and discuss the effects caused by different

SMBHB masses.

Similarly to stars, we account for the frequency dependence of viscosity when the

period of the driving force is smaller than the largest eddy turnover time, and estimate

the effective viscosity according to the perturbative methods as discussed in Goodman
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& Oh (1997). Specifically, for incompressible fluid with isotropic viscosity, the viscosity

as a function of driving force frequency can be expressed in terms of the frequency

spectrum of the average kinetic energy per unit mass. For accretion disks, where the

Kolmogorov scalings may not be applicable to obtain the energy spectrum, we adopt

the energy spectrum from recent magnetohydrodynamic (MHD) disk simulations. Flock

et al. (2011) present a full 2π three dimensional simulation on a stratified accretion disk,

where the turbulence is driven by magnetorotational instability (MRI) and the kinetic

spectra is obtained in the φ direction, and Fromang (2010) investigate the MRI in a

shearing box with zero net flux. Flock et al. (2011) and Fromang (2010) estimate the

kinetic energy spectrum exponent to be 11/9 and 1.5, respectively. We estimate the

viscous heating in accretion disk with the Flock et al. (2011) exponent as well as the

Kolmogorov scaling exponent 2.

Similarly to the calculation for stars, the GW heating rate can be estimated using

Eq. (10.5). The corresponding EM signals can be estimated by solving the radiative

transfer equation following Kocsis & Loeb (2008):

tc(r)
d

dt
∆F (r, t) + ∆F (r, t) = Hėheat(r, t), (10.11)

LGWH(t) =

∫ rmax

rmin

2πr∆F (r, t) dr, (10.12)

where F (r) is the excess EM flux due to GW heating in the accretion disk, H is the

scaleheight, LGWH is the corresponding excess EM luminosity, and tc(r) is the cooling

time. Here, we assume the disk is face on, and account for the different light-travel time

from different annuli in the disk. The brightening can be somewhat larger in an inclined

or edge-on configuration (by up to a factor of ∼ 3) where the peak GW flux is observed

coincidentally at the inner and outer radii along the line of sight (Kocsis & Loeb 2008).
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10.3 Results

First, we consider the GW heating of nearby stars. As an example, we examine the

GW heating light curve for a 0.1 M� star (stellar model 2) surrounding an M = 107 or

an 109M� SMBHB, respectively. Using Eqs. (10.8) and (10.9), we calculate F (t) and

plot the GW heating light curve in Figure 10.1. We assume that the star is located

at d = 5 tidal radii from the SMBHB (corresponds to 320 and 15Rg for a 107 and a

109 M� SMBHB, respectively). Note that since the GW luminosity is proportional to

(d/Rg)−2, the GW heating effect is much larger around more massive SMBHBs because

the viscosity suppression for a high mass SMBHB is smaller.

Figure 10.1 shows that the excess luminosity of the star surrounding the 109M�

SMBHB is much higher than the intrinsic luminosity of the star (L = 2.6× 1030erg s−1).

In fact, the net dissipated GW energy can exceed the gravitational binding energy

near the stellar surface, and could generate a stellar wind. However, as the viscosity is

strongly suppressed in the stellar interior ( τGW

τl(r)
� 1 for r . 0.99Rstar), the heating effect

is negligible to the star as a whole. In addition, these stars are very faint; the absolute

peak GW heating luminosity in the star is typically too faint to be observed outside of

the Galaxy.

Since the turnover time of turbulent eddies is much longer in the interior of the

star than that at the surface, the energy is mostly dissipated at the surface. Since the

cooling time near the surface (∼ 200 s) is short compared to the peak GW timescale

(∼ 10Rg/c ∼ 500 sMBH/107M�), the light curve of the star closely tracks the luminosity

curve of the GW. When the GW driving period is shorter than the eddy turnover time,

the viscosity caused by the eddy depends on the ratio τGW/τl, where the exact scaling is
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uncertain as discussed in § 10.2. For stars surrounding a 109M� SMBHB, the differences

between the two scalings are smaller as the period of peak GW emission for this SMBHB

mass is more comparable to the surface eddy turnover time in a 0.1 M� star.

To examine the influence of the GW heating in different types of stars, we consider

stellar models of different stellar masses and ages as included in Table 1. We include

the extreme cases with 0.1M� and 100M� stars. We plot the ratio of the peak heating

luminosity to the intrinsic luminosity for different stellar models in Figure 2 with

Zahn’s scaling. We find that the influence of the GW heating is more significant as

the metallicity of the star increases, and GW heating is not significant for very massive

(M∗ ≥ 100M�) stars.

Next, we discuss the heating effects in accretion disks. For α and β disks, we solve

Eqs. (10.11) and (10.12) for the heating flux, and plot the heating light curve of the disk

due to GW heating in Figure 3. The accretion disk is punctured with an inner hole.

This geometry is essentially “frozen” during the final GW merger timescale with a gap

radius & 100M for α–disks (Milosavljević & Phinney 2005). Recent MHD simulations

by Noble et al. (2012) indicate that the stresses may be enhanced in a binary, such

that gap decoupling occurs further in, at 20Rg. We optimistically adopt this value for

our estimates, which implies a larger heating rate than that for a larger gap radius.

We integrate over the accretion disks between the inner and outer boundary. We set

the latter to 2 × 104Rg, but this value does not influence our result as the heating in

the outer accretion disk is negligible. We include the different light travel time from

different accretion disk surface elements along the line of sight. Our calculation of the

heating in the accretion disks improves the simplified treatment of Kocsis & Loeb (2008)

by including the dependence of viscosity on the ratio of the GW driving period to the
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Figure 10.1: The light curve of a GW heated star (based on star model 2 with an intrinsic

luminosity: L = 2.6× 1030erg s−1). The time axis is in units of Rg/c, and is shown on a

logarithmic scale at both negative and positive values (causing the discontinuity at t = 0).

The star is located 5 tidal radii away from the SMBHB (320 and 15Rg for a 107M� and

109M� SMBHB, respectively). The black line indicates the GW luminosity scaled down

by 25 order of magnitude in order to fit in this figure. The red and blue lines indicate the

light curve of a star surrounding a 107 and a 109M� SMBHB, respectively, with solid and

dashed lines corresponding to the viscosity dependence with (τGW/2τl) and (τGW/2πτl)
2,

respectively. The light curve closely tracks the GW light curve. Interestingly, the peak

luminosity surrounding the 109M� SMBHB is much higher than the intrinsic luminosity

of this star.
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Table 10.1:: Properties of stellar models

No. Mass Metallicity Radius Luminosity Age

(M�) (Z) (R�) (L�) (yrs)

1 0.1 0.16 3.3 0.00079 2× 104

2 0.1 0.16 3 0.00066 5× 106

3 0.1 0.16 0.57 5.5× 10−5 2× 109

4 0.1 0.01 2.4 0.43 2× 104

5 0.1 0.01 0.44 0.022 5× 106

6 0.1 0.01 0.12 0.0012 2× 109

7 100 0.04 21 1.4× 106 1× 104

8 100 0.04 36 1.7× 106 1× 106

9 100 0.04 960 2.1× 106 2× 106
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Figure 10.2: Ratio of the peak GW heating luminosity to the intrinsic stellar luminosity.

The horizontal axis shows the mass of the SMBHB, and the vertical axis plots the distance

(d) between the star and the SMBHB in units of the tidal radius (rt). First row: model 1,

2, 3; second row: model 4, 5, 6, third row: model 7, 8, 9. Solid black line indicates where

the distance between the star and black hole binary is 6 Rg, the radius of the innermost

stable circular orbit (ISCO) around a non-spinning black hole. In the last panel, the

points in the figure lie out of 6 Rg, and so the black line is not shown. The first two rows

correspond to 0.1M� stars with metallicity Z = 0.16 and Z = 0.01 respectively, and the

last row corresponds to 100M� stars. GW heating is most significant for high metallicity

low mass stars.

293



CHAPTER 10. GRAVITATIONAL WAVE HEATING OF STARS AND
ACCRETION DISKS

largest eddy turnover time, which suppresses the dissipation of GWs. We consider two

cases in this plot. Following the perturbative turbulence derivation by Goodman & Oh

(1997), the power-law index is 2 for Kolmogorov turbulent scaling, and 11
9

according to

MHD disk simulation by Flock et al. (2011). The eddy turnover time increases rapidly as

the radius increases, and so the suppression of the GW heating is less significant for disks

truncated closer to the SMBHB. Therefore, the heating luminosity is more significant for

disks that are truncated closer to the SMBHB.

10.4 Discussion

In this paper, we considered the dissipation of GWs in an accretion disk or stars

surrounding a SMBHB. We have found that the GW heating luminosity of the accretion

disk and stars are low, and make no significant EM flare relative to their intrinsic

luminosity except for low mass stars (∼ 0.1M�). The integrated excess luminosity from

heated low mass stars is too low to be observed in galactic nuclei as they are faint.

Assuming a Bahcall-Wolf distribution of stars or assuming a collision timescale larger

than 1 Myr, we find that only a few stars are expected to be within 5 tidal radii of a

coalescing SMBHB, where the GW heating effect is significant. Therefore the overall

brightening of the stellar cluster is negligible.

In order to be heated significantly by GWs, the stars need to be close to the SMBHB.

One possible avenue is that stars get caught in mean motion resonances (such as Trojan

resonances) and move inwards as the SMBHB merge (Seto & Muto 2010; Schnittman

2010). This is only effective for SMBHB with an unequal mass ratio q . 10−2; the

stars get ejected before the coalescence otherwise. Another possibility is for stars to get
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Figure 10.3: The excess luminosity relative to the disk luminosity due to GW heating

on an accretion disk (inner disk truncated at 20 Rg) before (t < 0) and after (t > 0) the

binary coalescence event. The time axis is shown on a logarithmic scale at both negative

and positive values (in units of Rg). The SMBHB mass is 107M�. Solid lines corresponds

to the frequency dependence (τGW/2πτl)
11
9 derived according to the energy spectrum of

accretion disk based on MHD simulations by Flock et al. (2011), and the dashed lines

correspond to the scaling (τGW/2πτl)
2, assuming Kolmogorov turbulence.
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captured or form in the outer parts of accretion disks, and migrate inwards by processes

analogous to planetary migration (Miralda-Escudé & Kollmeier 2005; Karas & Šubr

2001; Levin 2007).

We assumed that GW energy is dissipated locally through turbulent viscosity. The

damping of shear stress by eddy viscosity in stars was found to be consistent with

observations in the context of the tidal circularization of binaries (Verbunt & Phinney

1995; Meibom & Mathieu 2005). The underlying accretion disk model is uncertain since

the disk structure is unstable to both thermal and viscous instabilities. Recently, Blaes

et al. (2011) found that radiation-dominated disks differ significantly from the standard

disk models, where the dissipation associated with the turbulent cascade and radiative

damping dissipate energy non-locally. It remains to be seen whether the GW heating

effect is more prominent in alternative disk models.
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B., 2007, Phys. Rev. D, 76, 064034

Bianchi S., Chiaberge M., Piconcelli E., Guainazzi M., Matt G., 2008, MNRAS, 386,

105

Blaes, O., Lee, M. H., and Socrates, A. (2002). The Kozai Mechanism and the

Evolution of Binary Supermassive Black Holes. ApJ, 578:775–786.

Blaes O., Krolik J. H., Hirose S., Shabaltas N., 2011, ApJ, 733, 110

Blecha L., Loeb A., Narayan R., 2013, MNRAS, 429, 2594

Bloom J. S., Giannios D., Metzger B. D., et al. 2011, Science, 333, 203

Bode N., Phinney S., 2007, APS April Meeting Abstracts, 1010

298



REFERENCES

Bode J. N., Wegg C., 2014, MNRAS, 438, 573

Boley, A. C., Payne, M. J., and Ford, E. B. (2012). Interactions between Moderate-

and Long-period Giant Planets: Scattering Experiments for Systems in Isolation and

with Stellar Flybys. ApJ, 754:57.

Bonfils, X. et al. 2013, in European Physical Journal Web of Conferences, Vol. 47,

European Physical Journal Web of Conferences, 5004

Borucki, W. J. et al. 2013, Science, 340, 587, 1304.7387

——. 2012, ApJ, 745, 120, 1112.1640
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Hébrard, G. et al. 2008, A&A, 488, 763, 0806.0719

Hébrard, G. et al. 2013, A&A, 549, A134, 1211.0810

Heggie, D. C., & Rasio, F. A. 1996, MNRAS, 282, 1064

Hellier, C., Anderson, D. R., Collier Cameron, A., Gillon, M., Hebb, L., Maxted,

P. F. L., Queloz, D., Smalley, B., Triaud, A. H. M. J., West, R. G., Wilson,

D. M., Bentley, S. J., Enoch, B., Horne, K., Irwin, J., Lister, T. A., Mayor, M.,

Parley, N., Pepe, F., Pollacco, D. L., Segransan, D., Udry, S., and Wheatley, P. J.

(2009). An orbital period of 0.94days for the hot-Jupiter planet WASP-18b. Nature,

460:1098–1100.

304



REFERENCES

Henrard, J., & Murigande, C. 1987, Celestial Mechanics, 40, 345

Henrard, J., & Morbidelli, A. 1993, Physica D Nonlinear Phenomena, 68, 187

Hester, J. J., Desch, S. J., Healy, K. R., & Leshin, L. A. 2004, Science, 304, 1116

Hillenbrand L. A., & Hartmann L. W., 1998, ApJ, 492, 540

Hills, J. G. 1988, Nature, 331, 687

Hirano, T. et al. 2012, ApJ, 759, L36, 1209.4362

Ho W. C. G., Lai D., 1999, MNRAS, 308, 153

Ho, S., & Turner, E. L. 2011, ApJ, 739, 26, 1003.4738

Holman, M., Touma, J., and Tremaine, S. (1997). Chaotic variations in the eccentricity

of the planet orbiting 16 Cygni B. Nature, 386:254–256.

Holoien T. W.-S., Prieto J. L., Bersier D., Kochanek C. S., Stanek K. Z., Shappee

B. J., Grupe D., Basu U., Beacom J. F., Brimacombe J., Brown J. S., Davis A. B.,

Jencson J., Pojmanski G., Szczygie l D. M., 2014, MNRAS, 445, 3263

Hopkins P. F., Somerville R. S., Hernquist L., Cox T. J., Robertson B., Li Y., 2006,

ApJ, 652, 864

Huang, S.-S. 1959, PASP, 71, 421

Huber, D. et al. 2013, Science, 342, 331, 1310.4503

Hut, P. (1981). Tidal evolution in close binary systems. A&A, 99:126–140.

Imbrie, J. 1982, Icarus, 50, 408

Innanen, K. A., Zheng, J. Q., Mikkola, S., & Valtonen, M. J. 1997, AJ, 113, 1915

Ivanov P. B., Papaloizou J. C. B., 2004a, MNRAS, 353, 1161

Ivanov P. B., Papaloizou J. C. B., 2004b, MNRAS, 347, 437

Ivanov P. B., Polnarev A. G., Saha P., 2005, MNRAS, 358, 1361

Ivanov P. B., Chernyakova M. A., 2006, A&A, 448, 843

Ivanov P. B., Papaloizou J. C. B., 2007, MNRAS, 376, 682

Ivanov P. B., Papaloizou J. C. B., 2011, Celestial Mechanics and Dynamical

Astronomy, 111, 51

Ivanov, P. B., Polnarev, A. G., and Saha, P. (2005). The tidal disruption rate in dense

galactic cusps containing a supermassive binary black hole. MNRAS, 358:1361–1378.

Ivanova, N., Chaichenets, S., Fregeau, J., Heinke, C. O., Lombardi, Jr., J. C., &

Woods, T. E. 2010, ApJ, 717, 948, 1001.1767

Jenkins, G. S. 2000, J. Geophys. Res., 105, 7357

305



REFERENCES

Jewitt, D. J. 2001, ApJ, 123, 1039

Johnson, J. A. et al. 2007, ApJ, 665, 785, 0704.2455

Kaib, N. A., Raymond, S. N., & Duncan, M. J. 2011, ApJ, 742, L24, 1110.5911

Kaib, N. A., Roskar, R., & Quinn, T. 2011, Icarus, 215, 491
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