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Abstract

This thesis presents a series of studies on the dynamics of high mass ratio multiples, with
applications to planetary systems orbiting stars and stellar systems orbiting supermassive

black holes (SMBHs).

Almost two thousand exoplanetary systems have recently been discovered, and their
configurations gave rise to new puzzles related to planetary formation theories. We
studied the dynamics of planetary systems aiming to understand how the configuration
of planetary system is sculptured and to probe the origin of planetary systems. First,
we discussed hierarchical three-body dynamics, which can be applied to planets that
are orbiting a star while perturbed by a planet or a star that is farther away. The
perturbation from the farther object can flip the planetary orbits and produce counter
orbiting hot Jupiters, which cannot be formed in the framework of classical planetary
formation theory. In addition, we have studied the stellar encounters with planetary
systems in star clusters, which produce eccentric and inclined planets. Moreover, we
investigated the obliquity variation of the Earth, and the developed formalism can be
applied to exoplanetary systems. We note that the obliquity variation is important to

the habitability of the exoplanets.

Long term dynamics is also central to understanding stellar systems orbiting
SMBHs. SMBHs are common in the centers of galaxies and lead to rich dynamical

interactions with nearby stars. At the same time, dynamical features of nearby stars
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reveal important properties of SMBHs. The aforementioned hierarchical three-body
dynamics can be applied to stars near SMBH binaries, which are natural consequences of
galaxy mergers. We found that the distribution of stars surrounding one of the SMBHs
results in the shape of a torus due to the perturbation from the other SMBH, and the
dynamical interactions contribute to an enhancement of tidal disruption rates, which
can help identify the SMBH binaries. In addition, we investigated the heating of stars
near SMBHs, where the heating of stars due to gravitational waves as the SMBHs merge
may mark the merger, and provide an electromagnetic counterpart for gravitational wave
detection. Moreover, the accumulated tidal heating of stars may cause the stars to be
more vulnerable for tidal disruptions, as the stars orbit around a SMBH in an eccentric

orbit.
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Chapter 1

Introduction

The study of dynamics can be dated back to the time of Newton, who studied the
motion of objects and inquired fundamental questions, such as the stability of our Solar
System due to the interaction of planets and comets. There are significant progresses
in the studies of dynamics throughout the years, such as secular theories by Lagrange
and Laplace, who provided a landmark description of the long-term (secular) dynamics
of solar system, and later the foundations of chaos by Poincare, as he investigated
three-body interactions. Many challenges, such as the great inequality of Jupiter and
Saturn, have been solved along with the significant progresses in analytical studies.
However, despite the important breakthroughs in dynamical studies, many of the
questions still remain unanswered till today. For instance, some of them are due to the

complex nature of chaotic systems (see a review in Laskar 2013).

It is possible to answer some of the fundamental questions today, such as the
stability of our Solar System, thanks to the development in numerical algorithms and

improvement in computational power. For example, one may simulate the chaotic
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systems with high precision and predict the behavior of the chaotic system in a statistical
sense by obtaining a large number of trajectories with similar initial conditions. In
addition to the improvements in computation, solving dynamical problems is stimulated
by interesting topics in astrophysics today, including probing the characteristics of
planetary systems outside of our solar system (exoplanetary systems) and the properties

of supermassive black holes.

In this thesis, I have utilized both analytical methods and numerical simulations to
study the dynamics of high mass ratio multiples, which are prevalent in our universe. In
particular, I have studied the dynamics of planetary systems (§1.1, section I: chapter 2-7)
and stellar systems orbiting around supermassive black holes (§1.2, section II: chapter

8-10).

1.1 Dynamics of Planetary Systems

Since the first few exoplanet observed in the late 1980s to the early 1990s (Campbell
et al. 1988; Latham et al. 1989; Wolszczan & Frail 1992; Mayor & Queloz 1995), 1890
confirmed exoplanets in 1189 planetary systems have been discovered today (as of
Feb 20, 2015 shown in Figure 1.1, http://exoplanet.eu/). Occurrence studies of
the explanatory systems suggest that on average there is one exoplanet per star (e.g.,
Dressing & Charbonneau 2013). Along with the exciting detections, theories of planetary
formation have been confronted: massive planets have been detected to orbit their host
star in the order of days (the so-called “hot-Jupiters”, e.g., Mayor & Queloz 1995; Marcy
et al. 1997), where they could not be formed (Rafikov 2006), and the planets may have

eccentric orbits and/or orbit misaligned from the spin axis of the star (e.g., Hébrard
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Figure 1.1: The number of exoplanets discovered v.s. year of discovery.

et al. 2008), contrary to the classical planetary formation theory. This wide diversity of
the exoplanetary systems has given rise to numerous new puzzles that require theoretical

explanations.

Many of these features can be explained by dynamical studies, which in turn
improve our understanding on planetary formation. In particular, for solar system
dynamics earlier on, the formation of eccentric orbits due to the hierarchical three-body
interactions has been proven to be critical. For example, it may cause crashes of artificial
satellites orbiting the Earth while perturbed by the Moon and can explain the asteroids
orbiting the Sun in eccentric orbits while perturbed by Jupiter (Lidov 1962; Kozai 1962).
Recently, further studies of this three-body interaction (the “Kozai-Lidov” mechanism)

explain the origin of eccentric orbits for explanatory systems, such as 16 Cyg Bb and
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HD80606 (Holman et al. 1997; Wu & Murray 2003) and the formation of retrograde hot
Jupiters, which orbit in the opposite direction from the spin of the star (e.g., Naoz et al.

2011).

In addition to the origin of planetary systems, dynamics is important for the
habitability of planets, and investigating the habitability of the detected planets can
finally allow humankind to answer fundamental questions, such as whether we are alone
in the universe. In the late 1950s, astronomers speculated the habitability of planets
orbiting other stars (e.g., Huang 1959). The definition of habitability at that time varied
from one author to another. Today, according to the definition by NASA, habitable
zone refers to regions where liquid water can exist on the surface of an exoplanet. The
size of the habitable zone for planets orbiting main sequence stars has been investigated
in the literature (Kasting et al. 1993), and it has been recently found that there are
0.2-0.4 planets per M dwarf habitable zone (Bonfils et al. 2013; Dressing & Charbonneau
2015). However, the climate condition on the planets may still be unpleasant inside the
habitable zone, since many other factors, such as dynamical instability may render the
planets inhabitable. Thus, further studies on the dynamical stability of these planets,
including the obliquity variation of the planets (e.g., Laskar & Robutel 1993; Li &
Batygin 2014a), may put another constraint on the habitability of planetary systems

(e.g., Spiegel et al. 2009).
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1.1.1 Origin of Planetary Systems

Hierarchical Three-body Dynamics and Stellar Spin-orbit Misalignment

In this thesis, I studied the spin-orbit misalignment as a probe for the origin of planetary
system. According to the classical planetary formation theory, the spin of the star should
align with the orbit of the planets as the planetary system form in one molecular cloud,
which has a preferred direction of rotation. In contrast with our own solar system,
where the misalignment between the spin of the Sun and the planetary orbits is small
(~ 7°), exoplanetary systems may exhibit large misalignments (e.g., Fabrycky & Winn
2009; Morton & Johnson 2011). To date, many mechanisms involving the dynamics of
protoplanetary disks, perturbation of a farther object, oscillation modes of stars and
tides have been proposed in the literature to explain the spin-orbit misalignment (e.g.,
Bate et al. 2010; Winn et al. 2010; Naoz et al. 2011; Batygin 2012; Albrecht et al. 2012;
Dawson 2014; Fielding et al. 2014; Petrovich 2015), and it is likely that the observations
show signatures of more than one mechanism (Li et al. 2014c). A coherent understanding
of planetary system formation and evolution is essential, and contributes to estimating

how unique our own solar system is in the universe.

In particular, hierarchical three-body system dynamics is one of the mechanisms
that can explain the misalignment between the planets orbit and the spin of the star
(e.g., Fabrycky & Tremaine 2007; Naoz et al. 2012; Li et al. 2014a). The configuration
is shown in Figure 1.2, and this kind of configuration is common in the universe as
a result of their inherent stability. The dynamics of a hierarchical three-body system
is complex. For instance, it has been found in the literature that when the mutual

inclination between an inner binary and the perturber is above ~ 40°, the inner binary’s
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orbit undergoes large amplitude oscillations in eccentricity and inclination (Kozai 1962;
Lidov 1962), and may flip across 90° if the perturbers orbit is non-circular, or when none
of the components in the close binary is a test particle (e.g., Naoz et al. 2011; Katz et al.

2011; Lithwick & Naoz 2011; Naoz & Fabrycky 2014).

The hierarchical three-body interaction can explain many astrophysical phenomena.
For stellar systems, some of the binary stars are at separations closer than the minimum
separation they can be formed, so there is a need for a mechanism to bring the two
stars closer to each other after they are formed. The eccentricity of the inner orbit can
be enhanced through the hierarchical three-body interaction, and the distance between
the two objects at pericenter can be reduced. Thus, the two stars can be brought closer
due to the perturbation from an outer companion, and this interaction helps explain the
formation of short period binaries (e.g., Ford et al. 2000; Fabrycky & Tremaine 2007;

Shappee & Thompson 2013).

In addition, this mechanism can help explain the origin of blue stragglers and type
[a supernovae. Blue stragglers are stars that are hotter and bluer than the main sequence
stars in a cluster. They can be formed through collisions. However, the collision rates are
too low to explain the origin of the blue stragglers. Since the two stars can be brought
closer and have the potential to collide with each other via the hierarchical three-body
interaction, this interaction can enhance the collision rate and help explain the origin of
blue stragglers (e.g., Perets & Fabrycky 2009; Naoz & Fabrycky 2014). Similarly, one of
the ways to produce type Ia supernovae is through collisions of two white dwarfs. This
interaction can enhance the collision rate and help produce type Ia supernovae (e.g.,

Katz & Dong 2012).
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Figure 1.2: The configuration of a hierarchical three-body system. m; and m, form the

inner binary, and my is the outer perturber.

For binary black holes of high eccentricity, the merger timescale of the binary black
holes can be significantly reduced. Thus, this interaction can enhance the black hole
merger rate, as it excites the eccentricity of the binary black holes (e.g., Blaes et al. 2002;
Bode & Wegg 2013). Moreover, stars can be brought closer to a supermassive black
hole and be tidally disrupted through hierarchical three-body interactions. This has the
potential to enhance the tidal disruption rates of stars near SMBH binaries (Ivanov et al.

2005; Chen et al. 2011; Wegg & Bode 2011).

In this thesis, we investigate the hierarchical three-body dynamics, and we
have found a new mechanism that allows the orbit to flip from an almost co-planar

configuration by ~ 180°, and to increase its eccentricity to ~ 1 — 1075 during the flip
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(Li et al. 2014a). This increases the parameter space for the interesting phenomena. In
addition, assuming one of the objects in the close binary is massless, the system can be
reduced to be one degree of freedom, and the flip timescale and the flip criteria can be
derived analytically. Moreover, we have analyzed the parameter space for the hierarchical
three-body dynamics in the test particle limit, and identified the underlying resonances

for the flip (Li et al. 2014b).

For planetary systems in three-body hierarchical configuration, the close binary is
composed of a host star and an exoplanet, which is perturbed by an outer planet or an
outer star. The planets orbit may flip according to the hierarchical three body dynamics.
As the spin axis of the star is not affected, this mechanism will change the spin orbit
misalignment. Meanwhile, the eccentricity of the close binary increases during the flip,
and this reduces the distance between the planet and the star at the pericenter to allow
tides to operate. Specifically, tides will circularize the orbit and shrink the orbit, halting
the eccentricity and inclination oscillations. This way, an exoplanet with a spin-orbit
misalignment can be produced. If the planet starts in a coplanar configuration with the
perturbing object, we found that the planetary orbit may flip by ~ 180° and form a

counter orbiting hot Jupiter (Li et al. 2014a).

The variation of the stellar spin-orbit misalignment due to planetary orbital
precession caused by planetary interaction is also important in explaining the observed
spin-orbit misalignment. In particular, we have studied the exoplanetary system,
Kepler-56, which is a multi-planet system containing an outer planet and two coplanar
inner planets that are in orbits misaligned with respect to the spin axis of the host star
(Li et al. 2014c). We constrained the distribution of the mutual inclination between the

inner two planets and the outer planet using the observed misalignment between the
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stellar spin and the inner planetary orbits, and requiring the system to be dynamical
stable. Moreover, we discussed this distribution as a function of the initial stellar spin
variation. As a side note, we investigated the future evolution of this system and found
the inner two planets will be engulfed in ~ 129 Myr and ~ 155 Myr. This is the first

exoplanetary system observed where two of its planets are going to be engulfed.

Scattering Encounter in Clusters

Scattering encounters play important roles in determining the final orbital distributions
of planets, since most stars and planetary systems form in clusters surrounded by a
large number of neighboring stars (e.g., Heggie & Rasio 1996; Adams & Laughlin 2001;
Spurzem et al. 2009). For instance, our solar system likely formed in a large stellar
group, since there are large amount of short-lived radioactive species present during the
formation of the solar system, inferred from meteoritic measurements. However, in a
crowded cluster, the solar system can be disrupted. To constrain the birth environment
of the solar system, we’ve calculated the averaged cross section for the disruption of
solar system using N-body simulations (Li & Adams 2015). In addition, we've also
obtained the expression of the disruption cross section as a function of the planetary
system properties, such as the planet-star distance and the mass of the star, which can

be applied to exoplanetary systems in general.

1.1.2 Spin-axis Dynamics of Planets

The habitability of an exoplanet depends on various conditions, where the planets orbital

configuration and spin-axis dynamics plays a significant role (e.g., Spiegel et al. 2009).
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In particular, the obliquity variation of planets is important because it determines the
latitudinal distribution of the stellar radiation received on the planet. This has been
studied extensively for objects in our Solar System (e.g., Laskar et al. 1993; Touma &
Wisdom 1993). For instance, Earth’s obliquity (the angle between Earths spin axis and
its orbit) is stabilized by the Moon and would undergo chaotic variations and reach
~ 80 degrees in the Moon’s absence (Laskar & Robutel 1993). However, according to
the recent numerical simulations, without the Moon, the obliquity of the Earth stays
low (< 40 degrees) over ~Gyr timescales (Lissauer et al. 2012). Accordingly, in (Li &
Batygin 2014a), we re-examined the spin-axis evolution of a Moonless Earth within the
context of a simplified perturbative framework, and found the chaotic diffusion timescale
to be as long as 6 billion years when the obliquity is between ~ 40 — 60 degrees. This
demonstrated that even in the absence of the Moon, the stochastic change in Earth’s

obliquity is sufficiently slow to not preclude long-term habitability.

As an extension, we studied the past variation of the Earths obliquity and found that
the Earth obtained its current obliquity during the formation of the Moon (Li & Batygin
2014b). Tt is likely that the architecture of the Solar System underwent a dynamical
instability-driven transformation, where the primordial configuration was more compact
(e.g., Tsiganis et al. 2005; Morbidelli et al. 2005; Gomes et al. 2005). Thus, the
perturbation of the Earths obliquity due to the other planets can be different, potentially
allowing for large amplitude variation in the Earths obliquity. Our calculations suggest
that the system avoided resonant encounters throughout its evolution, indicating that

the Earths obliquity was stable since the formation of the Moon.

10



CHAPTER 1. INTRODUCTION

1.2 Interactions between Stars and Supermassive

Black Holes

SMBHs are common in the center of galaxies, and the features of the SMBH are
correlated with the properties of the host galaxy (e.g., the well-known M — ¢ relation)
(Ferrarese & Merritt 2000; Gebhardt et al. 2000; Tremaine et al. 2002). In addition to
the host galaxy as a whole, the SMBHs affect stars surrounding them. The existence of
the SMBH can explain puzzling phenomena, such as the origin of hypervelocity stars in
the center of our galaxy, which can be produced during a close encounter between the
SMBH and a stellar binary, where one of the stars gets captured by the SMBH and the
other star gets ejected with extremely high velocity (e.g., Hills 1988; Yu & Tremaine
2003; Brown et al. 2005). On the other hand, the properties of the stars reveal valuable
information about the SMBHs. For instance, the mass of the SMBH can be measured
from the stellar orbits (for Sgr A*) or the collective dynamics of nearby stars (e.g.,
Valluri et al. 2004; Ferrarese & Ford 2005; Ghez et al. 2008; Genzel et al. 2010), and the
mass function of the SMBHs can be estimated from tidal disruption rate of stars (Stone
& Metzger 2014). In this thesis, I have focused on the distribution of stars surrounding
SMBH binaries due to hierarchical three-body interactions, and the heating of stars

surrounding SMBHs.

11
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1.2.1 Implications for Stars Surrounding Supermassive Black

Hole Binaries

SMBH binaries (SMBHB) are natural consequences of galaxy mergers, since SMBHs are
common in the center of galaxies. Spatially-resolved active galactic nuclei have been
observed (Komossa et al. 2003; Bianchi et al. 2008; Green et al. 2010; Koss et al. 2011;
Fabbiano et al. 2011) (an example is shown in Figure 1.3). In addition, spectroscopic
surveys (Comerford et al. 2009; Smith et al. 2010; Liu et al. 2010b) and observations that
combine ground-based imaging show numerous systems containing compelling SMBHB
candidates with pc to kpc separations (Rodriguez et al. 2006; Liu et al. 2010a; Shen et al.
2011; Fu et al. 2011; McGurk et al. 2011). At sub-parsec distance, it is very difficult to
detect the SMBHB observationally, yet one may identify the SMBHB from the dynamical
interactions between the SMBHB and the stars. For example, it has been found that the
dynamical interactions between the SMBHB and the stars may increase the rate of tidal
disruption events (e.g., Ivanov et al. 2005; Chen et al. 2011; Wegg & Bode 2011). The

tidal disruption events provide a viable way to probe the dormant SMBH.

Stars, which orbit one of the SMBHs and are perturbed by the other SMBH,
reside in a hierarchical three-body configuration. For stars surrounding SMBHB, the
aforementioned hierarchical three-body interactions can affect the distribution of stars
surrounding a supermassive black hole binary (SMBHB). To characterize the parameter
space where the eccentricity can be excited, we systematically studied the number of
stars vulnerable to tidal disruption for a wide range of SMBHB configurations (Li et al.
2015). We found that the the eccentricity increase is stronger for stars orbiting the less

massive SMBH. Moreover, as it is more effective when the mutual inclination between
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Figure 1.3: An example of SMBH binary in galaxy cluster Abel 400 (figure 1 in Colpi

& Dotti (2011)).

the planets orbit and the orbit of the SMBHB is high (~ 40 — 140 degrees), stars with
high mutual inclination are more likely to be disrupted and this will cause the final

survived stars to distribute in the shape of a torus.

1.2.2 Heating of Stars Surrounding Supermassive Black Holes

As mentioned above, SMBHBs have been observed and are natural consequences of
the mergers of galaxies. The SMBHBs may merge and produce gravitational waves
(GWs), which are ripples in space time, predicted by General Relativity. GWs generally
determine sky positions only to the order of degrees. To better identify the source of the
GWs and to interpret the GW data, one needs the electromagnetic (EM) counter part of
GW, which can determining the host galaxy redshift and the environment of the sources

(Kocsis et al. 2006; Phinney 2009). A large variety of EM signatures have been proposed
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to accompany the coalescence of SMBHBs (e.g., Schnittman 2011; Haiman et al. 2009).
For instance, the recoil of the black hole remnant changes the tidal disruption rate of
stars due to the refilling of the loss cone as the black hole remnant wanders (Stone &
Loeb 2011a, 2012; Li et al. 2012), and we studied the dissipation of the GW energy
in stars during the merger of the SMBHs, and the consequent heating of the stars(Li,

Kocsis & Loeb 2012).

In addition to GW heating, stars can be tidally heated as they orbit close to SMBHs.
For instance, many stars exist in the Galactic Center of our own Milky Way and orbit
the supermassive black hole, SgrA*| in eccentric orbits (Genzel et al. 2010). For the stars
close to SgrA*, the modes inside the star can be tidally excited every time it passes the
pericenter of the orbit, and the dissipated heat from the excited modes are accumulated
over many passages. Li & Loeb (2013) calculated the coupling of the stellar modes with
their orbits, and showed that the gravitational interaction with background stars leads
to a linear growth of the tidal excitation energy with the number of pericentre passages
near SgrA*. Using both analytical estimation and numerical simulation with stellar
evolution code MESA, we found that the accumulated heat deposited by excitation of
modes can lead to a runaway disruption of the star at a pericentre distance that is four
to five times farther than the standard tidal disruption radius. The accumulated heating

may explain the lack of massive (2 10M) S-stars closer than several tens of AU from

SgrA*.
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Chapter 2

Eccentricity Growth and Orbit Flip
in Near-coplanar Hierarchical

Three-body Systems

This thesis chapter originally appeared in the literature as

Li, G., Naoz, S., Kocsis, B. & Loeb, A. Eccentricity Growth and
Orbit Flip in Near-coplanar Hierarchical Three-body Systems,
The Astrophysical Journal, 785, 116, 2014

It is presented here with minor modifications.

Abstract

The dynamical evolution of a hierarchical three body system is well characterized by the

eccentric Kozai-Lidov mechanism, where the inner orbit can undergo large eccentricity
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and inclination oscillations. It was shown before that starting with a circular inner
orbit, large mutual inclination (40° — 140°) can produce long timescale modulations
that drives the eccentricity to extremely large value and can flip the orbit. Here, we
demonstrate that starting with an almost coplanar configuration, for eccentric inner and
outer orbits, the eccentricity of the inner orbit can still be excited to high values, and
the orbit can flip by ~ 180°, rolling over its major axis. The ~ 180° flip criterion and
the flip timescale are described by simple analytic expressions that depend on the initial
orbital parameters. With tidal dissipation, this mechanism can produce counter-orbiting
exo-planetary systems. In addition, we also show that this mechanism has the potential

to enhance the tidal disruption or collision rates for different systems.

2.1 Introduction

The Kozai-Lidov mechanism (Kozai 1962; Lidov 1962) has proven very useful for
interpreting different astrophysical systems. For example, it has been shown that its
application can explain Hot Jupiters configurations and obliquity (e.g. Holman et al.
1997; Wu & Murray 2003; Fabrycky & Tremaine 2007; Veras & Ford 2010; Correia et al.
2011; Naoz et al. 2011, 2012). Furthermore, close stellar binaries with two compact
objects are likely produced through triple evolution, and secular effects may play key role
in these systems and in their remnants (e.g. Harrington 1969; Mazeh & Shaham 1979;
Soderhjelm 1982; Kiseleva et al. 1998; Ford et al. 2000; Eggleton & Kiseleva-Eggleton
2001; Fabrycky & Tremaine 2007; Perets & Fabrycky 2009; Thompson 2011; Katz &
Dong 2012; Shappee & Thompson 2013; Naoz et al. 2013a; Naoz & Fabrycky in prep.).

Secular effects have been proposed as an important element both in the growth of black
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holes at the centre of dense star clusters and the formation of short-period binaries black
hole (Blaes et al. 2002; Miller & Hamilton 2002; Wen 2003) and tidal disruption events

(Chen et al. 2009, 2011; Wegg & Bode 2011; Bode & Wegg 2013).

The Kozai-Lidov mechanism was first discussed by Kozai (1962) and Lidov (1962),
who applied the mechanism for specific configurations where the outer orbit was circular
and one of the members inner binary was a test (massless) particle. In this situation,
the component of the inner orbit’s angular momentum projected on the total angular
momentum of the whole system (z axis) is conserved. To lowest order, the quadrupole
approximation provides a valid presentation of the system (Lidov & Ziglin 1974). In
that case, the system is integrable and the eccentricity and the inclination undergo large
oscillations when i > 39.2 degree due to the “Kozai resonance” (Thomas & Morbidelli

1996).

Recently, Naoz et al. (2011, 2012) showed that relaxing either one of these
assumptions, (i.e., an eccentric outer orbit, or non-negligible mass binary members)
leads to qualitatively different behavior. In this case the z-component of the inner, and
outer orbit’s angular momentum is not conserved. Considering systems beyond the test
particle approximation, or a circular orbit, requires the octupole-level of approximation

(Harrington 1968, 1969; Ford et al. 2000; Blaes et al. 2002).

The octupole approximation can lead to extremely large values for the inner orbit’s
eccentricity (Ford et al. 2000; Naoz et al. 2013a; Teyssandier et al. 2013). Furthermore,
the inner orbit’s inclination can flip its orientation from prograde to retrograde, with
respect to the total angular momentum (Naoz et al. 2011, 2013a). We refer to this

process as the eccentric Kozai-Lidov (EKL) mechanism. It has been shown in Naoz et al.
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(2013a) that the secular approximation can be used as a tool for understanding different

astrophysical settings, from massive or stellar compact objects to planetary systems.

We focus on the octupole order when the inclination is set to be almost coplanar.
Lee & Peale (2003) considered the case when the mutual inclination is zero, and they
showed that the eccentricity can oscillate due to the octupole effects. Here we set the
mutual inclination to be non-zero but still very small. We show both numerically and
analytically, that an eccentric inner orbit (e; > 0.6) in almost coplanar configuration
with an eccentric outer orbit becomes highly eccentric (e; 2 0.9999) due to the octupole
effects. Provided that it avoids a direct collision with or tidal disruption by the central
object, it undergoes a ~ 180° flip. We apply this mechanism to the retrograde hot

jupiters and discuss its application to tidal disruptions.

The paper is organized as follows. In §2, we demonstrate the coplanar flip, and
derive the analytical expression for the flip criterion and timescale. In §3, we start the
system with a large range of parameter space to study the flip criterion and timescale.
Finally, in §4, we discuss the applications of the coplanar flip to exo-planetary systems

and tidal disruption events.

2.2 Coplanar Flip

The Kozai-Lidov mechanism relates to the hierarchical three-body system as shown in

Figure 2.1. The parameter e,

a; €3
€ =

_— 2.1
Pt (2.1)
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is small, where a is the semi-major axis and e is the eccentricity of the inner “1” and

outer “2” orbit (Naoz et al. 2013a).

Figure 2.1: Configuration of the hierarchical 3-body system. An object mp orbits around
the object m; and forms an inner binary. The outer binary is composed of the outqer
object ms orbiting the center mass of m; and mp. The parameters of the inner and outer
binary are denoted by subscripts 1 and 2, respectively. The angle ¢ represents the mutual
inclination between the two orbits, and J; and J; represent the orbital angular momenta
of the inner and outer binary. The coolanar case corresponds to ¢ ~ 0.

In the test particle quadrupole approximation (mp — 0, e; = 0), the Kozai-Lidov
resonance is between the longitude of periapsis and the longitude of ascending node of

the inner orbit (Kozai 1962). The eccentricity and the inclination oscillate with large
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amplitudes when the inclination is over 40 degree. This resonance also exists if the
test particle mass is significant. The quadrupole approximation describes the orbital
evolution when the outer orbit is circular. When the outer orbit is non-circular, the
octupole approximation is needed, inducing variations in eccentricity and inclination on
longer timescales, and causes excursions to even higher eccentricities and inclinations
above 90° (Naoz et al. 2011, 2013a). However, starting with a circular inner orbit, the

inclinations that produce this behavior are restricted to the range of ~ 40° — 140°.

Starting with an almost coplanar configuration (e; = 0.8, i = 5°), we find that the
inner orbit can still flip if it starts eccentric (the high eccentricity low inclination case:
hereafter Hel.i). We show the flip in Figure 2.2 using direct N-body integrations, with
the MERCURY software package (Chambers97). The remarkable agreement with the
integration using the secular approximation up to the octupole order is also shown in

Figure 2.2.

The flip in the HeLi case is qualitatively different from the low eccentricity high
inclination case (LeHi case, see Figure 2.3 upper panel). Specifically, in the initially
coplanar case, the oscillation amplitude of the inclination is small maintaining a coplanar
configuration before the flip, as the eccentricity grows monotonically to large values.
The timescale for the inclination to cross over 90° (namely the flip timescale) is much
shorter. Moreover, the underlying resonances responsible for the flips are different (Li et
al. in prep.). The HeLi case is dominated by only octupole order resonances. However,
the LeHi case is dominated by both the quadrupole order resonances and the octupole
order resonances. As a comparison, we illustrate the difference in the HeLi case in the

right panel of Figure 2.3.
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To illustrate the orbital evolutions, we show the movies' of the inner orbital
evolution in the test-particle limit for both cases. We set the z axis to be aligned with
the total angular momentum and the x axis is aligned with the ascending node of the
outer orbit. In the test particle limit, the outer orbit is stationary. In the movies, the
inner orbit is painted according to the value of the mean anomaly. The black arrow
represents the normalized orbital angular momentum, and the pink arrow represents the
z component of the angular momentum. The orbital flip can be observed in the rapid
reorientation of the pink arrow from the 4z to the z direction. The black arrow shows
the orientation of the orbit. The orbit rolls over its major axis when it flips. This can be

understood analytically as d.J; /dt is perpendicular to the eccentricity vector at i = 90°.

2.2.1 Analytical Derivation

The coplanar flip phenomenon can be understood analytically in the test particle
approximation (i.e, mp — 0). In the large inclination regime, it was shown that
the behavior associated with the test particle approximation is valid for mq/mp > 7

(Teyssandier et al. 2013).

This test particle approximation in hierarchical 3-body systems was studied
extensively in the past (Lithwick & Naoz 2011; Katz et al. 2011), but only in the regime
of large inclinations between the inner and outer orbit’s (and for small initial inner
eccentricity e; < 0.5 Lithwick & Naoz 2011). Our initial coplanar configuration simplifies

the analytic treatment. The ~ 180° flip occurs due to octupole-level terms, whose

'https://www.cfa.harvard.edu/~gli/images/lowi.mp4;
https://www.cfa.harvard.edu/~gli/images/lowi.mp4
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importance can be estimated via e.

We follow the equation of motion using a Hamiltonian description for the non-
relativistic hierarchical three body problem. We define the energy function as the
negative of the Hamiltonian in the secular approximation up to the octupole level
(Lithwick & Naoz 2011). The Hamiltonian of such systems is well documented in the
literature (e.g. Harrington (1968, 1969); Ford et al. (2000)). The scaled energy function
for the hierarchical three-body system in the test particle approximation to this order is

Fouad + €Foe, where

Fruaa = —(€3/2) + 0% + 3/2¢36° (2.2)

+5/2€2(1 — 6?) cos(2w),

5 3
Foer = 15 (e + (3e1)/4) (2.3)

x ((1 — 1160 — 560* + 156°) cos(w; — Q)

+ (1 + 1160 — 50 — 150%) cos(w; + Q1))

1%
64

+ (146 — 6% — 6%) cos(3wy + ).

e} (1 — 60— 0%+ 6°) cos(3w; — Q)

To the first order in 4, the evolution of e; and w; = w; + €2 can be solved (we

denote w; = wy + 2 hereafter). Specifically, €¢; and w; depend only on e; and w;:

€1 = §J1(3J12 — T)esin(wy), (2.4)
2
-1
@ = J, (2 EICE 3>€Cos<w1)>, (2.5)

T

where J; = y/1 — e?. Combining the two differential equations, we can express cos @; as
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a function of ey:

8e? — C
e1(20 + 15e%)e’

(2.6)

CoS Wy =

where C' is an integration constant, which is the energy that corresponds to ¢ = 0 and
can be determined from the initial condition. Substituting cos(w;) in the differential

equation of €1, we obtain a separable first order differential equation:

5 (C — 8e?)?
L= (4t 3¢ 1—2(1— 1 ) 2.7
€1 8( + 31)\/( et) 25¢2(4 + e32)2e2 € (2.7)
Integrating equation (2.7), we get e; as a function of time.

Figure 2.3 shows that the eccentricity increases steadily and the inclination oscillates
in the low inclination scenario until the flip occurs. This behavior can also be seen in

Figure 2.4. The steady change of e; can be explained by equation (2.4). Since
5 2
§J1(3J1 —TNe<0(0< J; <1), (2.8)

the sign of €; depends on sin(w, ), and e; reaches its extremum when sin(w;) = 0. In
addition, since w; vanishes to the quadrupole order, the change of w; is small. Thus,
e; does not oscillate over the quadrupole timescale. Instead, e; increases or decreases

monotonically to €,,:, Or €4z

Using the conservation of Fj,.q + €F,, We can estimate the evolution of the inner
orbit in the low inclination case by calculating the constant energy curve in Figure 2.4
(pink dashed line). The total energy Fiuaq + €Foe depends on the four variables: ey, i, wy
and ;. To obtain the maximum inclination, 4,,,, as a function of e; as shown in Figure
2.4, we need to express w; and €2y as a function of e; at ¢ = 4,,4,. From the equation of

motion, ¢ x sin(2w; ), thus the maximum of inclination occurs at w; = 0. When w; = 0,
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cosw = cos (), thus, substituting equation 2.6 in the conservation of Fiqq + €Fyet, We
get 1,4 as a function of e;. The analytic expression is compared with the numerical
trajectory in Figure 2.4, where the evolution of e; and i are obtained by integrating the

equations of motion in the secular approximation.

Moreover, Figure 2.4 shows another major difference between the LeHi behavior and
the HeLi case studied here. For the LeHi case, energy conservation of the quadrupole
approximation, Fi,.q, can be used to find the maximum eccentricity and the minimum

inclination. However, the octupole correction is non-negligible in the HeLi case.

The flip time can be estimated using equation (2.7). Since sinw; < 1, e; increases

steadily before the flip, the flip time scale can be estimated as:

tfh‘p :/ él_l de . (29)

The initial conditions of this configuration are ¢ ~ 0, e; o — 1, where the subscript
“0” represents the initial condition. Since e; increases monotonically until the flip, we
set the minimum eccentricity to be the initial eccentricity, i.e., €, = €10. Furthermore,

the maximum eccentricity is simply €,,4. = 1.

On the other hand, when sin(w) > 1, e; decreases first before it increases. Since the

flip always occurs at the maximum eccentricity, the flip time is simply:

tflip :/ élil de "—/ 6'171 de . (210)

e €min
We calculate e,,,;, with equation (2.6) by setting cos(w) = 1 and estimate the flip time.
As shown in Figure 2.5 the analytical flipping time, ¢, agrees well with the numerical

results.
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It is straightforward now to derive the flip condition. Rearranging equation (2.6),

we find
8e? — C

_— 2.11
e1(20 4 15¢%) ’ (2.11)

ecos(wy) =

where C' is the integration constant (energy at i = 0) introduced in equation (2.6).
The difference on left hand side between the initial time and the flip time bound by

€(1 — cos(wy)). When the orbit flips, e; — 1 and the difference on the right hand side is

— 2 _
§—C 8 -C _ (2.12)
35 (20 + 15¢2)

Thus, a flip will happen when the following condition holds:

8—(C 8e2 —
1— — 1 . 2.1
e(1 = cos(@)) > == = o0 T 1567y (2.13)

Substituting C' from the initial condition, we obtain the flip criterion:

8 1 — ¢e2
€> — il

. 2.14
57 —e1(4+ 3e?) cos(w; + ) (2.14)

Figure 2.5 compares the analytical and the numerical results. The left panel focuses on
the flip criterion, whereas the black line represents the analytical criterion, the green
plus symbols represent the numerical runs that do not flip in 10* k.4, and the blue

cross symbols represent the numerical runs that flip. The timescale t,.q; is defined as:

my /Qas 3
Eonai = @<a_1> (1—e2)*?(1—e2)'/P,, (2.15)

where P;, is the period of the inner orbit. We start the runs for different eccentricities
and inclinations. The analytical criterion agrees well with the numerical results. In
the right panel of Figure 2.5, we compare the flip timescale for three arbitrarily chosen

eccentricities. The analytical results also agree well with the numerical results.
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2.3 Systematic Study of 180° Flips

We explored the entire e; and ¢y parameters space that can produce flips. We scanned

systematically the parameter space of the initial conditions ey, ¢ and as and integrate for
the secular evolution of the inner orbit in the test-particle limit. For systems that flipped
within 1000 tg,..; we recorded the time when the flip happens, where t,.,; is defined in

equation (2.15).

At low eccentricity, the critical inclination (above which the orbit flips) increases.
This is consistent with the flip condition of the HiLe mechanism (Lithwick & Naoz 2011;
Katz et al. 2011), where here we have extended Figure 8 of Lithwick & Naoz (2011) to
larger initial e;. However, unlike Lithwick & Naoz (2011) that scan the e;(w = 0) (i.e.,
the minimal eccentricity) and i(w = 0), we determine the initial conditions that will lead
to a flip. For the HeLi case, the result is also consistent with the analytical flip condition
described in the §2. At moderate eccentricity, the behavior of the inner orbit is more
complicated, and cannot be easily decried analytically. Figure 2.6 depicts the numerical
results of the systematic exploration of the parameter space. The left panel of Figure 2.6
shows the flip condition for different initial inclinations and eccentricities, as a function
of different €. Not surprisingly, stronger perturbations (i.e., larger €) can cause flips in
larger regions of the parameter space. Consistent with Lithwick & Naoz (2011), we also

find that the intermediate regime of e; o ~ 0.4 allows for flips.

The right panel of Figure 2.6 shows the flip time (similar to the right panel of Figure
2.5, but this time for different initial inclinations). We normalized the time by txza:-
Note that the flip time of the eccentric coplanar scenario is shorter than that of the HilLe

mechanism (as also apparent in the example in Figure 2). In addition, when e; > 0.5,
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the flip time is shorter as e; increases.

2.4 Application to Exoplanets and Tidal Disruption

Events

The effect we discovered may have different interesting applications. We briefly mention
two of them hereafter. As shown in Figure 2, during the evolution the eccentricity can
reach very large values, which can result in a small pericenter distance and collisions
between the inner two objects. In addition, if the objects do not collide, this allows for
tidal dissipation to take place. Specifically, it shrinks and circularizes the orbit. If tide
takes place after the orbit rolls over, a counter—orbiting inner orbit can be produced.
This configuration is interesting as the inner orbit is almost coplanar with the outer orbit

but goes in the opposite direction.

2.4.1 Counter Orbiting Hot Jupiters

Hot Jupiters — massive extrasolar planets in a very close proximity to their host star
(~ 1 — 4 day orbit) — are observed to exhibit interesting characteristics. The planet’s
projected orbital orientation ranges from almost perfectly aligned to almost perfectly
anti-aligned with respect to the spin of the star (Albrecht et al. 2012). In other words, the
sky projected angle between the stellar spin axis and the planetary orbit (the spin-orbit
angle, otherwise known as obliquity) is observed to span the full range between 0° and

180°.
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Formation theories that rely on a planet slowly spiraling in through angular
momentum exchange with the protoplanetary disk produce low obliquities (Lin &
Papaloizou (1986), but see Thies et al. (2011); Batygin (2012)). The highly misaligned
configuration poses a unique challenge to planet formation and evolution models. It
was suggested that secular perturbations due to a distant object (Fabrycky & Tremaine
2007; Veras & Ford 2010; Correia et al. 2011; Naoz et al. 2011, 2012), planet-planet
scattering (Ford & Rasio 2008; Nagasawa & Ida 2011; Chatterjee et al. 2011; Boley et al.
2012) and secular chaos excursions (Wu & Lithwick 2011) can explain large obliquity,
but cannot explain counter-orbiting configurations. Similar results can be achieved if the
star and protoplanetary disk are initially in an aligned configuration for a fine tuned
initial condition (see Batygin 2012). Furthermore, a test particle can be captured in a
2 : 1 mean motion resonance and flip by ~ 180° as migration continues (Yu & Tremaine
2001), and test particles in a debris disk can be flipped due to the interaction of a closely

separated planet (Tamayo 2013).

We note that while the EKL mechanism can produce retrograde orbits (both in
the inclination and obliquity sense) (Naoz et al. 2011, 2012, 2013a), it cannot produce
counter orbiting Hot Jupiters. This is because these studies initialized the inner planet
with small eccentricity, which means that the initial inclination needed to produce large
eccentricity oscillations is large ~ 40° — 140°. Furthermore, these initial conditions
results in an inclination which are more likely to be confined in the same regime
(Teyssandier et al. 2013). Thus, the final maximum hot Jupiters obliquity reached in
these experiments and others (e.g. Fabrycky & Tremaine 2007; Naoz et al. 2012) is

~ 150°. An obliquity of ~ 180° could be attributed to projection effects.

The coplanar ~ 180° flip may play a role in the obliquity evolution of many
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exoplanetary systems. Coplanar configurations are naturally produced if the planet
and the perturbing object (ms, a star or a planet) are formed in the same disk, or if
they are captured in the disk due to hydrodynamic drag. Eccentricity may be excited
by planet-planet scattering or interactions with the protoplanetary disk (Ford & Rasio
2008; Nagasawa & Ida 2011). In addition, eccentric gas giant exoplanets are observed at

distances larger than 0.1AU from their host star (Ford et al. 2000).

During the orbital flip, the orbit becomes radial (e; — 1), which reduces the
pericenter distance, and allows tide to operate. Tidal dissipation shrinks the orbit
separation and circularizes it (Matsumura et al. 2010). If this happens after the orbital

plane rolled over, a counter orbiting Hot Jupiter is formed.

We illustrate this behavior in Figure 2.7 where the orbit flips within 10Myr from
~ 6° to ~ 170° and the obliquity flips from 0° to ~ 173°. This orbit reaches its
equilibrium state in a circular counter-orbiting configuration with a small semi-major
axis (0.032 AU). Such large obliquities may represent the observed retrograde hot Jupiter
HAT-P-7 b and HAT-P-14 b, where the sky projected obliquities are 182°.5 4+ 9°.4 and

189°.1 4 5°.119, (Winn et al. 2011).

In Figure 2.7, we adopt the “equilibrium tidal” model (Hut 1981; Eggleton et al.
1998; Eggleton & Kiseleva-Eggleton 2001). Its complete set of equations of motion can
be found in Fabrycky & Tremaine (2007). Specifically, this approach takes into account
the rotation of the star, and the distortion of the planet due to rotation and the tide of
the star. In addition, it assumes the viscous timescales of the planet and the star are
constant and the tidal quality factor () is proportional to the orbital period of inner orbit

(Hansen 2010). In the example we show in Figure 2.7, we set the viscous timescale of
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the star and the planet to 50 years and 0.94 years, respectively, which correspond to the
quality factors of Q ~ 10% and 10° for a 10 day orbital period. In this calculation we also
include General Relativity precession of the inner and outer body, following Naoz et al.

(2013b).

The example shown in Figure 2.7 predicts that this counter-orbiting planet has
an eccentric coplanar companion. We stress that this does not mean that one should
expect a high abundance of counter orbiting planets, nor that even one exists. This
mechanism can produce a large range of final inclinations depending on when tides start
to dominate. The pericenter distance shrinks before and during the flips, and when
tides become important their effect may effectively halt the orbital flip. In addition, this
mechanism drives the inner orbit eccentricity to extremely high values and might result
in the planet colliding with or tidally disrupted by the star. Calculating the fraction of
systems that will result in a counter orbiting planet and the fraction of planets that will

collide with the star is beyond the scope of this paper.

Related to the coplanar flips, we explain the behavior found by Fabrycky & Tremaine
(2007), where the spin orbit angle flips in the test particle quadruple limit while the
inclination does not flip. In this limit, one of the members of the inner orbit is a test
particle and the outer orbit is circular, the z component of the angular momentum is
conserved. If the orbit starts prograde ¢ < 90° is will remain prograde. However, the
obliquity can flip from prograde to retrograde, as shown in the top panel of Figure 2.8.
This is a different kind of flip because the flips occur in the x-y plane (as discussed

below).

In the limit at i ~ 90°, d.J;/dt is in the direction of J; and §2; shifts by 180° (Katz
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et al. 2011). Thus, J; moves in a straight line across the origin in the x-y plane and the
orbit flips by 180° in the x-y plane. The orbital direction of the inner planet is reversed

while the mutual inclination remains less than 90°.

This can be seen in the movies as well. The flip timescale is the quadrupole Kozai
timescale. Because the flip of the orbit is abrupt, tides from the planet cannot respond
fast enough to realign the stellar spin to the angular momentum of the inner orbit. As
a consequence, the spin-orbit angle crosses 90° (Figure 2.8). The behavior also persists
when the inclination is less than 90°, but in that case the shift of the longitude of

ascending node and the change in obliquity are less than 180°.

Similar to the HeLi flip, the flip in the x-y plane can also produce ~ 180°
counter-orbiting planets with respect to the stellar spin, however, this requires the
perturber’s orbit to be nearly perpendicular to the inner orbit. The flip in the x-y plane
may also be relevant for gravitational waves emitted by compact object binaries, where

the orbital flip changes the polarization angle of the signal.

2.4.2 Tidal Disruption Events - Systematic Study

As mentioned above, the eccentric Kozai-Lidov mechanism (large and small inclination)
drives the inner orbit eccentricity to very large values. This reduces the pericenter
distance. When an object moves close to my, the tidal force of m; can get stronger than
the object’s self-gravity and hence tidally disrupt the object. For instance, stars may be
tidally disrupted by supermassive black holes if they pass very close to the black holes.
Tidal disruption of stars by black holes may produce luminous electromagnetic transients

that have been observed (e.g. Bade et al. 1996; Komossa & Greiner 1999; Gezari et al.
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2003, 2006, 2008b, 2009; van Velzen et al. 2011; Cenko et al. 2012; Gezari et al. 2012).

We show an example of an object passing the Roche limit in Figure 2.9. To mimick
the case that produces a counter-orbiting exoplanet (e.g. Figure 2.7), we use the same
initial parameters but with a different semi major axis (a; = 39 AU). In addition, this
calculation includes both tidal dissipation and General Relativisty precession effects,
similar to Figure 2.7. In this case, during the flip, the eccentricity increases, causes the

pericenter to reach the Roche limit of the planet and disrupting the planet.

A very large eccentricity does not immediately imply a tidal dissipation event, since
this depends on the initial separation of the orbit. We map the maximum eccentricity
that can be reached during the evolution, which may then be useful to examine the

likelihood of tidal disruption for specific systems.

Specifically, we study the maximum eccentricity reached during the evolution for
€ = 0.03. Since this depends on the time the integration stops, we record the respective
maximum eccentricity of the inner orbit for integration times 3txozai, 9 Kozais 10tKozai
and 30 txo.qi- As shown in Figure 2.10 the eccentricity of the inner orbit can be very
close to one, with 1 — €j 4, ~ 107* during the first flip, and 107® over longer time

periods.

This process is relevant for estimating the rates of planet-star collisions (Hellier
et al. 2009; Bear et al. 2011), stellar tidal disruptions due to black hole binaries (Ivanov
et al. 2005; Colpi & Dotti 2011; Chen et al. 2011; Wegg & Bode 2011; Bode & Wegg
2013; Stone & Loeb 2012; Li et al. in prep.), Type la supernovae (Katz & Dong 2012),

and gravitational wave sources (O’Leary et al. 2009; Kocsis & Levin 2012).
To illustrate the percentage of systems that can avoid tidal disruptions and form
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hot Jupiters, we perform a Monte Carlo simulation. We set m; = 1Mg, m, = 0.001Mg,
mo = 0.03Mg, as = 500 AU, ey = 0.6, a; to be uniformly distributed between 30 — 50
AU, 4; to be uniformly distributed between 0 — 10°, and e; to be uniformly distributed
between unity and the minimum e; that can produce a 180° flip. The tidal model and its
parameters are the same as those included in Figure 2.7. We include 500 runs. A small
fraction of systems (90/500 systems) avoid collisions and form hot Jupiters (as shown in
Figure 2.11). The final spin-orbit misalignment are typically lower than ~ 150° as shown
in Figure 2.12. The percentage to form hot Jupiter is similar to the results by Naoz

et al. (2012) and Petrovich (2015), who studied the effect of Kozai-Lidov mechanism in
general. Note the spin-orbit misalignment does not reach 180° in this set of Monte Carlo
simulation. Monte Carlo simulations including more runs are needed to estimate the

fraction of systems that can produce a spin-orbit misalignment reaching 180°.

To require the hierarchical criterion to be valid, we set € < 0.1. When € 2 0.1, the
planetary (inner) orbit can still be flipped by ~ 180°. However, the non-hierarchical
configuration leads to stronger interactions between the outer perturber and the inner
orbit. This may cause instability, and the inner planet may be captured by the outer
perturber. As shown in Figure 2.13, moving the outer perturber closer to 11 AU
(e = 0.125), and keeping the other parameters the same as those in Figure 2.2, the inner
orbit can still be flip by ~ 180°. Nevertheless, the inner planet can be ejected from the
system due to instability. Note that we ignore collisions or tidal disruptions of the planet
to focus on the three-body point mass dynamics. Moving the outer perturber closer to
as ~ 7 AU, the inner planet can be captured by the outer perturber more easily. The
inner planet exhibits chaotic orbital evolutions as it switches its host star between m;y

and mo, and its inclination relative to the orbital plane of m; and msy varies chaotically
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(see the movie on https://www.cfa.harvard.edu/~gli/images/casel0.mp4, m; is
placed at the center. The red line represents the planetary trajectory, and the blue line

represents the perturber’s orbit).

2.5 Conclusion

We have presented a new mechanism that flips an eccentric inner orbit by 180° starting
with a coplanar configuration in a hierarchical three body system with an eccentric
outer perturber. We use the secular approximation to study the dynamics, and show the

agreement between the secular treatment and the N-body simulation in Figure 2.2.

The HeLi (high eccentricity low inclination) flip is a different mechanism from the
LeHi flip discussed by Naoz et al. (2011, 2013a). The underlying resonances causing
the large oscillation in the inclination and the flip are different: the LeHi flip is caused
by both the quadrupole and the octupole interactions. However, in the Heli case, only
octupole resonances are in play (see for further discussion in Li et al. in prep). Moreover,
for the low inclination case, the orbital evolution is regular, which admits a simple
analytic flip criterion and timescale (which were shown to agree with the numerical
results in Figure 2.5). In addition, the difference can be seen through the evolution of
the orbit: the eccentricity increases monotonically and the inclination remains low before
the flip, and the flip timescale of the coplanar case is shorter comparing with the high
inclination case (see Figure 2.3 and movies?). Including both the high inclination and

low inclination flip, we studied the flip condition for a wide range of parameter space for

*https://www.cfa.harvard.edu/~gli/images/lowi.mp4;
https://www.cfa.harvard.edu/~gli/images/lowi.mp4
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the initial condition in Figure 2.6.

Observations of the sky-projected obliquity angle of Hot Jupiters shows that their
orbital orientation ranges from almost perfectly aligned to almost perfectly anti-aligned
with respect to the spin of the star (Albrecht et al. 2012). We showed in the hierarchal,
nearly coplanar, three body framework, an initial eccentric inner orbit can flip its
orientation by almost 180° in the presence of an eccentric companion (Figures 2.5 and
2.6). During the planet’s evolution its eccentricity is increased monotonically, and thus
tides are able to shrink and circularize the orbit. If the planet has flipped by ~ 180°

before tidal evolution dominates, a counter orbiting close-in planet can be formed.

Figure 2.7 demonstrated this behavior. Not only does the final planet inclination
reach 180° with respect to the total angular momentum, but also the obliquity. This
is because the timescale to torque the spin of the star is much longer than the orbital
flip timescale, the spin-orbit angle is similar to the inclination at ~ 180°. Therefore,
starting with an initially aligned spin orbit configuration, the mechanism presented here
can produce counter orbiting close-in planets for a nearly coplanar system. The counter
orbiting exoplanets with a 180° obliquity angle can be verified using the measured
spin-orbit angle. The true spin-orbit angle can be obtained from the sky projected
spin-orbit measurement using the Rossiter-McLaughlin method and the line of sight

spin-orbit angle measurement using astroseismology.

We note that we do not expect an excess of counter orbiting planets, because this
mechanism can drive the inner orbit to an extremely large eccentricity (see Figure 2.10)
therefore the planet may often end up plunging into the star before circularizing due to

tidal effects. A systematic survey of the likelihood of creating counter orbiting planets is
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beyond the scope of this paper.

In addition to exo-planetary systems, this mechanism can be applied to many
different astrophysical settings, which can tap into the parameter space of hierarchical
three body system that has large initial eccentricities and low inclinations. As the
eccentricity can be excited to ~ 1 — 107¢ (Figure 2.10), this mechanism may result in
an enhanced rate of collisions or tidal disruption events for planets, stars and compact

objects with hierarchical three body configuration.
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Figure 2.2: The consistency and convergence of the numerical method for the point mass
dynamical evolution of the inner orbit. We set m; = 1M, my = 0.02M, mp = 1073 M,
a1 =1 AU, a; =50 AU, i =5° €1 = 0.9, e = 0.7, w; = wy = 9 = 0° and Q; = 180°.
The green line represents the run integrated using the secular approximation, and the
dashed blue line represents the results of the N-body simulation using the Mercury code.
The results of the two methods agree. In both cases, the test particle exhibits an 180°

flip in a coplanar configuration.
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Figure 2.3: The evolution of the inner orbit’s eccentricity and mutual inclination. We
set the mass of m; and mp to a solar and a Jupiter mass, and the mass of the outer
perturber my to 0.03My, and w; = 0°, ; = 180°, es = 0.6, a; = 4 AU, a; = 50 AU.
We use the secular approximation to calculate the dynamical evolution of point masses.
The upper panel shows the standard Kozai cycles for comparison, (e; = 0.01, ¢ = 65°),
and the lower panel shows the eccentric coplanar scenario (e; = 0.8, i = 5°). For the
former, both 7 and e; oscillate with large amplitudes, but in the eccentric coplanar case,
ey increases steadily and ¢ oscillates to maintain a coplanar configuration. The flip occurs
much more rapidly in the eccentric coplanar case.
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Figure 2.4: Left Panel: standard Kozai-Lidov scenario with initial conditions e; = 0.01,
1 =65° my; = 0.3My, mo = 0.1My, ay =1 AU, as = 40 AU, w; = 0°, 21 = 180°. Right
Panel: the eccentric coplanar case, with initial conditions e; = 0.9, i = 5°, m; = 0.3M),
mo = 0.03My, a; = 1 AU, ay = 40 AU, wy; = 0°, Q; = 180°. The evolution tracks
represent the change of Jz (Lithwick & Naoz 2011). The inclination ¢ and e; oscillate
for large initial inclinations, while in the low inclination case, ¢ oscillates and e; increases
steadily. The dashed line represents the constant Fj,.q + €, curve at w; = 0°, which
sets the maximum or minimum inclination during a quadrupole cycle. The black solid
line represents the constant Fj,.q curve. The maximum inclination in each quadrupole
Kozai cycle follows the constant F,.q curve only in the HiLe mechanism.
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Figure 2.5: Comparisons of the numerical results and the analytic expressions for the
point mass dynamical evolutions. The initial inclination is ¢ = 5°. Left panel: the
numerical results versus the analytic criterion for the flip condition (equation (2)). The
black line indicates the analytic criterion. The numerical result is obtained from the
secular integration, where the initial condition is: m; = 1My, my = 0.1My, a1 = 1AU,
as = 45.7TAU, w; = 0°, ; = 180°. The blue crosses represent the flipped runs and the
green pluses represent the runs that do not flip in 10* txo.qs, Where txo.q; is defined in
equation 2.15. Right panel: the flip timescale for different initial eccentricity. The black
line indicates the flip time calculated analytically, and the colored crosses are the flip time
recorded in the numerical runs.
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Figure 2.6: The flip condition and the flip time. Left panel: The flip condition for the
whole parameter space of initial e; and ¢ for three different outer semi-major axes, as.
The initial condition for all the simulations are: m; = 1My, mo = 0.1My, a; = 1 AU,
wy; = 0°, Q1 = 180°. asq, e; and ¢ are different for the runs. The simulations do not include
the influence of tides. Initial conditions above the colored lines in the e; — i plane exhibit
an orbital flip. The red line represents the case when as = 13.7 AU (e = 0.1), the purple
line represents the case when as = 45.7 AU (e = 0.03) and the blue line represents the case
when ay = 137.5 AU (e = 0.01). The flip condition agrees well with our analytic estimates
for the eccentric coplanar cases. The flip condition is more complicated at moderate e;.
Right panel: The flip time for a; = 45.7 AU. The flip time is shorter for the HelLi case.
Note: when e; is higher, ¢ .4 is shorter (see equation 2.15). Thus, the eccentric coplanar
flip time is much shorter than the standard Kozai.
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Figure 2.7: The evolution of the inner orbit under gravitational and tidal forces. The
result is obtained by integrating the secular equation of motion. We set the mass and
the radius of m; to be those of the Sun, and the mass and the radius of mp to be those
of Jupiter, and my = 0.03M. The initial obliquity angle (¢) is set to be 0. We set
ay; = 39.35 AU, ay = 500 AU, e; = 0.8, e = 0.6, wy = 0°, Q1 = 180°, i = 6° for the initial
condition. For tides, we set the dissipation quality factor to be @, = 105, Q; = 10°. The
orbit flips after ~ 10Myrs. During the flip, e; ~ 1 and the tidal dissipation forces the
orbit to decay and circularize. The orbit reaches equilibrium with ¥ ~ 173°, a; ~ 0.032
AU and e; ~ 0. General Relativity precession of the inner and outer body is included
following Naoz et al. (2013b).
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Figure 2.8: The ~ 180° flip of the spin-orbit angle when the mutual orbital inclination
1s slightly less than 90°. We set the mass and the radius of m; to be those of the Sun,
and the mass and the radius of mp to be those of Jupiter, and my = 0.03M. The initial
spin-orbit angle (¢)) is set to be 0. We set a; = 40 AU, ay = 500 AU, e; = 0.01, e; = 0.6,
wp = 0°, 2y = 180°, ¢ = 85° for the initial condition. The top panel shows the point
mass dynamical evolution of the inclination and the spin orbit angle, and we can see that
during each Kozai cycle and the inclination oscillates, the spin orbit angle flips. In the
middle panel, e; is plotted as a function of time. In the bottom panel, we show that the
longitude of the ascending node shifts by ~ 180° abruptly at the end of each Kozai cycle.
This indicates the rapid ~ 180° flip of the orbit in the x-y plane.
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Figure 2.9: An example illustrating a tidally disruption event. The initial condition is the
same as in Figure 2.7, except a; = 39 AU. Similar to Figure 2.7, both tidal dissipation and
General Relativisty precession effects are included (see text). During the flip, e; ~ 1 and
the tidal dissipation forces the orbit to decay (as shown in the bottom panel). However,
the tidal circularization is outran by the eccentricity excitation during the flip, and the
object is disrupted before reaching 180° when r, < rz, where 7, is the Roche limit of the
object to m.
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Figure 2.10: The mazimum eccentricity. The maximum eccentricity reached during the
secular evolution in time 3tf,.q; (upper left panel), 5t ,.q; (upper right panel), 10t .qi
(lower left panel) and 30tk,.q; (lower right panel) as a function of the initial eccentricity
(horizontal axis) and inclination (vertical axis). Tides are not included in the simulation.
The initial condition of the runs are m; = 1My, ms = 0.1My, a; = 1 AU, ay = 45.7
AU, e; = 0.7, wy = 0°, Q; = 180°. The typical eccentricity reached at the first flip is
~ 1—107*, and the eccentricity may increase to ~ 1 — 107¢ after several flips. The HiLe
case reaches the maximum eccentricity later than the LiHe case. The inner orbit flips
above the black solid lines.
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Figure 2.11: The spin orbit misalignment v.s. the final a; in 100 Myr produced by the
Monte Carlo simulations. The systems where the planets can be tidally disrupted are
marked by crosses. 90 out of 500 systems avoid collisions and form hot Jupiters.
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Figure 2.12: The histogram of spin orbit misalignment of the hot Jupiters produced in

the Monte Carlo simulations.
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Figure 2.13: The orbital evolution of the inner planet at ¢ = 0.125. The system
configuration is the same as that in figure 2.2, except that the outer perturber is moved
to ay = 11 AU. The inner planet can still flip. a; is increased at ~ 2.5 x 10 yr, and the

inner planet is eventually ejected at ~ 5 x 10* yr.

48



Chapter 3

Chaos 1n the Test Particle Eccentric

Kozai-Lidov Mechanism

This thesis chapter originally appeared in the literature as
Li, G., Naoz, S., Holman, M. & Loeb, A. Chaos in the Test
Particle Eccentric Kozai-Lidov Mechanism, The Astrophysical
Journal, 791, 86, 2014

Abstract

The Kozai-Lidov mechanism can be applied to a vast variety of astrophysical systems
involving hierarchical three-body systems. Here, we study the Kozai-Lidov mechanism
systematically in the test particle limit at the octupole level of approximation. We
investigate the chaotic and quasiperiodic orbital evolution by studying surfaces of section

and the Lyapunov exponents. We find that the resonances introduced by the octupole
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level of approximation cause orbits to flip from prograde to retrograde and back as well
as cause significant eccentricity excitation, and the chaotic behaviors occur when the
mutual inclination between the inner and the outer binary is high. We characterize the

parameter space that allows large amplitude oscillations in eccentricity and inclination.

3.1 Introduction

The Kozai-Lidov mechanism (Kozai 1962; Lidov 1962) has proven very useful for
interpreting numerous astrophysical systems. For example, it has been shown that it can
play a major role in exoplanet configurations and obliquities (e.g. Holman et al. 1997;
Wu & Murray 2003; Fabrycky & Tremaine 2007; Veras & Ford 2010; Correia et al. 2011;
Naoz et al. 2011, 2012). In addition, close stellar binaries with two compact objects are
likely produced through triple evolution, and the Kozai-Lidov mechanism may play a key
role in these systems (e.g. Harrington 1969; Mazeh & Shaham 1979; Soderhjelm 1982;
Kiseleva et al. 1998; Ford et al. 2000; Eggleton & Kiseleva-Eggleton 2001; Fabrycky &
Tremaine 2007; Perets & Fabrycky 2009; Thompson 2011; Katz & Dong 2012; Shappee
& Thompson 2013; Naoz et al. 2013a; Naoz & Fabrycky submitted). Furthermore, the
Kozai-Lidov mechanism has been proposed as an important element in the growth of
black holes at the centers of dense star clusters, the formation of short-period binaries
black hole (Blaes et al. 2002; Miller & Hamilton 2002; Wen 2003; Ivanova et al. 2010),
and tidal disruption events (Chen et al. (2009, 2011); Wegg & Bode (2011); Bode &

Wegg (2013), Li et al., in prep).

The Kozai-Lidov mechanism focuses on hierarchical three-body systems, which can

be treated as the interaction between two elliptical wires by orbit averaging: the inner
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wire is composed of the inner two objects, and the outer wire is composed of the outer
companion orbiting around the center mass of the inner two objects. The total angular
momentum of this system, the vector sum of the inner orbit’s and the outer orbit’s

angular momenta, is conserved.

Kozai (1962) and Lidov (1962) first studied this mechanism by expanding the
gravitational potential in a power series of the semi-major axis ratio and considered
applications when one of the inner object is massless (the test particle limit) and
the outer orbit is circular. Kozai (1962) considered the secular (long term) evolution
of asteroids under the perturbation of Jupiter, and Lidov (1962) studied the secular
evolution of satellites under the perturbation of the Moon. In those cases, the gravitation
potential of the inner orbit is axisymmetric, which renders the Z component of the
inner orbit’s angular momentum (.J,) constant, where 2 is the direction of the total
angular momentum of the system. The quadrupole order of approximation (O((a1/a2)?))
sufficiently describes the orbital evolution of such systems, and the eccentricity and the
inclination undergo large amplitude oscillations due to the “Kozai resonance” when

1> 39.2°.

Recently, Naoz et al. (2011) considered the case when none of the inner objects
is a test-particle, and pointed out that .J, is no longer conserved. In addition, the
eccentric Kozai-Lidov Mechanism (hereafter EKL) applies to cases when the outer orbit
is non-circular, where the Z component of the angular momentum of the inner orbit
is also not conserved (Naoz et al. 2011). In this situation, the octupole terms in the
potential (O((a1/a2)?)) need to be taken into account to describe the orbital evolution,
where the eccentricity of the inner orbit can be excited to unity, and the inner orbit may

flip from prograde to retrograde or vice versa (Naoz et al. 2011; Lithwick & Naoz 2011,
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Katz et al. 2011; Naoz et al. 2013a). As the eccentricity increases, the pericenter distance
decreases, and causes an enhanced tidal disruption rate (Li et al., in prep). Furthermore,
including the octupole effects, the oscillation in the eccentricity and the inclination of the
inner orbit may still exist when 7 < 39.2°, and the inner orbit may undergo a coplanar

flip from ~ 0° to ~ 180° (Li et al. 2014a).

Here, we probe the test particle limit, which simplifies the analysis due to its
smaller number of degrees of freedom. This approximation was proven to be very
useful in a large range of astrophysical settings (Lithwick & Naoz (2011); Katz et al.
(2011); Naoz et al. (2012); Li et al. (2014a), Naoz & Silk in prep, Li, et al., in prep).
Importantly, probing this limit can help us gain some basic understanding of the EKL
mechanism. The test particle limit has been studied in the literature before to obtain
an analytical understanding on the flip of the orbit (Lithwick & Naoz 2011; Katz et al.
2011). Nevertheless, a systematic study on the chaotic behavior and the identification of
the underlying resonances are necessary but are uncovered in the literature. We identify
the resonances, and characterize the chaotic regions and the initial conditions where high
eccentricity and the flips may occur in the parameter space. This can help predict the

dynamical evolution of systems without doing a large amount of simulations.

This paper is organized as follows. In §2, we give a brief overview of the Kozai-Lidov
mechanism. In §3, we investigate the surface of section systematically for a large range
of orbital parameters. In §4, we characterize the initial condition which allows large
amplitude oscillations in eccentricity and inclination. Finally in §5, we characterize the

chaotic regions.
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3.2 Overview of the Eccentric Kozai-Lidov Mecha-

nism in the Test-particle Limit

As mentioned in the introduction, the Kozai-Lidov mechanism describes the dynamical
behavior of hierarchical three-body systems (see Figure 8.1). The inner two objects (m;
and m;) form an inner orbit, and the outer orbit is formed by the outer object (ms)
orbiting around the center mass of the inner two objects. The eccentric Kozai-Lidov
mechanism describes the dynamics when the outer orbit is eccentric, and the test-particle

limit requires one of the closely separated objects to be a test particle m; — 0.

In the hierarchical configuration, we average over the mean motion of the two
orbits and treat the evolution of the system as the interaction of two elliptical wires.
This reduces this system from six degrees of freedom to four degrees of freedom. In
addition, in the test-particle limit, the outer orbit is stationary, and reduces the system
to two degrees of freedom (Harrington 1968, 1969; Ford et al. 2000). Expanding the
Hamiltonian of the interaction energy between the two ellipses in a power series of a;/as,
the Hamiltonian can be expressed as the following at the second (quadrupole) and the

third (octupole) order (Lithwick & Naoz 2011):
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Figure 3.1: The system configuration. A test particle m; orbits around an object m;
and forms the inner binary. The outer binary consists of the object (m2) and m; (in the
test particle limit). J, represents the angular momentum of the outer binary, J represents
that of the inner binary, and J, represents the Z component of J, where Z is in the direction
of J,. In the test particle limit J < J, and the outer orbit is stationary.
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€ characterizes the importance of the octupole order. The Hamiltonian is scaled with
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(Lithwick & Naoz 2011). J = /1 — €7 is the angular momentum of the inner orbit, w
is the argument of periapsis of the inner orbit, J, = \/1_76% cos?; is the Z component
of the inner orbit’s angular momentum J, and €2 is the longitude of the ascending node
of the inner orbit. Specifically, J, w and J,, 2 are conjugate momentum and coordinate
pairs. We denote e; as the eccentricity of the inner orbit, and ¢; as the inclination of
the inner orbit to the total angular momentum of the system. In the test particle limit,

i1 = ¢ is the mutual inclination between the two orbits.
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In the quadrupole limit, the Hamiltonian is independent of €2, so J, is constant, and
the system is integrable. In addition, the angle w = w — (2 is the resonant angle of the
system, where w is the longitude of the periapsis. When ¢ > 39.2°, the solution admits a
resonant region and e; and ¢ exhibit large amplitude oscillations. Particularly, e; may be

excited to high values starting from e; ~ 0 (e.g. Morbidelli 2002).

As mentioned in the introduction, the octupole order adds variations in .J, which
allows the inner orbit to flip from prograde to retrograde, and the eccentricity to be
excited very close to 1 (Lithwick & Naoz 2011; Katz et al. 2011; Naoz et al. 2011, 2012,
2013a). We work with the Hamiltonian at the octupole level of approximation to analyze

the surface of section and the chaotic behaviors in the next sections.

3.3 Surfaces of Section

For a two degree of freedom system, the surface of section projects a 4-dimensional
trajectory on a 2-dimensional surface. Specifically, we plot points on a 2-dimensional
surface composed of one canonically conjugate pair (e.g. J —w or J, — §) whenever the
other angle (€ or w) reaches a fixed value and moves in a fixed direction (see the left

panel in Figure 3.2). The collection of the points form the surface of section.

There are three distinct regions in the surface of section: “resonant regions”,
“circulation regions”, and “chaotic regions” (right panel in Figure 3.2). The resonant
regions are formed by points where the momenta and coordinates (the angles) undergo
bounded oscillations. The trajectories in this region are quasiperiodic, where the

system is in the libration mode. The circulation region represents trajectories where the
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Figure 3.2: Upper panel: Illustration of the “surface section” for the J — w plane. By
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recording the point in the trajectory every time Q = 0, © > 0, the trajectory can be
represented by a 2 dimensional graph, as shown in the left panel. This set of points form
the “surface of section”. Lower panel: Illustration of the resonant and chaotic regions
in surface of section. We set H = —0.1, ¢ = 0.1 in this plot. The resonant and higher
order resonant zones are marked by the red and the green arrow. The chaotic zones are
indicated by the grey arrow. In the resonant region, the angle w is constrained in a small
region and the trajectories are quasiperiodic. In the chaotic region, the position of the
points are not regular and the trajectories are chaotic.

coordinates are not constrained to a specific interval. Both resonant and circulatory
trajectories map onto a 1D manifold on the surface of section. On the contrary, chaotic
trajectories map onto a 2D manifold. In other words, while quasi-periodic trajectories
form lines on the section, chaotic trajectories are area-filling. Embedded in the chaotic
region, the small islands correspond to the second order resonances, which are caused
by the interaction between the primary resonances. The trajectories in the second order

resonant regions are also quasiperiodic.

We now consider the surface of section in the J — w plane (setting 2 = 0 and
dQ/dt > 0). When e; is excited to large values, J — 0. When € is set, for each point in
the J —w plane, J, (—J < J, < J) is unequivocally defined by the conservation of H.

There is a finite range of H that the system can take on, because both actions must have

57



CHAPTER 3. CHAOS

zero imaginary components. Since we plot the sections with constant H values, we first
explore the range of energy H it can achieve in the J — w plane. This way, we can select

the range in H that we explore below.

We notice that the maximum and minimum energy it can reach in the J — w plane
when Q = 0is ~ 3 and ~ —2.4 (see Appendix Figures 3.8 and 3.9, which show the
maximum and the minimum H in the J — w plane). Thus, we plot six surfaces of
section for H ranging from H = —2 to H = 1.2, since when H > 1.2, the behavior is
similar to that of H = 1.2. Note that the H admits positive values for this bounded
system, because it is the interaction energy between the test particle (m;) and the outer
companion (mg), i.e. the disturbing function of this system to the Kepler Hamiltonian
of the inner and outer orbits. To investigate the role of the octupole effects, we plot the
surface section for two extreme values of e: € = 0.001 and ¢ = 0.1. When € < 0.001,
the octupole effects are negligible. On the other hand, ¢ = 0.1 represents the maximal
octupole effects, where when ¢ > 0.1, the hierarchical condition may break down and the

system may become unstable.

The sections are shown in Figure 3.3. The empty region (bounded by the black
curves) do not have physical solutions. The comparison between the two rows in Figure
3.3 shows the difference between the octupole and the quadrupole resonances: € = 0.001
is dominated by the quadrupole effect and ¢ = 0.1 is dominated by both the quadrupole
and the octupole effects. For the former, where the quadrupole dominates, there are two
resonant regions with fixed points at w = 7/2 and 37/2 when H is high (as shown in
Figure 3.3 at e = 0.001, H = —0.5,—0.1,0.5 and 1.2). For the latter when the octupole
plays an important role (i.e., ¢ = 0.1), we find different resonant regions for different

energy levels, and the location of the resonant regions vary according to the energy levels.
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Figure 3.3: The surface of section in the J — w plane. In the first row, ¢ = 0.001 and
in the second row, € = 0.1. The octupole terms are important when € is bigger. H varies
from —2 ~ 1. The corresponding e; and ¢ in this plane is shown in Figure 3.10 and 3.11.
There are chaotic regions at H = —0.5 and H = —0.1.

The resonant regions are associated with fixed points at w = 7, w = 7/2 and
w = 37 /2 depending on the energy level. These resonant zones result from the interaction
of the resonances associated with the “harmonics” in the octupole level Hamiltonian,
ie. 2w, w=£ Q, and 3w £ . Moreover, chaotic regions can only be seen for high ¢ at
H = —0.5 and H = —0.1, where the chaotic zones are a result of the overlap of the
resonances between the quadrupole and the octupole resonances. Embedded in the
chaotic region, higher order resonances can be found at H = —0.1, where the trajectories

are quasi-periodic and the eccentricity cannot be excited.

On the other hand, the comparison between the different energy levels shows the
orbital evolution corresponds to different orbital parameters. The corresponding e; and
1 are shown in Figure 3.10 and Figure 3.11 in the appendix. Accordingly, the low H
corresponds to the low inclination (i ~ 0 — 30°) and high eccentricity (e; 2 0.6) case,

Y
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the higher H corresponds to the high inclination (7 ~ 30° — 60°) and low eccentricity
(e1 < 0.6) case, and H > 0 corresponds to high inclination (i ~ 60 — 90°) and low
eccentricity case (e; < 0.3). When H is low (H ~ —2), the evolution is only affected by
the octupole resonances, while when H is higher, octupole and quadrupole resonances
both contribute and may overlap to cause the chaotic region as mentioned above. We
find that e; can be excited to high values (J — 0) for almost all energy levels but is
only excited very close to unity for higher €. This emphasizes that the octupole level

of approximation causes large eccentricity excitation, since larger e implies that the

octupole level is important.

Next, we study the surface section in the plane of J, —Q (Figure 3.4). These sections
clearly show the flip of the orbit when J, changes sign. The maximum and minimum
energy that can be reached in the J, — 2 (with w = 0) plane is ~ 0 and ~ —2.4. Thus, we
plot the surface of section ranging from H = —2 to H = —0.1 for two values of ¢ = 0.001
and 0.1. At the quadrupole level, J, is constant, and there’s no resonances in the J, — )
plane. Thus, all the resonances originated from the octupole level of approximation, and
the fixed points are at 2 = 7 and 2 = 0. In addition, similar to the surface section on
the J — w plane, we see higher order resonances for ¢ = 0.1 at H = —0.3 and H = —0.1
embedded in the chaotic region, and the chaotic region is confined to H = —0.5 and
H = —0.1. Since J, changes sign in all energy levels, the orbit may flip for all energy
levels, and the flip parameter space is larger for higher €. The corresponding e; and 7 on

the surface are shown in Figure 3.12 and Figure 3.13.

To summarize, the surfaces of section show that flips and the excitation of e; can
occur for both regular regions and chaotic regions for a wide range of H, and they depend

sensitively on the initial condition. In addition, the trajectories are chaotic only when
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Figure 3.4: The surface of section in the J, — €2 plane. In the first row, ¢ = 0.001 and in
the second row, € = 0.1. H varies from —2 ~ 0. There are chaotic regions at H = —0.5,
H = —0.3 and H = —0.1. All the features are due to the octupole order, as the .J, is
constant in the quadrupole order. The corresponding e; and 7 are shown in Figure 3.12
and 3.13.

H <0, corresponding to high mutual inclination low eccentricity cases. Furthermore,
it is the octupole resonances that cause the flip of the orbit and the excitation of

eccentricity very close to unity.

3.4 The Maximum Eccentricity and the Flip Condi-
tion

To apply this mechanism to astrophysical systems with different initial conditions, we
investigate the parameter regions which exhibit interesting dynamical behaviors. We
create a finer grid of H and e than those presented in Figure 3.3 and 3.4, and we monitor

the trajectories that start with the selected initial condition in the J — w or the J, — €2
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plane. Of course, some behaviors which do not pass through the selected initial condition
will be missed, but this exploration gives a general idea of the behavior of the system as

a whole.

We start with the exploration in the J — w plane. To systematically estimate the
range in J that the trajectories may reach, we start at the maximum energy boundary of
J for a given H and e, which corresponds to the minimum eccentricity. Accordingly, for
H < —1, w starts at 7, and for H > —1, w starts at 7/2. The maximum e; is recorded
after monitoring for ¢ = 500tx (we define ¢ in equation (3.4)), which is much longer

than the Lyapunov timescale (see below).

In Figure 3.5, we plot 1 — €1 4, as a function of €, where each curve represents a
fixed H (H € [-2,2]), and € ranges from 0.001 to 0.1. In addition, we use the symbol
“x” to mark the e higher than which the orbit flips. It shows that there are roughly five
dynamical regions in H: when H < —1.5, —0.5 < H < 0 and H 2 0.5, the orbit may flip
and e; can be excited very close to unity; when —1.5 < H < —0.5and 0 < H < 0.5,
starting with the minimum ey, e; cannot be excited to unity. Reading from the surface
of section in Figure 3.3, the lack of e; excitation at 0 < H < 0.5 and high ¢ is due to the

quadrupole resonances, which traps the trajectory at low e;.

Particularly, e; may be excited and the orbit may flip in three scenarios: when the
inner orbit is eccentric and coplanar, when the inner orbit is circular and with high
inclination, or when the inner orbit is moderately eccentric and with very high inclination
~ 80 — 90° (see Figure 3.14). In addition, the maximum change in A.J can be well fit by

a power law from H < —1:

AJ — ¢~ 2TTH-3.62,0.051H+1.08 (3.5)

€
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Figure 3.5: The maximum e; for different H and e. We set the initial condition at the
top of the energy boundary condition of the J — w plane, and we record the maximum
e; reached in t = 500tx. Each line represents a different H, and the cross marks the €
bigger than which the inner orbit may flip (i cross over 90°). We find that e; may be
excited and the orbit may flip whenH < —1.5, —0.5 < H < 0 and H 2 0.5. The first
case corresponds to the coplanar flip (i flips from ~ 0° to ~ 180° or vise versa), and the
latter two correspond to the high inclination flip.

Next, we explore the J, — Q2 plane. We start the trajectories at the lower energy
boundary of J, at {2 = 7 for the given H and €, and we record the maximum change in J,
after t = 500tx. Figure 3.6 shows A.J, as a function of €, where each curve represents a
different H. e ranges from 0.001 to 0.1, and H ranges from —2 to 0, since the maximum
H is zero for w = 0. Similarly to the J — w plane, we use the symbol “x” to mark the
€ higher than which the orbit flips. As expected, it shows that the orbit may flip when

—2< H< —1.5and —0.5 < H <0, where —2 < H < —1.5 corresponds to an eccentric
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and coplanar inner orbit, and —0.5 < H < 0 corresponds to a circular inner orbit with a

high inclination. Moreover, AJ, can be fit by a power law of H and e:

AJ,

e

72.2161.06

(H < —0.5)

610'7H+4'2360'48H+1'31 (H > 05) ,

(3.6)
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Figure 3.6: The maximum change in J, for different H and €. We set the initial point
at {0 = 7w, where J, is on the lower energy boundary. We record the maximum change in
J, for t = 500tx. The crosses represent the e bigger than which the inner orbit may flip
(J, changes sign). We find the orbit may flip at —2 < H < —1.5 and —0.5 < H < 0. The
former corresponds to the coplanar flip and the latter corresponds to the high inclination
flip.
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3.5 Chaotic Regions

The surfaces of section show that the system is chaotic when H < 0 (Figure 3.3 and 3.4).
To better characterize the chaotic regions, we first calculate the percentage of area that
is chaotic in each surface in Figure 3.3. Specifically, we divide each surface into equally
spaced grids in J and w, and count the fraction of grids that has chaotic trajectories. We
use the Lyapunov exponent (A) to determine whether the trajectories are chaotic, where

A indicates how quickly two closely separated trajectories diverge from each other,

A= Tim L Jres?)

Jim £ In S (3.7)

We integrate the tangent of the trajectories for 1000tx to compute A, and we find
that there are chaotic trajectories only when ¢ = 0.1, H = —0.5 or —0.1. Specifically, 85
out of 276 (~ 31%) grid cells have chaotic trajectories when € = 0.1 and H = —0.5, and
109 out of 242 (~ 45%) grid cells have chaotic trajectories when € = 0.1 and H = —0.1.
It shows even when H < 0, a large range of orbital parameters would still yield regular

trajectories.

Next, we characterize the chaotic region in the parameter space of H and e. We
arbitrarily select the trajectories starting with Q = 0, w = 7/2 and the maximum J for
the given H and e, where the associated e; and ¢ of the initial condition are shown in
Figure 3.14. Similarly, we integrate the tangent of the trajectories for 1000tk to compute
A, and we plot A as a function of H and € in the left panel of Figure 3.7. The larger
A corresponds to the more chaotic systems. A large region in the parameter space is
regular, and the system is chaotic only when —0.6 < H < 0 for larger e. The Lyapunov

timescale is ~ 6tx when € 2 0.01 and —0.6 < H < 0 (low e; and i 2 40°).
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To justify that the regions with smaller A\ are regular, we increase the run time
to 4000k, and we find that the Lyapunov exponents for the regular region decrease,
while the Lyapunov exponents in the chaotic region remain at ~ 6t5. Moreover, to
avoid missing chaotic regions due to the specific choice of the initial condition, we vary
the initial condition and make several contour plots of A in the plane of H and €. The
right panel of Figure 3.7 shows the case for w starts at 0, where the trajectories are also

chaotic when —0.6 < H < 0.

3.6 Conclusion

The hierarchical three-body system in the test particle limit is common in a large range
of astrophysical settings. The dynamical behavior of such systems may lead to retrograde
objects, an enhanced rate for tidal disruption, and merger or collision events (e.g.
Holman et al. (1997); Fabrycky & Tremaine (2007); Naoz et al. (2011, 2012); Chen et al.
(2011); Bode & Wegg (2013), Naoz & Silk, in prep, Li et al., in prep). Here, we used a
large range of the initial condition to systematically study the dynamics, including the

underlying resonances, and the chaotic characteristics of the system.

First, we plotted the surface of section on the J — w plane for a large range of
energy H and two different € to identify the underlying resonances (Figure 3.3). In the
quadrupole level, the resonances occur at high H center around fixed points at w = 7/2
and 37/2. On the other hand, the octupole level resonances center at w = 0, 7/2, 7,
or 37/2 depending on the different energy levels, and we can identify resonances in all
these energy levels. The octupole resonances cause the excitation of the e; in the high

eccentricity coplanar case (corresponds to low H), shown in Li et al. (2014a). The overlap
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Figure 3.7: Lyapunov exponents with different H and e. Run time ¢ = 1000. Left
Panel: we consider the following initial condition: wy = 7/2, Qp = 0, Jy = 1 or the
maximum J at the energy boundary and —0.8 < H < 0.3. Right Panel: we consider
the following initial condition: wy = Q9 = 0, Jy = 1 and —0.6 < H < 0. Note that
for this choice of initial conditions no physical solution exists for H > 0. The colormap
represents the value of the Lyapunov exponents A\. The yellow and red colors correspond
to big Lyapunov exponents, which are associated with chaotic regions, and cyan and blue
colors represent the regular regions.
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of the quadrupole and octupole resonances causes the chaos for the low eccentricity and

high inclination case (corresponds to higher H), (e.g. Naoz et al. (2011)).

The surfaces of section in the J, — 2 plane not only show the octupole resonances
but the condition when the orbit flips as J, changes sign (Figure 3.4). At the quadrupole
level, J, is a constant, and there is no resonant zones in the J, — 2 plane. However, at
the octupole level, the resonant zones exist and lead to the flip of the orbit. As expected,
similarly to the J — w plane, it also shows that chaotic behavior exist when H < 0 for

high e.

Finally, we calculated the Lyapunov exponent for different H and € to characterize
the region where the evolution is chaotic. Consistently with the surface of section, we
have found that the orbital evolution is chaotic when H < 0 (low e; high i cases).

Specifically, the Lyapunov timescale ~ 6t .

By monitoring the trajectories, we find that the inner eccentricity may be excited
and the orbit may flip for a circular high inclination orbit or for an eccentric and nearly
coplanar orbit. This agrees with previous discussions in the literature for the flips with
high inclination (Naoz et al. 2011; Lithwick & Naoz 2011; Katz et al. 2011), and the
coplanar flips (Li et al. 2014a). In addition, we note that the flips with high inclination
are chaotic and the coplanar flips are regular. This analysis can be applied to observed
systems. Knowing roughly the orbital elements, one can identify the type of trajectories
in the surface of section. Then, one can study the evolution features of the system
without doing a large number of simulation for different initial condition. Moreover, our
analysis could help predict the enhancement in the rate of tidal disruption events due to

eccentricity excitation (Li, et al., in prep).
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3.8 Appendix

First, we explore the range of H it can reach for the surface of section in the J — w plane
with €2 = 0 and in the J, — 2 plane with w = 0. We contour plot the maximum and
minimum of H as a function of J and w while setting €2 = 0 in Figure 3.8, which depicts
that the range of H is ~ —2.4 to ~ 3. Similarly, we plot the maximum and minimum of
H for different J, and ) with w = 0 in Figure 3.9. It shows that H ranges from ~ —2.4
to 0. Accordingly, we plot the surface of section for —2 < H < 1.2 in Figure 3.3, since
when H > 1.2 the section are similar to that when H =~ 1.2, and we set —2 < H < 0

for the surface of section in Figure 3.4.

Next, we show the associated eccentricity and the inclination for the surface of
section (Figure 3.3, 3.4) and the initial condition in Figure 3.5 and 3.6. This helps to
connect the resulting dynamical behavior to the parameters in e; and ¢, that can be

obtained more directly for observations.

In Figure 3.10 and 3.11, we plot the initial condition in the J —w plane corresponding
to the surfaces of section in Figure 3.3. e; can be calculated from the J value directly
as e; = v/1 — J2, so higher J associates with lower e;. On the other hand, 7 is lower for

larger J when H = —2, —1,—0.5, and ¢ is higher for larger J when H = —0.1,0.5,1.2.
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In this plot, we set ¢ = 0.1. The energy range is about —2.5 ~ 3 in the J — w plane. In
addition, this explains the shape of the empty region (where there are no solution) in the
surface of section plot.

Min[H] Max[H]

’ -12 0'8‘ | 0.2
. 0.6 —0.3
-14
. 04 0.4
. -1.6 0.2 0.5
-1.8 0 —0.6
. =02 07
. - -04
-0.8
X 2.2 -0.6
‘ | W09
-24
1 2 3 4 5 6
Q

1 2 3 4 5 6
Q

Figure 3.9: The maximum and minimum H it can reach for different J, —Q with w = 0.
In this plot, we set € = 0.1. The energy range is about —2.5 ~ 0 in the J, — Q) plane. In
addition, this explains the shape of the empty region (where there are no solution) in the
surface of section plot.
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Figure 3.10: The eccentricities in the J —w plane (€2 = 0). Note that these are not the
initial conditions, but directly the values of e; in the J — w surface at fixed €2 = 0 for the
given H and e. Similar to Figure 3.3, in the first row, ¢ = 0.001 and in the second row,
€ = 0.1. The octupole terms are more dominant when e is bigger.
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Figure 3.11: The inclinations in the J — w plane (2 = 0). Note that these are not the
initial conditions, but directly the values of ¢ in the J — w surface at fixed 2 = 0 for the
given H and e. Similar to Figure 3.3, in the first row, ¢ = 0.001 and in the second row,
€ = 0.1. The octupole terms are more dominant when e is bigger.
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Next, in Figure 3.12 and 3.13, we plot e; and 7 in the J, — 2 plane, corresponding to
the surface section in the J, — €2 plane with w = 0 in Figure 3.4. When ¢ > 90°, J, > 0,
and when ¢ < 90°, J, < 0. We find that e; is higher for lower H, and ¢ is closer to 90°

for higher H.

Furthermore, we plot the initial condition for the trajectories we selected to
investigate the maximum e; in Figure 3.14. It shows that for the maximum e; plot
(Figure 3.5), when H < —1.2, we monitor the trajectories that start with high
eccentricity and low inclination. In this case, when H < —1.7, the orbit may flip at
high € and the maximum e; may reach ~ 1 — 107° for high e. When —1.2 < H <0,
we monitor trajectories that start with low eccentricity and high inclination. In this
case, not much variations are seen unless H < 0. When H > 0, we monitor trajectories

starting with high inclination ¢ ~ 80 — 90°.

In the end, we plot the initial condition for the trajectories that are monitored for .J,
or the flip of the orbit in Figure 3.15. When H < —1, we start the trajectories with high
e1 and low i; when H 2> —1, we start the trajectories with low e; and high i. The orbit
may flip with —0.4 < H < 0 at high € for trajectories starting with low e; and high 4,

and the orbit may flip with H < —1.5 when the trajectories start with high e; and low i.

72



CHAPTER 3. CHAOS

1 1 1 1 1 1
0.5 0.5 0.5 0.5 0.5
-0.5 -0.5 -0.5 -0.5 -0.5
-1 -1 -1 -1 -1
0 5 0 5 0 5 0 5 0 5 0
Q Q Q Q Q
€1
1 1 1 1 1 1
0.5 0.5 0.5 0.5 0.5
HN 0 0 0 0 0_ 0
-0.5 -0.5 -0.5 -0.5 —0.5
-1 1L —- -1 -
) 5 i 5 b 5 0 5 I 5 0
Q Q Q Q Q

Figure 3.12: The eccentricities on the J, — 2 plane (w = 0). Note that these are not
the initial conditions, but directly the values of e; in the J, — Q surface at fixed w = 0
for the given H and e. Similar to Figure 3.4, in the first row, ¢ = 0.001 and in the second
row, € = 0.1. The octupole terms are more dominant when e is bigger.
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Figure 3.13: The inclinations in the J, — Q plane (w = 0). Note that these are not the
initial conditions, but directly the values of 7 in the J, — €2 surface at fixed w = 0 for the
given H and e. Similar to Figure 3.4, in the first row, ¢ = 0.001 and in the second row,
€ = 0.1. The octupole terms are more dominant when e is bigger.
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Figure 3.14: ¢ and i withwy =7 (H < —1), wo =7/2 (H > —1), 2 =0 and J at the
upper energy boundary. This is associated with the initial condition for Figure 3.5, i.e.
the initial e; and ¢; for each run at fixed ¢ and H.

Figure 3.15: e; and 4; with Q = 7, w = 0 and J, are at lower energy boundary for
different H and e. This is associated with the initial condition in Figure 3.6, i.e. the
initial e; and ¢; for each run at fixed € and H.
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Chapter 4

The Dynamics of the Multi-planet

System Orbiting Kepler-56

This thesis chapter originally appeared in the literature as
Li, G., Naoz, S., Valsecchi, F., Johnson, J. & Rasio, F. The
Dynamics of the Multi-planet System Orbiting Kepler-56, The
Astrophysical Journal, 794, 131, 2014

Abstract

Kepler-56 is a multi-planet system containing two coplanar inner planets that are in
orbits misaligned with respect to the spin axis of the host star, and an outer planet.
Various mechanisms have been proposed to explain the broad distribution of spin-orbit
angles among exoplanets, and these theories fall under two broad categories. The first is

based on dynamical interactions in a multi-body system, while the other assumes that
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disk migration is the driving mechanism in planetary configuration and that the star (or
disk) is titled with respect to the planetary plane. Here we show that the large observed
obliquity of Kepler 56 system is consistent with a dynamical origin. In addition, we
use observations by Huber et al. (2013) to derive the obliquity’s probability distribution
function, thus improving the constrained lower limit. The outer planet may be the cause
of the inner planets’ large obliquities, and we give the probability distribution function of
its inclination, which depends on the initial orbital configuration of the planetary system.
We show that even in the presence of precise measurement of the true obliquity, one
cannot distinguish the initial configurations. Finally we consider the fate of the system
as the star continues to evolve beyond the main sequence, and we find that the obliquity
of the system will not undergo major variations as the star climbs the red giant branch.
We follow the evolution of the system and find that the innermost planet will be engulfed
in ~ 129 Myr. Furthermore we put an upper limit of ~ 155 Myr for the engulfment of

the second planet. This corresponds to ~ 3% of the current age of the star.

4.1 Introduction

Over the past few years, measurements of the sky-projected obliquity of exoplanets
have found that large obliquities and even retrograde systems are common among hot
Jupiters (e.g. Fabrycky & Winn 2009; Triaud et al. 2010; Morton & Johnson 2011;
Moutou et al. 2011; Albrecht et al. 2012; Hébrard et al. 2013). Recently, Hirano et al.
(2012), Sanchis-Ojeda et al. (2012), Albrecht et al. (2013), Chaplin et al. (2013) and
Van Eylen et al. (2014) have measured the obliquity of six transiting multi-planet

systems discovered by the NASA Kepler mission, and found they all have low obliquities.
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However, Huber et al. (2013), using asteroseismology, showed that large obliquities are
not confined to Hot Jupiter systems. In fact Kepler-56 has two, low mass, inner planets

whose orbit normal is tilted with respect to the stellar spin axis.

Several mechanisms have been suggested to explain the formation of misaligned
planets. These theories can be divided into two categories. The first is based on tilting
the orientation of an inner planet compared to the stellar spin axis. This category
includes scattering and secular dynamical effects between a planet and a companion, or
other planets in the system that can produce large obliquities (e.g., Fabrycky & Tremaine
2007; Chatterjee et al. 2008; Nagasawa et al. 2008; Naoz et al. 2011, 2012, 2013a; Wu
& Lithwick 2011; Li et al. 2014a; Li et al. 2014b; Valsecchi & Rasio 2014a,b). These
mechanisms predict that an inner planet with a large obliquity has an outer perturber
which is inclined with respect to the plane of the inner planet, the perturber can be
either a stellar companion or a planet, or even multiple planets. In the second category,
planets move inward from their birthplaces beyond the snow line by migrating inward
through the protoplanetary disk (e.g. Lin & Papaloizou 1986; Masset & Papaloizou
2003). Large obliquities can then be produced either by tilting the stellar spin axis with
respect to the orbital angular momentum (e.g. Winn et al. 2010; Lai et al. 2010; Rogers
et al. 2012, 2013; Spalding & Batygin 2014), or by tilting the protoplanetary disk (Bate
et al. 2010; Batygin 2012). This second category of models predicts that the various
planets in a system should lie roughly in the same plane since they were confined to the

same flattened disk.

Here we focus on the dynamical mechanism that produced the large obliquities
in the Kepler-56 planetary system. Most of the theoretical studies investigating large

obliquities focused on Hot Jupiters, mainly because these were observed to have large
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obliquities. The underlining physics of producing a misalignment in the presence of a
perturber is very similar. Thus, such studies are relevant for investigating the Kepler-56

system (as we will show below).

Kepler multiple systems are typically packed, small sized (~ 1 — 10 Rg e.g. Lissauer
et al. 2011; Swift et al. 2013) and close-in (~ 1 — 100 d, e.g., Steffen & Farr 2013)
systems. At face value these configurations may indicate that dynamical and secular
processes are suppressed, since these systems better resemble the theoretical outcome of
planet migration in the protoplanetary disk, given their low mutual inclinations (Lissauer
et al. 2011; Fang & Margot 2012). Therefore, a large obliquity in a multi-planet system
may be used as a laboratory to test the two categories of models summarized above. In
other words, since it seems that these planets form in a disk, a tilt of the protoplanetary

disk or of the star, will cause the multiple planets to show the same obliquity.

Kepler-56 is an evolved star at the base of the red giant branch in the HR
diagram with m, = 1.32 Mgy R, = 4.23 Ry and an age of 3.5 Gyr (Huber et al. 2013).
Furthermore, Huber et al. (2013) showed that the innermost planet (m, = 0.07 M,
Ry, = 0.65 Ry, hereafter planet “b”) has a period of 10.5 d, and a period of 21.4 d for the
other planet (m, = 0.57 M, R. = 0.92 R, hereafter planet “c”). The mutual inclination
between these two planets is measured to be < 5°. Kepler-56 is an interesting system as
it raises many questions regarding its formation and future evolution. Most importantly,
Huber et al. (2013), measured the obliquity of the system using asteroseismology and
placed a lower limit on the true obliquity of the two inner planets of v > 37°. The
dynamical analysis of Huber et al. (2013) favors the scattering and later torquing

scenario.
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Here we use Kepler-56’s current observations to compute the probability distribution
for its obliquity. (Huber et al. (2013) reported observations already give enough
information to calculate such distribution.) This enables us to also put strong constrains
on the probability distribution of the outer planet’s inclination with respect to the
innermost two. Furthermore, we estimate that the two inner planets will be engulfed
in ~ 129 Myr and < 155 Myr, respectively. The engulfment of the inner planets is
consistent with the the deficit in short period planets around retired A stars (e.g.

Johnson et al. 2007; Sato et al. 2008; Bowler et al. 2010; Schlaufman & Winn 2013).

The paper is structured as follows. We calculate the obliquity distribution function
from observations, and show that the current observations give more information than
just a lower limit (Section 4.2). We then discuss the current obliquity precession as
a function of the system initial conditions (Section 4.3.2) and show that combining
the physical understanding and the observed distribution, we can infer the outer most
planet orbital inclination with respect to the innermost two as a function of the initial
configuration (Section 4.3.3). We also calculate the orbit and obliquity future evolution
as the star further ascends the giant branch (Section 4.4). We finally offer our discussion

(Section 4.5).

4.2 The Obliquity Distribution Function

Huber et al. (2013) analyzed the stellar oscillations observed in the Kepler photometry
and used the splitting of the observed oscillation frequencies to measure the inclination
between the stellar spin axis and the line of sight, finding ¢, = 47° £ 6. With the transit

photometry, Huber et al. also measured the inclination of the inner planet’s orbit with
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Sky plane

180

Figure 4.1: The cumulative distribution function of 1. This calculation is based on
the observed parameters from Huber et al. (2013). We assume that the angle between
the stellar spin axis (n,) and the normal to the innermost orbit (n;,) in the azimuthal
direction around the line of sight (i.e., @ in the schematic to the left) is random (taken
from a uniform distribution). This enable us to produce a distribution function and not
only a lower limit, see text for more details. We show a schematic of the geometry in the
right panel. The solid curve corresponds to ¢}, = 47°+6, and the dashed curve corresponds
to if, = 133° £ 6 (due to the degeneracy in the asteroseismology measurements).

respect to the line of sight, finding %, = 83.84°703%. Together, these angles place a lower
limit on the three-dimensional angle between the stellar spin axis and planetary orbital

plane of ¢ > 37°.

The angle between the normal of the orbit and the stellar spin is not simply ¢, + 4},
since, for example, the angle, i, can have different values on the sky plane (different
values of o as shown in Figure 4.1). In this simple geometrical configuration (see
Figure 4.1, left panel) and defining L;,, and S as the angular momentum of the innermost
orbit and stellar spin, respectively, the obliquity is defined by the scalar product between

the three dimensional spin axis unit vector ny = S/S = (sin¢},, 0, cosdj,) and the three

b

ls), in random

dimensional normal to the innermost orbit n;, = L;,/L = (sini’,,0, cosi

orientation with each other:
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cos) = ng - Rygng, . (4.1)
Here
cosae —sina 0
Ris(@) = | sina cosa 0 (4.2)
0 0 1

is the rotation matrix in the azimuthal direction around the line of sight. We assume
that a, the angle between the stellar spin and the orbital angular momentum in the
azimuthal direction around the line of sight, is uniformly distributed. It is sufficient

to multiply only once by the rotation matrix, with the random angle. Therefore, from
Equation (4.1) we can estimate the cumulative distribution function of 1. As shown
in the right panel of Figure 4.1, the lower limit on ¢ is of course the same one found
by Huber et al. (2013), i.e,. @ > 37°, but an upper limit of 131° also exists and both
these values have the same probability, which is larger than the probability of the angles
in the range of 37° < ¢ < 131°. We use 945 to denote the observationally constrained
value of ¢. Note that due to the degeneracy in the asteroseismology measurements, 7},
could also be 133° £ 6. Setting i, = 133°, 1)y is in the range of 49° < 1p < 143° (see the

dashed line in Figure 4.1). Therefore, adding these two pieces together, the distribution

b

of Yeps is symmetric over 37° < 1 < 143°. This distorts ¥, only slightly, because 7}, is
almost 90°. Accordingly, we adopt i}, = 47° &+ 6, and have 1),s constrained in the range

of 37° < ¢ < 131° for the following discussion.
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4.3 Obliquity and Inclination Evolution in the

Presence of an Outer Perturber

4.3.1 Overview of the System Architecture

In a sufficiently packed multi—planet system the planets’ apsidal precessions are dictated
by both the outer orbital companion and gravitational interactions between the two
inner planets. In our case, the inner two planets are packed very close together, which
suppresses eccentricity excitations that may arise due to the gravitational perturbations
induced by the perturber (planet “d”). If this perturber is inclined with respect to the
orbital plane of the inner planets, then the plane will precess (e.g., Innanen et al. 1997;
Takeda et al. 2008; Mardling 2010; Kaib et al. 2011; Boué & Fabrycky 2014). However
the exact evolution of the obliquity and its current value are highly sensitive to the
initial configuration of the system and, specifically, to the inclination of the outer orbit

with respect to the inner one.

We first evolve the system with direct N-body integration using Mercury software
package (Chambers & Migliorini 1997) and then use our numerical results to evaluate
the spin-orbit evolution (§ 4.3.2). The latter is being set by the point mass dynamics (see
below for more details). The system orbital parameters are set initially to a, = 0.1028 AU,
a. = 0.1652 AU (based on the orbital solution provided by Huber et al. 2013). Since
the properties of the outer body are yet unknown, we set ag = 2 AU as an illustrative
example following the dynamical simulation of Kepler 56 in Huber et al. (2013). We work
in the invariable plane where the z axis is parallel to the total angular momentum, Lygg.

Therefore, the inclinations of the orbits are defined with respect to the total angular
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momentum. In this frame, we set for simplicity w, = w. = wg = O = Q. = Q4 = 0,
where w; (€2;) is the argument of perihelion (longitude of ascending nodes) of the planet
7. In addition, we simplify the system by imposing zero mutual inclination between the
two inner planets and by setting the eccentricity of the two inner planets to zero (which
is consistent with Huber et al. 2013, estimate). Following Huber et al. (2013), we also
take the mean anomalies to be f, = 57°, f. = 182° and f; = 256°. The outer orbit
eccentricity (eq) does not affect the evolution of the system significantly, thus we only
show results for e; = 0. The parameter that sets the system evolution is the mutual
inclination between the outer planet’s orbit and the inner plane, i,,,, which we discuss
in details below. Given the observed obliquity distribution (Figure 4.1) we calculate next
the probability distribution of the inclination of the system as a function of the system

initial conditions.

4.3.2 Dynamics of Kepler 56

In the presence of a tilted outer orbit with inclination %,,,;, the two inner planets will
precess around the total angular momentum vector. Note that the precession of the
orbit due to the oblateness of the star is negligible in this case. The torque felt by planet
“b” due to stellar oblateness® is more than two orders of magnitude smaller than the
torque due to planet “c” (see Tremaine et al. 2009 and Tamayo et al. 2013). Therefore,
the orbital evolution is not affected by the torque due to the stellar oblateness, and the

system is in the “pure orbital regime” (Boué & Fabrycky 2014). We thus obtain the

!The J, coefficient, which approximates the non-spherical shape by the star level of oblateness, was

calculated following Eggleton et al. (1998).
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orbital evolution from an N-body simulation.

The obliquity angle is defined with respect to the innermost planet’s orbital angular
momentum, L;,. Thus, a natural coordinate choice for the spin is the Laplace-Runge—
Lenz (Qp, ﬁb,éb). Here, &, is the eccentricity vector (whose direction is toward the
pericenter of planet “b” orbit), h, is the unit vector parallel to the orbital angular
momentum of planet “b” (the vector h, is the specific angular momentum vector, i.e.,
L, = m.my/(m, + mp)hy), and q, completes the right-hand triad of unit vectors. In this
notation the precession of the stellar spin, S = (S, S,, Sp,), due to one planet is simply

(Eggleton et al. 1998)

dS MM,
98 g g, MM
dt prec,a My + My,

hy/ I (= Y38y + X3@5 + Wihy) | (4.3)
where hy, = [G(m,+my)ay(1+€2)]V/2, G is the gravitational constant, and K, = (X, Y3, Z3)

represents the precession due to the orbital evolution:

diy, s

Xy, = T cos wy + d_tb sin wy sin 4y | (4.4)
diy, . dQ) .
Y, = _d_tb sin wy, + d_tb COS Wy sin iy, (4.5)
dwy, — dS) ,
Zy = d_tb + d_tb cos iy , (4.6)

and X,, Y, and W, represent the torque due to the stellar oblateness and the tidal
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dissipation:

~ _ _mbk*Ri ShSe

X, = - 4.7
’ plal (1 —e)? (4.7)
S, 14+(9/2)e; + (5/8)e;
QZtF* (1 - 62)5 ’
- myk R> S, S
Y, = ——= it 1 (4.8)
play (1 —ep)
o Se 1+(9/2)ef + (5/8)ey
QitF* (1 - 65)5 ’
- 1 114 (15/2)e? + (45/8)er + (5/16)eb
Wy = L[5/ /8t + (3710 o)
tF* (1 eb)

Sy 1+ 3ej + (3/8)624,]
i (1— e2) 7

where [ = vGmy /a3, and

tV m2 ap 8 1
Ty (L (LU R S 410
F 9 (my + my)my (R*> (1 + 2k5)? (4.10)

To calculate the orbital evolution due to the orbital precession (the K; term), we
take the time evolution of w, {2 and ¢ of planets “b” directly from the N-body integration.
This dominates the obliquity variation. The tidal effects are negligible until planet b
is almost engulfed (see discussion on the future evolution of Kepler-56 in §4.4). The
timescale for the evolution of planet b’s orbital separation due tidal dissipation in the
star is defined in terms of the stellar viscous timescale ty,. ty, is set to be 50 yr and
kept constant, where ¢y, corresponds to @ ~ 10° for a 10 day orbit. The parameter
ko is the apsidal precession constant, which is related to the Love parameter k; via
ke = 2k, (a similar equation exists for planet “b” and “c”). Note that the effects of
tides in the planets are negligible. In fact, assuming a viscous timescale corresponding
to @ = 12 and 10° for planet “b” and “c” (Murray & Dermott 1999), respectively, the

small planets radii yield much longer tidal timescales [see equation (4.10)]. In any case,
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Figure 4.2: Short time scale obliquity evolution for the two scenarios. The left
panel shows the evolution in the S||L;, with an initial 4,,,, = 20° scenario while the right

panel is for the S||Lot with an initial 7,,,, = 40°. The orbital evolution was done using
direct N-body integration.

the unconstrained nature of exoplanets makes it difficult to conclude how their tidal

coeflicients evolve.

Equations (4.3)—(4.10) imply that the time evolution of i, (and thus ) depends
on the initial system’s configuration. This can be constrained from the observed obliquity
distribution. In Figure 4.2 we show the evolution of ¢ assuming two possible initial
configurations: S parallel to Li, and iy, = 20° (left, hereafter “S||L;,” scenario), and S
parallel to Lot and iy, = 40° (right, hereafter “S||Ly¢ot” scenario), where Li, and Lot
are the orbital angular momentum of the inner two planets and the total orbital angular
momentum, respectively. We show below that these values for ¢,,,; give a misalignment

of at least 37° during the evolution (the minimum value constrained observationally).

In the S||L;j, scenario, ¢ oscillates between well-aligned (¢ = 0°) and ~ 2 X iy
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(~ 38.2°). In this case, we postulate that the system formed initially in a disk and
planet “d” was perhaps scattered to large inclinations (e.g., Rasio & Ford 1996), causing
the obliquity angle to precess between 0° and ~ 2 X iy,,;. Another possible case for this
configuration is accretion of material onto the protoplanetry disk, which can tilt the
outer parts of the disk and the total angular momentum (Bate et al. 2010; Tremaine
2011; Thies et al. 2011). Therefore, in the S||L;, scenario, 1 ~ 40° can be produced by
an initial inclination ., > 20. Note that a retrograde configuration with i, = 160°

can also produce 1 ~ 40°.

In the S||L¢ot scenario, 1 remains close to the initial value. This configuration
could have occurred if the inner parts of the disk were warped perhaps due to magnetic
interactions with the inner disk edge (e.g., Lai et al. 2010). Therefore in the S||Lyiot

scenario, 1) ~ 40° can be produced by an initial 7,,,; = 40°.

We show below that for the S||Li, scenario ¢ is more likely to be detected in the
maximum (at ~ 38.2°) where the derivative is closer to zero. For each possible obliquity
value @ € (0°,180°), we derived a cumulative distribution function of the mutual
inclination, where CDF(¢)|imut) = At() < ©)imu)/t, where At is the time interval.
This quantity will be used below to estimate the probability distribution of the system
configuration for the actual observations. We run 35 N-body runs, for an array of initial
inclinations 7., between 5° and 175°, and calculate the cumulative probability for the

two scenarios.
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Figure 4.3: The probability distribution of if.. We calculate this probability assum-
ing my follows the mass function of Cumming et al. (2008).

4.3.3 Inferring the Inclination Distribution Function from

Observations

When the spin-orbit misalignment is due to the dynamical interaction between the
planets, the obliquity distribution function derived from observations (Section 4.2, Figure
4.1) can be used to place strong constrains on the mutual inclination between the inner
planets and planet “d”, i.e., i,,. We calculate the conditional probability distribution
of iy given the observed distribution Yups, i-€., p(imut|tops). This posterior probability

can be written as

p(wobs |imut )p(imut)
p(wobs) ’

where p(1us) is a normalization term, which we disregard because the shape of the

p(imut’wobs> == (411)

distribution is of larger significance than the absolute probability here, and the absolute

probability is out of the scope of this paper.
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Figure 4.4: The probability distribution of the mutual inclination inferred from
observations. We consider the two scenarios S||Li, (blue circle) S||Ltot (red lines), and
two possible probability distribution on p(in,). The left panels are for ny lying in the
plane defined by n;, and the line of sight, i.e., iy = 40, — if,, while in the right panels
we assume random orientation (see text). The top panels show a specific example for the
advantage in having a more precise observation ¥, = 37 — 43°, and the bottom panels
show the results form the observed cumulative distribution (Figure 4.1).

Furthermore, we use the distribution function of planet “d” line of sight inclination,
i, to estimate the prior probability, p(im.). Note, that the actual value of mgsinig,
only affect the normalization of the probability, but since we care about the shape of the

probability we can ignore this. Note that if we assume the outer orbit to be isotropically

d

ls*

distributed, the probability density function for i, takes the form of sini{. This suggests

that the most probable value for if. is 90°.

Following Ho & Turner (2011) we calculate the probability p(if,) assuming Cumming
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et al. (2008) mass function for m, (see Figure 4.3). Note that the distribution in
Cumming et al. (2008) is for msin i, not m. However, since the power law index is large,
we use this power law for the mass distribution according to Ho & Turner (2011). The
angle we are actually interested in is the angle between the normal to the outer orbit
n,,; and the normal to the inner orbit n;,. While i;’s has been measured to be 83.84°,
(Huber et al. 2013) we have no information about the orientation of these two vectors on
the plane of the sky. Consider first the case where the three dimensional normal to the

outer orbit, ng lies in the plane defined by n;, and the line of sight. This yields a simple

b
s

— i;is. Therefore, p(imu) = p(i%’s — 4 ),

relation between the different angles, i.e., ¢y = ¢ A

where the latter is calculated from p(sinif,) following Ho & Turner (2011). Their mass

d

distribution function yields small m, (compared to the measured mysinif), thus sini,

is more likely to be close to its maximum of 1. This suggests angles near 90 degrees for

d

is is more likely to have a small value.

i, which implies that iy, = ¢, — i

However, another possible prior is that n; has a random orientation (similar to
the configuration depicted in the left side of Figure 4.1). Thus, as in Section 4.2, we
multiply the normal to the orbit with the rotation matrix in Eq. (4.2) assuming a random

azimuthal angle «;, i.e.,
COS iyt = Nyt (1%,) - Ry (@) (32) (4.12)

where n,, (i) is chosen with p(sinif) distribution, which gives p(imu). This prior also
gives a high probability for large values of 7., as this case covers large parts of the

parameter space. Below we consider these two cases.

The probability of ¥,s for a given ipus, i.e., P(¥obs|imut) can be calculated from

p(wobs’imut) = /(; p(&‘imut)pobs(ﬁg)dw 3 (413)
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where pops(10) was computed in Section 4.2, Figure 4.1. The probability p(¢|imut) is
calculated from theory for the two different cases, i.e., S||Liot and S||Li,. In the discrete
description we calculate the probability distribution of 7,,,; for each ¢). This can be easily

derived from the cumulative distribution function calculated in Section 4.2, Figure 4.1.

Using Equations (4.11) — (4.13) we can find the mutual inclination probability
function given the observed obliquity distribution. This is depicted in Figure 4.4, bottom
panels. We consider the two initial configurations scenarios, i.e., S||L¢ot and S||Liy,, and
the two p(ifl) cases, i.e., ny,; random along line of sight (right panels) and n,, in the
same plane as ny, (left panels). Since the obliquity distribution function derived from
observations has two high probability peaks, (¢» = 37° and ¢ = 131°), the possible iy
values that can produce such distribution function also have two peaks. In the case of
S||Lin, the double peak distribution is also probable since the precession of a retrograde
orbit can as well produce this configuration. Note that if we also consider the case when
if, = 133° £ 6 (due to the degeneracy in the asteroseismology measurements), s is

symmetric, and p(imut|¥obs) would also be symmetric.

Interestingly, better observations may help constraining 4,,,; but will not disentangle
the degeneracy between the S||Liot and S||Li, cases. We show this in the top panels
of Figure 4.4, where we consider an example of ¢ = 40 4+ 3°. In the S||Lyot scenario,
the symmetry is broken, since, there is a direct link between the obliquity and 7, in
this case, as seen from the right panel of Figure 2. Note that the two different p(iyut)
cases produce slight differences in the probability peak. Assuming that n,,; and n;, are
coplanar produces a decreasing probability toward i,,,; ~ 45°, as in this case near polar
configurations are less likely. On the other hand, assuming a random orientation for n,,,

produces an increasing probability toward the larger i.,,, values. In fact, as mentioned
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above, this case yields a larger parameter space for near polar configurations. Having
a precise observation also improves the i,,,, estimation for the S||L;, but the double
peak probability remains, because the same obliquity can be reached in a prograde and
retrograde configurations. The degeneracy can be broken only for the case where S||Liot,
a more precise measurement of ¢ will be available. This can be seen in the top panels of

Figure 4.4, where vy, represents 37° < b < 43°.

So far, we have assumed two possible priors for p(in,). These represent two extreme
possibilities, one which favors low mutual inclinations and one which favors large values.
The truth may lay in between. Thus, we have tested the possibility that n, is randomly
oriented within a small interval as a prior (see the left side of Figure 4.1, where «, is
now confined to a certain interval). In this case, differently from what figure 3 shows, we
assumed an initial tilt of 37° between the stellar spin axis and the angular momentum
of the inner orbit. This way, we consider the possibility that the source of the obliquity
is not dynamical. We find that for a >~ 10° equation (4.11) and the observed obliquity
distribution favors large mutual inclinations. In other words, the three planets will be
aligned, and the observations will be consistent with tilt of the star or the disk in the

migration scenario, if the random angle o < 10°

4.4 Tidal and Stellar Evolution

Here we focus on the fate of the innermost planet and the future evolution of the obliquity
as a result of tidal dissipation in the star and stellar evolution. We compute a detailed
model of the host star with the publicly available stellar evolution code MESA (version

4798 Paxton et al. 2011, 2013). Specifically, we follow Huber et al. (2013) and consider
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a star with an initial mass and metallicity of 1.32 M and Z = 0.032, respectively. We
evolve the stellar model with the same physical assumptions adopted in Valsecchi &
Rasio (2014b). Briefly, we account for stellar wind mass loss following the test suite
example provided with MESA for the evolution of a 1 My star, and we set the mixing
length ajpr parameter to 1.92, following the MESA star Standard Solar Model (Paxton
et al. 2011, Table 10). Note that the mass loss is negligible in this case, since the star is
only slightly evolved (as shown in Figure 4.5). This negligible mass loss explains why the
planets’ orbits are significantly expanding, differently from the case of the Earth when
the Sun evolves into a red giant. The model agrees with the observationally inferred
stellar mass, radius, and effective temperature (within 1) at 4.418 Gyr. The latter is

consistent with the age quoted by Huber et al. (2013) within 1o (3.5 + 1.3 Gyr).

The advanced evolutionary stage of the host star (which is off its Main Sequence)
poses the interesting possibility that, if Kepler-56 is similar to other Kepler multi-planet
systems, it may have had planets that were engulfed as the star expanded (such
possibilities have been investigated in the literature, Bear & Soker 2011a, 2012). If this is
the case, the observed small stellar rotation rate suggests that the host star in Kepler-56
did not engulf a large planet. In fact, to increase the stellar spin by more than 10%, the
engulfed planet should have had a mass larger than 0.6 M, (neglecting the possibility
of core-envelope decoupling, see, e.g., Teitler & Konigl 2014). However, we note that
magnetic braking, stellar winds, and the expansion of the star as a result of natural
stellar evolution might all contribute to spin down after engulfment. Nevertheless, it
also seems unlikely (but not impossible) that a very massive planet could have migrated
to the innermost configuration, with two lighter planets outside (planets “b” and “c”)

which also supports the notion that no inner planet was engulfed.
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Figure 4.5: Future evolution of the star and the innermost planets. Left column
(from top to bottom): evolution of the stellar mass, radius and the apsidal precession
constant (ks) computed with MESA (Paxton et al. 2011, 2013). Middle and right columns
(from top to bottom): evolution of the semi-major axis, eccentricity, and inclination with
respect to the invariable plane for planet “b” (magenta lines) and planet “c” (red lines).
In the middle panels we consider the S||Lj, scenario with an initial 4., = 20°, while in
the right panels we consider the S||Liot scenario with an initial i,,,, = 40°. We start
the calculation at the present time and we stop it when the innermost planet is engulfed
(ap = Ry). The evolution depicted is due to tidal interactions between the evolving star
and the two inner planets, also accounting for the point mass dynamics via direct N-body
integrations.
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The inner planets’ orbital evolution is affected by tides, whose efficiency changes
as the star evolves. In the left panels of Fig. 4.5 we show the forward evolution of the
stellar mass, radius, and Love parameter. The latter was computed following Valsecchi

et al. (2012).

Both the specific angular momentum (h;) and the eccentricity undergo tidal
dissipation, which leads to circularization and orbital shrinking. Following Eggleton

et al. (1998) we have

de ~
d—tb = —Viep, (4.14)
dhy, .
= _Whs . 4.15
dt b (4.15)

The parameters W, and V,, are the dissipation coefficients (see Eggleton et al. 1998),

where W), is given by equation (4.9), and Vj is defined as:

-9 [1 + (15/4)e2 + (15/8)et + (5/64)eb
b = tr, (1—e2)13/2
118, 1+ (3/2)e? + (1/8)e}

181 (1—e2)?

(4.16)

We compute the evolution of the orbital separation, eccentricity, and inclination,
using the extrapolated orbital parameters from the initial direct N-body integration,
together with the equations mentioned above. We stop the integration when the
innermost planet is engulfed (a, = R,) and neglect possible mass transfer events between
the planet and the star (e.g., Trilling et al. 1998), for simplicity. The evolution is shown
in the right two panels of Figure 4.5. During the first ~ 0.1 Gyr of evolution, the star
loses about 0.1% of its mass and its radius expands by about 40%. After this stage tidal
effects become increasingly important and planet “b” is quickly engulfed. We note that

the tidal treatment adopted here does not fully account for how the evolution of the
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star affects the efficiency of tides (i.e. the stellar viscous timescale ty, is kept fixed).
However, a more consistent orbital evolution calculation with the method adopted in
Valsecchi & Rasio (2014a.,b), but only accounting for the evolution of the innermost
planet, yields similar results. Note also that the precession due to the stellar oblateness
affects the final stages of the evolution (very close to the final engulfment of planet “b”).
This occurs because tidal dissipation dominates the dynamics only towards the end of
the evolution right before the engulfment, and thus, it does not change the overall orbital
dynamics. Moreover, we find that the final semimajor axis of the planet is ~ 0.03 AU
during the engulfment, which is within twice the Roche limit (the Roche limit is 0.016
AU according to the prescription of Paczynski (1971)). This suggests that the planet
may be tidally distorted during the engulfment and that the accumulated heat due to
tidal dissipation as the planet orbits the star multiple times may increase the chance
of tidal disruption (Li & Loeb 2013). Past studies have investigated the engulfment of
planets by their host stars (Nordhaus et al. 2010; Bear & Soker 2011a; Kaib et al. 2011;
Kratter & Perets 2012; Veras et al. 2013; Lillo-Box et al. 2014). Figure 4.5 shows that
the innermost planet will be engulfed in ~ 129 Myr. Similarly, the second planet (Kepler

56¢) will be engulfed in less than ~ 155 Myr.

The tidal evolution of the inner planets affects the stellar spin evolution (equation
(4.3)). The same equation holds for planet “c” (substituting subscript “b” with “c”).
The stellar spin evolves due to the precession of planets “b” and “c”, and their tidal
torque. We extrapolate the evolution of their precession directly from the N-body
calculation. The evolution of the stellar spin direction and magnitude is shown in
Figure 4.6. In particular, we show the evolution of the obliquity ¥ and the angle between

the stellar spin and the total angular momentum (¢). The magnitude of the spin
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Figure 4.6: The evolution of the stellar spin. 7Top: obliquity; middle: angle
between the stellar spin and the total angular momentum; bottom: spin magnitude |S|
! The initial spin period is 75 d, which translates to a spin rate of

in units of rad yr—.
~ 30 rad yr~'. The left panel shows the evolution in the S||L;, scenario with an initial

imut = 20°, while the right panel is for the S||Liot scenario with an initial 7, = 40°.
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decreases due to the mass lost and the expansion of the stellar radius (irrespective of the
scenario considered). This exercise reveals that the obliquity behavior for the two cases
does not vary much as the star evolves. In the S||L;, scenario with an initial i, = 20°,
the obliquity oscillates between zero and ~ 40°, the amplitude slightly decreases, and
additional modulations due to tides appears. In the S||Lgot scenario with an initial

Imus = 40°, the obliquity monotonically decreases.

4.5 Discussion

We studied the configuration and obliquity of Kepler-56, a multi planet system with
two coplanar inner planets that are misaligned with respect to their host star. Two
main scenarios were proposed in the literature to explain the large obliquities observed
for close-in exoplanets. The first model involves dynamical evolution between multi
planetary members or stellar companion (e.g., Winn et al. 2010; Fabrycky & Tremaine
2007; Chatterjee et al. 2008; Nagasawa et al. 2008; Naoz et al. 2011, 2012, 2013a; Wu &
Lithwick 2011; Li et al. 2014a). The second model proposes disk migration as the main
mechanism which controls the planetary configuration, while the star spin axis is tilted
with respect to the planets by other mechanisms (e.g. Winn et al. 2010; Lai et al. 2010;
Rogers et al. 2012, 2013; Spalding & Batygin 2014). The two scenarios lead to different
configurations for the configuration of the planets with respect to each other and the
star. The dynamical scenario predicts that large obliquities are associated with an
inclined perturber, while the disk-migration scenario predicts aligned planetary systems.
We showed that the large obliquity observed in Kepler-56 is consistent with a dynamical

nature.
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We showed that we can improve the Huber et al. (2013) lower limit on the obliquity
(¢ > 37°). Specifically, using the Huber et al. (2013) current observations, we found the
probability distribution of the observed true obliquity (see Figure 4.1). This probability
has a large range with two main peaks at ¢ = 37° and ¢ = 131°. Furthermore, using this
probability distribution we gave the probability distribution of the inclination of the third
planet with respect to the inner two (imyyu). This is highly dependent on the system’s
initial conditions. For this reason, we explored two scenarios: S||Li, and S||Liet. In the
former, the initial spin axis of the star was set along the orbital angular momentum of
the inner two planets. A possible origin for this configuration is that the system formed
initially in a disk and the third Jupiter-like planet was perhaps scattered to a large
inclination. Instead, in the S||Liot scenario, the initial stellar spin was set parallel to
the total orbital angular momentum. This initial condition may be ad hoc, and possibly
caused by, e.g., magnetic interactions Lai et al. (e.g., 2010) warping the inner parts of the
disk. For these two scenarios, we found the mutual inclination probability function for
the observed obliquity distribution (see Figure 4.4 bottom panels). Both configurations
have a double peak distributions, with zero probability of having aligned configuration
between the two orbits. The degeneracy between the two probability peaks may be
broken only for the S||Liot case, with a more precise measurement of ). However, a
precise measurement of ¢» would not disentangle between the S||Lgot and S||Liy, cases, as

shown in the top panels of Figure 4.4.

We finally considered the effect of the stellar evolution on the system’s parameters
and, specifically, the obliquity. We evolved the host star using MESA (Paxton et al.
2011, 2013) and extrapolated the planets orbital evolution calculated with direct N-body

integration (since the latter is rather regular and periodic). We have also included the
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spin precession and tidal evolution. This exercise revealed that the obliquity behavior
for the two cases does not vary significantly as the star evolves. It also shows that planet

“b” will be engulfed in ~ 129 Myr.
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Chapter 5

Cross Sections for Planetary
Systems Interacting with Passing

Stars and Binaries

This thesis chapter originally appeared in the literature as

Li, G., Adams F. Cross Sections for Planetary Systems
Interacting with Passing Stars and Binaries, Monthly Notices of
the Royal Astronomaical Society, 448, 344, 2015

It is presented here with minor modifications.

Abstract

Most planetary systems are formed within stellar clusters, and these environments can

shape their properties. This paper considers scattering encounters between solar systems
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and passing cluster members, and calculates the corresponding interaction cross sections.
The target solar systems are generally assumed to have four giant planets, with a variety
of starting states, including circular orbits with the semimajor axes of our planets, a more
compact configuration, an ultra-compact state with multiple mean motion resonances,
and systems with massive planets. We then consider the effects of varying the cluster
velocity dispersion, the relative importance of binaries versus single stars, different
stellar host masses, and finite starting eccentricities of the planetary orbits. For each
state of the initial system, we perform an ensemble of numerical scattering experiments
and determine the cross sections for eccentricity increase, inclination angle increase,
planet ejection, and capture. This paper reports results from over 2 million individual
scattering simulations. Using supporting analytic considerations, and fitting functions
to the numerical results, we find a universal formula that gives the cross sections as

a function of stellar host mass, cluster velocity dispersion, starting planetary orbital
radius, and final eccentricity. The resulting cross sections can be used in a wide variety
of applications. As one example, we revisit constraints on the birth aggregate of our
Solar System due to dynamical scattering and find N < 10* (consistent with previous

estimates).

5.1 Introduction

A large fraction of planetary systems form within stellar clusters (Lada & Lada 2003;
Porras et al. 2003) and these birth environments can influence their resulting properties
(e.g., see the reviews of Adams 2010; Pfalzner 2013). One potentially important process

occurs when binary systems — and single stars — fly past solar systems and disrupt the
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orbits of their constituent planets. This type of scattering interaction has been studied
in the field (Laughlin & Adams 2000), and within young embedded clusters (e.g., Adams
et al. 2006; Malmberg et al. 2007, 2011; Boley et al. 2012; Dukes & Krumholz 2012;
Chatterjee et al. 2012; Hao et al. 2013; Pacucci et al. 2013), where the latter results can
be used to provide constraints on the possible birth environment of our own solar system
(e.g., Adams & Laughlin 2001; Hester et al. 2004; Williams & Gaidos 2007; Spurzem et
al. 2009; Portegies Zwart 2009; Adams 2010; Williams 2010; Pfalzner 2013). We stress
that the dynamical constraints derived for the birth aggegate of the solar system depend
on many variables, including assumptions made about the cluster properties, any other

constraints imposed on the problem, and the interaction cross sections.

This present study focuses on the cross sections themselves, and expands previous
work to include a much wider range of parameter space; the implications for the solar
birth environment are then briefly considered at the end of the paper. For studies
concerning our solar system, most previous work has calculated the cross sections for
this mode of disruption by considering the initial orbits of the giant planets to have
their present-day values of semimajor axis. However, some recent work suggests that
our solar system may have begun in a more compact configuration (Gomes et al. 2005;
Tsiganis et al. 2005), and the planets may not have reached their present-day orbits
until the solar system reached an age of hundreds of millions of years. One motivation
for this present study is thus to determine cross sections for solar system disruption
for more compact configurations. Note that the sign of the effect is not obvious a
priori: The geometrical cross section of the compact solar system is smaller, and hence
implies a smaller interaction cross section. However, the decreased relative separations

of the planets allow for increased planet-planet interactions, which could result in more
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disruption from the passing stars; in addition, the close spacing in compact solar systems

allows for orbit crossing to occur for smaller values of eccentricity.

In some compact configurations of the solar system, the giant planets can be at
or near mean motion resonance. This possibility leads to interesting dynamics: Mean
motion resonances can protect planetary systems from disruption, and could thus lead
to greater stability and smaller interaction cross sections. On the other hand, the mean
motion resonances themselves are more easily compromised than planetary orbits —
the potential energy corresponding to the resonance angle being in a bound state is
much less than the gravitational potential energy of the planetary orbit. An important
related question is thus to find the cross sections for passing stars (including binaries)
to disrupt mean motion resonances. Planetary systems with disrupted resonances will
usually retain their planets in the near term, although they could be subject to orbit

instabilities over longer spans of time.

In addition to compact solar system architectures, this paper considers a wider range
of parameter space than previous studies. Part of this expanded scope is possible due
to increased computational capabilities. This present study includes results from more
than 2 million individual numerical experiments that simulate a solar system interacting
with a passing binary (or single star). For each choice of solar system architecture and
each choice of the background parameters for the encounters, we run a large ensemble of
Ng simulations (where Nz = 80,000 for most cases, but can be larger). The variations
that we consider for the target solar systems include compact configurations (described
above), more massive planets, nonzero initial orbital eccentricities, and a range of masses
for the central stars. Regarding variations in the background environment, this paper

considers two main issues: We determine the effects of varying the velocity dispersion of
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the cluster stars, and we compare the relative sizes of the scattering cross sections for

single stars versus binaries as they interact with planetary systems.

This paper is organized as follows. We formulate our approach to calculating
the interaction cross sections in Section 5.2. The resulting cross sections are then
given in Section 5.3, which provides (o) for increases in eccentricity, increases in the
spread of inclination angles, planet ejection, planet capture, and changes in semimajor
axes. Results are also presented for increasing orbital eccentricities up to orbit-crossing
configurations and compares the efficacy of passing single and binary stars. These results
are given as a function of solar system architecture, velocity dispersion of the cluster, and
mass of the host star. Over much of the parameter space of interest, the cross sections
display a nearly self-similar form. Section 5.4 presents a scaling analysis that shows how
the results scale with velocity disperion, stellar mass, and starting semimajor axis. As an
application, Section 5.5 revisits the possibile dynamical constraints on the birth cluster
of the solar system. In order to assess the level of disruption, one also needs the rate of
close encounters in young stellar clusters. These rates have already been calculated for a
wide range of cluster properties (Adams et al. 2006; Proszkow & Adams 2009) and are
used herein. The paper concludes, in Section 5.6, with a summary of our results and a

discussion of their implications.

5.2 Formulation of the Problem

One useful way to specify the effects that passing stars can have on planetary systems
is to define cross sections of interaction. For example, the scattering interactions could

eject a planet, increase the eccentricity, change the semimajor axis, and/or perturb the
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inclination angle of the orbit. For a given type of disruption, a solar system presents
an effective target area for being disrupted by passing stars. With this definition, the

effective interaction rate I' for disruption is then given by the usual formula

I'=n.(o)(v), (5.1)

where n, is the mean density of stars in the environment, (v) is the mean relative
velocity between systems, and (o) is the cross section for the given mode of disruption.
We note that the background environment determines the stellar density n, and the
distribution of relative velocities. As outlined below, the relative velocities follow a
Maxwellian distribution characterized by the expectation value (v). The interaction
cross section depends on this velocity distribution, so that we actually calculate the
quantity (o), = (ov)/(v), where the subscript denotes that the cross section depends on
the velocity expectation values (v). For ease of notation, however, we drop the subscript
for the remainder of the paper. In young embedded clusters, we expect n, ~ 100 pc™3
and (v) ~ 1 —2 km/s; in the field (in the solar neighborhood) these quantities have
typical values n, ~ 1 pc™ and (v) ~ 30 — 40 km/s. Because of the velocity dependence
of the cross sections, solar systems in the field (with high fly-by speeds) are, on average,

less affected by passing stars.

To calculate the cross sections for interactions, we adopt the following approach.
First we must specify the configuration of the solar system that will be targetted
for disruption (for example, we can use the current set of four giant planets in our
solar system, with their current masses and semimajor axes, all in orbit about a solar
mass star). Next we must specify the background environment, which determines the

distribution of relative velocities. For most of this work, we focus on the case where the
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target solar system encounters binaries. We then perform a large ensemble of numerical
simulations, where the input parameters are specified according to a Monte Carlo

scheme. The results are then used to calculate the probability of various outcomes and
the corresponding cross sections (for further detail, see Laughlin & Adams 2000; Adams

& Laughlin 2001; Adams et al. 2006).

In principle, the Monte Carlo sampling scheme should sample all possible encounters
between binaries and the target solar system, including those with large impact
parameters. In practice, however, only sufficiently close encounters have a non-negligible
chance of affecting the planetary orbits. In order to conserve computer time, we thus
make the following limitation. We treat the semimajor axes a of the binaries on a
different footing than the others: The values of a are sampled uniformly out to ap.x =
1000 AU (more than 30 times the size of Neptune’s orbit in our solar system). For a
given value of a, we then limit the possible range of impact parameters to fall within an
area given by Ag = Bmwa?. With this sampling scheme, the cross section of interaction,

for a given type of disruption event, is given by

(o) = /0 " pa)da fola) (Bra?) | (5.2)

where p(a) is the probability distribution for binaries having a semimajor axis a. The
factor fp(a) represents the fraction of all encounters (within the pre-determined area
Ay = Bma?) that results in the outcome of interest. Note that the maximum allowed

value of the impact parameter varies with a and is given by @, = v/Ba.

The formulation of equation (5.2) can be understood as follows: Consider a given
outcome of interest, say, the ejection of Neptune. We only consider fly-bys that take place

within the area Ay = Bma?, where a is sampled uniformly. If every encounter within this
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area leads to the ejection of Neptune, and all encounters outside this area (which are not
computed) have no effect, then fp = 1; the probability factor p(a) corrects for the actual
distribution of binary semimajor axis, and one can see that equation (5.2) provides the
correct effective cross section. In practice, of course, only a small fraction of encounters
lead to the ejection of Neptune so that fp < 1. As long as we choose the factor B large
enough, we are ignoring only distant encounters that have little contribution to the cross
section. Nonetheless, since B is finite, this procedure leads to a lower limit on the cross
section. We have run convergence tests with ever-increasing values of B and find that B
= 100 is large enough to include essentially all relevant encounters. In most of this work
we thus use B = 100, which provides a good compromise between computational speed
and accuracy. For comparison, our previous work (Laughlin & Adams 2000; Adams &
Laughlin 2001) used the smaller value B = 4, so that the reported cross sections (again
presented as lower limits) were smaller than those obtained here by a factor of ~ 2.
This present treatment thus provides a more complete accounting for wide binaries and

results in a greater lower bound on the true cross sections.

The distribution p(a) is determined by the observed binary period distribution,
which is nearly uniform in the quantity loga, but has a broad peak centered at period

P = 10° days, which implies a ~ 42 AU for solar type stars (Duquennoy & Mayor 1991).

Within the scheme outlined above, encounters between a given solar system and a
passing binary are specified by a large number of input parameters: We must specify
the properties of the binary, including its semimajor axis a, orbital eccentricity ey,, the
masses of the two stars My, and Ms,, and finally the phase of the binary orbit 6, at
the start of the encounter. The orbital elements (a, ep,) are sampled from their observed

distributions (Duquennoy & Mayor 1991). Similarly, the stellar masses are sampled from
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a log-normal form of the stellar initial mass function (consistent with that advocated by
Adams & Fatuzzo 1996 and Chabrier 2003). Both members of the binary are sampled
independently from the distribution and the stellar masses are limited to the range
M, = 0.07 — 10M. As a result, we exclude brown dwarfs and the very largest stars
(which are both rare and tend to reside at cluster centers). The phase angle 6y, of the
orbit is sampled uniformly over [0, 27]. Next we must specify the incoming velocity v
of the solar system with respect to the binary center of mass; this speed is sampled
from a Maxwellian distribution with a velocity dispersion v,/2 that characterizes the
background environment (e.g., a cluster). The remaining variables are the three angles
(0,1, @) necessary to specify the direction and orientation of the encounter, and finally
the impact parameter w. The impact parameter is chosen randomly within a circle of
radius 10a centered on the binary center of mass (corresponding to the choice B = 100

in equation [5.2]).

Using a Monte Carlo scheme to select the input parameters according to the
distributions described above, we carry out a large ensemble of scattering simulations.
For most cases we find that the number of simulations Nz = 80,000 is large enough
to provide good statistics. The outcomes of these numerical experiments are then used
to compute the fraction fp of disruptive encounters for a given type of outcome. The
resulting errors due to incomplete sampling are typically 5 percent or less, but can be

larger for rare events (e.g,. for planet ejections, the sampling errors are ~ 10 percent).

Each simulation is thus an N-body problem. For most cases, N = 7, where the
target system consists of four giant planets orbiting a host star and interacts with a
binary. The equations of motion are integrated using a Bulirsch-Stoer method (Press

et al. 1986), which allows for rapid integrations and high accuracy. Because we are
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interested in the planetary orbits, which only contain a small fraction of the total energy
of the N-body system, the simulations must conserve the total energy to high accuracy in
order to determine the final orbital elements. For example, the energy contained in the
orbit of Neptune, the least bound planet, is typically 10 times smaller than the binding
energy of a binary, or the initial gravitational potential energy between the binary and
the solar system. In practice, our individual simulations have an accumulated error of

only one part in 108, so that orbital changes are safely resolved.

5.3 Results for the Cross Sections

Using the formulation described in the previous section, we have performed several large
ensembles of numerical scattering simulations. Unless stated otherwise, we consider the
solar systems to have four giant planets and to interact with passing binary stars. We
then consider a number of different solar system architectures for the starting states,
as outlined below (see Table 1). To obtain reasonable statistics within the Monte
Carlo scheme, the number of individual numerical experiments for each solar system
architecture must typically be of order N ~ 80,000. This choice produces relative

errors (due to incomplete sampling) of order 5 percent or smaller.

In the first set of simulations, we consider the target system to be an analog of
our present-day solar system. In this case, we place the four giant planets in orbit
about a solar mass star and give the planets their current masses and semimajor axes.
The eccentricities are all set to zero, however, so that we can measure the eccentricity
increases produced by the scattering encounters. From the results of these experiments,

we compute the cross sections for orbital disruption of each of the four planets (as
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outlined in the previous section). The results are shown as the solid blue curves in Figure
5.1, which also presents the cross sections for a more compact starting configuration
(described below). The error bars (not shown) due to incomplete Monte Carlo sampling

correspond to relative errors with a root-mean-square (RMS) value of ~4.4%.

In Figure 5.1, and throughout this paper, the cross sections for increasing the
eccentricity to e = 1 incorporate all of the ways that the planet can be removed from its
solar system. These channels include [1] actually increasing the eccentricity to e > 1,
which includes both hyperbolic orbits and planetary orbits that intersect the host star,
2] ejection from the solar system by increasing the kinetic energy so that the orbit is
unbound, and [3] capture by one of the (two) passing stars. These channels are not
mutually exclusive, but the simulations are stopped after one of these events takes
place. However, these channels only include ejection processes that happen during or
immediately after the encounter (we denote these processes as prompt ejections). In
other cases, the planets are scattered into high eccentricity orbits, so that the orbits
cross each other. With these configurations, in the absence of resonance, the planets will
eventually experience close encounters, which in turn lead to ejections or collisions (we
denote this process as delayed ejection). The cross sections for delayed ejections will be

considered later.

For comparison, we also present the results from a series of numerical experiments
using a more compact orbital architecture (shown as the red dashed curves in Figure
5.1), which is motivated by the Nice model of solar system formation (Gomes et al.
2005). Although the Nice model has a number of variations, one feature is that the giant
planets could have formed with a more compact configuration than that of the present

day. For this case, we fix the orbit of Jupiter at a; = 5.2 AU, and then let each successive
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planet have a semimajor axis that is larger than the previous one by a factor of 5/3.
This evenly-spaced solar system thus extends out to only 24 AU. The results, shown in
Figure 5.1, indicate that the cross sections for the compact configuration are somewhat
smaller than those obtained with the current semimajor axes. For this compact solar

system, the RMS errors (not shown) due to incomplete sampling are ~4.6%.

Next we consider an even more compact orbital configuration, again motivated by
the Nice model, where the four giant planets are in mutual mean motion resonance
(MMR). In this case, we choose the starting semimajor axes to have values of a = 5.88
AU (Jupiter), 7.89 AU (Saturn), 10.38 AU (Uranus), and 12.01 AU (Neptune). With
these semimajor axes, Jupiter and Saturn are in a 3:2 MMR, Saturn and Uranus are in a
3:2 MMR, while Uranus and Neptune are in a 5:4 MMR (for further discussion of this
initial state, and others, see Batygin & Brown 2010; Nesvorny & Morbidelli 2012; Li &
Batygin 2014b). Note that the semimajor axis ratios do not imply period ratios with
exact integer values (although they are close). All of the orbital elements must be chosen
properly to put the system in mutual MMR, and this requirement displaces the period
ratios somewhat. Nonetheless, the resonance angles of the system (for all three planet
pairs) are librating in the initial state, as required for MMR. With this initial state, the
solar system is much more compact than at the present epoch, and the cross sections for
interactions are smaller. This trend is illustrated in Figure 5.2, which compares the cross
sections with those obtained for solar systems with the standard starting configuration.
To leading order, the smaller cross sections obtained for the resonant architecture are
a direct consequence of the smaller geometrical size. However, closer inspection of the
results suggests that the cross sections are larger than the smaller size would imply (see

the analysis of the following section). For example, the cross sections for changing the

112



CHAPTER 5. SCATTER

106 T T T T T T T T T T T T T T T

104 ] 1 1 1 ] 1 1 1 ] 1 1 1 ] 1 1 1 ] 1 1 1 ]

Figure 5.1: Cross sections for eccentricity increase for the current solar system architec-
ture and for a more compact configuration movitated by the Nice model. For the current
solar system (solid blue curves), the four giant planets are started with their current semi-
major axes and zero eccentricity. For the compact configuration (dashed red curves), the
planets are started with semimajor axes having a fixed ratio a;11/a; = 5/3, where Jupiter
(7 = 1) is started at its present location a; = 5.2 AU. For both sets of cross sections, the
curves, from top to bottom, correspond to Jupiter (bottom), Saturn, Uranus, and Nep-
tune (top). Since the orbits start with zero eccentricity, the eccentricity increase Ae = e,
where e is the post encounter eccentricity.
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Figure 5.2: Cross sections for eccentricity increase for the current solar system architec-
ture and for a resonant configuration movitated by the Nice model. For the current solar
system (solid blue curves), the four giant planets are started with their current semima-
jor axes and zero eccentricity. For the resonant configuration (dashed red curves), the
planets are started with semimajor axes a = 5.88, 7.89, 10.38, and 12.01 AU (for the
analogs of Jupiter to Neptune). For both sets of cross sections, the curves, from top to
bottom, correspond to Jupiter (bottom), Saturn, Uranus, and Neptune (top). Since the
orbits start with zero eccentricity, the eccentricity increase Ae = e, where e is the post
encounter eccentricity.
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eccentricity of Uranus and Neptune are comparable. In this compact state, planet-planet
interactions can be important and act to increase the the cross sections of Uranus (and

Saturn) beyond the values obtained for more widely separated orbits.

In addition to changes in the orbital elements of the individual planets, as shown in
Figure 5.2, scattering interactions can remove solar systems from their resonant states.
The energy required to remove a planetary system from resonance is much less than
that required to eject a planet, or even to substantially change its orbital elements. To
address this issue, we have run an additional series of numerical simulations to determine
the fraction of systems that are removed from their initial resonant state due to passing
binaries. As before, the ensemble size Nz =~ 80,000, although the simulations take longer
because the resonance angles must be monitored for several libration times after the
encounters. The result of this set of experiments is the cross section for removing the

solar system from its initial resonant state, namely
(0)res = (2,280,000 = 20, 800) AUZ . (5.3)

This cross section is about 20 times larger than that required to eject Neptune from the
solar system in its normal state, and nearly 40 times larger than the cross section to
eject Neptune from the compact, multi-resonant state. If the removal of the system from
resonance results in orbital instability over longer time intervals, then the multi-resonant
state could be more sensitive to disruption from passing stars than the standard solar
system architecture. We have carried out 70 longer-term integrations for post-encounter
systems and find that all but one are stable on time scales of ~ 1 Myr. Other authors
(Batygin & Brown 2010; Nesvorny & Morbidelli 2012) also find that multi-resonant

states can be unstable due to perturbations (generally due to a planetesimal disk), and
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can eject planets, but more follow-up integrations are required to assess the probability

of significant instability.

The results reported thus far have all been calculated for cases where v, = 1 km/s,
a typical value for an embedded cluster environment (Lada & Lada 2003; Porras et al.
2003). Now we generalize the treatment by considering the dependence of the cross
section on the velocity dispersion of the background environment. As is well known,
interaction cross sections for high speed encounters, such as in the field (Laughlin &
Adams 2000), are much lower than those in clusters (Adams et al. 2006), and the velocity
dependence is relatively steep (Adams & Spergel 2005; Dukes & Krumholz 2012). To
study this dependence, we consider ensembles of numerical simulations with different
values of velocity dispersion v,. More specifically, we consider solar system starting with
the current value of semimajor axes, and vy, in the range from 1 km/s to 32 km/s, varied
by factors of v/2 (so they are evenly spaced in a logarithmic sense). For the low end of
this range of v},, we can use the usual number Nz = 80,000 of trials in the ensemble for
each value of v,. For the larger values of vy, however, the cross sections are lower, and
disruptive events are rare, so that we need larger values of Ny to obtain good statistics

(we find that the choice Ng &~ 200,000 is usually large enough).

The interaction cross sections produced by this study are shown in Figure 5.3, where
each panel corresponds to the results for one of the giant planets. The cross sections are
plotted as a function of the post-encounter eccentricity e, for each choice of v,. Figure
5.3 shows that the cross sections are almost evenly spaced in a logarithmic sense, with
the lowest (highest) velocity dispersions producing the largest (smallest) largest cross
sections. This finding suggests that the cross sections — to leading order — display a

power-law dependence on the v,. This claim is verified in the following section.
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Figure 5.3: Cross sections for eccentricity increase for the current solar system architec-
ture over a wide range of velocity dispersions in the background cluster. The four giant
planets of the solar system are started with their current semimajor axes and zero eccen-
tricitiy. Each panel shows the cross sections to increase orbital eccentricity for Jupiter
(upper left), Saturn (upper right), Uranus (lower left), and Neptune (lower right). vy, fall
in the range from 1 km/s (uppermost curves in each panel) to 16 km/s (lower curves),
and are equally spaced logarithmically (by factors of v/2).
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Figure 5.4: Cross sections for a range of masses of the host star. Each case uses analogs
of the four giant planets of our solar system, where the planets start with the current
semimajor axes and zero eccentricitiy. Each panel shows the cross sections to increase
orbital eccentricity for the analog Jupiter (upper left), Saturn (upper right), Uranus (lower
left), and Neptune (lower right). The four curves in each panel correspond to four stellar
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Next we consider the effect of changing the mass M, of the host star. Figure 5.4
shows the cross sections for systems with the current solar system architecture and
varying stellar masses, from M, = 0.25 — 2.0M. For these numerical experiments, the
solar systems are all started with four planets that have the same masses and semimajor
axes of the giant planets of our solar system. These analogs are labeled as ‘Jupiter’
through ‘Neptune’, although the host star can have a mass that differs from the Sun. As
expected, the cross sections shown in Figure 5.4 decrease as the stellar masses increases.
Unlike the case of varying the velocity dispersion, however, the cross sections, considered
as a function of eccentricity increase, do not display as much self-similarity: The cross
sections decrease more steeply with eccentricity as the mass of the host star increases.
Nonetheless, for a given value of eccentricity increase, cross sections for the four planets
(with their four values of a) all show the nearly same (power-law) scaling with stellar

mass.

Notice that changing the stellar mass is (in one sense) akin to changing the
planetary masses, because the mass ratios are the most important variables. However,
this association is not an equivalence: The masses of the passing binaries also enter into
the problem, and their mass distribution is kept invariant. In addition, if the masses
of the planets are increased to the point where the planet-planet interactions play a
role, then self-excitation of eccentricity can produce larger cross sections. This issue
is addressed below where we consider solar systems with larger planets. We expect
interactions to be important in the regime where the angular momentum exchange time
scale between planets is comparable to the encounter timescale. The exchange time scale
can be determined, but the calculation is different for widely separated planets where

the secular approximation is valid and for the resonant case (for further discussion, see
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Batygin & Morbidelli 2013).

For the starting configurations used thus far, the initial orbital eccentricities of
the planets have been taken to be zero. Given this choice, the resulting cross sections
represent the cross sections for increasing eccentricity (which cannot decrease from
its initial value). However, for the related problem of single stars interacting with
binaries, an important difference arises between starting states where the binary has
zero eccentricity and states where the binary has small but finite eccentricity (Heggie &
Rasio 1996). One might worry that the cross sections calculated herein could be affected
by introducing small starting eccentricities for the planetary orbits. We have explored
this possibility by using two additional starting configurations for the solar system. In
one case, the planetary orbits are started with their currently observed eccentricities, e
= 0.049, 0.057, 0.045, and 0.011 for Jupiter, Saturn, Uranus, and Neptune, respectively.
In the second case, the planetary orbits are all started with a larger value of eccentricity
e = 0.10. The resulting cross sections are shown in Figure 5.5, along with our previous
results with zero starting eccentricity. As shown in the Figure, all of the cross sections
converge to the same values as long as the final eccentricity is moderately larger than the
starting values. The difference between results obtained starting with zero eccentricity
and those where the orbits have their current eccentricity is modest. For the larger
starting values e = 0.10, the cross sections for reaching e = 0.10 are enormous of course,
much larger than the limits of the plot (and hence are not shown). Even for this starting
state, however, the cross sections have almost converged to their “natural” values for
e 2,0.20, except for the case of Uranus; for this planet, the cross sections for eccentricity

excitation only converge for e 2 0.35.

The results illustrated in Figure 5.5 indicate that the problem of solar systems
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Figure 5.5: Cross sections for the solar system planets and varying initial eccentricities
of the planetary orbits. For all cases, the four giant planets of our solar system are started
with their current semimajor axes. The solid blue curves show the results for zero initial
eccentricitiy; the dashed red curves show the results where the planets start with their
current orbital eccentricities (e = 0.049, 0.057, 0.045, and 0.011); the black dotted curves
show the results where the starting orbits all have e = 0.10. Cross sections are given
for Jupiter (bottom curves), Saturn, Uranus, and Neptune (top curves), all given as a
function of the post-encounter value e of the eccentricity.
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interacting with passing binaries is somewhat different than that of single stars
interacting with binaries (Heggie & Rasio 1996). Starting with zero eccentricities has

a larger effect in the binary-single-star setting. One difference between the two cases

is that of symmetry: For a single star passing by a binary with zero eccentricity, the
incoming trajectory is the same as the outgoing trajectory provided that the encounter
is distant (so that the binary orbit can be considered as a ring of mass); this symmetry
cancels some of the forcing. However, this symmetry is absent for solar system scattering,
even when the planetary orbits are circular. The binaries that impinge upon the solar
systems are themselves eccentric, where e is drawn from the observed binary eccentricity
distribution (which favors high e). In addition, the solar systems have four planets,
with different orbital phases, and this property also breaks the symmetry (albeit to a
lesser degree). Another difference between the two scattering problems is that the cross
sections of this paper are averaged over an ensemble of different binary properties and
different encounter parameters. The binary scattering results (Heggie & Rasio 1996)
show that the the difference between finite eccentricity and circular orbits is largest
for distant encounters, but the effect (the change in eccentricity) is largest for close
encounters (see their Figure 2). The cross sections of this paper include both regimes,
but the cross section is dominated by the close encounters where the results for e = 0 and
e # 0 are similar. As a result, starting the planetary orbits with non-zero eccentricity
has only a modest effect on the cross sections considered in this paper (provided that

one considers post-encounter eccentricities sufficiently larger than the starting values).

Next we consider the effects of planetary mass on the scattering cross sections. The
results are shown in Figure 5.6 for the usual Solar System parameters and for an analog

solar system where all of the giant planets have the mass of Jupiter (mp = 1m;). Both
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Figure 5.6: Cross sections for eccentricity increase in systems where the giant planets all
have mass mp = 1m (dashed red curves). The cross sections for the current solar system
architecture are shown for comparison (solid blue curves). In both cases, the planets are
started with the current semimajor axes of the giant planets in our Solar System and
with zero eccentricity. Cross sections are shown for analogs of Jupiter (bottom curves),
Saturn, Uranus, and Neptune (top curves).
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classes of systems start with the same semimajor axes (the present-day values in our
system) and zero eccentricity. The figure shows that the cross sections for increasing the
eccentricities of Neptune and Uranus are largely unaffected by the increase in planetary
mass, but the cross sections for Jupiter and Saturn are somewhat larger. Note that the
cross sections are plotted only for eccentricity values e > 0.20. Within such a massive
planetary system, small eccentricities (e ~ 0.10) are easily excited by planet-planet
interactions; as a result, the cross sections for eccentricity increase — as determined

through our numerical scheme — are extremely large and are not plotted in the figure.

The numerical results for the cross sections can be understood as follows: To leading
order, we often expect the planets to act as test particles, so that the cross sections
should not be sensitive to the planetary masses. For sufficiently massive planets, however,
an increase in the eccentricity of one planet can lead to significant perturbations acting
on the other planets, thereby leading to increased eccentricity excitation. By increasing
the mass of all of the planets to that of Jupiter, the resulting solar systems are more
excitable. The largest increase in the cross sections, which occurs for Jupiter and for
low eccentricties, is only a factor of ~ 2; most cross sections experience smaller changes.
These results are generally consistent with the idea that our Solar System is “full”,
i.e., no additional planets and little additional mass can be added to the extant planets
without rendering the system unstable. In fact, even the current solar system is unstable

on sufficiently long time scales (Batygin & Laughlin 2008; Laskar & Gastineau 2009).

Another way in which planetary orbits can be altered by scattering encounters is
by changing their inclination angles. For all of the simulations, we start the four giant
planets in the same plane (so that i; = ig = iy = iy = 0). After the encounters,

the inclination angles of the four planets are, in general, nonzero. We define the
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Figure 5.7: Cross sections for increasing the spread of inclination angles of the planetary
orbits. All of the giant planets are started in the same plane; the quantity Ai is the total
range of inclination angles of the four orbits after the encounters. Cross sections are shown
for a variety of vy, from v, = 1 km/s (top curve) to v, = 16 km/s (bottom curve), where
the values are evenly spaced logarithmically (by factors of v/2).
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post-encounter spread Ai of the inclination angles according to the expression

Ai = max {cos1 {J}Jik] } ; (5.4)
J

where the J; are the angular momentum vectors of the planetary orbits and where
the indices run through all four of the giant planets. The resulting cross sections for
increasing the spread of inclination angles is shown in Figure 5.7. The Figure shows the
cross sections for a range of velocity dispersions of the background cluster, from v, = 1
km/s to v, = 16 km/s, where the values are spaced by factors of v/2. The cross sections
are almost evenly spaced in the semi-logarithmic plot and have nearly the same shape
as a function of Ai. These properties indicate that the cross section has a power-law

dependence on vy, (see Section 5.4).

In general, increases in the inclination angles are positively correlated with increases
in eccentricity. This result is not unexpected, as changes in both orbital elements
correspond to disruption of the initial states. To illustrate this trend, in Figure 5.8 we
plot the increases in the spread of inclination angle Ai versus the change in eccentricity
(equivalently, the post-encounter eccentricity since Ae = e). The two variables are in
fact well correlated, but the range of possible Ai values for a given eccentricity e = Ae
is large. As a result, in the figure we plot the mean values of A7 averaged over a bin in
Ae with a width of § = 0.05. The data show a well-defined correlation; for this choice of
binning, the spread in the inclination angles grows to about 80° as the eccentricity grows
to unity. The four curves shown in Figure 5.8 correspond to the four giant planets. Note

that the orbits of all four planets show the same general trend.

The cross sections discussed thus far correspond to the immediate, post-encounter

properties of the solar systems. In addition to immediate ejection, however, the solar
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Figure 5.8: Correlation between eccentricity increases and increases in the spread of
inclination angles of the planetary orbits. All of the giant planets are started in the same
plane with circular orbits; the quantity A: is the total range of inclination angles of the
four orbits after the encounters. Correlations are shown for the orbital elements changes
of Jupiter (heavy dashed red curve), Saturn (black solid curve), Uranus (black dotted
curve), and Neptune (heavy blue solid curve). For each planet, the inclination angle
increases are binned over a range in Ae of width § = 0.05. Although the correlation is
well-defined, the range of Ai for a given value of Ae is relatively large. The error bars
(shown for the Neptune curve only) depict the standard deviations.
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Figure 5.9: Cross sections for the ejection of at least one planet as a function of vy, in
the cluster. The target systems have four giant planets with the masses and semimajor
axes of our solar system bodies. Cross sections are shown for three cases: increases in
eccentricity large enough to produce orbit crossing (solid dark curve marked by green
error bars), direct ejection of a planet (dotted red curve), either channel of ejection (solid
blue curve).
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systems can be rendered sufficiently unstable so that they eject planets long after

the scattering encounters are over. These longer term ejection events can be divided
into (at least) two types. In the first — and most unstable — case, the scattering
encounters leave the planetary orbits with high enough eccentricity so that adjacent
orbits cross. Most orbiting-crossing systems will eventually eject one of their planets,
provided that the system is not in a mean motion resonance; furthermore, perturbations
due to stellar encounters are unlikely to place a planetary system in resonance. We
address the effects of this type of instability by finding the cross sections for producing
orbit-crossing planetary systems (see below). In the second case, systems with more
modest eccentricities can be unstable over long spans of time. In order to assess the
effects of this latter class of outcomes, the post-encounter systems must be integrated
over typical stellar ages (billions of years). This task is beyond the scope of this present

work, but provides an interesting problem for the future.

Using the results of our numerical experiments, we can calculate the cross sections
for the scattering interactions to leave any two orbits with high enough eccentricities to
cross. For the case of the analog solar system, where the four giant planets have their
current masses and semimajor axes, the resulting cross sections are shown in Figure 5.9.
Three sets of cross sections are shown as a function of v, of the background cluster.
The cross sections for the post-encounter system to have an orbit-crossing configuration
are shown as the lower, green solid curve in the figure. For the calculation of this cross
section, only systems where all of the planets are retained by the host star are included.
The cross sections for the system to eject any planet (including those planets captured
by the passing stars) are shown as the red dotted curve. Finally, the total cross sections

for ejection, including both direct ejection of a planet and/or crossing orbits, are shown
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as the blue solid curve in the figure. The error bars depict the uncertainties in the cross
sections due to incomplete Monte Carlo sampling. Note that the cross sections for orbit
crossing and the cross sections for direct ejection are roughly comparable, with the latter
slightly larger (except at high velocity dispersion, where they are the same within the
sampling uncertainties). The total cross section for ejection is thus larger than that
for direct ejection by a factor of ~ 2. This statement holds only for the current solar
system architecture, but remains valid over the range of velocity dispersion shown here

(vp =1 —16 km/s).

We can now compare the results for the standard solar system architecture with that
of the more compact configuration motivated by the Nice model. Here we consider only
the most compact version where the planets are in multiple mean motion resonances (see
Figure 5.2). The compact configuration is expected to have lower cross sections for direct
ejection. But the orbits are closer together, so that less eccentricity excitation is required
to produce crossing orbits. On the other hand, the semimajor axes are smaller, which
lowers the cross sections for eccentricity increase. We find here that the cross sections for
orbit crossing are comparable, () = 96,500 + 3750 AU? for the standard configuration
versus (o) = 92,2004 3710 AU? for the compact multi-resonant case. However, the cross
section for direct ejection is larger for the standard solar system by a factor of 1.5, so

that the total ejection cross section remains larger by a factor of ~ 1.25.

Although the semimajor axes of planetary orbits are altered less dramatically than
the eccentricities and inclination angles during scattering encounters, the values of a
are nonetheless affected. The possible variations are quantified in Figure 5.10, which
shows the cross sections for producing relative changes (Aa)/a in the semimajor axes of

the four giant planets. This ensemble of numerical simulations uses the standard solar

130



CHAPTER 5. SCATTER

= T I T I T I T I T T I T I T I T I T —
10° - -
L | i
L |
—~ |
2 I
:<D,: 10* I -
~ C | ]
5 - ! ]
i I ]
|
L | i
L | i
|
|
1000 | | —
C | ]
B I ]
L 1 i
1 I 1 I 1 I 1 I 1 I 1 I 1

-1 -0.8 -0.6 -04 -0.2 0] 0.2 0.4 0.6 0.8 1

(aa)/a

Figure 5.10: Cross sections for changes in the semimajor axis of the planetary orbits
due to scattering encounters. The target systems are analogs of our Solar System, with
the four giant planets initially in circular orbits with the current values of their semimajor
axes. The plots shows the cross sections for relative changes (Aa)/a in the semimajor
axis for the orbits of Jupiter (lower red curve), Saturn (green curve), Uranus (cyan curve),
and Neptune (upper blue curve).
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system architecture as initial conditions, where the planets have their current masses and
semimajor axes. The velocity dispersion of the background cluster is taken to be v}, /2 =
0.5 km/s. As expected, the cross sections are largest for Neptune (top blue curve) and
smallest for Jupiter (bottom red curve). As a crude approximation, the cross sections are
proportional to the starting semimajor axes of the planets (although closer inspection

shows the scaling is somewhat less steep than linear).

Scattering encounters can cause the semimajor axes to become either smaller or
larger, corresponding to the loss or gain of orbital energy. However, Figure 5.10 shows
that the process is highly asymmetric, where the orbits are much more likely to become
larger (gain energy) than to move inward (lose energy). The scattering encounters rarely
reduce the semimajor axes by more than a factor of two. Moreover, the magnitude of
the cross sections are relatively small. More specifically, the cross sections for changing
the initial semimajor axes by 10% are roughly comparable to — but somewhat smaller
than — the cross sections for ejecting a planet (compare Figures 5.1 and 5.10). One
might think that cross sections for moderate changes Aa would be larger than those
for ejection. However, the cross sections for changes in semimajor axis do not include
the ejections themselves, i.e., they are the cross sections for changing the semimajor
axis with the planet remaining bound to its host star. For large changes in a, there is
not much parameter space where a is increased but the planet remains bound (thereby
leading to the values shown in Figure 5.10). Notice also that the figure does not show
cross sections for overly small values of (Aa)/a; the cross sections become singular in the

limit (Aa)/a — 0, as marked by the vertical dashed line.

The cross sections considered thus far correspond to interactions between solar

systems and passing binaries. On the other hand, roughly half of the stellar population
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Figure 5.11: Cross sections for eccentricity increase due to encounters with passing single
stars. The target systems are analogs of our Solar System, with the four giant planets in
circular orbits with their current values of semimajor axis. Each panel shows the cross
sections for a given planet, as labeled, where the curves correspond to varying velocity
dispersions of the background cluster: v, = 1, 2, 4, and 8 km/s (from top to bottom).
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consists of single stars, so that the corresponding cross sections for singles must also
be determined. Since we are primarily interested in a comparison between the cross
sections for single stars and binaries, it is crucial to use the same sampling for all of
the parameters in the problem. Toward this end, we use exactly the same procedure as
before (outlined in Section 5.2), but let the mass of the second star go to zero. In this
limit, the other, single star automatically resides at the center of mass of the system (and
the value of the binary eccentricity becomes irrelevant). The resulting cross sections for
single stars interacting with solar system analogs are shown in Figure 5.11. As before,
the initial solar systems consist of four giant planets with the masses and semimajor axes
of the present day Solar System (but with zero starting eccentricity). Each panel shows
the interaction cross sections for eccentricity increases for a given planet (as labeled).
Results are shown for four values of the velocity dispersion of the background cluster,

ie,vp =1, 2 4, and 8 km/s (ordered from top to bottom in each panel).

Next we make a rough comparison of the cross sections for single star interactions
(Figure 5.11) with those obtained earlier for binaries (e.g., Figure 5.3). The single star
cross sections are smaller by more than a factor of two. Note that the binary systems
are, on average, somewhat wider than the size of the solar systems. As a result, as a
pair of stars passes by a solar system, it consists mostly of empty space but still provides
(roughly) twice the opportunity for interaction as a single star. One thus expects at
least a factor of two reduction in the cross sections for passing singles. The fact that the
reduction is larger than a factor of two is thus significant and indicates that the dynamics
of the binaries themselves must contribute. Further, as discussed in the following section,
the cross sections for single stars exhibit a different dependence on the background

velocity dispersion and a slightly steeper dependence on post-encounter eccentricity.

134



CHAPTER 5. SCATTER

For convenience, Table 2 collects the cross sections for the ejection and capture
of all four planets. For each solar system configuration considered in this paper, the
table lists two sets of cross sections, where the first line corresponds to planetary
ejection and the second line corresponds to planetary capture. The Standard Model
(the first configuration in the table) represents the case where the four giant planets
have the masses and semimajor axes of our current Solar System, the host star has mass
M, = 1.0M, the velocity dispersion of the cluster v, = 1 km/s, and the interacting stars
are binary. The first column in the table labels the solar system configuration by the
variable that differs from its standard value. The error bars in the table are those due to
incomplete Monte Carlo sampling. One way to assess statistical significance is through
the ratio of the cross section to its sampling error. For the ejection cross sections, the
mean value (averaged over the entire table) of this signal to noise ratio is ~ 14, so that
the ejection cross sections are well-determined. Capture events are much more rare. For
the capture cross sections, the mean value of the signal to noise ratio is only ~ 4. For
the rarest events, captures with high cluster velocity dispersion, the cross sections are

only defined at the factor of two level.

5.4 Analysis and Scaling Laws

The cross sections found in the previous section display relatively simple dependences on
the underlying variables of the problem: For example, for each type of solar system, the
cross sections, when considered as functions of the post-encounter planetary eccentricity
e, all display the same general shape. As a result, the functions (o) (e) can (almost) be

rescaled to find a universal functional form, where scaling factors take into account the
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initial semimajor axis a of the planet, the velocity dispersion v,/2 of the background
environment, the stellar mass M,, and so on. The goal of this section is to understand
the general scaling properties of the cross sections and to determine the extent to which
they are self-similar. In general, self-similarity arises when physical scales are either
missing from a problem or do not contribute to the results (Barenblatt 2003); we return

to this issue at the end of the section.

Even in the reduced case where we consider one planet at at time, the interactions
considered in this paper involve four bodies (the host star, the planet, and two
binary members). Unfortunately, four-body interactions are rather difficult to describe
analytically to any reasonable degree of approximation. As a result, the goal of this
section is relatively modest: Instead of building complicated analytical models for
4-body (and higher N-body) dynamics, we consider here basic physical principles that
can be used as motivation for scaling laws. We then combine these heuristic results with
our detailed numerical determinations of the cross sections. The result is physically
motivated fitting formula that characterize the cross sections over the parameter space

of interest (a, vy, M,, e).

To start the discussion, consider the simplest case where the the cross section for
interactions is the geometrical cross section ma? provided by a planet in its initial orbit.
Further, we consider the planets to be independent of each other during the encounters.
This cross section will be enhanced by gravitational focusing, so we can write down an
heuristic expression for the cross section in the form

2

(o) ~ ama? <1 + ”—) , (5.5)

(8
where v, is the escape speed from the target system (at the location of the planet), and
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Uso 18 the asymptotic relative speed between the two systems. In order to pass within
this cross sectional area, the interacting star (binary) must be about the same distance
from the planet as its host star, so that the planet has a chance of being ejected from
its original solar system. This expression thus represents the escape cross section. The
parameter « is a dimensionless constant of order unity and is included to encapsulate
the uncertainties inherent in this approximation. After inserting the expression for the

escape speed, we obtain

GM*) — anla, (5.6)

2
= 1
(o) = ama ( + a?

where we have replaced the asymptotic speed v, with v}, of the cluster (or other
background stellar system) and we have defined the corresponding length scale

{ = GM, /v (where ¢ ~ 890 AU for v, = 1 km/s). The final expression represents the
limiting form, which is applicable when gravitational focusing dominates, and implies a
linear dependence of the cross section on a. Given this form, the cross section requires
another length scale. In this problem, the orbit speed of the binary, the asymptotic speed
Uso Of the encounter, the orbit speed of the planet, and v, are all roughly comparable (1
— 10 km/s). For example, the orbit of Neptune in our solar system has an escape speed
of ~ 5.5 km/s, whereas the orbit speed of a binary at the peak of the period distribution
is also ~ 5 km/s. If we only have a single velocity V', then dimensional analysis implies
that the relevant length scale must be ¢ = GM, /V?, as given in equation (5.6); additional
uncertainties can be absorbed into the dimensionless parameter «.. Finally we note that
for a velocity dispersion v, = 1 km/s, the gravitational focusing term dominates by a

factor of 30.

The limiting form of equation (5.6) is linear in the starting semimajor axis a of
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the planet. To see how well this expression works, we plot the ejection cross sections
of the planets versus semimajor axis in Figure 5.12. As expected, the ejection cross
section is a nearly linear function of the semimajor axis. This trend holds for solar
systems starting with the present-day semimajor axes (star symbols) and the more
compact configuration where the semimajor axes are spaced by factors of 5/3 (open
triangles). We also plot results for ultra-compact solar systems in multiple mean motion
resonance (open squares). In order to isolate the dependence of the cross sections on
initial semimajor axis from planet-planet scattering effects, this latter case uses smaller
planet masses (by a factor of 10), so they act more like test masses; to explore a wider
range in a, we also take this compact system to be smaller by a factor of 1.35 compared
to that considered in the previous section. The error bars delineate the uncertainty due
to incomplete Monte Carlo sampling. Not only do the cross sections show nearly linear
dependence on a, but the slope of the curve is predicted by the above analysis. The red
solid (blue dashed) curve in Figure 5.12 shows the cross section predicted by equation
(5.6) for the limiting case (full form); for both cases, the characteristic length scale ¢ =

890 AU and the dimensionless parameter a = 7/5.*

Next we consider the dependence of the cross sections on the post-encounter
eccentricity e (which is equivalent to Ae because the orbits start with zero eccentricity).
For all four planets in all three types of solar system, the e-dependence is similar. Since
the ejection cross sections scale linearly with semimajor axis a (see Figure 5.12), we scale

the cross sections by dividing out one power of a. The resulting scaled cross sections are

*In order to set the value for this dimensionless parameter, and others specified in this section, we
generally search in increments of 1072, find the value that gives the minimum RMS error, and then choose

the nearest round number (ratio of relatively small integers).
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Figure 5.12: Cross sections for planetary escape versus the starting semimajor axis. The
12 points on the plot correspond to the four giant planets in each of three versions of the
initial solar system architecture. The symbols represent different starting states, including
the semimajor axes of the present-day solar system (stars), a compact configuration with
5/3 semimajor axis ratios (open triangles), and an ultra-compact solar system starting
in multiple mean motion resonances (open squares). The red solid line shows the cross
section indicated by the limiting form of equation (5.6); the blue dashed curve shows the
full form.
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shown in Figure 5.13 as a function of eccentricity e. In addition to the individual cases
(shown as the light dotted curves), the average is shown as the heavy blue curve, where
the error bars depict the standard deviation. This latter quantity provides a measure
of the spread in the values of the cross section over the various cases. The standard
deviation varies from about 17% of the cross section at low eccentricity e = 0.10 to only

about 9% at e = 1.0.

The curves in Figure 5.13 are nearly straight lines on the semi-logarithmic plot,
so that the dependence of the cross sections on eccentricity is nearly exponential. For

purposes of illustration, we use an exponential fitting function of the form

% =anlexp[b(l—e)], (5.7)

where the first factor enforces consistency with the ejection cross sections considered
above. For the value b = 4/3, we obtain a good fit to the calculated, scaled cross
sections, as shown by the heavy red line in Figure 5.13. Except for first point (e = 0.1),
the exponential fit (straight red line) agrees with the average values (solid blue curve)
to within about 3%, i.e., the difference is much less than the width of the distributions
as measured by the standard deviations. Another measure of the quality of the fit is
provided the relative differences between the numerically determined cross sections used
in constructing Figure 5.13 and the exponential form given by equation (5.7); the RMS

of these relative errors is ~ 12%.

Next we consider the effects of the velocity dispersion of the background cluster
environment. As shown in Figure 5.3 in the previous section, the cross sections vary with
the post-encounter eccentricity with approximately the same functional form over a wide

range of vy. Only the leading cofficient changes. Moreover, the uniform spacing of the
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Figure 5.13: Scaled cross sections versus eccentricity increase Ae (equivalently, the post-
encounter eccentricity e) for the four giant planets in each of the starting architectures for
the solar system. The individual cases are shown as light dotted curves. The heavy solid
blue curve depicts the average, where the error bars depict the standard deviation. The
straight red line shows the result for cross sections with a purely exponential dependence
on eccentricity.
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curves in Figure 5.3 indicates that the cross sections must have a power-law dependence
on vy, (to leading order). We have explored scalings with velocity dependence of the form

7 and find that the best fit occurs for v ~ 7/5. Using this choice of power-law

(o) o< vy,
index, we plot the scaled cross sections versus post-encounter eccentricity in Figure 5.14,
where we include the linear a-dependence found previously (i.e., <O’>Uk7)/ °/a). Bach light
dotted curve in the figure shows the result for one planet and one choice of velocity
dispersion. The heavy blue curve shows the average over all of the curves, where the
error bars depict one standard deviation. The heavy straight red line represents the
same exponential dependence given in equation (5.7) and used in Figure 5.13. The RMS
of the relative differences between the numerically determined cross sections and the
curve given by equation (5.7) is ~ 13%. The cross section curves are thus self-similar
to this level of accuracy. Furthermore, the dependence of the cross sections on velocity

dispersion is nearly independent of the dependence on starting semimajor axis a of the

planet.

The dependence of the interaction cross sections on the mass of the host star is
somewhat more complicated than for the other variables, as illustrated in Figure 5.4.
As the mass M, of the star increases, the cross sections, considered as functions of
eccentricity, become steeper. The spacing of the curves in Figure 5.4 (for different stellar
masses) grows with e, so that the curves are not self-similar. In spite of this complication,
we can still fit the cross sections with a power-law function of stellar mass, although the
accuracy of the approximation is not expected to be as high as in the previous cases.
We thus consider a scaling of the form (o) oc M_#, and vary the index p to find the
best fit. The choice u = 1/3 provides the lowest RMS of the relative error. Figure 5.15

shows the result by plotting the scaled cross sections (o) M, /3 /a (again including the
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Figure 5.14: Scaled cross sections versus eccentricity increase Ae (equivalently, post-
encounter eccentricity e) for a collection of different velocity dispersions for the back-
ground. The starting state is taken to have four giant planets with the current semimajor
axes. Cross sections are scaled by vg/ > /a (see text). The individual cases are shown as
light dotted curves, with include curves for each of the planets for v, = 1 — 16 km/s,
equally spaced logarithmically (by factors of v/2). The heavy solid blue curve depicts the
average, where the error bars depict the standard deviation. The red striaght line shows
the result for cross sections with a purely exponential dependence on eccentricity.
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Figure 5.15: Scaled cross sections versus eccentricity increase Ae (equivalently, post-
encounter eccentricity e) for solar systems with different stellar masses. The starting
state is taken to have four giant planets with the current masses and semimajor axes.
Cross sections are scaled by M;/> /a (see text). The individual cases are shown as light
dotted curves, with include curves for each of the four planets for four choices of stellar
mass M, = 0.25 — 2.0 M, (spaced by factors of 2). The heavy solid blue curve depicts the
average, where the error bars depict the standard deviation. The red striaght line shows
the result for cross sections with a purely exponential dependence on eccentricity.
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linear dependence on semimajor axis a) as a function of post-encounter eccentricity. The
light dotted lines show the individual (scaled) cross sections and the heavy blue curve
shows the average. The error bars depict the corresponding standard deviation, which is
larger than for the cases considered previously (compare Figure 5.15 with Figures 5.13
and 5.14). The heavy red staight line shows the same result as before (from equation
[5.7]). The RMS error between the exponential line and the numerically determined
cross sections is about 20%. This larger error measure results from fitting the cross
sections with a power-law form, even though the results depart somewhat more from

self-similarity.

The cross sections for increasing the spread of inclination angles, considered over a
range of velocity dispersions, also show a nearly self-similar form (see Figure 5.7). This
finding indicates that the cross section should scale with a nearly power-law dependence
so that (o) o< v, . Over the range v, = 1 — 16 km/s, we find that the best fit occurs for
n = 7/5. To illustrate how well this scaling law works, we plot the scaled cross sections

(oo

as a function of sin(A¢) in Figure 5.16. Each light dotted curve in the figure
corresponds to the result of one choice of velocity dispersion. The heavy blue curve
shows the average of the scaled cross sections, where the error bars depict the standard
deviations. The mean size of the error bars corresponds to relative differences of ~ 6%,
so that the curves are self-similar to this degree of accuracy. Notice that the scaling

exponent 1 &~ 7/5 for inclination angle increases as a function of vy, is the same as the

corresponding index for eccentricity increases.

After the velocity dependence has been scaled out, the cross section for increasing
the spread of inclination angles is a slowly varying monotonic function of Ai (see Figure

5.16). If we consider x = sin Ai as the independent variable (instead of A itself), the
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Figure 5.16: Scaled cross sections for increasing the post-encounter spread Ai of the
inclination angles of the planetary orbits. The starting states have the four giant planets
orbiting in the same plane (Ai = 0). The cross sections are scaled by the velocity
dispersion of the cluster with the relation (cr}vg/
dotted curves. The heavy solid blue curve depicts the average, whereas the error bars
depict the standard deviation. The heavy red curve shows the fitting function described

in the text.

°. The individual cases are shown as light
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cross section can be fit with an exponential function which is analogous to that used to

describe the eccentricity dependence. More specifically, if we use the functional form

(0); = (o) exp [bp (1 — sin A7)] (5.8)

then the cross section for increasing Ai can be fit using the parameters b ~ 3/4 and
oo ~ 166,000 AU2. Note that the value of the index b used here somewhat smaller than
that needed to fit the dependence of the cross sections on (post-encounter) eccentricity
(compare with equation [5.7]). The fitting function from equation (5.8) is shown in
Figure 5.16 as the solid red curve. The quality of the fit is reasonably good: The fitting
curve falls within one standard deviation (marked by errorbars in the figure) of the mean
for all of the range except the first point (x = sin A7 = 0.1); alternately, the RMS of
the relative error between the two curves is ~ 8%. However, the mean of the numerical
results (blue curve) shows more curvature than the exponential fit (red curve), especially

at small values of z.

Although we could find a more complicated fitting function that has smaller RMS
relative error, we use equation (5.8) in order to compare changes in the spread of
inclination angle with changes orbital eccentricity. If we equate the variable x = sin As
with e, then equations (5.7) and (5.8) have the same general form. We can then compare
the leading coefficients, which have values (o) & 166,000 AU? for Ai-dependence and
amla ~ 120,000 AU? for e-dependence, where we have used a = 30 AU to evaluate the
latter expression. The cross sections for eccentricity increase and spread of the inclination
angles thus display similar behavior. The leading coefficients agree to within ~ 28% and
we can make the following inexact analogy: An increase in Neptune’s eccentricity of Ae

= 0.1 corresponds to changing the spread of the inclination angles (of all four planets)

147



CHAPTER 5. SCATTER

so that sin A7 increases by 0.1. We can also make a rough association between increasing
the spread of inclination angles to Ai > 90 degrees and the ejection of a planet (e > 1).
Both of these events have (approximately) the same cross section and both involve order
unity changes to the angular momenta of the planetary orbits. In addition, the cross
sections for inclination angle increase and eccentricity increase scale with the vy, in the

same manner (o vg/ %).

The association between changes in the variables sin Ai and e provides an intriguing
topic for additional work. To leading order, the canonical actions written in terms of the

orbital elements have the forms

1
I x 562 and Z oc sin®(i/2) . (5.9)

The apparent relation between the two variables (as observed in the simulation results)
could thus be evidence of an equipartition-like mixing of the actions (see Lichtenberg &
Lieberman 1992). Although beyond the scope of the present paper, this issue should be

explored further.

We can extract a potentially important cross section from these results. The
scattering interactions considered here can readily increase the spread of inclination
angles of outer bodies in a solar system. On the other hand, the scattering events
themselves have little effect on planets in tight orbits, such as the multi-planet systems
observed by the Kepler mission (Batalha et al. 2013). However, the bodies in the outer
solar system can have important long-term effects on the inner bodies provided that
they are scattered into orbits with sufficiently high inclination angles. More specifically,
if the inclination angles of the outer orbits are larger than 39.2°, then the Kozai effect

can operate (Kozai 1962; Lidov 1962), and the inner portions of the solar system can be
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excited over the age of the systems. Combining this requirement with the results of our
numerical simulations, we find that the cross section for scattering a solar system into a

state where the Kozai effect can operate is given by

—7/5
omai ~ 21 A 2 < aout > Ub 1
(7 omicz ~ 210,000 AU™ { 579 1km/s ) (5.10)

where a.y is the semimajor axis of the outermost planet of the system. Note that
the requirement of large mutual inclination is necessary but not sufficient for the
Kozai effect to play a role. The Kozai effect is a highly fragile type of interaction
because it involves libration of the argument of periastron, and this quantity can be
subject to many other sources of precession (for further discussion, see Batygin et al.
2011). We also note that this form for the cross section (equation [5.10]) involves some
extrapolation: The numerical simulations were carried out primarily for the architecture
of the current solar system. Nonetheless, the outermost planet is always the most
affected by fly-by interactions, and the cross sections scale linearly with semimajor axis

to a good approximation.

Next we consider the scaling behavior of the cross sections for interactions with
passing single stars. As for the case of binary systems, we expect the cross sections to
scale nearly linearly with the semimajor axis a of a given planet. In addition, the nearly
equal spacing on the logarithmic plot of Figure 5.11 indicates that the cross sections
should display power-law dependence on the velocity dispersion, such that (o) o v, ™.
The velocity dependence for these single star cross sections is moderately less steep
than those found earlier for binaries; the optimal value of the index 74 ~ 6/5, which is
somewhat smaller than the value for binary cross sections v &~ 7/5. After scaling out the

semimajor axis and velocity dispersion, the reduced cross sections are shown in Figure
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Figure 5.17: Scaled cross sections versus eccentricity increase Ae (equivalently, post-
encounter eccentricity e) for solar systems interacting with single stars. The starting
states have four giant planets with the current masses and semimajor axes of our Solar
System. Cross sections are scaled by the factor vg/ > /a. The individual cases are shown
as light dotted curves, which include the four giant planets and four values of velocity
dispersion of the background cluster: vy, = 1, 2, 4, and 8 km/s. The heavy solid blue curve
depicts the average, where the error bars depict the standard deviation. The red striaght
line shows the result for cross sections with an exponential dependence on eccentricity.
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5.17. The light dotted curves show the scaled values for given planets and values of vy,
(which lie in the range 1 — 8 km/s). The heavy blue curve shows the mean over the
entire collection and the error bars denote the standard deviations. These error bars
correspond to an average relative error of ~ 15%, which is comparable to, but somewhat

larger than that found for the binary cross sections.

The scaled cross sections shown in Figure 5.17 for single star interactions show
a nearly exponential dependence on the post-encounter eccentricity. Although this
behavior is analogous to that found for the binary cross sections, the slope of the

exponential is somewhat steeper. Here we consider a fitting function of the form

(@) singie = (00 (%) (H{iz /S>6/5 exp [bs(1 — €)] . (5.11)

where we obtain a good fit for (o)y = 1000 AU? and b, = 8/5. The resulting fit is shown
as the red straight line in Figure 5.17. The RMS difference between the expression of
equation (5.11) and the numerically determined, scaled cross sections for single stars is

only ~ 8%.

Now we can compare the cross sections for single stars with those for binaries.
The comparison is complicated by the different scalings of the two cases with velocity
dispersion and the different exponential laws for the eccentricity dependence. To fix
ideas, consider the benchmark case where v, = 1 km/s for the background cluster. Here,
the cross sections for binary star interactions are ~ 4.2 times larger than those for single
stars at the high end of the eccentricity range e = 1. Similarly, the binary cross sections
are ~ 3.2 times larger at the low end of the eccentricity range where e = 0.10. Averaged
over the span of eccentricity considered here, the binary cross sections are larger by

a factor of ~ 3.6. This factor decreases with increasing velocity dispersion, however,
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7/

because the binary cross sections fall according to the relation (o) o v, ° whereas the

single star cross sections fall as (o) x v, 6/5 With these scaling laws, the cross sections

for binaries are only a factor of 2 larger (than those for single stars) when the v, is

increased to vy, &~ 20 km/s.

These results can be interpreted as follows: At high asymptotic speeds, which occur
for v, 2 20 km/s, the two members of a binary pass by the solar system quickly enough
so that binary motion and planetary motion play only a minor role in the interaction
(this speed is much larger than the mean orbital speed of either the binary or the
outer planet). As a result, the two stars interact with the solar system in an almost
independent manner, and the cross sections for binary interactions should be a factor of
~ 2 larger than those for single stars (for large v,). On the other hand, lower impact
speeds can be comparable to the binary orbital speed and/or the planetary orbital
speeds. In this regime, the motion of the binary stars relative to one another during the
encounter can increase their chances of interacting with the planets, thereby leading to
larger cross sections. In extreme cases, resonant interactions can occur when the velocity
scales of the problem are all comparable (see also Laughlin & Adams 2000), and these
long-lived events can greatly increase the chances of disruption of planetary orbits during
the encounters. To be consistent with this picture, the ratio of the single-star cross

section to the binary cross section must decrease less steeply with vy, as found here.

Before leaving this section, we briefly address the issue of how self-similarity can
arise in the context of solar system scattering. In its full form, this problem has six
velocities (four planetary orbits, one binary orbit, and the encounter velocity) and seven
masses (four planets and three stars). One expects self-similarity only when most of these

scales do not contribute (Barenblatt 2003). We can construct an argument to reduce the
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number of relevant scales as follows: To leading order — and only during the encounter
itself — planetary interactions with the binary are independent of interactions with
other planets. As a result, we can (often) treat the encounters as single-planet systems
scattering with binaries. The planet itself is usually small enough to be considered

as a test mass, so that we are left with “only” three masses and three velocities.

The binary masses are always drawn from the same IMF, and the cross sections are
determined through many samples of that IMF (Ng 2 80,000), thereby leaving the ratio
M, /(M. + Ms,) as the most important mass variable. In the regime of interest, the
cross sections have values in the range (o) ~ 10* — few x 10°> AU?, which implies that
the length scales that characterize the interactions /. = (¢)1/2 ~ 100 — 500 AU. This
size scale is larger than that of both the planetary orbits (a = 5 — 30 AU) and most
binary orbits (where the peak of the period distributions corresponds to aj, ~ 42 AU).
If the orbital speeds of the planets and the binary are fast enough, then their orbits can
be replaced by rings of mass with the same semimajor axis and eccentricity (Murray
& Dermott 1999). This averaging effectively eliminates the orbital velocities from the
problem and leaves v}, as the most important velocity variable. Indeed, we find that
the cross sections depend most sensitively on the stellar host mass M, (equivalently,
the mass ratio M, /(M. + M,,)) and the velocity dispersion v,. This argument is not
exact, however, and the additional scales (e.g., orbits speeds) do play some role. These
complications are responsible for the spread in the scaled cross sections shown in Figures

5.12 - 5.16.

We can also compare these scaling results to analytic results found in previous studies
(see, e.g., Heggie & Rasio 1996; Spurzem et al. 2009), although the system parameters

are not exactly the same. The latter study finds a scaling relation (o) o< a®2v; ! in the
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impulsive regime (where vy, ~ vy, is much greater than the orbital speed of the planet)
and (o) o avy,? for non-impulsive encounters. Our results (see Figures 5.14 and 5.17)
are intermediate between these two scaling laws, since the encounters are rarely fully
in the impulsive or the non-impulsive regime. In addition, this current study includes
binaries, and the binary orbital speed is generally comparable to the planetary orbital
speed. The binary motion can either add to or subtract from the relative velocity of
the encounter (depending on the timing and geometry of the encounters), so that the
scattering interactions have a wide range of relative velocities, even for a given v,. As a
result, our parameter space does not fall fully in any of the limiting regimes considered

by previous analytic estimates.

We note that we took into account the flux of the incoming stars after obtaining
the scattering cross section. It is more accurate to consider the flux while calculating
the cross section. An additional velocity dependence on the cross section due to the flux
can slightly reduce the cross section, because higher velocity stars (weaker perturber)
are more likely to encounter the planetary system. Figure 5.18 shows the cross section
versus the final eccentricity for Neptune when v, = 1 km/s, comparing with the original

velocity distribution. The reduction in the cross section is similar for the other planets.

We further note that the expression of gravitational focusing also provides a scaling
law for the dependence of the cross sections on v,. However, the cross section cannot
be fit well by this simple expression. The dependence on the incoming velocity is more
complicated, and the cross section can be fit better with a power law expression as shown

in Figure 5.19.
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Table 5.1:: Solar System Architectures

Configuration Jupiter Saturn Uranus Neptune

Standard e=0 e=10 e=10 e=10
Compact a=520AU a=867TAU a=144AU a=24.1AU

Resonant a=588 AU =789 AU a=10.38 AU a=12.01 AU

Eccentric # 1 e = 0.049 e = 0.057 e = 0.045 e =0.011
Eccentric # 2 e =0.10 e =0.10 e =0.10 e =0.10
Massive mp = 1lmy mp = 1lmy mp = 1lmy mp = 1lmy
106 T T T T T
NA
-
~
g
o 5L i
ﬂg 10 ]
«» old distribution
7 v =1km/s
=) b
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Figure 5.18: The cross section of Neptune when v, = 1 km/s, comparing with the
distribution taken into account the flux. The cross section taking into account the flux is
slightly smaller than the original case.
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Table 5.2:: Cross Sections for Ejection and Capture

Configuration Jupiter Saturn Uranus Neptune

Standard model 15500 & 1360 34000 £ 2050 72300 £ 3100 113000 £ 3860
812 + 306 2140 £ 531 6040 + 994 11400 + 1280
Compact model 18100 & 1510 32700 £ 2130 57500 & 2790 93900 + 3570
915 + 379 2280 =+ 607 4380 + 817 11500 £ 1320
Resonant model 23900 £ 1810 40200 & 2440 61100 &+ 2990 60100 £ 2900
1240 + 467 2150 £ 569 3430 £ 701 3620 £ 738
Massive planets 24100 &+ 1890 38300 £ 2390 77700 £ 3360 105000 £ 3880

1530 £+ 579 2170 £ 637 4810 £ 932 8480 £ 1190

o, = 2 km/s 9170 £ 947 14800 £ 1250 29800 £ 1770 45200 + 2240
391 £ 136 635 £ 173 2600 + 487 6370 £ 903
v, = 4 km/s 2980 + 454 6090 + 776 10600 £ 918 15700 £ 1140

270 £ 173 607 £ 230 1580 + 486 2430 £ 569

v, = 8 km/s 1220 £ 258 2580 % 403 4060 £ 506 5830 % 698
130 + 85 134 £ 75 239 £ 88 624 £ 228

vp = 16 km/s 181 £ 39 607 £ 113 1220 £ 182 2140 £ 252
82 £ 52 53 £ 39 214 £ 83 169 & 69

M, =0.25M¢ 37400 + 2195 74800 £ 3170 138000 4 4350 196000 + 5130
766 £ 330 3510 £ 742 10300 & 1240 19500 £ 1720
M, =0.5M¢ 27600 + 1830 54000 £ 2630 107000 4 3740 152000 + 4460
1730 £ 560 3310 £ 755 7470 + 1060 15100 £ 1490
M, =2.0M 11000 £+ 1170 21700 £ 1720 45700 £ 2420 69300 £ 2980

458 + 234 1590 £ 467 4420 + 844 7410 + 1110

Single, v, =1 km/s 3840 £ 651 7100 £ 856 17300 £ 1430 30600 + 1980
135 £ 80 587 + 210 2080 =+ 480 5090 £ 871
Single, v, =2 km/s 1620 + 324 3110 + 429 9030 + 926 13200 £ 1090
168 + 86 236 + 106 1370 + 423 2810 £ 641
Single, v, =4 km/s 685 £ 177 1300 + 244 3740 £ 531 6790 £ 793
116 + 94 117 + 51 360 £+ 117 1480 4+ 411
Single, v, =8 km/s 269 £ 103 1090 + 322 1440 + 286 1880 + 266

21+ 14 23+ 14 157 + 53 374 £ 202
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5.5 The Solar Birth Aggregate

Given that most stars are born within clusters, it is likely that the birth environment of
our own Solar System was a cluster of some type. The argument for a substantial birth
cluster is bolstered by evidence for short-lived radionuclides in meteorites, which suggests
that the early solar nebula was enriched by a nearby supernova (Cameron & Truran
1977; see the review of Dauphas & Chaussidon 2011). A number of previous papers have
considered how dynamical scattering encounters in this putative birth cluster can provide
constraints on the cluster properties (see the discussion of Section 5.1). Unfortunately,
however, no consensus has been reached. This section briefly revisits the issue in light of

the updated cross sections determined above.

The basic problem posed by the solar birth aggregate involves a number of
ingredients: [I] Direct supernova enrichment of the early solar nebula requires a nearby
massive star, which is more likely to form in a larger stellar system. Further, significant
nuclear enrichment requires close proximity (distances d = 0.1 — 0.3 pc), which implies
that the supernova progenitor lives within the same cluster. Acting in the opposite
direction, larger clusters can potentially disrupt planetary systems through the action
of both [II] dynamical scattering (with the cross sections determined here) and through
[ITI] intense radiation fields which can evaporate gaseous disks. In order for the solar
system to reach its present-day state, however, the orbits of the giant planets cannot be
greatly perturbed and the early solar nebula could not be too severely evaporated. On
the other hand, [IV] the classical Kuiper belt has an apparent edge at ~ 50 AU, and [V]
the dwarf planet Sedna has an unusual orbit; both of these solar system properties could

be explained by requiring a close encounter with another member of the cluster. The
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challenge is to find a birth scenario for the solar system that successfully negotiates the
compromises required to simultaneously explain all five of these constraints. Supernova
enrichment, the edge of the Kuiper belt, and the orbit of Sedna all argue in favor a large
and long-lived cluster; disruption via both scattering and radiation argue in the opposite

direction.

Existing work has considered a variety of approaches to this issue. Several authors
advocate solar birth clusters with stellar membership size in the range N = 10% — 10*
(e.g., Adams & Laughlin 2001; Portegies Zwart 2009; Adams 2010; Pfalzner 2013).
These studies find that cluster systems in this decade of N lead to moderate dynamical
disruption of their constituent planetary systems. Additional work focuses on even
larger, longer-lived clusters and find that they can instigate substantial changes to
planteary orbits, including frequent ejections (Malmberg et al. 2007, 2011; Spurzem et
al. 2009; Parker & Quanz 2012; Hao et al. 2013). On the other hand, competing work
suggests that the solar birth cluster does not produce significant disruption of planetary
orbits (Williams & Gaidos 2007; Dukes & Krumholz 2012; Craig & Krumholz 2013; see

also Williams 2010).

The aforementioned papers thus reach different conclusions about the importance of
dynamical scattering of planetary systems in clusters. These differences arise because
of varying assumptions about cluster properties and varying assumptions about how to
enforce the five constraints on solar system properties outlined above. Although a full
review of this topic is beyond the scope of this work, we provide a brief overview below
(for additional detail, see the reviews of Adams 2010; Dauphas & Chaussidon 2011;

Pfalzner 2013).
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For a given type of disruption, with cross section (o), the interaction rate is given by
[' = n.(o)v (from equation [5.1]). The total expected number Ny of disruption events,

per solar system, integrated over the lifetime 7 of the cluster is then given by

Ndis:/ I‘dt:/ n.{o)vdt . (5.12)
0 0

The number of disruptive interactions thus depends on the speed v at which a given
solar system encounters passing binaries, their number density n,, and the total time 7
spent within the cluster.

We first consider the speed v. Recall that the interaction cross section (o) varies
with the velocity dispersion of the cluster according to the relation (o) o (o)ov, /s,
If we identify the speed v with the velocity dispersion v, of the cluster, then the
product (o)v o< v, 2/5 " As a result, most of the velocity dependence of the cross
section is compensated by that of the interaction rate, so that the number of disruption
events depends only weakly on the velocity dispersion. As an example, consider the
Orion Nebula Cluster (ONC), an intermediate-sized young stellar system with velocity
dispersion v, ~ 2 km/s (Hillenbrand & Hartmann 1998). Provided that it stays intact,
the ONC is likely to evolve into an open cluster resembling the Pleiades (Kroupa et
al. 2001); over the coming ~ 100 Myr, the velocity dispersion of the cluster will slowly

decrease to vy, ~ 1 km/s. Over this span of time, the quantity v, 2/5 that defines the

velocity dependence of the interaction rate varies by only about 32%.

For setting the number of disruption events, one important quantity is the time 7
over which clusters remain intact as dynamical systems. In the simplest terms, although
most stars are formed in clusters, these astronomical entities come in (at least) two

distinctly different flavors. Only about 10 percent of the stellar population is born within
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clusters that are sufficently robust to become open clusters (Roberts 1957; Battinelli &
Capuzzo-Dolcetta 1991), which are relatively long-lived (7 = 100 Myr — 1 Gyr). The
remaining 90 percent of the stellar population is born within embedded clusters (e.g.,
Allen et al. 2007), which have much shorter lifetimes (7 ~ 10 Myr). As shown below,
solar systems that are born within long-lived clusters can have an appreciable chance
of dynamical disruption; short-lived clusters lead to significant disruption with greatly

reduced probability.

Another important quantity is the density of the cluster. For clusters found in
the solar neighborhood, the cluster radius R o< N'/? (Lada & Lada 2003), so that the
clusters display nearly constant surface density (Adams et al. 2006). With this relation,
clusters with larger stellar membership sizes N have lower mean densities. However, the
clusters in the sample are relatively small (with N < 2500), and this trend does not
continue up to the largest clusters with N = 10* — 10° (Whitmore et al. 2007), or to the
subpopulation of systems that become globular clusters. The largest clusters can thus

have larger densities.

To assess the effects of scattering encounters, we need to specify the rate I' at which
solar systems encounter passing binaries (and single stars). As shown previously (Adams

et al. 2006; Proszkow & Adams 2009), the rate of close encounters in a cluster can be

I =T, (b—bo)7 : (5.13)

where b is a fiducial distance (taken here to be by = 1000 AU), and where the fiducial

written in the convenient form

rate 'y and index + depend on the cluster properties. The index ~ falls in the range

1 < v < 2, where the extreme of the range correspond to perfect gravitational focusing
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(v — 1) and the full geometrical cross section (y — 2). In these systems, encounters
beyond ~ 1000 AU are little affected by gravitational focusing. Since the cross sections
calculated in this paper include gravitational focusing, we can write the interaction rate
in the form

I'= Fo% ) (5.14)
The benchmark interaction rate I'y has a typical value of about 0.1 interactions per
target star per Myr. However, given the wide range of possible cluster properties, it
can vary over a wide range, from an order of magnitude lower to an order of magnitude
larger than this fiducial value (see Figures 6 and 7, and Tables 8 — 13 in Proszkow
& Adams 2009). Note that the benchmark rate is, in general, larger than the simple
estimate Ty ~ (n,)v,mb3, where (n,) is the mean density of the cluster. The stellar
density that defines the interaction rate is not the mean over the cluster, but rather
the weighted mean over the integrated orbits of the ensemble of cluster members. The
cluster members generally do not stay at a given cluster radius, and the cluster density
is centrally concentrated, so that solar systems sample the higher stellar densities of the
cluster core. This effect is amplified by the starting conditions for clusters, which start
with subvirial initial conditions; as a result, the orbits are more radial than isotropic,

resulting in more excursions through the dense central core (see Adams et al. 2006;

Proszkow & Adams 2009 for further discussion).

Collecting the results outlined above, we can write the number of disruption events

(from equation [5.12]) in the form

Ny Nﬁ/Tr w N7 (5.15)
7z Jy % \1km/s ' '

The cross section for moderate solar system disruption can be taken as (o) ~ 2.5 x 103
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AU?, which corresponds to events producing eccentricity increases Ae = 0.1 and/or
increases in the spread of inclination angles Ai = 10° (e.g., see Figures 5.1 and 5.7). To
obtain this value, we use a linear combination of the binary and single-star cross section
(see Figure 5.11), and an assumed binary faction of 2/3. Although these changes to the
orbital elements are not devastating, they are large enough to distinguish a disrupted
solar system from our own. Note that this value can be written (o)y = (500 AU)?, which
is somewhat larger than the previous estimate of ~ (400 AU)? (from Adams & Laughlin
2001)." The leading factor in equation (5.15) is thus of order 1/10. Since the benchmark
interaction rate I'y ~ 0.1 Myr~!, the cluster lifetime must be relatively long, 7 ~ 100
Myr, in order for disruption to take place with high probability. In other words, most

solar systems residing in long-lived clusters can experience moderate disruption.

The cross sections for planet ejection are smaller than the values used above by a
factor of ~ 3. As a result, only a fraction (~ 1/3) of the solar systems in long-lived
clusters are expected to lose planets with Neptune-like orbits (with even smaller fractions
for closer planets). Keep in mind, however, that the benchmark interaction rates I'y can

vary by a factor of ~ 10 in both directions.

The above considerations resolve some of the differences found in the literature
concerning the disruption rates for planetary systems in clusters. In order for disruption
to occur with high probability, clusters must live for relatively long times 7 2 100 Myr.

Indeed, the studies that find low disruption rates consider the clusters to have relatively

TThe difference arises because the present study increases the target area in equation (5.2) from B = 4
to B = 100, thereby including more distant events. Note that the original work (Adams & Laughlin 2001)
correctly introduced the cross sections as lower limits. The present cross sections are also lower limits,

although they are much closer to their greatest lower bounds.
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short lifetimes 7 ~ 10 Myr (e.g., Williams & Gaidos 2007; Dukes & Krumholz 2012).

How long are clusters expected to stay together? As outlined above, the cluster
population has at least two branches. Some clusters disperse over relatively short time
scales of only ~ 10 Myr. The robust clusters that survive to become open clusters have

empirically determined lifetimes 7, that can fit with a function of the form

M.\
Tem = 2.3Myr <1M@) : (5.16)

where M, is the cluster mass (Lamers et al. 2005). With this relation, clusters with
initial masses larger than ~ 550M, live longer than 100 Myr and can potentially disrupt
their constituent solar systems. More specicifally, we can write the dynamical constraint

in the form

Ngis = %(F0)2.3(TN)3/5<(%/1 km/s) %) <1, (5.17)

where T (= 1/2 M /star) is the mass-to-number ratio (the conversion factor between
cluster mass M, and cluster membership size V), and where we include the time average
of the velocity dispersion of the cluster (raised to the proper power). After some

rearrangement and the specification of typical numbers, this constraint can be written in

N§5000[(2.5 ><<(12)%AU2) (0_05%0;_1) (5.18)

~2/5\ - _5/3
—_ < 10°.
8 <<1km/s) >] s 10

Note that the disruption cross section is determined more precisely than either the

the form

expected age of the cluster (from equation [5.16]) or the benchmark interaction rate
['g. This latter quantity can be determined to high accuracy for a given set of cluster

properties and initial conditions, but its value varies appreciably from cluster to cluster
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(Proszkow & Adams 2009). Equation (5.18) uses a value near the low end of the range
in order to provide an upper limit on N. In light of these uncertainties, a reasonable
order-of-magntidue estimate for the dynamical constraint is N < 10%, as given by the
final inequality. This result is roughly consistent with previous estimates (Adams &
Laughlin 2001; Portegies Zwart 2009; Adams 2010; Pfalzner 2013). Nonetheless, the
full probability distribution for the survival (or disruption) of planetary systems as a

function of cluster size N should be constructed.

The constraint given by equation (5.18) assumes that the solar birth cluster is
relatively long-lived. If the solar system formed within a cluster that disperses in only
~ 10 Myr, the corresponding dynamical constraint would be considerably weaker. The
motivation for considering a long-lived cluster comes from constraints jointly implied
by the five solar system properties outlined at the beginning of this section. Direct
supernova enrichment [I] favors a long-lived cluster, so that the progenitor star has
enough time to live, evolve, and explode. An even stonger argument comes from the need
for a scattering event to produce the edge of the classical Kuiper belt [IV] and to produce
the orbit of Sedna [V]. If these solar system properties arise from dynamical interactions
in the birth cluster, then a long-lived stellar system is strongly indicated. It remains
possible for these features of the solar system to be explained in other ways. Nonetheless,
any self-consistent set of constraints on the solar birth environment must explain all three
of these properties, and must simultaneously account for the corresponding constraints
due to dynamical scattering encounters [II] and radiation fields [III] (e.g., see Fatuzzo &

Adams 2008; Thompson 2013).

For completeness, we also consider possible constraints on the solar birth cluster for

the scenario where the solar system spends much of its early life in the ultra-compact
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multi-resonant configuration (see Section 5.3, Figure 5.2). The cross section for removing
the solar system from its resonant state is then given by equation (5.3), which is more
than nine times larger than that used above. If, in addition, the removal of the solar
system from resonance always led to significant disruption over longer times, then

the maximum size of the solar birth cluster would be ~ 40 times smaller than that

of equation (5.18). In practice, however, the solar system, after being removed from
resonance, will not always be significantly disrupted (for example by ejecting a planet)
before it evolves and spreads out (as advocated by the Nice model; Gomes et al. 2005;
Tsiganis et al. 2005). To assess the risk of disruption in this case, one must also know the
probability of the non-resonant (but still compact) solar system experiencing disruption
on sufficiently short time scales. This calculation involves a large ensemble of long-term
(~ 100 Myr) solar system integrations and is beyond the scope of this present work.
Nonetheless, direct application of equations (5.3) and (5.18) suggests that the constraint

could be tighter than that derived for the solar system in its usual configuration.

Finally, we note that another class of observational constraints on the solar birth
environment might become available. Given that the birth cluster is expected to have
N ~ 10® — 10* stars with similar chemical composition, it is possible in principle to find
other members of our solar birth aggregate. Although billions of years have passed and
the cluster has long since dispersed, perhaps ~ 20 of these solar siblings could reside
within 100 pc of the Sun (Portegies Zwart 2009). By focusing on the chemical species
that show the most variation from cluster to cluster, it is possible to observationally
distinguish these siblings from other stars (Ramirez et al. 2014). The discovery of even
a few such stars would provide strong constraints on the properties of the solar birth

cluster and its location within the Galaxy. On the other hand, the Solar System could
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have had a more complicated dynamical history including large radial migration in the

Galaxy (Kaib et al. 2011), which could reduce the chances of finding solar siblings.

5.6 Conclusion

5.6.1 Summary of Results

Using results from more than 2 million individual numerical scattering experiments, this
paper has found cross sections for the disruption of planetary orbits in solar systems
interacting with passing stars and binaries. Our specific results can be summarized as

follows:

[1] More compact solar systems have smaller interaction cross sections (Figures 5.1
and 5.2). To leading order, the cross section for a given disruption event (e.g., planet
ejection or eccentricity increase) scales linearly with the semimajor axis of the initial

orbit, i.e., (o) x a (see Figure 5.12).

[2] For most solar systems, the cross section for a given planetary orbit to be
disrupted during a scattering encounter is almost independent of the other planets.
This feature of the interactions allows for the scaling analysis presented in Section
5.4. Of course, after the encounter, solar systems that suffer moderate disruption can
subsequently experience orbital instability, and this latter effect does depend (quite
sensitively) on the other planets in the system. In addition, for highly self-interacting
solar systems, those with sufficiently massive planets and/or close orbits, interactions

among the planets themselves can lead to effectively higher cross sections (e.g., see
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Figures 5.2 and 5.6).

[3] The dependence of the cross sections (o) on the post-encounter eccentricity e has
a nearly exponential form (see Figures 5.1 — 5.5). As a result, the cross sections can be
written (o) o< exp[—be], where b ~ 4/3 provides a good fit across the range of parameter

space considered in this work (Figures 5.13, 5.14, and 5.15).

[4] The cross sections depend sensitively on the velocity dispersion vy, of the
background environment, where the dependence displays a nearly power-law form.
Moreover, the shape of the cross section curves, as a function of eccentricity, are nearly
the same across the parameter space considered here (Figures 5.3 and 5.14). The cross
sections can thus be written as (o) o v, " exp[—be], where v = 7/5 and b = 4/3 provide

a good fit over range of interest.

[5] The cross sections depend on the mass M, of the host star, where the dependence
has the approximate form (o) oc M, 3 The mass dependence is somewhat more
complicated, however, as the cross sections are not fully self-similar (see Figures 5.4
and 5.15). For more disruptive encounters (where e — 1 and planets are ejected), the
scaling with mass is somewhat steeper and the form (o) oc M, 12 provides a better fit

(consistent with previous results from Adams et al. 2006).

[6] Most of this work considers planetary orbits with vanishing initial eccentricity
e. Nonetheless, for solar systems starting with e # 0, the interaction cross sections
for eccentricity increase are nearly the same (Figure 5.5), provided that one considers
post-encounter eccentricities sufficiently larger than the starting values (roughly, by the
increment de ~ 0.1). This finding stands in contrast to the related problem of single

stars interacting with binaries, where the cross sections for binaries with e = 0 and e # 0
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are significantly different (Heggie & Rasio 1996).

[7] The above results can be combined to write the cross section for eccentricity

increase for solar systems interacting with binaries in the general form

(o) = 4050 (AU)? (%) < j‘j@) o (5.19)

() "ofo-o]

This result holds over the ranges of parameters given by 5 AU < a < 50 AU,
0.25My < M, < 2Mg, 1 km/s < v, < 16 km/s, and 0.1 < e < 1. Equation (5.19) is
in good agreement with the numerically obtained results: For fixed stellar mass, the
RMS relative error for the range of starting semimajor axis, velocity dispersion, and
post-encounter eccentricity is less than about 12 percent (see Figures 5.13 and 5.14).
Including variations in the stellar mass, the RMS error is less than about 20 percent
(Figure 5.15). Over the same regime of parameter space, the cross section itself varies by
more than a factor of ~ 1000. Equation (5.19) provides the total ejection cross sections
(including capture events) in the limit e — 1; the cross sections for ejection and capture

are listed separately in Table 5.1.

[8] The cross sections for increasing the spread of inclination angles Ai are
comparable to those for increasing eccentricity (Figure 5.7). The cross sections for Ai
also show a nearly self-similar form, and scale with velocity dispersion of the background
cluster according to (o) o v, /s (Figure 5.16). This scaling exponent is the same as
that found for eccentricity increases. The cross sections can be fit with an exponential
dependence on the variable x = sin Ai. Although inexact, one can identify increases in
inclination with increases in eccentricity such that Ax ~ Ae. In general, increases in

the spread of inclination angles and orbital eccentricity are well-correlated (Figure 5.8),
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although the Ai values for a given Ae display a wide range. We have also determined the
cross sections for increasing the inclination angles beyond 39.2°; the benchmark value

required for the Kozai effect to operate (equation [5.10]).

[9] In addition to the ejection of planets during the scattering encounters, orbital
eccentricites can be increased so that planetary orbits will cross each other. Most solar
systems in such states will eject — or perhaps accrete — planets on relatively short time
scales. For systems with the architecture of the current solar system, the cross section for
this channel of secondary ejection is comparable to that of direction ejection, so that the
total cross section for ejection is effectively doubled (Figure 5.9). For the ultra-compact
configuration of the solar system (in or near multiple mean motion resonances), the cross
section for ejection due to orbit crossing is comparable to that of the standard solar

system, but the cross section for direct ejection is smaller.

[10] The cross sections for changing the semimajor axes of the planetary orbits are
smaller than those for increasing eccentricity and/or inclination angle (Figure 5.10).
Equivalently, the semimajor axes change much less than the other orbital elements
during scattering encounters. In rough terms, 10% changes in the semimajor axis — for
planets that remain bound — have approximately the same cross sections as planetary

ejection.

[11] The cross sections for solar systems interacting with single stars are smaller
than those for binary encounters (Figure 5.11). The single-star cross sections are nearly
self-similar (Figure 5.17), and scale with the semimajor axis of the planet and cluster

6/5

velocity dispersion according to (o) o< a v,'”. The scaling exponent for velocity is

somewhat smaller than that for binaries and the dependence of the cross sections on
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the post-encounter eccentricity is steeper. On average, the single-star cross sections are
smaller than the binary cross sections by a factor of ~ 3.6 for small velocity dispersions
(vp, = 1 km/s). This factor falls to only ~ 2 for larger values v, ~ 20 km/s; for
higher speeds we expect the binary components to act as two separate stars during the
encounters (except for close binaries). In general, the effective cross section is a linear

combination of the single and binary star cross sections,

(o) = fo(0)binary + (1 — f5)(0)single » (5.20)

where f, is the binary fraction.

[12] We have briefly revisited the dynamical constraint that can be placed on the
birth aggregate of our solar system due to scattering encounters (Section 5.5). The
strength of this constraint depends crucially on whether one assumes that the solar
system forms in a robust, long-lived cluster (with 72 100 Myr, like those that become
open clusters) or in a short-lived cluster that dissipates within 7 ~ 10 Myr. For
long-lived clusters, the requirement that the solar system is not disrupted implies an
order of magnitude upper limit on the solar birth aggregate of N < 10* (see equation
[5.18]). In practice, one should construct the probability distribution for solar system
survival /disruption as a function of N (using the cross sections determined herein), and
combine it with the other constraints on the birth cluster (see Figure 7 in Adams 2010;

see also Portegies Zwart 2009 and Pfalzner 2013).

[13] The cross section for removing a solar system from mean motion resonance is
much higher than that required to disrupt the planetary orbits. For the ultra-compact
multi-resonant configuration advocated by some versions of the Nice model, this cross

section (see equation [5.3]) is ~ 9 times larger than the disruption cross section for
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the usual solar system architecture. If removal from resonance leads to longer-term
instability, then constraints on the solar birth aggregate would be tighter for systems in

the multi-resonant configuration.

5.6.2 Discussion

The cross sections reported in this paper are subject to three different types of
uncertainties, and the distinctions among these quantities should be kept in mind. [1]
First, the Monte Carlo procedure used to determine specific cross sections (as outlined
in Section 5.2) results in uncertainties due to incomplete sampling. These uncertainties
decrease with increasing size of the ensemble of simulations and are proportional to
Ng Y2 Over most of the parameter space, we run sufficient numbers Ny of scattering
experiments so that the sampling errors are less than ~ 5% and usually even smaller.
These sampling errors are present in all of the cross sections presented in Section 5.3,
although they are usually not included on the plots (however, see Figure 5.5). [2] Next,
in Section 5.4, we explore scaling laws to collapse the cross sections for varying velocity
dispersion vy, host mass M,, and planet semimajor axis a into nearly self-similar forms.
The range of the resulting scaled functions is thus characterized by the error bars shown
in Figures 5.13, 5.14, 5.15, 5.16, and 5.17. These error bars represent a measure of the
degree to which the cross sections depart from self-similarity. The size of these error bars
falls in the range 10 — 15%, except for the scaling with the mass of the host star (where
the error bars correspond to 20% departures). [3] Finally, the mean of the scaled cross
sections are described by fitted functions with simple forms. The differences between

these functions and the mean scaled cross sections are of order 5 — 10%, smaller than
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the standard deviations of the different sets of cross sections used to construct the mean

forms.

In addition to the uncertainties outlined above, the cross sections calculated herein
depend on the features of the stellar population that provides the perturbations. As
described in Section 5.2, the cross sections sample the distributions of stellar masses,
binary periods, binary mass ratios, binary orbital eccentricities, etc. Different choices for
these distributions will lead to corresponding variations in the cross sections. Although
we use observations to specify the distributions, they are nonetheless subject to both

measurement error and possible variations from region to region.

The numerical simulations carried out for this paper determine the immediate
changes in the orbital elements of the solar systems due to passing stars. However,
additional changes in the orbital elements can occur over longer time scales. As one
example, after an encounter, a planetary system often has larger eccentricities, which
can lead to orbital instability over longer spans of time. But the timescales for such
instabilities can have a wide range. For systems where the eccentricities are increased so
much that planetary orbits cross, one expects instability and (usually) planet ejection on
a relatively short time. The cross sections for orbit crossing are thus of great interest and
are given in Figure 5.9. For systems with smaller eccenticity increases, however, orbital
instability can take much longer. For compact multi-resonant solar systems, modest
changes in the orbital elements and/or the removal of the system from its resonant state
can lead to instabilities over millions of years (Batygin & Brown 2010). For systems with
more widely separated orbits, instabilities can take even longer than the current age of
the universe (Batygin & Laughlin 2008; Laskar & Gastineau 2009). To study this issue,

the post-encounter solar systems must be integrated over long time scales (up to billions
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of years) to fully determine the effects of the encounters. This task is left for future
work. On another front, the orbits could also damped after the scattering encounters,
thereby moving the orbits back towards smaller eccentricities (Levison & Morbidelli
2007; Picogna & Marzari 2014). This effect should also be considered in follow-up
studies, especially on time scales of 1 — 100 Myr when solar systems are expected to

retain a significant population of planetesimals.

The scattering encounters considered herein can be effective in sculpting giant planet
orbits and the Kuiper Belt of our Solar System (e.g., Kenyon & Bromley 2004). On the
other hand, the Oort cloud is too large to be produced within a young embedded cluster
(e.g., see Brasser et al. 2012 for further discussion). More specifically, the Oort cloud
extends out to ~ 50,000 AU (Oort 1950; Jewitt 2001), more than 1000 times the size
of the solar systems considered in this paper. With this enormous size, the Oort cloud
would be decimated by passing stars within the cluster. As a result, the cloud must be
produced later, after the solar system leaves its birth cluster, or perhaps during its exit.
Any viable scenario for the solar birth environment must simultaneously account for
the Oort cloud, the giant planet orbits, Kuiper Belt properties, radioactive enrichment,
Sedna’s orbit, and survival of the solar nebula gas reservoir; these coupled constraints

thus pose an interesting and challenging opimization problem for further study.
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sections cannot be fit well by a simple expression based on gravitational focusing.
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Chapter 6

On the Spin-axis Dynamics of a

Moonless Earth

This thesis chapter originally appeared in the literature as
Li, G. & Batygin, K. On the Spin-axis Dynamics of a Moonless
Earth, The Astrophysical Journal, 790, 69, 2014

Abstract

The variation of a planet’s obliquity is influenced by the existence of satellites with a
high mass ratio. For instance, the Earth’s obliquity is stabilized by the Moon, and would
undergo chaotic variations in the Moon’s absence. In turn, such variations can lead to
large-scale changes in the atmospheric circulation, rendering spin-axis dynamics a central
issue for understanding climate. The relevant quantity for dynamically-forced climate

change is the rate of chaotic diffusion. Accordingly, here we reexamine the spin-axis
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evolution of a Moonless Earth within the context of a simplified perturbative framework.
We present analytical estimates of the characteristic Lyapunov coefficient as well as the
chaotic diffusion rate and demonstrate that even in absence of the Moon, the stochastic
change in the Earth’s obliquity is sufficiently slow to not preclude long-term habitability.
Our calculations are consistent with published numerical experiments and illustrate the

putative system’s underlying dynamical structure in a simple and intuitive manner.

6.1 Introduction

With the exception of Venus and Mercury, all planets in our solar system have satellites.
However, satellites that comprise a high mass ratio are apparently not very common. In
the solar system, the Earth-Moon system is the only planet (not counting Pluto-Charon)
where my;/mg is not negligible. Moreover, no compelling evidence has been found for

exomoons around the observed exoplanets (Kipping et al. 2013a,b).

The existence of satellites with high mass ratios may play a significant role in
stabilizing the planet’s obliquity. For instance, the Earth’s obliquity is currently stable.
However, if the Moon were removed, the Earth’s obliquity would undergo chaotic
variations (Laskar et al. 1993; Neron de Surgy & Laskar 1997; Lissauer et al. 2012).
Mars’s satellites comprise a negligible fraction of Mars’ mass, and Martian obliquity is
thought to have been chaotic throughout the solar system’s lifetime (Ward 1973; Touma

& Wisdom 1993; Laskar & Robutel 1993).

The stability of the obliquity is very important for climate variations, as obliquity

changes affect the latitudinal distribution of solar radiation. For the case of Mars (an
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ocean-free atmosphere-ice-regolith system), the obliquity changes apparently result in
drastic variations of atmospheric pressure by runaway sublimation of C'Oy ice (Toon
et al. 1980; Fanale et al. 1982; Pollack & Toon 1982; Francois et al. 1990; Nakamura
& Tajika 2003; Soto et al. 2012). For Earth-like planets (planets partially covered by
oceans) the change of climate depends on the specific land-sea distribution and on the
position within the habitable zone around the star. In other words, while it is debatable
whether the variation in obliquity truly renders a planet inhabitable, it is clear that
the climate can change drastically as the obliquity varies (Williams & Kasting 1997;

Chandler & Sohl 2000; Jenkins 2000; Spiegel et al. 2009).

Although spin-axis chaos for a Moon-less Earth is well established, the rate of
chaotic diffusion appears to be inhomogeneous in the chaotic layer. To this end, Laskar
et al. (1993) used frequency map analysis and noted that Earth obliquity may exhibit
large variations (ranging from 0 degree to about 85 degree), if there were no Moon.
However, recently Lissauer et al. (2012) used direct integration and showed that the
obliquity of a moonless Earth remains within a constrained range between —2 Gyr
to 2 Gyr, and concluded that the chaotic variations of the Earth’s obliquity and the
associated climatic variations are not catastrophic. This finding is in fact consistent with
the frequency map analysis of Laskar et al. (1993). Moreover, even prior to the direct
numerical integration, Neron de Surgy & Laskar (1997) has already pointed out that
rapid chaotic variation have a restricted range. Interestingly, a similar analysis applies
to the obliquity evolution of Mars (Laskar et al. 2004). Stated more simply, it is not
only important to understand if the obliquity undergoes chaotic variations but also to
understand how rapidly such variations occur, to obtain a handle on the climatic changes

that govern the habitability of a given planet. Our goal here is to describe a framework
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for such an analysis. We adopt a perturbative approach to the problem, and calculate
the characteristic Lyapunov timescale and the diffusion coefficient of the obliquity. With
the Lyapunov timescale and the diffusion coefficient, one can estimate the range of the
obliquity the planet may reach in a given time, and inform the climate change of the

planet.

Our paper is structured as follows. In section 2, we delineate the perturbative
model and lay out the inherent assumptions. In section 3, we calculate the diffusive
properties of the system and compare our analytical estimates to numerical simulations.

We conclude and discuss the implications of our results in section 4.

6.2 A Simplified Perturbative Model

As the primary goal of this work is to obtain analytical estimates of the relevant
timescales for chaotic diffusion, we begin by considering a simplified description of the

system.

Without the Moon, the Earth’s obliquity is found to be chaotic in the range 0 — 85°
, where there are two large chaotic regions: 0° — 45° & 65° — 85°. There also exists a
moderately chaotic bridge that connects the two regions: 45° — 65° (Laskar et al. 1993;
Morbidelli 2002). The dynamical analysis is simpler in the large chaotic regions. Thus,

we treat them first.
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6.2.1 Large Chaotic Regions: 0° — 45° & 65° — 85°

The Hamiltonian describing the evolution of planetary obliquity is well documented in
the literature (e.g. Colombo (1966); Laskar & Robutel (1993); Touma & Wisdom (1993);

Neron de Surgy & Laskar (1997)):

1
H(xv,t) = gax”+ V1 =x* x (A(t) sin¢ + B(t) cos ), (6.1)
where 1 is the longitude of the spin-axis, y = cose, € is the obliquity, and « is an

approximately constant parameter. Specifically,

o =

(1~ 3 sin? iM)] Eq, (6.2)

3G [ me M
( 2

= +
2w lap/1—€2)%  (apy/1—€3))

where mg is the mass of the Sun, ag and es are the semi major axis and the eccentricity
of the Earth’s orbit, m,, is the mass of the moon, a,;, ) and iy, are the semi major axis,
eccentricity and inclination of the Moon’s orbit around the Earth, F,; is the dynamical
ellipticity of Earth, and w is the spin of the Earth. o characterizes the intrinsic precession
of the Earth’s spin axis, and is obtained by averaging the torques from the Sun and
Moon over their respective orbits. For a moonless Earth, a = 0.0001yr~! (Neron de

Surgy & Laskar 1997). In addition,

A(t) = 2(¢ + plgp — pg))/ V1 —p* — ¢, (6.3)
B(t) =2(p — qlep — pd)/ V1 — P> — ¢, (6.4)
where p = sini/2 sin{2 and ¢ = sini/2 cos(2, ¢ is the inclination of the Earth with

respect to the fixed ecliptic and 2 is the longitude of the node.

The inclination and the longitude of node of the Earth change as the other planets

in the solar system perturb the Earth’s orbit. The evolution of ¢ and {2 can be obtained
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by direct numerical integration or in the low-e,i regime via perturbative methods such
as the Lagrange-Laplace secular theory. Specifically, within the context of the latter, a

periodic solution represented by a superposition of linear modes can be obtained.

icos{) = sz cos (sgt + Vi), (6.5)

isinQ = sz sin (skt + x)- (6.6)

The amplitudes and the frequencies of the modes have been computed in classic
works (Le Verrier 1855; Brouwer & van Woerkom 1950). We use the latest update of

these values from Laskar (1990).

In adopting equations (6.5) and (6.6) as a description of the Earths inclination
dynamics, we force the disturbing function in Hamiltonian (1) to be strictly periodic.
In fact, it is well known that the orbital evolution of the terrestrial planets is chaotic
with a characteristic Lyapunov time of ~ 5Myr (Laskar 1989; Sussman & Wisdom
1992). Consequently, our model does not account for the stochastic forcing of the
obliquity by the diffusion of the Earths inclination vector (see Laskar et al. 1993). Such
a simplification is only appropriate for systems where the intrinsic Chirikov diffusion is
faster than that associated with the disturbing function. As will be shown below, the

assumption holds for the system at hand.

As already mentioned above, in absence of the Moon, rapid chaos spans two
well-separated regions, which are joined by a weakly chaotic bridge (Laskar et al. 1993).
In each of the highly chaotic regions, irregularity arises from overlap of a distinct pair

of secular resonances (see Chirikov (1979)). As shown in Figure (6.1), the overlap of s

181



CHAPTER 6. ON THE SPIN-AXIS DYNAMICS OF A MOONLESS EARTH

and sy causes the chaotic region in € ~ 65 — 85° (“C2”) and the overlap of s3 and s4
causes the chaotic region in € ~ 0° — 45° (“C1”). Including only the terms associated
with these four frequencies in Hamiltonian (7.2), the chaotic region of ¢ ~ 02 — 85° can
be well reproduced (Morbidelli 2002). Accordingly in the following analysis, we retain
only the four essential modes to analyze the two chaotic regions and the “bridge” that

connects them sequentially.
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Figure 6.1: The minimum/mean/maximum of the obliquity reached in 18Myr as a
function of the initial obliquity. The grey lines represent the results including all the
frequencies, the black lines represent the results including s, so, s3 and sy, the red lines
represent the results including s; and s5, and the blue lines represent the results including
s3 and s4. The four frequencies reproduces the results including all the frequencies.
Between g9 ~ 65° — 85° and ~ 0° — 45°, the chaotic behavior of obliquity is caused by s;
and so, and s3 and s4 separately. Between 45° — 65°, the evolution of the obliquity is also
not regular, and is caused by a nonlinear coupling among the resonant doublets (s; 2 and

83’4).

Substituting the expansion for icos() and isin{) and keeping only the four
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frequencies (s1_4), we can rewrite the Hamiltonian as

4
«
Heo(x,,t) = §X2 +ev/1—x? X Zak cos (syt + Oy + 1), (6.7)
k=1

where € = 1077, a = 0.0001yr~!. The other parameters are included in table (6.1). An

identical derivation is followed in Laskar (1996).

Within “C1” and “C2”, the chaotic variations are not sufficiently large to induce
overwhelming variations in \/1—7X2 . To leading order, it can be assumed to be constant,
and we evaluate it at the center of the chaotic regions (specifically xo; = 20° for “C1”
and xo2 = 70° for “C2”). In doing so, we deform the topology of the domain inherent
to Hamiltonian (7) from a sphere to a cylinder. While not appropriate in general,
such an operation is justified for the system at hand because both “C1” and “C2”
individually occupy a limited obliquity range (see Appendix for additional discussion).
Then, the Hamiltonian obtains a simple pendulum like structure, characterized by
four forced resonances. Keeping one resonance at a time, we can plot the separatrixes
associated with each harmonic (Figure (6.2)). As noted before, the two large chaotic
zones can be understood to be the interaction of the resonant doublets s; & s, and s3

& s, separately. The region in the bridge is dominated by the secondary resonances

Table 6.1:: Parameters for the simplified Hamiltonian (6.7).

a(yr ') | s (x107°yr7Y) |0
k=1|247638 | -2.72353 -2.56678
k=2 | 293982 | -3.43236 -1.70626
k=3|15.5794 | -9.1393 1.1179
k=4 546755 | -8.6046 2.4804
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which will be described in the next section. We also note that by setting /1 — x? to a

constant, the “C1” region extends to x = cose > 1. Because here we only focus on the

qualitative dynamical behavior, the extension to the unphysical regions can be neglected.
Furthermore, we notice that there is a gap between the second order resonances and the
“C2” region. This gap is likely also an artifact that arises from setting M = const.,
as this assumption leads to a deformation of the resonant structure. Since the dynamical
behavior in the bridge is well characterized by a second-order truncation of the averaged

Hamiltonian, we do not extend our analysis to the higher orders.
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Figure 6.2: The overlap of primary and secondary resonances. The red lines represent
the resonances of s; and sy, while the blue lines represent the resonances of s3 and sy.
The purple lines represent the second order resonances in the bridge.

Keeping s34 or s; 2 only, we can adequately reproduce the large chaotic regions “C1”

and “C2”. Thus, we obtain simplified Hamiltonians for “C1” and “C2” separately.
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[0
Hei(x,,t) = §x2 +ey/1— x5, (6.8)

X (agcos (s3t + 03 4+ 1) + ag cos (s4t + dg + 1)),

(0%
Hoolxt) = Sx*+ey/1=xd (6.9)

X (aq cos (s1t 4 61 + 1) + ag cos (sot + 92 + 1)),

where the parameters can be found in table (6.1).

6.2.2 Bridge Region: 45° — 65°

In case of the Earth, if the obliquity were to be confined to either large chaotic domain,
the climatic variability could in principle be relatively small. However, the analysis
of Laskar et al. (1993) shows that transport between the two regions is possible. To
understand the migration between the two chaotic zones, one needs to understand the
dynamics in the bridge zone between 45° — 65°. As the bridge zone is a region between
the two doublet resonant domains, it is likely that the diffusion is driven by secondary,
rather than primary resonances. In this section, we present the simplified Hamiltonian

governing the dynamical behavior in the bridge.

In order to obtain an analytical description of the resonant harmonics in the bridge,
we must generate them by averaging over the primary harmonics. In particular, here
we do so by utilizing the Poincare-Von Ziepel perturbation method (Goldstein 1950;

Lichtenberg & Lieberman 1983). Consider a canonical transformation that arises from
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a type-2 generation function G(®,,t), & = x — 6¢’ o =+ egg Upon direct

substitution, we obtain:

Hp(®,0,t) = %@2—1—6 [2<§> —i—Zsm st—l—gb) ] O(e%), (6.10)

where

G(®, 1) = H“ v za_;f . ( (6.11)

— Za dsin(tp + sit + ;)a Za 2sin(y + sit + 6;)ais;
J#i
Z a®sin(y + s;t + 0;)a;s;5; — Z sin(¢) + s;t + 6i)aisjslsm>.
i Jmei

As before, we set @ to a constant (at ® = cos(50°)) in the second term and rewrite

the Hamiltonian as:

Hp(®,0,t) = %@2 + € ( Z by cos (s it + 02k + 2¢)>, (6.12)
k

where 55, is the sum of any two of the first order resonance frequencies s;_4. Note that
because the bridge region is even more tightly confined in obliquity than either “C1” or

“C27, it is sensible to ignore the variations in ® in the second term.

Considering each resonant term in isolation, the Hamiltonian resembles that of a
simple pendulum. Plotting the separatrix of the Hamiltonian for each term, we find that
there are four second order resonances in the bridge region (as shown in Figure (6.2)).
Two of the resonances reside in extreme proximity to each-other and only give rise to
modulational diffusion that is much slower than that arising from marginally overlapped

harmonics (Lichtenberg & Lieberman 1983). Consequently, we can approximate the
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Hamiltonian in the bridge by three overlapping resonances. Thus, the simplified

Hamiltonian for the bridge is:
N 3
Hp(®,0,t) = Eqﬂ +> b cos (saut + Oo + 29), (6.13)
k=1
where the parameters can be found the table (6.2).

Table 6.2:: Parameters for the simplified Hamiltonian (6.13).

b (yr=h) [ s (yr7) 0

k=1 | 789482. | s; + s3 = —0.000118628 | -1.69271

k=2 | 755727. | 51 + s4 = —0.000113281 | -3.05521

k=3 | 364558. | s2 + s3 = —0.000125717 | -2.55324

6.3 Results

6.3.1 Analytical Estimates

With simplified expressions for the Hamiltonians in each charscteristic region delineated,
we can estimate quantities relevant to the extent of the motion’s irregularity (specifically,
the Lyapunov exponent and the action-diffusion coefficient) following Chirikov (1979),

with the method discussed in the Appendix.

Briefly, for a simple asymmetrically modulated pendulum:

Hp(p,.1) = 7 + clcos + cos(a + wpt)) (6.14)

where there are two resonant regions separated by wpg/ in action. The libration

frequency associated with the stable equilibria of either resonance is w; = v/c3, which is
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identical (in magnitude) to the unstable eigenvalue of the separatrix. Moreover, the half

width of the resonance, A, can be calculated as A = 24/¢/p.

When the resonances are closely overlapped (e.g. in region “C17, “C2"), the
Lyapunov exponent () is roughly the breathing frequency: vp = wg/(27). Meanwhile,
in the marginally overlapped case (“bridge”), it amounts to roughly 2v;, = 2w /(27). In

other words,

1 v (wp/B < A)
A~ E;}_L ~ (6.15)
T
2VL (WB/B ~ 2A)7
where K = %/ﬁ = 22’—; is a stochasticity parameter, which characterizes the extent of

resonance overlap. Note that when wp < A, %‘;—f; = vg/2. We adopt A ~ vg based on
the results from the Appendix in the following calculation. The empirical factor of 2

does not affect our results on the qualitative behavior of the system.

Accordingly, the quasi-linear diffusion coefficient (D) can be estimated as A’vp
when the resonances are closely overlapped, and as A?v;, when the resonances are farther
apart (Murray et al. 1985), although better estimates can be obtained in adiabatic

systems (Cary et al. 1986; Bruhwiler & Cary 1989; Henrard & Morbidelli 1993):

A? A
Do) B nlf=s) (6.16)

AQI/L (wB/B ~ QA)

Taking the simplified Hamiltonian (6.8) and following Murray & Holman (1997),
we approximate the two resonances as having the same widths (which quantitatively

amount to the average width). Upon making this approximation, we get:
~ o
Hea(x,0,t) = §X2 + €l (cos(sst + 03 + 1) + cos (sat + 04 + 1)). (6.17)
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As noted earlier, e = 1077, o = 0.0001yr™!, 54 — s53 = 5 x 10~ %yr~ !, @; = 3.6yr 1.

Because the two resonances are closely overlapped (as shown in Figure (6.2)), the
Lyapunov exponent can be estimated as the breathing frequency: vg = (s4 — s3)/2/7 ~
1075yr~t.  Accordingly, the diffusion coefficient (D) is A%vg ~ 1078yr~!, where
A =2 /ea/a is the half width of the resonant region. With the diffusion coefficient, we
can estimate the time needed to cross the two chaotic zones and the bridge: ¢t ~ dx?/D.

Specifically, taking dx = cos 0° — cos45°, to1 ~ 7.5 Myr.

Next, we consider zone “C2” (equation (6.9)). After approximating the two

resonances as having the same width, we rewrite the Hamiltonian as

fICQ(X, Pt) = %X2 + eas(cos(s1t + 61 + 1) + cos(sat + 09 + 1)), (6.18)

where o = 0.0001yr™%, € = 1077, Gy = 2.5y17!, 51 — 59 = 7 x 10 Cyr~1.

1

Similarly to zone “C1”, the Lyapunov exponent can be estimated as vg ~ 10~ %yr—1,

because the two resonance are closely overlapped. The diffusion coefficient thus evaluates
to D = A%vp ~ 1078yr~!. Finally, the time to cross “C2” can be estimated as

tcz ~ 5X2/D ~ 10 Myl".

Finally, for the bridge zone, we can approximate the simplified Hamiltonian in

equation (6.13) as a resonance triplet with the same width:
~ (8% 2

+  €ag(cos(sg1t + Ga1 + 2¢) + cos (8g.at + Ga9 + 2¢) + cos (sg,3t + da3 + 20)),
where o = 0.0001yr~!, e = 1077, a3 = 664633yr~!, §, = 6.21769 x 1075,

Because the resonances are not closely overlapped as shown in Figure (6.2), the

Lyapunov exponent can be estimated as 2wy, /(27), where the libration frequency is
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wr, = v/2a(e?a) (the angle is 2¢ instead of ¢). Thus, the Lyapunov exponent is roughly
~ 3.7x 107 "yr~!. Then the diffusion coefficient can be estimated as A%y ~ 5x 10~ yr—1

Y

and tyrigge ~ 2 Gyr.

The stark differences in the estimates of the crossing times obtained above place
the results of Lissauer et al. (2012) into a broader context. That is, our calculations
explicate the fact that the long-term confinement of the obliquity to either the “C1” or
the “C2” regions observed in direct numerical simulations arises from the distinction
in the underlying resonances that drive chaotic evolution. Because the diffusion in the
bridge is facilitated by secondary resonances, it is considerably slower, allowing the

stochastic variation in obliquity to remain limited.

6.3.2 Numerical Results

To validate the analytical results, we numerically estimate the Lyapunov exponent. We
follow the method discussed in Ch. 5 of Morbidelli (2002). Specifically, we linearize the
Hamiltonian and evolve the difference (d;45(¢)) of two initially nearby trajectories in

phase space. The initial separation is set to 107¢. The Lyapunov exponent is calculated

as:

. 1 5tra'(t)
= lim - In /£, 2
A fim = n(Stmj(O) (6.20)

We start our runs with different initial obliquity to probe the different chaotic/regular
regions. We check the convergence of our results using two different running times
(t = 500 Myr and t = 1 Gyr). In the regular regions, the Lyapunov exponent approaches

zero, and is limited only by the integration time. As shown in Figure (6.3), the Lyapunov
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exponents in the two large chaotic zones are A\oq ~ Aca ~ 107 5yr™

exponents in the bridge zone is Apigge ~ 5 X 10~ Tyr L.
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Figure 6.3: The numerical result of the Lyapunov exponent and the diffusion coefficient

with different initial obliquity. Left panel: the Lyapunov exponent. The red circles rep-

resent the Lyapunov exponent calculated for ¢ = 500 Myr, and the blue crosses represent

that calculated for ¢t = 1 Gyr. The Lyapunov exponent converges in the chaotic region for

the different running times and in the regular region the Lyapunov exponent approaches

zero as the running time increases. Right panel: the diffusion coefficient estimated by

taking averages over bins of 0.5 Myr before taking the difference in y. The diffusion
coefficient in the bridge is much smaller than that in the chaotic zones. The dashed lines

in the two panels are the results using the analytical method.

Then, we follow the numerical method discussed in Chirikov (1979) to calculate the

diffusion coefficient. Specifically, to eliminate the oscillations caused by the libration

of the resonances, we average x in bins with the same bin size 6t. Then, we take the

difference (dx) between neighboring bins. The diffusion coefficient is estimated by

averaging dx?/dt. The bin size 6¢ needs to be bigger than the libration period of the
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resonances but smaller than the saturation timescale in the chaotic zone and the bridge.
Here, we set 0t = 0.5 Myr, and run the simulation for 500 Myr. The results are plotted
in the right panel of Figure (6.3). Unsurprisingly, the diffusion coefficient is much smaller

in the bridge than that in the chaotic zones.

We compare the analytical results with the numerical estimation. In Figure (6.3),
the analytical results are represented by black dashed lines. Roughly, the analytical
results are consistent with the numerical results. To further elucidate the qualitative
agreement, we integrated the full Hamiltonian (equation (7.2)) and the resulting

evolutionary sequences are shown in Figure (6.4).
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Figure 6.4: The evolution of the obliquity as a function of time by integrating the full
secular Hamiltonian numerically (equation (7.2)). The different panels represent different
initial obliquities: from top to bottom: g9 = 10°, g9 = 30°, g9 = 50°, g9 = 70°. g9 = 90°.
1o = 0 for all the panels.

Note that the time to cross “C1” and “C2” are about ~few Myr, and the time to
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cross the bridge is much longer: 2 Gyr. This is fully consistent with our analytical
arguments. Furthermore, as already mentioned above our results are consistent with
Lissauer et al. (2012), who noticed that the Earth’s obliquity is constrained in “C1”
within —2 Gyr to 2 Gyr. Although the diffusion time we calculated for the bridge is
~ 2 Gyr, the diffusion time only roughly characterizes the timescale it takes to cross the
bridge, and the exact crossing time depends on the specific initial condition. Thus, as 2
Gyr is on the similar timescale of the integration time used in Lissauer et al. (2012), it is
probable that the obliquity would reach “C2” if the integration time in their simulations

were to be increased.

6.4 Conclusion

Without the Moon, Earth’s obliquity is chaotic, however, the rate at which the system
explores the irregular phase space is not evident a-priori (Laskar et al. 1993; Lissauer
et al. 2012). In other words, the characteristic range over which the obliquity varies
in a given time-frame depends sensitively on the exact architecture of the underlying
resonances that drive chaotic motion. Here, we utilized canonical perturbation theory
to estimate the Lyapunov exponent and the diffusion coefficient which characterize the
chaotic rate of the change of the obliquity. Our calculations were performed within
the context of a perturbative approach which yields a simple model, which in turn

illuminates the underlying structure of the dynamics in a direct and intuitive way.

In order to obtain a qualitatively tractable description of the system, we simplified
the Hamiltonian to a restricted sum of single pendulums, and followed Chirikov (1979)

to estimate the characteristic timescales. Subsequently, we validated the analytical
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results by calculating the Lyapunov exponent and diffusion coefficient numerically and
by integrating the full Hamiltonian in the secular approximation. We found broad
agreement between the analytical and numerical results. Particularly, there are three
distinct regions where the obliquity exhibits chaotic variations. Rapid chaos is observed
between 0 — 45° and 65 — 85°, while a mildly chaotic bridge connects the two regions.
Our estimates suggest that the time to cross the “bridge” is ~ 2 Gyr, much longer than

the time to cross the two large chaotic zones. This is consistent with the findings of

Lissauer et al. (2012).

With the envelope of the exoplanetary detection edging ever closer to the discovery
of numerous Earth-like planets®, the spin-axis dynamics of a Moonless Earth presents
itself as an important paradigm for the assessment of the potential climate variations
on such objects. Indeed, it is tempting to apply a framework such as that outlined
in this work to an array of multi-transiting planetary systems, for which the masses
and orbital parameters are well established. Unfortunately, results stemming from
such an exercise would be under-informed by a lack of observational constraints on
the physical properties of the individual planets such as spin rates and dynamical
ellipticities. Consequently, endeavors of this sort must await substantial breakthroughs
in observational characterization. Nevertheless, the implications of the present study for
the emerging extrasolar planetary aggregate are clear: an absence of a high-mass ratio
Moon should not be viewed as suggestive of extreme climate variations. That is, even for
a Moonless Earth-like planet, residing in a stochastic spin-axis state, the characteristic

chaotic diffusion rate may sufficiently slow to not limit long-term habitability.

*To date, the recently completed Kepler mission has detected four super-Earths (namely Keper-

22b,62e,62f,69¢) in the habitable zone (Borucki et al. 2012, 2013; Barclay et al. 2013).
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6.6 Appendix

6.6.1 Dynamics of the Unsimplified Hamiltonian

In our simplified perturbative model, we set /1 — x? to be a constant in the Hamiltonian
(equation (6.7)) in order to treat this system as a modulated pendulum. Here, we justify
this approach by showing that the dynamics with the original Hamiltonian can be well

approximated by the simplified version with /1 — x? set to be a constant.

Considering each forcing term with frequency s; at a time, we can plot the critical
curve of the trajectories. We show the four critical curves with the different frequency

sk in Figure 6.5. Since most of the forcing terms have librating region far from x = 1,
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the separatrixes are not greatly distorted and are essentially analogous to that with
\/1—7X2 constant in Figure 6.2. Because the interaction of the resonant (librating)
regions give rise to the dynamical structure of this system, the corresponding overlaps
of the separatrixes demonstrate that the dynamics of the original Hamiltonian can be

captured by the simplified Hamiltonian.

1 T T T T
0.6r B
N
0.2r B
% 1 2 3 a 5 6

Figure 6.5: The separatrix of the un-simplified Hamiltonian with each frequency sj. It
is analogous to that in Figure 6.2, justifying our approaching with /1 — x? set to be a
constant.

6.6.2 Double Resonances and Triple Resonances

As explained in the main text, the chaotic zones and the bridge can be approximated
as two or three overlapping resonances with equal widths. Here, we demonstrate an
analytical way to calculate the Lyapunov exponent and the diffusion coefficient for the
double or triple resonances with the same resonant widths. This analytical method can

be applied for resonant doublets or triplets with equal widths in general.
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For the double resonances, the Hamiltonian can be written as:
_B s
Hp(p,q,t) = 5p” + c(cos ¢ + cos(q — wpt)) (6.21)

where wpg is the frequency difference between the two resonances. The half width of each
resonant region is A = 24/¢/f3, and the libration frequency of each resonant region is
wr, = v/cB. To illustrate the behavior of this Hamiltonian, in Figure (6.6), we plot the
surface of section starting from point p = 1.5, ¢ = 1 with the total run time ¢t = 1000,
where we measure time in units of 1/4/cf and action in units of \/C/_B . As wp decreases,

the two resonances are more overlapped.
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Figure 6.6: The analytical models for the double resonances. Left panel: the surface
of section of the double resonances with different overlaps starting with ¢ = 1, p = 1.5.
Middle panel: the numerical and the analytical estimates of the Lyapunov exponent with
different overlaps. Right panel: the numerical and analytical estimates of the diffusion
coefficient with different overlaps.

Next, we estimate the Lyapunov exponent of the double resonances numerically.
Following the method discussed in (Morbidelli 2002), we linearized the hamiltonian Hp
to evolve the difference of two trajectories. We start the integration at p = 1.5, ¢ =1
arbitrarily, and calculate the Lyapunov exponent as %ln %, where we set ¢ = 1000 for

our integration. We plot the numerical result in the middle panel of Figure (6.6) with
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the blue line. To compare with the characteristic frequencies in this system, we over

plotted vp = wp/2m and v, = w /27.

We notice that when the resonances are closely overlapped wp < 2, the Lyapunov
exponent can be approximated as vg. When the resonances are less overlapped but still
attached 2 < wp < 4, the Lyapunov exponent is approximately constant (~ 2wy ). When
the resonances are more separated, the Lyapunov exponent falls as the system becomes

more regular.

Then, we calculate the diffusion coefficient numerically. To average over the
oscillations due to the libration behavior, we take the difference in dp at t = n/vg, n € Z,
and estimate the diffusion coefficient as (dp?vp). The result is plotted in the right panel

in Figure (6.6) with the blue line.

Comparing with the characteristic timescale of the system, we find that the when
the two resonant regions are closely overlapped (wp < 2), the diffusion coefficient can
be well estimated as A%vp. When the two resonant regions are separated more apart,
the diffusion coefficient drops as the system becomes more regular. When wp = 4, the

diffusion coefficient is approximately ~ A2y;.

Similarly, for the triple resonances, we use the following simplified Hamiltonian:
_B
Hr(p.q,t) = 5p° + c(cos g + cos(q — wpt) + cos(q + wpt)) (6.22)
Using trigonometric identities, this Hamiltonian can be rewritten as

Hr(p,q,t) = gpQ + ¢(1 4+ 2cos(wpt)) cosq (6.23)

Thus, Hr can be understood as a “breathing” resonance whose width is changing with

frequency v (Morbidelli 2002). We plot the overlap of the resonances in the left panel
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of Figure (6.7).
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Figure 6.7: The analytical models for the triple resonances analogous to the bridge
zone. Left panel: the surface of section of the double resonances with different overlaps
starting with ¢ = 1, p = 1.5. Middle panel: the numerical and the analytical estimates of
the Lyapunov exponent with different overlaps. Right panel: the numerical and analytical
estimates of the diffusion coefficient with different overlaps.

We numerically calculated the Lyapunov exponent and the diffusion coefficient with
the method described for the double resonances. We find that similar to the double
resonances, the Lyapunov exponent can be well estimated as vg when wg < 2, as ~ 2v,
when 2 < wp < 4 and drops when wpg > 4. For the diffusion coefficient, we find that it
can be estimated as A?vp for wp < 2 and it drops for wg > 2. At wp ~ 4, it can be

estimated as A%v;.
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Chapter 7

Pre-LHB Evolution of the Earth’s

Obliquity

This thesis chapter originally appeared in the literature as

Li, G. & Batygin, K. Pre-LHB Evolution of the Earth’s Obliquity,
The Astrophysical Journal, 795, 67, 2014

Abstract

The Earth’s obliquity is stabilized by the Moon, which facilitates a rapid precession of
the Earth’s spin-axis, de-tuning the system away from resonance with orbital modulation.
It is however, likely that the architecture of the Solar System underwent a dynamical
instability-driven transformation, where the primordial configuration was more compact.
Hence, the characteristic frequencies associated with orbital perturbations were likely

faster in the past, potentially allowing for secular resonant encounters. In this work
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we examine if at any point in the Earth’s evolutionary history, the obliquity varied

significantly. Our calculations suggest that even though the orbital perturbations were
different, the system nevertheless avoided resonant encounters throughout its evolution.
This indicates that the Earth obtained its current obliquity during the formation of the

Moon.

7.1 Introduction

Obliquity variation plays a major role in the modulation of climate, as it determines the
latitudinal distribution of solar radiation. For instance, according to the Milankovitch
theory, the ice ages on the Earth are closely associated with the variation in insolation
at high latitudes, which depends on the orbital eccentricity and orientation of the spin

axis (e.g. Weertman 1976; Hays et al. 1976; Imbrie 1982).

The spin-axis dynamics of the Earth-Moon system has been extensively studied in
the literature and is generally well understood. At present, the obliquity variation of the
Earth is regular and only undergoes small oscillations between 22.1° and 24.5° with a
41000 year period (e.g. Vernekar 1972; Laskar & Robutel 1993). Without the Moon, the
obliquity of the hypothetical Earth is chaotic, but is constrained between 0 — 45° over

billion year timescales (Laskar et al. 1993; Lissauer et al. 2012; Li & Batygin 2014a).

The difference between obliquity cycles exhibited by a Moon-less Earth and that
corresponding to the real Earth arise largely as a consequence of the underlying resonant
structure (Laskar 1996). Specifically, the spin-axis of the Earth may exhibit complex

behavior if its precession resonates with the secular evolution of the Earth’s orbit. The
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Figure 7.1: The Fourier spectrum of the Earth’s orbital parameter (ige™*®!) obtained
from an N-body simulation using the mercury6 program. The initial conditions are those
identified in Batygin & Brown (2010), which are compatible with the Nice model. Note
that the maximum high-amplitude secular frequencies corresponding to multi-resonant
conditions are ~ —18" /yr, which is similar to the current maximum secular frequency
s3 = —18.8512" /yr. The maximum high-amplitude secular frequencies are within the
same order of magnitude for the three cases.

former is dominantly controlled by Solar and Lunar torques, whereas the latter is forced
by long-period planet-planet interactions. In absence of the Moon, the Earth would
indeed find itself residing within a multi-resonant domain signaling chaotic motion
(Chirikov 1979; Laskar et al. 1993). The introduction of the Moon, however, accelerates
the precession of the spin-axes, and detunes the system away from resonance yielding

quasi-periodic evolution (Neron de Surgy & Laskar 1997).

The aforementioned real vs Moon-less Earth discussion leaves open the question of
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how the dynamical state of the spin-axis may have responded to changes in the orbital
architecture. After all, if the Earth’s orbital evolution was once characterized by more
rapid secular evolution, past resonant behavior of the spin-axis cannot be ruled out
a-priori. Indeed for the case of Mars, the study of Brasser & Walsh (2011) has shown
that the orbital rearrangement of the Solar System has led to a qualitative change
in the dynamical behavior of the spin-axis. Hence, it is possible that in the history
of the Earth-Moon system, the obliquity variation of the Earth was once significant.
Correspondingly, understanding the past variation of the obliquity shines light on how

the Earth obtained its current spin-orbit misalignment.

Substantial progress has been made towards the characterization of the early
dynamical evolution of the Solar System through the development of the Nice model.
Qualitatively, the picture envisioned within the context of the Nice model is one where
the giant planets start out on a compact orbital configuration and following a transient
instability scatter onto their current orbits (Tsiganis et al. 2005; Levison et al. 2011;
Nesvorny 2011; Batygin 2012; Nesvorny & Morbidelli 2012). The numerous successes
of the Nice model include a replication of the dynamical architecture of the outer Solar
System (Morbidelli et al. 2009), the inner solar system (Brasser et al. 2009; Agnor
& Lin 2012), the formation of the Kuiper belt (Levison et al. 2008; Batygin et al.
2011), the chaotic capture of Jupiter and Neptune trojan populations (Morbidelli et al.
2005; Nesvorny et al. 2007) as well as its role as a trigger mechanism for late heavy

bombardment (LHB) (Gomes et al. 2005).

Although the primordial state of the Solar System is not well constrained, it is likely
that the giant planets resided in a multi-resonant configuration (i.e. a condition where

each planet resides in mean motion resonances with each of its neighbors) at the time of
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Figure 7.2: The comparison of the maximal secular frequencies of the Earth correspond-
ing to various outer Solar System architectures and the forced spin-axis precession rate
of the Earth. The presented analysis shows that the precession frequency is much bigger
than the orbital frequency at low obliquity, and this indicates that there are no significant
obliquity variations in the history of the Earth-Moon system due to resonances.

nebular dispersion, as such architectures are natural outcomes of disk-driven migration
(Masset & Snellgrove 2001; Morbidelli et al. 2007). Under this assumption, a limited
number of configurations compatible with the Nice model have been identified (Batygin
& Brown 2010; Nesvorny & Morbidelli 2012). Accordingly, in this study we extend the
quantification of the Nice model by exploring the spin-axis dynamics of the Earth-Moon

system within the context of pre-instability orbital configurations.

The plan of this paper is as follows. In §2, we analyze resonant conditions, and in
83, we study the obliquity variation using numerical simulations. We summarize and

discuss our results in §4.
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7.2 Spectral Analysis

As already mentioned above, the Sun and the Moon torque the spin axis of the Earth,
and the other planets in the solar system perturb the orbit of the Earth. When the two
effects share the same frequencies, resonances arise and the spin-orbit angle (obliquity)
undergoes large amplitude variations (Colombo 1966; Ward 1973; Henrard & Murigande
1987). Furthermore, if the resonances overlap, the obliquity variation becomes chaotic
(Chirikov 1979; Laskar et al. 1993). Therefore, the obliquity variation is sensitive to the
two sets of frequencies. Accordingly, in this section, we investigate whether resonant

motion was plausible at any point in the system’s evolutionary history.

In order to obtain the dominant secular frequencies of the Earth’s orbital inclination
vector, we performed N-body integrations of the multi-resonant conditions identified
by Batygin & Brown (2010) using the mercury6 orbital integration software package
(Chambers 1999). The specific multi-resonant states onto which the giant planets were
initialized are delineated in Table (7.1). The rows labeled N1-N4 correspond to different
multi-resonant states, while the columns depict neighboring period ratios*. Table (7.2)
shows the eccentricity of the four giant planets, which are set to be in the same plane.
On the other hand, the terrestrial planets were put in the same location as where they

are currently’, motivated by the analysis of Brasser et al. (2009). We ignore the impacts

*Initial conditions where Jupiter and Saturn are locked in a second-order 5:3 resonance were not

considered due to their comparatively low capture probability (Pierens & Nelson 2008).

"We note that the angular momentum deficit of the terrestrial planet system may have been somewhat
lower in the past. However, this does not affect our analysis appreciably because to leading order, the

frequencies of the secular system are set only by the semi-major axes and masses (Murray & Dermott
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from scattered planetesimals, since their effects are negligible here. The duration of each

integration spanned 50 Myr.

The characteristic secular frequencies, obtained by Fourier analysis of the quantity
2 = ie"?, where 7 is the inclination, € is the longitude of ascending node, and 2 = /—1
are shown in Figure (1). The curves corresponding to the various multi-resonant giant
planet configurations are labeled accordingly. As shown in the figure, the maximum
frequencies with non-negligible amplitudes are around —18" /yr. This is similar to the

current maximum large-amplitude frequency (s3 = —18.8512" /yr) (Laskar 1990).

As a consequence of tidal evolution, the torque exerted on the Earth by the Moon
varies as a function of time. Specifically, as the Lunar orbit expands, the spin rate of
the Earth slows down and the torque becomes weaker. The tidal dissipation inside the
Earth and the Moon depends on the underlying rheology and is generally complicated
(see Efroimsky & Williams 2009 for a review). However, as the total angular momentum
remains constant under tidal dissipation, the torque and the spin precession frequency

caused by the Moon can be evaluated as a function of the Earth-Moon semi-major axis

1999).

Table 7.1:: Multi-resonant states.

P Jupiter - Psaturn | Psaturn @ Puranus | Puranus @ P Neptune
N1|2:3 2:3 4:5
N2|2:3 3:4 2:3
N3|2:3 3:4 3:4
N4 |1:2 3:4 3:4
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(a). The expression for the forced spin precession frequency is ¢ = acos (), where v
is the longitude of the spin-axis, ¢ is the obliquity, and « is the precession coefficient

defined as (Neron de Surgy & Laskar 1997):

3G me may

oo S APV

(1- ;siDQ iM)] E,. (7.1)

In the above expression, mg is the mass of the Sun, ag and es are the semi
major axis and the eccentricity of the Earth’s orbit, mj, is the mass of the moon,
ay = a, ey and iy, are the semi major axis, eccentricity and inclination of the Moon’s
orbit around the Earth, w is the spin of the Earth, and E; = (2C — A — B)/C is the
dynamical ellipticity of the Earth, where A, B and C are the moment of inertia in the
three principle axes. We set E; to be proportional to w?, as it arises from rotational
deformation (e.g. Murray & Dermott 1999). We plot the forced spin-axis precession rate,
zb due to both the Sun and the Moon in Figure 7.2, where the solid and the dashed
curves corresponds to null (e = 0 deg) and nearly lateral (¢ = 85 deg) obliquities. Note
that in this approach, we require the Moon to be sufficiently far away from the Earth
(a 2 15Rg) for the Moon’s orbit to precesses about the ecliptic plane. Additionally, we
over-plot the maximum orbital frequencies obtained from the N-body simulations (also

shown in Figure 7.1).

The denoted curves suggest that for all reasonable choices of parameters, the
spin-axis precession frequency has consistently exceeded the maximal secular frequencies
significantly, even though the past orbital frequencies are larger than the current ones.
Given that the current obliquity is relatively low, this indicates that the spin-axis
resonant encounters of low order are unlikely to have played an important role in the

past history of the Earth-Moon system. In other words, the Earths obliquity did not
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vary substantially throughout the Solar System’s lifetime. On the other hand, had the
Earths primordial obliquity been greater than € 2 80 deg, resonant dynamics of the

spin-axis could have been possible after a few hundred Myr of tidal evolution.

Moreover, at ~ 600 Myr, the four giant planets reach instability and quickly scatter
divergently. The onset of this transient behavior can arise from an encounter of a planet
pair with a mean motion resonance (e.g. Jupiter & Saturn’s encounter with a 2:1 or a
5:3 MMR; see Tsiganis et al. 2005; Morbidelli et al. 2007; Batygin & Brown 2010), or
from the destruction of the resonant phase-protection mechanism by interactions with
a distant self-gravitating planetesimal disk (Levison et al. 2011; Nesvorny & Morbidelli
2012). To mark the time when the instability occurs in Figure 7.2, the Earth-Moon
distance as a function of time needs to be calculated. Assuming a constant time lag
(CTL) tidal model with ¢4 = 33.18 minutes, the Earth-Moon distance at ~ 600 Myr is
marked with an orange line in Figure 7.2. The specific choice for tg;s is adopted so that

the Earth-Moon distance evolves to its current state at ~ 4.5 Gyr.

Shortly after the onset of the instability, the giant planets evolve onto their
current locations with higher eccentricities and inclinations, which damp as a result of
interactions with a massive planetesimal disk (Levison et al. 2008). Numerical integration
shows that the relevant secular frequencies when the eccentricity and inclination are
damping are similar to the current frequencies, as the frequencies are largely determined
by the semi major axes and masses alone (Murray & Dermott 1999). This suggests that

there are no large obliquity variations during the damping era either.

We note that an initial Solar System configuration that harbored more than two

ice giants beyond the orbit of Saturn is a distinct possibility within the framework of

213



CHAPTER 7. PRE-LHB EVOLUTION OF THE FARTH’S OBLIQUITY

the Nice model (Nesvorny 2011; Batygin 2012; Nesvorny & Morbidelli 2012). Although
such configurations will yield quantitatively different evolutions from the cases presented
here, the synonymity of the Fourier decompositions of the initial conditions presented
in this work (see Figure 7.1) suggest that the introduction of additional Neptune-mass
planets into the resonant chains is unlikely to alter the results significantly. Accordingly,

here we use only the four giant planet models as illustrative examples.

7.3 Numerical Integrations

The analysis performed above suggests that the obliquity does not exhibit large variations
due to the resonances as a result of Chirikov diffusion arising from secular spin-orbit
resonance overlap at low obliquities. This however does not negate the possibility of
substantial obliquity diffusion associated with stochastic pumping arising from a chaotic
orbit (Lichtenberg & Lieberman 1983). To illustrate explicitly the evolution of the
obliquity as a function of time, we numerically integrate the obliquity variation using the
Earth’s orbital evolution obtained from N-body simulations. Specifically, we evolve the
Earth’s obliquity adopting multi-resonant conditions for the giant planets (depicted in
Table 1), and taking the precession coefficient to change in accord with the Moon’s tidal
recession and the Earth’s spin-down. As before, a CTL tidal model was employed with

taiss = 33.18 minutes.

The Hamiltonian describing the evolution of the obliquity is well documented in

the literature (e.g. Colombo 1966; Laskar et al. 1993; Touma & Wisdom 1993; Neron de
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Surgy & Laskar 1997):

HOGUH) = s + /T (7.2

x  (A(t)siney + B(t) cosv))),
where x = cose, « is the precession coefficient (see eqn 7.1), and

A(t) = 2(4 + plap — pg))/ V1 —p* — ¢, (7.3)
B(t) = 2(p —q(gp — pd)) /1 — p* — ¢, (7.4)

where p = sinig /2 sin{lg and ¢ = sinig/2 cos{lg. The integrations are taken to span

600 Myr.

Starting with different initial obliquities, we plot the numerical results in Figure 7.3.
The calculations suggest that independent of the initial condition, when ¢ < 80°, the
obliquity remains nearly constant as a function of time. The obliquity varies substantially
and rapidly when 90° 2 ¢ 2 80°, because the precession frequency (a cose) matches
with the orbital perturbation frequency at later times (as shown in Figure 7.2). This is
consistent with our analysis of the resonances, indicating the effect of chaotic pumping
on the obliquity diffusion is negligible here. As noted above, this suggests that that the

Earth’s present obliquity has been preserved throughout the system’s history.

7.4 Conclusion

It is generally accepted that substantial modulation of the Earths obliquity can result in
dynamically-forced climatological changes. In turn, the variation of a planet’s obliquity

is sensitive to the precession frequency of its spin axis and its secular orbital frequencies.
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When the two sets of frequencies match, resonances may arise and the planet’s obliquity
may undergo large amplitude variations (as the case for the Moonless Earth (e.g. Laskar
et al. 1993; Li & Batygin 2014a) or for Mars (Ward 1973; Touma & Wisdom 1993;
Laskar & Robutel 1993)). Currently, the Earth’s obliquity is regular and oscillates with
a very small amplitude (22.1 — 24.5°). However, the orbital forcing of the Earth likely
underwent significant changes throughout the Solar Systems dramatic history, potentially
suggesting that the dynamical state of the Earths spin-axis may have been resonant in

the past. In this study, we have quantified this possibility.

We began our investigation by examining the feasible proximity of the pre-instability
secular modes that characterize the orbital evolution of the Earth to the precession rate of
the Earths spin-axis. To obtain the secular orbital frequencies of the Earth, we computed
the orbital evolution of the Earth, adopting Solar System orbital architectures that were
previously demonstrated to serve well as initial conditions for the Nice model by Batygin
& Brown (2010). Our analysis has shown that even under favorable assumptions, the
slow-down in the spin-axis precession frequency associated with the tidal evolution of the
Earth-Moon system as well as the increase in the forcing frequencies associated with a
more compact giant-planet configuration are insufficient to give rise to secular spin-orbit

resonant encounters in the system at low obliquities.

Subsequently, to illustrate the obliquity variation explicitly, we directly integrated
the pre-LHB spin-axis evolution of the Earth. We adopted the Earth’s orbital evolution
from the N-body simulations and calculated the precession coefficient based on the CTL
tidal dissipation model for the Earth-Moon system. The numerical results show that only
minimal oscillations in the Earths obliquity can be expected for primordial obliquities

less than € < 80 deg. Indeed, this is consistent with our qualitative analysis of spin-axis
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resonant conditions.

Cumulatively, our study shows that the dynamical perturbations arising from
the other planets are unlikely to have given rise to resonant excitations of the Earths
spin-axis at low obliquity. Moreover, chaotic pumping arising from a diffusing orbit also
leads to negligible evolution. Thus, the Earth’s obliquity likely did not vary substantially
throughout the dramatic lifetime of the Solar System, and was probably set in situ by
the giant impact associated with the formation of the Moon. This remarkable aspect
of Solar System dynamics renders the Earths obliquity one of the few truly primordial

features of the Solar System.
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Table 7.2:: Orbital properties.

€ Jupiter €Saturn €Uranus €Neptune
N1 | 0.0060 0.025 0.031 0.0083
N2 | 0.0038 0.017 0.017 0.0064
N3 | 0.0069 0.026 0.016 0.018
N4 | 0.044 0.025 0.053 0.0046

aJupiter (AU)

ASaturn (AU)

AUranus (AU)
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Figure 7.3: The obliquity as a function of time when the giant planets are in resonant
states, as presented in table (7.1). The Earth-Moon system is taken to evolve under
tidal dissipation with a constant time lag (¢4;s = 33.18 minutes). The obtained solutions
suggest that the obliquity remains constant except when it is initialized at 90° 2 € 2 80°.

219



Section II. Stars around Supermassive Black Holes

220



Chapter 8

Implications of the Eccentric
Kozai-Lidov Mechanism for Stars
Surrounding Supermassive Black

Hole Binaries

This thesis chapter has been submitted to Monthly Notices of the Royal
Astronomical Society, and originally appeared in arXiv as
Li, G., Naoz, S., Kocsis, B. & Loeb, A. Implications of
the Eccentric Kozai-Lidov Mechanism for Stars Surrounding

Supermassive Black Hole Binaries, 2015
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Abstract

An enhanced rate of stellar tidal disruption events (TDEs) may be an important
characteristic of supermassive black hole (SMBH) binaries at close separations. Here
we study the evolution of the distribution of stars around a SMBH binary due to

the eccentric Kozai-Lidov (EKL) mechanism, including octupole effects and apsidal
precession caused by the stellar mass distribution and general relativity. We identify a
region around one of the SMBHs in the binary where the EKL mechanism drives stars
to high eccentricities, which ultimately causes the stars to either scatter off the second
SMBH or get disrupted. For SMBH masses 107 M, and 108M,,, the TDE rate can reach
~ 1072 /yr and deplete a region of the stellar cusp around the secondary SMBH in ~ 0.5
Myr. As a result, the final geometry of the stellar distribution between 0.01 and 0.1 pc
around the secondary SMBH is a torus. These effects may be even more prominent in

nuclear stellar clusters hosting a supermassive and an intermediate mass black hole.

8.1 Introduction

Supermassive black holes (SMBHs) are ubiquitous at the centers of galaxies (Kormendy
& Ho 2013). Stars passing close to the SMBH can be tidally disrupted, and the fall
back of the stellar debris produces a strong electromagnetic tidal disruption flare (e.g.,
Gezari 2012). More than a dozen tidal disruption event (TDE) candidates have been
observed until present (e.g., Bade et al. 1996; Gezari et al. 2003, 2006, 2008a, 2009; van
Velzen et al. 2011; Gezari et al. 2012; Holoien et al. 2014), including two candidates with

relativistic jets (Levan et al. 2011; Bloom et al. 2011; Zauderer et al. 2011; Cenko et al.
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2012). TDEs can provide valuable information on dormant SMBHs, which are otherwise

difficult to detect.

The rate of the TDEs provide information about the SMBH and the stellar
distribution in the center of galaxies (Stone & Metzger 2014). The rate of TDEs is highly
uncertain observationally due to the small sample size. It is estimated to be in the range
of 107° — 10~ per galaxy per year by Donley et al. (2002); Gezari et al. (2008a); Maksym
(2012); van Velzen & Farrar (2014). This roughly agrees with the theoretical estimates,
discussed by Frank & Rees (1976); Lightman & Shapiro (1977); Cohn & Kulsrud (1978);
Magorrian & Tremaine (1999); Wang & Merritt (2004); Brockamp et al. (2011); Stone
& Metzger (2014). However, the TDE rate may be enhanced due to the presence of
a non-axisymmetric gravitational potential around the SMBH (Merritt & Poon 2004),
or due to a massive perturber (Perets et al. 2007). In addition, the TDE rate may be
higher in galaxies with more than one SMBH (Ivanov et al. 2005; Chen et al. 2009, 2011,
Wegg & Bode 2011), or when the SMBH binary (SMBHB) recoils due to the emission
of gravitational waves (Stone & Loeb 2011a; Li et al. 2012; Stone & Loeb 2012). Some
TDEs may not appear as flares and therefore be missed in observations(Guillochon &

Ramirez-Ruiz 2015).

In this paper, we focus on the impact of SMBHB on the surrounding distribution
of stars through hierarchical three body interactions. The outer SMBH perturbs the
stellar population around the inner* SMBH, and leads to long-term variations in the

eccentricities and inclinations of the stellar orbits while keeping the semimajor axes

*We consider stars that initially orbit the “inner” SMBH and whose orbits are perturbed by the

“outer” SMBH regardless of which SMBH is more massive.
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of their orbits fixed. In particular, when the orbit of the SMBH secondary is circular
and if the mutual inclination between the orbits of the SMBHB and a star is over
40°, the stellar eccentricity and inclination undergo periodic oscillations, known as the
quadrupole Kozai-Lidov mechanism (Kozai 1962; Lidov 1962). This is caused by the
long-term (orbit-averaged) Newtonian gravitational effect expanded in multipoles to the
quadrupole order, i.e. second order in the semimajor axis ratio of the stellar and the
outer SMBH’s orbit. More generally, it has been found that when the outer orbit is
eccentric, the analogous octupole eccentric Kozai-Lidov mechanism (EKL, third order
in semi major axis ratio) causes the eccentricity to be excited very close to unity and
the inner orbit to flip from prograde to retrograde or vice versa (Naoz et al. 2011; Katz
et al. 2011; Lithwick & Naoz 2011; Naoz et al. 2013a,b; Li et al. 2014a; Li et al. 2014b).
The TDE rate has been discussed in the literature for stars orbiting an SMBHB, where
the quadrupole Kozai-Lidov mechanism can enhance the tidal disruption rate (Ivanov
et al. 2005; Chen et al. 2009, 2011; Wegg & Bode 2011). For the Galactic Center,
the Kozai-Lidov mechanism driven by the stellar disk has also been discussed and the
additional effects of Newtonian apsidal precession were shown to play a significant role
(Chang 2009). In light of recent developments in the understanding of hierarchical three
body interactions we revisit this problem. Since the stellar eccentricity can be increased
to a value much closer to unity by eccentric perturbers, we expect the EKL mechanism
to enhance TDE rates with respect to the circular case. We therefore seek to re-evaluate

the total number of stars vulnerable to TDE due to EKL.

It is well known that apsidal precession quenches the EKL mechanism (e.g., Ford
et al. 2000; Blaes et al. 2002; Naoz et al. 2013b). In galactic nuclei this may be due to the

Newtonian (NT) gravitational effect of the spherical stellar cusp or general relativistic
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(GR) precession, provided that the corresponding precession timescale is much shorter
than the Kozai timescale (Chang 2009). Furthermore, the EKL mechanism may be
quenched if the eccentricity of the star is changed by the stellar cluster due to scalar
resonant relaxation, or if the orbital plane is reoriented by the stellar cluster due to
vector resonant relaxation (Rauch & Tremaine 1996; Kocsis & Tremaine 2011, 2014) or
Lense-Thirring precession (Merritt et al. 2010; Merritt & Vasiliev 2012). We find that
NT precession and GR precession may have a large effect on the EKL mechanism, but
tidal effects, scalar and vector resonant relaxation, and Lense-Thirring precession are
typically less important. The timescale on which the EKL mechanism operates increases
if the outer SMBH mass is reduced. Thus, GR precession may dominate over and quench
the EKL mechanism most efficiently if the outer SMBH is less massive than the inner
SMBH (see figure 2 in Naoz & Silk 2014). Similarly, we find that NT precession also
suppresses the EKL mechanism most efficiently when the outer SMBH is less massive.
Tidal disruption is expected in the opposite regime when the EKL mechanism is very
prominent, i.e. when the outer SMBH is more massive than the inner SMBH. We identify
the outcome of the EKL mechanism as a function of SMBHB parameters and quantify

the TDE rate.

Our discussion is organized as follows. In §2, we describe the adopted methods.
In §3, we characterize the parameter space to identify where the EKL mechanism is
important. Then, we calculate the tidal disruption rate and discuss the final stellar
distribution due to the EKL. mechanism with an illustrative example in §4, and for stars
surrounding an intermediate-mass black hole in §5. Finally, we summarize our main

results in §6.
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8.2 Method

We study the tidal disruption of stars due to the EKL mechanism in galaxies that host a
SMBHB. The three-body system consists of an “inner binary” comprised of the SMBH
and a star, and an “outer binary” comprised of the outer SMBH and the center mass of
the inner binary, as shown in Figure 8.1. We denote the masses of the objects by m;
(inner SMBH), my (star), and mgs (outer SMBH), and for orbital parameters we use
subscript 1 and 2 for the inner and outer binary, respectively. In order for the EKL
mechanism to operate, we require the triple system to be in a hierarchical configuration:
the inner binary on a much tighter orbit than the third object, such that (e.g., Lithwick

& Naoz 2011; Katz et al. 2011),

ay €2

€ =

= — <0.1 8.1
as 1 — 3 ’ (8:1)

where a and e are respectively the semimajor axis and eccentricity.

8.2.1 Comparison of Timescales

We examine the range of orbital parameters in oder to identify the regions in which the

EKL mechanism may operate. The relevant processes’ timescales can be expressed as:

_ 2nad(1 - @)/l ) (1= )

.= (8.2)
V Gai’/zmg
1
toct - —tK (83)
€
2mal* (1 — €2) (8.4)

t =
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Figure 8.1: The system configuration. ‘c.m.” denotes the center of mass of the inner
binary, which contains the star (with mass my) and SMBH (with mass m;). The other
SMBH (with mass ms) is on an outer orbit.
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Here tf is the quadrupole (O(a;/az)?) Kozai timescale. Following Naoz et al. (2013b),
toet is the octupole (O(ay/az)?) Kozai timescale. tgr; and tggre are the timescales of
the first order post Newtonian general relativistic (GR) precession at the quadrupole
order (O(a;/as)?) on the inner and outer orbit, and tgr i is the timescale associated
with the first post-Newtonian order GR interaction between the inner and the outer
orbit. Following Kocsis & Tremaine (2011), ¢y is the timescale of the Newtonian
precession caused by the stellar potential, and tgp s and tgg, are the timescales of the
scalar and vector resonant relaxation. t,. is the two body relaxation timscale. t;r is
the Lense-Thirring precession timescale, and tgy, is the timescale of the orbital decay
of the binary SMBHB due to gravitational wave radiation. For the resonant relaxation
timescales, M, (r) is the mass of the stars interior to r, w is the net rate of precession due
to GR and NT, 3, is estimated to be 1.05 & 0.02 by Eilon et al. (2009), €2 is the orbital

frequency of the star, and f,,.. is estimated to be 1.2 by Kocsis & Tremaine (2014). For
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the Lense-Thirring timescale, sGm?/c is the spin angular momentum of the inner SMBH
(see references in e.g., Naoz et al. 2013b; Kocsis & Tremaine 2011; Peters 1964). We

define some of these effects in more detail in § 8.2.2 below.

The EKL mechanism operates if the following criteria are satisfied:

1. The three-body configuration satisfies the hierarchical condition (e < 0.1, see

equation (8.1))

2. The stars stay in the Hill sphere of the inner SMBH in order for them to remain

bound to it, i.e. a;(1+e1) < az(1 — eg)(my/3ms)'/3.

3. The quadrupole (O(a;/as)?) Kozai timescale, tx, needs to be shorter than the
timescales of the other mechanisms that modify the orbital elements, otherwise
the EKL mechanism is suppressed. The competing mechanisms include Newtonian
precession (NT), general relativistic precession (GR), scalar resonant relaxation,
vector resonant relaxation, two-body relaxation, Lense-Thirring precession, and the

gravitational radiation.

Note that the secular approximation fails when the perturbation from the outer
SMBH is too strong or when the eccentricity reaches values very close to unity (e.g.,
Antonini & Perets 2012; Katz & Dong 2012; Antognini et al. 2014; Antonini et al. 2014;
Bode & Wegg 2013). This means that there are some systems that are poorly described
by our approximation. However, we expect that those systems reach even higher
eccentricities than the one predicted by the octupole approximation (e.g., Antognini et
al. 2013), and thus our overall qualitative conclusions may hold even for those systems,

but the quantitative rate values possibly underestimate the true rates.

229



CHAPTER 8. IMPLICATIONS OF THE ECCENTRIC KOZAI-LIDOV
MECHANISM

To calculate the Newtonian timescale, the resonant relaxation timescales, and the
two body relaxation timescale, we adopt the spherically symmetric model for the stellar
density discussed in O’Leary et al. (2009). Specifically, the stellar density distribution is

a power law of semimajor axis and the normalization is fixed by the M — o relation,

3 — G Mo(my /Mo)' =2+
pulr) = =5 ( ol M) ) ) (8.13)
T oyr

where k = 4, My = 1.3 x 108M, 09 = 200km/s (Tremaine et al. 2002), and we set

a=1.75.

Figure 8.2 shows the timescales for the case of a 1 M, star orbiting a 107 M
SMBH. The separation of the SMBHB is set to 0.3 pc. The upper panel corresponds to
ms = 10° M, and the lower panel corresponds to ms = 10° M. For the Lense-Thirring
timescale, s is set to unity. The eccentricity of the star-SMBH system, e;, is assumed
to be 2/3 and ey is assumed to be 0.7. The EKL-dominated region is larger for higher
e with fixed a; and a,. Figure 8.2 shows that the EKL mechanism is suppressed for a
107-10°% M, binary at all radii, but it may operate at least in a restricted range for a
107-10° M, binary. Note that although the octupole timescale ¢, is longer than some of
the other secular timescales, our simulations show that the eccentricity can nevertheless
reach high values provided that ¢k is the shortest timescale and ¢, is at most moderately
larger than the other timescales. Thus, in the following, we identify the regions where
the eccentricity may be excited using conditions 1-3 above irrespective of t,.,. Typically,
the conditions on the quadrupole Kozai timescale (t;x < tgr and tx < tyr) set the lower
limit for a; for a fixed as, and the hierarchical configuration ¢ < 0.1 and the Hill sphere

limit set the upper limit on a;.

Next, we examine the a; — ay parameter space to identify the parameters where
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Figure 8.2: The different timescales as a function of the semi major axis of the stars
(ay), where e; = 2/3, my = 10"Mg, ay = 0.3 pc, my = 1My, eo = 0.7. In the upper
panel, ms = 10°M,, and in the lower panel, ms = 10° M. In the grey region, € > 0.1, the
hierarchical approximation is violated. The EKL mechanism does not operate in the grey
region and wherever t,,qq is not the shortest timescale. The quadrupole Kozai timescale
is shorter than the other timescales for the semimajor axis range indicated by the light

green arrow.
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EKL dominates. We plot two examples in Figure 8.3: m; = 10" Mg, my = 1 M,

ms = 106 My, e5 = 0.7 in the upper panel, and m; = 107 My, my = 1 My, ms = 10° My,
es = 0.7 in the lower panel. The EKL-dominated region is bigger for larger e;. To
test the dependence on e;, we include two extreme e; values: e; = 0 (solid lines) and
e; = 0.999 (dashed lines). The parameter space is independent of the mass of the star
as long as my < my. The EKL-dominated region is bounded by tx = tggr (blue line)
and tx = tyr (red line) from above and by the Hill sphere limit (grey line) and the
hierarchical condition (black line) from below. In the upper panel, there is no region
where the EKL mechanism dominates. In the lower panel, the region where EKL
dominates is shaded with horizontal dashed lines for e; = 0.999 and it is shaded with

vertical solid lines for e¢; = 0.

We calculate the number of stars affected by the EKL. mechanism for the particular
stellar density distribution around the inner SMBH (equation (8.13)). In Figure 8.4, we
consider the parameter space of different my, ms, as, e5 and show the number of stars in
the range of a; where all criteria are satisfied for the EKL mechanism to operate. Each
panel shows the parameter plane of m; and ms (assuming my < my), ay is varied in
different columns of panels from 0.1 to 10 pc, and e5 is varied in the different rows from
0.1 to 0.7. We set the stellar eccentricity to its typical value e; = 2/3 in all panels. In
regions where the EKL mechanism is important, approximately 10°~¢ stars are affected.
Thus, the EKL mechanism may significantly contribute to the tidal disruption events.
Note that the EKL mechanism is more likely to be suppressed for stars orbiting around
the more massive SMBH. However, for parameters where the EKL mechanism is not
suppressed everywhere around the more massive inner SMBH, the total number of stars

affected by EKL may be higher for stars orbiting the more massive SMBH than for those
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Figure 8.3: The a; — ay parameter space, m; = 10"My, my = 1My, e; = 0.7. In the
upper panel, msz = 10°M, and in the lower panel, ms = 10° M. The solid blue and red
lines represent e; = 0 and the dashed blue and red lines represent e; = 0.999. Above
the red or blue lines, the EKL mechanism is suppressed by the GR or the Newtonian
precession. Below the black line or the grey lines, the hierarchical configuration or the
Hill sphere limit is violated. The EKL mechanism is suppressed everywhere in the upper
panel, and the EKL mechanism dominates in the shaded regions in the lower panel.
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orbiting the less massive SMBH.

8.2.2 Equations of Motion

As shown in the previous section, GR and NT precessions represent important limitations
for the EKL mechanism. In this section, we review the equations of motion which govern
the long-term evolution of stars due to the EKLL mechanism, GR and NT precessions,
and tidal effects adopted from Naoz et al. (2013a,b) and Tremaine (2005). We use the
Delaunay’s elements, which provide a convenient dynamical description of hierarchical
three-body systems. The coordinates are the mean anomalies, [; and [, the arguments of

periastron, g; and go, and the longitude of nodes, h; and hy. Their conjugate momenta are

L1 = M\/G(ml + m2)a1 (814)

my1 + Mo

ms(my + ms)
Ly = G(mq +me +ms)a
2 m1+m2+m3\/ ( ! 2 3)2

G1 :Ll 1—6%,G2:L2\/1—€% (815)

H1 = G1 COSil, H2 = G2 COS?:27 (816)

where 7 denotes the inclination relative to the total angular momentum of the three-body
system and G without subscript is the gravitational constant. To leading order, the two
binaries follow independent Keplerian orbits where [; are rapidly varying and L;, G, Hj,
gj, and h; are conserved for j € {1,2}. These quantities are slowly varying over longer

timescales due to the superposition of the perturbations: the EKL mechanism, GR and

NT precessions, and tidal effects, discussed next.
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Figure 8.4: The number of stars (N) influenced by the EKL mechanism, assuming a
stellar density distribution in equation (8.13), and that the stellar mass is negligible and
e1 = 2/3. We determine the range of stellar semimajor axis a; where the EKL mechanism
operates for a fixed set of SMBH masses, m;, ms, and outer orbital parameters, e; and
as. Plotting the corresponding number of stars as a function of m; and mgs for an array
of es and as as shown, captures a large parameter space. The EKL mechanism affects a
large number of stars over a wide range of SMBH binary parameters when ay < 3 pe.
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Eccentric Kozai-Lidov Mechanism

The equations of motion for the EKL mechanism may be derived using the double

averaged Hamiltonian (i.e. averaged over the rapidly varying {; and I, elements). We go

beyond the analyses of Chen et al. (2011) and Wegg & Bode (2011), who considered only

the quadrupole (O(a;/az)?) Kozai-Lidov mechanism, where the z-component of angular

momentum is constant. This assumption does not hold when the orbit of the SMBHB

is eccentric, and one needs to include the octupole order terms (O(a;/as)?) (e.g. Naoz

et al. 2013a). The Hamiltonian can be decomposed as

HKozai,quad - CZ{(2 + 36%)(3 C052 itot - 1)

4 15€2 sin® 40y cos 297

15

. . 9.
Hiozaioet = ——€ne1C2{ A cos @ + 10 coS igor SIN” G40

4

x (1 — ef) sin g sin g»},

where

my —Mms
€y = ————
my1 + mo
o G*  (my+my)T my L{
=

N ]__6 (m1 + mo + m3)3 (m1m2)3 LgG%
)

A=14 + 36% - §B Sin2 Z.tot

B =2+ 5¢e] — Tej cos 2g;

COS () = — COS g1 COS gy — COS Tz SIN g7 SIN Go

(8.17)

(8.18)

(8.19)
(8.20)
(8.21)

(8.22)

(8.23)

The equations of motion for the EKL mechanism are given by Hamilton’s equations (eqn

(A26-35) in Naoz et al. 2013a).
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GR Effects

Next, we consider the leading order (first Post-Newtonian, 1PN) effects of GR. We
follow Naoz et al. (2013b), who derived the double averaged 1PN Hamiltonian to the
octupole (O(ay/az)?®) order. The Hamiltonian consists of four terms: Ha,, Hay, Hayass
Hint (Naoz et al. 2013b). Here H,,q, does not contribute to the dynamical evolution,
and the long-term effect of H;,; is typically negligible, as its timescale is longer than that
of the Kozai timescale and the GR precession of the inner and outer orbit as long as the
star stays within the Hill sphere of the inner SMBH. Thus, we only consider the effects

of H,, and H,, which cause the GR precession of the arguments of periapsides,

dgl . 3G3/2 (m1 + m2)3/2 (8 24)
dt 11PN,a ai’mc?(l — €2) ’ :
ng - 3G3/2 (m1 + mo —+ m3)3/2 (8 25)
dt 11PNas ag/202(1 —e2) ‘ ‘

Given that we neglect H;,;, and higher order Post-Newtonian corrections such as
Lense-Thirring precession and gravitational radiation, the other conserved quantities,

L;, G;, Hj, hj, are not effected for j € {1,2}.

NT Precession

The Newtonian potential of a spherical stellar cusp causes apsidal precession at the rate

(Tremaine 2005):
. . (1-en?  do,
g1,NT = (G ) Parer dr cos Y,

(8.26)

where ®, is the stellar potential, r is the distance to the central SMBH and ¢ is the

true anomaly of the inner orbit. The averaged precession rate of g; due to Newtonian
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precession is expressed below:

(Gma/a)'?

TIm1€1

/7r dyp M. (r) cos 1, (8.27)
0

JGiNT =

where M, (r) is the mass of the stellar system interior to r and r = r(¢)) =
a;(1 —e?)/(1 + ecos) from Kepler’s equation. Explicit analytic expressions for the

apsidal precession rate are given in Appendix A of Kocsis & Tremaine (2014).

Tidal Dissipation

To investigate if tides can suppress eccentricity excitation, we consider the “equilibrium
tide” with constant time lag to calculate the inner binary’s orbital evolution when the
pericenter distance is larger than 2R;. Similarly to Naoz et al. (2012) and Naoz &
Fabrycky (2014), we include the differential equation governing the orbital evolution
following Eggleton et al. (1998); Eggleton & Kiseleva-Eggleton (2001) and Fabrycky
& Tremaine (2007). For the star, we assume the viscous timescale is 10 yr, which
corresponds to the quality factor (Goldreich & Soter 1966) Q ~ 10° for a 10 day orbit

(or @ ~ 4 x 10® for a 100 year orbit).

In Figure 8.5 we show a representative example of the evolution with and without
tides. The effect of tides is negligible mainly because the orbital period is long and @) is

low.

8.3 SMBH-binary System

Requiring the criteria listed in §8.2.1, the minimum and the maximum distance of the

star affected by the EKL mechanism from the inner SMBH can be calculated. However,
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Figure 8.5: Comparison of the runs with tidal effects and the runs with no tidal effects.
The dashed green line indicates the case with tidal effects and the blue lines indicates the
case without tidal effects. The two lines are nearly identical, suggesting that tidal effects
are negligible in these runs. The left panel shows a case when a 1 M, star orbits around
a 10"M, SMBH with a; = 0.017 pc and e; = 0.001, and is perturbed by a 10°M, outer
SMBH with ay = 1 pc. The right panel shows a case when a 10 M star orbits around
a 10"M, SMBH with a; = 0.035 pc and e; = 0.01, and is perturbed by a 10°M, outer
SMBH with as = 1 pc, ea = 0.7. We used the constant time lag prescription for the tides,
and the quality factor Q was set to ~ 10° for a 10 day orbit (Q ~ 4 x 10® for a 100 year
orbit).
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not all stars in this region will be disrupted, since the excitation of the eccentricity
depends sensitively on the orbital orientation, and the parameter region where the
eccentricity can be excited is complicated (Li et al. 2014b). In addition, when the Kozai
timescale is only slightly smaller than the GR or the NT timescale (with tx still being
the smallest), the evolution of the inner orbit is complex. For instance, the eccentricity
of the inner orbit can be excited in configurations where the eccentricity cannot be
excited due to the Kozai-Lidov mechanism alone. This excitation may be caused by the

resonances between the NT, GR or Kozai-Lidov precessions (Naoz et al. 2013b).

We consider the following illustrative example: m; = 10"M, my = 108M, ay = 0.5
pec, e2 = 0.5. We adopt the isotropic stellar distribution function of equation (8.13),
assuming the stars have a solar mass, and that the eccentricity distribution is thermal
(dN/de = 2¢). We run large Monte-Carlo simulations, integrating the equations presented
in §8.2, where the equations of motion for the EKL mechanism are given by Hamilton’s
equations (eqs. (A26-35) in Naoz et al. 2013a), and ¢1 = §1.5x1 + J1.6rR + J1NT,
g2 = G2.5xL + G2,cr- We distinguish three outcomes for the EKL evolution: “TDE”,

“scattered by the SMBH companion”, and “surviving”, as explained now.

The eccentricity of the star needs to reach very close to unity to cause tidal
disruption. The tidal radius is B, = 5 x 107% pc around a 10" M, SMBH. We identify the
TDE with a;(1 — e;) < 3Ry, since the stars may still be disrupted due to accumulated
heating under the strong tide outside the tidal radius (Li & Loeb 2013). Since the size
of the Hill sphere of the less massive SMBH is small (i.e. 0.08 pc in our example), the
star may reach the apocenter outside the Hill sphere before disruption as the eccentricity
increases. Namely, the gravitational pull of the companion SMBH (mj3) will be larger

than m;. We refer to this as a “scattering event” (a(1+e;) > as(1 — ea)(my/(3ms))/?).
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Note that the secular approximation is no longer valid for the scattering events.
Three-body integrations of the dynamical evolution of scattering events show that they
may either lead to an exchange interaction, where the star is captured by the outer
SMBH, they may cause the ejection of the star producing a hyper-velocity star (Samsing
2014; Guillochon & Loeb 2014), or they may be tidally disrupted. The scattering
events resulting in a capture may systematically increase the eccentricity distribution of
stars orbiting the companion SMBH. For the third category, we label the stars neither

disrupted nor scattered by the companion after 1 Gyr as “survivors”.

Figure 8.6 shows the results of the numerical simulation in the final a; — ¢ and

a1 — e1 planes. We use open circles to mark stars that underwent TDEs, crosses for
stars that were scattered by the companion, and full circles for stars that survived. The
disruption/scattering time is color coded, and it indicates that most of the disruption
events occur within ~ 0.5 Myr. This corresponds to the octupole Kozai timescale, which
is roughly 0.2 — 2 Myr for these systems at a; = 0.03 — 0.08 pc. Out of all 1,000 stars
between a; = 0.0275 pc and 0.075 pc, 57 are disrupted, and 726 are scattered by the
outer black hole. According to the stellar density distribution in equation (8.13), there
are ~ 10° stars in this semi-major axis range. Normalized by the total number of stars
in this semi-major axis range, it indicates that the tidal disruption rate is ~ 1072 /yr in
the first ~ 0.5 Myr for the less massive black hole due to EKL, while ~ 7 x 10* stars

undergo scattering events by the outer SMBH.

Since the eccentricity of the stars with high inclinations are more likely to be
excited, the stars with high inclinations are more vulnerable to tidal disruption, the
final inclination distribution is no longer isotropic (the lower panels in Figure 8.7) and

the stars around the SMBH form a torus-like configuration (see Naoz & Silk (2014) for
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similar results). The stars with larger semi major axis have higher probability to be
scattered when their eccentricity become excited due to the EKL mechanism, and thus
the final distribution of stars surrounding the less massive black hole will be truncated at
a larger semimajor axis. In addition, the distribution of the eccentricity of the surviving
stars shows deviations from thermal distribution with a suppression of very eccentric
stars (as expected since they get scattered by ms more easily, and their eccentricity can
be excited more easily at a lower inclination (Li et al. 2014a)). Furthermore, as shown in
Figure 8.8, the stars that are closer to m; (< 0.04 pc) have an eccentricity distribution
closer to thermal. The stars that are closer to ms (2 0.04 pc) have systematically smaller
eccentricities. The thermal distribution for closely separated stars (< 0.04 pc) is similar
to the observed S stars in the center of the Milky-Way galaxy (Genzel et al. 2010), which

shows a steeper slope.

8.4 SMBH-IMBH System

Let us consider next the perturbations of a SMBH on stars orbiting an intermediate mass
black hole (IMBH). IMBHs may form through runaway mergers during core collapse
in globular clusters (Portegies Zwart & McMillan 2002). Since globular clusters sink
to the galactic center through dynamical friction, and the disrupted globular cluster
could contribute to most of the mass in nuclei stellar cluster for galaxies with total mass
below 101 M), this setup may be common in the Universe(Portegies Zwart et al. 2006;
Antonini 2013; Gnedin et al. 2014). Alternatively, IMBH may form at cosmologically
early times from population III stars in galactic nuclei (Madau & Rees 2001), or in

accretion disks around SMBHs (Goodman & Tan 2004; McKernan et al. 2012, 2014).
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Figure 8.6: The outcome of the evolution around a SMBH binary with m; = 107 M,
ms = 103My), as = 0.5 pc, e; = 0.5. We plot the final i; versus a; and e; versus a; for
stars that survived, were disrupted, or were scattered in the simulation after 1 Gyr. The
color code indicates the time when the star is disrupted or is scattered. Out of the 1,000
stars between a; = 0.0275 pc and 0.075 pc, 57 are disrupted, and 726 are scattered by
the outer black hole. The number of stars in this range according to the distribution of
equation (8.13) is ~ 10° (assuming the stars are 1 solar mass). This suggests that the
tidal disruption rate is ~ 1072 /yr in the first ~ 0.5 Myr for the less massive black hole.
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In the Milky Way center, the orbits of the S-stars are consistent with that caused by
the dynamical interactions of IMBHs (Merritt et al. 2009). In addition, IRS 13E may
potentially host an IMBH, though its existence is controversial (Maillard et al. 2004;
Schédel et al. 2005; Fritz et al. 2010). The TDE rate has been discussed by Chen &
Liu (2013) and Mastrobuono-Battisti et al. (2014). Here, we consider the interactions of
stars surrounding IMBHs in the center of galaxies with the central SMBH due to the
hierarchical three body interactions, and consider the re-distribution of the stars as a

result of the interaction.

We set the IMBH mass to 10*M,, at a distance of 0.1 pc from Sgr A* (ay = 0.1pc,
es = 0.7, my = 10'M, and m3 = 4 x 105M). These parameters for the IMBH are
allowed according to limits on the astrometric wobble of the radio image of Sgr A*
(Hansen & Milosavljevié¢ 2003; Reid & Brunthaler 2004), the study of hypervelocity stars
(Yu & Tremaine 2003), and the study of the orbits of S stars (Gualandris & Merritt
2009). We set the distance of stars to be uniformly distributed between 0.00045 pc and
0.0028 pc. The tidal disruption radius for 1 M, stars is 4.89 x 10~7 pc. The minimum
distance is set by requiring the GR precession timescale to be longer than the Kozai
timescale, and the maximum distance is set by requiring the stars to stay in the Hill
sphere of the IMBH. Note that in this case the hierarchical criterion 1 in Sec. 8.2.1,
€ < 0.1, is satisfied as long as the stars are within the IMBH’s Hill sphere. We assume
the distribution of the stellar eccentricity to be uniform. We take into account GR

precession, N'T precession and EKL at octupole order in the integration.

In 1,000 runs, we find that ~ 40 end up in tidal disruption and ~ 500 are scattered
as shown in Figure 8.9. The tidal disruption/scattering time (color coded) is around

10° yrs. As shown in Figure 8.10, we predict that the surviving stars form a torus-like
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configuration (similarly to the result achieved by Naoz & Silk (2014) for dark matter
particles). The predicted distribution may be resolved if the angular resolution of the
instrument is better than that corresponding to the Hill sphere around the IMBH, in this
case 0.07 arcsec. This can be achieved in near infrared by the Gemini, VLT and Keck
telescopes. In addition, the EKL mechanism also produces scattering events which may
be responsible for the observed hypervelocity stars. The TDE rate may reach ~ 1074/
yr for a short ~ 10° yr duration episode after the globular cluster first approaches the
galactic nucleus at a distance of 0.1 pc, assuming there are ~ 200 stars in a globular
cluster around an 10*M,-IMBH in the EKL-dominated region according to the density

distribution in equation (8.13).

8.5 Conclusion

SMBH binaries are natural outcomes of galaxy mergers. An SMBH binary may show an
enhanced TDE rates due to the eccentric Kozai-Lidov (EKL) mechanism and chaotic
three body interactions (Ivanov et al. 2005; Chen et al. 2009, 2011; Wegg & Bode 2011).
The higher tidal disruption rates may in turn serve as a flag to identify closely separated
black hole binaries on subparsec scale, which are difficult to detect otherwise. We focused
on the effect of the EKL mechanism (see Naoz et al. 2011, 2013a) on the surrounding
stars in SMBHB. This mechanism can excite the stars’ eccentricity to values very close
to unity (e.g., Naoz et al. 2013a,b; Li et al. 2014a; Li et al. 2014b). We identified the

range of physical parameters where EKL is important.

We first compared the Kozai timescale with the secular timescales of other

mechanisms that may suppress EKL in galactic nuclei. These include Newtonian (NT)

245



CHAPTER 8. IMPLICATIONS OF THE ECCENTRIC KOZAI-LIDOV
MECHANISM

precession, general relativistic (GR) precession, resonant relaxation, two body relaxation,
Lense-Thirring precession and orbital decay due to gravitational wave emission. We have
found that for the SMBHB cases we considered, N'T precession and GR precession may
suppress EKL, especially when the inner SMBH is more massive than the outer SMBH
(as shown in Figure 8.4). This is consistent with the results by Naoz & Silk (2014)
for dark matter particles around SMBH binaries, as well as the three body scattering
experiments done by Chen et al. (2009); Wegg & Bode (2011); Chen et al. (2011), who
observed that the tidal disruption events were dominated by the three body chaotic
interactions rather than EKL mechanism for stars surrounding the more massive black
hole. However, we found that a massive outer binary allows a non-negligible region of
parameter space where the EKL mechanism may operate and lead to TDEs. We also
demonstrated that tidal effects are typically negligible for the stellar orbital evolution

(see Figure 8.5).

To illustrate the EKL effects on stars surrounding the less massive black hole,
we ran 1,000 numerical experiments with different initial conditions for a star cluster
surrounding a 107 M, black hole, which is being perturbed by a 108M, outer black hole.
We have found over ~ 50 out of the 1,000 runs stars are disrupted in ~ 0.5 Myr. Scaled
with the total number of stars according to equation (8.13), this corresponds to a TDE
rate of 1072/yr for the first ~ 0.5 Myr. In contrast, Chen et al. (2011) considered tidal
disruption rates for stars surrounding the more massive SMBH, using numerical three
body scattering experiments. They estimated the tidal disruption rate to be as high as

0.2 per year mainly due to three-body scattering effects’, in the first 3 x 10° yrs for stars

tsince, as we showed, the EKL is suppressed in this case
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surrounding a 10" M, SMBH perturbed by an 81 times less massive outer SMBH. For

the same SMBHB configuration, EKL only affects at most ~ 103 stars surrounding the
less massive SMBH as shown in Figure 8.4, and affects at most ~ 103 stars surrounding
the more massive SMBH. Thus, EKL contributes negligibly to the total tidal disruption
rate in this case, but EKL contributes significantly to the TDE rate of stars around the

secondary SMBH.

The EKL mechanism also affects the stellar distribution for stars surrounding the
less massive SMBH. As shown in Figure 8.7, the survived stars within a particular range
of radii are distributed in the shape of a torus (Naoz & Silk 2014). In addition, a large
number of stars orbiting the less massive black hole will be scattered by the outer black
hole following the EKL-induced eccentricity increase. In our illustrative example, ~ 670
out of 1000 stars are eventually transferred to an orbit around the outer, more massive

SMBH. This may produce hyper-velocity stars (Guillochon & Loeb 2014).

Finally, we studied the tidal disruption of stars by an IMBH during mergers of
globular clusters with galactic nuclei. For an IMBH of mass 10* M, at a distance of 0.1
pc from Sgr A*, 4% of stars get disrupted within the relevant distance range around the
IMBH, and ~ 50% get scattered within 10° yrs. This yields a tidal disruption rate of
~ 107*/yr. Some of the scattering events may produce hypervelocity stars or additional
TDEs. The EKL mechanism produces a torus-like stellar distribution for the surviving
stars, which may be resolved by the Gemini, VLT and Keck telescopes in near infrared.
Further investigations of this process using numerical scattering experiments would be a

worthwhile in the future.
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Figure 8.7: The initial distribution and the final distribution of the stars after 1 Gyr in
our illustrative example shown in Figure 8.6. The final distribution represent the surviving
stars.
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Figure 8.8: The final cumulative distribution of the eccentricity of stars in our illus-
trative example for m; = 10" M, ms = 108M,, separated by 0.5 pc in an eccentric orbit
with e; = 0.5. For stars at distance larger than 0.04 pc, the final eccentricity distribution
becomes shallower than that inside of 0.04 pc.
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Figure 8.9: The final distribution of stars surrounding a 10*M, IMBH at a distance
of 0.1 pc from Sgr A* after 100 Myr. The open circles represent stars that get tidally
disrupted, and the crosses represent stars that get scattered. Both are colored according
to the time of tidal disruption/scattering. We find that ~ 50% of the stars survived
tidal disruption and scattering. The final distribution of the star has a deficiency at high
inclination relative to the orbital plane of IMBH.
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Figure 8.10: The initial distribution and the final distribution of the stars after 100Mr
in our illustrative example for the IMBH, as shown in Figure 8.9.
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Chapter 9

Accumulated Tidal Heating of Stars

Over Multiple Pericenter Passages

Near SgrA*

This thesis chapter originally appeared in the literature as

Li, G. & Loeb, A. Accumulated Tidal Heating of Stars Over
Multiple Pericenter Passages Near SgrA*, Monthly Notices of the
Royal Astronomical Society, 429, 3040, 2013

It is presented here with minor modifications.

Abstract

We consider the long-term tidal heating of a star by the supermassive black hole at the

Galactic center, SgrA*. We show that gravitational interaction with background stars
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leads to a linear growth of the tidal excitation energy with the number of pericenter
passages near SgrA*. The accumulated heat deposited by excitation of modes within
the star over many pericenter passages can lead to a runaway disruption of the star at
a pericenter distance that is 4-5 times farther than the standard tidal disruption radius.
The accumulated heating may explain the lack of massive (2 10Mg) S-stars closer than

several tens of AU from SgrA*.

9.1 Introduction

Near the Galactic center, stars may get scattered into orbits for which the tide raised
by the supermassive black hole, SgrA*, at pericenter is large but not strong enough to
disrupt the stars. The scattering rate into those orbits is larger than that of immediate
tidal disruptions orbits, where the pericenter distances are smaller than the tidal radius,
Ty ST = R.(Mgu/M,)s (Magorrian & Tremaine 1999; Alexander & Livio 2001). Here
Mgy = 4 x 105M,, is the mass of SgrA* (Ghez et al. 2008; Genzel et al. 2010), and
M, and R, are the mass and radius of the star. In the near miss regime, stars with
rp 2 1 are not disrupted during their first passage near SgrA*, their tidal heating and
bloating could still be substantial after multiple passages due to the tidal distortion and
the excitation of internal oscillation modes. In principle, a sufficiently large number of
close passages may lead to the disruption of these stars (Rees 1988; Novikov et al. 1992;
Kosovichev & Novikov 1992; Diener et al. 1995; Alexander & Morris 2003; Antonini et al.
2011; Guillochon & Ramirez-Ruiz 2012). Various tidal effects at r, 2 r, were considered
in the literature, including relativistic effects (Luminet & Marck 1985; Gomboc & Cadez

2005; Ivanov & Chernyakova 2006; Kosti¢ et al. 2009), tidal heating of planets by stars
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(Ivanov & Papaloizou 2004a, 2007, 2011), and tidal heating in close binary systems
(Press & Teukolsky 1977; Kochanek 1992; Mardling 1995a,b; Lai 1997; Ho & Lai 1999;

Ivanov & Papaloizou 2004b; Lai & Wu 2006; Fuller & Lai 2011; Weinberg et al. 2012).

In this paper we consider the heating of stars at distances r, 2 3r; from SgrA*.
Since each pericenter passage is associated with a small distortion in the shape of stars,
one may adopt a linear description for the tidal excitation of stellar modes (Novikov et al.
1992; Kosovichev & Novikov 1992). The associated theory of linear mode excitation has
been calibrated recently by new data on stellar binaries from the Kepler satellite (Fuller
& Lai 2012; Burkart et al. 2012). The underlying theory was also recently extended to
describe nonlinear coupling of the excited modes (Weinberg et al. 2012). We use the
latest results from these studies to calculate the tidal excitation and heating of stars in

the vicinity of SgrA*.

Our goal is to find the maximum distance from SgrA* at which the accumulated
heating due to numerous pericenter passages can lead to tidal disruption of stars around
SgrA*. The accumulated heating would lead to the absence of massive stars on eccentric
orbits interior to a spherical region around SgrA*, whose radius depends on M, and
exceeds the standard tidal disruption radius ;. Our predictions could be tested by future
searches for stars at closer separations than the known S-stars, which have r, > 10> AU

(Ghez et al. 2008; Genzel et al. 2010).

SgrA* is surrounded by a circumnuclear disk of young stars (Genzel et al. 2010).
Inside the inner radius of this disk, there is the S-cluster of young main sequence B-stars
(Ghez et al. 2003; Eisenhauer et al. 2005), with random orbital orientations and high

orbital eccentricities (Gillessen et al. 2009). All the known S-stars have r, > r;, but
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it is possible that the lack of S-stars inside 100 AU is caused by the accumulated tidal
heating over multiple pericenter passages. Our predictions can be tested as new stars,
such as SO-102 (Meyer et al. 2012), are being discovered and new instruments, such

as the second-generation VLTI instrument GRAVITY (Bartko et al. 2009), are being

constructed.

The outline of the paper is as follows. In §10.2 we describe the method we use to
calculate the heating due to tidal excitation and the response of the stars. In §10.3 we
show examples of these effects in the Galactic center using two stellar models produced
by MESA stellar evolution code (Paxton et al. 2011) and present the results. In §10.4,

we summarize our main conclusions.

9.2 Heating of Stars by Tidal Excitation of Modes

The tidal force from SgrA* can excite internal oscillation modes within an orbiting star
during its pericenter passages. At distances r, 2 3r;, the energy gain by tidal excitation
per pericenter passage is low, but the accumulated energy after many passages can heat

the star significantly.

9.2.1 Mode Excitation and Interference in Multiple Pericenter

Passages

To calculate the low energy gain per orbit at r, 2 3r, it is appropriate to use the
linear perturbation formalism of Press & Teukolsky (1977) (see also Novikov et al. 1992;

Kosovichev & Novikov 1992). We denote the separation of the star from SgrA* at time ¢
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by r(t). For a single passage, the energy of an excited stellar mode can be expressed as,

=2 (05 () () i, o

where n is the mode order and {l,m} are the two spherical harmonic indices. The
excited modes have [ > 1, —] < m < [, and we adopt the convention in which n < 0 for

g-modes and n > 0 for p-modes. The coefficient K, represents the coupling to the

orbit,
I/I/l o0 r +1
Ko = —— dt(—p> iwnt d(t)]}, 9.2
=g () el + mo) 92)
where w,, is the mode frequency, ®(#) is the true anomaly, and W, = (—1)+m™)/2] (2?11) (I—
m)!(l + m)!]l/Q/[Ql@!@!]. The ‘tidal overlap integral’ @, represents the coupling
of the tidal potential to a given mode,
1
Qu = [ FAdRo(RE S + (1 + Ve (9.3)
0

where p(R) is the stellar density profile as a function of radius R. {(R) =
[ER(R)er + £5(R)RV]Y (0, ¢) is the mode eigenfunction, with &% being its radial
component and ¢35 being its the poloidal component. The total energy transferred from
the orbit to the star in a single passage is

AEO - Z AEO,nml . (94)

nlm

Next, we consider the evolution of the modes as a result of multiple pericenter
passages. If the dissipation timescale of the modes is longer than the orbital period,
the modes remain excited and interfere with newly excited modes during subsequent
passages. Mardling (1995a,b) considered this problem numerically and found two orbital

parameter regions. In one of them the energy exchange between the mode and the orbits
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is quasi-periodic and the amplitudes of the modes remain small. In the other region,
chaotic behavior is exhibited. Ivanov & Papaloizou (2004b) (hereafter IP04) further
explored this stability boundary using a proxy «, which characterizes the change of the
phase due to the orbital period change, where the period change is caused by the energy
transferred to the modes. By mapping the mode amplitude and phase of a particular
passage to those values at an earlier passage, IP04 found that when « is larger than a
threshold value o, there is a secular increase of mode energy. «. depends on the phase

of the mode in the first passage.

For Galactic center stars with r, 2 3r, around SgrA*, the change in orbital period
per passage provided by the exchange between tidal excitation energy and orbital energy
is too small to increase the mode amplitude. Below we show that gravitational scattering
on stars and compact objects in the Galactic center could naturally lead to a drift in the

orbital period that allows the amplitude of the excited modes to increase stochastically.

Similar to IP04, we introduce the two-dimensional vectors x; to characterize the

amplitude A; and the phase 1; of the excited modes at the i*" passage:

x = A cos(;),

i = Agsin(iy). (9.5)

)

Because different stellar modes act independently in the linear regime, we focus here on

one mode with frequency w,. For the (i + 1) passage,
xit1 = R(¢i)[x; + €], (9.6)

where ¢; = w, Py (With P, being the orbital period for the i** passage), e' = 1,
9 9 g g

e? =0 and R is the rotation matrix.
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Defining o; = w, AP, where AP, ; is the change in the orbital period in the
ith passage, we get ¢;.1 = &; + a;. In difference from IP04, q; is a random variable.
Given the initial condition xo = (1,0) (without loss of generality) and equation (9.6),
we examine numerically how the mode amplitude changes as a function of the number
of passages. First, we examined the case when « is drawn from a uniform distribution
between —2a,, to 2a,,, (|a]) = a,,. We characterize the growth in the mode amplitude
by the power-law index of its evolution with the number of passages (using a total of 10°
passages). Figure 9.1 shows that for (Ja|) > 0.1 the amplitude increases with a power-law
index of 0.5, so the energy of the mode increases linearly with time. We also examined an

alternative case with o drawn from a Poisson distribution and the result was the same .

Note that in difference from P04, the increase in the amplitude is caused by
the stochastic nature of a. We also find that the threshold value does not show any

dependence on ¢y.

Next we examine the value of (|a|) due to gravitational perturbers in the Galactic
center. We start by expressing « in terms of the fractional change in the orbital period
assuming the primary excited mode has frequency w,, ~ /N, GM,/R? (with a typical

value N, ~ 10),

o = wnAPorb
APy 1 [Now 11— 0.9\3/2 1, 1o\ 3/
~ 3300 [ P ( ) (p—> } 0.7
Py 10 \1—e 3 (9.7)

where e is the orbital eccentricity. Thus, when % > 3 x 107° the amplitude of the

modes increases stochastically.

We calculate the expected |AP,,;|/ P, due to gravitational scatterings using the

N-body code BHINT (Lockmann & Baumgardt 2008) to track the orbits of the stars
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Figure 9.1: The power-law index of the mode amplitude growth with time during
multiple passages as a function of the average magnitude of a = w,AP,,;,. When the
power-law index is around 0.5, the amplitude growth resembles a random walk and the
energy of the mode is growing linearly with the number of passages. We find this scaling
when (Ja|) > 0.1, independent of the value of ¢y = w;, Py (shown by the different lines).
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and compact objects in the Galactic center. We estimate |AP,,|/ P, for each passage,
and the expectation value is calculated by averaging |AP,,|/ P, over ~ 50 passages.
We performed a convergence test and verified that our numerical errors are small

and the results are robust. The fractional change in the orbital period of a test star
depends on the semi-major axis a and eccentricity e of its orbit and the distribution
of perturbers within the S-cluster. We assume an outer radius of ~ 0.04 pc (= 1") for
the S-cluster, and estimate the period change for typical S-stars with eccentricities in
the range of 0.85-0.95. We consider the initial mass function (IMF) that matches the
mass distribution of S-stars inside 0.8” (dN/dm oc m~21%%£03) (Bartko et al. 2010)). The
fractional change of the orbital period is most sensitive to the massive stars (Murray-Clay
& Loeb 2011). We normalize the IMF so that it gives ~ 3 S-stars with M ~ 20M,, as

observed. In the mass range of 0.3-25M,, the IMF yields a total of 800 stars.

We also considered the effects of scattering on stellar-mass black holes (SBH) and
a hypothetical intermediate-mass black hole (IMBH). SBHs are more massive than the
background stars and therefore are expected to segregate in the Galactic center (Morris
1993; Miralda-Escudé & Gould 2000; Freitag et al. 2006). We normalize the number of
SBHs (each having 10M) within 0.04 pc to be 1400, based on Miralda-Escudé & Gould
(2000) and Freitag et al. (2006). An IMBH was hypothesized as an agent for randomizing
the inclinations of stars in the S-cluster, potentially creating the hyper-velocity stars
and the stellar disk (Yu & Tremaine 2003; Sesana et al. 2006; Yu et al. 2007; Gualandris
& Merritt 2009; Perets & Gualandris 2010; Yu 2010). To gauge its effect on AP, we
assume an IMBH mass of 10°M, (Yu 2010) with either a = 10~®pc (= 206AU)) and
e =0.80 or a = 3 x 10~*pc and e = 0.26. The scattering due to the SBH and IMBH

dominate the fractional change in the orbital periods.
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Figure 9.2 shows the results from the numerical runs of the N-body code. We find
that the fractional changes of the orbital period are higher than the minimum value
required to increase the mode amplitudes stochastically, implying that the energy of the
excited modes would increase linearly with the number of pericenter passages. Because
the scattering of the orbit is fully random and the change of the orbit is typically small
(~ 107-1073), we neglect the orbital evolution. For a random walk, the period is
expected to change significantly only after 10°-10® passages, beyond the number of

passages considered here.

Similar to the study on the variation of orbital period, we quantify the change in
eccentricity using N-body integration code BHINT. We use the same configuration of
the stars and we do not consider the effect of SBHs or IMBHs for simplicity. Figure
9.3 shows the changes in eccentricity for a star at a = 0.01 pc, e = 0.998 versus time.
Assuming de(t) o< v/, the changes in 1 — e over ~ 1 Myr timescale, during which the star
accumulates a large amount of energy, is (1 — e) ~ 0.25(1 — ep). Thus, the eccentricity
variation due to the perturbation from the surrounding stars can affect the heating
process. The increase of the eccentricity may increase the heating, and the decrease of
the eccentricity can weaken the tidal excitation of the modes and delay tidal disruption.
Since 6(1 —€)/d(1 — ep) is less than an order of unity before the star accumulates the
heating energy, heating of the star will not be completely suppressed due to the variation
in eccentricity. We ignore the variation in eccentricity for the rest of this section for

simplicity.
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Figure 9.2: The average of the fractional change in orbital period per pericenter passage,
(|AP,4|/ P,p), for stars on orbits with different semi-major axis a. The x-axis is in unit of
1073 pc = 206 AU. We include 800 stars with an initial mass function (dN,/dM,) oc M1
(Bartko et al. 2010) in the mass range 0.3-25M), providing about three 20M, stars.
We also consider scattering on a population of 1,400 stellar-mass black holes (SBH)
within 0.04 pc from Sgr A* (Miralda-Escudé & Gould 2000; Freitag et al. 2006), or an
intermediate mass black hole (IMBH) with a mass of 10°M, on two possible orbits.
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9.2.2 Tidal Heating of Stars

Since the expected fractional change in the orbital period per pericenter passage in
Figure 9.2 is higher than 3 x 107?, the tidally-excited mode energy is expected to increase
linearly with the number of pericenter passages. Cumulatively, a significant amount of
heat might be deposited inside the star during multiple passages. In this section, we

consider the dissipation of the mode energy and the resultant heating of the star.

Previous studies showed that when the amplitude of the excited modes increases
over some parametric instability threshold, the excited mode begins to transfer its energy
to lower frequency daughter modes which dissipate rapidly (Dziembowski 1982; Kumar
& Goodman 1996; Wu & Goldreich 2001; Arras et al. 2003; Weinberg & Quataert 2008;
Weinberg et al. 2012). We set neiw = Ey/AFEy to be the number of pericenter passages
after which the amplitude of the mode exceeds this threshold, where FEy, is the threshold
energy when non-linear coupling occurs. As the dissipation time of the excited daughter
modes is typically short compared with the orbital period in the Galactic center, the

thermal energy gain in the stellar interior is:
Et,np = (np/ncrit)Eth = npAE(); (98)

where F} is the thermal energy gained during this process, n, is the number of pericenter
passages and AFj is the energy gain of the excited modes during the first passage.
When n,, > n., the thermal energy added to the star is independent of the parametric

instability threshold.

The heat generated around a radius R within the star at time ¢y will be trapped
inside the star for a finite time, (¢t — ) < t.(R), where t.(R) is the characteristic time it

takes heat to leak out. We estimate t.(R) as the minimum between the photon diffusion
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time, tgirr = [ dR{7(R) — (R. — R)[dT(R)/dR]}/c, and the turbulent convection time,
tr = [ dR/v.(R), for each spherical shell inside the star. Here 7(R) is the scattering

optical depth and v.(R) is the convective velocity. At late times ¢ > t.(R), the heating
at radius R will saturate and reach a steady state where it is balanced by cooling. This

sets the upper limit of the maximum heat stored at a radius R.

As the non-linear coupling excites a large number (> 10%) of daughter modes, most
of the energy is redistributed. Typically, the daughter modes consist of high order
g-modes and so the energy is redistributed mostly in the radiative zone. Weinberg et al.
(2012) investigated modes inside solar-type stars and found that most of the energy is
transferred to the radiative core of the star. For simplicity, we will assume that the

energy is uniformly distributed per unit mass within the radiative zone.

The energy gained can be expressed as follows,

ncritAEO(R) if tc(R) < Porbncrit
E(R) = (9.9)

t;__,f)i) AEO(R) 1f tC(R> > Porbncrit
Assuming that energy is evenly deposited throughout the entire radiative zone of the

star, we find Fy(R) and obtain the thermal energy stored at a radius R, E;(R). Typically

2 3r; around SgrA* ne.i < teo(R)/ P, and so the total stored heat is

~

for stars at 7,
independent of n..;. Finally, integrating F;(r) over the interior of the star yields the

total heating inside the star, Fy.

As a result of the additional source of energy, the star expands. So far, we did
not include the increase of the size of the star in our calculation. As the stellar radius

increases, the tidal effects become stronger with AE oc RS. A decrease in the mode

frequency ~ /GM,/R? brings w, closer to the orbital frequency and increases K.
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Thus, ignoring the variation in the tidal overlap integral (Q,;), the tidal excitation

becomes stronger as the size of the star increases. In addition, the rate of the expansion
and the final size of the star depend on where the heat is deposited (Podsiadlowski 1996).
We examine this process more closely with MESA stellar evolution simulations (Paxton

et al. 2011) in the next section.

As the star gains energy, its energy gain rate increases due to its increasing size.
The resulting runaway process could lead to the disruption of the star. In order to find
the minimum heating at saturation (¢ > t.(R = 0)) that may lead to disruption, we
express the radius of the star after the n'™ pericenter passage as, R.(n) = R.o(1 + €,),
where R, is the original radius of the star. Assuming AF o< R,(n)® and ignoring the

change in entropy within the star, we find
1/(14€,) —1/(1 + €pp1) = AEo((1 +€,)° — 1), (9.10)

where AEy = AEy/(GM?/R.,). Figure 9.4 shows the growth of R,(n) as a function of
the number of pericenter passages starting with the saturation value of ¢5 = 0.01. Our
results demonstrate that at r,/r; ~ 4 the stored heat can approach the binding energy
of the star after ~ 10° pericenter passages following saturation, even if the total heat
gained at saturation is only ~ 1% of the binding energy. This threshold increases as

/Tt increases.

During its lifetime, a massive star can achieve > 107 pericenter passages at the
corresponding distances from SgrA*. For example, a 20 M, star with e = 0.9 and
rp ~ bry around SgrA* has an orbital period of ~ 0.8 years. Thus, during its lifetime the
star encounters ~ 107 pericenter passages. The maximum number of pericenter passages

is also limited by gravitational scatterings on other stars. According to Figure 9.2, with
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stochastic scatterings on SBH or one hypothesized IMBH, the maximum number of
passages at the original pericenter is ~ 10¢ — 10%. Thus, for r,/r; < 5, the star will
be significantly heated even if the total heat gained at saturation is only ~ 1% of the

binding energy.

Non-linear effects are expected to dominate in the last phase of the disruption
process. When the star is distorted, the energy transfer from the orbit to the modes can
be either positive or negative depending on the phases of the modes and the orientation
of the ellipsoid at the time of the pericenter passage. Diener et al. (1995) studied this
effect statistically and found that the probability of a positive transfer of energy from

the orbit to the star is high.

9.3 Results

Based on the formalism presented in §10.2, we calculated the tidal heating of stars in the
Galactic center. We consider two steller masses: 1M, (representing low-mass stars) and
20M,, (representing high mass stars, similar to SO-2 (Martins et al. 2008)). The other

properties of the two stars are summarized in Table 9.1.

Table 9.1:: Properties of stellar models

Mass | Metallicity | Radius | Age
(M) (Ro) (vrs)

1 7 = Zs 1 4.5 x 107
20 Z = Zgs 10 7 x 10°
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2042

Since the energy gain in each passage depends on (R* / rp> , and because the
value of ),; and K, are similar for modes with different values of [, the quadrupole
(I = 2) modes gain the most energy during the tidal excitation (whereas [ =0 and [ =1

modes are not excited). Thus, we focus on the [ = 2 modes.

We calculate the overlap integral (Q,;) and the orbit coupling (K,;,) using the
MESA stellar model (Paxton et al. 2011). The adiabatic normal modes are computed
with the ADIPLS code (Christensen-Dalsgaard 2008). For illustration, we show in Figure
9.5 the values of > |Qy1=2|*| Kni=2.m|* for a 20M, star in orbit around Sgr A* with
a=7x1073 pcand e = 0.9. As expected (e.g. Press & Teukolsky 1977; Burkart et al.
2012), we find that lower order g-modes are excited the most. The energy gain in one

passage, AFEy, can then be found from equation (9.4).

To calculate the time it takes for the deposited heat to travel to the surface (t.) as
described in §9.2.2, we obtain the optical depth and the convective velocity profile in the
interior of the stars from the MESA code (Paxton et al. 2011). Figure 9.6 shows the

cooling time as a function of radius for the two stars.

The threshold for non-linear coupling has been discussed by Weinberg et al. (2012)
for three mode coupling in a solar-mass star. If the daughter modes only couple to one
other daughter mode, the threshold is Ey, ~ 107G M?/R,; however, if the daughter
modes couple to multiple daughters, Ey, ~ 10718GM?2/R,. In both cases, (t./torp) > Nerit
in the interior of the stars for r, 2 3r,. Thus, the heating of the star is independent of the

value of n..;. Conservatively, we calculate the heating using the high energy threshold.

As the daughter modes consist of high order g-modes, energy is redistributed mostly

in the radiative zone of the star. For simplicity, we assume that the distribution is
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uniform per unit mass in the radiative zone and integrate equation (9.9) over the interior
of the star. Figure 9.7 shows the heat gained by the stars (Ey) in units of their binding
energy (Ep) obtained from MESA, at the saturation time ¢ = ¢t.(R = 0). The increase in

the stellar radius is not included in this calculation.

Taking account of the runaway increase in the stellar radius, the net heat deposited
could approach the binding energy and hence lead to disruption when the heating at
saturation approaches 1% of the binding energy. We estimate that the heating could be

substantial at 7, ~ 4.5r, for 20M, stars.

Next we analyse the heating effect more accurately using MESA stellar evolution
simulations. We estimate the heating rate by AFEy/P,, and assume that the heat
is deposited uniformly in the radiative zone. We take account of the change in
|Qni=2|?| K pi=2m|* due to the change of the stellar structure through iterations. For our
first iteration, we assume a constant |Q—2|?| Kni=2m|? and obtain the structure of the
heated stars with different radii at different times. Then we calculate the increase in
|Qni=2|?| K pi=2m|* as a function of the increase in stellar radius for the heated stars. For
our second iteration, we simulate the heated stars with a changing |Qu—z|?| Kni=am|* as
a function of stellar radius. We calculate |Qnu—2|?| Kni—2m|? and continue iterating until
the dependence of |Q,1=2|*| Kni=2m|? on radius converges. In the examples we consider,

convergence is reached within two iterations.

Our convergent results for the 20 M, star indicate that the size of the convective
core decreases and the central temperature stays approximately constant during the
heating. For the 1 M, star, the size of the radiative core increases and the central

temperature drops significantly. Figure 9.8 shows the radius of the heated star as a
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function of time. We compare the results of the two iterations for the 20 M, star at
rp/r: = 4.5 and for the 1 Mg, star at r,/r; = 5, and find that the disruption time depends
only weakly on the change in |Q—2|?| Kpni=2m|?. For other pericenter distances we show
only the results of the first iteration (assuming |Qnu—2|*| Kni=2m|* =const). Requiring
the heating timescale to be shorter than the orbital scattering timescale and the stellar
lifetime, we find that the maximum 7, for disruption is ~ 4.5r; for a 20 M, star and

~ 5ry for a 1 M, star.

For simplicity, we only considered non-rotating stars. As discussed by Fuller & Lai
(2012), the mode frequencies are modified for rotating stars by mC,,; 2., where €, is the
rotation rate of the star and Cpy = [, pR*(267¢5 4£5%) dR. Because Q, are unchanged
by rotation, the dominant modes shift to higher order g-modes which have smaller values
of ),;. Thus, rotation would lower the excitation energies. In addition, the rotation
may modify the modes themselves (Burkart et al. 2012), and further complicate the
calculation. Treatment of tidal excitation in misaligned spin-orbit systems were discussed

by Ho & Lai (1999) and Lai & Wu (2006).

Finally, we discuss the observational signature of a tidally heated star. Using the
MESA simulation, we plot the Hertzsprung-Russell (HR) diagram of the heated stars
in Figure 9.9. Because our calculation is not appropriate in the non-linear regime when
the tidal radius of the heated star approaches ~ (r,/2.7), we stop the calculation when
Tp ~ 2.77¢ heated, Where 74 peqreq 15 the tidal radius of the heated star. We find that a 1
My, star at r, ~ 2.77 peqteq acquires a luminosity L that is ~ 3 times higher than if it
were on the main sequence and an effective temperature T, ;¢ that is ~ 12% lower than
the main sequence star. A 20Mg star at r, ~ 2.77¢ peated acquires a luminosity that is

~ 44% times higher and an effective temperature that is ~ 20% lower than that on the
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main sequence. Photometrically, the heated stars could be confused with giant stars that

evolved off the main sequence (illustrated by the blue lines in the plot).

9.4 Conclusion

We considered the tidal excitation of oscillation modes in stars orbiting SgrA*. When
the dissipation timescale of the modes is longer than the orbital period, the modes
excited in each passage interfere. Due to the gravitational scatterings on nearby stars
or stellar-mass black holes, the orbital period of the excited star changes stochastically
and the energy of the excited modes increases approximately linearly with the number
of pericenter passages. As non-linear coupling of the stellar modes dissipate the kinetic
energy of the modes, the excited star is heated. Once the deposited heat is significant,
the star bloats and its tidal heating accelerates, until non-linearities lead to the final

mass loss and possible disruption of the star.

We calculated the thermal energy gain by a star as a function of the semi-major axis
and eccentricity of its orbit around Sgr A*. We have found that the maximum pericenter
distance where the heat gained by the star approaches its binding energy is 7, ~ 5ry
(~ 3.7 AU) for a 1 M, star and r, ~ 4.5r; (~ 13 AU) for a 20 M, star. The accumulated
heating may explain the lack of massive (2 10M) S-stars closer than several tens of AU

from SgrA* (Genzel et al. 2010).

The heating process may be most effective for the highest-mass stars (2 100M,),
where radiation pressure nearly balances gravity and reduces the binding energy

considerably relative to GM?2 /R, (Shapiro & Teukolsky 1986). This makes these stars

271



CHAPTER 9. TIDAL HEATING OF STARS IN THE GALACTIC CENTER

more vulnerable to disruption through heating. However, the heating is not important
for giant stars evolved off the main sequence, because for r,/r; ~ 5 the orbital period of
a giant star is too long to allow sufficient number of pericenter passages during the star’s

lifetime.

The expected radius of the cavity produced by tidal disruption of stars depends on
stellar mass (Alexander & Livio 2001). Since gravitational scatterings on other objects
could change the orbital period on a timescale much shorter than the lifetime of a low
mass star but similar to the lifetime of the high mass star (~ 20Mg), the net number of
pericenter passages is similar in the two cases. Of course, the tidal distance of a high
mass star is larger than that of a low mass star, and so a lower mass star may approach
Sgr A* at a closer distance (having a shorter orbital time and more pericenter passages)

before being tidally disrupted.

The removal of tidally-heated stars makes it more difficult to test the no hair
theorem of general relativity based on stellar orbits, as the precession produced by
the quadruple moment of SgrA* decreases with increasing distance. For example, the
precession rate due to the quadruple moment of SgrA* is only ~ 0.4uas/yr for a 20M,
star with r, = 4.5r;, and is ~ 4pas/yr for a 1M star with r, = 5r;, assuming a
normalized spin of 0.7 for SgrA* (Will 2008). Gravitational deflections by other stars or
compact objects contaminate the precession signal and require the monitored stars to
be within ~ 2 x 107 pc from SgrA* (Merritt et al. 2010). We find that only low mass
stars (which cannot be detected at present) would be viable targets for testing the no

hair theorem around SgrA*.

As new stars, such as SO102 (Meyer et al. 2012), are being discovered in the Galactic
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center, our predictions for the tidal cavity radius as a function of stellar mass may be
tested. In particular, the second-generation VLTI instrument GRAVITY will be able to
resolve faint stars with a K-band magnitude myx = 18 (~ 3Mg) (Bartko et al. 2009) and

test our predictions in the coming years.
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Figure 9.3: The change in eccentricity of a star at 0.01 pc with e = 0.998 due to
surrounding stars. The configuration of the stellar cluster is the same as that shown in
Figure 9.2. The changes in eccentricity can affect heating, but cannot completely suppress
the heating process.
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Figure 9.4: Radius of the star as a function of the number of passages after saturation
when t > t.(R = 0), assuming AR/R, o(n = 0) = 0.01. We find that a star can be heated
significantly after ~ 10° passages even if the thermal energy it stores at saturation is only
1% of its binding energy. This threshold increases as r,/r; increases.
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Figure 9.5: Y |Qni=2|?| Ky 1=2.m|* as a function of the mode order (n) for stellar modes

computed with the ADIPLS code (Christensen-Dalsgaard 2008) based on the stellar struc-
ture from the MESA stellar model (Paxton et al. 2011). The mass (20M) and radius
(10Rw) of the star resemble those of SO-2 (Martins et al. 2008).
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Figure 9.6: The cooling time (t.) as a function of radius for the two stars in Table 9.1.
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a (10~ pe)

Figure 9.7: Maximum amount of heat gained at saturation in units of the binding
energy of the star as a function of its orbital parameters a and e for a 20M star. The
solid black line indicates the pericenter distance boundary r, = 2.7r, below which the
linear tidal excitation formalism is not applicable (Novikov et al. 1992). The dashed
black line delineates the threshold Ey/Ep ~ 0.01, beyond which the star can potentially
be disrupted in < 10° pericenter passages. We find that 20M, stars are significantly
heated at r, ~ 4.57;.
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Figure 9.8: Stellar radius versus heating time. Left panel: 1M star; Right panel: 20M,
star. Blue lines indicate the radius change by stellar evolution. Requiring the heating
time to be shorter than the orbital scattering timescale (~ 10° yrs) and the lifetime of
the unheated stars, the maximum r, for which the stellar radius significantly is ~ 4.5r,
for the 20 M, star, and ~ 5r; for the 1 M, star. At these limiting cases, the dashed lines
show results from a second iteration in which |Q,1=2|?|Kni=2m|? is updated as the stellar
radius increases.
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Figure 9.9: HR diagram of heated stars with masses of 1M (left panel) and 20M
(right panel). Blue lines indicate the evolution track of giant stars with the same masses
as they evolve off the main sequence. The HR diagrams of the heated stars stop at the
point when the tidal radii of the heated stars approach (r,/2.7), at which point the linear
tidal excitation approach breaks down.
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Chapter 10

Gravitational Wave Heating of Stars

and Accretion Disks

This thesis chapter originally appeared in the literature as
Li, G., Kocsis, B & Loeb, A. Gravitational Wave Heating of Stars
and Accretion Disks, Monthly Notices of the Royal Astronomical
Society, 425, 2407, 2012

Abstract

We investigate the electromagnetic (EM) counterpart of gravitational waves (GWs)

emitted by a supermassive black hole binary (SMBHB) through the viscous dissipation
of the GW energy in an accretion disk and stars surrounding the SMBHB. We account
for the suppression of the heating rate if the forcing period is shorter than the turnover

time of the largest turbulent eddies. We find that the viscous heating luminosity in
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0.1M,, stars can be significantly higher than their intrinsic luminosity, but still too low
to be detected for extragalactic sources. The relative brightening is small for accretion

disks.

10.1 Introduction

The coalescence of supermassive black hole binaries (SMBHBs) generates gravitational
waves (GW) which are a primary source for the proposed Laser Interferometric Space
Antenna (LISA*). SMBHBs are inevitable outcomes of galaxy mergers. Spatially-resolved
active galactic nuclei have been observed (Komossa et al. 2003; Bianchi et al. 2008;
Green et al. 2010; Koss et al. 2011; Fabbiano et al. 2011). In addition, spectroscopic
surveys (Comerford et al. 2009; Smith et al. 2010; Liu et al. 2010b) and observations that
combine ground-based imaging show numerous systems containing compelling SMBHB
candidates with pc to kpc separations (Rodriguez et al. 2006; Liu et al. 2010a; Shen et al.
2011; Fu et al. 2011; McGurk et al. 2011). Hydrodynamic simulations of galaxy mergers
also predict SMBHB pair formation (e.g. Escala et al. 2004, 2005; Di Matteo et al. 2005;
Robertson et al. 2006; Hopkins et al. 2006; Callegari et al. 2009; Colpi & Dotti 2011;

Blecha et al. 2012).

Electromagnetic (EM) counterparts to GW sources complements the GW detection
by determining the host galaxy redshift and the environment of the sources (Kocsis
et al. 2006; Phinney 2009). A large variety of EM signatures have been proposed to

accompany the coalescence of SMBHBs (Schnittman 2011; Haiman et al. 2009). In the

*http://lisa.nasa.gov/
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pre-merger phase, the torques of the SMBHB excavates a hollow region in the disk and
leads to periodic accretion across the gap on the orbital timescale (Cuadra et al. 2009;
MacFadyen & Milosavljevi¢ 2008; Hayasaki et al. 2008). After the merger, the recoil
of the black hole remnant and its sudden mass loss due to the final GW burst produce
shocks in the accretion disk which lead to EM signals (Bode & Phinney 2007; Lippai
et al. 2008; Schnittman & Krolik 2008; Shields & Bonning 2008; O’Neill et al. 2009; Rossi
et al. 2010). The recoil of the black hole remnant changes the tidal disruption rate of
stars due to the refilling of the loss cone and the wandering of black hole remnant (Stone
& Loeb 2011a, 2012; Li et al. 2012). Finally, the infall of gas onto the black hole remnant

produces an EM afterglow (Milosavljevi¢ & Phinney 2005; Tanaka & Menou 2010).

In this paper, we consider the viscous dissipation of GWs generated by a SMBHB
in a neighboring gaseous medium. In particular, the velocity shear induced by GWs in
the gas is damped by viscosity. The dissipated GW energy turns into heat, and produces
an electromagnetic flare. Unlike other EM counterparts, the brightening here follows
promptly within a few hours to days after the coalescence of the SMBHB (Kocsis & Loeb
2008). The effect provides a unique test of general relativity for the interaction of GWs
with matter. In § 10.2 and 10.3 we investigate GW dissipation in a gaseous accretion
disk and stars in the vicinity of the SMBHB. We examine the suppression of the effect if
the forcing period is shorter than the turnover time of the largest eddies (Krolik 2010),
in analogy to a similar treatment of tidal heating in binary stars (Zahn 1966; Goldreich

& Keeley 1977). Finally, we discuss our conclusions and their implications in § 10.4.
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10.2 Method

We start by presenting our approach for estimating the GW heating inside an accretion
disk and stars due to turbulent viscosity. Following Kocsis & Loeb (2008), we
approximate the GW luminosity by matching the Newtonian inspiral luminosity prior
to merger (¢ < 0), the peak luminosity at the merger (t = 0) and the decay luminosity
afterwards (¢ > 1), where t; can be fixed from this matching procedure. Specifically, in

the Newtonian inspiral regime, the luminosity is

32 G M3).2
5¢ ad

LGW inspiral — (101)

where M = Mj + M, is the sum of the masses of the SMBHB members, u = My M, /M
is the reduced mass of the SMBHB and a is the separation between the SMBHB, which

can be expressed as

256 G3 174

assuming a circular orbit. The peak luminosity is approximated from numerical
simulations (Berti et al. 2007; Buonanno et al. 2007) as

5

IS 2
LGWpeak ~ 10735 (%) ; (103)

and the ringdown luminosity is set to be

c(t—1
LGWringdown = LGWpeak eXp<_%> ) (104>
g

where Ry, = GM/c? is the gravitational radius of the SMBHB. The peak luminosity is
modified by a factor of two (Berti et al. 2007; Buonanno et al. 2007) due to different
magnitudes and orientation of the spin of the SMBHB. In this paper, we assume the

masses of the two black holes are the same.
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With the approximated expression of GW luminosity as a function of time, the
dissipation of GW energy inside a viscous medium can be calculated by solving the

weak-field Einstein equation (Hawking 1966; Weinberg 1972):

. 160G
€heat = 2 nGGWa (105)

where éy,0,¢ 1S the dissipation rate, n is the dynamical viscosity and eqw is the GW energy

density. eqw can be obtained from egw = Y(0) fﬂiﬂ, where 6 is the angle relative to the
total angular momentum vector, Y (0) = 5/2[sin®(6/2) + cos®(0/2)]. We use the average
value (Y) = 1 below. With Lgw derived, the only unknown parameter is the dynamical

viscosity of the medium that the GW passes through. The dissipation rate of the GW

energy gives the heating rate of any gaseous medium such as an accretion disk and stars.

Next, we estimate the dynamical viscosity for stars. We use stellar models produced
by Modules for Experiments in Stellar Astrophysics (MESAT) (Paxton et al. 2011), a
1D stellar evolution code, and we consider stellar models, whose properties are included
in Table 10.1. We associate the dynamical viscosity with the mixing length theory
diffusion coefficient, which is directly provided in the simulated models by MESA. When
the period of the driving force is smaller than the largest eddy turnover time, the eddy
viscosity depends on the ratio of the period to the largest eddy turnover time in one of

two possible ways:

n = 1n; min [(TG—W>, 1], (10.6)
27’1
or
: Taw ) 2
— Taw ,1], 10.7
=% mn [(27r7‘l> ( )

Thttp://mesa.sourceforge.net/
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where 7); is the intrinsic viscosity in the absence of shear force with short period, 7; is the
largest eddy turnover timescale and 7qw is the shear force period, which is calculated
as 27 /waw, where waw = 24/GM/a? in the inspiral phase a < 6R, and 0.25/(GM/c?)]
after the ringdown, and extrapolate linearly during the transition according to Buonanno
et al. (2007). The viscosity scaling given by Eq. (10.6) is discussed in Zahn (1966,
1989); Zahn & Bouchet (1989) and Eq. (10.7) in Goldreich & Keeley (1977); Goldreich
& Nicholson (1989). Observations are more consistent with Zahn’s scaling for pulsating
stars in the red edge of the instability strip (Gonczi 1982), for tidal circularization of
binary stars (Verbunt & Phinney 1995; Meibom & Mathieu 2005), while the damping of
the solar p-mode oscillations is more consistent with the Goldreich’s scaling (Goldreich
& Kumar 1988; Goldreich et al. 1994). Recently, Penev et al. (2009) studied turbulent
viscosity in low mass stars using the perturbative approach of Goodman & Oh (1997),
taking into account compressible fluid and anisotropic viscosity. Their simulation
suggests a linear scaling. However, Ogilvie & Lesur (2012) found results more consistent
with Goldreich’s scaling when studying the limit of a low amplitude short oscillation

period shear. We considered both scalings for stars in this paper.

With the viscosity for stars and Lgw(t) in hand, the GW heating rate can be
estimated using Eq. (10.5). The EM luminosity increase can be estimated by solving the

radiative transfer equation:

1) EAT() + AF(T) = e (108)

star
where Af(r) is the excess EM signal produced per unit volume as a function of location

in the star, Lgwy is the excess EM luminosity associated to GW heating, and ¢.(r) is the
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cooling time as a function of the location, which characterizes the time it takes for heat

to travel to the surface. We estimate the latter by taking the integral of the minimum

dr(r)

of the photon diffusion time, dr/c x [7(r) — (R, —r)=5;

|, and the turbulent convection
time, dr/v.(r), in each spherical shell inside the star, where the optical depth, 7(r), and
the convective velocity, v.(r) are obtained from the MESA simulation, and R, is the

radius of the star.

Finally, we estimate the heating in accretion disks. We adopt the geometrically
thin, optically thick, standard accretion disk model, where the angular momentum
transport is associated with the internal stresses due to turbulence (Shakura & Sunyaev
1973; Novikov & Thorne 1973). Heat is dissipated locally by turbulent viscosity, and
transported vertically outward by photon diffusion or advection. Specifically, the

viscosity of the accretion disk is

2aP(r)
mi(r) = 3 Q)

(10.10)

where Q?(r) = GM/r? is the angular velocity, « is a constant which we assume to be
0.3 (King et al. 2007), and P is the total (gas+radiation) pressure in the v disk model,
and gas pressure in the f model. In these models, the physical characteristics of the
disk is fixed by the following parameters: the accretion rate in Eddington units (1),
the radiation efficiency (e), and the SMBHB mass (M) (Goodman 2003; Goodman &
Tan 2004). We set 1 to be 0.1, € to be 0.1, and discuss the effects caused by different

SMBHB masses.

Similarly to stars, we account for the frequency dependence of viscosity when the
period of the driving force is smaller than the largest eddy turnover time, and estimate

the effective viscosity according to the perturbative methods as discussed in Goodman
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& Oh (1997). Specifically, for incompressible fluid with isotropic viscosity, the viscosity
as a function of driving force frequency can be expressed in terms of the frequency
spectrum of the average kinetic energy per unit mass. For accretion disks, where the
Kolmogorov scalings may not be applicable to obtain the energy spectrum, we adopt
the energy spectrum from recent magnetohydrodynamic (MHD) disk simulations. Flock
et al. (2011) present a full 27 three dimensional simulation on a stratified accretion disk,
where the turbulence is driven by magnetorotational instability (MRI) and the kinetic
spectra is obtained in the ¢ direction, and Fromang (2010) investigate the MRI in a
shearing box with zero net flux. Flock et al. (2011) and Fromang (2010) estimate the
kinetic energy spectrum exponent to be 11/9 and 1.5, respectively. We estimate the
viscous heating in accretion disk with the Flock et al. (2011) exponent as well as the

Kolmogorov scaling exponent 2.

Similarly to the calculation for stars, the GW heating rate can be estimated using
Eq. (10.5). The corresponding EM signals can be estimated by solving the radiative

transfer equation following Kocsis & Loeb (2008):

d
tC(T)EAF(n t) + AF(“ t) = Héheat(ra t), (1011)
LGWH(t) = / QWTAF(T, t) d’l“, (1012)

where F(r) is the excess EM flux due to GW heating in the accretion disk, H is the
scaleheight, Lowy is the corresponding excess EM luminosity, and ¢.(r) is the cooling
time. Here, we assume the disk is face on, and account for the different light-travel time
from different annuli in the disk. The brightening can be somewhat larger in an inclined
or edge-on configuration (by up to a factor of ~ 3) where the peak GW flux is observed

coincidentally at the inner and outer radii along the line of sight (Kocsis & Loeb 2008).

288



CHAPTER 10. GRAVITATIONAL WAVE HEATING OF STARS AND
ACCRETION DISKS

10.3 Results

First, we consider the GW heating of nearby stars. As an example, we examine the
GW heating light curve for a 0.1 M, star (stellar model 2) surrounding an M = 107 or
an 10° M, SMBHB, respectively. Using Egs. (10.8) and (10.9), we calculate F(¢) and
plot the GW heating light curve in Figure 10.1. We assume that the star is located
at d = 5 tidal radii from the SMBHB (corresponds to 320 and 15 R, for a 107 and a
10° M, SMBHB, respectively). Note that since the GW luminosity is proportional to
(d/Rg)~2, the GW heating effect is much larger around more massive SMBHBs because

the viscosity suppression for a high mass SMBHB is smaller.

Figure 10.1 shows that the excess luminosity of the star surrounding the 10°M,
SMBHB is much higher than the intrinsic luminosity of the star (L = 2.6 x 10%%erg s71).
In fact, the net dissipated GW energy can exceed the gravitational binding energy
near the stellar surface, and could generate a stellar wind. However, as the viscosity is
strongly suppressed in the stellar interior ( % < 1 for r < 0.99Rg1ar), the heating effect
is negligible to the star as a whole. In addition, these stars are very faint; the absolute

peak GW heating luminosity in the star is typically too faint to be observed outside of

the Galaxy.

Since the turnover time of turbulent eddies is much longer in the interior of the
star than that at the surface, the energy is mostly dissipated at the surface. Since the
cooling time near the surface (~ 200 s) is short compared to the peak GW timescale
(~10R,/c ~ 5008 Mpy /107 Mg,), the light curve of the star closely tracks the luminosity
curve of the GW. When the GW driving period is shorter than the eddy turnover time,

the viscosity caused by the eddy depends on the ratio 7qw /7, where the exact scaling is
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uncertain as discussed in § 10.2. For stars surrounding a 10° M, SMBHB, the differences
between the two scalings are smaller as the period of peak GW emission for this SMBHB

mass is more comparable to the surface eddy turnover time in a 0.1 M, star.

To examine the influence of the GW heating in different types of stars, we consider
stellar models of different stellar masses and ages as included in Table 1. We include
the extreme cases with 0.1 My and 100 M stars. We plot the ratio of the peak heating
luminosity to the intrinsic luminosity for different stellar models in Figure 2 with
Zahn’s scaling. We find that the influence of the GW heating is more significant as
the metallicity of the star increases, and GW heating is not significant for very massive

(M, > 100M,,) stars.

Next, we discuss the heating effects in accretion disks. For v and [ disks, we solve
Egs. (10.11) and (10.12) for the heating flux, and plot the heating light curve of the disk
due to GW heating in Figure 3. The accretion disk is punctured with an inner hole.
This geometry is essentially “frozen” during the final GW merger timescale with a gap
radius 2 100M for a—disks (Milosavljevi¢ & Phinney 2005). Recent MHD simulations
by Noble et al. (2012) indicate that the stresses may be enhanced in a binary, such
that gap decoupling occurs further in, at 20RR,. We optimistically adopt this value for
our estimates, which implies a larger heating rate than that for a larger gap radius.
We integrate over the accretion disks between the inner and outer boundary. We set
the latter to 2 x 10* Ry, but this value does not influence our result as the heating in
the outer accretion disk is negligible. We include the different light travel time from
different accretion disk surface elements along the line of sight. Our calculation of the
heating in the accretion disks improves the simplified treatment of Kocsis & Loeb (2008)

by including the dependence of viscosity on the ratio of the GW driving period to the
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Figure 10.1: The light curve of a GW heated star (based on star model 2 with an intrinsic
luminosity: L = 2.6 x 10¥%%rg s7!). The time axis is in units of R,/c, and is shown on a
logarithmic scale at both negative and positive values (causing the discontinuity at ¢ = 0).
The star is located 5 tidal radii away from the SMBHB (320 and 15 R, for a 107 M, and
109 M, SMBHB, respectively). The black line indicates the GW luminosity scaled down
by 25 order of magnitude in order to fit in this figure. The red and blue lines indicate the
light curve of a star surrounding a 107 and a 10° M, SMBHB, respectively, with solid and
dashed lines corresponding to the viscosity dependence with (7qw/27) and (Taw/277)?,
respectively. The light curve closely tracks the GW light curve. Interestingly, the peak
luminosity surrounding the 10° M, SMBHB is much higher than the intrinsic luminosity
of this star.
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Table 10.1:: Properties of stellar models

No. | Mass | Metallicity | Radius | Luminosity | Age
(Mo) | (2) (Ro) | (Lo) (vrs)
1 0.1 0.16 3.3 0.00079 2 x 10*
2 0.1 [0.16 3 0.00066 5 x 108
3 0.1 0.16 0.57 5.5 x 107° | 2 x 10°
4 0.1 0.01 2.4 0.43 2 x 10*
5 0.1 |0.01 0.44 0.022 5 x 10°
6 0.1 0.01 0.12 0.0012 2 x 10°
7 100 | 0.04 21 1.4 x 10° 1 x 10*
8 100 | 0.04 36 1.7x10% |1 x10°
9 100 | 0.04 960 2.1 x10% | 2x 106
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Figure 10.2: Ratio of the peak GW heating luminosity to the intrinsic stellar luminosity.
The horizontal axis shows the mass of the SMBHB, and the vertical axis plots the distance
(d) between the star and the SMBHB in units of the tidal radius (r;). First row: model 1,
2, 3; second row: model 4, 5, 6, third row: model 7, 8, 9. Solid black line indicates where
the distance between the star and black hole binary is 6 R, the radius of the innermost
stable circular orbit (ISCO) around a non-spinning black hole. In the last panel, the
points in the figure lie out of 6 R,, and so the black line is not shown. The first two rows
correspond to 0.1 My stars with metallicity Z = 0.16 and Z = 0.01 respectively, and the
last row corresponds to 100 M, stars. GW heating is most significant for high metallicity
low mass stars.
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largest eddy turnover time, which suppresses the dissipation of GWs. We consider two
cases in this plot. Following the perturbative turbulence derivation by Goodman & Oh
(1997), the power-law index is 2 for Kolmogorov turbulent scaling, and % according to
MHD disk simulation by Flock et al. (2011). The eddy turnover time increases rapidly as
the radius increases, and so the suppression of the GW heating is less significant for disks
truncated closer to the SMBHB. Therefore, the heating luminosity is more significant for

disks that are truncated closer to the SMBHB.

10.4 Discussion

In this paper, we considered the dissipation of GWs in an accretion disk or stars
surrounding a SMBHB. We have found that the GW heating luminosity of the accretion
disk and stars are low, and make no significant EM flare relative to their intrinsic
luminosity except for low mass stars (~ 0.1M). The integrated excess luminosity from
heated low mass stars is too low to be observed in galactic nuclei as they are faint.
Assuming a Bahcall-Wolf distribution of stars or assuming a collision timescale larger
than 1 Myr, we find that only a few stars are expected to be within 5 tidal radii of a
coalescing SMBHB, where the GW heating effect is significant. Therefore the overall

brightening of the stellar cluster is negligible.

In order to be heated significantly by GWs, the stars need to be close to the SMBHB.
One possible avenue is that stars get caught in mean motion resonances (such as Trojan
resonances) and move inwards as the SMBHB merge (Seto & Muto 2010; Schnittman
2010). This is only effective for SMBHB with an unequal mass ratio ¢ < 1072; the

stars get ejected before the coalescence otherwise. Another possibility is for stars to get
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Figure 10.3: The excess luminosity relative to the disk luminosity due to GW heating
on an accretion disk (inner disk truncated at 20 R,) before (¢t < 0) and after (¢ > 0) the
binary coalescence event. The time axis is shown on a logarithmic scale at both negative
and positive values (in units of R,). The SMBHB mass is 10 M. Solid lines corresponds
to the frequency dependence (Tgw/ 27?77)% derived according to the energy spectrum of
accretion disk based on MHD simulations by Flock et al. (2011), and the dashed lines
correspond to the scaling (7qw/277)?, assuming Kolmogorov turbulence.
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captured or form in the outer parts of accretion disks, and migrate inwards by processes
analogous to planetary migration (Miralda-Escudé & Kollmeier 2005; Karas & Subr

2001; Levin 2007).

We assumed that GW energy is dissipated locally through turbulent viscosity. The
damping of shear stress by eddy viscosity in stars was found to be consistent with
observations in the context of the tidal circularization of binaries (Verbunt & Phinney
1995; Meibom & Mathieu 2005). The underlying accretion disk model is uncertain since
the disk structure is unstable to both thermal and viscous instabilities. Recently, Blaes
et al. (2011) found that radiation-dominated disks differ significantly from the standard
disk models, where the dissipation associated with the turbulent cascade and radiative
damping dissipate energy non-locally. It remains to be seen whether the GW heating

effect is more prominent in alternative disk models.
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