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Abstract

Additive Manufacturing (AM) offers different benefits
such as efficient material usage, reduced production time
and design freedom. Moreover, with continuous
technological developments, AM expands in versatility
and different material usage capabilities. Recently new
energy sources have been developed for AM — green
wavelength lasers, which provide better energy absorption
for pure copper. Due to high thermal and electrical
conductivity of copper, this novel AM technology is highly
promising for various industries, particularly, there is a
huge interest to use it for accelerator applications. In
particular, these AM produced accelerator components
should reach the associated Ultra High Vacuum (UHV)
requirements. In this study, vacuum membranes of pure
copper were produced by AM using a green laser source,
in different thicknesses and built angles. Furthermore, a
vacuum membrane helium leak tightness test was
performed at room temperature by using a high-sensitivity
mass spectrometer. Comparison of these test results was
performed with previously established results. Through
this study, novel knowledge and initial results are provided
for green laser source AM technology usage for
applications for UHV accelerator components.

INTRODUCTION

When accelerating an electron beam through an SRF
cavity, the cavity’s high-quality factor and narrow
bandwidth causes the accelerating electron beam to be
susceptible to internal and external vibrations. As a result,
more power is required to maintain the desired beam, thus
interfering with the beam quality. Tuning the SRF cavities,
using stepper motors and piezoelectric actuators, helps to
keep the cavity between the power budget [1].

Microphonics are significant disturbances that have been
effectively combated through active noise control methods.
One such technique is the NANC algorithm, a method of
gradient descent that operates the piezoelectric tuners and
neutralizes narrowband microphonics. The NANC
algorithm has proven useful for operating facilities such as
LCLS-II, which must maintain a 10 Hz maximum cavity
detuning. However, the NANC algorithm that has been
used and tested appears to be open to improvement, as it
requires the user to manually set parameter values [1].

The method of gradient descent is most commonly used
in machine learning and data mining [2], and researchers
in these fields have worked to improve the algorithm
beyond the manner in which it is used in the NANC
algorithm. The purpose of this paper will be to propose the
application of two previously conceived methods, Adam
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and the Nesterov Accelerated Gradient method, so as to
improve the NANC algorithm.

GRADIENT DESCENT

Gradient Descent is a first-order iterative optimization
algorithm for finding a local minimum of a differentiable
function, and is often used in machine learning and data
mining. As illustrated by Figure 1, the algorithm steps
through an equation opposite the direction and according
to the magnitude of the approximate gradient until the
minimum is reached. The simple gradient descent
algorithm currently utilized by the NANC algorithm takes
on the form [2]:

Apy1 = A — VVF(an) (1)

This simple algorithm functions to trace the graph of F
to its minimum according to its derivative with respect to
a and a stepsize y. The stepsize is manually optimized,
through trial and error, so as to most effectively approach
the minimum. This equation can only be used for
differentiable convex equations with a single minimum. If
this is not the case, the algorithm may not converge to the
absolute minimum [2].
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Figure 1: Illustration of gradient descent on a convex
function [3]. The incremental step is representative of ¥
and the weight is representative of a in Equation 1.

The current NANC algorithm has worked fairly
successfully for implementations like the one at Cornell
[4], but it is not yet known if the algorithm works optimally
as the stepsize has only been tuned manually.

The NANC Algorithm

C(tn) = 1/N - Xin_n+1 [6fcomp(ti)]2 (2)

The aim of the NANC algorithm is to minimize the
above equation, the mean-square detuning of an SRF
cavity. In this case, C(t,) represents the cost function at
time t,, and & f,omyp represents the effective detuning of the
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cavity in response to the summed effects of the
perturbation and the piezo-tuner. As of is dependent upon
the vibrations within the cavity, the derivative of C(t,)
cannot be easily evaluated, and the equation is thus best
minimized through a gradient descent algorithm of the
form:

mod
)

3

A‘m(tn+1) = Am(tn) - Mm5fcomp(tn)ei(wmf—¢m

Where A, is a complex phasor notation representative
of the vibrations within the cavity, p,, is the stepsize of the
gradient descent algorithm, d)mm"d is the phase response
of the actuator, and w is the detuning frequency of the SRF
Cavity. [4]

Though it appears more complicated than the general
gradient descent method, the above algorithm can also be
written as:

Am (tn+1) = Am(tn) —HUm Vc(tn) (4)

Where VC(t,) is the derivative of C(t,,) according to
A,,. This algorithm thus appears identical to the general
gradient descent algorithm.

NANC OPTIMIZATION

A general gradient algorithm uses a constant stepsize
which must be manually optimized through trial and error.
More complicated algorithms, on the other hand, utilize
variable step-sizes and stepping points for added
efficiency. These algorithms tend more quickly to the
minimum and also tend to be less dependent upon the
initial step-size. It is the hope of this research that one or
both of the algorithms explained below will improve the
NANC algorithm to the point of maximum efficiency.

Nesterov Accelerated Gradient Method

Compared to the general gradient descent equation, the
Nesterov accelerated gradient method alters the general
method in the following way [5]:

Ay = A, + A- (an - an—l) - VVF(an)- (4)

This algorithm generally accelerates the process of
gradient descent by qualitatively shifting the current
stepping point a, towards the minimum according to
previous values [5]. In this equation, A is a hyperparameter
which is to be optimized along with y. Even so, some have
suggested that A may be changed over time as an effect of
the current n [6], such as like

A=mn-1)/(n-2). (5)

The Nesterov method is not as effective on equations
that are not strongly convex [7]. It remains to be seen
whether this is a concern with the NANC algorithm.
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Adam

Different from the general gradient descent equation, the
Adam method continuously modifies the stepsize in the
following way:

Mpsr =B My + (A =B)-VF) /(A=)  (6)
Vpir1 = (B vn+ (1= B2) - (VF?)) /(1 -B2") (D)
Yne1 = A Mpyq / (\/ Vpprt€). (8)

The Adam method is useful because it more accurately
follows the shape of an equation and requires less
optimization than the general gradient descent algorithm.
Thus, it tends to more quickly and effectively approach the
minimum than general gradient descent. However, this
method has additional parameters to tune: a, f1, 52, and ¢,
which would require a certain amount of trial and error to
optimize [8].
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Figure 2: Logistic regression training negative log
likelihood on MNIST images and IMDB movie
reviews with 10,000 bag-of-words (BoW) feature vectors,
using three separate gradient descent techniques: AdaGrad,
Nesterov Accelerated Gradient Descent, and Adam [8].

As shown in Figure 2, the Nesterov and Adam methods
may perform similarly well depending on the given
situation, and generally outperform other algorithms. They
may even be made to perform better when combined
together. It is the purpose of future work to test this for the
case of the NANC algorithm.

SUMMARY AND FUTURE WORK

Currently, the general gradient descent algorithm as used
in the NANC algorithm works well as demonstrated in [4],
but the algorithm could be improved. Experimentation
must be done in order to determine whether the proposed
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optimization algorithms, the Nesterov accelerated gradient
descent algorithm and Adam, will further enhance the
NANC implementation. It is the ultimate goal that these
experiments will answer: whether the current stepsize truly
requires further optimization, whether the cost equation
encounters too much noise for the Nesterov gradient
descent algorithm to work most efficiently, or whether it is
possible for the NANC algorithm to more quickly and
efficiently approach the minimum of the cost function.
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