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Abstract. Given a globally hyperbolic spacetime M = R x ¥ of dimension
four and regularity C", we estimate the Sobolev wavefront set of the
causal propagator K¢ of the Klein—-Gordon operator. In the smooth case,
the propagator satisfies WF'(Kg) = C, where C C T*(M x M) consists
of those points (z, 57 ¥, 7) such that §~, 7 are cotangent to a null geodesic ~
at & resp. § and parallel transports of each other along . We show that
for 7 > 2,

WE 7 ¢(Kg)c C
for every e > 0. Furthermore, in regularity C" 12 with 7 > 2,
CCWF ™3 (Kg) C WF™ “(Kg) C C

holds for 0 < e < 7+ % In the ultrastatic case with ¥ compact, we show

WF'=3t7¢(Kg) C C for e > 0and 7 > 2 and WF' =277 ~(K¢) = C
for 7 > 3 and ¢ < 7 — 3. Moreover, we show that the global regularity of

_1_.
the propagator K¢ is H, 2 (M x M) as in the smooth case.
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1. Introduction

The quantisation of the scalar field forms part of the basis for the subject
of Algebraic Quantum Field Theory. While the main mathematical framework
for the smooth setting was initiated more than 20 years ago, see e.g. [23,28,32,
39,50], ongoing research continues to develop new techniques, particularly in
connection with microlocal analysis [29,37,38], the importance of Hadamard
states [20,27,40,55, 58], locality and covariance [12,26,44], perturbation theory
[11,14,34], Dirac fields [15,24,31,33] and gauge theory [7,13].

Moreover, it is now possible to approach certain mathematical questions
related to quantum fields propagating in spacetimes of finite regularity. This is
motivated by the deep foundational work on causality theory [8,18,42,46] and
advances in our understanding of nonlinear hyperbolic equations [17,19,41],
which were needed as a first step towards a full understanding of Einstein’s
equations as a well-posed Cauchy problem, which requires solutions that go
beyond the smooth ones. Additionally, there are several astrophysical models
of phenomena such as neutron stars, self-gravitating fluids and gravitational
collapse that are not smooth [2,16,47].

The quantisation proceeds in two steps. First, one constructs an algebra
of observables, then one represents this algebra on a Hilbert space of physical
states.

A common candidate for such physical quantum states, w, are quasifree
states that satisfy the microlocal spectrum condition.

To state it, it is useful to introduce the sets

C = {(2,£3,7) € T*(M x M)\0; g°(%)€alo=9""(§)flaiip = 0, (%,£) ~ (7, 7) }
C*={(5:75,?),f7)60;5° > 0,7 zo}, (1.1)

where (;%,g) ~ (g,7) means that there is a null geodesic v joining Z and g

such that &,7 are cotangent to the null geodesic v at x resp. § and parallel
transports of each other.
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Using the above sets, one can define the microlocal spectrum condition
as follows:

Definition 1.1. A quasifree state wy on the algebra of observables satisfies the

microlocal spectrum condition if its two-point function wg) is a distribution
in D'(M x M) and satisfies the following wavefront set condition

WF () = CF,
where WF'(wf)) := {(%,&§, =) € T*(M x M); (#,&§,7) € WF(w{)}.

These states, called Hadamard states, have been constructed in the smooth
setting. They encompass both ground and KMS states [29,37]. Moreover, they
are particularly well suited for point-splitting renormalisation, a technique used
for calculating key physical quantities like the renormalised energy-momentum
tensor [63,64].

A central goal now is the construction of suitable quantum states in non-
smooth scenarios following the techniques in [29,38], which requires a thorough
knowledge of the wavefront set of the causal propagator. This is the question
we address in this article. To be precise, we characterise the wavefront set of
the causal propagator of the Klein—Gordon operator in non-smooth globally
hyperbolic spacetimes. The causal propagator is constructed using the inverses
associated with the Cauchy problem, which makes it a classical propagator.
It is worth noting that there exist other bisolutions such as the two-point
functions described above, which are non-classical (see [22] for further details
on this convention).

The microlocal analysis of the propagators of the wave equation and its
parametrices in low-regularity spacetimes introduces several technical chal-
lenges due to the lack of a complete theory of Fourier integral operators with
non-smooth symbols and amplitudes. However, progress has been made using
the paradifferential calculus introduced by Bony [10] (see also [6,45,61]). In
addition, Szeftel has constructed a parametrix which requires only control over
the L? curvature of the metric in order to prove the L?-curvature conjecture
related to Einstein’s field equations [41,59]. Moreover, Tataru [60] has con-
structed parametrices of the wave equations in low regularity for metrics with
OV coefficients as a preliminary step to show suitable Strichartz estimates
and analyse nonlinear PDE’s using phase space transforms. In addition, his
results allowed even lower regularity at the expense of showing weaker results.
Finally, we mention Smith’s construction of parametrices for the C!*! case us-
ing wave packets [56] (see [65] for a parametrix construction using Gaussians).
The contribution of our paper is establishing the microlocal singular structure
of the causal propagator when the regularity of the spacetime is finite. The
main theorems we prove are:

Theorem (Theorem 5.1). Let (M, g) be a C™ globally hyperbolic spacetime with
7> 2 and K¢ the causal propagator of the Klein—-Gordon operator P. Then,

WE' 2T ¢(Kg) Cc C
for every e >0, C as in Fq.(1.1),
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and

Theorem (Theorem 5.2). For a C™+2 globally hyperbolic spacetime with T > 2,
CCWF™3(Kg) C WF™(Kg) C C,
and hence equality, holds for 0 < e < T + %

In the ultrastatic case, sharper results are available. For completeness,
we state these in the Appendix, see Lemmas 6.5 and 6.7, Theorems 6.9 and
6.11.

1.1. The Smooth Setting

Consider a pair (M, g), where M is a smooth manifold and g is a smooth
Lorentzian metric. The Klein—Gordon operator P on (M, g) is given by

P:= gl“’vuvy(b + m2¢ = (D_L] + m2)¢ (12)

where g"” is the inverse metric tensor, V,, is the covariant derivative and m
is a positive real number.

The starting point is the notion of advanced and retarded Green operators
in this situation.

Definition 1.2. Let M be a time-oriented connected Lorentzian manifold and
let P be the Klein—Gordon operator. An advanced Green operator G is a
linear map G+ : D(M) — C°°(M) such that

1. POG+ == ld’D(M)

2. G+ ¢} P|’D(M) == ld’D(M)

3. supp(GT¢) C J*(supp(¢)) for all ¢ € D(M).
A retarded Green operator G~ satisfies (1) and (2), but (3) is replaced by the
condition supp(G~¢) C J~ (supp(¢)) for all ¢ € D(M).

In [5, Corollary 3.4.3], it is shown that these exist and are unique on a
globally hyperbolic manifold.

The advanced and retarded Green operators are then used to define the
causal propagator

G:=G"-G~

which maps D(M) to C2(M), the space of spatially compact maps, i.e. the
smooth maps ¢ such that there exists a compact subset K C M with supp(¢) C
J(K). If M is globally hyperbolic, then one has the following ezact sequence
[5, Theorem 3.4.7):

0 —— D(M) —E5 D(M) —E— c2(M) £ c2(M),

Since G is a continuous linear operator, the Schwartz Kernel Theorem implies
that there exists one and only one distribution K¢ € D'(M x M) such that

Ke(u®@v) =(GW),u), u,veDM). (1.3)
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It follows from Duistermaat and Hormander’s characterisation using Fourier
integral operators that the kernel K¢ satisfies

WF(Kg) = C. (1.4)

More explicitly, they showed that K¢ € 172 (M x M, C"), where I*(X, A)
denotes the space of Lagrangian distributions of order p over the manifold X
associated to the Lagrangian submanifold A. In this case A = C" = {(, &0, —7);
(f,é;g,ﬁ) € C}, see [25, Theorem 6.5.3]. Using [25, Theorem 5.4.1, Theorem
6.5.3], one obtains that in four dimensions, K¢ belongs to the Sobolev space

H_%_E(M x M) for any € > 0. For details on the Sobolev spaces mentioned,

loc

see Sect. 6.1 and [36, Appendix B].

2. The Non-Smooth Setting

Next we will consider the case, where g is a non-smooth metric. We will specify
the precise regularity in each section.

The definition of the Green operators in the non-smooth setting will
require us to choose suitable spaces of functions based on Sobolev spaces as
domain and range. We let

Vo = {¢ € H?omp(M);P¢ € Hclomp(M)}
Ve = {0 € Higo(M); P$ € Hioo(M)
and supp(¢) C J(K), where K is a compact subset of M}. (2.1)

Definition 2.1. An advanced Green operator for the Klein-Gordon operator P
is a linear map

Gt Heogp(M) — Hippo (M)

comp
satisfying the properties

L PGT =idmy,, (),
2. G*Ply, = idy,
3. supp(GT(f)) € J*(supp(f)) for all f € HL,,, (M),

A retarded Green operator G~ is defined correspondingly.

It is shown in [36, Theorem 5.8] that these operators exist and are unique
on Lorentzian manifolds that satisfy the condition of generalised hyperbolicity.
This condition is satisfied in particular for C! globally hyperbolic spacetimes.
Moreover, one obtains a short exact sequence for the low-regularity causal
propagator, G := G+ — G, similar to that in the smooth case

0 — Vo 2= HL, (M) —= Vi. —£— HL_(M).

comp
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3. Pseudodifferential Operators with Non-Smooth Symbols

3.1. Symbol Classes

Let {¢;;7 = 0,1,...} be a Littlewood-Paley partition of unity on R, i.e. a
partition of unity 1 = Z;io 1, where 1o = 1 for |{] < 1 and ¢y = 0 for |£] > 2
and ¥; (&) = ¢0(27€) — ¥o(2'77¢). The support of ¥;, j > 1, then lies in an
annulus around the origin of interior radius 27 and exterior radius 2'%7.

Definition 3.1. (a) For 7 € (0,00), the Holder space C™(R™) is the set of all
functions f with

Ifllem = > 108 fllLwony + Y sup

lal<[7] la|=[7] ©7Y

05 f(x) — 02 f(y)]
|z — y|7— 1]

<oo. (3.1)

(b) For 7 € R, the Zygmund space C7(R"™) consists of all functions f
with

Iflle; = sup 277 [|y;(D) f|| = < oco. (3-2)
J

Here, 1;(D) is the Fourier multiplier with symbol v, i.e. ¥;(D)u =
F~Y; Fu, where (Fu)(§) = (27)7"/2 [ e~ Su(x)d"x is the Fourier trans-
form.

We have the following relations: C™ = C7 if 7 ¢ N, and C7 C C] if
TeN

We next introduce symbol classes of finite Holder or Zygmund regularity,
following Taylor [61]. We use the notation (€) := (1+ [£[?)2, £ € R™.

Definition 3.2. (a) Let 0 < § < 1. A symbol p(z,§) belongs to C7STs :=
CTSIS(R™ x R™) if
IDEP(,&)ller < Cal&)™ 17 and |Dgp(x, )| < Ca(é)™ 1.

(b) We obtain the symbol class C7.ST"s := CT ST (R" x R") for 7 > 0 by
requiring that

IDEp(-, )llcs < Cal@)™ 1 0<s<T

(c) A symbol p(z,§) is in C7S7 provided p(z,&) € C™ STy and p(x,§)
has a classical expansion
P, &) ~ > pm—j(,6)
j=0
in terms p,,—; homogeneous of degree m — j in £ for |{| > 1, in the sense

that the difference between p(z,£) and the sum over 0 < j < N belongs to
crsmN,

The pseudodifferential operator p(z, D,.) with the symbol p(z,§) € C7 ST
is given by

(p(z, DoY) (x) = (2m) /2 / e Ep(r, E)(Fu)(©)d"E, ue SRY). (33)

n
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It extends to continuous maps
p(z,D,): H¥T"(R") — H*(R"), —-71(1-6)<s<T. (3.4)

While it is possible to extend the theory of pseudodifferential operators
with non-smooth symbols to manifolds (see [1]), due to the local nature of our
results it is a key point of this article that we can work entirely on R"™.

3.2. Symbol Smoothing
Given p(z,§) € CTST., and 6 € (v,1) let

p#(2,6) = > Tz, )5 (). (3.5)
j=0

Here, J. is the smoothing operator given by (J.f)(z) = (¢(eD)f)(x) with
¢ € C°(R™), ¢(£) =1 for [¢] < 1, and we take ¢; = 277007,
Letting p(x, &) = p(x, &) — p? (2, ), we obtain the decomposition

plw,€) = p* (,€) +p"(2,€), (3.6)

where p* (z, ) € ST and pb(z,€) € CTSI%_T(‘S_W).

The symbol estimates for p# are a consequence of the estimate

Cllflle- B/ <T
0271 < Ml 1
Ce Iflle- 18] >,
and that ¢; = 277007 For details, see Proposition 1.3 E and Equation
(1.3.21) in [61].

3.3. Microlocal Sobolev Regularity

Let p e C75)%, 7 > 0, with § < p. Suppose that there is a conic neighbourhood
I’ of (x0,&) and constants ¢, C' > 0 such that |p(z,&)| > c[&|™ for (x,&) € T,
|€] > C. Then, (x0,&) is called non-characteristic. If p has a homogeneous
principal symbol p,,, the condition is equivalent to p,,(xo,&) # 0. The com-
plement of the set of non-characteristic points is the set of characteristic points
denoted by Char(p).

A distribution u is microlocally in H® at (z9,&y) € T*M\O0 if there exists
a conic neighbourhood Ty of & and a smooth function ¢ € C§°(M) with
©(x0) # 0 such that

A@vawm%%<m

Otherwise we say that (zg,&p) lies in the H*-wavefront set WF*(u).

If w is microlocally in H® in an open conic subset I' C T*M\0, we write
u € H7Sncl (F)
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3.4. Propagation of Singularities for Bisolutions of the Klein—-Gordon Opera-
tor

A globally hyperbolic spacetime is of the form R x X, where ¥ is not assumed
to be compact, and we will write local coordinates in the form

7= (t,2),5 = (5,1) (3.7)
and the associated covariables as

£=(¢),7=m"n). (3.8)
On the product (R x ¥) x (R x X), we use (x, &) with

x = (2,7),€ = (§,7)- (3.9)

In the sequel, we shall apply the Klein—-Gordon operator also to functions
and distributions on M x M. Using the coordinates in Egs. (3.7), (3.8) and
(3.9), we distinguish the cases, where P acts on the first set of variables (¢, x)
or on the second set (s,y), and write P 5 and P ), respectively. Explicitly,

P(t@)(x7 DX) = P(t,r) (j7 Div g7 Dg}) = (Dg(j) + mg) ® I
Plsy)(%, Dx) = Plsy) (&, Dz, 9, Dg) = 1 ® (Qy(g) +m?)

In particular,

Char(Py 4)) = Char(P) x T"M U {(x,§) € T*(M x M)\0,{ = 0}
Char(P,s ) = T*M x Char(P) U {(x,&) € T*(M x M)\0,7 = 0}.
(3.10)

Theorem 3.3. Let the metric g be of class C™, T
ve HXP 7T (M x M) for some € > 0 with Pre,2)(

loc
WEF?T2(v) C Char(Py ).

¥V
S~
W
\é/o
I IA
Q
AN
\]
|
—_
IS
S
ISH

Proof. Being interested in the wavefront set of v near a point x, we multiply
v by a function ¢ € D(M x M) with ¢ = 1 near x and consider pv. So we
can assume that v has support in a small neighbourhood of x contained in a
single coordinate patch and consider v as an element of H2t7~7+¢(R* x R*).
In order to distinguish points (x,€&) = (%, &,7,7) from their representation in
local coordinates, we will write the latter in the form (x,&) = (Z, £, g,m). In
this local setting, P; .)(x, Dx) is given by the symbol a o
Plea)(%,8) = Pu.ay (2, 6,9, 1) = 9"(2)€u80 + 19" (2)T7, (2)€, + Qﬁ :
p2(x,€) p1(x,€) Po(x£)

(3.11)
The symbol smoothing (Eq. (3.6)) on pa, p1 gives a decomposition
pa(x,€) = p¥ (x,€) + Ph(x. §)
pi(x,€) = p} (x,€) + P} (x,€)
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where
¢*(x,6) = (0} (x,&) + p (x,€) +po(x,§)) € 5T 5(R® x RY), (3.12)
(X 5) c 0752 75( x RS) p?(&, é) c C-rflsig(‘r—lﬁ(RS « R8)
(3.13)

Taking 0 < § < 1 so close to 1 that 2 — 7§ < 2 — 7 + € we have v €
H?*o=79(R* x R*) (notice this implies v € H'T7~(T=D¥(R* x R*)), and we
have

¢ (x, Dx)v = —(p3(x, Dx) + P} (x, Dx))v = f, (3.14)
where f € H7(R* x R*), since p4(x, Dyx)v € H?(R* x R*) and p}(x, Dy)v €
HJ+175(R4 X R4)

Now if (Zg, &0, %0,70) ¢ Char(P 4), there are C,c > 0 such that

| Ptz (x,€)| > clg]? for [§] > C

in a conical neighbourhood I" that contains (Zo, éo, Jo,70)-

Since ph(x, &) € CTS2 0 and Pi(x,€) € 07*15113(7_1)6, there exists a
C > 0 such that

% (x,€)] = C(1+[€%) — (1 +1¢P) "
> C(1+ |€]?) for large |€].
Therefore, (@7 gOag()?ﬁO) ¢ Char( )

Since ¢# € 57, and (io,é
parametrix with symbol ¢ € S} 5( R8) such that

v+ 7(x, Dx)v = §(x, Dx)q" (x, Dx)v = §(x, Dx) f,

where (Zo, €0, Jo. 7o) ¢ WF(r(x, ) ) and G(x, Dx)f € H°F?(R* x R*) which
shows that (Zo, &, o 7o) ¢ WF7+2(4(x, Dx)f). Since

WFT2(v) € WETT2(q(x, Dx) f) U WF (r(x, Dx)v), (3.15)

—(r—1)8
2

1+ g

71) ¢ Char(¢”), there is a microlocal

we see that (@,@,@,@ ¢ WFo+2(v).
By definition of the wavefront set, this means that (xq,&;) is not in the
wavefront set of v, considered as a distribution on M x M. O

Remark 3.4. In the proof presented above, we showed that the microlocal re-
sults are local estimates, which can be done within a chart in the cotangent
bundle T*R®. To streamline the discussion and avoid frequently alternating
between the notation of the chart and the manifold, we will forego this dis-
tinction in Section 5. However, it is important to bear in mind that the proofs
in that section are analogous to the one detailed above, involving localization
within a chart.
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Remark 3.5. Applying the symbol smoothing directly to Py .y € CT’ISiO

would leave us with P(bm) € CT_1553(771)5. The advantage of the decompo-

sition in Theorem 3.3 with p} € 07_1511_;(771)5 and ph € CTSigT‘S is that the

associated operators map a given u € H?>T5770 to H* and H**'7%, respec-
tively, for —(1 —d)(7 — 1) < s < 7 — 1, so that the sum is in H® instead of
Hs9,

The theorem, below, will be crucial for our main result. Proofs can be
found in [61, Proposition 6.1.D] or [62, Proposition 11.4]. In [62, p.215], Taylor
points out that Zygmund regularity C? for the metric suffices.

Theorem 3.6. Let u € D'(M x M) solve Py gyu = f. Let y be an integral curve
of the Hamiltonian vector field Hy, with ps as in Eq. (3.11). If for some s € R,
we have f € H? ,(I') and P(bm,)u € H? (), where v C T with T' a conical

mel

neighbourhood and v € H1 (v(0)), then u € HE (v).

mcl mcl
Remark 3.7. If uw € HZf* ™ then P, U € H?, see Remark (3.5). More-

over, using the divergence structure of the operator one can show that, if u €
HYpom f € H 7w e HE,,(7(0)), then u € HE, ,(y) for =2(1 —6) < s < 2;

see [62, p.210] for details.

Remark 3.8. Notice that the s € R is constrained by the microlocal regularity
of P(Z ol and not only that of f. In fact, one can use the stronger hypothesis

that u € HZ,7(U) for a suitable domain U, regularity 7 and § € (0,1) in

comp

order to guarantee that P(bt’x)u € H*(U) Cc H;,,(T")

4. Support and Global Regularity of K

The following two lemmas contain the main results of this section. The first
lemma shows that only causally connected points belong to the support of K.
The second lemma establishes that Kg € H;_~(M x M).

loc

Lemma 4.1. Let (Z,3) € M x M be such that & and § are not causally related,
i.e. T ¢ J(g). Then, (£,7) ¢ supp(Kq).

Proof. Since the support of Kg is the complement of the largest open set
where K¢ vanishes, it is enough to show that there are open neighbourhoods
V of  and U of § such that K¢ vanishes in W =V x U.

We construct the sets V' and U as follows: For globally hyperbolic space-
times, there exist a time function and a foliation by Cauchy surfaces, i.e.
M = R x 3, see [8, Theorem 1.1], [53, Theorem 5.9]. Let & € {t} x ¥ and
g € {s} x X. Without loss of generality, we assume ¢ < s. Since M is glob-
ally hyperbolic, J(g) N ({t} x X) is compact and by hypothesis does not
contain Z. Therefore, there exists a neighbourhood V of & in {t} x ¥ such
that V N (J(§) N ({t} x ¥)) = 0. By symmetry, § ¢ J(V)N ({s} x £) =
J(V)N ({s} x ¥), and we thus also find a neighbourhood U of § in {s} x X
such that UNJ(V)N ({s} x £) = 0.
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FIGURE 1. UNJ(V)=0and VNJ(U) =0

Now we consider the total domain of dependence of both sets, i.e. D(ﬁ )
and D( ). Notice that J(D (V)) N DU ) = ( and J(D(U )) ﬂD( ) = 0.
Otherwise, we could construct a causal curve between U and V. We define
V :=IntD(V) and U := IntD(U), see Fig. 1.

Now we show that K vanishes in W = V x U: Choose smooth functions
¢ and ¢ with supp(¢)) C V and supp(¢) C U. Then,

Ka(b®6) = (G(),6) = /M ()b
G()6/Gde

[](Sllpp(¢))ﬂ51lpp(¢)

[ Wy 0.
JOVYNU
O

Remark 4.2. Notice that a totally analogous proof shows that (Z,7) ¢
supp(Kg=) if T ¢ J*(7).

Regarding the global regularity of the causal propagator for C*! globally
hyperbolic spacetimes, we find a slightly weaker result compared to the smooth
case. Nevertheless, in the ultrastatic setting we show that the same regularity
as in the smooth setting holds (Lemma 6.11).

Lemma 4.3. Let (M,g) be a C*'-globally hyperbolic spacetime. Then Kg €
H '"¢(M x M) for every e > 0.

loc

Proof. We have to show that, given 11,1 € D(M), the Schwartz kernel of
the product ¥oG1py is in H=1=5(M) for every € > 0. Since the proof is local,
we may assume (using possibly disconnected coordinate charts) that ¢ and
1)9 have their support in the same coordinate neighbourhood for M. We will

1Given a subset S of M, the domain of dependence of S is the set of all points p in M such
that every inextendible causal curve through p intersects S.
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therefore work in R*, using the notation 1,4, and G also for the representa-
tions in local coordinates. In order to distinguish the standard variables and
covariables on R* from those chosen for M we shall denote them by z, £, etc.
Moreover, we choose 13, %4 € D(R*) supported in the same coordinate chart,
satisfying 1319 = 1o and 14103 = 3. Finally, we denote by A®, s € R, the
pseudodifferential operator of order s with symbol (1 + |¢|?)%/2 on R?.

We have B

VoGP = AMTEAT " haho Gy = AT (P + (1 — 0ha))A ™ S4hgha Gy .
(4.1)

The operator 13 A~ "3, Gtpy maps H'(R?) to HZfe (R*) and therefore is
a Hilbert—Schmidt operator. Hence, it has an integral kernel in L?(R* x R%).
The operator (1 — t4)A~17%¢3 is obviously smoothing, since 1 — ¢4 and 13
have disjoint support. Hence, it maps H%(R?) to H>(R*) = (N, H*(R*). But
more is true: In the identity

2;(1—g) A g = (1 — ) A" 0 + (1 — ) [z, AT,

both operators on the right hand side map H?(R?*) to H*(R*) (recall that
[z, A~17¢] has the symbol Déj (14 [£]>)~17*). Iterating this identity, we find
that (1 4 |z|>M)(1 — va)A~1 7593 € B(H?*(R*), H>®(R*)) for every N € N.
Hence, (1 —14)A~17%¢3 maps H?(R*) to S(R*).

Therefore, it also has an integral kernel in L?(R* x R*). Denote for the
moment the L2-integral kernel of A=1=¢4315Gv)1 by ka = ka(z,y). Then, the
kernel k = k(z,y) of 12G is given by ;

Aa'ekA(g,y).

)
Here, the notation A%:)E indicates that we view A'*¢ as an operator on R* x

R* that acts only with respect to the first copy of R*. In this sense, it is a
pseudodifferential operator with symbol in the Hérmander class S(%BE and thus
maps L?(R* x R*) to H~175(R* x R*). This shows the assertion. O

Remark 4.4. Notice that since only the mapping properties of G were used we
have also that Kg+, K- € H, ' 7¢(M x M).

loc

5. Proof of the Main Theorems

A globally hyperbolic spacetime is given by a family of Riemannian metrics
{hi}ter on ¥ and a function B(x,t) > 0 such that the spacetime metric (M, g),
where M =R x 3, is given by

ds* = [*(t, x)dt* — hy, (5.1)

see [9, Theorem 1.1]. We will assume that the regularity of the spacetime
metric g is C7.
In this section, we will prove the following results:
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Theorem 5.1. Let (M, g) be a C7 globally hyperbolic spacetime with T > 2 and
K¢ the causal propagator of the Klein—Gordon operator P. Then,

WF="¢(Kg) c C
for every e >0, C as in Eq. (1.1).
Theorem 5.2. For a C™12 globally hyperbolic spacetime with T > 2,
CCWF~3(Kg) CWF™(Kg) CC
holds for 0 < e <T—|—%.

Remark 5.3. In the non-smooth case, we cannot expect G(f) € C°°(M) even
if f € D(M) as a consequence of the fact that G(f) solves the homogeneous
Cauchy problem. We know from [38, Proposition B.8] that for f € D(M),

WF(G(f)) C {(z,€) € T*M; (&,£,7,0) € WF*(Kg) for some y € M}.
Therefore, W F'*(K¢) might contain points that are not in C'.

Remark 5.4. Since K¢ is antisymmetric, we have that for p(7,9) = (7,7),
p*Ke = —Kg. This implies that if (2,£,9,0) € WF*(K¢) for some y € M,
then (9,0,%,£) € WF*(Kg) for some y € M.

5.1. Proof of Theorem 5.1

Let uw € HX 3 ™0 (M x M) satisfy P 4 (x, Dx)u = 0.

comp
Then also

0y (Vlglg" ) =o0.

Using the decomposition /|g|g"* 8, = (1/]9]9"0,)7 + (\/]g]g"*8,.)b, we
obtain

1
P oy (x, Dyx)u =

Vgl

We state the behaviour outside the characteristic in this setting.

o, ((VIglg" 0. u+ (Vlglg™ 9,)") . (5:2)

Lemma 5.5. For 7 > 2 and any € > 0,
WE'"7(Kg) C Char(P,)) N Char(P ). (5.3)

Proof. As the statement is microlocal, we can work in local coordinates in
T*(R* x R*) and consider pK¢ for ¢ € D(R* x R?) with ¢ = 1 near x,.

Let (x0,&0) = (Zo,&0,%0,70) & Char(P,))* Then, 0 < 4/[g(Z)| and
|g"7 (2)/19(®)]€,E0| > C|€|* for suitable C' > 0 in a conic neighbourhood of

(X()a 50)
In particular, (xo,&,) ¢ Char(d,(v/|glg"*0,)¥), so there exists a mi-
crolocal parametrix ¢ € S’i § such that

30, (\V19lg" 0,)* =1+, (5.4)

2Underscores to differentiate between the manifold points and points in R® will be omitted.
See Remark 3.4.



1388 Y. E. Sanchez Sanchez and E. Schrohe Ann. Henri Poincaré

where 7(x, Dx) is microlocally smoothing near (xg, &).
Since P 2)(x, Dx)Kg = 0, we have near xq

0=0,(VIglg"" o) Kc (5.5)
= 0,(\/ 919" 0,)* oK + 0,(V/19]9" 0,)P oK, (5.6)

Since (1/]g]g"€,)° € C’TSll;;T‘S for every 0 < 6 < 1, we obtain a bounded
map

9, (/199" 0,)° : H*T T (R* x RY) — H* (R x R?), (5.7)

—(1-90)T <s<T0.
Since K¢ € H;,!~¢(M x M) for every e > 0 by Lemma 4.3, we can choose

d such that s = —2 + 76 — € > 0 so that by Eq. (5.5), we have locally

3, (V919" 0,)* oK = —0,(V/]9]9" 0,)P K € H™*TT¢(R* x RY).

(5.8)
Applying the microlocal parametrix ¢, we obtain
G0, (\/19l9" 0,)* o Ka € H 07 (R* x RY). (5.9)
By Eq. (5.4), Eq. (5.9) equals
(I +7(x, Dx))pKc- (5.10)

Hence, Kg € H™'t70=¢(M x M) microlocally near (xo,&,), so that
(x0,&y) € WF179=¢(Kg) for any ¢ > 0,0 < § < 1. Choosing § appro-
priately, we find that for every € > 0

WE'"7(K¢) C Char(P ). (5.11)
Arguing analogously for P, ), we can see that
WEF™'7¢(K¢) C Char(P ;) N Char(P ). (5.12)
O
Notice that
Char(Py 5y) N Char(P, ,)) = (Char(P) x Char(P)) U AU B,

where A := {(%,0,7,7) € T*(M xM) : (§,7) € Char(P)} and B := {(%,£,7,0)
e T*(M x M) : (&,€) € Char(P)}.

We will show now that the sets .4 and B do not belong to W F 27" ~¢(K).
Nevertheless, for higher wavefront sets, that may not be the case, see Re-
marks 5.3 and 5.4.

In order to show the result, we will need the following lemma.

Lemma 5.6. (%,&,%, ) ¢ WF2Y7¢(Kq=) for p # —1.
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Proof. Consider a point (7,7) # (&, E) on the null bicharacteristic v(Z, £), with
g € J7(Z). Since PG = I, it holds

Kr=Kpgs = PyoyKar (5.13)

with wavefront set the conormal to the diagonal. As p # —1, (7, 5,53 ué) is
not part of it, and neither are the points of the set (&, £) x {(a: uf)} Hence,
there exists an open conic neighbourhood W of the set of all (2, C , I, uf)
T*(M x M), where (%,) lies on v(Z,€) between (z,€) and (§,7), that does
not intersect WF(K). We can assume that the base point projection II(W)
is relatively compact. We choose ¢ € D(M x M) with ¢ = 1 on IIW. Then,

0=WF(K;)NW =WF(Py.Kg+)NW. (5.14)

Moreover, P(t x)(@KG+) = P2 (pKg+) — (Z w)(@KG+)-
According to Remark4.4, Kqg+ € H; '"¢(M x M) for every ¢ > 0,

loc
therefore P(t x)(cng+) € H 37", We now apply Theorem 3.6 with v =

pKg+,s=—-3—€e+7, [ =W, f_P(tx)Kg+ e H>® (W) P? ((ng+)€HS

mecl (t,x)
We have pKg+ € HSS, near (3,7, %, ué), since (f,%) is not in the support
of Kg+. Hence, Theorem 3.6 implies that Kg+ € Hmfl €7 also in a conic
neighbourhood of (Z, &, Z, u), as this point lies on the integral curve of the
Hamiltonian vector field for the principal symbol of P ;). Hence, (, £,7, ) ¢
WF~2t7=¢(K¢+). In an analogous way, we see that (Z,¢, &, uf) ¢ WE-2t7-¢

(Kg-) by considering a point (7, 7) on v(Z,€) with § € JT(Z). O

Remark 5.7. Notice that the fact that the wavefront set of Ky is the conormal
to the diagonal does not allow one to repeat the same argument in the case
(Z,&,%,—&) e WF*(Kg+).

Remark 5.8. A similar argument holds for the case (Z, )\5792,5) ¢ WF—2+7-¢
(Kg=) by using P ).

Lemma 5.9. For 7 > 2 and any € > 0,
WF~2"""¢(K¢) C Char(P) x Char(P). (5.15)

Proof. Using Lemma 5.5, we just need to show that there are no points from
the sets A or B. Let (Z,£,7,0) € BNWF2t7"¢(Kg) then by Theorem 3.6,
we have that (y(z,€),7,0) € WF2t7"¢(Kg). Now § = (s1,y1) for some
s1 € R,y € . By global hyperbolicity, ~(Z,€) intersects {s1} x ¥ in ex-
actly one point with the covector x # 0. Since causally separated points
are not in supp(Kq), the point of intersection has to be (s1,y1). Hence,
(81,91, X, 51,41,0) € WEF2TT"¢Kg) ¢ WF 2" ¢(Kg+) U WF=2+7-¢€
(Kg-)). This is a contradiction to Lemma 5.6. A similar argument holds for
points in A. O

Remark 5.10. The existence of symmetries allows one to show that the Sobolev
wavefront set in Lemmab.5 is already disjoint from the sets A and B. For
example, if M is stationary, K¢ is of the form Kg(t — s,z,y). Therefore,
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one has the additional equation (9; + 95)Kg = 0, that implies WF!(Kg) C
Char(9;+09s) for I € R. Moreover, Char(9;+09;)NA = 0 and Char(9,+9s)NB =
(. A similar argument holds in the case of a sufficiently spatially symmetric
spacetime, e.g. cosmological space of the form ds? = a(t)(—dt? + dz? + dy* +
dz?). In this case, K¢ is of the form Kg(t,s, 11 — x2,9y1 — Y2, 21 — 22) due to
the spatial invariance.

Now we establish that points above the diagonal are of a specific form.

Lemma 5.11. If (5075,5&, i) € WE2¥7=¢(K¢) for 7 > 2, and some € > 0, then
=€

Proof. Suppose 71 and §~ are linearly independent, i.e. 77 # ué for p € R. By
Lemma (5.9) (,£,%,7) € Char(P)x Char(P). Now we choose a Cauchy hyper-
surface ¥y, = {to} x ¥ such that the null geodesic with initial data (Z,€) and
the null geodesic with initial data (Z,7) intersect it. These points of intersec-
tions are unique by global hyperbolicity. Moreover, using the condition 77 # ,ué ,
we can choose ¥, such that these points are distinct. We denote these points
by (to, o), (to,yo). Furthermore, they are not causally related. Now Kg €
H179(M x m) so 0,(1/]9]g"0,)° Kg € H37F™(R* x R*) and therefore
if (ja£7?j7 _ﬁ) € WF72+776(KG) then (7(‘%75)77(3}7_77)) € WFizieJrT(KG)
where v(Z, £) is the null bicharacteristic with initial data (Z,&) and v(Z,7) is
the null bicharacteristic with initial data (Z, 7).

In particular (to, xo, to, yo) € I(WF 277 (K¢)), where II is the projec-
tion from T (M x M) to M x M. However, this is a contradiction to Proposition
4.1, since (tg, o, to, yo) & supp(K¢g). Therefore, 77 = LE.

Now as a consequence of the fact that Kg = Kg++Kg- and WF*(K¢g) C
WF*(Kg+) UWF?*(Kg-) for all s, Lemma 5.6 implies that y = —1. O

Proof of Theorem 5.1. Let (&,€,4,—7) € WF=2t7=¢(K¢). The propagation
of singularities result (Theorem 3.6) implies that (y(Z,£&),~v(g,—7)) €
WF=2=t7(Kg), where 7(;%,5) is the null bicharacteristic with initial data
(5;,5) and (g, —7) is the null bicharacteristic with initial data (g, —7).

Now we choose a Cauchy surface ¥;, = {¢;} x ¥ and suppose that
(251,331,5},1?1,332,52)~ e (v(z,8),v(g,—7n)) N (Zf{). By Lemmas 4.1 and 5.9,
(tl,l‘l,fl), (tl,.’lfg,gg) S Char(P), r1 = X2, and 52 = —51.

Next we define a curve 7 : (—oo,00) — M as follows. First, we shift the
parametrization X in the definition of the null bicharacteristics so that

W& &) (1) = (tr,21,&1), (@, =) (t1) = (tr, 21, —&).
Then, we denote by II : T*M — M the canonical projection and define two
curves in M by

N =& M), 12N = (G, —) (V).
Notice that we have y1(t1) = (t1,21),71(t1) = g7 (&1,-) and 72(ty) =
(t1,21),72(t1) = g~(—£1,-). Moreover, we can assume that & = ~;(a) and

g = ~v2(b) for suitable a,b € R with a < ¢; <.
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- — — — — — {t1} x 3

FIGURE 2. 71 is a null geodesic that satisfies y(a) =

Z,%1(a) = g L&, ) and 72 is a null geodesic that satisfies
’Y(b) - ya’)@(b) =9 (7777 )

Finally, let

() A€ (t1,00) (516)

where —~5 denotes the curve with opposite orientation.
Then, ¥(a) = 2, ¥(b) = §; moreover, g(.V,?)‘TiM =¢, g('v’?)‘TgM = 1), and

therefore, 7 is a null geodesic between = and y with cotangent vectors §~ at ¥

and 7 at g, i.e. (:E,f,gl— )ye O = {(z, £, 4, —1 7); (z,&9,7) € C}, see Fig. 2.
This shows

() = {71(/\) A€ (—o0, 1]

WE™ 2" (Kg) C C' (5.17)
or, equivalently WF'=2=<t7(Kqg) C C. O

5.2. Proof of Theorem 5.2
Now we show that C' is contained in WF'~2(Kg).

Lemma 5.12. Let P be the Klein—Gordon operator with g € C7T2, 7 > 2. Then,
CcWF~2(Kg)

Proof. Using Proposition C.1 of [28], see also [48], there exists an interpolat-
ing spacetime of regularity C7, (M, g), which satisfies the following conditions:
There exist times ¢; and t5 such that for ¢ < ¢, (M, g) is isometric to a neigh-
bourhood of a Cauchy surface 3 of a smooth, globally hyperbolic spacetime
(M, g,). Furthermore, for t > t5, (M, ) is isometric to a neighbourhood of a
Cauchy surface ¥ of the non-smooth spacetime (M, g).

Now if K& is the causal propagator associated to (]\7[ ,§), its restriction
to ¢t < t1, denoted Kalt<t,, corresponds to the smooth causal propagator [5,
Proposition 3.5.1] and therefore

WF' (Kgli<t,) = CNT*({(t,r) € M;t <t1} x {(t,z) € M;t < t1}),

where C denotes the canonical relationship associated to g.
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Let (i,g,f, 75) € C' in the non-smooth region, i.e. ¥ = (t3,2) with
t3 > to.

By global hyperbolicity, the base point projections of the null bicharac-
teristics v(i,f) and ~(Z, —5) intersect the hypersurface t = ty < t; at one
unique point denoted w. Moreover, as a consequence of being in C’, we have
(w, X, w, =x) = (Y(Z,€) x (T, =€) N (g X Byy).

Since we are in the smooth part, smooth theory implies, in particular,
that (w,x,w, —x) € WF*(Kgli<t,) for —3 < s by combining [25, Theorem
6.5.3] and [38, Proposition B.10]. Now, an application of Theorem 3.6 gives
(Z,€,%,—€) € WF3(Kg) for -1 <.

Furthermore, by [36, Theorem 5.10, Theorem 5.8], the restriction of K
to t > ta, denoted Kglt>e,, in a neighbourhood of 3, is the same as the
restriction of the non-smooth causal propagator, K¢, associated to (M, g).
Hence, (&,¢,%, —€) € WF*(Kg).

Another application of Theorem 3.6 using the null bicharacteristics from

(M, g) gives C' ¢ WF~2(Kg), i.e. C C WF'~3(Kg). O
Proof of Theorem 5.2. The combination of Lemma 5.12 and Theorem 5.1 gives
the result. g
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6. Appendix
6.1. Sobolev Spaces

H?(R™), s € R, is the set of all tempered distributions « on R™ whose Fourier
transforms Fu are regular distributions satisfying

el = / (€)% | Ful€) 2 d"¢ < oo,

Let (M, g) be a (possibly) non-compact Riemannian manifold which is
geodesically complete. The Laplace-Beltrami operator —A, is essentially self-
adjoint if the regularity of the metric is C7 for 7 > 2, [57, Theorem 2.4]. For
lower regularity, see Appendix 6.2. By H*(M), we denote the completion of
D(M) with respect to the norm

lallzz=ary == 10T = 8g)*2ull 22 ary-

If M is compact, H*(M) is independent of the metric.
For an open subset U of M, we define the local Sobolev spaces:

H; (U):={ueD(M);pue H* (M) for all ¢ € D(U)}.
and
Hopp(U) :={u € D'(M);u € H*(M) and supp(u) C U is compact}.
Notice that given a manifold M, the spaces H} (U) and HZ,,,,,(U) are in-

com

dependent of the Riemannian metric used to define the Sobolev spa](g:es Hs(M).

For a compact n-dimensional manifold ¥, we can also define Sobolev
spaces on R x X relying on local coordinates. Namely, suppose {U; : j € J}
is an open cover of ¥ by coordinate charts and {¢; : j € J} is a subordinate
partition of unity. Given a function v on R x ¥, we say that u € H* (R x %),
provided that, using local coordinates on 3, ¢;(z)u(t,z) € H*(R x R™) for
j=1,...,J (more formally: For the coordinate map «; : U; — R", we have
(1d X Kj«)(pju) € H*(R x X)). For integer k, this is equivalent to asking that,
for all multi-indices @ with |a| < k, we have 0f,u € L*(R x R") in local
coordinates. Moreover, R x ¥ is a manifold of bounded geometry and the
Sobolev spaces introduced in this setting coincide with the spaces H*, see e.g.
Theorem 3.9 in [30].

Lemma 6.1. Let g = dt®> + hijd:cidxj be an ultrastatic metric of reqularity C™
on R x 3 with 7 > 1. Then,

HRxX)=HRxX), 0<s<2,

i.e. the two Hilbert spaces coincide up to equivalent norms.
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Proof. The assertion is obvious for s = 0, when HO(R x ¥) = L*(R x &) =
H°(R x ¥). We have

H*(R x %) = 9((I = 8g)*"?) = [L*(R x £), 2(I = Ag)], /2,

where the first equality holds by definition and the second is [3, Section 1.2.9]
for complex interpolation.

In view of the interpolation property for the standard Sobolev spaces, it
is sufficient to show the assertion for s = 2. Assuming that 7 > 1, the operator
I — A, is strongly elliptic with coefficients in C™~!. By elliptic regularity, its
maximal domain is H2(R x X). This is a well-known fact, although a reference
seems to be hard to find. In order to see it we first note that, by Lax—Milgram’s
theorem, every u € L*(R x ¥) with Aju € L?(R x ) belongs to H'(R x X).
Symbol smoothing as in Remark 3.5 then shows that u even belongs to H2 (Rx
). Hence, the maximal domain is a subset of H2(R x X).

The minimal domain is also H2(R x %), since D(R x X) is dense in
H?(R x ¥). Hence, (I — A,) = H?*(R x ). O

Remark 6.2. An analogous construction can be performed for R? x £2 and the
analogue of Lemma 6.1 holds.

6.2. Essential Self-Adjointness of the Laplace-Beltrami Operator
Theorem 6.3. Let (X, h) be a smooth compact n-dimensional manifold equipped

with a Riemannian metric of reqularity C*(X). Then, the Laplace—Beltrami
operator Ay, is essentially self-adjoint.

We follow Strichartz’s article [57] that uses the following criterion [51,
Theorem X.1].

Theorem 6.4. Let A be any closed negative-definite symmetric, densely defined
operator on a Hilbert space H. Then, A = A* if and only if there are no
eigenvectors with positive eigenvalue in the domain of A*.

Now we will state the following helpful result

Proposition 6.5. Let u be an L?(X) function that satisfies Au = \u for some
A > 0. Then, u is identically zero.

Proof. Let u be a weak solution which by elliptic regularity satisfies u € H2(%).
Hence,

A (U, u) oy =(Au,u)p2(s) = — (du, du) o5, (6.1)
Now A > 0 so we have u = 0. d
Proof of Theorem 6.3. By direct computation, Ay, is negative-definite and sym-
metric. That it is densely defined follows from the density of D(M) in L?(M)
for continuous metrics (see [4, Proposition 7] for even rougher cases). The ap-

plication of Theorem 6.4 taking into account Proposition 6.5 gives the result.
O
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For the non-compact case, one could follow the construction in Strichartz’s
article. However, suitable modifications are required under the regularity of
Theorem 6.3. For example, one would have to use an integral distance as in
[21, Theorem 5.11] to show the desired properties of the approximations to
unity. Then, one would need to verify that the elliptic regularity results hold
in that situation as well.

Since we are only interested in the case of M = R? x 2 and the operator
2mlI — Oy — Oss — Ap, —Ap, under C L1 regularity assumptions, we will proceed
in a different manner.

Lemma 6.6. The operator 2ml — Oy — Oss — Ap, — Ap,, where hy, hy are
Riemannian metrics of reqularity CY', is essentially self-adjoint with domain
H?(R? x 2).

Proof. By [52, Lemma 2.1], we obtain that —0y; —0ss —Ap, — Ay, is essentially
self-adjoint in L?(R? x ¥2) with domain D(R) @ D(R) ® C*(¥?). Since D(R) ®
D(R) ® C*(¥?) is dense in H?(R? x ¥2) which carries the graph norm of
—04—0ss—Ap, —Ap, , we obtain that the closure of the domain is H?(R? x %2).
Now —0y — O0ss — Ap, — Ap, and 2ml commute and are self-adjoint. By
[49, Lemma 4.16.1], 2mI — Oyt — Oss — Ap, — Ay, is self-adjoint with domain
H?(R? x ¥2). O
6.3. An Equivalent Sobolev Norm

The main results of this section are the following proposition and Corollary
6.10.

Proposition 6.7. Let ¥ be a compact manifold and {¢; ® ¢r;j, k = 1,2,...}
be an orthonormal basis of L?(X) ®g L?(X) associated to the eigenfunctions
{¢;} of the operator mI — Ay, m > 0. Writing u € L*((R x £) x (R x X)) =
L?(R? x ¥2) = L2(R?) @y L*(X) @z L*(X) in the form

u(t, s, z,y) Zu]k (t,8)p;(®)pr(y) with ujr = (u, ¢; @ ¢i) € L*(R?),

(6.2)

we obtain the following alternative description of the Sobolev spaces: For 0 <
s <2

H*(R? x ©2)
= {u € S'(R* x £); Z/ (&5 +m5 + A3+ A2)°[(Fugny (€0, m0) [*dodno < 00}

Here, S’(R? x %2) is the dual space to S(R? x %2) := S(R?)&,C>(X?).
First we show the result in the particular case s = 2:
Lemma 6.8.

H?*R? x 2% = ueS'(R*x EZ);Z/RQ(\&)F

gk
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+lnol® + A7 + A0)2[(Fuj) (o, m0)|*déodno < oo

Proof. By definition (see Appendix 6.1)
H*(R® x £%) = {u € L*(R* x $2); (I — Oy — Oss — Ap, — Ap,)u

€ L*(R? x ¥2)}, (6.3)
where we have equipped ¥ x ¥ with the product metric h induced by the metric
h on each of the components so that Aj = 0y +0ss+An, +Ap,, where Ay and
Ay, are the Laplacians for the metric h on the first and second components
of ¥ x X, respectively. Since m > 0 we may (at the expense of obtaining an
equivalent norm) replace I in Eq. (6.3) by 2mlI. Writing v € H?(R? x %?) C
L?(R? x ¥2) in the form (6.2) and using the orthonormality of the set {¢;};
in L2(X), we obtain

||u||H2 (R2x32)

/R /E § |(2mI — Oy — Oss — Ap, — Ap, )ul>/h(z)\/h(y)dtdsdzdy
2 X
= /2 Z | = (Opt + Oss)uji(t, 8) + Nujn(t, s) + N (t, s)*dids.
j,k
Applying the Fourier transform in (s, ¢), Plancherel’s theorem shows that
HUH%I?(]RQXEZ) = 2,;/11@2 (& +m5 + A5 + )\i)z |(Fujr) (o, m0)|*déodno
Js

which proves the result. O

Before proving the main proposition, we state the following result found
in Amann [3, 1.(2.9.8)].

Theorem 6.9. Let A be a nonnegative self-adjoint operator. Then, we have the
following relation for the domains of the powers of A:

P(AU=DH) = [9(A%), 2(AP)]g
for0<Rea <Ref and 0 < 6 < 1. Here [-,-]g denotes complez interpolation.

Proof of Proposition 6.7. Since (R x ¥) x (R x X) is a complete manifold,
the operator 2ml — A; is positive and self-adjoint (see Appendix 6.2). Using
Theorem 6.9, we obtain for 0 < 6 < 1

H?(R? x ¥2) = 2((2mI — A;)?)
= {u € S'(R? x £2); (2mI — A;)%u € L*(R? x ¥%)}.

Since 2mI—Aj = 2mI—0y —0ss—Ap, —Ap, can be written as a multiplication
operator in the form

(2mI — Aj)u
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=D _6i(@)en(y) /R €OV (G 4 g+ X+ ) (Fuge) (€0, o) dSodno,
gk

we infer from the orthonormality of the ¢; that (2mI — A;)%u in L?(R? x £2),
if and only if

H > 6i@)on(y) / ¢l Cottmos) (€2 2 4 32 4 \2)°
e R?

2
(fujk)(fm no)dﬁodnol LQ(RQXEZ)

20
= Z/RQ (&5 +m5 + A? +A0)7 (Fujr)(&o,mo)|*déodny < oo.
ik

This establishes the required equivalence. O
Corollary 6.10. For —1 < 0 < 0, we obtain by L?-duality that
HQG(RQ % E2) _ (H_29(R2 % EQ))/

= Ju€S'(R* x 5?); (1€ol?
22 ot

+nol® + A5 + A0 | Fuj(€o,m0)Pdéodno < 00

with ujr = (u, ¢; @ ¢) € S’ (R?).
6.4. The Ultrastatic Case

In this case, we consider a Lorentzian metric g on M = R x X with X compact
of the form

ds® = dt* — h;j(w)dz'dx?

where h;;(z) are the components of a time independent Riemannian metric of
Holder regularity C™ (when 7 € N we will consider the Zygmund spaces C7,
introduced in Definition 3.1).

The Klein—Gordon operator P on M is

P = 0u¢ — Apg +m?¢ (6.4)
with Ap¢ = ﬁay(h”\/ﬁ&mﬁ) and m > 0.

sin(Az(t — s

The causal propagator G is given by — ) where A := —Ap+

=

m? is self-adjoint on L?(¥), see Appendix 6.2.

Moreover, the spectrum of A is a discrete set of positive eigenvalues which
we denote by {)\?;j =1,2,...}, listed according to their (finite) multiplicity.
The associated set {¢;};en of normalised real eigenfunctions is an orthonormal
basis of L2(X), see [43, Theorem 5.8]. For u,v € D(M), we have G(v) € D' (M)
given by

(G(v),u)
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- < e )(t,m(t,x)mdm

)T s 99050 [ 6ets.n)Viduds
u(t, )\/h(z)dzdt. (6.5)

Using that (G(v),u) = (Kg,v ® u) gives the singular integral kernel
representation

Kg(t,x;s,y) Z)\ sin(A;(t — s))o;(x)d;(y). (6.6)

6.4.1. Global Regularity. Now we show in Lemma 6.11 that, in ultrastatic
spacetimes, the global regularity of the causal propagator is the same as in the
smooth case

Lemma 6.11. K € H,_ 2= (M x M) for every e > 0.

loc

Proof. This follows from Corollary 6.10 similar to the computation in [54,
Theorem 4.10]. O

It will be useful to consider the following bidistribution, K 4 that satisfies
0Ky = Kg.

Corollary 6.12. Let K4 € D'(M x M) be the bidistribution given by
Ka(u®w) / / Z A2 cos(\;(t — 5))g;(x / o (Y)v(s,y)v/ h(y)dyds
u(t, x)\/ h(x)dxdt,

Then,
Ky € Hléoge(M X M) for every e > 0. (6.7)

Proof. This follows from Proposition 6.7 similar to the computation in [54,
Corollary 4.11]. O

6.4.2. Wavefront Set Estimates. Now we show some helpful lemmas in order
to prove Theorems 6.15 and 6.17 which are the main results of the section.
First, we establish the microlocal regularity of K¢ outside the set Char(P) x
Char(P).
In the following proofs, we use the distribution K4, because a direct
application of Theorem 3.3 for K is not possible, since for § close to 1, the

above o cannot take the value f%.

Lemma 6.13. For 7 > 2 and any € > 0,
WF~2~7(Kq) C Char(P) x Char(P). (6.8)
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Proof. This is an application of Theorem 3.3, the observation that K 4 satisfies
(8 +8.)K4 =0 and WF~ 27 (Kg) € WF2=¢7(K 4). The proof is along
the lines [54, Lemma 4.13] O

Now we establish that points above the diagonal are of a specific form.

Lemma 6.14. If (i",é,a?,ﬁ) € WF’%’gJFT(Kg) for 7> 2 and some € > 0, then

n=-¢.
Proof. This is a consequence of Theorem 3.7 combined with the support prop-
erties of K. The proof is along the lines of that for [54, Lemma 4.16] g

Now we state one of the main results:

Theorem 6.15. Let (M, g) be a C™ wultrastatic spacetime with T > 2 and Kg

the causal propagator. Then, WF’_%_E+T(Kg) C C for every e >0 and C as
in Bq. (1.1).

Proof. Let (92,571], —17) € WF_%_€+T(Kc;). The propagation of singularities
result (Theorem 3.6) implies that (y(Z, €),v(g, —7)) € WE~2~<t7(K 4), where
v(Z,€) is the null bicharacteristic with initial data (&,£&) and (§, —7) is the
null bicharacteristic with initial data (g, —7). As a consequence of Lemma
6.13, Lemma 6.4, the fact that (9;+9s)Kg = 0 and the inclusion WEF*(K 4) C
W F*~1(Kg)UChar(8,) for all s € R, we have (v(&,£),v(g, —7)) € WF~ 27
(K¢). Then, we can apply Theorem 3.7 combined with Lemma 6.14 to obtain
the result. The proof is along the lines [54, Theorem 4.17]. O

For the analysis of adiabatic states, it is enough to work with the inclu-
sion shown above. However, in the smooth case we have an equality of sets.
In Theorem 6.17, we show that this equality holds under stronger regularity
assumptions on the metric.

First we show the following lemma

Lemma 6.16. Let (&,£) € Char(P) with P as in Eq. (6.4). Then (&,%,€,—€) €
WEF2t<(Kg) for all € > 0.

Proof. Since WF*® C WF?2 for s; < s9, it is enough to show the result for
small €. Let Q := R x X2. We define the embedding f : Q — M x M by
f(s,z,y) = (s,z,s,y). The set of normals of the map f is

Ny ={(f(s,2,9),6,7) € T*(M x M);* f'(s,z,y)(€,77) = 0}
={(s,2,8,9,°,0,—£°,0) € T*(M x M)},

where * f” is the transpose of the differential of f. In particular, NyN(Char P x
Char P) = (. By Lemma 6.13,

WF3(Kg) NNy =)
and therefore
WF3(8,Kg) NNy C WFH(Kg) NNy =0
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for suitably small € > 0. Therefore, Proposition B.7 from [38] implies that the
restriction of 9; K¢ to @ is defined and satisfies

WF(8,Kglq) C [*(WF:(8,Kq))
= {(s, 2,5, f/(€,7) € T*Q: (f(s,2,y).£,7) € WF+(9,Kg)}.
(6.9)

As a distribution, 9;K¢|g is given by

9 Kalg(s,z,y) Z(I%

i.e., it acts on the non-smooth density ¢1( Vo ()03 (y)Vh(z)Vh(y)dzdy, by
(0Kl h1vats) = / Yi(p dp/ Y2 (w)s(w) v/ h(w)dw.  (6.10)

Therefore, its Fourier transform is given by

(F(9:Kalo))(x: € m) =5o(x)®/26*iw(f+”)\/h(mdw~ (6.11)

Moreover, we have (0, K¢|o—1®46(z—y))(¥) = 0 for all smooth densities
on R x ¥ x X. Therefore, 0, Kg|g = 1®6(z —y) as elements of D'(R x ¥ x ).
This implies
@, s < —3
(s,x,2,0,,—¢€) forall £ € T%, s > —%.

Using Eq. (6.9), we find that there exists £y such that (s, x, s, z, &9, &, —€°,
—£) e WF2T(9,K¢) for each £ € T*%.

According to Proposition B.3 from [38],

WF3t(8,Kg) C WF2T(Kg). (6.12)

Since the wavefront set is contained in Char(P)x Char(P), we obtain from
Lemma 6.13 (s, z, s,z,£°,&,—€°, —¢) € Char(P) x Char(P) with & = h¥&¢;.
Without loss of generality, we choose a sign for &, i.e. &y := /h¥&E;.

Now we show that if (s, z, s, z,£%,&, —£0,—¢) € WF%+6(Kc;), then (s, z, s,
x,—€0,—-£,€0,¢) € WF%J“(KG). The diffeomorphism f1(¢,z, s,y) = (s,y,t,x)
has the set of normals Ny, = {(s,y,t,2,0,0,0,0) € T*(M x M)} which has

empty intersection with WF(K¢). Then, [35, Theorem 8.2.3] and the invari-
ance of the Sobolev wavefront set implies that

WE*(9:Kclq) = {

WFEH(fiKg) = fiWF3(Kg). (6.13)
Moreover, f;{Kqg = —K¢g which gives
WF2(Kg) = ffWF(Kg). (6.14)

Now since (s, z, s, 2, £, &, —€°, —€) € WF21¢(K), then we have (s, z, s, 2, —£°,
—£,£%,6) € WF2+(Kg) by Eq. (6.14).

Notice that we also have to show that (s, z, s, z, —£°, &, €%, —¢) and (s, , s
2,80, —€,—€0,€) are in WF3t¢(Kg).
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In this case, we use the diffeomorphism f5(t,x,s,y) = (s, x,t,y) that has
the set of normals Ny, = {(s,,¢,4,0,0,0,0) € T*(M x M)} which has empty
intersection with WF(K¢). Then, [35, Theorem 8.2.3] and the invariance of
the Sobolev wavefront set implies that

W (f;Kq) = [{WF(Kq), (6.15)
Moreover, f5Kqg = —Kg which gives
WF2T(Kg) = fiWF3T(Kg). (6.16)

Now since (s, z, s, z,£0, &, —£0, —€) € WF3T¢(K¢) then we have (s, z, s, ¢, —£°,
£,69,—¢) € WF3+(Kg) by Eq.(6.16). Using fi, we obtain (s,z,s,z,
€0, —¢,—€0,¢€) e WF3+<(K¢). This gives the desired result. O

Now we show the equality of sets as in the smooth case.

Theorem 6.17. Let (M,g) be a C7 wultrastatic spacetime with 7 > 3 and Kg
the causal propagator. Then, C C WF’*%JFT’g(Kg) forallée <17 —3 and C
as in Eq. (1.1). In particular, we have C C WF'$(K¢) for all s > 3.

Proof. Under the additional regularity assumption and arguing locally as in

Theorem 3.3, we have P(bt’m)KA7 P(bsyy)KA € H%+€(M x M) and therefore for

(#,€,7,7) € WF3E(Kg) € WF3+¢(K 4) we can choose s = 3 +&in Theorem
3.6.

Now if (x,€&) = (,€,9,—7) € C’ then there is a null geodesic + such that
V(t1) = Z,7(t2) = § and g(, V)|menr = €90, )z = 7. Now, (7,82, -¢) €
C’ and by Lemma 6.16 (7,&, 7, —€) € WF2+(Kg) for € > 0 which implies
for ¢ < 7 — 3 that (7,&,7,—€) € WF3t4(Kg) ¢ WF~3+7¢(K 4). Ap-
plying Theorem 3.6 to P K a, P(s4) K a with the s described above we have
(v(&,€),v(z,—€)) € WF~2+7#(K 4). Using the same argument as in Theo-
rem 6.15, this implies (Z, &, 7, —7) = (x,&) € WF~37¢(Kg). O

Remark 6.18. The combination of Theorem 6.15 with Theorem 6.17 gives
WF/7%+7'7€(KG) =C

forr >3 and é < 17— 3.

6.4.3. The C%! Case. The following theorem states the result for the case of
CY! regularity.

Theorem 6.19. Let (M,g) be a CY! ultrastatic spacetime and K¢ the causal
propagator. Then, WF'%_g(KG) C C for all € > 0.

Proof of Theorem 6.19. In order to show the theorem, we will state how dif-
ferent results of the paper change under this regularity.

From the comment above Theorem 3.6, we know that Theorem 3.6 still
holds. Notice that C't C C? [62, Chapter 1, Eq.(1.21)].

Also, notice that a C1'! metric guarantees the existence and uniqueness
of the Hamiltonian flow which is critical for the proof. Theorem 3.3 holds even
for 7 > 1.



1402 Y. E. Sanchez Sanchez and E. Schrohe Ann. Henri Poincaré

Lemma 4.1 requires no modification, since the results on global hyper-
bolicity still hold for this regularity [53, Corollary 3.4]. The hypothesis in [66,
Theorem 1.1] is the requirement that the coefficients of the principal part
have one derivative that is Lipschitz which is clearly satisfied in the C1'! case.
Hence, Lemma 6.11 holds.

For Lemma 6.14 and Theorem 6.15, the only thing to notice is that in
this case P(bt’I)KA, P? Ka € Hz¢(M x M) (arguing locally as in Theorem

(s,y
3.3) and therefore we can apply Theorem 3.6 for s = % — €. In this section, we
have applied the version of Theorem 3.6 after [62, Proposition 11.4]. O
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