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Abstract: 

The inversion method, which is the generalization of the method of the 

free energy, and the effective potential (or the action), is explained and 

applied to several problems. These include strong coupling QED and the 

confining parameter in QCD. 

Introduction In various fields of physics, we encounter the situation 

where the ground state which is realized in nature is not that of the naive 

perturbative one. It is realized after the "condensation" of the objects which 

behave as normal particles in the perturbative phase. The attractive interac­

tion between normal particles is the driving force of the condensation. The 

usual way to study the phenomenon is to introduce the free energy and find 



its minimum. For the field theory of zero temperature, the effective potential 

or the action plays the role. Let us recall the way how they are defined. 

First the Lagrangian L of the system is changed into L1 = L+JO where 

J is the artificial source and the operator 0 is chosen to break the symmetry 

of L so that the order parameter < 0>=4> calculated by L1 is non-zero even 

in the perturbation theory. Calculate the vacuum action functional W[J] in 

the theory governed by L1 and the effective action r[¢] is defined, through 

the Legendre transformation, as 

r[¢J = W[J]-Jaw/aJ, 8Wj8J = ¢. (1) 

The relation </> = 8W/8J is inverted to express J as the function of¢. The 

stationarity condition ar / o<f> = -J = o assures the recovery of the original 

theory at this point. 

Inversion Method We can generalize the above procedure to the 

case where </> is not written as the expectation value of some operator. 

Change L to L1 where L1=0=L, which is the only requirements for L1 . It 

need not be L+JO. Then the order parameter </> is calculated in perturba­

tive series; 

00 

</> = ~ (g2)nhn(J) (2) 
n=O 

where g is the coupling strength and hn( J) is calculable diagrammatically. 

The modified Lagrangian L1 is so chosen as to get the non-zero series (2). 

Now we invert (2) to get 

00 

J = ~ (g2rtm(<f>). (3) 
m=O 
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The co-efficient function f m( ¢>) for m-5,N are obtainable from hn(J) with 

n5,N. The solution to 1=0 is looked for in the inverted form (3). We can 

get the non-perturbative solution, if it exists at all, by this method besides 

the trivial solution ¢=0. 

Illustration The ladder Schwinger-Dyson equation is derived by 

this method as an example. Take the Lagrangian LqED of the Quantum 

Electrodynamics (QED) and consider the electron self-energy function 

Sp(p). Here g=e, the charge of the electron , and the source term is intro­

duced by changing the action of QED by adding J d4pJ(p )1/j(-p )1/J(p) where 

'1jJ is the electron field. The original series (2) up to e2 is 

where Dl) is the photon propagator and (St)-1(p) = S01(p)-iJ(p) is the 

inverse of the free electron propagator in the presence of J. The lowest 

inversion (e2=0) gives us J(p) = iSp1(p)-iS01(p) so that the inverted series 

up to e2 is 

which is just the ladder Schwinger-Dyson equation if we set J=O. 

Strong Coupling QED2) Consider the gauge invariant order param­

eter </>=<1/J(x)'l/J(x)> and the term J f d4 iif(x)1/J(x) is added to the action of 

QED. The vacuum action function W[J] is calculated. It has the form 



00 

W[J] = -iTrln(S~)-1 + (i/2)TrlnD01 - iL; (e2)nw}n>, (6) 
n=l 

where (St)-1 = p+J and w}n) is the vacuum graphs of the order ( e2 )n in the 

presence of J. We calculate</> by the formula</>= fJW/8Jjfl. where fl is the 

space-time volume. The term up to e2 is calculated below. It involves the 

two loop diagram having one photon propagator and is evaluated by opening 

the photon propagator, which is nothing but the vacuum polarization graph 

with mass insertion of the electron. This produces the gauge invariant results. 

The original series is obtained in this way which is given for small J as; 

where A/Ap) is the electron (photon) momentum cut-off. The inverted series 

is 

where a=e2/47r and ac=27r/3TJ, TJ=Ap/A1. This is noting but the negative of 

the derivative of the effective potential. Equation (8) has the same form, 

except for the (ln</>2) 2 term, as the Landau theory of the phase transition. 

We conclude; for a>ac the chiral condensation (</>-::PO) is realized. Our theory 

predicts the mean field type behavior near a=ac; ¢>"-'( a-ac)112 /ln( a-ac). 

QCD and string tension For Quantum Chromodynamics ( QCD), 

the expected non- perturbative solution behaves near g=O as 

¢> 118,..,µexp(l/2b0g2), where all the quantities are the renormalized ones and µ 

is the subtraction point. The index 8>0 is the dimension of </> in mass unit 
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and f3(g)=b0g3+b1g5+ · · · . We change the variable from </> to t=.g2ln¢116 
/ µ 

which is of the order unity near the solution. The source J is assumed to 

have the dimension of mass and consider the following inverted series by 

extracting the factor ¢116. This factor is always present since <P=O is one of 

the solution to J =0; 

00 

J = ¢1//iL, (g2)nfn(t)=.¢1fliJ(t,g2). (9) 
n=O 

Before calculating f n( t) explicitly, the renormalization group equation tells us 

much about the form off n( t). 

In order to see this, we choose J in such a way that J is independent of 

the subtraction parameter µ: µ dJ =0. This can always be done by multiply­
dµ 

ing a suitable factor in front of J. By noting that when applied to the right 

hand side of (9), 

d a a d¢116 a 
µ- = µ-+f3(g)-+µ----, 

dµ {)µ 8g dµ 8¢1/li 

and by requiring that the each coefficient of (g2)n vanishes, we get the set of 

ordinary differential equations for fn( t). The first member of this set is 

dfo 
where f 0 ' =-- and 

dt 

The solution is 

(2b0t-l)/0 ' (t)+~f0(t) = 0, 
8 

1 d</> 
-µ- = 1(9) = 11l+r2l+ · · · · 

</> dµ 

(10) 

(11) 

(12) 



where C is the integration constant. Since b0<0, 8>0, the non-trivial solu­

tion to J=O is present if 11>0. 

The sign 11>0 has the physical meaning. For the two quark field </Jrvqq 

or qq for instance, the first term of the anomalous dimension is calculated by 

the one gluon exchange diagram between two quarks or antiquark which 

determines whether the force acting between two fermions is attractive or 

repulsive. The correspondence is indeed1) 

11>0 +-+ attractive, 

11<0 +-+ repulsive, 

therefore our conclusion is that ¢ condenses as long as we have the attractive 

force between two particles. The condition 11>0 for the condensation of ¢ 

can be used as a generalized criterion in the case where ¢ is not written as 

the product of two fields. 

Now we know that the correct non-perturbative value of¢ is 

¢1/6 =µexp/ l-1(x)/8 dx. 
(3( x) 

Thus the variable t has the expansion 

2 ¢116 1 1 { 11 bl 2 2 t = g ln-- = --- -+-}g Ing-
µ 2b0 2b0 8 b0 

+ cg2+dg4+ · · · , 

(13) 

(14) 

where C, d etc. are some constants. The solution (12) to the lowest trunca­

tion reproduces the first term of the expansion (14). In order to discuss the 

higher truncation systematically and most conveniently, we define 7( t,g2) as 

where 

l(t,g) = K(g)-1f(t,g)1f11, 

g dx1(x) 
K(g) = lim g5exp-1 

90->0 90 8ry(3( x) 

(15) 

(16) 
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12 bl 
= g2{1+(---)g2+ ... }, 

11 bo 
(17) 

11 
1J = ---. 

2c5b0 

(18) 

Remember that K(g) has the Taylor expansion about g=O. The merit of 

using 7( t,g) is that it satisfies a simple equation; 

(19) 

where <fa is fixed in this equation and 

/3• (g) = ,6(g) = b g3+b gs+ ... 
l--y(g)/c5 0 1 ' 

(20) 

• /1bo 
bl = bi + -c5-. {21) 

The function ]has the expansion 

W_1(t) 2 
1(t,g2) = + W0(t)+g W1(t)+ .... 

g2 
(22) 

and W1(t) (Z~-l) satisfies 

(l-2b0t)W1'-2b0ZW1-2b1[tW1_ 1 '+(l-l)W1_ 1] = 0, (23) 

where W _2:=0. The solution up to W0 is given as 

2 C_1 1 C_1b1 
7(t,g) = -(t--) - --ln(l-2b0 t) + C0 (24) 

g2 2b0 2b5 

with C_1 and C0 being the integration constants which are calculated 

through the series (9) diagrammatically. The zero of (24) is slightly modified 

compared with the lowest value -
1
-, and it behaves for small g2 as 

2b0 

t = - 1-· _ lg2lng-2 + O(g2lnlng-2) 

2b0 2bJ 
(25) 



so that we have recovered the second term of the correct expansion (14) but 

the term O(g21nlng-2) should be O(g2). The discrepancy is of course due to 

the truncation (24) and we have for ¢116, the solution to 7=0, the scale non­

invariant behavior under the variation ofµ 

b, 

¢1fc(g2).., ex: (lng-2) 2b~. (26) 

The right hand side should be constant for the correct solution since the left 

hand side is the scale invariant quantity. 

We can improve the situation by taking into more terms of W1• This 

can most conveniently be done by deriving the partial differential equation 
-2b0 

for K(t,g2)=::--x(W0+g2W1+g4W2+ · · · ). By multiplying (g2) 1 to (23) 
C_1 

and summing up from l=-1, we get 

(27) 

b 1 "' bo 
where e2=g2-, K(s,e2)=-~-K(t,g2) and s=l-2b0t. We sum up the term 

bo b 1 

(ln~)m with l::;m::;Z appearing in W1 which are the most singular terms in 
s 

W1. This can be accomplished by looking for the solution to (27) with l+e2 

replaced by unity. So that we solve 

(28) 

and get the solution in the implicit form, 

- ~ ) K0 =" ln( s+e K0 ) (29 

= ln(s+e2ln(s+e2ln(s+e2ln · · · ))). (30) 

The lowest solution K0=lns reproduces (24). The next truncation gives 

K0=ln( s+e2lns) which leads to the solution 

t = -
1
- - ~g2lng-2 + O(g2lnlnlng-2) 

2b0 2b5 
(31) 
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and for ¢>118 

(32) 

The situation is improved but still it is not scale invariant. 

In order to obtain the scale invariant formula for the solution ¢>, we have 

to use the exact solution K0 given by (29). Therefore we solve (29) and the 

equation 

s b1 - 'X - + -Ko + <Jo = 0 
g2 bo 

simultaneously where C0=-2b0 C0/ C_1• By inserting 

obtained from (29) into (33), K0 is given by 

rv 2'X K0 = ln(-g 0 0) 

which leads to 

so that 

(33) 

(34) 

(35) 

(36) 

The scale parameter µ is eliminated using the QCD scale parameter A QCDi 

1 b1 -bog2 
AqcD = µexp{-- - -In( ) } 

2b0g2 2b5 b1 2 1+-g 
bo 

(37) 

which is the expression assuming f3(g)=b0g3+b1g5. From (36) and (37) we 

finally get, by taking the limit g-tO, 



(38) 

where D is the numerical constant given by 

Co bi Co 1'1 
D = exp{-+-ln(-)+--ln(-C0)} 

2b0 2b5 b0 2c5b0 
(39) 

Co 11 Co 1'1 
= exp{-+-ln(-)+--ln(-b0)}. 

2b0 2b5 b0 2c5b0 
(39') 

The above two expressions are equivalent. These formulas suggest that the 

solution exists as long as C0<0. The numerical evaluation of C0 for the case 

of 

<P=<7f1/J>, _!_x(string tension), 
g2 

in QCD is under way but the sign of C0 for these quantities is indeed nega­

tive. 

Finally the formula for the energy density, more exactly the difference of 

the energy density t::i.E between the normal and the condensed vacuum, is 

given below. t::i.E has no anomalous dimension so it needs a separate discus­

sion. The source should be introduced in such a way that the energy is 

lowered, i.e. !:J.E<O. Let us write !:J.E=-a.I4( a>O) then the inverted series 
e:l/4 

has the form, with e:=-!:i.E/ a and t=g2ln--, 
µ 

J = e;l/4{1+g2f1(t)+g4/2(t)+ ... }. (40) 

Define W( t,g2) by 

W( t,g2
) = {g2f1 ( t)+g4f 2( t)+ · · · }-1 

W_1(t) = + W0(t)+g2W1(t)+ · · ·, 
g2 

then by the same arguments as before, we have up to W0 

( 41) 
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The scale invariant formula for c1/ 4 is now 

cl/4 _ lJA 
- QCD• 

1+0'0 b1 2(1+0'0) 
l5 =exp[---+ -ln{ }]. 

V_1 2b5 -V_1 

For the real solution to exist (1+0'0)/0'_1<0 should be satisfied. The calcu­

lation of 0'0 requires two loop vacuum diagrams under the presence of the 

suitable source which is not yet carried out. 
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