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Abstract:

The inversion method, which is the generalization of the method of the
free energy, and the effective potential (or the action), is explained and
applied to several problems. These include strong coupling QFD and the

confining parameter in QCD.

Introduction In various fields of physics, we encounter the situation

where the ground state which is realized in nature is not that of the naive
perturbative one. It is realized after the "condensation® of the objects which
behave as normal particles in the perturbative phase. The attractive interac-
tion between normal particles is the driving force of the condensation. The

usual way to study the phenomenon is to introduce the free energy and find



its minimuam. For the field theory of zero temperature, the effective potential
or the action plays the role. Let us recall the way how they are defined.

First the Lagrangian L of the system is changed into Ly = L+JO where
J is the artificial source and the operator O is chosen to break the symmetry
of L so that the order parameter <O>=¢ calculated by L; is non-zero even
in the perturbation theory. Calculate the vacuum action functional W[J] in
the theory governed by L; and the effective action I'[¢] is defined, through

the Legendre transformation, as
T[¢] = W[J|-JoW/aJ, @8W/aJ = ¢. (1)

The relation ¢ = @W/3J is inverted to express J as the function of ¢. The
‘stationarity condition 8I'/8¢ = ~J = 0 assures the recovery of the original
theory at this peint.

Inversion Method We can generalize the above procedure to the

case where ¢ is not written as the expectation value of some operator.
Change L to Lj; where Lj;_o=L, which is the only requirements for L; It
need not be L+JO. Then the order parameter ¢ is calculated in perturba-

tive series;

b= 3 (6 h,(J) (2)

n=0
where g is the coupling strength and k,(J) is calculable diagrammatically.

The modified Lagrangian L; is so chosen as to get the non-zero series (2).

Now we invert (2) to get

J= 2 (AB). 3)
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The co-efficient function f,(¢) for m<N are obtainable from h (J) with
n<N. The solution to J=0 is looked for in the inverted form (3). We can
get the non-perturbative solution, if it exists at all, by this method besides

the trivial solution ¢=0.

Illustration The ladder Schwinger-Dyson equation is derived by
this method as an example. Take the Lagrangian Lgpp of the Quantum
Electrodynamics (QFED) and consider the electron self-energy function
Sp(p). Here g=e, the charge of the electron , and the source term is intro-
duced by changing the action of QED by adding [d*pJ(p)%(—p)¥(p) where
¥ is the electron field. The original series (2) up to e? is

Sp(p) = S3(p) — €2S3(p) [d*al,S3(p+0)7, D8 (9)]S3(p), (4)

where D4 is the photon propagator and (S3)~%(p) = S5'(p)—iJ(p) is the
inverse of the free electron propagator in the presence of J. The lowest
inversion (e¥=0) gives us J(p) = iS5 (p)—iSy1(p) so that the inverted series

up toe’is

J(p) = iSg'(p) — iS5 (p) — i€® [d*qy,Sp(p+4a)7,D*(q), (5)
which is just the ladder Schwinger-Dyson equation if we set J=0.
Strong Coupling QED? Consider the gauge invariant order param-

eter ¢=<%(z)9(z)> and the term J[d*z{(z)y(z) is added to the action of
QED. The vacuum action function W[J] is calculated. It has the form




W(J] = —iTrin(S3)™ + (i/2) TrinDg! — i%) ()" W), (6)

n=l

where (87)~! = p+J and Wi is the vacuum graphs of the order (¢?)" in the
presence of J. We calculate ¢ by the formula ¢ = dW/3J/Q where 2 is the
space-time volume. The term up to e® is calculated below. It involves the
two loop diagram having one photon propagator and is evaluated by opening
the photon propagator, which is nothing but the vacuum polarization graph
with mass insertion of the electron. This produces the gauge invariant results.

The original series is obtained in this way which is given for small J as;
¢ = (J/4nt)[AF+(3a/2m){1-(S*/AD)(In/AD?}] + O(FPl))  (7)

where A{A,) is the electron (photon) momentum cut-off. The inverted series
is

J = (47 A1 2aa( A (2L Q

‘ A7

where a=e?/47 and a,=27/37, n=A,/A; This is noting but the negative of
the derivative of the effective potential. Equation (8) has the same form,
except for the (1:(1(;52)2 term, as the Landau theory of the phase transition.
We conclude; for a>a, the chiral condensation (¢#0) is realized. Our theory
predicts the mean field type behavior near a=a,; ¢~(a—a,)/?/ln(a~a,).

QCD and string tension For Quantum Chromodynamics (QCD),

the expected mnon- perturbative solution  behaves near g¢g=0 as
Y 6~,uexp(l / 26092), where all the quantities are the renormalized ones and

is the subtraction point. The index §>0 is the dimension of ¢ in mass unit

213



214

and B(g)=bgg*+b;g°+ - - - . We change the variable from ¢ to t=g’ng*é/p
which is of the order unity near the solution. The source J is assumed to
have the dimension of mass and consider the following inverted series by
extracting the factor qﬁl/ & This factor is always present since ¢=0 is one of
the solution to J=0;

T = ¢85 (). (8)=¢5F(1,4P). (9)

n=0

Before calculating f,(t) explicitly, the renormalization group equation tells us
much about the form of f,(¢t).

In order to see this, we choose J in such a way that J is independent of

the subtraction parameter u: ”%—:0' This can always be done by multiply-
n

ing a suitable factor in front of J. By noting that when applied to the right
hand side of (9),
d G, 8 d¢t/f o

——m e o — ,
Py ﬂ(g)agﬂz PP

and by requiring that the each coefficient of (g°)" vanishes, we get the set of

ordinary differential equations for f,(t). The first member of this set is

, N
(2b5¢~1) fo (t)+-—(—5—f0(t) =0, (10)
where f '=—2 and
7 at
1 d¢ 2 4
—p—==1(9) = ng+ng'+ . 1
SH = 1) = g g (1)
The solution is
11
|
folt) = Clt==) (12)




where C is the integration constant. Since b3<0, §>0, the non-trivial solu-

tion to J=0 is present if v;>0.

The sign ;>0 has the physical meaning. For the two quark field ¢~qg
or gq for instance, the first term of the anomalous dimension is calculated by
the ome gluon exchange diagram between two quarks or antiquark which
determines whether the force acting between two fermions is attractive or

repulsive. The correspondence is indeed!)
v1>0 < attractive,
7,<0 « repulsive,

therefore our conclusion is that ¢ condenses as long as we have the attractive
force between two particles. The condition v;>0 for the condensation of ¢
can be used as a generalized criterion in the case where ¢ is not written as
the product of two fields.

Now we know that the correct non-perturbative value of ¢ is

¢ = /Lexpfl:gz(imdz. (13)

Thus the variable ¢ has the expansion

¢1/5 _ 1 1

t =gl -
g 2b,  2b,

71 bl 2 2

[ S 1 -
{5 +bo}9 ng
+ CgP+dgt+ - - -, i (14)

where C, d etc. are some constants. The solution (12) to the lowest trunca-
tion reproduces the first term of the expansion (14). In order to discuss the
higher truncation systematically and most conveniently, we define }’(t,gz) as

Ft.g) = K(g)" f(t.9)"/", (15)
where

. 9 dzy(z
K(g) = lim gZexp-— dzy(z) (16)
( G000 fgo onB(z)
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Y2 b
= H{1+(—-—)¢ “h (17)
Y1 bo
71
= 18
7 255, (18)

Remember that K(g) has the Taylor expansion about g=0. The merit of
using f(¢,g) is that it satisfies a simple equation;

o - i)
(p——+B(9)==)t.g) = 0, (19)
in dg
where ¢ is fixed in this equation and
Blo) = =20 it -, (20)
1-7(g)/é
. Y10
bl = bl + 120 - (21)
é
The function f has the expansion
2 W-—l(t) 2
Ttg) = =+ W)+ Wi(0)+... (22)
and W(t) (I>-1) satisfies
(1=2bgt) Wy’ =2bolW;—2b, [t W_;" +(1~1) W,_{] = 0, (23)

where W_,=0. The solution up to W, is given as

9 Cy p 1 C_1b;
fltg) = E (-2 ) = " In(1-2byt) + Cy (24)
0 0

with C_; and C, being the integration constants which are calculated
through the series (9) diagrammatically. The zero of (24) is slightly modified

compared with the lowest value -—1--, and it behaves for small ¢° as

0
t= 2 jj}—gflng"2 + 0(¢*lnlng™?) (25)
26y 283



so that we have recovered the second term of the correct expansion (14) but
the term O(g%lnlng™2) should be O(g?). The discrepancy is of course due to
the truncation (24) and we have for #Y/¢ the solution to F=0, the scale non-
invariant behavior under the variation of u
L
¢Y/4(g")7 o (1ng™?) *%. (26)
The right hand side should be constant for the correct solution since the left

hand side is the scale invariant quantity.

We can improve the situation by taking into more terms of W, This
can most conveniently be done by deriving the partial differential equation
—2b
for K(t,¢%)=

(t.9%) o
and summing up from l=-1, we get

x(Wyt+g® Wi+g*Wo+ - - - ). By multiplying (A" to (23)

[{(1+ez)s——ez}—§; + (1+e2)e2—a%]%(s,e2) =1 (27)

-

b, b
where e?=g* ;’-l, K(s,ez)——-:b—g-K(t,gz) and s=1-2byt. We sum up the term
o 1
Ing)™ . . . . .
with 1<m<! appearing in W; which are the most singular terms in

s
W, This can be accomplished by looking for the solution to (27) with 1+e€?

replaced by unity. So that we solve

{(s—-—ez)-aés- + e2—5°‘?—2—}%0(s,e2) =1 (28)

and get the solution in the implicit form,
K, = In(s+e°K,) (29)
= In(s+e’In(s+e€%In(s+en - - - ))). (30)

The lowest solution k0=lns reproduces (24). The next truncation gives
K, =In(s+e¢%ns) which leads to the solution
by
- 7921119-2 + O(g%lnlnlng™?) (31)
2 0

fo L
2b,
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and for ¢1/5
b
$Y/4(¢%)" o (lnlng™2) 2. (32)

The situation is improved but still it is not scale invariant.

In order to obtain the scale invariant formula for the solution ¢, we have
to use the exact solution K, given by (29). Therefore we solve (29) and the

equation
=+ —Ko+ =0 (33)
simultaneously ~where Z’O=—2b000/ C_,. By inserting s=exp%o—-e2%o
obtained from (29) into (33), K, is given by
fko = 111("92’50) (34)

which leads to

1/

% ,
= ~¢"T — THa(-¢"CY) (35)
0

so that

1 Z’o 7’1
¢1/5 = pexp{ + { In -—92'5’ . 36
o (ST (36)

The scale parameter p is eliminated using the QCD scale parameter Aoeps

1 by "bogz
Agep = pexp{—— — —=In( )} (37)
1+——g
by

which is the expression assuming B(g)=byg’+b,¢°. From (36) and (37) we
finally get, by taking the limit g—0,



¢1/6(92)n = DAQCD: ; (38)

where D is the numerical constant given by

b, Z" !
D= exp{;;ﬁ——l;— (———) 255, In(-Co)} (39)
0 f1 0 71 »
== exp{*-——zbo +"—"bg (—b—o-)-{- 265, ln(~?)0)}. (39”)

The above two expressions are equivalent. These formulas suggest that the
solution exists as long as '5’0<O. The numerical evaluation of ’50 for the case
of
d=<P>, -—l—x(string tension), <G>
s o
in QCD is under way but the sign of ?ﬁo for these quantities is indeed nega-
tive.

Finally the formula for the energy density, more exactly the difference of
the energy density AE between the normal and the condensed vacuum, is
given below. AF has no anomalous dimension so it needs a separate discus-
sion. The source should be introduced in such a way that the energy is
lowered, i.e. AE<0. Let us write AE=—aJ*a>0) then the inverted series

1/4
has the form, with e=—AE/a and t=g21n£—-,
o

J = 51/4{l+ng1(t)+g4f2(t)+ c e } (40)
Define W(t,4%) by
W(g’gz) {ngl t)+g4f2(t)+ e }—-1

’1( ! ——t W)+ Wy (t)+ - - -, (41)

]

then by the same arguments as before, we have up to W,

C. C_.b
W(t,g?) = ——-(t———) — —In(1-2bgt)+Cp-

g 2bg 2b3
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The scale invariant formula for £/4 is now
e/t = DA ycp,
1+Cy b 2(1+0C)
+ In H-
c_, 252 -C_;
For the real solution to exist (1+Cj)/C_;<0 should be satisfied. The calcu-

lation of C, requires two loop vacuum diagrams under the presence of the

D = exp[—

suitable source which is not yet carried out.
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